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1 Introduction

According to the theory of evolution, if there is variation among a population
of organisms, some variants produce more offspring than others, and offspring
tend to resemble their parents, then natural selection will take place. These
three properties are the principles of phenotypic variation, differential fitness,
and heritability. Entities possessing these properties undergo natural selec-
tion. These entities, from individual cells to entire species, form a nested
biological hierarchy. The modern theory of multi-level selection deals with
natural selection that takes place at more than one level in the biological hi-
erarchy. The multi-level selection framework has also been applied to study
evolutionary transitions, the processes by which these hierarchies arose. A
crucial question for these studies is: what is the relationship between the
fitnesses of entities at different levels in the biological hierarchy?

Formally, the process of natural selection can be thought of as an opti-
mization problem, where fitness is the quantity to be maximized, subject to
a variety of constraints. The majority of research on natural selection ad-
dresses questions from the constraint side, focusing on the traits that affect
fitness. The focus of this paper is on the objective function itself, in partic-
ular, the concept of fitness for individual entities and the collectivities they
comprise.

There is a natural analogy between fitness and utility. Social choice the-
ory deals with the relationship between individual and group utility. The



parallels suggest that insights to the multilevel fitness problem might be
found by applying frameworks from social choice theory.

A recent article by Samir Okasha, a philosopher of science, attempts this
application problem (Okasha, 2009). The standard view in the selection the-
orist community treats group fitness as the sum or average of the individual
fitnesses in the group. According to Okasha, this approach faces several
problems. Okasha’s paper focuses on an alternative measure—the Michod
measure—proposed by Michod et al. (2006), which attempts to capture fit-
ness information during evolutionary transitions, when individual organisms
capable of living alone come together to form a single higher-level organ-
ism (Michod et al., 2006). When this transition takes place, the individuals
specialize in different tasks and are no longer capable of surviving and re-
producing on their own, so the fitnesses of the individuals converge to zero.
Clearly, the fitness of the organism, which is non-zero, is not merely the sum
of the individual fitnesses. The Michod measure of fitness attempts to model
this transition. Okasha uses this as the motivation behind formalizing the
fitness problem using the social choice framework.

This paper provides a characterization of the Michod measure using ax-
ioms from extensive social choice theory. Extensive social choice supposes
that different social planners may have different opinions about the utili-
ties of individuals for a given social alternative (Roberts, 1980; Ooghe and
Lauwers, 2005). The planners each observe a different profile of individual
utility functions, which are aggregated into a social ranking of the set of al-
ternatives. We use this structure to capture the additional dimensions of the
components of fitness. The formal axiomatization gives us the ability to an-
alyze each property of the Michod measure, their implications about fitness,
and how appropriate these implications are in the evolutionary setting.

2 Background

The entities that evolutionary biologists study are nested in a complex hier-
archy of genes, chromosomes, organelles, cells, organs, organisms, colonies,
species, and ecosystems. Multi-level selection is natural selection that occurs
simultaneously at more than one level in the biological hierarchy, and it can
take on many forms. Multi-level selection theory uses the terms “individ-
uals” and “groups” relatively to refer to entities at two different levels in
the hierarchy. What is considered an “individual” in one context may be a



“group” in another.

Damuth and Heisler (1988) defines two types of multi-level selection.
They are not mutually exclusive, and both types of selection are aspects
of any multi-level selection process. Type 1 (MLS1) deals with the effect of
group membership on individual fitnesses and is usually concerned with the
social behavior of individuals. MLS1 explains, for example, the evolution
of altruism as a character trait that increases the fitness of every individual
within a colony. MLS1 does not require collective reproduction in the usual
sense; that is, groups do not necessarily possess fitness beyond the fitnesses
of the individuals. For example, some slime moulds exist as particles of dif-
ferent ancestry which coalesce into a collective for a time and then dissipate
(Okasha, 2006). In this setting, defining group fitness as mean individual
fitness makes sense. In other words, the collective fitness of the group can be
defined simply in terms of the number of individual offspring. Okasha (2006)
calls this definition of group fitness “collective fitness;.”

Multi-level selection type 2 (MLS2), on the other hand, deals with selec-
tion among groups. In other words, group fitness in this setting is defined in
terms of the number of offspring groups. Okasha refers to this definition of
group fitness as “collective fitness,.” In order for MLS2 to take place, then,
groups must reproduce in some way. For example, the geographic range of
mollusc species increased from selection at the species level, because those
species with greater geographic range possessed greater collective fitnesss;
that is, the species with greater geographic range, a heritable trait, produced
more offspring species (Okasha, 2009). In this case, having information about
the fitnesses of the individuals in the species does not necessarily give us any
information about group fitness. In particular, Damuth and Heisler note that
the notion of group fitness in MLS2 “need not (and often will not) be the
same as mean individual fitness.” Yet this is the definition of group fitness
that is most frequently employed in selection theory, according to Okasha
(2009).

