
Price Discrimination in Online Marketplaces

Timothy Ose

April 19th, 2017

Abstract

This paper looks at the impact IP address location data has on the prices customers see

while shopping at various online retailers, within the United States. The paper analyzes

data from Amazon, E-Bay, Overstock.com, and Wal-Mart.com and regarding 128GB

iPad Air 2s, 6 foot unbranded HDMI Cables, and generic 500 sheet reams of 8.5 X 11

unlined printer paper. First, the paper looks at where, if at all, customers would see

different prices on the same item. Next, it looks at search results, recommended products,

and suggested 3rd party seller options to see if this data is targeted by location. Finally,

where search and/or recommended product targeting is found to occur, the paper

attempts to determine if the targeted search results have a statistically significant

difference in price from the product initially being sought. Using an OLS regression, the

paper finds no evidence for price discrimination on any of the products analyzed within

the study, and finds no evidence of 3rd party seller targeting as well. One retailer, E-Bay,

is found to target search results and product recommendations to customers visiting the

site from Alaska or Hawaii. Furthermore, the paper finds statistically significant

evidence that the prices of alternate search results and recommended products are higher

than the item being sought, though confounding factors may exist.

1. Introduction

1.1 Overview

 In today’s world, computers and many of the advantages they bring are becoming an ever

larger part of the economy. Specifically, the advent of big data computing has allowed

companies to obtain and analyze information that would have been impossible to collect in the

past. This type of computing works by feeding a computer program an enormous amount of data,

without a predetermined theoretical model for analysis, and allowing the program to search for

patterns and trends. Recently, this kind of computing has begun to revolutionize a number of

fields, but none more profoundly than online shopping and online advertising.

With the enormous amount of information computers are able to store about your

activity, from previous online purchases to what links you have followed on social media sites,

companies are able to obtain the quantity of data necessary for effective big data computing.

Thus, these companies are able to ensure that you are shown advertisements for things you are

more likely to be interested in, are able to direct you to products you are more likely to buy, and

perhaps are able to change the listed prices in order to increase their profits. For example, your

IP address, internet cookies, and browser fingerprint are all sent to a website you choose to visit.

All of this information can then be compiled and compared to similar data received from other

computers that visited the same website, allowing companies to predict your activity. My study

will attempt to track the impact various IP addresses have on the prices you see for certain

common products on leading online retail websites. It will also determine if this data has any

impact on the results of searches, recommended products, and 3rd party seller options you are

shown.

1.2 Importance of the Issue

This issue is important for far more than academic reasons; knowledge of what impacts

these fluctuations could have a significant impact upon the lives of many who use online services

every day. Price discrimination based on big data analyses could have a profound impact on the

lives of many in our society, and a knowledge of what it targets and where it is prevalent would

be immensely valuable. If this kind of price targeting is indeed widespread, individuals that are

giving up larger amounts of personal information would likely not be seeing the best possible

prices on items they would like to buy while online shopping. A knowledge of which companies

target this information, which specific data points they target, and how much these targets impact

prices could make informed shopping much easier and could allow people to receive much better

prices on their purchases. Experiencing the online environment through a carefully crafted filter

dramatically cuts your ability to discern the truth, and being able to understand and escape that

filter would be very valuable for anyone who wants a more authentic and well-rounded view of

what online marketplaces can offer.

2. Previous Literature

Price discrimination in online marketplaces has been explored, however it has been

looked at primarily with focuses very different from my own. One study was conducted by the

American Marketing Association and tried to determine if online car listings would adjust prices

based on a consumers’ use of various online infomediary websites (Agarwal, et. all). These price

changes would be based on a specific theory, however, as car companies would adjust these

prices having already made the assumption that consumers who visited infomediary websites

would be more informed. It does not attempt to track price changes based on patterns in

seemingly insignificant data, as are discerned in a big data analysis. Another study, conducted by

the University of Pennsylvania, looked at price discrimination in online travel markets (Clemons,

et. all). The goal of this study, however, was simply to see if such discrimination exists, not to

track the price changes as a function of any information given to the websites by a consumer’s

computer. The specific focus of my study on tracking changes in price due to changes in

information that could be easily used in big data computing allows me the opportunity to

uncover unique results.

Recently, ProPublica conducted a study similar to this one, though covering the prices

shown for services, rather than products. Specifically, the study looks at the prices shown to

customers for Princeton Review SAT help sessions by ZIP code (Larson et. all). The study finds

as much as $1,800 dollars in variation of cost based on income, and also finds that higher prices

are almost twice as likely to impact Asian-American residents, indicating potential racial

profiling (Larson et. all). While this study is interesting, there are numerous reasons why online

price discrimination is more likely in services, such as this. For one, this is a very specialized

product that likely has few substitutes. Furthermore, while shipping costs of products such as

iPads and HDMI cables are trivial, the travel costs required to attend a prep class in a different

ZIP code are almost certainly non-trivial. The existence of this price discrimination, though, does

highlight the importance of determining if it occurs in product markets.

Another interesting study conducted at MIT looks at prices for numerous products

compared to their prices at physical stores (Clemons et. all). The study finds that prices are

identical most of the time, but does find variability by country and several other factors. While

not the focus of the study, the researchers also found no evidence of price variability by IP

address (Clemons et. all).

