
COMPUTATIONAL MODELING OF UNSTEADY
AERODYNAMICS IN HUMMINGBIRD FLIGHT

By

Jialei Song

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Mechanical Engineering

May, 2016

Nashville, Tennessee

Approved:

Haoxiang Luo, Ph.D.

Caglar Oskay, Ph.D.

Robert Pitz, Ph.D.

Deyu Li, Ph.D.



Acknowledgments

Pursuing the doctorate degree is like running a marathon. Itis a long and tough

journey, and it can’t be successfully accomplished withoutthe help and support of many

people. Here I sincerely thank all these people.

First, I would like to owe the biggest thank you to my advisor,Dr. Haoxiang Luo,

who continuously gave me the insightful advice on the research and warmhearted care

on the life during the past five years. His great efforts and tremendous patience helped

me become well trained on scientific research methods and work productively. Aside

the research, Dr. Luo also offered me plenty of opportunities on the career development

and network-building. Overall, I have greatly improved in the last five years under the

supervision of Dr. Luo.

Second, I would like to give my great thanks to Dr. Tyson Hedrick at the University

of North Carolina at Chapel Hill and Dr. Bret Tobalske at University of Montana. My

research is computational modeling of aerodynamics of hummingbird flight, and the

accurate description of the bird kinematics is of great importance. Dr. Hedrick kindly

provided us the data of the hummingbird hovering flight, and Dr. Tobalske provided

us the data of the fast forward flight. In addition, the discussions with them were re-

ally a pleasant experience since they offered many insightful suggestions and provided

numerous helpful inputs from the biology aspect.

I also want to thank my Ph.D. committee members, Profs. Robert Pitz and Deyu Li

in the Department of Mechanical Engineering and Prof. Caglar Oskay in the Depart-

ment of Civil and Environmental Engineering, for their timeand effort of serving on

my committee. They gave me not only the advice for the refinement of my research and

ii



dissertation, but also helpful advice on the academic career.

Finally, thanks must be given to my family, friends and lab mates, Dr. Fangbao

Tian, Dr. Bo Yin, Dr. Hu Dai, Siyuan Chang, Chi Zhu, Casey Brock, Joshwa Webb,

Ye Chen and Yang Zhang for their love, their support and theirhelp. Especially, Dr.

Fangbao Tian has selflessly given me advice and support from my undergraduate time

to the present.

I appreciate that I have all these people in this long journeyand they have made this

marathon joyful, meaningful and unforgettable.

iii



CONTENTS

Acknowledgments ii

List of Tables vi

List of Figures vii

I Introduction 1
1.1 MAVs and aerodynamics of flapping wings. . . . . . . . . . . . . . . 1
1.2 Aerodynamics of hummingbird flight. . . . . . . . . . . . . . . . . . 4
1.3 The specific objectives of this study. . . . . . . . . . . . . . . . . . . 7

II Numerical approach and Model reconstruction 9
2.1 Numerical approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Model Reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

III Three-dimensional flow and lift characteristics of a hovering ruby-throated
hummingbird 19
3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

(1) Experiment and reconstruction of the wing kinematics. . . . . 22
(2) Simulation setup and model validation. . . . . . . . . . . . . . 25

3.3 Results and discussion. . . . . . . . . . . . . . . . . . . . . . . . . . 31
(1) Force, power, and efficiency . . . . . . . . . . . . . . . . . . . 31
(2) Circulation and wing rotation . . . . . . . . . . . . . . . . . . 35
(3) Asymmetric lift production . . . . . . . . . . . . . . . . . . . 37
(4) Drag-based vertical force. . . . . . . . . . . . . . . . . . . . . 38
(5) Wing speed and angle of attack. . . . . . . . . . . . . . . . . 41
(6) Wing-wake interaction. . . . . . . . . . . . . . . . . . . . . . 42
(7) Three-dimensional vortex structures. . . . . . . . . . . . . . . 47
(8) Full-body simulation. . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

IV Performance of a quasi-steady model for hovering hummingbirds 53
4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Modeling approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

V Wing-pitching mechanism of a hovering ruby-throated Hummingbird 64
5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 Modeling approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

(1) The wing model . . . . . . . . . . . . . . . . . . . . . . . . . 66
(2) Description of the rotational velocity of the wing. . . . . . . . 67
(3) Dynamics of rotation. . . . . . . . . . . . . . . . . . . . . . . 70

iv



5.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
(1) Dynamics of the distal section. . . . . . . . . . . . . . . . . . 74
(2) Dynamics of the proximal section. . . . . . . . . . . . . . . . 79
(3) Dynamics of flapping motion . . . . . . . . . . . . . . . . . . 83

5.4 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

VI Three-dimensional simulation for fast forward flight of a calliope hum-
mingbird 89
6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 Model configuration and simulation approach. . . . . . . . . . . . . . 91

(1) Reconstruction of the wing kinematics. . . . . . . . . . . . . . 91
(2) Wing kinematics . . . . . . . . . . . . . . . . . . . . . . . . . 95
(3) Simulation setup and verification. . . . . . . . . . . . . . . . . 96

6.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
(1) Aerodynamic forces . . . . . . . . . . . . . . . . . . . . . . . 99
(2) Force production mechanism. . . . . . . . . . . . . . . . . . . 102
(3) Vortex structures. . . . . . . . . . . . . . . . . . . . . . . . . 104

6.4 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
(1) Forces on the bird body. . . . . . . . . . . . . . . . . . . . . . 106
(2) Comparison of hummingbirds, insects and other birds. . . . . 110

VII Summary and future work 114
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.2 Future study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

(1) Unsteady maneuvers of hummingbirds. . . . . . . . . . . . . 117
(2) Further comparison of hummingbirds and other flying animals . 120
(3) Fluid-structure interaction of the elastic flapping wings . . . . . 122

Appendix 124

References 127

v



LIST OF TABLES

3.1 Comparison between the ruby-throated hummingbird model and the ex-
perimental data for the rufous hummingbird.. . . . . . . . . . . . . . . 26

3.2 Comparison of the downstroke and upstroke, whereC̄′Z andC̄′P are the
lift and power coefficients rescaled by the respectivēU andS of either
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CHAPTER I

INTRODUCTION

1.1 MAVs and aerodynamics of flapping wings

Micro air vehicles (MAVs) are defined by the Defense AdvancedResearch Projects

Agency (DARPA) as robotic flyers that have wingspan under 15 cm and weight less

than 20 grams. As compared with larger aerial vehicles, MAVshave advantage of great

agility and promise to fly in a complex environment (e.g., indoor settings or cluttered

zones). With micro electronic and wireless communication devices on board, MAVs

have numerous applications such as military intelligence,surveillance and reconnais-

sance, searching and rescuing, environment monitoring, and urban policing.

Depending on the mechanism for lift and propulsion, MAVs canbe generally di-

vided into three categories: fixed wings, rotary wings, and flapping wings. In contrast

with fixed-wing and rotary-wing MAVs, flapping-wing MAVs areinspired by nature

and they mimic the flight strategy of animals such as insects,birds, and bats. The wings

of these animals serve as both lifting surfaces and thrusters, and they allow the animals

to make extremely fast maneuvers (e.g., during chase and escape), fly effortlessly in

gusty environment, attack precisely and stealthily, and sustain flight for a long time.

Therefore, even though the other types of MAVs (e.g., quad-rotor MAVs) have grown

rapidly in recent years, the natural flyers with superior performance will continue to

1



inspire engineers to seek flapping wings as an alternative strategy for future MAVs.

The most remarkable characteristic of flow around the flapping wing is that the flow

is typically separated from the wing surface and is unsteady. These features distinguish

aerodynamics of flapping wings from that of traditional wings. In the early twenti-

eth century, it was found that the traditional aerodynamic theory based on the steady,

attached flow assumption failed to predict enough lift production of insect wings (Weis-

Fogh and Jensen, 1956). This dilemma has led to later discovery of unsteady mecha-

nisms associated with flapping wings. In particular, a leading-edge vortex (LEV) is

generated during a wing transition and stably attaches to the wing surface during most

of wingbeat (Ellington et al., 1996). This stable LEV leads to low pressure on the wing

upper surface and thus overall augments lift. Besides, there are many other issues in-

volving in flapping-wing aerodynamics. For example, when a wing flaps back and forth,

it also rotates around its own longitudinal axis, a motion called pitching. Such pitching

motion dynamically changes the angle of attack and introduces a nonlinear rotational ef-

fect that is analogous to the Magus effect (Dickinson et al., 1999; Sane, 2003). Another

effect is wing-wake interaction, which takes place when the wing reverses its transla-

tional direction. The wing encounters the wake induced by the proceeding half stroke

thus increases the relative velocity of the wing with respect to the flow (Dickinson et al.,

1999). Clap and cling is another effect for small insects such as greenhouse whitefly.

That is, in a nearly horizontal stroke plane, the two wings close up at the end of upstroke

to push air downward; then the wings start to separate from the leading edge, creating

a low pressure zone between the two wings and thus generatingadditional lift (Weis-
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Fogh, 1973; Spedding and Maxworthy, 1986; Ellington, 1984). Structural mechanics is

also heavily involved in the aerodynamics of flapping wings as the wings are typically

passively flexible and have time-dependent deformations during wingbeat (Dai et al.,

2012b). This aeroelasticity necessarily requires a fluid-structure interaction approach

to study the effect of the wing flexibility.

There has been significant progress made in recent years in terms of understand-

ing aerodynamics of flapping wings. Both experimental and computational approaches

have been used to study this problem. On the experimental side, both force measure-

ment and flow visualization, e.g., bubble/smoke visualization and also particle imaging

velocimetry (PIV), have been applied to study the flow pattern (Ellington et al., 1996;

Lentink and Dickinson, 2009; Elimelech and Ellington, 2013). Direct force measure-

ment has mainly been utilized for the model wings or the exercised wings flapped by

robotic apparatuses. Both idealized wing kinematics (Fry et al., 2003; Birch and Dick-

inson, 2001; Lentink and Dickinson, 2009; Kruyt et al., 2014) and more realistic kine-

matics (Dickinson et al., 1999) have been adopted for those model wings to study effect

of the different kinematic aspects. In particular,Dickinson et al.(1999) designed an

apparatus to flap a model fly wing with three degrees of freedom, and with approxi-

mated wing kinematics, they measured the time-dependent lift and drag forces of the

wing. In terms of flow measurement, only limited informationcan be obtained from

flow visualization, and there is not much detail about the three-dimensional flow field.

For live animals, PIV measurements have been done in some cases to measure the fluid

velocity (Warrick et al., 2009, 2005; Wolf et al., 2013a; Kim et al., 2014; Rosén et al.,
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2007; Henningsson et al., 2008; Spedding et al., 2003).

Computational fluid dynamics offers a great alternative approach to understand the

complex flow physics of the flapping-wing problem. Two-dimensional, and more re-

cently, three-dimensional, models have been developed to simulate the unsteady flow,

mostly for hovering flight (Sun and Tang, 2002a; Wang et al., 2004a; Aono et al., 2008;

Dai et al., 2012a; Jardin et al., 2012; Harbig et al., 2013). In most of these work, the

wing motions are idealized (e.g., using sinusoidal functions), so that the studies could

focus on some fundamental flow physics. In some other cases (Young et al., 2009;

Zheng et al., 2013a), real animals (e.g., locusts and hawk moths) were simulated and

information about the flow and forces can be obtain directly.In contrast with idealized

wing models that are devoted to understanding of isolated fundamental flow physics,

more realistic three-dimensional models like those for real animals allow us to study

the animal flight directly. For example, we can get the overall lift and thrust production

of the entire wing and also detailed data on pressure distribution. In addition, the three-

dimensional flow can be visualized, and the whole field data could be used for detailed

analysis.

1.2 Aerodynamics of hummingbird flight

Hummingbirds are distinguished and extremely agile flyers among birds. They are

capable of not only sustained hovering flight but also fast forward flight and various

rapid maneuvers. Their superb performance has inspired development of miniaturized

aerial vehicles, e.g., the robot dubbed “Nano Hummingbird”that was recently invented

4



by AeroVironment Co., (Monrovia, CA) (Keennon et al., 2010).

As the only bird that is capable of performing sustained hovering flight (Kruyt

et al., 2014), hummingbirds’ the morphological kinematics, aerodynamics and power

consumption at hovering flight have been extensively studied (Hedrick et al., 2012;

Tobalske et al., 2007; Warrick et al., 2005, 2009; Chai and Dudley, 1999; Altshuler

et al., 2004a). Tobalske et al.(2007) performed comprehensive measurement of the

flight kinematics of the rufous hummingbirds in the wind tunnel at speed from zero

(hovering) to 12 m/s. The data they obtained include the body orientation angle, wing-

beat frequency, wingbeat amplitude, stroke plane angle, wingtip trajectory, and time-

dependent variables such as the wing chord angle and wing area, at different flight

speeds.Hedrick et al.(2012) used high-speed three-dimensional X-ray videography

and found hummingbirds enable the high-degree supination by allowing rotation at the

wrist and possibly even at other skeletal elements on the wings, which provide the mor-

phological knowledge to explain why the hummingbird can reverse the wing during

stroke transition.

Altshuler et al.(2004a) used a dissected hummingbird wing and tested lift produc-

tion of the wing revolving in one direction. By comparing with wing models of increas-

ing realism, i.e., those with sharpened leading edges and with substantial camber, they

found that the real hummingbird wing generates more lift, and their result suggests that

some geometric details such as the presence of camber tend toincrease lift. Using par-

ticle image velocimetry (PIV),Warrick et al.(2005, 2009) studied the flight of rufous

hummingbirds. They were able to measure the flow in the two-dimensional planes that
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are perpendicular to the wing axis during the entire stroke cycle. Based on the PIV data,

they visualized the leading-edge vortex (LEV) and calculated the circulation at different

spanwise locations. Interestingly, their result shows that the average bound circulation

during the downstroke is 2.1 times of the that during the upstroke (Warrick et al., 2009).

Assuming that the conventional airfoil theory holds, that is, lift is linearly proportional

to the bound circulation, the authors suggest that the lift production possesses the same

amount of asymmetry. They further proposed the possible mechanisms that may have

contributed to such lift characteristics. For example, thewing velocity and the angle of

attack during the downstroke are greater than those during the upstroke. Other variables

they suggested include longer wing span and formation of a positive camber during the

downstroke.

In another PIV study,Altshuler et al.(2009) measured the wake flow of the wings

and tail of hovering Anna’s hummingbirds, and they proposeda vortex-ring model for

the wake generated by the wings. Later,Wolf et al.(2013a) conducted further PIV study

of the same hummingbird species, and from the strength of theshed vortices, they also

concluded that lift production is highly asymmetric between the two half strokes. Most

recently,Kruyt et al.(2014) compared the quasi-steady hover performance of 26 wings

from 12 hummingbird taxa, the aspect ratio (AR) of which ranges from about 3.0 to 4.5.

Their comparative analysis shows that AR has a modest influence on the lift and drag

force, but interspecific differences in power factor are large. During the downstroke,the

power required to hover decreases for large AR wings at the angles of attack at which

hummingbird flap their wings. The aerodynamic performance comparison of hum-
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mingbird wings and an advanced micro helicopter rotor showsthat they are remarkably

close.

Despite these previous efforts, there exists no direct study on the detailed force char-

acteristics and the three-dimensional flow pattern of the hummingbird wing in hovering

flight, and even less study on the aerodynamics of forward flight and other maneuvers.

1.3 The specific objectives of this study

As an efficient and economical way to study such the fluid dynamics phenomena,

Computational Fluid Dynamics (CFD) has been applied in manyprevious works to

study aerodynamics of flapping wings, including both rigid and flexible wing mod-

els (Liu and Kawachi, 1998; Sun and Tang, 2002b; Young et al., 2009; Shyy et al.,

2010). Since our lab at Vanderbilt university has the specialty of performing accurate

CFD studies of problems involving complex and moving boundaries such as flapping

wings, here we are motivated to investigate the force production mechanisms utilized

by hummingbirds during different flight modes. Our specific objectives include:

1) Simulate the three-dimensional flow of hovering hummingbirds and study the

characteristics of lift, drag, and power within wingbeat cycles; study the relationship

among the wing kinematics, forces, and flow.

2) Develop a reduced-order model of the wing aerodynamics toquickly calculate

force production of the hummingbird wings; assess accuracyof this model using results

from the full CFD model.
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3) Develop a biomechanic model for rotational dynamics of the hummingbird wings

by including both inertial and aerodynamics effects; determine active and passive mech-

anism responsible for wing pitching.

4) Simulate the three-dimensional cruise flight at fast speeds and study the mecha-

nisms that hummingbirds utilize to generate sufficient lift and thrust.
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CHAPTER II

NUMERICAL APPROACH AND MODEL RECONSTRUCTION

2.1 Numerical approach

In the present study, the airflow around the hummingbird is governed by the viscous

incompressible Navier-Stokes equation since the Mach number of hummingbird flight

(wing speed around 10 m/s) is less than 0.03. The buoyancy is also ignored. Thus, the

momentum equation and the continuity equation are written as

∂ui

∂t
+
∂u jui

∂xj
= −

1
ρ

∂p
∂xi
+ ν

∂2ui

∂x2
j

,

∂ui

∂xi
= 0, (2.1)

whereui is the velocity,ρ and ν are the constant density and viscosity, andp is the

pressure.

The following description is a summary of the numerical method described in detail

in Luo et al.(2012) and Yin and Luo(2010). The governing equations are discretized

on a nonuniform Cartesian grid using a cell-centered, non-staggering arrangement of

the primitive variables,ui andp. The incompressible momentum equation is integrated

in time using a variation of Chorin’s projection method which consists of three sub-

steps (Chorin, 1968). In the first sub-step, an advection–diffusion equation is solved in

the absence of the pressure, and an intermediate velocity field, u∗i , is obtained. In this
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step, both the nonlinear advection terms and the viscous terms are discretized using the

Crank–Nicolson scheme to improve the numerical stability.The discrete equation is

written as

u∗i − un
i

∆t
+

1
2

[
δ(U jui)∗

δxj
+
δ(U jui)n

δxj

]

=
ν

2

[

δ

δxj

(
δu∗i
δxj

)

+
δ

δxj

(
δun

i

δxj

)]

, (2.2)

whereU j is the velocity discretized at the face center of a computational cell, and δ
δxj

represents a finite-difference approximation of the spatial derivative using a second-

order central scheme. The nonlinear algebraic system is solved by a successive substi-

tution approach.

