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CHAPTER I

INTRODUCTION

Growth of the global power semiconductor industry hinges upon developing new

technologies and products that can meet a wide range of voltage specifications, while

providing higher power efficiency in a smaller package when compared to previous

technologies. Applications range from low-voltage healthcare devices to high-power

space, aerospace, automotive, and defense systems. Historically, power devices were

all silicon-based, however, the past two decades have shown tremendous achievements

in the use of wide-bandgap materials, such as silicon carbide (SiC), with the first

commercially available 1200 V SiC power junction barrier Schottky diode offered in

2006 and the first 1200 V SiC power MOSFET offered in 2011 [1].

Silicon carbide is superior to silicon due to higher breakdown electric fields,

increased thermal conductivity and significantly lower on-state resistance, all of

which result in size, weight, and power (SWaP), and overall cost savings [2]. Over

twenty automotive companies are using SiC power MOSFETs and diodes for onboard

charging systems in their electric and hybrid-electric vehicles [3] in addition to many

other applications. The global SiC power semiconductor market size was valued

at $302M in 2017, and projected to reach $1.1B by 2025 [4], with 90% of the

market focused on terrestrial applications, and 10% devoted to aerospace and defense

applications [5], which would include space systems. The SWaP benefits of SiC

over silicon make these power devices ideal candidates for space-based applications.

These features are of interest to both National Aeronautics and Space Administration
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(NASA) and European Space Agency (ESA) for use in space vehicles, such as the

Orion Spacecraft and the Venus Mobile Explorer [6], in addition to space solar

arrays and a variety of other applications and interplanetary missions. However,

microelectronic devices and circuits used in space may be susceptible to naturally

occurring radiation, such as heavy ions.

Obtaining radiation data for semiconductor devices is an expensive, time-consuming

task with single-event burnout (SEB) testing particularly challenging because of

the destructive nature of the test. The safe operating area (SOA) for 1200 V SiC

power MOSFETs and diodes has been characterized to a limited extent through test

campaigns, however, little insight has been gained into the physical mechanism(s)

that may be responsible for ion-induced single-event burnout. Understanding these

mechanisms is imperative for organizations, such as NASA and ESA, for making

space-flight hardware design decisions to mitigate risk of operational failure during

a mission. Ion-induced radiation data for power devices reflects the response of a

device from the perspective of an electrical terminal, or better defined as “on the

outside looking in”. Modeling and simulation tools, such as 3D Technology Aided

Design (TCAD), provide the capability to explore the physical response of a device

to radiation, leveraging available data to validate modeling and simulation efforts.

Historically, it has been thought that there are separate mechanisms responsible

for the catastrophic failures observed in silicon power diodes (localized avalanche

breakdown due to ion-induced electric field spikes) and silicon power MOSFETs

(parasitic bipolar junction transistor), resulting in differing single-event burnout

responses between the two types of devices. A natural assumption is that separate

mechanisms are also responsible for single-event burnout in SiC power diodes and
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MOSFETs. However, that is not the case. In this work, industry-generated heavy

ion data is compiled and combined with new data, identifying matching single-event

burnout thresholds for the 1200 V power MOSFETs and diodes. Analysis of these

heavy-ion data indicates that the devices have a common mechanism responsible for

the catastrophic failures.

Insight into failure mechanisms is developed through the use of 3D TCAD

simulations, which are used to identify similarities in both structures during an ion

event. The simulation results show a resistive shunt effect capable of generating very

high localized current transients during an ion strike, and consequently, significant

energy dissipation. For LET and bias conditions matching the single-event burnout

threshold data, a constant amount of energy dissipation is calculated through analysis

of TCAD simulation results. Ion-induced, highly-localized energy pulses are proposed

as a common mechanism responsible for catastrophic single-event burnout in 1200 V

SiC power MOSFETs and JBS diodes.

The 3D TCAD framework developed in this work also provides an opportunity to

efficiently evaluate the effects of an ion-strike on a variety of device variants (doping

and dimension). Understanding how these variants perform following an incident

heavy-ion strike will provide design teams an opportunity to consider alternate

device designs that may meet the mission specification or otherwise mitigate the

risk associated with single-event burnout during flight. This analysis may also prove

to be useful for manufacturers that are interested in exploring radiation-hardened

device development, further driving innovation for device reliability.

Typically, using a commercial off-the-shelf part is less expensive than using a

special radiation-hardened device. Successfully designing a power electronic circuit to
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operate while minimizing the risk of single-event burnout causing catastrophic failure

of the circuit is important for both space and terrestrial applications. Circuit designers

must understand the environment and the mechanisms contributing to single-event

burnout in order to appropriately select parts. In this work, 1200 V and 3300 V

SiC power MOSFETs are compared for operation in a circuit, with insight provided

into the concept of voltage derating and a trade-off analysis focused primarily on

power losses during operation. Implications for part selection and circuit design show

that using a 3300 V power MOSFET provides ample single-event burnout threshold

margin for space applications up to 650 V for most space environments, while the

1200 V device is susceptible to single-event burnout.

In this dissertation, Chapter II provides a brief overview of vertical power device

structure and electrical operation, along with introducing the electrical benefits of SiC

compared to silicon power devices. The development of 3D Technology Computer-

Aided Design (TCAD) models for both the 1200 V power MOSFET and JBS

diode are discussed in Chapter III. This discussion provides detailed information

about the physical structure (doping and dimensions) along with the electrical

characteristics (current and voltage) for each device, establishing the similarity

between the MOSFET and the diode. Historical concepts of single-event burnout

and the effects of ion-induced charge deposition in power devices are explored in

Chapter IV. This work identifies a unique similarity in the single-event burnout

response of SiC power MOSFETs and JBS diodes in Chapter V, leveraging ion-

induced single-event burnout data from available literature, in addition to describing

data taken during this work. A novel method for analyzing ion-induced energy

pulses for both diodes and MOSFETs is presented in Chapter VI. In Chapter VII,
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evaluation of ion-induced effects on device variants is explored and potential trade-

offs in performance are discussed. Finally, Chapter VIII provides considerations for

circuit designers and risk mitigation in heavy ion environments. Chapter IX discusses

the impact of this work for the radiation effects community.

There is an Appendix A for discussion about the role of the parasitic bipolar

junction transistor turn-on following an ion strike in the SiC power MOSFET, and

a final Appendix B providing discussion about neutron-induced secondary particle

generation in SiC in a terrestrial environment.

5



CHAPTER II

POWER DEVICE STRUCTURE AND OPERATION

An estimated 50% of the electricity used in the world is controlled by power devices

[7], with applications ranging from consumer, industrial, medical, and transportation.

Efficiency and cost of systems drives innovation, with silicon power devices dominating

the market for the past few decades. However, silicon power devices have proven

to have significant conduction power losses for high-voltage applications due to the

design of the device. Silicon carbide provides vast improvements in size, weight,

and power, when compared to silicon because of the superior electrical properties

of SiC over silicon [7]. This chapter discusses the general power device structure

and compares silicon to SiC, while also introducing the safe operating area for power

devices.

Power Device Structure

Power MOSFETs are the most commonly used power devices for a wide range

of applications, such as power supplies, DC-to-DC converters, and motor controllers

[8], while power diodes are commonly used in rectifying circuits [9]. Commercially

available power MOSFETs and JBS diodes typically have a vertical structure which

provides higher breakdown voltages, lower on-state resistance, and higher current than

a lateral structure. The MOSFETs are commonly called Vertical Double-Diffused

MOSFETs, or VDMOS [10] due to the double-diffusion process for creating the

source and body regions. A Junction-Barrier Schottky (JBS) diode can be designed
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in the same process as the MOSFET, with the exceptions of no source implant and

replacing the gate stack with a Schottky contact. Typical cross-sections of each device

are shown in Figure 1. Most MOSFETs are NMOSFETs with the starting wafer a

Figure 1: Typical cross-sections for planar, vertical power junction-barrier Schottky
diode and power MOSFET

heavily doped n-type substrate. The n-type drift layer, the epitaxial layer or epi

region, is then grown onto the substrate, and will be lightly doped. The doping

of the epi region sets the breakdown voltage, with the thickness of the epi region

designed to allow for full depletion of the epi region under reverse bias. Subsequent

processing steps involve implanting the p-type body region and the heavily doped

n-type source, followed by growing a gate oxide and depositing the back end of line

metal layers. In both the JBS diode and the MOSFET, current flow is vertical when

the device is ON, and when the device is OFF, the applied bias is supported across

the entire epi region. In a power device, the doping and thickness of the epitaxial

layer set the primary characteristics of the device with respect to breakdown voltage

and current capacity. Resistance through the epi region increases as the epi thickness
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increases and the doping density decreases. The resistive paths through the device

are shown in Figure 2 [11], with the resistance through the epi region dominating the

total resistance along the path of current flow. For silicon power devices, designing a

high-voltage, low-resistance device has proven to be challenging, with an example of

a silicon power MOSFET rated at 1000 V [12] and 8 A, with 1450 mΩs of on-state

resistance (RON), shown in Table 1. This particular device was chosen because the

rated breakdown voltage is similar to the rated breakdown voltage of the SiC power

MOSFETs that are discussed in this work.

Figure 2: Typical cross-section of a power MOSFET defining resistive paths through
the device after Havanur et al. [11]

Table 1: Comparison of on-state resistance and rated current for two commercially
available power MOSFETs, one silicon and one SiC [12], [13]

Device Material VBREAKDOWN [V] RDS,ON [mΩs] IRATED [A]
FQA8N100C Si 1000 1450 8
C2M0080120D SiC 1200 80 36
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Silicon carbide (SiC) is superior to silicon for use in many power device applica-

tions due to significantly higher breakdown electric fields and significantly lower on-

state resistance [2]. These benefits can be attributed to the electrical properties of

SiC compared to silicon, a few of which are summarized [14] and shown in Table 2. A

semiconductor with a wide bandgap requires more energy to produce carriers through

impact ionization which leads to electrical breakdown than a semiconductor with a

narrow bandgap. SiC has a bandgap of 3.3 eV, compared to 1.1 eV for silicon, which

results in a critical electric field in SiC of 2-3 MV/cm compared to 0.2-0.3 MV/cm

in silicon. This concept can be visualized by considering the peak electric field as

a function of distance (Wn) for both SiC and silicon, as shown in Figure 3. For a

given applied potential (the area under the electric field curve), the electric field in

SiC reaches a much higher peak over a shorter distance when compared to silicon.

This effect directly results in lower on-state resistance and higher drive currents

for SiC compared to silicon. The electrical characteristics of SiC have resulted in

commercially available high-voltage and low-resistance devices, with a 1200 V SiC

MOSFET providing 36 A at 80 mΩ of on-state resistance [13], also shown in Table 1.

Table 2: Electrical property comparison of Silicon and SiC after Choi et al. [14]

Electrical Property Si SiC (4H)
Band Gap Energy (eV) 1.12 3.28
Critical Electric Field (MV/cm) 0.29 2.5
Electron Mobility (cm2)/VS 1200 800
Hole Mobility (cm2)/VS 490 115
Thermal Conductivity (W/cmK) 1.5 3.8
Maximum Junction Temperature (C) 150 600
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Figure 3: Electric field concept comparison of silicon and SiC as a function of distance,
Wn. The area under each field curve is the junction voltage, which is equal in this
example

Power Device Safe Operating Area

Power devices are intended to operate in either a high-voltage, low-current state,

or a low-voltage, high-current state to prevent significant power dissipation that may

impact device and/or circuit reliability. An example of a power MOSFET being used

as a switch to drive a load and the current/voltage safe operating area (SOA) is

shown in Figure 4. Note that this figure is conceptual, and an actual circuit will have

a diode connected from the drain to ground to allow a path for inductive current to

flow when the MOSFET is OFF. When the MOSFET driving the load is turned OFF,

the drain is biased at the supply voltage, and the drain current through the circuit

is minimized, referred to as OFF-state leakage current. As the MOSFET is slowly

turned ON by increasing the gate voltage, the drain current increases significantly

while the drain-to-source voltage drops. The device is stable in both OFF and ON

states. During the transition from OFF to ON, the gate voltage is controlled in such
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a way as not to exceed the switching speed of the device, typically in the tens to

hundreds of nanoseconds for a power MOSFET [13], maintaining stability through

the transition. In addition to the device and circuit being stable, power dissipation,

or the product of current times voltage, is maintained in such a way that the device

can continue to operate without physical damage. Significant power dissipation

can result in catastrophic device failure, such as the separation of metal lines from

the semiconductor surface, electromigration of metal through a metal/semiconductor

interface, or thermal heating leading to metal and/or semiconductor damage.

Figure 4: Conceptual example of a power MOSFET being used as a switch to drive a
load (left) and the safe-operating area (SOA) (right). An actual circuit will also have
a diode from drain to ground for inductive current flow when the transistor is OFF
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CHAPTER III

3D TCAD MODEL DEVELOPMENT

Chapter II provided a brief overview of vertical power device structure and

electrical operation, along with introducing the electrical benefits of SiC compared to

silicon. In this chapter, a detailed discussion of a 1200 V SiC power MOSFET and

a 1200 V JBS diode is provided, to include both physical (doping and dimension)

and electrical (current and voltage) characteristics. Both the MOSFET and the JBS

diode can have the same breakdown voltage, indicating that the devices share the

same or very similar doping, epitaxial dimensions, and other physical geometries. Of

particular importance to this work is that the rated breakdown voltage, 1200 V, is

consistent between both devices, and is typically determined experimentally by device

manufacturers. The data that will be shown in Chapter V is for 1200 V commercial

devices. For specifying the device breakdown rating, most manufacturers use an

unclamped inductive switching (UIS) test methodology (established as a JEDEC

standard [15]) to determine an avalanche safe operating area (SOA) for the SiC

devices. In these devices, there are zero failures in 1000 hours at low avalanche

conditions, 1200 V at 150 C, hence, the 1200 V rated breakdown voltage [16].

Electrical data, both before and after radiation exposure, provide insight into

the behavior of a semiconductor device from an external point of view, where

measurement equipment can characterize current and voltage. 3D Technology

Computer-Aided Design (TCAD) tools provide an opportunity to investigate internal

device physics, such as current density, electric field, and impact ionization. TCAD
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tools are finite-element based solvers for carrier diffusion and transport, solving

Poisson’s and the electron and hole continuity partial differential sets of coupled

equations. The remainder of this chapter will discuss the physical 3D model, followed

by the electrical breakdown operation.

