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Abstract 

This paper looks at the impact IP address location data has on the prices customers see 

while shopping at various online retailers, within the United States. The paper analyzes 

data from Amazon, E-Bay, Overstock.com, and Wal-Mart.com and regarding 128GB 

iPad Air 2s, 6 foot unbranded HDMI Cables, and generic 500 sheet reams of 8.5 X 11 

unlined printer paper. First, the paper looks at where, if at all, customers would see 

different prices on the same item. Next, it looks at search results, recommended products, 

and suggested 3rd party seller options to see if this data is targeted by location. Finally, 

where search and/or recommended product targeting is found to occur, the paper 

attempts to determine if the targeted search results have a statistically significant 

difference in price from the product initially being sought. Using an OLS regression, the 

paper finds no evidence for price discrimination on any of the products analyzed within 

the study, and finds no evidence of 3rd party seller targeting as well. One retailer, E-Bay, 

is found to target search results and product recommendations to customers visiting the 

site from Alaska or Hawaii. Furthermore, the paper finds statistically significant 

evidence that the prices of alternate search results and recommended products are higher 

than the item being sought, though confounding factors may exist. 

 

1. Introduction 

1.1 Overview 

 In today’s world, computers and many of the advantages they bring are becoming an ever 

larger part of the economy. Specifically, the advent of big data computing has allowed 

companies to obtain and analyze information that would have been impossible to collect in the 

past. This type of computing works by feeding a computer program an enormous amount of data, 

without a predetermined theoretical model for analysis, and allowing the program to search for 

patterns and trends. Recently, this kind of computing has begun to revolutionize a number of 

fields, but none more profoundly than online shopping and online advertising.  



With the enormous amount of information computers are able to store about your 

activity, from previous online purchases to what links you have followed on social media sites, 

companies are able to obtain the quantity of data necessary for effective big data computing. 

Thus, these companies are able to ensure that you are shown advertisements for things you are 

more likely to be interested in, are able to direct you to products you are more likely to buy, and 

perhaps are able to change the listed prices in order to increase their profits. For example, your 

IP address, internet cookies, and browser fingerprint are all sent to a website you choose to visit. 

All of this information can then be compiled and compared to similar data received from other 

computers that visited the same website, allowing companies to predict your activity. My study 

will attempt to track the impact various IP addresses have on the prices you see for certain 

common products on leading online retail websites. It will also determine if this data has any 

impact on the results of searches, recommended products, and 3rd party seller options you are 

shown. 

1.2 Importance of the Issue 

This issue is important for far more than academic reasons; knowledge of what impacts 

these fluctuations could have a significant impact upon the lives of many who use online services 

every day. Price discrimination based on big data analyses could have a profound impact on the 

lives of many in our society, and a knowledge of what it targets and where it is prevalent would 

be immensely valuable. If this kind of price targeting is indeed widespread, individuals that are 

giving up larger amounts of personal information would likely not be seeing the best possible 

prices on items they would like to buy while online shopping. A knowledge of which companies 

target this information, which specific data points they target, and how much these targets impact 

prices could make informed shopping much easier and could allow people to receive much better 



prices on their purchases. Experiencing the online environment through a carefully crafted filter 

dramatically cuts your ability to discern the truth, and being able to understand and escape that 

filter would be very valuable for anyone who wants a more authentic and well-rounded view of 

what online marketplaces can offer. 

2. Previous Literature 

Price discrimination in online marketplaces has been explored, however it has been 

looked at primarily with focuses very different from my own. One study was conducted by the 

American Marketing Association and tried to determine if online car listings would adjust prices 

based on a consumers’ use of various online infomediary websites (Agarwal, et. all). These price 

changes would be based on a specific theory, however, as car companies would adjust these 

prices having already made the assumption that consumers who visited infomediary websites 

would be more informed. It does not attempt to track price changes based on patterns in 

seemingly insignificant data, as are discerned in a big data analysis. Another study, conducted by 

the University of Pennsylvania, looked at price discrimination in online travel markets (Clemons, 

et. all). The goal of this study, however, was simply to see if such discrimination exists, not to 

track the price changes as a function of any information given to the websites by a consumer’s 

computer. The specific focus of my study on tracking changes in price due to changes in 

information that could be easily used in big data computing allows me the opportunity to 

uncover unique results. 

Recently, ProPublica conducted a study similar to this one, though covering the prices 

shown for services, rather than products. Specifically, the study looks at the prices shown to 

customers for Princeton Review SAT help sessions by ZIP code (Larson et. all). The study finds 

as much as $1,800 dollars in variation of cost based on income, and also finds that higher prices 



are almost twice as likely to impact Asian-American residents, indicating potential racial 

profiling (Larson et. all). While this study is interesting, there are numerous reasons why online 

price discrimination is more likely in services, such as this. For one, this is a very specialized 

product that likely has few substitutes. Furthermore, while shipping costs of products such as 

iPads and HDMI cables are trivial, the travel costs required to attend a prep class in a different 

ZIP code are almost certainly non-trivial. The existence of this price discrimination, though, does 

highlight the importance of determining if it occurs in product markets. 

Another interesting study conducted at MIT looks at prices for numerous products 

compared to their prices at physical stores (Clemons et. all). The study finds that prices are 

identical most of the time, but does find variability by country and several other factors. While 

not the focus of the study, the researchers also found no evidence of price variability by IP 

address (Clemons et. all).  