In the second sub-step, a projection function is solved as anapproximation of the

pressure,

δ

δxj

(

δpn+1

δxj

)

=
ρ

∆t

δU∗j
δxj

, (2.3)

and an inhomogeneous Neumann boundary condition is imposedat all boundaries. The

Poisson equation (2.3) is solved with an efficient geometric multigrid method, as dis-

cussed inMittal et al. (2008). Once the pressure is obtained, the cell-centered velocity

is updated as

un+1
i = u∗i −

∆t
ρ

δpn+1

δxi
, (2.4)

and the final face-centered velocity,Un+1
i , is updated by averagingun+1

i along thei-

direction.
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Figure 2.1: A 2D illustration of the sharp-interface immersed-boundary method for the
fluid–solid boundary. Flow field extrapolation is applied atthe ghost nodes.

In this work, a previously developed second-order sharp-interface immersed-boundary

method (Mittal et al., 2008; Luo et al., 2012) is used to handle the complex geometry

of the fluid–solid interface. In this method, the irregular solid interface is triangulated

by an unstructured surface mesh consisting of a set of Lagrangian marker points. The

nodal points on the Cartesian grid that discretizes the computational domain are labeled

either as “solid nodes” or “fluid nodes” depending on which side of the interface the

node is located on. Away from the solid surface, the Navier–Stokes equation is dis-

cretized using a standard second-order central difference scheme. Such a scheme is

also applied at the fluid–fluid interface after the diffuse-interface treatment, as will be

discussed in next section.

Near the solid surface, the standard central difference scheme cannot be applied for

those nodes at which the stencil involves solid nodes. Thesefluid nodes are immediately
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next to the solid surface and are termed “hybrid” nodes, and the corresponding solid

nodes involved in the stencil are termed “ghost” nodes (GN).We emphasize that as

shown byLuo et al.(2012), the special treatments at these nodes do not compromise

the overall second-order accuracy of the method.

Flow field reconstruction is applied at the ghost nodes with the boundary condition

incorporatedMittal et al. (2008). To accomplish this, the image point (IP) on the fluid

side is found by projecting the ghost node along the surface normal, and the body inter-

cept (BI) on the solid surface is thus located midway betweenthe ghost node and image

point. Assume thatφ(x1, x2, x3) is a generic variable. To interpolate the value ofφ at the

image point, a trilinear interpolation is used in the local area with eight nodes enclosing

the image point,

φ(x1, x2, x3) = C1x1x2x3 +C2x1x2 +C3x2x3 +C4x3x1 +C5x1 +C6x2 +C7x3 +C8,(2.5)

where the polynomial coefficientsCi , i = 1, 2, ..., 8, are determined by the values ofφ at

the eight nodes,φi,

{C} = [V]−1{φ}. (2.6)

with {C}T = {C1,C2, ...,C8} and{φ}T = {φ1, φ2, ..., φ8}. The matrix [V] is the Vander-
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monde matrix constructed from the coordinates of the eight nodes,

[V] =





x1x2x3|1 x1x2|1 x2x3|1 x3x1|1 x1|1 x2|1 x3|1 1

x1x2x3|2 x1x2|2 x2x3|2 x3x1|2 x1|2 x2|2 x3|2 1

...
...

...
...

x1x2x3|8 x1x2|8 x2x3|8 x3x1|8 x1|8 x2|8 x3|8 1





(2.7)

where the subscript in (·)|i means theith node. With the solved coefficients, the interpo-

lated value at the image point becomes

φIP(x1, x2, x3) = {X}
T{C} = {X}T [V]−1{φ} =

8∑

i=1

βiφi (2.8)

where{X}T = {x1x2x3, x1x2, x2x3, x3x1, x1, x2, x3, 1}|IP denotes the vector based on the

coordinates of the image point andβi is the interpolation weight calculated from{X}T [V]−1.

From Eq. (2.8), the interpolation weightβi depends on the position of the image point

and the eight data points only. Thus, it can be determined once the geometrical infor-

mation is available and is then ready for use during the iterative solution of the flow

variables.

The eight data points used for interpolation could be the eight vertices on the com-

putational cell surrounding the image point. However, the ghost node itself could be one

of the eight nodes, as shown by one of the two situations depicted in Fig.2.1. Under

such circumstance, the ghost node is replaced by the body intercept in the interpolation

process. At the body intercept, either Dirichlet (for the velocity) or Neumann (for the

pressure) condition is specified. For the Dirichlet condition, using the body intercept in
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the interpolation is straightforward: the interpolation formula in Eq. (2.8) remains the

same and the variables in{φ} and [V] should be replaced by those at the body intercept.

For the Neumann condition,∂φ/∂n, needs to be incorporated into the interpolation for-

mula. This is done by modifying the last row of the Vandermonde matrix in Eq. (2.7)

into

[

n1x2x3 + n2x1x3 + n3x1x2 n1x2 + n2x1 n2x3 + n3x2 n1x3 + n3x1 n1 n2 n3 0

]

.(2.9)

where (n1, n2, n3) represents the surface normal at the body intercept. Correspondingly,

the last element inφ is replaced by∂φ/∂n at the body intercept, and Eq. (2.8) becomes

φIP(x1, x2, x3) =
7∑

i=1

βiφi + β8
∂φ

∂n
. (2.10)

For the velocity boundary condition, a linear distributionis simply assumed along

the line segment connecting the ghost node, body intercept,and the image point. That

is,

uGN + uIP = 2uBI. (2.11)

Given the boundary velocity,uBI, whereuBI = 0 for a stationary boundary,uGN can

be calculated from Eq. (2.11). For the pressure,∂p
∂n is given as the boundary condition.

Using a central difference approximation, the condition can be written as

∂p
∂n

∣
∣
∣
∣
∣
BI
=

pIP − pGN

∆l
= −ρ

Du
Dt
· n

∣
∣
∣
∣
∣
BI

(2.12)
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where the∆l is the distance between the IP and GN. Inhomogeneous pressure condition

∂p/∂n = −ρ(Du/Dt) · n has been assumed here. The value of Du/Dt at the body

intercept is interpolated from the acceleration of the Lagrangian marker points on the

solid surface in the case of a moving boundary.

With the above numerical descriptions of the flow variables at the ghost nodes and

the finite-difference discretization at all the fluid nodes, a complete algebraic system

could be formed for all the discrete variables. More detailsof implementation and

validation of this sharp-interface treatment are providedin Mittal et al. (2008). In case

that the solid surface is a moving boundary, such method may be subject to numerical

oscillations as the solid surface moves across the stationary grid and the ghost nodes

have to be re-identified at each time step. To suppress the oscillation, Luo et al.(2012)

improved the method by applying a hybrid numerical description at the fluid nodes

immediately next to the solid surface. In the hybrid description, a local interpolation

and the standard finite-difference discretization are weighted based on the distance of

the fluid node to the solid surface. Thus, as the boundary moves, the interpolation and

finite-difference formulas transition to one another gradually ratherthan abruptly. Since

the primary focus of the current work is on stationary solid boundaries, further details

of the moving-boundary treatment is not discussed here. Readers are referred toLuo

et al.(2012) for more information.
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Figure 2.2: Four camera views of a hummingbird hovering in a transparent chamber.

2.2 Model Reconstruction

In the experiment study that was carried out by our collaborators either at the Uni-

versity of North Carolina at Chapel Hill or at the Universityof Montana, the humming-

birds were trained to fly in the lab. The bird wings were labeled with dots prior to

the experiment using white paint. Several synchronized high-speed cameras were posi-

tioned to record the bird flight from different view angles to obtain the 3D information

and to avoid temporary blockage of the target, as seen in Fig.2.2.

A custom MATLAB program developed by our collaborators at the University of

North Carolina at Chapel Hill was used to digitize the pointslabeled on the wings frame

by frame. In the software, the synchronized videos are loaded at the same time, and a
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point of interest is selected in any of the videos which best shows this point. Once the

point is selected (simply by a mouse click) in one window, a line in the 3D space that

is perpendicular to this view plane is generated and is shownas a blue line in the other

view windows (see Fig.2.3(a)). This reference line guides the point selection. A second

mouse click on the line in any of the other views would determine the point, and the

numeric values of the 3D coordinates are automatically obtained by the program. Each

view window can be independently zoomed to facilitate the process. Even though the

program allows automatic tracing of the point from the frameto frame, sometimes we

need to manually locate the point for better accuracy.
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(a)

(b)

Figure 2.3: Data collection from high-speed videos. (a) Thefirst mouse click in one
view generates a line in the 3D space shown in the other views.(b) A second click in
another view determines the 3D coordinates of the point. Note that in this figure, two
simultaeous X-ray views are also included, which show the musculoskeletal structure
of the bird (Hedrick et al., 2012) .
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CHAPTER III

THREE-DIMENSIONAL FLOW AND LIFT CHARACTERISTICS OF A

HOVERING RUBY-THROATED HUMMINGBIRD

3.1 Introduction

Unlike birds of larger size, hummingbirds can perform sustained hovering in addi-

tion to regular cruise flight and maneuvers. Many studies have been done to characterize

the kinematics, physiology, and aerodynamics of the hummingbird wing (Weis-Fogh,

1972; Chai and Dudley, 1999; Altshuler et al., 2004a; Warrick et al., 2005), and they

were summarized in the work ofTobalske et al.(2007). In general, hummingbirds

utilize similar aerodynamics to those of insects, e.g., presence of a leading-edge vortex

over the wing surface (Ellington et al., 1996; Sane, 2003), for lift production. However,

differences between hummingbird and insect aerodynamics are conceivable since the

anatomy and physiology of the hummingbird wing are distinctfrom those of the insect

wing. For example, recent evidence shows that hummingbirdscan achieve the inversion

of the angle of attack through active wing rotation at the wrist (Hedrick et al., 2012).

This actuation mechanism is different from that of insects whose wing inversion can

be realized through combined muscle activation at the wing root and the passive defor-

mation of the wing surface (Ennos, 1988a). The implication of this difference on the

lift and power efficiency of hummingbirds is still unclear. In order to better understand

aerodynamics of hummingbirds, their lift and flow characteristics are needed. Unfor-
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tunately, such data are so far very limited. To set the context for the current work, we

briefly summarize several recent studies on the force production and flow behavior in

the hummingbird flight.

Altshuler et al.(2004a) used a dissected hummingbird wing and tested lift pro-

duction of the wing revolving in one direction. By comparingwith wing models of

increasing realism, i.e., those with sharpened leading edges and with substantial cam-

ber, they found that the real hummingbird wing generates more lift, and their result

suggests that some geometric details such as the presence ofcamber tend to increase

lift. Using particle image velocimetry (PIV), Warricket al. (Warrick et al., 2005, 2009)

studied the flight of rufous hummingbirds. They were able to measure the flow in the

two-dimensional planes that are perpendicular to the wing axis during the entire stroke

cycle. Based on the PIV data, they visualized the leading-edge vortex (LEV) and cal-

culated the circulation at different spanwise locations. Interestingly, their result shows

that the average bound circulation during the downstroke is2.1 times of the that during

the upstroke (Warrick et al., 2009). Assuming that the conventional airfoil theory holds,

that is, lift is linearly proportional to the bound circulation, the authors suggest that the

lift production possesses the same amount of asymmetry. They further proposed the

possible mechanisms that may have contributed to such lift characteristics. For exam-

ple, the wing velocity and the angle of attack during the downstroke are greater than

those during the upstroke. Other variables they suggested include longer wing span

and formation of a positive camber during the downstroke. Inanother PIV study,Alt-

shuler et al.(2009) measured the wake flow of the wings and tail of hovering Anna’s
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hummingbirds, and they proposed a vortex-ring model for thewake generated by the

wings. Later,Wolf et al. (2013a) conducted further PIV study of the same humming-

bird species, and from the strength of the shed vortices, they also concluded that lift

production is highly asymmetric between the two half strokes.

Despite these previous efforts, there exists no direct study on the detailed force char-

acteristics and the three-dimensional flow pattern of the hummingbird wing in hovering

flight. As a useful tool, CFD has been applied in many previousworks to study aero-

dynamics of flapping wings, including both rigid and flexiblewing models (Liu and

Kawachi, 1998; Sun and Tang, 2002b; Young et al., 2009; Shyy et al., 2010). Here

we are motivated to perform a CFD study to quantify the force histories in a stroke

cycle and to investigate any particular force production mechanisms utilized by the

hummingbird. The main questions we would like to answer through the current work

include: 1) What are the characteristics of the force history, and what are the under-

lying mechanisms for the possible downstroke-upstroke asymmetry? 2) What is the

three-dimensional wake pattern like, and how may it be associated with the force char-

acteristics? 3) How much aerodynamic power does the hummingbird have to spend

on hovering and what is the efficiency? 4) Does the hummingbird utilize some the

mechanisms that insects use for lift enhancement, such as wake capture and wing-wing

interaction?

21



(a) (b)

Y
X

Z

Downstroke

Upstroke

(c)

Figure 3.1: (a) Marker points on the outline of the wing. (b) Reconstructed wing kine-
matics (shown for the right wing). (c) The triangle represents the distal half of the wing
surface, based on which the chord angle,αc, and the angle of attack,α, are defined in
the text.

3.2 Method

3.2.1 Experiment and reconstruction of the wing kinematics

The hummingbird, a female ruby-throated (Archilochus colubris) with a body mass

of 3.41 grams, is used as the subject in the current study. High-speed filming experiment

was conducted to record the wing motion of the bird. In the experiment, the bird was

trained to fly in a 0.4×0.4×0.5 m3 netted chamber and was recorded 1000 frames per
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(a) (b)

(c) (d)

Figure 3.2: Four camera views of the bird. A syringe of nectaris served for the hum-
mingbird hovering.

second with a 1/5000th shutter by four high-speed cameras: two Phantom v7.1(Vision

Research Inc., Wayne, NJ, USA), one Photron SA-3 and one Photron 1024 PCI (Photron

USA Inc., San Diego, CA, USA). Each flapping cycle contains about 25 frames. The

bird was labeled prior to the experiment using 1-mm diameterdots of non-toxic white

paint, as shown in Fig.3.1(a). The experimental setup is described in detail inHedrick

et al. (2012). The nine markers numbered in Fig.3.1(a) and located on the outline

of the left wing are used in the current study. These markers include five points on the

leading edge, one at the wingtip, and three on the trailing edge. To avoid blind spots, the

cameras were positioned with one directly behind the bird inthe same horizontal plane,

two with an elevated oblique and slightly rear view, and one with a ventral view of the
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Figure 3.3: Comparison of the reconstructed wing and the video image during early
downstroke, around mid-downstroke, early upstroke, and around mid-upstroke

bird (see Fig.3.2). After the videos are taken, a custom MATLAB program (Hedrick,

2008) was used to automatically track the markers frame by frame and to extract their

3D coordinates. A principal components analysis (PCA) has been done to verify that

these nine points are sufficient to characterize the wing motion.

To reconstruct the wing geometry and motion, spline interpolation is used to connect

the outline of the wing at each instantaneous time frame. Then, both the leading edge

and the trailing edge are evenly discretized by 41 nodes each. The wing chord is ap-

proximated with straight segments which have rounded ends and an effective thickness

7% of the average chord length.

A triangular mesh is then generated to discretize the wing surface, which is assumed

to be smooth. The comparison with reconstructed wing position with the video images

are shown in Fig.3.3.Corrugations caused by the feathers are ignored since their effect

on the laminar boundary layer is expected to be small at the current Reynolds num-

ber. Discussions on the effect of feathers at higher Reynolds numbers can be found in
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a recent experimental study (Elimelech and Ellington, 2013). A single wing consists

of 1129 elements and 615 Lagrangian nodes. To increase the time resolution for the

small-step solution of the simulation, the trajectory of each mesh node is also refined

by spline interpolation in time. Eight cycles of wing kinematics are reconstructed from

the imaging data and are used for the simulation. Note that dynamic deformations of

the wing such as spanwise bending and twisting have been included in the reconstructed

kinematics (see Fig. S2 in supplementary materials) and thus their aerodynamic conse-

quences will be incorporated in the simulation results.

As seen in Fig.3.1(b), the entire wing surface exhibits a twist along the wing axis,

and the twist angle changes dynamically in a stroke cycle dueto the pitching motion

of the wing. To define the wing posture and the time-varying angle of attack, we select

three points on the wing: the wing tip, the leading edge pointand the trailing edge

point of the mid-chord. These three points form a triangle approximating posturing of

the distal half of the wing surface, as indicated in Fig.3.1(c). The chord angle,αc, is

defined as the instantaneous acute angle between the plane spanned by this triangle and

the horizontal plane. This angle will be used to measure orientation and pitch rotation

of the distal wing surface. The angle of attack,α, is defined as the instantaneous angle

between the tip velocity vector and the triangle.