A biological hierarchy did not always exist, however, since the earliest
forms of life were presumably the simplest. The evolution of a biological hi-
erarchy itself occurs during “evolutionary transitions,” the process by which
complex life is formed. Entities capable of surviving and reproducing in-
dependently before the transition can only do so as part of a larger group
afterward (Maynard Smith and Szathmary, 1998). What happens during
this transition? Okasha (2006) claims that the early stages of evolutionary
transitions involve MLS1 processes while the later ones involve MLS2. In the



early stages, individuals evolve social behaviors such as cooperation because
it increases their individual fitnesses. As the transition takes place, group
level traits emerge that are correlated with group level fitness. Michod et al.
(2006) call this process the “decoupling” of group fitness from the fitnesses of
the individuals, and claims it is completed when the fitnesses of individuals
cease to contribute directly to group fitness. In other words, at the end of
the evolutionary transition, average particle fitness converges to zero, and
there is complete reproductive division of labor.

Why does this transition take place? Michod et al. (2006) attempt to
explain why some volvocine algae colonies transition to multicellularity but
not others. Since volvocine colonies are clonal, group-level selection must be
key to the transition.

2.1 The Michod model

Michod et al. (2006) propose a simple mathematical model for aggregating
fitness. The fitness of any given individual cell ¢ has two basic components:
viability v;, a measure of its ability to survive to reproductive age, and fe-
cundity b;, a measure of reproductive capacity. The fitness of cell i is simply
the product of the two measures, v;b;. For a group of n cells, the average
fitness C' of the group is then

1 n

Michod et al. (2006) propose an alternative way to aggregate individual
fitnesses that is more appropriate for evolutionary transitions. They suggest
aggregating viability and fecundity separately to get measures of average
group viability (V') and average group fecundity (B). The group fitness G is
then the simple product of V' and B. In other words,

- 1<
G:VB:E;%;@

or G=C—Covu(v;, b;).

Selection theorists place formal constraints on the components of fitness
to capture the natural relationship between them. Because there is a nat-
ural trade-off between investing in viability and investing in fecundity, the
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covariance between v; and b; should be non-positive. So we have that G > C.
In essence, GG rewards a group for the specialization of its individual cells,
and this effect is greater when the trade-off between v and b is more convex.
Michod’s measure of group fitness gives a way to formalize the evolutionary
advantage of division-of-labor for some groups of cells.

2.2 QOkasha’s approach

In his paper, Okasha follows the approach to the social choice problem for-
mulated by Sen (1970). He considers a group S of n individuals, and A, a
set of at least three alternatives. Okasha assumes A is finite, though this
is not necessary in general. In the fitness framework, each alternative can
be thought of as a particular state of the world, for example, a particular
allocation of resources to the individuals within the group. In social choice
theory, each individual ¢ has a utility function U;, so Okasha assigns each
individual ¢ a fitness function U; : A — R.

A social welfare functional maps a permissible profile of utility func-
tions to a single ordering of the alternatives that reflects the social utility of
each alternative. Analogously, Okasha’s defines a “group fitness functional”
(GFFL), F, which maps a profile U = (Uy, Us, ..., U,,) to an ordering of the
alternatives in terms of group fitness. Similarly, Okasha defines three well-
known axioms from social choice theory for F', the group fitness functional.

Unrestricted Domain: The domain of the GFFL is the set of all possible
profiles.

This axiom states that F' should be defined for all possible fitness profiles,
so there are no a priori restrictions on the permissible fitness profiles.

Binary Independence of Irrelevant Alternatives: For any alternatives
z,y € A, and for any two profiles U, V', if U(z) = V(z) and U(y) = V(y),
then (z,y) € F(U) if and only if (z,y) € F(V).

This axiom requires that the social ranking of x and y do not depend on
the fitnesses associated with other alternatives, so if U and V' coincide over
x and y, then the output of F' for U and V must rank x and y in the same
order.

Pareto Indifference: For all z,y € A, and for any profile U, if U(z) = U(y),
then (z,y) € F(U) and (y,z) € F(U).
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In other words, if all individuals have the same fitness in one alternative
versus another, then the group fitnesses are the same in both cases.

In social choice, these axioms are known as the “welfarism axioms,” be-
cause they are the necessary and sufficient conditions for a social welfare
functional to be “welfarist.” That is, the social welfare functional ranks the
alternatives only based on the individual utilities associated with the alter-
natives. When welfarism is satisfied, the social welfare functional can be
captured by a single ordering of the vectors of individual utilities.