Tangentially related to this is the issue of advertisement targeting. In this field, however,

more definitive evidence of targeting exists. While few have attempted to untangle what exactly

firms choose to target, many other studies have been conducted. Some issues that have been

explored are to what extent this kind of advertising violates personal privacy, and is this kind of

advertising actually viable and effective. In terms of personal privacy, researchers at Stanford

and NYU built a study that attempts to determine if tracking algorithms used to obtain personal

data overstep any ethical or legal boundaries (Barocas, et. all). This study has a very unique

goal—it seeks to uncover potential wrongdoings rather than seeking to understand the inner

working of the algorithms. Also, the 39th Hawaii International Conference on System Sciences

published a paper using data mining to determine what kind of information is good at predicting

the purchase patterns of a consumer (Cheng et. all). While study has been conducted on many

problems similar to the one I am approaching, results in this experiment would still provide

significant new insight into the way online sellers conduct their business.

3. Methodology

3.1 Previous Attempts and Failures

 Initially, my experiment was intended to be much different than it is now. The focus was

spread out between advertisement targeting and price discrimination and intended to pinpoint the

factors responsible for both, rather than focus on a specific factor (e.g. IP address). I began by

developing a regression in which I had 4 dummy variables for IP Location (international vs US),

online fingerprint, cookies, and purchase history at the various websites being explored. If the

dummy variable was a 1, then the website would receive my information, if it was a 0, the given

information would be hidden. Data for IP address was randomized and the status (international

or domestic) was determined later. The statistical models that were analyzed were as follows:

μi,j = β1*C + β2*H + β3*F + β4*L+ K

where μi,j is the mean price of item i at website j; C is the binary cookies bucket; H is the binary

purchase history bucket; F is the binary fingerprint bucket; L is the binary bucket IP address

location; and K is a constant intercept term, for price discrimination; and

Pi,j = β1*C + β2*H + β3*F + β4*L + K

where Pi,j is the proportion of adds in category i at website j; C is the binary cookies bucket; H is

the binary purchase history bucket; F is the binary fingerprint bucket; L is the binary bucket IP

address location; and K is a constant intercept term for advertisement targeting.

 This analysis was meant to determine which factor had the biggest impact on price and/or

on the proportion of advertisements you would see from various categories. My exploration into

this analysis hit many roadblocks with developing the required code to gather the data,

determining if all of the variation was occurring correctly, and with the eventual analysis of the

results. While not successful, this line of inquiry did lead me to develop my final methods of

analysis.

3.2 Data Collection

 My data collection methodology was driven by the python webbrowser package. I

developed a python script (available in the appendix of the paper) that would interact with the

command line capabilities of a VPN system to visit the webpages I needed. These webpages

were the page of search results for each product at each website, and the actual product page for

each product at each website. Once the algorithm had pulled up each page, I recorded the data

into an excel spreadsheet. Next, I had the algorithm revisit each of the webpages and checked my

recorded data against the new pages. If variation was found between identical pages on the

revisit, this could indicate that variation seemingly due to IP was actually due to the time of the

visit, even if the time difference was very small. No variation was ever found on revisits.

 From each search result page, I collected the price and short description of the top 5

results. From each product page, I first recorded the price of the product, then I recorded the top

5 recommended products and their prices. Finally, on Amazon only, I recorded the rankings of

the top 3 options of 3rd party sellers and any available data on their shipping prices to the IP

being used.

 The websites I visited were Amazon, Overstock.com, E-Bay, and Wal-Mart.com. Target

was initially included in the data collection, but rejected the requests from many of the VPN IP

addresses. For consistency, I omitted Target from my analysis. I picked these websites as I felt

they gave a representative sample of the various kinds of firms that conduct online retail sales.

Further, the products I analyzed were the 128 GB iPad Air 2, 6 foot unbranded HDMI cords, and

500 sheet reams of 8.5 X 11 unlined generic printer paper. I thought the various prices, branding

levels, uses, and customer bases would provide an interesting window into the online

marketplace as a whole. All data collection was done in incognito browsing with cookies turned

off as I did not want browsing data generated during the data collection to impact site visits later

on in the data collection process.

3.3 OLS Regression

 My final regression model was based entirely on IP address and used a series of dummy

variables. The exact model was as follows:

Pi, j = β1*L1 + ... + β20*L20 + K

where Pi, j is the price of item i at site j, Lm is the dummy variable corresponding to IP location m,

βm is the corresponding OLS coefficient, and K is a constant intercept term. The locations of

each dummy can be found on the following map and were chosen in the interest of geographic

diversity and under the constraint of what was available through the VPN. A table listing all

locations follows:

Location 1 Anchorage, Alaska

Location 2 Phoenix, Arizona

Location 3 Los Angeles, California

Location 4 San Francisco, California

Location 5 Wilmington, Delaware

Location 6 Miami, Florida

Location 7 Atlanta, Georgia

Location 8 Honolulu, Hawaii

Location 9 Chicago, Illinois

1

2 3

4

5

6

7

8

9 10

0
11

12

13

14

=4

15

16

17

18

19

20

Location 10 Des Moines, Iowa

Location 11 Louisville, Kentucky

Location 12 Boston, Massachusetts

Location 13 St. Paul, Minnesota

Location 14 Billings, Montana

Location 15 Las Vegas, Nevada

Location 16 New York City, New York

Location 17 Portland, Oregon

Location 18 Nashville, Tennessee

Location 19 Dallas, Texas

Location 20 Washington, DC

3.4 Search, Recommended, and 3rd Party Sellers

 The data for search result, recommended product, and 3rd party seller differences,

collected as described above, is purely qualitative. As such, determining if these differences exist

did not require any method of statistical analysis. I compared results across locations and noted

any differences I found. While developing a method of rigorous analysis for this may have been

worthwhile had substantial variability existed, I found almost total homogeneity except in a few

cases, as will be discussed in the results section.

