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Abstract: A periodic metagate is designed on top of a boron 
nitride-graphene heterostructure to modulate the local 
carrier density distribution on the monolayer graphene. 
This causes the bandgaps of graphene surface plasmon 
polaritons to emerge because of either the interaction 
between the plasmon modes, which are mediated by the 
varying local carrier densities, or their interaction with 
the metal gates. Using the example of a double-gate gra-
phene device, we discuss the tunable band properties of 
graphene plasmons due to the competition between these 
two mechanisms. Because of this, a bandgap inversion, 
which results in a Zak phase switching, can be realized 
through electrostatic gating. Here we also show that an 
anisotropic plasmonic topological edge state exists at the 

interface between two graphene gratings of different Zak 
phases. While the orientation of the dipole moments can 
differentiate the band topologies of each graphene grat-
ing, the angle of radiation remains a tunable property. This 
may serve as a stepping stone toward active control of the 
band structures of surface plasmons for potential applica-
tions in optical communication, wave steering, or sensing.

Keywords: graphene plasmons; band topology; active 
metasurface; topological interface state.

1  �Introduction
Motivation. Topological photonics is a new and exciting 
area of optical science that deals with and employs the 
robust characteristics of periodic structures, also known 
as topological indices, to produce scattering-free, local-
ized optical excitations. Such excitations exist at the 
edges or domain walls of photonic topological insula-
tors (PTIs) [1] and are spectrally located inside PTIs’ 
bandgaps. The PTI concept is intimately connected 
to that of the topological insulator [2, 3], which is one 
of the most vibrant areas in today’s condensed matter 
physics. While most emphasis in topological photon-
ics has been on two- and three-dimensional PTIs sup-
porting either edge or surface states [1, 4–14], it is well 
known that even one-dimensional photonic crystals 
(PhCs) can have topological properties. As was the case 
with 2D and 3D PTIs, the original concept for such con-
fined zero-dimensional states emerged from studying 
electronic systems such as polyacetylene [15]. The Su-
Shrieffer-Heeger (SSH) model, which was developed to 
explain “soliton” formation in 1D long-chain polyenes, 
was crucial in interpreting the experimentally discov-
ered interface states, which require less energy to excite 
than the gap energy and play a fundamental role in the 
charge-transfer doping mechanism.
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More recently, a variety of periodic platforms trying to 
emulate the SSH model have been proposed, and robust 
zero-dimensional states have been found in acoustic crys-
tals [16–18], PhCs [19–23], and even cold atoms in optical 
lattices [24, 25]. Our emphasis is on the photonic systems 
in the remainder of this article. In such 1D PhCs, topologi-
cal properties of Bloch bands can be characterized by a 
topological invariant, referred to as the Zak phase. It is 
a geometric phase resulting from completing the loop of 
adiabatic evolution of the relevant bulk wavefunction 
(e.g. a scalar electric potential field on graphene of a 
plasmon mode in the electrostatic approximation) across 
the Brillioun zone [26]. A nontrivial Zak phase predicts 
the existence of protected SSH interface states localized 
at the boundaries of the 1D PhCs [27–29]. Such boundaries 
also include the domain walls between two PhCs sharing 
the same photonic bandgap but characterized by different 
Zak phases.

In recent studies, the flip of the Zak phase was found 
to be related to the inversion of Bloch bands [26]. More-
over, it was found to be connected to experimentally 
measurable surface impedance or reflection coefficients 
from the PhC interface [20, 27], thereby establishing a 
connection between physical observables and the Zak 
phase. However, because, by their very definition, PhCs 
enable the creation of bandgaps due to Bragg scattering, 
both the lattice period and the confinement length of the 
interface states must be comparable to the wavelength of 
light for conventional photonic structures constructed out 
of metals and dielectrics. For example, it is challenging 
to construct a conventionally composed PhC operating in 
the mid-infrared (MIR) portion of the spectrum that con-
fines light to smaller than a micrometer.

Moreover, a predesigned dielectric- or metal-based 
PhC cannot be easily changed in time. Therefore, active 
control of the SSH interface states in conventional PhCs is 
challenging. In this work, we demonstrate how a special 
class of electromagnetic excitation – graphene surface 
plasmon polaritons (GSPPs) – can be utilized to produce 
strongly localized (sub-wavelength) interface states at the 
domain wall between two metallic electrically biased 1D 
Bragg gratings described below. The 1D metallic gratings 
affect the propagation of GSPPs in two distinct ways. First, 
they directly interact with the graphene plasmons by pro-
ducing strong horizontal and vertical dipole moments. 
Second, when an electric field is applied between gra-
phene and the grating, the carrier density in graphene is 
also modulated. The resulting modulation of the chemi-
cal potential modulates graphene’s conductivity, thereby 
inducing additional Bragg scattering of GSPPs. Thus, the 
metallic grating simultaneously serves as a metagate and 

a PhC. The interplay between these two scattering path-
ways can either open or close a propagation bandgap for 
GSPPs at the center or edge of the Brillioun zone. We demo-
nstrate that the Zak phases of the two interface-forming 
1D graphene-plasmonic Bragg gratings can be controlled 
through electrostatic gating, thereby controlling the prop-
erties of the interface states. As we demonstrate in the 
following text, such interface states can be excited in the 
far-field. The conceptual device to be presented in this 
study has three distinct new features compared to a previ-
ous proposal [14]. In the current 1D-periodic metasurface, 
the band topology and the Zak phase can be controlled 
with fast, real-time electrostatic gating. Secondly, these 
1D gratings are electrically disconnected from each other. 
It allows electromagnetic waves to directly access surface 
plasmon polaritons. Far-field techniques can be applied to 
interrogate the band topologies of plasmons. Last but not 
least, a domain wall separating two topologically distinct 
crystals is now reconfigurable because the metagates are 
individually tunable.