Okasha then applies his framework to the Michod measure, and argues
that it is inconsistent with Pareto Indifference. That is, according to the
Michod measure, given two alternatives in which each individual cell has the
same fitness level, it is not necessarily true that the group fitness of the two
alternatives is also the same. This is due to the collective fitness advantage
gained from cell specialization. More precisely, welfarism dictates that the
only relevant information for ranking two alternatives should be the utility
(fitness) of the individual cells. Michod’s measure is not welfarist precisely
because it relies on distinguishing between the components of fitness. Okasha
argues this Pareto-violation is an indicator of “fitness decoupling,” the pro-
cess by which the fitness of the group becomes independent of the fitnesses
of the individual cells during biological transitions.

3 An alternative approach

Okasha’s conceptualization of the Michod measure violates welfarism because
it fails to capture information differences at the level of the components of
individual fitness. By using an alternative approach borrowed from extensive
social choice, the individual viability and fecundity functions can be encoded
separately. As a result, the Michod measure can be formulated without
violating welfarism.

In the classical social choice problem, profiles of individual utility func-
tions are aggregated into a social ordering. It is often unclear, however,
what utilities individuals truly have for any given alternative. Extensive so-
cial choice (Roberts, 1980) deals with this issue by allowing different “social
planners” to have different opinions about each individual’s utility function.
That is, each combination of planner and individual may have a different
measure of utility on the same alternative. We refer to each of these combi-
nations as a planner-individual pair. To capture the additional dimensions,



an extensive social welfare functional aggregates the utilities for all planner-
individual pairs into a single ordering. If we have just one social planner,
then we reduce the problem to the classical approach from Sen (1970). In the
fitness context, the extensive problem is equivalent to finding a group-level
fitness ordering by aggregating the individual viability functions (v;’s) and
fecundity functions (b;’s), instead of fitness functions (f;’s).

We now appeal to extensive social choice to formally axiomatize the Mi-
chod measure. The characterization uses the welfarism axioms as well as
standard information invariance assumptions. It relies heavily on the exten-
sive social choice axiomatizations of well-established rules from Ooghe and
Lauwers (2005), whose notation we mostly use here. We also interpret the
formal framework using the terminology of social choice theory. It is reinter-
preted in terms of fitness in Section 8.

4 Notation

We define a set of alternatives X > 3, a set of individuals I = {1,2,...,m}
and planners J = {1,2,...,n}, with m > 2 and n > 2. I x J (denoted 1.J)
is the set of individual-planner couples. Each planner 7 € J has a vector
valued utility function U7: X — R, where R™* = R7 \ {0,,}.! U, is
the set of all such vector valued utility funtions. The ith component of U7,
Ul-j , is the utility function planner j attributes to individual 7. A profile
U= (U},U},...,U") is an I-tuple of utility functions, where [ = m x n is
the size of I.J. Let R be the set of orderings on X. An extensive social
welfare functional F' (or “rule,” for short) is a map F': Dy — R such that
U= (U},U;z,...,U) — F(U), where Dy C U? is the nonempty domain of
the functional.

5 Welfarism

The welfarism theorem states that when certain axioms are satisfied, the
ranking of two alternatives depends only on the utilities they generate, and all
non-utility information can be discarded. In other words, if it is “welfarist,”
the extensive social welfare functional F': Dy — R can be fully described

'Not including the origin as a possible vector of utilities allows us to simplify the
discussion. In our biological application, this restriction is quite natural.



by an ordering on (R7*)". We extend the welfarism theorem to extensive
social welfare functionals by defining the extensive versions of the welfarism
axioms. Because each component of fitness is separately captured in this
extended space, a welfarist version of the Michod measure can be formulated.
Let F': Dy — R be an extensive social welfare functional.

Nonnegative Unrestricted Domain (U, ): Dy = (R7*)".

This axiom is useful if we want to formulate extensive social welfare func-
tional before knowing which profiles of utility functions will be used. We are
concerned only with (R7*)" because we can only have nonnegative values of
components of fitness, and it makes little sense to consider a group composed
of individuals that all have zero viability or all have zero fecundity.

Independence of Irrelevant Alternatives (ITA): VU,V € Dy, Vz,y €
X, if U(z) = V(z) and U(y) = V(y), then (x,y) € F(U) if and only if
(z,y) € F(V).

This axiom states that if two profiles coincide over any two alternatives
x and y, then the orderings produced by the extensive welfare functional for
each of the profiles must rank the two alternatives in the same way.

Pareto Indifference (PI): VU € Dy, Vr,y € X, if U(z) = Ul(y), then
(x,y) € F(U) and (y,z) € F(U).

Pareto Indifference states that if the utility of all planner-individual pairs
is the same between two alternatives, the resulting ordering must be indif-
ferent between the alternatives. In the fitness setting, this axiom requires
indifference between alternatives if each individual has the same viability
and the same fecundity between the two alternatives.

