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Thermal Perceptual Thresholds are 
typical in Autism Spectrum Disorder 
but Strongly Related to Intra-
individual Response Variability
Zachary J. Williams   1, Michelle D. Failla2, Samona L. Davis2, Brynna H. Heflin3, 
Christian D. Okitondo2, David J. Moore4 & Carissa J. Cascio2,5

Individuals with autism spectrum disorder (ASD) are often reported to exhibit an apparent indifference 
to pain or temperature. Leading models suggest that this behavior is the result of elevated perceptual 
thresholds for thermal stimuli, but data to support these assertions are inconclusive. An alternative 
proposal suggests that the sensory features of ASD arise from increased intra-individual perceptual 
variability. In this study, we measured method-of-limits warm and cool detection thresholds in 142 
individuals (83 with ASD, 59 with typical development [TD], aged 7–54 years), testing relationships with 
diagnostic group, demographics, and clinical measures. We also investigated the relationship between 
detection thresholds and a novel measure of intra-individual (trial-to-trial) threshold variability, a 
putative index of “perceptual noise.” This investigation found no differences in thermal detection 
thresholds between individuals with ASD and typical controls, despite large differences between groups 
in sensory reactivity questionnaires and modest group differences in intra-individual variability. Lower 
performance IQ, male sex, and higher intra-individual variability in threshold estimates were the most 
significant predictors of elevated detection thresholds. Although no psychophysical measure was 
significantly correlated with questionnaire measures of sensory hyporeactivity, large intra-individual 
variability may partially explain the elevated psychophysical thresholds seen in a subset of the ASD 
population.

Autism spectrum disorder (ASD) is a complex, heterogeneous neuropsychiatric syndrome characterized by dif-
ficulties with social communication and the presence of repetitive and stereotyped interests and behaviors1. In 
addition, with the publication of the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders 
(DSM–51), the diagnostic criteria for ASD have been updated to include “Hyper- or hyporeactivity to sensory 
input or unusual interest in sensory aspects of the environment.” While much recent ASD literature has sought to 
address the underpinnings of sensory hyperreactivity exhibited by individuals with ASD2–5, much less is known 
about sensory hyporeactivity in this population. Perhaps the most cited example of hyporeactivity in ASD is 
that these individuals exhibit an “apparent indifference to pain/temperature”1. This lack of response to osten-
sibly noxious stimuli has led many investigators to infer that individuals with ASD exhibit reduced or absent 
perception of these stimuli6. However, evidence suggesting a reduction in pain and temperature perception in 
ASD has predominantly been inferred from clinical case reports, parent interviews, and questionnaire studies7,8, 
and recent reviews question the long-held assumption that individuals with ASD truly are hyposensitive in these 
modalities7,9,10.

Leading models of sensory hyporeactivity11–14 postulate that observed indifference to stimuli is the result of 
elevated thresholds for stimulus perception. Perceptual thresholds are defined by the minimum amount of stim-
ulus energy necessary to register the percept. For thermal stimuli, the stimulus energy is a temperature change 
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from a baseline temperature. The direction of this change is thus opposite for warmth and cool detection thresh-
olds (i.e., higher temperatures for warmth detection and lower temperatures for cool detection both correspond 
to elevated perceptual thresholds. In this report, we will refer to warm and cool thresholds in terms of degree of 
change from baseline temperature rather than absolute temperature to maximize consistency and clarity. These 
proposed mechanisms for aberrant sensory responsivity are appropriately tested using the methods of experi-
mental psychophysics to relate objective stimulus intensity to perceptual threshold15. Psychophysical warm and 
cold thermal detection thresholds have been widely studied in both healthy and clinical populations (for a review, 
see16), and these measures allow researchers to empirically test the presupposed group differences in stimulus 
perception.

Relatively few studies have used psychophysical methods to study hyposensitivity in the ASD population, and 
most studies to date have focused on differences in pain thresholds. Intriguingly, psychophysical studies com-
monly report no significant differences in pain thresholds between individuals with ASD and typically-developing 
(TD) controls17–23, and several have even reported reduced pain thresholds in the ASD group24–27. Of particular 
interest, no study to date has found that psychophysical pain thresholds are substantially higher in ASD than in 
TD controls. Even fewer studies have assessed detection thresholds for nonpainful warm and cold stimuli, with 
mixed results. Three have found no difference in warm or cool detection thresholds between individuals with 
ASD and TD controls20,23,24, while Duerden et al.18 reported that the ASD group exhibited higher warm and cool 
detection thresholds (i.e., a larger change from baseline was needed for detection in both conditions). The ASD 
group in the study by Yasuda and colleagues22 demonstrated lower cold detection thresholds (i.e., detecting cold 
at a lower change from baseline) compared to controls, although no difference was found in warm detection 
thresholds. These studies all have important limitations, including small sample sizes (≤20 ASD participants) 
and the failure to account for confounding variables such as age, sex, and IQ, which often differed between ASD 
and control groups.

The largest of these studies, conducted by Duerden and colleagues18, compared method-of-limits thermal 
detection and pain thresholds between a group of adolescents with ASD and IQ > 70 (n = 20) and TD controls 
(n = 55) who were administered the same psychophysical task in a separate study. As noted above, the ASD group 
reported significantly higher thresholds for both warmth and cold detection, consistent with reduced sensitivity 
to thermal stimuli of both types. In addition, detection thresholds in the ASD group were strongly correlated with 
IQ (rwarm = −0.8, rcold = 0.59), suggesting that lower IQ is associated with apparent hyposensitivity to both heat 
and cold. However, because IQ scores were not measured in the TD group, the apparent group differences may 
have resulted from unmeasured differences in IQ between groups rather than differences in ASD diagnostic sta-
tus per se. Notably, a later study that explicitly matched ASD and TD groups on verbal IQ reported no significant 
differences in detection thresholds across groups20.

In addition to the above limitations, studies to date have not taken into account the distributional properties 
of thermal thresholds. Multiple large-studies have demonstrated that thermal thresholds in the general pop-
ulation are non-normally distributed, typically due to high levels of skewness28–31. Because of this skewness, 
ASD-TD threshold comparisons using Student’s t test and similar procedures will result in an unacceptably high 
type I error rate at the sample sizes typically encountered in psychological research32,33. However, such limita-
tions are easily overcome by instead conducting group comparisons using nonparametric statistics such as the 
Wilcoxon-Mann-Whitney test29,30, which maintain their nominal type I error rate under a much wider range of 
distributional conditions33.

The current study tested the hypothesis that individuals with ASD exhibit significantly elevated warm and 
cool detection thresholds consistent with behavioral reports of reduced reactivity to thermal stimuli. This study 
specifically addresses the methodological limitations of past research in this area, employing a relatively large 
sample with a wide age range, accounting for a number of potentially confounding variables, and employ-
ing rank-based statistical methods that are robust to the non-normality inherent in psychophysical threshold 
data. We also extended the work of prior authors by examining the degree to which psychophysical thresholds 
are associated with individual differences in age, sex, IQ, and common measures of autism symptomatology 
(ADOS-2 Calibrated Severity Score [CSS]34–36, Social Responsiveness Scale – Second Edition [SRS-2]37), includ-
ing sensory features (Adolescent/Adult Sensory Profile [AASP]38,39 and Sensory Profile [SP]40 quadrant scores, 
as well as a one-item measure of sensory hyperresponsivity derived from the SRS-2). Lastly, as some studies have 
linked ASD to increasingly noisy and variable perceptions41–44, we investigated diagnostic group differences in 
intra-individual variability in warm and cool threshold temperatures across individual trials of our experimental 
task (as measured by Gini’s Mean Difference [GMD]45–47), as well as the relationships between GMD values and 
detection thresholds derived from those same trials.

