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CHAPTER I 

INTRODUCTION  

Digital games are an influential and ubiquitous presence in the lives of young learners. A 

2008 study by the Pew Internet and American Life Project found that 97% of American teens 

aged 12-17 play digital games, and 50% of them report daily or nearly daily play (Lenhart et al., 

2008). With increasing access to computers, consoles, and cell phones, young people encounter 

opportunities for gaming everywhere. Educational researchers are increasingly interested in the 

affordances of digital games as a medium for learning. Investigation into the use of games for 

learning has grown from a small niche area to a major focus of research over the past decade 

(e.g., Young et al, 2010; Gee, 2003, 2007). A growing body of evidence indicates that digital 

games can be powerful vehicles for elementary and secondary learning in the STEM (science, 

technology, engineering, and mathematics) disciplines. Numerous studies have linked classroom 

use of learning games with increased learning outcomes and improvement in students’ 

conceptual understanding, engagement, and self-efficacy in these fields (Martinez-Garza, Clark, 

& Nelson, 2013; de Freitas, 2006). 

Realizing the full potential of games for learning poses significant challenges. Digital 

games for learning are remarkably diverse as a medium; they are designed with vastly different 

affordances and constraints, they target a wide range of age groups and content areas, they are 

deployed in a variety of educational settings, and lend themselves to a range of quantitative and 

qualitative research methodologies. Because of this variety, educational games research supports 

a number of theoretical lenses to explain the related processes of game design, play, and learning 

through play. In addition to more traditional perspectives on media-based learning effects 

(Mayer, 2009), scholarship into games can now be grounded in terms of the formation of 
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communities of practice (Gee, 2004/2007; Lave & Wenger, 1991) and the creation of islands of 

expertise (Crowley & Jacob, 2002), the use of games as cultural and ideational resources for 

identity construction (Holland, Lachicotte, Skinner & Cain, 1998; Nasir & Cooks, 2009) and 

regimes of competence (Wenger, 1999), and the opportunities afforded by games for 

participation in shared enterprise (Wenger, 1998) and to connect with authentic practices (Barab 

et al, 2007; see Brown, Collins & Duguid, 1989). 

These and other theoretical frameworks are all useful and valid means of examining and 

explaining educational gaming, yet they tend to focus on different processes and entities. One 

aspect of games for learning that has recently garnered attention from researchers is game play 

data, i.e. the automatically-collected record of student activity within the game environment. 

This record has the potential to provide a wealth of insight about how students learn (Romero & 

Ventura, 2012). However, the exhaustive and detailed nature of the data is both a source of 

promise and of great challenges. The richness of game play data makes it difficult to find 

meaning and draw causal lines between game play actions and learning outcomes. A useful 

method for research that aims at using game play data is statistical computing, known variously 

as “educational data mining” or “learning analytics” (LA). These techniques are concerned with 

developing, researching, and applying computerized methods to detect patterns in large 

collections of educational data that would otherwise be hard or impossible to analyze due to the 

enormous volume of data within which they exist (Romero & Ventura, 2012; Berland, Baker, & 

Blikstein, 2014). 

One feature of learning analytics as a research methodology is its intimate connection 

with the process of developing and refining learning theory. The goal of LA is discovering latent 

structure within a set of data, but this structure (if it exists) is not automatically meaningful or 
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actionable. Thus, LA methods require interpretation by human experts who can situate the results 

of data mining within the appropriate context, determine whether the results are useful and 

actionable, and provide the necessary causal explanations – actions which are inherently theory-

laden. Conversely, the results of LA can potentially prompt refinement or revision of the 

assumptions and hypothesis of the theoretical lens, by testing the connections between the 

various concepts and relationships described in the theory. For these reasons, learning theory and 

learning analytics can be said to coevolve, that is, to refine and improve each other reciprocally, 

each aspect providing a necessary element for the growth and advancement of the other. 

In this three-paper dissertation, I explore this process of coevolution between learning 

theory and data analytics. From the theoretical side, I investigate how a general theory of 

cognition (the two-system or dual-system model) can be applied to game-based environments. A 

base hypothesis in this theory is that certain patterns of action in the game-space indicate 

cognitive action aligned with the two-system dynamic which I call stances. From the 

methodological side, I applied techniques of statistical computing that allow the detection of 

these stances as they are reified in a physics learning game, by demonstrating an analysis of the 

collected actions of players that can be applied in other educational gaming contexts in a reliable 

and comprehensive fashion. 

