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CHAPTER I 

INTRODUCTION AND SUMMARY 

1. Introduction 

Recent advances in robotics and intelligent systems are expected to usher in a new 

era where smart autonomous systems will have significant impact on our daily lives. As 

machines and people begin to co-exist and cooperatively share a variety of tasks, the need 

for machines to “understand” humans becomes increasingly important. Human 

interactions are characterized by explicit as well as implicit channels of communication. 

While the explicit channel transmits overt messages, the other one transmits implicit 

messages about the communicator. Ensuring sensitivity to the other party’s emotions is a 

significant part in human communication and is associated with the second, implicit 

channel (Cowie et al., 2001). “The latest scientific findings indicate that emotions play an 

essential role in rational decision-making, perception, learning, and a variety of other 

cognitive functions (Picard, 1997).” It is well documented in the literature of psychology 

that a person's affective state is very important in relationships (York, et al., 1984). 

Understanding others' affective states and behaving responsively are determining factors 

in human communication. It has also been shown that people's interactions with 

computers, TV and similar machines/media are fundamentally social and natural, just like 

interactions in real life (Reeves and Nass 1996). Therefore, endowing machines with a 

degree of emotional intelligence should permit smoother, natural, and more efficient 

human-machine interaction (HMI). 

The motivation for this work stems from the observation that despite tremendous 

advancements in the field of human-machine interaction, truly affect-sensitive systems 
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that can communicate implicitly and intuitively with humans have still remained largely 

unexplored. As "Sensibility" is typically defined as awareness of and responsiveness 

toward something (as emotion in another), the objective of this work is to investigate the 

following hypotheses: (i) It is possible to detect the affective states of interest by using 

multiple indices derived from physiological signals in real-time; (ii) Such recognized 

affective cues can be integrated within a machine's control architecture to make it capable 

of responding to them appropriately; (iii) The proposed affect-sensitive systems are 

expected to improve the overall human-machine interaction experience. 

The potential applications of computer/robotic systems that can detect a person’s 

affective (emotional) states and interact with him/her based on such perception are varied 

and numerous. Whether it is the domain of personal home robotic assistants that assist in 

cleaning and transportation, computerized tutors that engage students and permit a more 

enjoyable and productive discourse, service robots that act as aids in offices, hospitals, 

and museums – this novel aspect of human-machine interaction will impact them all.  

In this work, the impacts of affective-sensitivity were investigated in both human-

robot interaction (HRI) and human-computer interaction (HCI) contexts. We also 

experimentally demonstrated that, by endowing the robot/computer with the capability of 

affect recognition and adaptation, it is feasible to augment human-machine interaction 

systems to be used in the autism intervention by accommodating the individual needs and 

affective characteristics. 

This chapter is organized as follows: in Section 2, a detailed description of past and 

ongoing research in the field of affective computing is presented. Here, the key 

modalities currently used for affect-recognition - facial expressions, vocal intonation, 
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gestures/posture and physiology have been surveyed. Section 3 elaborates on the field of 

affective human-machine interaction that includes the review of efforts in both HRI and 

HCI studies and the key observations. Special emphasis was laid on the physiology-based 

affective communication. Section 4 presents the current state-of-the-art in applying 

interactive technology in autism intervention. The needs of computer/robotic systems that 

are capable of understanding and responding to the affective characteristics of the 

children with Autism Spectrum Disorders (ASD) are discussed. Finally Section 5 

summarizes the backgrounds and contributions of the research based on 6 manuscripts.  

2. Affective Computing 

Affective computing can be defined as “computing that relates to, arises from, or 

deliberately influences emotions” (Picard, 1997). “Affective computing,” according to 

Picard, includes various research themes, such as giving a computer/robot the ability to 

recognize and express emotions and developing its ability to respond intelligently to 

human emotion.  

An affective or emotionally intelligent system is expected to possess a two-fold 

capability - express its own emotions in a manner understandable to humans and perceive 

emotions in humans. Research on machine-emotion synthesis has resulted in expressive 

robots and computerized agents that can articulate their emotions using human-like facial 

expressions and affective speech. This is a significant step towards making social 

machines that would permit natural HMI. However, in most such systems, there is no real 

understanding of human emotions and the synthesized emotions are mostly triggered by a 

limited rule-base. While these intelligent agents can smile, appear angry, confused or 

utter affective words, they are not capable of detecting human psychological states such 
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as anxiety, frustration, engagement or boredom and reacting to them. The focus of our 

work is complementary to this body of research by addressing the later capability, i.e., 

how to endow a computer/robotic system with the ability to recognize human affective 

states and adapt its behavior appropriately based on such perception.  

The need for a computer/robot to understand human emotion was discussed in 

(Picard, 1997; Simon, 1979; Sloman and Croucher, 1981). It can be argued that if an 

intelligent system can recognize a person's affective states implicitly, and can infer the 

cause of these states as related to the task, the human-machine interaction could achieve a 

different dimension. Such a capability, alone or in conjunction with other capabilities that 

allow explicit instructions from a human, is expected to provide a new paradigm for 

human-machine interaction. 

According to Mehrabian (1969), 55 percent of the emotional meaning of a message 

is carried through facial expression, posture, and gestures, another 38 percent of meaning 

comes from tone of voice, and only about 7 percent of the emotional meaning of a 

message is communicated through explicit verbal channels. In psychophysiology research, 

there is good evidence that the physiological activity associated with emotions can be 

differentiated and systematically organized (Bradley, 2000). The correlations between 

physiological responses and underlying affective states have been investigated in various 

studies (Bradley, 2000; McCraty, et al., 1991; Sinha, et al., 1992; Picard, 1997).  

The focus of this section is on the four above-mentioned modalities for detecting 

affect automatically – facial expression, speech, gesture/posture, and physiology. Each 

modality is reviewed with regard to the existing methodologies, classification accuracies, 

recent research developments, and their advantages and disadvantages. 
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2.1 Facial Expression 

It is well known that people use facial expression as a powerful and instantaneous 

means to convey their emotions, intentions, and opinions while interacting socially. In 

recent years, there has been an upsurge of interest in the research problems of machine 

analysis of facial expressions (Edwards et al., 1998; Pantic and Rothkrantz, 2000; Sebe, 

et al., 2002). The problem of automatic recognition of human affective states from 

images of faces includes three sub-problem areas: finding faces, detecting facial features, 

and classifying these data into some affect categories.  

Current studies assume, in general, that the presence of a face in the scene is ensured. 

Posed portraits of faces (uniform background and good illumination) constitute input data 

processed by the majority of the current systems. While head-mounted camera system 

was proposed in (Pantic and Rothkrantz, 2000) and much progress has been recently 

made in the development of vision systems for robust face detection (Yang, et al., 2002), 

most presently existing systems for facial affect recognition do not perform automatic 

face detection in an arbitrary scene. The features used are typically based on local spatial 

position or displacement of specific points and regions of the face, unlike the approaches 

based on audio (as described in Section 2.2), which use global statistics of the acoustic 

features. According to Pantic and Rothkrantz (2002), most of the proposed approaches to 

affect recognition via facial expressions tend to be static, analytic, or/and based on 2-D 

facial feature extraction. Most existing systems classify facial expression into one of the 

six known “basic” emotion categories (except for the automated system proposed by 

Pantic (2001), which categorizes facial expressions based on user-defined classes). The 

classification techniques used by the existing systems include: template-based methods 
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(Edwards et al., 1998), Fuzzy Logic (Pantic and Rothkrantz, 2000), artificial neural 

networks (ANN) (Kobayashi and Hara, 1992), and Bayesian Learning (Sebe, et al., 2002). 

The automated systems could achieve an accuracy of 64% to 98% when detecting three 

to seven emotions deliberately displayed by 5 to 40 subjects.  This is a significant 

achievement since the accuracy of humans in detecting six basic emotional facial 

expressions is 70%-98% (Bassili, 1979).   

Some of the limitations of the existing methods include: context of the situation and 

user personality are not taken into account when recognizing emotion from facial 

expression, temporal analysis of facial expressions to differentiate between emotions are 

not incorporated in existing facial recognition techniques, and simplifying assumptions 

are made to tame the problem of facial feature detection (e.g., images contain portraits of 

faces with no facial hair or glasses, the illumination is constant, the subjects are young 

and of the same ethnicity). Apart from the above mentioned limitations, the other 

shortcomings of existing systems are: inability to deal with head motions and inability to 

handle situations when part of the face is obstructed or the view is sideways instead of 

frontal. 

2.2 Vocal Intonation 

Vocal intonation can effectively measure the affective (emotional) content of speech.  

Speech consists of words spoken in a particular way. If we consider the verbal part 

(strings of words) only, without regarding the manner in which it was spoken, we might 

miss important aspects of the pertinent utterance and even misunderstand the spoken 

message by not attending to the nonverbal aspect of the speech. In simpler terms, "how 

we say" something is as important as "what we say" and the former may reinforce, 
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replace, or contradict the latter.  

In contrast to spoken language processing, which has witnessed significant advances, 

the processing of affective content in speech has only been explored recently. An 

important aspect of vocal affect analysis is extracting discriminatory auditory features 

from speech that would be useful in determining the affective content of the audio signal. 

The research in psycholinguistics showed a high correlation between some statistical 

measures of speech and the affective states of the speaker (Heuft, et al., 1996; Cowie and 

Douglas-Cowie, 1998; Amir and Ron, 1998; Iida et al., 1998; Murray and Arnott, 1993). 

The auditory features usually estimated from the input audio signal are: (i) pitch-related 

measures (the fundamental frequency of the acoustic signal determined by the rate at 

which vocal cords vibrate); (ii) intensity (the vocal energy); (iii) speech rate (the number 

of words spoken in a time interval); and (iv) voice quality (influenced by speech rate as 

well as harmonic structure). Table 1 shows a summary of human vocal qualitative 

characteristics associated with the emotions as reported by Murray and Arnott (1993). 

These are listed in relation to the neutral voice. 
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 Table 1. Summary of human vocal affects described relative to neutral speech 

 Anger Happiness Sadness Fear  Disgust 

Speech Rate slightly faster 
faster or 
slower  

slightly slower much faster 
very much 

slower  
Pitch 

Average 
very much 

higher  
much higher slightly lower 

very much 
higher  

very much 
lower  

Pitch Range much wider  much wider 
slightly 

narrower  
much wider  slightly wider 

Intensity higher  higher  lower  normal  lower  
Vocal 

Quality 
breathy  blaring  resonant  irregular  grumbled  

 

The audio signals are usually classified into different affective states based on the 

above features. Virtually all the existing work on automatic vocal affect analysis 

performs singular classification of input audio signals into a few emotion categories 

(Cowie et al., 2001). Utilized pattern recognition techniques include: ANNs (Nakatsu, et 

al., 2000), HMMs (Kang, et al., 2000), Gaussian mixture density models (Li and Zhao, 

1998), Fuzzy membership indexing (Amir and Ron, 1998), and maximum-likelihood 

Bayes classifiers (Kang, et al., 2000). Scherer (1996) performed a large-scale study using 

14 professional actors and reported that human ability to recognize emotions from purely 

vocal stimuli is about 60%.  Automated vocal affect analyzers match this accuracy when 

recognizing two to eight emotions deliberately expressed by subjects recorded while 

pronouncing sentences having a length of 1 to 12 words. However, it should be noted that 

in many instances strong assumptions are made to make the problem of automating vocal 

affect analysis more tractable. For example, the recordings are noise free, the recorded 

sentences are short, delimited by pauses, and carefully pronounced by nonsmoking actors 

to express the required affective state. Overall, the test data sets are small (one or more 

words or one or more short sentences spoken by few subjects) containing exaggerated 

vocal expressions of affective states. In conclusion, it can be said that research in the area 
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of affective vocal analysis has resulted in techniques that work well with structured, 

noise-free, small data sets but do not scale well to real-life situations where long 

continuous sentences would need to be analyzed.   

2.3 Posture/Gesture 

In addition to facial expressions and vocal intonation, people also rely on body 

gestures and postures to detect and express affective state. Ambady and Rosenthal (1992) 

found out that humans rely on the combined visual channels of face and body more than 

any other channel when they make judgments about human communicative behavior. 

Coulson (1992) presented experimental results on attribution of six emotions (anger, 

disgust, fear, happiness, sadness and surprise) to static body postures by using computer-

generated figures. From his experiments he concluded that human recognition of emotion 

from posture is comparable to recognition from the voice, and some postures are 

recognized as well as facial expressions. Burgoon et al. (2005) discussed the issue of 

emotion recognition from bodily cues and provided useful references in the context of 

national security. Table 2 presents a list of body gesture cues as described by Coulson 

(1992) and Burgoon et al. (2005) together with the associated emotion categories. 

Several methodologies were used for automatically detecting postures. Many 

researchers have used cameras as input devices. However, variations in lighting, 

background conditions, camera, subject positions, and subject appearance can complicate 

posture recognition via vision. To circumvent these problems, some investigators have 

used sensors such as switches, accelerometers, or pressure sensors mounted on a chair 

(Evreinov, 1999). As shown in Table 2, hand tracking is important for recognizing the 

gesture. One of the methods of tracking the movements of hand is via a glove which is 
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equipped with a number of sensors that provide information about hand position, 

orientation, and flex of the fingers (Piekarski and Thomas, 2002). It was reported that 

using sensor gloves can deliver more accuracy in pose determination than using camera 

(Pavlovic et al., 1995).  

Table 2. Summary of the body gesture and associated affective states 

Anxiety Hands close to the table surface; fingers moving; fingers tapping on the table  
Anger Body extended; hands on the waist; hands made into fists and kept low 
Disgust Body backing; left/right hand touching the neck or face 
Fear Body contracted; body backing; hands high up, trying to cover bodily parts 
Happiness Body extended; hands kept high; hands made into fists and kept high 
Uncertainty Shoulder shrug; palms up 

 

Despite the importance of spontaneous gesture in normal human interactions, 

automatically deciphering the affective content of gestures has just begun attracting 

research attention. Mota and Picard (2003) have shown that the postures can be used to 

recognize the affective state of interest. In the above study, nine postures were found to 

be reliably recognized by humans, and an automated pattern recognition system was built 

to detect these postures. The system achieved an average accuracy of 87.6% when tested 

with data not included in the training set. In a recent work (Silva et al., 2006) a gesture 

description mechanism was proposed to capture the most expressive instant of gestures in 

terms of limb-to-torso distances and overall expansion of the boy in the frontal, lateral, 

and vertical dimensions. A Hidden Markov Models (HMM) based affective model was 

developed that can recognize the participants’ emotions with a prediction rate of over 

79%. 

2.4 Physiology 

While facial expressions, vocal intonation, and postures are discernible by people, 
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physiological changes due to emotions are mostly unobservable. For instance, changes in 

blood pressure and heart rate cannot be directly observed. However, there is good 

evidence in Psychophysiology that the physiological activity associated with affective 

state is differentiated and systematically organized (Bradley, 2000). Indicators of 

peripheral physiological activity (e.g., indicators of autonomic activity such as 

cardiovascular activity, electrodermal activity, and electromyogram activity) have long 

been viewed as having significant potential to be used as convergent, or even primary, 

indicators of emotion (Lang, 1979; Lazarus, 1968). Autonomic measures have often been 

used with considerable success as indicators of emotional arousal (Smith, 1989).  

Facial expressions and vocal intonation are the most popularly investigated 

modalities for affective computing. However, most existing systems based on the above 

two modalities are limited by the following issues: (i) they work under highly constrained 

conditions. For instance, facial recognition assumes availability of high resolution, frontal 

face images with no occlusion or motion, and vocal intonation requires few carefully 

spoken, noise free words with exaggerated affect expression; (ii) they show high 

accuracy for within-individual classification but poor performance across individuals; (iii) 

since both these modalities are voluntary, their application is constrained to situations 

when there is an overt expression of emotion (affective states such as fatigue, boredom 

and anxiety are not easily detectable); (iv) most systems are computationally expensive 

and not designed for real-time affect recognition. Following the above two modalities 

closely are physiology-based techniques and gesture/posture recognition. 

Gesture/posture-based affect recognition is still in primitive stages and currently there are 

very few systems that use this methodology. On the other hand, psychophysiological 
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techniques are fast gaining ground as a potent means of affect recognition. It has been 

generally accepted that physiological modality circumvents several limitations of the 

vision and speech based methods (Picard, 1997). One of the chief advantages of using 

physiology is that physiological signals are continuously available and are not dependent 

on overt emotion expression. Hence, physiology-based affect detection could be very 

useful in situations where it is not possible to continuously monitor facial expressions of 

a person or in scenarios where a person’s speech is not available to interpret his/her 

underlying emotion. In addition, physiology is usually not under voluntary control and 

hence provides an undiluted assessment of the underlying affective state. It is also 

reasonably independent of cultural, gender and age related biases (Bradley 2000). 

Furthermore, physiological data may offer an avenue for recognizing aspects of affect 

that may be less obvious for humans but more suitable for computers. Specifically, a 

computer system may be able to quickly implement signal processing and pattern 

recognition tools to infer underlying affective states that a human could not. Unobtrusive, 

small, wireless physiological sensors may be an ideal solution in these cases for real-time 

affect monitoring (Picard, 1997; Jafari et al., 2005; Wijesiriwardana et al., 2004). 

This section discusses detecting affective states from the physiological signals. It 

first describes the popular emotion theories and their implications. Then, well-researched 

physiological measures that are powerful indicators of emotions are discussed. After that, 

a review of state-of- the-art in physiology-based affect recognition is presented. At last, 

the need for active learning for physiology-based affective computing is discussed. 

2.4.1 Theories on Emotions 

There are several theories on the psychophysiology of emotion, resulting from 
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varied schools of thought. Two prominent approaches are discussed here – discrete 

emotions approach and dimensional emotion approach. 

Discrete emotion theories claim the existence of historically evolved basic emotions, 

which are universal and can therefore be found in all cultures. Several psychologists have 

suggested a different number of these basic emotions, ranging from 2 to 18 categories, 

but conventionally “basic” emotions usually refer to the following six: anger, disgust, 

fear, happiness, sadness and surprise. Several arguments for the existence of these 

categories have been provided, like distinct universal facial signals, distinct universals in 

antecedent events, presence in other primates etc (Ekman, 1992).  

Dimensional emotion theories use dimensions rather than discrete categories to 

describe the structure of emotions. According to a dimensional view, all emotions are 

characterized by their valence and arousal. Valence measures the degree to which the 

emotion is positive or negative, and arousal measures the strength of the emotion 

(Bradley, 2000). Some models have suggested an even greater number of dimensions (e.g. 

control), but arousal and valence have proved to be the two main dimensions in (Russell, 

1980). When Russell started conducting self-report studies on the structure of emotion 

with the two-dimensional approach, he discovered a specific ordering of the words 

describing the felt emotions. The ratings did not fall in every area of the coordinate 

system, but instead clustered around the periphery of a circle. He called the resulting 

configuration the Circumplex of affect (Russell, 1980).  

There is no general agreement on which of these theories is correct. One of the main 

empirical evidences of discrete emotion theory is based on the investigation of facial 

expression of emotions (Ekman, 1992). However, there is no agreement on a set of basic 
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emotions. Even the criteria for choosing one set rather than another are not agreed upon, 

and in fact, focusing on different aspects of emotion notoriously tends to produce 

different lists (Cowie, et al., 2001). Furthermore, there is evidence that the affective state 

could be an aggregate of various affective categories at different arousal levels 

(Vansteelandt et al., 2005). The arousal-valence approach was questioned for its 

capability of being sufficient to differentiate equally between all emotions and classifying 

the emotions in a 2-D space defined by arousal and valence space (AV space). Cowie et 

al., (1999) found that some emotions that share the same degrees of arousal and valence 

but are perfectly distinguishable in everyday life (e.g. fear and anger). These universal 

views (discrete emotions approach and dimensional emotion approach) have been 

challenged by Russell (1994), who found that there are differences in the definition of 

emotions and recognition ability for subjects of different origins.  

Considering the effort that has been devoted to the description of emotions, the lack 

of convergence suggests that there may well be no natural units to be discovered. It has 

been increasingly accepted in human-machine interaction society that, to develop an 

automatic analyzer of human affective feedback, pragmatic choices (e.g., application- and 

user-profiled choices) must be made regarding the selection of affective states to be 

recognized (Cowie, et al., 2001; Pantic and Rothkrantz, 2003).  

2.4.2 Emotions and Physiology 

While there is no common agreement on specific emotions being related to specific 

physiological patterns, it is generally agreed on that there is a significant correlation 

between them (Bradley, 2000). The Autonomic Nervous Systems (ANS), also known as 

the involuntary nervous system, controls actions that one does not have conscious control 
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over. The ANS controls smooth muscle, gland activity, and cardiac muscle.  It is this 

system and its control over physiological responses that is of interest in the study of 

emotions. The ANS is further divided into two branches. The sympathetic nervous 

system (SNS) has the dominant function in emergency situations or “fight or flight” 

situations. The parasympathetic branch (PNS) is the relaxed activity controller.  The PNS 

promotes body maintenance such as food digestion. Mostly organ systems are dually 

innervated by the SNS and PNS. In the sections that follow, some of the widely used 

physiological measures are described here - cardiovascular activity, electrodermal 

activity (EDA), and electromyogram (EMG) activity. 

Four important indicators of cardiovascular activity are commonly used by 

psychophysiologists: electrocardiogram (ECG), impedance cardiogram (ICG), 

photoplethysmogram (PPG), and phonocardiogram (PCG)/heart sound. ECG measures 

the heart activity through the electrical signal of the heart muscle. The PPG signal 

measures changes in the volume of blood in the finger tip associated with the blood 

volume pulse (BVP) cycle, and it provides an index of the relative constriction versus 

dilation of the blood vessels in the periphery. ICG analysis measures the impedance or 

opposition to the flow of an electric current through the body fluids. The heart sound 

signal measured sounds generated during each heartbeat. Several studies have 

investigated the relationship of the above-mentioned indicators of cardiovascular activity 

with underlying emotional states. Research has shown that positive emotions lead to 

alterations in heart rate (HR) variability, such as anger results in a sympathetically 

dominated power spectrum, while appreciation causes a power spectral shift toward MF 

(mid-frequency) and HF (high-frequency) activity (McCraty, et al., 1991). Heart rate has 



16 
 

been found to be closely correlated with arousal and heart rate acceleration varies most 

consistently with stimulus arousal – increasing as arousal (pleasant or unpleasant) 

increases (Cook III, et al., 1991). Sinha et al. have showed that Sadness produced a 

characteristic pattern with moderate increase in blood pressure and vascular resistance 

compared with changes during neutral emotional state (Sinha, et al., 1992). Previous 

research has validated BVP measured at fingers as a measure of anxiety in response to a 

threat of physical harm. Results indicate that BVP is sensitive to the stress manipulation 

during both low and high stress periods and is correlated with self-reported anxiety 

(Bloom and Trautt, 1978). The cardiovascular activity has been used together with EMG 

to examine the positive and negative affective states of people (Cacioppo et al., 2000). 

Electrodermal activity (EDA) consists of two main components - tonic response and 

phasic response. Tonic skin conductance refers to the ongoing or the baseline level of 

skin conductance in the absence of any particular discrete environmental events. Phasic 

skin conductance refers to the event related changes that occur, caused by a momentary 

increase in skin conductance (resembling a peak superimposed on tonic skin 

conductance). EDA is closely linked with psychological concepts of emotion, arousal, 

and attention. Individual differences in phasic responses can be reliably associated with 

psychopathological states when being interpreted in context of the stimulus conditions 

that elicit EDA responses (Christie, and Friedman, 2002). EDA has been shown to be 

associated with task engagement and its arousal is produced by social stimulation that 

invokes stress tension, anxiety, or cognitive reactions. (Pecchinenda and Smith, 1996). It 

is also known that smaller values of EDA were associated with neutral states than with 

sadness, anger, fear, disgust, and amusement (Christie and Friedman, 2002). 
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Electromyogram (EMG) activity measures the electrical activity in the muscle 

during contraction. The EMG signal from corrugator supercilii muscle (eyebrow) 

captures a person's frown and detects the tension in that region, and the EMG signal from 

the zygomaticus major muscle captures the muscle movements while smiling. Upper 

trapezius muscle EMG activity measures the tension in the shoulders, one of the most 

common sites in the body for developing stress. Facial displays (frowns, grimaces, smiles 

etc.) of affective reactions are obvious overt behaviors associated with expression of 

emotions (Dimberg, 1990). Facial EMG activity has been used to examine the positive 

and negative affective states of people (Cacioppo et al., 2000). The Corrugator Supercilii 

muscles have been considered as a measure of distress (Ekman and Friesen, 1986). When 

viewing affective slides it was observed that Corrugator muscle activity increases for 

unpleasant stimuli and decreases for highly pleasant stimuli and there is a significant 

linear relationship between pleasantness and Zygomaticus EMG activity (Lang et al. 

1993). 

2.4.3 Physiology-based affect recognition 

Although there have been published efforts in the field of Psychology and Human 

Factors that aimed at finding physiological correlates with small sets of emotions, most 

have focused on the analysis of variance comparisons and combining data over many 

subjects, where each was measured for a relatively small amount of time  (Picard, et al., 

2001). Recent studies have shown that emotions play an important role in a variety of 

cognitive processes and it would be useful to develop affect-sensitive machines that can 

understand human emotions (Picard, 1997). These findings have caused a splurge of 

researches in the area of human-machine interaction to apply more sophisticated pattern 
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recognition techniques to physiology-based affective computing in order to develop 

affect recognizers that are capable of automatically inferring the affective states of 

humans working with machines.  

Table 3. Summary of Affect-Recognition Systems Based on Physiological Signals  

Author 
Emotion 

Elicitation 
Method 

Emotions 
Elicited 

N Measures 
Affect 

Modeling 
Technique 

Results 

Picard, ‘01 

computer 
controlled 
prompting 

system 

Neutral, 
anger, hate, 

grief, platonic 
love, romantic 
love, joy, and 

reverence 

1 

Masseter EMG, 
BVP,  

(HR), EDA, and 
respiration. 

Floating 
Forward Search 
(SFFS), Fisher 
Projection (FP), 

49.4% and 
50.6%correct 

classification for 
SFFS and  FP, 
respectively 

Kim ‘04 
Visual and 
auditory 
stimuli 

Sad, stressed, 
angry, and 
surprised 

50 
ECG, EDA, and 

SKT 

Support Vector 
Machines 

(SVM) 

78.4% (3 
emotions) and 

61.8% (4 
emotions)  

Regan, ‘07 Video games  
Arousal-
valence  

12 
EDA, EMG, and 
cardiovascular 

activity 
Fuzzy logic  

3% and 6% 
different from 

manual approach 
for both arousal 

and valence.  

Kulic, ‘03 
picture-based 

system 
Arousal-
valence 

36 
BVP, EDA, and 

corrugators EMG 
Fuzzy logic 

94% for arousal  
and 80% for 

valance  

Scheirer, 
‘02 

A slow 
computer 

game 
interface  

Frustration 5  EDA and BVP  HMM  
64.7% correct 
classification. 

Ark, ‘99 

Instructed to 
show 

emotions via 
facial 

expressions 

Anger, fear, 
sad, disgust, 
happy and 
surprise 

8 
SKT, EDA, and 

HR 

Discriminant 
function analysis 

(DFA) 

66.0% correct 
classification. 

Nasoz, ‘03 
Segments of 

movie 

Sad, anger, 
fear, surprise, 

frustration, and 
amusement  

3 
SKT, EDA, and 

HR 

KNN, DFA, and 
Marquardt 

Backpropagation 
(MB) 

71.6% (KNN), 
64.8 (DFA), and 

83.7% (MB) 

 

Table 3 summarizes state-of- the-art in developing affect recognizers from the 

physiological signals by using machine learning techniques. Some of the theoretical and 

practical challenges involved in physiology-based affect recognition are: 

[1] What was the method of eliciting emotions? 

[2] How many and which affective states were detected? 
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[3] How many and which physiological signals were used? 

[4] How many participants were involved? 

[5] Which machine learning techniques were used? 

[6] What results were achieved? 

It can be seen from Table 3 that physiology-based approach holds promise to detect 

emotions of a person interacting with a computer/robot. These works further 

substantiated the foundlings in psychophysiology literature that the physiological 

responses are closely correlated with the underlying affective states. Most systems have 

attempted affect-recognition using cardiovascular activities, (e.g., heart rate and blood 

volume pulse), EMG signals, and skin conductance. These signals are easy to record and 

analyze and have a well-understood cognitive basis. The approach of discrete emotions 

has been adopted by most of the works, where the goal was to determine which of the n 

target emotions was present. On an average 60%-80% accuracy has been achieved in 

distinguishing between 4-5 target affective states. It should be noted that none of these 

systems attempt to distinguish between varying levels of a single affective state. It is 

more challenging to predict the levels of arousal of a target emotion (for instance 

low/medium/high frustration) instead of determining discrete emotions (for instance 

anger, joy, sadness etc.). While Arousal-valence approach has been used in a few recent 

research works, no explicit modeling results were reported that can reliably transform the 

arousal and valence into the affective states of interest. On the other hand, as suggested 

by (Cowie, et al., 2001; Pantic and Rothkrantz, 2003), it is critical to choose target 

affective states based on application- and user-profiled considerations and thus develop 

an automatic analyzer of human affective feedback accordingly for a specific human 
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machine interaction task. Another challenge for affective moedling is phenomenon of 

person-stereotypy (e.g., different individuals expressing the same emotion differently 

under same contexts), which makes it difficult to obtain universal patterns of emotions 

across individuals (Lacey and Lacey, 1958). This suggests that individual-specific 

approach should be applied in order to accommodate the differences encountered in 

emotion expression and an intensive study on each individual is demanded.  

2.4.4 Active learning for physiology-based affective computing  

To develop physiology-based affective models, it is a prerequisite to obtain a 

training set consisted of the physiological features and the corresponding subjective 

reports. However, in practice the experimental data measurement and labeling can be 

both time consuming and expensive. For example, in order to build physiology-based 

affective-models, a human-machine interaction task usually has to be performed for 2-5 

minutes to get the physiological signals and subjective reports have to be collected 

afterward (which may interrupt the interaction) in order to get one labeled training data 

point (Liu, et al., 2008; Picard, Vyzas, and Healey, 2001; Rani, et al., 2006). As stated in 

(Picard, et al., 2004), more efficient machine learning paradigms are demanded for 

affective computing that depends relatively less on the availability of a large set of 

training examples.  

A strategy to tackle the problem is to use active learning. Most established method 

for developing physiology-based affective models is passive learning, where the samples 

are randomly drawn from the dataset during the training (Liu, et al., 2008; Mandryk and 

Atkins, 2007; Nasoz, et al., 2003; Picard, Vyzas, and Healey, 2001; Rani, et al., 2006). 

There is no relation between the expected error rate and the training samples.  
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On the other hand, the search for effective training data sampling algorithms has 

been studied in the machine learning research. Active learning methods have been 

developed to reduce the dependence on the large and costly dataset by identifying 

informative samples for training (Cohn, Atlas, and Ladner, 1994). It has been shown that 

only a small portion of a large unlabeled data set may need to be labeled to train an active 

learner that achieves strong classification performance (Lewis and Catlett, 1994; Cohn, 

Atlas, and Ladner, 1994; Dagan and Engelson, 1995). Thus, active learning is an 

appealing tool for affective modeling in human-machine interaction. However, till date 

no published study has been found that specifically investigated this approach for 

physiology-based affective computing.  

3. Human-Machine Interaction 

Human-computer interaction (HCI) and human-robot interaction (HRI) are two main 

research subfields belonging to human-machine interaction study. Kiesler and Hinds 

(2004) argued that these two areas share many similarities and HRI should be based on 

HCI on which much research has been conducted. On the contrary, Fong, et al., (2001) 

addressed the difference between HCI and HRI as shown in Table 4.  

Table 4. Comparison between HCI and HRI  

HCI HRI 
 Controlled by men 
 2 dimensions 
 Simple 
 Static User Model 
 Fixed or Portable 
 Mostly, vision & audio

 Autonomy 
 3 dimensions 
 Complex 
 Dynamic User Model 
 Movable 
 Vision, Audio, and Tangibleness 
 Face to face 
 Learning and Decision 
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In recent years, information technology and robotics have made commendable 

progress towards making sophisticated, efficient, and multi-functional machines and 

ushered in many new areas of application (e.g., education, entertainment, personal 

assistance, rehabilitation, and search and rescue etc.). However, current intelligent 

systems are not fully reliable and smart enough to do such complex jobs without any 

human help. There is a real need in foreseeable future to synergistically combine various 

capabilities of computer/robotic systems with the human’s intelligence and cognitive task 

understanding so that together they can address many of the current goals of various 

applications. To achieve this objective, it is important to make the machines more easily 

accessible to and intuitively operated by humans. However, one of the major stumbling 

blocks in deploying human-machine teams in these complex and unstructured task 

domains is that many of the existing computer/robotic systems are impervious to the 

psychological states of the human they work with due to the lack of any implicit channel 

of communication between the two.  

The focus of this section is to present the review of the research investigation of the 

affective human-robot interaction and affective human-computer interaction, as well as 

the key observations. Special emphasis was laid on the physiology-based affective 

communication.  

3.1 Affective Human-Computer Interaction 

Affect-sensitive human-computer interaction has been the focus of research in recent 

years. There have been increasing numbers of studies that involve assessing the affective 

states of humans while interacting with computer applications. In the context of 

intelligent tutoring system, there have been efforts that aim at endowing a computerized 
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tutor with the ability to adapt affectively in the teaching-learning process, which would 

permit a more natural, enjoyable and productive discourse. Conati (2002) proposed a 

probabilistic model to monitor a user’s emotion and engagement during automated 

tutoring. The affective states of students (i.e., reproach, shame, and joy) were detected by 

the use of eye brow EMG, GSR and ECG through a dynamic decision network. The 

tradeoff between engagement and learning was achieved by a utility function that 

assigned appropriate weights to students’ performance and engagement. Kapoor et al. 

(2001) present preliminary work done in the area of developing a Learning Companion, a 

computer-based system that can detect the affective aspects of a learner. Predinger et al. 

(2005) conducted an experimental study that examined GSR and EMG to investigate the 

effect of a life-like virtual teacher on the affective state of users under “affective persona” 

and “non-affective persona” conditions. Subtle expressivity was achieved by different 

body gestures and varying linguistic styles, which enabled the educational agent to 

affectively respond to the user’s performance. In the field of computer games, the 

concept of Affective Gaming has been recently proposed by Gilleade et al. (2005), which 

aims at enhancing gaming experience by adapting the game course to the player’s 

affective state. Three categories of high-level design heuristics were defined for 

developing such a gaming system: “Assist me,” where games detect player’s negative 

feeling and respond by providing assistance; “challenge me,” where games detect the 

user’s arousal and adapt the difficulty accordingly; and “emote me,” where games 

provoke the intended emotions by tracking and utilizing the relationship between user’s 

emotional response and specific game content.  

It can be safe to conclude that physiology-based affect recognition is being 
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increasingly explored for developing affect-sensitive interaction between humans and 

computers. However, most existing physiology-based affect recognition systems are 

limited by the following issues: (i) While affect recognition with high prediction 

performance were achieved in laboratory conditions (e.g., the participants watch pictures 

or videos), few works have developed affective models that can reliably predict the 

affective states of humans when they are involved in the natural real-world applications 

(e.g., less quantitative modeling results were reported in the affective auto-tutoring and 

gaming studies); (ii) Affective modeling works were done off-line and none of them have 

been validated in a real-time application; (iii) While the importance of including human 

in the loop of interaction has been increasingly recognized, current studies have the 

limitation of lacking systematic experimental investigation of the impacts of the affect-

sensitive closed-loop human-machine interaction; (iv) Most works used across-

individuals approach and did not did not consider person stereotypy. No existing systems 

have been found that are capable of determining the intensity of an affective state from 

the physiological signals. 

3.2 Affective Human-Robot Interaction 

There has been a steady progress in the field of intelligent and interactive robotics 

over the last two decades. Research on robot-emotion synthesis has resulted in expressive 

robots that can articulate their emotions using human-like facial expressions and affective 

speech. Some prominent examples of such robots are - Pong robot developed by the IBM 

group (Haritaoglu et al., 2001), Kismet and Leonardo developed in MIT (Breazeal, 2000; 

Hoffman and Breazeal, 2004), and ATR's Robovie-IIS (Kanda et al., 2002). Emotional 

intelligence in robots has found a powerful application in the toy industry. Robot pet such 
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as the enormously popular Sony's Aibo robot dog is one such example. Many more 

socially interactive robots are being developed as personal robots, entertainment toys, and 

therapy assistants and to serve as test beds to validate social development theories. It is 

apparent that providing robots with synthetic emotions has received more attention than 

making them understand human emotions.  

While there is significant progress towards making social robot to express its own 

emotions in a manner understandable to humans, till date there are very few human-robot 

interaction systems available in which real-time physiology-based feedback is utilized by 

a robot to interpret the underlying psychological state of the human and modify/adapt its 

(robot's) behavior as a result. Only two recent studies have investigated this aspect of 

human-robot interaction. Itoh et al. (2006) developed their own bioinstrumentation 

system to measure human stress when interacting with a fixed humanoid robot that had 

only an upper body. Their wearable system measured ECG, respiration, EDA (changes in 

skin resistance), pulse wave transit time, blood pressure, and upper body movements. If 

participants' stress level increased past a certain threshold then the robot would modify its 

actions to decrease participants' stress levels by shaking the participants' hand. Another 

study that utilized psychophysiological measures to evaluate how participants respond to 

robotic behaviors was performed by Kulic and Croft (2007). The level of arousal was 

employed as an indicator of user comfort with the robot, which was estimated by using 

multiple physiological indices, such as heart rate, skin conductance, and corrugator 

supercilii EMG. The results indicated that participants had lower arousal responses with 

the safe planned motions of the robotic manipulator arm and felt calmer when the robot 

motions were slower. Participants tended to show strong physiological responses to fast 
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robotic arm movements. The eliminated arousal was utilized to modulate the robot 

velocity and behavior during interaction. The results suggested that physiological signals 

could provide useful information and add a level of perceived safety for humans 

interacting with robots. The experiments in (Itoh et al. 2006) relied heavily on inter beat 

interval (IBI) derived from ECG to measure the activity of the sympathetic (LF-HRV) 

and parasympathetic (HF-HRV or RSA) divisions of the ANS and thus derive the index 

of anxiety level. The affective modeling in (Kulic and Croft 2007) was achieved by using 

fuzzy logic. Enabling robots to perceive emotions in humans is a nascent research field 

and needs to be further explored. The preliminary results showed that physiology-based 

affect recognition and adaptation hold the promise to permit more natural human-robot 

interaction. However, current works (Itoh et al. 2006; Kulic and Croft 2007) did not 

validate of the developed affect inference mechanisms (e.g., examining the prediction 

accuracy) when they were used in the real-time applications. Furthermore, no 

systematical investigations were performed to evaluate how such affect recognition and 

adaptation impact on the users’ perceived experiences when they are interacting with an 

affect-sensitive robot.  

4. The Use of Interactive Technology in Autism Intervention  

Autism Spectrum Disorders (ASD) are characterized by core deficits in social 

reciprocity and communication (DSM-IV-TR, American Psychiatric Association, 2000). 

Interventions often focus on social-problem solving and social skills training, so that 

participants can gain experience and exposure to various situations representative of 

everyday living. The ultimate goal of such interventions is for some generalization of 

these skills to carry over into real-life situations. Despite the urgent need and societal 
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import of intensive treatment, appropriate intervention resources for children with ASD 

and their families are often extremely costly when accessible (Tarkan, 2002). Therefore, 

an important new direction for research on ASD is the identification and development of 

assistive therapeutic tools that can make application of intensive treatment more readily 

accessible. In response to this need, a growing number of studies have been exploring the 

application of advanced interactive technologies for future use in interventions to address 

the social deficits of children with ASD, namely computer technology (Bernard-Opitz, 

2001), virtual reality (VR) environments (Parsons and Mitchell, 2002; Standen and 

Brown, 2005), and robotic systems (Dautenhahn and Werry, 2004; Michaud and 

Theberge-Turmel, 2002; Pioggia et al., 2005).  