Results
Descriptive statistics and group comparisons.  In total, 142 participants were included in the final study 
sample: 32 adults with ASD (21 male, median age 25.50 years), 24 adults with typical development (TD) (14 male, 
median age 29.76 years), 51 children and adolescents with ASD (41 male, median age 10.03 years), and 35 chil-
dren and adolescents with TD (26 male, mean age 9.21 years), ages 7.0–17.99 years (Table 1).

ASD-TD group differences were tested using Cliff ’s delta (δ)48–50, a non-parametric test statistic that doubles 
as a standardized effect size (ranging from −1 to 1). Furthermore, we supplemented null-hypothesis signifi-
cance tests of group differences with equivalence testing51,52, which allows us to test the null hypothesis that the 
difference between two groups is greater than or equal to a pre-specified smallest effect size of interest (in this 
case, an effect of “medium” magnitude). If the equivalence test null hypothesis is rejected, it provides statistical 
evidence that group differences are smaller than the smallest effect size of interest (“statistically equivalent”) and 
are thereby too small to be theoretically meaningful. Thus, hypotheses of group differences can be interpreted 
in one of four ways: (a) statistically different from zero and not statistically equivalent (p < 0.05, pequiv > 0.05), 
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(b) not statistically different from zero and statistically equivalent (p > 0.05, pequiv < 0.05) (c) statistically different 
from zero and statistically equivalent, i.e., a nonzero effect that is significantly smaller than the smallest effect size 
of interest (p < 0.05, pequiv < 0.05), or (d) not statistically different from zero and not statistically equivalent, i.e., 
inconclusive (p > 0.05, pequiv > 0.05)51. Summary statistics and group comparisons are available in Table 2.

The ASD and TD groups were statistically equivalent in terms of age, δ = 0.014, p = 0.894, pequiv = 0.001, and 
performance IQ (PIQ), δ = −0.122, p = 0.224, pequiv = 0.015, and there were no significant group differences in sex 
ratio, χ2(1) = 0.81, p = 0.368, Φ = 0.076. The ASD group did have significantly lower verbal IQ (VIQ), δ = −0.347, 
p < 0.001, pequiv = 0.576, and full-scale IQ (FSIQ) scores, δ = −0.285, p = 0.005, pequiv = 0.316. These patterns were 
similar when analyses were restricted to either the child/adolescent or adult groups (Table 2), with the differences 
in VIQ and FSIQ no longer significant in the adult subsample.

As expected, large and significant group differences were seen in all questionnaire measures of ASD traits 
and sensory features (Table 2). SRS-2 T-scores were substantially higher in the ASD group (Mdn = 71.27, IQR 
[64.18, 78.96]) compared to the TD group (Mdn = 42.36, IQR [39.51, 48.70]), δ = 0.971, p < 0.001. These group 
differences were similarly strong for both adult self-reports, δ = 0.942, p < 0.001, and caregiver reports, δ = 0.988, 
p < 0.001, when considered separately. Scores on the SRS-2 one-item sensory question were also substantially 
elevated in the ASD group, δ = 0.729, p < 0.001, with 64% of the ASD group endorsing values of 3 (often true) or 4 
(always true) compared to only 6% of the TD group. Large group differences were also found on all SP and AASP 
quadrant scores, all |δ| > 0.554, ps < 0.001, psequiv > 0.914, with both ASD age groups exhibiting elevated scores 
in the domains of low registration, sensory sensitivity, and sensory avoiding. The ASD group showed divergent 
results for sensory seeking on the two sensory questionnaires, with higher levels of sensory seeking reported on 
the caregiver SP, δ = −0.580, p < 0.001 (note that lower scores on the caregiver SP represent higher levels of the 
reported behavior), as well as reduced sensory-seeking reported on the self-report AASP, δ = −0.554, p < 0.001.

Warm and cool detection thresholds, as well as the respective GMD values from those trials, were compared 
between the ASD and TD groups in the entire sample, as well as the child/adolescent and adult subsamples sepa-
rately (Table 2). In the overall sample, the groups were equivalent in terms of warm detection threshold, δ = 0.171, 
p = 0.078, pequiv = 0.043, and cool detection threshold, δ = 0.178, p = 0.065, pequiv = 0.046. When considering the 
child/adolescent subsample alone, the group differences were not statistically different but only equivalent in 
terms of warm threshold (Table 2). However, when analyses were restricted to the adult group, the ASD group 
exhibited significantly higher thresholds for warmth detection, δ = 0.339, p = 0.037, pequiv = 0.523. Cool thresh-
olds were higher in adults with ASD than their TD counterparts, but this difference was neither statistically sig-
nificant nor equivalent, δ = −0.208, p = 0.185, pequiv = 0.205. Although most threshold differences were small and 
non-significant, the ASD group consistently demonstrated higher warm and cool thresholds (i.e., higher warm 
threshold temperatures and colder cool threshold temperatures). Upon visual inspection of the data, these trends 

ASD TD
Whole 
Sample

Age group (Adult/Child) 32/51 24/35 56/86

Sex (M/F) 62/21 40/19 102/40

Race

   White 52 32 84

   Black/African-American 3 6 9

   Asian-American 3 3 6

   American Indian/Alaska Native 1 1 2

   Mixed race 6 0 6

   NA/Prefer not to respond 16 16 32

Hispanic ethnicity 4 1 5

Annual household income (USD)

   <$20,000 11 4 15

   $20,000–$40,000 10 8 18

   $40,000–$60,000 9 5 14

   $60,000–$80,000 9 5 14

   $80,000–$100,000 9 4 13

   >$100,000 17 17 34

   NA/Prefer not to respond 18 16 34

Psychiatric medication (ASD only)

   Any psychiatric medication 26 NA 26

   SSRI 9 NA 9

   Psychostimulant 11 NA 11

   Other† 12 NA 12

Table 1.  Participant demographics by diagnostic group. †Includes alpha-2 agonists (n = 4), benzodiazepines 
(n = 3), atypical antipsychotics (n = 3), hydroxyzine (n = 1), mirtazapine (n = 1), zolpidem (n = 1), 
oxcarbazepine (n = 1).
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seemed to be due to a small number of outlying values (defined by the boxplot rule53) in the ASD group rather 
than a difference across all quantiles of the threshold distribution (Fig. 1).

GMD values in the ASD group were significantly larger than the TD group in both conditions, but effect sizes 
were small, Warm: δ = 0.195, p = 0.043, pequiv = 0.073, Cool: δ = 0.248, p = 0.010, pequiv = 0.189. The GMD distri-
butions in both ASD and TD groups contained a substantial number of outliers (approximately 5–10% of each 
group; Supplementary Fig. S1), without significant differences in outlier proportions between the two diagnostic 
groups, Fisher’s exact tests: ps > 0.362.