3.5 Recommended Products Analysis

 My final analysis was to look at variation in search and recommended products, where

they existed, to determine if there was a significant difference in price between the product being

sought and other search results given or products recommended. I ran this analysis only where I

found evidence of variability in the suggested product and/or search result areas for several

reasons. First, if the firm had shown willingness to target IP address, then, in my opinion, there

would be a higher likelihood that that firm would be willing to use search results to encourage

customer to by higher priced products. Also, and much more importantly, without any variability

in product recommendation or search results, I would have been running this analysis on a

sample with N = 5, which is far too small for any meaningful result.

 First, I looked at recommended products and, for each product individually, conducted a

single sample t test against H0: The mean of reccomended product prices is equal to the price of

the product being sought. This should determine if the price of the primary product we selected

is randomly sampled from the distribution of the search results/product recommendations. The

sample used was the set of unique products showing up in recommendations. While doing this, I

did not include accessories (e.g. iPad cases) as this would skew the data away from what I was

trying to measure: do the product recommendations attempt to get you to buy a nicer version of

the product you are looking for? I conducted this analysis for each product individually, and then

for all 3 together by normalizing price based on the mean price of all products including the

actual product being sought. I then conducted the same analysis, again for each of the products,

based on the prices of other items that came up in the search results, and finally conducted the

analysis on the set including both reccomended products and search results.

4. Results

4.1 Results of Failed Analysis

 I was able to gather and analyze data for one iteration of my previous experiment, but ran

into many issues with finding any relevant results and with confidence in the results I did find.

For example, while it is well known that many firms target advertising, my method of looking at

the proportion of advertisements from various categories was unable to capture this targeting

Therefore, any results in this area were unable to achieve their goal of determining what firms

focused on when targeting advertisements. With regard to price discrimination, the binary bucket

for location did introduce variability when looking at international IPs but this was likely entirely

due to exchange rate volatility rather than price discrimination. As such, my results in that

section would have been misleading at best. With these setbacks in mind, I developed my final

experiment which I believe effectively measures variability only due to IP address and answers

the question it is trying to ask.

4.2 Summary Statistics

 The following tables show the average price on each item in question, as well as the

standard deviation for that price. Data is broken out by retailer.

The following table shows mean price and standard deviation data for the product

recommendations associated with each product. Data is structured in the same way as the

previous table.

Amazon Overstock E-Bay Wal-Mart

iPad $444.99 $664.62 $439.00 $479.95

St Error 0.00 0.00 0.00 0.00

HDMI $5.99 $4.49 $4.00 $4.99

St Error 0.00 0.00 0.00 0.00

Paper $7.99 $17.49 $6.67 $7.49

St Error 0.00 0.00 0.00 0.00

The fact that the Amazon values (and Wal-Mart to a lesser extent) are substantially more

varied from the prices of the products in this table is no accident. While many of these firms

focused their reccomended products sections on recommending other similar products, Amazon

uses the section primarily to recommend related products that would be purchased with the initial

product in question. For example, Amazon puts cases reccomended with iPads, TVs

reccomended with HDMI cords, and printers reccomended with paper. The low standard

deviation for E-Bay’s paper recommendations is due to the fact that E-Bay primarily

reccomended different colors of the same brand of colored paper, which I treated as distinct

products. Also, E-Bays low mean value for iPads is due to the prevalence of used products rather

than recommending less expensive accessories.

The final table gives the same information as the previous two for search results.

Amazon Overstock E-Bay Wal-Mart

iPad $24.16 $495.50 $280.77 $111.99

St Error 14.68 47.89 66.78 66.13

HDMI $42.93 $6.74 $8.00 $7.12

St Error 40.93 1.32 6.29 4.93

Paper $33.22 $31.66 $19.50 $9.24

St Error 23.39 22.21 1.66 2.87

Amazon Overstock E-Bay Wal-Mart

iPad $463.59 $250.02 $389.06 $420.24

St Error 59.01 313.86 84.01 57.21

HDMI $8.60 $9.51 $6.60 $6.57

St Error 2.39 5.25 6.17 2.70

Paper $10.13 $25.21 $12.20 $7.89

St Error 2.95 13.06 6.04 3.63

 The most notable result in this table is the low iPad mean value for Overstock which is

due to the fact that they do not carry many versions of iPads causing accessories to show up high

in the search rankings on that website.

4.3 Regression Results

Each regression shows no evidence of any kind of price variability based on IP Address;

in fact, not one price change due to IP occurred at any point throughout the data. The standard

error was found to be zero for each product at each retailer. This makes us conclude that it is

highly unlikely that any of these firms engage in location based price discrimination on any of

these products.

4.4 Search, Recommended, and 3rd Party Seller Results

 For Amazon, Overstock, and Wal-Mart all search results, recommended products, and 3rd

party seller suggestions were identical to the position of each these items occupied on the

webpage. For E-Bay, the same was true within the lower 48 states, however in Alaska and

Hawaii substantial variation occurred in both the rankings of the products listed and the actual

products appearing for both search results and reccomended products. For iPads, variability

occurred in both of these categories. For HDMI cords, only search variability was found, and for

paper, only product recommendation variability was found. While only 2 IPs showed any of this

variability, the fact that both are outside the lower 48 states indicates that it is unlikely this

variability is due to chance and may be due to the fact that individual sellers on E-Bay do not

have the economies of scale to make shipping a trivial cost to remote locations. As such, E-Bay

may downgrade single-item seller products within the search results and product

recommendation in order to avoid cancelled transactions due to high shipping costs.

4.5 Recommended Product Analysis Results

 In the following results I compared the price of the primary product sought (e.g. the iPad

Air 2) to the distribution of the prices of the 1) recommended products 2) search results for that

product 3) and a compilation of the two. The results of my one sample T-Test with H0: The mean

of recommended product prices is equal to the price of the product being sought follow:

Reccomended Products:

Search Results:

Compilation:

 This data shows that, despite the significant downward statistical pressure from iPads, E-

Bay does, in general, try to show higher priced items in the search results and recommendations

on their website. The complied indexed results are significant beyond the 1% level, indicating

strong evidence that EBay does use the search results and product recommendations as a way to

upsell customers.