Tangentially related to this is the issue of advertisement targeting. In this field, however, 

more definitive evidence of targeting exists. While few have attempted to untangle what exactly 

firms choose to target, many other studies have been conducted. Some issues that have been 

explored are to what extent this kind of advertising violates personal privacy, and is this kind of 

advertising actually viable and effective. In terms of personal privacy, researchers at Stanford 

and NYU built a study that attempts to determine if tracking algorithms used to obtain personal 

data overstep any ethical or legal boundaries (Barocas, et. all). This study has a very unique 

goal—it seeks to uncover potential wrongdoings rather than seeking to understand the inner 

working of the algorithms. Also, the 39th Hawaii International Conference on System Sciences 

published a paper using data mining to determine what kind of information is good at predicting 

the purchase patterns of a consumer (Cheng et. all). While study has been conducted on many 



problems similar to the one I am approaching, results in this experiment would still provide 

significant new insight into the way online sellers conduct their business. 

3. Methodology 

3.1 Previous Attempts and Failures 

 Initially, my experiment was intended to be much different than it is now. The focus was 

spread out between advertisement targeting and price discrimination and intended to pinpoint the 

factors responsible for both, rather than focus on a specific factor (e.g. IP address). I began by 

developing a regression in which I had 4 dummy variables for IP Location (international vs US), 

online fingerprint, cookies, and purchase history at the various websites being explored. If the 

dummy variable was a 1, then the website would receive my information, if it was a 0, the given 

information would be hidden. Data for IP address was randomized and the status (international 

or domestic) was determined later. The statistical models that were analyzed were as follows: 

μi,j = β1*C + β2*H + β3*F + β4*L+ K 

where μi,j is the mean price of item i at website j; C is the binary cookies bucket; H is the binary 

purchase history bucket; F is the binary fingerprint bucket; L is the binary bucket IP address 

location; and K is a constant intercept term, for price discrimination; and  

Pi,j = β1*C + β2*H + β3*F + β4*L + K 

where Pi,j is the proportion of adds in category i at website j; C is the binary cookies bucket; H is 

the binary purchase history bucket; F is the binary fingerprint bucket; L is the binary bucket IP 

address location; and K is a constant intercept term for advertisement targeting. 

 This analysis was meant to determine which factor had the biggest impact on price and/or 

on the proportion of advertisements you would see from various categories. My exploration into 



this analysis hit many roadblocks with developing the required code to gather the data, 

determining if all of the variation was occurring correctly, and with the eventual analysis of the 

results. While not successful, this line of inquiry did lead me to develop my final methods of 

analysis. 

3.2 Data Collection 

 My data collection methodology was driven by the python webbrowser package. I 

developed a python script (available in the appendix of the paper) that would interact with the 

command line capabilities of a VPN system to visit the webpages I needed. These webpages 

were the page of search results for each product at each website, and the actual product page for 

each product at each website. Once the algorithm had pulled up each page, I recorded the data 

into an excel spreadsheet. Next, I had the algorithm revisit each of the webpages and checked my 

recorded data against the new pages. If variation was found between identical pages on the 

revisit, this could indicate that variation seemingly due to IP was actually due to the time of the 

visit, even if the time difference was very small. No variation was ever found on revisits. 

 From each search result page, I collected the price and short description of the top 5 

results. From each product page, I first recorded the price of the product, then I recorded the top 

5 recommended products and their prices. Finally, on Amazon only, I recorded the rankings of 

the top 3 options of 3rd party sellers and any available data on their shipping prices to the IP 

being used. 

 The websites I visited were Amazon, Overstock.com, E-Bay, and Wal-Mart.com. Target 

was initially included in the data collection, but rejected the requests from many of the VPN IP 

addresses. For consistency, I omitted Target from my analysis. I picked these websites as I felt 

they gave a representative sample of the various kinds of firms that conduct online retail sales. 



Further, the products I analyzed were the 128 GB iPad Air 2, 6 foot unbranded HDMI cords, and 

500 sheet reams of 8.5 X 11 unlined generic printer paper. I thought the various prices, branding 

levels, uses, and customer bases would provide an interesting window into the online 

marketplace as a whole. All data collection was done in incognito browsing with cookies turned 

off as I did not want browsing data generated during the data collection to impact site visits later 

on in the data collection process. 

3.3 OLS Regression 

 My final regression model was based entirely on IP address and used a series of dummy 

variables. The exact model was as follows: 

Pi, j = β1*L1 + ... + β20*L20 + K   

where Pi, j is the price of item i at site j, Lm is the dummy variable corresponding to IP location m, 

βm is the corresponding OLS coefficient, and K is a constant intercept term.  The locations of 

each dummy can be found on the following map and were chosen in the interest of geographic 

diversity and under the constraint of what was available through the VPN. A table listing all 

locations follows: 



 

 

Location 1 Anchorage, Alaska 

Location 2 Phoenix, Arizona 

Location 3 Los Angeles, California 

Location 4 San Francisco, California 

Location 5 Wilmington, Delaware 

Location 6 Miami, Florida 

Location 7 Atlanta, Georgia 

Location 8 Honolulu, Hawaii 

Location 9 Chicago, Illinois 
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Location 10 Des Moines, Iowa 

Location 11 Louisville, Kentucky 

Location 12 Boston, Massachusetts 

Location 13 St. Paul, Minnesota 

Location 14 Billings, Montana 

Location 15 Las Vegas, Nevada 

Location 16 New York City, New York 

Location 17 Portland, Oregon 

Location 18 Nashville, Tennessee 

Location 19 Dallas, Texas 

Location 20 Washington, DC 

 

3.4 Search, Recommended, and 3rd Party Sellers 

 The data for search result, recommended product, and 3rd party seller differences, 

collected as described above, is purely qualitative. As such, determining if these differences exist 

did not require any method of statistical analysis. I compared results across locations and noted 

any differences I found. While developing a method of rigorous analysis for this may have been 

worthwhile had substantial variability existed, I found almost total homogeneity except in a few 

cases, as will be discussed in the results section. 