Physical Device Design

Typically, power devices are designed to take advantage of a large die area, for

example, 2 mm x 3 mm. Either a honeycomb or a striped cell design is commonly

used and a device is composed of many cells in parallel. 3D TCAD models of a single

cell, 1200 V SiC power MOSFET and JBS diode, Figure 5 (top), were developed

in the Synopsys Sentaurus suite of TCAD tools, version K-2015.06, [17], based on

information from published literature [18], [19]. The devices have an epitaxial

thickness of 10 µm, with doping of 8x1015 cm−3 N-type, with an additional 15

µm of highly-doped N+ drain (the highly-doped drain is truncated in Figure 5 for

visualization purposes). Otherwise, the models shown in Figure 5 are to-scale, with

the thickness of the epitaxial region indicated for guidance. Additional parameters

are listed in Table 3.

Both devices have the same P-type body doping at the surface of the device,

seen more clearly in the 2D-cutplanes, also shown in Figure 5. In the JBS diode,

after implanting the P-type body doping, the surface metallization is deposited. The

JBS diode has been designed in such a way that the device can operate as a P-i-N

diode when reverse-biased, and as a Schottky diode when forward-biased [20], with

representative electron current flow indicated in Figure 5 (middle). The MOSFET

has a highly doped (N+), source region implanted, and the source metal contacts
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both the N+ source and the P-type body. This is an effective option for grounding

the body to the source. A gate oxide of 50-100 nm is deposited over the center of the

structure, with polysilicon covering the gate oxide to control the channel regions, with

representative electron current flow indicated in Figure 5 (middle). In both the diode

and the MOSFET, applying positive voltage to the drain results in a depletion region

forming in the epitaxial region, and at 1200 V, the entire epitaxial region is depleted,

see Figure 5 (bottom). Consequently, vertical structure, doping, and dimensions, of

both the diode and the MOSFET are nearly identical.

Table 3: Parameters Used in TCAD Simulations for MOSFETs and Diodes

Parameter Value
4H-SiC Bandgap = 3.26 eV
P-Body Doping/Depth 1x1019 cm−3, 1 µm
N-Epi Doping/Depth 8x1015 cm−3, 10 µm
N+Drain Doping/Depth 1x1019 cm−3, 15 µm
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Figure 5: 3D TCAD model of a 1200 V SiC power MOSFET (top left) and JBS diode
(top right) showing device structure (epi doping/depth). 2D-cutplanes indicating
current flow in forward operation (middle) and fully-depleted epitaxial region at 1200
V (bottom)
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Electrical Breakdown Simulation

As discussed previously, a power device is susceptible to single-event burnout

when the device is OFF. Although device forward characteristics are very interesting,

the reverse characteristics are more important to single-event burnout. Under this

bias condition, there exists a very large depletion region in which charge can be

deposited. In addition, the presence of a strong electric field is responsible for impact

ionization and carrier generation in normal electrical operation, along with providing

a mechanism for rapidly moving radiation-induced charge out of the depletion region.

For the remainder of this dissertation, the N+ heavily doped substrate will be referred

to as the drain, which is consistent with MOSFET terminology. In a diode, this region

is called a cathode, but for sake of comparison to the MOSFET in both text and plots,

the cathode will also be referred to as a drain.

For electrical breakdown, positive voltage is applied to the drain of the device,

and the current flowing through the drain is monitored. For lab measurements,

compliance is set for the current in order to protect both the measurement equipment

and the device under test (DUT). In simulation, there are no such restrictions. As

the depletion region is formed at any P-N junction in a semiconductor, and as the

voltage across the junction increases, the depletion region grows, described by

XD =

√[
2εs
q

(
1

Na

+
1

Nd

)
(φi − Va)

]
(1)

where εs is the permittivity of SiC, q is the electronic charge, Na is the acceptor

doping concentration in the p-type body, Nd is the donor doping concentration is

the n-type epitaxial region, φi is the built-in potential at the P-N junction, and Va

is the externally applied bias across the P-N junction [21]. The built-in potential is
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described by

φi =
kT

q
ln
NaNd

n2
i

(2)

where k is Boltzmann’s constant, T is the temperature in Kelvin and ni is the intrinsic

carrier concentration of SiC, which is 5 × 10−9cm−3 [22]. In a step (one-sided or

abrupt) P-N junction, there exists a large change in dopant level magnitude. For

power device, the P-type body is typically doped 3-5 orders of magnitude higher

than the N-type epitaxial region, essentially forming a step junction from P-type to

N-type. As shown in Table 3, the P-type body is doped slightly more than 3 orders

of magnitude higher than the N-type epitaxial region. This results in the depletion

region extending significantly into the N-type epitaxial region, effectively setting the

maximum depletion region thickness as the thickness of the epitaxial region. This

can be seen in a series of 2D-cutplanes of electron density as a function of drain bias,

shown in Figure 6. With the drain at 500 V, the depletion region (light blue) is 8 µm

wide, and at 1200 V, the epitaxial region is fully depleted at 10 µm wide. Due to the

N+ drain region, the depletion region can extend no further, evidenced by the 1600

V condition which shows no increase in depletion region thickness.

The charge density in a depletion region is described by Poisson’s equation

dE

dx
=

ρ

εs
=

q

εs
Nd (3)

which can be integrated to find the electric field, E

E(x) = − q

εs
Nd(x− xn) (4)

and as shown Equation 4, the electric field varies linearly within the depletion region.

Both of these relationships are shown in Figure 7, which is a series of 2D-cutplanes
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Figure 6: 2D-cutplanes of the electron density for both the MOSFET and the diode,
when biased at 500 V, 1200 V, and 1600 V

showing the internal electric field for both the MOSFET and the diode, when biased

at 500 V, 1200 V, and 1600 V. At 500 V, the electric field is linearly graded over

the epitaxial region, with an εmax of 1.6 MV/cm at the corner of the P-type body.

As the drain voltage increases to 1200 V and then to 1600 V, εmax increases to 2.8

MV/cm and 3.2 MV/cm, respectively. Once the N-type epitaxial region becomes fully

depleted, with no additional area in which the depletion layer can grow, the electric

fields at the corners of the P-type body increase rapidly, shown in Figure 7. This

mechanism is even more evident when plotted as a series of 1D-cutlines, shown in

Figure 8. The electric field is linear throughout the entire epitaxial region, and at 500

V, extends slightly over 8 µm. At 1200 V, there is a clear truncation of the electric

field at the epitaxial region and N+ drain interface, where the electric field drops

to 0 V/cm. However, at the P-type body and epitaxial region interface, the electric

field has reached a maximum value. This is further established as the drain voltage
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is increased to 1600 V, and as noted above, has reached an Emax of 3.2 MV/cm.

Figure 7: 2D-cutplanes of the internal electric field for both the MOSFET and the
diode, when biased at 500 V, 1200 V, and 1600 V

The electrostatic potential in the epitaxial region is obtained from the electric

field using

d(φi − Va)

dx
= −E (5)

which is integrated to give the total potential across the P-N junction by

φi − Va =
qNdx

2
n

2εs
(6)

This concept is highlighed in Figure 9, which is a series of 2D-cutplanes showing the

internal electrostatic potential for both the MOSFET and the diode, when biased

at 500 V, 1200 V, and 1600 V. At 500 V, the depletion region width (shown as a

white line on the contour plot) extends slightly over 8 µm. When the drain voltage

is increased to 1200 V, the 10 µm wide epitaxial region is fully depleted. Once the

epitaxial region is fully depleted, it can extend no farther because of the N+ drain

region. 1D-cutlines of the electrostatic potential for both the MOSFET and diode
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Figure 8: 1D-cutlines of the internal electric field for both the MOSFET and the
diode, when biased at 500 V, 1200 V, and 1600 V

are shown in Figure 10. In all bias conditions, the entire externally applied voltage is

dropped over the epitaxial region, with the slope changing significantly as the drain

voltage increases.

This discussion provides the basis for designing a vertical power device. In

particular, the epitaxial doping determines the slope of the electric field under a

given externally applied voltage. For the 1200 V SiC power device structure, the

epitaxial doping was set so that the epitaxial region can be fully depleted at 1200 V,

while limiting the maximum electric field, given by

Emax =
2(φi − Va)

xn
(7)

which results in creating mobile carriers in a process known as impact ionization.

Impact ionization occurs when a mobile carrier is accelerated by an electric field in a
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Figure 9: 2D-cutplanes of the internal electrostatic potential for both the MOSFET
and the diode, when biased at 500 V, 1200 V, and 1600 V

Figure 10: 1D-cutlines of the internal electrostatic potential for both the MOSFET
and the diode, when biased at 500 V, 1200 V, and 1600 V
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depletion region, and a collision occurs between mobile carriers and electrons in the

semiconductor lattice with enough energy to free additional electron-hole pairs. This

is an avalanching effect can result in very high conduction (current flow). Impact

ionization rates are exponentially related to electric field, and while impact ionization

can occur with any electric field, as the electric field increases, impact ionization does

as well, and with the carrier generation rate described by

Gii = αnnvn + αpnvp (8)

where n/p are the available free carriers, vn/vp is the carrier velocity, and αn/αp are

the avalanche coefficients [17]. For the simulations in this work, the Okuto-Crowell

Model was selected for avalanche coefficients, where α is described by

α = aEγexp(−b
δ

E
) (9)

where a, b, γ, and δ are fitting parameters [17]. This concept is highlighted in

Figure 11, a series of 2D-cutplanes showing the impact ionization rates for both the

MOSFET and the diode, when biased at 500 V, 1200 V, and 1600 V. The impact

ionization rate as a function of position in each device is shown in Figure 11. At 500

V, impact ionization is low, and the rate increases significantly as the drain voltage is

increased. When this field reaches approximately 3.2 MV/cm, defined as the critical

field, avalanche breakdown can occur, and is consistent with ranges of electric field

required for avalanche breakdown in 4H-SiC [23].

3D TCAD electrical breakdown simulation results as a function of reverse bias are

shown in Figure 12 for the 1200 V SiC power MOSFET and JBS diode. Both devices

were simulated in a reverse-bias condition up to 2000 V, and the simulation results

in Figure 12 show that both devices enter avalanche breakdown with approximately
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Figure 11: 3D TCAD-simulated electrical avalanche breakdown as a function of
reverse bias for 1200 V SiC power MOSFET and diode

Figure 12: 3D TCAD-simulated electrical avalanche breakdown as a function of
reverse bias for 1200 V SiC power MOSFET and diode
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the same current-voltage relationships. Physically and electrically, these two devices

are very similar.
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CHAPTER IV

RADIATION-INDUCED SINGLE-EVENT EFFECTS BACKGROUND

Single-event burnout (SEB) is a phenomenon where a power MOSFET or diode,

transitions from a stable, low-current state to non-recoverable, high-current state as

a result of heavy-ion radiation exposure. This phenomenon was first reported in

1986 for a silicon power MOSFET [24]. An illustration of a power MOSFET in

the OFF-state being hit by an ion and the transition of the device into an unstable

operating region is shown in Figure 13. The ion, which deposits charge in the form

of electron-hole pairs, acts as a current source, forcing the device into a high-current,

high-voltage state that may be outside the safe operating area (SOA). The severity of

the ion event is a function of particle energy and device bias, with a small deviation

outside the SOA likely to result in a single-event transient (SET) of either current

or voltage, or both. However, if the event is more severe, it may render the device

permanently inoperable, typically as a result of significant current flow that may

cause metal line failure, separation of semiconductor material interfaces, or excessive

temperatures exceeding the melting point of materials in the device.

Although power MOSFETs and diodes are structurally very similar, it has gener-

ally been thought that there are separate mechanisms responsible for the catastrophic

failures observed in silicon power diodes (localized avalanche breakdown due to ion-

induced electric field spikes) and silicon power MOSFETs (parasitic bipolar junction

transistor). The remainder of this chapter will detail the historical concepts driving

single-event burnout in both types of devices, including some discussion on modeling
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techniques. This discussion is very important for this work for a variety of reasons.

First, silicon power diodes are much more radiation tolerant than silicon power

MOSFETs due to the differing mechanisms driving single-event burnout. Significant

effort has been dedicated to understanding these differences through modeling and

analysis, providing significant insight into the physical mechanisms behind single-

event burnout in silicon power devices. Second, while the SiC MOSFETs and diodes

have been characterized through test campaigns (though far less so than silicon

devices), little insight has been gained for the physical mechanism(s) that may be

responsible for ion-induced single-event burnout. This dissertation identifies that the

long-standing concepts for silicon single-event burnout are not specifically applicable

to SiC single-event burnout, resulting in describing a new mechanism for single-

event burnout in SiC diodes and MOSFETs, while also developing a simulation

methodology to capture this mechanism. Third, with silicon power MOSFETs

significantly less susceptible to single-event burnout than diodes, much effort has

been focused on increasing the single-event burnout tolerance of the MOSFETs, with

much less attention on the diodes. SiC power MOSFETs and power diodes are equally

susceptible to single-event burnout, and this work will demonstrate the potential to

increase the single-event burnout tolerance for both devices using the same techniques.
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Figure 13: Example of a power MOSFET in the OFF-state hit by an ion (left), forcing
a high-current, high-voltage state that may be non-stable and outside of the SOA

27



Space Radiation Environment

The Galactic Cosmic Ray (GCR) background radiation environment that exists

in space consists of many high-energy, charged particles [25] that are capable

of interacting with the materials used in microelectronic devices and circuits.

Many of these energetic charged particles will produce free electron-hole pairs in

a semiconductor material as the particle interacts with the crystal lattice. As the

ion passes through the semiconductor, a plasma of electron-hole pairs is created, and

the energy deposition is defined as the linear energy transfer (LET), which has units

of [(energy/distance)/(mass/volume)]. The energy deposition can also be defined

as stopping power which has units of [energy/distance]. The charge generated in

the semiconductor is dependent on the original particle energy and the mass of the

semiconductor, and can be calculated as

Q [pC] =
LET

[
MeV−cm2

mg

]
∗ ρ
[
mg
cm3

]
∗ 1.6 × 10−5

G [eV ]
= L

[
pC

µm

]
∗X [µm] (10)

where the units of each variable is indicated in the brackets and Q is the total

charge deposited along the particle path length. LET is the linear energy transfer of

the ion, ρ is the density of the semiconductor material, and G is the electron-hole pair

generation energy. This relationship can be rearranged to show the stopping power,

which is L, along the ion path length, X. In silicon, the bandgap is 1.1 eV, and in

SiC, the bandgap is 3.3 eV. Energy deposited in excess of the bandgap energy has the

potential to create an electron-hole pair, however, much of the energy is thermalized

in the lattice, requiring an average energy that is 2-3 times larger than the bandgap

to create an electron-hole pair. In silicon, an average of 3.6 eV is required [26], [27],
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and in SiC, an average of 7.5 eV is required [28], [29].