The first paper consists of a theory-agnostic approach to game-play data analysis using 

learning analytics (Martinez-Garza, Clark, & Nelson, 2013). It was published in the International 

Journal of Gaming and Computer Mediated Simulations. This paper is an early exploration of 

game play data viewed as a record of students’ thinking without commitment to a particular 

theoretical lens. A central claim in this paper is that game play is a manifestation of the player’s 

underlying mental processes, and since knowledge of how to play a specific digital game is not 
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innate, one of these mental processes must involve learning. When a game’s challenges are 

aligned with learning goals, then a person’s actions in-game can be conceptualized as process 

data, indicating a person’s ongoing effort to understand the concepts and relationships 

encapsulated by the game. Then, if the actions that comprise these efforts are logged, we can 

analyze these logs for evidence of learning. 

This paper summarizes my efforts and preliminary findings in the analysis of game play 

data from SURGE Classic (Clark, Nelson, Chang, Martinez-Garza, Slack, & D’Angelo, 2011). 

That game was designed in such a way that players had to apply frequent inputs; thus, a single 

player’s game play log could contain tens of thousands of actions.  More problematically, we 

observed that because of the genre and overall pace of the game, these inputs were often 

impulsive, tentative, or reactive. This made it difficult to claim that individual actions were 

significant or specifically indicative of the types of thinking and learning SURGE was designed 

to encourage. However, it was still possible that latent patterns recovered from a large collection 

of these individual actions could indicate changes in the trends of players’ actions, which we 

could then diagnose as evidence of learning. In this paper, I described two machine learning 

algorithms (sequential pattern mining and hidden Markov modeling) that showed the most 

potential for recovering interesting patterns and trends, along with discussion of challenges 

involved in using them. Significantly, this early exploration lead to the insight that these 

techniques are not only predicated on the properties of game play data, but are necessarily 

theory-laden: the researcher must make some strong a priori assumptions regarding the 

interpretation and significance of the record; the data cannot “speak for itself”. This insight 

prompted the development of a theoretical framework that could support these a priori 

assumptions required by LA.  
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The second paper is focused on developing and warranting such a theoretical framework. 

In Paper 2, I set forward a learning framework called the Two-Stance Model, or 2SM. The 2SM 

proposes two epistemic stances students might use when playing a digital game: a "learner" 

stance and a "player" stance. These stances are conceptualized as collections of epistemic 

resources (see Hammer & Elby, 2003) associated with the cognitive processes described in the 

two-system model of cognition (Evans, 2008). Two-system models of cognition distinguish 

between effortless thought, or “intuition”, and deliberate purposeful “reasoning”. These modes of 

cognition are neutrally labeled as System 1 and System 2, respectively. The former is described 

as fast, automatic, and associative; the latter as slower, deliberate, and self-aware. In the 2SM 

framework, System 1 is associated with the “player” stance and System 2 with the “learner” 

stance. These two stances guide different patterns of behavior within a game. A user in the 

learning stance might purposefully investigate the game in search of information that confirms or 

disconfirms his or her understanding. A user in the player stance might engage in developing and 

adopting effective control strategies, selecting proper actions, and repeating actions most likely 

to lead to desired results. This paper was defended as my major area paper in March 2014, 

revised in June 2014, and presented it as a poster at the 11th International Conference of the 

Learning Sciences. A revised version was submitted to Educational Psychologist, where it 

received a decision of revise and resubmit. Part of the reviewers’ feedback focused on the 

reasonable observation that most, if not all, of the claims of the 2SM were extrapolated from 

earlier findings but not yet specifically proven. The empirical investigation of the main claim of 

the 2SM was the subject of Paper 3. 

In this third paper, I applied LA techniques to investigate the patterns in students' play of 

The Fuzzy Chronicles, and how these patterns relate to learning outcomes with regards to 
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Newtonian kinematics. This paper focused on two research questions, and each was supported by 

its own analysis. The first research question examined whether students playing The Fuzzy 

Chronicles showed evidence of dichotomous fast/slow modes of solution. The 2SM theorized 

that slow modes of solution would correlate to higher learning gains. In order to discover the 

existence and features of these modes of solution, I used an affinity propagation clustering 

algorithm that revealed similarities within six clusters of data points. These clusters described 

typical moments in EPIGAME game play and were assigned to one of six descriptive codes. 