Various software packages have been developed and applied to address specific 

deficits associated with autism, e.g., understanding of false belief (Swettenham, 1996), 

attention (Trepagnier et al., 2006), expression recognition (Silver and Oakes, 2001), and 

social communication (Bernard-Opitz et al., 2001; Parsons et al., 2005).  

The application of VR to the intervention of ASD is a relatively new area of 

research, which has gained ground only in the last 10 years. Initial results indicate that 

with the controllable complexity of a virtual world with minimized distractions, VR 

systems may allow for simplified but embodied social interaction that is less intimidating 

or confusing for children with ASD (Moore et al., 2000; Standen and Brown, 2005). A 

VR system that allows role-play in a setting designed to model the real world holds 

potential for children with ASD learning a range of appropriate social and behavioral 

skills (Parsons and Mitchell, 2002). Such a system could potentially allow for the 

manipulation and exacerbation of salient characteristics of interactions in a highly 
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flexible environment that could potentially scaffold skills while minimizing potentially 

negative consequences. While changing and controlling surroundings may be beyond the 

scope of real-world interventions, such modifications are convenient and easily 

reproduced within VR environments.  

Different from using computer software or VR environments, the interaction 

between children with ASD and physical robots during the intervention contributes 

important real-time and embodied characteristics of face-to-face social interaction among 

humans. Dautenhahn have explored how a robot can become a playmate that might serve 

a therapeutic role for children with autism in the Aurora project. Research suggested that 

children with ASD like to interact with reactive robots than the inanimate toys 

(Dautenhahn and Werry, 2004). Michaud and Theberge-Turmel (2002) investigated the 

impact of robot design on the interactions with children and emphasized that systems 

need to be versatile enough to adapt to the varying needs of different children. Pioggia et 

al. (2005) developed an interactive life-like facial display system for enhancing emotion 

recognition in individuals with ASD. Robots have also been used to teach basic social 

interaction skills using turn-taking and imitation games, and the use of robots as social 

mediators and as objects of shared attention can encourage interaction with peers and 

adults (Dautenhahn and Werry, 2004; Kozima, et al., 2005). Robotic technology poses 

the advantage of furnishing robust systems that can support multimodal interaction and 

provide a repeatable, standardized stimulus while quantitatively recording and monitoring 

the performance progress of the children with ASD to assess the intervention approaches 

(Scassellati, 2005).  

By employing human-machine interaction technologies, computer/robot-based 
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therapeutic tools can partially automate the time-consuming routine behavioral therapy 

sessions and may allow intensive intervention to be conducted at home (Dautenhahn and 

Werry, 2004). 

Even though there is increasing research in applying interactive technologies in 

autism intervention, no published studies were found that specifically addressed how to 

automatically detect and respond to affective cues of children with ASD. However, such 

ability could be critical given the importance of human affective information in human 

machine interaction (Fong et al., 2003; Picard, 1997) and the significant impacts of the 

affective factors of children with ASD on the intervention practice (Seip, 1996). For 

example, an experienced therapist generally continuously monitors the affective cues of 

the children with ASD and adjusts the course of the intervention accordingly: ‘likes and 

dislikes chart’ is recommended to record the children’s preferred activities and/or sensory 

stimuli during interventions that could be used as reinforcers and/or ‘alternative 

behaviors’ (Seip, 1996); children with autism are particularly vulnerable to anxiety and 

intolerant of feelings of frustration, which requires a therapist to plan tasks at an 

appropriate level of difficulty (Ernsperger, 2003); the engagement of children with ASD 

is the ground basis for the ‘floor-time therapy’ to help them develop relationships and 

improve their social and communication skills (Wieder and Greenspan, 2005). Similarly, 

a computer/robotic systems for autism intervention must also be able to understand the 

affective needs of these children - an ability that the current ASD intervention assistive 

systems lack - to achieve effective interaction that addresses the role of affective states in 

human-machine interaction and intervention practice. 
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5. Scope and Summary of the Research 

We initially performed a systematic investigation of the strengths and weaknesses 

of these four machine learning methods when being employed for the physiology-based 

affect recognition. Individual-specific modeling approach was used to account for the 

phenomenon of person stereotypy, which was capable of delivering competitive 

prediction on the intensity of affective states. Then, we experimentally investigated the 

impact of an affect-based dynamic difficulty adjustment on player’s interaction with a 

computer game, which is capable of physiology-based affect recognition and real-time 

difficulty adjustment in a closed-loop manner. Later, we proposed and implemented a 

closed-loop affect-sensitive human-robot interaction framework, which is capable of (i) 

performing accurate real-time affect recognition based on the affective models generated 

from the data collected before; and (ii) modifying robot’s behaviors accordingly. A robot-

based basketball game is designed where a robotic “coach” monitors the human 

participant’s anxiety level using the developed affect model and dynamically changes its 

behavior parameters to allow users’ skill improvement while maintaining desired anxiety 

levels. After that, we investigated the feasibility of modeling the affective states of 

children with ASD via psychophysiological analysis. Two cognitive tasks were designed 

and implemented to elicit varying levels of arousal in the target affective states (i.e., 

liking, anxiety, and engagement) in the children with ASD studied. Multiple subjective 

reports from an autism therapist, a parent, and the participant were analyzed to account 

for the suspected unreliability of the subjective self-reports from children with ASD. 

Then, we proposed and implemented an affect-sensitive robot-assisted autism 

intervention framework. The affective states of children with ASD were detected via a 
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physiology-based affect recognition technique in real time. A reinforcement learning 

based behavior adaptation mechanism is employed to enable the robot to adapt its 

behaviors autonomously as a function of the predicted child’s affective state. This is the 

first time that the impact of affect-sensitive closed-loop interaction between a robot and a 

child with ASD has been demonstrated experimentally. Finally, we investigated the use 

of Support Vector Machine active learning to alleviate the costly and time consuming 

video review and labeling efforts in physiology-based affective modeling for children 

with ASD while still maintaining sufficient model performance. The research is presented 

in 6 manuscripts which are given as:  

Manuscript 1: An Empirical Study of Machine Learning Techniques for Affect 
Recognition in Human-robot Interaction  

Background 

Given the fact that ensuring sensitivity to the other party’s emotions plays a 

significant role in human interactions (Cowie et al., 2001), it should permit more 

meaningful and natural human-robot interaction when a robot can detect the affective 

cues of the person it is working with. It has been generally agreed in Psychophysiology 

that emotions and physiology are closely intertwined and one influences the other 

(Bradley, 2000). Physiology-based affect recognition has been actively used by several 

research groups in recent year to relate physiological phenomena/patterns to the 

underlying emotions (Picard et al., 2001; Conati, 2002; Nasoz et al., 2003; Kim et al., 

2004). Researchers have established that it is possible to distinguish between various 

affective states by using multiple features derived from diverse physiological signals and 

marked a significant step towards applying machine learning and signal processing 



32 
 

technology to the existing practices in psychophysiology. However, some shortcomings 

of these systems are: (i) The manner of affect elicitation usually involves audio/visual 

stimuli, or in some cases deliberate emotion expression that do not correspond well with 

real-life situations; (ii) Most of them distinguish between discrete affective states such as 

joy, anger, disgust, fear etc. and not between varying levels of arousal within a emotion 

of interest(for instance distinction between low, moderate and high anxiety); (iii) 

Relatively less work on the relationship of certain physiological features (such as inter 

beat interval, spontaneous blink, pulse transit time etc.) with affective states is available. 

Furthermore, even though several machine learning methods have been successfully 

employed to build affect recognizers from physiological indices, a systematic comparison 

of various methods- their strengths and weaknesses has not been possible largely because 

of the following points of diversity in each study: (i) Definition of emotion – discrete or 

continuous; (ii) Nature of physiological features used; (iii) Manner of self-reporting to get 

subjective affective states of participants; and (iv) Baselining techniques used. Given 

these diversities, it is hard to find a common ground for comparing methods and 

analyzing their merits to provide more insights in choosing different affect recognition 

algorithms. 

Summary of Contribution 

There are three contributions in this work. First is to design and implement two 

cognitive tasks that successfully elicited varying levels of arousal in the target affective 

states (i.e., Anxiety, Boredom, Engagement, Frustration, and Anger). The second is to 

use individual-specific modeling approach to account for the phenomenon of person 

stereotypy (i.e, within a given context, different individuals express the same emotion 
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with different characteristic response patterns (Lacey and Lacey, 1958)) that was capable 

of delivering competitive prediction on the intensity of affective states. The third is to 

perform a systematic comparison of the strengths and weaknesses of these four machine 

learning methods (K-Nearest Neighbor, Regression Tree, Bayesian Network, and Support 

Vector Machines) when being employed for the physiology-based affect recognition. The 

comparison parameters included: classification accuracy, time/space efficiency, model’s 

interpretability, and impact of feature selection. The correlation of the physiological 

features to the target affective states was also investigated. The results were validated by 

an experimental study on 15 participants. Manuscript 1 is based on the following papers: 

 Rani, P., Liu, C., Sarkar, N., and Vanman, E. “An Empirical Study of Machine 

Learning Techniques for Affect Recognition in Human-Robot Interaction”, 

Pattern Analysis and Applications Journal, vol. 9, no. 1, pp. 58-69, 2006. 

 Liu, C., Rani, P., and Sarkar, N., “Comparison of Machine Learning 

Techniques for Affect Detection in Human Robot Interaction”, IEEE/RSJ 

International Conference on Intelligent Robots and Systems (IROS), Alberta, 

Canada, 2005, pp. 2662 – 2667. 

Manuscript 2: Dynamic Difficulty Adjustment in Computer Games through Real-Time 
Affective Feedback  

Background 

With steady progress in recent years, computer game has become one of the most 

popular and economically successful forms of human-computer interaction (HCI). Static 

game difficulty levels (i.e. selected by players manually) are not sufficient to avoid 

getting the player overwhelmed/bored (Koster, 2004) and could be annoying as well as 
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cause interruption of the game play (Chen, 2007). In order to address this issue, dynamic 

difficulty adjustment (DDA) mechanisms have been proposed to enable the game-playing 

experiences automatically tailored to the individual characteristics (Hunicke and 

Chapman, 2004). In most current DDA research works, the performance of the player has 

been used as a main measure of the characteristics of the players. However, as noted by 

Pagulayan et al. (2002), unlike productivity software, computer game’s paramount 

evaluation factor should be the affective experience provided by the play environment 

instead of the user’s performance. While high-level design heuristics were proposed in 

the affective gaming field (Gilleade et al., 2005) and there have been research efforts in 

developing affect-sensitive computerized tutoring systems (Conati, 2002; Prendinger et al. 

2005), the impact on human users when computer game respond to recognized affective 

states (i.e., interact in a closed-loop manner) is still largely unexplored.  

Summary of Contribution 

The main contribution of this work is to experimentally investigate the impact of an 

affect-based DDA on player’s interaction with a computer game that is capable of 

physiology-based affect recognition and real-time difficulty adjustment in a closed-loop 

manner. The physiological features were extracted on-line as inputs and the reliable real-

time prediction performance was achieved to detect the target affective state (i.e., 

players’ anxiety). The state-flow models were utilized to dynamically adjust the game 

difficulty level based on the performance or detected anxiety level, respectively. This is 

the first time, to our knowledge, that how the gaming experience can be augmented by 

using the affect-based DDA is demonstrated though a systematic user study. It was 

observed that: (i) The perceived anxiety-level was reduced for the majority of the 
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participants during the affect-based DDA session; (ii) The performance of the majority of 

the participants improved during the affect-based DDA session; (iii) Most participants 

perceived the game with the affect-based DDA to be more challenging than the one with 

the performance-based DDA; and (iv) Most participant perceived that the game with the 

affect-based DDA to be more satisfying than the one with the performance-based DDA. 

Manuscript 2 is based on the following papers: 

 Liu, C., Rani, P., and Sarkar, N., “Dynamic Difficulty Adjustment in Computer 

Games through Real-Time Affective Feedback”, International Journal of 

Human-Computer Interaction, to be print, 2008. 

 Rani, P., Sarkar, N. Liu, C., "Maintaining Optimal Challenge in Computer 

Games Through Real-Time Physiological Feedback", Chapter 4, Task Specific 

Information Processing in Operational and Virtual Environments, Foundations 

of Augmented Cognition, edited by Dylan D. Schmorrow, Lawrence Erlbaum 

Associates Publishers, pp. 184-192, 2006.. 

Manuscript 3: Interaction between Human and Robot – An Affect-Inspired Approach  

Background 

An affective or emotionally intelligent robot is expected to possess a two-fold 

capability - perceive emotions in humans and express its own emotions in a manner 

understandable to humans. Research on robot-emotion synthesis has resulted in 

expressive robots that can articulate their emotions using human-like facial expressions 

and affective speech (Fong et al., 2003; Breazeal and Aryananda, 2002). However, in 

most such robots, there is no real understanding of human emotions and the robot 
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emotions are triggered by a limited rule-base. It appears that for intelligent and intuitive 

human-robot interaction, it is imperative that apart from being capable of synthesizing 

affect, the robot should be capable of perceiving human affective states and responding to 

them appropriately to address such perception and to achieve a close-loop interaction. 

While physiology-based affect recognition has been explored by several research groups 

(Conati, 2002; Kim et al., 2004; Nasoz et al., 2003; Picard et al., 2001), till date there is 

no human-robot interaction system available in which real-time physiology-based 

feedback is utilized by a robot to interpret the underlying affective states of the human 

and modify/adapt its (robot's) behavior as a result.  

Summary of Contribution 

The main contribution of this work is to propose and implement a closed-loop 

human-robot interaction framework, which is capable of (i) performing accurate real-time 

affect recognition based on the affective models generated from past data; and (ii) 

modifying robot’s behaviors accordingly. A robot-based basketball game is designed 

where a robotic “coach” monitors the human participant’s anxiety level using the affect 

model generated from past data and dynamically changes its behavior parameters to 

allow users’ skill improvement while maintaining desired anxiety levels. Such an 

affective feedback based human-robot interaction system was evaluated against a 

performance feedback based system to compare their effects on the user's performance, 

perceived challenge, anxiety, and overall experience. Manuscript 3 is based on the 

following papers: 

 Rani, P., Liu, C., and Sarkar, N., “Interaction between Human and Robot - an 

Affect-inspired Approach”, Interaction Studies, vol. 9, no. 2, pp. 230-257, 2008.  
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 Liu, C., Rani, P., and Sarkar, N., “Human-Robot Interaction Using Affective 

Cues”, 15th IEEE International Symposium on Robot and Human Interactive 

Communication (ROMAN), Hatfield, United Kingdom, 2006, pp. 285 - 290. 

 Liu, C., Rani, P., and Sarkar, N., “Affective State Recognition and Adaptation 

in Human-Robot Interaction: A Design Approach”, IEEE/RSJ International 

Conference on Intelligent Robots and Systems (IROS), Beijing, China, 2006, 

pp. 3099 - 3106. 

Manuscript 4: Physiology-based Affect Recognition for Computer Assisted Intervention 
of Children with Autism Spectrum Disorder  

Background 

Autism is a neurodevelopmental disorder characterized by core deficits in social 

interaction, social communication, and imagination. Despite the urgent need and societal 

import of intensive treatment (Rutter, 2006), appropriate intervention resources for 

children with ASD and their families are often extremely costly when accessible (Tarkan, 

2002). To provide alternative intervention approaches, a number of recent studies have 

been exploring advanced computer1 assisted interactive technologies in intervention of 

children with ASD, such as computer technology, virtual reality (VR) environments, and 

robotic systems. Even though there is increasing research in computer assisted 

intervention, we found no published studies that specifically addressed automatic 

detection of affective cues of children with ASD. This could be important since (i) 

researches suggest that endowing a computer with an ability to understand implicit 

affective cues should permit more meaningful and natural human-computer interaction 

                                                 
1 we use the term computer to imply both computer and robot assisted ASD interventions in this work 
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(Picard, 1997), and (ii) it is common in autism therapy that therapists who work with 

children with ASD continuously monitor various affective information or cues of the 

children in order to adapt their intervention strategies (Seip, 1996). Physiology-based 

affective modeling has advantages over other observational modalities (e.g., facial 

expression or vocal intonation) in evaluating the emotional responses of the children with 

ASD, since it permits continuous gathering of rich data in the face of potential 

communicative limitations of children with ASD (both nonverbal and verbal), 

particularly regarding expression of expression of affective states (DSM-IV-TR, 

American Psychiatric Association, 2000; Green, et al., 2002). 

Summary of Contribution 

There are three main contributions in this work. First is to design and implement 

computer-based cognitive tasks that successfully elicited target affective states (i.e., 

liking, anxiety, and engagement) in the children with ASD studied. Special efforts have 

been made in the task design (e.g., participants’ age range and cognitive ability, task user 

interface, task configuration, task instruction, order of task presentation, and subjective 

report questionnaire, etc.) to produce changes in physiological signals with presumed 

underlying changes in affective states and have the participants engage in the cognitive 

tasks while the generated varying physiological signals are being collected. The second is 

to investigate and analyze multiple subjective reports from an autism therapist, a parent, 

and the participant to account for the suspected unreliability of the subjective self-reports 

from children with ASD. The designed experimental setup and protocol allowed an 

autism therapist and a parent of the participant to be effectively involved in the study and 

thus to provide the subjective reports. The third is to generate and collect multiple 
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channels of physiological data and derive a large set of physiological features, which was 

used by Support Vector Machines (SVM) to develop affective models for children with 

ASD. An individual-specific approach was employed to account for the phenomenon of 

person-stereotypy and spectrum nature of autism (DSM-IV-TR, American Psychiatric 

Association, 2000). A therapist-like affective model was achieved that yields reliable 

prediction performance. This is the first time that the affective states of children with 

ASD have been experimentally detected via physiology-based affect recognition 

technique. In addition, this work also investigated (i) the effects of reducing the number 

of physiological signals to achieve more economical modeling, and (ii) the correlation 

between the affective model’s prediction performance and the agreement between the 

therapist and parent on the subjective reports about how they thought the participant was 

feeling during the tasks. Manuscript 4 is based on the following papers: 

 Liu, C., Conn, K., Sarkar, N., and Stone, W., “Physiology-based Affect 

Recognition for Computer Assisted Intervention of Children with Autism 

Spectrum Disorder”, International Journal of Human-Computer Studies, vol.66, 

no. 9, pp. 662–677, 2008.  

 Liu, C., Conn, K., Sarkar, N., and Stone, W., "Affect Recognition in Robot 

Assisted Rehabilitation of Children with Autism Spectrum Disorder," IEEE 

International Conference on Robotics and Automation (ICRA), Roma, Italy, 

2007, pp. 1755-1760. 
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Manuscript 5: Online Affect Detection and Robot Behavior Adaptation for Intervention 
of Children with Autism  

Background 

Recently the use of robotic technologies has been explored as potential adjuncts to 

autism intervention. Research suggests that robots can allow simplified but embodied 

social interaction that is less intimidating or confusing for children with ASD 

(Dautenhahn and Werry, 2004). Robots have been used to interact with children with 

ASD in imitation tasks and as social mediators and can help facilitate them in interacting 

with other individuals (Dautenhahn and Werry, 2004; Kozima, 2005). From the 

technological viewpoint, robots have the advantage of being robust but flexible systems 

that can reliably repeat as well as adaptively modify experiments while quantitatively 

recording data (Scassellati, 2005). Their use has shown initial promise to become an 

effective tool in autism intervention and could offset the cost in the long run. However, 

current robot-assisted autism intervention systems are not capable of interpreting the 

affective cues of the children with ASD, nor are they able to respond to such perception 

accordingly. Such abilities could be critical given the importance of human affective 

information in HRI (Fong et al., 2003; Picard, 1997) and the significant impacts of the 

affective factors of children with ASD on the intervention practice (Seip, 1996). 

Consequently, these robotic systems are limited in addressing the core aspect of ASD, 

namely creating social situations based on emotional understanding that can be suitably 

adjusted depending on the need of the individuals on the autism spectrum. 

Summary of Contribution 

This work presented a physiology-based affect-inference mechanism for robot-
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assisted intervention where the robot can detect the affective states of a child with ASD 

and adapt its behaviors accordingly. Psychophysiological analysis is performed that uses 

a large set of physiological indices and the subjective reports of the affective states from 

a therapist, a parent, and the child himself/herself. A robot uses a Support Vector 

Machines based affective model to implicitly detect the affective cues in real-time. A 

reinforcement learning based behavior adaptation mechanism is employed to enable the 

robot to adapt its behaviors autonomously as a function of the predicted child’s affective 

state. The robot learned the individual liking level of each child with regard to the game 

configuration and selected appropriate behaviors to present the task at his/her preferred 

liking level. Results show the robot automatically predicted individual liking level in real 

time with 81.1% accuracy. This work is the first time that the affective states of children 

with ASD have been detected via a physiology-based affect recognition technique in real 

time. This is also the first time that the impact of affect-sensitive closed-loop interaction 

between a robot and a child with ASD has been demonstrated experimentally. While the 

results are achieved in a non-social interaction task, it is expected that the real-time affect 

recognition and response system described in this work will provide a basis for future 

research into developing robot-assisted intervention tools to help children with ASD 

explore social interaction dynamics in an affect-sensitive and adaptive manner. 

Manuscript 5 is based on the following papers: 

 Liu, C., Conn, K., Sarkar, N., and Stone, W., “Online Affect Detection and 

Robot Behavior Adaptation for Intervention of Children with Autism”, IEEE 

Transactions on Robotics, vol.24, no.4, pp. 883-896, 2008.  

 Liu, C., Conn, K., Sarkar, N., Stone, W., “Online Affect Detection and 
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Adaptation in Robot Assisted Rehabilitation for Children with Autism”, 16th 

IEEE International Symposium on Robot and Human Interactive 

Communication (ROMAN), 2007. 

Manuscript 6: Active Learning Using Support Vector Machine for Physiology-based 
Affective Modeling for Children with Autism  

Background 

There have been two types of constraints that impede the efficient development of 

human machine interaction applications when the participation of human subjects and the 

classification are demanded (e.g., in affective computing): i) sample collection/processing 

and ii) sample labeling. For example, to build physiology-based affective-models, a 

human-machine interaction task usually has to be performed for 2-5 minutes to get the 

physiological signals and subjective reports have to be collected in order to get one 

labeled training data point (Liu, et al., 2008; Picard, Vyzas, and Healey, 2001; Rani, et al., 

2006). The experimental data measurement and labeling can be both time consuming and 

expensive. 

In this work, we addressed the second issue in the context of developing physiology-

based affective model for children with ASD. As discussed in (Liu, et al., 2008; Chapter 

V), due to the unreliability of self-reports from the children with ASD, an autism 

therapist and a parent of the participant were also involved in the study to provide the 

subjective reports. This requirement posed additional challenges in participant 

recruitment and experiment coordination/schedule. An alternative approach could be 

video-recording the experiments and allowing therapist/parent to label the video 

segments at his/her own time. However, it can be expected costly and time consuming to 
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label such video records. For example, in a study like (Liu, et al., 2008), for each child 

with ASD, there would be 6 hours of video needed to be reviewed and around 86 

segments needed to be labeled. In such circumstances a method that allows the 

construction of reliable affect recognizers while only needs the labeling of a small 

fraction of samples can be of advantage, speeding up the procedure and possibly reducing 

costs due to extra analysis. 

Summary of Contribution 

We investigated this challenge by using Support Vector Machine active learning 

(SVM-AL, Tong and Chang, 2001; Tong and Koller 2001) to alleviate the efforts of 

sample labeling. We ran the simulation on the dataset obtained in our previous work (Liu, 

et al., 2008), where the physiological features of the children with ASD and the labels for 

the target affective state from the therapist are given. However, the labels in the dataset 

will not be fed to the system until they are requested, which emulates the process of video 

review and labeling of the therapist.  

By using the margin-based query (Tong and Chang, 2001) to select the informative 

samples for the label requests, SVM-AL is capable of improving the relative prediction 

performance (RPP) of affective models efficiently with the use of relatively less labeled 

samples. Specifically, we observed that: i) SVM-AL has larger RPP after the first several 

rounds of training (10-15 labeled training data on average) than SVM-PL; ii) acceptable 

model performance (e.g., with 80% or 90% RPP) can be achieved by asking the therapist 

to review and annotate only about 50%-60% of the dataset; iii) It could be possible to 

obtain a better performance by using a fraction of samples, which are informatively 

selected, than using the whole training dataset. While active learning is an appealing tool 
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for sample selecting/labelling (Cohn, D., Atlas, L., & Ladner 1994; Dagan and Engelson, 

1995; Lewis and Catlett, 1994), till date no published study has been found that 

specifically explored its application in affective computing. 
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Abstract 

Given the importance of implicit communication in human interactions, it would be 

valuable to have this capability in robotic systems wherein a robot can detect the 

motivations and emotions of the person it is working with.  Recognizing affective states 

from physiological cues is an effective way of implementing implicit human-robot 

interaction. Several machine learning techniques have been successfully employed in 

affect-recognition to predict the affective state of an individual given a set of 

physiological features. However, a systematic comparison of the strengths and 

weaknesses of these methods has not yet been done. In this paper we present a 

comparative study of four machine learning methods- K-Nearest Neighbor, Regression 

Tree, Bayesian Network and Support Vector Machine as applied to the domain of affect 

recognition using physiological signals.  The results showed that Support Vector Machine 

gave the best classification accuracy even though all the methods performed 

competitively. Regression Tree gave the next best classification accuracy and was the 

most space and time efficient.   
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1. Introduction 

There has been a steady progress in the field of intelligent and interactive robotics 

over the last two decades ushering in a new era of utilitarian autonomous systems. 

Personal and service robots will soon be seen at homes, offices, classrooms, hospitals, 

and factories. They will guard the premises, vacuum the floors,  keep a watch over 

children, make photocopies, serve as "personal assistants," and in general help make our 

lives more comfortable. The recent "World Robotics 2004" survey [1] states "In the long 

run, service robots will be everyday tools for mankind".  It also reports that over 600,000 

household robots were in use by the end of 2003, a number that is anticipated to exceed 4 

million units by 2007. As robots and people begin to co-exist and cooperatively share a 

variety of tasks, "natural" human-robot interaction that resembles human-human 

interaction is becoming an increasingly important aspect of robots. Reeves and Nass in 

their counterintuitive yet outstanding work [2] have already shown that people's 

interactions with computers, TV and similar machines/media are fundamentally social 

and natural, just like interactions in real life.  

Human interactions are characterized by explicit as well as implicit channels of 

communication. While the explicit channel transmits overt messages, the other one 

transmits implicit messages about the communicator. Ensuring sensitivity to the other 

party’s emotions is one of the key tasks associated with the second, implicit channel 0. In 

making robots respond naturally and sociably to humans implies that robots should have 

a degree of sensibility to human emotions and temperaments. It has been shown 
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previously that emotions aid in perception, understanding and intelligent behaviour [4]. 

Therefore, endowing robots with a degree of emotional intelligence should permit more 

meaningful and natural human-robot interaction. The potential applications of robots that 

can detect a person’s affective states and interact with him/her based on such perception 

are varied and numerous.  Whether it is the domain of personal home aids that assist in 

cleaning and transportation, toy robots that engage and entertain kids, professional 

service robots that act as assistants in offices, hospitals, and museums, or the search, 

rescue and surveillance robots that accompany soldiers and fire-fighters – this novel 

aspect of human-robot interaction will impact all of them. 

While the earliest social robots were developed in 1940s [5], work in the area of 

emotion recognition by robots has gained grounds only in the last decade. Various 

modalities such as facial expression, vocal intonation, gestures, and postures can be 

utilized to determine the underlying emotion of a person interacting with the robot [6][7]. 

An exhaustive survey of affect-detection based on vision and speech is provided in a 

work by Pantic et al. [8]. Physiology is yet another effective way of estimating the 

emotional state of a person and is being actively used by several research groups.  In 

psychophysiology (the branch of psychology that is concerned with the physiological 

bases of psychological processes), it has been generally agreed on the fact that emotions 

and physiology (biological signals such as heart activity, muscle tension, blood pressure, 

skin conductance etc.) are closely intertwined and one influences the other. Affective 

computing methods are now being enthusiastically applied to human-computer 

interaction and other domains such as driving, flying, and machine operation [9]-[12]. 

However, the application of this technique in the robotics domain is relatively less [13].  
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In the previous research works in emotion recognition, changes in emotions have 

been considered either along a continuous dimension (e.g., valence and arousal) or 

among discrete states. Various machine learning and pattern recognition methods have 

been applied for determining the underlying affective state from cues such as facial 

expressions, vocal intonations, and physiology. Fuzzy logic [14], K-Nearest Neighbor 

algorithm [15], linear and nonlinear regression analysis [16], discriminant analysis [17], 

and combination of Sequential Floating Forward Search and Fisher Projection methods 

[18] have been used in the past to infer affective states. Apart from the above-mentioned 

methods neural networks [19] , Bayesian classification methods [20], Hidden Markov 

Model [21], and Dynamic Decision Network 0 have also been used.  

Even though several methods have been successfully employed to build affect 

recognizers from physiological indices, a systematic comparison of various methods- 

their strengths and weaknesses has not been possible largely because of the following 

points of diversity in each study: 

(i) Definition of emotion – discrete or continuous 

(ii) Nature of physiological features used 

(iii) Manner of self-reporting to get subjective affective states of participants 

(iv) Baselining techniques used 

Given these diversities, it is hard to find a common ground for comparing methods 

and analysing their merits. This paper makes an attempt to investigate the performance of 

four popular machine learning methods – K-Nearest Neighbour (KNN), Regression Tree 

(RT), Bayesian Network (BNT) and Support Vector Machine (SVM), when applied to 

the domain of affect recognition using physiological indices. All the methods were tested 
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using the same physiological data from the same tasks, hence attaining uniformity in the 

various aspects of emotion elicitation, data processing, feature extraction, baselining, and 

self-reporting procedures.  

Figure 1 shows an overview of the method. The input feature set was derived from 

physiological signals after the application of a series of pre-processing and signal analysis 

techniques. The output set was derived from the self-report of the participant. Each vector 

of input features had a corresponding output vector consisting of self-report for all the 

affective states. This data set was utilized for all four machine learning techniques.  

 

 
 

Figure 1. Method Overview 

The next step in this research would be to imbed the affect-recognizer in a robot's 
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existing functionality so that it can be responsive to the affective states of the people it 

works with. This leads to a new set of research issues regarding robot control architecture 

for behaviour switching and performance metrics for systematic evaluation. This paper 

does not deal with those aspects but regards it as the next phase in the development of an 

implicit human-robot interaction framework that will be covered in our future works. 

The paper is organized as follows: Section II describes the existing methods that are 

used for classifying affective states based on physiology and their respective accuracies. 

A brief description of the physiological signals and the features derived from these 

signals employed for affect recognition are presented in Section III. The particulars of 

cognitive tasks designed for affect elicitation are described in Section IV.  The details of 

experimental setup are presented in Section V. In Section VI, we describe the four 

methods that have been employed in this empirical study - KNN, RT, BNT and SVM. 

This is followed by the results and discussion in Section VII. Finally, Section VIII 

summarizes the contributions of the paper and provides important conclusions. 

2. Existing Methods and Classification Accuracies 

Several researchers in human machine interaction have focused on physiology-based 

affect-recognition. Picard and colleagues have employed a combination of Sequential 

Floating Forward Search and Fisher Projection methods to classify eight emotions with 

81% accuracy [17]. K-Nearest Neighbor, Discriminant Function Analysis and Marquardt 

Backpropagation algorithms were applied to differentiate among six emotions by Lisetti 

and Nasoz and the correct classification  accuracies - 71%, 74% and 83% were achieved 

respectively [23]. Artificial Neural Network has also been used to assess the mental 

workload and the mean classification accuracies were 85%, 82%, and 86% for the 
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baseline, low task difficulty and high task difficulty conditions, respectively [24].  

Support Vector Machines based emotion-recognizers have also been investigated in [25]0, 

where correct classification accuracies of 78.4%, 61.8%, and 41.7% were reported for the 

reorganization of three, four and five emotions, respectively.  

3. Physiological Signals and Features for Affect Recognition 

There is good evidence that the physiological activity associated with affective state 

can be differentiated and systematically organized. The transition from one emotional 

state to another, for instance, from state of boredom to state of anxiety is accompanied by 

dynamic shifts in indicators of Autonomic Nervous System (ANS) activity. The 

physiological signals we examined are: various features of cardiovascular activity, 

including interbeat interval, relative pulse volume, pulse transit time, heart sound, and 

pre-ejection period; electrodermal activity (tonic and phasic response from skin 

conductance) and electromyogram (EMG) activity (from corrugator supercilii, 

zygomaticus, and upper trapezius muscles) [27].  These signals were selected because 

they i) are shown to capture important information about the underlying targeted affective 

states, (ii) can be measured non-invasively; and iii) are relatively resistant to movement 

artifacts. 
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Table1. Physiological Indices 

Physiologica
l Response 

Features Derived Label Used Unit of Measurement 

Sympathetic power (from ECG) Sym Unit/Square Second 
Parasympathetic power (from ECG) Para Unit/Square Second 
Very Low Frequency Power (from ECG) VLF Unit/Square Second 

Ratio of powers  Sym Para 
Para VLF 
Sym VLF 

No unit 

Mean IBI IBI ECGmean Milliseconds 
Std. of IBI IBI ECGstd Standard Deviation (no 

unit) 
Mean amplitude of the peak values of the PPG 
signal (Photoplethysmogram) 

PPG Peakmean Micro Volts 

Standard deviation (Std.) of the peak values of 
the PPG signal  

PPG Peakstd Standard Deviation (no 
unit) 

Cardiac 
activity 

Mean Pulse Transit Time PTTmean Milliseconds 

Mean of the 3rd,4th, and 5th level coefficients of 
the Daubechies wavelet transform of heart 
sound signal 

Mean d3 
Mean d4 
Mean d5 

No unit Heart Sound 

Standard deviation of the 3rd,4th, and 5th level 
coefficients of the Daubechies wavelet 
transform of heart sound signal 

Std d3 
Std d4 
Std d5 

No unit 

Mean Pre-Ejection Period PEPmean Milliseconds Bioimpedanc
e Mean IBI IBI ICGmean Milliseconds 

Mean tonic activity level Tonicmean Micro-Siemens 
Slope of tonic activity Tonicslope Micro-Siemens/Second 
Mean amplitude of skin conductance response 
(phasic activity) 

Phasicmean Micro-Siemens 

Maximum amplitude of skin conductance 
response (phasic activity) 

Phasicmax Micro-Siemens 

Electroderma
l activity 

Rate of phasic activity Phasicrate Response peaks/Second 
Mean of  Corrugator Supercilii activity Cormean Micro Volts 

Std. of Corrugator Supercilii activity Corstd Standard Deviation (no 
unit) 

Slope. of Corrugator Supercilii activity Corslope Micro Volts/Second 
Mean Interbeat Interval of blink activity IBI Blinkmean Milliseconds 
Std. of  Interbeat Interval of blink activity IBI Blinkstd Standard Deviation (no 

unit) 
Mean amplitude of blink activity Amp Blinkmean Micro Volts 
Standard deviation of blink activity Blinkstd Standard Deviation (no 

unit) 
Mean of Zygomaticus Major activity Zygmean Micro Volts 
Std. of Zygomaticus Major activity Zygstd Standard Deviation (no 

unit) 
Slope. of Zygomaticus Major activity Zygslope Micro Volts/Second 
Mean of Upper Trapezius activity Trapmean Micro Volts 
Std. of Upper Trapezius activity Trapstd Standard Deviation (no 

unit) 
Slope. of Upper Trapezius activity Trapslope Micro Volts/Second 

Electromyogr
aphic activity 

Mean and Median frequency of Corrugator, 
Zygomaticus and Trapezius 

Zfreqmean 
Cfreqmedian 
Tfreqmean etc. 

Hertz 

Mean temperature Tempmean Degree Centigrade 
Slope of temperature Tempslope Degree Centigrade/Second

Temperature 

Std. of temperature Tempstd Standard Deviation (no 
unit) 
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Multiple features (as shown in Table 1) were derived for each physiological measure. 

Some of these features are described in our previous work [28]. "Sym" is the power 

associated with the sympathetic nervous system activity of the heart (in the frequency 

band 0.04-0.15 Hz.). "Para" is the power associated with the heart’s parasympathetic 

nervous system activity (in the frequency band 0.15-0.4 Hz.). "VLF" is the power 

associated with the Very Low Frequency band (less than 0.04 Hz.). InterBeat Interval 

(IBI) is the time interval in milliseconds between two “R” waves in the ECG waveform 

in millisecond. IBI ECGmean and IBI ECGstd are the mean and standard deviation of the 

IBI. Photoplethysmograpm signal (PPG) measures changes in the volume of blood in the 

finger tip associated with the pulse cycle, and it provides an index of the relative 

constriction versus dilation of the blood vessels in the periphery. Pulse transit time (PTT) 

is the time it takes for the pulse pressure wave to travel from the heart to the periphery, 

and it is estimated by computing the time between systole at the heart (as indicated by the 

R-wave of the ECG) and the peak of the pulse wave reaching the peripheral site where 

PPG is being measured. Heart Sound signal measures sounds generated during each 

heartbeat. These sounds are produced by blood turbulence primarily due to the closing of 

the valves within the heart. The features extracted from the heart sound signal consisted 

of the mean and standard deviation of the 3rd, 4th, and 5th level coefficients of the 

Daubechies wavelet transform. Bioelectrical impedance analysis (BIA) measures the 

impedance or opposition to the flow of an electric current through the body fluids 

contained mainly in the lean and fat tissue. A common variable in recent 

psychophysiology research, pre-ejection period (PEP) derived from impedance 

cardiogram (ICG) and ECG measures the latency between the onset of electromechanical 
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systole, and the onset of left-ventricular ejection and is most heavily influenced by 

sympathetic innervation of the heart.  Electrodermal activity consists of two main 

components – Tonic response and Phasic response. Tonic skin conductance refers to the 

ongoing or the baseline level of skin conductance in the absence of any particular discrete 

environmental events. Phasic skin conductance refers to the event related changes that 

occur, caused by a momentary increase in skin conductance (resembling a peak). The 

EMG signal from Corrugator Supercilii muscle (eyebrow) captures a person’s frown and 

detects the tension in that region. It is also a valuable source of blink information and 

helps us determine the blink rate. The EMG signal from the Zygomaticus Major muscle 

captures the muscle movements while smiling. Upper Trapezius muscle activity measures 

the tension in the shoulders, one of the most common sites in the body for developing 

stress. 

Various signal processing techniques such as Fourier transform, wavelet transform, 

thresholding, and peak detection, were used to derive the relevant features from the 

physiological signals.  All these features are powerful indicators of the underlying 

affective state of the person showing this response. We have exploited this dependence of 

a person's physiological response on affect to detect and identify affective states of 

anxiety, engagement, boredom, frustration and anger in real-time using advanced signal 

processing techniques.  

One of the prime challenges with affective computing is the phenomena of person 

stereotypy, i.e, within a given context, different individuals express the same emotion 

with different characteristic response patterns. For each of the fifteen participants there 

were distinct physiological indices that showed high correlation with each affective state. 
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Any feature with an absolute correlation greater than equal to 0.3 with a given affective 

state was considered significant and was selected as inputs of the classifiers. Feature 

selection was performed in a person-specific manner. For each participant, a set of 

features that were highly correlated with his/her different affective states were chosen. So 

there were five feature sets corresponding to the five affective states per participant. For 

example when performing anxiety classification of participant 6 using a given 

classification technique, the feature set consisting of a subset of the entire feature set that 

was highly correlated with Participant 6's reported anxiety was chosen. Affect-

recognition was performed utilizing two types of feature sets – (i) the entire feature set 

and, (ii) the correlated feature set respectively.  