4.6 Discussion

 While I think the conclusions regarding IP address targeting are very convincing, there is

more research that could be done regarding the other tests and issues I looked into. First, while I

found that, for these products, differences occurred in search results outside the lower 48, it

would be worth testing to see if this result hold for all products in general. Also, adding other IP

addresses outside of the US could provide interesting data. If more research was to be done in

this area, a way to quantify differences in search results or product recommendations would need

to be developed. An option would be to look at a set of products that show up in the search for

another product and see if there is a statistically significant difference in the ranking they have in

the search results for that product based on location. This could be repeated for numerous

products and search results in order to get a better idea of if this difference occurs with all

products outside the lower 48 states.

 Furthermore, while very significant, the data regarding the price differences in search

results and product recommendations could be improved upon. Both paper and HDMI cords are

fairly low cost products in their category so it is hard to even think of lower priced products that

would show up in a search for either one. These products positioning within their submarkets

may be skewing the data. To see if this kind of targeting is occurring overall, looking at a large

basket of items and doing the same analysis could potentially isolate for the market position of

each individual product and give a more robust suite of results.

5. Conclusion

 Using data gathered specifically for this analysis, we can conclude that there is no

evidence of online marketplaces, linked to physical stores or otherwise, targeting IP addresses

with different prices. In fact, no variation at all was observed in listed price. Beyond that

however, this paper did determine that E-Bay may change the search results and product

recommendations seen by those in remote areas, likely do to the high impact shipping costs can

have on the small firms or individuals who use E-Bay as their marketplace. While there is not

have enough data to determine if this kind of search targeting is widespread, it seems to exist

frequently outside of the lower 48 states.

 Finally, by looking at differences between the prices of the products we were looking for

and the other search results and product recommendations found when looking for those

products, this paper found evidence that E-Bay attempts to show search results and recommend

products with higher prices than the product being sought. While there are potential confounding

factors, further research in this area could conclude whether or not search targeting is used to

encourage customers to purchase higher value products.

Works Cited

Cavallo, Alberto F. Are Online and Offline Prices Similar? Evidence from Large Multi-Channel

Retailers. National Bureau of Economic Research, Mar. 2016. Web. Apr. 2017.

Clemons, Eric K., Il-Horn Hann, and Lorin M. Hitt. "Price Dispersion and Differentiation in Online

Travel: An Empirical Investigation."Management Science. INFORMS, 1 Apr. 2002, Web. 25

Apr. 2016.

Larson, Jeff, Surya Mattu, and Julia Angwin. "Unintended Consequences of Geographic

Targeting." ProPublica (2016): n. pag. Web.

Toubiana, Vincent, Arvind Narayanan, Dan Boneh, Helen Nissenbaum, and Solon Barocas. "Adnostic:

Privacy Preserving Targeted Advertising." Proceedings Network and Distributed System

Symposium, Mar. 2010. Web.

Viswanathan, Siva, Jason Kuruzovich, Sanjay Gosain, and Ritu Agarwal. "Online Infomediaries and

Price Discrimination: Evidence from the Automotive Retailing Sector." AMA Journals.

American Marketing Association, Jul. 2007. Web. 25 Apr. 2016.

Yang, Wan-Shiou, Jia-Ben Dia, Hung-Chi Cheng, and Hsing-Tzu Lin. "Mining Social Networks for

Targeted Advertising." Hawaii International Conference on System Sciences, Jan. 2006. Web. 25

Apr. 2016.

6. Appendix – Python Scripts

6.1 iPad Data Gathering

import webbrowser as web

##Products are iPad Air 2 128 GB Space Gray, 500 Sheet ream of paper, 6 foot HDMI

cord

##iPad Air 2 128 GB Space Gray

##Pure Online Retailers

##Amazon

web.open_new('https://www.amazon.com/s/ref=nb_sb_noss_2?url=search-

alias%3Daps&field-keywords=ipad+air+2+128+GB&rh=i%3Aaps%2Ck%3Aipad+air+2+128+GB')

web.open_new_tab('https://www.amazon.com/Apple-MGTX2LL-9-7-inches-Tablet-

Space/dp/B00OTWQXSI/ref=sr_1_2?ie=UTF8&qid=1491934470&sr=8-

2&keywords=ipad+air+2+128+GB')

##Overstock

web.open_new_tab('https://www.overstock.com/search?keywords=ipad+air+2+128gb&taxon

omy=sto2&ralt=sto22,sto40,sto7&TID=AR:TRUE&searchtype=Header')

web.open_new_tab('https://www.overstock.com/Electronics/Apple-iPad-Air-2-64GB-

Gold-with-Accessories-

Bundle/10747055/product.html?refccid=JKBZJJFYEJ6ZGV2ELDGXGL7LPQ&searchidx=1')

##E-Bay

web.open_new_tab('http://www.ebay.com/sch/i.html?_from=R40&_trksid=p2050601.m570.l

1313.TR12.TRC2.A0.H0.Xipad+air+2+128gb.TRS0&_nkw=ipad+air+2+128gb&_sacat=0')

web.open_new_tab('http://www.ebay.com/itm/Apple-iPad-Air-2-128GB-Wi-Fi-9-7in-

Space-Gray-/292084446753?hash=item440196f621:g:mN8AAOSwc49Y7tn5')

##Store Websites

##Wal-Mart

web.open_new_tab('https://www.walmart.com/search/?query=iPad%20air%202%20128%20GB'