Variable N (ASD/TD) ASD [Mdn, (Q1, Q3)] TD [Mdn, (Q1, Q3)] δ (90% CI) PH0 Pequiv

Age (Years) 83/59 15.27 (9.28, 22.7) 13.26 (8.83, 27.84) 0.014 (−0.154, 0.180) 0.894 0.001

   Adults 32/24 25.5 (21.13, 33.61) 29.76 (25.55, 33.29) −0.259 (−0.487, 0.002) 0.103 0.316

   Children 51/35 10.03 (8.47, 14.05) 9.21 (8.20, 10.86) 0.207 (−0.001, 0.398) 0.102 0.151

Verbal IQ 80/58 100.58 (89.58, 110.68) 108.85 (99.51, 119.6) −0.347 (−0.487, −0.191) <0.001 0.576

   Adults 30/23 101.14 (93.14, 110.74) 105.81 (98.24, 116.98) −0.265 (−0.498, 0.003) 0.103 0.335

   Children 50/35 100.21 (87.21, 110.97) 110.74 (101.04, 121.88) −0.399 (−0.566, −0.200) 0.002 0.725

Performance IQ 80/58 105.15 (95.45, 117.27) 109.18 (97.71, 122.62) −0.122 (−0.282, 0.044) 0.224 0.015

   Adults 30/23 107.98 (95.57, 116.04) 106.26 (96.46, 116.41) 0.009 (−0.254, 0.271) 0.957 0.021

   Children 50/35 103.47 (95.1, 118.8) 114.01 (98.08, 124.54) −0.191 (−0.39, 0.024) 0.143 0.130

Full-scale IQ 80/58 103.86 (93.15, 113.55) 111.66 (101.85, 120.35) −0.285 (−0.433, −0.123) 0.005 0.316

   Adults 30/23 104.61 (96.11, 112.93) 107.44 (98.54, 117.3) −0.116 (−0.369, 0.154) 0.480 0.085

   Children 50/35 103.29 (91.38, 114.39) 114.16 (104.15, 121.9) −0.373 (−0.548, −0.167) 0.004 0.642

SRS-2 Total T-score 71/40 71.27 (64.18, 78.96) 42.36 (39.51, 48.7) 0.971 (0.935, 0.988) <0.001 >0.999

   Adults 26/18 68.58 (60.46, 77.76) 43.28 (40.09, 49.65) 0.942 (0.841, 0.980) <0.001 >0.999

   Children 45/22 73.42 (65.7, 79.69) 42.06 (39.17, 47.9) 0.988 (0.959, 0.996) <0.001 >0.999

SRS-2 Item 42 (0–3) 72/47 2.02 (1.02, 2.99) 0.00 (0.00, 0.86) 0.729 (0.611, 0.815) <0.001 >0.999

   Adults 26/18 2.65 (1.72, 3.00) 0.17 (0.00, 0.97) 0.771 (0.560, 0.888) <0.001 0.998

   Children 46/29 1.73 (0.99, 2.81) 0.01 (0.00, 0.65) 0.724 (0.570, 0.829) <0.001 >0.999

AASP Scores - Adults

   Low Registration 24/20 41.74 (34.39, 50.18) 24.49 (22.68, 28.21) 0.869 (0.672, 0.951) <0.001 >0.999

   Sensory Seeking 24/20 37.25 (33.71, 41.64) 45.42 (39.67, 49.2) −0.554 (−0.746, −0.278) 0.002 0.914

   Sensory Sensitivity 24/20 48.96 (39.88, 54.92) 33.39 (31.21, 37.11) 0.748 (0.501, 0.882) <0.001 0.994

   Sensory Avoiding 24/20 49.98 (40.99, 58.32) 32.17 (27.94, 38.59) 0.733 (0.489, 0.871) <0.001 0.993

SP Scores - Children

   Low Registration 44/30 55.86 (47.04, 62.15) 70.06 (66.49, 72.66) −0.861 (−0.929, −0.735) <0.001 >0.999

   Sensory Seeking 44/30 94.22 (86.26, 106.14) 110.94 (104.04, 119.69) −0.58 (−0.732, −0.375) <0.001 0.975

   Sensory Sensitivity 44/30 69.66 (60.48, 82.12) 88.67 (81.53, 94.83) −0.734 (−0.839, −0.576) <0.001 >0.999

   Sensory Avoiding 44/30 99.82 (90.28, 111.09) 122.85 (114.63, 130.92) −0.817 (−0.897, −0.685) <0.001 >0.999

ADOS-2 Overall CSS 72/0 7.95 (6.20, 9.41) N/A N/A N/A N/A

   Adults 29/0 7.34 (6.04, 8.95) N/A N/A N/A N/A

   Children 43/0 8.63 (6.59, 9.56) N/A N/A N/A N/A

Warm Threshold (°C) 83/59 1.88 (1.25, 2.87) 1.56 (1.12, 2.36) 0.171 (0.009, 0.323) 0.078 0.043

   Adults 32/24 1.77 (1.34, 2.89) 1.33 (0.97, 2.11) 0.339 (0.074, 0.559) 0.027 0.512

   Children 51/35 2.02 (1.20, 2.87) 1.74 (1.25, 2.54) 0.072 (−0.135, 0.273) 0.567 0.016

Cool Threshold (°C) 83/59 2.41 (1.83, 3.47) 2.18 (1.75, 2.72) 0.178 (0.019, 0.328) 0.065 0.046

   Adults 32/24 2.20 (1.76, 3.43) 1.95 (1.61, 2.54) 0.201 (−0.058, 0.434) 0.192 0.190

   Children 51/35 2.62 (1.90, 3.55) 2.29 (1.88, 2.85) 0.159 (−0.049, 0.353) 0.201 0.074

Warm GMD (°C) 83/59 0.46 (0.29, 0.78) 0.61 (0.36, 0.98) 0.195 (0.034, 0.347) 0.043 0.073

   Adults 32/24 0.30 (0.21, 0.48) 0.41 (0.26, 0.76) 0.250 (−0.008, 0.477) 0.100 0.293

   Children 51/35 0.60 (0.41, 0.89) 0.71 (0.47, 1.19) 0.159 (−0.05, 0.355) 0.205 0.077

Cool GMD (°C) 83/59 0.40 (0.25, 0.67) 0.56 (0.34, 1.11) 0.248 (0.085, 0.397) 0.010 0.189

   Adults 32/24 0.28 (0.17, 0.49) 0.45 (0.26, 0.81) 0.337 (0.076, 0.555) 0.026 0.519

   Children 51/35 0.47 (0.32, 0.86) 0.62 (0.41, 1.28) 0.206 (−0.007, 0.401) 0.104 0.153

Table 2.  Descriptive statistics and diagnostic group comparisons. Note. Threshold values indicate changes (in °C) 
from the baseline temperature of 32 °C. δ = Cliff ’s (1993) delta statistic (an effect size metric); Q1 = first quartile; 
Q3 = third quartile; PH0 = p-value for test of null hypothesis of no effect; Pequiv = p-value for equivalence test (H0: 
|δ| ≥ 0.33, HA: |δ|<0.33); AASP = Adolescent/Adult Sensory Profile; GMD = Gini’s Mean Difference; SP = Sensory 
Profile; SRS-2 = Social Responsiveness Scale – Second Edition; SRS-2 item 42 = “I am overly sensitive to certain 
sounds, textures, or smells” (self-report) or “Seems overly sensitive to certain sounds, textures, or smells” (caregiver 
report).
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In summary, the ASD and TD groups did not differ in terms of age, sex, and PIQ, though the TD group 
did exhibit higher VIQ and FSIQ scores. Consistent with expectations, the ASD group had elevated scores on 
measures of autistic traits and sensory features in the domains of low registration, sensory sensitivity, and sen-
sory avoiding. Scores for sensory seeking differed between diagnostic groups, but the directionality of the effect 
differed in children and adults. Neither warm nor cool detection thresholds were significantly different between 
groups, and statistical equivalence tests were significant for both modalities in the whole sample. Despite equiva-
lent threshold measurements, the ASD group did exhibit a small but significant increase in trial-to-trial variability 
across conditions.