Then, using pattern mining techniques I found which sequences of codes are common across 

students of similar achievement levels. These sequences represent more extended episodes of a 

student’s play that span more than one attempt. As predicted in the 2SM, students who use 

mainly fast iterative solution strategies achieved lower learning gains than students who 

preferred slow, elaborated solutions, or a more balanced mix of the two.  

The second research question investigated the connection between conceptual 

understanding and student performance in conceptually-laden challenges. Each of these 

challenge is a situation on the game map where a student has to apply one or two maneuvers to 

advance past that situation. The challenges that were selected embodied situations were inertia 

and/or Newton’s second law of motion were most relevant. I hypothesized that students would 

perform better and commit fewer errors traceable to conceptual understanding as play 

progressed. The finding was that students do generally improve their performance in these 

challenges, but that this improvement is strongly moderated by their prior knowledge of physics.  

Both findings in this paper suggest that, while still very much unproven as a whole, the 

basic underpinnings of the 2SM pass muster. I found evidence of both fast, low-information play 

and slow, deliberative play. More importantly, these styles of play co-varied strongly with 
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learning outcomes, as predicted by the 2SM. However, the results of the learning analytics also 

warrant a revision of the 2SM to better account for the role of prior knowledge in helping 

students organize their stances, and the issue of whether the “player” stance is a control-oriented 

epistemic stance or a coping strategy to deal with game situations students find too difficult. 

Neither of these considerations were part of the original framing of the 2SM, and yet they 

demonstrate the process of co-evolution; namely, that even when the 2SM was crucial to shaping 

the learning analytic methodology, the results of the LA process were necessary to refine the 

theory. 

As a whole, these three papers represent my contribution to what I believe to be a 

promising new area of game-based learning research. The study of educational gaming will 

continue to benefit from richer, more extensive descriptions of game play than are feasible with 

traditional observational methods. A single game-play action that appeared uninterpretable when 

viewed in isolation, or as part of an undifferentiated aggregate, may reveal more about the 

learner when examined as part of a cluster of actions within a specific context, or an evolving 

sequence of actions, which in turn may be abstracted into something like a plan, a strategy, or a 

gameplay style. In these papers, I demonstrate how this analysis might be performed, the 

theoretical work required to give the analysis meaning and applicability, and the kinds of insights 

into students’ learning through play that are possible when learning theory and learning analytics 

are refined together and co-evolve. 
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CHAPTER II 

ADVANCES IN ASSESSMENT OF STUDENTS’ INTUITIVE UNDERSTANDING OF 

PHYSICS THROUGH GAMEPLAY DATA 

Introduction 

The goal of this paper is to describe the development of novel approaches to assessment 

of learning in games. Often, researchers that design experiments around games for learning must 

rely on post hoc instruments to measure the progress that students make. This approach, while 

necessary and fruitful, does not leverage the potentially rich store of evidence that students 

provide about their own learning while they play. While the means exist to collect complete 

records of the actions and decisions that learners make while they play, no widely-accepted 

techniques or tools for making sense of this data stream currently exist. In this paper, we present 

our initial forays into analysis of game play using data-driven statistical and visualization 

techniques, and provide examples using data from the SURGE project (Clark, Nelson, Chang, 

Martinez-Garza, Slack, & D’Angelo, 2011). Furthermore, we provide a rationale and framework 

that for the use of these techniques and argue for their appropriateness and applicability in other 

contexts of educational games research. 

Theoretical framework  

The potential of video games to support science learning is generally agreed upon (Gee, 

2007; Mayo, 2009; Squire et al., 2003), but the analysis and structuring of evidence for game-

based learning remains a challenge. This, in turn, has supported a mixed view of the 

effectiveness of games as tools for learning (Foster & Mishra, 2008; O’Neil, Wainess, & Baker, 

2005). We believe, however, that this conclusion may be premature. The past fifteen years have 

seen great advances both in the sophistication of game designs and also in the supporting 
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technology; there simply has not been enough time for a commensurate evolution in appropriate 

research methods. One central methodological difficulty involves capturing and measuring 

game-induced learning, which tends to be strongly situated within the game context, in out-of-

game contexts such as post-tests. More advanced game designs compound this problem by 

supporting complex player actions that are challenging for learners to summarize and express, 

difficult for instruments to reliably capture, and resistant to conventional analytical methods. In 

addition, the use of formal assessments alongside games can compromise a game’s capacity for 

engagement and immersion, thus potentially reducing the efficacy of both the learning 

experience and the assessment.  