We now prove the extensive version of the welfarism theorem.

Theorem 1 (Welfarism Theorem). If F' is an extensive social welfare func-
tional that satisfies Uy, then F satisfies IIA and PI if and only if there
exists a unique social welfare ordering R on (R7*)™ such that YU € Dy and
Ve,y € X,

(z,y) € FU) <= (U(x),U(y)) € R

The proof is straightforward, following Bossert and Weymark (2004).



Strong Neutrality: Vw,z,y,z € X, YU,V € Dy, if U(z) = V(z) and
U(y) = V(w), then (z,y) € F(U) if and only if (z,w) € F(V).

Claim. If an extensive social welfare functional F satisfies Uy, then F sat-
isfies IIA and PI if and only if F' satisfies Strong Neutrality.

Proof. ( <= ) Suppose F satisfies Strong Neutrality. Let z = z and y = w.
If U(z) = V(z) and U(y) = V(y), then (z,y) € F(U) iff (z,y) € F(V).
Hence, F satisfies ITA.

Now let U =V and y = z = w. Then we have: If U(z) = U(y), then
(x,y) € F(U) iff (y,y) € F(U). By reflexivity of the ordering, (z,y) € F(U)
and (y,z) € F(U). Therefore, PI is satisfied.

( = ) Suppose F satisfies U, PI, and ITA. We want to show that I’
satisfies Strong Neutrality. Suppose, in addition, that U(z) = V(z) = u and
U(y) = V(w) = u. By Uy, there exists an alternative a € X and profiles
U, u",u" e (R7)™ such that

(z,y) € F(U) <= (z,y) € F(U") (by I1A)

(x,y) € F(U") < (a,y) € F(U") (by PI and transitivity)

(a,y) € F(U") <= (a,y) € F(U") (by IIA)

(a,y) € F(U") < (a,w) € F(U") (by PI and transtivity)

(a,w) € F(U") <= (a,w) € F(U") (by IIA)

(a,w) € F(U") < (z,w) € F(U") (by PI and transitivity)

(z,w) € F(U") < (z,w) € F(V) (by TIA)
Therefore, (z,y) € F(U) <= (z,w) € F(V), and F satisfies Strong
Neutrality. O]

Proof of Theorem. Suppose that F satisfies U, ITA, and PI. From the claim,
we know that F' satisfies Strong Neutrality. Let u, v’ € (R7*)" be given. By



Uy, U € (R7*)™ and Jz,y € X such that U(z) = u and U(y) = . We
define an ordering R on (R7*)™

uRu' < (z,y) € F(U)
and
v'Ru <= (y,x) € F(U)

for any u,u’ € (R7*)". R is well-defined because F'(U) does not depend
on the profile U or the alternatives z,y, by Strong Neutrality. R inherits
reflexivity from F' and completeness because F' satisfies U,. To show that
R is transitive, suppose that u,v,w € (R7*)" are given such that uRv and
vRw. By Uy, 3U € (R7*)" such that U(z) = u, U(y) = v, and U(z) = w.
The construction of R implies (z,y) € F(U) and (y,z) € F(U). By the
transitivity of F'(U), (z,2) € F(U) = uRw. O

6 Information Invariance

In social choice theory, assumptions about the measurability and compara-
bility of utility are formalized using invariance transforms of utility functions.
These invariance transforms specify the degree to which measures of utility
are meaningful and what kind of comparisons can be made across individ-
uals. Naturally, we can formalize assumptions about the measurability and
comparability of fitness in the same way.

We partition the set of admissible utility profiles into “information sets”
using the equivalence relation ~. All profiles within the same information
set are assigned the same ordering by the extensive social welfare functional.

An invariance transform is a vector of strictly increasing transformations
¢ = (¢}, ¢k, ..., ¢") such that for each profile U in Dy, U ~ ¢ o U, where
polU = (p1oUl,¢dolUs,...;¢" oU"), and U ~V <= F(U) = F(V),
YU,V € Dy.

We specify a set of admissible invariance transforms of utility profiles that
lead to informationally equivalent profiles.

Information Invariance with Respect to ®: Vu,v,u',v" € (R7*)", if
d¢ € ® such that v’ = ¢(u) and v' = ¢(v), then uRv <= u'Rv'.

Information Invariance with Respect to 7% (I;?): e @iff3pL, ..., /" €
R such that ¢ (t) = pit, Vij € 1.J.
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With @7%, utility is measured on a ratio-scale that is common across
individuals for a given planner, but these scales can be chosen independently
across planners. Ratios or percentage changes of utilities are comparable
across individual-planner pairs. Utility levels and differences are comparable
across individuals for a given planner, but not across planners. With @77,
it is meaningful to make statements such as: “According to this planner,
individual 1 has twice as much utility in alternative z as individual 2 has in

alternative y.”