3.5 Recommended Products Analysis 

 My final analysis was to look at variation in search and recommended products, where 

they existed, to determine if there was a significant difference in price between the product being 

sought and other search results given or products recommended. I ran this analysis only where I 



found evidence of variability in the suggested product and/or search result areas for several 

reasons. First, if the firm had shown willingness to target IP address, then, in my opinion, there 

would be a higher likelihood that that firm would be willing to use search results to encourage 

customer to by higher priced products. Also, and much more importantly, without any variability 

in product recommendation or search results, I would have been running this analysis on a 

sample with N = 5, which is far too small for any meaningful result. 

 First, I looked at recommended products and, for each product individually, conducted a 

single sample t test against H0: The mean of reccomended product prices is equal to the price of 

the product being sought. This should determine if the price of the primary product we selected 

is randomly sampled from the distribution of the search results/product recommendations. The 

sample used was the set of unique products showing up in recommendations. While doing this, I 

did not include accessories (e.g. iPad cases) as this would skew the data away from what I was 

trying to measure: do the product recommendations attempt to get you to buy a nicer version of 

the product you are looking for? I conducted this analysis for each product individually, and then 

for all 3 together by normalizing price based on the mean price of all products including the 

actual product being sought. I then conducted the same analysis, again for each of the products, 

based on the prices of other items that came up in the search results, and finally conducted the 

analysis on the set including both reccomended products and search results. 

4. Results 

4.1 Results of Failed Analysis 

 I was able to gather and analyze data for one iteration of my previous experiment, but ran 

into many issues with finding any relevant results and with confidence in the results I did find. 

For example, while it is well known that many firms target advertising, my method of looking at 



the proportion of advertisements from various categories was unable to capture this targeting 

Therefore, any results in this area were unable to achieve their goal of determining what firms 

focused on when targeting advertisements. With regard to price discrimination, the binary bucket 

for location did introduce variability when looking at international IPs but this was likely entirely 

due to exchange rate volatility rather than price discrimination. As such, my results in that 

section would have been misleading at best. With these setbacks in mind, I developed my final 

experiment which I believe effectively measures variability only due to IP address and answers 

the question it is trying to ask. 

4.2 Summary Statistics 

 The following tables show the average price on each item in question, as well as the 

standard deviation for that price. Data is broken out by retailer.  

 

The following table shows mean price and standard deviation data for the product 

recommendations associated with each product. Data is structured in the same way as the 

previous table. 

Amazon Overstock E-Bay Wal-Mart

iPad $444.99 $664.62 $439.00 $479.95

St Error 0.00 0.00 0.00 0.00

HDMI $5.99 $4.49 $4.00 $4.99

St Error 0.00 0.00 0.00 0.00

Paper $7.99 $17.49 $6.67 $7.49

St Error 0.00 0.00 0.00 0.00



 

The fact that the Amazon values (and Wal-Mart to a lesser extent) are substantially more 

varied from the prices of the products in this table is no accident. While many of these firms 

focused their reccomended products sections on recommending other similar products, Amazon 

uses the section primarily to recommend related products that would be purchased with the initial 

product in question. For example, Amazon puts cases reccomended with iPads, TVs 

reccomended with HDMI cords, and printers reccomended with paper. The low standard 

deviation for E-Bay’s paper recommendations is due to the fact that E-Bay primarily 

reccomended different colors of the same brand of colored paper, which I treated as distinct 

products. Also, E-Bays low mean value for iPads is due to the prevalence of used products rather 

than recommending less expensive accessories. 

The final table gives the same information as the previous two for search results. 

 

Amazon Overstock E-Bay Wal-Mart

iPad $24.16 $495.50 $280.77 $111.99

St Error 14.68 47.89 66.78 66.13

HDMI $42.93 $6.74 $8.00 $7.12

St Error 40.93 1.32 6.29 4.93

Paper $33.22 $31.66 $19.50 $9.24

St Error 23.39 22.21 1.66 2.87

Amazon Overstock E-Bay Wal-Mart

iPad $463.59 $250.02 $389.06 $420.24

St Error 59.01 313.86 84.01 57.21

HDMI $8.60 $9.51 $6.60 $6.57

St Error 2.39 5.25 6.17 2.70

Paper $10.13 $25.21 $12.20 $7.89

St Error 2.95 13.06 6.04 3.63



 The most notable result in this table is the low iPad mean value for Overstock which is 

due to the fact that they do not carry many versions of iPads causing accessories to show up high 

in the search rankings on that website. 

4.3 Regression Results 

Each regression shows no evidence of any kind of price variability based on IP Address; 

in fact, not one price change due to IP occurred at any point throughout the data. The standard 

error was found to be zero for each product at each retailer. This makes us conclude that it is 

highly unlikely that any of these firms engage in location based price discrimination on any of 

these products. 

4.4 Search, Recommended, and 3rd Party Seller Results 

 For Amazon, Overstock, and Wal-Mart all search results, recommended products, and 3rd 

party seller suggestions were identical to the position of each these items occupied on the 

webpage. For E-Bay, the same was true within the lower 48 states, however in Alaska and 

Hawaii substantial variation occurred in both the rankings of the products listed and the actual 

products appearing for both search results and reccomended products. For iPads, variability 

occurred in both of these categories. For HDMI cords, only search variability was found, and for 

paper, only product recommendation variability was found. While only 2 IPs showed any of this 

variability, the fact that both are outside the lower 48 states indicates that it is unlikely this 

variability is due to chance and may be due to the fact that individual sellers on E-Bay do not 

have the economies of scale to make shipping a trivial cost to remote locations. As such, E-Bay 

may downgrade single-item seller products within the search results and product 

recommendation in order to avoid cancelled transactions due to high shipping costs.  