3.2.2 Simulation setup and model validation

The numerical method to solve the Navier-stokes equation has been discussed in

Chapter II. For the simulation setup, a fixed, nonuniform, single-block Cartesian grid is
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Present Tobalske et al.(2007)
Body mass,M (g) 3.41 3.4± 0.1
Flapping frequency,f (Hz) 42 43± 2
Wing length,R (mm) 44.7 47± 1
Wing span,b (mm) 110.8 109± 2
Average wing chord,c (mm) 11.7 12± 1
Single wing area,S (mm2) 568 558± 18
Stroke plane angle (average) 12◦ 15◦ ± 4◦

Wingbeat amplitude,Φ 114.3◦ 111◦ ± 2◦

Table 3.1: Comparison between the ruby-throated hummingbird model and the experi-
mental data for the rufous hummingbird.

employed to discretize the domain. The rectangular domain is 20× 20× 18 cm3 (see

Fig. 6.7(a)). For the single-wing simulation, 330×250×210 (17 million) points are used

for the baseline simulation. A coarser mesh with 232×180×140 (6 million) points and

a finer mesh with 420×310×240 (31 million) points are also used in the single-wing

case to verify grid convergence. All three meshes have maximum resolution around

the wing, which is 0.05 cm, 0.033 cm, and 0.025 cm in all three directions, for the

coarser, baseline, and finer mesh, respectively. The two extra simulations are run for

two cycles, and they produce a maximum 3% difference from the baseline mesh in

the mean and root-mean-square values of the vertical force.The full-body simulation

employs 336×408×216 (30 million) points, and the resolution around the body and

wings is the same as in the baseline case for the single wing.

The numerical method has been previously validated for flapping-wing simulations

against both experimental and simulation data inDai et al.(2012a), where a fruit-fly

model and an impulsively started plate were studied. To further validate the model in

the present work, we compare the flow field with that obtained from the PIV experiment

by Warrick et al.(2009). Note that the rufous hummingbird (Selasphorus rufus) was
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Figure 3.4: The baseline mesh around the bird (only one out ofevery 4 points in each
direction is shown). (b) Grid convergence study where the normalized vertical force of
a single wing,CZ, is plotted.

used in the experiment, while the ruby-throated hummingbird (Archilochus colubris) is

used in the current study. However, these two species are very similar to each other in

terms of the morphological data and wing kinematics. Table3.1 lists some of the key

parameters of the current hummingbird along with those fromWarrick et al.(2009),

including the body mass,M, the flapping frequency,f , the wing length,R, the wing

span,b, average chord length,c, the wing area,S, and the wingbeat amplitude,Φ.

It can be seen that all the parameters in the current study fall well within the ranges

in the experiment. We also converted the angle of attack and the chord angle of the
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present hummingbird using the definitions in the experimental study, and the result of

comparison is generally consistentTobalske et al.(2007), the chord angle is 14◦ ± 7◦

for downstroke and 31◦ ± 4◦ for upstroke; inWarrick et al.(2005), the angle of attack

is 36◦ ± 12◦ and 26◦ ± 13◦. In the present study, the chord angle is 16◦ for downstroke

and 48◦ for upstroke; and the angle of attack is 33◦ and 24◦. All angles are measured

according to their definitions). The Reynolds number of the flow is set to beRe =

2 f RΦc
ν
= 3000. This nondimensional number represents the ratio between the fluid

inertia and the viscous effect.

Fig. 3.5(b) shows a typical spanwise slice of the instantaneous flow during mid-

downstroke at 70% wingspan from the wing root. Note that the experimental data is

shown for the slice at approximately 80% wingspan, or 4 cm from the wing root. A

discussion on the choice of the spanwise location is deferred to the end of this section.

It can be seen that in both cases, a strong shear layer exists on the dorsal surface of the

wing and is generally attached to the wing surface. In the experiment, the shear layer

on the ventral side of the wing is not visible due to the shadoweffect. Both figures

show that a large clockwise vortex is located in the wake of the wing and is about one

chord length away from the trailing edge, though the strength of vortex is weaker in

the simulation. Overall downwash is created in both cases, which corresponds to lift

production. There are also other visible differences between the two plots. In particular,

the vortices in the experiment appear to be multiple blobs above the wing surface, while

in the simulation a continuous vortex sheet is formed and is slightly separated from the

wing near the leading edge. We point out that variations in the wing kinematics of bird
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individuals may have led to discrepancies in the flow field observed here. In addition,

some of these differences are likely caused by low resolution in the experiment where

around 17 points per cm were used for the velocity field. In thesimulation, 30 points

per cm in the baseline grid and 40 points per cm in the finest grid are employed around

the wing. Furthermore, the two grids displayed a consistentform of shear layers.

We further compare the bound circulation around the wing chord with the data from

the experiment. Fig.3.6 shows the phase-averaged circulation,Γ, defined asΓ =
∮

,

along a circular path that encloses the wing chord. The diameter of the circle is 10%

greater than the chord length. Increasing this diameter by 20% only changes the max-

imum circulation by 5%. InWarrick et al.(2009), the phase averaged circulation is

shown at 80% wingspan for the entire stroke cycle. However, their results also show

that the spanwise location of the maximum circulation varies largely among the bird in-

dividuals, although in general the maximum happens between40% to 80% of wingspan.

In the current study, we found that the maximum bound circulation takes place between

50% to 70% of wingspan. Therefore, we plotΓ for 50%, 70%, and 80% wingspan loca-

tions and compare them with the experiment data. For the samereason, in the validation

of the flow field we chose to use the slice at 70% of wingspan.

Fig. 3.6 shows that the present circulation at 50% wingspan matches the best with

the experimental data. At both 70% and 80% wingspan, the circulation has a significant

drop after the mid-downstroke. In the experimental result,the ratio of the downstroke

and upstroke circulations is 2.1± 0.1 in magnitude. In the simulation, this ratio is 2.2,

2.3, and 2.0 for 50%, 70%, and 80% wingspan, respectively.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.5: Comparison of the spanwise vorticity,ωz, during middle downstroke (the
unit is 1/s). (a,c,e,g) PIV image adapted fromWarrick et al.(2009) (image usage au-
thorized); (b,d,f,h) current simulation. (a,b) middle downstroke, (c,d) supination, (e,f)
pronation, (g,h) begining of downstroke.
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Figure 3.6: Comparison of the phase averaged bound circulation Γ between current
simulation and the experimental measurement ofWarrick et al.(2009) (re-plotted to
include the sign ofΓ), where timet is normalized by the periodT.

3.3 Results and discussion

We first report the forces, power, and efficiency of the single-wing simulation and

then discuss the characteristics of the forces and flow field.In the end, we will also

discuss the full-body simulation.

3.3.1 Force, power, and efficiency

The global coordinate system is shown in Fig.6.7(a), whereX, Y, andZ denote the

forward, spanwise, and vertical direction, respectively.The resultant force components,

FX, FY, andFZ, are normalized by the fluid density,ρ, the average wing area,S, and

the average tip velocity,̄U, according to

CX =
FX

1
2 r̂2

2ρŪ2S
, CY =

FY
1
2 r̂2

2ρŪ2S
, CZ =

FZ
1
2 r̂2

2ρŪ2S
, (3.1)
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whereCX, CY, andCZ are the force coefficients and ˆr2
2 =

∫

r2dS/(R2S) = 0.27 is the

coefficient of the second moment of area of the wing surface about the axis passing

through the wing base point and parallel to the wing. In the current study,S = 5.68 cm2

andŪ = 9.51 m/s are averaged from the reconstructed wing motion. The air density is

chosen to be 1.23 kg/m3. From these data, the reduced frequency of the wing as defined

by π f c/Ū is 0.16.

Fig. 3.7shows the time courses of the force coefficients and power coefficient. Note

that the cycle-to-cycle variations seen in this figure are due to the non-periodic features

in the wing kinematics. The aerodynamic power here is calculated by directly inte-

grating the dot product between the wing velocity and the aerodynamic loading over

the entire wing surface. The power coefficient is defined by normalizing the power by

1
2 r̂3

3ρŪ3S, where ˆr3
3 = 0.185 is the dimensionless third moment of the area of the wing.

From the result the average vertical force coefficient isC̄Z=1.80, which corresponds to

3.12 g of total weight support provided by two wings. The total lift is about 91% of the

weight of the bird. The remaining lift could be provided by the wing camber (Altshuler

et al., 2004a; Warrick et al., 2005), which is not incorporated into the current model.

The most striking feature of the vertical force is that the downstroke produces clearly

much higher lift than the upstroke. The data shows thatCZ averaged during the down-

stroke is 2.5 times of that during the upstroke, which is generally consistent with the lift

estimated based on the circulation in the experiments (Warrick et al., 2005, 2009). Note

that the ratio of the bound circulation between the downstroke and upstroke is 2.1±0.1

in Warrick et al.(2009). Another observation in Fig.3.7 is that the forces and power
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Figure 3.7: The three normalized force componentsCZ (a),CX andCY (b) in the single-
wing simulation. (c) The power coefficient normalized by12 r̂3

3ρŪ3S, and positive power
means work done to the flow.

contain a significant dip during the upstroke. This dip corresponds to the LEV shedding

from the wing, which will be discussed in Section 3.4.

The averaged forward force coefficient isC̄X = 0.15, which is much smaller than

C̄Z. The average spanwise force coefficient isC̄Y = 0.13. These forces can be can-

celed out for the real bird when taking into consideration oftwo-wing symmetry (for
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the Y-direction), tail motion, and possibly the bird-feeder interaction in the imaging

experiment (the latter two for theX-direction).

The power coefficient in Fig.3.7 also exhibits similar asymmetry as the vertical

force coefficient. Further calculation shows that the downstroke requires 2.8 times as

much power as the upstroke. The averaged power coefficient throughout the cycles is

C̄P = 1.68. Defined as the ratio between the lift coefficient and the power coefficient,

the aerodynamic efficiency of the wing is thus̄CZ/C̄P = 1.07. Using the dimensional

values ofρ, Ū, andS, and the body mass, we obtain the mass-specific power of the

bird, which is 55 W/kg. Altshuler et al.(2004b) estimated the power consumption of the

hummingbirds using the empirically derived drag coefficient measured from a revolving

hummingbird wing. For the hummingbirds flying at elevation below 1000 m (body

mass ranging from 2.5 to 9 g), the mass-specific power for hovering was estimated to

be between 23 and 33 W/kg in their work, which is about half of the current result.

Chai and Dudley(1996) reported the oxygen consumption and therefore metabolic

power input of ruby-throated hummingbirds to be around 260 W/kg. Thus, our aerody-

namic power output implies a muscle efficiency of 21%. Vertebrate muscle efficiency

can reach slightly less than 30%, but hummingbirds are expected to be slightly less

efficient because of adaptations for maintaining continuous high mass-specific power

output and due to the unmeasured cost of accelerating the wing mass during each half

stroke.

The overall muscle efficiency of 21% found here is substantially greater than that re-
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ported in earlier studies (e.g.Ellington(1985)) that use simpler models to predict aero-

dynamic power requirements and report efficiencies of around 10%. However, other

recent Navier–Stokes simulations of hovering animal flighthave also reported higher

power requirements than predicted (e.g.Zheng et al.(2013a)) and that revolving wing

experiments do not necessarily reproduce the same flow conditions and thus force co-

efficients as flapping wings (Zheng et al., 2013b).

3.3.2 Circulation and wing rotation

As shown in Fig.3.6, the bound circulation around the wing chord is consistent with

the measurement ofWarrick et al.(2009). Furthermore, the circulation is sustained

through the wing reversal. For example, during the downstroke, circulation around

the translating wing is developed, and toward the end of downstroke and throughout

supination, the circulation does not vanish but remains thesame sign, e.g., positive or

counterclockwise from the right side view. Similarly, the circulation developed during

the upstroke translation remains negative throughout pronation, as shown in Fig.3.6.

The lingering circulation is caused by the pitching rotation of the wing around its own

axis (Dickinson et al., 1999). Unlike a spinning cylinder in a uniform flow, this circu-

lation cannot always be utilized for lift production (e.g.,when the translational speed is

zero or the wing surface is vertical and thus has zero projected area on the horizontal).

Therefore, the vertical force as shown in Fig.3.7(a) is still nearly zero at wing reversals.

To better see the phase relationship between the lift production and the wing motion,

we plot in Fig.3.8the vertical force coefficient, the translational velocity of the wing as
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Figure 3.8: The lift coefficient, the tip velocity in m/s, the chord angle in deg., and
the pitching velocity in deg./s in typical cycles (average data still taken from all eight
cycles).

represented by the tip velocity,Vtip, the chord angleαc, and also the pitching velocity

represented by ˙αc. Fewer cycles are plotted henceforth to show details withina cycle,

although statistics are taken from all cycles available. From this figure, we may see

additional pitching effect other than pronation and supination: during mid-downstroke,

there is a positive peak in ˙αc and this peak also roughly corresponds to the maximum

translational speed of the wing. Such backward pitching rotation would increase the

circulation and, along with the wing translation, help to enhance lift production during

the downstroke. On the other hand, during mid-upstroke the magnitude of the negative

peak inα̇c is much lower. This difference could have increased the force asymmetry

between the downstroke and upstroke, as will be discussed indetail next.
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Ū Ū2 S αmid C̄Z C̄P C̄Z/C̄P C̄′Z/C̄
′
P

(m/s) (m2/s2) (cm2) (deg.)
Downstroke 10.12 114.1 5.94 41.5 2.63 2.54 1.02 1.05
Upstroke 8.98 94.5 5.46 33.5 1.04 0.92 1.14 1.08
Ratio 1.13 1.21 1.09 1.23 2.49 2.76 0.89 0.97

Table 3.2: Comparison of the downstroke and upstroke, whereC̄′Z andC̄′P are the lift and
power coefficients rescaled by the respectivēU andS of either downstroke or upstroke.

3.3.3 Asymmetric lift production

(3).1 Force asymmetry

Fig. 3.7(a) shows that lift production is highly asymmetric, with the downstroke

generating much greater weight support than the upstroke. The average vertical force

provided by the downstroke is 0.022 N, and by the upstroke is 0.0090 N. Thus, the ratio

of asymmetry is 2.5. Table3.2further lists the lift coefficient, the power coefficient, and

the lift-to-power ratio separately for the downstroke and upstroke. It can be seen that the

downstroke produces more lift, but it is also more power-consuming. By rescaling the

lift and power using the respective wing velocity and surface area of each half stroke to

obtainC̄′Z andC̄′P, we see that the lift-to-power coefficient is similar for the downstroke

and upstroke. Thus, despite that their aerodynamics are quite different, the two half

strokes still have similar efficiency.

In Warrick et al.(2009), the force asymmetry between the upstroke and downstroke

was attributed to several mechanisms, including the wing velocity, angle of attack, wing

area, and camber. Except that the camber effect is not included in the current study, all

the other mechanisms have been observed in the simulation, as will be discussed next.
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In addition, we found that other mechanisms also have contributed to the asymmetry,

which include the drag-based vertical force, wing-wake interaction, and pitching rota-

tion. The effect of pitching rotation has been discussed in Section 3.2. So we will focus

on the other effects.

First, Table3.2provides the comparison of a few key kinematic parameters between

the downstroke and upstroke, including the average tip speed, angle of attack, wing

area. It can be seen that the ratio of the average wing area between the downstroke

and upstroke is only 1.09, and the ratio of the average tip speed is only 1.13. The ratio

between the velocity squares is 1.21 only. That is, the combination of the wing area and

velocity is much less than the ratio of 2.5 in the force asymmetry. Therefore, some other

mechanisms must be significant in leading to the large imbalance of two half strokes.

3.3.4 Drag-based vertical force

First, we consider the effect of deviation, i.e., the non-reciprocal path of the wing in

a stroke cycle. Observing the wing motion from the side view,we notice that the wing

tip traces a roughly elliptical path whose long axis has a small angle with respect to

the horizontal plane. This deviation from the mean stroke plane is shown in Fig.3.9(a)

by plotting the cycle-averaged trajectory of the right wingtip in the XZ-plane. In the

figure, the mean stroke plane is tilted forward by approximately 12◦ with respect to the

horizontal. This observation motivates us to decompose theforces generated by the

wing into the aerodynamic lift, i.e., the force perpendicular to the wing translation, and

the aerodynamic drag, i.e., the force opposite to the wing translation, as illustrated in
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Figure 3.9: (a) The averaged trajectory of the right wing tipin theXZ-plane. Force de-
composition in terms of the aerodynamic lift and drag is illustrated. Note that the actual
decomposition depends on the orientations of the wing axis and tip velocity vector in
the 3D space. (b) The instantaneous (thin line) and cycle-averaged (thick line) stroke
plane angleβ and angle of attackα in deg.

Fig. 3.9(a).

To do this analysis, we define the instantaneous stroke planeas the plane spanned by

the instantaneous tip velocity vector and the wing axis. Theinstantaneous stroke plane

angle,β, is the angle between this plane and the horizontal plane. Both the instantaneous

and cycle-averaged values ofβ are plotted in Fig.3.9(b), along with the instantaneous

and cycle-averaged angle of attackα. Note that these two angles are defined in the 3D

space and are shown in the 2D plot in Fig.3.9(a) for illustration purpose only. It can be

seen that after the pronation,β is around -50◦ and then drops in magnitude during more

than half of the downstroke. During early downstroke, the angle of attack is large and

drops from 80◦ to 39◦. The two angle histories indicate that during early downstroke the

wing is pressing downward while sweeping forward. Toward the end of downstroke,β

becomes positive, but its magnitude is less than 25◦ before supination. In comparison,

during the upstrokeβ is around 10◦ and only varies slightly.
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Figure 3.10: (a) Normalized aerodynamic lift and drag for two typical cycles. (b) Ver-
tical components ofCL andCD. Average data are calculated from all eight cycles.

C̄L C̄D C̄L/C̄D C̄L,Z C̄D,Z

Downstroke 2.22 2.30 0.98 2.00 0.63
Upstroke 1.26 0.81 1.54 1.19 -0.12
Ratio 1.80 2.85 0.63 1.72 –

Table 3.3: The aerodynamic lift, drag, and their vertical component for both downstroke
and upstroke. All forces are normalized in the same way as described earlier.

