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A Laboratory Evaluation of Partner Selection in Group Lending Models 
 

This study attempts to simulate the group loan model employed by many Microfinance Institutions 
(MFIs). Specifically, an experiment using Vanderbilt University undergraduates sought to 
determine if positive assortative matching (PAM) occurred in the context of a pool of risky and 
safe borrowers and a type of joint liability group loan. The simulation manipulated two 
independent variables in a 2x2 factorial design with four conditions. The first independent variable  
tested a fixed distribution of the group loan between partners versus a participant-selected 
distribution of the loan. The second independent variable tested learning across iterations of the 
lending simulation by manipulating the display of simulation results. Direct evidence from the 
simulation provides only limited support for the PAM outcome, though indirect evidence provides 
both further support and further qualifications. A 2x2 ANOVA reveals a main effect of the results 
display factor and an interaction between both factors. Overall, heavily qualified empirical support 
is found for PAM, and learning effects and other potential confounds seem to be present. 

 
 
 
Introduction 

Microfinance institutions (MFIs) have attracted a great deal of attention in part thanks to 

their mission of alleviating poverty but also because they often employ unconventional lending 

techniques in doing so. Though MFIs throughout the world employ a wide variety of lending 

mechanisms, group lending, in which two or more borrowers jointly take on liability for a loan, 

is perhaps the most well known of such mechanisms. Given that many poor people in developing 

countries lack access to capital, MFIs are often thought to be remedying a particular market 

failure by providing credit or financial services to those credit-worthy people who could gain 

from such opportunities but cannot acquire them.  

Many potential benefits to group lending or joint liability contracts have been 

hypothesized; there is widespread belief that microfinance programs, and group lending in 

particular, exhibit exceptional performance in terms of welfare improvement and loan repayment 

(see Morduch (1999) for a relevant discussion). Repayment rates for microfinance group lending 

programs are often as high as 98%. To explain such real-world results, the theoretical 

microfinance literature often points to the ability of group lending to overcome one or more of 
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the following problems growing out of an information asymmetry: adverse selection, moral 

hazard, and strategic default by successful borrowers (Guttman 2006). This theoretical literature, 

though, is highly divided in its discussion of just how group lending resolves such problems. To 

avoid a wide-ranging discussion of such posited explanations of group lending’s success, 

consider the categorization of group lending theories by Cassar et al. (2007) into three 

conceptual mechanisms for addressing information asymmetry: relational social capital, 

informational social capital, and the “pure” incentive effects of joint liability (p.F86). This paper 

is concerned primarily with this latter category and its ability to address the issue of adverse 

selection. More specifically, the experimental method discussed later is designed to test and 

extend the incentive structure discussed in a theoretical paper by Ghatak (1999). While the 

technical model constructed by Ghatak will be discussed and extended in more detail in a later 

section, here I will provide a brief overview of the paper’s assumptions and conclusions.  

The scenario developed by Ghatak (1999) provides a rationale for the efficiency of group 

lending mechanisms. He assumes at the outset that monitoring costs by a financial intermediary 

like an MFI are prohibitively high given a lack of information about local borrowers and limited 

ability to impose non-monetary default penalties. Moreover, the lending bank faces an 

information asymmetry. There are two types of borrowers, risky and safe, with lower and higher 

chances of successful projects, but despite knowing the overall distribution of borrowers, the 

bank lacks information regarding any given borrower’s type while the locals all know each 

other’s chance of success. Ghatak shows that this information asymmetry produces adverse 

selection akin to Akerlof’s lemon market, driving up the interest rate to the point where many 

safe borrowers exit the market and risky borrowers dominate the borrowing pool.  
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To compensate, Ghatak’s lender introduces a joint liability contract for two person 

groups. If her project succeeds, a borrower pays a fixed fee, plus a joint liability payment if her 

partner fails. Since the expected joint liability penalty of any borrower depends upon the 

probability of success of her partner, everyone prefers a safe partner. That partner, of course, 

would also prefer a safe borrower, and Ghatak shows that the joint liability contract creates a 

separating equilibrium in which borrowers only pair with another borrower of their same type, a 

phenomenon known as “positive assortative matching.” Thus, though the bank imposes a 

uniform interest rate, risky borrowing groups effectively face a higher borrowing cost due to a 

higher likelihood of paying the joint liability penalty. This outcome approximates the socially 

efficient situation in which the bank could discriminate between borrowers. Safe borrowers are 

attracted back into the market; the overall borrowing pool improves; and the bank charges a 

lower interest rate.  

In particular, I seek to investigate empirically several questions regarding the famed 

group lending mechanism in the context of Ghatak’s model. First, do joint liability provisions 

empirically induce positive assortative matching? Second, given group lending, what conditions 

regarding the contract or group composition are necessary for the program to be successful in 

some sense? This second question will be considered primarily in the context of different 

distributions of the group loan.  

 The theoretical literature on group lending beyond the examples previously discussed is 

well developed and ranges over a wide number of topics, but “empirical work testing the 

effect[s] of the specific instrument of joint liability…has lagged behind” (Ghatak 1999). This 

may be due to a reliance on econometric studies using large-scale data sets derived from direct 

field work (see, for example, Townsend & Ahlin (2007)). Given the rural and remote nature of 
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many microfinance programs, one might expect the flow of such data to be infrequent and lumpy, 

with the result that the theoretical literature moves forward far faster. Additionally, some 

variables that might play crucially important roles in theoretical models (for example, the 

riskiness of a certain borrower’s investment) are virtually unobservable by researchers hoping to 

collect data in the field (Abbink et al. 2006). 

 In contrast to the type of studies exemplified by Townsend and Ahlin, other researchers 

have taken to using experiments or microfinance-related games to test theoretical hypotheses. 

For example, Irlenbush et al. (2006) used a laboratory experiment to test the effects of the level 

of the interest rate on repayment and group dynamics under a joint liability contract. Similarly, 

Karlan (2005) conducted an experiment (albeit with Peruvian microcredit borrowers) to test the 

relationship between interpersonal trust and group lending success. Abbink et al. (2006) even use 

an experiment with undergraduate students to examine dynamic incentives and group size in 

microfinance. 

 This thesis will adopt the empirical methodology of these latter researchers and conduct a 

microfinance-related experiment using lending games and undergraduate participants. The 

experimental approach, of course, cannot simulate cultural or other conditions that may differ 

drastically in field work, but such non-economic differences may violate the assumptions of 

models based upon rational choice theory anyway. A laboratory experiment does, however, 

provide a much more practical means of testing the sorts of hypotheses found in Ghatak’s model, 

allows the experimenter to control and observe certain key variables, and provides some novel 

data where many field data sets may already be thoroughly hashed and rehashed. Laboratory 

experimentation is particularly appropriate for several of the otherwise hard-to-observe variables 

featured in the Ghatak model.  
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 Motivated by the questions concerning positive assortative matching above, the 

experiment reported here employed a 2x2 factorial design and hence four experimental 

conditions. The first independent variable, distribution of the total group loan, seeks to test an 

extension of the Ghatak model to certain types of side payments discussed in more detail in the 

next section; the manipulation of the second independent variable should provide evidence for or 

against learning across the course of the experiment as a way to eliminate the potentially 

confounding influence of participant misunderstandings or mistakes in a one-shot experiment. 

 This paper will proceed through four further sections. The second section will elaborate 

on the Ghatak model of joint liability and will adapt the model to the particular design of the 

experiment. This section thus provides the hypotheses tested in the experiment. The third section 

will discuss the experimental design in detail.  The fourth section will develop a game theoretic 

model of the experimental design. The fifth section presents and analyzes the results of the 

experiment. The sixth section provides a discussion of the results and concludes the paper. 

Ultimately, the results of the experiment provide some support for the Ghatak model, though 

such support is rather weak and points to the importance of considerations external to the model. 

The qualifications of the evidence in favor of positive assortative matching may provide fruitful 

guides for further empirical work.  