The use of assessments of learning which reside outside a game used to measure learning 

that happens inside a game presents issues and vulnerabilities that merit careful consideration. 

Assessment is, after all, not a neutral activity. All assessments carry assumptions about the 

nature of learning, the nature of knowledge, and the purpose of assessment itself (Willis, 1993). 

The action of assessment places premiums on certain forms of knowing and understanding while 

de-emphasizing others. In the case of games for learning science, for example, an assessment 

may privilege declarative forms of knowledge, e.g. definitions and abstract principles, while the 

game itself might be more productive in reinforcing tacit knowledge or qualitative understanding 

of relationships. This insight becomes even more salient given the contrast between different 

types of games for learning: those in which the curriculum concepts are embedded in the game 

environment in a manner such that the game environment is structured mainly as context 

(“conceptually-embedded” games) and those in which the material to be learned is integrated 

into the core game-play mechanics with which the player is in constant interaction 

(“conceptually-integrated” games) (Clark & Martinez-Garza, 2012). It follows that these two 
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kinds of games would favor different assessment strategies, given the differences in how they 

engage the learner, how they gauge success in the game, and how they represent knowledge. 

These nuances are not necessarily well captured by traditional assessments of learning, which 

traditionally favor summative declarations of concepts, articulated in discipline-specific forms 

and language (Sutton, 1996; Fang, Lamme & Pringle, 2010).  

Other researchers have expressed similar views about the shortcomings of external 

assessments in capturing learning that happens in games and interactive media settings in 

general. De Jong & Van Joolingen (1998) argued that one of the difficulties that research has in 

achieving unequivocal findings in favor of the learning outcomes of unstructured learning 

environments lies in data interpretation. Quite often in educational games studies, researchers 

rely exclusively on outcome measures because there are simply no developed frameworks for 

interpreting and evaluating process data. This resonates with de Freitas (2004, 2005), who 

proposed that games for learning require more specialized frameworks and methods of 

evaluation given the gaps between the educational content and the context in which games are 

used. An important component to these frameworks is a more robust understanding of what 

students actually do when they are playing a video game, what competencies they present, and 

how these competencies change in response to increasing difficulties and challenges. In service 

of this goal, Shute has proposed an approach called stealth assessment (Shute, Rieber, & Van 

Eck, 2011; Shute, Ventura, Bauer, & Zapata-Rivera, 2009), which regards the rich sequences of 

actions produced by students who are playing a game as indicative of the skills that researchers 

care to assess, and “evidence for learning is thus provided by the students’ interactions with the 

game itself – the processes of play, which may be contrasted with the product(s) of an activity, as 

is the norm within educational settings” (Shute et al, 2009, p. 300). In this perspective, game 
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play is a direct, faithful representation of the learning processes that are taking place, and thus 

may be less vulnerable to the contextual and design weaknesses of external assessments. Several 

questions arise. How can we make sense of this data? What phenomena does it encode? How can 

it be constructed into evidence of learning? 

The nature of game play data 

This paper explores what game play data might indicate and how it might be analyzed. 

We propose that game play is a manifestation of the player’s underlying mental processes, and 

that like other such processes, these can be described and studied with the appropriate analytical 

lens. Game play is not random or purposeless; all good game designs contain compelling 

mechanisms that keep players cognitively engaged towards the completion of goals within the 

game. These mechanisms create challenging situations that constrain a player’s actions but also 

focus them towards a goal, much like a problem-solving activity. When the game’s challenges 

are aligned with its educational purposes, the player’s purposeful experimentation, information-

seeking, and problem-solving choices drive the actions they make in the game. Our goal is to 

track the actions that indicate that those decisions took place and then to reconstruct (inasmuch 

as possible) the latent learning activity of the player in service of the learning goal. 