7 Characterizing the Michod Measure

We now formally define the Michod measure using extensive social choice
theory. Recall that Michod’s model aggregates fitness by averaging the com-
ponents of fitness across individuals and then multiplying across the two
components. In the extensive social choice framework, this is equivalent to
summing across individuals in / and multiplying across the social planners
in J.

Michod Measure: R is the Michod Measure if and only if Vu,v, € (R7*)",

uRv <= HZuf > szf

jeJ el jeJ el

We begin the formal characterization of the Michod measure by defining
the axioms we will use.

Intraplanner Weak Pareto (WP;): Vu,v € (R7*)", if 3k € J such that
uf > oF Vi € I and u] = v}, Vij € I.J where j # k, then uPo.

Intraplanner Weak Pareto is an extensive variation of Weak Pareto, which
states that a strict increase in the utility of all individuals for every planner is
a social improvement. The intraplanner version is weaker and only requires
that a strict increase in the utility of all individuals for a given planner, while
the utility of individuals for all other planners remain the same.

Now we consider two interplanner anonymity axioms that prevent the
identities of the planners from being important in determining the social
ordering. The first axiom is an extensive social choice version of an axiom
introduced by Suppes (1966). For every permutation ¢ on J and any u €
(R, let o(u) = (u?W, ..., u7™).
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Interplanner Suppes Indifference (SI7): Vu € (R7*)", ulo(u).
Interplanner Suppes Indifference implies Interplanner Anonymity.

Interplanner Anonymity (A”): Vu,v € (R7*)" and for every permutation
oon J, uRv iff o(u)Ro(v).

The next axiom is separability, which prevents “unconcerned” planners
from influencing the social ordering. Vu € (R7*)" and VH C J, the restric-
tion of u to H is u|y := (u})jen.

Interplanner Separability SE’: Vu,v/,v,v" € (R7*)* and VH C J, if
ulg = v|g, W |g = Vg, ulpg = Wlpg, and v|pg = V| g, then uRv iff
u'Rv'.

In this definition, the planners in H are “unconcerned” while the planners
in J\ H are “concerned”.

Intraplanner Incremental Equity (IE;): Vu € (R7*)", V§ € R, Viy, iy €
I and Vj € J such that (u + 401} ;) € (R7)" and (u + d1L;) € (R}™)",

(w401 ;) I (u+ 61},;), where 1} is the vector x € R' with z;; = 1 and
Xgrjr = O,Vi/j/ 7é Z]

This axiom requires that we are indifferent between increasing by the
same amount the utility of one individual versus another, provided they are
paired with the same planner (Blackorby et al., 2002).

Before we state the characterization theorem for the Michod measure, we
present two lemmas.

Lemma 1 (Ooghe and Lauwers (2005), Lemma 3). An ordering R on (R7*)"
that satisfies SE” induces orderings R7 on R"™ such that Yu,v € (R7*)",

1 If (W), .. ul )RI(vl, ... vl) V¥j € J, then uRv.
2. If in addition, 35 € J s.t. v/ Py, then uPuv.

Lemma 2 (Multiplicative Principle, Ooghe and Lauwers (2005, A.4.a)).
Vu e (R7™)", Vi, k € J, andVy € Ry, we have ulv/, wherew’ = (u, ... yu/,
uk, oo um).

ey

2=
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uRv
= (ul,. o d UM R(, Lyt R o) (by I,7)
= (ul,. R uM R, L0 o) (bySIJ)
) 1 _ ,
= (ul, .y, = uM R LR 0™ (by I,7)
Y
) 1 _ )
= (ul, .y, = uM R LR ™) (bySIJ).
Y
Therefore, w'Rv’. Let v = u. It follows that u/Iw. O

We now state the characterization theorem for the Michod measure.

Theorem 2. A social welfare ordering R on (R7*)" is the Michod measure
iff R satisfies Information Invariance with Respect to @7} (I;"f" ), Intraplanner
Weak Pareto (WP;), Interplanner Suppes Indifference (SI’), Interplanner
Separability (SE” ), and Intraplanner Incremental Equity (1E;).

Proof. = 1Tt is easy to check that the Michod measure satisfies the axioms
stated. Let u,v € (R7*)" be given such that uwRv, where R is the Michod
measure.

e WP;: Let u,v € (R7*)" be given such that u] > v/, Vij € I.J and
uf > oF for some k € J. Then,

i 7
1> =112 v
jeJ i€l jeJ i€l
and hence uPv.

e SI7: Clearly the order in which we multiply the intraplanner sums does
not matter because multiplication is commutative.