Brief description of graphene surface plasmon polari-
tons. Since its first production by exfoliation from graphite 
[30–32], monolayer graphene has attracted a tremendous 
amount of research interest. In particular, graphene-based 
metasurfaces have been developed into a technologically 
important platform for the testing of innovative ideas and 
applications [33–61]. One major advantage of graphene 
is that it supports plasmons that can operate over the 
terahertz (THz) to mid-infrared (mid-IR) spectral range, 
where many important applications are implemented. 
As compared with the metallic counterparts, GSPPs are 
much more confined and significantly less lossy, leading 
to the design of smaller footprint devices featuring higher 
field enhancements and longer propagation lengths [34, 
44, 62–66]. In addition, its infrared (IR) properties can be 
actively modified and modulated [65, 67, 68], owing to the 
pronounced ambipolar electric field effect [69, 70].

One of the most remarkable and attractive properties 
of graphene is that the Fermi level of the free carriers (i.e. 
its chemical potential) can be continuously tuned from 
its valence band to the conduction band by the injec-
tion of charge carriers, providing linear control of the 
frequency-dependent optical conductivity of graphene 
over a very wide spectral band. Molecular doping [71] 
and electrostatic gating [72] are two parallel approaches 
to achieve this goal. In particular, the electrostatic gating 
of graphene using patterned metasurfaces benefits from 
semiconductor-compatible fabrication technologies and 
thus has been widely implemented in both fundamental 
and advanced device research. Using such approaches, 
the conductivity of graphene can be changed by at least 
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two orders of magnitude [31, 73]. The control of local Fermi 
levels and conductivity of graphene in practice can be 
utilized to modulate optical transmission [36–39, 60, 61] 
through graphene-based metasurfaces, which is useful 
for sensing or optical communications applications for 
instance. It can also create p-n junctions or quantum dots 
confined spatially within the graphene layer by more 
sophisticated patterning of local carrier distribution, 
which allows for the manipulation of electrons [74–77].

Patterning of graphene with permanently imprinted 
geometries has been previously proposed [60, 61, 78, 79]. 
On the other hand, multiple possibilities of transforming 
a uniform carrier density distribution within a graphene 
sheet into a complicated spatial dependence, e.g. into a 
periodic Bragg grating, have also been demonstrated [41, 
80–84]. The one approach that does not require graphene 
patterning of chemical doping relies on the electrostatic 
field being periodically shaped using a patterned meta-
surface or grooved substrates [14, 85]. Potential applica-
tions in active plasmonics could also benefit from the 
ultrafast process of carrier generation and relaxation in 
graphene, as the Fermi level has been demonstrated to be 
electrostatically adjusted at sub-nanosecond time scales 
[86]. Marrying the sub-wavelength nature of graphene 
plasmonics with local nanoscale patterning of the carrier 
density distribution in graphene-based metasurfaces thus 
offers promising opportunities in active and ultrafast 
manipulation of light at the nanoscale.

The rest of this article is organized as follows. In 
Section 2 we discuss the physics of controlling the carrier 
density in graphene using a periodic metallic metagate. 
Quantum capacitance is taken into account by requiring 
the constancy of the electrochemical potential in gra-
phene. In Section 3, we briefly introduce the calculation 
of the Zak phase for Bloch plasmon bands that emerge as 
a result of the periodic modulation of carrier density. The 
photonic band structure of GSPPs in a periodic chemical 
potential of graphene is calculated, and the concepts of 
band inversion and bandgap closing are introduced. In 
Section 4, we show numerical simulation of far-field trans-
mission spectra of a graphene device applied with differ-
ent gate voltages. The manifestations of band inversion 
and bandgap closing in reflection/transmission spectra 
strongly rely on the presence of metallic top gates. Local-
ized interface states at the interface between graphene-
based gratings of different Zak phases are identified, and 
their coupling to the incident far-field radiation is calcu-
lated as a proof of concept. We show that an interface state 
can be anisotropic because of the hybridization of wave-
functions from the adjacent 1D PhCs with different Zak 
phases. In addition, because the hybridization strongly 

depends on the localization of the evanescent mode into 
the interface-forming PhCs, the effective polarizability 
tensor of the interface state becomes tunable, making it a 
promising fundamental building block for actively tunable 
electro-optic devices. Finally, quantum nonlocality effects 
are discussed in Section 5. We compare the tunability of 
the band structures calculated using both COMSOL Mul-
tiphysics with a local Drude conductivity and a program 
developed in house by Jung et al. [14]. The latter takes into 
account nonlocal effects [67].