)

web.open_new_tab('https://www.walmart.com/ip/Apple-iPad-Air-2-MGTX2LL-A-9-7-

inches-128-GB-Tablet-Space-Gray/160348958')

web.open_new_tab('http://geoip.hidemyass.com/')

6.2 HDMI Data Gathering

import webbrowser as web

##6-foot HDMI

##Pure Online Retailers

##Amazon

web.open_new('https://www.amazon.com/s/ref=nb_sb_noss_2?url=search-

alias%3Daps&field-keywords=6+foot+hdmi+cord')

web.open_new_tab('https://www.amazon.com/AmazonBasics-Rated-Wall-Installation-

Cable/dp/B014I8TIV6/ref=sr_1_1?ie=UTF8&qid=1492466602&sr=8-

1&keywords=6+foot+hdmi+cord')

##Overstock

web.open_new_tab('https://www.overstock.com/search?keywords=6+foot+HDMI+cable&Sear

chType=Header')

web.open_new_tab('https://www.overstock.com/Electronics/INSTEN-AccStation-6-foot-

High-Speed-M-M-HDMI-

Cable/6370343/product.html?refccid=O5MABO552ZMIOBSILC2NF55X4A&searchidx=3')

##E-Bay

web.open_new_tab('http://www.ebay.com/sch/i.html?_from=R40&_trksid=p2050601.m570.l

1313.TR0.TRC0.H0.X6+foot+hdmi+cor.TRS0&_nkw=6+foot+hdmi+cord&_sacat=0')

web.open_new_tab('http://www.ebay.com/itm/6FT-HDMI-CABLE-CORD-CONNECT-TV-TO-

LAPTOP-COMPUTER-PC-DVD-BLU-RAY-MEDIA-PLAYER-

/122449944717?hash=item1c8295e08d:g:q28AAOSwcdRY8-CQ')

##Store Websites

##Wal-Mart

web.open_new_tab('https://www.walmart.com/search/?query=6%20foot%20hdmi%20cord')

web.open_new_tab('https://www.walmart.com/ip/FosPower-xFFFD-4x1-HDMI-Switcher-4-

port-Splitter-with-IR-Remote-3D-4Kx2K-1080p-with-Picture-in-Picture-PiP-

Function/40654441')

web.open_new_tab('http://geoip.hidemyass.com/')

6.3 Paper Data Gathering

import webbrowser as web

##6-foot HDMI

##Pure Online Retailers

##Amazon

web.open_new('https://www.amazon.com/s/ref=nb_sb_noss_2?url=search-

alias%3Daps&field-keywords=6+foot+hdmi+cord')

web.open_new_tab('https://www.amazon.com/AmazonBasics-Rated-Wall-Installation-

Cable/dp/B014I8TIV6/ref=sr_1_1?ie=UTF8&qid=1492466602&sr=8-

1&keywords=6+foot+hdmi+cord')

##Overstock

web.open_new_tab('https://www.overstock.com/search?keywords=6+foot+HDMI+cable&Sear

chType=Header')

web.open_new_tab('https://www.overstock.com/Electronics/INSTEN-AccStation-6-foot-

High-Speed-M-M-HDMI-

Cable/6370343/product.html?refccid=O5MABO552ZMIOBSILC2NF55X4A&searchidx=3')

##E-Bay

web.open_new_tab('http://www.ebay.com/sch/i.html?_from=R40&_trksid=p2050601.m570.l

1313.TR0.TRC0.H0.X6+foot+hdmi+cor.TRS0&_nkw=6+foot+hdmi+cord&_sacat=0')

web.open_new_tab('http://www.ebay.com/itm/6FT-HDMI-CABLE-CORD-CONNECT-TV-TO-

LAPTOP-COMPUTER-PC-DVD-BLU-RAY-MEDIA-PLAYER-

/122449944717?hash=item1c8295e08d:g:q28AAOSwcdRY8-CQ')

##Store Websites

##Wal-Mart

web.open_new_tab('https://www.walmart.com/search/?query=6%20foot%20hdmi%20cord')

web.open_new_tab('https://www.walmart.com/ip/FosPower-xFFFD-4x1-HDMI-Switcher-4-

port-Splitter-with-IR-Remote-3D-4Kx2K-1080p-with-Picture-in-Picture-PiP-

Function/40654441')

web.open_new_tab('http://geoip.hidemyass.com/')

6.4 iPad OLS

##iPad-Amazon

import pandas as pd

import statsmodels

import statsmodels.formula.api as sm

dt = pd.DataFrame({"Price": [444.99, 444.99, 444.99, 444.99, 444.99, 444.99,

444.99, 444.99, 444.99, 444.99, 444.99, 444.99, 444.99, 444.99, 444.99, 444.99,

444.99, 444.99, 444.99, 444.99, 444.99, 444.99, 444.99, 444.99, 444.99, 444.99,

444.99, 444.99, 444.99, 444.99, 444.99, 444.99, 444.99, 444.99, 444.99, 444.99,

444.99, 444.99, 444.99, 444.99],

 "loc1": [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc2': [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc3': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc4': [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc5': [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc6': [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc7': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc8': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc9': [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc10': [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc11': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc12': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc13': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],

 'loc14': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],

 'loc15': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],

 'loc16': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],

 'loc17': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],

 'loc18': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],

 'loc19': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],

 'loc20': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]})

result = sm.ols(formula="Price ~ loc1 + loc2 + loc3 + loc4 + loc5 \

+ loc6 + loc7 + loc8 + loc9 + loc10 + loc11 + loc12 + loc13 + loc14\

+ loc15 + loc16 + loc17 + loc18 + loc19 + loc20", data=dt).fit()

print(result.summary())