(] SE‘]I If u]H = U‘H,ul|H = U,|H, U|J\H = 'U//‘J\H7 and U|J\H = U/’J\H7
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then

uRv < HZu{ EHqug

jed iel jeJ el
— H Zui > H va (because u and v coincide on j € H)
jeJ\H iel jeEJ\H i€l
] ]
= I Xw= 1%
JeJ\H i€l JEJ\H i€l
= H Z u? > H Z v?  (because v’ and v’ coincide on j € H)
jed iel jed el
< u'Rv.

o IE;: Let uy = (u+41 ;) and up = (u+ 01}

K3 K3

() — (z ) 1= Y ().

icl el il

2j) for some j € J. Clearly,

Therefore, uqlus.

e [77: Weneed to show that a transform ¢ has the property that uRv <=
¢(u)Ro(v) whenever ¢! (t) = 57t,Vij € I.J where 8, 3%,..., 6" € Ry,.
Suppose that ¢ is given, where gbg: t — (Bt. Then, for any u,v €
(R7*)™, we have

uRv < HZug EHZ@ZJ

jeJ el Jj€J el
— (I7) 2w (7)) I
jeJ jeJ el jeJ jeJ el

(because all the 4s are positive)

— H(@jzuz) zH(ﬁijZ>

= i€l =2 iel
a7 34y
= > Pu=]]> o
jeJ i€l jEJ i€l

> ¢(u)Ro(v).
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<= Let R be an ordering on (R7*)" that satisfies the axioms. By Lemma
1, R induces orderings R’ on R7*. Because SI’ implies A7, RI=R2=...=
Rr. Call this ordering R°. We can redefine the WP and IE axioms for this
smaller space. RO satisfies these versions of WP and IE, inherited from R.

Consider any planner j € J. Without loss of generality, we can suppose
that u] > u} > --- > u). Note that 3% u! — ks ul > 0 for all
k=1,2,...,n—1. By IE;, we have

W I° (%izn;ui,UQ,...,un—i-ul—%;n;ui)
7O (%;ui,%;ui,...,un—i—ul%—ug—%;ui)

i=1 i=1 i=1
Hence,
o 1 n 1 n
U]IO (ﬁ;ul”E;uJ .

Similarly, we have

I IO (%ZU“’%;%>

i=1
It then follows from WP; that

n

uR% <— zn:uz > ZU"‘
i=1 i=1

Thus, RO is the utilitarian rule.?
Now we want to show that if u,v € (R*)" are such that

12w =12 v

jeJ el jeJ el

2The preceding argument is adapted from the proof of Blackorby, Bossert, and Don-
aldson (2002, Theorem 10). Their proof is developed for an ordering on all of R™, and
needs some modification to deal with our restricted domain.
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then uRv.

Suppose such u,v € (R7*)" are given. Apply the multiplicative principle
in Lemma 2 (repeatedly, if necessary) to obtain «’ such that «/Ju and Vj € J,
S u? >3, vl Then we have u” Riv? for all planners j € J because R/
is the utilitarian rule. Because the rule is the same for all planners, we have
u'Rv by Lemma 1. Transitivity then implies uRv.

i Now suppose that [[;c; > ic; ul > [Lics 2 ier vl. We n_eed to show that
uPv. Using the Lemma 2, we can construct a v’ such that «'Tu and }_,_; u >
> ier V1, Vj € J. Because R? is the utilitarian rule, we have u" Pivi, Vj € J.
By Lemma 1, «/Pv. Transitivity implies uPuv.

O

8 Biological Interpretation

To translate the social choice framework into the biological context, we need
first to reinterpret the notation. The finite set of alternatives X can be
thought of as states of the universe over which the fitnesses of members of
the group might vary. Following Okasha, examples of alternatives in X might
be a particular allocation of resources among members in the group, or some
way of allocating tasks among members in the group. As before, we have
a set of individuals or members in the group, I = {1,2,...,m}. Instead of
“planners,” we now have a set of components (of fitness) J = {v,b}, com-
prised of viability (v) and fecundity (b). (Note that the framework allows for
any number of fitness components) Hence, the individual-component couple
(1) in this context represents a specific component of fitness for a member
of the group. For each component of fitness j € J, there is a vector valued
function U7 : X — R7** that specifies the value of this component for each
individual. A profile U = (U, UY,..., U2, UL, US, ... Ut is a 2m-tuple that
specifies the viability and fecundity of each individual in the group. An ex-
tensive group fitness functional F' (or “rule,” for short) maps a profile of
these functions to a group fitness ordering on X.

The welfarism theorem can be stated for extensive group fitness function-
als. An extensive group fitness functional satisfies U,, IIA, and PI if and
only if the ranking of any pair of alternatives depends only on the individual
fitness components in those alternatives, and any additional information is
irrelevant. When welfarism is satisfied, we can work directly with profiles
of v and b instead of fitness functions. As noted earlier, we exclude from
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consideration the possibility that all individuals have zero fecundity and the
possibility that all individuals have zero viability.