Correlational analyses.  Relationships between thermal detection thresholds and additional predictor var-
iables (i.e., GMD values, age, IQ scores, ASD symptoms, and self- or caregiver-reported sensory abnormalities) 
were assessed using Spearman rank correlations, with equivalence tests performed to indicate which correlations 
were significantly smaller than the minimum correlation of interest (HA: |rs| < 0.3). Warm and cool detection 
threshold temperatures were highly correlated across the whole sample, rs = 0.840, p < 0.001, as were the GMD 
values from warm and cool trials, rs = 0.603, p < 0.001. Large correlations were also found between detection 
threshold and the GMD from the trials in each modality, Warm: rs = 0.656, p < 0.001; Cool: rs = 0.706, p < 0.001 
(Fig. 2). The values of the above correlations were not significantly different when comparing the ASD and TD 
subsamples (all |rASD – rTD| < 0.132, all 95% CIs included zero).

Warm detection threshold was significantly correlated with PIQ, rs = −0.237, p = 0.006, pequiv = 0.217, but not 
VIQ, rs = −0.039, p = 0.654, pequiv = 0.001, and the difference between the two correlations was also statistically 
significant, rpiq − rviq = −0.198, 95% CI [−0.360, −0.032]. Cool detection threshold also exhibited a significant 
correlation with PIQ, rs = −0.322, p < 0.001, no significant correlation with VIQ, rs = −0.110, p = 0.200, and a 
significant difference between the two correlations, rpiq − rviq = −0.212, 95% CI [−0.372, −0.049]. These asso-
ciations between PIQ and detection thresholds were also not significantly different in the ASD and TD groups 
(Warm: rASD − rTD = −0.193, 95% CI [−0.512, 0.131]; Cool: rASD − rTD = −0.159, 95% CI [−0.469, 0.148]). Age 
was not significantly associated with warm detection threshold, rs = −0.080, p = 0.345, pequiv = 0.004, although a 
significant association with cool detection threshold did emerge, rs = −0.176, p = 0.038, pequiv = 0.062. However, 
the difference between the correlations of age with warm and cool thresholds was not statistically significant, 
rcool – rwarm = −0.096, 95% CI [−0.188–0.003]. There were no significant associations between either detection 
threshold and SRS-2 T-score, SRS-2 sensory item score, SP sensory item score, SP quadrant scores, or AASP 
quadrant scores, all |rs| < 0.148, ps > 0.223, with the majority of these correlations falling within the equiva-
lence bounds (Supplementary Tables S2–S4). Similarly, warm and cool GMD values were not significantly cor-
related with either SP or AASP scores, and many of these correlations were found to be statistically equivalent 
(Supplementary Tables S3 and S4). In the ASD group, ADOS-2 CSS was not significantly correlated with warm 
detection threshold, rs = 0.151, p = 0.209, pequiv = 0.665, although it was correlated with cool detection thresh-
old, rs = 0.281, p = 0.018, pequiv = 0.938. The difference between these two correlations was statistically significant, 
rcool – rwarm = 0.130, 95% CI [2.39 × 10−5, 0.260]. The full matrix of Spearman correlations can be found in the 
Supplementary Tables S2–S4.

These analyses indicate that warm and cool detection thresholds were highly correlated, displaying similar 
patterns of association with other variables. Increased threshold was strongly related to both lower PIQ and 
higher GMD. These correlations were not significantly different between the diagnostic groups. None of the other 
covariates were significantly correlated with thermal detection thresholds across the entire sample, and many 
were found to be statistically equivalent (Supplementary Table S2). When considering the ASD group alone, 
higher ADOS-2 CSS values were related to higher cool but not warm detection thresholds.

Regression models.  To assess group differences in thermal detection thresholds while controlling for other 
variables, we conducted hierarchical multiple regressions using a robust semi-parametric proportional odds 
model54,55. Three sequential models were fit for each detection threshold, with predictors that consisted of: (1) 
diagnosis, age, sex, and counterbalance order, (2) model 1 plus additional variables based on a best-subset regres-
sion analysis (see Methods for more details), and (3) model 2 plus the corresponding GMD value (Table 3).

The baseline model for warm detection threshold was not significantly better than the intercept-only null 
model, χ2(4) = 7.58, p = 0.108, Nagelkerke56 R2 = 0.052; ASD diagnosis, age, sex and counterbalance order all 
failed to significantly predict warm detection threshold (Table 3). In the best-subset regression analysis, the base-
line model plus PIQ was chosen as the best model, BIC weight = 0.490, Evidence Ratio vs. baseline model = 10.2 
(information on competing models and predictor BIC weights can be found in Supplementary Information). The 
second model fit significantly better than baseline, χ2(1) = 9.06, p = 0.003, ∆R2 = 0.059, and PIQ was found to 
be a strong predictor of threshold. Individuals with higher IQ scores tended to report lower warmth detection 
thresholds. After adding PIQ to the model, sex was also a significant predictor, with males reporting significantly 
higher detection thresholds than females. The addition of the warm GMD to the model in the next step resulted in 
a substantial improvement in fit, χ2(1) = 56.89, p < 0.001, ∆R2 = 0.294. Warm trial GMD was a highly significant 
predictor of warm detection threshold, with higher GMD values predicting elevated thresholds. After the addition 
of GMD to the model, PIQ was no longer a significant predictor of warm detection threshold, although the effect 
of sex remained significant. In this model, age was also a significant predictor, with older age related to higher 
warm detection thresholds after controlling for intra-individual variability.

A similar pattern of results was seen for the cool detection threshold models (Table 3). The baseline model did 
fit significantly better than the null model, χ2(4) = 9.61, p = 0.057, Nagelkerke R2 = 0.065, although no predictors 
were significant. In the best-subset regression analysis, the baseline model plus PIQ was again the best model, 
BIC weight = 0.557, Evidence Ratio vs. baseline model = 353.3, and this model exhibited significantly better fit to 
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the data than the baseline model, χ2(1) = 15.87, p < 0.001, ∆R2 = 0.099. As with the warm detection threshold, 
cool detection threshold was predicted by sex and PIQ, with males and individuals with lower PIQ scores exhib-
iting higher cool detection thresholds. Adding GMD to the model improved fit further, χ2(1) = 61.34, p < 0.001, 
∆R2 = 0.293. Elevated GMD was associated with lower reported cool detection thresholds, and after adding GMD 
to the model, both sex and PIQ remained significant predictors of cool detection thresholds.

Proportional odds regression models were then fit to the data for children/adolescent, adult, and ASD groups 
separately to allow for the inclusion of group-specific predictors into the models. The results of the subgroup 
analyses were very similar to those in the full sample and thus will only be briefly summarized below (see 
Supplementary Tables S5–S11 for additional information). Of particular note, both best-subset regression mod-
els in the child subsample included SP Low Registration scores in the final model, in addition to PIQ. Higher 
parent-reported low registration (i.e., sensory hyporesponsiveness) on the SP was associated with higher warm 
thresholds and lower cold thresholds, but these relationships were not statistically significant in either model 
(ps > 0.195). As an additional finding of note, ASD diagnosis was found to be a significant predictor of warm 
detection threshold in the adult baseline model, adjusted odds ratio (aOR) = 2.92, 95% CI [1.07, 7.96], p = 0.036. 
However, this effect was not present after the addition of PIQ in the best-subset regression model, aOR = 2.64, 
95% CI [0.99, 7.04], p = 0.053. Furthermore, after the addition of GMD to the model, the effect of ASD diagnosis 
was attenuated further, aOR = 1.71, 95% CI [0.64, 4.61], p = 0.287.