4. Cognitive Task for Affect Elicitation 

Two PC based cognitive tasks were designed to elicit the above mentioned affective 

states in the participants.  Physiological data from participants were collected during the 

experiment.  

The aim of the tasks was to invoke in the participants varying intensities of the 

following five affective states: engagement, anxiety, boredom, frustration and anger. The 

tasks chosen were solving anagrams and playing Pong. The anagram solving task has 

been previously employed to explore relationships between both electrodermal and 

cardiovascular activity with mental anxiety [29]. Emotional responses were manipulated 

in this task by presenting the participant with anagrams of varying difficulty levels. A 

long series of trivially easy anagrams caused boredom, an optimal mix of solvable and 

difficult anagrams caused engagement, unsolvable or extremely difficult anagrams 

elicited frustration, and giving time deadlines generated anxiety. All these conditions 
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were well tested during the task design and piloting stage. 

The Pong task consisted of a series of trials each lasting up to four minutes, in which 

the participant played a variant of the early, classic video game “Pong”. This game has 

been used previously by researchers to study anxiety, performance, and gender 

differences [30]. Various parameters of the game were manipulated to elicit the required 

affective responses. These included: ball speed and size, paddle speed and size, sluggish 

or over-responsive keyboard and random keyboard response. Low speeds and large sizes 

of ball and paddle made games boring after a while, whereas high speed ball and paddle 

along with smaller sizes of the two made the game engaging. Very high speeds caused 

anxiety at times. Sluggish or over-responsive keyboard induced frustration and anger. 

The relative difficulties of various trial configurations were established through pilot 

work.  

Each participant took part in six sessions (on six different days) of the above two 

tasks – three one hour sessions of solving  anagrams and three one hour sessions of 

playing Pong. These task tasks spanned a period of one month. In each session, before 

starting the actual tasks, a ten minute baseline recording was done which was used later 

to offset day-variability.  

5. Experimental Setup 

The objective of the experiment was to elicit varying intensities of emotional states 

in participants as they performed computer-based cognitive tasks. Fifteen participants 

(eight women and seven men) took part in the experiment. Their age range was from 21 

to 57 years. After initial briefing regarding the computer tasks, sensors were attached to 

the participant's body. Each session consisted of 3 minute epochs (for anagram tasks) and 
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upto 4 minute epochs (for Pong tasks), each epoch followed by a questionnaire for self-

reporting. The participants reported assessment of their own affective states via self-

reports.  During the tasks, the participant's physiology was monitored with the help of 

wearable biofeedback sensors and Biopac data acquisition system (www.biopac.com). 

The digitally sampled sensor information was sent to the computer using an Ethernet 

cable. The signals monitored consisted of electrocardiogram, bio-impedance, 

electromyogram (from the corrugator, zygomaticus and upper trapezius muscles), 

electrodermal activity, peripheral temperature, blood volume pulse, and heart sound.  

During the experiment, a total of 15 datasets were collected (one for each 

participant). Each data set consisted of 46 input features and 5 output affective states - 

engagement, anxiety, boredom, frustration and anger. Each output state had three classes 

- low, medium and high. These three levels for each affective state were obtained by 

discretizing the output. The self-reports were normalized to [0,1] and then discretized 

such that 0-0.33 was labelled low, 0.34-0.67 was medium and 0.68-1.0 was labelled high. 

All the five affective states were discretized separately so that there were three levels in 

each affective state. Classifications were performed on each affective state individually 

using each of the four methods. Each dataset contained approximately 100 epochs. 

6. Machine Learning Methods Applied 

Determining the intensity (high, medium, low) of a particular affective state from 

the physiological response resembles a classification problem. In this classification 

problem, the attributes are the physiological features and the target function is the degree 

of arousal. Developing such an affect recognition system was challenging because of the 

physiological data sets being complex. The complexity was primarily due to the (i) 
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inherent noise in the physiological signals (e.g. movement artifacts, day variability) (ii) 

high dimensionality (There are currently 46 features and this will increase as the number 

of affect detection modalities increases.), (iii) mixture of data types, and (iv) non-

standard data structures. In this paper we have employed the following four methods to 

determine the underlying affective state of an individual given a set of physiological 

indices under the same operating conditions - KNN, RT, BNT and SVM. All of these 

methods have distinctive characteristics that make them good candidates for this 

empirical comparison.  KNN is a widely used instance-based learning method that scores 

high on simplicity. RT is a popular inductive inference learning method that has a built-in 

feature selection capability. BNT has the distinct advantage of uncovering causal 

relationships among attributes, hence providing added knowledge regarding the problem 

domain. SVM is supported by statistical learning theory and usually shows good 

generalisation performance.   

6.1 K-Nearest Neighbor Classifier 

K-Nearest Neighbor computes the similarity between the test instance and the 

training instance. It finds out the category that the test instance is most similar by 

considering the k  top–ranking nearest instances. In this work, similarity score summing 

method was used to assign the test instance X  to the class with the maximal sum of 

similarity score: 

( ) ( ) ( )arg max , ,
j

j j mm X KNN
C X Sim X X y X c

∈

= ∑    (1) 

where jX  is one of the k  neighbors in the training set, ( ) { }, 0,1j my X c ∈ indicates 

whether jX  belongs to class mc , and ( ), jSim X X   measures the similarity between X  
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and jX  . The similarity value between two instances is based on a distance metric. The 

Euclidean distance metric was used here. In order to select appropriate value of k , Monte 

Carlo simulations were performed by minimizing the leave-one-out cross-validation error. 

KNN is sensitive to the noisy and irrelevant features. To cope with this problem we 

employed a correlation based feature selection approach to avoid the irrelevant features. 

6.2 Regression Tree 

A regression tree takes as input a situation or an object characterized by a set of 

properties and outputs a decision [31]. Each node corresponds to a test of one input 

feature and the branches that emerge from that node are possible test result values 

(positive and negative). The terminal or leaf nodes represent the value of the decision that 

will be returned if that node is reached. Classification And Regression Trees (CARTs) 

have been extensively applied in the medical field.  Important applications include: 

diagnosing heart attacks, cancer diagnosis, speech recognition and classification of age 

by gait measurement [32][33].  

The regression tree creation begins by choosing the best feature to split the examples. 

The best feature is the one that changes the classification the most. Two primary issues 

exist, (i) Choosing the best feature to split the examples at each stage, and (ii) Avoiding 

data overfitting. Many different criteria could be defined for selecting the best split at 

each node. In this work, the Gini Index function was used to evaluate the goodness of all 

the possible split points along all the features [31]. Trees were pruned based on an 

optimal pruning scheme that first pruned branches that gave the least improvement in 

error cost. Pruning was performed to remove the redundant nodes since bigger, overfitted 

trees have higher misclassification rates.  
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6.3 Bayesian Networks 

Bayesian networks apply probability and belief theory to build graphical models that 

encode probabilistic relationships among events of significance. It is a directed acyclic 

graph that consists of two main components: (i) a network structure that encodes a set of 

conditional independence relations amongst a set of variables, and (ii) a set of tables of 

local probability distributions associated with each variable. Together, these components 

define the joint probability distribution of the variables. Such a graphical model along 

with statistical techniques can be a powerful tool for data analysis [34]. Some of the main 

advantages are: (i) Since the model encodes dependencies among all the events, it can 

handle cases when some data entries are missing, (ii) knowledge of causal relationships 

between events can be gained, that enables one to better understand a problem domain 

and predict the results of unexpected events, (iii) the Bayesian model is an ideal one for 

combining prior knowledge (which often comes in causal form) and data since it captures 

well both the causal and probabilistic characteristics of a problem domain. 

Given all the above mentioned advantages of Bayesian classification, it can be seen 

that this method is a potent technique to learn and classify affective patterns of human 

beings. Several researchers have already used Bayesian techniques for learning blueprints 

of affective states through audio, visual and physiological cues [20].  

For creating Bayesian network, in this paper, we used the Max-Min Hill Climbing 

Algorithm (MMHC) [34]. It takes as input an array of data and returns a high scoring BN. 

The continuous features were discretized using D2- a supervised splitting technique 

based on Entropy [36]. For inference we used the junction tree method provided by the 

BNT toolbox (http://www.cs.ubc.ca/~murphyk/Software/BNT/bnt.html). The technique 
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first compiles the Bayesian network into a secondary structure called a junction tree 

representing joint distributions over non-disjoint sets of variables. The new evidence is 

inserted, and then a message passing technique updates the joint distributions and makes 

them consistent. Finally, using marginalization, the distributions for each variable can be 

calculated. 

6.4 Support Vector Machines 

Support Vector Machine, pioneered by Vapnik [37], is an excellent tool for 

classification problems [38]. Its appeal lies in its strong association with statistical 

learning theory as it approximates structural risk minimization principle. Good 

generalization performance can be achieved by maximizing the margin, where margin is 

defined as the sum of the distances of the hyperplane from the nearest data points of each 

of the two classes.  

SVM is a linear machine working in a high dimensional feature space formed by an 

implicit embedding of lower dimensional input data into the feature space through the use 

of a nonlinear mapping. This allows using linear algebra and geometry to separate the 

data normally only separable with nonlinear rules in the input space.  To allow efficient 

computation of inner products directly in the feature space and circumvent the difficulty 

of specifying the non-linear mapping explicitly, all operations in learning and testing 

modes are done in SVM using so-called kernel functions satisfying Mercer conditions 

[37]. The explicit form of the nonlinear mapping need not be known. 

The most distinctive fact about SVM is that the learning task is reduced to a dual 

quadratic programming problem by introducing the so-called Lagrange multipliers 

[37][39]. The solution with respect to the Lagrange multipliers gives the optimal 
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hyperplane defined by the nearest training points, support vectors, for which the 

corresponding Lagrange multipliers are non-zero. This induces sparseness in the solution 

and gives rise to efficient approaches to optimization.  

The SVM approach is able to deal with noisy data and overfitting by allowing for 

some misclassifications on the training set. This makes it particularly suitable for affect 

recognition because the physiology data is noisy and the training set size is often small. 

In this work, in order to deal with the nonlinearly separable data, soft margin classifiers 

with slack variables were used to find a hyperplane with less restriction [39]. RBF was 

selected as the kennel function because it often delivers better performance [37]. 

Although SVM separates the data only into two classes, the recognition of more classes 

can be done by applying some voting scheme, e.g., "one against one" and "one against 

all" approaches. We chose "one against one" in our task since it usually produces better 

results [40].  Grid search based ten-fold cross-validation is used to determine the 

parameters of the classifier. With the kernel representation, SVM provides an efficient 

technique that can tackle the difficult, high dimensional affect recognition problem.  

7. Results and Discussion 

7.1 Predictive Accuracy 

 The performance of KNN, RT, BNT and SVM in classifying unknown instances is 

shown in Fig. 2. The method of cross-validation used for all the four methods was leave-

one-out. All of the methods gave competitive recognition accuracies, which verified our 

emotion elicitation protocol and the principle of emotion recognition from physiological 

signals. This was promising considering that this task was challenging in two respects (i) 

the emotions were elicited from participants engaged in real-life cognitive computer tasks 
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as opposed to having actors/participants deliberately express a given emotion, and (ii) 

varying levels of arousal of any given emotion (for instance low frustration, high 

frustration) were identified instead of determining discrete emotions (for instance anger, 

joy, sadness etc.). This is a difficult task as the distinction between target classes is more 

subtle in latter than in the former case.  

 

 

Figure 2. Classification accuracy of the methods using all the features 

Figure 2 shows that the mean correct classification accuracies across all participants 

(averaged across all affective states) were - 75.16% for KNN, 83.50% for RT, 74.03% for 

BNT and 85.81% for SVM. The statistical significance of the difference in classification 

accuracies was tested using the sign-test between any two methods. It was found that all 

these differences were statistically significant with a greater than 95% significance level. 

One of the reasons for the low performance of KNN is that it does not perform any 

generalizations regarding the data set. The inductive bias of KNN method is that 

neighboring instances probably have similar categories. However, when the distance 
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between two instances is calculated all features are given equal weight. This becomes 

problematic when the discriminative or useful features constitute only a small subset of 

the entire feature set. Therefore, the accuracy of KNN method is sensitive to the number 

of noisy features.  

On the contrary, SVM delivers the best performance because it achieves a trade off 

between the complexity of the network and the training error so as to prevent overfitting. 

The performance of BNT was probably affected by the following limitations: (i) absence 

of an initial structure or set of constraints that could guide the generation and evaluation 

of high scoring networks (this is largely due to the incomplete understanding in 

psychophysiology regarding the interactions between physiology and affective states), (ii) 

limited size of data sets (due to restricted number of human-in-the-loop experiments that 

could be performed) that prevented the estimation of accurate conditional probabilities. 

Table 2. Classification accuracy of the methods for the affective states (%) 

Anxiety Boredom Engagement Frustration Anger 

KNN 80.38 73.92 70.63 70.89 79.98 

RT 88.54 77.17 78.82 79.51 93.47 

BNT 80.64 71.48 65.26 70.86 81.93 

SVM 88.86 84.23 84.41 82.81 88.74 

 

Table 2 shows the performance of the various learning methods for the five affective 

states under investigation. The classifiers have different overall performances for 

different kinds of emotions. For example, classification accuracy is consistently better for 

anxiety than for frustration. One possible reason could be that the task design resulted in 

elicitation of particular emotions more successfully than the others.  
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7.2 Efficiency 

Real-time embedded applications in robotics require time and space efficiency of the 

learning algorithms employed. Hence, we investigated the training speed and memory 

requirements of the above four learning methods in the affect recognition task. The 

training and testing times were normalized with respect to the RT method as it was the 

fastest. It was found that both BNT and SVM were two times slower in training. In 

testing, BNT was 30 times slower whereas SVM and KNN were only 3 times slower. It is 

expected that with large data sets and higher number of features, SVM will be faster than 

KNN because of the sparse solution that SVM gives. There were other differences in the 

approaches of the methods in general. While BNT and RT did not require any parameter 

tuning, in case of KNN and SVM choosing appropriate parameters was imperative for 

good results. 

Regarding the space efficiency, KNN stores all training instances and hence, does 

not extend well to very large datasets. RT on the other hand, stores only the index of the 

relevant features and the corresponding thresholds. This makes RT easily scalable. BNT 

stores the directed acyclic graph along with the conditional probability table of each node 

and SVM stores the support vectors which determine the discriminant hyperplane.  Both 

BNT and SVM are more space efficient than KNN but less than RT.  

7.3 Interpretability 

Although RT and BNT do not work as accurately as SVM, they are still valuable 

candidates for the affect recognition. As an inductive learning method, Regression trees 

allow us to identify important physiological indicators and transfer the learned results 

into a set of simple rules. With the capability of capturing the causality among the 
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physiological features and the affective states in a probabilistic manner, BNT can provide 

an insight into the underlying relationships among physiological features and emotions, 

many of which are still unknown.  

 

 

Figure 3. Person stereotypy with respect to the affective state of anxiety for Participants 5 and 11 

7.4 Feature Selection  

Figure 3 shows the physiological features that were highly correlated with the state 

of anxiety for participant 5 and the corresponding correlation of the same features with 

the state of anxiety for participant 11.  It can be seen from Figure 3 that two features – 

mean of pulse transit time (PTTmean) and mean of temperature (Tempmean) are 

correlated differently for the two participants. While both are correlated positively with 

anxiety for participant 11, they are negatively correlated for participant 5. However, 
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features like mean interbeat interval of impedance (IBI Impmean), sympathetic activity 

power (Sym) and mean frequency of EMG activity from zygomaticus major (Zfreqmean) 

are similarly related for both participants.  

Also, for any individual, the set of useful indices were different for the different 

affective states. For instance, as seen in Figure 4, the bars in dark indicate the correlation 

of features that were found useful in detecting the state of engagement in Participant 5. 

The bars in light indicate the correlation of the same features with the state of anxiety for 

the same participant and it can be readily seen that most of the features that are useful in 

detecting engagement are not useful in detecting anxiety. This led us to believe that the 

classification accuracies of the above methods might increase if we used only the highly 

correlated features instead of the entire set. 

 

 

Figure 4. Comparison between Anxiety and Engagement for Participant 5 
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Figure 5 shows the new classification accuracy when only the highly correlated 

features instead of the entire feature set were used for affect learning. We performed sign 

test to determine statistical significance of the results with or without feature selection. It 

was observed that while the accuracy improved by 3.62% for KNN and 3.65% for BNT 

with a significance level of 95%, the performance of RT and SVM was not impacted 

significantly.  

 

 

Figure 5. Classification accuracy of the methods using only the highly correlated features 

As previously mentioned, KNN is sensitive to noise. By selecting only the features 

that were highly correlated with the target affective state we excluded the less important 

features. The distance metric now gave more concise measure of the similarity between 

instances leading to better performance. In case of BNT also there was an improved 

performance with selected features. One conjecture would be that conditioning on many 

variables with the limited data set previously may have caused poor approximation of the 

probability values and also introduced spurious edges. Hence, filtering out the less 
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significant features improves the BNT performance. RT's performance maintained nearly 

the same probably because this method already has an inbuilt feature selection capability 

wherein it selects useful features by the method of information gain. Correlation based 

feature selection in the input space also did not improve the performance of SVM in this 

task. SVM employs nonlinear mappings that result in a high dimensional feature space. 

Hence, enforcing linear relationships by using correlated features may not have worked 

well in this situation. 

8. Conclusion and Future Work 

A comparative study of the merits of four popular learning methods as applied to 

affect detection was presented. In this work we focussed on determining affective states 

from physiological signals.  We discussed the nature of the physiological signals and the 

derived features from them, that were used for affect recognition. Two cognitive tasks – 

solving anagrams and playing Pong, were designed to elicit affective states of anxiety, 

engagement, boredom, frustration and anger in participants. Fifteen participants took part 

in this study where each was involved in the tasks for 6 hours. Their physiology was 

continuously monitored during the tasks using biofeedback sensors.  

The problem under investigation was as follows: given a set physiological features, 

each labelled as an indicator of a particular level of arousal of a given affective state, 

determine the performance of the following learning methods in predicting the class of 

unseen instances – KNN, RT, BNT, and SVM. There is no such comparison reported in 

the literature that uses the same physiological data from the same tasks, hence attaining 

uniformity in the various aspects of emotion elicitation, data processing, feature 

extraction, baselining, and self-reporting procedures. However, such a comparative study 
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is important for the development of affect recognition in human-robot interactions. The 

contribution of the present work lies in providing a basis for choice of different affect 

recognition algorithms.  

It was found that SVM with a classification accuracy of 85.81% performed the best, 

closely followed by RT (83.50%), KNN (75.16%) and BNT (74.03%). Using informative 

features (the ones that were highly correlated with the affective states) improved the 

performance for KNN and BNT by almost 4%. In terms of space and time efficiency, RT 

ranked higher than the other methods.  

Future work will involve performing closed-loop experiments involving implicit 

human-robot interaction based on affective states. We will investigate a human-robot 

interaction task where the robot will implicitly sense human affective states using affect 

recognition algorithms described here, and alter its behaviour in order to address human 

need. 
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Abstract 

A number of studies in recent years have investigated the dynamic difficulty 

adjustment (DDA) mechanism in computer games in order to automatically tailor gaming 

experience to individual player’s characteristics. While most of these existing works 

focus on game adaptation based on player’s performance, affective state experienced by 

the players could play a key role in gaming experience and may provide a useful 

indicator for a DDA mechanism. In this paper, an affect-based DDA was designed and 

implemented for computer games. In this DDA mechanism, a player’s physiological 

signals were analyzed to infer his/her probable anxiety level, which was chosen as the 

target affective state, and the game difficulty level was automatically adjusted in real time 

as a function of the player’s affective state. Peripheral physiological signals were 

measured through wearable biofeedback sensors and several physiological indices were 

explored to determine their correlations with anxiety. An experimental study was 

conducted to evaluate the effects of the affect-based DDA on game play by comparing it 

with a performance-based DDA. This is the first time, to our knowledge, that the impact 

of a real-time affect-based DDA has been demonstrated experimentally. 
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1. Introduction and Motivation 

There has been a steady progress in the field of computer games in recent years that 

has become one of the most popular and economically successful forms of human-

computer interaction (HCI) systems (Zaphiris, 2007). The worldwide market for 

computer game hardware, software and accessories is expected to grow from ￡11.7 

billion in 2002 to ￡ 17 billion in 2007 (RocResearch, 2004) as more novel play 

environments are developed for entertainment and education (Stokes, 2005). While 

gaming technology has continued to evolve, there has been general dissatisfaction of 

players with the current computer games due to their inadequacy of providing optimal 

challenge levels to accommodate individual player’s characteristics such as skills, 

capacities to learn and adapt, and emotional traits (Gilleade, Dix, & Allanson, 2005; 

Sweetser & Wyeth, 2005). Static difficulty levels that are manually selected by the 

players are not sufficient to avoid getting the player overwhelmed or bored since players 

are likely to be unable to assess which challenge level matches their skills (Koster, 2004). 

Additionally, asking the players to frequently choose the difficulty levels could be 

annoying as well as cause interruption of the game play (Chen, 2007). 

In order to address this issue, a growing number of studies have been investigating 

the dynamic difficulty adjustment (DDA) mechanisms to enable the game-playing 

experiences automatically tailored to the individual characteristics. Demasi and Cruz 

have developed a “challenge function” by using heuristics (e.g., time to complete a task 

and rate of successful shots, etc.) to map a given game state to a value that specifies the 

difficulty felt by a user (Demasi & Cruz, 2002). Reinforcement learning has been 

employed to allow computer-controlled agent to learn optimal strategies in a fighting 
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game while choosing suboptimal actions to fit the players’ performance when necessary 

(Andrade et al., 2005). Spronck et al. proposed a rule-based approach, called dynamic 

scripting, that includes the model of the opponent player. It assigns each behavior rule a 

probability of being picked and then modifies the probability dynamically based on the 

success or failure rate of each rule (Spronck et al., 2006). The DDA has been increasingly 

recognized by the game development community as a key characteristic for a successful 

game. For instance, in Resident Evil 4 (www3.capcom.co.jp/bio4/english.html), a 3rd 

person shooter game with 5 levels of difficulty, the difficulty adjustment can be 

automatically accomplished based on the player's performance.  

In most current DDA research works, the performance of the player has been used 

as a main measure of the characteristics of the players. However, as noted by Pagulayan 

et al. (2002), unlike productivity software, computer game’s paramount evaluation factor 

should be the affective experience provided by the play environment instead of the user’s 

performance. A case study on several popular computer games (e.g., Combat Flight 

Simulator (PC), Combat Evolved (Xbox), etc.) suggested that standard performance-

based usability methods may not be sufficient to evaluate gaming experience and issues 

related to affective aspects of the game (e.g., fun) should be considered (Pagulayan, et al., 

2005). Mandryk and Atkins (2007) also regarded the emotional experience is the key 

measurement of a game playing and used fuzzy physiological approach to determine the 

underlying affective states related to game play in an off-line manner. Echoing similar 

opinion, the concept of “Affective Gaming” has been proposed in recent years (Gilleade 

& Allanson, 2003; Gilleade, Dix, & Allanson, 2005; Magerkurth et al., 2005; Sykes & 

Brown, 2003), which focuses on exploring the impacts of affective factors in computer 
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game design and adaptation. Furthermore, players can have different motivations to play 

a game (Koster, 2004). For a player who derives satisfaction from completing difficult 

tasks, one has to be cautious in decreasing the difficulty level even when he/she has been 

defeated for several times; whereas for another player, it may not be appropriate to 

increase the difficulty level even when his/her performance is excellent. We believe that 

the affective state of a player is likely to be a critical factor in many gaming experience, 

and that the next generation of DDA mechanism should consider both player’s 

performance and affective state information.  

The primary objective of this research is to explore the feasibility of recognizing a 

player’s affective states via a physiology-based affect recognition technique during 

gaming and investigate how the gaming experience can be augmented by using the 

recognized affective state to automatically adjust game difficulty level in real-time. Note 

that we recognize the fact that a DDA mechanism that considers only affective state 

information may not be optimal. A versatile DDA mechanism should also consider 

player’s performance, his/her personality, and the context and complexity of the game 

among other issues to generate a rewarding gaming experience. However, we first want 

to establish that real-time affective feedback is possible during the gaming process and 

that such a feedback can impact the experience of game play. The goal here is to advance 

the state-of-the-art in affective gaming, which has gained significant importance in the 

Human-Computer Interaction (HCI) community in recent years (Gilleade & Allanson, 

2003; Gilleade, Dix, & Allanson, 2005; Magerkurth et al., 2005; Sykes & Brown, 2003). 

In order to achieve this objective, we divide our research into two major phases: (i) to 

obtain the affective model in Phase I, and (ii) to investigate the impact of affect-
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sensitiveness on the gaming experience in Phase II. The primary contribution of this 

paper lies in Phase II work. However, since the Phase II work is dependent on affective 

models developed in Phase I, we believe it is necessary to briefly discuss Phase I work. 

The detailed results of the Phase I work were published in (Rani et al., 2006) and are 

omitted here. This is the first time, to our knowledge, that the impact of an affect-based 

DDA on player’s interaction with a computer game that is capable of physiology-based 

affect recognition and real-time difficulty adjustment in a closed-loop manner has been 

investigated experimentally. 

There are several modalities such as facial expression (Bartlett et al., 2003), vocal 

intonation (Lee & Narayanan, 2003), gestures (Asha et al., 2005), and physiology (Kulic 

& Croft, 2007; Leon, et al., 2004; Mandryk & Atkins, 2007; Rani et al., 2004) that can be 

utilized to recognize the affective states of individuals interacting with a computer. In this 

work we choose to create affective model based on physiological data for several reasons. 

One of the chief advantages of using physiology is that physiological signals are 

continuously available and are not dependent on overt emotional expression. Our aim is 

to recognize affective states of people engaged in real-life activities, such as playing 

computer games. Even if a person does not overtly express his/her emotion through 

speech, gestures or facial expression, a change in the physiological signal pattern 

associated with the changes of underlying affective states is likely to occur, which could 

be detectable. Furthermore, physiology is usually not under one’s voluntary control and 

hence may provide an undiluted assessment of the underlying affective state. It is also 

reasonably independent of cultural, gender, and age related biases (Brown et al., 1997). 

Besides, there is evidence that the transition from one affective state to another is 
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accompanied by dynamic shifts in indicators of Autonomic Nervous System (ANS) 

activity (Bradley, 2000; Picard, 1997). The physiological signals that have been used in 

this research consist of various cardiovascular, electrodermal, electromyographic, and 

body temperature signals, all of which have been extensively investigated in 

psychophysiology literature (Bradley, 2000). 

An important question when estimating human affective state is how to represent the 

affective state. Although much existing research categorizes human affective states into 

what is called a set of “basic emotions,” there is no consensus on a set of basic emotions 

among the researchers (Cowie et al., 2001). This fact implies that it requires pragmatic 

choices to select a target affective state for a given application (Cowie et al., 2001).  In 

this paper, we chose anxiety to be the target affective state for the affect-based DDA 

design. The DDA mechanism will allow the computer game to recognize anxiety and 

respond to it in an appropriate manner. Anxiety was chosen for two primary reasons. First, 

anxiety plays an important role in various human-computer interaction tasks that can be 

related to performance, challenge, and ability (Brown et al., 1997; Chen, 2007). Second, 

the correlation of anxiety with physiology is well established in the psychophysiology 

literature (Rohrmann, Hennig, & Netter, 1999) and thus provides us with a scientific 

basis to infer it. In this study, we develop an affective model of a player that is capable of 

determining the intensity of anxiety (i.e., low/medium/high) instead of discrete emotions. 

Another important fact that should be noted for affective modeling is the phenomenon of 

person stereotypy. There is evidence that within a given context, different individuals 

express the same emotion with different physiological response patterns (Lacey & Lacey, 

1958). The novelty of the presented affective modeling is that it is individual-specific in 
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order to accommodate the differences encountered in emotion expression.  

Note that a player’s performance and affective state could be fused together in a 

DDA mechanism. However, in this paper we focus on the impact of an affect-based DDA 

on the gaming experience. Hence, we separated a performance-based DDA from an 

affect-based DDA and compared their effects on a computer game. Additionally, we 

implemented the DDA mechanism using state-flow diagrams, where the states were 

represented by a set of predefined difficulty levels. Although it is possible to use a 

player’s affective state information to manipulate game environment settings and agents’ 

behaviors in a moment-by-moment manner, such control often depends on heuristic 

knowledge and specific genre of a game (Hunicke & Chapman, 2004) and is beyond the 

scope of this paper. However, since most existing computer games have embedded 

predefined difficulty levels, the presented approach could be integrated with a large class 

of games. 

The rest of the paper is organized as follows: the next section reports on related 

works in physiology-based affect recognition, intelligent tutoring system that used 

affective cues, and affective gaming. A description of the physiological signals and the 

features that were derived from these signals for affective modeling are presented in 

Section 3. In Section 4, we describe the machine learning algorithm used for detecting 

affective cues. Section 5 presents experimental designs for affective model building 

(Phase I) and evaluation of the effects of the affect-based DDA (Phase II). This is 

followed by a detailed results and discussion section (Section 6). Finally, Section 7 

summarizes the contributions of the paper and provides future directions of this research. 
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2. Related Work 

The use of physiology as a method to evaluate the affective state has attracted 

increasing attention in recent years. Multiple physiological measures such as 

electromyography (EMG), electroencephalography (EEG), and heart rate variability 

(HRV), have been used jointly to assess stress (Rani et al., 2002), workload (Kramer, 

Sirevaag, & Braune, 1987), and mental effort (Vicente, Thornton, & Moray, 1987). 

Galvanic Skin Response (GSR), EMG and Electrocardiogram (ECG) have been 

examined in (Mandryk & Atkins, 2007) to determine the underlying affective states 

related to game play. Various machine learning techniques including fuzzy logic 

(Mandryk & Atkins, 2007; Rani et al., 2002), discriminant function analysis (Nasoz et al., 

2003), auto-associative neural networks (Leon et al., 2007), and support vector machines 

(Kim, Bang, & Kim, 2004) have been applied to differentiate discrete emotions (e.g., 

anger, joy, sadness etc.). In our previous work (Rani et al., 2004), we have shown the 

relationship between anxiety and several physiological parameters like HRV, facial EMG, 

GSR, blood pulse volume, and peripheral temperature. Although the existing studies 

provide valuable supports for the validity of physiology-based affect recognition, the 

impact on human users when computers respond to recognized affective states (i.e., 

interact in a closed-loop manner) is still largely unexplored. 

In the context of intelligent tutoring system, there have been research efforts that 

aim at endowing a computerized tutor with the ability to adapt affectively in the teaching-

learning process, which would permit a more natural, enjoyable and productive discourse. 

Conati (2002) proposed a probabilistic model to monitor a user’s emotion and 

engagement during automated tutoring. The affective states of students (i.e., reproach, 
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shame, and joy) were detected by the use of eye brow EMG, GSR and ECG through a 

dynamic decision network. The tradeoff between engagement and learning was achieved 

by a utility function that assigned appropriate weights to students’ performance and 

engagement. Prendinger et al. (2005) conducted an experimental study that examined 

GSR and EMG to investigate the effect of a life-like virtual teacher on the affective state 

of users under “affective persona” and “non-affective persona” conditions. Our work 

differs from those studies in several aspects. First, our work focuses on investigating a 

DDA mechanism in the context of computer games. Specifically we are interested in 

evaluating the effects of an affect-based DDA on gaming experience by comparing it 

with a performance-based DDA though a systematic user study. Second, we identify the 

varying levels of anxiety instead of determining the occurrence of specific discrete 

emotions. Determining the intensity of an affective state could be a more challenging 

problem than differentiating discrete emotional states (Rani et al., 2006). Third, we adopt 

an individual-specific approach to overcome person-stereotypy and explore a more 

comprehensive set of physiological indices. We develop affective model for each 

individual player with reliable real-time predictions (as described in Section 6), whereas 

works in (Conati, 2002; Prendinger, Mori, & Ishizuka, 2005) presented across-individuals 

approach that did not consider person stereotypy.  

Finally, our work falls into a nascent research field of HCI, called Affective Gaming 

(Gilleade & Allanson, 2003; Gilleade, Dix, & Allanson, 2005; Magerkurth et al., 2005; 

Sykes & Brown, 2003), that aims at enhancing gaming experience by adapting the game 

course to the player’s affective state. Although concepts of affective gaming have been 

discussed for game design in (Gilleade & Allanson, 2003; Gilleade & Dix, 2004), the 
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existing studies have the limitation of lacking systematic experimental investigation, 

which has been addressed in our work.  

3. Physiological Indices for Recognizing Anxiety 

There is good evidence that the physiological activity associated with the affective 

state can be differentiated and systematically organized (Bradley, 2000). The 

relationships between both electrodermal and cardiovascular activities with anxiety were 

investigated in (Dawson et al., 1990; Pagani, Lombardi, & Guzzetti, 1986; Rohrmann, 

Hennig, & Netter, 1999; Watts, 1975). When a human being is anxious, it is commonly 

observed that the parasympathetic activity of his/her heart decreases and the sympathetic 

activity increases (Pagani & Guzzetti, 1986). It was also reported that anxiety may cause 

an increase in skin conductance level (Watts, 1975). Previous research has validated 

blood pulse volume (FPV) measured at fingers is sensitive to the stress manipulation and 

is correlated with self-reported anxiety during the anticipation period (Bloom & Trautt, 

1978). Measures of EMG activity of the chosen muscles (e.g., Corrugator Supercilii 

muscles) were also shown to be strong indicators of anxiety (Ekman & Friesen, 1986). In 

our work, we used this relationship between physiological response and the underlying 

affective states to develop an affect-recognition system.  

The physiological signals we examined were: features of cardiovascular activity, 

including interbeat interval, relative pulse volume, pulse transit time, heart sound, and 

pre-ejection period; electrodermal activity (tonic and phasic response from skin 

conductance) and electromyogram (EMG) activity (from Corrugator Supercilii, 

Zygomaticus, and upper Trapezius muscles). These signals were selected because they 

are likely to demonstrate variability as a function of the targeted affective states, as well 
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as they can be measured noninvasively, and are relatively resistant to movement artefacts 

(Lacey & Lacey, 1958). 

Multiple features (as shown in Table 1) were derived for each physiological measure 

by using various signal processing techniques such as Fourier transform, wavelet 

transform, adaptive thresholding, and peak detection. Some of these features were 

described in our previous work (Rani et al., 2004). “Sym” is the power associated with 

the sympathetic nervous system activity of the heart (in the frequency band 0.04-0.15 Hz). 

“Para” is the power associated with the parasympathetic nervous system activity of the 

heart (in the frequency band 0.15-0.4 Hz). “VLF” is the power associated with the Very 

Low Frequency band (less than 0.04 Hz). Interbeat Interval (IBI) is the time interval in 

milliseconds between two “R” waves in the ECG waveform. “IBI ECGmean” and “IBI 

ECGstd” are the mean and standard deviation of the IBI, respectively. The R-peak 

detection algorithm first performed band-pass filtering on the raw ECG signal. The 

resulting signal was then smoothed by a 10ms moving average window. Peaks were then 

detected in the resulting signal, and heuristic detection rules were applied to avoid 

missing R peaks or detecting multiple peaks for a single heart beat. These rules included 

obtaining the amplitude threshold (the difference between a peak and the corresponding 

inflection point) at which a peak should be considered a beat, enforcing a minimum 

interval of 300ms and maximum interval of 1500ms between peaks, checking for both 

positive and negative slopes in a peak to ensure that baseline drift is not misclassified as a 

peak, and allowing backtracking with reexamination/interpolation when peak missing 

was detected. 
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Table 1. Physiological Indices 

Physiological 
Response Features Derived Label Used Unit of Measurement 

Sympathetic power (from ECG) Sym Unit/Square Second 
Parasympathetic power (from ECG) Para Unit/Square Second 

Very Low Frequency Power (from ECG) VLF Unit/Square Second 

Ratio of powers  
Sym Para 
Para VLF 
Sym VLF 

No unit 

Mean IBI IBI ECGmean Milliseconds 
Std. of IBI IBI ECGstd Standard Deviation (no unit) 
Mean amplitude of the peak values of 
the PPG signal (Photoplethysmogram) PPG Peakmean Micro Volts 

Standard deviation (Std.) of the peak 
values of the PPG signal  PPG Peakstd Standard Deviation (no unit) 

 
Cardiac activity 

Mean Pulse Transit Time PTTmean Milliseconds 

Mean of the 3rd, 4th, and 5th level 
coefficients of the Daubechies wavelet 
transform of heart sound signal 

Mean d3 
Mean d4 
Mean d5 

No unit 

Heart Sound 
Standard deviation of the 3rd, 4th, and 
5th level coefficients of the Daubechies 
wavelet transform of heart sound signal

Std d3 
Std d4 
Std d5 

No unit 

Mean Pre-Ejection Period PEPmean Milliseconds Bioimpedance Mean IBI IBI ICGmean Milliseconds 
Mean tonic activity level Tonicmean Micro-Siemens 
Slope of tonic activity Tonicslope Micro-Siemens/Second 
Mean amplitude of skin conductance 
response (phasic activity) Phasicmean Micro-Siemens 

Maximum amplitude of skin 
conductance response (phasic activity) Phasicmax Micro-Siemens 

Electrodermal 
activity 

Rate of phasic activity Phasicrate Response peaks/Second 
Mean of Corrugator Supercilii activity Cormean Micro Volts 
Std. of Corrugator Supercilii activity Corstd Standard Deviation (no unit) 
Slope of Corrugator Supercilii activity Corslope Micro Volts/Second 
Mean Interbeat Interval of blink activity IBI Blinkmean Milliseconds 
Std. of Interbeat Interval of blink activity IBI Blinkstd Standard Deviation (no unit) 
Mean amplitude of blink activity Amp Blinkmean Micro Volts 
Standard deviation of blink activity Blinkstd Standard Deviation (no unit) 
Mean of Zygomaticus Major activity Zygmean Micro Volts 
Std. of Zygomaticus Major activity Zygstd Standard Deviation (no unit) 
Slope of Zygomaticus Major activity Zygslope Micro Volts/Second 
Mean of Upper Trapezius activity Trapmean Micro Volts 
Std. of Upper Trapezius activity Trapstd Standard Deviation (no unit) 
Slope of Upper Trapezius activity Trapslope Micro Volts/Second 

Electromyographi
c activity 

Mean and Median frequency of 
Corrugator, Zygomaticus, and Trapezius

Zfreqmean 
Cfreqmedian 
Tfreqmean  

Hertz 

Mean temperature Tempmean Degree Centigrade 
Slope of temperature Tempslope Degree Centigrade/Second Temperature 
Std. of temperature Tempstd Standard Deviation (no unit) 
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Photoplethysmograph signal (PPG) measures changes in the volume of blood in the 

fingertip associated with the pulse cycle, and it provides an index of the relative 

constriction versus dilation of the blood vessels in the periphery. Pulse transit time (PTT) 

is the time it takes for the pulse pressure wave to travel from the heart to the periphery. 

PPT is determined by computing the time between systole at the heart (as indicated by 

the R-wave of the ECG) and the peak of the pulse wave reaching the peripheral site 

where PPG is being measured. Bioelectrical impedance analysis (BIA) measures the 

impedance or opposition to the flow of an electric current through the body fluids. A 

common variable in recent psychophysiology research, pre-ejection period (PEP) 

measures the latency between the onset of electromechanical systole and the onset of left-

ventricular ejection. PEP is derived from impedance cardiogram (ICG) time-derivative 

and ECG and is most heavily influenced by sympathetic innervations of the heart. The 

peak detection mechanisms to determine the peaks of BVP and ICG time-derivative were 

similar to the ECG R-peak detection algorithm, while additional heuristic rules were 

added to reduce the degradation of the signal quality due to motion artifacts and avoid 

spurious peak detection with backtracking. Unlike ECG signals, the peak amplitudes of 

PPG and ICG showed a larger deviation over a given period of time. An adaptive 

thresholding rule was integrated in the peak detection algorithm to address this deviation, 

which continuously changed/updated the threshold value to determine whether candidates 

for peaks qualified to be valid peaks. 