Adaptation of the Ghatak Model 

 The theory of joint liability presented in the Ghatak paper requires several key 

assumptions concerning the economic environment. There are two types of borrowing 

entrepreneurs in the local area distinguished by the probability of success on their investment 

projects. The first type of borrower, “safe” borrowers, have a probability ps of succeeding in their 

individual projects where 0 < ps < 1. The second type of borrower, “risky” borrowers, have a 
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probability pr of project success where 0 < pr < ps < 1. All borrowers are risk neutral and require 

minimum inputs of capital and inputs of labor for each investment project.  Each borrower 

supplies the amount of labor needed for the project but has zero wealth. Consequently, borrowers 

require a loan to secure the needed capital input to their projects but cannot supply collateral.  

 The outcome of a borrower’s investment project is either success or failure. The outcome 

of any given borrower’s project is not influenced by the likelihood or outcome of any other 

borrower’s project. In the context of this experiment, a successful investment project will 

produce a return R(p) where R(p) is a positive function of a borrower’s probability of success. If 

a project is unsuccessful, the borrower enjoys no return on the investment, and R(p) = 0. 

Moreover, the returns to the two types of projects are such that the expected returns for safe and 

risky borrowers all investing a given amount are equivalent, or psR(ps) = prR(pr).  

 A significant information asymmetry exists between borrowers and the lender. The local 

pool of prospective entrepreneurs is evenly divided between safe and risky types. All borrowers 

in the area know both the distribution of borrowers and the particular type of each individual 

borrower. While the lending institution entering the local area is aware of the distribution of local 

borrowers, it cannot identify the probability of success of any given borrower. Additionally, the 

lender can only observe the outcome of a borrower’s investment project (and do so with full 

certainty at no cost) but cannot observe the returns to the investment. Hence, the contract used by 

the lender takes the form of debt rather than equity (Diamond 1984). Enforcement of a contract 

is costless and guaranteed, eliminating the prospect of strategic default.  

 The special sort of debt contract modeled by Ghatak, a joint liability group loan, is an 

agreement by the lender to provide a fixed and uniform amount of capital L to a group comprised 

of two borrowers. If the project of one of these borrowers is unsuccessful, she defaults on the 
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loan and owes the bank nothing due to a limited-liability constraint. If her project is successful, 

however, she owes the bank a standard interest rate r. The contract also contains a joint liability 

payment c that a successful borrower will pay if her partner’s project is unsuccessful and her 

partner is forced to default.   

 Thus the expected utility of a borrower with probability of success p pairing with a 

partner with probability of success p’ is modeled by the equation 

EUp , p’ (r, c) = pR(p) – rp – cp(1 – p’) 

From this equation, Ghatak derives his first lemma (Lemma #1): 

A borrower of any type prefers a safer partner, but the safer the borrower herself, the 
more she values a safer partner. 

 
The proof of Lemma #1 is fairly straightforward. Ceteris paribus, the net gain to a borrower 

with probability p from having a safe partner with probability of success ps compared to having a 

risky partner with probability of success pr reduces to  

 
EUp , ps   –  EUp , pr = cp(ps – pr) 

 
As a result, the borrower with probability p should be willing to pay up to cp(ps – pr) for 

the opportunity to partner with a borrower of probability ps over a partner of probability pr. 

Clearly, then, a borrower whose probability p  = ps will be willing to pay more for a safer partner 

than a borrower whose probability pr < ps .  

Ghatak claims that as a result of Lemma 1 safe borrowers will outbid risky borrowers for 

the opportunity to partner with other safe borrowers. What medium of exchange the borrowers 

(who have zero wealth at the outset) use to make “bids” is somewhat unclear in the Ghatak paper. 

Ghatak has a footnote discussing “side payments” that borrowers might make to one another. 

Here is the footnote (footnote 13): 
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Since we assume borrowers have no wealth that can be used as collateral, when we talk 
about side payments among borrowers, we mean that these transfers take forms that are 
not feasible with the bank. For example, borrowers within a social network can make 
transfers to each other in ways that are not possible with an outsider (namely, the bank), 
such as providing free labor services, or writing contracts based on the output (as 
opposed to outcome) of their projects. 

 
Incorporating the first type of side payment (non-monetary incentives) into an experiment 

raises theoretical and experimental design issues that could be avoided with other approaches to 

willingness to pay. The second type of side payment mentioned in the footnote essentially 

amounts to offering equity in one’s investment project. Since all borrowers have identical 

expected returns on their investments, a given share of equity in one type of project should have 

the same expected return as a similar share of equity in the other type of project. However, 

equity contracts between local borrowers raise the question of contract enforcement after the 

realization of the stochastic investment process. Enforcement of such borrower-borrower 

contracts is not explicitly modeled in the Ghatak paper. Moreover, there might be simpler, more 

logistically efficient methods of incorporating side payments into an experimental design. 

This experiment takes a slightly different approach to side payments and willingness to 

pay by allowing borrowers to divide ex ante the total amount L of the group loan provided by the 

lender before the realization of investment outcomes. That is, a borrower can outbid another 

borrower for a certain loan partner by offering the target partner a greater share of the group loan 

to be invested in the target’s project.  

The experimental design breaks down the return variable R(p) in the Ghatak model into 

two components. The first component B(p) multiplies the amount invested by the borrower by a 

positive factor if the borrower is successful. If the borrower is unsuccessful, B(p) = 0. Again, to 
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equalize expected returns for borrower types, psB(ps) = prB(pr). The second component M is the 

amount of L that the borrower has agreed to receive from the division of the group loan. 

Since the posted offer system (discussed below) used in the experimental design involves 

proposer and responder aspects of a participant’s role in addition to the safe/risky borrower 

distinction, proposers in the experimental design can “bid” for the opportunity to pair with a 

given responder by offering a larger share M to the responder. Thus, willingness to pay should be 

expressed in the experimental design by the variable M.  

Ghatak’s first lemma should still hold in this particular experiment. It has already been 

established above that, given fixed and equal divisions of the group loan (an implicit assumption 

in Ghatak’s paper), safer proposers should value pairing with safe responders more than risky 

proposers. Since all borrowers have the same expected return on investment, the expected 

decrease in utility from offering a certain M to a responder is identical for both risky and safe 

proposers. Thus, risky proposers have no incentive to offer a larger M to safe proposers than that 

offered by safe proposers. Consequently, safe proposers should outbid risky proposers for the 

opportunity to pair with safe responders, and the positive assortative matching result derived in 

Ghatak should still hold. Ultimately, then, the experiment will test whether such matching does 

occur.  

Rewriting the expected utility functions for this specific experiment requires two 

equations, one for proposers and one for responders in the posted offer system. If M denotes the 

amount of the loan L that a proposer is willing to provide to a responder, then the expected utility 

for a proposer with probability p pairing with a responder with probability p’ can be written as  

EUp , p’ = pB(p)[L – M] – rp – cp(1 – p’) 

while the expected utility for the responder can be written as  
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EUp’ , p  = p’B(p’)[M] – rp’ – cp’(1 – p) . 

Experimental Method 

Factorial Design 

 The experiment to test positive assortative matching utilizes a mixed 2x2 factorial design. 

The first, within-subjects factor is the division of the group loan (analogous to the M variable 

discussed in the model) which takes on two levels. In the first level, the division of the group 

loan is fixed exogenously at a 50-50 split between partners. That is, one partner receives half of 

the loan and the other partner receives the other half of the loan. In the second level, the 

participants may determine the division of the loan using the posted offer system. Here, 

participants in the proposer role can set a value to M in their offer to the pool of responders. Both 

levels of this factor are experienced by all participants. Boundary constraints are imposed on the 

possible values of M proposed so that all parties at least break even if successful and forced to 

repay the bank.  

This offer factor serves two purposes in the experimental design. First, taking the broad 

theoretical categories of Cassar et al., the offer factor can help illuminate whether “pure” 

incentive effects, in this case willingness to pay as expressed by M,  or more “social” 

considerations not as well considered in rational choice theory motivate participant decisions. 