In a semiconductor device, when a P-N junction is reverse-biased, a depletion

region is formed. As the reverse-bias increases, the depletion region increases in width,

and the electric field across the depletion region increases accordingly. Electron-hole

pairs created by an ion passing through the depletion region are separated by the

electric field, and holes move towards the p-type region, while electrons move towards

the n-type region. A drawing of the ion passing through a depletion region and

generating electron-hole pairs is shown in Figure 14, with the electrons moving to the

n-type region and the holes moving to the p-type region. The currents that arise at

the device terminals from the carrier movement is called ion-induced transient current

and is a function of the magnitude of the electric field and the density of electron-hole

pairs generated by the ion.

Figure 14: Schematic cross-sections for vertical power junction-barrier Schottky diode
and power MOSFET indicating electron-hole pairs generated by the passage of a
heavy ion
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Single-Event Burnout - Si Power Devices

MOSFETs

A single-event burnout current signature for a silicon power MOSFET during

heavy ion irradiation is shown in Figure 15 [30]. The MOSFET is reverse biased in

a steady state condition. Approximately 50 ns after the ion strike, the drain current

shows a virtually instantaneous rise until the current compliance of the measurement

system is reached, while the gate current remains unchanged. This indicates that a

resistive short has been created between the drain and the source. The gate current

remains relatively unchanged, indicating that the gate is undamaged. This is a classic

example of drain-to-source single-event burnout in a power MOSFET [30]. Typically

for single-event burnout, physical damage can be seen on the die, as shown in Figure 16

[30]. In this example, the die prior to single-event burnout appears pristine, and

following single-event burnout, there is a visible crater on the surface of the die.

Visible damage, combined with either a drain-to-source or a drain-to-gate short circuit

is evidence of a single-event burnout event.

Single-event burnout in silicon power MOSFETs has historically been attributed

to a positive feedback loop with avalanche carrier generation and the turn-on of a

parasitic NPN bipolar transistor [24]. A visual interpretation of the parasitic BJT

is shown in Figure 17, with the collector (drain), base (body), and emitter (source)

labeled. In a typical power device configuration, the body and source are shorted

together by the common metallization, so the body voltage has no ability to rise

and forward-bias the body-source P-N junction. However, when the passage of a

heavy-ion deposits charge in the device, lateral current flow along the P-type body
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Figure 15: Example of SEB during heavy ion irradiation of a power MOSFET. Sudden
drain current increase indicates drain-to-source short circuit after Titus et al. [30]

Figure 16: Before and after photos of SEB. Visible physical damage is a likely
indicator of SEB after Titus et al. [30]
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region allows the body voltage to rise, forward-biasing the body-source P-N junction,

turning on the parasitic BJT. This occurs simultaneously with the avalanche carrier

generation due to the high electric fields present in the device, which can be seen in

TCAD simulation results from Liu et al. in Figure 18 [31]. These simulation results

show the internal electric field is redistributed during the ion strike, peaking at the

interface between the epitaxial and drain regions. The positive feedback loop between

the parasitic BJT and the avalanching carriers, each with a positive gain, results in a

condition where high current and high voltage are sustained sufficiently to physically

damage the device through metal/semiconductor separation at the contact, burnout

of metal lines, or thermal meltdown of the silicon.

Figure 17: Inherent N-P-N parasitic BJT transistor in a vertical DMOS device after
Johnson et al. [32]
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Figure 18: Electric field distribution pre-strike (A) and post-strike (B and C) for
simulated ion strike in a power MOSFET. A to B to C represents an evolution of the
electric field as a function of time after Liu et al. [31]
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Diodes

In 1994, Kabza et al. reported the first single-event burnout in silicon power

diodes [33], with the single-event burnout signature shown in Figure 19. The current

shows a virtually instantaneous rise until current compliance of the measurement

system is reached. The corresponding decrease in functionality of the diode to block

the externally applied voltage indicates a resistive short created between the anode

and the cathode. In addition to the electrical characteristics, Kabza reported ”the

failure pattern consisted of a spontaneous short without prior indication; the devices

exhibited a pin hole size molten channel from cathode to anode”. The physical damage

in the silicon power diodes appeared to be consistent with physical damage observed in

silicon power MOSFETs. However, in a silicon power diode, there is no parasitic NPN

bipolar present, suggesting that the mechanism for single-event burnout in a silicon

power diode is not the sameas that in silicon power MOSFETs. In the same work,

Kazba presented 2D cylindrical TCAD simulations for charge deposition in a diode,

concluding that the ion-induced charge resulted in re-distributed internal electric

fields that were larger in magnitude than the pre-strike electric fields. Simultaneously,

high current densities, combined with the increased electric fields contribute to very

high local power densities, likely to cause local temperature increases and self-heating

[33].

In 1998, Maier et al. investigated the impact of avalanche multiplication (which

is exponentially dependent on electric field) on single-event burnout in silicon power

diodes [34]. Charge generated in a silicon power diode from a single ion was measured

with a charge-sensitive preamplifier, and the results are shown in Figure 20 [34]. At

low voltages, below 850 V, a single charge collection peak is observed corresponding
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Figure 19: Oscilloscope recording of reverse blocking current and voltage during
failure. The destructive current develops in less than 10 ns after Kabza et al. [33].

to the direct energy loss of the ion. As the voltage increases, the charge collection

peak both broadens and shifts, with the shift interpreted as a amplification of charge

carriers from avalanche multiplication. Once the voltage is increased past 1100 V, all

deposited charge contributes to avalanche carrier generation.

In 2002, Walker et al. presented Figure 21, showing TCAD simulation results

in a diode for an ion with LET = 30 MeV-cm2/mg and applied bias of 3500 V. A

non-isothermal simulation, Figure 21 (top), shows an increase in lattice temperature

to the point at which intrinsic carrier concentrations begin to dominate the current

response. The increased current forces increased self-heating, further increasing the

intrinsic carrier density, and completing the positive feedback loop. In comparison,

an isothermal simulation shows a current transient that eventually dies out as all of

the excess carriers in the system recombine. Further, the temperature in the non-

isothermal simulation is monitored during the simulation, and shown in Figure 21

(bottom). This simulation result indicates clear thermal runaway, and the device

may be permanently damaged from either sustained current through the metal lines

or melting of the silicon, or both. Albadri et al. [35] presented a comprehensive
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Figure 20: Charge spectrum from the bombardment of a 4kV diode with 90 MeV Kr
ions showing the number of events as a function of the total generated charge with
increasing the applied voltage after Maier et al. [34].
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analysis of single-event burnout in silicon power diodes and power MOSFETs in 2006,

concluding that silicon power diode single-event burnout results from thermal effects,

while power MOSFET single-event burnout results from the turn-on of a parasitic

BJT .

Figure 21: Output currents of isothermal and non-isothermal simulations with LET
= 30 MeV-cm2/mg and V = 3500 V (top), along with maximum temperature due to
self-heating (bottom) after Walker et al. [36].
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Derating

Derating is an approach used to reduce operating conditions sufficiently that the

survivability of a power device is maximized for a given environment. NASA defines

it as ”derating is the reduction of electrical and thermal stresses applied to a part

during normal operation in order to decrease the degradation rate and prolong its

expected life [37].” In a single-event environment, a ”rule of thumb” is to derate the

operating voltage of a device/circuit by a given percentage, such as 75%, 50%, or 25%

[38]. Derating can also provide sufficient margin where part-to-part variability is a

concern, however, the penalty for derating comes in the form of reduction in device

performance. In power MOSFETs, safe-operating areas for single-event burnout are

typically established by testing with ions that have an atomic number (Z) > 35 and

LET > 37 MeV-cm2/mg [39], and a common derating practice for radiation-hardened

devices to survive those conditions are to use 75% of the rated breakdown voltage,

with 50% the lower bound to provide additional margin for part-to-part variation

[40], [37]. Casey et al. irradiated 38 silicon power Schottky diodes from 9 vendors

and a wide range of rated breakdown voltages, and concluded that the entire list

of parts did not show single-event burnout or any other permanent damages when

derated to 50% of the breakdown voltage [41]. With no derating, almost half of

the parts survived. In general, derating trends for silicon power devices correlate to

the mechanisms driving single-event burnout in MOSFETs and diodes. MOSFETs

require larger derating due to the parasitic BJT turn-on, while diodes can tolerate

less derating because the thermal runaway is driven by higher voltages.
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Single-Event Burnout - SiC Power Devices

JBS Diodes

A important work was published in 2006 by Kuboyama et al. [42] for SiC

Schottky diodes, investigating single-event burnout through charge collection and

leakage current measurements. Kuboyama identified unexpected damage in Schottky

diodes from heavy ion irradiation, resulting in permanent increases in leakage current.

This phenomenon had never been observed in silicon devices. As the device bias was

increased, destructive single-event burnout was observed, with no sustainable positive

feedback mechanism for current multiplication, such as a parasitic BJT. As discussed

above, this is also unique due to the inherent radiation tolerance of silicon diodes.

Kuboyama described three regions of device response for the SiC diodes as a

function of reverse bias and the parameters of heavyion exposure: 1) nondestructive

charge collection; 2) permanent leakage current degradation; and 3) catastrophic

failure. An example of non-destructive charge collection is shown in Figure 22 [42].

In this region, collected charge can be reproduced during each exposure, with no

permanent damage to the device. In each of these irradiation events, the ion deposits

charge, and the collected charge is measured from the diode Schottky contact during

the event.

The second region of device response defined by Kuboyama is permanent leakage

current degradation, and is clearly seen in data from Witulski et al. in Figure 23

[18]. In order to see discrete leakage steps, the beam flux was tuned to be very low,

between 5 and 100 ions/cm2/s. The data shows significant discrete steps in leakage

current while the beam was ON, and when the beam turned OFF, no additional
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Figure 22: Collected charge as a function of reverse bias voltage observed in SiC
Schottky diodes after Kuboyama et al. [42]

leakage increases were seen. This data supports additional studies for leakage current

in SiC diodes [43], [44].

The third region of device response defined by Kuboyama is catastrophic failure,

and can be seen in data from Witulski in Figure 24 [18]. In these irradiation

exposures, the beam was turned on while the devices were biased, and the drain

current monitored as a function of time. Catastrophic failure was determined by a

singularly large jump to the compliance state of the measurement equipment, typically

4-5 orders of magnitude larger than the leakage current just before failure.

Witulski produced the first work defining the leakage and single-event burnout

thresholds as a function of ion LET and device bias in Figure 25 [18]. The curve

shows a nonlinear dependence on LET, with a significant ”knee” at LET=10 MeV-

cm2/mg, where the curve changes slope. The boundaries in this data set illustrate
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Figure 23: Measured diode current versus time during heavy-ion irradiation for two
diodes, showing discrete increases in leakage current with individual heavy ions, with
self-heating effect. Xenon flux was 68, and Neon was 5.7–6.1 ions/cm2/s after Witulski
et al. [18]

Figure 24: SEB events for three different 1200 V JBS diodes. Xenon flux was 68, and
Neon was 5.7–6.1 ions/cm2/s. All diodes are irradiated at room temperature after
Witulski et al. [18]
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the three regions defined by Kuboyama, non-destructive, permanent leakage, and

catastrophic failure.

Figure 25: Measured degradation mode thresholds as functions of applied bias and
LET. The width of the line indicates minimum voltage at which burnout was observed
and maximum voltage with no burnout observed after Witulski et al. [18]

42



MOSFETs

In 2014, Lauenstein et al. identifed that SiC power MOSFETs have both

permanent leakage current degradation and catastrophic failure due to ion irradiation,

similarly to the Schottky diodes [45]. Mizuta et al. published similar data in 2014

[46] supporting Lauenstein’s findings. A more comprehensive data set was published

by Lauenstein et al. in 2017, with data shown in Table 4 establishing the single-event

burnout threshold as a function of ion species. The data shown in Figure 26 show

drain current as a function of time during irradiation, indicating regions of no damage

(A), leakage current degradation (B), and catastrophic failure (C). These data are

consistent with the trends shown by Witulski et al. [18] for the JBS diodes.

Table 4: Measured degradation and catastrophic failure regions for SiC power
MOSFETs after Lauenstein et al. [6]
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Figure 26: MOSFET drain current as a function of time during irradiation A) No
damage, B) Leakage current degradation, and C) Catastrophic failure after Lauenstein
et al. [6]
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Thermal Simulation Analysis

Due to the history of silicon power diodes with thermal runaway driving single-

event burnout, effort has been made to explore the same effect in SiC diodes.

Kuboyama et al. explored thermal effects using TCAD simuation in 2006, with

results shown in Figure 27 for an ion strike of LET = 42 MeV-cm2/mg at 220 V

reverse bias in a SiC diode. The simulated results show a maximum electric field

of 7.7x106 V/cm shortly after the ion strike, and a maximum temperature of 2680

K. Kuboyama noted that at this temperature, the intrinsic carrier density of SiC

is 5.9x1018 which is lower than the carrier density along the ion track, therefore

not sufficient for thermal runaway. As discussed previously, in silicon, the increase

in temperature and the corresponding increase in intrinsic carrier density result in

a positive feedback loop driving thermal runaway. This effect did not appear to

be driving single-event burnout in SiC diodes at that time. Similar results were

presented in other works, notably Witulski et al. where it was concluded using

TCAD simulations that local temperature increases to 2600 K at 500 V for LET of

40 MeV-cm2/mg and greater [18]. Similar TCAD simulation results were published

by McPherson et al. in 2019 for LET = 49MeV-cm2/mg and temperatures reaching

3000 K [47]. Abbate et al. presented TCAD simulation results in 2015 for LET =

28 MeV-cm2/mg indicating temperatures of 1500◦ Celsius (1773 K) when biased at

500 V, and reaching almost 10000◦ Celsius when biased at 900 V.

In very recent work, Kuboyama et al. in 2019 showed that thermal runaway

may be possible in SiC Schottky diodes for LET = 62 MeV-cm2/mg and 200 V,

when thermionic transmission of carriers through the Schottky barrier were considered

in conjunction with the avalanche generation during the strike, causing a positive

45



feedback loop. Kuboyama et al. are continuing efforts to refine and update models,

however, it is interesting to note that traditional behaviors are not likely to cause

positive feedback scenarios. Thermionic transmission through a Schottky barrier is

required to provides a source of carriers.