Discussion
Employing a standard method-of-limits psychophysical protocol, we did not find significant differences between 
individuals with ASD and TD controls in warm or cool detection thresholds. Using equivalence testing proce-
dures, we were able to reject the hypothesis that group differences are present with an effect size of “medium” 
or larger (|δ| > 0.33). This study addresses limitations of prior work by recruiting larger samples with wide age 
ranges, accounting for confounding variables in our analyses, and employing robust statistical techniques appro-
priate for group comparison with highly skewed distributions and outliers. Although our findings conflict with 

Figure 1.  Comparison of thermal detection thresholds in the two diagnostic groups. (A) Warm trial median 
threshold values based on n = 10 trials per subject. (B) Cool trial median threshold values based on n = 10 trials 
per subject. Horizontal lines are not typical boxplot marks but instead represent the 0.1, 0.25, 0.5, 0.75, and 0.9 
Harrell-Davis quantiles of each group’s distribution. Differences in group quantiles (TD – ASD) are depicted 
as lines bridging the two groups. Outliers (defined by applying the boxplot rule to each group distribution) are 
represented as unshaded points.
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those of Duerden et al.18, they are consistent with other smaller studies that did not find altered thresholds in 
individuals with ASD20,23,24. However, in concordance with the Duerden study, we did find significant relation-
ships between IQ and thermal detection thresholds, with lower PIQ scores (but not VIQ scores) predicting higher 
detection thresholds. Notably, we report substantially lower correlations, indicating that the large correlations 
found by Duerden et al. may have been elevated due to their small sample (n = 17)57.

Proportional-odds regression analyses tended to agree with univariate group comparisons, such that ASD 
status was not significantly related to thermal detection thresholds, nor were the covariates of sex, age, and coun-
terbalance order (with the exception of the warm detection thresholds in the adult subsample). With regard to 
significant covariates, only performance IQ was consistently included in every model. The only other predictor 
to be included in the best-fitting models was caregiver-reported low registration on the sensory profile, a scale 
that ostensibly measures the behavioral hyporeactivity described in the DSM–5. As would be expected, higher 
reported hyporeactivity (represented by lower scores on the SP scale) was associated with higher warm and cool 
detection thresholds, although these effects were not statistically significant.

Figure 2.  Spearman rank correlations between thresholds and intra-individual variability (GMD). Scatterplot 
displaying the rank correlation between warm (A) and cool (B) detection threshold values and individual 
GMD values. Threshold and GMD values are based on n = 10 trials per modality per subject. Correlations are 
approximately equal when considering the ASD and TD groups separately.

Warm Step 1: Baseline Model

Wald χ2 P

Cool Step 1: Baseline Model

Wald χ2 PPredictor aOR (95% CI) Predictor aOR (95% CI)

Diagnosis (ASD) 1.60 (0.89, 2.86) 2.49 0.114 Diagnosis (ASD) 1.67 (0.93 2.98) 3.00 0.083

Sex (Male) 1.90 (0.98, 3.70) 3.60 0.058 Sex (Male) 1.71 (0.88, 3.31) 2.53 0.112

Age (Years) 1.00 (0.97, 1.02) 0.08 0.774 Age (Years) 0.98 (0.95, 1.01) 1.63 0.202

Counterbalance 1.26 (0.71, 2.24) 0.63 0.429 Counterbalance 1.35 (0.76, 2.40) 1.05 0.305

Model Fit χ2(4) = 7.58 p = 0.108 R2 = 0.052 Model Fit χ2(4) = 9.61 p = 0.0475* R2 = 0.065

Warm Step 2: Best-subset Regression Model Cool Step 2: Best-subset Regression Model

Predictor aOR (95% CI) Wald χ2 P Predictor aOR (95% CI) Wald χ2 P

Diagnosis (ASD) 1.43 (0.80, 2.57) 1.44 0.230 Diagnosis (ASD) 1.41 (0.78, 2.52) 1.30 0.254

Sex (Male) 2.41 (1.23, 4.74) 6.56 0.010* Sex (Male) 2.30 (1.17, 3.54) 5.84 0.016*
Age (Years) 1.00 (0.97, 1.03) <0.01 0.974 Age (Years) 0.98 (0.95, 1.01) 1.48 0.223

Counterbalance 1.29 (0.73, 2.29) 0.75 0.386 Counterbalance 1.38 (0.77, 2.46) 1.29 0.276

PIQ 0.97 (0.96, 0.99) 8.97 0.003* PIQ 0.96 (0.95, 0.98) 15.42 <0.001*
Model Fit χ2(5) = 16.64 p = 0.005* R2 = 0.111 Model Fit χ2(5) = 25.49 p<0.001* R2 = 0.164

Warm Step 3: Best-subset Model with GMD Cool Step 3: Best-subset Model with GMD

Predictor aOR (95% CI) Wald χ2 P Predictor aOR (95% CI) Wald χ2 P

Diagnosis (ASD) 1.10 (0.61, 1.99) 0.11 0.741 Diagnosis (ASD) 1.29 (0.72, 2.32) 0.75 0.385

Sex (Male) 2.23 (1.15, 4.35) 5.57 0.018* Sex (Male) 2.54 (1.30, 4.98) 7.38 0.007

Age (Years) 1.03 (1.00, 1.06) 4.68 0.030* Age (Years) 1.01 (0.98, 1.04) 0.33 0.568

Counterbalance 1.30 (0.73, 2.32) 0.78 0.377 Counterbalance 1.29 (0.73, 2.28) 0.76 0.384

PIQ 0.99 (0.97, 1.01) 1.46 0.227 PIQ 0.98 (0.96, 0.99) 7.37 0.007*

Warm GMD 11.88 (5.94, 
23.80) 48.82 <0.001* Cool GMD 5.79 (3.51, 9.54) 47.40 <0.001*

Model Fit χ2(6) = 73.53 p < 0.001* R2 = 0.404 Model Fit χ2(6) = 86.83 p < 0.001* R2 = 0.457

Table 3.  Regression models for warm and cool detection thresholds across the entire sample. Note. Significant 
predictors in each model are bolded; PIQ = Performance IQ; GMD = Gini’s Mean Difference. *p < 0.05.
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Once controlling for PIQ, sex also became a significant predictor in all threshold models, with males report-
ing higher warm detection thresholds and lower cool detection thresholds than females. Although there are 
challenges in interpretation of significant residualized predictors58, this effect of sex is consistent with previous 
research. Higher sensitivity to thermal stimulation in women was reported in 10 of the 24 psychophysical studies 
reviewed by Bakkers and colleagues16. Additionally, post-hoc comparisons between males and females in our 
sample (Supplementary Table S1) found males to have significantly higher PIQ scores than females, δ = 0.204, 
p = 0.046, pequiv = 0.099. Thus, it is likely that sampling bias introduced a large difference in PIQ between sexes, 
which confounded the sex effect on thresholds until PIQ was added to the model. Similarly, in the one model 
where ASD diagnosis emerged as a significant predictor (warm threshold model in adults), the effect was no 
longer significant after controlling for PIQ. The emergence and disappearance of effects between models with and 
without PIQ strongly suggests that intelligence can confound meaningful group differences in thermal thresholds 
as measured by the method of limits. Thus, it is important that future studies on this topic include measures of 
nonverbal IQ, particularly when evaluating threshold differences between diagnostic groups.