2  �Periodically gated graphene

2.1  �Graphene conductivity

Properties of GSPPs interacting with light rely on the 
response of oscillating carriers of graphene. Such response 
can be described by an optical conductivity, which was 
previously derived from a linear response of electronic 
current to external fields for a tight-binding Hamiltonian 
of carbon atoms sitting on the honeycomb lattice [87]. It 
was found that graphene with a uniform distribution of 
carriers has the following response in the infrared regime:
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where σg is the surface conductivity depending on the 
temperature T, frequency ω, local chemical potential EF, 
and scattering time τ due to carrier scattering [88]. We will 
take the low-temperature and low-photon-energy limit for 
our application. Therefore, it leads to a Drude model after 
those considerations:
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We use Eq. (2) in both the quasi-electrostatic model 
and full-wave simulation of the optical properties of 
GSSPs. The chemical potential EF should be taken as a 
constant if the carrier distribution is uniform. But, here, 
the surface conductivity of graphene is further assumed 
to be a local property of the carrier density distribution. 
We extend the relationship of local chemical potential to 
be position-dependent, F F( ) ( ).E x v n xπ= �  This allows us 

to conveniently prescribe a Fourier series of EF(x) and σg(x) 
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in a periodic system for numerical simulations, with coef-
ficients of both expansions connected through Eq. (2). A 
periodic carrier distribution can be induced by gating the 
graphene periodically using a metallic metasurface. This 
will be discussed in the next section utilizing an intuitive 
electrostatic model. However, such a conductivity model 
solved from electrostatics needs to be modified in the 
presence of nonlocal effects when a finite wavevector of 
GSSP is considered. This nonlocal effect will also be evalu-
ated for our application at the end of this study.

2.2  �Description of the graphene-based 
photonic platform

In Figure 1A, we show a schematic of the photonic plat-
form to be analyzed in this work. It is a double-gated 
device, with a single-layer graphene (SLG) encapsulated 
between two hexagonal boron nitride (hBN) layers, and a 
periodic metagate placed atop of the structure. The hBN 
layers provide protection of the SLG from the environ-
ment and ensure that the electronic transport properties 
correspond to the intrinsic values of graphene. A periodi-
cally patterned metal metasurface serves as the top gate 
with an electric potential V1, thus controlling the carrier 
density n(x) inside the SLG with high spatial precision. 
From a practical perspective, the geometric dimensions of  
graphene-based devices, such as the metasurface periodic-
ity Px, can potentially be made at deeply sub-wavelength 
length scales for the MIR GSPPs: 0 eff2 / 2 / ,xP nπ π λ ⋅∼  
when MIR GSPP with extremely high effective index 

neff > 100 is excited [67]. Such nanoscale patterning of 
chemical potential inside the SLG can be accomplished 
using e-beam lithographically defined metallic meta-
gates. Both the amplitude of modulation and sharpness of 
n(x) and of the corresponding chemical potential EF(x) are 
absolutely crucial for the control of the photonic bandgap. 
One additional degree of control over optical properties of 
the SLG comes from the back gate kept at the potential V2. 
The back gate serves the role of contributing to an offset 
in the average carrier density n0 = ⟨n(x)⟩ in the SLG and, 
therefore, will be used to adjust the mid-gap frequency.

Unlike a perfect electric conductor (PEC), which com-
pletely screens the tangential component of the electric 
field, graphene does not do so, especially at low bias of 
electrostatic gating. Therefore, while the electric potential 
ϕ is a constant at the surface of a PEC, the quantity that 
remains constant on the surface of graphene is the so-
called electrochemical potential. The underlying physics 
is governed by [89]

	 F g ,e E eVϕ + = � (3)

where the energy needed for supplying one extra electron 
into graphene is described by an electrochemical poten-
tial energy eVg, which should be equal to the increase in 
potential eϕ and an extra EF needed to inject the electron 
into graphene. In a general case, voltages are applied to 
the top and bottom gates, while a constant electrochemi-
cal potential can be assumed in the graphene, as shown in 
Figure 1A. A solution is found by implementing the non-
linear boundary condition of Eq. (3) in a finite element 
(FEM) solver [90]. For the specific design (Figure 1A), we 

Figure 1: An electrostatic model of patterning chemical potential on a double-gated graphene encapsulated by two hBN layers.
(A) A side view of the unit cell of graphene metasurface. Periodic gold metagates are supplied with top gating voltage V1, graphene has 
Vg = 0 as electrochemical potential, and a back gate is far away from the graphene which has V2 as the back gate voltage. The back gate can 
be a monolayer of graphene or doped silicon substrate. (B) Using the geometry in (A), local carrier density distribution is calculated and it 
defines EF(x), which is the local Fermi level of free carriers. In this example, h = 6 nm, H = 50 nm, w = 40 nm, and Px = 100 nm. The height of 
Au bars is 30 nm, but the thickness plays a less significant role in either electrostatic gating or infrared scattering. Electrostatic permittivity 
of hBN is εxx = 7 and εyy = 4.5. Gating voltages are V1 = –0.35 V and V2 = 11 V for the black curve, V1 = 0.29 V and V2 = 9.0 V for the green dashed 
curve, V1 = 1.3 V and V2 = 6.3 V for the blue curve, and V1 = 4.5 V and V2 = 1.7 V for the red curve.
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calculated the local EF functions for various combinations 
of input gating voltages, as shown in Figure 1B. For a peri-
odic structure, we can expand the local EF functions as a 
Fourier series

	
(0) (1) (2)

F F F F( ) cos cos2 ,E x E E Gx E Gx= + + +� � (4)

where G = 2π/Px, and Px is the period of the grating. This 
expansion can also be applied to the EF functions in 
Figure 1B. We give the expansion coefficients in Table 1. 
These profiles can change the photonic band structures of 
GSPPs, and they will be used as local conductivity input 
for optical simulations in the following sections. Note 
that the green dashed EF profile in Figure 1B is flat, cor-
responding to a uniform distribution of carrier density. As 
expected from Eq. (3), its electric potential equals the top 
gate bias, instead of the 0 electrochemical potential sup-
plied on graphene. This means no carriers are effectively 
contributed by the top gate.