My particular concern derives from a potential confound related to categorizing participants into 

distinct borrower types. The mere act of dividing participants into distinct groups creates the 

potential for in-group bias in partner selection,1 but it may be possible to discern the importance 

of willingness to pay if participants demonstrate positive assortative matching when they can 

                                                 
1 Work by Tajfel (1982) and Tajfel & Billig (1974) on minimal groups suggests that even the act of dividing  
participants into random or arbitrary groups will induce participants to strongly favor the members of their own 
group over those in the out-group. Other work (cf. Hogg & Abrams 2001) has found that participants will even 
forego monetary gain to deprive out-group members of higher monetary gains.  
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negotiate the division of the loan but not when they are selecting partners only by viewing a 

borrower’s type.  Secondly, manipulation of the offer variable provides a way to test the 

particular sort of side payment mechanism discussed in the model section. If the Ghatak paper is 

correct that safe borrowers are willing to pay more for safe partners, this hypothesis should be 

supported in the experimental outcome and can be evaluated against a control condition in which 

participants do not explicitly produce bids or other expressions of willingness to pay.  

The second, between-subjects factor is the display of investment project results for a 

participant and her chosen partner and takes on the self-explanatory levels of “shown” and 

“hidden.” This factor is manipulated to help determine whether learning effects are present 

across the periods of the simulation. Participants may be influenced as much by the ex post 

outcomes of their respective projects in the last period as by the ex ante probabilities of the next 

period. For example, a participant who initially adopts the strategy of homogeneous matching 

predicted by Ghatak may become discouraged and switch strategies following a series of 

unlucky outcomes for his project or that of his partner. For this between-subjects factor, half of 

the participants experience the “shown” level while the other half of the participant pool 

experiences the “hidden” level.  

This factor is not designed to detect all instances of learning effects, and some such 

effects are still possible. Due to logistical concerns, only partial counterbalancing (with respect 

to participant roles) was employed. There are roughly 30 iterations of the lending simulation in 

each condition, and, though the experiment cannot explicitly identify sources of learning outside 

of the display of project results, if 30 iterations are not enough to produce sustained convergence 

towards positive assortative matching, the results would raise questions about the real-world 

applicability of the Ghatak model.  
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Logistics & Materials 

 Twenty-four participants were recruited for the experiment, which took place in a 

Vanderbilt University computer lab and lasted approximately an hour and a half. Participants 

experienced the experimental conditions through the use of the computer program Z-tree 

(Fischbacher 2007). Each participant was identified by the identification number of the computer 

at which he or she sat. Initially, participants were randomly assigned to a borrower type, role 

within the posted offer system, and between-subjects (results display variable level) based on this 

identification number.  

 Participants carried out a group lending simulation using the Z-tree software. For each 

experimental condition, participants completed two Z-tree treatments (a “treatment” in Z-tree is 

the completion of a set number of iterations or periods of a program). In the first treatment, each 

participant was assigned by identification number to one of four roles: safe proposer, risky 

proposer, safe responder, or risky responder. “Safe” roles correspond to Ghatak’s safer 

borrowers and have a higher probability of success on their investment projects; “risky” roles 

have a lower probability of success but equal expected return on their projects. Proposer roles 

created offers for division of the loan in the posted offer system of the program, while responders 

chose among the listed proposals displayed by borrower type and the M variable (amount of loan 

offered to the responder). A responder accepting another participant’s proposal would take on 

that proposer as a partner in a two-person group loan. For participants in the “results shown” 

manipulation, the outcomes and profits of the relevant projects were displayed after the 

completion of the partner-matching stage. Participants in the “results hidden” manipulation were 

directed to a brief waiting screen after all proposals and acceptance of proposals had been made 

through the posted offer (though of course the program still calculated the stochastic outcomes, 
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repayments, and profits). This first lending simulation was repeated for 15 periods in which new 

proposals and groups were formed.  

 In each condition, participants completed a second treatment in which each participant 

switched to the opposite borrower type and role within the posted offer system. For instance, safe 

proposers became risky responders, while risky proposers became safe responders. In this 

treatment, participants completed another 15 periods of the lending simulation. Thus, participants 

experienced some degree of counterbalancing with respect to borrower type and role.  

 The lending simulation proceeded sequentially through several stages. When the Z-tree 

treatment began, participants initially saw an introduction screen with written instructions for the 

simulation. These instructions included information on borrower types, probabilities of success, 

the loan contract, the matching system, the investment projects, and identification of borrower 

types by computer ID number. Once a participant had read and understood the instructions, he 

would click a button to proceed to the next stage. This following stage displayed the participant’s 

own identification number as well as his own borrower type (denoted by either a “1” for safe or a 

“2” for risky). After taking in this stage, the participant would click a button to continue to 

matching process. If a participant was assigned to the safe proposer role, he would enter the safe 

proposer stage where he would be asked to enter the amount of the group loan (out of a total of 

200 “points”) he would be willing to offer to potential partners. If a participant was playing as a 

risky proposer for the treatment, he would proceed instead to the risky proposer stage where he 

would face the same command. Proposers could type a numeric amount into an input box and 

confirm their proposal by pushing a button. Participants were given 45 seconds to complete this 

proposal stage. For the fixed share offer conditions, all proposers were asked to enter “100” into 

the input box and could not confirm a proposal of a value other than 100 (otherwise an error 
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message would be displayed). For the variable share offer conditions, minimum and maximum 

bid constraints were imposed so that no player would be unable to repay in full interest and the 

liability penalty to the bank (i.e. receive such a low share of the loan that even a successful 

project would generate losses).  

 During this proposal stage, participants playing as either safe or risky responders would 

view a screen with a short message asking them to please wait for the next stage. After all 

proposers had confirmed their proposals, the responder stage of the posted offer system would 

begin. Participants assigned to safe responder roles would enter this stage first under the intuition 

in the Ghatak paper that all proposers are really bidding for the preferred safe partners. These 

safe responders were given a 30 second period to select a proposal before participants playing as 

risky responders were allowed to enter the stage and select a proposal to accept. A responder in 

this stage would see a list of potential contracts to accept characterized by two pieces of 

information, each proposer’s identification number and the amount of the 200-point loan offered 

to the responders by each proposer. Responders could infer each proposer’s borrower type by 

whether the identification number of the proposer was even or odd. Responders in the stage 

would select a proposer as a partner by clicking on a proposed contract in the list and confirming 

acceptance via a button. Accepting would pair the two players in a joint liability contract for the 

remaining stages. Because there was a one-to-one correspondence between all four roles in the 

experiment, every participant would have a partner at the end of the matching process and could 

not choose to continue without a partner.  

 The next stages displayed the results of the investment process. For participants in the 

“results shown” conditions, the first of these stages would display the outcome of their respective 

investment projects. Project outcomes were determined by sampling a normal random variable 



Shaner 15 

with success cut-offs for safe and risky borrower types corresponding to their respective 

probabilities of success. That is, a borrower would need a realization of the random variable 

above a certain number to achieve “success” in an investment project. The screen would either 

display a message of success in the investment project or a message of failure in the investment 

project. The screen would also display the return on investment and interest owed to the bank. 

Both of these values were zero for failed projects. The next stage showed the results of the 

investment project of a participant’s partner. The random variable realizations for this stage were 

not actually those of the partner selected in the posted offer system but did simulate an 

independent realization of the random variable using the probability of success of the borrower 

type of the partner selected. In other words, if participant #1 had selected participant #2 as a 

partner, this stage for participant #1 would not necessarily show the same outcome for the 

“partner’s investment project” as that displayed in the previous stage on participant #2’s 

computer, but the outcome would be based on the probability of success associated with 

participant #2’s borrower type. This stage also displayed the joint liability penalty amount (if 

any) owed to the bank, the participant’s total repayment, and the participant’s total profit for the 

period. A period, again, consisted of one iteration of the lending simulation. Participants in the 

“results hidden” condition would only see a waiting screen displayed while those in the “results 

shown” condition saw their results. After all participants had completed the results stage, the 

simulation would begin again in the next period with the instructions screen until 15 periods had 

been completed for each treatment. Short breaks were provided between each treatment.  

 After being consented by the Principal Investigator, each participant was guaranteed a fee 

of $10 in compensation for his or her time. As an incentive to maximize one’s points in the 

simulation, a lottery system was also added where three participants were randomly drawn as 



Shaner 16 

winners at the end of the experiment. The lottery winners split a fixed cash prize based on the 

following process: a winner received the same proportion of the cash prize as the ratio of his 

total accumulated profit during the experiment to the total accumulated profit during the 

experiment of all three winners.  