We define the resultant force normal to the instantaneous stroke plane as lift,FL, and

the force opposite to the direction of the instantaneous tipvelocity as drag,FD. Fig.3.10

shows the normalized lift and drag by1
2 r̂2

2ρŪ2S, CL andCD, and also their projections

in the vertical direction,CL,Z andCD,Z, for two cycles. In Fig.3.10(a), CL andCD

correlate with each other and have similar magnitude. The average data are listed in
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Table3.3separately for the downstroke and upstroke. Fig.3.10(b) shows that during the

downstroke, drag has a significant positive contribution tothe vertical force during the

first half of the downstroke and has only a small negative contribution during the second

half of the downstroke. During the upstroke, drag has mostlynegative contribution, and

the magnitude is small. On average, the drag-based verticalforce,CD,Z, is 0.63 or 24%

of the total vertical forceCZ during the downstroke, and it is -0.12 or 12% ofCZ during

the upstroke. SinceCD,Z of the downstroke is 61% ofCZ of the upstroke andCD,Z of

the upstroke is small, we can conclude that drag contributes0.61 out of the asymmetry

ratio 2.5 in the vertical force.

Fig. 3.10(a) and (b) also show that after excluding the drag-based vertical force, the

lift coefficient, CL, is still asymmetric between the downstroke and upstroke, and so

is its vertical component,CL,Z. On average, the downstroke-to-upstroke ratio inCL is

1.80.

3.3.5 Wing speed and angle of attack

As pointed out byWarrick et al.(2005), the differences in the translational speed

and angle of attack between the downstroke and upstroke may have been a major effect

for the lift asymmetry. To test this hypothesis, we designeda revolving-wing model

for the current hummingbird. In this model, a rigid wing witha flat surface is created

by projecting the actual wing during a mid-downstroke onto aplane (so the spanwise

twist is eliminated), and the modified wing accelerates fromthe stationary position to

a maximum velocity and then continues to revolve at that velocity (see Fig.3.11). The
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stroke plane is horizontal, and the angle of attack is kept constant throughout the entire

process. Two cases are simulated in this test. In the first case, the wing tip follows

the translation history of the wing tip in an actual downstroke chosen from one typical

cycle, from 0 to the maximum velocity 15 m/s within the time period 0.2T, and the

angle of attack isα = 41◦. In the second case, the wing tip follows the translation

history of an actual upstroke of the same cycle, from 0 to the maximum velocity 12 m/s

within the time period 0.15T, and the angle of attack isα = 28◦. The air properties

(density and viscosity) remain the same in this setup.

The results show that the ratio of the lift during steady translation is 1.57 between

the downstroke revolving wing and the upstroke revolving wing. Thus, the combined

effect of translation and angle of attack is confirmed. However,it should be noted that

comparing the revolving wing and flapping wing, the transient histories of lift display

considerable differences, as seen in Fig.3.12. This result suggests that the rotational

motion of the flapping wing during the acceleration phase is still important.

3.3.6 Wing-wake interaction

Wing-wake interaction is a unique feature of flapping wings.In the previous study

of the aerodynamics of the fruit fly,Dickinson et al.(1999) suggest that the wing-

wake interaction enhances lift production and is able to generate a peak force at the

beginning of a half stroke if the angle of attack is reversed timely (which is the case for

advanced pitching and symmetric pitching). It would be interesting to see to what extent

a similar effect exists in the hummingbird flight, and also whether this effect influences
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(a) (b)

Figure 3.11: Comparison of the wing tip velocity between theflapping wing of the
revolving wing. (a) downstroke; (b) upstroke. Note that forthe flapping wing, the wing
tip never has a moment of ’zero’ velocity since the velocity vector always has a non-
zero component. The acceleration period of the revolving wing is approximated with a
sinusoidal function.

the downstroke and upstroke differently.

First, the lift graph in Fig.3.7 shows that there is no clear peak inCZ in the be-

ginning of either downstroke or upstroke. To investigate the presence of the wing-wake

interaction, in Fig.3.13we visualize the flow in aXZ-plane shortly after the wing rever-

sal by plotting the velocity vectors tangent to the plane. InFig. 3.13(a) where a typical

downstroke is shown, the wing moves somewhat downward and translates at a lower

elevation, and this allows the wing to capture the opposite flow produced by the pre-

ceding upstroke. Note that the opposite flow also travels downward due to the overall

downwash. On the other hand, in Fig.3.13(b) where a typical upstroke is shown, the

wing moves somewhat upward and translates at a higher elevation, and thus it misses the

opposite flow produced by the preceding downstroke. Therefore, qualitatively speak-

ing, the downstroke benefits more from the wing-wake interaction than the upstroke,

although the interaction does not generate a separate lift peak because of its timing.
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Figure 3.12: The revolving wing versus the flapping wing in the production of lift. (a)
Downstroke and (b) upstroke. Only one typical stroke cycle is used in this test.
The vertical dashed line represents the time period of wing acceleration. All forces are

normalized by the same factor.

To further the investigation, we simulate each half stroke in separate runs with oth-

erwise identical wing kinematics. The start and end of the simulation are based on the

observation of the wing positions at pronation and supination. Thus, the effect of wing-

wake interaction is excluded in such isolated wing strokes.One issue to bear in mind

is that in the isolated strokes, the wing does not encounter amean downwash as it does

in the continuous strokes. The downwash reduces the effective angle of attack and thus

weakens lift production.
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(a)

(b)

Figure 3.13: Typical asymmetric wing-wake interaction shown in a spanwise slice for
(a) an early downstroke atY = 70% wingspan andt/T = 0.1, and (b) an early upstroke
atY = 50% wingspan andt/T = 0.6. The dashed line indicates the tip trajectory of this
cycle, and the circle indicates the opposite flow caused by the preceding half stroke. The
chord is shown as a thick line. The bird body was not included in the actual single-wing
simulation.

Fig. 3.14shows the lift coefficient,CZ, of the isolated strokes along with the data for

the continuous strokes. In the first downstroke, the two simulations produce identical

results and thus are not shown. For the other strokes, notable differences can be seen

between the two simulations. For downstrokes, lift produced by the isolated strokes is

close to that produced by the corresponding continuous strokes, while for the upstrokes,

the isolated strokes produce greater lift than the continuous strokes. On average, the
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Figure 3.14: Lift production of isolated wing strokes and continuous strokes. Average
data are calculated from all eight cycles.

ratio of lift between the continuous and the isolated strokes is 93.2% for downstroke

and 83.1% for upstroke. This result suggests that for the present hummingbird, the lift-

enhancing effect of the wing-wake interaction does not exceed the mitigating effects of

other possible mechanisms present, e.g., the downwash. On the other hand, the wing-

wake interaction does affect the lift asymmetry, as the downstroke-to-upstroke ratio in

the vertical force is reduced to 2.2 for the isolated strokes.

Finally, it should be noted that the upstroke-downstroke force asymmetry was also

observed in the hovering flight of some insects such as the hawkmoth (Zheng et al.,

2013a) and fruit fly (Fry et al., 2003), though for the fruit fly the upstroke produces

greater vertical force. It may be possible some of the effects discussed in the present

study have led to the observed asymmetry. For example, from the tip trajectory of

those insect wings and the force history provided in the references (Zheng et al., 2013a;

Fry et al., 2003), one can see a similar correspondence between the downwardwing

translation and the large lift production, i.e., a phenomenon that could have to with the
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drag-based effect.

3.3.7 Three-dimensional vortex structures

Fig. 3.15shows a few selected snapshots of the three-dimensional flowfield in a

stroke cycle, which is identified by plotting an isosurface of the imaginary part of the

complex eigenvalue of the instantaneous velocity gradienttensor (Mittal and Balachan-

dar, 1995a). This technique allows one to identify regions where rotation dominates

over strain.

A leading-edge vortex (LEV) is developed in the beginning ofthe downstroke, and

this LEV grows stronger and remains stably attached to the wing during most of the

downstroke. During wing translation, the LEV, the tip vortex (TV), and the shed

trailing-edge vortex (TEV) are connected end to end, forming a vortex loop, within

which the air moves downward (Fig.3.15(a)). Toward the end of downstroke, the wing

rotates rapidly along its own axis, and the LEV is divided into two branches, known

as dual LEV (Harbig et al., 2013), as seen in Fig.3.15(a). Corresponding to the sta-

ble LEV, there is no clear lift drop throughout the downstroke translation. At the end

of downstroke, the LEV starts to shed from the wing as seen in Fig. 3.15(b). Another

feature of the downstroke is that the wing catches the vortexloop produced by the pre-

ceding upstroke and disrupts this loop through the wing-wake interaction.

During the upstroke, an LEV is also formed in the beginning (Fig. 3.15(c)), but the

distal portion of this LEV is pinched off during mid-upstroke, as shown in Fig.3.15(d).
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Correspondingly, there is a visible dip in the vertical force around the same time of the

upstroke shown in Fig.3.7(a). Later, the LEV will be formed again and will also form

branches like dual LEVs. As discussed earlier, during the upstroke the wing misses the

wake produced by the preceding downstroke. As a result, the vortices generated by the

downstroke are better preserved in the wake.

Fig. 3.15also shows that the wake contains many slender-shaped vortices. These

vortices are formed mainly due to breakup of the TV and TEV at the current high

Reynolds number. This flow behavior is consistent with the result of a recent work (Har-

big et al., 2013) that demonstrated a similar phenomenon of vortex breakup at Re =

1500. To further confirm the accuracy of these vortices, we have compared the simula-

tions from the baseline and the finest meshes as described in Section 2.2, and the results

show that the general characteristics of the vortices are consistent. In the regions far

away from the wing, the isolated vortices likely contain artificial effect due to reduced

resolution there.

3.3.8 Full-body simulation

A full-body model of the hovering hummingbird is also created by using symmetric

kinematics for the left and right wings. The body of the bird is approximated by a

sequence of ellipses with different sizes and aspect ratios. The bird model is run in an

extended domain in theY-direction. The typical flow field is shown in Fig.3.16 for

mid-downstroke and shortly after supination. From the vortex structures in the flow,

we notice that LEV and the tip vortex during the downstroke are similar to those in the
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(a) (b)

(c)
(d)

Figure 3.15: Three-dimensional vortex structures in the flow during a stroke cycle,
where the time stamp from (a) to (d) is 0.37T, 0.51T, 0.58T, and 0.78T. The vortex
loop from the downstroke is marked by a dashed line. The thickarrow in (d) indicates
the location where the LEV is pinched off.

single-wing simulation. However, during supination the two wings are near each other

(the included angle is about 30◦). The flows around the two wings are close enough

to interact. In particular, when the wings move away from each other, the vortices

generated from each wing during grow and collide with one another. The interaction

is complex and leads to further breakup of the vortices. Other than that, the major

vortex structures, such as the LEV and TV, are similar to those seen in the single-wing

simulation.
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Despite the effect of the wing-wing interaction on the three-dimensional vortex

structures, the lift production is not significantly affected. Fig.3.17provides a com-

parison of the lift coefficient between the full-body and the single-wing simulations. It

can be seen that the forces from the two simulations are very close to each other. This

result suggests that the wing-wing interaction and the wing-body interaction do not play

an important role in lift production of the hummingbird.

3.4 Conclusion

A three-dimensional simulation was performed for a hovering hummingbird with

the realistic wing motion reconstructed from imaging data.The simulation captures the

lift and power characteristics in a stroke cycle and also details of the flow field. Our

result confirms and provides specific data for the lift asymmetry that was previously

suggested based on the measurement of the circulation around the wing. Furthermore,

we quantitatively analyzed the sources of the lift asymmetry and pointed out the mech-

anisms that lead to the asymmetry. Summarizing the results,the downstroke produces

150% higher vertical force than the upstroke. Among the factors, the wing area con-

tributes 10% greater force, the drag-based effect contributes 60%, the wing-wake inter-

action contributes 30%, and the rest 50% can be attributed tothe combined wing speed,

angle of attack, and wing rotation.
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(a)

(b)

Figure 3.16: Three-dimensional vortex structures in the full-body simulation shown for
a downstroke (a) and upstroke (b).

51



0.5 1 1.5 2 2.5 3 3.5

0

0.5

1

1.5

2

2.5

t/T

C
Z

 

 

Full−body case
Single wing case

0.5 1 1.5 2 2.5 3 3.5

0

0.5

1

1.5

2

2.5

t/T

C
Z

 

 

Full−body case
Single wing case

Figure 3.17: Comparison of the vertical force coefficient in typical cycles between the
full-body simulation and single-wing simulation.
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CHAPTER IV

PERFORMANCE OF A QUASI-STEADY MODEL FOR HOVERING

HUMMINGBIRDS

4.1 Introduction

The aerodynamics of hovering hummingbirds have been investigated in several re-

cent studies (Chai and Dudley, 1999; Altshuler et al., 2004a; Warrick et al., 2005; To-

balske et al., 2007; Warrick et al., 2009; Hedrick et al., 2012; Song et al., 2014). Previ-

ous studies have mostly focused on measurement of the flow around the bird using tech-

niques such as particle image velocimetry (PIV) (Warrick et al., 2009; Altshuler et al.,

2009; Wolf et al., 2013b), morphorlogical kinematics (Tobalske et al., 2007; Hedrick

et al., 2012) and mechanical power consumption (Chai and Dudley, 1999; Altshuler

et al., 2004a). The lift production was directly studied more recently bySong et al.

(2014), who performed a three-dimensional simulation of a ruby-throated humming-

bird (Archilochus colubris) based on reconstructed wing kinematics from high-speed

imaging data. Aside from full CFD models, the quasi-steady method, which assumes

that the state of the system at a particular time is not affected by its history, has long

been used for the analysis of flapping wings (Osborne, 1951). This method later has

been revised to include the translational force, rotational force, and acceleration effect

to address the unique features of flapping wings (Dickinson et al., 1999; Sane and Dick-

inson, 2002). Compared with full CFD models, the quasi-steady method cannot provide
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Figure 4.1: Illustration of a wing chord in the blade-element model.

information about the three-dimensional flow pattern and its prediction of force char-

acteristics has limited accuracy. However, this method is extremely efficient in contrast

with 3D simulations, and it can be used as a convenient tool for fast analysis, e.g., in

optimization design (Zheng et al., 2013a) or study of maneuver flight.

In this study, we will compare force prediction of a calibrated quasi-steady model of

the hovering hummingbird with that of the CFD model inSong et al.(2014), and we will

use this simple model to further quantify the translationaleffect, the rotational effect,

and the acceleration effect that can not be easily decoupled in a full CFD simulation.
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4.2 Modeling approach

In the quasi-steady or blade-element model (BEM), the totalforce on the wing is

summation of the forces on a set of infinitesimal chordwise strips, or blade elements,

as shown in Fig.4.1(b). For each chord strip, the translation velocity, rotation velocity,

and angle of attack are obtained from the reconstructed wingkinematics. The total

force on each strip is composed of three components: the translational force dFtrans, the

rotational force dFrot, and the added-mass effect (or the acceleration effect) dFacc, based

on the formula inSane and Dickinson(2002) if we ignore other effects such as wake

capture and vortex shedding. Thus, the total force on the entire wing is

F = Ftrans+ Frot + Facc=

∫

(dFtrans+ dFrot + dFacc) (4.1)

Next, we describe each component in this equation.

First, the translation force of a blade element consists of steady lift and drag that are

functions of the angle of attack,α, defined as the angle between the element and the

average stroke plane,

Ftrans=
ρΦ̇2R3c̄

2

∫ 1

0
r̂2ĉ





C′D(α)

C′L(α)





dr̂ , (4.2)

whereρ is the air density,Φ̇ is the instantaneous angular velocity of wing stroke, ˆr

and ĉ are respectively the dimensionless spanwise location and dimensionless length

of the chord normalized by ¯c, C′L(α) andC′D(α) are the lift and drag coefficients. The
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Figure 4.2: Translational force coefficient fitting from the revovlving wing simulations.

lift and drag in Eq. (4.2) are perpendicular and opposite to the translational velocity of

the chord, respectively. The function forms ofC′L andC′D are fromSane and Dickinson

(2002). To obtain the constant parameters in the expressions, however, we run a series of

CFD simulations of a revolving-wing model in which the wing revolves in one direction

at a constant angle of attack. The wing has a rigid, flat surface from projection the

hummingbird wing on a plane. The simulation setup is described in another work (Song

et al., 2014). With such calibration, the fitted lift and drag functions are (also shown in

Fig. 4.2)

C′L = 0.245+ 1.63 sin(2.34α − 6.3)

C′D = 1.88− 1.70 cos(2.27α − 10.66). (4.3)

The rotational motion, or pitching, around the long axis of the wing can enhance
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magnitude of the bound circulation, thus increasing lift force if it is combined with

proper wing translation and posture. We adopt the followingformula for the rotational

force (Sane and Dickinson, 2002)

Frot = CrotρΦ̇c̄2R2

∫ 1

0
r̂ ĉ2α̇ndr̂ . (4.4)

whereα̇ is the instantaneous pitching velocity,n is the surface normal of the chord, and

Crot is the rotational force coefficient.

To obtain the location of the rotational axis, in the currentwork we choose several

chords along the wing to find an average value. The sample chords are chosen as shown

in Fig.4.3(a). These are chosen because they represent most of the wingand are not as

sensitive as the root and tip regions to the exact location ofthe wing root. The exact lo-

cations of the five chords are at ˆr = 0.237, 0.333, 0.462, 0.604, 0.758. The translational

velocity of each chord is calculated according toUc = Ut r̂. Then by comparing the

velocities relative toUc at the leading edge and trailing edge, we can obtain the wing

pitching axis location ˆx0 based on Fig.4.3(b). Finally, we take a weighted average of

x̂0,

x̂0 =
Σr̂ iĉi

2x̂0,i

Σr̂ iĉi
2
, (4.5)

where i goes from 1 to 5. Fig.4.4 shows the distribution ofx0,i and corresponding

local rotational coefficient Crot,i for these chords. The figure shows that as the chord

location moves toward the wing tip, the pitching axis moves closer to the trailing edge,
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Figure 4.3: (a) Sample chords used to determine the locationof the wing axis. (b) Il-
lustration of calculation of the wing axis.Vle, Vte andVloc are the leading-edge velocity,
trailing-edge velocity, and translational velocity of thechord.
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Figure 4.4: Pitching axis and the corresponding rotationalforce coefficient of selected
chords.

leading to a smaller rotational force coefficient. Using Eq. (4.5), we have ˆx0 = 0.453

andCrot = 0.933.
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The force model due to the acceleration effect is based on that inSane(2001). Since

the location of the pitching axis in the current model is determined specifically for

the hummingbird, we rescaled the pitching acceleration term and obtain the following

formula for the acceleration force,

Facc=
ρπc̄2R2

4

∫ 1

0
r̂ ĉ2[Φ̈ sinα + Φ̇α̇ cosα]ndr̂ +

ρπRc̄3α̈

53

∫ 1

0
ĉ3ndr̂ (4.6)

whereΦ̈ andα̈ are the instantaneous angular stroke velocity and pitchingacceleration,

respectively.