Of note, all best-subset regression models for warm and cool thresholds in this study contained identical 
predictor sets. This finding is likely driven by the large rank correlation between warm and cool detection thresh-
olds in our sample. While it was historically thought that warm and cool sensations are mediated by separate 
modality-specific sensory channels59, recent animal work suggests innocuous thermal stimuli are sensed by a 
common set of polymodal nerve fibers60. A shared afferent system could explain our strong rank correlations 
between the two modalities. It is also quite possible that this cross-modal covariance is due to the dependency 
of both threshold measures on reaction time. Further experiments will be necessary to determine the degree 
to which warm and cool thresholds covary when measured with both reaction time-dependent and reaction 
time-independent methods.

After selecting the best predictive models, the GMD (i.e., the average absolute difference in temperature 
between all pairs of trials) was added as an additional predictor representing the intra-individual variability of 
reported detection thresholds. In all models, GMD was a highly significant predictor, providing a large amount 
of explanatory power to all models (mean ∆R2 = 0.248, range [0.058, 0.321]). Across the models, increased GMD 
(corresponding to higher intra-individual variability, perhaps due to increased “perceptual noise”) was associated 
with higher threshold estimates. This result was supported by zero-order correlations between thresholds and 
corresponding GMD values, indicating that the effect of GMD on detection threshold was not due to the inclusion 
of other variables in the regression model. Additionally, analyses of individuals who were outliers in their respec-
tive GMD distributions suggested that those individuals had substantially higher thresholds than the remainder 
of the sample. These results indicate that increased variability between trials systematically biases threshold estimates 
away from the starting temperature. As the ASD group in our study exhibited significantly higher GMD values 
than the TD control group, it is quite possible that past reported group differences in thresholds, as well as the 
small and non-significant group differences in the current study, are a result of differences in measurement preci-
sion or within-subject perceptual variability rather than psychophysical threshold per se.

Although we have described a robust relationship between variability and detection threshold in this para-
digm, it is beyond the scope of this study to determine the underlying cause of this effect. These data, alongside 
the significant group differences in GMD, seem to support the hypothesis that sensory features of ASD are the 
result of more unreliable perception, as reflected in increased trial-to-trial variability41–44. Noisier perceptions in 
ASD could theoretically delay perceptual decision-making and increase detection thresholds to a small degree61. 
However, it also may be the case that the relationship between threshold and GMD is due to the confounding of 
threshold measurements by participants’ reaction times. Reaction time and its variability have a strong linear 
relationship62, and both of these variables show robust negative correlations with IQ63–66. Moreover, individuals 
with ASD have been found in numerous studies to have significantly larger variabilities in reaction times than 
controls, with elevated ADHD symptomology often found to mediate this effect67–70.

It is well-known that the method of limits algorithm for determining psychophysical thresholds is reaction 
time–dependent58, and several studies have concluded that certain effects of predictor variables on detection 
thresholds vary depending on whether the method was reaction time–dependent or not71,72 (though see also31,73). 
The influence of reaction times on thermal threshold estimates in ASD has yet to be formally investigated and 
remains a valuable avenue for future work in this area, particularly since all thermal threshold studies in this 
population to date have utilized reaction time-dependent methods. Additionally, given the known differences 
in reaction time between ASD and controls, we recommend that future psychophysical investigations in ASD 
employ reaction time–independent paradigms74–78 to avoid potential confounding.

As we were unable to detect meaningful differences between the ASD and TD groups in either warm or cool 
detection thresholds, these results do not support the hypothesis of thermal hypo-sensitivity in ASD. Thus, this 
study raises the question of whether clinical observations of apparent indifference to temperature in this popu-
lation are truly the result of a low-level sensory process. Even in the presence of equivalent perceptual thresh-
olds across groups, there exist myriad ways in which the representation of a suprathreshold stimulus could be 
altered in ASD compared to controls. To this effect, the most prominent theories of autistic perception (e.g., 
Excitation-Inhibition imbalance79, greater weighting of sensory information in a Bayesian context80–82, and higher 
levels of endogenous neural noise83) each include putative explanations for behavioral hypo-reactivity ASD, often 
without positing increased sensory thresholds (see Ward61 for a more complete discussion of these theories). One 
additional hypothesis based on recent animal work is that sensory hyporeactivity could result from functional 
alterations in specific neural ensembles that encode the unpleasantness of a given stimulus84. It is worth noting 
that a number of alternative explanations for the sensory features of ASD do not posit differences in low-level sen-
sory processes at all, instead hypothesizing that group differences occur in higher-level neurocognitive processes 
that modulate the cognitive appraisal of stimuli or subsequent behavioral reactions85–93. Given the diverse range 
of theories that attempt to explain some or all of the sensory features seen in ASD, future research should attempt 
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to distinguish between these competing explanations (e.g., contrasting group differences in low-level sensory pro-
cessing with group differences in top-down modulation of percepts). By better understanding the neurocognitive 
underpinnings of sensory features in ASD, this area of research can slowly shift away from descriptive science 
toward the design of targeted interventions for these often-impairing symptoms.

Strengths of the current study include its comparatively large sample, wide age range of participants, and the 
inclusion of clinically-relevant covariates. Robust statistical tests were used to compensate for inherently skewed 
and outlier-prone data, and equivalence testing procedures were able to provide evidence suggesting small to neg-
ligible differences in thresholds between diagnostic groups. However, this study also had a number of limitations. 
As mentioned above, we believe the thresholds estimated in this study may be related to reaction time, raising the 
possibility of a substantial confound. Without a measure of reaction time to include as a covariate or a reaction 
time–independent measure of thermal detection threshold, we were unable to assess the magnitude of the con-
found or determine whether threshold estimates differ between groups after controlling for reaction time. We also 
were not able to determine whether outliers in the thermal threshold distributions represent participants with 
truly elevated thresholds, as we would not be able to separate these individuals from those with typical thresholds 
but slower than average reaction times. If a subgroup with genuinely elevated thermal thresholds is found when 
using a reaction–time independent task, individuals in this group may possess clinically significant alterations in 
peripheral neurophysiology, warranting further study. Another limitation is the exclusion of individuals with IQ 
values in the intellectually disabled range in order to ensure compliance with the experimental tasks. While this 
subpopulation is often excluded from neuroscientific studies and underrepresented in ASD research at large94,95, 
individuals with low IQ are over-represented in many reports describing hyporeactivity to pain and temperature 
in ASD7,8. Lastly, this investigation was not adequately powered to rule out “small” population effect sizes (i.e., 
Cliff ’s delta value of 0.148, approximately equivalent to a Cohen’s d value of 0.2). However, such a small effect 
would not likely be sufficient to explain the large group differences in behavioral reactivity in ASD.