Game Theoretic Model of the Experimental Design 

 In the Ghatak paper, the timing and sequencing of actions by different agents is not 

explicitly considered in the description of an equilibrium. However, the experiment design and 

technology clearly add issues of sequential moves and strategic choices to the process of 

choosing partners for group loans. It is necessary therefore to further supplement the theory of 

the matching process developed earlier to account for the considerations imposed by the details 

of the experimental procedure.  

 A game-theoretic pay-off table can be a useful framework for examining how participants 

would be expected to make strategic choices in the lending simulation. It was suggested earlier 

that safe responders will essentially dictate whether positive assortative matching occurs since 

they should be the implicit targets of all proposals. Or, in a more flexible setting outside the 

experimentally-constrained posted offer system, proposers might be expected to make proposals 

only to safe responders and not more general posted offers capable of being accepted by anyone. 

Thus, safe responders would have the first pick of proposer partners, leaving the risky responders 

with whichever proposers were not chosen, and would presumably pick the proposal offering the 

highest expected utility. All proposers would strictly prefer having a safe responder accept their 

proposal of a given amount, so the key question then concerns what strategies would safe and 

risky proposers adopt in the formulation of their proposals in the posted offer system.  
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 A continuum of proposals is technically possible, but strategies at the extremes become 

the major options for a player. Consider a risky proposer. He knows that a safe proposer is 

willing to pay more to a safe responder than he himself is willing to pay. Thus, the risky proposer 

knows that the safe proposer can and will bid $1 more for the safe responder than the maximum 

he himself is willing to bid, denoted here as br. In fact, at any bid below br the risky proposer can 

be similarly outbid, so he will consider the minimum possible bid, denoted br .This minimum bid 

might give up on trying to secure a safe partner but allows the proposer to keep more of the 

group loan to invest in his own project. If the risky proposer keeps moving his bid lower towards 

the minimum br, eventually the safe proposer will be able to achieve a winning bid by bidding 

only just higher than br. However, bidding this low risks the possibility that the risky proposer 

will raise the bid back towards his maximum willingness to pay, at which point the safe proposer 

will bid just more than br. The safe proposer should therefore expect to bid near the minimum br 

or near the maximum br. 

 We can thus construct the pay-off matrix for both proposer types as shown in Table 1. All 

pay-offs listed in Table 1 are the net increase or decrease in expected utility relative to making a 

proposal of the br and ending up with a risky partner from that proposal. The top line in each cell 

represents the pay-off for the safe proposer and the bottom line the pay-off for the risky proposer.  
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Table 1: Proposer Pay-off Matrix 

(Relative to a minimum bid of br) 
 

Risky Proposer  

Max br Min br 

Max br +cps(ps - pr) - (br - br)psB(ps), 
 - (br - br)prB(pr) 

+cps(ps - pr) - (br - br)psB(ps), 
0 

 
Safe 

Proposer Min br 0, 
+cpr(ps - pr) - (br - br)prB(pr) 

+cps(ps - pr), 
0 

 
 Consider the decision of a safe proposer facing a proposal of br by a risky proposer. If the 

safe proposer makes a proposal of br (as in the bottom left cell), he could potentially improve his 

outcome by raising his own proposal to br. If the safe proposer does so, though, the risky 

proposer could be better off by lowering his own bid to br; consequently, the risky proposer 

should expect that his maximum possible bid of br will be unsuccessful and achieve the outcome 

of the top left cell. When the safe proposer is facing a proposal of br by the risky proposer, the 

safe proposer is assured of having his proposal accepted by the safe responder and hence will 

enjoy some positive utility gain. However, he can further supplement this gain by lowering his 

own bid to the minimum br and then invest more of the group loan in his own project. Thus, the 

ultimate outcome predicted by Table 1 is that of the bottom right cell, where the risky proposer 

makes the minimum proposal br and the safe proposer makes a proposal just above br. 

Data & Results 

Data  

The Z-tree program produces a large array of data from each treatment, most of which 

relates to the operation of the simulation. For example, Z-tree will include the final profit per 

participant, each participant’s profit per round, time taken by a participant to create or accept a 
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proposal, and the parties to and terms of a contract dividing the group loan. To test the major 

hypothesis of the Ghatak model, that joint liability contracts will induce positive assortative 

matching, I primarily examine only the information produced in Z-tree’s Contracts table. The 

raw data on each contract includes the Subject ID number for both the “buyer” and “seller” side 

of the posted offer system. I encoded each contract as a binomial outcome for positive assortative 

matching. “Success” represented a contract with two borrowers of the same type; “failure” 

represented a contract with heterogeneous borrower types.  

Since there are 12 participants in each treatment and each contract is between a pair of 

participants, there are 6 contracts per period. There are 15 periods per Z-tree treatment, and 2 

treatments per experimental condition. With four experimental conditions, there are 720 

(6x15x2x4) contracts in the entire experiment and 180 contracts in each condition. In Figure 1, I 

provide a graph of the proportions data for each experimental condition. The analysis of the data 

reported below was carried out using the statistical package Stata®. 

Figure 1: Proportion Data By Condition
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Confidence Intervals 

 The fundamental prediction of the Ghatak model is that borrowers will self-sort into 

homogeneous borrowing groups. The immediate intuition for a statistical test, then, is to use 
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binomial proportions in standard hypothesis testing related to the probability of homogenous 

pairing. However, the Ghatak model does not explicitly incorporate unobservable sources of 

variation across individuals, and, as an example of rational choice theory, should predict that the 

prevailing strategy in this game (positive assortative matching) should occur in all instances. 

Thus, if one were to draw from the Ghatak paper an implicit null hypothesis for the parameter p 

expressing the probability of homogeneous matching in the population, one would be forced to 

use a null hypothesis Ho: p = 1. Obviously, a value at the boundary for the null hypothesis 

implies zero variance for the binomial random variable and makes hypothesis testing problematic. 

If there is any variation across individuals at all (or even any real source of stochastic variation), 

an experimenter would only need to keep sampling individuals until he found one instance of 

heterogeneous matching in order to reject the null.  

 Due to the infeasibility of hypothesis testing in this situation, I attempt to investigate 

positive assortative matching in the experiment using the alternative approach of confidence 

intervals. While confidence intervals do not provide the sharp distinction of either rejecting or 

failing to reject the null found in hypothesis testing, we can nevertheless glean some information 

regarding the proportion of positive assortative matching and how it compares to the Ghatak 

model. I thus examine positive assortative matching in each experimental condition using 

confidence intervals.  

Even with confidence intervals, though, the Ghatak model presents a significant obstacle 

to the standard approach. Given that the model implicitly predicts that all contracts will exhibit 

positive assortative matching, i.e. the proportion of positive assortative matching will be equal to 

one, it is plausible to believe a priori that the observed proportion of positive assortative 

matching in the experiment will approach the boundary of one. Approaching the boundary, 
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though, creates serious problems for the use of the standard Wald confidence interval. The 

standard rule of thumb is that the normal approximation for the binomial holds only if min{ np, 

n(1-p) } ≥ 5, a clear problem for p = 1 (Olivier & May 2007). The Wald interval, then, is valid 

only for p over the interval (0,1). Moreover, Brown et al. (2001) demonstrate that the coverage 

properties of the Wald interval can vary wildly and erratically, especially for p near but not on 

the boundary. Brown et al. also show that the interval’s coverage varies unpredictably more 

generally for “unlucky” (i.e. unpredictable) pairs of parameters. Considering the litany of other 

research pointing to potential problems with the Wald interval in binomial proportions near the 

boundary (cf. Agresti & Coull 1998 and Hanley & Lippman-Hand 1983), the use of the Wald 

interval for the data in this experiment does not seem appropriate a priori.  

The argument could be made, after seeing the raw proportions data above in Figure 1, 

that concerns over the suitability of the Wald interval can be dismissed since the observed 

proportions are not particularly close to the boundary. However, proper experimental and 

analytical procedure dictates that the tests of the data be decided a priori; in the words of Olivier 

and May, “the data should not dictate the method of interval construction” (p.179). Consequently, 

the decision was made beforehand to use an alternative to the standard Wald interval. 