4.3 Results

The comparison of the vertical and horizontal forces between the BEM and CFD

simulation is shown in Fig.4.3for four typical flapping cycles. These forces have been

normalized by 0.5ρU2
t Sr̂2

2, where ˆr2
2 = 0.27 is the coefficient of the second moment

of area of the wing. The figure shows that the BEM is able to capture the general

trend of the forces for both downstroke and upstroke. However, the horizontal force

is not matched so well as the vertical force. In addition, more discrepancy could be

seen for upstroke than for downstroke. For example, the double-peak feature during

upstroke is completely missed by the BEM prediction. The difference corroborates that

the double peaks during upstroke are related to the leading-edge vortex shedding (Song

et al., 2014), a typical unsteady phenomena, and thus are not present in the current

quasi-steady analysis.
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Cv Ch Cv,down Cv,up Cv,down/Cv,up Ch,down Ch,up

CFD 1.84 1.41 2.71 1.08 2.51 1.78 1.12
BEM 1.90 1.51 2.88 1.23 2.34 1.83 1.40
Mean error 3.1% 6.9% 6.3% 13.9% 6.8% 2.9% 25.1%
RMS error 26.2% 42.7% 17.1% 43.6% – 26.7% 60.2%

Table 4.1: Quantitative comparison of the force coefficients between the BEM and CFD
results, where “down” means downstroke and “up” means upstroke.

The quantitative comparison of the forces is shown in Table4.1, where the mean

and root-mean-square (RMS) differences are listed for downstroke, upstroke, and the

whole cycle. It can be seen that the mean errors within an entire stroke cycle is less

than 7% and thus reasonably small. The mean errors for upstroke are greater and are

within 15% for downstroke and 25.1% for upstroke. More significant is the RMS error,

which reaches nearly 26% for the vertical force and nearly 43% for the horizontal force.

For upstroke, the RMS errors are even greater because the base numbers are relatively

small.

Since the average forces predicted by the BEM are reasonablyclose to those given

by the CFD, we move on to study the translational, rotational, and acceleration forces

as predicted by the BEM. Fig.4.3 shows breakdown of these force components. The

quantitative information is provided in Table4.2. It can be seen that the translational

force dominates the force production by contributing to 82.4% of the vertical force and

to 80.8% of the horizontal force. The rotational and acceleration effects have much

small contributions to the force production. The rotational effect explains only 11.8%

and 13.8% for the vertical and horizontal forces, respectively, while the acceleration

effect explains 5.8% and 5.4% for the vertical and horizontal forces, respectively.
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Figure 4.5: Normalized vertical and horizontal forces,Cv andCh, given by the BEM
prediction and the CFD simulation.
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Figure 4.6: Breakdown of forces predicted by the BEM. Use “Total, Translation, Rota-
tion, and Acceleration” in the legend.

Cv,trans Cv,rot Cv,acc Ch,trans Ch,rot Ch,acc

Whole cycle 1.55 0.23 0.12 1.22 0.21 0.081
( 82.4%) ( 11.8%) ( 5.8%) ( 80.8%) ( 13.8%) ( 5.4%)

Downstroke 2.22 0.33 0.16 1.43 0.22 0.067
Upstroke 0.95 0.15 0.076 1.03 0.20 0.093
Downs/Upstroke ratio 2.34 2.20 2.11 1.39 1.1 0.72

Table 4.2: Coefficients of forces due to the wing translation, rotation and acceleration
effects. The numbers in the parentheses represent the percentage of the force within the
total force that includes the translation, rotation, and acceleration effects.
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Figure 4.7: Histories of the normalized rotational force, wing tip velocity and pitching
velocity of the distal wing. Use ˙αd.

The rotational effect is further shown in Fig.4.7where the contribution of rotation

to the vertical force is plotted along with the wing translation and pitching velocity as

measured for the distal half of the wing (the distal half is approximated as a flat sur-

face for this measurement), ˙αd. It can be seen that right after pronation and supination

where the wing has the greatest pitching velocity, the rotational force is negative and

the magnitude is small. The peak rotational force actually happens near mid-stroke for

downstroke when the wing has the greatest translation velocity and also a local peak in

backward pitching, i.e., a phenomenon pointed out previously in our CFD studySong

et al. (2014). During mid-upstroke, the rotation produces a similar peak but the mag-

nitude is much lower. Toward the end of downstroke and upstroke, rotation produces a

second peak.
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The downstroke-upstroke ratio of the vertical force was reported to be 2.5 in the

CFD simulation (Song et al., 2014). This asymmetry is also captured by the BEM

result as shown in Fig.4.3, and the ratio is 2.34 from Table4.1. The table further shows

that the translational, rotational, and acceleration effects all contribute to the asymmetry

in the vertical force, and their own asymmetry ratios are allabove 2. In comparison,

the asymmetry in the horizontal force is much smaller. By projecting the forces in the

directions perpendicular and parallel to the wing translation, we obtain aerodynamic

lift and drag. The BEM result shows that during downstroke, the drag contributes to

nearly 20% to the vertical force and has a significant effect on the downstroke-upstroke

asymmetry. This result is consistent with the report of the previous CFD study (Song

et al., 2014).

4.4 Conclusion

The quasi-steady model calibrated against the CFD result can predict the general

force characteristics within a stroke cycle and the mean forces reasonably well. This

model may be used in the future for analysis of unsteady flightdynamics of the hum-

mingbird.
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CHAPTER V

WING-PITCHING MECHANISM OF A HOVERING RUBY-THROATED

HUMMINGBIRD

5.1 Introduction

Hummingbirds are one of the few vertebrate groups that can perform sustained hov-

ering flight. Their superb agility has inspired developmentof small aerial vehicles, e.g.,

the robot dubbed “Nano Hummingbird” that was recently invented by AeroVironment

Co., (Monrovia, CA) (Keennon et al., 2010). A key strategy that hummingbirds utilize

to produce enough weight support during hovering is to invert the angle of attack of their

wings during upstroke so that an extra amount of lift can be added in addition to the lift

generated during downstroke (Warrick et al., 2005). A similar wing-flipping strategy

is also adopted by many hovering insects, although insects have a completely different

musculoskeletal system than hummingbirds. In insects, anyactive wing flipping must

originate at the wing base because the wings have no muscles or joints. However, hum-

mingbird wings have muscles and skeletal joints and thus mayactively flex or rotate

different segments. Given such a large physiological difference in their wings, it is thus

natural to ask whether the mechanism of pitching actuation for hummingbird wings is

the same as that for insect wings. For hummingbirds, it has been hypothesized that

the source of wing inversion occurs at the wristStolpe and Zimmer(1939) or shoulder

joint Karhu (1999). In a more recent study using high-speed three-dimensional X-ray
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videography,Hedrick et al.(2012) found that hummingbirds indeed enable the high-

degree supination by allowing rotation at the wrist and possibly even at other skeletal

elements on the wings. However, even though they are physiologically capable of do-

ing so, it is not yet clear whether hummingbirds need to flip wings actively since the

inertial effect of the wings during translational acceleration and deceleration may be

able to drive pitch reversal. In insects, there has been evidence that pitch reversal is

mainly driven by the wing inertia. For example,Ennos(1988b, 1989a) calculated the

inertial torque of diptera wings and concluded that the inertia is sufficient to cause the

wings to flip on their own.Bergou et al.(2007) used a computational model to analyze

the pitching dynamics for several insect species. Their analysis shows that a negative

pitching power flows from the wing root, which means that pitch reversal originates

from the wings themselves.

In the light of the work ofBergou et al.(2007), a similar study for hummingbird

wings would be instrumental in understanding the mechanismof their pitch reversal.

Different from previous studies, in the current work the computational model of the

pitching dynamics is based on a high-fidelity reconstruction of the wing kinematics of

a hummingbird, and the force/torque analysis, which includes the aerodynamic force

and torque, are based on results of three-dimensional simulations. Therefore, the model

provides an accurate account of the pitching dynamics not only for the wing reversal but

also for an entire stroke cycle. Since pitching motion is in general important for force

production of flapping wings (Dickinson et al., 1999; Sun and Tang, 2002b; Wang

et al., 2004b; Dai et al., 2012b), the detailed pitching dynamics we describe through the
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current work would be useful for the future study of aerodynamics of hummingbirds

and other small flapping vehicles or animals.

5.2 Modeling approach

5.2.1 The wing model

The dynamic deformation of the wing such as spanwise bendingand twisting have

been included in the reconstructed kinematics. The two wings are assumed to have

symmetric motions. A distinct feature from the wing deformation is that the wing

experiences significant twist along its long axis during upstroke while the surface is

relatively flat during downstroke. Such pronounced twist leads to an aerodynamically

favorable angle of attack for the distal portion during upstroke. Since the greatest wing

twist takes places in the middle section, we split the wing into two regions, the distal

part and the proximal part, as seen in Fig.5.1, and approximate each part as a rigid body

as we consider its dynamics of rotation. The division point,denoted asF, is at 42% of

wingspan from the root and roughly corresponds to the location of the finger tip of the

wing (Hedrick et al., 2012). The surface area is 2.49 cm2 (or 44% of the whole wing)

for the proximal part and 3.19 cm2 (or 56%) for the distal part.

The two sections share the same pitching axis, and the spanwise twist is represented

by different values of the pitch angle for each section. To quantitatively describe the

complete rotation of the wing, one wing-fixed coordinate system, 1-2-3 orxyz, is de-

fined and attached to each section as shown in Fig.5.1. The 1-axis is along the overall
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Figure 5.1: Illustration of the hummingbird wing model and the wing-fixed coordi-
nate systems for the distal and proximal sections. The wing root and the finger tip are
denoted byO andF, respectively.

wing axis, and the 2-axis is parallel to the individual wing section, and the 3-axis is

perpendicular to the section and points to the dorsal side. The stroke angleφ, devia-

tion angleθ, and pitch angleψ, of the wing are described along with a definition of the

coordinate transformation in Appendix A.1. The distal and proximal sections have the

same values ofφ andθ but differentψ. The time courses of these angles and the angular

velocities are obtained from the reconstructed wing kinematics.

5.2.2 Description of the rotational velocity of the wing

Several coordinate systems need to be defined in order to describe the rotation of the

wing in a three-dimensional space. First, the coordinate system fixed with the average

stroke plane is denoted byX′Y′Z′, whereZ′ is perpendicular to the average stroke plane

andX′ points forward and is located in the symmetry plane of the bird body. Note that

Z′ is not necessary parallel to theZ-axis in the global coordinate system. The wing-fixed
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Figure 5.2: Coordinate transformation and definition of therotation angles.

local coordinate system for the right wing is denoted byxyz, or 1-2-3. This system will

be used to represent the entire wing if the surface is assumedto be rigid, or an individual

section if the surface is divided. All coordinate systems follow the right-hand rule.

Three additional intermediate systems are defined to describe the Euler angles and

the sequence of coordinate transformation. The first one isx′′′y′′′z′′′ as shown in

Fig. 5.2(a), which denotes the hypothetical initial position of thewing. The wing axis,

x′′′, points toward negativeX′, and the dorsal axis,z′′′, points towardY′. Thex′′′y′′′z′′′

system is then rotated around theZ′-axis by angleφ, i.e., the stroke angle with an

initial value -π, to obtain thex′′y′′z′′ system (Fig.5.2b). Thex′′y′′z′′ system is then ro-

tated around thez′′-axis by angleθ, i.e., the elevation angle, to obtain thex′y′z′ system

(Fig. 5.2c). Finally, thex′y′z′ system is rotated around thex′-axis by angleψ, i.e., the

pitch angle, to obtain thexyzsystem (Fig.5.2d). From this transformation procedure,
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the angular velocity vector of the wing can be written as

ω = φ̇eZ′ + θ̇ez′′ + ψ̇ex′ , (5.1)

wheree is the basis vector in the coordinate system indicated by thesubscript.

The basis vectors in Eq. (5.1) can be expressed in terms of the basis vectors of the

xyzsystem. That is,

ex′ = ex,

ey′ = ey cosψ − ez sinψ,

ez′′ = ez′ = ez cosψ + ey sinψ,

eZ′ = ey′′ = ey′ cosθ − ex′ sinθ.

Thus, the angular velocity becomes

ω = (φ̇ sinθ + ψ̇)ex

+ (φ̇ cosθ cosψ + θ̇ sinψ)ey (5.3)

+ (−φ̇ cosθ sinψ + θ̇ cosψ)ez.
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The components of the angular velocity are

ω1 = (φ̇ sinθ + ψ̇)

ω2 = (φ̇ cosθ cosψ + θ̇ sinψ) (5.4)

ω3 = (−φ̇ cosθ sinψ + θ̇ cosψ).

5.2.3 Dynamics of rotation

To describe dynamics of wing rotation, we use the angular momentum equation for

each wing section projected onto the wing-fixed coordinate system associated with the

section. Thus, the equation is expressed in the rotating frame of reference. For the distal

section, the equation is

I · ω̇ + ω × (I · ω) = Taero+ TF, (5.5)

and for the proximal section, the equation is

I · ω̇ + ω × (I · ω) = Taero− TF + TO. (5.6)

In these equations,I is the moment of inertial matrix of the section, andTF is the torque

that the proximal section exerts on the distal section,TO is the actuation torque at the

wing base,O, Taero is the aerodynamic torque, andω and ω̇ are rotational velocity

and acceleration vectors, respectively, both inthe rotating frame of reference. When

calculating the moment of inertia of each wing section, the pivot point is assumed to be
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at pointO regardless where the origin of the local coordinate system is. Since each wing

section is approximated as a flat thin surface, the symmetricinertial matrix becomes

I =





I11 I12 0

I21 I22 0

0 0 I33





(5.7)

whereI13, I23, I31, andI32 vanish. SinceI33 = I11 + I22 for a flat thin plate, the pitching

component, i.e., the 1-component, of the equation for the distal section becomes

TF = I11ω̇1 + I12ω̇2 − I21ω1ω3 + (I33 − I22)ω2ω3 − Taero

= I11ω̇1 + I12ω̇2 − I12ω1ω3 + I11ω2ω3 − Taero. (5.8)

HereTF andTaero are the pitching component ofTF andTaero, respectively. We term

TF the twist torque at pointF. Similarly, the pitching torque at the base,TO, is

TO = I11ω̇1 + I12ω̇2 − I12ω1ω3 + I11ω2ω3 − Taero+ TF . (5.9)

The aerodynamic pitching torque,Taero, in Eqns. (5.8) and (5.9) is calculated using

the result from our previous CFD study of the same wing kinematics, and the expression

is

Taero =

∫

l × fdS (5.10)
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Wheref is the distributed aerodynamic force on the wing surface given by the CFD

simulation, andl is the vector from pointO to the point of evaluation. Both the pressure

and the shear stress have been included inf , even though the pressure is dominant. We

show in Fig.5.3the pressure differential of the two sides of the wing for a typical stroke

cycle. From this figure, we see that the pressure load is mostly distributed over the distal

section and is generally higher near the leading edge than near the trailing edge. That

is, the results are overall consistent with basic aerodynamic theory of a revolving air-

foil. Another observation is that the pressure center is qualitatively behind the torsional

axis. This general feature of bird wings leads to a nose-downpitching torque during

translation and is thus beneficial for aeroelastic stability of the wings (Försching and

Hennings, 2012).

Mass distribution of the hummingbird wing is needed to calculate the inertial ma-

trix in Eq. (5.7). The one-dimensional distribution of mass along the wingspan was

determined experimentally for a hummingbird of the same species by slicing each wing

into 11 chordwise strips and measuring the mass of each individual strip. The averaged

mass distribution is then scaled to match the wing length of the hummingbird used in the

filming experiment. The two-dimensional wing surface consists of feathers and a mus-

culoskeletal structure of bones and muscles that have more mass than the feathers. To

incorporate such an anatomical feature, we assume that eachstrip at the distal section,

which mainly consists of feathers, has a uniform surface density along its chord; for the

strips at the proximal part, we assume that the feathered surface has the same density

as that of the first distal strip adjacent to the proximal section but the additional mass
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(a)

(b)

Figure 5.3: Pressure differential (unit: Pa) over the wing surface obtained from a previ-
ous CFD study (Song et al., 2014) for (a) downstroke and (b) upstroke.

of these strips is assigned to the bony structure that also corresponds to the torsional

axis. This mass distribution is shown in Fig.5.4. The elements of the inertial matrix are

calculated using the local surface density. The torsional axis is assumed to be located at

1/8 of the average wing chord from the leading edge. As a result,the center of mass is

behind the torsional axis, which, similar to insect wings (Norberg, 1972; Bergou et al.,

2007), allows the wing inertia to facilitate pitch reversal.
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Figure 5.4: Surface density of the hummingbird wing. The dashed line indicates the
torsional axis, and the thick bar represents the bony structure of the wing, which has
additional mass.

5.3 Results

5.3.1 Dynamics of the distal section

The distal section is composed of feathers, which are themselves passive structures

but embedded in bony and connective tissue that might permitsome muscle-based ac-

tive pitching rotation. An analysis of the torque and power flow between the distal

and proximal sections will provide some insight into actuation of pitching for the distal

wing.