 



4.5 Recommended Product Analysis Results 

 In the following results I compared the price of the primary product sought (e.g. the iPad 

Air 2) to the distribution of the prices of the 1) recommended products 2) search results for that 

product 3) and a compilation of the two. The results of my one sample T-Test with H0: The mean 

of recommended product prices is equal to the price of the product being sought follow: 

Reccomended Products: 

 

Search Results: 

 

Compilation: 

 

 This data shows that, despite the significant downward statistical pressure from iPads, E-

Bay does, in general, try to show higher priced items in the search results and recommendations 

on their website. The complied indexed results are significant beyond the 1% level, indicating 

strong evidence that EBay does use the search results and product recommendations as a way to 

upsell customers. 

 



4.6 Discussion 

 While I think the conclusions regarding IP address targeting are very convincing, there is 

more research that could be done regarding the other tests and issues I looked into. First, while I 

found that, for these products, differences occurred in search results outside the lower 48, it 

would be worth testing to see if this result hold for all products in general. Also, adding other IP 

addresses outside of the US could provide interesting data. If more research was to be done in 

this area, a way to quantify differences in search results or product recommendations would need 

to be developed. An option would be to look at a set of products that show up in the search for 

another product and see if there is a statistically significant difference in the ranking they have in 

the search results for that product based on location. This could be repeated for numerous 

products and search results in order to get a better idea of if this difference occurs with all 

products outside the lower 48 states.  

 Furthermore, while very significant, the data regarding the price differences in search 

results and product recommendations could be improved upon. Both paper and HDMI cords are 

fairly low cost products in their category so it is hard to even think of lower priced products that 

would show up in a search for either one. These products positioning within their submarkets 

may be skewing the data. To see if this kind of targeting is occurring overall, looking at a large 

basket of items and doing the same analysis could potentially isolate for the market position of 

each individual product and give a more robust suite of results. 

5. Conclusion 

 Using data gathered specifically for this analysis, we can conclude that there is no 

evidence of online marketplaces, linked to physical stores or otherwise, targeting IP addresses 

with different prices. In fact, no variation at all was observed in listed price. Beyond that 



however, this paper did determine that E-Bay may change the search results and product 

recommendations seen by those in remote areas, likely do to the high impact shipping costs can 

have on the small firms or individuals who use E-Bay as their marketplace. While there is not 

have enough data to determine if this kind of search targeting is widespread, it seems to exist 

frequently outside of the lower 48 states.  

 Finally, by looking at differences between the prices of the products we were looking for 

and the other search results and product recommendations found when looking for those 

products, this paper found evidence that E-Bay attempts to show search results and recommend 

products with higher prices than the product being sought. While there are potential confounding 

factors, further research in this area could conclude whether or not search targeting is used to 

encourage customers to purchase higher value products.  
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6. Appendix – Python Scripts 

6.1 iPad Data Gathering 

import webbrowser as web 

 

##Products are iPad Air 2 128 GB Space Gray, 500 Sheet ream of paper, 6 foot HDMI 

cord 

 

##iPad Air 2 128 GB Space Gray 

 

##Pure Online Retailers 

##Amazon 

web.open_new('https://www.amazon.com/s/ref=nb_sb_noss_2?url=search-

alias%3Daps&field-keywords=ipad+air+2+128+GB&rh=i%3Aaps%2Ck%3Aipad+air+2+128+GB') 

web.open_new_tab('https://www.amazon.com/Apple-MGTX2LL-9-7-inches-Tablet-

Space/dp/B00OTWQXSI/ref=sr_1_2?ie=UTF8&qid=1491934470&sr=8-

2&keywords=ipad+air+2+128+GB') 

##Overstock 

web.open_new_tab('https://www.overstock.com/search?keywords=ipad+air+2+128gb&taxon

omy=sto2&ralt=sto22,sto40,sto7&TID=AR:TRUE&searchtype=Header') 

web.open_new_tab('https://www.overstock.com/Electronics/Apple-iPad-Air-2-64GB-

Gold-with-Accessories-

Bundle/10747055/product.html?refccid=JKBZJJFYEJ6ZGV2ELDGXGL7LPQ&searchidx=1') 

##E-Bay 

web.open_new_tab('http://www.ebay.com/sch/i.html?_from=R40&_trksid=p2050601.m570.l

1313.TR12.TRC2.A0.H0.Xipad+air+2+128gb.TRS0&_nkw=ipad+air+2+128gb&_sacat=0') 

web.open_new_tab('http://www.ebay.com/itm/Apple-iPad-Air-2-128GB-Wi-Fi-9-7in-

Space-Gray-/292084446753?hash=item440196f621:g:mN8AAOSwc49Y7tn5') 

##Store Websites 

##Wal-Mart 

web.open_new_tab('https://www.walmart.com/search/?query=iPad%20air%202%20128%20GB'

) 

web.open_new_tab('https://www.walmart.com/ip/Apple-iPad-Air-2-MGTX2LL-A-9-7-

inches-128-GB-Tablet-Space-Gray/160348958') 

 

web.open_new_tab('http://geoip.hidemyass.com/') 

 

6.2 HDMI Data Gathering 

import webbrowser as web 

 

##6-foot HDMI 

 

##Pure Online Retailers 

##Amazon 

web.open_new('https://www.amazon.com/s/ref=nb_sb_noss_2?url=search-

alias%3Daps&field-keywords=6+foot+hdmi+cord') 

web.open_new_tab('https://www.amazon.com/AmazonBasics-Rated-Wall-Installation-

Cable/dp/B014I8TIV6/ref=sr_1_1?ie=UTF8&qid=1492466602&sr=8-

1&keywords=6+foot+hdmi+cord') 

##Overstock 

web.open_new_tab('https://www.overstock.com/search?keywords=6+foot+HDMI+cable&Sear

chType=Header') 

web.open_new_tab('https://www.overstock.com/Electronics/INSTEN-AccStation-6-foot-