These results for ion-induced thermal rise in SiC diodes are consistent among

multiple authors and multiple simulation tools in the fact that higher LET ions can

cause significant thermal rise to temperatures exceeding that of the SiC sublimation

point. However, no results have been shown for low LET strikes. The data presented

above indicate that diodes show single-event burnout at LET as low as 2 MeV-

cm2/mg. In general, low LET particles have a significantly lower charge density

along the core of the track, and likely do not result in significant thermal increase as

do the higher LET particles. This suggests that there is another mechanism causing

single-event burnout.

Similar results have been published for a 1200 V SiC power MOSFET by

McPherson et al. in 2019, showing that an ion with LET = 46 MeV-cm2/mg can

result in a temperature rise to over 3000 K at the interface between the epitaxial and

drain regions [48]. Again, this is a high LET particle, and similar to the diodes, data

for the MOSFETs shows low LET single-event burnout.
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Figure 27: Electric field and temperature distribution along ion track after Kr ion
strike under 220 V of reverse bias after Kuboyama et al. [42]

Figure 28: 3D TCAD simulations of ion-induced temperature increase in SiC power
MOSFET for LET = 46 MeV-cm2/mg varying bias and hit location after McPherson
et al. [48]

47



Derating

In 2017, Lauenstein et al. concluded that SiC power MOSFETs and JBS diodes

evaluated at that time showed catastrophic single-event burnout at a maximum of

60% of the rated breakdown voltage and permanent leakage degradation down to 10%

of the rated breakdown voltage. The data shown in Figure 29 is for the bias required

for single-event burnout and normalized to the rated breakdown voltage as a function

of ion LET for JBS diodes (top) and MOSFETs (bottom) [49]. It is apparent that

60% of the rated breakdown voltage is the maximum voltage that can be applied

to a SiC device before showing single-event burnout for a 1200 V device, and that

provides little to no margin for error. A 70% derating provides approximately 100 V

of margin before suceptibility to single-event burnout. However, at 80% derating, all

devices would appear to survive ion-induced single-event burnout.

This is in sharp contrast to conclusions from Casey et al. for silicon Schottky

diodes, which showed that at 100% of the rated breakdown voltage, almost half of the

diodes survived, and at 50% de-rating, all devices survived irradiation. Establishing

a ”rule of thumb” for de-rating SiC power devices is challenging at best, particularly

when considering leakage degradation in addition to single-event burnout.
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Figure 29: Single-event burnout voltage normalized to rated breakdown voltage as a
function of ion LET for SiC Schottky diodes (top) and MOSFETs (bottom) showing
that 50% device de-rating is not sufficient for survivability after Lauenstein et al. [45]
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CHAPTER V

IDENTIFYING COMMON TRENDS FOR SINGLE-EVENT BURNOUT IN SIC

POWER MOSFETS AND DIODES

Obtaining radiation data for semiconductor devices is an expensive, time-consuming

task with single-event burnout (SEB) testing particularly challenging because the

destructive nature results in devices that are no longer functional. The safe

operating area (SOA) for 1200 V SiC power MOSFETs and diodes has been modestly

characterized through test campaigns, however, little insight has been gained for the

physical mechanism(s) that may be responsible for ion-induced single-event burnout.

Understanding these mechanisms is imperative for organizations making space-flight

hardware design decisions to mitigate risk of operational failure during a mission.

Ion-induced radiation data for power devices reflects the response of a device from

the perspective of an electrical terminal, or better defined as “on the outside looking

in.”

This chapter is focused on analyzing ion-induced single-event burnout data for

commercially manufactured 1200 V SiC power MOSFETs and JBS diodes. This

data is a compilation of data taken specifically for this work along with data from

literature. These data sets indicate that a common mechanism is responsible for

single-event burnout in MOSFETs and diodes. In addition, single-event burnout

data from 650 V to 3300 V SiC MOSFETs and diodes has also been gathered from

literature, and is compared to the 1200 V data, showing a clear trend that increasing

epitaxial thickness and lighter epitaxial doping results in a higher single-event burnout
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threshold. Terrestrial neutron-induced single-event burnout data for these devices,

available in engineering and scientific literature, also support both of these concepts.

1200 V SiC

Single-event burnout data taken as part of this work is shown in Figure 30 for

the 1200 V SiC power MOSFET with RDS,ON = 80 mΩs [19], [50]. The irradiation

tests were performed at the Lawrence Berkeley National Laboratory (LBNL) 88-inch

cyclotron [51] and at the RADEF facility [52] at the University of Jyvaskyla, Finland.

For all tests, the ion beam was at normal incidence and in vacuum. The characteristics

of the ion beams used are given in Table 5. The energy and range of the heavy ions

were chosen to sufficiently penetrate the entire epitaxial region of the device. During

irradiation, the MOSFET source and gate were grounded, and the drain biased. All

data presented in this work are for heavy ions at normal incidence, however SiC power

devices have a significant single-event burnout dependence on angle [53], [49], and

while angular effects are not analyzed in this work, it is important to note that heavy

ions at normal incidence are the worst case.

The observed single-event burnout threshold (SEBTH) data are shown in Figure 30

and in Table 5. These data are compared to published data [46], [45], also for the 1200

V MOSFET. The trends of the data presented in this work match the trends evident

in the previously published data, where the onset voltage for single-event burnout

failure threshold increases significantly at decreasing LET. Data from Mizuta [46]

observe an SEBTH at 600 V for Ne ions at LET = 6.9 MeV-cm2/mg and at 900 V

for N ions at LET = 3.6 MeV-cm2/mg. Higher LET data (23 to 66 MeV-cm2/mg)

are from Lauenstein [45], indicating an SEBTH of 500 V. Both published data sets
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are consistent with data taken in this work. A key takeaway from these data sets is

that the SiC power MOSFETs fail at voltages that are 50% of the rated breakdown

voltage of 1200 V for LET > 5 MeV-cm2/mg.

In addition to single-event burnout, permanent damage is manifested as an

increase in drain leakage current with higher LET ions similar to that observed in

SiC Schottky Barrier diodes [18]. No leakage current increase was observed for lower

LET ions including protons [6] before single-event burnout was observed.

Figure 30: Single-event burnout and degradation threshold bias voltages vs. LET
for 1200 V SiC power MOSFETs taken during this work and compared to published
literature [19], [45], [46], [50].

Single-event burnout data from published literature is shown in Figure 31 for

a commercially available 1200 V SiC JBS diode [18]. The heavy-ion irradiations

were performed at the Texas A&M Cyclotron [54] using the 15-MeV/amu cocktail,

with sufficient energy and range to fully penetrate the entire epitaxial region of the
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Table 5: Ion Beam Characteristics with SEBTH shown

Facility Ion Energy [MeV] LET [MeV-cm2/mg] SEBTH [V]
LBNL B 108 1 1100
LBNL Ar 400 10.4 600
RADEF N 139 2 850
RADEF Ne 186 3.9 650
RADEF Ar 373 10.8 525
RADEF Xe 1217 62.4 525

device. The trends of the diode single-event burnout data appear to closely match

the data shown in Figure 30 for the MOSFET. At high LET, less than 50% of the

rated breakdown voltage is required for single-event burnout, while at low LET, the

voltage approaches the rated value.

Figure 31: Single-event burnout and degradation threshold bias voltages vs. LET for
1200 V SiC power diodes taken during this work and compared to published literature
after Witulski et al. [18]

As discussed in Chapter IV, it has generally been thought that there are separate
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mechanisms responsible for the catastrophic failures observed in silicon power diodes

(localized avalanche breakdown due to ion-induced electric field spikes) and silicon

power MOSFETs (parasitic bipolar junction transistor). A natural assumption is

that separate mechanisms are also responsible for single-event burnout in SiC power

diodes and MOSFETs. However, the data presented in Figure 30 and Figure 31 show

that 1200 V SiC power MOSFETs and 1200 V JBS diodes have the same SEBTH

as a function of ion LET. These data sets are combined in Figure 32, showing the

unique similarity of single-event burnout for the MOSFET and diode. single-event

burnout in silicon power MOSFETs has been linked to the parasitic bipolar junction

transistor, which is an integral part of the device structure a discussed in Chapter IV.

Some success has been achieved in simulating single-event burnout in SiC power

MOSFETs by assuming that impact ionization, coupled with the parasitic bipolar

junction transistor, results in a positive-feedback loop during an ion event causing

single-event burnout [19], and discussed in detail in Appendix A. However, power

diodes do not have a positive-feedback loop related to a parasitic bipolar structure,

suggesting that there is another mechanism responsible for single-event burnout.

Additional single-event burnout data taken in this work at at Texas A&M

University Cyclotron (TAMU) for SiC MOSFETs are shown in Figure 32 [50], using

a non-destructive test technique in an attempt to suppress single-event burnout.

The LET considered is 20 MeV-cm2/mg at normal incidence, and the device was

at room temperature. A resistor was inserted inline between the power supply and

the drain node in an attempt to limit current and allow the drain node voltage to drop

below critical levels required for single-event burnout. This is shown schematically

in Figure 33. Data shown in Figure 32 indicate that this test technique was not
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effective in suppressing single-event burnout using a 100 kΩ resistor (for LET = 20

MeV-cm2/mg, single-event burnout occurred at the same voltage, with or without the

resistor). Similar data were presented previously, indicating that inserting a 1 MΩ

resistor inline with the drain of a 1200 V SiC power MOSFET had little to no impact

on ion-induced degradation in the device [45]. Kuboyama et al. showed that this

technique was also shown to be ineffective for 600 V SiC Schottky diodes [42]. These

data indicate that single-event burnout is occurring faster than the RC time constant

of the system. If the single-event burnout mechanism occurred at times longer than

the RC time constant of the circuit, then inserting a resistor should have provided

some protection. In addition, these data suggest that the energy stored in the device

is contributing to the damage.

The MOSFETs and diodes also show the same degradation threshold (bias at

which the device off-state leakage current begins to increase) as a function of ion

LET in Figure 32 [50]. This data was also taken at Texas A&M University Cyclotron

for this work. Although leakage current degradation is not a focus of this work, it

is extremely important to note that the MOSFET and diode again show virtually

identical behavior, as they do for single-event burnout. This further reinforces the

idea of a common mechanism resulting in single-event damage for both devices.
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Figure 32: Single-event burnout threshold bias voltages vs. LET for 1200 V SiC power
MOSFETs and diodes for data taken during this work and compared to published
literature [18], [19], [45], [46], [50]
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Figure 33: Circuit schematic for a non-destructive test technique for silicon power
devices with a resistor inline between the power supply and the drain node

650 V - 3300 V SiC

The impact of epitaxial thickness and doping on rated breakdown voltage was

discussed in Chapters II and III. A thicker, more lighly-doped epitaxial region

results in a higher breakdown voltage while a thinner, more heavily-doped epitaxial

region results in a lower breakdown voltage. The 1200 V power MOSFET was the

first commercially viable SiC device for market consumption, available in 2006. Since

that time, manufacturers have developed reliable, commercially available SiC devices

ranging from 650 V to 1700 V rated breakdown voltage, with experimental devices

up to 10 kV. Due to the newness of these devices, much less effort has been expended

to test these devices for single-event burnout. However, limited data exist, and are

shown in Figure 34, and compared to the 1200 V data. The single-event burnout data
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shown are for 650 V and 1700 V JBS diodes, 900 V commercial power MOSFETs,

and experimental 3300 V power MOSFETs [49]. The 650 V diode shows single-event

burnout at 300 V and the 1700 V diode shows single-event burnout at 525 V. The

900 V MOSFET shows single-event burnout at 375 V, and the 3300 V MOSFET

shows single-event burnout at 825 V. These data show a clear dependence of SEBTH

on rated breakdown voltage, which is directly a function of epitaxial thickness and

doping.

In addition, Zhu et al. published data on multiple 1200 V equivalent device

variants [55]. The data sets were sparse, and were taken for a single particle LET =

60 MeV-cm2/mg. 16 device variants were compared to the production-ready 1200 V

device. The details of the variants were discussed generically, but with no fine detail,

such as specific dimensions or dopings. The data presented showed that the SEBTH

for the production-ready 1200 V device is approximately 500 V, consistent with the

data presented in Figure 32. The data presented for the 16 variants showed that the

SEBTH ranges between 1000-1200 V [55].

Terrestrial neutron-induced single-event burnout data has been published by a

SiC manufacturer [56], [57], and is compiled in Figure 35 for 1200 V MOSFETs

and JBS diodes along with 900 V, 1700 V, and 3300 V MOSFETs. Data presented

shows that the 1200 V MOSFET and 1200 V JBS diode have matching FIT rates,

suggesting that a common mechanism is causing single-event burnout for two devices

with the same rated breakdown voltage. These data also show a clear dependence of

SEBTH on rated breakdown voltage, again indicating that single-event burnout is a

function of epitaxial thickness and doping.
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Figure 34: Single-event burnout threshold bias voltages vs. LET for 1200 V SiC
power MOSFETs and diodes [18], [19], [45], [46], [49], [50].
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Figure 35: Single-event burnout threshold bias voltages vs. LET for 1200 V SiC
power MOSFETs and diodes after Lichtenwalner et al. and Akturk et al. [56], [57]
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CHAPTER VI

ION-INDUCED ENERGY PULSE MECHANISM

Data presented in Figure 32 show that 1200 V SiC power MOSFETs and 1200 V

JBS diodes have the same ion-induced single-event burnout threshold (bias at which

single-event burnout may occur) as a function of ion LET. The devices also show the

same degradation threshold (bias at which the device off-state leakage current begins

to increase) as a function of ion LET. Similarly, the 1200 V SiC power MOSFET and

1200 V JBS diode have the same terrestrial neutron-induced single-event burnout

threshold, shown in Figure 35. Analysis of these data indicate that the devices

share a common mechanism responsible for the catastrophic failures. In addition to

single-event burnout, the devices have very similar degradation thresholds suggesting

a common mechanism responsible for degraded performance. In this chapter, 3D

TCAD simulations are used to identify a resistive shunt effect capable of generating

very high localized current transients, and consequently, significant energy dissipation

in both structures. For LET and bias conditions matching the ion-induced single-

event burnout threshold data, a constant amount of energy dissipation is calculated

through analysis of TCAD simulation results. Similarly, a constant amount of energy

dissipation is calculated for conditions matching the degradation threshold data.

Resistive Shunt Effects

An ion deposits ionizing energy in a semiconductor device by generating electron-

hole pairs and creating a plasma track through the device. At very short times, the
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ion track has an extremely high density of electrons and holes, and acts as a shunt,

or low resistance path, between two regions [21-23]. In a vertical power MOSFET, an

ion strike at normal incidence can create a shunt between the source and the drain.