Figure5.5(a) shows the time derivative of the three Euler angles,φ, θ, andψ, phase-

averaged for the distal section. The angular velocities in the wing-fixed coordinate

system are plotted in Fig.5.5(b). It can be seen that these angular velocities are sub-
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Figure 5.5: Pitching dynamics of the distal section. (a) Thephase-averaged angular
velocities in terms of the Euler angles. (b) The corresponding angular velocities in the
wing-fixed coordinate system. (c) The inertial torque terms. (d) The sum of all inertial
torques,Tinertia, the twist torque,TF , the negative of the aerodynamic torque,Taero, and
the actuation torque at the root,TO.
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stantially different from sinusoidal waveform, which justifies the currentanalysis based

on a more accurate description of the wing kinematics. The second observation is that

the magnitude of the pitching velocity,̇ψ, can reach 450 rad/s during pronation and

is thus significantly greater than that of the stroke velocity, φ̇, whose peaks are less

than 280 rad/s. Furthermore, the wing has a significant nose-up pitching motion dur-

ing mid-stroke, especially during mid-downstroke, which is a lift-enhancing rotation as

discussed in our previous study (Song et al., 2014). Similar characteristics can be seen

from the plot of ˙ω1.

Figure 5.5(c) shows the torque components of the inertial effects, I11ω̇1, I12ω̇2,

I11ω2ω3, and−I12ω1ω3. Among these components,I11ω̇1 is due to pitching acceler-

ation or deceleration,I12ω̇2 is due to acceleration/deceleration of the wing translation,

and the rest two terms are products of the angular velocities. Except forI11ω2ω3, which

is small throughout the cycle, the other three terms are all significant. The termI12ω̇2

is greatest during both pronation and supination reversals, which is consistent with the

fact the wing comes to stop before accelerating for the next half stroke. The other

two terms,I11ω̇1 and−I12ω1ω3, peak during wing translation, and their magnitudes

are significantly lower than that ofI12ω̇2. These results suggest that the inertial effect

due to wing translation may be sufficient to drive pitch reversal, but we will defer the

conclusion until we also examine the external torques on thewing. From Fig.5.5(c),

the inertial acceleration of pitching as represented byI11ω̇1 reaches its maximum mag-

nitude around 0.1T after the beginning of downstroke. The term−I12ω1ω3 becomes

great during mid-stroke, and as shown next, this term would help counteract the torque

76



exerted by the aerodynamic force.

The total inertial torque,Tinertia, i.e., summation of all four inertial terms in Fig.5.5(c),

is shown in Fig.5.5(d) along with the negative of the aerodynamic torque,−Taero, and

the twist torque,TF . They are related to each other byTF = Tinertia − Taero. The aerody-

namic torque is much greater during downstroke and than during upstroke. This result

is due to the force asymmetry between the two half strokes, which was discussed in

detail inSong et al.(2014). In contrast, the total inertial torque is more symmetric be-

tween downstroke and upstroke.TF peaks neart/T = 0.1 during downstroke and near

t/T = 0.55 during upstroke. Additional peaks can be observed prior to supination and

prior to pronation. Comparing the three torques in the figure, we see that during early

wing translationTaero is low andTinertia is mainly balanced byTF . In the middle of

translation,Taero is great and needs to be balanced byTF as well. Att/T = 0.4 and 0.9,

i.e., near the end of each half stroke,Tinertia is around zero andTaero is mainly balanced

by TF . Around t/T = 0.25 and 0.8 we notice thatTinertia andTaero nearly cancel each

other andTF is thus minimal.

The graphs in Fig.5.5(c,d) tell us the magnitude and phase of all the pitching

torques. However, it is not straightforward to see the individual contribution of each

torque to the pitching motion. Thus, we further examine the power balance of the distal

section by multiplying Eq. (5.8) byω1 and obtaining the following expression:

1
2

I11
dω2

1

dt
= −I12ω̇2ω1 + I12ω

2
1ω3 − I11ω1ω2ω3

︸                                      ︷︷                                      ︸

Pinertia

+TFω1 + Taeroω1 (5.11)
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where the term on the left-hand side represents the rate of increase of the kinetic energy

of pitching,Epitch =
1
2I11ω

2
1, and all the terms on the right-hand side represent the power

input of a certain torque. The three inertial terms on the right-hand side can be grouped

as the total inertial power,Pinertia. We also define the torsional powerPF = TFω1, and

the aerodynamic powerPaero = Taeroω1. Eq. (5.11) then becomes

Ėpitch = Pinertia + PF + Paero (5.12)

Figure5.6shows the comparison of these power terms phase-averaged for a cycle.

Starting fromt/T = 0.9, i.e., toward the end of upstroke when the wing performs

pronation, we see thatPF is initially positive, indicating energy input from the proximal

wing, and it is the torsional power that first drives the pitching motion of the distal

section by counteracting the negative aerodynamic power that is relatively high because

of a great pitching rate at the moment (between -300 and -450 rad/s). Then the inertial

effect kicks in and takes over to drive pitching. Later att/T = 1 and beforet/T = 0.1,

the inertial power is high, and meanwhile the torsional power has to become negative

and large in magnitude so that the wing can finish pronation without exceeding rotation.

During mid-downstroke aroundt/T = 0.25, the torsional power is positive, and thus

energy is being input from the proximal section to perform the nose-up pitching. Later

aroundt/T = 0.4, a small amount of torsional power is needed to initiate thesupination

reversal. However, the inertial power soon becomes large enough to overcome the aero-

dynamic resistance and drives the reversal. Like pronation, the inertial power becomes
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Figure 5.6: Rate of change in the pitching energy of the distal section, the power con-
tribution of the inertia,Pinertia, aerodynamic power,Paera, and torsional input,PF.

so high that the torsional power has to be negative betweent/T = 0.45 and 0.65 to pre-

vent the wing from over-pitching. Note that during supination aroundt/T = 0.5, Ėpitch

is small, indicating the the distal section is mostly maintaining its pitching momentum

gained earlier. During mid-upstroke whent/T = 0.75, only a small amount of torsional

power is needed to overcome the negative aerodynamic effect.

5.3.2 Dynamics of the proximal section

The analysis of the proximal section is similar to that of thedistal section. We first

calculate the aerodynamic torque and all the inertial termsusing reconstructed angular

velocities. The twist torqueTF is known from analysis of the distal section. Thus, the

pitching actuation torque at the root,TO, is determined from Eq. (5.9).

Figure5.7(a) shows the pitching velocity of the proximal section,ψ̇, along with that

of the distal section. Note that the two sections have the same φ̇ andθ̇. It can be seen that

the two parts have significantly different pitching velocity. During early downstroke, the
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negative peak oḟψ reaches about -540 rad/s for the proximal section, which is greater

than that of the distal section. The positive peaks of the proximal section during mid-

downstroke and during early upstroke are lower than those ofthe distal section. Overall,

the proximal section has a phase delay in pitching as compared with the distal section.

Figure5.7(b) shows the angular velocities of the proximal section in the wing-fixed

coordinate system, whereω1 has similar characteristics asψ̇ of the section.

The inertial torques of the proximal section are shown in Fig. 5.7(c). We see that the

pitching acceleration term and translational acceleration terms, i.e.,I11ω̇1 andI12ω̇2, re-

spectively, are much greater than the other two inertial terms. These two major torques

have a similar phase shift as compared with their counterparts plotted in Fig.5.5(c) for

the distal section. Compared with the distal section, the proximal section has greater

I11ω̇1 but lower I12ω̇2. The sum of all inertial torques, the negative of the aerody-

namic torque, and the actuation torque at the root are plotted for the proximal section in

Fig. 5.7(d) along with the twist torque exerted by the distal section. Different from the

distal section, the aerodynamic torque of the proximal section is much lower than the

inertial torque in terms of peak magnitude. Both the aerodynamic torque and the inertial

torque are much smaller thanTF andTO. This result means that for the proximal sec-

tion, the torque at the root is mainly balanced by the torque exerted by the distal section,

or the proximal section transmits most of its torque at the root to the distal section.

Following the power analysis for the distal section, we multiply Eq. (5.9) by ω1 of
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Figure 5.7: Pitching dynamics of the proximal section. (a) Comparison of the phase-
averaged angular velocity, in terms ofψ̇, between the proximal section and distal sec-
tion. (b) The corresponding angular velocities in the wing-fixed coordinate system for
the proximal section. (c) The inertial torque terms for the proximal section. (d) The sum
of all inertial torques,Tinertia, the twist torque,TF , and the negative of the aerodynamic
torque,Taero, for the proximal section. 81



the proximal section and obtain a similar formula for this section,

1
2

I11
dω2

1

dt
= −I12ω̇2ω1 + I12ω

2
1ω3 − I11ω1ω2ω3

︸                                      ︷︷                                      ︸

Pinertia

+TOω1 − TFω1 + Taeroω1.(5.13)

Using the same notations for the power terms, we have

Ėpitch = Pinertia + PO − PF + Paero, (5.14)

wherePO = TOω1 is the power input from the root.

Figure5.8(a) shows the actuation power at the root,PO and the torsional power to

the distal section,PF. Similar to the comparison ofTO andTF , PO andPF have close

magnitude and phase. There difference,PO − PF , is plotted in Fig.5.8(b) along with

Ėpitch, Pinertia, andPaero of the proximal section. Comparing Fig.5.8(b) and Fig.5.6,

we see there are a few similarities between the proximal section and the distal section.

First, Ėpitch, Pinertia, andPaero of the proximal section all exhibit a similar trend to their

counterpart of the distal section although their magnitudes are different. Paero of the

proximal section also has a phase delay as compared with thatof the distal section,

which is consistent with the pitching delay of the proximal section. Second, positive

actuation power is needed to initiate the pronation reversal of the proximal section be-

tweent/T = 0.9 and 1, and also to nose-up pitch the section during mid-downstroke

betweent/T = 0.2 and 0.3. During early downstroke (t/T between 0 and 0.2) and

early upstroke (t/T between 0.5 and 0.75) , the actuation power is negative to prevent

over-pitching.
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Figure 5.8: (a) Comparison of the power at the root,PO and the torsional power to the
distal section,PF . (b) Rate of change in the pitching energy of the proximal section and
the power contributions.

5.3.3 Dynamics of flapping motion

Using the current model, it is straightforward to analyze flapping motion of the hum-

mingbird wing. We first write the other two components of Eq. (5.6) for the proximal

section as

T2,O = I22ω̇2 + I21ω̇1 + I12ω2ω3 + (I11 − I33)ω1ω3 − T2,aero+ T2,F,

T3,O = I33ω̇3 + I12(ω
2
1 − ω

2
2) + (I22 − I11)ω1ω2 − T3,aero+ T3,F, (5.15)
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where the subscriptsO and F indicate the location of the torque. Eq. (5.5) can be

expanded in the same manner. The torque to drive flapping motion of the wing at the

root,TO, f lap, can be defined as the torque along they′-axis in Fig.5.2. Thus, the wing-

root torque is

TO, f lap = TO · ~ey′ = T2,O cosψ − T3,O sinψ. (5.16)

The rotational velocity along they′-axis is

ωy′ = ω · ~ey′ = ω2 cosψ − ω3 sinψ. (5.17)

The power due to flapping motion is calculated as

PO, f lap = TO, f lapωy′ . (5.18)

The inertial power and aerodynamic power can also be calculated by taking the dot

product of the inertial torque or the aerodynamic torque withωy′~ey′ .

Figure5.9(a) shows the inertial torque, wing-root torque, and aerodynamic torque

of the whole wing due to flapping motion. Note that during downstroke, the wing-

root torque is first balanced by the inertial torque and then by the aerodynamic torque

of similar magnitude. During upstroke, the aerodynamic torque is relatively low, and

the actuation torque is mainly balanced by the inertial torque. These torques are at

one order of magnitude higher than the pitching torques shown in Fig. 5.7(d). The

corresponding power sources are shown in Fig.5.9(b). As expected, the inertial power
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Figure 5.9: (a) The phase-averaged actuation torque at the root, inertial torque, and
aerodynamic torque for flapping motion of the entire wing. (b) The corresponding
power for flapping motion of the entire wing.

is negative during wing deceleration, and the aerodynamic power is always negative. An

interesting observation is that, through meeting the demands of the inertial power and

aerodynamic power, the wing-root power is mostly positive and no substantial negative

power could be recycled at the root.

5.4 Discussion

From the analysis of the distal section, we see that the inertial effect due to wing

translation,I12ω̇2, is large enough to drive pitching during pronation and supination.

Exceptions are during early pronation when an additional torque is needed to initiate

85



wing rotation and also during mid-downstroke when the additional torque needs to per-

form nose-up pitching when the wing has maximum resistance from the aerodynamic

torque (see the graph ofTF in Fig. 5.5(d)).

During most of pitch reversal, a reaction torque from the proximal section is nec-

essary to prevent the distal section from rotating excessively. As a result, the pitching

power flows from the distal section to the proximal section and assists with simulta-

neous pitch reversal of the proximal section. Such a reaction torque between the two

sections can be provided by the connective tissue of the wingand also the obliquely

aligned feathers because of their structural elasticity. From Fig.3.3, we can see that

the direction of wing twist during both pronation and supination indeed corresponds to

the direction of twist torque,TF, which indicates that the twist torque may come from

the structural deformation and the wing elasticity may thusprovide a passive mecha-

nism to modulate pitch reversal. The positive power input from the proximal section to

the distal section during mid-downstroke and the beginningof the pronation (i.e.,PF

in Fig. 5.6) does not necessarily require muscle actuation either. Instead, it could be

transmitted from the wing root by the proximal section, or itcould be released from the

twisted wing structure that stores energy in the form of elastic potential.

We should point out that we cannot exclude an assisting role for the muscles on the

wing skeleton. These muscles may potentially increase the torsional stiffness through

activation to provide the reaction torque during pitch reversal, or they might even par-

ticipate pitching activation during mid-downstroke and early pronation to provide the

positive power needed at those moments.
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The current results imply that the pitching mechanism of thehummingbird wing

may be similar to that of insects. Insects do not have muscleson their wings, and the

inertial effect is sufficient to drive pitch reversal (Bergou et al., 2007). Their elastic

wing structure allows the distal section to achieve greaterpitch angle than the proximal

section (Wootton, 1981). Furthermore, any positive power input, if needed for pitching,

can also be achieved by insects at the wing base joint.

At the wing root, the torque and power characteristics are similar to those at the

proximal-distal junction. This result is because the proximal section has generally the

same pitching behavior as the distal section even though thetwo sections have a phase

difference and also different magnitudes of inertial effect. The torque and power needs

of both sections add up to the required input at the wing root.Therefore, the inertial

effect due to wing translation drives most of pitch reversal, and a reaction torque is

needed to prevent excessive pitching. In addition, positive power input is needed during

mid-downstroke and early pronation to facilitate pitching. This positive power can only

be provided by muscle activity, and it is indeed achievable by the shoulder muscles of

the hummingbird (Hedrick et al., 2012).

To confirm that the current two-section model is sufficient to analyze the pitching

dynamics of the hummingbird wing, we also created a three-section model by further

splitting the proximal section into two parts connected at the wrist. This alternative

model takes into account of wing twist at the wrist joint (Hedrick et al., 2012). The

same procedure is used to calculate the inertial torque components, the aerodynamic

torque, and the torques at wing junctions. The results show that the torque and power
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inputs at the root are close to those obtained from the two-section model. In addition,

the torque and power at the wrist joint are between those at the root and those at the

finger junction. Therefore, we do not further discuss these results.

5.5 Conclusion

A computational model has been developed to analyze the pitching dynamics of the

ruby-throated hummingbird and to identify the mechanism ofwing pitching in hovering

flight. Realistic wing kinematics reconstructed from high-speed videos are incorporated

into the model, and the aerodynamic effect from a previous three-dimensional simula-

tion is included. It is shown that pitch reversal of the hummingbird is mostly driven

by the inertial effect of wing translational acceleration/deceleration. However, actua-

tion power from the wing root is needed in the beginning of pronation to start the fast

reversal and also during mid-downstroke to pitch the wing. The intrinsic muscles of

the hummingbird wing are not required to power pitching motion of the distal section.

These findings provide a unified view into the pitching actuation in insects and hum-

mingbirds and thus may be useful for the design of engineering flyers that attempt to

mimic these animals.
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CHAPTER VI

THREE-DIMENSIONAL SIMULATION FOR FAST FORWARD FLIGHT OF

A CALLIOPE HUMMINGBIRD

6.1 Introduction

Comparing with hovering flight, the forward flight of hummingbirds and its fluid dy-

namics have been much less studied.Tobalske et al.(2007) performed comprehensive

measurement of the flight kinematics of the rufous hummingbirds in the wind tunnel

at speed from zero (hovering) to 12 m/s. The data they obtained include the body ori-

entation angle, wingbeat frequency, wingbeat amplitude, stroke plane angle, wingtip

trajectory, and time-dependent variables such as the wing chord angle and wing area, at

different flight speeds. In general, as the flight speed increases, the birds aligned their

bodies more parallel to the flow to reduce drag, and the strokeplane becomes more

vertical, which is beneficial for thrust production. Based on their data, the advance ra-

tio, J, defined as the ratio between the flight speed,U, and the average wingtip speed,

Utip, is betweenJ = 0 for hovering andJ = 1.5 for the maximum speed at 12 m/s.

In comparison, insects typically have an advance ratio ofJ < 1 (Vogel, 1966; Dudley,

2002). For example, fruit flies and bumble bees have the advance ratio at 0.25 and 0.6,

respectively (Dudley and Ellington, 1990a; Dudley, 2002). So their wing speed is much

faster than the flight speed. Such a difference in the flight dynamics implies that there

should exist a significantly different force production mechanism in the hummingbird
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wings than that of those insect wings.