##iPad-Overstock

dt2 = pd.DataFrame({"Price": [664.62, 664.62, 664.62, 664.62, 664.62, 664.62,

664.62, 664.62, 664.62, 664.62, 664.62, 664.62, 664.62, 664.62, 664.62, 664.62,

664.62, 664.62, 664.62, 664.62, 664.62, 664.62, 664.62, 664.62, 664.62, 664.62,

664.62, 664.62, 664.62, 664.62, 664.62, 664.62, 664.62, 664.62, 664.62, 664.62,

664.62, 664.62, 664.62, 664.62],

 "loc1": [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc2': [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc3': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc4': [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc5': [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc6': [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc7': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc8': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc9': [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc10': [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc11': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc12': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc13': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],

 'loc14': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],

 'loc15': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],

 'loc16': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],

 'loc17': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],

 'loc18': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],

 'loc19': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],

 'loc20': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]})

result = sm.ols(formula="Price ~ loc1 + loc2 + loc3 + loc4 + loc5 \

+ loc6 + loc7 + loc8 + loc9 + loc10 + loc11 + loc12 + loc13 + loc14\

+ loc15 + loc16 + loc17 + loc18 + loc19 + loc20", data=dt2).fit()

print(result.summary())

##iPad-E-Bay

dt3 = pd.DataFrame({"Price": [439, 439, 439, 439, 439, 439, 439, 439, 439, 439,

439, 439, 439, 439, 439, 439, 439, 439, 439, 439, 439, 439, 439, 439, 439, 439,

439, 439, 439, 439, 439, 439, 439, 439, 439, 439, 439, 439, 439, 439],

 "loc1": [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc2': [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc3': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc4': [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc5': [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc6': [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc7': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc8': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc9': [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc10': [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc11': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc12': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc13': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],

 'loc14': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],

 'loc15': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],

 'loc16': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],

 'loc17': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],

 'loc18': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],

 'loc19': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],

 'loc20': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]})

result = sm.ols(formula="Price ~ loc1 + loc2 + loc3 + loc4 + loc5 \

+ loc6 + loc7 + loc8 + loc9 + loc10 + loc11 + loc12 + loc13 + loc14\

+ loc15 + loc16 + loc17 + loc18 + loc19 + loc20", data=dt3).fit()

print(result.summary())

##iPad-Wal-Mart

dt4 = pd.DataFrame({"Price": [479.95, 479.95, 479.95, 479.95, 479.95, 479.95,

479.95, 479.95, 479.95, 479.95, 479.95, 479.95, 479.95, 479.95, 479.95, 479.95,

479.95, 479.95, 479.95, 479.95, 479.95, 479.95, 479.95, 479.95, 479.95, 479.95,

479.95, 479.95, 479.95, 479.95, 479.95, 479.95, 479.95, 479.95, 479.95, 479.95,

479.95, 479.95, 479.95, 479.95],

 "loc1": [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc2': [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc3': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc4': [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc5': [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc6': [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc7': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc8': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc9': [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc10': [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc11': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc12': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc13': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],

 'loc14': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],

 'loc15': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],

 'loc16': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],

 'loc17': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],

 'loc18': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],

 'loc19': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],

 'loc20': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]})

result = sm.ols(formula="Price ~ loc1 + loc2 + loc3 + loc4 + loc5 \

+ loc6 + loc7 + loc8 + loc9 + loc10 + loc11 + loc12 + loc13 + loc14\

+ loc15 + loc16 + loc17 + loc18 + loc19 + loc20", data=dt4).fit()

print(result.summary())

6.5 HDMI OLS

##HDMI-Amazon

import pandas as pd

import statsmodels

import statsmodels.formula.api as sm

dt = pd.DataFrame({"Price": [5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 5.99,

5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 5.99,

5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 5.99,

5.99, 5.99, 5.99, 5.99, 5.99],

 "loc1": [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc2': [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc3': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc4': [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc5': [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc6': [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc7': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc8': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc9': [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc10': [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc11': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc12': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc13': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],

 'loc14': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],

 'loc15': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],

 'loc16': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],

 'loc17': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],

 'loc18': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],

 'loc19': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],

 'loc20': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]})

result = sm.ols(formula="Price ~ loc1 + loc2 + loc3 + loc4 + loc5 \

+ loc6 + loc7 + loc8 + loc9 + loc10 + loc11 + loc12 + loc13 + loc14\

+ loc15 + loc16 + loc17 + loc18 + loc19 + loc20", data=dt).fit()

print(result.params)

print(result.summary())

##HDMI-Overstock

dt2 = pd.DataFrame({"Price": [4.49, 4.49, 4.49, 4.49, 4.49, 4.49, 4.49, 4.49,

4.49, 4.49, 4.49, 4.49, 4.49, 4.49, 4.49, 4.49, 4.49, 4.49, 4.49, 4.49, 4.49,

4.49, 4.49, 4.49, 4.49, 4.49, 4.49, 4.49, 4.49, 4.49, 4.49, 4.49, 4.49, 4.49,

4.49, 4.49, 4.49, 4.49, 4.49, 4.49],

 "loc1": [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc2': [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc3': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc4': [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc5': [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc6': [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc7': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc8': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc9': [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc10': [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc11': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc12': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc13': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],

 'loc14': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],

 'loc15': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],

 'loc16': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],

 'loc17': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],

 'loc18': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],

 'loc19': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],

 'loc20': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]})

result = sm.ols(formula="Price ~ loc1 + loc2 + loc3 + loc4 + loc5 \

+ loc6 + loc7 + loc8 + loc9 + loc10 + loc11 + loc12 + loc13 + loc14\

+ loc15 + loc16 + loc17 + loc18 + loc19 + loc20", data=dt2).fit()

print(result.params)

print(result.summary())

##HDMI-E-Bay

dt3 = pd.DataFrame({"Price": [4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,