Electrodermal activity (EDA) consists of two main components - tonic response and 

phasic response. Tonic skin conductance refers to the ongoing or the baseline level of 

skin conductance in the absence of any particular discrete environmental events. Phasic 
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skin conductance refers to the event related changes that occur, caused by a momentary 

increase in skin conductance (resembling a peak). The raw EDA signal was smoothed by 

a 25ms moving average window and then down-sampled by 10 to remove the high 

frequency measurement noise. The phasic skin conductance detection algorithm used the 

following heuristics for considering a particular peak as a valid skin conductance 

response: (i) the slope of the rise to the peak should be greater than 0.05 

microsiemens/minute; (ii) the amplitude should be greater than 0.05 microsiemens; and 

(iii) the rise time should be greater than 0.25 sec. All the signal points that were not 

included in the response constituted the tonic part of the skin conductance signal. 

The EMG signal from Corrugator Supercilii muscle (eyebrow) captures a person's 

frowns and detects the tension in that region. This EMG signal is also a valuable source 

of blink information and helps determine the blink rate. The EMG signal from the 

Zygomaticus Major muscle captures the muscle movements while smiling. Upper 

Trapezius muscle activity measures the tension in the shoulders, one of the most common 

sites in the body for developing stress. The analysis of the EMG activities in the 

frequency domain involved applying Fast Fourier transform (FFT) on a given EMG 

signal, integrating the EMG spectrum, and normalizing it to [0,1] to calculate the two 

features of interest - the median frequency and mean frequency for each  EMG signal. 

The blink-related features were determined from the corrugator supercilii EMG signals 

after being preprocessed by a low-pass filter (10 Hz). 

The heart Sound signal measures sound generated during each heartbeat. These 

sounds are produced by blood turbulence primarily due to the closing of the valves within 

the heart. The features extracted from the heart sound signal consist of the mean and 
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standard deviation of the 3rd, 4th, and 5th level coefficients of the Daubechies wavelet 

transform. Variations in the peripheral temperature mainly come from localized changes 

in blood flow caused by vascular resistance or arterial blood pressure and reflect the 

autonomic nervous system activity. The signal was down-sampled by 10 and filtered to 

remove high-frequency noise, from which the time-domain features (e.g., mean, SD, and 

slope) were calculated.  

Any feature (derived from physiological signals) with an absolute correlation greater 

than equal to 0.3 with the target affective state was considered significant and was 

selected as inputs of the recognizers. It should be noted that the phenomenon of person-

stereotypy makes it difficult to obtain universal patterns of emotions across individuals. 

As mentioned above, to overcome person-stereotypy we adopted an individual-specific 

approach where an affective model for each individual was developed in the Phase I 

study (e.g., we determine the physiological pattern of anxiety for each participant). 

4. Anxiety Recognition based on Regression Tree  

Determining a person's probable anxiety level from his/her physiological response 

resembles a classification problem where the attributes are physiological features and the 

target function is the anxiety level. The main challenge for this classification system to 

work, however, was the complex nature of the input physiological data sets. This 

complexity was primarily due to: (i) high dimensionality of the input feature space (there 

were 46 features), (ii) mixture of data types, and (iii) non-standard data structures. 

Additionally, a few physiological data were noisy where the biofeedback sensors had 

picked up movement artifacts.  

In our earlier work (Rani et al., 2006), we compared several machine learning 
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algorithms namely K nearest neighbors (KNN), Bayesian Network technique (BNT), 

Support Vector Machines (SVM) and Regression Tree (RT)  for affect recognition from 

physiological signals and found that regression tree technique was efficient for affective 

modeling in terms of predictive accuracy and time and space cost. Hence in this work we 

employed RT to determine the underlying target affective state of a player given a set of 

physiological features. We omit the details of the theory and learning method of RT in 

this paper, which can be found in (Breiman et al., 1984) and our previous work (Rani et 

al., 2006).  

5. Experimental Investigation  

5.1 Subjects 

Fifteen individuals (eight females, and seven males) volunteered to participate in the 

Phase I experiments. Their age ranged from 18 to 34 years, except for one participant, 

who was 54 years old. They were from diverse professional and ethnic backgrounds. 

They all had college degrees and had experience of playing computer games. Due to the 

nature of the tasks, the following were considered when choosing the participants: (i) 

their fluency in English, (ii) their familiarity with computers and ease of operation of 

keyboard and mouse, and (iii) general health (the absence of any problem in hearing or 

sensing). Participants were solicited through phone, emails and flyers posted around the 

Vanderbilt University area. They were given monetary compensation for their voluntary 

participation. Out of the fifteen participants, nine also took part in Phase II experiments.  

The Institutional Review Board (IRB) approval was sought and received for 

conducting these experiments. In the IRB application, all details of the experiment were 

reported and it was emphasized that the health and safety of the participants was by no 
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means endangered by participating in these experiments. It was also mentioned that the 

range of anxiety that the participants could experience was no more intense than the 

levels of anxiety that are commonly experienced in daily life. A detailed consent form 

was also drafted that acquainted the participants with the experimental procedure and 

their role in it. Participants were allowed to participate in the experiment only after their 

consent had been obtained through a signed consent form. 

5.2 Game Design 

Two computer games were designed and implemented to evoke varying intensities 

of anxiety from the participants. Physiological data from participants were collected 

during the experiments. The two games consisted of solving anagram and playing Pong. 

The anagram game has been previously employed to explore relationships between both 

electrodermal and cardiovascular activity with anxiety (Pecchinenda & Smith, 1996). 

Emotional responses were manipulated in this game by presenting the participants with 

anagrams of varying difficulty levels, as established through pilot work. An optimal mix 

of solvable anagrams caused low level of anxiety at times. Unsolvable or extremely 

difficult anagrams and giving time deadlines generated anxiety. In Pong sessions the 

participants played a variant of the classic computer game “Pong”. This game has also 

been used in the past by researchers to study anxiety and performance (Brown et al., 

1997). Various parameters of the game were manipulated to elicit anxiety. These 

included ball speed and size, paddle speed and size, sluggish or over-responsive keyboard, 

and random keyboard response. The anxiety levels ranged from a low level of anxiety 

caused by a low ball speed and large sizes of the ball and the paddle, to high level of 

anxiety caused by a very high ball speeds and sluggish or over-responsive keyboard. 
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Each game session was subdivided into a series of discrete epochs that were 

bounded by self-reported affective state assessments. During the assessment, participants 

reported their perceived level of anxiety on a pop-up dialog box. It occurred every 3 

minutes for the anagram game and every 2-4 minutes for the Pong game. This 

information was collected using a battery of self-report questions rated on a nine-point 

Likert scale where 1 indicated the lowest level and 9 indicated the maximum level. The 

reported level of anxiety were labeled and used for affective modeling in Phase I and 

assessing the real-time prediction performance of affective model in Phase II. 

Based on a previous pilot study, different configurations of game parameters were 

determined to vary the difficulty level. During piloting, participants played a number of 

epochs of each game with selected configurations. After each epoch, the difficulty of the 

configuration perceived by them (on a nine-point Likert scale) were reported and 

recorded, as well as their performances, such as the number of correct answers for 

anagram game and the number of balls that they successfully hit in Pong game. After the 

piloting was over, these results were compiled to determine the perceived difficulty level 

of each configuration. The configurations were sorted and grouped according to their 

difficulty ratings. It was found that there were three distinct clusters of configurations that 

were well separated along the difficulty scale. These clusters were named Levels I, II and 

III, in the increasing order of difficulty. The averaged performance of participants for a 

given configuration was used to determine the threshold for that configuration.  

In Phase II study, Pong game was used to study the impacts of an affect-based 

mechanism and a performance-based DDA mechanism to the gaming experience. The 

target number of hits (TNH) was defined as 10% higher than the average across the 
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thresholds of all configurations for a given difficulty level. After each epoch was over, 

the participant's performance was rated as excellent ( 1.2hits TNH⎢ ⎥⎣ ⎦≥ ), good 

( 0.8 1.2TNH hits TNH⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦≤ < ) or poor ( 0.8hits TNH⎢ ⎥⎣ ⎦< ).  

5.3 Phase I: Affective Modeling 

In order to obtain physiological data to build affective models, the experiment in 

Phase I were designed to elicit varying intensities of the target affective state in 

participants as they played the computer games. We only provide brief but necessary 

information regarding affective modeling here. A detailed description of Phase I work 

can be found in (Rani et al., 2006). The training data set consisted of labeled self-reports 

of anxiety and various features (as described in Section 3) that were extracted off-line 

from the collected physiological data. The affective model was developed using the 

Regression Tree method. Each participant took part in a total of six sessions – three 

anagram game sessions and three pong game sessions. Each session was approximately 

one hour long and consisted of 16 epochs on an average. An epoch was a 2 - 4 minutes 

followed by self-reporting that usually lasted for an interval of 30 seconds to 1 minute. 

After the self-reporting the next epoch would begin. At the beginning of each session, 

baseline physiological signals were recorded in order to offset day-variability. Phase I 

study spanned a period of about two months. 

In order to develop affective model, we built mappings from the extracted 

physiological features to the intensity (i.e., low/medium/high) of anxiety. This mapping 

was cast as a classification problem. The training datasets were formed by merging 

physiological features and self-reports of the participants as shown in Figure 1. The 

physiological data and self-reports were recorded in two separate files at the time of 
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experiment. Later, the physiology data file was partitioned into the data blocks pertaining 

to every epoch in a separate file. Then, each epoch file was processed to extract the 

relevant features from the physiology data. The reports on anxiety was normalized to [0, 

1] and then discretized such that 0–0.33 was labeled low, 0.34–0.67 was medium and 

0.68–1.0 was labeled high. During the experiment, a total of 15 datasets were collected 

(one for each participant). Each dataset has n  ( 96n ≈ ) data vectors. The prediction 

accuracy of the developed model was evaluated by the leave-one-out cross validation 

method. Results of affective modeling can be found in Section 6.1. 

 

 

Figure1. Formation of Data Sets for Affective Modeling 
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5.4 Phase II: Affect-based Dynamic Difficulty Adjustment 

In Phase II, two sessions of Pong game with two different DDA mechanisms were 

conducted for each participant: One in which the game difficulty was adapted based on 

player's performance; and another in which the real-time recognized player's anxiety level 

was employed to alter game difficulty. Phase II study spanned a period of about one 

month. 

 

 

Figure 2. Phase II Experimental Set-up 

5.4.1 Experiment setup 

The set-up for the Pong game, which can adjust difficulty level dynamically based 

on recognized affective state/performance, is shown in Figure 2. The participant played 

the game on computer C1 while his/her physiological data was acquired via the Biopac 

system connected to C2. Physiological signals were transmitted from the Biopac 

transducers to C2 through an Ethernet link at 1000 Hz after being amplified and digitized 
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by the Biopac system. C1 was also connected to the Biopac system via a parallel port, 

through which the game related event markers were recorded along with the 

physiological data in a time-synchronized manner. The serial communication between C1 

and C2 enabled them to communicate with each other. C2 performed the following 

functions: (i) established serial communication with C1 to acquire the performance rating 

of the participant, (ii) acquired signals from Biopac system (that included the 

physiological signals and the event markers), (iii) ran signal processing routines to 

process the physiological data to extract features on-line, and (iv) used affective model 

developed in Phase I to recognize the anxiety level in real-time. Hence C2 could 

determine the affective state of the participant as well as his/her current performance. 

This information along with the knowledge of the current game difficulty was utilized to 

determine the next level of difficulty of the game. There was a serial communication 

protocol established between C1 and C2 that ensured that begin/end of Pong epochs on 

C1 was appropriately synchronized with the physiological data acquisition on C2.  

5.4.2 Experimental design 

Nine out of the fifteen participants who had taken part in Phase I study participated 

in Phase II experiments. Each of these nine participants played a total of two pong 

playing sessions (“Png1” and “Png2”). In Png1, the game difficulty was adjusted based 

on performance without any regard to the anxiety of the participant; while In Png2, the 

game difficulty was changed based on the real-time recognized anxiety level of the 

participant without regard to the performance. 

Each Pong session was approximately 45 minutes long and consisted of 12 epochs 

of 2 minutes each. The remaining time was spent in set-up, attaching sensors, self-reports 
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and taking breaks. After every epoch, the participant reported his/her assessment of one's 

own anxiety on a nine point Likert scale. In addition, at the end of each of the whole 

completed session, the participant answered questions pertaining to their overall 

experience during the entire session on a nine point Likert scale, which included their 

overall anxiety, enjoyment, challenge, and self-evaluation of their performance. These 

questions were asked to determine the aggregate gaming experience of each completed 

session (as described in Section 6.2).  

During any Pong epoch, the game proceeded as follows:  

1) A pop-up dialog box describing the rules of the game and other game-related 

instructions appeared on the game computer. 

2) The participant was notified of the goal (number of minimum hits, maximum 

allowable misses and the time available) via a pop-up dialog box on the game 

computer. 

3) Once the game started, the participant used the up and down arrow keys on the 

computer to control the paddle to hit the moving ball on-screen. 

4) During any given epoch, the number of hits, misses and the number of seconds 

remaining were continuously updated on the bottom panel of the Pong screen. 

5) After each epoch was over, the participant's performance was rated as excellent, 

good, or poor. 

6) The end of a given epoch was followed by an interval of 30 seconds to 1 minute for 

self-reporting. After the self-reporting was completed, the next epoch would begin.  

In Pong game in Phase II, three levels of difficulty - Level I (easy), Level II 

(moderately difficult), and Level III (very difficult) and three levels of performance - 



104 
 

poor, good, and excellent were identified. We also classified anxiety in three levels– low, 

medium and high. Figure 3 and Figure 4 show the state-flow models that were utilized to 

dynamically adjust difficulty level based on performance (P) and anxiety (A), 

respectively.  It can be seen that in the performance-based DDA, excellent performance 

resulted in an increase in the level of difficulty (except when the player was already at the 

highest level), good performance caused the level to remain constant at the current level, 

and poor performance resulted in a decrease in difficulty level (except when the player 

was already at the lowest level). In the affect-based DDA, it can be seen that low anxiety 

resulted in increase in the level of difficulty (except when the player was already at the 

highest level), medium anxiety caused the level to remain constant at the current level, 

and high anxiety resulted in a decrease in difficulty level (except when the player was 

already at the lowest level). 

 

 

Figure 3. State-flow Diagram for Performance-Based DDA 
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Figure 4. State-flow Diagram for Affect-Based DDA 

The following conditions were imposed to avoid bias in data due to habituation, 

session-order, and to deal with day-variability: (i) in order to prevent habituation, at least 

10 days time interval between any two Pong sessions was enforced; (ii) the sessions 

(performance-based and affect-based) were randomized to avoid any bias due to the order 

of sessions; (iii) all the other experimental conditions were kept constant over all sessions. 

6. Results and Discussion  

In this section we first briefly discuss the Phase I result that presents the off-line 

performance of the affective models. We then discuss the Phase II results from real-time 

closed-loop experiments in detail, which are the primary contribution of this work. 

6.1 Phase I: Off-line Affective Modeling 

In Phase I, we performed a comparative assessment of several machine learning 

methods for developing affective models. Figure 5 shows that the mean percentage 
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accuracy (averaged across all the game epochs for all participants) to distinguish between 

different levels of anxiety were 88.5% for RT, 80.4% for KNN, 80.6% for BNT, and 

88.9% for SVM. The results showed that all the above-mentioned methods performed 

well. This was in accordance with the claim of psychophysiologists that there is a distinct 

relationship between physiology and underlying affective states. Among the four 

machine learning techniques that were examined, both RT and SVM gave more reliable 

classification accuracy. However, it should be noted that RT does not require any 

parameter tuning, whereas in the case of SVM, choosing appropriate parameters (e.g., 

regularization parameter and kernel parameters) was imperative (Vapnik, 1998). A 

detailed analysis of the time and space efficiency of RT-based affective modeling can be 

found in our previous work (Rani et al., 2006). Since regression tree technique was 

efficient for anxiety recognition, it was used in Phase II for game difficulty adjustment. 

 

 

Figure 5. Prediction Accuracy forAffective State of Anxiety 
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6.2 Phase II: Comparison of Affect-based DDA with Performance-based DDA in Real-

time Gaming 

The results presented here are based on the validation Pong game sessions: Png1 

(with performance-based DDA) and Png2 (with affect-based DDA). We observed several 

important results that are summarized below. 

• The real-time prediction accuracy of the affective models was high. Once the 

affective modeling is accomplished in Phase I, the model can accept as input the 

physiological features, extracted on-line, and produce as output the probable level of 

anxiety of a participant when he/she is playing the computer game. The average real-time 

prediction accuracy, which represents how closely the on-line physiology-based 

quantitative measure of anxiety level matched with that of the subjective rating of anxiety, 

was 78% across all the 9 participants. Note that our affective model was evaluated based 

on physiological data obtained on-line from a real-time application. However, even then 

this real-time prediction accuracy is comparable to the results achieved through off-line 

analysis as reported in the literature (Kim, Bang, & Kim, 2004; Nasoz et al., 2003; Rani, 

2005).  

• The performance of the majority of the participants improved during the affect-based 

DDA session. The improvement in performance after the performance-based and anxiety-

based sessions was shown in the “Performance” column of Table 2. In each of these 

sessions, the first and the last epoch were identical test epochs and the difference in the 

number of hits of the last and the first epoch gave the performance improvement. As can 

be seen that 7 out of 9 participants showed a greater improvement in performance after 

the affect-based session while 2 did not show any improvement (Participants 5 and 9). 
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Among the 7 participants who showed an improvement in affect-based game adaptation, 

2 participants actually had a degradation of performance during the performance-based 

game adaptation. Using repeated measure ANOVA test, it was observed that the null 

hypothesis (asserting that there was no change in performance between performance-

based and anxiety-based game sessions) could be rejected (p < 0.05). 

Table 2. Perceived anxiety, Performance Improvement, Challenge, and Satisfaction Index (SI) across 
Performance-based (P) and Anxiety-based (A) Sessions 

Performan
ce 

Challenge SI Anxiety Participa
nt ID 

P A P A P A P A 
P1 2 5 5 5 13 13 5 1 
P2 5 10 5 7 13 16 6 4 
P3 1 5 5 7 10 17 6 3 
P4 -3 10 4 5 14 11 2 6 
P5 10 10 7 7 15 19 5 7 
P6 3 6 8 9 22 23 8 5 
P7 22 24 5 7 18 21 8 6 
P8 -6 12 4 5 13 18 7 5 
P9 0 0 4 7 14 16 5 5 

 

• Most participants perceived the game with the affect-based DDA to be more 

challenging than the one with the performance-based DDA. At the end of each completed 

game session, the participants had reported the level of challenge that they had 

experienced and from this self-report, it was seen that most participants perceived the 

game with the affect-based DDA to be more challenging than the one with the 

performance-based DDA (“Challenge” column of Table 2). Except P1 and P5 who 

reported constant challenges across the two sessions, all the other participants reported an 

increase in challenge during the anxiety-based session. Using repeated measure ANOVA 

test, it was observed that the null hypothesis (asserting that there was no change in 
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challenge between performance-based and anxiety-based sessions) could be rejected (p < 

0.01).  

• Most participant perceived that the game with the affect-based DDA to be more 

satisfying than the one with the performance-based DDA. An index called Satisfaction 

Index ( SI ) was defined by combining the values of challenge (C ), enjoyment ( E ) and 

performance appraisal ( P ) reported by the participants at the end of each session.  

SI C E P= + +      (1) 

The SI could be a possible measure of the overall satisfaction of the participant during a 

given game session controlled by either the performance-based DDA or the affect-based 

DDA. There have been many efforts to develop metrics for measuring enjoyment in 

computer games, but no formal standards have yet been developed for evaluating fun, 

enjoyment or satisfaction. Echoing similar opinion, Wiberg (2005) states “research into 

the aspect of user satisfaction has so far been neglected in the research discipline of 

HCI …When discussing fun and entertainment in the context of usability, the most 

closely related notion is ‘user satisfaction’”. In the work by Sweetser and Wyeth (2005), 

the authors present a model of enjoyment based on eight elements -concentration, 

challenge, skills, control, clear goals, feedback, immersion, and social interaction. They 

claim that each of these elements contributes to achieving enjoyment in games. We used 

challenge, skill (as indicated by performance) along with a direct report on enjoyment to 

compute the Satisfaction Index. 

    “SI” column of Table 2 shows the values of SI  during the two game sessions for 

each participant. 7 out of 9 participants reported an increase in the SI during the game 

session with the affect-based DDA. Of the 2 participants who did not report higher 
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satisfaction during the anxiety-based session, P1 reported no change where as P4 reported 

a decrease in overall satisfaction. It should be noted that P4 also reported an increase in 

anxiety during the affect-based session, and P1 reported no change in perceived challenge 

during the two sessions. Using repeated measure ANOVA test, it was observed that the 

null hypothesis could be rejected (p < 0.05). 

• The perceived anxiety-level was reduced for the majority of the participants during 

the affect-based DDA session. The results discussed so far suggest that anxiety-based 

DDA has positively influenced user satisfaction, feeling of challenge, and performance. 

In addition, we were also interested to know how the participant felt about their anxiety 

during gaming. The anxiety of the participants as reported by them (perceived anxiety) at 

the end of the completed affect-based session and the completed performance-based 

session was shown in the “Anxiety” column of Table 2. It can be seen that out of 9 

participants, 6 reported a decrease in anxiety, 2 reported an increase and 1 reported no 

change in anxiety during the anxiety-based session as compared to the performance-

based session. While the majority of the participants felt that they were less anxious when 

playing the game with affect-based DDA, it is interesting to note that no statistically 

significant difference in perceived anxiety was observed between the affect-based 

sessions and the performance-based sessions (p =0.24, repeated measure ANOVA) when 

using the reports of perceived anxiety collected at the end of the session. In order to 

explore the nature of perceived anxiety during the gaming process we analyzed the 

anxiety reports after each epoch, which we believe represent a more accurate record of 

perceived anxiety over the entire game duration. As described in Section 5.4.2, each 

session consisted of 12 epochs and besides the reports at the end of each completed 
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session, a participant also reported his/her assessment of one's own anxiety after every 

epoch. This epoch-based anxiety reports may allow a finer grain analysis on the 

difference of perceived anxiety during the process of the game playing in the two 

conditions (anxiety-based vs. performance-based). A nested random-effect mixed model 

test was performed to evaluate the significance of the anxiety difference between the two 

sessions and it was observed that such difference was statistically significant (mean =3.41 

for affect-based sessions and mean =4.42 for performance-based session, p < 0.01). 

Given the facts that majority of the participants felt less anxious after the affect-based 

sessions and that there was significant differences in the perceived anxiety during the 

game playing process in the two conditions, it suggests that by utilizing the information 

regarding the probable anxiety level of the participant to continuously adapt the game 

difficulty, the affect-based DDA has the potential to impact the gaming experience 

positively and keep the participants in a lower anxiety state.  

7. Conclusions  

In recent years several researchers have investigated dynamic difficulty adjustment 

(DDA) mechanisms to improve game-playing experiences such that the games can be 

automatically tailored to individual characteristics. However, most existing works on 

DDA mechanisms focus on player’s performance as the determining factor. These DDAs 

do not possess the ability of deciphering affective cues of the players. While performance 

assessment is important and useful, affective states of the players can have major impacts 

on the gaming experience. This paper reported our efforts in developing an affect-based 

DDA mechanism to allow a computer game to infer and respond to the affective state 

while interacting with the players. The affective state (e.g., anxiety, in this case) was 
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recognized using psychophysiological analysis. We explored a comprehensive set of 

physiological indices for affective modeling. The gaming experiences of the participants 

were evaluated and compared when a performance-based DDA mechanism and an affect-

based DDA mechanism were applied to the same computer game. This is the first time, to 

our knowledge, that the impacts of an affect-base DDA to player’s interaction with a 

computer game that is capable of physiology-based affect recognition and real-time 

difficulty adjustment in a closed-loop manner has been investigated experimentally. 

Four machine learning methods were investigated to classify the anxiety level. A 

Regression Tree based affective model yielded reliable prediction with approximately 

88% success while the other three approaches also performed competitively. When the 

developed RT-based model was applied in Phase II to recognize the anxiety level during 

the game play in real-time, it gave 78% correct predictions. While relatively less existing 

works investigated affect recognition in real-time applications and while further 

exploration in this direction is needed, this result suggested that physiology-based 

affective modeling provides a promising methodology to objectively quantify player’s 

emotion when interacting with computer games. A systematic experimental study was 

conducted to evaluate the impacts of an affect-based DDA on the game play by 

comparing it with a performance-based DDA. It was observed that 6 out of 9 participants 

showed lower anxiety during the anxiety-based session than in the performance-based 

session, and 7 participants showed a greater improvement in performance during the 

anxiety-based session. 77% of the participants reported more challenging gaming 

experience and the overall satisfaction of gaming was enhanced by the affect-based DDA 

for majority of participants. These results suggest that gaming experience could be 
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enhanced when a computer game is capable of recognizing player’s affective states and 

adjusting game difficulty accordingly. 

Note that the presented work requires physiological sensing that has its own 

limitations. For example, one needs to wear physiological sensors, and use of such 

sensors could be restrictive under certain circumstances. However, given the rapid 

progress in wearable computing, e.g., physiological sensing clothing and accessories 

(Jafari et al., 2005; Sung & Pentland, 2005; Wijesiriwardana et al., 2004), we believe that 

physiology-based affect recognition can be appropriate and useful to achieve affect-

sensitive gaming.  

One limitation of this work is that six one-hour gaming sessions were conducted for 

each participant in order to collect the training data for affective modeling. Further work 

is needed to reduce the length of time and the data for model building so that the affect-

based DDA can be efficiently applied to game applications. The next research goal would 

be to explore the trade-off between prediction accuracy and training set size and 

investigate new machine learning techniques to optimize training data to compensate for 

its scarcity. Active learning (Vijayakumar & Ogawa, 1999) is one method that could hold 

promise for such a purpose. Active learning method can assume some control over what 

next game epoch to be introduced during the affective modeling process to get a more 

informative training point. It is also expected that the required training process would be 

reduced when the player’s physiology is used together with other channels of affect-

related information, such as eye gaze (Prendinger, Ma, & Ishizuka, 2007) and posture 

(Tan, Slivovsky, & Pentland, 2001). The presented work, however, demonstrated the 

feasibility that a player’s affective state can be deciphered from his/her physiological 
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response during gaming and a DDA mechanism can be designed that can adjust the game 

difficulty in real-time based on the affective state information. The experimental 

investigation showed the benefits of such a DDA mechanism. It is expected these results 

will encourage future research into affect-based DDA design for computer games. 

Additionally, besides anxiety, other affective states (e.g., excitement and frustration) are 

also considered to be important in game playing (Gilleade & Dix, 2004; Mandryk, et al., 

2007). While the affective modeling methodology in this work could be used to detect the 

intensity of anxiety, excitement, and frustration simultaneously, more sophisticated 

difficulty adaptation mechanisms would be demanded to incorporate multiple inferred 

affective cues and account for other game playing information of interests, such as the 

player’s performance, his/her personality, and the context and complexity of the game. 

We will investigate fast and robust DDA mechanisms that would permit a computer’s 

adaptive response in the more complex gaming applications and allow the affect-sensitive 

DDA to be adopted in the future computer games. 
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Abstract 

This paper presents a human-robot interaction framework where a robot can infer 

implicit affective cues of a human and respond to them appropriately. Affective cues are 

inferred by the robot in real-time from physiological signals. A robot-based basketball 

game is designed where a robotic “coach” monitors the human participant’s anxiety to 

dynamically reconfigure game parameters to allow skill improvement while maintaining 

desired anxiety levels. The results of the above-mentioned anxiety-based sessions are 

compared with performance-based sessions where in the latter sessions, the game is 

adapted only according to the player’s performance. It was observed that 79% of the 

participants showed lower anxiety during anxiety-based session than in the performance-

based session, 65% showed a greater improvement in performance after the anxiety-

based session and 71% of the participants reported greater overall satisfaction during the 

anxiety-based sessions. This is the first time, to our knowledge, that the impact of real-

time affective communication between a robot and a human has been demonstrated 

experimentally.  
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affective computing, anxiety, closed-loop interaction  

1. Introduction 

There has been a steady progress in the field of intelligent and interactive robotics 

over the last two decades ushering in a new era of personal and service robots. The World 

Robotics 2005 survey (http://www.unece.org/press/pr2005/05stat_p03e.pdf) reports that 

over 1,000,000 household robots were in use last year, a number that is anticipated to 

exceed several million in the next few years. As robots and humans begin to co-exist and 

cooperatively share a variety of tasks, "natural" human-robot interaction that resembles 

human interaction is becoming increasingly important.  

Reeves and Nass (1996) have shown that people's interactions with computers and 

similar machines/media are fundamentally social and natural. Human interactions are 

characterized by explicit as well as implicit channels of communication. While the 

explicit channel transmits overt messages, the implicit one transmits hidden messages 

about the communicator (his/her intention, attitude and like, dislike). Ensuring sensitivity 

to the other party’s emotions or sensibility is one of the key tasks associated with the 

second, implicit channel (Cowie, Douglas-Cowie, Tsapatsoulis, Votsis, Kollias, Fellenz 

& Taylor 2001). In this context, research in (Mehrabian & Friar 1969) found that 

approximately 93% of the emotional meaning of a message is communicated implicitly 

through non-verbal channels. Therefore, endowing robots with an implicit 

communication channel and a degree of emotional intelligence should permit more 

meaningful and natural human-robot interaction (Picard 1997).  

The potential applications of robots that can detect a person’s affective states and 
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interact with him/her based on such perception could be varied and numerous.  Whether 

it is the domain of personal home aids that assist in cleaning and transportation, toy 

robots that engage and entertain children, interactive tutoring agents that help students 

learn better, professional service robots that act as assistants in offices, hospitals, and 

museums, or search, rescue and surveillance robots that accompany soldiers and 

firefighters – this novel aspect of human-robot interaction could impact them all. 

For a robot to be emotionally intelligent it should clearly have a two-fold capability - 

the ability to display its own emotions (Fong, Nourbakhsh & Dautenhahn 2003, Kanda, 

Ishiguro, Ono, Imai & Nakatsu 2002) and the ability to understand human emotions and 

motivations (also referred to as affective states). There are several works that focus on 

making robot display emotions just like human beings – usually by using facial 

expressions and speech (Breazeal & Aryananda 2002, Haritaoglu, Cozzi, Koons, Flickner, 

Yacoob, Zotkin & Duriswami 2001, Hoffman & Breazeal 2004, Kanda, Ishiguro, Ono, 

Imai & Nakatsu 2002). We do not address this issue in this paper. Our work is 

complementary to this body of research. The focus of our work is to address the later 

capability, i.e., how to endow a robot with the ability to recognize human affective states. 

Specifically, in this work, we choose anxiety to be the target affective state that the robot 

must detect and be responsive to.  

There are several modalities such as facial expression (Bartlett, Littlewort, Fasel & 

Movellan 2003), vocal intonation (Lee & Narayanan 2005), gestures and postures (Kapur, 

Kapur, Naznin, George & Peter 2005, Kleinsmith, Fushimi & Bianchi-Berthouze 2005, 

Kleinsmith, Ravindra De Silva & Bianchi-Berthouze 2005), and physiology (Picard, 

Vyzas & Healy 2001)  that can be utilized to determine the underlying affective state of a 
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person interacting with the robot. In this work, we choose physiology to infer affect due 

to several reasons.  Physiological phenomena have been reliably correlated with affective 

states in the psychophysiology literature (Bradley 2000). Physiological modality 

circumvents several limitations of the vision and speech based methods. One of the chief 

advantages of using physiology is that physiological signals are continuously available 

and are not dependent on overt emotion expression.   Hence, physiology-based affect 

detection could be very useful in situations where it is not possible to continuously 

monitor facial expressions of a person or in scenarios where a person’s speech is not 

available to interpret his/her underlying emotion.  Unobtrusive, small, wireless 

physiological sensors may be an ideal solution in these cases for real-time affect 

monitoring. Physiology is usually not under voluntary control and hence provides an 

undiluted assessment of the underlying affective state. It is also reasonably independent 

of cultural, gender and age related biases (Bradley 2000). This is, of course, not to say 

that physiological sensing does not have its own limitations. One main limitation is that 

one needs to wear physiological sensors. It may not be possible to do so under certain 

circumstances. In addition, the body part where such sensors are placed may not be fully 

functional. However, we believe that there are many situations where physiology-based 

implicit communication could be appropriate and useful. 

While concepts from psychophysiology have been applied to human-computer 

interaction for many years now, the application of this technique in robotics domain is 

relatively new (Kulic & Croft 2003). Our preliminary work in (Rani, Sarkar, Smith & 

Kirby 2004) presented concepts and initial open loop results for a natural and intuitive 

human-robot interaction framework based on detection of human affective states from 



124 
 

physiological signals. 

In this paper, we choose anxiety to be the target affective state that the robot must 

detect and be responsive to. Anxiety is chosen for two primary reasons. First, anxiety 

plays an important role in various human-machine interaction tasks that can be related to 

task performance (Brown, Hall, Holtzer & Brown 1997, Hirata 1990). Second, the 

correlation of anxiety with physiology is well established in psychophysiology literature 

(Rohrmann, Hennig & Netter 1999) thus, providing a scientific basis to infer it. 

The primary objective of this research is to investigate how human-robot interaction 

can be augmented by closed-loop implicit affective communication. In order to achieve 

this objective, we divide the research into several components: i) designing a human-

robot task that can elicit anxiety in the participant; ii) implementing signal processing and 

machine learning techniques for anxiety detection; and iii) designing a robot control 

architecture that can respond to participant’s anxiety. In this paper, we omit a discussion 

on signal processing and machine learning techniques for anxiety detection, which can be 

found in our previous work (Liu, Rani & Sarkar 2005, Rani, Liu, Sarkar & Vanman 

2006). We also do not discuss details of the control architecture here. Instead, we present 

stateflow diagrams based on which the robot controller interacts with the human. We 

mostly focus on the human-robot interaction task design and its experimental evaluation 

in this paper. More specifically, we want to investigate whether such implicit 

communication facilitates the interactive learning (e.g., achieving the desired skill in a 

more affect-sensitive and individual-specific manner through closed-loop interactions). 

Emphasis has been placed on the design of computer-based interactive learning 

environment. To the best of our knowledge, learning with a robot that is capable of 
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physiology-based emotion recognition and real-time behavior adjustment in closed 

interaction loop has not been done before.  

The paper is organized as follows: the related literature survey is contained in 

Section 2. Section 3 briefly describes the physiological indices and learning algorithm 

used for detecting affective cues in human-robot interaction. In Section 4, the tasks that 

were utilized for model building are described. Section 5 presents in detail the human-

robot closed-loop interaction task. This is followed by a detailed results and discussion 

section (Section 6). Finally, Section 7 summarizes the contributions and conclusions of 

the paper and provides the future directions of research. 

2. Related Research 

In this section, we give a brief overview of the research in psychophysiology aimed 

at detecting human mental state, as well as past work in interactive learning. 

There is a rich history in the human factors and psychophysiology literature to 

understand occupational stress, operator workload (Kramer, Sirevaag & Braune 1987), 

operator mental effort (Vicente, Thornton & Moray 1987) and other similar mental states 

based on physiological measures such as those derived from electromyography (EMG), 

electroencephalography (EEG), and heart rate variability (HRV). Multiple 

psychophysiological measures such as HRV, EEG, blink rates and others have been used 

jointly in recent years to assess pilots’ and drivers' workload (Wilson 2002). Heart period 

variability (HPV) has been shown to be an important parameter for assessing mental 

workload relevant in human-computer interface (HCI) (Iszo, Mischinger & Lang 1999). 

In our previous work (Rani, Sarkar, Smith & Kirby 2004) we have shown the relationship 

between anxiety and several physiological parameters like HRV, facial EMG, skin 
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conductance, blood pulse volume, and peripheral temperature. Prinzel et al. have studied 

the effect of an EEG based adaptive automation on tracking performance and workload 

(Prinzel, Freeman, Scerbo, Mikulka & Pope 2003). In another work by Nasoz et al. 

(Nasoz, Ozyer, Lisetti & Finkelstein 2002), physiological signals such as galvanic skin 

response, heartbeat, and temperature were utilized to create a multimodal Affective 

Driver Interface for the drivers of the future cars. Kulic et al. discuss their approach to 

estimate intent for human-robot interaction in (Kulic & Croft 2003). They focus on the 

two aspects of intent namely attention and approval, where attention was measured 

through gesture recognition and eye gaze tracking and approval was measured through 

facial expressions and physiological signals. Operator physiological response was also 

studied by Hanajima et al. who investigated the impact of robot motion on operator's 

HRV and electrodermal activity (Hanajima, Ohta, Hikita & Yamashita 2005). 

Interactive learning has been the focus of research in recent years. Many works 

involve assessing a learner's affective state during automated tutoring sessions. In (Conati 

2002), focus is on improving user interaction in educational computer games by 

achieving a trade-off between engagement and learning. In  (Graesser, Wiemer-Hastings, 

Wiemer-Hastings & Kreuz 1999), AutoTutor - a computerized tutor has been developed 

which serves as a learning scaffold to assists students by simulating the discourse patterns 

and pedagogical strategies of a human tutor. Kapoor et al. in (Kapoor, Mota & Picard 

2001) present preliminary work done in the area of developing a Learning Companion, a 

computer-based system that is responsive to the affective aspects of a learner. 

3. Physiological Indices and Learning Algorithm  

There is good evidence that the physiological activity associated with the affective 
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state can be differentiated and systematically organized. The transition from one affective 

state to another, for instance, from relaxed to anxiety state is accompanied by dynamic 

shifts in indicators of Autonomic Nervous System (ANS) activity. In our work, we used 

this relationship between physiological response and underlying affective states to 

develop an affect-recognition system. The physiological signals we examined are: 

various features of cardiovascular activity, including interbeat interval, relative pulse 

volume, pulse transit time, heart sound, and pre-ejection period; electrodermal activity 

(tonic and phasic response from skin conductance); and electromyogram (EMG) activity 

(from Corrugator Supercilii, Zygomaticus, and upper Trapezius muscles).  These signals 

were selected because they can be measured non-invasively and are relatively resistant to 

movement artifacts.  

Multiple features (as shown in Table 1) were derived for each physiological measure. 

Some of these features are described in our previous work (Rani, Liu, Sarkar & Vanman 

2006). “Sym” is the power associated with the sympathetic nervous system activity of the 

heart (in the frequency band 0.04-0.15 Hz.). “Para” is the power associated with the 

parasympathetic nervous system activity of the heart (in the frequency band 0.15-0.4 Hz.). 

“VLF” is the power associated with the Very Low Frequency band (less than 0.04 Hz.). 

InterBeat Interval (IBI) is the time interval in milliseconds between two “R” waves in the 

ECG waveform in millisecond. “IBI ECGmean” and “IBI ECGstd” are the mean and 

standard deviation of the IBI. Photoplethysmograph signal (PPG) measures changes in 

the volume of blood in the fingertip associated with the pulse cycle, and it provides an 

index of the relative constriction versus dilation of the blood vessels in the periphery. 