Among the animal flyers, there are several types of thrust production mechanism for

the forward flight mode. One common type is the so-called ‘backward flick’ (Heden-

ström and Johansson, 2015), which is used by many insects, e.g., bumble bees (Dud-

ley and Ellington, 1990a,b; Dudley, 2002) and also by bats during slow flight with

J < 1 (Norberg, 1976). In this type, the stroke plane tilts forward and the backward

speed of the wing during upstroke is faster than the flight speed. Thus, the aerodynamic

lift generated by the wings is directed forward during upstroke and functions as thrust.

Another type is the paddling mode discovered in a recent study of fruit flies at speed of

0.43 m/s (Ristroph et al., 2011) (the advance ratio of fruit flies is nearJ = 0.25 (Dudley,

2002)). In this case, the stroke plane of the insects remains nearly horizontal, and the

angle of attack of the wings at upstroke is much greater than that at downstroke. Thus,

large drag is produced in the forward direction as a drag-based thrust mechanism. For

large birds at cruising flight, the advance ratio is usually above one (Pennycuick, 1990),

and thrust is typically generated during downstroke when the leading edge tilts down-

ward to redirect the aerodynamic lift forward for simultaneous weight support and thrust

production (Alexander, 2004). During upstroke, the birds feather their wings by tilting

the leading edge upward into the effective wing direction so that a minimum amount

of forces is produced (Alexander, 2004; Tobalske et al., 2003a; Spedding et al., 2003;

Henningsson et al., 2008). Since the advance ratio of hummingbirds varies from zero to

above one, it is possible that they use disparate force production mechanisms at differ-

ent flight speeds. FromTobalske et al.(2007), the tip trajectory of the hummingbirds at

90



slow flight speeds is highly skewed, when viewed from a globalcoordinate system, and

resembles that of insects. Thus, the backward flick mode is likely employed for thrust

production. However, at fast speeds, it is not clear whetherthe hummingbirds become

more like other birds, or they adopt a different flight strategy. To answer this question,

it is necessary to examine the detailed wing motion at those speeds. In addition to the

kinematic analysis, accurate calculation of the forces is needed, as the flow under con-

sideration is highly three-dimensional and involves unsteady effects beyond limitation

of quasi-steady models.

In the current study, we aim to understand the lift and thrustproduction of hum-

mingbirds during fast forward flight. The flow field and behavior of vortices will be

investigated along the aerodynamic forces. In addition, wewill compare the force gen-

eration mechanisms between hummingbirds and other animalssuch as insects and large

birds. Following the approach in a previous study of hovering flight of the humming-

bird (Song et al., 2014), we develop a high-fidelity computational model that incorpo-

rates the realistic kinematics of the bird wings and adopt three-dimensional numerical

simulations to resolve the unsteady flow.

6.2 Model configuration and simulation approach

6.2.1 Reconstruction of the wing kinematics

A calliope hummingbird (Selasphorus calliope) was used as the subject in this study,

whose basic morphological data are provided in Tab.6.1). The experimental study was
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conducted to obtain the wing kinematics at a sustained flightspeed ofU∞ = 8.3 m/s,

at which the wingbeat frequency is 45.5 Hz while the stroke plane angle between the

stroke plane and the horizontal is 67.9◦ (see Tab.6.1). In the experiment, the bird was

placed in the wind tunnel with a feeder at the middle of the wind tunnel, and it was

trained to adapt to the wind while feeding. Three synchronized high-speed cameras

were deployed around the tunnel section to film the bird flight(see Fig.6.1).

We recorded flight kinematics of the hummingbird using threehigh-speed cameras

distributed outside the working section of a wind tunnel: one Photron SA-3 (Photron

USA Inc., San Diego, CA, USA) and two two Photron 1024 PCI, electronically syn-

chronized to shutter as driven using Photron Fastcam Viewersoftware and synchronized

to frame using a transistor-transistor logic (TTL)-pulse.Two cameras were placed dor-

sally to the bird, and one was placed laterally. Video recordings were made at 1000

Hz with a shutter speed of 1/10,000 s. The bird flew in an open-circuit, variable-speed

wind tunnel, the properties of which have been described previously (Tobalske et al.,

2005). The working section of the tunnel is 85 cm in length, squarein cross section,

60×60 cm at the inlet and increasing to 61.5×61.5 cm at the outlet to accommodate

boundary-layer thickening. Maximum deviations in velocity within a cross section are

less than 10% of the mean. The boundary layer is less than 1 cm thick and turbulence

is 1.2%.

After the videos were taken, a custom MATLAB program (Hedrick, 2008) was used

to track the markers frame by frame and to extract their three-dimensional coordinates.

These markers were pre-labeled on the wings using non-toxicpaint, and they included
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Parameter Value
Mass M = 2.8 g
Stroke plane angle β = 67.9◦

Stroke amplitude Φ = 102.5◦

Wingbeat frequency f = 45.5 Hz
Wing length R= 4.51 cm
Single wing area S = 5.18 cm2

Table 6.1: Morphological data of the hummingbird used in thestudy.

five points on the leading edge, on at the wingtip and three on the trailing edge, as seen

in Fig. 6.2.

Details of the wing geometry reconstruction process is similar to those in the pre-

vious hovering hummingbird study (Song et al., 2014). That is, the wing profile was

constructed using spline interpolation through the markerpoints, and the wing surface

was then built using triangular elements within the profile.The bird body was recon-

structed nominally based on the camera views of the hummingbird. In the current re-

construction, a single wing consists of 1335 elements and 718 nodes, while the body

surface consists of 3560 elements and 1782 nodes. A total of 13 cycles of wingbeats

during steady flight were captured, and each cycle contains approximated 22 frames.

To increase the time resolution of the wing position, the trajectories of the wing mesh

nodes are also refined by spline interpolation in time. Sevencycles of wingbeats were

reconstructed from the imaging data and used for the simulation. Figure6.3(a,b) shows

a sequence of wing positions within a cycle.
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Figure 6.1: Camera views of the hummingbird in the wind tunnel.

Figure 6.2: Reconstructed bird model and corresponding snapshots from the camera
view.

6.2.2 Wing kinematics

Figure6.4shows both the instantaneous and phase-averaged wingtip velocity of the

hummingbird. It can be seen that upstroke has slightly higher velocity than downstroke.

The peak value is at 11.22 m/s for downstroke and 12.18 m/s for upstroke. The wingtip
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Figure 6.3: Reconstructed wing position of the hummingbirdwithin one beat cycle:
(a) downstroke, (b) upstroke, and (c) the wingtip trajectory as viewed in a body-fixed
coordinate system, where the thick line is the cycle-averaged trajectory and thin is the
instantaneous trajectory.

velocity averaged throughout the cycles is 8.14 m/s, which gives the advance ratioJ =

1.02. The wing area can be calculated from the reconstructed kinematics and it varies

between 5.34 cm2 during downstroke and 5.03 cm2 during upstroke. The average area

is S = 5.18 cm2.

From Fig.6.3(a,b), wing twist along the axis and spanwise bending in a cycle are

evident. To characterize the position of a cross section of the wings, we define the chord

angleψ as the instantaneous angle between the chord and the flight direction. The angle

of attack,α, is defined as the angle between the chord and the relative flowdirection

that combines both the freestream velocity and the translational velocity of the chord

at the leading edge. These two angles are plotted in Fig.6.5 for two chords and five

cycles, one proximal chord at dimensionless location ˆr = r/R = 0.15 and one distal

chord at ˆr = 0.9, which are denoted by subscripts p and d, respectively.
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Figure 6.4: Instantaneous wingtip velocity.

From these plots, we can see large differences between the proximal chord and

distal chord. For the proximal chord, the chord angleψp and angle of attackαp are both

positive during the entire cycle. For the distal chord, these angles change the sign and

vary significantly. During the downstroke,ψd is negative, i.e., the leading edge tilting

downward, butαd is positive due to fast translation of the chord. During upstroke,ψd

is positive, i.e., the leading edge tilting upward, but theαd is negative, indicating that

the pressure surface and the suction surface are swapped at that moment. The wing

twist can be described by the difference between the two chord angles,ψd − ψp, which

is plotted in Fig.6.6. It is shown that the twist angle reaches its extreme value during

mid-downstroke and mid-upstroke; however, it is more pronounced during upstroke

(near 40◦) than during downstroke (near 25◦). These differences between the proximal

section and the distal section lead to highly nonuniform pressure distribution on the

wing surface as shown later.
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Figure 6.5: The chord angleψ (a,b) and effective angle of attackα (c,d) for a proximal
chord at ˆr = 0.15 (a,c) and a distal chord at ˆr = 0.90 (b,d).
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Figure 6.6: Wing twist as measured using the difference between two chord angles.

6.2.3 Simulation setup and verification

In the model, the Reynolds number, defined asU∞c̄/ν, is set to beRe= 3000. The

flow is assumed to be governed by the viscous incompressible Navier-Stokes equation,
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which is solved by an in-house code that adopts a second-order immersed-boundary

finite-difference method. The code is able to handle large displacementof the moving

boundaries (Luo et al., 2012). A fixed, nonuniform, single-block Cartesian grid is em-

ployed to discretize the domain (see Fig.6.7(a)). The rectangular domain is 25×20×16

cm3. For the simulation,704×842×560 (333 million) points are used for the baseline

simulation. A finer mesh is also used in the simulation to verify grid convergence. Both

of these meshes have maximum resolution around the wing, which is 1/60 cm in all

three directions for the baseline case and 1/70 cm for the refined case. The simulation

was run in parallel using domain decomposition and Message Passing Interface (MPI).

The time step is∆t = 5µs, which leads to approximately 4400 steps per wingbeat cycle.

A multigrid method was employed to accelerate convergence of the Poisson solver. A

total of 96 processor cores were used for the baseline case, and 128 cores for the refined

case.

The simulation results for two wingbeat cycles from both meshes are shown in

Fig. 6.7 and Tab.6.2 for comparison. In Fig.6.7 and also other figures from herein,

the shaded area indicates downstroke, while the white area indicates upstroke. These

results include the time-averaged lift and thrust of one wing and also lift and drag of the

bird body. From the table, we see that the maximum difference of all the forces is less

than 5%. Thus the baseline resolution is deemed satisfactory for the current study.
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Figure 6.7: (a) The baseline mesh around the bird (only one out of every 10 points in
each direction is shown). (b) The force comparison between the baseline simulation
and fine mesh simulation.

6.3 Results

6.3.1 Aerodynamic forces

The vertical forceFZ and thrustFT = −FX generated by one wing are normalized

by the fluid density,ρ, the flight speed,U∞ and the surface area of the wing according
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CZ CT CZ,b CD,b

Baseline (333 million) 0.374 0.112 0.239 0.151
Fine mesh 0.381 0.117 0.238 0.150
Difference 1.84% 4.27% 0.42% 0.67%

Table 6.2: The comparison of the forces on both wing and body (unit: mN) from the
two different meshes.

to

CZ =
FZ

(1/2)ρU2
∞S

, CT =
FT

(1/2)ρU2
∞S

. (6.1)

The lift and drag on the bird body,FZb andFDb, are normalized in the same manner.

The aerodynamic power coefficient of one wing is defined as

CP =

∫

f · u dA

(1/2)ρU3
∞S

. (6.2)

wheref is the stress on the wing surface, andu is the velocity of a point on the wing in

the body-fixed coordinate system.

These force and power coefficients are shown in Fig.6.8, which include both instan-

taneous and phase-averaged data. The cycle averaged data are listed in Tab.6.3for both

an entire cycle and downstroke/upstroke separately. A few observations are made from

these data. First, Fig.6.8(a) shows that the weight support is mostly generated during

downstroke whereCZ is positive. The mid-downstroke corresponds to the maximumlift

production, as expected. During supination and early upstroke, the wings are still able

to generate some lift. Around mid-upstroke, vertical lift becomes negative even though

its amplitude is not particularly high. On the other hand, itis interesting to note that

from Fig. 6.8(b), thrust is mostly positive during both downstroke and upstroke. Fur-
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Figure 6.8: The force production and aerodynamic power consumption of each hum-
mingbird wing: (a) vertical force coefficient, (b) thrust coefficient, and (c) power coef-
ficient. In each case, the thin lines are the instantaneous data, and the thick line is the
phase-averaged data.

thermore, thrust has a greater peak during upstroke than during downstroke. However,

the data in Tab.6.3shows downstroke on average produces more thrust.

Fig. 6.8(c) shows that the power consumption during both half wingbeats are signif-
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icant. However, the power requirement is greater for downstroke and is about twice as

high as upstroke. This feature is similar to the hovering situation, where the downstroke

power is nearly 2.8 times of the upstroke power according toSong et al.(2014), who

studied the ruby-throated hummingbird.

Using dimensional variables, we found that the overall power consumption is 29

W/kg (per body mass), which is lower than that of the hovering ruby-throated hum-

mingbird at 55 W/kg (Song et al., 2014).This is consistent with a U-shaped curve de-

scribing variation in mechanical power output according toflight speed (Pennycuick,

1968; Sun and Wu, 2003; Tobalske et al., 2003b). The current data for hummingbird is

within the range reported for larger bird species. Cockatiel power output ranges from

17 W/kg (5 m/s) to 47 W/kg (14 m/s), and the dove power output ranges from 31 W/kg

(7 m/s) to 54 W/kg (17 m/s) (Tobalske et al., 2003b).

In addition, using the present force coefficients, we obtain the total vertical lift pro-

duced by the bird, which, including the forces from both the wings and body, is around

96% of the bird weight. The bird body itself generates about 22.2% of body weight.

This result will be discussed later. The thrust generated onthe two wings together is

152% of the body drag. This imbalance of the horizontal forces may have been caused

by the beak-feeder interaction as the bird was attempting tofeed on the feeder.
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CZ CT CP CZ,b CD,b

Whole cycle 0.466 0.115 0.266 0.266 0.151
Downstroke 1.006 0.157 0.394 0.342 0.157
Upstroke -0.074 0.073 0.137 0.189 0.146
Ratio - 2.15 2.88 1.81 1.08

Table 6.3: Averaged vertical force coefficient, CZ, thrust coefficient, CT , and power
coefficient, CP of the wings, and averaged lift and drag coefficients of the body,CZ,b

andCD,b.

6.3.2 Force production mechanism

Overall force production of the hummingbird can be explained from the wing kine-

matics as viewed from the global coordinate system, i.e., the coordinate system fixed

with the ambient air. Fig.6.13shows the proximal and distal chord moving in the global

coordinate system with their trajectories traced out. During downstroke, the angle of

attack is positive for both the proximal chord and the distalchord. Therefore, both wing

sections generate vertical lift. Since the leading edge of the distal section tilts down-

ward, the aerodynamic lift has a forward component that leads to thrust generation

during downstroke.

During upstroke, both wing sections move forward in air, even though the stroke

plane angle is less than 90◦ and the wings move backward with respect to the body.

Nevertheless, positive thrust is generated during this half cycle by the distal section.

As shown in Fig.6.13(b), the angle of attack is negative, and the overall force onthe

section points downward and forward.

Fig. 6.10shows the pressure distribution within four selected vertical slices at mid-

downstroke and mid-upstroke. It can be seen that the roles ofthe distal section and

103



Figure 6.9: Time-dependent position of the distal chord (upper panel) and distal chord
(lower panel) in the global coordinate system with qualitative force production at mid-
downstroke and mid-upstroke.

proximal section are different. For both downstroke and upstroke, the proximal wing

has pressure surface on the ventral side and suction surfaceon the dorsal side. Thus,

its main role is for vertical lift generation. However, the distal wing flips its angle of

attack between the two half cycles. Thus, positive (negative) pressure is distributed on

the ventral (dorsal) side during downstroke, and the opposite is true during upstroke.

This pressure differential leads to vertical lift production during downstroke only, but

thrust production during both downstroke and upstroke.

6.3.3 Vortex structures

Vortex structures, which are induced by the wing motion and dominate the wake,

have been a focal point in the study of force production of flapping wings and fish fins.

They can also be used to evaluate whether a bird adopts slow gait or fast gait (Alexander,

2004). As has been pointed out by previous researchers, at slow gait the trailing-edge
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(a) (b)

Figure 6.10: Pressure distribution in the flow in the vertical planes at (a) mid-
downstroke and (b) mid-upstroke.

vortices (TEVs) form rings after each downstroke, and the sequence would look like a

series of smoke rings (Spedding et al., 1984; Spedding, 1986); while at fast gait, the tip

vortices (TVs) form undulating vortex tubes from the tip, and the TEVs form cylinders

from the trailing edges, both being convected downstream (Spedding, 1987; Spedding

et al., 2003; Henningsson et al., 2008).

In the current study of hummingbird flight, we used the iso-surface to show the vor-

tex structures. The scalar quantity is defined as the maximumvalue of the imaginary

part of the eigenvalue of the velocity gradient tensor,∇u, and it describes the strength

of the local rotation of fluid (Mittal and Balachandar, 1995b). It is found that the TVs

are continuously shed from the wingtip, and the TEVs shed with the shape of separate

cylinders. Such characteristics of the vortex structures confirm the speculation in a pre-

vious study of hummingbirds (Pennycuick, 1988), which argues that the hummingbird

wings would generate a ladder-like vortex wake. Several snapshots of the flow field are

shown in Fig.6.11. These snapshots show roughly the shape of the TVs that follow
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(a) (b)

(c) (d)

Figure 6.11: Vortex structures in the flow: (a) pronation, (b) mid-downstroke, (c)
supination, and (d) mid-upstroke.

the trajectory of the wingtips. In addition, vortex shedding from the trailing edge are

evident. Formation of the LEVs during both downstroke and upstroke is visible, and

the LEVs are stable for both downstroke and upstroke. From Fig. 6.5(d), the angle of

attack of the distal section keeps a maximum value around 25◦ for a significant period

of time, which may have caused LEV shedding and stall, if the wings simply translated

without changing its pitch. However, since the wings are also performing rapid pitching

around their axes, as seen from variation of the chord angle plotted in Fig.6.5(b). That

is, the chord angle magnitude decreases during downstroke after t/T > 0.2, and quickly

increases during upstroke before mid-upstroke. Such rotational motion has been known

to maintain stability of LEVs and to enhance lift productionof the wings.
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Figure 6.12: Vortex structures at mid-upstroke, where the color indicate the pressure
level.