For now, we focus on the effect of the geometric 
parameters of graphene-based metasurfaces, such as 
the metagate-to-SLG spacing h and the grating periodic-
ity Px (see Figure 1A for the definitions of the geometric 
parameters), and on the spatial Fourier components of 
the periodic EF(x). We consider a simple parallel capaci-
tor model. The model is applied to the SLG and to the 
bottom surface of the metagate. The two are separated by 
the distance h. Graphene is assumed to be electrochemi-
cally grounded, i.e. Vg = 0. To induce spatial modulation 
of carrier density in graphene, we assume that a spatially 
harmonic potential V(x) is applied to the top plate:

	 0 sin ,V V V kxδ= + � (5)

where V0 is a constant, δV characterizes a perturbation, 
and k is the spatial frequency of the Fourier component. 
The carrier density of graphene can be found in the fol-
lowing form in the small modulation limit:
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where 0 F= 4 / / 2e v eα πε ⋅�  is a parameter that depends 
on the properties of the graphene layer and on the spatial 
scale of the imposed voltage perturbation, and a = V0/h 
is the average gate field applied between the SLG and 
the gate. The term with a nonvanishing α accounts for 
an unscreened electric field behind the graphene sheet 
as compared to the response of a perfect metal. We note 
that the combination 2 2 2 1 2 2

g F e=( / ) (2 ) ( / 2 )rE k v c er k mα −≡ �  
has the dimension of the electric field inside graphene. 
Here, re = e2/mc2 is the classical electron radius, and 
vF/c ~ 1/300. For example, for k = 2Nπ/100  nm, we esti-
mate that Egr ~ N210−4 V/nm. The relative magnitude of Egr 
and the imposed gate field V0/h determines the degree of 
screening of the imposed spatially varying electrostatic 
potential by graphene compared to a PEC. For example, 
if Egr  V0/h, then graphene behaves as a PEC. Note that 
Eq. (6) has used the assumption that δV/V0  1; therefore 
the scaling law of Egr is only used to emphasize the sig-
nificant contribution to screening effects from high-order 
spatial harmonics in the carrier density distribution.

Equation (6) also indicates that the carrier density 
profile becomes flattened as kh increases. For a metagate 
that is over 100  nm away from the graphene, this will 
result in a vanishing variation in the charge carrier density 
set by the varying potential, which is characterized by 
δV/V0 < 0.5. The value of δV/V0 in principle can be esti-
mated from an FEM simulation, depending on the geom-
etry and input voltages to be used. For a metagate that 
is less than 10 nm removed from the graphene layer, the 
Fourier transform of the resultant EF(x) can have consider-
able presence of the high-harmonic Fourier components. 
These harmonics are essential for creating propagation 
bandgaps for the GSPPs.

3  �Optical properties of GSPPs

3.1  �Calculation of the photonic band 
structure of GSPPs supported by 
graphene with nonuniform chemical 
potential

In order to demonstrate clearly the physics of band inver-
sion due to a spatially varying surface charge distribution, 
we first analytically calculate the band structures of gra-
phene plasmon modes in a much simpler scenario, that is, 
a graphene sheet suspended in air. This is done to avoid the 
complications related to optical phonon excitations in the 
hBN encapsulation layers [55, 56, 91] and to the interaction 

Table 1: Fourier expansion coefficients of EF funtions in Figure 1B.

(eV)   (0)
FE   (1)

FE   (2)
FE

EF1   0.300  0.041  –0.011
EF2   0.298  0.000  –0.002
EF3   0.301  –0.058  0.020
EF4   0.347  –0.206  0.048
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of the GSPPs with a metallic metasurface. Surface plasmon 
on graphene is deeply sub-wavelength, and its electrody-
namic formalism can be approximated using electrostatics. 
For a free-standing graphene layer in air, electric field of a 
resonant GSPP mode can be found by solving the Poisson 
equation for a potential field with properly imposed bound-
ary conditions across the graphene. The basis of a solution 
in free space takes the following form:

	
,

, ( , ) ,m k yikx imGx
m k x y e e e α

φ
±± = � (7)

where k is the Bloch wave number, G = 2π/Px is the lattice 
vector due to a periodic modulation of carrier distribu-
tion, m is an order index used in Fourier expansion, 
and m, | |k k mGα = +  is the transverse decay constant in 
the electrostatic limit for the mth evanescent wave. The 
symbol ± denotes whether the potential field is above or 
below the graphene sheet. A GSPP mode has a trial poten-
tial field, which can be expanded on such basis [Eq. (7)]:

	
, ,( ,  ) ( , ) ( , ),ikx

k m k m k k
m

x y c x y e u x yϕ φ± ± ±= =∑ � (8)

with expansion coefficients ,m kc±  of a particular GSPP mode 
to be determined by matching boundary conditions. uk(x, y)  
is the periodic part of the wavefunction and will be used 
for the evaluation of the geometric Zak phase. The oscil-
lating charges must satisfy the following three conditions:

	 0 0| | ,x k y x k yϕ ϕ+ −
= =∂ = ∂ � (9)

	 0 0 s 0| | / ,y k y y k yϕ ϕ σ ε+ +
= =−∂ +∂ = � (10)
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where σs is the surface charge density, and 
( )

g g( ) m imGx
m

x eσ σ= ∑  is the Fourier expansion of the local 
conductivity of graphene. These three equations denote, 
respectively, the continuity of the transverse electric field, 
Gauss’s law of surface charges, and the continuity equa-
tion of oscillating carriers.