High-Speed-M-M-HDMI-

Cable/6370343/product.html?refccid=O5MABO552ZMIOBSILC2NF55X4A&searchidx=3') 



##E-Bay 

web.open_new_tab('http://www.ebay.com/sch/i.html?_from=R40&_trksid=p2050601.m570.l

1313.TR0.TRC0.H0.X6+foot+hdmi+cor.TRS0&_nkw=6+foot+hdmi+cord&_sacat=0') 

web.open_new_tab('http://www.ebay.com/itm/6FT-HDMI-CABLE-CORD-CONNECT-TV-TO-

LAPTOP-COMPUTER-PC-DVD-BLU-RAY-MEDIA-PLAYER-

/122449944717?hash=item1c8295e08d:g:q28AAOSwcdRY8-CQ') 

##Store Websites 

##Wal-Mart 

web.open_new_tab('https://www.walmart.com/search/?query=6%20foot%20hdmi%20cord') 

web.open_new_tab('https://www.walmart.com/ip/FosPower-xFFFD-4x1-HDMI-Switcher-4-

port-Splitter-with-IR-Remote-3D-4Kx2K-1080p-with-Picture-in-Picture-PiP-

Function/40654441') 

 

web.open_new_tab('http://geoip.hidemyass.com/') 

 

6.3 Paper Data Gathering 

import webbrowser as web 

 

##6-foot HDMI 

 

##Pure Online Retailers 

##Amazon 

web.open_new('https://www.amazon.com/s/ref=nb_sb_noss_2?url=search-

alias%3Daps&field-keywords=6+foot+hdmi+cord') 

web.open_new_tab('https://www.amazon.com/AmazonBasics-Rated-Wall-Installation-

Cable/dp/B014I8TIV6/ref=sr_1_1?ie=UTF8&qid=1492466602&sr=8-

1&keywords=6+foot+hdmi+cord') 

##Overstock 

web.open_new_tab('https://www.overstock.com/search?keywords=6+foot+HDMI+cable&Sear

chType=Header') 

web.open_new_tab('https://www.overstock.com/Electronics/INSTEN-AccStation-6-foot-

High-Speed-M-M-HDMI-

Cable/6370343/product.html?refccid=O5MABO552ZMIOBSILC2NF55X4A&searchidx=3') 

##E-Bay 

web.open_new_tab('http://www.ebay.com/sch/i.html?_from=R40&_trksid=p2050601.m570.l

1313.TR0.TRC0.H0.X6+foot+hdmi+cor.TRS0&_nkw=6+foot+hdmi+cord&_sacat=0') 

web.open_new_tab('http://www.ebay.com/itm/6FT-HDMI-CABLE-CORD-CONNECT-TV-TO-

LAPTOP-COMPUTER-PC-DVD-BLU-RAY-MEDIA-PLAYER-

/122449944717?hash=item1c8295e08d:g:q28AAOSwcdRY8-CQ') 

##Store Websites 

##Wal-Mart 

web.open_new_tab('https://www.walmart.com/search/?query=6%20foot%20hdmi%20cord') 

web.open_new_tab('https://www.walmart.com/ip/FosPower-xFFFD-4x1-HDMI-Switcher-4-

port-Splitter-with-IR-Remote-3D-4Kx2K-1080p-with-Picture-in-Picture-PiP-

Function/40654441') 

 

web.open_new_tab('http://geoip.hidemyass.com/') 

 

 

 

 



6.4 iPad OLS 

##iPad-Amazon 

 

import pandas as pd 

import statsmodels 

import statsmodels.formula.api as sm 

dt = pd.DataFrame({"Price": [444.99, 444.99, 444.99, 444.99, 444.99, 444.99, 

444.99, 444.99, 444.99, 444.99, 444.99, 444.99, 444.99, 444.99, 444.99, 444.99, 

444.99, 444.99, 444.99, 444.99, 444.99, 444.99, 444.99, 444.99, 444.99, 444.99, 

444.99, 444.99, 444.99, 444.99, 444.99, 444.99, 444.99, 444.99, 444.99, 444.99, 

444.99, 444.99, 444.99, 444.99], 

    "loc1": [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc2': [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc3': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc4': [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc5': [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc6': [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc7': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc8': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc9': [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc10': [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc11': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc12': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc13': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], 

    'loc14': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], 

    'loc15': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], 

    'loc16': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], 

    'loc17': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], 

    'loc18': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], 

    'loc19': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], 

    'loc20': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]}) 

result = sm.ols(formula="Price ~ loc1 + loc2 + loc3 + loc4 + loc5 \ 

+ loc6 + loc7 + loc8 + loc9 + loc10 + loc11 + loc12 + loc13 + loc14\ 

+ loc15 + loc16 + loc17 + loc18 + loc19 + loc20", data=dt).fit() 

 

print(result.summary()) 

 

##iPad-Overstock 



 

dt2 = pd.DataFrame({"Price": [664.62, 664.62, 664.62, 664.62, 664.62, 664.62, 

664.62, 664.62, 664.62, 664.62, 664.62, 664.62, 664.62, 664.62, 664.62, 664.62, 

664.62, 664.62, 664.62, 664.62, 664.62, 664.62, 664.62, 664.62, 664.62, 664.62, 

664.62, 664.62, 664.62, 664.62, 664.62, 664.62, 664.62, 664.62, 664.62, 664.62, 

664.62, 664.62, 664.62, 664.62], 

    "loc1": [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc2': [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc3': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc4': [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc5': [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc6': [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc7': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc8': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc9': [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc10': [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc11': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc12': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc13': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], 

    'loc14': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], 

    'loc15': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], 

    'loc16': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], 

    'loc17': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], 

    'loc18': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], 

    'loc19': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], 

    'loc20': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]}) 

result = sm.ols(formula="Price ~ loc1 + loc2 + loc3 + loc4 + loc5 \ 

+ loc6 + loc7 + loc8 + loc9 + loc10 + loc11 + loc12 + loc13 + loc14\ 

+ loc15 + loc16 + loc17 + loc18 + loc19 + loc20", data=dt2).fit() 