In a power JBS diode, the shunt is between the anode and the cathode.

The 3D TCAD models for the 1200 V SiC power MOSFET and JBS diode

discussed in Chapter III are used for charge deposition simulations. In TCAD, an

ion is modeled by generating a column of electron-hole pairs that is deposited in the

structure. A representative arrow is overlayed on the 3D models in Figure 36 showing

the approximate location of the ion track. It is assumed that the LET of the ion is

constant along the entire path, and the charge is deposited spatially with a 50 nm

Gaussian profile and temporally with a 2 ps Gaussian profile, which is discussed in

more detail in Appendix ??.

Figure 36: 3D TCAD model of a 1200 V SiC power MOSFET (top left) and JBS diode
(top right) showing device structure (epi doping/depth). 2D-cutplanes indicating
current flow in forward operation (middle) and fully-depleted epitaxial region at 1200
V (bottom)

The low resistance path of the shunt results in a localized current spike for the

device, as illustrated in Figure 37 using 3D TCAD simulation results for an ion with
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LET = 10 MeV-cm2/mg and a drain bias of 500 V for both the 1200 V SiC power

MOSFET and the 1200 V JBS diode. For approximately 100 ps after the ion strike

occurs, the current transients for both devices behave identically, while at longer time

scales they begin to deviate.

Avalanche breakdown, coupled with a parasitic BJT in a positive feedback loop

in the MOSFET, is suggested as the reason for the simulated runaway drain current,

and is discussed in greater detail in Appendix A. However, the JBS diode has no

such parasitic structure, and at longer times, the charge from the ion is collected

or recombines and the device appears to recover in simulation. Yet the single-event

burnout data presented in Chapter V show that the SiC power MOSFETs and diodes

have matching single-event burnout thresholds, suggesting that there is a common

mechanism responsible for the failures. Further, the common mechanism likely occurs

at short times on the order of picoseconds, shown by simulation to be the timeframe

in which the MOSFET and diode behave similarly.

The internal ion-induced effects can be seen as a series of 2D-cutplanes for the

MOSFET and JBS diode at 5 ps after the strike has occurred. Electron and hole

current densities are shown in Figure 38 and are on the order of 1 × 107 A/cm2 at 5

ps after the strike has occurred (current densities fall off to 1 A/cm2 approximately

3 µm away from the ion core for electrons and a few hundred nanometers for holes).

The ion-induced redistribution of the electrostatic potential and the electric fields are

shown in Figure 39, with 1D-cutlines taken along the center of the ion track, shown

in Figure 40 and Figure 41. The ion strike is centered above the corner of the P-

type body region, where the pre-strike maximum electric field is located [9,18]. This

point in time, 5 ps, corresponds to the peak current transient shown in Figure 37,
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Figure 37: Ion-induced current transient for a 1200 V SiC power MOSFET and diode
for particle with LET=10 MeV-cm2/mg and 500 V drain bias

which is identical for both the MOSFET and JBS diode. For both devices, the peak

electric field immediately after the ion strike is approximately 3.2 MV/cm, which is the

critical electric field (ECRIT ) required for avalanche breakdown shown in Chapter III.

The ion strike redistributes the potential in a way that leads to avalanche breakdown

conditions at the junction between the epitaxial region and the heavily doped drain.

This can be seen in greater detail through 1D-cutlines, taken along the center

of the ion track as shown in Figure 40 and Figure 41, which compare the pre- and

post-strike electric fields and potentials. This effect has also been discussed for silicon

power DMOSFETs [58].

At this point in time in the simulation, the charge deposited by the ion has gener-

ated a low-resistance path, or shunt, through the MOSFET and JBS diode. However,

this low-resistance path is not a linear resistor over the entire epitaxial region; rather,
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Figure 38: 2D-cutplanes in TCAD showing electron and hole current densities
exceeding 1x107 A/cm2 for a particle with LET = 10 MeV-cm2/mg with 500 V
drain bias. 2D-cutlplanes taken at 5 ps following the ion strike.
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Figure 39: 2D-cutplanes in TCAD showing internal electrostatic potential and electric
field ino-induced re-distribution, with electric fields exceeding 3.2 MV/cm for a
particle with LET = 10 MeV-cm2/mg with 500 V drain bias. 2D-cutlplanes taken at
5 ps following the ion strike.
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Figure 40: 1D-cutline in TCAD showing pre- and post-strike electric fields exceeding
3.2 MV/cm for a particle with LET = 10 MeV-cm2/mg with 500 V drain bias. 1D-
cutlines taken at 5 ps following the ion strike.
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Figure 41: 1D-cutline in TCAD showing pre- and post-strike internal electrostatic
potential (bottom) for a particle with LET = 10 MeV-cm2/mg with 500 V drain
bias. 1D-cutlines taken at 5 ps following the ion strike.
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three distinct conductive regions have developed due to non-equilibrium conditions

and each region can be defined in terms of length in Equation 11 as:

LEPI = LFRONT + LMIDDLE + LBACK (11)

with LBACK shown in Figure 40 as the region with the greatest peak electric field and

gradient (greatest change in potential), located near the junction where the lightly-

doped epitaxial layer meets the heavily doped drain. The surface region, defined as

LFRONT , also shows a sharply peaked electric field and gradient. However, the middle

of the epi region, defined as LMIDDLE, has a significantly lower electric field and very

low gradient (small change in potential). The low gradient of LMIDDLE defines this

region independently from LFRONT and LBACK . The total power dissipation during

the event can be described by

PowerDensity[W/cm3] = J [A/cm2] · E[V/cm] (12)

where J is the current density and E is the electric field, with units for each shown in

brackets. The power density is along the core of the ion track is shown in Figure 42. In

both the MOSFET and diode, power is primarily dissipated at the interface between

the epitaxial region and the heavily doped drain.

The total power density along the ion track can be described by

TotalPowerDensity[W/cm2] =

∫
(J [A/cm2] · E[V/cm])dx (13)

and is shown in Figure 43, indicating that approximately 40% of the power is

dissipated in the region defined as LBACK (2 µm) and 15% in the region defined

as LFRONT (1 µm), with only 35% attributed to the region of LMIDDLE (7 µm).

Almost half of the total power dissipated during the ion strike occurs at the junction

between the epitaxial region and the heavily doped drain.

69



Figure 42: 1D-cutline in TCAD showing post-strike power density for a particle with
LET = 10 MeV-cm2/mg with 500 V drain bias. 1D-cutlines taken at 5 ps following
the ion strike.
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Figure 43: 1D-cutline in TCAD showing post-strike cumulative power density for a
particle with LET = 10 MeV-cm2/mg with 500 V drain bias. 1D-cutlines taken at 5
ps following the ion strike.
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Energy Pulse Mechanism

Power MOSFETs and diodes are designed specifically to block high voltages in the

off-state and conduct high currents in the on-state. In normal operation, high current

and high voltage do not exist at the same time (at least not for very long!). During an

ion-initiated event, the device begins with high voltage dropped across the epitaxial

region and the ion quickly increases the current, possibly leading to excessive power

dissipation. TCAD simulations are used to generate power density curves for a range

of ion LETs and device biases, for both the MOSFET and JBS diode, with examples

shown in Figure 44 comparing two LET values at a fixed bias. The power density

vs. position curves for both the MOSFET and diode exhibit the same overall shape

in all cases, however, the magnitude of the power density increases with increasing

LET and bias. This sensitivity can be more easily analyzed by integrating the power

density spatially (to account for volume) across the entire epi region of the ion track

and temporally (to account for time) to determine the amount of energy dissipated

during each event described by

Energy[J ] =

∫ ∫
(J [A/cm2] · E[V/cm] · AION [cm2])dxdt (14)

where AION is the area of the ion track. For this work, the area of the ion track is

assumed to be constant across ion LET, with the gaussian rolloff parameter defined as

50 nm. The calculated energy during each event is shown in Figure 45. For bias and

LET conditions consistent with the experimentally-determined single-event burnout

thresholds shown in Figure 32, the energy dissipated during the 10 ps immediately

following the event ranges from 2-3 nJ, as shown in Figure 45 (depicted by the yellow

region). For example, an ion strike for LET = 2 MeV-cm2/mg and 1300 V results
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Figure 44: 1D-cutline in TCAD showing post-strike power density and cumulative
power density for a particle with LET = 4 and 10 MeV-cm2/mg with 500 V drain
bias. 1D-cutlines taken at 5 ps following the ion strike.
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in 2.5 nJ/2.4 nJ in the MOSFET/JBS diode, while LET = 10 MeV-cm2/mg at 500

V results in 2.6 nJ/2nJ in the MOSFET/JBS diode. For events that are above

the single-event burnout threshold, more energy is dissipated, and for events that

are below the single-event burnout threshold, less energy is dissipated (pink region

in Figure 45). For events that occur at bias and LET conditions consistent with

experimentally-determined degradation threshold, the result is virtually identical to

the single-event burnout analysis, just lower in magnitude, suggesting that single-

event burnout is a catastrophic form of what has been termed degradation. In all

cases, this energy dissipation occurs over 10 ps, which is a very short time, considering

that power devices have switching speeds on the order of microseconds. Also in all

cases, both the MOSFET and the JBS diode behave almost identically.

Figure 45: TCAD calculated energy dissipation for 10 ps following the strike with the
SEBTH conditions highlighted.
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Inline Resistor Effects

Due to the short timeframes of ion-induced transients, experimentally measuring

localized energy pulses is challenging and perhaps impossible considering the highly-

localized aspect of the events. For example, a typical avalanche stress test pulses an

entire device (i.e., die area 2 mm x 3 mm) with current transients lasting tens of

microseconds [16], compared to ps-ns timeframes for single-events in volumes limited

to hundreds of nanometers. A non-destructive test technique of inserting a resistor

in line with the drain was not effective for mitigating single-event burnout in these

devices, as shown in Figure 32, and seen in other work [45], [42]. Due to the time

constant of the circuit, if the single-event burnout failures resulting from transients

occur on the order of nanoseconds to microseconds, then inserting a resistor should

have provided some protection.

Figure 46: Circuit schematic for a 3D-TCAD mixed mode ion-strike simulation with
a resistor inline between the power supply and the drain node

3D TCAD mixed-mode simulations (schematic shown in Figure 46), indicate that
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connecting a resistor in line between the drain and power supply works as designed

for the MOSFET, with results shown in Figure 47, provided that the device can

survive at least a nanosecond following the ion strike. In simulation, the inline resistor

has allowed the bias across the MOSFET to decrease, effectively decreasing both

avalanching and parasitic BJT responses, and the drain current shows a recovery. The

inline resistor does not impact the simulated response of the diode to any measurable

degree. For time scales on the order of tens of picoseconds, the simulated ion-induced

current pulse is identical for both the MOSFET and diode, independent of the inline

resistor. As noted above, data shows no impact on single-event burnout by adding

an inline resistor. Thus, data shown in Figure 32 and in other work [45], combined

with TCAD simulations, indicate that the inline resistor provides no benefit and

confirms that damage is occurring on a time scale faster than the time constant of

the device. The response time of the R/C loaded circuit is far too slow to suppress the

energy pulses that result in catastrophic single-event burnout or degradation. It also

indicates that the destructive energy is from the local stored die capacitance rather

than the externally applied voltage source.
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Figure 47: 3D TCAD mixed-mode ion-strike simulations for both the MOSFET and
JBS diode using non-destructive technique for adding a resistor inline with the power
supply. Ion LET=10 MeV-cm2/mg and devices biased at 500 V
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Localized Thermal Effects

As current flows in a semiconductor device, the power dissipated can lead to

increased lattice temperatures. As discussed throughout this dissertation, a device

is normally operated in such a way to minimize internal power dissipation, but an

ion-strike can result in significant localized power dissipation. Ion-induced thermal

effects have been simulated by multiple authors using multiple simulation tools and

the results are consistent in the fact that higher LET ions can cause significant

thermal rise to temperatures exceeding that of the SiC sublimation point (3000 K).

However, the published results are focused on a high LET, high bias conditions and

was discussed in detail in Chapter IV and briefly summarized again in Table 6 and

organized by increasing particle LET. Based on the simulated results from literature,

for LET ≥ 35 MeV-cm2/mg, lattice temperatures reaching the sublimation point of

SiC are possible. However, the impact of low LET particles on lattice temperature

has not been investigated fully.

Table 6: TCAD-simulated maximum lattice temperature as a function of device bias
and particle LET

Device Bias [V] LET [MeV-cm2/mg] Temperature [K] Reference
Diode 500 28 1,773 [59]
Diode 800 35 ≥ 3,000 [47]
Diode 500 40 2,600 [18]
Diode 220 42 2680 [42]
Diode 200 62 ≥ 10,000 [60]
MOSFET 500 46 ≥ 3000 [48]

For this dissertation, thermodynamic 3D TCAD simulations were run for bias

and LET conditions matching those of the single-event burnout threshold shown

in Figure 32. Thermodynamic simulations compute the lattice temperature, and
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describe self-heating due to current flow in the device. For the 1200 V SiC diode, the

simulated maximum lattice temperature is shown in Figure 48 for a strike directly

to the center of the device, at the Schottky contact, which was determined to be the

worst case strike location in other works. For an LET = 2 MeV-cm2/mg @ 1200 V, ion

data shows single-event burnout. The maximum lattice temperature from simulation

for those conditions is 530 K. The maximum lattice temperature increases to 950 K

for an LET = 10 MeV-cm2/mg @ 500 V. Up to an LET = 10 MeV-cm2/mg, there does

not appear to be any significant thermal increase sufficient to catastrophically damage

SiC. At an LET = 20 MeV-cm2/mg and 500 V, the maximum lattice temperature

reaches 2700 K, very near the sublimation point of SiC, and an LET = 40 MeV-

cm2/mg drives it above and beyond 3000 K. Similar results are shown in Figure ?? for

the 1200 V SiC MOSFET, for a hit location at the corner of the p-body and epitaxial

region, and for LET ≤ 10 MeV-cm2/mg, lattice temperature stays below 1100 K,

while LET ≥ 20 MeV-cm2/mg results in significantly higher lattice temperatures.