6.4 Discussion

6.4.1 Forces on the bird body

Lift and drag on the bird body are affected by the orientation of the bird during

flight. In general, the inclination angle of the body decreases with the increase of flight

speed (Tobalske and Dial, 1996; Tobalske et al., 1999, 2007, 2003a; Hedrick et al.,

2004). In the current study, the body angle of the hummingbird isχb = 12◦, which is

close to the angle of the rufous hummingbird at speed of 8 m/s whereχb = 11◦ (To-

balske et al., 2007). Fig. 6.13shows both the instantaneous and phase-averaged data

of the forces on the body. Downstroke-, upstroke-, and cycle-averaged data are listed

in Tab.6.3. These results show that the lift on the body provides 22.2% of the weight

support. In addition, lift during downstroke is 1.81 times of lift during upstroke. In

Fig. 6.13(a), lift on the body oscillates significantly during a wingbeat cycle. On the

other hand, drag on the body does not vary very much in a cycle and is nearly equal

on average between downstroke and upstroke, which are reflected in Fig.6.13(b) and
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Figure 6.13: The instantaneous (thin lines) and phase-averaged (thick line) lift (a) and
drag (b) on the bird body. The dashed lines denote the value from the isolated body
simulation.

Tab.6.3.

The high percentage of lift produced by the body and the oscillations of the body

lift in a cycle may be attributed to aerodynamic interactionbetween the wings and the

body that is assumed to be stationary in the current study. Toverify this possibility,

we also simulated separately the same flow around the isolated body without the wings

attached. The shape and orientation of the body remain the same.

Fig. 6.14(a) shows the pressure distribution on the bird body from theisolated body

simulation, which can be compared with the result from the full body simulation shown
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Figure 6.14: The pressure distribution on the bird body: (a)isolated body simulation,
(b) full body simulation at mid-downstroke, (c) full-body simulation at mid-upstroke.

in Fig. 6.14(b,c) for mid-downstroke and mid-upstroke. For the isolated body, even

though a high pressure zone is established below the body, the flow passes around the

body in the absence of the wings and merges behind and above the body, where the

pressure is partially recovered. As a result, the overall lift by the body is small. When

the wings are present, the flow from below is prevented to passaround the body by the

wings. Furthermore, the wing-wing interaction mechanism,as proposed byLehmann

et al.(2005), apparently has played a role here. That is, when the two wings are sepa-

rating from one another from pronation to mid-downstroke, they create a low pressure

zone above the bird body, as shown in Fig.6.14(b), thus leading to a net upward force.

This mechanism also explains why during upstroke, the low pressure zone above the

body, as plotted in Fig.6.14(c), is significantly smaller as compared with downstroke.

The present result shows that the bird body has significant contribution to the overall
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Taxa Speed (m/s) Body angleχ Lift(% of weight)
Hummingbird in flight 8.3 12◦ 22.2%
Hummingbird(body only) 8.3 12◦ 8.4%
Cockchafer beetle (Nachtigall, 1964) 2-2.5 40◦ 3%
Dipteran (Wood, 1970) 2 10◦ 4%
Noctuid moth (Chance, 1975) 4 26◦ 10%
Bumblebee (Dudley and Ellington, 1990a) 5 15◦ 8%
Zebra finch (Csicsáky, 1977) 4-5 25◦ 15%
Zebra finch (Tobalske et al., 2010) 6-10 15◦ 20±5%

Table 6.4: Lift contribution from the body toe weight support for different species. The
measurement of the insects was done on isolated bodies and the data for zebra finch was
done using live birds with intact but folded wings and tails.

weight support. In comparison, previous experimental studies of insects and other birds

indicated that the body lift is only a small portion of the animal weight, as shown in

Tab.6.4. However, we point out that in those previous studies, the force was measured

for the isolated animal body only, while in the current study, the wings are present and

are in constant motion. For the isolated hummingbird body, we also observed low lift

production. As shown in Tab.6.4, the lift of the isolated hummingbird body is only 8%

of the weight and is comparable with previous data for insects and also birds (e.g., zibra

finch).

Drag coefficients of insect bodies range from 0.12 to 0.95, depends on flow condi-

tions and taxonomic identity of the body (Dudley and Ellington, 1990b). In the current

study, the average drag coefficient of the bird body from the full body simulation would

be 0.43 if scaled by the frontal area and is thus on the lower end as compared with

insects.
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Figure 6.15: (a) Stroke plane angle vs. advance ratio. Data are collected from liter-
ature (Diptera, Ennos(1989b); Bumblebee,Dudley and Ellington(1990a,b); rufous
hummingbird,Tobalske et al.(2007); Magpie,Tobalske and Dial(1996); Pigeon,Pen-
nycuick (1968); Hawk moth,Willmott and Ellington(1997); Zebra finch,Park et al.
(2001)).

6.4.2 Comparison of hummingbirds, insects and other birds

The advance ratioJ and stroke plane angleβ are two primary factors that affect the

force production of flapping wings during forward flight. These two variables differ

largely among animal species. Fig.6.15shows a few species on theβ − J map with the

data directly collected or derived from various sources. Itcan be seen that humming-

birds largely fall within the range of the insects but also extend into the range of other

birds. For all species, the stroke plane angle increases with the advance ratio, which is

expected since at fast flight speed, the animals not only reduce the body angle, which

would naturally cause the stroke plane angle to increase, for drag reduction but also tilt

the stroke plane more to enhance thrust generation.

For the small insects like the bumblebee and fruitfly, the advance ratio is usually

less than one (Dudley, 2002). For such slow flight, lift production is predominant over
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thrust production. Since the back-sweeping velocity of thedistal wing exceeds the

forward flight speed at upstroke (Dudley and Ellington, 1990a; Ristroph et al., 2011;

Sun and Wu, 2003), the wingtip trajectory traced out in the global coordinate system is

highly backward skewed at upstroke, which is shown in Fig.6.16for a bumblebee at

J = 0.6. In this case, downstroke is mainly for lift production, while upstroke is mainly

for thrust production. If the flight speed is further reduced, with a more skewed trajec-

tory, upstroke may even produce lift as well. Overall, this strategy of using upstroke is

also known as ’backward-flick’ (Norberg, 1976; Tobalske et al., 2003a,b). The force

production mechanism is further illustrated in Fig.6.17(a). An exception is the fruitfly

which is shown by a recent study that its upstroke uses a paddling mode to produce

drag-based thrust (Ristroph et al., 2011).

For most of birds, the advance ratio is significantly greaterthan one, and the stroke

plane angle is close to 90◦. Thus, the wingtip trajectory in the global coordinate system

become more sinusoidal, as seen in Fig.6.16. In this case, upstroke is not suitable for

thrust generation. Instead, the wings are either featheredor swept during upstroke with

little force produced (Tobalske et al., 2010; Henningsson et al., 2008; Spedding et al.,

2003), and a powerful downstroke is used to produce both lift and thrust. The velocity

combination and force production of this case are shown in Fig.6.17(c).

For the hummingbird in the current study, the advance ratio is between that of in-

sects and other birds. The wingtip trajectory is moderatelyskewed as seen in Fig.6.16.

Therefore, with proper angle of attack, the wings can still produce thrust during up-

stroke. However, since the overall force points downward, some lift has to be sacrificed.
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The force production in this case is further shown in Fig.6.17(b). From this figure it

can be seen that thrust can be produced when the wing speed is comparable to or pos-

sibly even lower than the flight speed. This thrust mechanismis analogous to a sail that

moves against wind and thus is termed a ‘sail mode’ in the present work. On the other

hand, downstroke of the hummingbird is similar to that of bigbirds, as seen in Fig.6.16,

where both lift and thrust are generated.

It should be pointed out that at slow flight speeds, force production of the humming-

bird is still very likely close to that of insects. As shown byTobalske et al.(2007), when

J is below 0.7, the stroke plane angle of the hummingbird is small and the wingtip tra-

jectory is also highly skewed like that of insects. Similarly, some of insects can perform

fast flight atJ > 1, e.g., the hawkmoth, as seen from Fig.6.15. It would be interesting

to see whether their force production mechanism is similar to that described here for

the hummingbird.
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Figure 6.16: Wingtip trajectory and force production of thebumblebee, hummingbird,
and big birds.
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Figure 6.17: Force production of upstroke during forward flight. (a) Backward-flick by
bumblebee, (b) sail mode by hummingbirds, (c) feathering mode by big birds.
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CHAPTER VII

SUMMARY AND FUTURE WORK

7.1 Summary

In this thesis, we focus on the computational modeling of theaerodynamics of hum-

mingbird flight to study the unsteady fluid dynamics and forceproduction mechanisms

of the bird. To capture details of the aerodynamics, we reconstructed the kinematic

model with high-fidelity based on the high-speed videos provided by our collaborators.

Using a direct simulation approach, we accurately obtainedvortex-dominated flow field

and the force histories. In conclusion, four specific aspects have been studied in this

thesis:

First, a three-dimensional computational fluid dynamics simulation has been per-

formed for a ruby-throated hummingbird (Archilochus colubris) in hovering flight. Re-

alistic wing kinematics were adopted in the numerical modelby reconstructing the wing

motion from high-speed imaging data of the bird. Lift history and the three-dimensional

flow pattern around the wing in full stroke cycles are captured in the simulation. Sig-

nificant asymmetry is observed for lift production within a stroke cycle. In particular,

downstroke generates about 2.5 times as much vertical forceas upstroke, a result that

confirms the estimate based on the measurement of the circulation in a previous exper-

imental study. Associated with lift production is the similar power imbalance between
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the two half strokes. Further analysis shows that in addition to the angle of attack,

wing velocity and surface area, drag-based force and wing-wake interaction also con-

tribute significantly to the lift asymmetry. Though the wing-wake interaction could be

beneficial for lift enhancement, the isolated stroke simulation shows that this benefit is

buried by other opposing effects, e.g., presence of down wash. The leading-edge vortex

is stable during the downstroke but may shed during the upstroke. Finally, the full-

body simulation result shows that the effects of wing-wing interaction and wing-body

interaction are small.

Then, a quasi-steady model describing aerodynamics of hovering ruby-throated

hummingbirds was developed to study extent of the low-ordermodel in representing

the complex flow physics and also to separately quantify the forces from the transla-

tional, rotational and acceleration effects. Realistic wing kinematics were adopted and

the model was calibrated against CFD simulations of a corresponding revolving wing

model. The results show that the quasi-steady model is able to predict overall lift pro-

duction reasonably well but fails to capture detailed forceoscillations. The downstroke-

upstroke asymmetry is consistent with that in the previous CFD study. Further analysis

shows that significant rotational force is produced during mid-stroke rather than wing

reversal.

Third, a computational analysis of the pitching dynamics was performed by incor-

porating the realistic wing kinematics to determine the inertial effects. The aerodynamic

effect was also included using the pressure data from a previousthree-dimensional com-

putational fluid dynamics simulation of a hovering hummingbird. The results show
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that similar with many insects, pitch reversal of the hummingbird is, to a large degree,

caused by the wing inertia. However, actuation power input at the root is needed in the

beginning of pronation to initiate a fast pitch reversal andalso in mid-downstroke to

enable a nose-up pitching motion for lift enhancement. The muscles on the wing may

not necessarily be activated for pitching of the distal section. Finally, power analysis of

flapping motion shows that there is no requirement for substantial elastic energy storage

or energy absorption at the shoulder joint.

Fourth, we have developed a high-fidelity computational fluid dynamics model to

analyze the fast forward flight of a hummingbird, whose three-dimensional wing kine-

matics were incorporated into the model by extracting the wing position from high-

speed videos. The advance ratio, or the ratio between the flight speed and the wing tip

velocity, is around one, and we are particularly interestedin how thrust is generated

at this fast speed. Our simulation result has shown that bothdownstroke and upstroke

produce significant amount of thrust for the bird to overcomedrag. This feature likely

sets the hummingbird apart from many of other flying animals such as insects and large

birds.

7.2 Future study

Several future directions of study can be derived based on the current study. In par-

ticular, we have initiated a study on the aerodynamics of yawturn of the hummingbird,

using a similar methodology. The details and other directions are described as follows.
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7.2.1 Unsteady maneuvers of hummingbirds

Other than hovering and forward flight, hummingbirds can obviously perform var-

ious fast maneuvers such as pitch, yaw, roll, and more complex maneuvers that are

combinations of these. Different from engineering aircraft, whose maneuvers are usu-

ally slow and thus whose flight dynamics can be separated fromthe wing aerodynamics

in a flight analysis, maneuvers of animals can be done very quickly, e.g., within one or

two wingbeats (Hedrick et al., 2009). Therefore, during such maneuvers, the flight dy-

namics of the animal body is necessarily coupled with the aerodynamics of the flapping

wings. In the current work, we use hummingbirds as an exampleto study the coupled

flight dynamics and aerodynamics. As a first step, we are focusing on yaw turn only,

and both the blade-element model and the complete CFD model will be used to analyze

the forces generated by the wings.

The ruby-throated hummingbird, which has a body mass of 3.40gram, was used as

the subject in the experiment that was carried out at the University of North Carolina

at Chapel Hill. Six high-speed cameras were used in the filming of the bird flight, two

of which recording the X-ray images while the remaining fourrecording the regular

images (See Fig.7.1). The X-ray images were used to study the muscular and joint

activities of the bird. For each wing, nine points were marked on the wing edges. The

reconstruction process is the same as that of the hovering and cruising flight, which were

described by previous chapters. In the current study, marker labels were also placed on

the hummingbird body to trace the body orientation. To simplify the analysis, the bird

body is assumed to be a rigid body, and extra motions of other parts such as the head and
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Figure 7.1: Camera view of the hummingbird performing a yaw turn. Two X-ray views
are included.

Figure 7.2: Comparison of four typical wing and body positions in one cycle between
the reconsctructed model and original video images.

tail were not considered. Fig.7.2 shows a comparison of four typical wing and body

positions in one cycle between the reconstructed model and original video images. This

figure shows that the reconstruction captures not only the instantaneous wing positions

and deformations, but also the time-varying body orientation during the yaw turn.

Fig. 7.3 shows the tip trajectory of two wings in the top view. We can see that the
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bird is initially hovering with the wings moving back and forth and the wingtips tracing

the trajectory of nearly a circular arc. the circular arc. Later, the bird turns to the right.

Fig. 7.4(a) shows the body yaw turning and pitching angle. From the yaw angle, we

can get an more precise description of the bird motion: the bird was hovering in the

first four wingbeat cycles and even turned slightly to the left; then it quickly turns to the

right by 70◦ in next five cycles.

In Fig. 7.5(a), we show the comparison of the instantaneous tip velocity of two

wings. The shaded region indicates the downstroke, while the white region indicates

the upstroke. From the figure, we can see the left wing velocity is slightly larger than

that on the right wing at both downstroke and upstroke. Fig.7.5(b) shows the tip ve-

locity difference between the left wing and right wing. We can see that the difference

oscillates around zero at first 4 cycles. In the later cycles,the velocity of the left wing is

significantly larger than that of the right wing at upstroke.To what extent this velocity

difference makes in the yaw turning is not yet clear and will be studied in the future.

To see other differences in the wing kinematics, we plot the angle of attack for each

wing at middle downstroke and upstroke in nine cycles, whichis shown in Fig.7.6(a).

For each point, the value is obtained by the average of the 20%of the time period around

middle downstroke and middle upstroke. Fig.7.6(b) shows the angle of attack differ-

ence between downstroke and upstroke for both wings. This figure helps to estimate

the average horizontal force production of each wing. From this figure, we found that

theαdown− αup of the right wing is larger than that of the left wing, which implies that

the right wing generates larger net torque for the right turning than the opposite torque
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Figure 7.3: Top view of the wingtip trajectory and bird orientation during the yaw turn.
The bird is turning clockwisely, or turning to its right.

generated by the left wing. The effect of this asymmetry in the angle of attack on the

yaw turn will also be studied in the future.

7.2.2 Further comparison of hummingbirds and other flying animals

Nature is full of diversity. The physiology, biomechanics,and aerodynamics of

hummingbird wings are quite different from those of insects, other birds, and bats. It

is yet not clear which ones are optimal when it comes to engineering innovation of

biomimetic MAVs with given design constraints. At certain point, a multi-disciplinary
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optimization study would be required to optimize the wing structure and kinematics

for such MAVs. Before such a study, however, it would be very helpful to perform a

further investigation of hummingbird wings in comparison with other wings in terms

of various morphological and kinematic parameters. Questions that may be addressed

122



(a)

Cycle number

0 1 2 3 4 5 6 7 8 9

α
 (

d
eg

.)

20

30

40

50
Left down

Left up

Right down

Right up

(b)

Cycle number

0 1 2 3 4 5 6 7 8 9

α
d

o
w

n
 -
α

u
p

 (
d

eg
.)

-10

0

10

20

30

Left

Right
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the two wings (sampled from 20% of the period duration). (b) The angle of attack
difference between downstroke and upstroke of the two wings.

include: Do these different wings have similar efficiency to provide necessary forces for

the same flight regime? If yes, how is it achieved by the different wing designs? Or if

not, which one is more efficient and why? We envision that the CFD approach utilized

in the present work can be directly applied in such a study andwill lead to insightful

results.

7.2.3 Fluid-structure interaction of the elastic flapping wings

Due to the complicated elastic properties of the bird wings and challenges in cou-

pling a fluid solver and a solid solver, few CFD studies have incorporated the fluid-
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structure interaction (FSI). In the future, an FSI study canbe pursued, and it will lead

to insights into the important effect of the passive flexibility of the animal wings on

their aerodynamic performance and will provide useful guidance on design of flexible

structures of the biomimetic MAV wings.
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