 

print(result.summary()) 

 

##iPad-E-Bay 

 

dt3 = pd.DataFrame({"Price": [439, 439, 439, 439, 439, 439, 439, 439, 439, 439, 

439, 439, 439, 439, 439, 439, 439, 439, 439, 439, 439, 439, 439, 439, 439, 439, 

439, 439, 439, 439, 439, 439, 439, 439, 439, 439, 439, 439, 439, 439], 

    "loc1": [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc2': [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 



0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc3': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc4': [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc5': [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc6': [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc7': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc8': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc9': [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc10': [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc11': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc12': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc13': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], 

    'loc14': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], 

    'loc15': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], 

    'loc16': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], 

    'loc17': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], 

    'loc18': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], 

    'loc19': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], 

    'loc20': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]}) 

result = sm.ols(formula="Price ~ loc1 + loc2 + loc3 + loc4 + loc5 \ 

+ loc6 + loc7 + loc8 + loc9 + loc10 + loc11 + loc12 + loc13 + loc14\ 

+ loc15 + loc16 + loc17 + loc18 + loc19 + loc20", data=dt3).fit() 

 

print(result.summary()) 

 

##iPad-Wal-Mart 

 

dt4 = pd.DataFrame({"Price": [479.95, 479.95, 479.95, 479.95, 479.95, 479.95, 

479.95, 479.95, 479.95, 479.95, 479.95, 479.95, 479.95, 479.95, 479.95, 479.95, 

479.95, 479.95, 479.95, 479.95, 479.95, 479.95, 479.95, 479.95, 479.95, 479.95, 

479.95, 479.95, 479.95, 479.95, 479.95, 479.95, 479.95, 479.95, 479.95, 479.95, 

479.95, 479.95, 479.95, 479.95], 

    "loc1": [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc2': [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc3': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc4': [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc5': [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 



    'loc6': [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc7': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc8': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc9': [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc10': [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc11': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc12': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc13': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], 

    'loc14': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], 

    'loc15': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], 

    'loc16': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], 

    'loc17': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], 

    'loc18': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], 

    'loc19': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], 

    'loc20': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]}) 

result = sm.ols(formula="Price ~ loc1 + loc2 + loc3 + loc4 + loc5 \ 

+ loc6 + loc7 + loc8 + loc9 + loc10 + loc11 + loc12 + loc13 + loc14\ 

+ loc15 + loc16 + loc17 + loc18 + loc19 + loc20", data=dt4).fit() 

 

print(result.summary()) 

 

6.5 HDMI OLS 

##HDMI-Amazon 

 

import pandas as pd 

import statsmodels 

import statsmodels.formula.api as sm 

dt = pd.DataFrame({"Price": [5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 

5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 

5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 5.99, 

5.99, 5.99, 5.99, 5.99, 5.99], 

    "loc1": [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc2': [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc3': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc4': [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc5': [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc6': [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 



0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc7': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc8': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc9': [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc10': [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc11': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc12': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc13': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], 

    'loc14': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], 

    'loc15': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], 

    'loc16': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], 

    'loc17': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], 

    'loc18': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], 

    'loc19': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], 

    'loc20': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]}) 

result = sm.ols(formula="Price ~ loc1 + loc2 + loc3 + loc4 + loc5 \ 

+ loc6 + loc7 + loc8 + loc9 + loc10 + loc11 + loc12 + loc13 + loc14\ 

+ loc15 + loc16 + loc17 + loc18 + loc19 + loc20", data=dt).fit() 

print(result.params) 

print(result.summary()) 

 

##HDMI-Overstock 

 

dt2 = pd.DataFrame({"Price": [4.49, 4.49, 4.49, 4.49, 4.49, 4.49, 4.49, 4.49, 

4.49, 4.49, 4.49, 4.49, 4.49, 4.49, 4.49, 4.49, 4.49, 4.49, 4.49, 4.49, 4.49, 

4.49, 4.49, 4.49, 4.49, 4.49, 4.49, 4.49, 4.49, 4.49, 4.49, 4.49, 4.49, 4.49, 

4.49, 4.49, 4.49, 4.49, 4.49, 4.49], 

    "loc1": [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc2': [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc3': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc4': [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc5': [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc6': [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc7': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc8': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc9': [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc10': [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 



0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc11': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc12': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc13': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], 

    'loc14': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], 

    'loc15': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], 

    'loc16': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], 

    'loc17': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], 

    'loc18': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], 

    'loc19': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], 

    'loc20': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]}) 

result = sm.ols(formula="Price ~ loc1 + loc2 + loc3 + loc4 + loc5 \ 

+ loc6 + loc7 + loc8 + loc9 + loc10 + loc11 + loc12 + loc13 + loc14\ 

+ loc15 + loc16 + loc17 + loc18 + loc19 + loc20", data=dt2).fit() 

print(result.params) 

print(result.summary()) 

 

##HDMI-E-Bay 

 

dt3 = pd.DataFrame({"Price": [4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 

4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4], 

    "loc1": [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc2': [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc3': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc4': [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc5': [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc6': [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc7': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc8': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc9': [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc10': [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc11': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc12': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc13': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], 

    'loc14': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], 

    'loc15': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 



0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], 

    'loc16': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], 

    'loc17': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], 

    'loc18': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], 

    'loc19': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], 

    'loc20': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]}) 

result = sm.ols(formula="Price ~ loc1 + loc2 + loc3 + loc4 + loc5 \ 

+ loc6 + loc7 + loc8 + loc9 + loc10 + loc11 + loc12 + loc13 + loc14\ 

+ loc15 + loc16 + loc17 + loc18 + loc19 + loc20", data=dt3).fit() 

print(result.params) 

print(result.summary()) 