In conclusion, the findings of the present study appear to support the notion that the behavioral hyporeactiv-
ity to thermal stimuli often seen in ASD is not necessarily a reflection of elevated perceptual thresholds. Warm 
and cool detection thresholds, as measured in a reaction time-dependent manner, were most robustly related to 
performance IQ, sex, and intra-individual threshold variability. These results support the majority of previous 
investigations in this area, suggesting that group differences in detection thresholds, if they do exist, are likely not 
large enough to be clinically meaningful. Further research in this area is thus needed to better understand the 
sensory and non-sensory processes that contribute to the clinical phenotype of thermosensory hyporeactivity in 
individuals with ASD.

Methods
Participants.  Adults.  Thirty-two adult participants with ASD (21 male, median age 25.50 years) and 24 with 
typical development (TD) (14 male, median age 29.76 years) were included in the study (Table 1). All included 
participants were between the ages of 18–54 years and had full-scale IQ scores of at least 70 as measured by the 
Wechsler Abbreviated Scales of Intelligence—Second Edition (WASI-II)96. Full inclusion and exclusion criteria 
for participants in the study are detailed in the Supplementary Methods. Diagnoses of ASD were confirmed 
through research-reliable administrations of the Autism Diagnostic Observation Schedule—Second Edition 
(ADOS-2)33 by a licensed clinical psychologist specializing in the assessment of ASD. The definitive judgment of 
diagnostic status was made based on the clinical judgment of the licensed clinical psychologist, guided but not 
constrained by ADOS scores. Seven (22%) of the ASD adults were taking medications with psychiatric indica-
tions, with the most common being benzodiazepines (n = 3).

Children/Adolescents.  In total, 51 children and adolescents with ASD (41 male, median age 10.03 years) and 35 
children and adolescents with TD (26 male, mean age 9.21 years), ages 7–17 years, were included in the study. 
Inclusion criteria were similar to those for adults, with several exceptions (see Supplementary Methods for more 
detail). ASD diagnoses were confirmed using clinical judgment, ADOS-2 score, and in a subset of children, the 
Autism Diagnostic Interview-Revised (ADI-R)97. Nineteen of the ASD children (37%) were taking at least one 
psychiatric medication at the time of participation, with SSRIs (n = 9) and psychostimulants (n = 10) being the 
most common.

The current study was conducted in accordance with the Declaration of Helsinki, and all study procedures 
were approved by the institutional review board of Vanderbilt University. Participants were recruited from the 
community through fliers and university autism databases. Written informed consent was obtained from all 
participants 18 years of age or older. Participants under the age of 18 signed written assent forms, and written 
informed consent was obtained from each minor’s parent or legal guardian. Participants were compensated $20 
per hour for their time.

Measures.  Adult participants in both TD and ASD groups completed self-report questionnaires measur-
ing autistic traits (Social Responsiveness Scale–Second Edition: Adult Self-Report36) and sensory features 
(Adolescent/Adult Sensory Profile38,39). Primary caregivers of children in both groups completed analogous 
caregiver-report questionnaires measuring the same constructs (Social Responsiveness Scale–Second Edition: 
School Age Form37 and Sensory Profile40, respectively). Individuals of all ages in the ASD group also completed 
the ADOS-2, and ADOS-2 calibrated severity scores34–36 were used as a measure of ASD severity. Brief descrip-
tions of these measures are presented below, and interested readers are directed to the Supplementary Methods 
for more in-depth reviews of their psychometric properties and usage in the ASD population.

Social Responsiveness Scale–Second Edition.  The Social Responsiveness Scale–Second Edition (SRS-2)37 is a 
widely-used 65-item measure of quantitative autistic traits in both the general population and individuals with 
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ASD98. The form measures autistic traits in children 4–18 years of age via caregiver report or in adults 19 + via 
self or other report. Items are scored on a 4-point Likert scale, with 0 = not true, 1 = sometimes true, 2 = often true, 
and 3 = almost always true. Total scores on the SRS-2 range from 0–195, with higher scores indicating higher 
levels of autistic symptomatology. T-scores (M = 50, SD = 10) are also available for individuals based on sex and 
the specific form used. In the current study, SRS-2 T-Scores based on the total score and form completed were 
calculated for all participants and used as dimensional measures of autistic traits in further analyses. Additionally, 
scores on SRS-2 item 42 (Self-report: I am overly sensitive to certain sounds, textures, or smells; Caregiver-report: 
Seems overly sensitive to certain sounds, textures, or smells) were additionally included in analyses as a one-item 
measure of sensory hyperreactivity.

Sensory Profile.  The Sensory Profile (SP)40 is a 125-item caregiver questionnaire that assesses the frequency of 
a large number of behaviors theoretically related to the child’s sensory experiences. Items are scored on a 5-point 
Likert scale with lower scores indicating higher frequency of abnormal behavior. The questionnaire is based on 
the conceptual model of Winnie Dunn11,12, wherein the combination of sensory threshold (high or low) and 
behavioral response (passive or active) generates four theoretical sensory quadrants: low registration (low, pas-
sive), sensory seeking (low, active), sensory sensitivity (high, passive), and sensory avoiding (high, active). The SP 
generates scores for each of the four quadrants, as well as modality-specific scores. Caregivers of participants in 
our child/adolescent group filled out the SP, from which the four quadrant scores were extracted for use in anal-
yses. Of these, only the low Registration, sensory seeking and sensory sensitivity scales were utilized as potential 
predictors in regression models due to the large (Spearman) correlations between the sensory avoiding subscale 
and two of the other SP subscales in our sample (sensory sensitivity: rs = 0.765; low registration: Spearman’s 
rs = 0.860).

Adolescent/Adult Sensory Profile.  The Adolescent/Adult Sensory Profile (AASP)38,39 is a 60-item self-report 
questionnaire that assesses a range of attitudes and behaviors theoretically related to sensory processing in indi-
viduals 11 years and older. Like the SP, the AASP is organized into subscales based on the four quadrants of 
Dunn’s theoretical model11,12. Items are scored on a 5-point Likert scale from Almost Never to Almost Always, but 
unlike the caregiver SP, higher scores indicate higher frequency of abnormal behavior. Participants in the adult 
group completed the AASP, from which the four quadrant scores were extracted for analysis. Of these, only the 
low registration, sensory seeking and sensory sensitivity scales were utilized as potential predictors in regression 
models due to the large (Spearman) correlation between the sensory sensitivity and sensory avoiding subscales 
in our sample (rs = 0.831).

ADOS-2.  The Autism Diagnostic Observation Schedule–Second Edition (ADOS-2)34,99,100 is a structured 
clinician-administered assessment of autism features typically used to establish a diagnosis of ASD. Multiple 
modules are available for use with individuals of different ages and verbal abilities. Scores from ADOS-2 items are 
combined to form a total score, as well as subscale scores for the items reflecting the two DSM-congruent ASD 
domains of social affect (SA) and restricted/repetitive behaviors (RRB). Calibrated severity scores (CSS)35,36,100,101 
are also available, which allow ADOS-2 total and subscale scores from different modules to be compared on a 
common 1–10 metric that is minimally related to age and IQ. ASD participants in our sample were administered 
the ADOS-2 module 3 or 4, based on age and developmental level, by a licensed clinical psychologist trained to 
research reliability on the measure. Raw total scores were extracted and converted to overall CSS, which were 
then used as measures of ASD severity in further analyses. Because of recent findings questioning the reliability 
of ADOS-2 RRB scores102, we chose not to utilize the separate SA and RRB CSS as predictors in our regression 
models.