Pulse transit time (PTT) is the time it takes for the pulse pressure wave to travel from the 
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heart to the periphery, and it is estimated by computing the time between systole at the 

heart (as indicated by the R-wave of the ECG) and the peak of the pulse wave reaching 

the peripheral site where PPG is being measured. Heart sound signal measures sounds 

generated during each heartbeat. These sounds are produced by blood turbulence 

primarily due to the closing of the valves within the heart. The features extracted from the 

heart sound signal consisted of the mean and standard deviation of the 3rd, 4th, and 5th 

level coefficients of the Daubechies wavelet transform. Bioelectrical impedance analysis 

(BIA) measures the impedance or opposition to the flow of an electric current through the 

body fluids contained mainly in the lean and fat tissue. A common variable in recent 

psychophysiology research, pre-ejection period (PEP) - derived from impedance 

cardiogram (ICG) and ECG, measures the latency between the onset of electromechanical 

systole, and the onset of left-ventricular ejection. PEP is most heavily influenced by 

sympathetic innervations of the heart.  Electrodermal activity consists of two main 

components - tonic response and phasic response. Tonic skin conductance refers to the 

ongoing or the baseline level of skin conductance in the absence of any particular discrete 

environmental events. Phasic skin conductance refers to the event related changes that 

occur, caused by a momentary increase in skin conductance (resembling a peak). The 

EMG signal from Corrugator Supercilii muscle (eyebrow) captures a person's frowns and 

detects the tension in that region. It is also a valuable source of blink information and 

helps us determine the blink rate. The EMG signal from the Zygomaticus Major muscle 

captures the muscle movements while smiling. upper Trapezius muscle activity measures 

the tension in the shoulders, one of the most common sites in the body for developing 

stress. 
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Table 1. Physiological Indices 

Physiological 
Response 

Features Derived Label 
Used 

Unit of 
Measurement 

Sympathetic power (from ECG) Sym Unit/Square Second 
Parasympathetic power (from ECG) Para Unit/Square Second 
Very Low Frequency Power (from ECG) VLF Unit/Square Second 

Ratio of powers  Sym Para 
Para VLF 
Sym VLF 

No unit 

Mean IBI IBI ECGmean Milliseconds 
Std. of IBI IBI ECGstd Standard Deviation (no 

unit) 
Mean amplitude of the peak values of the PPG signal 
(Photoplethysmogram) 

PPG Peakmean Micro Volts 

Standard deviation (Std.) of the peak values of the PPG 
signal  

PPG Peakstd Standard Deviation (no 
unit) 

Cardiac activity 

Mean Pulse Transit Time PTTmean Milliseconds 

Mean of the 3rd,4th, and 5th level coefficients of the 
Daubechies wavelet transform of heart sound signal 

Mean d3 
Mean d4 
Mean d5 

No unit Heart Sound 

Standard deviation of the 3rd,4th, and 5th level 
coefficients of the Daubechies wavelet transform of 
heart sound signal 

Std d3 
Std d4 
Std d5 

No unit 

Mean Pre-Ejection Period PEPmean Milliseconds Bioimpedance 
Mean IBI IBI ICGmean Milliseconds 
Mean tonic activity level Tonicmean Micro-Siemens 
Slope of tonic activity Tonicslope Micro-Siemens/Second 
Mean amplitude of skin conductance response (phasic 
activity) 

Phasicmean Micro-Siemens 

Maximum amplitude of skin conductance response 
(phasic activity) 

Phasicmax Micro-Siemens 

Electrodermal activity

Rate of phasic activity Phasicrate Response peaks/Second 
Mean of  Corrugator Supercilii activity Cormean Micro Volts 

Std. of Corrugator Supercilii activity Corstd Standard Deviation (no 
unit) 

Slope. of Corrugator Supercilii activity Corslope Micro Volts/Second 
Mean Interbeat Interval of blink activity IBI Blinkmean Milliseconds 
Std. of  Interbeat Interval of blink activity IBI Blinkstd Standard Deviation (no 

unit) 
Mean amplitude of blink activity Amp 

Blinkmean 

Micro Volts 

Standard deviation of blink activity Blinkstd Standard Deviation (no 
unit) 

Mean of Zygomaticus Major activity Zygmean Micro Volts 
Std. of Zygomaticus Major activity Zygstd Standard Deviation (no 

unit) 
Slope. of Zygomaticus Major activity Zygslope Micro Volts/Second 
Mean of Upper Trapezius activity Trapmean Micro Volts 
Std. of Upper Trapezius activity Trapstd Standard Deviation (no 

unit) 
Slope. of Upper Trapezius activity Trapslope Micro Volts/Second 

 
Electromyographic 
activity 

Mean and Median frequency of Corrugator, 
Zygomaticus and Trapezius 

Zfreqmean 

Cfreqmedian 

Tfreqmean etc. 

Hertz 

Mean temperature Tempmean Degree Centigrade 
Slope of temperature Tempslope Degree 

Centigrade/Second 

Temperature 

Std. of temperature Tempstd Standard Deviation (no 
unit) 
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Various signal processing techniques such as Fourier transform, wavelet transform, 

adaptive thresholding, and peak detection, were used to derive relevant features from the 

physiological signals.  All these features are powerful indicators of the underlying 

affective state of the person showing this response. We have exploited this dependence of 

a person's physiological response on affect to detect and identify affective states in real-

time using advanced signal processing techniques. It should be noted that the 

phenomenon of person-stereotypy (different individuals expressing the same emotion 

differently under same contexts) makes it difficult to obtain universal patterns of 

emotions across individuals (Lacey & Lacey1958). For all the participants who took part 

in Phase I (see description in Section 4), it was observed that their physiological 

responses were highly correlated with their underlying affective stated. Any feature 

(derived from physiological signals) with an absolute correlation greater than equal to 0.3 

with a given affective state was considered significant and was selected as inputs of the 

classifiers. In order to overcome person-stereotypy we adopted an individual-specific 

framework where we develop a model for each individual (e.g., we determine the 

physiological pattern of anxiety for each participant) in a Phase I study. In this work, 

regression tree methodology was employed to create a unique regression tree for each 

individual where the splitting threshold at each branch was specific to an individual’s 

physiological response to the affective stressors. Later the same participants are invited to 

participate in a Phase II study where we verify the model developed in Phase I and 

evaluate the effectiveness of the affective feedback in the human-robot interaction task. 

In our earlier work, we compared several machine learning algorithms for affect 

recognition (Rani, Liu, Sarkar & Vanman 2006) and found that regression tree technique 



131 
 

was most efficient. In this work, we use regression tree for anxiety detection. 

Determining a person's probable anxiety level from his/her physiological response 

resembles a classification problem where the attributes are physiological features and the 

target function is anxiety level. The chief challenge in doing this was the complex nature 

of input physiological data sets. This complexity was primarily due to (i) high 

dimensionality of the input feature space (there are currently 46 features), (ii) mixture of 

data types, and (iii) nonstandard data structures. Additionally, a few physiological data 

sets were noisy where the biofeedback sensors had picked up movement artifacts. These 

data sets had to be discarded, resulting in the missing attributes. Tree structured 

classification (Breiman, Friedman, Olshen & Stone 1984) and regression techniques (also 

referred to as "decision tree techniques") have been frequently used to handle problem 

domains with the above-mentioned data complexity and discrepancies. Classification 

And Regression Trees (CARTs) have been extensively applied in the medical field 

(Kokol, Mernik, Završnik, Kancler & Malčic 1994). Important applications include 

diagnosing heart attacks, cancer diagnosis, and classification of age by gait measurement. 

Since the affect detection task resembles such classification problems, regression tree 

methodology was employed to develop a classification model for anxiety detection.   

While creating such regression trees, two primary issues exist: (i) Choosing the best 

attribute to split the examples at each stage, and (ii) Avoiding data over fitting. Many 

different criteria could be defined for selecting the best split at each node. In this work, 

Gini Index function was used to evaluate the goodness of all the possible split points 

along all the attributes (Breiman, Friedman, Olshen & Stone 1984). Trees were pruned 

based on an optimal pruning scheme that first pruned branches that gave the least 



132 
 

improvement in error cost. Pruning was performed to remove redundant nodes as bigger, 

overfitted trees have higher misclassification rates. 

4. Phase I: Tasks for Model Building 

In order to obtain physiological data to build models, 15 participants were presented 

with two computer tasks that elicited various affective states. These two tasks consisted 

of an anagram solving task and a Pong playing task. The anagram-solving task has been 

previously employed to explore relationships between both electrodermal and 

cardiovascular activity with mental anxiety (Pecchinenda, & Smith 1996). Emotional 

responses were manipulated in this task by presenting the participant with anagrams of 

varying difficulty levels, as established through pilot work. The Pong session consisted of 

a series of epochs each lasting up to 4 minutes, in which the participant played a variant 

of the early, classic video game “Pong”.  This game has also been used in the past by 

researchers to study anxiety, performance, and gender differences Brown, Hall, Holtzer 

& Brown 1997). Various parameters of the game were manipulated to elicit required 

affective responses. These included ball speed and size, paddle speed and size, sluggish 

or over-responsive keyboard and random keyboard response.  

Each session was subdivided into a series of discrete epochs that were bounded by 

self-reported affective state assessments. During the assessment, participants reported 

their perceived subjective emotional states. This information was collected using a 

battery of five self-report questions rated on a ten-point Likert scale. These questions 

inquired about the level of engagement, anxiety, anger, frustration and challenge 

perceived by the participant after each epoch. These psychological states play an 

important role in human-machine interaction. The affective states identified above were 
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mainly chosen from the domain of negative affective states since they can be more 

closely related to performance and mental health of humans while working with 

machines. Discussion with Psychologists, review of research works done in 

psychophysiology and human factors, and preliminary piloting was instrumental in this 

phase of work. The important role played by these five affective states in human-robot 

interaction is discussed in (Rani 2005). Self-reports were used as reference points to link 

the objective physiological data to participants’ subjective affective state. These 

assessments occurred every 3 minutes for anagram-solving and every 2-4 minutes for 

pong-playing. The participants reported their affective state on a scale of 0-9 where 0 

indicated the lowest level and 9 indicated the maximum level.  

Each participant took part in six sessions of the above two tasks – three one hour 

sessions of solving  anagrams and three one hour sessions of playing Pong. These 

sessions spanned a period of one month. At the beginning of each session, baseline 

physiological signals were recorded in order to offset day-variability. At the end of Phase 

I study, we developed models for each participant that would predict a probable affective 

state (e.g., anxiety) based on their physiological markers. 

The training datasets were formed by merging physiological data and self-reports of 

the participants. Figure 1 shows the procedure for merging the data to form an input-

output set. The physiological data and self-reports were recorded continuously in two 

separate files at the time of acquisition. Later, the physiology data file was processed to 

extract the data pertaining to every epoch in a separate file. Then, each epoch file was 

again processed to extract the relevant features from the physiology data. Now, there was 

a set of physiological features pertaining to every epoch (say a vector of length p) and a 
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vector of self-reported emotions pertaining to the same epoch (say a vector of length q).  

 

 

Figure 1. Formation of Data Input and Output Sets 

The data-set formed by merging these two separate sets of information resembles a 

mxn matrix, where the first p columns represent the physiological features and the last q  

columns represent the self-reports (n= p+q). Each row corresponds to a separate epoch 

(m such epochs). The self-reports were normalized to [0, 1] and then discretized such that 

0–0.33 was labeled low, 0.34–0.67 was medium and 0.68–1.0 was labeled high. 

Four machine learning techniques – K Nearest neighbor (KNN), Regression Tree 

(RT), Bayesian Networks (BNT), and Support Vector Machines (SVM) were used to 
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perform affect-recognition from the data sets that were formed above. The objective was: 

given a set physiological features, each labeled as an indicator of a particular level of 

arousal of a given affective state, determine the performance of the four learning 

techniques in predicting the class of unseen instances. It was found that SVM with a 

classification accuracy of 85.8% performed the best, closely followed by RT (83.5%), 

KNN (75.1%) and BNT (74.0%). Using informative features (the ones that were highly 

correlated with the affective states) improved the performance for KNN and BNT by 

almost 4%. In terms of space and time efficiency, RT ranked higher than the other three 

methods, hence was a natural choice as the machine learning technique used in this work. 

5. Phase II: Closed Loop Human Robot Interaction  

In this section, we describe in detail the various aspects of the human-robot 

interaction experiment that was designed to evaluate the effect of the implicit affective 

communication. 

5.1 Participants and Basketball Task 

5.1.1 Participants 

Fourteen individuals (8 females, and 6 males) volunteered to participate in the 

experiments. Out of these, nine of them had also participated in the Phase I experiments. 

Their age ranged from 18 to 54 years of age. They were from diverse professional and 

ethnic backgrounds. Ideally, we would have liked to have all the participants from Phase 

I study participate in the Phase II experiments. However, some of the participants were 

not available during the Phase II study. Due to the nature of the tasks, the following were 

considered when choosing the participants: (i) fluency in English (to follow task 
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instructions), and (ii) general health (the absence of any problem in hearing or sensing, 

and being able to use their arms and hands). 12 of them were right-handed and 2 of them 

were left-handed. Participants were solicited through phone, emails and flyers posted 

around the Vanderbilt University area. They were given monetary compensation for their 

voluntary participation. 

 

 

Figure 2. X, Y and Z direction motions of robot arm 

5.1.2 Basketball Task 

We designed a human-robot interaction task that could be used to evaluate the effect 

of implicit affective communication. We named this task as “robot-based basketball 

(RBB) task”.  In the RBB task, a basketball hoop was attached to a robotic manipulator 

that could move the hoop in different directions with different speeds. The manipulator is 
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shown in Figure 2. There were three directions of motion for the robotic manipulator: X, 

Y, and Z directions. There were three speeds of motion – 100cm/sec, 50 cm/sec and 25 

cm/sec. The player was required to shoot a required number of baskets into the moving 

hoop within a given time. The difficulty of the task could be varied by controlling 

parameters such as the manipulator speed and direction of motion. Based on a pilot study, 

different configurations of speed and motion were determined to vary the game difficulty. 

The three speeds of the robotic manipulator and the three directions of motion were 

permuted to get nine configurations. During piloting, participants were made to play 

fixed intervals of each of these configurations. After each epoch, they reported on the 

difficulty of the game as perceived by them (on a 10 point Likert scale). The numbers of 

baskets that they attempted, successfully made, and missed were also recorded. After the 

piloting was over, these results were compiled to determine the perceived difficulty level 

of each configuration. Then the configurations were sorted and grouped according to 

their difficulty ratings. It was found that there were three distinct clusters of 

configurations that were well separated along the difficulty scale. These clusters were 

named Levels I, II and III, in the increasing order of difficulty. The average number of 

baskets made by the participants for a given configuration was used to determine the 

threshold for that configuration. The threshold was 10% higher than the average of all 

configurations for a given level. 

The game difficulty could be varied as a function of the player's affective states (in 

this case, anxiety). The main idea was two-fold: (i) to adapt the game difficulty in 

response to a player’s anxiety level such that each player could play the game at a low 

anxiety level; and (ii) to observe the effects of such implicit human-robot interaction 
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aimed at reducing the player's anxiety and improving the player’s performance. The 

relative difficulties of various trial configurations were established through pilot work. 

During the sessions, the participant's physiology was monitored with the help of wearable 

biofeedback sensors. After each epoch, (1.5 minutes duration) the participants reported 

their perceived subjective emotional states. 

5.2 System Development  

In order to develop the RBB task for real-time implementation we spent significant 

efforts in both hardware and software development. The system developed for the robot-

based basketball game is shown in Figure 3. 

 

 

Figure 3. Experimental Set-up for Robot Basketball 

The set-up included a 5 degrees-of-freedom robot manipulator (CRS Catalyst-5 
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System http://www.quanser.com) with a basketball hoop attached to its end-effector. Two 

sets of infrared (IR) transmitter and receiver pairs were attached to the hoop to detect 

balls going through the hoop. The set-up also included the biological feedback equipment 

(Biopac system http://www.biopac.com) that collected the physiological signals of the 

participant and the digital out from the IR sensors. The Biopac system was connected to a 

PC (C1) that: (i) acquired physiological signals from the medical equipment; (ii)  

acquired IR data through the analog input channels of the Biopac system; and  (iii) ran 

signal processing and pattern recognition algorithms to process the physiological data to 

extract features and recognize anxiety level, and (iv) ran a program to fuse the affective 

information or the performance measure with current epoch configuration to determine 

the next epoch configuration.  

C1 was connected serially to the CRS computer (C2) running Simulink. The task 

related triggers were transmitted from C1 to C2 via a RS232 link. The robot commands to 

control the various joints were transmitted from C2 to the robot. There was a 

communication protocol established between C1 and C2 that ensured that begin/end of 

the basketball epochs was appropriately synchronized with the physiological data 

acquisition on C1.  

5.3 Experimental Design  

Out of the 14 participants, 9 had taken part in Phase I experiments. As a result, the 

models to predict their probable affective states were already built based on the Phase I 

data. In the task design of robot-based basketball, adequate measures were taken to avoid 

physical effort from overwhelming the physiological response. The physiological sensors 

were placed on the non-dominant hand and side of the body of the participant. Test trials 
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were conducted to check if the models build using training data from anagram solving 

task and a Pong playing task could be used to interpret and classify data from the 

basketball game. It was found that this could be done successfully. Similar conclusions 

were reached by Leon et al in (Leon, Clarke, Callaghan & Sepulveda 2007), where it was 

shown that physiological data collected from individuals with variable affect intensity or 

experiencing variable physical exertion could be successfully used to classify positive 

and negative affective states.  The models for the other 5 participants had to be developed 

in Phase II experiments as described later. Each of these 14 participants took part in two 

robot basketball sessions (BB1 and BB2). In BB1 the robot changed the difficulty of the 

game based on performance without any regard to the anxiety level of the participant. In 

BB2, the game difficulty was changed based on the anxiety level of the participant 

without regard to the performance. Each basketball session was approximately 35 

minutes long and consisted of 10 epochs of 1.5 minutes each. The remaining time was 

spent in setting-up, attaching sensors, self-reporting and taking breaks. During any given 

basketball epoch, the procedure was as follows: 

• The participant was notified of the goal (number of baskets to be made and the 

time available) via speech on C1 

• A start/stop command was played to instruct the player how to start and stop the 

game via speech on C1 

• Once the epoch started, the participant was given feedback every 30 seconds 

regarding the number of baskets remaining and the time available via speech on 

C1 
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• After each epoch was over, the participant's performance was rated as excellent, 

above average or below average and informed to the participants via speech on 

C1 

• This was followed by an interval of self-reporting. The self-reporting lasted for 30 

seconds to 1 minute. After the self-reporting was completed, the next epoch 

would begin.  

Three levels of difficulty were designed - Level I (easy), Level II (moderately 

difficult) and Level III (very difficult) - based on pilot study. Furthermore, three levels of 

performance, poor, good and excellent, were identified as well as three levels of anxiety 

were defined – low, medium and high. Figure 4 and Figure 5 show the stateflow models 

that were utilized to switch difficulty based on performance (P) and anxiety (A), 

respectively.  It can be seen that when the switching between different difficulty levels 

was based on performance, excellent performance resulted in increase in the level of 

difficulty (except when the player was already at the highest level), good performance 

caused the level to remain constant at the current level, and poor performance resulted in 

decrease in difficulty level (except when the player was already at the lowest level). 

Similarly, it can be seen that when the switching between different difficulty levels was 

based on anxiety, low anxiety resulted in increase in the level of difficulty (except when 

the player was already at the highest level), medium anxiety caused the level to remain 

constant at the current level, and high anxiety resulted in decrease in difficulty level 

(except when the player was already at the lowest level). 
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Figure 4. Stateflow Diagram for Performance-Based Modification of Game Difficulty 

 

 

Figure 5. Stateflow Diagram for Anxiety-Based Modification of Game Difficulty 

The following conditions were imposed to avoid bias in data due to habituation, 

session-order, and to deal with day-variability: 

• In order to prevent habituation at least 10 days time interval between any two BB 

sessions was enforced. 
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• The sessions (performance-based and anxiety-based), were randomized to avoid 

any bias due to the order of sessions. 

• All the other experimental conditions were kept constant over all sessions 

In addition to these 9 participants from Phase I study, there were 5 new participants 

who engaged in six sessions each. Data from the first four sessions was utilized to build 

the affect-prediction model and the last two sessions were anxiety-based and 

performance-based sessions for these new participants. Each participant took part in four 

basketball sessions during which training data was collected. Each session was composed 

of 10 individual epochs of varying difficulty followed by an interval of self-reporting. 

The procedure was similar to the previous anagram and pong sessions (as described in 

Section 4). The participants’ physiological data was linked with their self-reports and 

these datasets were utilized to build individual-specific affect-prediction models. 

The Institutional Review Board (IRB) approval was sought and received for 

conducting these experiments. In the IRB application, all details of the experiment were 

reported and it was emphasized that the health and safety of the participants was by no 

means endangered by participating in these experiments. It was also mentioned that the 

maximum anxiety that the participants could experience was no greater than what they 

could experience while playing a difficult video game. A detailed consent form was also 

drafted that acquainted the participants with the experimental procedure and their role in 

it. They were also briefed by the experimenter about the physical as well as mental 

aspects of the experiment. Participants were allowed to participate in the experiment only 

after their consent had been obtained through a signed consent form. 
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5.4 Experimental Procedure  

On arrival, the participant was taken to the experiment room where he/she would be 

seated in front of the robot where the tasks were presented. During the first session, the 

participants were told about the sensors – their purpose, the method of attaching sensors 

(non-invasive and unobtrusive) and their safety. Then, the sensors were attached to the 

participant's body. The signals being monitored included – electrocardiogram, 

phonocardiogram, bio-impedance, photoplethysmogram, skin conductance, peripheral 

temperature, and electromyogram (Corrugator Supercilii, Zygomaticus Major and upper 

Trapezius).   

After the sensors were placed, the participants were given some leisure reading 

material and asked to relax for 5 minutes while their baseline reading was taken. After the 

baseline recording was completed, the experimenter started the session after briefing the 

participant regarding the rules of the task and general procedure. Once the session started, 

the participant was not disturbed for the rest of the session.  After every epoch, the 

participant reported regarding his/her assessment of one's own emotion on a ten point 

Likert scale. There were a total of 5 questions, each of which inquired about the level 

engagement, anxiety, anger, frustration and challenge. At the end of each session, the 

participant answered questions pertaining to their overall experience during the entire 

session. This included their overall enjoyment, challenge and self-evaluation of their 

performance. These questions were asked to determine the aggregate player experience at 

the end of each session. These self-reports were used to compute the overall player 

satisfaction after playing for ten or so epochs. This helped us in determining if any one 

strategy scored over another in giving higher satisfaction to the player. After the session 
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was over, the experimenter would unhook the sensors from the participant. 

6. Results and Discussion  

Fourteen participants took part in the robot basketball task. The results presented 

here are based on the validation sessions BB1 (performance-based) and BB2 (anxiety-

based).  

 

 

Figure 6. Subjective Anxiety as Reported by Participants 

First, we present results to demonstrate that active monitoring of participants’ 

anxiety and dynamic reconfiguration of epoch parameters allowed participant skill 

improvement while maintaining desired anxiety levels. Figure 6 shows the average 

anxiety of the participants as reported by them (perceived anxiety) during the two 

sessions. The lighter bars indicate the anxiety level during the performance-based 

sessions and the darker bars show the anxiety level during the anxiety-based sessions. It 
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can be seen that out of 14 participants, 11 reported decrease in perceived anxiety, 1 

reported an increase (P13) and 2 reported no change in anxiety (P9 and P14) during the 

anxiety-based session as compared to the performance-based session. The anxiety level 

was reported by the participants on a nine point Likert scale (0-9, where 0 indicated no 

anxiety and 9 indicated extremely high anxiety). This was a significant result as the 

anxiety-based sessions utilized the information regarding the probable anxiety level of 

the participant to continuously adapt the task difficulty to keep the participant in a lower 

anxiety state. The majority of the participants felt that they were less anxious when 

playing the anxiety-based game. In order to understand whether the difference in reported 

anxiety between the performance-based and the anxiety-based sessions are statistically 

significant we tested the null hypothesis that there was no change in anxiety between the 

performance-based and the anxiety-based sessions. Using Chi-square test, it was 

observed that the null hypothesis could be rejected at 99.99% confidence interval. 

Anxiety was also calculated based on physiology for each epoch for each participant. 

The average real-time predictive accuracy across all the 14 participants was 

approximately 70%. Predictive accuracy represents how closely physiology-based 

quantitative measure of anxiety matched with that of the subjective rating of anxiety 

made by the participants.  

Now we present results that show the performance of the participants in BB1 and 

BB2. Figure 7 shows the difference in performance between the performance-based and 

affect-based sessions. The lighter bars indicate performance in performance-based 

sessions and darker bars indicate performance in anxiety-based sessions.  Performance 

during any given session was determined by computing the average performance across 
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all the epochs in that session. For example if there were n epochs in a session, and the 

performance in the ith epoch was perfi, then the performance (P) in that session would be: 

( )1

1 n
ii

P perf
n =

= ∑      (1) 

Performance in a given epoch (perfi) was computed with respect to a threshold value 

that was determined during the pilot study. For instance, if in a given epoch i, a player 

playing at level k ( {1,2,3}k∈ ), makes Bi number of baskets, when the threshold for that 

level is Tk, the performance of that player in that epoch i would be computed as shown 

below. 

*100i k
i

k

B Tperf
T

⎛ ⎞−
= ⎜ ⎟
⎝ ⎠

    (2) 

Threshold level was different for each level and was determined by the pilot study 

conducted. The value of threshold for a given difficulty level was function of that 

particular difficulty level. Hence, a participant scoring B baskets in Level III would 

register a higher performance than when scoring B baskets in Level I. The aim was to 

allow participants to improve their skill and overall performance level while avoiding 

playing under high stress or anxiety. To avoid rushing the participants through the levels, 

the participants were made to start playing at lower levels and encouraged to steadily 

climb the difficulty level by playing better. 

As seen in Figure 7, it was observed that out of fourteen participants, nine showed 

better performance during the affect-based session, while four had degradation in 

performance (P1, P8, P10, and P13) and one did not show any improvement (P14) during 

the anxiety-based session. In order to determine whether this change in performance was 

statistically significant we performed Chi-square test on the null hypothesis that there was 
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no change in performance between performance-based and anxiety-based sessions. It was 

found that the null hypothesis could be rejected at the 99.99% confidence level.  

 

 

Figure 7. Difference in Performance between the Performance-Based and Affect-Based Sessions 

Out of the nine participants that showed better performance during affect-based 

session, five participants played at a similar or higher difficulty level during the affect-

based session than in the performance-based session. In order to understand whether the 

performance improvement was statistically significant, we performed Wilcoxon rank sum 

test on the two performance vectors – one from the performance-based sessions and the 

other from anxiety-based sessions.  This test performs a two-sided rank sum test of the 

hypothesis that two independent samples come from distributions with equal medians. It 

was found that the null hypothesis could be rejected at the 99.99% confidence level. The 

remaining four participants showed better performance while playing at a lower difficulty 
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level during the affect-based sessions. Of the four participants that showed lower 

performances in anxiety-based sessions, three played at higher difficulty level and one 

played at a lower difficulty level. The one participant who showed no change in 

performance played at a lower level of difficulty level during the anxiety-based session 

than in the performance-based session. 

At the end of each session, the participants reported the level of challenge that they 

had experienced. It was seen that participants did not necessarily perceive the anxiety-

based session to be more challenging than the performance-based one. Figure 8 shows 

challenge as reported by participants after performance-based and anxiety-based sessions. 

Six participants reported an increase in challenge. Eight participants reported either a 

decrease or constant level of challenge across both the sessions. The exact percentages of 

participants reporting increased challenge was 43%, decreased challenge was 28% and 

constant challenge was 29%.  

 

 

Figure 8. Subjective Challenge as Reported by Participants 
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An index called Satisfaction Index (SI) was defined by combining the values of 

challenge (C), enjoyment (E) and performance appraisal (P) reported by the participants 

at the end of each session.  

SI C E P= + +      (3) 

The SI could be a possible measure of the overall satisfaction of the participant 

during a given session controlled by either performance-based or anxiety-based 

mechanism. There have been many efforts in the past to develop metrics for measuring 

enjoyment in games, but no formal standards have been yet developed for evaluating fun, 

enjoyment, or satisfaction. Echoing similar opinion, Wiberg, in her technical report states 

“research into the aspect of user satisfaction has so far been neglected in the research 

discipline of HCI …When discussing fun and entertainment in the context of usability, 

the most closely related notion is ‘user satisfaction’” (Wiberg 2005). In a work by 

Sweetser and Wyeth (2005), the authors present a model of enjoyment based on eight 

elements - concentration, challenge, skills, control, clear goals, feedback, immersion, and 

social interaction. They claim that each of these elements contributes to achieving 

enjoyment in games.  

We used challenge and skill (as indicated by performance) along with a direct report 

on enjoyment to compute the Satisfaction Index. Figure 9 shows the values of the SI 

during the two sessions for each participant. It can be observed that 10 out of 14 

participants reported an increase in the SI during the anxiety-based session. Four 

participants reported a decrease in SI (P8, P10, P12, and P13).  It should be noted that out 

of the nine participants who showed better performance in anxiety-based session as 

opposed to performance-based session, eight participants also reported higher satisfaction 
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index in the anxiety-based session.   

 

 

Figure 9. Satisfaction Index for all the Participants 

On the other hand, out of the four participants who showed better performance in the 

performance-based session, three of them reported higher satisfaction in the performance-

based session. This brings forth the possibility that the participants who performed better 

in performance-based session preferred performance-based task adaptation and 

experienced higher levels of challenge, enjoyment and confidence in their performance 

during these sessions than in the anxiety-based sessions. It was observed that the null 

hypothesis stating that there was no change in satisfaction index between performance-

based and anxiety-based sessions could be rejected at 99% confidence interval using Chi-

square test. 

In summary, the following could be concluded from the robot-based basketball task: 
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• The anxiety-based sessions were successful in reducing the anxiety of the 

participants. 79% of the participants reported a decrease in anxiety, while 7% 

reported an increase in anxiety and 14% reported no change in anxiety level. 

• Anxiety-based task modification also resulted in an improvement in performance 

for the majority of the participants. 64% of the participants showed an increase in 

performance. There was a degradation of performance for 29% of the participants 

and it remained constant for 7% of the participants.  

• The average accuracy of the anxiety prediction system was 70% for the Robot-

Based Basketball task. 42 % of the participants reported an increase in challenge 

in the anxiety-based session and 71% reported an increase in the overall 

satisfaction during the anxiety-based session. 

7. Conclusion and Future Work 

In this paper, we have demonstrated a novel approach to closed loop human-robot 

interaction based on implicit affective communication. The presented approach is based 

on physiology-based affect recognition. We have shown that it is possible for a robot to 

detect human anxiety in real-time as well as appropriately respond to it during an 

interaction task. We have designed a new human-robot interaction task, called robot-

based basketball task, and developed an experimental system for its real-time 

implementation and verification.  Experiments with 14 participants demonstrated that the 

robot could influence (lower) human anxiety for 11 of these participants during the 

course of task execution, which we believe is a significant result. In addition, we have 

found that such anxiety-based game led to higher improvement of performance for 9 of 

these participants. It suggests that the implicit affective communication facilitates this 
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learning task when the participants interact with a robot in a closed-loop manner. Other 

results that are discussed in the paper also seem to indicate the benefit and importance of 

such communication in human-robot interaction.   

Applications of physiology-based affective communication in human-robot 

interaction could be invaluable in providing implicit human information to the robot. 

While physiology can be integrated with other modalities of affect-recognition such as 

facial expressions, vocal intonation, gestures and postures, it could also be employed 

independently to give reliable affect information. Physiology has distinct advantages over 

other modalities, as it is involuntary and continuously available. While wearing multiple 

wired physiological sensors may be a limiting factor, it can be safely assumed that this 

limitation will soon vanish given the fast pace of advancement in wireless and sensor 

technology.    

Future work would consist of expanding the range of tasks and contexts to which 

this framework can be applied to and increasing the reliability and robustness of affect 

recognition. We would also like to work towards increasing the range of affective states 

detected and discriminated beyond anxiety. 
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Abstract 

Generally, an experienced therapist continuously monitors the affective cues of the 

children with Autism Spectrum Disorders (ASD) and adjusts the course of the 

intervention accordingly. In this work, we address the problem of how to make the 

computer-based ASD intervention tools affect-sensitive by designing therapist-like 

affective models of the children with ASD based on their physiological responses. Two 

computer-based cognitive tasks are designed to elicit the affective states of liking, anxiety, 

and engagement that are considered important in autism intervention. A large set of 

physiological indices are investigated that may correlate with the above affective states of 

children with ASD. In order to have reliable reference points to link the physiological 

data to the affective states, the subjective reports of the affective states from a therapist, a 

parent, and the child himself/herself were collected and analyzed. A Support Vector 

Machines (SVM) based affective model yields reliable prediction with approximately 

82.9% success when using the therapist’s reports. This is the first time, to our knowledge, 

that the affective states of children with ASD have been experimentally detected via 

physiology-based affect recognition technique. 
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1. Introduction 

Autism is a neurodevelopmental disorder characterized by core deficits in social 

interaction, social communication, and imagination. These characteristics often vary 

significantly in combination and severity, within and across individuals, as well as over 

time (DSM-IV-TR, American Psychiatric Association, 2000). Emerging research 

suggests prevalence rates as high as approximately 1 in 150 for the broad autism 

spectrum (CDC, 2007). While, at present, there is no single universally accepted 

intervention, treatment, or known cure for Autism Spectrum Disorders (ASD) (NRC, 

2001; Sherer and Schreibman, 2005), there is an increasing consensus that intensive 

behavioral and educational intervention programs can significantly improve long term 

outcomes for individuals and their families (Cohen et al., 2006; Rogers, 1998).  Despite 

the urgent need and societal import of intensive treatment (Rutter, 2006), appropriate 

intervention resources for children with ASD and their families are often difficult to 

access and highly expensive (Tarkan, 2002). Therefore, an important new direction for 

research on ASD is the identification and development of assistive therapeutic tools that 

can make application of intensive treatment more readily accessible. 

In response to this need, a growing number of studies have been investigating the 

application of advanced interactive technologies in intervention of children with ASD, 

namely computer technology, virtual reality (VR) environments, and robotic systems. It 

has been shown that computer and VR based intervention may provide a simplified but 

exploratory interaction environment for children with ASD (Moore et al., 2000; Parsons 

and Mitchell, 2002). Various software packages have been developed and applied to 



160 
 

address specific deficits associated with autism, e.g., understanding of false belief 

(Swettenham, 1996), attention (Trepagnier et al., 2006), expression recognition (Silver 

and Oakes, 2001), and social communication (Bernard-Opitz et al., 2001; Parsons et al., 

2005). Different from using computer software or VR environments, the interaction 

between children with ASD and physical robots during the intervention contributes 

important real-time and embodied characteristics of face-to-face social interaction among 

humans. Robots have been used to teach basic social interaction skills using turn-taking 

and imitation games, and the use of robots as social mediators and as objects of shared 

attention can encourage interaction with peers and adults (Dautenhahn and Werry, 2004; 

Kozima et al., 2005; Pioggia et al., 2005; Robins et al., 2004). In the rest of the paper, we 

will use the term computer to imply both computer and robot assisted ASD interventions. 

Even though there is increasing research in interactive intervention, we found no 

published studies that specifically addressed the automatic detection of affective cues 

exhibited by children with ASD. This gap could be important since research suggests that 

people tend to interact with computers as they might relate to other people, provided that 

the technology behaves in a socially competent manner (Reeves and Nass, 1996). Human 

interactions are characterized by explicit as well as implicit channels of communication. 

While the explicit channel transmits overt messages, the implicit one transmits hidden 

messages about the communicator (e.g., his/her intention and attitude). There is a 

growing consensus that endowing a computer with an ability to understand implicit 

affective cues should permit more meaningful and natural human-computer interaction 

(Picard, 1997). Several computer-based automated tutoring systems have been 

successfully developed that assess and utilize the affective information of typical people 
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(Conati, 2002; Prendinger et al., 2005). It is common in autism therapy that therapists 

who work with children with ASD continuously monitor the children's various affective 

information or cues in order to adapt their intervention strategies. For example, a “likes 

and dislikes chart” is recommended during interventions to record the children’s 

preferred activities and/or sensory stimuli that could be used later as reinforcers and/or 

“alternative behavior” (Seip, 1996). Children with autism are particularly vulnerable to 

anxiety and intolerance of feelings of frustration, which requires a therapist to plan tasks 

at an appropriate level of difficulty (Ernsperger, 2003). The engagement of children with 

ASD is the ground basis for the “floor-time therapy” to help them develop relationships 

and social/communication skills (Wieder and Greenspan, 2005). The existing computer 

assisted therapeutic tools for ASD do not possess the ability of deciphering affective 

information of the children. We believe that such ability could be critical, given that the 

affective factors of children with ASD have significant impacts on the intervention 

practice. 

A computer that can detect the affective states of a child with ASD and interact with 

him/her based on such perception could have a wide range of potential impacts. 

Interesting activities likely to retain the child's attention could be chosen when a low 

level of engagement is detected. Complex social stimuli, sophisticated interactions, and 

unpredictable situations could be gradually, but automatically, introduced when the 

computer has the knowledge that the child is comfortable or not anxious at a certain level 

of interaction dynamics for a reasonably long period of time. A therapist could use the 

history of the child’s affective information to analyze the effects of the therapeutic 

approach. With the record of the activities and the consequent emotional changes in a 
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child, a computer could learn individual preferences and affective characteristics over 

time and thus could alter the manner in which it responds to the needs of different 

children.  

The relative paucity of research that addresses affect detection of children with ASD, 

combined with the import of affect-sensitive intervention assistive systems, underscores 

the need for empirical studies in this area. The primary objective of the present research 

is to develop affective models for children with ASD via a physiology-based affect 

recognition technique while they interact with a computer. In order to achieve this 

objective, we divide the research into several components: (i) to design computer-based 

cognitive tasks for affect elicitation; (ii) to derive physiological features via signal 

processing; (iii) to investigate multiple subjective reports; and (iv) to develop affective 

models by using machine learning techniques.  

The rest of the paper is organized as follows: The scope and research rationale of 

this paper is presented in Section 2. Section 3 describes the physiological indices used for 

affect recognition. In Section 4, we describe the computer tasks designed for affect-

elicitation and the experimental setup. This part is followed by a section with the detailed 

results and discussions (Section 5). Finally, Section 6 summarizes the contributions of the 

paper and outlines the future directions of this research. In addition, the machine learning 

algorithm employed in this study is presented in the Appendix.  

2. Scope and Rationale  

There are several modalities such as facial expression (Bartlett et al., 2003), vocal 

intonation (Lee and Narayanan, 2005), gestures and postures (Asha et al., 2005; 

Kleinsmith et al., 2005), and physiology (Kulic and Croft, 2007; Liu et al., 2006; 
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Mandryk and Atkins, 2007; Nasoz et al., 2003; Picard et al., 2001; Rani et al., 2004) that 

can be utilized to evaluate the affective states of individuals interacting with a computer. 

In this work we chose to create affective models based on physiological data for several 

reasons. Children with ASD often have communicative impairments (both nonverbal and 

verbal), particularly regarding expression of affective states (DSM-IV-TR, American 

Psychiatric Association, 2000; Green et al., 2002; Schultz, 2005). While these 

vulnerabilities place limits on traditional conversational and observational methodologies, 

physiological signals are continuously available and are arguably not directly impacted 

by these difficulties (Ben Shalom et al., 2006; Groden et al., 2005; Toichi and Kamio, 

2003). As such, physiological modeling may represent a methodology for gathering rich 

data despite potential communicative impairments. In addition, physiological data may 

offer an avenue for recognizing aspects of affect that may be less obvious for humans but 

more suitable for computers. Specifically, a computer system may be able to quickly 

implement signal processing and pattern recognition tools to infer underlying affective 

states that a human could not. Furthermore, there is evidence that the transition from one 

affective state to another is accompanied by dynamic shifts in indicators of Autonomic 

Nervous System (ANS) activity (Bradley, 2000). The physiological signals that have 

been used in this research consist of various cardiovascular, electrodermal, 

electromyographic, and body temperature signals, all of which have been extensively 

investigated in the psychophysiology literature (Bradley, 2000). Several researchers in 

the human–machine interaction community have focused on physiology-based affect-

recognition for typical adults. Picard et al. (2001) have employed a combination of 

Sequential Floating Forward Search and Fisher Projection methods to classify eight 
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emotions with 81% accuracy. K-Nearest Neighbors (KNN), Discriminant Function 

Analysis, and Marquardt Backpropagation algorithms were applied to differentiate 

among six emotions by Nasoz et al. (2003), and the correct classification accuracies – 

71%, 74%, and 83%, respectively – were achieved for the three algorithms. In our earlier 

work (Rani et al., 2006), we compared several machine learning algorithms: namely, 

KNN, Bayesian Network, Support Vector Machines (SVM), and Regression Tree for 

determining the intensity of the affective states, and the best prediction accuracy rate 

85.8% was achieved using SVM.  