Such an alternative discussed by Brown et al., Agresti and Coull, and Olivier and May is 

the interval developed by Wilson (Wilson 1927).  Though two-sided, near the boundary the 

Wilson interval functions as a one-sided interval with a limit at the boundary, allowing the 

Wilson interval to handle extreme values of the parameter p without the problems of the Wald 

interval. Farther away from the boundary, the Wilson interval converges to the Wald interval as 

sample size increases, so the Wilson interval is not inappropriate a priori if we do not expect the 
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observed proportions to fall away far from 0 or 1 (Olivier and May 2007). I therefore report the 

Wilson 95% confidence intervals for each experimental condition in Table 2.  

I have chosen here to examine the proportion of positive assortative matching for each 

experimental condition. Obviously, these proportions both pool the data in each condition across 

participants and periods and also disaggregate the data for the entire experiment. Pooling the data 

across periods raises the issue of learning effects discussed in the section on experimental design; 

however, the design of the experiment is constructed to allow for some insight into learning 

effects from the analysis of variance conducted below. The combination of the results of the 

confidence intervals and the ANOVA should thus help direct our intuitions towards what is 

happening with participant decisions across periods. Moreover, even building a case that positive 

assortative matching does or does not occur in each experimental condition as a whole should 

shed some light on the empirical validity of the Ghatak thesis. On the other hand, one might 

claim that the existence of positive assortative matching should be examined for the experiment 

as a whole across conditions. Since there is reason to believe that the manipulation of the 

independent variables in the experimental design, though, might produce significantly different 

outcomes in the response variable, aggregating the data across the entire experiment would quite 

clearly lose information related to the specific conditions under which the positive assortative 

matching hypothesis holds.  
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Table 2: Wilson 95% Confidence Intervals 

(Proportion of Positive Assortative Matching) 
 

Condition       Obs  Mean  Std. Err.   Wilson Interval 
 

With Results, Fixed Offer       180  .4556  .0371   .3845  .5285 

With Results, Var. Offer       180  .5556  .0370   .4826  .6262 

No Results, Fixed Offer       180  .6667  .0351   .5950  .7314 

No Results, Var. Offer       180  .5889  .0367   .5159  .6582 

  

 As shown in Table 2, the first two conditions (in which the results of a participant’s and 

her partner’s investment project are displayed) produce confidence intervals that contain p = .5, 

which is the proportion that would be expected if matching occurred randomly rather than 

systematically. Not only are the results of these two conditions indistinct from the random case, 

but neither condition comes close to the upper boundary of 1 for p, implying that random 

matching seems to prevail over systematic positive assortative matching in both conditions. In 

contrast, the two conditions in which project results are not displayed produce intervals that fall 

between (and do not include) p = .5 and p = 1. In both such conditions, positive assortative 

matching is more likely than simple chance but does not occur at nearly the boundary frequency 

predicted in Ghatak. Thus, these last two conditions seem to provide qualified support for the 

Ghatak hypothesis. In no case does heterogeneous matching seem to be the most likely strategy 

adopted by participants.  

Matching – Analysis of Variance 

 I next attempt to determine how the experimental manipulation of the independent 

variables affects the likelihood of positive assortative matching. Again, the experimental design 

manipulates both the display of project results and the ability of participants to vary their 

proposed offers; the former variable is included to test the presence of learning effects while the 
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latter is meant to shed light on the relative importance of “pure” incentive effects as embodied in 

differences in monetary proposals. Thus, determining whether significant differences, in terms of 

borrower matching, exist across the manipulations of each of these independent variables helps 

impart the importance of potentially confounding variables like learning effects and social 

factors.  

To determine if such differences exist, I use the analysis of variance (ANOVA) technique 

for a mixed factorial design to evaluate the presence of main effects of the independent variables 

as well as possible interaction effects. During the discussion of the ANOVA, I refer to the 

between-subjects variable (whether or not project results were shown) as Showresults and the 

within-subjects variable (whether the division of the group loan was fixed or participant-chosen) 

as Chooseoffer. The interaction of the two main variables is labeled Showresults*Chooseoffer. 

Both variables, again, have two levels.  

 The reader may have noticed that a binomial dependent variable might violate one or 

more of the assumptions of ANOVA. The analysis of variance assumes homogeneity of variance 

across conditions; since the variance of a binomial random variable is not independent of the 

mean, it's is all too possible that the assumption of homogeneity of variance does not hold. This 

problem is especially acute for situations where the proportion is near the boundary (Mimmack 

et al., p.334). In addition, ANOVA assumes normally distributed data. In response to such 

concerns about violation of assumptions, multiple sources recommend using an arcsine-square 

root transformation on proportion data to homogenize the variance and better approximate the 

normal distribution (cf. Cardinal et al. 2006 and Mimmack et al. 2001). If X is a binomial 

random variable expressed as a proportion, the arcsine-square root transformation, as the name 

suggests, produces the new variable X’ pursuant to the equation: 
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X’ = arcsine(√X) . 

Henceforth, the dependent variable used for ANOVA will be referred to as Transform. Figure 2 

provides a visual representation of the transformed data. As with Figure 1, a quick inspection of 

the slopes in the graph leads one to expect an interaction effect between the main variables. It 

also appears likely from Figure 2 that there are also main effects present, though it is difficult to 

determine by inspection if the main effects are significant given the scale of the graph.  

Figure 2: Data with Arcsine-Sq. Root Transformation
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 The output from Stata includes epsilon estimates, providing some information as to 

whether the arcsine-square root transformation is successful in avoiding violations of the 

assumptions of ANOVA. The two types of epsilon estimates, Greenhouse-Geisser and Huynh-

Feldt, essentially denote whether the assumptions of normality of the data and homogeneity of 

variance across groups (assumptions that might together be packaged as “sphericity2”) have been 

met. Stata returned estimates of 1.0 for both the Greenhouse-Geisser and Huynh-Feldt estimates 

of epsilon, so no corrections to the p-values reported below were needed. Epsilon estimates 

below 1.0 would imply that the p-values reported would need to be adjusted upwards. 

                                                 
2 Cf. “An Introduction to Sphericity,” located here: http://homepages.gold.ac.uk/aphome/spheric.html , for a more 
thorough explanation of epsilon estimates and sphericity in the context of ANOVA. This is one of a very few 
thorough, intelligible explanations of sphericity that I can find. 
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 Table 3 reports the results of the mixed design factorial ANOVA using 48 observations. 

Each observation consists of the value of Transform for a given subject experiencing one of the 

levels of Chooseoffer, with the 24 subjects evenly divided between levels of Showresults. 

Division of the group loan as expressed in Chooseoffer has no significant effect on the 

transformed proportion of positive assortative matching at conventional levels of significance; 

display of the investment project results, though, has an effect on the transformed proportion of 

positive assortative matching at the 0.01 level. There is also a significant interaction between the 

two variables (at the 0.05 level of significance) such that allowing the participants to choose the 

division of the loan decreased positive assortative matching in the condition with hidden project 

results and increase positive assortative matching in the condition with project results displayed.  

 
Table 3: ANOVA Results 

 
Source of Variation  SS  df  MS  F  p 

 
Between-subjects  .2612  23 

    Showresults   .2612  1  .2612  12.02            0.0022*** 

  Subjects WG   .4781  22  .0217 

Within-subjects   .1136  24 

    Chooseoffer   .0025  1  .0025  .013            0.7200 

    Chooseoffer*Showresults .1111  1  .1111  5.80            .0249** 

Residual   .4217  22  0.0192   

 
Total    1.275  47 

 Adjusted R-squared =  .2933  
 

Matching – Effect Size & Post-Hoc Comparisons 

 The omnibus F values reported in Table 3, i.e. the tests for whether the manipulations of 

the Showresults and Chooseoffer variables produce significant differences in matching, only 

speak to whether or not a main or interaction effect exists at all and provide no information on 
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the size of any of effects found. So, if the ANOVA results can show whether an independent 

variable like Showresults does significantly influence how borrowers match, another method is 

needed to estimate how much of an influence the variable has on the results. To that end, and 

based the results of the omnibus F tests in the ANOVA, I estimate the size of the effect of the 

Showresults and Chooseoffer*Showresults variables using the ω2 (omega-square) statistic. 