Using the trial solution Eq. (8) with unknown coeffi-
cients and Eqs. (9)–(11), we can derive the following eigen 
equation [Eq. (12)] and solve it for the eigen modes and 
eigen frequency in the momentum space, given either arti-
ficial or realistic chemical potential distributions using 
the Fourier expansion
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scattering time constant τ from the conductivity equation 

[Eq. (2)] is neglected for this theoretical analysis. k� and 
,m kα�  are the Bloch number and transverse decay constant 

normalized to magnitude of the lattice vector. In the first 
example to demonstrate bandgap inversion, we solved 
for the eigen frequencies for four different carrier dis-
tributions as those indicated in the captions of Figure 2. 
The prescribed (e.g. induced by chemical doping) profile 
of the chemical potential is assumed to be of the form of 
Eq. (4).

This spatial dependence is sufficient for opening the 
first bandgap at the Γ-point with a nonzero (2)

FE  coeffi-
cient. For generality, a nonvanishing (1)

FE  is also assumed. 
A band inversion at the Γ-point can be observed by com-
paring Figure 2A and B, or Figure 2A and C, when the (2)

FE  
parameter is tuned across zero. We can also see that the 
symmetry property of the modes change as a result.

3.2  �Band topology in 1D graphene 
metasurfaces

Band inversions are associated with a change of band 
topology, and are characterized by a 1D geometric phase 
called the Zak phase. The Zak phase is a robust index that 
characterizes the 1D topological properties of bulk bands. 
It is defined as

	
Z

, ,d | | ,ak
n n k k n ki k u uθ ∗= 〈 ∂ 〉∫ � (13)

where the integration of k is performed inside the first 
Brillioun zone for any band n using its Bloch wavefunc-
tions un,k(x) [26]. Another way to calculate the Zak phase 
is to use its discretized form as was previously utilized 
in [16]:

	 1

1

Zak
, ,cell

{ }

Im ln d ( ) ( ),
i iN

i i

n n k n k
k

xu x u xθ
+

=

∗= − ∑ ∫ � (14)

where k1, k2,..., kN are taken as a sequential wave number 
partition of the Brillioun zone, with k1 = kN to close the 
loop. Its numerical evaluation is straightforward when 
the Bloch wavefunctions for each band un,k(x) are known 
from solving Eq. (12), or more generally from FEM eigen 
frequency simulations.

Although it is stated that the topological property of 
a bandgap is determined by the summation of the Zak 
phases [Eq. (14)] of all the bands below this gap, it is 
however relevant to know the symmetry of the two modes 
at the bandgap of interest in this 1D case, given that the 
Zak phase can be uniquely associated with the symme-
tries of modes at the center and edge of each band [16, 20]. 
Flipping the symmetry at any lower bandgap will lead to 
a 2π total Zak phase change, while flipping the symmetry 
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of modes at the bandgap of interest leads to a π total Zak 
phase change. In Figure 2, we numerically demonstrate 
for the second band that the Zak phase is correlated with 
the mode symmetries. Correspondingly, the symmetry of 
the wavefunctions is color-coded, and the single-band 
Zak phases are labeled.

To approximate the Hamitonian in Eq. (12), we take 
into consideration only the three lowest Bloch bands, 
namely the m = 0 and ±1 bands. Our model Hamiltonian 
is recast into two parts in Eq. (15). The first term has plane 
wave solutions of uniformly gated graphene and two 
perturbed terms describing the spatial modulation up to 
the second order of the EF expansion, which is minimally 
required to couple the m = ± 1 bands:
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This model Hamiltonian can be easily solved, and quan-
titative comparison are made with the band structures 
plotted in Figure 2A–D.

Figure 2: A simplified model platform for investigating topological properties of 1D graphene metasurface: a suspended nonuniformly 
gated graphene layer with the chemical potential given by Eq. (4).
Four different combinations of (1) (2)

F F( , )E E  are used to create band gaps at the Γ- and X-points. (A) =(1)
F 0.05 eV,E  =(2)

F 0.05 eV,E  
(B)  =(1)

F 0.05 eV,E  = −(2)
F 0.05 eV,E  (C) = −(1)

F 0.05 eV,E  =(2)
F 0.05 eV,E  and (D) = −(1)

F 0.05 eV,E  = −(2)
F 0.05 eV.E  The circles are solved by COMSOL 

Multiphysics and the colored solid lines are obtained by solving Eq. (12). Each band is color-coded according to the symmetries of full 
wavefunctions. The Zak phases are numerically calculated. (E) Eigen modes of bridged graphene Bragg gratings are simulated for all 
different combinations of those from (A)–(D). Interface states present in various bandgaps when the two graphene Bragg gratings different 
in Zak phase. (F) For the case labeled with a red hollow star, local chemical potential distribution and a localized profile of an interface state 
are plotted.
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3.3  �Interface state

One important application of the Zak phase is that it 
establishes the relation of the existence of an interface 
state through the comparative difference in the Zak phase 
between bulk materials on either side of this edge state. 
Simulations show that the phase of a reflected beam 
from a bulk crystal in the bandgap can have a phase dif-
ference of π when the bulk Zak phase is different by the 
same quantity, which has also been demonstrated using 
PhCs [16]. Both simulations and experiments have probed 
the phase relations between the different electromagnetic 
field components of an evanescent wave decaying into the  
bulk crystal. It suggests that an edge state can exist in 
the bandgap common to both adjacent bulk crystals when 
the total Zak phase of the bandgaps is different by π. On our 
graphene platform, we verify this conclusion using the four 
graphene Bragg gratings in previous simulations, in which 
all bandgaps have been labeled a Zak phase. We show the 
frequency of eigen modes of all six combinations of bridged 
Bragg gratings (Figure 2E, F). Simulations were performed 
on a 100-unit cell-long graphene grating with a Floquet 
periodicity. Divided in the middle, each 50 unit cells are 
given a carrier density chosen from the four configurations. 
Figure 2E shows consistent results of the presence of inter-
face states as predicted by the Zak phase analysis.