An important question when estimating human affective response is how to 

operationalize the affective state. Although much existing research categorizes 

physiological signal data into “basic emotions,” there is no agreement on a set of basic 

emotions (Cowie et al., 2001). This fact implies that it requires pragmatic choices to 

select target affective states to be recognized (Cowie et al., 2001). In this research we 

chose anxiety, engagement, and liking as the target affective states. Anxiety was chosen 

for two primary reasons. First, anxiety plays an important role in various human-machine 

interaction tasks that can be related to task performance (Brown et al., 1997). Second, 

anxiety frequently co-occurs with ASD and plays an important role in the behavior 

difficulties of children with autism (Gillott et al., 2001). Engagement, defined as 

“sustained attention to an activity or person” (NRC, 2001), has been regarded as one of 

the key factors for children with ASD to make substantial gains in academic, 

communication, and social domains (Ruble and Robson, 2006). With “playful” activities 

in the learning environments, the liking of the children (i.e., the enjoyment they 

experience when interacting with the computer) may create urges to explore and allow 
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prolonged interaction for the children with ASD, who are susceptible to being withdrawn 

(Dautenhahn and Werry, 2004; Papert, 1993).  

Furthermore there is evidence that the affective state could be an aggregate of 

various affective categories at different arousal levels (Vansteelandt et al., 2005), and 

within a given context, different individuals express the same emotion with different 

characteristic response patterns (i.e., phenomenon of person stereotypy) (Lacey and 

Lacey, 1958). The novelty of the presented affective model is that it is individual-specific 

in order to accommodate the phenomenon of person stereotypy and the spectrum nature 

of autism (DSM-IV-TR, American Psychiatric Association, 2000), and it consists of an 

array of recognizers, each of which determines the intensity (e.g., high/low level) of one 

target affective state for each individual. Even though physiology has been successfully 

employed to build affect recognizers for typical individuals in several research groups 

(Kulic and Croft, 2007; Mandryk and Atkins, 2007; Picard et al., 2001; Rani et al., 2006), 

the studies of the correlation of the physiological signals and the affective states of people 

with ASD are relatively few (Ben Shalom et al., 2006; Groden et al., 2005) and no 

quantitative modeling results (e.g., affective model with reliable prediction capability) 

have been reported. To our knowledge affect recognition for children with ASD by using 

a large set of physiological indices has not been researched.  

The primary objective of this preliminary study is to investigate the feasibility of 

affective modeling for children with ASD via a physiology-based affect recognition 

technique. Currently, children with ASD are recommended to undergo at least 25 hours-

per-week of year-round intensive autism intervention (i.e., one-on-one therapy with a 

trained therapist) outside of school and extracurricular activities (NRC, 2001; Tarkan, 
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2002). The developed affective model can be used in the computer-assisted autism 

interventions to detect the children's affective states on-line, move them toward the 

intervention goals in an affective manner, and make the treatment more accessible (e.g., 

possibly allowing intensive intervention to be conducted at home). This work included an 

autism therapist who has 5 years of experience in therapeutic and diagnostic interventions 

for children with ASD and each participant’s parent. The therapist and the parent 

observed the experiments (as described in section 4.3) and provided subjective reports 

based on their expertise/experience in inferring the presumable underlying affective states 

from the observable behaviors of a child with ASD. The therapist and the parent did not 

use the participant's physiological signals to recognize affective states, but these signals 

were recorded for eventual affective modeling (i.e., a mapping between the objective 

physiological signals and the subjective reports) as described in section 4.4. In this study, 

the therapist’s reports on perceived intensity of the affective states of a participating child 

and the extracted physiological indices (as described in section 3) are employed to build 

therapist-like affect recognizers. In autism interventions, a therapist continuously 

monitors the affective cues of children with ASD based on behavioral observations. In 

this work, the “therapist-like affect recognizers” were developed to emulate the therapist's 

affect-recognition capability, however, based on the children’s physiological signals. 

With the incorporation of the therapist’s reports, the recognizers will be capable of 

autonomously delivering similar assessments of the affective states of the children with 

ASD in real time even when the therapist is not available. Ultimately, integrating the 

affective models with current interactive intervention approaches may allow for 

automating the intensive, repetitive aspects of the existing behavioral therapy techniques 
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and possibly steer the individual towards the intervention goal in an affect-sensitive 

manner.  

3. Physiological Signal Acquisition and Indices  

There is good evidence that the physiological activity associated with affective 

states can be differentiated and systematically organized (Bradley, 2000). The 

cardiovascular and electromyogram activities have been used to examine the positive and 

negative affective states of people (Cacioppo et al., 2000; Papillo and Shapiro, 1990). 

Electrodermal activities have been shown to be associated with task engagement 

(Pecchinenda and Smith, 1996). The variation of peripheral temperature due to emotional 

stimuli was studied by (Kataoka et al., 1998). In this work, we exploited the dependence 

of physiological responses on underlying affective states to develop affective models for 

children with ASD by using the machine learning method as described in section 4.4 and 

the Appendix. The physiological signals we examined were: various cardiovascular 

activities including electrocardiogram (ECG), impedance cardiogram (ICG), 

photoplethysmogram (PPG), and phonocardiogram (PCG)/heart sound; electrodermal 

activities (EDA) including tonic and phasic responses from skin conductance; 

electromyogram (EMG) activities from corrugator supercilii, zygomaticus major, and 

upper trapezius muscles; and peripheral temperature. Relevant features were derived 

from the physiological signals using various signal-processing techniques such as Fourier 

transform, wavelet transform, thresholding, and peak detection. The physiological signals 

that were examined in this work along with the features derived from each signal are 

described in Table 1.  
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Table 1. Physiological Indices 

Physiological Response Features Derived Label Used Unit of Measurement
Sympathetic power  
(from ECG) Sym Unit/Square Second 

Parasympathetic power (from ECG) Para Unit/Square Second 
Very Low Frequency Power (from ECG) VLF Unit/Square Second 

Ratio of powers  
Sym Para 
Para VLF 
Sym VLF 

No unit 

Mean IBI IBI ECGmean Milliseconds 

Electrocardiogram  

Std. of IBI IBI ECGstd Standard Deviation (no 
unit) 

Mean amplitude of the peak values of the PPG 
signal (Photoplethysmogram) PPG Peakmean Micro Volts 

Standard deviation (Std.) of the peak values of 
the PPG signal  PPG Peakstd Standard Deviation (no 

unit) 
Photoplethysmogram 

Mean Pulse Transit Time PTTmean Milliseconds 
Mean of the 3rd, 4th, and 5th level coefficients 
of the Daubechies wavelet transform of heart 
sound 

Mean d3 
Mean d4 
Mean d5 

No unit 

Heart Sound Standard deviation of the 3rd, 4th, and 5th level 
coefficients of the Daubechies wavelet 
transform of heart sound signal 

Std d3 
Std d4 
Std d5 

No unit 

Mean Pre-Ejection Period PEPmean Milliseconds Bioimpedance Mean IBI IBI ICGmean Milliseconds 
Mean tonic activity level Tonicmean Micro-Siemens 

Slope of tonic activity Tonicslope Micro-Siemens 
/Second 

Mean amplitude of skin conductance response 
(phasic activity) Phasicmean Micro-Siemens 

Maximum amplitude of skin conductance 
response (phasic activity) Phasicmax Micro-Siemens 

Electrodermal activity 

Rate of phasic activity Phasicrate Response peaks/Second
Mean of Corrugator Supercilii activity Cormean Micro Volts 

Std. of Corrugator Supercilii activity Corstd Standard Deviation (no 
unit) 

Slope of Corrugator Supercilii activity Corslope Micro Volts/Second 
Mean Interbeat Interval of blink activity IBI Blinkmean Milliseconds 

Std. of Interbeat Interval of blink activity IBI Blinkstd Standard Deviation (no 
unit) 

Mean amplitude of blink activity Amp Blinkmean Micro Volts 

Standard deviation of blink activity Blinkstd Standard Deviation (no 
unit) 

Mean of Zygomaticus Major activity Zygmean Micro Volts 

Std. of Zygomaticus Major activity Zygstd Standard Deviation (no 
unit) 

Slope of Zygomaticus Major activity Zygslope Micro Volts/Second 
Mean of Upper Trapezius activity Trapmean Micro Volts 

Std. of Upper Trapezius activity Trapstd Standard Deviation (no 
unit) 

Slope of Upper Trapezius activity Trapslope Micro Volts/Second 

Electromyographic 
activity 

Mean and Median frequency of Corrugator, 
Zygomaticus, and Trapezius 

Zfreqmean 
Cfreqmedian 
Tfreqmean  

Hertz 

Mean temperature Tempmean Degree Centigrade 

Slope of temperature Tempslope Degree 
Centigrade/Second Temperature 

Std. of temperature Tempstd Standard Deviation (no 
unit) 
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3.1 Acquisition of Physiological Signals  

The physiological signals were acquired using the Biopac MP150 physiological data 

acquisition system (www.biopac.com). ECG was measured from the chest using the 

standard two-electrode configuration. ICG describes the changes of thorax impedance 

due to cardiac contractility and was measured by four pairs of surface electrodes that 

were longitudinally configured on both sides of the body. The top pair of ICG electrodes 

was placed on the neck parallel to and about 3 cm above the second pair, located at the 

base of the neck; the bottom electrodes were placed parallel to and about 5 cm below the 

third ones, which were placed on the sides of the chest at the level of the xiphisternal 

junction. A microphone specially designed to detect heart sound waves was placed on the 

chest to measure PCG. PPG, peripheral temperature, and EDA were measured from the 

middle finger, the thumb, and the index and ring fingers of the non-dominant hand, 

respectively, using surface electrodes sewn in stretchy Velcro straps. EMG was measured 

by placing surface electrodes on two facial muscles (corrugator supercilii and 

zygomaticus major) and an upper back muscle (upper trapezius). All the physiological 

sensors were extensions of the Biopac physiological data acquisition system. The 

sampling rate was fixed at 1000 Hz for all the channels. Appropriate amplification and 

band-pass filtering were performed. Before each session, a three-minute baseline 

recording was done that was later used to offset day-variability. During the baseline 

recording, participants were asked to relax in a seated position and read age-appropriate 

leisure material. Subsequently, emotional stimuli induced by cognitive tasks were applied 

in epochs of up to four minutes in length (as described in section 4.2). Previous research 

(Pecchinenda and Smith, 1996; Rani et al., 2006) has shown that physiological signals 
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(e.g. electrodermal activity, electromyographic activity, and cardiovascular activity) of 2-

4 minutes in length were adequate for detecting affective states (e.g., anxiety, anger, 

engagement, etc.) from similar computer-based tasks. Each child with ASD took part in 

six one-hour sessions containing 13-15 epochs each. Each session took place on a 

different day to avoid bias in data due to habituation. Figure 1 shows the sensor setup. 

 

 
     (a)         (b) 

Figure 1. Sensor Setup. (a) shows the position of facial EMG sensors and (b) shows the placement of 
sensors on non-dominant hand 

3.2 Cardiovascular Activity  

ECG measures the heart activity through the electrical signal of the heart muscle. 

The number of beats per minute (bpm) is called the heart rate and is typically 70-80 bpm 

at rest. Inter beat interval (IBI) is the time interval in milliseconds between two “R” peaks 

in the ECG waveform. The R-peak detection algorithm performed band-pass filtering on 

the raw ECG signal and the signal was then smoothed by a 10 ms moving average 

window. Peaks were then detected in the resulting signal, and detection heuristic rules 

were applied to avoid missing R peaks or detecting multiple peaks for a single heart beat. 
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These rules included obtaining the amplitude threshold (the difference between a peak 

and the corresponding inflection point) at which a peak should be considered a beat, 

enforcing a minimum interval of 300 ms and maximum interval of 1500 ms between 

peaks, checking for both positive and negative slopes in a peak to ensure that baseline 

drift is not misclassified as a peak, and backtracking with reexamination/interpolation 

when peak missing was detected. Generally, the average change for heart rate is expected 

to be within the range of 2-15 bpm (Bradley, 2000). The chosen interval threshold 

between peaks was well above the rate of change of heart rate due to genuine heart 

acceleration. Time-domain features of IBI, such as the mean and standard deviation (SD), 

can be computed from the detected R peaks. IBI variability was explored by performing 

power spectral analysis on the IBI data to localize the sympathetic and parasympathetic 

nervous system activities associated with different frequency bands. “Sym” was the 

power associated with the sympathetic nervous system activity of the heart (in frequency 

band 0.04-0.15 Hz). “Para” was the power associated with the parasympathetic nervous 

system activity of the heart (in frequency band 0.15-0.4 Hz). “VLF” was the power 

associated with the frequency band less than 0.04 Hz. The ratios of different frequency 

components were also computed as the input features for affective modeling. 

The PPG signal measures changes in the volume of blood in the fingertip associated 

with the blood volume pulse (BVP) cycle, and it provides an index of the relative 

constriction versus dilation of the blood vessels in the periphery. The raw PPG signal was 

smoothed by a 10 ms moving average window, and the baseline drift was accounted for 

by subtracting the average value of the signal. Pulse transit time (PTT) is the time it takes 

for the pulse pressure wave to travel from the heart to the periphery, and it was estimated 
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by computing the time between systole at the heart (as indicated by the R-wave of the 

ECG) and the peak of the BVP wave reaching the peripheral site where PPG was 

measured. Besides PPT, the mean and SD values of BVP peak amplitudes were also 

extracted as features.  

ICG analysis measures the impedance or opposition to the flow of an electric current 

through the body fluids. The ICG signal was first filtered by a 5th order Butterworth filter 

(low-pass: 10 Hz) to clean up any residual noise on the waveform and was then 

differentiated. A common variable in recent psychophysiology research, pre-ejection 

period (PEP) derived from ICG and ECG measures the latency between the onset of 

electromechanical systole and the onset of left-ventricular ejection and is most heavily 

influenced by sympathetic innervation of the heart. The time intervals between the 

successive peaks of ICG time-derivative and “R” peaks of ECG were calculated to obtain 

the value of PEP. The indices obtained were the mean of PEP and the average time 

interval between two peaks of the ICG time-derivative. The peak detection mechanisms 

used to determine the peaks of BVP and ICG time-derivative were similar to the ECG R-

peak detection algorithm, while additional heuristic rules were added to reduce the 

degradation of the signal quality due to motion artifacts and avoid spurious peak 

detection with backtracking. Unlike ECG signals, the peak amplitudes of PPG and ICG 

showed a larger deviation over a given period of time. An adaptive thresholding rule was 

integrated in the peak detection algorithm to address this deviation, which continuously 

changed/updated the threshold value to determine whether candidates for peaks qualified 

as the valid peaks. 

The heart sound signal measured sounds generated during each heartbeat. These 
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sounds are produced by blood turbulence primarily due to the closing of the valves within 

the heart. The features extracted from the heart sound signal consisted of the mean and 

SD of the 3rd (138-275 Hz), 4th (69-138 Hz), and 5th (34-69 Hz) level coefficients of the 

Daubechies wavelet transform.  

3.3 Electrodermal Activity  

Electrodermal activity consists of two main components - tonic response and phasic 

response. Tonic skin conductance refers to the ongoing or the baseline level of skin 

conductance in the absence of any particular discrete environmental events. Phasic skin 

conductance refers to the event related changes that are caused by a momentary increase 

in skin conductance (resembling a peak superimposed on tonic skin conductance). The 

raw EDA signal was smoothed by a 25 ms moving average window and then down-

sampled by 10 to remove the high frequency measurement noise. The phasic skin 

conductance detection algorithm used the following heuristics for considering a particular 

peak as a valid skin conductance response: (i) the slope of the rise to the peak should be 

greater than 0.05 microsiemens/minute; (ii) the amplitude should be greater than 0.05 

microsiemens; and (iii) the rise time should be greater than 0.25 seconds. Once the phasic 

responses were identified, we determined the rate of the responses and the mean and 

maximum phasic amplitude. All the signal points that were not included in the response 

constituted the tonic part of the skin conductance signal. The slope of tonic activity was 

obtained using linear regression. Another feature derived from tonic response was the 

mean tonic amplitude. 

3.4 Electromyogram Activity  

EMG measures the electrical activity in the muscle during contraction. The EMG 
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signal from corrugator supercilii muscle (eyebrow) captures a person's frown and detects 

the tension in that region, and the EMG signal from the zygomaticus major muscle 

captures the muscle movements while smiling. Upper trapezius muscle EMG activity 

measures the tension in the shoulders, one of the most common sites in the body for 

developing stress. Time-domain features, such as the mean, SD, and slope were 

calculated from the EMG signals after performing a band-pass filtering operation (10-500 

Hz). The analysis of the EMG activities in the frequency domain involved applying Fast 

Fourier Transform (FFT) on a given EMG signal, integrating the EMG spectrum, and 

normalizing it to [0,1] to calculate the two features of interest - the median frequency and 

mean frequency for each  EMG signal. The blink-related features were determined from 

the corrugator supercilii EMG signals after being preprocessed by a low-pass filter (10 

Hz). 

3.5 Peripheral Temperature  

Variations in the peripheral temperature mainly come from localized changes in 

blood flow caused by vascular resistance or arterial blood pressure and reflect the 

autonomic nervous system activity. The signal was down-sampled by 10 and filtered to 

remove high-frequency noise, from which the mean, SD, and the slope were calculated as 

features. 

4. Experimental Investigation 

4.1 Participants 

Due to the fact that autism is a spectrum disorder (DSM-IV-TR, American 

Psychiatric Association, 2000), no one intervention technique will work for the entire 

population (NRC, 2001; Sherer and Schreibman, 2005). The research on autism 
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intervention assistive tools is generally guided by the individual characteristics, needs, 

and preferences of the children (i.e., individual-specific approach) and focus on one 

sector of the population to develop a method with the flexibility to allow future 

modifications for a wider part of the population (Pioggia et al., 2005; Robins et al., 2005; 

Robins et al., 2004; Werry et al., 2001). The spectrum nature of autism and the 

phenomenon of person stereotypy (Lacey and Lacey, 1958) led us to choose an 

individual-specific approach to work on a long-term basis with a small group of children 

with autism in order to evaluate the affect recognition tool to be used in computer-

assisted autism intervention. 

Six participants in the age range of 13 to 16 years volunteered to participate in the 

experiments with the consent of their parents. Each had a diagnosis on the autism 

spectrum, either autistic disorder, Asperger's Syndrome, or pervasive developmental 

disorder not otherwise specified (PDD-NOS), according to their medical records. 

Participants were recruited using standard referral procedures that included (i) newsletters 

distributed through the Vanderbilt Treatment and Research Institute for Autism Spectrum 

Disorders, (ii) flyers placed in the Vanderbilt Center for Child Development, and (iii) 

website advertisements through the Vanderbilt Kennedy Center and the Autism Society 

of Middle Tennessee. The Institutional Review Board (IRB) approval was sought and 

received for conducting the experiment. Interested parents throughout middle Tennessee 

contacted the research office by phone or e-mail to set up an initial telephone screening. 

Monetary compensation (a $10 gift card per session) was given for the children’s 

voluntary participation. Due to the nature of the designed cognitive tasks (as described in 

section 4.2), the following criteria were considered when choosing the participants: (i) a 
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minimum competency level of age-appropriate language and cognitive skills (i.e., “high 

functioning”) and (ii) no history of mental retardation. Each child with ASD underwent 

the Peabody Picture Vocabulary Test III (PPVT-III) to assess cognitive function (Dunn 

and Dunn, 1997). The PPVT-III is a measure of single-word receptive vocabulary that is 

often used as a proxy for intelligence quotient (IQ) testing because of its high correlations 

with standardized tests such as the Wechsler Intelligence Scale for Children (Bee and 

Boyd, 2004). It provides standard scores with a mean of 100 and a standard deviation of 

15, and DSM-IV-TR (2000) classifies full scale IQ’s above 70 as non-retarded. 

Participants in our study obtained a standard score of 80 or above on the PPVT-III 

measure. Table 2 shows the characteristics of the six children who participated in the 

experiments. 

Table 2. The characteristics of the participants 

Child ID Gender Age Diagnosis PPVT-III Score 
A Male 15 Autistic Disorder 99 
B Male 15 Asperger's Syndrome 80 
C Male 13 Autistic Disorder 81 
D Male 14 PDD-NOS 92 
E Male 16 PDD-NOS 93 
F Female 14 PDD-NOS 83 

 

Several conditions posed challenges in recruitment of participants who matched the 

inclusion-exclusion criteria (e.g., cognitive skills and age range) and in coordination of 

schedules between the autism therapist and the parent of the participating child who were 

also involved in the experiment. First, autism may often co-occur with varying levels of 

mental retardation (DSM-IV-TR, American Psychiatric Association, 2000), which 

reduces the possible participant pool. Second, the IRB stipulates cutoffs between 
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participants in different age ranges (e.g., 7-12 years, 13-17 years, 18 years and above, 

etc.), and autism intervention studies usually focus on one sector of the population within 

a certain age range (Gaylord-Ross et al., 1984; IRB, 2004; Parsons et al., 2005). Third, 

the responsibilities of raising a child with ASD are vast; therefore, willing parents often 

had to bring their child to the laboratory on weekends or after school on days without 

conflicts with other activities (e.g., social skills therapy) or family obligations. The group 

sizes and the cardinality of participant age range of many studies on computer-assisted 

autism intervention are commensurate with our work when an individual-specific 

approach was used (Pioggia et al., 2005; Robins et al., 2005; Robins et al., 2004; Werry 

et al., 2001). It is worth noting that this individual-specific study was based on a large 

sample size of observations for each child with ASD, which is comparatively more 

favorable than many other works (Groden et al., 2005; Pioggia et al., 2005; Robins et al., 

2004). Each child completed approximately 85 epochs over 6 sessions, which represents 

6 different days and yields 6 hours of data for each child as described in section 4.4. This 

preliminary study focused on high-functioning children with ASD between 13 and 16 

years old. Future work may include a reduction of the verbal components in the cognitive 

tasks which would allow application to the broader ASD population.  

4.2 Cognitive Tasks for Affect Elicitation  

Two computer-based cognitive tasks were designed and implemented to invoke 

varying intensities of the following three affective states: anxiety, engagement, and liking, 

in the participants. Physiological data from participants were collected (as described in 

section 3) during the experiment. The two tasks consisted of an anagram solving task and 

a Pong playing task. The anagram solving task has been previously employed to explore 
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relationships between physiology and anxiety (Pecchinenda and Smith, 1996). Emotional 

responses were manipulated in this task by presenting the participant with anagrams of 

varying difficulty levels, as established through pilot work. A long series of trivially easy 

anagrams caused less engagement. An optimal mix of solvable and difficult anagrams 

caused liking and engagement at times. Unsolvable or extremely difficult anagrams and 

giving time deadlines generated anxiety.  

The Pong task consisted of a series of trials/epochs each lasting up to four minutes, 

in which the participant played a variant of the early, classic video game “Pong.”  This 

game has been used previously by researchers to study anxiety, performance, and gender 

differences (Brown et al., 1997). Various parameters of the game were manipulated to 

elicit the required affective responses. These included: ball speed and size, paddle speed 

and size, sluggish or over-responsive keyboard, random keyboard response, and the level 

of the computer opponent player. Very low speeds and large sizes of the ball and the 

paddle made games less engaging after a while; whereas high ball and paddle speeds 

along with smaller sizes of the two made the game engaging. Very high ball speeds and 

sluggish or over-responsive keyboard caused anxiety at times. Games with a moderate-

level computer opponent player usually generated liking. The game configurations were 

established through pilot work. 

Each task sequence was subdivided into a series of discrete epochs that were 

bounded by the subjective affective state assessments. These assessments were collected 

using a battery of questions about the target affective states and perceived task difficulty 

level rated on an eight-point Likert scale, where 1 indicated the lowest rating and 8 

indicated the maximum rating. Each participant took part in six sessions – three one-hour 
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sessions of solving anagrams and three one-hour sessions of playing Pong – on six 

different days. No more than one, one-hour session with an individual participant took 

place per day. 

 

 

Figure 2. Experimental setup for collecting physiological data and subjective reports in the computer-based 

tasks 

4.3 Experimental Setup 

Figure 2 shows the setup for the experiment. The child with ASD was involved in 

the cognitive tasks on computer C1 while his/her physiological data was acquired via the 

Biopac system (www.biopac.com). Physiological signals were transferred from the 

Biopac transducers to C2 through an Ethernet link at 1000 Hz after being amplified, 

digitized, and stored. C1 was also connected to the Biopac system via a parallel port, 



180 
 

through which the task-related markers were recorded along with the physiological data 

in a time-synchronized manner. Different markers were defined to indicate the following 

events: start/end of game, performance events (right/wrong answer in anagram, 

hitting/missing ball in Pong), start/end of each epoch, and self-report logging.  

To gain perspective from different sources and enhance the reliability of the 

subjective reports on the target affective states, a therapist with experience in autism 

intervention for children with ASD and each participant's parent were also involved in the 

study, who may best know the participant. We video recorded the sessions to cross-

reference observations made during the experiment. The signal from the video camera 

was routed to a television, and the signal from the participant's computer screen where 

the task was presented was routed to a separate computer monitor M2. The therapist and 

the participant's parent were seated at the back of the experiment room, watched the 

experiment on the TV from the view of the video camera, and observed how the task 

(anagrams or Pong) progressed on the separate monitor.  

4.4 Procedure 

On the first visit, participants completed the PPVT-III measurement to determine a 

standardized measure of receptive vocabulary and eligibility for the experiments. After 

initial briefing regarding the tasks, physiological sensors from a Biopac system were 

attached to the participant's body and a three-minute baseline recording was performed. 

Each session lasted about an hour and consisted of a set (13-15) of either 3-minute 

epochs for anagram tasks or up to 4-minute epochs for Pong tasks. Each epoch was 

followed by subjective report questions rated on an eight-point Likert scale. The 

participants reported their perceived subjective affective states through a pop-up dialog 
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window presented on C1. The therapist and the participant's parent also answered the 

questions about how they thought the participant was feeling during the finished epoch 

on an eight-point Likert scale based on their audio/visual observations from the viewing 

monitors (TV and M2). These three sets of subjective reports related to the target 

affective states, from the therapist, the participant's parent, and the participant, were used 

as the possible reference points to link the concurrently collected objective physiological 

data to the participant's affective states.  

For developing affective models, we built mappings to determine the intensity (i.e., 

high/low) of a particular affective state from the physiological features. It resembles a 

binary classification problem where the attributes are the physiological features (listed in 

Table 1) and the target function is the degree of arousal. In this work we employed SVM 

to determine the underlying affective state of a child with ASD given a set of 

physiological indices, based on our previous work (Rani et al., 2006) which showed SVM 

gave the best classification accuracy compared to KNN, Bayesian Network, and 

Regression Tree as applied to the domain of affect recognition using physiological 

signals for typical adults. Details of the theory and learning method of SVM can be found 

in (Vapnik, 1998) and are briefly described in the Appendix. Each participant had a data 

set that was comprised of both the objective physiological features and corresponding 

subjective reports on intensity of target affective states from the therapist, the 

participant's parent, and the participant. The subjective report forms instructed that 1-4 

indicates the low level, 5-8 indicates the high level, and the different values represent the 

variation within each level. Each participant's data set contained approximately 85 epochs. 

Multiple subjective reports were analyzed, and one was chosen as the possible reference 
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points to link the physiological measures to the participant's affective state. As illustrated 

in Figure 3, a therapist-like affect recognizer (i.e. a recognizer that captures the therapist's 

ability to assess affective states) can be developed when the therapist’s reports are used. 

Current therapeutic settings do not retain quantitative records of the affective states of the 

children with ASD. A therapist generally uses qualitative affective evaluations suitable 

for binary (high/low) assessments to make intervention adjustments (e.g., using 

likes/dislikes charts (Seip, 1996)). This study of differentiating high/low levels of the 

target affective states from physiological signals attempts to emulate the present autism 

intervention practice and to experimentally demonstrate the feasibility of affective 

modeling for these children with ASD via psychophysiological analysis. Further 

segmentation of the 8-point subjective reports and building multi-class recognizers will 

be used in a future study of computer-assisted autism intervention for a finer-grained 

analysis but such an analysis is beyond the scope of this paper. 

 

 

Figure 3. Affective modeling overview when the therapist’s subjective reports are used 
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A SVM-based recognizer was trained on each participant’s data set for each target 

affective state. In this work, in order to deal with the nonlinearly separable data, soft-

margin classifiers with slack variables were used to find a hyperplane with less restriction 

(Eqn. 1, Appendix). RBF (Radial Basis Function) was selected as the kennel function 

because it often delivers better performance (Vapnik, 1998). A ten-fold cross-validation 

was used to determine the kernel parameter and regularization parameter (Eqn. 2, 

Appendix) of the classifier. 

5. Results and Discussion  

One of the prime challenges of this work is attaining reliable subjective reports. 

While there have been reports that adolescents could be better sources of information 

than adults when it comes to measuring some psychiatric symptoms (Cantwell et al., 

1997), researchers are reluctant to trust the responses of adolescents on self-reports 

(Barkley, 1998). In this study, one should be especially wary of the dependability of self-

reports from children with ASD, who may have deficits in processing (i.e., identifying 

and describing) their own emotions (Hill et al., 2004). In order to overcome this difficulty, 

a therapist and a parent of each participant observed the experiment and provided 

subjective reports based on their expertise/experience in inferring presumable underlying 

affective states from the observable behaviors of children with ASD. Their reports about 

how they thought the participant was feeling were collected after each epoch.  

To measure the amount of agreement among the different reporters, the kappa 

statistic was used (Siegel and Castellan, 1988). The kappa coefficient (K) measures pair-

wise agreement among a set of reporters making category judgments, correcting for 

expected chance agreement: 
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( ) ( )
( )1

P A P E
K

P E
−

=
−

    (3) 

where ( )P A  is the proportion of times that the reporters agree and ( )P E  is the 

proportion of times that we would expect the reporters to agree by chance. When there is 

complete agreement, then 1K = ; whereas, when there is no agreement other than that 

which would be expected by chance, then 0K = .  

 

 

Figure 4. Average Kappa Statistics between Reporters for Affective States. Kappa coefficients averaged 

across affective states measure the agreement between the different subjective reports (T-Therapist, P-

Parent, C-Child) corresponding to each participant (Child ID A-F) 

The results of the values of kappa coefficient (K), averaged across three target 

affective states, are shown in Figure 4. From the results, we can see that among the three 

possible pairs for each child (Therapist-Parent (T/P), Therapist-Child (T/C), and Parent-

Child (P/C)) the agreement between the therapist and each participant's parent (T/P) 

shows the largest mean of the kappa statistic values. The data were submitted to two 

related-samples t-tests, which were both significant (t(17) =  4.28, p < 0.001 for the 
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Therapist-Parent pair; t(17) = 3.70, p < 0.01 for the Therapist-Child pair). Note that the 

Kappa agreement between therapist and parent is substantial for Child A, Child B, Child 

D, and Child F and moderate for Child C and Child E. Such results might stem from the 

fact that it could be difficult for the therapist or parent to distinguish certain emotions for 

a particular child with ASD. For example, the agreement between therapist and parent for 

the anxiety level of Child C and Child E (Kappa coefficient: 0.352 and 0.372, 

respectively) are considerably less than the average level (mean Kappa coefficient of T/P: 

0.617). In the experiment, Child A and Child F’s self-ratings for liking, anxiety, and 

engagement were almost constant which resulted in lower kappa statistic values for the 

therapist and child pair (T/C) and the parent and child pair (P/C) than those of the other 

participants. This may be due to the fact that the spectrum developmental disorder for 

children with autism manifests in different abilities to recognize and report their own 

emotions. A lack of agreement with adults does not necessarily mean that the self-report 

of children with ASD is not dependable. However, given the fact that therapists’ 

judgment based on their expertise is the state-of-the-art in most autism intervention 

approaches and the reasonably high agreement between the therapist and the parents for 

all of the six children, the subjective report from the therapist was used as the reference 

points linking the objective physiological data to the children’s affective states. In order 

to enhance the consistency of the subjective reports, the same therapist was involved in 

all of the sessions. This choice allows for building a therapist-like affective model. Once 

the affect modeling is completed, the recognizers will be capable of autonomously 

inferring the affective states of the child with ASD from the physiological signals in real 

time even when the therapist is not available. 
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Figure 5. Prediction Accuracy of the Affective Model 

The performance of the developed affective models based on the therapist's reports 

for each child (i.e., individual-specific approach) is shown in Figure 5. The cross-

validation method, “leave-one-out,” was used. The affective model produced high 

recognition accuracies for each target affective state of each participant. The average 

correct prediction accuracies across all participants with ASD were: 85.0% for liking, 

79.5% for anxiety, and 84.3% for engagement, which are comparable to the best results 

achieved for typical adults (Nasoz et al., 2003; Picard et al., 2001; Rani et al., 2006). 

Figure 5 shows that for Child C and Child E, the prediction accuracy for anxiety is lower; 

moreover, as mentioned previously for these two participants there is also considerably 

less agreement between the therapist and the parent (T/P) on the subjective reports with 

respect to the anxiety level. The comparatively low (approximately 5% less) average 

prediction accuracy of anxiety may be due to the fact that the intensity of anxiety of a 
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particular child with ASD (e.g., Child C and Child E) could be more difficult for the 

therapist to distinguish based on the observations than the other two affective states (i.e., 

liking and engagement). 

We also compared the performance of affective modeling to a control method that 

represents random chance. Suppose we had an equal number of subjective reports that 

rated a particular affective state level (low/high) for a participant, then the chance 

probability would be 50%. However, the prevalence of each level could be different. For 

example, in 48 out of 86 epochs the engagement of Child E was rated as low, where a 

random classification could assign all test epochs to this category and make accurate 

classifications (48/86)×100 = 55.8% of the time. We thus considered the level with a 

majority of epochs and used the average of these higher numbers (across the participants’ 

affective states) to represent the chance condition, which is denoted by dark grey bars in 

Figure 5. While the physiology-based affective modeling alone did not provide perfect 

classification (i.e., 100%) of affective states of children with ASD, they did yield reliable 

matches with the subjective rating and significantly outperformed a random classifier 

(averaging 82.9% vs. 59.2%). This was promising considering that this task was 

challenging in two respects: (i) the reports were collected from the therapist who was 

observing the children with ASD as opposed to having typical adults capable of 

differentiating and reporting their own affective states and (ii) varying levels of arousal of 

any given affective state (e.g., low/high anxiety) were identified instead of determining 

between two discrete affective states. 
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Table 3. Prediction Accuracy of the Affective Modeling based on Different Physiological Signals (%)* 

Physiological Signals Liking Anxiety Engage Mean 

Cardiovascular 75.7 68.5 76.2 73.5 

Electrodermal 73.4 72.3 73.3 73.0 

Electromyographic 73.1 65.8 70.1 69.7 

Electrodermal + Electromyographic 75.0 69.4 71.4 71.9 

Cardiovascular + Electromyographic 79.6 70.2 79.9 76.6 

Cardiovascular + Electrodermal 79.9 74.3 81.9 78.7 

All 85.0 79.5 84.3 82.9 

 

In order to explore the effects of reducing the number of physiological signals and 

the possibility of achieving more economical modeling (i.e., reducing the set of signals to 

be measured), we examined the performance of the affect recognizers when 

cardiovascular, electrodermal, and electromyographic activities and their combinations 

were used. As shown in Table 3, all the recognizers delivered better predication than 

random guess (mean prediction rate: 52.9%), and with more information from 

physiological activities the performance of the affective models tends to improve (except 

the combination of electrodermal and electromyographic activities). This may be due to 

the fact that the inherent kernel representation and soft-margin optimization endow SVM 

the capability to work effectively in the high-dimensional feature space (Burges, 1998). 

While electromyographic (EMG) signals have been used as indicators of affective 

response for typical individuals (Kulic and Croft, 2007; Rani et al., 2006), in this study 

                                                 
* Peripheral temperature has relatively few features derived as shown in Table 1 and was not examined 

independently. Instead, it was studied conjunctively with the electrodermal activity, both of which were 

acquired from the non-dominant hand of a participant.  
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we observed that it is less discriminatory than the cardiovascular and electrodermal 

activities. As suggested in (DSM-IV-TR, American Psychiatric Association, 2000; Green 

et al., 2002), children with ASD often have nonverbal communicative impairments 

regarding expression of affective states (e.g., abnormal body postures and gestures and 

absence of facial expression), which might reduce the discriminatory capability of EMG 

signals (e.g., muscle activities from both the corrugator supercilii and the zygomaticus 

major) to reveal affective cues of the participants. While no combination of physiological 

activity surpassed the percent accuracy achieved when all signals were used, the results in 

Table 3 suggested that it may be possible to selectively reduce the set of signals and 

obtain nearly-as-good performance (e.g., using a combination of cardiovascular and 

electrodermal signals).  

With post-hoc analysis, we found the prediction accuracy generally tends to be 

higher when the therapist and the participant's parent agree more on the subjective reports 

about how they thought the participant was feeling during the finished epoch. As shown 

in Table 4, the Kappa statistic of the therapist and parent is positively correlated with the 

prediction accuracy of the developed affect recognizer (r = 0.71, p <0.001). In this 

experiment, the Kappa statistic could indicate whether it is relatively easy or difficult to 

differentiate the affective states of a child by observation. The autism therapist used in 

this work had no previous interaction with the participants. The prediction accuracy could 

likely improve if the therapist interacts with a particular child with ASD for a significant 

amount of time and gains more knowledge of his/her affective expression before making 

the reports regarding the presented interaction tasks, which is generally the case for ASD 

intervention. 
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Table 4. Therapist-Parent (T/P) Kappa Statistics and Prediction Accuracy 

Child ID  Liking Anxiety Engage 

Kappa Statistics (T/P) 0.566 0.831 0.494 
A 

Prediction Accuracy (%) 87.8% 85.4% 81.7% 

Kappa Statistics (T/P) 0.585 0.634 0.708 
B 

Prediction Accuracy (%) 76.8% 81.7% 89.0% 

Kappa Statistics (T/P) 0.753 0.352 0.551 
C 

Prediction Accuracy (%) 91.1% 73.4% 80.2% 

Kappa Statistics (T/P) 0.698 0.562 0.611 
D 

Prediction Accuracy (%) 86.1% 79.6% 84.9% 

Kappa Statistics (T/P) 0.721 0.372 0.449 
E 

Prediction Accuracy (%) 83.7% 74.1% 83.2% 

Kappa Statistics (T/P) 0.884 0.528 0.814 
F 

Prediction Accuracy (%) 84.8% 82.6% 87.2% 

 

6. Conclusions and Future Work 

There is increasing consensus that development of assistive therapeutic tools can 

make application of intensive intervention for children with ASD more readily accessible. 

In recent years, various applications of advanced interactive technologies have been 

investigated in order to facilitate and/or partially automate the existing behavioral 

intervention that addresses specific deficits associated with autism. However, the current 

computer-assisted therapeutic tools for children with ASD do not possess the ability of 

deciphering the affective cues of the children, which could be critical given that the 

affective factors of children with ASD have significant impacts on the intervention 

practice. In this work, we presented a physiology-based affect modeling framework for 

children with ASD. The developed model could allow the recognition of affective states 

of the child with ASD from the physiological signals in real time and provide the basis 
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for computer-based affect-sensitive interactive autism intervention.  

We have designed and implemented two computer-based cognitive tasks – solving 

anagrams and playing Pong – to elicit the affective states of liking, anxiety, and 

engagement for children with ASD that are considered important in autism intervention. 

In order to have reliable reference points to link the physiological data to the affective 

states, the reports from the child, the therapist, and the child's parent were collected and 

analyzed. We have investigated a large set of physiological indices that may correlate 

with the affective states of children with ASD. A SVM-based affective model yielded 

reliable prediction with approximately 82.9% success when using the therapist’s reports. 