Because the Chooseoffer variable by itself is not significant in the ANOVA results, I do not 

calculate its effect size.  

The omega-square statistic estimates effect size in terms of the proportion of variability 

of the dependent variable accounted for by a given main or interaction effect (Sheshkin 2007, 

p.514). By Cohen’s classification, Showresults has a large effect size ( ω2 > .14) on the 

dependent variable, explaining roughly 18.7% of the variability of transform in the population. 

This result is relatively clear evidence that participants’ learning across iterations of the lending 

simulation had a practically significant impact on borrower matching. Under the same 

classification, the interaction between the variables chooseoffer and showresults has a medium 

effect size ( .06 < ω2 < .14 ), explaining about 7% of the variability of transform. The 

implications of this interaction are not immediately clear and will be discussed at greater length 

later.  

The analysis of variance technique also leaves another question unanswered in addition to 

the size of the effects of significant independent variables. This second question concerns 

whether significant differences in matching outcomes exist among the combinations of 

independent variable manipulations as represented by the four experimental conditions. After 

main or interaction effects have been demonstrated by ANOVA, experimental psychology and 

other laboratory experiment researchers commonly employ a technique known as post-hoc, or a 
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posteriori, comparison to test whether significant differences in results exist between each 

possible pair of experimental conditions.  These post-hoc comparisons provide a finer detail to 

the statistical picture of the experiment than the very blunt and general results provided by the 

ANOVA F tests. Where the ANOVA technique again only demonstrates which variables are 

significant, the post-hoc comparisons show which combinations of the levels of the independent 

variables are significantly different.  

 For post-hoc comparisons, I utilize Tukey’s Honestly Significantly Different (HSD) test 

to preserve the experiment-wise Type I error rate. While there is a fairly wide menu of post-hoc 

tests to deploy for comparisons between individual experimental groups after the use of 

ANOVA3, Sheshkin (1997) recommends the Tukey HSD test as an acceptable compromise 

between overly conservative post-hoc comparisons that preserve experiment-wise Type I error 

rate and perhaps overly generous post-hoc tests that preserve the comparison-wise Type I error 

rate but not that of the whole experiment.  

The Tukey HSD test may be contrasted to the more widely known a priori comparisons 

used in hypothesis testing (e.g. a two-sample Student’s t test). Conducting a Student t-test to 

compare each possible pair of conditions would increase the chances of rejecting the null and 

therefore increase the Type I error rate because providing more observed t statistics simply gives 

the experimenter more chances to observe a value beyond the critical value. The Tukey HSD test 

employs a Studentized range statistic Q similar to a two-sample Student’s t statistics but using a 

“generalized standard error” for all pairwise comparisons rather than the a standard error derived 

from the pooled variance of the two samples in the pair (Hinton 1995, p.132).   

                                                 
3 Examples of other post-hoc tests include Newman-Kuels, Scheffe, Fisher’s LSD, Bonferroni-Dunn, and Dunnett 
tests. Cf. Sheskin (1997) or the website 
http://web.uccs.edu/lbecker/SPSS/glm_1way.htm#6.%20Post%20Hoc%20Tests for more information on other post-
hoc comparisons. 
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Stata does not come immediately equipped to handle post-hoc tests for two-way ANOVA, 

so to compensate I introduced a new labeling variable condition. The results-shown, fixed offer 

condition is group 1 in condition; the results-shown, variable offer condition is group 2 in 

condition. The results-hidden, fixed offer and results-hidden, variable offer conditions are 

labeled groups 3 and 4, respectively. These group numbers correspond to the group numbers in 

Table 4, where pairwise comparisons of conditions are displayed.  

Tukey HSD a posteriori comparisons revealed significant differences between conditions  

1 and 3 (p < .05) and conditions 2 and 3 (p < .05). In both pairs, condition 3 displayed a greater 

degree of positive assortative matching than the condition with results displayed. Differences 

between all other pairs of conditions were insignificant in post-hoc comparisons.  

 
Table 4: Post-hoc Tukey HSD Results (α= .05, Qcrit = 3.927)) 

 
Group vs Group  Group Means   Mean Difference  Q 

 
 1 vs 2   0.7403,  0.8220    0.0817   2.0447 

 1 vs 3   0.7403,  0.9840    0.2438   6.0993* 

 1 vs 4   0.7403,  0.8733    0.1330   3.3285 

 2 vs 3   0.8220,  0.9840    0.1620   4.0547* 

 2 vs 4   0.8220,  0.8733    0.0513   1.2839 

 3 vs 4   0.9840,  0.8733    0.1107   2.7708 

 
 

Proposals – Hypothesis Testing 

 The previous analyses have examined the outcome of positive assortative matching from 

the top-down point of view of the experimental design. While the confidence intervals can tell us 

just how closely the experimental outcomes conform to full positive assortative matching, the 

ANOVA results and complementary tests identify differences between the experimental 

conditions. In principle, the preceding tests as a whole can help us see to what extent positive 
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assortative matching occurs as predicted by Ghatak and help isolate potentially confounding 

variables like learning effects.  

 However, there is another way to test the theory of the Ghatak paper based on the proof 

of the positive assortative matching result. The adaptation of Lemma #1 demonstrates that a safe 

proposer should be willing to bid more than a risky proposer for the opportunity to partner with a 

safe responder. Thus, the theory predicts that the proposals made by safe proposers should be 

higher than the proposal made by risky proposers, providing a hypothesis to test the validity of 

the model in addition to the final outcome of positive assortative matching. In fact, it is possible 

that an experimenter could observe full positive assortative matching caused by reasons other 

than those hypothesized by Ghatak. That is, heterogeneous matching would imply that the 

Ghatak model is flawed, but homogeneous matching would not necessarily imply that the model 

is correct in its explanation of what produces the result. So, the analysis of the experimental 

outcome needs to take the possibility of spurious results into account, and examining the 

proposals made by safe and risky proposers provides one way of doing so.  

 However, it must be noted that the responders evaluate proposals based not only on the 

amount of the group loan offered to them but on the type of the proposer as well. Consequently, I 

will here define the “implicit” proposal made by a safe proposer as the amount of the group loan 

explicitly offered to a responder plus the expected extra utility derived from having a safer 

partner and less chance of incurring the joint liability penalty. Since the expectation of this extra 

utility is equal to cp(ps – pr) (recall Lemma #1) where p is the probability of success for the 

responder, the benefit of a safer partner differs between safe and risky responders. Based on the 

adaptation of the Ghatak model and strategic game developed earlier, I assume that safe 

proposers are effectively making proposals directed towards safe responders and hence use the 
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probability of success for a safe proposer, ps, in calculating the “implicit” proposal of a safe 

proposer.  

I therefore report for two experimental conditions the results of two-sample Student’s t 

tests of the null hypothesis Ho: μs = μr against the alternative H1: μs < μr , where μs  represents 

the mean “implicit” proposal made by safe proposers in the condition and μr  represents the mean 

explicit proposal made by risky proposers in the condition. Since the sample size is limited and 

safe proposers may be functionally out-bidding their risky competitors only by very small 

amounts, i.e. $1, I choose this particular alternative hypothesis as an indictment of the theory. In 

other words, rejection of the null and acceptance of the alternative hypothesis would imply that 

the theory in Lemma #1 is incorrect. Failure to reject the null would leave the Ghatak theory 

intact though leave open the question of just how much safe proposers out-bid risky proposers, if 

they did so at all.  