 

##HDMI-Wal-Mart 

 

dt4 = pd.DataFrame({"Price": [4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 

4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 

4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 

4.99, 4.99, 4.99, 4.99, 4.99, 4.99], 

    "loc1": [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc2': [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc3': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc4': [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc5': [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc6': [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc7': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc8': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc9': [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc10': [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc11': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc12': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc13': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], 

    'loc14': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], 

    'loc15': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], 

    'loc16': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], 

    'loc17': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], 

    'loc18': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], 

    'loc19': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 



0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], 

    'loc20': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]}) 

result = sm.ols(formula="Price ~ loc1 + loc2 + loc3 + loc4 + loc5 \ 

+ loc6 + loc7 + loc8 + loc9 + loc10 + loc11 + loc12 + loc13 + loc14\ 

+ loc15 + loc16 + loc17 + loc18 + loc19 + loc20", data=dt4).fit() 

print(result.params) 

print(result.summary()) 

 

6.6 Paper OLS 

##Paper-Amazon 

 

import pandas as pd 

import statsmodels 

import statsmodels.formula.api as sm 

dt = pd.DataFrame({"Price": [7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 

7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 

7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 7.99, 

7.99, 7.99, 7.99, 7.99, 7.99], 

    "loc1": [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc2': [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc3': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc4': [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc5': [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc6': [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc7': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc8': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc9': [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc10': [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc11': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc12': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc13': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], 

    'loc14': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], 

    'loc15': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], 

    'loc16': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], 

    'loc17': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], 

    'loc18': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], 

    'loc19': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], 



    'loc20': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]}) 

result = sm.ols(formula="Price ~ loc1 + loc2 + loc3 + loc4 + loc5 \ 

+ loc6 + loc7 + loc8 + loc9 + loc10 + loc11 + loc12 + loc13 + loc14\ 

+ loc15 + loc16 + loc17 + loc18 + loc19 + loc20", data=dt).fit() 

print(result.params) 

print(result.summary()) 

 

##Paper-Overstock 

 

dt2 = pd.DataFrame({"Price": [17.49, 17.49, 17.49, 17.49, 17.49, 17.49, 17.49, 

17.49, 17.49, 17.49, 17.49, 17.49, 17.49, 17.49, 17.49, 17.49, 17.49, 17.49, 

17.49, 17.49, 17.49, 17.49, 17.49, 17.49, 17.49, 17.49, 17.49, 17.49, 17.49, 

17.49, 17.49, 17.49, 17.49, 17.49, 17.49, 17.49, 17.49, 17.49, 17.49, 17.49], 

    "loc1": [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc2': [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc3': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc4': [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc5': [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc6': [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc7': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc8': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc9': [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc10': [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc11': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc12': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc13': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], 

    'loc14': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], 

    'loc15': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], 

    'loc16': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], 

    'loc17': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], 

    'loc18': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], 

    'loc19': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], 

    'loc20': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]}) 

result = sm.ols(formula="Price ~ loc1 + loc2 + loc3 + loc4 + loc5 \ 

+ loc6 + loc7 + loc8 + loc9 + loc10 + loc11 + loc12 + loc13 + loc14\ 

+ loc15 + loc16 + loc17 + loc18 + loc19 + loc20", data=dt2).fit() 

print(result.params) 

print(result.summary()) 

 



##Paper-E-Bay 

 

dt3 = pd.DataFrame({"Price": [6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 

6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 

6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 

6.67, 6.67, 6.67, 6.67, 6.67, 6.67], 

    "loc1": [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc2': [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc3': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc4': [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc5': [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc6': [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc7': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc8': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc9': [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc10': [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc11': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc12': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc13': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], 

    'loc14': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], 

    'loc15': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], 

    'loc16': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], 

    'loc17': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], 

    'loc18': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], 

    'loc19': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], 

    'loc20': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]}) 

result = sm.ols(formula="Price ~ loc1 + loc2 + loc3 + loc4 + loc5 \ 

+ loc6 + loc7 + loc8 + loc9 + loc10 + loc11 + loc12 + loc13 + loc14\ 

+ loc15 + loc16 + loc17 + loc18 + loc19 + loc20", data=dt3).fit() 

print(result.params) 

print(result.summary()) 

 

##Paper-Wal-Mart 

 

dt4 = pd.DataFrame({"Price": [7.49, 7.49, 7.49, 7.49, 7.49, 7.49, 7.49, 7.49, 

7.49, 7.49, 7.49, 7.49, 7.49, 7.49, 7.49, 7.49, 7.49, 7.49, 7.49, 7.49, 7.49, 

7.49, 7.49, 7.49, 7.49, 7.49, 7.49, 7.49, 7.49, 7.49, 7.49, 7.49, 7.49, 7.49, 

7.49, 7.49, 7.49, 7.49, 7.49, 7.49], 

    "loc1": [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 



    'loc2': [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc3': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc4': [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc5': [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc6': [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc7': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc8': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc9': [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc10': [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc11': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc12': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], 

    'loc13': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], 

    'loc14': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], 

    'loc15': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], 

    'loc16': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], 

    'loc17': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], 

    'loc18': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], 

    'loc19': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], 

    'loc20': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]}) 

result = sm.ols(formula="Price ~ loc1 + loc2 + loc3 + loc4 + loc5 \ 

+ loc6 + loc7 + loc8 + loc9 + loc10 + loc11 + loc12 + loc13 + loc14\ 

+ loc15 + loc16 + loc17 + loc18 + loc19 + loc20", data=dt4).fit() 

print(result.params) 

print(result.summary()) 

 