Okasha claims that the Michod measure violates Pareto Indifference (as
well as Independence of Irrelevant Alternatives). Because his framework does
not distinguish between the components of fitness at the individual level, he
uses the non-extensive version of Pareto Indifference, which states that if
all individuals have the same fitness across two alternatives, then the social
welfare functional must rank them as indifferent. In his paper, Okasha shows
that when two groups of cells have exactly the same cell fitnesses, one group
can nevertheless have higher group fitness. This is because the Michod mea-
sure “rewards” groups for specialization. This can occur when the individual
cells have the same fitness, but they differ in viability and fecundity. When
the individual cells also have the same viability and fecundity, the groups of
cells have equal group fitness. Because the extensive version of the axiom
requires the components of fitness for individuals to coincide across the al-
ternatives, the Michod measure satisfies the axiom. Similarly, the Michod
measure does not violate the extensive version of Independence of Irrelevant
Alternatives, so it is welfarist, when viewed from the perspective of extensive
social choice theory.

Unlike the definition of group fitness as the sum or average of individual
fitnesses, the Michod measure does not actually require entities at the in-
dividual level to possess fitness in the conventional sense. According to the
Michod measure, the concept of fitness makes sense at the group level even
if it does not at the individual level. The aggregation index is well-defined,
but it is unclear to what extent it is appropriate.

Now we apply the fitness interpretation to the axioms characterizing the
Michod measure. The degree to which these axioms are reasonable in the
evolutionary setting provides additional insight into the usefulness of the
Michod measure.

e Information Invariance with Respect to ®%: Ratio-scale measur-
ability and full comparability across components of fitness means rela-
tive measures of v and b are meaningful, not absolute ones. It implies
that the components of fitness are measured in the same way we mea-
sure length, by units with a fixed ratio and a common origin between
them, like inches and centimeters. Specifically, every individual’s via-
bility (fecundity) is measured on a common ratio scale, and it is possible
to compare viability (fecundity) levels across individuals. Moreover, it
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is meaningful to make statements such as “individual 1 possesses twice
as much viability in alternative x as individual 2 possesses in alternative
y,” because this type of ratio is preserved by the similarity transforms
we allow. Okasha claims that ratio-scale measurability and full compa-
rability is the most appropriate invariance assumption for fitness. He
does not, however, distinguish between the components of fitness, so
he does not need to place additional measurability and comparability
assumptions between viability and fecundity.

According to IT, the ratio-scale by which viability and fecundity
can be measured is not common across the two components of fitness.
In other words, it is not possible to make comparisons between the
viability levels of one individual and the fecundity levels of another
individual. Non-comparability across the two components of fitness
agrees with our intuition that few meaningful comparisons can be made
between v and b. It is, however, meaningful to compare percentage
changes in viability and fecundity across individuals, because these
ratios are preserved by independent similarity transforms. This comes
from the fact that proportional changes exist independently of the unit
used to measure the fitness components.

Grafen (2007) discusses the concept of fitness as part of an at-
tempt to formalize the fitness optimization problem. Grafen maintains
that fitness is the quantity to be maximized in the formal optimiza-
tion problem. He argues that fitness, like the concepts of weight or
length, should be measured on a ratio scale, because each individual’s
fitness represents “the extent of its contribution to the gene pool of the
species.” So one individual has “twice as much fitness” in one alterna-
tive as another individual has in a different alternative is a meaningful
statement, because the former is making twice the contribution. This
type of statement is only meaningful if the ratios Uy (x)/Uf(y) and
UP(x)/U!(y) are preserved by the set of invariance transforms we al-
low. Furthermore, Grafen claims that the quantity that is maximized
must be defined as fitness relative to the mean population fitness. We
can reasonably extend these claims to the components of fitness, so I’}
indeed seems to be the appropriate set of invariance transforms to use
on the components of fitness.

e Intraplanner Weak Pareto: For any two profiles of fitness compo-
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nents, if every individual has strictly higher viability (or fecundity) and
every individual has equal fecundity (or viability) in the first profile,
then the first profile is strictly preferred over the second. In other
words, holding one component of fitness constant and strictly increas-
ing the other component across all members in the group increases
overall group fitness. Intuitively, this axiom seems reasonable for sim-
ple collectives of cells such as volvocine algae, the organisms modeled
by Michod et al. (2006). Volvocine algae colonies reproduce by the di-
vision of the reproductive function cells. Since the colonies are clonal,
reproduction in the collective sense depends directly on the fecundity
of the individual cells. However, as is the case with many of the axioms
below, this property is likely inappropriate for many cases of multi-level
selection type 2 (MLS2). Recall in MLS2, group fitness is a measure of
the reproductive success of the collective itself. Therefore, the appro-
priateness of any fitness aggregation procedure depends on the manner
in which groups reproduce more groups. There are a variety of modes
of group reproduction, and many of them are not summarized by the
reproductive and survival functions of the individuals in the collective.
For example, consider the case of species selection. If we think of indi-
viduals as members of the species, it is unclear that strictly increasing
the survival functions of all members in the species increases the num-
ber of new species propagated by the first one.