This is the first time, to our knowledge, that the affective states of children with ASD 

have been experimentally detected via a physiology-based affect recognition technique. 

It should be noted that due to the phenomenon of person stereotypy and the 

spectrum nature of autism, an individual-specific approach has been employed for 

affective modeling based on a large sample size of observations (as described in section 

4.4) of each of the six participating children with ASD. The methodology for inducing, 

gathering, and modeling the experimental data in this paper is not dependent on the 

participants. The group sizes and the cardinality of participant age range of many related 

studies are commensurate with our work and the sample size of observations in this work 

is comparatively extensive. The consistently reliable prediction accuracy for each 

participant demonstrated that it was feasible to model the affective states of these 

children with ASD via psychophysiological analysis.  

Note that the presented work requires physiological sensing that has its own 

limitations. For example, one needs to wear physiological sensors, and use of such 
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sensors could be restrictive under certain circumstances. However, none of the 

participants in our study had any objection in wearing the physiological sensors. Similar 

observations were achieved in (Conati et al., 2003) that suggested concerns for 

intrusiveness of physiological sensors could be lessened for children in a game-like 

environment. Given the rapid progress in wearable computing with small, non-invasive 

sensors and wireless communication, physiological sensors can be worn in a wireless 

manner such as in physiological sensing clothing and accessories (Picard, 1997; 

Wijesiriwardana et al., 2004), which could alleviate possible constraints on experimental 

design. We believe that physiology-based affect recognition can be appropriate and 

useful for the application of interactive autism intervention and could be used 

conjunctively with other modalities (e.g., facial expression, vocal intonation, etc.) to 

allow flexible and robust affective modeling for children with ASD.  

Future work includes a reduction of the verbal components in the cognitive tasks 

which would allow application to a broader part of the ASD population. Computer-based 

intervention tools that address the social communication deficits of children with ASD 

will be developed. We will also investigate how to augment the interactive autism 

intervention by having a computer respond appropriately to the inferred affects based on 

the affective model described here.  

Appendix. Pattern Recognition using Support Vector Machines  

Here we briefly describe the principle of classification using SVM. SVM is a linear 

machine working in a high k -dimensional feature space formed by an implicit 

embedding of n -dimensional input data X (e.g., a vector of derived physiology features 

as described in section 3) into a k -dimensional feature space ( k n> ) through the use of a 
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nonlinear mapping ( )Xφ . This allows using linear algebra and geometry to separate the 

data normally only separable with nonlinear rules in the input space. The problem of 

finding a linear classifier for given data points with known class labels can be described 

as finding a separating hyperplane ( )TW Xϕ  that satisfies 

( )( ) ( )01
( ) 1kT

i i i j j i ij
y W X y w X wϕ φ ξ

=
= + ≥ −∑  for 1, 2,...,i N=  (1) 

where { }1, 1iy ∈ + −  represents the class label (e.g., high/low intensity of a target affective 

state); N is the number of training data pairs ( ),i iX y ; 

( ) ( ) ( ) ( )0 1, ,...,
T

kX X X Xϕ φ φ φ⎡ ⎤= ⎣ ⎦ is the mapped feature vector ( ( )0 1Xφ = ); and 

[ ]0 1, ,..., kW w w w= is the weight vector of the network. The nonnegative slack variable iξ  

generalizes the linear classifier with soft margin to deal with nonlinearly separable 

problems, where margin is defined as the sum of the distances of the hyperplane from the 

nearest data points of each of the two classes. Good generalization performance can be 

achieved by maximizing the margin while allowing for some misclassifications on the 

training set to avoid over-fitting (Burges, 1998).  

To allow efficient computation of inner products directly in the feature space and 

circumvent the difficulty of specifying the non-linear mapping explicitly, all operations in 

learning and testing modes are done in SVM using so-called kernel functions satisfying 

Mercer conditions defined as ( ) ( ) ( ), T
i iK X X X Xϕ ϕ=  (Vapnik, 1998). The most 

distinctive fact about SVM is that the learning task is reduced to a dual quadratic 

programming problem by introducing the Lagrange multipliers iα  (Burges, 1998; Vapnik, 

1998): 
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Maximize  

( ) ( )
1 1 1

1 ,
2

N N N

i i j i j i j
i i j

Q y y K X Xα α α α
= = =

= −∑ ∑∑  

Given the constraints               (2) 

1
0

N

i i
i

yα
=

=∑     0 i Cα≤ ≤  

where C is a user-defined regularization parameter that determines the balance between 

the complexity of the network characterized by the weight vector W  and the error of 

classification of data. The corresponding iα ’s are non-zero only for the support vectors, 

those training points nearest to the hyperplane, which induces solution sparseness. The 

quadratic programming of SVM leads in all cases to the global minimum of the cost 

function. With the kernel representation and soft margin mechanism, SVM provides an 

efficient technique that can tackle the difficult, high dimensional affect recognition 

problem even when physiological data are noisy. 
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INTERVENTION OF CHILDREN WITH AUTISM  
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(Published as Regular Paper in IEEE Transactions on Robotics) 

Abstract 

Investigation into robot-assisted intervention for children with autism spectrum 

disorder (ASD) has gained momentum in recent years. Therapists involved in 

interventions must overcome the communication impairments generally exhibited by 

children with ASD by adeptly inferring the affective cues of the children to adjust the 

intervention accordingly. Similarly, a robot must also be able to understand the affective 

needs of these children - an ability that the current robot-assisted ASD intervention 

systems lack - to achieve effective interaction that addresses the role of affective states in 

human-robot interaction and intervention practice. In this paper we present a physiology-

based affect-inference mechanism for robot-assisted intervention where the robot can 

detect the affective states of a child with ASD as discerned by a therapist and adapt its 

behaviors accordingly. This work is the first step towards developing “understanding” 

robots for use in future ASD intervention. Experimental results with 6 children with ASD 

from a proof-of-concept experiment (i.e., a robot-based basketball game) are presented. 

The robot learned the individual liking level of each child with regard to the game 

configuration and selected appropriate behaviors to present the task at his/her preferred 
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liking level. Results show the robot automatically predicted individual liking level in real 

time with 81.1% accuracy. This is the first time, to our knowledge, that the affective 

states of children with ASD have been detected via a physiology-based affect recognition 

technique in real time. This is also the first time that the impact of affect-sensitive closed-

loop interaction between a robot and a child with ASD has been demonstrated 

experimentally. 

 
Index Terms: Autism intervention, closed-loop human-robot interaction, and 
physiological sensing 

I. Introduction 

Autism is a neurodevelopmental disorder characterized by core deficits in social 

interaction, social communication, and imagination [1]. Emerging research suggests 

prevalence rates as high as approximately 1 in 150 for the broad autism spectrum [2]. 

While there is at present no single accepted intervention, treatment, or known cure for 

autism spectrum disorders (ASD), there is growing consensus that intensive behavioral 

and educational intervention programs can significantly improve long term outcomes for 

individuals and their families [3]. Despite the urgent need and societal import of intensive 

treatment [4], appropriate intervention resources for children with ASD and their families 

are often extremely costly when accessible [5]. Therefore, an important new direction for 

research on ASD is the identification and development of assistive intervention tools that 

can make application of intensive treatment more readily accessible. 

In response to this need, a growing number of studies have been investigating the 

application of advanced interactive technologies to address core deficits related to autism, 

namely computer technology [6], virtual reality environments [7], and robotic systems 
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[8]–[13]. Initial results indicate that robots may hold promise for rehabilitation of 

children with ASD. Dautenhahn and Werry [8] have explored how a robot can become a 

playmate that might serve a therapeutic role for children with autism in the Aurora 

project. Research suggested that robots can allow simplified but embodied social 

interaction that is less intimidating or confusing for children with ASD [8]. Michaud and 

Theberge-Turmel [9] investigated the impact of robot design on the interactions with 

children and emphasized that systems need to be versatile enough to adapt to the varying 

needs of different children. Pioggia et al. [10] developed an interactive life-like facial 

display system for enhancing emotion recognition in individuals with ASD. Robots have 

also been used to teach basic social interaction skills using turn-taking and imitation 

games, and the use of robots as social mediators and as objects of shared attention can 

encourage interaction with peers and adults [8][11][12]. Robotic technology poses the 

advantage of furnishing robust systems that can support multimodal interaction and 

provide a repeatable, standardized stimulus while quantitatively recording and monitoring 

the performance progress of the children with ASD to facilitate autism intervention 

assessment and diagnosis [13]. By employing human-robot interaction (HRI) 

technologies, robot-based therapeutic tools can partially automate the time-consuming, 

routine behavioral therapy sessions and may allow intensive intervention to be conducted 

at home [8]. 

Even though there is increasing research in robot-assisted autism intervention, the 

authors found no published studies that specifically addressed how to automatically 

detect and respond to affective cues of children with ASD. We believe that such ability 

could be critical given the importance of human affective information in HRI [14][15] 
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and the significant impacts of the affective factors of children with ASD on the 

intervention practice [16]. Common in autism intervention, therapists who work with 

children with ASD continuously monitor affective cues of the children in order to make 

appropriate decisions about adaptations to their intervention strategies. For example, 

‘likes and dislikes chart’ is recommended to record the children’s preferred activities 

and/or sensory stimuli during interventions that could be used as reinforcers and/or 

‘alternative behaviors’ [16]. Children with autism are particularly vulnerable to anxiety 

and intolerant of feelings of frustration, which requires a therapist to plan tasks at an 

appropriate level of difficulty [17]. The engagement of children with ASD is the ground 

basis for the ‘floor-time therapy’ to help them develop relationships and improve their 

social and communication skills [18].  

The potential impacts brought by a robot that can detect the affective states of a 

child with ASD and interact with him/her based on such perception could be various. 

Interesting activities could be chosen to retain the child's attention when the detected 

engagement level is low. Complex social stimuli, sophisticated interactions, and 

unpredictable situations could be gradually but automatically introduced when the robot 

recognizes that the child is comfortable or not anxious at a certain level of interaction 

dynamics for a reasonably long period of time. A therapist could use the child’s affective 

records to analyze the therapeutic approach. With the record of the activities and the 

consequent emotional changes in a child, a robot could learn individual affective 

characteristics over time and thus could adapt the ways it responds to the needs of 

different children.  

The primary objective of the current research is to investigate how to augment 
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human-robot interaction to be used in autism intervention by endowing the robot with the 

ability to recognize and respond to the affective states of a child with ASD. In order to 

achieve this objective, the research is divided into two phases. Phase I represents the 

development of affective models through psychophysiological analysis, which includes 

designing cognitive tasks for affect-elicitation, deriving physiological features via signal 

processing, and developing affective models using machine learning techniques. Phase II 

is characterized by the investigation of affect sensitivity during the closed-loop 

interaction between a child with ASD and the robot. A proof-of-concept experiment was 

designed wherein a robot learns individual preferences based on the predicted liking level 

of the children with ASD as discerned by the therapist and selects an appropriate 

behavior accordingly. 

The paper is organized as follows: The scope and rationale of this work is presented 

in Section II. Section III describes our proposed framework for automatically detecting 

and responding to affective cues of children with ASD in the human-robot interaction, as 

well as the experimental design. This description is followed by the detailed results and 

discussion section (Section IV). Finally, Section V summarizes the contributions of the 

paper and outlines possible future directions of this research.  

II. Scope and Rationale 

The overview of the affect-sensitive closed-loop interaction between a child with 

ASD and a robot is presented in Fig. 1. The physiological signals from the children with 

ASD are recorded when they are interacting with the robot. These signals are processed 

in real time to extract features, which are fed as input into the models developed in Phase 

I. The models determine the perceived affective cues and return this information as an 
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output. The affective information, along with other environmental inputs, is used by a 

controller to decide the next course of action for the robot. The child who engages with 

the robot is then influenced by the robot’s behavior, and the closed-loop interaction cycle 

begins anew.  

 

 

Fig. 1. Framework overview 

Human-robot interactions are characterized by explicit as well as implicit channels 

of communication with presumed underlying affective states [15]. There are several 

modalities such as facial expression [19], vocal intonation [20], gestures [21], and 

physiology [22]–[24] that can be utilized to evaluate the affective states. In this work we 

chose to create affective models based on physiological data for several reasons. Children 

with ASD often have communicative impairments (both nonverbal and verbal), 

particularly regarding expression of affective states [1]. These vulnerabilities place limits 

on traditional conversational and observational methodologies; however, physiological 

signals are continuously available and are not necessarily directly impacted by these 

difficulties [25]. As such, physiological modeling may represent a methodology for 
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gathering rich data despite the potential communicative impairments of children with 

ASD. In addition, physiological data may offer an avenue for recognizing aspects of 

affect that may be less obvious for humans but more suitable for computers by using 

signal processing and pattern recognition tools. Furthermore, evidence shows that the 

transition from one affective state to another state is accompanied by dynamic shifts in 

indicators of Autonomic Nervous System (ANS) activity [26]. In our previous work, we 

successfully developed affective models from physiological signals for typical adults 

with reliable prediction performance [27]–[29][30]. Even though in recent years 

physiology has been successfully employed to build affect recognizers for typical 

individuals in several research groups [22]–[24], the studies on the correlation of the 

physiological signals and the affective states of people with ASD are relatively few 

[25][30]. To our knowledge real-time physiology-based affect recognition for children 

with ASD has not been known. 

An important question when estimating human affective response is how to 

operationalize the affective states. Although much existing research on affective 

modeling categorizes affective states into “basic emotions,” there is no consensus on a set 

of basic emotions among the researchers [31]. This fact implies that pragmatic choices 

are required to select target affective states for a given application [31]. In this work we 

chose anxiety, engagement, and liking to be the target affective states. Anxiety was 

chosen for two primary reasons. First, anxiety plays an important role in various human-

machine interaction tasks that can be related to task performance [32]. Second, anxiety is 

not simply a frequently co-occurring disorder; in some ways it may also be a hallmark of 

autism [25][33]. Engagement, defined as “sustained attention to an activity or person,” 
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has been regarded as one of the key factors for children with ASD to make substantial 

gains in academic, communication, and social domains [34]. With ‘playful’ activities 

during the intervention, the liking of the children (i.e., the enjoyment they experience 

when interacting with the robot) may create the urge to explore and allow prolonged 

interaction for the children with ASD, who are susceptible to being withdrawn [8].  

Notably, evidence shows that several affective states could co-occur at different 

arousal levels [35], and different individuals could express the same emotion with 

different characteristic response patterns under the same contexts (i.e. phenomenon of 

person stereotypy) [36]. The novelty of the presented affective modeling is that it is 

individual-specific to accommodate the differences encountered in emotional expression, 

and it consists of an array of recognizers – each of which determines the intensity of one 

target affective state for each individual. In this work, a therapist observed the 

experiments (described in Section III (B-2)) and provided subjective reports based on 

expertise in inferring presumable underlying affective states from the observable 

behaviors of children with ASD. The therapist’s reports on perceived intensity of the 

affective states of a child and the extracted physiological indices (described in Section III 

(B-4)) were employed to develop therapist-like affect recognizers that predict high/low 

levels of anxiety, engagement, and liking for each child with ASD.  

Once affective modeling was completed in Phase I, the therapist-like recognizers 

equipped the robot with the capability to detect the affective states of the children with 

ASD in real time from on-line extracted physiological features, which could be utilized in 

future interventions even when a therapist is not available. As stated in [37], it is 

important to have robots maintain characteristics of adaptability when applied to autism 
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intervention. In Phase II, we designed and implemented a proof-of-concept experiment 

(robot-based basketball) wherein a robot adapts its behaviors in real time according to the 

preference of a child with ASD, inferred from the interaction experience and the 

predicted consequent liking level. This work is the first time, to our knowledge, that the 

feasibility and the impact of affect-sensitive closed-loop interaction between a robot and 

a child with ASD have been demonstrated experimentally. While the results are achieved 

in a non-social interaction task, it is expected that the real-time affect recognition and 

response system described in this work will provide a basis for future research into 

developing robot-assisted intervention tools to help children with ASD explore social 

interaction dynamics in an affect-sensitive and adaptive manner. 

III. Experimental Investigation 

A. Participants 

Six participants within the age range of 13 to 16 years old volunteered to partake in 

the experiments with the consent of their parents. Each of the participants had a diagnosis 

on the autism spectrum, either autistic disorder, Asperger's Syndrome, or pervasive 

developmental disorder not otherwise specified (PDD-NOS), according to their medical 

records. Due to the nature of the tasks, the following were considered when choosing the 

participants: (i) having a minimum competency level of age-appropriate language and 

cognitive skills and (ii) not having any history of mental retardation. Each child with 

ASD was given the Peabody Picture Vocabulary Test III (PPVT-III) [38] to screen 

cognitive function. Inclusion in our study was characterized as obtaining a standard score 

of 80 or above on the PPVT-III measure. Institutional Review Board (IRB) approval was 

sought and received for conducting experiments. Table I shows the characteristics of the 
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participants in the experiments. 

Table I Characteristics of Participants 

Child ID Gender Age Diagnosis PPVT-III Score 

A Male 15 Autistic Disorder 99 

B Male 15 Asperger's Syndrome 80 

C Male 13 Autistic Disorder 81 

D Male 14 PDD-NOS 92 

E Male 16 PDD-NOS 93 

F Female 14 PDD-NOS 83 

 

B. Phase I- Affective Modeling  

While the eventual goal is to develop affect-sensitive human-robot interaction, we 

built the affective models using physiological data gathered from two human-computer 

interaction tasks. Our previous work [29] showed that affective models built through 

human-computer interaction tasks could be successfully employed to achieve affect 

recognition in human-robot interaction for typical individuals. This observation suggests 

that it is possible to broaden the domain of tasks for affective modeling, thus reducing the 

habituation effect due to continuous exposure to the same robotic system. 

1) Task Design 

Two computer-based cognitive tasks were designed to evoke varying intensities of 

the following three affective states: anxiety, engagement, and liking, from the participants. 

Physiological data from participants were collected during the experiment. The two tasks 

consisted of an anagram-solving task and a Pong-playing task. The anagram-solving task 

has been previously employed to explore relationships between both electrodermal and 
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cardiovascular activity with anxiety [39]. Affective responses were manipulated in this 

task by presenting the participant with anagrams of varying difficulty levels, as 

established through pilot work. A long series of trivially easy anagrams caused less 

engagement. An optimal mix of solvable and difficult anagrams caused liking and 

engagement at times. Unsolvable or extremely difficult anagrams and giving time 

deadlines generated anxiety. 

The Pong task involved the participant playing a variant of the classic video game 

“Pong.” This game has been used previously by researchers to study anxiety, 

performance, and gender differences [32]. Various parameters of the game were 

manipulated to elicit the required affective responses. These parameters included: ball 

speed and size, paddle speed and size, sluggish or over-responsive keyboard, random 

keyboard response, and the level of the computer opponent player. Low speeds and large 

sizes of the ball and paddle made games less engaging after a while; whereas ball and 

paddle movements at high speeds along with smaller sizes of the two made the game 

engaging. Very high speeds caused anxiety at times. Playing against a moderate-level 

computer player usually generated liking. The task configurations were established 

through pilot work. 

Each task sequence was subdivided into a series of discrete trials/epochs that were 

bounded by the subjective affective state assessments. These assessments were collected 

using a battery of five questions regarding the three target affective states and the 

perceived difficulty and performance rated on an eight-point Likert scale where 1 

indicated the lowest level and 8 indicated the maximum level. Each participant took part 

in six sessions – three one-hour sessions of solving anagrams and three one-hour sessions 
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of playing Pong – on six different days.  

 

 

Fig. 2. Experimental set-up for affective modeling tasks 

2) Experimental Setup 

Fig. 2 shows the set-up for the experiment. A child with ASD was involved in the 

cognitive tasks on computer C1 while his/her physiological data was acquired via 

wearable biofeedback sensors and the Biopac system (www.biopac.com). After being 

amplified and digitized, physiological signals were transferred from the Biopac 

transducers to C2 through an Ethernet link at 1000Hz and stored. Because of the 

suspected unreliability of the subjective self-reports from children with ASD, a therapist 

with experience in working with children with ASD and a parent of the participant were 

also involved in the study. The signal from the video camera was routed to a television, 
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and the signal from the participant's computer screen where the task was presented was 

routed to a separate computer monitor M2. The therapist and a parent were seated at the 

back of the experiment room, watching the experiment from the view of the video camera 

and observing how the task progressed on the separate monitor.  

3) Experimental Procedure  

On the first visit, participants completed the PPVT-III measurement to determine 

eligibility for the experiments. After initial briefing regarding the tasks, physiological 

sensors from a Biopac system were attached to the participant's body. Participants were 

asked to relax in a seated position and read age-appropriate leisure material while a three-

minute baseline recording was performed, which was later used to offset day-variability. 

Each session lasted about an hour and consisted of a set (13-15) of either 3-minute 

epochs for anagram tasks or up to 4-minute epochs for Pong tasks. Each epoch was 

followed by subjective report questions rated on an eight-point Likert scale. After each 

epoch, the therapist and the parent also answered the questions about how they thought 

the participant was feeling during the finished epoch on an eight-point Likert scale. These 

three sets of reports were used as the possible reference points to link the objective 

physiological measures to the participant's affective state.  

4) Physiological Indices for Affective Modeling 

There is good evidence that the physiological activity associated with affective 

states can be differentiated and systematically organized [26]. Cardiovascular and 

electromyogram activities have been used to examine positive and negative affective 

states of people [40][41]. Blood pulse volume amplitude and sympathetic activity have 

been shown to be associated with task engagement [42]. The relationships between both 
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electrodermal and cardiovascular activities with anxiety were investigated in [39][43]. 

This correlation between physiological responses and underlying affective states was 

employed in this work to develop affective models for children with ASD. The 

physiological signals examined were: features of cardiovascular activity (including inter-

beat interval, relative pulse volume, pulse transit time, heart sound, and pre-ejection 

period), electrodermal activity (tonic and phasic response from skin conductance), and 

electromyogram (EMG) activity (from corrugator supercilii, zygomaticus, and upper 

trapezius muscles). These signals were selected because they are likely to demonstrate 

variability as a function of the targeted affective states, as well as they can be measured 

non-invasively, and are relatively resistant to movement artifacts [36]. 

The physiological signals examined in this work along with the features derived 

from each signal are described in Table II. Signal processing techniques such as Fourier 

transform, wavelet transform, thresholding, and peak detection, were used to derive the 

relevant features from the physiological signals. Inter beat interval (IBI) is the time 

interval between two “R” waves in the electrocardiogram (ECG) waveform. Power 

spectral analysis is performed on the IBI data to localize the sympathetic and 

parasympathetic nervous system activities associated with two frequency bands. The high 

frequency (HF) component (0.15-0.4 Hz; which corresponds to the rate of normal 

respiration) measures the influence of the vagus nerve in modulating the sinoatrial node 

and is associated with parasympathetic nervous system activity. The low frequency (LF) 

component (0.04-0.15 Hz) provides an index of sympathetic effects on the heart. 

Photoplethysmograph (PPG) signal measures changes in the volume of blood in the 

finger tip associated with the pulse cycle and provides an index of the relative 
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constriction versus dilation of the blood vessels in the periphery. Pulse transit time (PTT) 

is the time it takes for the pulse pressure wave to travel from the heart to the periphery. 

PPT is estimated by computing the time between systole at the heart (as indicated by the 

R-wave of the ECG) and the peak of the pulse wave reaching the peripheral site where 

PPG is being measured. The heart sound signal measures sounds generated during each 

heartbeat. These sounds are produced by blood turbulence primarily due to the closing of 

the valves within the heart. The features extracted from the heart sound signal consist of 

the mean and standard deviation of the 3rd, 4th, and 5th level coefficients of the 

Daubechies wavelet transform. Bioelectrical impedance analysis (BIA) measures the 

impedance or opposition to the flow of an electric current through the body fluids 

contained mainly in the lean and fat tissue. A common variable in recent 

psychophysiology research, pre-ejection period (PEP) measures the latency between the 

onset of electromechanical systole and the onset of left-ventricular ejection. PEP is 

derived from impedance cardiogram (ICG) and ECG and is most heavily influenced by 

sympathetic innervation of the heart. Electrodermal activity consists of two main 

components - Tonic response and Phasic response. Tonic skin conductance refers to the 

ongoing or the baseline level of skin conductance in the absence of any particular discrete 

environmental events. Phasic skin conductance refers to the event related changes that 

occur, caused by a momentary increase in skin conductance (resembling a peak). The 

EMG signal from Corrugator Supercilii muscle (eyebrow) captures a person's frown and 

detects the tension in that region. This EMG signal is also a valuable source of blink 

information and helps determine the blink rate. The EMG signal from the Zygomaticus 

Major muscle captures the muscle movements while smiling. Upper Trapezius muscle 
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activity measures the tension in the shoulders, one of the most common sites in the body 

for developing stress.  

Table II Physiological Indices 

Physiological Signals Features Derived Label Used Unit of Measurement 

Sympathetic power  
(from ECG) 

Sym Unit/Square Second 

Parasympathetic power (from ECG) Para Unit/Square Second 
Very Low Frequency Power (from ECG) VLF Unit/Square Second 

Ratio of powers  Sym Para 
Para VLF 
Sym VLF 

No unit 

Mean IBI IBI ECGmean Milliseconds 
Std. of IBI IBI ECGstd Standard Deviation  
Mean amplitude of the peak values of the PPG 
signal (Photoplethysmogram) 

PPG Peakmean Micro Volts 

Standard deviation (Std.) of the peak values of 
the PPG signal  

PPG Peakstd Standard Deviation  

 
Cardiac activity 

Mean Pulse Transit Time PTTmean Milliseconds 

Mean of the 3rd, 4th, and 5th level coefficients 
of the Daubechies wavelet transform of heart 
sound signal 

Mean d3 
Mean d4 
Mean d5 

No unit 

Heart Sound Standard deviation of the 3rd, 4th, and 5th level 
coefficients of the Daubechies wavelet 
transform of heart sound signal 

Std d3 
Std d4 
Std d5 

No unit 

Mean Pre-Ejection Period PEPmean Milliseconds Bioimpedance Mean IBI IBI ICGmean Milliseconds 
Mean tonic activity level Tonicmean Micro-Siemens 

Slope of tonic activity Tonicslope Micro-Siemens 
/Second 

Mean amplitude of skin conductance response 
(phasic activity) 

Phasicmean Micro-Siemens 

Maximum amplitude of skin conductance 
response (phasic activity) 

Phasicmax Micro-Siemens 

Electrodermal activity 

Rate of phasic activity Phasicrate Response peaks/Second 
Mean of Corrugator Supercilii activity Cormean Micro Volts 

Std. of Corrugator Supercilii activity Corstd Standard Deviation  
Slope of Corrugator Supercilii activity Corslope Micro Volts/Second 
Mean Interbeat Interval of blink activity IBI Blinkmean Milliseconds 
Std. of Interbeat Interval of blink activity IBI Blinkstd Standard Deviation  
Mean amplitude of blink activity Amp Blinkmean Micro Volts 
Standard deviation of blink activity Blinkstd Standard Deviation  
Mean of Zygomaticus Major activity Zygmean Micro Volts 
Std. of Zygomaticus Major activity Zygstd Standard Deviation  
Slope of Zygomaticus Major activity Zygslope Micro Volts/Second 
Mean of Upper Trapezius activity Trapmean Micro Volts 
Std. of Upper Trapezius activity Trapstd Standard Deviation  
Slope of Upper Trapezius activity Trapslope Micro Volts/Second 

Electromyographic 
activity 

Mean and Median frequency of Corrugator, 
Zygomaticus, and Trapezius 

Zfreqmean 
Cfreqmedian 
Tfreqmean  

Hertz 

Mean temperature Tempmean Degree Centigrade 
Slope of temperature Tempslope Degree Centigrade/Second Temperature 
Std. of temperature Tempstd Standard Deviation  
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5) SVM-based Affective Modeling 

Determining the intensity (e.g., high/low) of a particular affective state from the 

physiological response resembles a classification problem where the attributes are the 

physiological features and the target function is the degree of arousal. Our earlier work 

[27] compared the efficacy of several machine learning algorithms to recognize the 

affective states from the physiological signals of typical individuals and found that 

Support Vector Machines (SVM) gave the highest classification accuracy. In this work, 

SVM was employed to determine the underlying affective state of a child with ASD 

given a set of physiological features. Details of the theory and learning methods of SVM 

can be found in [44] and are briefly described in Appendix A. 

As illustrated in Fig. 3, each participant had a data set comprised of both the 

objective physiological features and corresponding subjective reports on arousal level of 

target affective states from the therapist, the parent, and the participant. The physiological 

features were extracted by using the approaches described in Section III (B-4). Each 

subjective report was normalized to [0, 1] and then discretized such that 0–0.50 was 

labeled as low level and 0.51–1 was labeled as high level. All three affective states were 

partitioned separately so that there were two levels for each affective state. Each data set 

contained approximately 85 epochs. The multiple subjective reports were analyzed, and 

one was chosen as the possible reference points to link the physiological measures to the 

participant's affective state. For example, a therapist-like affect recognizer can be 

developed when the therapist’s reports are used. A SVM-based recognizer was trained on 

each individual’s data set for each target affective state. In this work, in order to deal with 

the nonlinearly separable data, soft margin classifiers with slack variables were used to 
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find a hyperplane with less restriction [44]. RBF (Radial Basis Function) was selected as 

the kennel function because it often delivers better performance [45]. A ten-fold cross-

validation was used to determine the kernel parameter and regularization parameter of the 

recognizer. 

 

 

Fig. 3. Overview of affective modeling 

Once affective modeling is accomplished, the affect recognizers can accept as input 

the physiological features extracted on-line and produce as output the probable level of 

the target affective state of a child with ASD while interacting with a robot. In the design 

for the human-robot interaction task in Phase II, adequate measures were taken to avoid 

physical effort from overwhelming the physiological response.  

C. Phase II- Closed-Loop Human Robot Interaction  
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1) Task Design  

A closed-loop human robot interaction task, “robot-based basketball (RBB),” was 

designed. The main objective was two-fold: (i) to enable the robot to learn the preference 

of the children with ASD implicitly using physiology-based affective models as well as 

select appropriate behaviors accordingly; and (ii) to observe the effects of such affective-

sensitivity in the closed-loop interaction between the children with ASD and the robot.  

The affective model developed in Phase I is capable of predicting the intensity of 

liking, anxiety, and engagement simultaneously. However to designate a specific 

objective for the experiment in Phase II without compromising its proof-of-concept 

purpose, one of the three target affective states was chosen to be detected and responded 

to by the robot in real time. As has been emphasized in [8], the liking of the children (i.e., 

the enjoyment they experience when interacting with a robot) is a goal as desirable as 

skill learning for autism intervention. Therefore, liking was chosen as the affective state 

around which to modify the robot’s behaviors in Phase II.  

In the RBB task, an undersized basketball hoop was attached to the end-effector of a 

robotic manipulator, which could move the hoop in different directions (as shown in Fig. 

4) with different speeds. The children were instructed to shoot a required number of 

baskets into the moving hoop within a given time. Three robot behaviors were designed 

as shown in Table III. For example, in behavior 1 the robot moves towards and away 

from the participant (i.e., in the X direction) at a slow speed with soft background music, 

and the shooting requirement for successful baskets is relatively low. The parameter 

configurations were determined based on a pilot study to attain varied impacts on 

affective experience for different behaviors. From this pilot study, the averaged 
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performance of participants for a given behavior was compiled and analyzed. The 

threshold of shooting requirement (TSR) was defined as 10% lower than the average 

performance. At the end of each epoch, the participant's performance was rated as 

excellent (baskets ≥ ⎣1.2TSR⎦ ), above average (⎣0.8TSR⎦ ≤ baskets < ⎣1.2TSR⎦ ), or 

below average (baskets < ⎣0.8TSR⎦ ). Behavior transitions occurred between but not 

within epochs. As such, each robot behavior extended for the length of an epoch (1.5 

minutes in duration) to have the participant fully exposed to the impact of that behavior. 

 

 

Fig. 4. X, Y, and Z directions for behaviors used in RBB 

Table III Robot Behaviors 

Behavior 
ID 

Motion 
Direction

Speed 
(sec/period)

Threshold 
(shots/epoch)

Background 
Music 

1 X 8 12 Serene 

2 Y 4 20 Lively 

3 Z 2 30 Irregular 
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Each of the six participants took part in two robot basketball sessions (RBB1 and 

RBB2). In RBB1 (non-affect based) the robot selected its behavior randomly (i.e., 

without any regard to the liking information of the participant), and the presentation of 

each type of behavior was evenly distributed. This session was designed for two purposes: 

(i) to explore the state space and action space of the QV-learning algorithm used in RBB2 

for behavior adaptation (described in Section III (C-4)); and (ii) to validate that the 

different robot behaviors have distinguishable impact on the child’s level of liking. In 

RBB2 (liking-based), the robot continues to learn the child’s individual preference and 

selects the desirable behavior based on interaction experiences (i.e., records of robot 

behavior and the consequent liking level of a participant predicted by the affective 

model). The idea is to investigate whether the robot can automatically choose the most-

liked behavior of each participant as observed from RBB1 by means of physiology-based 

affective model and QV-learning. 

2) Experimental Setup  

The real-time implementation of the robot-based basketball system is shown in Fig. 

5. The set-up included a 5 degrees-of-freedom robot manipulator (CRS Catalyst-5 System) 

with a small basketball hoop attached to its end-effector. Two sets of infrared (IR) 

transmitter and receiver pairs were attached to the hoop to detect small, soft foam balls 

going through the hoop. The set-up also included the biological feedback equipment 

(Biopac system) that collected the participant’s physiological signals and the digital 

output from the IR sensors. The Biopac system was connected to a PC (C1) that: (i) 

acquired physiological signals from the Biopac system and extracted physiological 

features on-line, (ii) predicted the probable liking level by using the affective model 
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developed in Phase I, (iii) acquired IR data through the analog input channels of the 

Biopac system, (iv) ran a QV-learning algorithm that learns the participant’s preference 

and chooses the robot’s next behavior accordingly. Computer C1 was connected serially 

to the CRS computer (C2), which ran Simulink software. The behavior switch triggers 

were transmitted from C1 to C2 via a RS232 link. The commands to control the robot’s 

various joints were transmitted from C2 to the robot. There was a communication 

protocol established between C1 and C2 that ensured the beginning and end of the 

basketball task was appropriately synchronized with the physiological data acquisition on 

C1. As in Phase I tasks, the therapist and a parent were also involved, watching the 

experiment from the TV that was connected to a video camera. 

 

 

Fig. 5. Experimental set-up for robot basketball 
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3) Experimental Procedure  

Each basketball session (RBB1 or RBB2) was approximately 1 hour long and 

included 27 minutes of active human-robot interaction (i.e., 18 epochs of 1.5 minutes 

each). The remaining time was spent attaching sensors, guiding a short practice, taking a 

baseline recording, collecting subjective reports, and pausing for scheduled breaks. 

During the experiment, the participant was asked to take a break after every four epochs 

and the participant could request a break whenever he/she desired one. During each 

basketball epoch, the participant received commands and performance assessments from 

pre-recorded dialogue via a speech program running on C1 and the interaction proceeded 

as follows: 

1. The participant was notified of the goal (i.e., TSR). 

2. A start command instructed the participant to start shooting baskets. 

3. Once the epoch started, the participant was given voice feedback every 30 

seconds regarding the number of baskets remaining and the time available. 

4. A stop command instructed the participant to stop shooting baskets, which ended 

the epoch. 

5. At the end of each epoch, the participant's performance was rated and relayed to 

him/her as excellent, above average, or below average. 

Each epoch was followed by subjective reports that took 30-60 seconds to collect. 

The subjective assessment procedure was the same as the protocol used in the affective 

modeling tasks in Phase I. After the subjective report was complete, the next epoch 

would begin. To prevent habituation, a time interval of at least 7 days between any two 

RBB sessions was enforced.  
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4) Affect-sensitive Behavior Adaptation in Closed-Loop Human Robot Interaction 

We defined the state, action, state transition, and reward functions so that the affect-

sensitive robot behavior adaptation problem could be solved using the QV-learning 

algorithm as described in [46] and Appendix B.  

The set of states consisted of three robot behaviors as described in Table III. In 

every state, the robot has three possible actions (1/2/3) that correspond to choosing 

behavior 1, 2, or 3, respectively, for the next time step (i.e., next epoch). Each robot 

behavior persists for one full epoch and the state/behavior transition occurs only at the 

end of an epoch. The detection of consequent affective cues (i.e., the real-time prediction 

of the liking level for the next epoch) was used to evaluate the desirability of a certain 

action. To have the robot adapt to a child’s individual preference, a reward function was 

defined based on the predicted liking level. If the consequent liking level was recognized 

as high, the contributing action was interpreted as positive and a reward was granted (r = 

1); otherwise the robot received a punishment (r = -1). QV-learning uses this reward 

function to have the robot learn how to select the behavior that was expected to result in a 

high liking level and therefore positively influenced the actual affective (e.g., liking) 

experience of the child. 

RBB1 enables state and action exploration where the behavior-switching actions are 

chosen randomly, with the number of visits to each state evenly distributed. The V-

function and Q-function are updated using Eq. (3) and Eq. (4) from Appendix B. After 

RBB1, the subjective reports are analyzed to examine the impacts of different behaviors 

on each participant’s preference. In RBB2 the robot starts from a non-preferred 

behavior/state and continues the learning process by using Eq. (3) and Eq. (4). A greedy 
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action selection mechanism is used to choose the behavior-switching action with the 

highest Q-value. 

Because of the limited number of states and actions in this proof-of-concept 

experiment, tabular representation is used for the V-function and the Q-function. To 

prevent a certain action and/or state from being overly dominant and to counteract the 

habituation effect, the values of Q(s, a) and V(s) are bounded by using the reward or 

punishment encountered in the interaction. The parameters in Eq. (3) and Eq. (4) are 

chosen as α = 0.8 and γ = 0.9. Before RBB1 begins, the initial values in the V-table and 

the Q-table are set to 0. 

IV. Results and Discussion 

In this section we present both the Phase I results of physiology-based affective 

modeling for children with ASD and Phase II results of the affect-sensitive closed-loop 

interaction between children with ASD and the robot.  

A. Affect Detection 

Due to the unresolved debate on the definition of emotion (e.g., objective entities or 

socially constructed labels), researchers in affective computing often face difficulties 

obtaining the ground truth to label the natural emotion data accordingly. As suggested in 

[31][47], the immediate implication of such a controversy is that pragmatic choices (e.g., 

application- and user-profiled choices) must be made to develop an automatic affect 

recognizer. While there have been some criticisms on the use of subjective report (i.e., 

self-assessment or the reports collected from observers) and its effect on possibly forcing 

the determination of emotions, the subjective report is generally regarded as an effective 
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way to evaluate the affective responses. As a result, subjective report is widely used for 

affective modeling and for endowing an intelligent system with the recognition abilities 

similar to those of the reporters [15][21]. One of the prime challenges of this work is to 

attain reliable subjective reports. Researchers are generally reluctant to trust the response 

of adolescents on self-report [48]. In this study, one should be especially wary of the 

dependability of self-reports from children with ASD, who may have deficits in 

processing (i.e., identifying and describing) their own emotions [49]. Therefore, in order 

to overcome this difficulty, reports on how a therapist and a parent thought the participant 

was feeling based on his/her observed behaviors were collected after each epoch. 

To measure the amount of agreement among the different reporters, the kappa 

statistic was used [50]. The kappa coefficient (K) measures pair-wise agreement among a 

set of reporters making category judgments, correcting for expected chance agreement. 

When there is complete agreement, then K=1; whereas, when there is no agreement other 

than that which would be expected by chance, then K = 0.  