It may be argued that no assessment methodology that analyzes these actions can 

accurately reflect learning because not every action a player takes in a game is purposeful and 

reflective. It is certainly true that game play can support actions that are experimental, tentative, 

or counterproductive. Players may take wrong turns and choose incorrect options despite 

‘knowing better’. However, it is precisely this “fuzzy” nature that makes game play data so 

productive, and in many ways, it also makes it construable as process data.  
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Another aspect of this approach which may be seen as problematic is the matter of grain 

size. In our view, the most complete and detailed record of a learner’s actions in a game will be 

the most productive in terms of detecting learning trends. However, it may be the case that 

individual actions (at the level of mouse-clicks, button-presses, view-point changes, etc.) do not 

directly code for any particular aspect of learning. It may indeed be a flawed approach to 

overload meaning into individual moments of gameplay, whose duration is often measured in 

fractions of a second. Our approach instead involves collecting longitudinal slices of game play 

and properly structuring and examining these slices at an appropriate time scale. Thus, no 

specific claim is made about any action that the player takes, but rather, we look for trends and 

changes in decisions and outcomes that we reconstruct as learning. 

Productive Uses of Game Play data in other contexts 

The value of game play data is well-understood in the realm of commercial game design. 

By recording, organizing, and analyzing the actions of players within a game environment, 

designers glean important insights into the strengths and weaknesses of the game. Game play 

data is especially useful in bridging the gap between design goals and actual use, as even the 

most straightforward design can have unforeseen limitations, difficulties, or possible distortions 

that do not become apparent until others outside the design process (i.e., testers or final users) 

engage with the game.  

The emergence of networked technologies and server-based massively-multiplayer game 

environments have allowed designers to seamlessly collect large banks of game play data, with a 

corresponding push towards developing techniques for analyzing and presenting this data. An 

example of this was the debate surrounding the ‘Valhalla’ map of the multiplayer game HALO 3. 

During the testing process for this game, the community began to suspect that this map was 
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unbalanced, with players defending the one of the two bases being at a disadvantage. The players 

who were advocating this position, however, could not produce compelling evidence. After 

creating a visualization of the game play data, the designers of HALO 3 were able to confirm the 

systematic bias of the ‘Valhalla’ map and use the information conveyed by the visualization to 

rebalance the map in time for the final release (Thompson, 2007). 

We would argue that this example falls short of accurately representing the potential for 

assessment based on game play data. Because the ‘Valhalla’ case, among others, focuses the lens 

of assessment on the game, not on the player, it does not provide answers to questions related to 

player abilities, capacities, or learning. However, we consider this example a good demonstration 

of the type of questions that can be answered by game data, and the kind of technology, 

practices, and techniques required to use this kind of data systematically as evidence. Namely, 

that gameplay data should be collected automatically and centrally; that the data should capture 

as much information as possible about salient events; that this information should be stored in 

indexable formats that are amiable to computational methods of statistical analysis.  

Context: The SURGE Project 

SURGE is a conceptually-integrated computer game designed to support students 

learning about force and motion. More specifically, our design efforts for SURGE have focused 

on helping students articulate their intuitive understandings about Newtonian mechanics. The 

SURGE project integrates research on conceptual change, cognitive processing-based design, 

and socio-cognitive scripting with design principles and mechanics of popular commercial video 

games. The game is designed to support students’ articulation and connection of their evolving 

tacit intuitive understandings into larger explicit formalized structures, thus allowing knowledge 

transfer and application across broader contexts relevant to Newtonian mechanics.  
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Gameplay in SURGE is organized into short intervals (“levels”) that are designed so that 

concepts taught through gameplay build upon one another and gradually introduce the student to 

new ideas and ways of interacting with the world of the game. Each level involves specific 

navigation challenges, in the form of turns, starts and stops, that are presented to students in the 

form of a maze. To navigate a maze, students need to apply a sequence of moves (roughly 5-20 

per level) that reflect the principles of Newtonian mechanics (impulse, inertia, vector addition, 

velocity, acceleration, etc.). Levels are intended to be played in 1-2 minutes; however, because 

players can control their speed of navigation, the actual duration of each played level is highly 

variable across students, levels, and attempts. 

The game is presented as a space-based adventure, where students play as the character 

Surge, a smart and brave female alien, who must rescue cute creatures (called Fuzzies) from 

captivity. Students use the arrow keys on their computer keyboards to navigate Surge’s spherical 

spaceship around barriers and through corridors as safely and efficiently as possible. If Surge’s 

ship collides against the walls of the maze, it will turn a shade of red as a warning to the player; 

too many collisions and the ship will explode, and the player must restart the level. Overlaid on 

the computer screen are different read-outs of gameplay information for the student, including 

their current speed, the number of impulses they've used, the number of collisions with the walls, 

and their elapsed time. There are also buttons to reset or pause the level and to stabilize Surge’s 

ship if it begins to move out of control. A vector representation of students' velocity is also on 

the screen, showing their current speed and direction.  