4  �Far-field manifestation
In a practical design, the GSPP modes have an evanes-
cent field profile in the vertical direction, which inevita-
bly interacts with the off-resonance spoof plasmon modes 
[92] supported by the metagates in the vicinity. Thanks to 
material dispersion of the highly anisotropic hBN [91, 93], 
the vertical decay of infrared plasmons is faster than that 
of the gating electrostatic field. Therefore, it is possible to 
offset the GSPP-spoof-plasmon interaction by tuning the 
top gate voltage in an intuitively perturbative model, with 
the bandgap inversion occurring when the voltage on the 
top gate is nonzero. We chose the demonstration opera-
tional frequency to be near 28 THz [91]. The closing of a 
bandgap can be manifested as a merging of a pair of trans-
mission dips in the spectra of oblique transmission through 
the structure, considering that the metasurface unit cell 
is extremely sub-wavelength. In addition, this graphene 
Bragg grating can be used to create a resonating interface 
state by setting the various top metagates to two slightly dif-
ferent sets of applied biases and forming a domain wall in 
the middle of the graphene Bragg grating [94].

4.1  �GSSP band inversion

To observe band inversion in 1D graphene-based meta-
surfaces using far-field illumination, we simulated 
transmission properties (Figure 3) of the device with an 
extra substrate consisting of a 200-nm-thick SiO2 layer 
and silicon. We clearly see two transmission dips in the 
spectra for EF1(x) (black line) and EF4(x) (red line) profiles. 
Because of the deeply sub-wavelength unit cell size of the 
metagate, the spectral positions of the transmission dips 
only slightly shift their frequency as the incident angle 
varies from θ = 20° to θ = 70°. Profiling the excited near-
fields of the metasurface at the dip locations reveals two 
important effects. First, we observe that the deeper trans-
mission dips (especially at small incidence angles) are 
associated with the excitation of the Ex-even modes. This 
is because the even modes have a stronger electric dipole 
moment px and can be excited by a p-polarized light even 
under small-angle oblique incidence. Second, we observe 
that band inversion indeed occurs when the chemical 
potential profile switches from EF1(x) to EF4(x) cases. This 
is particularly clear for the small-angle (θ = 20°) transmis-
sion spectra, where the transmission dip at the even mode 
clearly jumps from low to high frequencies as the gating 
voltages change from Case 1 (corresponding to the EF1(x) 
profile) to Case 4 (corresponding to the EF4(x) profile). For 
large incidence angles (θ = 70°), both the high- and low-
frequency dips are observed in the spectra.

Considerable departure from Cases 1 and 4 can be 
observed in the spectra corresponding to the Case 3 (EF3(x) 
chemical potential profile). Almost no transmission dips 
are observed for small incidence angles, and only a single 
(merged) dip is observed for the largest incidence angles. 
This suggests that the two modes of opposite symmetry 
(even and odd) cross each other at the Γ-point for the gating 
voltages. In other words, the bandgap closes for the specific 
combination of the chemical potential profile EF3(x) and the 
metal grating location. The physical interpretation of this 
result is as follows. As GSPPs propagate along the 1D gra-
phene metasurface, they experience backscattering due to 
the two channels produced by two distinct Bragg gratings: 
(i) the metallic grating located in close proximity of the SLG, 
and (ii) the variable-conductivity grating defined by the 
EF(x) profile. The two scattering channels can interfere in 
a constructive or destructive way. The interference become 
destructive and there is an exact cancellation between the 
two scattering channel in Case 3. Therefore, the bandgap 
closes because a forward-traveling GSPP no longer scatters 
into its backward-traveling counterpart. On the other hand, 
channel (ii) overcomes channel (i) in Case 4 because of the 
large variation of EF4(x) inside the unit cell (compare the red 
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line Figure 1B to other lines in the same figure). However, 
the frequency order of the modes in Case 4 is now opposite 
to that in Case 1. As we have shown previously, this is con-
nected to the sign change of the second Fourier harmonic of 
the chemical potential EF(x) between Cases 1 and 4.

Case 2 (green dashed curve corresponding to EF2(x) 
profile) presents an interesting case when the surface 
conductivity is flat while only the scattering channel (i) 
is on. This allows us to observe GSPP scattering only due 
to metal metagates. When GSPP interacts with a uniform 
metal gate that is placed at h over the graphene, it is 
known that the GSPP forms an acoustic mode for small 
h [95]. We use the electrostatic approximation discussed 
above and show that its mode dispersion is as follows:
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where EF is the constant chemical potential, and εxx and εyy 
are, respectively, the dielectric tensor elements of the sur-
rounding anisotropic material along the graphene sheet 
and perpendicular to it. k is the wave number for GSPP 
modes. For small h, GSPP frequency is linear in wave 
number and it is significantly red-shifted as compared with 
a GSPP on a free-standing graphene sheet. This offers an 
intuitive picture of the mode frequency shift due to a flat 
metal gate. However, when metagates are periodically pat-
terned, it supports evanescent modes in the air gap as well 