I conduct this hypothesis test only on the data from the second and fourth experimental 

conditions (where the participants are allowed to choose share offers) since by construction the 

proposals are identical in the first and third (fixed M) conditions. Table 5 displays the results of 

these hypothesis tests. Note that 90 observations for each sample are taken from a condition in 

Table 5. The term sp
2 denotes the pooled variance of the two samples. The results show that we 

can reject the null for the Results Shown condition at a level of significance of less than 1% but 

cannot reject the null for the Results Hidden condition at conventional levels of significance. It 

seems that the risky proposers are out-bidding the safe proposers when results are shown but not 

when results are hidden.  
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Table 5: Two-sample t-test Results (Ho: μs = μr vs H1: μs < μr; n= m = 90) 

 
Condition  μs   μr  sp

2  tobs 

 

Results Shown  83.23   129.31  797.58  -10.9449*** 

Results Hidden  124.77   119.37  1127.25  1.0789   

 
Proposals – Regression Analysis  

 The classical hypothesis tests involving mean implicit proposals just described examines 

the empirical validity of the positive assortative matching theory from the point of view of the 

proposers; by considering proposals in a different context, it is also possible to use the actions of 

the simulation’s responders to test Ghatak’s matching hypothesis. As already noted, one can, and 

indeed needs to, look deeper into the experimental data than the mere matching outcomes and 

see if the borrower pairings in the context of the proposals made are congruent with Ghatak’s 

theoretical derivation of positive assortative matching. The simulation’s safe responders 

effectively drive the matching results, whether homogenous or heterogeneous, both theoretically 

and operationally, so considering how proposals by the two different borrower types influence 

the decisions of safe responders should yield further insight into how one can explain the 

matching outcomes generated by the experiment.  

 I attempt to leverage this analysis of safe responder decisions using a linear regression 

framework. The regression model is specified as follows: 

Mijt = β0 + β1BjtTjt + β2Bjt(1 – Tjt) + ξt  . 

The dependent variable Mijt  represents the decision of a safe borrower i to match with a proposer 

j in period t of the simulation. This variable is encoded as a “1” if the accepted proposer is also a 
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safe borrower (homogenous matching) and “0” if the accepted proposer is of risky borrower type. 

The first explanatory variable BjtTjt  denotes the product of the monetary share offer proposal (B) 

and the borrower type (T, encoded “1” for safe type and “0” for risky type) of proposer j in 

period t. Note that the product term is zero if the proposer is a risky borrower. The coefficient of 

this variable (β1), then, should estimate the ability of proposal by safe proposers to explain the 

variation in positive assortative matching by safe responders. In contrast, the coefficient β2 

should provide an estimate of how much of the matching result can be explained by the offers of 

risky proposers. The product term attached to this coefficient, Bij(1 – Tjt), uses the information on 

the share offer proposal and borrower type of a particular proposer j in period t but now equals 

zero if the proposer is of safe borrower type and is strictly positive if the proposer is of risky 

borrower type. Thus, for any given proposer in a given period, only one of the product terms 

BjtTjt and Bij(1 – Tjt) will be greater than zero while the other will be exactly zero. The variables 

β0 and ξ represent the constant term and shock term, respectively.  

 From a theoretical standpoint, one should be able to form several hypotheses about the 

coefficients in the model. First, the constant term β0 effectively represents the probability of 

positive assortative matching if only proposer borrower type is considered and relative 

magnitudes of proposals are ignored. Since, ceteris paribus, all responders should strictly prefer a 

safe proposer as a partner, the estimate for β0 should exceed one-half (β0 > 0.5). Second, any 

proposer’s bid grows more attractive to a responder as the share of the group loan offered (Bjt) 

increases, so a larger offer by a safe proposer should increase the probability of homogenous 

matching while a larger offer by a risky proposer should have the opposite effect of decreasing 

the likelihood of homogenous matching. This intuition produces the twin hypotheses β1 > 0 and 

β2 < 0.  
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 Table 6 presents the results of the regression analysis for three different sets of data. 

Column 1 displays the results for the regression run using all data from both experimental 

conditions (results-shown and results-hidden) in which participants selected the share offers 

made4. Column 2 displays the results from the variable data for the share offer, results-shown 

condition only. Column 3 presents the results of the regression using only data from the variable 

share offer, results-hidden condition. Each cell in the results table displays, from top to bottom, 

the correlation coefficient estimate (in bold), the robust standard error for that estimate, and the 

95% confidence interval for the correlation coefficient. The reader should immediately note that 

all coefficient estimates are significant at the 1% level or better.  

 
Table 6: Regression Results  

 
Variable    1      2       3 

 
BjtTjt               .00213***  .00387***  .00089*** 
               (.00036)   (.00086)   (.00034) 
          [.00142, .00284]          [.00216, .00557]           [.00022, .00156] 
 
Bjt(1 - Tjt)            −.00610***               −.00481***  −.00790*** 
              (.00038)                 (.00055)     (.00065) 
         [−.00685, −.00534]         [−.00590, −.00372]          [−.00919, −.00662] 
 
Constant              .75074***   .63340***  .88404*** 
             (.04308)   (.07590)   (.04523) 
         [.66573, .83576]          [.482534, .78426]           [.79415, .97393] 
 
R2      0.9102       0.8912     0.9610 
N      180       90      90 

 
 
 The coefficient estimates are generally the same across all three regressions in terms of 

signs and significance. In each case, the signs for β1 (positive) and β2 (negative) turn out as 

expected. Thus, the results support the common-sense intuition that higher bids by safer 

                                                 
4 For the fixed share offer conditions, this regression would be uninteresting, since no information on proposal 
magnitude could be gleaned from the results. 
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borrowers increase the likelihood of positive assortative matching while higher bids by risky 

borrowers decrease the same phenomenon. Though the coefficient estimates are numerically low, 

one must remember that they represent the change in the probability of homogenous matching 

for each incremental increase in a bid and that the bids can range over numerically large intervals. 

Estimates for the constant term, representative of the probability of homogenous matching if bids 

are non-existent, are in all cases greater than 0.5 as expected. However, in the results-shown 

condition, the 95% confidence interval for β0 is inclusive of 0.5, so a rejection of the null 

hypothesis β0 ≤ .5 cannot be ruled out for this condition. There is also a surprisingly large 

discrepancy between the β0 confidence intervals for the results-shown and results-hidden 

conditions, so much so that the two do not overlap at all. Finally, in all three regression outputs, 

the absolute value of the β2 estimate is greater than the absolute value of the β1 estimate, though 

the confidence intervals are not distinctly different for the results-shown condition. One might 

infer from this difference that safe responders generally tended to be more sensitive to changes in 

bids by risky proposers than to changes in bids by safe proposers.  

Discussion & Conclusion 

 This study has attempted to help explore the extent to which the positive assortative 

matching result derived by Ghatak can explain and predict human behavior in the context of 

microfinance group lending. In so doing, this study also contributes to the wider study of the 

microfinance by helping to support or weaken the case for “pure” incentive effects as an 

explanation of MFI success above or alongside Cassar et al.’s other “social” theoretical 

categories. Empirically testing the “pure” incentive theory as exemplified in Ghatak’s model can, 

if support for positive assortative matching is found, provide motivation for further theoretical 

development of “pure” incentives, while, if the Ghatak model is shown to be lacking, this study 
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can help build a case for more research into other, particularly social, considerations. The 

microfinance literature needs to generate more evidence based on the observed behavior of real, 

warm-blooded people if it is ever to determine which of these two theoretical routes it should 

primarily pursue, and the experiment explained here provides just such a means of leveraging 

human behavior to test theory. This section will conclude the paper by examining the results of 

the various statistical analyses as a whole and commenting on what lessons can be learned.  

To What Extent Did Positive Assortative Matching Occur? 

 The extent to which the outcome of positive assortative matching occurred in the 

experiment provides the obvious starting point for an interpretation of the results. The Wilson 

confidence intervals come the closest to qualifying as true prima facie evidence with regards to 

the predictive power of the Ghatak theory, and here the support for the positive assortative 

matching result is, at best, rather weak. Only two of the four experimental conditions show a 

greater tendency towards positive assortative matching than would be expected by mere chance, 

but because the results are noticeably different across levels of the results display variable, there 

is a clear need to qualify the overall matching results with other explanatory variables, ostensibly 

learning effects. Thus, positive assortative matching seems more likely in some cases than others. 