4, 4],

 "loc1": [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc2': [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc3': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc4': [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc5': [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc6': [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc7': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc8': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc9': [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc10': [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc11': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc12': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc13': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],

 'loc14': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],

 'loc15': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],

 'loc16': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],

 'loc17': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],

 'loc18': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],

 'loc19': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],

 'loc20': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]})

result = sm.ols(formula="Price ~ loc1 + loc2 + loc3 + loc4 + loc5 \

+ loc6 + loc7 + loc8 + loc9 + loc10 + loc11 + loc12 + loc13 + loc14\

+ loc15 + loc16 + loc17 + loc18 + loc19 + loc20", data=dt3).fit()

print(result.params)

print(result.summary())

##HDMI-Wal-Mart

dt4 = pd.DataFrame({"Price": [4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99,

4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99,

4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99,

4.99, 4.99, 4.99, 4.99, 4.99, 4.99],

 "loc1": [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc2': [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc3': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc4': [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc5': [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc6': [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc7': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc8': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc9': [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc10': [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc11': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc12': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc13': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],

 'loc14': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],

 'loc15': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],

 'loc16': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],

 'loc17': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],

 'loc18': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],

 'loc19': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],

 'loc20': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]})

result = sm.ols(formula="Price ~ loc1 + loc2 + loc3 + loc4 + loc5 \

+ loc6 + loc7 + loc8 + loc9 + loc10 + loc11 + loc12 + loc13 + loc14\

+ loc15 + loc16 + loc17 + loc18 + loc19 + loc20", data=dt4).fit()

print(result.params)

print(result.summary())

6.6 Paper OLS

##Paper-Amazon

import pandas as pd

import statsmodels

import statsmodels.formula.api as sm

dt = pd.DataFrame({"Price": [7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 7.99,

7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 7.99,

7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 7.99,

7.99, 7.99, 7.99, 7.99, 7.99],

 "loc1": [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc2': [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc3': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc4': [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc5': [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc6': [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc7': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc8': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc9': [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc10': [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc11': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc12': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc13': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],

 'loc14': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],

 'loc15': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],

 'loc16': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],

 'loc17': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],

 'loc18': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],

 'loc19': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],

 'loc20': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]})

result = sm.ols(formula="Price ~ loc1 + loc2 + loc3 + loc4 + loc5 \

+ loc6 + loc7 + loc8 + loc9 + loc10 + loc11 + loc12 + loc13 + loc14\

+ loc15 + loc16 + loc17 + loc18 + loc19 + loc20", data=dt).fit()

print(result.params)

print(result.summary())

##Paper-Overstock

dt2 = pd.DataFrame({"Price": [17.49, 17.49, 17.49, 17.49, 17.49, 17.49, 17.49,

17.49, 17.49, 17.49, 17.49, 17.49, 17.49, 17.49, 17.49, 17.49, 17.49, 17.49,

17.49, 17.49, 17.49, 17.49, 17.49, 17.49, 17.49, 17.49, 17.49, 17.49, 17.49,

17.49, 17.49, 17.49, 17.49, 17.49, 17.49, 17.49, 17.49, 17.49, 17.49, 17.49],

 "loc1": [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc2': [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc3': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc4': [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc5': [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc6': [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc7': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc8': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc9': [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc10': [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc11': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc12': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc13': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],

 'loc14': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],

 'loc15': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],

 'loc16': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],

 'loc17': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],

 'loc18': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],

 'loc19': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],

 'loc20': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]})

result = sm.ols(formula="Price ~ loc1 + loc2 + loc3 + loc4 + loc5 \

+ loc6 + loc7 + loc8 + loc9 + loc10 + loc11 + loc12 + loc13 + loc14\

+ loc15 + loc16 + loc17 + loc18 + loc19 + loc20", data=dt2).fit()

print(result.params)

print(result.summary())

##Paper-E-Bay

dt3 = pd.DataFrame({"Price": [6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 6.67,

6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 6.67,

6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 6.67,

6.67, 6.67, 6.67, 6.67, 6.67, 6.67],

 "loc1": [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc2': [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc3': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc4': [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc5': [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc6': [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc7': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc8': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc9': [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc10': [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc11': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc12': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc13': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],

 'loc14': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],

 'loc15': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],

 'loc16': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],

 'loc17': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],

 'loc18': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],

 'loc19': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],

 'loc20': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]})

result = sm.ols(formula="Price ~ loc1 + loc2 + loc3 + loc4 + loc5 \

+ loc6 + loc7 + loc8 + loc9 + loc10 + loc11 + loc12 + loc13 + loc14\

+ loc15 + loc16 + loc17 + loc18 + loc19 + loc20", data=dt3).fit()

print(result.params)

print(result.summary())

##Paper-Wal-Mart

dt4 = pd.DataFrame({"Price": [7.49, 7.49, 7.49, 7.49, 7.49, 7.49, 7.49, 7.49,

7.49, 7.49, 7.49, 7.49, 7.49, 7.49, 7.49, 7.49, 7.49, 7.49, 7.49, 7.49, 7.49,

7.49, 7.49, 7.49, 7.49, 7.49, 7.49, 7.49, 7.49, 7.49, 7.49, 7.49, 7.49, 7.49,

7.49, 7.49, 7.49, 7.49, 7.49, 7.49],

 "loc1": [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc2': [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc3': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc4': [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc5': [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc6': [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc7': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc8': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc9': [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc10': [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc11': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc12': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],