Interplanner Suppes Indifference: Permuting the components of
fitness (reversing v and b) does not affect overall fitness. This implies
that survival functions, v, and reproductive functions, b, contribute
equally to the fitness of the group. This axiom is reasonable in the sim-
ple model where v might be the probability of surviving to reproductive
age and b is the number of offspring produced at the reproductive age.

Interplanner Separability: Since we have only two “planners” in
the fitness problem, v and b, separability means that if one component
of fitness is preserved across alternatives, then the overall ranking of
alternatives should correspond with the conditional ranking based only
on the other component. This axiom, too, seems intuitively reasonable
in the simple volvocine algae case. However, in other cases of MLS2,
we run into the same problems discussed above in reference to Intra-
planner Weak Pareto. Namely, the relationship between survival or
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reproductive functions at the individual level and the same functions
at the group level is not clear.

e Intraplanner Incremental Equity: Overall group fitness is indif-
ferent between increasing one component of fitness by some amount
for one individual and increasing the same component of fitness by the
same amount for another individual in the group. This is a direct result
of a simplifying assumption in the Michod model, wherein individual
contributions to group viability and group fecundity are additive. For
example, this assumption holds for simpler forms of volvocine algae in
which cells stay together after cell division (Michod et al., 2006). Ad-
ditivity makes sense initially when cells begin to form groups, when,
for example, the group motility, the ability to move actively and spon-
taneously, is simply the sum of the individuals’ motility. However,
this assumption breaks down as individuals specialize and the group
approaches complete reproductive division of labor. For example, in-
creasing the fecundity of a reproductive cell might have a greater im-
pact on overall group fitness than increasing the fecundity of a cell
specialized in survival-enhancing vegetative functions. This property
is problematic even for some species of volvocine algae, in particular
those with higher degrees of specialization.

The Michod measure also satisfies the following continuity axiom

Continuity (C): Vu € (R7*)", the sets {v € (R?*)" | (v,u) € R} and
{v e (R)™ | (u,v) € R} are closed with respect to Euclidean topology.

As a consequence, small changes in the fitness component profiles result in a
small change in the value of the Michod measure. While the Michod measure
satisfies this axiom, it is not needed in the characterization theorem.

Note that Intraplanner Weak Pareto is stronger than requiring Weak
Pareto over the entire space (R7*)". We cannot use the latter to generate
a utilitarian rule over the smaller space R because WP specifies how we
rank two profiles only when all individual-planner pairs are strictly better
off in one profile. It does not specify how two profiles are ranked when
individual-planner pairs are strictly better off for one planner and equally
well off for all other planners. WP; is implied by Strong Pareto, but Strong
Pareto is incompatible with IT% and C on (R7*)" (Tsui and Weymark, 1997,
Theorem 1).
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9 Conclusion

This paper uses extensive social choice to axiomatize the Michod model for
defining group fitness. We have followed Okasha’s application of social choice
theory to explicate the relationship between individual fitness and group fit-
ness. Okasha’s social choice version of the Michod measure violates Pareto
Indifference, and he claimed that the Pareto-violation is connected to Mi-
chod’s notion that group fitness becomes “decoupled” from individual fitness
during evolutionary transitions. We have shown that the Pareto-violation is
a result of the fact that the components of fitness are not encoded separately
at the individual level. In the extensive social choice framework, the Mi-
chod measure does not violate Pareto Indifference and satisfies the welfarism
axioms.

The axiomatization of the Michod measure allows us to parse out proper-
ties that define the model. In particular, the measurability and comparabil-
ity axiom aligns with evolutionary theorists’ notions of the fitness measure.
Many of the other axioms seem intuitively reasonable, but they rely on the
idea that viability and fecundity at the individual level can be aggregated to
describe the reproductive and survival functions of the collective. This does
not always hold, particularly in multi-level selection type 2 problems, when
we are interested in how groups reproduce to form more groups. Finally, the
Incremental Equity axiom reveals a weakness in the assumption that the via-
bility and fecundity are additive across individuals. This axiom likely breaks
down in the later stages of the evolutionary transition when there is a higher
degree of reproductive division of labor.

Okasha chose to examine the Michod model in particular because it is
one of the only explicit definitions of group fitness in the selection literature
that is not simply a sum or average over the individuals. The parallels
between utility theory and fitness theory suggest that the extensive social
choice framework we have employed here might be used to analyze other
fitness aggregation procedures similarly.
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