It was observed that the agreement between the therapist and parent showed the 

largest kappa statistic values (mean = 0.62) among the three possible pairs for each child 

(p < 0.05, paired t-test). The mean of the kappa statistic values between the children and 

either the therapist or the parent were relatively small (0.37 and 0.40, respectively). Lack 

of agreement with adults does not necessarily mean that the self-reports of children with 

ASD are not dependable; however, given the objective of this study is to develop an 

affect-sensitive robotic system for autism intervention where the therapists’ judgement 

based on their expertise is the state-of-the-art and the fact that there is a reasonably high 

agreement between the therapist and the parents for all of the six children, the subjective 
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reports of the therapist were used as the reference points linking the objective 

physiological data to the children’s affective state. To make the subjective reports more 

consistent, the same therapist was involved in all of the experiments. This choice allowed 

for building a therapist-like affective model. In the rest of the paper, unless otherwise 

specified, we will use the term liking, anxiety, and engagement to imply the target 

affective states as discerned by the therapist. 

 

 

Fig. 6. Rated average affect response from therapist’s reports 

Fig. 6 shows a comparison of the therapist’s average ratings for liking, anxiety, and 

engagement when the children with ASD played easy or difficult epochs in the Phase I 

computer games. When averaged across all participants, liking decreased, anxiety 

increased, and engagement decreased with increasing task difficulty. Table IV shows the 

correlation analysis between the reported affective states and the task difficulty. For each 

set of variables, the probability value (p-value) was computed from a two side t-test. Due 

to the large sample size (approximately 85 epochs for each participant), the p-value for 
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all correlations was less than 0.005. Through point biserial correlation analysis, it was 

found that difficulty is strongly positively correlated with anxiety and negatively 

correlated with liking and engagement. By examining Pearson correlation coefficients, it 

was observed that there is strong positive correlation between liking and engagement and 

negative correlation between liking and anxiety, and there also exists a weak correlation 

between the reported anxiety and engagement. The results in Fig. 6 and Table IV present 

the results across all the children. However, when each child is examined individually, 

different trends could arise. For example, for Child A, anxiety is positively correlated 

with engagement (Pearson correlation =0.45); for Child F, no significant correlation is 

observed (Pearson correlation = -0.15, p > 0.05); while for the four other children (B, C, 

D, and E) anxiety negatively correlated with engagement (Pearson correlation equals -

0.50, -0.39, -0.61, and -0.58, respectively), which revealed diverse affective 

characteristics of the children with ASD. 

Table IV Results of Correlation Analysis from Therapist’s reports 

  Anxiety Engage Difficulty 

Liking -0.521 0.885 -0.616 
Anxiety  -0.401 0.731 
Engage   -0.486 
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Fig. 7. Classification Accuracy of the Affect Recognizer 

The performance of the developed affective model for each child is shown in Fig. 7. 

The cross-validation method, ‘leave-one-out’, was used. The affective model produced 

high recognition accuracies for each target affective state of each participant. The average 

correct prediction accuracies across all participants were: 85.0% for liking, 79.5% for 

anxiety, and 84.3% for engagement. This was promising considering that this task was 

challenging in two respects: (i) the reports were collected from the therapist who was 

observing the children with ASD as opposed to having typical adults capable of 

differentiating and reporting their own affective states, and (ii) varying levels of arousal 

of any given affective state (e.g., low/high anxiety) were identified instead of determining 

discrete emotions (e.g., anger, joy, sadness, etc.). Determining the difference in arousal 

level in one affective state is more subtle than distinguishing between two discrete 

affective states. In order to explore the effects of reducing the number of physiological 

signals and the possibility of achieving more economical modeling, we examined the 
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performance of the affect recognizers when cardiovascular, electrodermal 2 , and 

electromyographic (EMG) activities and their combinations were used for affective 

modelling separately. It was observed that EMG signal is less discriminatory than 

cardiovascular and electrodermal activities (with prediction accuracy of 69.7%, 73.5%, 

and 73.0%, respectively). While no combination surpassed the prediction accuracy 

achieved when all signals were used (82.9%), the results suggested it may be possible to 

selectively reduce the set of signals and obtain nearly-as-good performance (e.g., using a 

combination of cardiovascular and electrodermal signals yielded 78.7% prediction 

accuracy). 

B. Affect Adaptation in Robot-based Basketball Task 

The six children with ASD who completed the Phase I experiments also took part in 

the robot basketball task. The results described here are based on the RBB1 (non-affect 

based) and RBB2 (liking-based) tasks. 

First, we present results to validate that different behaviors of the robot had 

distinguishable impacts on the liking level of the children with ASD. To reduce the bias 

of validation, in RBB1 the robot selects behaviors randomly and the occurrence of each 

behavior is evenly distributed. Fig. 8 shows the average labeled liking level for each 

behavior as reported by the therapist in RBB1. The difference of the impact is significant 

for five children (participants A, B, D, E, and F) and moderate for participant C. By 

performing two-way ANOVA analysis on the behavior (i.e., most-preferred, moderately-

                                                 
2 Peripheral temperature has relatively few features derived as shown in Table II and was not examined 

independently. Instead, it was studied conjunctively with the electrodermal activity, both of which were 

acquired from the non-dominant hand of a participant. 
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preferred, and least-preferred behavior) and participant, it was found that the differences 

of reported liking for different behaviors are statistically significant (p < 0.05), whereas 

no significant effect due to different participants was observed. Furthermore, it was also 

observed that different children with ASD may have different preferences for the robot’s 

behaviors. These results demonstrated that it is important to have a robot learn the 

individual’s preference and adapt to it automatically, which may allow a more tailored 

and affect-sensitive interaction between children with ASD and the robot. For example, 

when a robot learns that a certain behavior is liked more by a particular child, it can 

choose that behavior as his/her ‘social feedback’ or ‘reinforcer’ in robot-assisted autism 

intervention. Playful interaction will be more likely to emerge by addressing a child’s 

preference. 

 

 

Fig. 8. Mean liking level for different behaviors in RBB1 

Second, the predictive accuracy of how closely the real-time physiology-based 

quantitative measures of liking, as obtained from affective models developed in Phase I, 
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matched with that of the subjective rating of liking made by the therapist during Phase II 

is presented in Fig. 9. The average predictive accuracy across all the participants was 

approximately 81.1%. The highest was 86.1% for Child D, and the lowest was 77.8% for 

Child B and Child E. Note that the affective model was evaluated based on physiological 

data obtained on-line from a real-time application for children with ASD. However, this 

prediction accuracy is comparable to the results achieved through off-line analysis for 

typical individuals [22][27]. 

 

 

Fig. 9. Real-time classification accuracy of liking 

Third, we present results about robot behavior adaptation and investigate its impact 

on the interaction between the children with ASD and the robot. Table V shows the 

percentages of different behaviors that were chosen in the RBB2 session for each 

participant. The robot learned the individual’s preference and selected the most-preferred 

behavior with high probability for all the participants. Averaged across all participants, 

the most-preferred, moderately-preferred, and least-preferred behaviors were chosen 
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72.5%, 16.7%, and 10.8% of the time, respectively. The preference of a behavior was 

defined by the reported liking level in RBB1 as shown in Fig. 8. To understand these 

results more clearly we describe an individual case. Fig. 10 shows the affect-sensitive 

behavior adaptation in RBB2 for Child A, who prefers behavior 2 most (refer to Fig. 8). 

The real-time predicted liking level (i.e., high/low) is denoted by ‘H’ or ‘L’. The robot 

starts in a non-preferred behavior (behavior 1) and then explores other behaviors before 

settling on the most-preferred behavior (behavior 2) where the liking level is the high (as 

confirmed by the affective model prediction as well as the therapist’s subjective report). 

After a considerable time interacting with behavior 2 (e.g., epoch 7), the participant 

appears to not enjoy this behavior as much as before. The affective model detects this 

change and returns negative rewards. The QV-learning algorithm updates its state/action 

space and directs the robot to switch behaviors. However, after exploring other behaviors, 

the robot eventually finds that behavior 2 is the most-preferred by Child A (e.g., epoch 11) 

and continues the interaction using this behavior. At epoch 16, even though the predicted 

liking level is low, due to high frequent positive rewards received for behavior 2, the 

robot checks the updated Q function and remains at this behavior. There could be several 

reasons why less-preferred behaviors were chosen in RBB2. The learned behavior 

selection policy might not have been optimal after the exploration in RBB1, and the QV-

learning algorithm continued the learning process in RBB2. Another reason could be that 

the affective model is not 100% accurate and may return false reward/punishment, which 

may have given the robot imperfect instruction for behavior switches. Habituation to the 

most-preferred behavior during RBB2 could also be a factor that might have contributed 

to temporary changes in preference which led the robot to choose other behaviors. 
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Table V Proportion of Different Behaviors Performed in RBB2 

Most-Liked 
Behavior 

Moderate-Liked 
Behavior 

Least-Liked 
Behavior 

 
Child ID 

 ID Proportion  ID Proportion ID Proportion 
A 2 82.4% 3 11.8% 1 5.8% 
B 1 70.6% 2 17.7% 3 11.7% 
C 2 58.8% 3 23.5% 1 17.7% 
D 2 76.5% 3 11.8% 1 11.7% 
E 2 76.5% 3 17.6% 1 5.9% 
F 2 70.6% 1 17.7% 3 11.7% 

 

 

Fig. 10. Behavior selected by affect-sensitive robot in RBB2 for Child A  

In Table V, the robot chose a less-preferred behavior more often for Child C than for 

other participants. As can be seen in Fig. 8, Child C does not show differences of liking 

among the three behaviors as significantly as the other children. This instance of less-

distinct preference could result in more inconsistent rewards/punishments and the robot 

switching behaviors more frequently. However, despite the above possible reasons for 

choosing less-preferred behaviors, Table V and Fig. 10 show that the robot is capable of 

identifying and selecting the preferred behavior automatically in most of the epochs for 

all participants and thus positively influencing the subjective liking level of the children 

with ASD (as shown in Fig. 11).  
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In Fig. 11, we present results to demonstrate that active monitoring of participants’ 

liking and automatically selecting the preferred behavior allowed children with ASD to 

maintain high liking levels. The average labeled liking levels of the participants as 

reported by the therapist during the two sessions were compared. The agreement between 

the therapist and parent on the subjective liking level is substantial for both RBB sessions 

and has a larger kappa statistic value (0.71) than that of the other two possible reporter 

pairs (0.39 for the therapist and children and 0.43 for the parent and children). The lighter 

bars in Fig. 11 indicate the liking level during the RBB1 session (i.e., when the robot 

selected behaviors randomly), and the darker bars show the liking level during the RBB2 

session (i.e., when robot learned the individual preference and chose the appropriate 

behavior accordingly). It can be seen that for all participants liking level was maintained, 

and for five of the six children liking level increased. There was no significant increase 

for Child C during the liking-based session as compared to the non-affect based session. 

As mentioned earlier, the impact of the different robot behaviors on the liking level of 

Child C is not as significant as that of the others, which may impede the robot in finding 

the preferred behavior and hence impede the robot in effectively influencing the 

subjective liking level positively. Note that RBB1 presents a typically balanced 

interaction with equal numbers of most-preferred, moderately-preferred, and least-

preferred epochs and the comparisons in Fig. 11 are not between liking-based sessions 

and sessions of least-preferred epochs. In order to determine the effects of the session 

type and participant on the reported liking, a two-way ANOVA test was performed. The 

null hypothesis that there is no change in liking level between liking-based sessions and 

non-affect based sessions could be rejected at the 99.5% confidence level. Additionally, 
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no significant impact due to different participants was observed. This was an important 

result as the robot continued learning and utilizing the information regarding the probable 

liking level of children with ASD to adjust its behaviors. This ability enables the robot to 

adapt its behavior selection policy in real time and hence keep the participant in a higher 

liking level. 

 

 

Fig. 11. Subjective liking as reported by therapist 

V. Conclusions and Future Work 

There is increasing consensus in the autism community that development of 

assistive tools that exploit advanced technology will likely make application of intensive 

intervention for children with ASD more readily accessible. In recent years, robotic 

technology has been investigated in order to facilitate and/or partially automate the 

existing behavioral intervention that addresses specific deficits associated with autism. 

However, the current robot-assisted intervention tools for children with ASD do not 
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possess the ability to decipher affective cues from the children, which could be critical 

given that the affective factors of children with ASD have significant impacts on the 

intervention practice. In this work, we have proposed a novel framework for affect-

sensitive human-robot interaction where the robot can implicitly detect the affective 

states of the children with ASD as discerned by the therapist and respond to it 

accordingly.  

The presented affective modeling methodology could allow the recognition of 

affective states of children with ASD from physiological signals in real time and provide 

the basis for future robot-assisted affect-sensitive interactive autism intervention. In 

Phase I, two cognitive tasks – solving anagrams and playing Pong – have been designed 

to elicit the affective states of liking, anxiety, and engagement for children with ASD. To 

have reliable reference points to link the physiological data to the affective states, the 

reports from the child, the therapist, and the parent were collected and analyzed. A large 

set of physiological indices have been investigated to determine their correlation with the 

affective states of the children with ASD. We have experimentally demonstrated that it is 

viable to detect the affective states of children with ASD via a physiology-based affect 

recognition mechanism. A SVM-based affective model yielded reliable prediction with a 

success rate of 82.9% when using the therapist’s reports. 

In order to investigate the affect-sensitive closed-loop interaction between the 

children with ASD and the robot, we designed a proof-of-concept task, robot-based 

basketball, and developed an experimental system for its real-time implementation and 

verification. The real-time prediction of liking level of the children with ASD was 

accomplished with an average accuracy of 81.1%. The robot learned individual 
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preferences of the children with ASD over time based on the interaction experience and 

the predicted liking level and hence automatically selected the most-preferred behavior, 

on average, 72.5% of the time. We have observed that such affect-sensitive robot 

behavior adaptation has led to an increase in reported liking level of the children with 

ASD. This is the first time, to our knowledge, that the affective states of children with 

ASD have been detected via a physiology-based affect recognition technique in real time. 

This is also the first time that the impact of affect-sensitive closed-loop interaction 

between a robot and children with ASD has been demonstrated experimentally. 

In order to account for the phenomenon of person-stereotypy and the diverse 

affective characteristics of the children with ASD, we employed an individual-specific 

approach for affective modeling. An intensive study was preformed based on a large 

sample size of observations (approximately 85 epochs over 6 hours) for each of the six 

children with ASD. The time spent collecting the training data for affective modeling can 

be justified by the current ASD intervention practices [5]. However, note that the 

methodology for inducing, gathering, and modeling the experimental data is not 

dependent on the participants. The consistently reliable prediction accuracy for each 

participant demonstrated that it was feasible to model the affective states of children with 

ASD via psychophysiological analysis.  

The presented work requires physiological sensing that has its own limitations. For 

example, one needs to wear physiological sensors, and use of such sensors could be 

restrictive under certain circumstances. But given the rapid progress in wearable 

computing with small, non-invasive sensors and wireless communication, e.g., 

physiological sensing clothing and accessories [51], we believe that physiology-based 
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affect recognition can be appropriate and useful for the application of interactive autism 

intervention. None of the participants in this study had any objection to wearing the 

physiological sensors. 

Future work will involve designing socially-directed interaction experiments with 

robots interacting with children with ASD. Specifically, we plan to integrate the real-time 

affect recognition and response system described here with a life-like android face 

developed by Hanson Robotics (www.hansonrobotics.com), which can produce accurate 

examples of common facial expressions that convey affective states. This affective 

information could be used as feedback for empathy exercises to help children recognize 

their own emotions. Enhancements on the intervention process could also be envisioned. 

For instance, the robot could exhibit interesting behaviors to retain the child's attention 

when it detects his/her liking level is low. Additionally, besides liking, anxiety and 

engagement are also considered important in autism intervention practice (as described in 

Sections I and II). For example, anxiety is considered “as both a possible consequence of, 

and a possible cause of, aspects of the behavior of children with autism [33].” While the 

affective model developed in this work is capable of predicting the intensity of liking, 

anxiety, and engagement simultaneously, more sophisticated behavior adaptation 

mechanisms would be demanded to incorporate multiple inferred affective cues and 

account for other intervention information of interests, such as the intervention goals, 

historical records, and contextual inputs. We will investigate fast and robust learning 

mechanisms that would permit a robot’s adaptive response in the more complex human-

robot interaction tasks and allow the affect-sensitive robot to be adopted in the future 

autism intervention. 
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Appendix 

A. Pattern Recognition using Support Vector Machines 

SVM, pioneered by Vapnik [44], is an excellent tool for classification [45]. Its 

appeal lies in its strong association with statistical learning theory as it approximates the 

structural risk minimization principle. Good generalization performance can be achieved 

by maximizing the margin, where margin is defined as the sum of the distances of the 

hyperplane from the nearest data points of each of the two classes. SVM is a linear 

machine working in a high k-dimensional feature space formed by an implicit embedding 

of n-dimensional input data X into a k-dimensional feature space (k > n) through the use 

of a nonlinear mapping φ(X). This allows for the use of linear algebra and geometry to 

separate the data, which is normally only separable with nonlinear rules in the input space. 

The problem of finding a linear classifier for given data points with known class labels 

can be described as finding a separating hyperplane ( )TW Xϕ  that satisfies: 

( )( ) ( )01
( ) 1kT

i i i j j i ij
y W X y w X wϕ φ ξ

=
= + ≥ −∑      (1) 

where N represents the number of training data pairs (Xi, yi) indexed by i = 1,2,…, N; 

yi∈{+1, -1} represents the class label; ϕ(X) = [φ0(X), φ1(X),…, φk(X)]T is the mapped 

feature vector (φ0(X) = 1); and W = [w0, w1,…, wk] is the weight vector of the network. 

The nonnegative slack variable ξi generalizes the linear classifier with soft margin to deal 

with nonlinearly separable problems. 

All operations in learning and testing modes are done in SVM using a so-called 

kernel function defined as K(Xi, X) = ϕT(Xi)ϕ(X) [44]. The kernel function allows for 

efficient computation of inner products directly in the feature space and circumvents the 
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difficulty of specifying the non-linear mapping explicitly. One distinctive fact about 

SVM is that the learning task is reduced to a dual quadratic programming problem by 

introducing the Lagrange multipliers αI [44]: 

Maximize  ( ) ( )1 1 1

1 ,
2

N N N
i i j i j i ji i j

Q y y K X Xα α α α
= = =

= −∑ ∑ ∑   (2) 

       Subject to                     1
0N

i ii
yα

=
=∑   and  0 i Cα≤ ≤     

where C is a user-defined regularization parameter that determines the balance between 

the complexity of the network characterized by the weight vector W and the error of 

classification of data. The corresponding αi multipliers are only non-zero for the support 

vectors (i.e., the training points nearest to the hyperplane). 

The SVM approach is able to deal with noisy data and over-fitting by allowing for 

some misclassifications on the training set [45]. This characteristic makes it particularly 

suitable for affect recognition because the physiology data is noisy and the training set 

size is often small. Another important feature of SVM is that the quadratic programming 

leads in all cases to the global minimum of the cost function. With the kernel 

representation, SVM provides an efficient technique that can tackle the difficult, high 

dimensional affect recognition problem. 

B. Behavior Adaptation using QV Learning 

QV-learning [46], a variant of the standard reinforcement learning algorithm Q-

learning [52], was applied to achieve the affect-sensitive behavior adaptation. QV-

learning keeps track of both a Q-function and a V-function. The Q-function represents the 

utility value Q(s, a) for every possible pair of state s and action a. The V-function 

indicates the utility value V(s) for each state s. The state value V(st) and Q-value Q(st, at) 
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at step t are updated after each experience (st, at, rt, st+1) by: 

( ) ( ) ( ) ( )( )1:t t t t tV s V s r V s V sα γ += + + −      (3) 

( ) ( ) ( ) ( )( )1, : , ,t t t t t t t tQ s a Q s a r V s Q s aα γ += + + −      (4) 

where rt is the received reward that measures the desirability of the action at when it is 

applied on state st and causes the system to evolve to state st+1. The difference between (4) 

and the conventional Q-learning rule is that QV-learning uses V-values learned in (3) and 

is not defined solely in terms of Q-values. Since V(s) is updated more often than Q(s, a), 

QV-learning may permit a fast learning process [46] and enable the robot to efficiently 

find a behavior selection policy during human-robot interaction. 
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CHAPTER VII 

ACTIVE LEARNING USING SUPPORT VECTOR MACHINE FOR 
PHYSIOLOGY-BASED AFFECTIVE MODELING FOR CHILDREN WITH 

AUTISM 

 

In any classification procedure, samples must be collected, processed and labeled 

with a known class membership in order to determine a model (e.g., ±1 for two classes). 

This procedure can be demanding in terms of the efforts required for (i) sample 

collection/processing and (ii) sample labeling. These two issues have particular impacts 

on developing human machine interaction applications when the participation of human 

subjects and the classification are demanded (e.g., in affective computing, Picard, 1997). 

For example, in order to build physiology-based affective-models, a human-machine 

interaction task usually has to be performed for 2-5 minutes to get the physiological 

signals and subjective reports have to be collected afterward (which may interrupt the 

interaction) in order to get one labeled training data point (Liu, et al., 2008; Picard, Vyzas, 

& Healey, 2001; Rani, et al., 2006). The experimental data measurement and labeling can 

be both time consuming and expensive. For developing an affective model for a real-

world human-machine application, it would be important to investigate the efficient 

machine learning paradigms that depends relatively less on the availability of a large set 

of labeled training examples (Picard, et al., 2004).  

In this work, we addressed this challenge in the context of building physiology-

based affective model for children with Autism Spectrum Disorders (ASD). Specifically, 

we focused on the second issue and investigated the feasibility of alleviating the efforts of 
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sample labeling by using Support Vector Machine active learning (SVM-AL). 

As discussed in (Liu, et al., 2008, Chapter V), due to the unreliability of self-reports 

from the children with ASD, an autism therapist and a parent of the participant were also 

involved in the study. They were seated at the back of the experiment room, watching the 

experiment from the view of the video camera, observing how the task progressed on a 

monitor, and providing the subjective reports. For details about the experimental setup, 

please refer to Section 4 of Chapter V. This requirement posed additional challenges in 

participant recruitment and coordination of schedules among the therapist, participating 

child, and his/her parent. An alternative approach could be video-recording experiment 

(including the task progress), sending the video tapes to the therapist/parent, and allowing 

them to label the video segments at their own time. However, it can be expected costly 

and time consuming to label such video records. For example, in a study like (Liu, et al., 

2008), for each child with ASD, there would be 6 hours of video needed to be reviewed 

and around 86 segments needed to be labeled. In such circumstances a method that 

allows the construction of reliable affect recognizers while only needs the labeling of a 

small fraction of samples can be of advantage, speeding up the procedure and possibly 

reducing costs due to extra analysis. 

A strategy to tackle the problem is to use active learning, where the algorithm 

interacts with the samples prior to their labeling with the purpose of indentifying 

informative samples for which to request labels (Cohn, Atlas, & Ladner, 1994).  

The most established method for training physiology-based affective models is 

passive learning (Liu, et al., 2008; Mandryk & Atkins, 2007; Nasoz, et al., 2003; Picard, 

Vyzas, & Healey, 2001; Rani, et al., 2006). In this case the set of training examples are 



248 
 

the physiological features and the corresponding subjective reports, drawn at random 

from the training set. There is no relation between the expected error rate and a training 

example.  

It has been shown in machine learning research that only a small portion of a large 

unlabeled data set may need to be labeled to train an active learning in order to achieve a 

strong classification performance (Lewis & Catlett, 1994; Cohn, Atlas, & Ladner, 1994; 

Dagan & Engelson, 1995). Previous work in active learning has concentrated on two 

approaches: certainty-based methods and committee-based methods. In the certainty-

based methods (Lewis & Catlett, 1994), an initial system is trained using a small set of 

annotated examples. Then, the system examines the unannotated examples and 

determines the certainties of its predictions of them. The samples with the lowest 

certainties are then presented to the labelers for annotation. In the committee-based 

methods (Dagan & Engelson, 1995), a set of distinct classifiers is also created using the 

small set of annotated examples. The unannotated instances, whose predicted annotations 

differ most when presented to different classifiers, are presented to the labelers for 

annotation. In both paradigms, a new system is trained using the new set of annotated 

examples, and this process is repeated until the system performance converges.  

In this work, we applied SVM-AL to reduce the label efforts in affective modeling 

for children with ASD. The seminal theoretical and practical discovery about SVM-AL 

was made by (Tong & Chang, 2001). It is based on version space reduction in Support 

Vector Machine (SVM) classifiers and was used in image retrieval. SVM-AL for active 

sample selection was also applied in drug discovery process (Warmuth, et al., 2002) and 

text classification with success (Tong & Koller, 2001). While active learning is an 
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appealing tool for sample selecting/labeling, till date no published study has been found 

that specifically explored its application in building reliable affect recognizers while 

reducing the labeling efforts. 

The rest of this chapter is organized as follows: A description of the machine 

learning algorithm (i.e., SVM-AL) is presented in Section 1. Section 2 presents 

experiment design for applying active sample selection and learning in physiology-based 

affective modeling for children with ASD. This is followed by a results and discussion 

section (Section 3). Finally, Section 4 summarizes the conclusions of this work. 

1. Support Vector Machine Active Learning 

SVM-AL is a learning system that is consisted of the SVM and a query function. A 

detailed description of SVM can be found in Appendix of Chapter V. SVM is one kind of 

passive learning. It is fed with a large pool of randomly selected samples and requires 

that the whole training set be labeled. In SVM-AL, the oracle (e.g., a user or labeler) 

becomes an integral part of the learning process. By using the query function, the system 

selects the most informative samples and asks the oracle for labels. The goal is to achieve 

strong classification performance with relatively few labeling requests. 

One issue that needs to be addressed is: given an example, how should the query 

function be defined so that system can select the “informative” samples and request 

labels accordingly? In this work, we used margin-based query (Tong & Chang, 2001). 

Assume that samples are drawn from nX R⊆ , and that each sample ix X∈  has an 

associated label iy  drawn from {−1, 1}, representing the affective states. Assume that L 

is a classifier with weight vector w , that a value ip  is defined for each ix  by ,i ip w x= , 
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and the prediction by L for example ix is given by ( )isign p . The value ip  measures how 

close a sample is to the separating hyperplane. The closer a sample is to the hyperplane, 

the less confidence we have in L’s prediction. One sampling/query function can be 

defined to request labels for such samples ix  that have relatively small distance to the 

decision boundary (i.e., choosing top k samples that have relatively small p ). Tong and 

Chang (2001) proved this intuitive result: those unlabeled points closest to the separating 

hyperplane are the optimal choice to most reduce the size of the version space and thus 

improve the classification accuracy efficiently at each round. 

2. Experimental Investigation  

A simulation study was performed to examine SVM-AL and SVM passive learning 

(SVM-PL) both in terms of relative prediction performance and number of labels 

required to develop an affective model with satisfactory performance. 

2.1. Experiment Design 

We ran the experiment on the dataset obtained in our previous work (Liu, et al., 

2008; Chapter V), where the physiological features of the children with ASD and the 

labels for the target affective state level from the therapist are given. For details of data 

collection and data set derivation, please refer to Section 3 and Section 4 of Chapter V.  

In the experiment, SVM-AL was used to learn a classifier for each query in the 

simulation. A search is then a mapping from physiological features to the level of the 

target affective states (e.g., low/high level of anxiety) of children with ASD.  

In a real application, an oracle (e.g., a therapist) would have physiological feature 

vectors and the corresponding video segments that are linked by the experiment epoch ID. 
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A label of a physiological feature vector can be obtained from the therapist after he/she 

reviews the corresponding video segment. A physiological feature vector will have the 

same ID as a video segment if that feature vector is derived from the physiological 

signals that were collected at the same epoch as the one when the video segment is 

recorded. To begin the search (i.e., active learning), the system asks the therapist to label 

a small number of video segments, and uses the corresponding labeled physiological 

feature vectors as the “seeds” for the first round training. After that, the system iterates 

between training a new classifier on the labeled physiological features and soliciting new 

labels from the therapist for informative samples. The sample selection/query is 

determined by the distance of the samples to the decision boundary of SVM as described 

in Section 1.  

In the simulation, the labels in the dataset obtained in Chapter V will be fed to the 

system only when they are requested. This emulates the process of video review and 

labeling by the therapist.  

2.2. Procedure 

In summary, SVM-AL affective modeling in simulation is consisted of the following 

steps: 

1) Randomly select s ”seed” physiological feature vectors and get their 

corresponding  labels  

2) Train a SVM classifier  

3) Record prediction performance on the testing dataset of size t  

4) Calculate the distance of unlabeled physiological feature vectors from the current 

separating hyperplane, select top k  feature vectors that has the least distances 
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(i.e., informative samples), and retrieve their labels 

5) Train the SVM classifier on all the labeled training instances (i.e., update the 

separating hyperplane) 

6) Record prediction performance on testing dataset of size t  

7) Repeat steps 4), 5), and 6) iteratively until stop criterion is reached  

The simulation procedure for SVM-PL is similar, except in step 4. SVM-PL selectes 

k  feature vectors randomly and retrieves the labels for training, with no regard to the 

expected impacts of the selected training samples on the prediction performance.  

In practice, the stop criterion can be defined when a system performance converges 

or a predetermined number of iterations have been reached. In this study, the SVM-AL 

affective modeling will not stop until all the training set is labelled, for the purpose of 

performance comparison.  

We compared the relative prediction performance and number of labeling requests 

of SVM-AL and SVM-PL. In order to avoid the bias due to the impacts of different 

choice of “seed” and testing sets, the following conditions were imposed: 

1) 30 trials for each target affective state of each participant were performed for 

both SVM-AL and SVM-PL, respectively. 

2) In each trial, the same “seed” and testing dataset were used for both SVM-AL 

and SVM-PL. 

3) The class distribution in “seed” and testing dataset is about the same as the 

whole data set. 

In each trial, the experimental parameters were set as: 5s = , 10t = , and 5k = . The 

whole dataset for one target affective state of each participant has approximately 86 
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samples, which will result in 15 prediction performance records in each trial.   

3. Results and Discussion  

We investigated the feasibility of applying SVM-AL to develop affective models for 

children with ASD. SVM-AL and SVM-PL were compared in terms of both relative 

performance increase and number of requests for labeling to achieve a satisfactory 

performance. As shown in the results, SVM-AL is more advantageous by both evaluation 

criteria. 

 

 

Figure 1. Relative Liking Prediction Performance Increase vs. Number of Labeling Requests for SVM-AL 
and SVM-PL 

First, we present the result to demonstrate that active sampling allowed larger 

relative prediction performance (RPP) increase in the development of liking recognizers 

for children with ASD. Figure 1 shows that RPP for liking level increases as more 

labeled training data are available. It should be noted that, in this work we are focused on 
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studying to what degree SVM-AL can enhance the prediction performance by choosing 

the informative samples for labeling, instead of examining the absolute prediction 

accuracy of SVM. In another word, we are more interested in investigating the effects of 

query function part of SVM-AL rather than the performance of SVM, which is another 

component of SVM-AL. The detailed results of SVM prediction performance in 

physiology-based affective modeling for children with ASD can be found in our previous 

work (Liu, et al., 2008; Chapter V). As a consequence, RPP was used for such 

measurement when the average is computed across the participants. RPP is calculated by 

linearly normalizing the absolute prediction accuracies to [0, 1]. The normalization scope 

is defined as the difference of two prediction accuracies: one is achieved after the system 

is trained with only the “seed” dataset and the other one is obtained after the system is 

trained with the whole training dataset.  

In Figure 1, we can observe that SVM-AL has consistently larger RPP than SVM-

PL after 15 sample requests. This showed that margin-based query of SVM-AL has more 

positive impacts on the prediction performance improvement of the liking model than the 

random query used in SVM-PL. By choosing more informative samples and asking the 

oracle (e.g., the therapist) for labels, SVM-AL enhanced the liking model’s prediction 

performance in a more efficient manner. In Figure 1, SVM-AL and SVM-PL have the 

same RPP after trained with the “seed” dataset and the whole training dataset, with the 

value of 0% and 100%, respectively. This is because of the linear normalization as 

described before and the fact that the same “seed” and testing dataset were used for both 

approaches in each trial (as mentioned in Section 2). This leads to the fact that both 

SVM-AL and SVM-PL have the same RPP after those two trainings. 
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It can also be observed from Figure 1 that on average SVM-AL achieved 80% RPP 

by using 45 training samples and 90% RPP by using 55 training samples, whereas SVM-

PL has to obtain 55 training samples and 65 training samples to get such performance 

improvement for liking prediction. By only taking 60%-70% sample labeling, SVM-AL 

provided the liking prediction models for children with ASD with acceptable 

performance. If 80% or 90% RPP is sufficient in certain applications, SVM-AL would 

significantly alleviate the costly and time consuming labeling process (e.g., hours of 

video review and annotations) for the therapist. 

 

 

Figure 2. Relative Anxiety Prediction Performance Increase vs. Number of Labeling Requests for SVM-AL 
and SVM-PL 

The RPPs in anxiety modeling for children with ASD was shown in Figure 2, with 

the lighter bars indicating RPP for SVM-PL and the darker bars showing RPP for SVM-

AL. It was observed that RPP of SVM-AL is consistently larger than that of SVM-PL 

after they were trained by 10 selected samples. Furthermore, SVM-AL achieved 80% and 
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90% RPP for anxiety prediction after 35 sample requests and 40 sample requests, 

respectively. SVM-PL has to use 50 and 55 labeled samples to get the similar 

performance improvement. This result showed that the acceptable (e.g., with 80%-90% 

RPP) anxiety models for children with ASD could be developed by using only around 

50% sample labeling with SVM-AL on average.  

It should be noted in Figure 2, RPP of SVM-AL is larger than 100% after 9 rounds 

of training (i.e., 60% of the whole training dataset). This fact suggested that it is possible 

that an affective model trained by a fraction of samples, which were informatively 

selected for labeling, may have a better performance than the one trained by the whole 

labeled training dataset. This is generally due to the overtraining or to the presence of 

outliers as discussed in (Riccardi & Hakkani-Tur 2005). In the 2nd round of training, RPP 

of SVM-AL is of small negative value, which means the performance degenerated from 

the one obtained by being trained only with the “seed” dataset. As described in Section 2, 

the active query is based on the distance of unlabeled physiological feature vectors from 

the current separating hyperplane. At the first several training rounds, the model quality 

could be low and the choice of sample queries based on the decision boundary of such 

model could be biased and even results in performance decrease. This could also be the 

reason that in Figure 1 RPP of SVM-AL is smaller than RPP of SVM-PL for 2nd and 3rd 

round of training. 
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Figure 3. Relative Engagement Prediction Performance Increase vs. Number of Labeling Requests for 
SVM-AL and SVM-PL 

Similar trend can also be observed in Figure 3 where results of RPP of engagement 

modeling for children with ASD are presented: larger RPP was obtained for SVM-AL 

after 10 training data and SVM-AL was capable of achieving acceptable affective models 

by the use of relatively less sample labels. For example, SVM-AL obtained 80% and 90% 

RPP for engagement prediction after 40 and 50 label requests (53% and 66% of whole 

training dataset), respectively; while SVM-PL demands more labeling efforts (e.g., 80% 

and 86% of whole training dataset) to get such a performance improvement.  

4. Conclusions  

In summary, we observed that: i) SVM-AL has larger RPP after the first several 

rounds of training (10-15 labeled training data on average) than SVM-PL; ii) acceptable 

model performance (e.g., with 80% or 90% RPP) can be achieved by asking the therapist 

to review and annotate only about 50%-60% of the dataset; iii) It could be possible to 
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obtain a better performance by using a fraction of samples, which are informatively 

selected, than using the whole training dataset.  

SVM-AL is capable of improving the performance of affect recognizers efficiently 

by using relatively less labeled samples. This work experimentally demonstrated that it is 

feasible to use this technique to alleviate the costly and time consuming video review and 

labeling efforts in physiology-based affective modeling for children with ASD while still 

maintaining sufficient model performance. 
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CHAPTER VIII 

 CONTRIBUTIONS AND FUTURE WORK 

Contributions 

The contributions of this dissertation are in the area of physiology-based affect-

sensitive human-machine interaction (HMI). The main contributions of this dissertation 

are:  

i) Performed a systematic comparison of the strengths and weaknesses of four 

machine learning methods (K-Nearest Neighbor, Regression Tree, Bayesian 

Network, and Support Vector Machines) when they were employed for the 

physiology-based affect recognition. The proposed individual-specific modeling 

approach accounted for the phenomenon of person stereotypy and was capable of 

delivering competitive prediction accuracy on the intensity of affective states. 

ii) Designed and implemented an affect-based dynamic difficulty adjustment (DDA) 

mechanism for computer games. It was experimentally demonstrated that the 

gaming experience can be augmented by using the affect-based DDA though a 

systematic user study. 

iii) Proposed a closed-loop human-robot interaction framework, which was capable 

of performing accurate real-time affect recognition and modifying robot’s 

behaviors accordingly. A robot-based basketball game was designed where a 

robotic “coach” monitored the human participant’s anxiety level and 

dynamically changed its behavior parameters based on a state-flow model. It 

allowed users’ skill improvement while maintaining desired anxiety levels. 

iv) Designed and implemented computer-based cognitive tasks that successfully 
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elicited target affective states (i.e., liking, anxiety, and engagement) in the 

children with ASD. Multiple subjective reports from an autism therapist, a parent, 

and the participant were analyzed to account for the suspected unreliability of the 

subjective self-reports from children with ASD. Support Vector Machines (SVM) 

was employed to develop a therapist-like affective model that yielded reliable 

prediction performance. Furthermore, (i) the effects of reducing the number of 

physiological signals to achieve more economical modeling, and (ii) the 

correlation between the affective model’s prediction performance and the 

agreement between the therapist and parent on the subjective reports were also 

investigated. 

v) Proposed an online affect detection and robot behavior adaptation framework for 

intervention of children with ASD. A robot used a Support Vector Machines 

based affective model to implicitly detect the affective cues in real-time. A 

reinforcement learning based behavior adaptation mechanism was employed to 

enable the robot to adapt its behaviors autonomously as a function of the 

predicted child’s affective state. The robot learned the individual liking level of 

each child with regard to the game configuration and selected appropriate 

behaviors to present the task at his/her preferred liking level. This work was the 

first step to develop robot-assisted intervention tools to help children with ASD 

to explore social interaction dynamics in an affect-sensitive and adaptive manner. 

vi) Investigated Support Vector Machine active learning (SVM-AL) to alleviate the 

effort required for sample labeling. By using the margin-based query to select the 

informative samples for the label requests, SVM-AL was capable of improving 
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the relative prediction performance of affective models efficiently with the use of 

relatively less labeled samples. 

Future Work 

One of the future developments of this research is to incorporate multiple inferred 

affective cues (e.g., anxiety and frustration at the same time) and to account for other 

interaction information of interests, such as the human’s performance and the context and 

complexity of the interaction task. With more sophisticated adaptation mechanisms, it 

would permit the adaptive and affect-sensitive interactions in the more complex HMI 

applications. Another area of emphasis in future could be integrating the affect-detection 

and adaptation system with various other modalities, such as dialogue, facial-recognition, 

and gestures. It would allow richer and more meaningful human-machine interaction. 

Furthermore, it would also be useful to conduct a large-scale study of physiology-

affective state correlations to determine age, gender and culture-related patterns. This will 

assist in making generic affect-recognizers that can predict affective responses of a class 

of people. 

While the concept of providing affect-based feedback in computer/robot assisted 

autism intervention for children with ASD was demonstrated in this work, there are 

several future areas of work remained to be explored. One is to investigate the design of 

socially-directed interaction experiments with robots interacting with children with ASD, 

e.g., integration of the real-time affect recognition and response system described here 

with a life-like android face, which can produce accurate examples of common facial 

expressions that convey affective states. This affective information could be used as 

feedback for empathy exercises to help children recognize their own emotions. 
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Enhancements on the intervention process could also be envisioned.  

It would also be of great importance to i) reduce the verbal components in the 

cognitive tasks which would allow application to a broader part of the ASD population 

and ii) develop computer-based intervention tools that address the social communication 

deficits of children with ASD. My colleagues in our laboratory are currently working on 

these two challenges. 

 
 