These simulation results for both the diode and the MOSFET show a clear

dependence of lattice temperature on particle LET. Additional simulation results

are shown in Table 3 where maximum lattice temperature is a function of ion

strike location at the LET/bias conditions consistent with the single-event burnout

threshold. For all hit locations, low LET particles do not generate a significant

increase in lattice temperature. This is due to the low charge density along the core

of the track when compared to the high LET particles, which do result in significantly

higher lattice temperatures.This indicates that single-event burnout from thermal

rise in the SiC lattice is unlikely from low LET particles. However, at higher LETs,

thermal effects may contribute to damage, both degradation and single-event burnout.
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Figure 48: 3D TCAD simulated maximum lattice temperature for ion LET (in MeV-
cm2/mg) and bias consistent with the single-event burnout threshold for 1200 V SiC
JBS diode (top) and SiC MOSFET (bottom)
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It is important to note that these simulations only take into account heating in the

SiC lattice. As discussed in the ion-induced energy pulse analysis, there is significant

current flowing in the device and through the contacts. The simulator treats the

contact as an ideal heat sink. In reality, large currents are flowing across the SiC/metal

interfaces. Interfaces between semiconductors and metals/oxides may be susceptible

to damage at far lower temperatures than the SiC can tolerate, in addition to other

effects such as electromigration or metal delamination.

Table 7: 3D TCAD-simulated maximum lattice temperature as a function of ion
strike location for ion LET (in MeV-cm2/mg) and bias consistent with the single-
event burnout threshold for 1200 V SiC JBS diode and SiC MOSFET. DNC indicates
a simulation that Did Not Converge

Diode
LET @ Bias Center Gate Source/Body Body/Drain
2 @ 1200 550 690 707
5 @ 900 720 820 844
10 @ 500 970 990 1030
20 @ 500 2700 1900 2010
40 @ 500 ≥ 3000 3800 ≥ 2300

MOSFET
LET @ Bias Center Gate Source/Body Body/Drain
2 @ 1200 DNC 990 700
5 @ 900 DNC 1100 840
10 @ 500 650 975 1030
20 @ 500 DNC 2200 1953
40 @ 500 ≥ 4600 ≥ 4600 ≥ 4600

To conclude this chapter, ion-induced, highly-localized energy pulses are proposed

as the common mechanism responsible for catastrophic single-event burnout in 1200
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V SiC power MOSFETs and JBS diodes. As discussed earlier, analysis of heavy-

ion data indicates that these devices have matching single-event burnout thresholds

suggesting that there is a common mechanism responsible for the catastrophic failures.

3D TCAD simulations are used to identify similarities in both structures during an

ion event showing a resistive shunt effect capable of generating very high localized

current transients, and consequently, significant energy dissipation. For LET and

bias conditions matching the single-event burnout threshold data, a constant amount

of energy dissipation is calculated through analysis of TCAD simulation results. A

non-destructure test technique of using an inline resistor does have any impact on the

extremely fast (50 ps) response of either the diode or the MOSFET in simulation,

which agrees with data showing the inline resistor is ineffective. Simulated ion-

induced lattice heating is also explored for bias/LET conditions matching those of

the single-event burnout threshold, indicating that for LET under 20 MeV-cm2/mg,

there is insufficient localized thermal rise in the SiC lattice to account for catastrophic

damage.
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CHAPTER VII

EVALUATION OF DEVICE VARIANTS

As shown earlier in this work, high-voltage SiC power MOSFETs and junction

barrier Schottky (JBS) diodes are susceptible to device degradation due to increased

leakage currents and single-event burnout due to heavy-ion exposure in space and

terrestrial neutron irradiation. Increasing the reliability of SiC power devices by

mitigating these effects, typically through process modifications, is a high priority.

Both the heavy ion data, shown in Figure 34, and the neutron data, shown in

Figure 35, indicate that voltage rating significantly impacts the single-event burnout

threshold, with higher voltage ratings resulting in higher SEBTH . In power devices,

increased epitaxial region thickness and lower epitaxial doping results in higher rated

breakdown voltage, with little to no change for the surface structure and metalization.

single-event burnout data indicate that increased epitaxial thickness and lighter

doping results in increased single-event burnout survivability.

In this chapter, 3D TCAD heavy ion simulation results are analyzed for three

power MOSFETs designs using the methodology developed in Chapter VI showing

the power dissipation after an ion strike is capable of causing single-event burnout

in SiC power MOSFETs and diodes. Analysis using this technique suggests that the

3300 V MOSFET provides almost 50% reduction in total power dissipated along the

ion track core compared to a 1200 V MOSFET, confirming the trends shown in the

data. The third simulated MOSFET is a dual-epi 1200 V design using a buffer layer

(which is a well-known semiconductor design technique for reducing abrupt junctions),
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which shows no improvement in power dissipated along the ion track core, although

it does mitigate electric field peaks during the ion event.

MOSFET Device Variants - Epitaxial Design

The 1200 V baseline device was discussed in Chapter III. Two additional device

variants were selected for simulation based on an evaluation of the currently available

data and previously published literature. In all variants, the surface structure remains

unchanged. The first variant is based on an experimental 3300 V SiC power MOSFET

with an epi doping of 2 × 1015 cm−3, and a thickness of 30 µm [16], [61]. The

second variant is a dual epi design using a buffer layer approximately 2 µm thick,

after McPherson et al.. This design was suggested as an improvement in single-event

burnout robustness for heavy ion exposure by reducing the peak electric field that

develops during an ion strike at the junction between the epitaxial and drain regions

[48]. The use of buffer layers in SiC devices has also been documented in literature

for a variety of device structures [62], [63], [64], [65], [66]. McPherson et al.

did not provide detailed doping levels for their buffer layer design, however, it can

be assumed to be approximately 1-2 orders of magnitude higher than the epitaxial

doping level. For this work, the doping level of the buffer layer was selected to be 1

×1017 cm−3 and this variant is referred to as the 1200 V Dual Epi. 1D-cutlines of the

epitaxial and substrate doping, with dimensions, are shown in Figure 49. Note that

the epitaxial doping is almost an order of magnitude lower and the epitaxial thickness

is three times wider for the 3300 V device when compared to the 1200 V device.
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Figure 49: 3D TCAD model of a 1200 V SiC power JBS diode showing device
structure, also shown is a representative long-range ion track (top). 1D-cutlines of
net doping through the epi and drain regions for each variant (bottom)
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MOSFET Device Variants - Ion Simulations

As shown previously, during an ion-strike, the 1200 V device enters a region of

operation with both high current and high voltage, leading to excessive localized

power dissipation. 3D TCAD simulations were performed for an ion with LET of 10

MeV-cm2/mg and a reverse bias of 500 V for each of the two MOSFET design variants,

and compared to the 1200 V device. Simulation results are shown in Figure 50 and

Figure 51 for the electron and hole current densities, respectively. For each variation

of the 1200 V device, the peak current densities are approximately equal. However,

the peak current densities for the 3300 V device are approximately half as large as

the 1200 V device.

Figure 50: Ion-induced electron current density at 20 ps following the strike for SiC
power MOSFETs for particle with LET=10 MeV-cm2/mg and 500 V drain bias.

The ion-induced shunt effect also results in electric field redistribution during
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Figure 51: Ion-induced hole current density at 20 ps following the strike for SiC power
MOSFETs for particle with LET=10 MeV-cm2/mg and 500 V drain bias.

the event. Simulated results are shown in Figure 52 for each of the devices. The

general trends are the same for each device, with the electric field showing a spike

at the interface between the epitaxial and drain regions. For the 1200 V and 3300 V

devices, the magnitude of the electric field spike is above the critical electric field for

electrical breakdown. In the 1200 V Dual Epi device variant, the electric field spike

remains lower than the pre-strike peak electric field, but the electric field for the first

8 µm of the epitaxial region is slightly higher than the 1200 V device. As previously

discussed, the integral of the electric field curve is the externally applied bias, and for

the spike at the interface between the epitaxial and drain regions to decrease, then

the electric field must increase in another region.

The simulated power density along the core of the track is shown in Figure 53 at
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Figure 52: Ion-induced hole electric field re-distribution at 20 ps following the strike
for SiC power MOSFETs for particle with LET=10 MeV-cm2/mg and 500 V drain
bias.

88



20 ps following the ion strike. These simulation results show that the 1200 V devices

have virtually identical characteristics, while the peak power density in the 3300 V

device is decreased by almost an order of magnitude, although it does extend an

additional 20 µm until terminating at the interface between the epitaxial and drain

regions.

Figure 53: Ion-induced total power density at 20 ps following the strike for SiC power
MOSFETs for particle with LET=10 MeV-cm2/mg and 500 V drain bias.

This can be further analyzed by integrating across the epitaxial thickness, showing

cumulative power density dissipated along the core of the ion track, shown in

Figure 54. The total power for the 1200 V Dual Epi design is slightly higher than the

total power in the baseline device. In contrast, the 3300 V device shows a dramatic

51% reduction in total power during the ion strike compared to the 1200 V baseline

device. The increased epitaxial thickness and lower epitaxial doping result in lower
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peak electric fields and lower total current during the strike compared to the other

two devices. Increasing the thickness of the epitaxial region reduces the total power

dissipation resulting from the ion strike, confirming the trends seen in data.

Figure 54: Ion-induced current transient for a 1200 V SiC power MOSFET and diode
for particle with LET=10 MeV-cm2/mg and 500 V drain bias

3D TCAD simulations are used to generate total power density for a range of ion

LETs (2-60 MeV-cm2/mg) and device biases (100 V – 1200 V). The simulated data

is shown in Figure 55 for the 1200 V and 3300 V device designs. The 3300 V device

showed an average of 49% reduction in total power when compared to the 1200 V

device. This is extremely important because the total power dissipated during the

ion event is consistently lower in the 3300 V device when compared to the 1200 V

device, indicating improvements across the entire range of ion LET and device bias.

The power dissipation savings are not restricted to any particular subset of the range,
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rather, they encompass it entirely.

Also of note is that each of the device variants show trends matching the ion-

induced single-event burnout data shown in Figure 32, which has a strong inflection

point with a slope change for the single-event burnout threshold. This is highlighted

in Figure 55 by the dashed line which shows the single-event burnout threshold for the

1200 V device. For the 3300 V device, the curve lies safely in the ”green” region, which

denotes the safe operating area. While this is not intended to predict a single-event

burnout threshold for the 3300 V device, it is consistent with the measured data

showing that a thicker, and more lightly-doped epitaxial region result in a higher

single-event burnout threshold.

Figure 55: Ion-induced current transient for a 1200 V SiC power MOSFET and diode
for particle with LET=10 MeV-cm2/mg and 500 V drain bias

Simulation results are analyzed for three power MOSFET designs. The 3300 V

MOSFET provides almost 50% reduction in total power dissipated along the ion track

core compared to a 1200 V MOSFET, agreeing with the trends shown in the data.

The third MOSFET is a dual-epi 1200 V design using a buffer layer, which shows no

reduction in the power dissipated along the ion track core as compared to the 1200
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V baseline, although it does reduce the electric field peak during the ion event.

92



CHAPTER VIII

MITIGATING SINGLE-EVENT BURNOUT THROUGH DEVICE SELECTION

AND CIRCUIT DESIGN

Successfully designing a power electronic circuit to operate while minimizing the

risk of single-event burnout causing catastrophic failure of the circuit is important

for both space and terrestrial applications. Circuit designers must understand the

environment and the mechanisms contributing to single-event burnout in order to

appropriately select components. The components are then used in a specific circuit

topology with an appropriate voltage derating in order to survive the intended or

expected environment.

In Chapter IV, the concept of derating was introduced for SiC power devices, which

is typically based on the rated breakdown voltage for a device. In Chapter VII, ion-

induced burnout was analyzed comparing 1200 V and 3300 V SiC power MOSFETs

showing that the 3300 V MOSFET has an almost 50% reduction in total power

dissipated along the ion track core compared to a 1200 V MOSFET. This analysis

supported data shown in Chapter V indicating that increased rated breakdown voltage

results in increased single-event tolerance. In this chapter, a brief comparison of

silicon versus SiC devices and the implications for circuit designs will be discussed to

establish the benefits of using SiC over silicon. Further analysis for SiC part selection

will focus on power losses at the transistor level when selecting a 3300 V device over

a 1200 V device. These power losses can be mitigated by using multiple devices in

parallel, which presents additional tradeoff choices of increased cost, weight, area, and
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cross-section for an ion strike. However, increasing the operating voltage of the circuit

results in fewer system power distribution losses. Implications for circuit design show

that using a 3300 V power MOSFET provides ample single-event burnout threshold

margin for space applications up to 600 V up to an LET of 60 MeV-cm2/mg, while

the 1200 V device is susceptible to single-event burnout with these parameters. In a

terrestrial environment, the 3300 V device can safely operate up to 2000 V with little

risk of neutron-induced single-event burnout.These concepts will be the focus of the

remainder of this chapter.

Silicon vs. SiC

Silicon carbide (SiC) is superior to silicon for use in many power device appli-

cations due to significantly higher breakdown electric fields and significantly lower

on-state resistance [2]. These benefits can be attributed to the electrical properties

of SiC compared to silicon, a few of which were summarized [14] and shown previously

in Table 1. For a given applied potential (the area under the electric field curve), the

electric field in SiC can reach much higher peaks over much shorter distances when

compared to silicon. This effect directly results in lower on-state resistance and higher

drive currents for SiC compared to silicon. For traditional silicon power devices,

designing a high-voltage, low-resistance device has proven to be challenging, with the

state-of-the-art MOSFETs rated at 1000 V [12] and 8 A, with 1450 mΩs of on-state

resistance (RON). The characteristics of SiC have yielded commercially available

high-voltage and low-resistance devices, with a 1200 V SiC MOSFET providing 36

A at 80 mΩ of on-state resistance [13]. This comparison can be seen in Figure 56,

which shows specific on-resistance versus breakdown voltage for SiC and silicon [16].