Figure 3: Farfield interrogation of GSSP band inversion.
(A) Illustration of the mounting of incident field and a unit cell of the structure. Here, silicon and 200-nm silicon dioxide are used as the 
substrates. We may assume that a uniform monolayer graphene can be deployed between SiO2 and the bottom layer hBN as the back gate, 
but it can be neglected in mid-IR transmission simulations. (B) Typical field profiles of Ex-odd and Ex-even modes whose optical responses 
are observed as transmission dips. Under normal or small-angle incidence, the modes at pronounced dips have stronger transverse dipole 
moments therefore are labeled as the even modes by a purple star. Respectively, the colored (C) band dispersion near the Γ-point and 
(D) transmission spectra correspond to the local carrier density distribution calculated in Figure 1B for various incident angles. In these 
simulations, the conductivity equation [Eq. (2)] is used, and scattering time of carriers is chosen to be 500 fs.
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as a TEM mode that channels plasmon mode energy into the 
far-field. Propagating acoustic modes would couple under 
these scattering processes and form a bandgap as shown in 
Figure 3C and D (green dashed curves). Its Ex-even mode 
should take the lower frequency because a metal strip is 
sitting atop of its mode anti-node, offering more red shift 
of its resonance frequency than the Ex-odd mode. This also 
helps us to identify the Ex-even modes for any other band 
structure of the same topological phase before bandgap 
closing, in addition to the pronounced far-field signature.

4.2  �Anisotropic interface state

It is known that leaky photonic modes can be utilized 
to probe and visualize topological states via Fano reso-
nances [96]. The nonvanishing dipole moments carried 
by the topological edge state come from an intrinsic prop-
erty of at least one of the bulk modes, which typically are 
observed from radiative non-Hermitian systems. Here we 
divert our attention to another new degree of freedom. We 

find that it is possible to change the far-field properties 
of a topological interface state, since this extra degree of 
freedom is not dictated by the topological property. To 
the best of our knowledge, systems that can support such 
functionalities have not been investigated to date.

To validate these concepts, we have constructed a gra-
phene Bragg grating of 20 unit cells. A domain wall in the 
center is created when two different sets of gate voltage 
are wired to the left or the right half of the grating. We 
explicitly prescribe the EF(x) landscape across the grating 
using functions, for example, such as Eq. (4), or that cal-
culated from the electrostatic simulation of EF(x). In the 
driven simulations, we employ focused Gaussian beams 
to excite this edge state, incident from different angles. 
In Figure 4C, we show the effective absorption cross-
sectional spectra for varying incident angles. This edge 
mode exhibits a clearly anisotropic response. This is the 
result of the hybridization of bulk evanescent plasmon 
modes in the crystal bandgap; the even mode is horizon-
tally polarized, and the odd mode is vertically polarized 
as a result of the free-charge distribution present on the 

Figure 4: A GSSP SSH interface state.
(A) A model of graphene gratings with tunable band topologies on two sides of a domain wall. Coefficients of EF functions Eq. (4) are 
explicitly prescribed. EF,left (eV): =(0)

F 0.2,E  = −(1)
F 0.03,E  = −(2)

F 0.03E  and, for EF,right (eV): =(0)
F 0.2,E  =(1)

F 0.03,E  =(2)
F 0.07.E  Only graphene and 

metal metagates are considered in the simulations. A Gaussian beam with waist size w0 = 6 μm is p-polarized and its incident angle sweeps 
from –75° to 75°. An edge-mode field enhancement is shown for incident angle –20° at wavelength 7.36 μm. (B) In the far-field, power 
flux is shown for the resonant edge mode excited by an –20° incident light. Insets: electric field profile of quadrupole E2,A and E2,S, dipole 
E1,A and E1,S, and an out-of-plane magnetic mode E0. Color represents their field amplitudes. (C) The color map shows effective absorption 
cross-section (1D) of the graphene grating. An edge mode is predicted by previous Zak phase analysis. Its spectral response, however, is 
not symmetric for incident light coming from opposite sides of the domain wall. (D) The edge mode far-field is expanded onto the multipole 
basis shown as insets in panel (B). Each mode amplitude is plotted as a function of wavelength for the –20° incident case.
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metal metagates. A comparison of the topological edge 
mode far-field with multipolar modes in Figure 4B and a 
multipole expansion in Figure 4D confirms the dominat-
ing presence of dipole moments as compared with weaker 
quadrupole and an out-of-plane magnetic moments. The 
localization of bulk evanescent modes can thus have 
an effect on the orientation of the mode. In the present 
model, the edge mode is highly localized and produces a 
small scattering cross-section under mid-IR illumination. 
The scattering effect can be improved by patterning unit 
cells with larger period, while a higher chemical poten-
tial is needed to offset the resonance red shift caused 
by a lower wave momentum according to Eq. (12). Then, 
an interesting possibility of manipulation of light with a 
high spatial localization and a tunable polarization can 
therefore be perceived by implementing this platform and 
benefit wave-steering applications.

Different from the graphene surface plasmon 
waveguide-like cavity mode, the 1D SSH edge state is 
robust against local perturbations near the domain wall. 
Although both can be spatially reconfigured by changing 
the gating voltage profile, the SSH edge state is resilient 
to a local perturbation in carrier density, which can result 
from fabrication imperfections of metagates, for example, 
a missing metal electrode. Instead, it is more likely to 
shift the cavity mode out of the bandgap. In fact, for small 
metagates as we have used in the present study, the size 
inhomogeneity can be a challenge for electrostatically 
reconfiguring the metasurface to arbitrarily move a cavity 
mode on the metasurface. To prospect future opportuni-
ties, the SSH edge state can be utilized in a large array or 
even stacked into multiple layers in order to increase the 
efficiency of a wave-steering application.