However, the Wilson intervals do not go so far as to refute conclusively and outright the Ghatak 

hypothesis by showing that the opposite of positive assortative matching, namely, heterogeneous 

matching, prevails. 

What Indirect Evidence on the Ghatak Theory is Avaiable? 

 Though the direct evidence for the Ghatak models in terms of the Wilson intervals is not 

very strong, the experiment also provides the opportunity to consider indirect evidence testing 

intermediate results and key propositions of the model using the analysis of simulation proposals. 
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Again, as in the case with the Wilson intervals, the evidence is decidedly mixed, yet here the 

results seem to be mediated more by the simulation role of a participant than whether or not 

results are displayed. To indirectly support the Ghatak model, one can point to the regression 

analysis. Generally, the coefficient estimates imply that participants playing as safe responders 

reacted to variations in bids by different proposer types largely as the Ghatak model would 

predict. The constant term estimate also suggests that safe responders were, to a degree, taking 

into account proposer borrower type in line with the positive assortative matching theory, even if 

their considerations did not always show up prominently in the Wilson intervals. On the other 

hand, the implicit bid hypothesis testing shows proposer behavior running counter to the 

implications of positive assortative matching, at least when participants are aware of their project 

outcomes. Again, learning effects due to display of results seem to mediate the support of the 

Ghatak model.   

 In sum, the experiment produces support for the Ghatak model of positive assortative 

matching that is very limited and needs to be thoroughly qualified. It appears that the model only 

accurately predicts behavior under specific conditions, perhaps one-time rather than repeated 

loans as implied by the learning effects. However, there is nonetheless at least some support for 

the model, and the evidence against the positive assortative matching needs to be considered in 

light of potentially confounding variables and individual variation. If participants were clearly 

affected by considerations other than or in addition to the “pure” incentive effects of their joint 

liability loans, what were those external influences? 

How Can the Limited Support for the Ghatak Model Be Explained? 

 In any experiment, the researcher must be cognizant of issues related to both internal and 

external validity. By “internal validity,” I mean the elimination of potentially confounding 
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variables other than those manipulated or measured by the experimenter. Upon reviewing the 

entirety of the evidence produced by the experiment and statistical analyses, I will argue here 

that certain psychological factors acted as key confounds to the matching outcomes. There are 

clear and conclusive indications of significantly different outcomes between the results-shown 

and results-hidden groups, most notably the Wilson intervals, the ANOVA Showresults variable, 

the bid hypothesis testing, and the differences between the second and third regression outputs. 

Moreover, the omega-square calculation suggests that the manipulation of the results display 

accounts for nearly a fifth of the variation in the matching outcome, certainly a sizable 

proportion. Though one cannot be entirely certain why such differences between the two 

experimental groups appeared, it is very tempting to attribute the disparity to learning effects. I 

included the display of results as an independent variable in the experimental design precisely to 

help identify participant learning across the simulations periods, and I am disposed to believe 

that participant learning does in fact explain the significance of the results manipulation. It is 

entirely plausible that the display of project results for one group influenced those participants to 

alter their strategies as the simulation progressed, in this case away from positive assortative 

matching. Perhaps the revealed ex post outcomes of the stochastic investment projects influenced 

the participants more than the ex ante probabilities one would expect to form the basis of a 

strategy. Though anecdotal evidence, the post-experiment questions of one participant provides 

some support for this possibility. The participant asked whether or not his strategy of preferring a 

single partner until that partner defaulted served as the hypothesis tested by the experiment. 

 One must also recognize that these learning effects, if they do exist, at least narrow when 

participants are allowed to select their own proposal amount, as implied by the results of the 

Tukey HSD comparisons. Visually, this narrowing appears in Figure 2. This possibility would 
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explain the significant interaction between Chooseoffer and Showresults found in the analysis of 

variance and estimated in the omega-square calculations. However, the learning effects do not 

entirely disappear due to the interaction since the regression analysis finds some substantial 

differences between results conditions.  

The interaction between the offer and results variables does help resolve some of the 

social psychological considerations incorporated into the experimental design. The insignificance 

of the main effect of the Chooseoffer variable in the ANOVA results may at first appear to be 

evidence for a confounding influence of minimal group formation. That is, the fact that allowing 

participants to select the amount of their own proposals did not appear to influence the likelihood 

of matching might be taken as evidence that participants were psychologically tethered more to 

artificial “groups” of their own borrower types than to the incentive structure. However, the 

collective findings of the significant ANOVA interaction and the Tukey HSD test illustrate that 

in fact allowing participants to select their own offers did influence behavior, though only in the 

presence of the manipulation of the results variable and only to a limited extent as implied by the 

effect size estimate.  

In addition to potential learning effects, one could argue that the particular simulation 

role (proposer or responder) also acted as a variable confounding the matching results. The 

regression analysis suggests that safe responders acted with some of the intuitions of the Ghatak 

model in mind, but the hypothesis testing of safe versus risky proposals finds that some 

proposers (those in the results-shown condition) acted incongruently to the Ghatak theory. 

Importantly, these roles were often played by the same people at different times. Each condition 

had two treatments where participants played as the opposite borrower type and opposite role, so 

a safe responder in one treatment would become a risky proposer in the other treatment and vice 
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versa. I can only speculate here that this within-individual variation in strategy across roles was a 

function of the posted offer system used in the experimental design. The technological necessity 

of the posted offer system for making and accepting proposals forced the proposers to make a 

single offer to responders generally without directly knowing the offers of other proposers. 

Formulating an effective proposal in this environment may have been too cognitively 

burdensome for the participants; each proposer had to derive the strategic considerations of the 

simultaneous proposal while also presumable computing the amount of the proposal within the 

time constraint of a couple of minutes (albeit with the help of an onscreen calculator). 

Participants may have simply relied on imperfect but quick heuristic reasoning or “gut” instinct 

rather than formal mathematical reasoning. A possible solution to this apparent issue would be to 

screen participants for mathematical or statistical knowledge during recruitment, but to do so for 

a microfinance study would raise even greater issues of external validity. 

“External validity” refers to the generalizability of the results in the experimental 

laboratory to the larger “real world.” In the case of this particular experiment, that “real world” 

means the areas in which microfinance lenders actually operate.  It must, of course, be admitted 

that an experiment testing positive assortative matching in the sort of field environments in 

which microfinance lenders operate would be preferable to testing undergraduates using 

computer software. However, economic experiments may avoid some of the generalizability 

concerns often directed towards psychology experiments due to the use of hypotheses based in 

rational choice theory. One should remember that rational choice theory predicts that the 

economic incentives in a person’s environment will dominate the influences of internal factors 

like personality or psychology. When testing subsets of rational choice theory, then, the 

questions of who is being tested and where should not be as important as the incentives with 
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which the participants are presented. In any case, until someone tests positive assortative 

matching in the field, laboratory experiments are the best available source of empirical data, and 

simply noting that the experiment recruited the famed “college sophomore” does not in and of 

itself refute the findings. 

Directions for Future Research 

 Taking the empirical investigation to the field is an obvious potential direction for future 

research as a means of putting to rest concerns over the external validity of the laboratory 

experiment. Another means of boosting external validity may be to increase the size of the 

lending group beyond the two-person design used here. Ghatak generalizes his theoretical result 

of positive assortative matching beyond two borrowers in the appendix to his paper, but given 

the constrained computer resources and participant pool to which I had access, a two-person 

group simulation was by far the most feasible option logistically and technologically for this 

experiment. Likewise, a system or framework for participant matching other than the posted 

offer system used in Z-tree software here could help eliminate concerns over the strategic and 

computational complexity of the simulation. Ideally, such a system, on a computer or otherwise, 

would allow participants to make multiple proposals targeted to specific responders rather than a 

one-shot, made-to-everyone proposal. This system might be more intuitive to and easily 

understood by the participants. I do not know exactly how such a system could be constructed or 

programmed since the posted offer method is the only viable option I could personally configure 

in Z-tree, but I do not doubt that someone with more technological expertise could devise a 

better alternative. Until that happens, though, and issues of external validity are more fully 

resolved, the Ghatak model of positive assortative matching will need to wait for more 

substantial and less limited support for its ability to explain and predict human behavior.  
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