94



These data are theoretical curves assuming that the only source of on-resistance is

due to the lightly-doped epitaxial region. In practice, the measured on-resistance

is a function of the channel, the substrate, metallization, and die area as discussed

previously. However, the theoretical curves succinctly show the differences between

the lightly-doped epitaxial regions SiC and silicon for a 1-D analysis. Using the above

two devices as examples, a 1000 V silicon epitaxial region will have 100 mΩs-cm2 of on-

resistance, while a 1200 V SiC has 2-3 mΩs-cm2 of on-resistance. Data-driven derating

(70%) of the 1200 V SiC MOSFET suggests that operating at 400 V is sufficient for

mitigating single-event burnout. Conventional derating (50%) for silicon MOSFETs

suggest that 500 V operating voltage is sufficient for mitigating single-event burnout

[67]. A simple 1-D solution of Ohm’s law using the derating voltages results in the SiC

supplying 160,000 A/cm2 while the silicon can only supply 5000 A/cm2. To achieve

the same current supply as a SiC device, the silicon die area would need to be 30X

the size of the SiC die area. The size and weight penalties for using silicon compared

to SiC are too large to ignore for most applications.
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Figure 56: One-dimensional specific on-resistance versus breakdown voltage compar-
ing silicon, silicon carbide, and gallium nitride after Gajewski et al. [16]
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SiC: 1200 V vs. 3300 V

System Transmission Power Losses

A circuit design for an application that may be susceptible to single-event burnout

typically has a 20-25% safety margin in supply voltage for survivability [68]. Single-

event burnout data for the 1200 V SiC power MOSFET showed failures at 500 V,

while the 3300 V SiC power MOSFET showed failures at 825 V [6]. This equates

to 400 V and 650 V supply for a space-based application to accommodate a 20%

safety margin for the 1200 V and 3300 V MOSFETs, respectively. For electric power

transmission, increased operating voltages result in a reduction in energy lost in the

system. For a given amount of power being transmitted, as voltage increases, current

must decrease, shown by

PTRANS = ITRANS · VTRANS (15)

where ITRANS is the specified transmission current and VTRANS is the transmission

voltage of the system. Power loss is calculated by

PLOST = I2TRANS ·RTRANS (16)

where RTRANS is the resistance of the system transmission lines. Assuming the

transmitted power is the same in both cases, and using simple substitution with

these two equations, comparing a 400 V bus and a 650 V bus gives

PLOST@650V = 0.36 · PLOST@400V (17)

indicating that increasing the supply voltage from 400 V to 650 V results in a

significant savings of transmission losses in the system. In addition, smaller gauge
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wire can be used for lower current levels, saving mass in the system. Although both

the 1200 V and 3300 V devices can easily accommodate 650 V, ion data shows that

the 1200 V device is susceptible to single-event burnout for LET > 5 MeV-cm2/mg,

while the 3300 V device does not show failure up to an LET = 60 MeV-cm2/mg.

A similar comparison can be made for terrestrial applications where neutron-

induced single-event burnout is a concern. The lowest voltage at which the 1200 V

SiC power MOSFET shows single-event burnout due to cosmic ray neutrons is 700

V, compared to 2000 V for the 3300 V power MOSFET. Increasing the bus voltage

from 700 V to 2000 V shows almost 90% savings in transmission losses, shown by

PLOST@2000V = 0.12 · PLOST@700V (18)

Using a higher rated breakdown voltage device is not a novel concept, and has been

used historically for heavy ion environments. George et al. extensively covered

statistical responses of power MOSFETs for single-event burnout, noting that in one

specific example with a 24 V supply, selecting an 80 V power MOSFET would not be

acceptable, while the 100 V device would satisfy the system requirements provided

that the resulting power efficiency losses were tolerable [68]. In most engineering

decisions, there are inherent trade-offs. In this work, examining trade-offs for using

1200 V versus 3300 V MOSFETs provides a starting point for a circuit/system design.

The following analysis is not intended to be exhaustive, because there are so many

designs and applications where these parts may be viable. Rather, this analysis will

focus on a general concept of power losses in a switching SiC MOSFET comparing

the 1200 V and 3300 V MOSFETs.
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Switching MOSFET Power Losses

The total power loss in a MOSFET is a sum of the switching loss, the conduction

loss, and the gate charge loss, and shown by [7]

PMOSFET = PON + PSW + PG (19)

where PON is the conduction loss, PSW is the switching loss, and PG is the gate

charge loss. When a MOSFET is ON, or conducting, power is dissipated in the

device as current flows through the resistive semiconductor and metallization, and is

proportional to the on-state resistance, RDS,ON . With increasing RDS,ON , conduction

losses increase and can be described by

PON = I2ON ·RDS,ON (20)

and as shown, conduction losses are proportional to RDS,ON . RDS,ON for the 1200

V SiC power MOSFET is 2-3 mΩs-cm2 and for the 3300 V device is 10 mΩs-cm2,

suggesting that PON,3300V is approximately 3X larger than PON,1200V .

As the MOSFET is turned ON and OFF, or switching, intrinsic parasitic

capacitances store and dissipate energy during each transition and can be described

by

PSW = CMOSFET · V 2
IN · fSW (21)

where CMOSFET is the combined capacitance of the gate capacitance and the drain-

to-source capacitance, and fSW is the switching frequency. Assuming die area and

operating voltage are equal between the 1200 V and 3300 V devices, then PSW,3300V

is approximately 3X larger than PSW,1200V because the drain-to-source capacitance in

the 3300 V device is 3X the drain-to-source capacitance in the 1200 V device due to

the 3X thicker epitaxial region.
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Gate charge loss is described by

PG = QG · VGS · fSW (22)

where QG is the gate electric charge and VGS is the gate drive voltage. Again,

assuming the die area is equal between both devices, PG is the same using either

device. Additionally, PG is typically 1-2 orders of magnitude lower than either

conduction or switching loss, so even considering a larger die area, the impact of

gate charge loss is negligible.

One goal of a designer is to balance conduction and switching losses [69]. For a

circuit designed using a 1200 V MOSFET with balanced conduction and switching

losses, swapping in a 3300 V device with the same die area results in a 2X increase

in total power loss through the MOSFET, with negligible penalties in size/weight.

For applications where an increase in size/weight/cost do not significantly impact

the application, increasing the die area by a factor of three will reduce RDS,ON , and

PON by a factor of three. SiC is also particularly well suited for operating multiple

devices in parallel, which is an alternate option to reduce RDS,ON . In either case, a

3X increase in the surface area will generally result in a 3X increase in device cross-

section heavy ion interaction, although, to the point of this discussion, single-event

burnout will not be a risk due to an appropriately selected bus voltage.

Implications for component selection and circuit design show that using a 3300

V power MOSFET provides ample single-event burnout threshold margin for space

applications up to 650 V and up to an LET of 60 MeV-cm2/mg, while the 1200 V

device is susceptible to single-event burnout. In a terrestrial environment, the 3300 V

device can safely operate up to 2000 V with little risk of cosmic ray neutron-induced
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single-event burnout. An obvious design tradeoff is increased total power loss at the

transistor level, which may be mitigated by fewer losses at the system level due to

the increased bus voltage. Additionally, using a 3300 V device with a larger die area,

or three devices in parallel, results in decreasing total power loss while potentially

increasing cost, weight, area, and cross-section for an ion strike. For applications

where single-event burnout cannot be tolerated, using higher rated devices should be

considered.
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CHAPTER IX

IMPACT AND CONCLUSIONS

Growth of the global power semiconductor industry hinges upon developing new

technologies and products that can meet a wide range of voltage specifications,

while providing higher power efficiency in a smaller package when compared to

previous technologies. Silicon carbide is superior to silicon for power devices due

to higher breakdown electric fields, increased thermal conductivity and significantly

lower on-state resistance, all of which result in size, weight, power (SWaP), and

overall cost savings. The SWaP benefits of SiC over silicon make these power devices

desirable candidates for space-based applications. However, microelectronic devices

and circuits used in space may be susceptible to naturally occurring space radiation,

such as cosmic ray heavy ions.

Obtaining radiation test data for semiconductor devices is an expensive, time-

consuming task with single-event burnout (SEB) testing particularly challenging

because of the destructive nature of the test. The safe operating area (SOA) for 1200

V SiC power MOSFETs and diodes has been characterized to a limited extent through

test campaigns, however, little insight has been gained into the physical mechanism(s)

that may be responsible for ion-induced single-event burnout. Understanding these

mechanisms is imperative for organizations for making space-flight hardware design

decisions to mitigate risk of operational failure during a mission. Ion-induced

radiation data for power devices reflects the response of a device from the perspective

of an electrical terminal, or better defined as “on the outside looking in”. Modeling
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and simulation tools, such as 3D Technology Aided Design (TCAD), provide the

capability to gain insight into the physical response of a device to radiation, leveraging

available data to validate modeling and simulation efforts.

This work has advanced the state-or-the-art in four key areas: identifying a trend

for single-event burnout in SiC power MOSFETs and diodes, exploring physical failure

mechanisms for that trend, evaluating device variants, and analyzing device voltage

derating and selection for a circuit design.

Historically, it has been shown that there are separate mechanisms responsible

for the catastrophic failures observed in silicon power diodes (localized avalanche

breakdown due to ion-induced electric field spikes) and silicon power MOSFETs

(parasitic bipolar junction transistor), resulting in differing single-event burnout

responses between the two types of devices. A natural assumption is that there

would be separate mechanisms responsible for single-event burnout in SiC power

diodes and MOSFETs. However, this is not the case. In this work, heavy ion data

has been compiled and combined with new data, identifying matching single-event

burnout thresholds for the 1200 V power MOSFETs and diodes. Analysis of these

heavy-ion data indicates that the devices have a common mechanism responsible for

the catastrophic failures.

Insight into failure mechanisms is developed through the use of 3D TCAD

simulations, which are used to identify similarities in both structures during an ion

event. The simulation results show a resistive shunt effect capable of generating very

high localized current transients during an ion strike, and consequently, significant

energy dissipation. For LET and bias conditions matching the single-event burnout

threshold data, a constant amount of energy dissipation is calculated through analysis
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of TCAD simulation results. Ion-induced, highly-localized energy pulses are proposed

as a common mechanism responsible for catastrophic single-event burnout in 1200 V

SiC power MOSFETs and JBS diodes.

The 3D TCAD framework developed in this work provides an opportunity to

efficiently evaluate the effects of an ion-strike on a variety of device variants (doping

and dimension). Understanding how these variants perform following an incident

heavy-ion strike will provide design teams an opportunity to consider alternate

device designs that may meet the mission specification or otherwise mitigate the

risk associated with single-event burnout during flight. This analysis may also prove

to be useful for manufacturers that are interested in exploring radiation-hardened

device development, further driving innovation for device reliability. 3D TCAD

heavy ion simulation results have been analyzed for comparing commercial 1200 V

and experimental 3300 V power MOSFETs. The results showed that the 3300 V

MOSFET provides almost 50% reduction in total power dissipated along the ion

track core compared to a 1200 V MOSFET, agreeing with the trends shown in the

data.

Typically, using a commercial off-the-shelf part is less expensive than using a

special radiation-hardened device. Successfully designing a power electronic circuit to

operate while minimizing the risk of single-event burnout causing catastrophic failure

of the circuit is important for both space and terrestrial applications. Circuit designers

must understand the environment and the mechanisms contributing to single-event

burnout in order to appropriately select parts. In this work, 1200 V commercially

available and 3300 V experimental SiC power MOSFETs are compared for operation
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in a circuit, with insight provided into the concept of voltage derating and a trade-

off analysis focused primarily on power losses during operation. Implications for part

selection and circuit design show that using a 3300 V power MOSFET provides ample

single-event burnout threshold margin for space applications up to 650 V for most

space environments, while the 1200 V device is susceptible to single-event burnout.

In a terrestrial environment, the 3300 V device can safely operate up to 2000 V with

little risk of neutron-induced single-event burnout. An obvious design trade-off is

increased total power loss at the transistor level, which may be mitigated by fewer

losses at the system level due to the increased bus voltage. Additionally, using a 3300

V device with a larger die area, or three devices in parallel, results in decreasing total

power loss while potentially increasing cost, weight, area, and cross-section for an ion

strike. For applications where single-event burnout cannot be tolerated, using higher

rated devices should be considered.
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Appendix A

POSITIVE FEEDBACK LOOP: PARASITIC BJT AND IMPACT IONIZATION

Silicon-based power MOSFETs, on exposure to heavy-ion irradiation, may expe-

rience catastrophic failure, either single-event gate rupture (SEGR) or single-event

burnout (SEB), above a certain gate and/or drain bias. These failures are well

understood with the latter linked to the parasitic bipolar junction transistor, which

is an integral part of the device structure [32], [70], [31], [30].

SiC power MOSFETs may also undergo catastrophic single-event burnout when

exposed to energetic heavy ions or protons [71], [72], [46], [6], [73], [56]. Lauenstein

et al. [6] points out that two types of ion-induced single-event effects are observed

in SiC power MOSFETs: degradation and catastrophic failure. They also say that

“at this time the primary failure mode is unclear and that “Signatures are similar

across manufacturers and part types: [the] mechanism is more fundamental than

geometry or process quality.” There have also been some previous efforts at modeling

single-event burnout and SEGR effects in SiC power MOSFETs [74].

In this Appendix, the role of the parasitic bipolar turn-on in a 1200 V SiC power

MOSFET during an ion strike is discussed. As previously discussed in Chapter IV

single-event burnout in silicon power MOSFETs has historically been attributed to a

positive feedback loop with avalanche carrier generation and the turn-on of a parasitic

NPN bipolar transistor. In a typical operating mode, the body and source of the

MOSFET are shorted together by the common metallization, so the body voltage has

no ability to rise and forward-bias the body-source P-N junction. However, when the
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passage of a heavy-ion deposits charge in the device, lateral current flow along the P-

type body region allows the body voltage to rise, forward-biasing the body-source P-N

junction, turning on the parasitic BJT. This occurs simultaneously with the avalanche

carrier generation due to the high electric fields present in the device. The positive

feedback loop between the parasitic BJT and the avalanching carriers, each with a

positive gain, results in a condition where high current and high voltage are sustained

sufficiently to physically damage the device through metal/semiconductor separation

at the contact, burnout of metal lines, or thermal meltdown of the silicon. Although

the parasitic BJT does not appear to be the dominant mechanism contributing to

single-event burnout in SiC power devices, it is still an integral part of the device.

3D TCAD simulations are used to understand the dependence of the parasitic BJT

turn-on and the avalanche generation from impact ionization as a function of ion

linear energy transfer (LET) and reverse bias voltage.