6.7 Reccomended Product and Search Result Analysis 

import pandas as pd 

import statsmodels 

import statsmodels.formula.api as sm 

import numpy as n 

import scipy.stats as sp 

 

#E-Bay 

 

#iPads 

 

iPad_Price = 439 

Suggested_iPads = [439, 310, 367.77, 379.99, 261.81, 370, 189.99, 249.99, 365, 

200, 240, 260, 325, 257, 255] 



[t_stat1, p1] = sp.ttest_1samp(Suggested_iPads, iPad_Price) 

 

#HDMI 

 

HDMI_Price = 4 

Suggested_HDMI = [4, 2.14, 5.78, 5.99, 7.36, 18.71] 

[t_stat2, p2] = sp.ttest_1samp(Suggested_HDMI, HDMI_Price) 

 

#Paper 

 

Paper_Price = 6.67 

Suggested_Paper = [6.67, 20.02, 20.25, 20.25, 20.03, 16.39, 20.03, 21.22, 19.87, 

20.27] 

[t_stat3, p3] = sp.ttest_1samp(Suggested_Paper, Paper_Price) 

 

#Indexed 

 

iPad_factor = 100/n.mean(Suggested_iPads) 

HDMI_factor = 100/n.mean(Suggested_HDMI) 

Paper_factor = 100/n.mean(Suggested_Paper) 

 

Indexed_Prices = [iPad_factor*iPad_Price, HDMI_factor*HDMI_Price, 

Paper_factor*Paper_Price] 

Suggested_Indexed = [] 

Suggested_Indexed = list(n.array(Suggested_iPads)*iPad_factor) + 

list(n.array(Suggested_HDMI)*HDMI_factor) + 

list(n.array(Suggested_Paper)*Paper_factor) 

 

[t_stat4, p4] = sp.ttest_1samp(Suggested_Indexed, n.mean(Indexed_Prices)) 

 

data = pd.DataFrame({'Analysis': ['iPad', 'HDMI', 'Paper', 'Indexed'], 'T-

Statistic': [t_stat1, t_stat2, t_stat3, 

                    t_stat4], 'P-Values': [p1, p2, p3, p4]}) 

 

print('\n') 

print(data) 

 

#Searches 

 

#iPads 

 

Suggested_iPads2 = [439, 450, 399.99, 294.99, 279.99, 395, 325, 415, 290, 589] 

[t_stat5, p5] = sp.ttest_1samp(Suggested_iPads2, iPad_Price) 

 

#HDMI 

 

Suggested_HDMI2 = [4, 4.69, 3, 5.99, 2.95, 18.99] 

[t_stat6, p6] = sp.ttest_1samp(Suggested_HDMI2, HDMI_Price) 

 

#Paper 

 

Suggested_Paper2 = [9.79, 7.99, 11.35, 7.01, 14.49] 

[t_stat7, p7] = sp.ttest_1samp(Suggested_Paper2, Paper_Price) 

 

#Indexed 

 

iPad_factor2 = 100/n.mean(Suggested_iPads2) 

HDMI_factor2 = 100/n.mean(Suggested_HDMI2) 

Paper_factor2 = 100/n.mean(Suggested_Paper2) 

 



Indexed_Prices2 = [iPad_factor2*iPad_Price, HDMI_factor2*HDMI_Price, 

Paper_factor2*Paper_Price] 

Suggested_Indexed2 = [] 

Suggested_Indexed2 = list(n.array(Suggested_iPads2)*iPad_factor2) + 

list(n.array(Suggested_HDMI2)*HDMI_factor2) + 

list(n.array(Suggested_Paper2)*Paper_factor2) 

 

[t_stat8, p8] = sp.ttest_1samp(Suggested_Indexed2, n.mean(Indexed_Prices2)) 

 

data2 = pd.DataFrame({'Analysis': ['iPad', 'HDMI', 'Paper', 'Indexed'], 'T-

Statistic': [t_stat5, t_stat6, t_stat7, 

                    t_stat8], 'P-Values': [p5, p6, p7, p8]}) 

 

print('\n') 

print(data2) 

 

#Combined 

 

#iPads 

 

Suggested_iPads3 = Suggested_iPads + Suggested_iPads2 

[t_stat9, p9] = sp.ttest_1samp(Suggested_iPads3, iPad_Price) 

 

#HDMI 

 

Suggested_HDMI3 = Suggested_HDMI + Suggested_HDMI2 

[t_stat10, p10] = sp.ttest_1samp(Suggested_HDMI3, HDMI_Price) 

 

#Paper 

 

Suggested_Paper3 = Suggested_Paper + Suggested_Paper2 

[t_stat11, p11] = sp.ttest_1samp(Suggested_Paper3, Paper_Price) 

 

#Indexed 

 

iPad_factor3 = 100/n.mean(Suggested_iPads3) 

HDMI_factor3 = 100/n.mean(Suggested_HDMI3) 

Paper_factor3 = 100/n.mean(Suggested_Paper3) 

 

Indexed_Prices3 = [iPad_factor3*iPad_Price, HDMI_factor3*HDMI_Price, 

Paper_factor3*Paper_Price] 

Suggested_Indexed3 = [] 

Suggested_Indexed3 = list(n.array(Suggested_iPads2)*iPad_factor3) + 

list(n.array(Suggested_HDMI3)*HDMI_factor2) + 

list(n.array(Suggested_Paper3)*Paper_factor2) 

 

[t_stat12, p12] = sp.ttest_1samp(Suggested_Indexed3, n.mean(Indexed_Prices3)) 

 

data3 = pd.DataFrame({'Analysis': ['iPad', 'HDMI', 'Paper', 'Indexed'], 'T-

Statistic': [t_stat9, t_stat10, t_stat11, 

                    t_stat12], 'P-Values': [p9, p10, p11, p12]}) 

 

print('\n') 

print(data3) 

 