Thermal detection task.  The thermal detection task took place in a dedicated sensory testing room within 
Vanderbilt Psychiatric Hospital, which was maintained at a constant temperature. Thermal stimuli were deliv-
ered using a Peltier device with a 30 mm × 30 mm thermoconducting surface (TSA-II – NeuroSensory Analyzer, 
Medoc, Israel), which was attached to the right thenar palm of each participant using a Velcro strap. The ther-
mode was set to a baseline temperature of 32 °C, approximately the resting temperature of the skin. While in 
contact with the thermode, participants completed alternating blocks of trials assessing warm detection and cool 
detection thresholds. Using a modified Marstock method-of-limits protocol103, the temperature was increased 
or decreased at a rate of 1 °C/s until the participant indicated a sensation of warmth or cold via mouse click. 
Upper and lower temperature boundaries were set at 50° and 0 °C, respectively, to preclude any possibility of 
tissue damage. When the participant indicated a warm or cool sensation, the thermode temperature was captured 
and recorded using PC-based software, subsequently returning to baseline at a rate of 3.5 °C/s. The stimuli were 
applied in alternating blocks of five warm or five cool trials, with the block order counterbalanced across partici-
pants. Participants completed two blocks of each trial type for a total of 10 warm and 10 cool trials.

Warm and cool detection threshold values were quantified as the change in temperature from the baseline of 
32 °C required for a participant to indicate a sensation of warmth or cold. Threshold estimates for each participant 
were obtained by calculating the medians of the 10 trials using the Harrell-Davis quantile estimator104,105, which 
performs better than the traditional median estimator in small samples and skewed distributions106. Pooling 
of trials across blocks was supported by excellent intraclass correlations between Harrell-Davis median values 
derived from each block of trials, warm trials: ICC(3,2) = 0.92, 95% CI [0.88, 0.94], cool trials: ICC(3,2) = 0.93, 
95% CI [0.89, 0.95]. We also assessed intra-individual variation in threshold temperature across trials by calcu-
lating the Gini’s mean difference (GMD)42–44, a robust and highly efficient measure of relative dispersion equal to 
the mean of absolute differences between all pairs of values in the set. Higher GMD values indicate more variable 
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responses across the thermal detection trials, reflecting lower precision of the single-subject threshold estimates, 
a hypothesized correlate of increased perceptual noise41. The functions hdquantile and GiniMd in the Hmisc R 
package107 were used to compute the Harrell-Davis quantile and GMD values in our analyses.

Data analysis.  Group Comparisons.  Demographics, warm and cool detection thresholds, GMDs for each 
trial type, and scores on self-report measures were compared between the ASD and TD groups, with additional 
ASD-TD comparisons utilizing only the adult and child/adolescent subsamples. Categorical variables were com-
pared between groups using the Pearson chi-square test without continuity correction. As the majority of con-
tinuous variables violated the assumptions of t-tests, these variables were compared using Cliff ’s delta45–47,50,108, 
a robust, non-parametric effect-size statistic that can be used to test differences in distributions between groups. 
Delta estimates the probability that a randomly selected observation from one group is larger than a randomly 
selected observation from another group, minus the reverse probability. Values of δ range from −1 to 1, with a 
value of 0 indicating complete overlap of groups and values of −1 or 1 indicating all values in one group being 
larger than all values in the other. Under conditions of normality and homoskedasticity, Cliff ’s delta can be 
equated to Cohen’s d, with δ values of 0.148, 0.33, and 0.474 corresponding to the oft-cited small, medium, and 
large Cohen’s d benchmarks of 0.2, 0.5, and 0.8109.

In addition to standard null hypothesis significance testing with δ, equivalence testing was also conducted 
using the two one-sided tests (TOST) procedure48,49,110 using one-tailed Cliff ’s delta. A significant p value in the 
equivalence test allows us to draw the conclusion of statistical equivalence (i.e., the difference between groups 
is smaller than the smallest effect size of interest, and thus groups do not meaningfully differ). The smallest 
effect-size of interest was set to δ = ±0.33, because (a) this value constituted the boundary for a “medium” effect 
size109 and (b) a Monte Carlo power analysis (B = 10,000 samples) using a population δ of 0, the sample sizes of 
the ASD and TD groups (83 and 59, respectively), and homoskedastic normally distributed variables calculated 
substantial power (0.926) to detect equivalency at the 0.05 level. Although we chose to use these same bounds for 
equivalence tests in the child/adolescent and adult subsamples, the power to detect equivalence at these smaller 
sample sizes was substantially lower (0.378 and 0.689 for adults and children/adolescents, respectively). All anal-
yses were performed in the R statistical computing environment, with the orddom package111 used to compute 
Cliff ’s delta.

Correlation Analyses.  Zero-order correlations between psychophysical, demographic, and behavioral varia-
bles were examined using Spearman rank correlations (see Supplementary Tables 2–4 for full correlation matri-
ces). Correlation significance was tested with a Z-transformation using the standard error estimate proposed 
by Caruso & Cliff112,113. Equivalence tests (based on the TOST procedure) were also conducted using one-tailed 
Z-tests114 and equivalence bounds of rs =  ± 0.30 (a “medium” effect according to Cohen109). Power to detect 
equivalence at the rs =  ± 0.30 (assessed by Monte Carlo power analysis with B = 10,000 samples from an uncor-
related bivariate normal population) was 0.951 at N = 142 (equivalent to the full sample size), but substantially 
lower for analyses in subgroups (0.470, 0.752, and 0.732 for the ns of the adult, child/adolescent, and ASD sub-
samples). Comparisons between dependent and independent correlations were tested using the confidence inter-
val methods proposed by Zou115, implemented in the cocor R package116.

Regression Models.  In order to determine the effects of various predictor variables on thermal thresholds while 
controlling for covariates, we conducted a multiple regression analysis. However, because the thermal threshold 
variables were heavily skewed and multiple linear regression assumptions were violated, we chose to conduct 
a proportional-odds logistic regression using the cumulative probability model (CPM)51,52, which is appro-
priate for use with continuous outcomes. The CPM is a semi-parametric regression model that functions as a 
multi-predictor generalization of the Wilcoxon–Mann–Whitney test. Additional details on the CPM can be 
found in the Supplementary Methods.

Regression models were fit in three steps. Initially, a baseline model was fit, in which thermal detection 
threshold was regressed on diagnostic group (ASD vs. TD), age (in years), sex, and counterbalance order (warm 
block first vs. cool block first). Additional predictors (verbal IQ, performance IQ, SRS T-score, SRS sensory item 
score) were added in a second step by best-subset regression with the Bayesian Information Criterion (BIC)117,118. 
Additionally, BIC weights119 were used to quantify the probability that the chosen model was the best model, the 
superiority of the best-fitting model over the closest competitor and baseline models, and the probability that 
each predictor is included in the best model. In the third step, the corresponding warm or cool GMD, which we 
hypothesized to be strongly predictive of the detection threshold, was added to the regression model, allowing 
us to test which predictors remained significant after accounting for individual differences in measurement pre-
cision. Due to the presence of several group-specific predictor variables (e.g., SP scales for children, AASP scales 
for adults, ADOS-2 CSS and medication status for the ASD group), regression models were fit on three specific 
subsamples (children/adolescents only, adults only, ASD only) as well as the combined sample. All statistical anal-
yses were conducted in R, with the rms package120 used to fit the CPMs. Missing values were handled with 20-fold 
multiple imputation using the Hmisc package103,121.

Data Availability
The datasets used and/or analyzed during the current study are available from the corresponding author on rea-
sonable request.
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