Nevertheless, the tunable reflectivity dips shown in 
Figures 3 and 4 can feature much narrower bandwidths 
(Q > 100) compared to other active graphene-based mid-IR 
modulators such as graphene-integrated plasmonic meta-
surfaces (Q = 30) [38–40, 48] or graphene nanodisk arrays 
(Q = 20) [61]. This is because we utilize the high-quality, 
long-lived graphene plasmons [44, 65, 66] by avoiding the 
direct patterning of graphene. Therefore, supported by high 
tunability and sharp resonant responses, our proposed 
platform also promises potential applications for ultrafast 
and ultradense information encoders for mid-IR radiation.

5  �Quantum nonlocality in 
graphene-integrated plasmonic 
structures

Finally, we will briefly discuss the nonlocal effects that 
occur with this system of Dirac fermions and its potential 
opportunities in this platform. In small plasmonic nano-
structures, the key physical quantities that determine 
plasmonic resonance frequencies and the correspond-
ing optical response, such as the electron conductivity or 
material permittivity, are more accurate using quantum 
mechanical or quasi-classical frameworks [67, 97–109]. For 
our current designs, which feature relatively large spac-
ings between graphene and metagate contacts, the local 
carrier density profile is relatively smooth, i.e. contains a 
smaller contribution from the high-frequency spatial har-
monics. Qualitative estimations [14, 67] suggest a relatively 
low degree of nonlocal effects that does not change the 

Figure 5: Comparison of band gap frequencies between local and non-local conductivity model.
(A) Using the conductivity equation [Eq. (2)] in COMSOL simulations, mid-gap frequencies = +odd even( )/2f f f  are plotted in color as a function 
of top gate and back gate voltages. White dashed lines illustrate contours labeled with the bandgap size, defined as feven − fodd. (B) Same as 
(A), but using a nonlocal conductivity model [14]. In these simulations, the electrostatic gating was first solved, and the local carrier density 
is known. Then the infrared properties are simulated using the input carrier density for describing local or nonlocal response functions. The 
geometry would take the same template as shown in Figure 1A but without fillet features on metagates. w = 30 nm and h = 6 nm. Metal is 
treated as PEC in infrared property calculations. The electrostatic permittivity of hBN was taken from [110].
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resonant frequency or band topology significantly. Nev-
ertheless, the plasmonic structures with a stronger cou-
pling between the Fourier components considered in this 
article represent a promising platform for future investiga-
tions of nonlocal effects of different quantum mechanical 
origins. Below we describe a simple model that captures 
the quantum mechanical nonlocality of electron-hole 
optical conductivity of graphene with nonuniform chami-
cal potential.

For the noninteracting free carriers in graphene with 
inhomogeneous density, the following expression [14, 
108] for the Hartree response has been suggested:
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For the system simulated in Figure 3, a quick estimate 
shows the following hierarchy of energy scales: 0.1 eV,ω ≈�  

F | | 0.04 eV,v q ≈�  and F(0) 0.3 eV,E ≈�  1 1
F (0) 3.4 eV ,E− −≈�  

1 2
F F| ( ) / ( ) | 10 eV ,E G E G− −≈� �  1 2

F F| (2 ) / (2 )| 10 eV ,E G E G− −≈� �  etc. 
Therefore, the magnitude of the second and third terms in 
Eq. (17) are small compared to the response because of a 
local conductivity equation [Eq. (2)], with the contribution 
of the third term being on the order of 10%. This impact 
on the graphene plasmon dispersions can be observed 
by comparing Figure 5A and B, where mid-gap frequency 
shifts by less than 5% for the same set of gate voltages. 
Overall, the contour lines resulting from the two models 
qualitatively resemble each other. These effects can be 
managed by more refined control of the gate voltages, as 
is observed in the comparison of simulations using local 
and nonlocal models in Figure 5A and B. Note that in this 
theoretical exploration, we have used rectangular-shaped 
metal stripes as top gates, so a sharper carrier density 
distribution may be expected. This allows us to observe 
a more profound nontrivial dependence of frequencies on 
local carrier densities designed by the local control of the 
gate voltages and device geometry, especially when con-
tributions from higher momentum terms increase. As a 
final remark, it was also demonstrated that it discretizes 
the energies of the electronic states as a result of the high 
spatial confinement of the free carriers [77]. The charac-
teristic energy may be on the order of 10 meV, estimated  
by a Dirac fermion-in-the-box model. It can poten-
tially change the distribution of carriers and hence the 
optical conductivity [103, 104]. Therefore, the proposed 
graphene-integrated photonic platform can be employed 
in future studies of nonlocal quantum mechanical effects 
in graphene.

6  �Conclusion
In this article, we have demonstrated a promising approach 
toward utilizing a double-gated graphene device for realiz-
ing a tunable plasmonic Bragg grating. The metal metas-
urface provides an interface for active and effective spatial 
modulation of local carrier densities, which mediates the 
hybridization of Bloch plasmonic modes and interacts 
directly with the GSPP modes in the infrared regime. We 
also showed that hBN, which provides protection against 
phonon scattering, mediates the decay factors of evanes-
cent fields in different frequency regimes. The bandgap 
inversion was demonstrated in a transmission simulation, 
thus this inversion resulting in a switching of the Zak phase, 
as predicted by our theoretical calculations. An anisotropic 
edge state was found to exist between two such graphene 
Bragg gratings featuring different Zak phases. We predict 
that the orientation of the dipole moment can be tunable 
electrically, thereby making this a promising fundamental 
building block for ultrafast electro-optic devices. To design 
a useful device, however, it usually involves a multiphys-
ics optimization which also takes into consideration the 
constraints resulting from imperfect fabrication as well as 
the exact material electrical and optical properties. Appli-
cations such as fast optical switches, tunable resonators 
or absorbers, and beam-steering devices can thus be per-
ceived to benefit from this approach.
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