Parasitic BJT

The details of the 3D TCAD SiC power MOSFET and diode devices were discussed

in Chapter III. TCAD simulations were used to investigate the activation of the

parasitic BJT in the MOSFET, and comparing results to the diode which has no

parasitic BJT [75]. In these simulations, the ion strike location was varied across the

surface of the devices in 250 nm steps, with an LET = 20 MeV-cm2/mg) and varying

the bias from 10 V up to 250 V. The ion did not fully penetrate the epitaxial region,

rather it was truncated at 2 µm into the device, sufficient to deposit charge entirely

through the P-type body region and activating the parasitic BJT, without shorting

the source to the drain. In addition, bias conditions were sufficiently low that with
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impact ionization models turned ON, there was not sufficient avalanching of carriers

due to low electric fields. Charge collected on the drain node as a function of bias and

strike position is shown in Figure 57, with MOSFET collected charge on the drain

in (A), diode collected charge on the drain in (B). These results clearly show that

collected charge in the diode is constant, and independent of both hit location and

bias. In the MOSFET, the parasitic BJT is activated, resulting in an amplification of

charge that is dependent on both hit location and bias. The most sensitive location is

the the corner of the P-type body region, discussed in earlier chapters. This location

is the farthest from the source contact, resulting in the maximum series resistance

between the deposited charge and the contact and allowing the P-type body region

potential to rise during the ion strike. For the worst case strike location, collected

charge is compared for the MOSFET and diode as a function of bias in Figure 58. For

a drain voltage less than 20 V, both the MOSFET and diode collect approximately

the same amount of charge because the parasitic BJT has not been activated. As the

bias increases, the P-type body potential rises, increasing the base-emitter voltage,

and driving the amplification of charge in the MOSFET.
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Figure 57: TCAD simulations of collected charge in a MOSFET for a constant amount
of deposited charge but varying location and bias are shown in (a). TCAD simulations
of collected charge in a diode for a constant amount of deposited charge but varying
location and bias (b). For (a) and (b), a strike location of 0 is at the center of the
epitaxial region near the surface between two p-doped regions. after Johnson et al.
[75]
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Figure 58: TCAD simulations of collected charge in a MOSFET and diode for a
constant amount of deposited charge in the most sensitive location but varying bias
after Johnson et al. [75]
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Impact Ionization

The details of the 3D TCAD SiC power MOSFET device were discussed in

Chapter III. The single-event simulation matrix varied the heavy ion charge deposition

from 0.007 pC/µm to 0.042 pC/µm (which can be converted to LET = 1 MeV-cm2/mg

to 60 MeV-cm2/mg), and drain bias from 400 V to 1600 V, in 100 V increments.

The heavy ion strike occurs 100 ps after the simulation begins, giving the device

simulation ample time to achieve steady state, and the Gaussian track radius is 50

nm spatially with a 2 ps Gaussian rise/fall time parameter. Impact ionization models

developed specifically for 4H-SiC [17], which are critical for simulating breakdown,

were employed. Thermal equations (lattice heating) were not considered for this

study.

Figure 59 shows the simulated heavy-ion induced drain current as a function of

time for LET = 5 MeV-cm2/mg at 700 V and 800 V drain bias, with and without

impact ionization turned on. When the device is biased at 800 V and impact ionization

is turned OFF, the ion-induced drain current transient shows a sharp peak, followed

by a characteristic recovery as mobile carriers recombine. In this case, the parasitic

BJT has turned ON, but with no impact ionization to generate holes to supply the

base current, there is no positive feedback path. With impact ionization turned ON,

the drain current shows a slight recovery as the device moves from drift collection

into a state where impact ionization can begin to supply holes to the base of the BJT,

driving the gain higher, and the drain current increases indefinitely due to the positive

gain in the system. With the impact ionization model turned ON, but at a lower bias

of 700 V, the drain current transient does not show a runaway event, however, it is

significantly more pronounced than the case with impact ionization turned OFF. In
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this condition, there is still an activated parasitic BJT and generation of carriers from

impact ionization, but the gain of the system is too low to show a runaway current

event.

Figure 59: TCAD heavy ion simulations of SiC power MOSFET, showing single-
event burnout at 800 V at LET=5 MeV-cm2/mg with impact ionization turned on,
and device recovery at other conditions.

The importance of the parasitic bipolar transistor to the positive feedback loop

is apparent in Figure 60 and Figure 61 which show 2D cross-section TCAD time

slices 250 ps after the strike occurs, or 350 ps of simulation time to correspond to the

curves in Figure 59. This time was chosen to highlight the differences between the two

cases. Much earlier, and the two cases look very similar and hard to distinguish any

significant differences. Much later and the impact ionization simulation has advanced

so far that the device has started to become flooded with carriers and is difficult to

use as a comparison against the no impact ionization case. Figure 60 shows hole
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current density (A/cm2) (top) and electron current density (bottom) without impact

ionization turned on, for LET = 5 MeV-cm2/mg at VD = 800 V. Figure 61 illustrates

a 2D cross-section TCAD time slice after the strike occurs, with hole current density

(A/cm2) (top) and electron current density (A/cm2) (bottom) with impact ionization

turned on, again for LET = 5 MeV-cm2/mg at VD = 800 V. Both electrons and

holes exhibit significantly higher current densities with the impact ionization model

active, revealing the presence of a cylinder of current from the ion strike on the

source down to the highly-doped drain region. Without impact ionization turned on

in the simulation, there is no sustainable source of carriers for positive gain in the

system. With the impact ionization model turned ON, the significant increase in

current density compared to the simulation without impact ionization is a result of

avalanche multiplication at the epi/substrate junction, as shown in Figure 62. The

condition for impact ionization is created by charge carrier transport following the

strike, and is initiated by localized high electric fields arising from the drain bias. The

charge carriers flooding the epi region cause the maximum electric field to relocate

from the p-body/epi junction (pre-strike) to the epi/substrate junction as shown by

the current generation profile in Figure 59, with impact ionization rate shown in

Figure 62. In this simulation, the parasitic BJT turns on and the electric field is

high enough that impact ionization can begin, such that carrier multiplication occurs

quickly. In other device structures, it may be possible to initiate this process without

the effective gain of the parasitic bipolar [76]. In Figure 59, the current from the

generated carriers shorts the source to the drain. The electron and hole current flow

is a direct path from source to drain, and the avalanching effects cause the currents

to continue increasing, leading to a runaway current event. In a TCAD simulation,
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Figure 60: 2D cross-section TCAD time slice 250ps after the strike occurs, showing
hole current density (A/cm2) (top), electron current density (bottom) with impact
ionization turned off, for LET=5 MeV-cm2/mg at VD=800 V. Blue indicates a current
density of 1 A/cm2 while red indicates a current density of 106 A/cm2.
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Figure 61: 2D cross-section TCAD time slice 250ps after the strike occurs, showing
hole current density (A/cm2) (top), electron current density (bottom) with impact
ionization turned on, for LET=5 MeV-cm2/mg at VD=800 V. Blue indicates a current
density of 1 A/cm2 while red indicates a current density of 106 A/cm2.
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there is no way to differentiate between parasitic BJT current and current generated

from avalanching carriers. Thus, it is important to simulate both cases, with and

without impact ionization, to understand the mechanisms causing failure. TCAD

Figure 62: Impact ionization (per cm2-s) at the epi/drain junction at 250 ps after the
strike occurs for LET=10 MeV-cm2/mg at VD=800 V. Impact ionization rate ranges
from 1e10 cm-3•s-1 (blue color) to 1e27 cm-3•s-1 (red color)

simulation results shown in Figure 63 further illustrate that the positive feedback

loop is a function of device reverse bias and ion LET. The ion is assumed to pass

through the source, body and drain. The bias is fixed at 500 V and the LET is varied

from 1 to 60 MeV-cm2/mg. These simulation results show drain current transients

as a function of time. At 500 V, positive feedback does not occur at an LET of 10

MeV-cm2/mg or below, but does occur at LETs of 20 MeV-cm2/mg and above.

In addition to bias and LET dependence, runaway drain current events in SiC

power MOSFETs also depend on strike location, similar to silicon power MOSFETs

[77]. Figure 64 shows representative strike locations, with all strikes at normal

incidence. The simulated effects of ion strike location are shown in Table 8 for
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Figure 63: TCAD heavy ion simulations of a SiC power MOSFET, showing drain
current transient as a function of LET with the drain biased at 500 V. At LETs of 20
MeV-cm2/mg and greater, the drain current runs away, indicating a positive feedback
loop between a parasitic BJT and impact ionization.
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a variety of LET and bias conditions. For a given bias, increasing LET over the

threshold value leads to an increasing area of sensitivity. This occurs because the

charge generated by the ion strike must be sufficient to turn on the parasitic bipolar

transistor locally. As the strike location moves farther from the sensitive area, the

particle LET must increase so that the deposited charge that diffuses to the sensitive

region is sufficient to trigger both the parasitic BJT and impact ionization. Combined

with a suitable electric field, the parasitic BJT can turn on and carrier avalanching

can drive a runaway current event.

Figure 64: 2D cross-section of TCAD model, with arrows indicating varied ion strike
locations. In all cases, ion is at normal incidence.
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Table 8: 3D TCAD Simulation Results Indicating Positive Feedback as a function of
Ion Strike Location, LET, and Bias

Location Center Gate Source/Body Body/Drain
LET=4 @ 1400 V No Yes No
LET=10 @ 800 V No Yes No
LET=20 @ 500 V No Yes No
LET=60 @ 500 V Yes Yes Yes

Single-event burnout in silicon power MOSFETs occurs as a result of impact

ionization driving rapidly escalating current flow in a device, ultimately leading to

the device failing catastrophically. For vertical power devices, there is an inherent

parasitic bipolar junction transistor (BJT) that can turn on during a single-event

strike, amplifying the current that is flowing, initiating impact ionization, and

ultimately leading to device breakdown. Although the effects of impact ionization

are well understood in silicon devices, SiC devices exhibit different characteristics

due to the wider bandgap. It is important to use impact ionization models in TCAD.

With impact ionization models turned OFF, considerable ion-generated current flows

in the device, but mobile carriers recombine and the device recovers. With impact

ionization models turned ON and coupled with the activiation of the parasitic BJT

(seen by examining the hole and electron current densities in Figure 61), the heavy-

ion generated carriers are sufficient to raise the potential in the body, forward biasing

the body/source junction, and providing a path for holes to flow into the source in

the form of base current. As the simulation progresses, the carriers recombine, and

the parasitic BJT turns off because there is no sustainable injection of charge and the

device will recover.
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Appendix B

NEUTRON-INDUCED SECONDARY PARTICLE GENERATION

As a neutron passes through a semiconductor material, a collision with the

nucleus of an atom can result secondary reaction product (alpha, proton, or ion)

that is ionizing and capable of creating electron-hole pairs in the semiconductor. For

terrestrial microelectronics, neutrons can greatly impact the reliability of a circuit

or device [78] when a collision occurs and charge is deposited. An estimated

50% of the electricity used in the world is controlled by power devices [7],

with applications ranging from consumer, industrial, medical, and transportation.

Thus, for terrestrial applications for SiC power devices, neutron-induced single-event

burnout is a reliability concern [57].

This dissertation is focused on ion-induced single-event burnout for SiC power

devices, with analysis showing that 3300 V power devices are less susceptible to

catastrophic failure than a 1200 V device. Terrestrial neutron-induced single-event

burnout data (shown in Figure 35) also supports this analysis. It is interesting

to consider neutron-induced charge deposited in the SiC devices as it relates to

the devices discussed in previous chapters. The impact of the terrestrial neutron

environment bombarding a semiconductor material can be investigated through

simulations using a radiation transport tool called Monte Carlo Radiative Energy

Deposition (MRED) [79], [80]. Tipton et al. used MRED to generate neutron-

induced secondary products in a 90 nm bulk silicon SRAM, with an example of a

secondary product reaction shown in Figure 65. Neutron-induced secondary particles
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are isotropic and largely independent of the direction of the neutron, wich is seen in

Figure 65 where the incident neutron results in a shower of alphas, protons, and a

carbon ion.

In this dissertation, MRED is used to identify secondary particles from terrestrial

neutron-induced nuclear reactions in a SiC target. In order to understand the

distribution of recoil products from nuclear reactions produced when SiC is exposed to

neutrons, a target with a cross-sectional area of 2 mm x 3 mm (the size of the die) with

a depth of 30 µm was used for initial MRED radiation-transport simulations. The

structure also has a 1 µm tungsten overlayer to provide a reasonable representation of

back end of line materials (the actual BEOL is not known). The neutron environment

used for the MRED simulations matches that of the Los Alamos National Laboratory

(LANL) spallation neutron source, whose energy distribution closely matches that of

terrestrial neutrons [67], [82]. The distribution of the terrestrial neutron spectrum

as a function of energy is shown in Figure 66. An event-weighting technique defined

in [79] allowed the high energy, low flux portion of the spectrum to be analyzed

accurately. MRED simulations were run for the entire 2 mm x 3 mm x 30 µmm block

of SiC to establish the likelihood of secondary particles depositing energy in the

epitaxial region. In Figure 67, the range and LET of secondary particles generated in

the SiC by incoming neutrons are shown. For this illustration, only secondary particles

with an LET greater than 1 MeV-cm2/mg are recorded. This limit was defined based

on the lowest recorded heavy ion LET that caused single-event burnout, see Figure 32.

The range of LET values that are presented from MRED simulations extends from

an LET of 1 MeV-cm2/mg up to an LET of almost 15 MeV-cm2/mg. Based on heavy

ion data, this range of LET values (and deposited energy) is well within the range
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Figure 65: TCAD representation of an MRED-generated nuclear event. The shaded
volumes represent the sensitive nodes of the memory device. The incident neutron
enters and induces a nuclear event. The shower of secondary products includes alpha
particles, protons, neutrons, gamma rays, and a carbon heavy ion after Tipton et al.
[81]
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Figure 66: Neutron spectrum from LANL [67] that closely matches the terrestrial
neutron spectrum, and is used for MRED simulations.

required for single-event burnout. Further analysis of the simulation results shown in

Figure 67 indicates that many of these secondary particles have a much shorter range

than the heavy ions from LBNL and RADEF. Out of 55,000 simulated secondary

reaction events, 80% of them had a range of 5 µm or less, and 65% have a range of

2 µm or less. As noted previously, the thickness of the epitaxial region in the 1200

V device is 10 µm, and the thickness in the 3300 V device is 30 µm. These results

indicate that a significant majority of the charge deposited after a nuclear reaction

occurs in a volume that is significantly smaller than the epitaxial region. This is

consistent with the neutron-induced single-event burnout data that shows the 3300

V device requires significantly higher applied bias (2000 V) than the 1200 V device

(800 V) before catastrophic failure. At 800 V, the depletion region in the 1200 V

device penetrates the entire thickness of the epitaxial region. For the 3300 V device,
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when biased at 2000 V, the entire epitaxial region is depleted. For a given amount

of charge deposited from a neutron-induced collision, each device needs to have the

eptixial region fully depleted for single-event burnout. The key takeaway from these

simulation results is that neutron-induced secondary particle can sufficiently deposit

energy consistent with the energy required for single-event burnout, in addition to

having ranges that can fully penetrate the epitaxial region.

Figure 67: Secondary particles (showing range and LET) generated from neutron
environment and entering the primary sensitive volume as calculated by MRED.
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