 'loc13': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],

 'loc14': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],

 'loc15': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],

 'loc16': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],

 'loc17': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],

 'loc18': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],

 'loc19': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],

 'loc20': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]})

result = sm.ols(formula="Price ~ loc1 + loc2 + loc3 + loc4 + loc5 \

+ loc6 + loc7 + loc8 + loc9 + loc10 + loc11 + loc12 + loc13 + loc14\

+ loc15 + loc16 + loc17 + loc18 + loc19 + loc20", data=dt4).fit()

print(result.params)

print(result.summary())

6.7 Reccomended Product and Search Result Analysis

import pandas as pd

import statsmodels

import statsmodels.formula.api as sm

import numpy as n

import scipy.stats as sp

#E-Bay

#iPads

iPad_Price = 439

Suggested_iPads = [439, 310, 367.77, 379.99, 261.81, 370, 189.99, 249.99, 365,

200, 240, 260, 325, 257, 255]

[t_stat1, p1] = sp.ttest_1samp(Suggested_iPads, iPad_Price)

#HDMI

HDMI_Price = 4

Suggested_HDMI = [4, 2.14, 5.78, 5.99, 7.36, 18.71]

[t_stat2, p2] = sp.ttest_1samp(Suggested_HDMI, HDMI_Price)

#Paper

Paper_Price = 6.67

Suggested_Paper = [6.67, 20.02, 20.25, 20.25, 20.03, 16.39, 20.03, 21.22, 19.87,

20.27]

[t_stat3, p3] = sp.ttest_1samp(Suggested_Paper, Paper_Price)

#Indexed

iPad_factor = 100/n.mean(Suggested_iPads)

HDMI_factor = 100/n.mean(Suggested_HDMI)

Paper_factor = 100/n.mean(Suggested_Paper)

Indexed_Prices = [iPad_factor*iPad_Price, HDMI_factor*HDMI_Price,

Paper_factor*Paper_Price]

Suggested_Indexed = []

Suggested_Indexed = list(n.array(Suggested_iPads)*iPad_factor) +

list(n.array(Suggested_HDMI)*HDMI_factor) +

list(n.array(Suggested_Paper)*Paper_factor)

[t_stat4, p4] = sp.ttest_1samp(Suggested_Indexed, n.mean(Indexed_Prices))

data = pd.DataFrame({'Analysis': ['iPad', 'HDMI', 'Paper', 'Indexed'], 'T-

Statistic': [t_stat1, t_stat2, t_stat3,

 t_stat4], 'P-Values': [p1, p2, p3, p4]})

print('\n')

print(data)

#Searches

#iPads

Suggested_iPads2 = [439, 450, 399.99, 294.99, 279.99, 395, 325, 415, 290, 589]

[t_stat5, p5] = sp.ttest_1samp(Suggested_iPads2, iPad_Price)

#HDMI

Suggested_HDMI2 = [4, 4.69, 3, 5.99, 2.95, 18.99]

[t_stat6, p6] = sp.ttest_1samp(Suggested_HDMI2, HDMI_Price)

#Paper

Suggested_Paper2 = [9.79, 7.99, 11.35, 7.01, 14.49]

[t_stat7, p7] = sp.ttest_1samp(Suggested_Paper2, Paper_Price)

#Indexed

iPad_factor2 = 100/n.mean(Suggested_iPads2)

HDMI_factor2 = 100/n.mean(Suggested_HDMI2)

Paper_factor2 = 100/n.mean(Suggested_Paper2)

Indexed_Prices2 = [iPad_factor2*iPad_Price, HDMI_factor2*HDMI_Price,

Paper_factor2*Paper_Price]

Suggested_Indexed2 = []

Suggested_Indexed2 = list(n.array(Suggested_iPads2)*iPad_factor2) +

list(n.array(Suggested_HDMI2)*HDMI_factor2) +

list(n.array(Suggested_Paper2)*Paper_factor2)

[t_stat8, p8] = sp.ttest_1samp(Suggested_Indexed2, n.mean(Indexed_Prices2))

data2 = pd.DataFrame({'Analysis': ['iPad', 'HDMI', 'Paper', 'Indexed'], 'T-

Statistic': [t_stat5, t_stat6, t_stat7,

 t_stat8], 'P-Values': [p5, p6, p7, p8]})

print('\n')

print(data2)

#Combined

#iPads

Suggested_iPads3 = Suggested_iPads + Suggested_iPads2

[t_stat9, p9] = sp.ttest_1samp(Suggested_iPads3, iPad_Price)

#HDMI

Suggested_HDMI3 = Suggested_HDMI + Suggested_HDMI2

[t_stat10, p10] = sp.ttest_1samp(Suggested_HDMI3, HDMI_Price)

#Paper

Suggested_Paper3 = Suggested_Paper + Suggested_Paper2

[t_stat11, p11] = sp.ttest_1samp(Suggested_Paper3, Paper_Price)

#Indexed

iPad_factor3 = 100/n.mean(Suggested_iPads3)

HDMI_factor3 = 100/n.mean(Suggested_HDMI3)

Paper_factor3 = 100/n.mean(Suggested_Paper3)

Indexed_Prices3 = [iPad_factor3*iPad_Price, HDMI_factor3*HDMI_Price,

Paper_factor3*Paper_Price]

Suggested_Indexed3 = []

Suggested_Indexed3 = list(n.array(Suggested_iPads2)*iPad_factor3) +

list(n.array(Suggested_HDMI3)*HDMI_factor2) +

list(n.array(Suggested_Paper3)*Paper_factor2)

[t_stat12, p12] = sp.ttest_1samp(Suggested_Indexed3, n.mean(Indexed_Prices3))

data3 = pd.DataFrame({'Analysis': ['iPad', 'HDMI', 'Paper', 'Indexed'], 'T-

Statistic': [t_stat9, t_stat10, t_stat11,

 t_stat12], 'P-Values': [p9, p10, p11, p12]})

print('\n')

print(data3)