The data used for the present studies originates from a SURGE module that features an 

"impulse control system, where every time the student pushes an arrow key a fixed impulse is 

applied to Surge in the direction of the arrow key pressed. Students in the study were told to 
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minimize their collisions, elapsed time, and number of impulses applied in a level in order to get 

a high score. 

 
Figure 1. Screenshot from SURGE. 

Experimental results with students have shown that a conceptually-integrated game such 

as SURGE is generally successful at producing learning gains (Clark, Nelson, Chang, Martinez-

Garza, Slack, D’Angelo, 2011; Clark, Nelson, D’Angelo, Martinez-Garza, & Slack, 2010). 

However, the link between these gains and specific gameplay events was not clear. We observed 

that as students became more proficient at playing the game, they enacted through their play a 

more sophisticated intuitive understanding of momentum, but could not consistently express that 

new understanding in the framework of a physics test. We have suggested that learners may have 

difficulty articulating concepts gleaned from gameplay into scientific terms, and thus their ability 

to accurately represent their knowledge on a traditional post-play assessment may be 

compromised (Clark, Nelson, D’Angelo, Slack, & Martinez-Garza, 2010). 
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Challenges of Assessment of Learning in SURGE 

To assess learning gains, our research with SURGE has focused primarily on 

conventional pre- and post-test designs. Our primary assessment in SURGE has been a multiple-

choice conceptual test based on items from the Force Concept Inventory (Hestenes, Wells, & 

Swackhamer, 1992), one of the most widely recognized conceptually-focused physics tests of 

force and motion. In our studies with three 6-8th grade sciences classes, students who play 

SURGE make progress on the FCI-based test (Table 1), which is promising, considering the 

short duration of our intervention and that the FCI was developed for assessing learning across a 

full semester of undergraduate physics. 

Table 1.  

Summary of assessment results of SURGE experimental groups 

Description of group N Gain (in SD) p < Assessment used 

Taiwan middle school 180 0.38 0.008 Selections from FCI: 

kinematics and Newton’s 

1st Law 

Diverse urban school in 

Southern US 

71 0.31 0.114 As above 

Title I urban middle school in 

Southern US with 19% IEP 

69 0.48 0.020 Selected FCI kinematics 

items adapted to 6th grade 

reading level 

Undergraduates in a calculus-

based physics course* 

155 1.27 0.001 Selected FCI kinematics 

items with additional 

vector representations 

Note: Undergraduates experimental group included for comparison only. 

However, this assessment strategy has proven suboptimal for several reasons. While 

students in the studies were highly engaged while playing SURGE, we observed that the shift 

from a “game-playing” frame to a “test-taking” one was jarring to many of the students, causing 

adverse reactions that may have reduced the quality of our data (as the players often skipped 

through the test to return to the game). Also, the pre-post approach provided no information 
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about learning trajectories during the game to help us understand how aspects of the game 

contributed to learning.  

The perceived deficits in our assessment strategy led us to consider other assessment 

approaches, specifically those that would allow us to minimize, or entirely avoid, the problems 

associated with our initial pre-post design in which the assessment is an on-screen rendering of a 

paper test. Along with further refinement of our conventional test to increase sensitivity to 

learning by including a broader range of item difficulties within the instrument, we launched 

efforts aimed at using gameplay data, generated by learners within the context our game, as an 

avenue of assessment that could potentially allow valid inferences about learning outcomes 

(Shute, Rieber, & Van Eck, in press).  

 

Analyzing Game Play Data within SURGE 

Having studied the various examples of analytic techniques based on game play data 

from the realm of commercial game design, we launched our own effort at using data of a similar 

nature for assessment of learning. Certain design decisions during our initial programming 

phases made our efforts to assess game play possible. The SURGE software tracks the user 

actions, salient events, and game states (such as the position and velocity of the player object 

multiple times per second) that are later automatically sent to and stored in the SURGE database. 

We found that with some recasting and normalization of the data (e.g. removing incomplete or 

duplicate records), this data could not only be examined as a whole, but also at multiple 

component and aggregate grain sizes that could be to used for various analyses. 

As a first analytical pass, we created various visualizations from the gameplay data using 

the free graphing application, ploticus, to identify the most promising commonalities, patterns 

and sequences for examination. These visualizations gave us some concrete artifacts of the 
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learner’s play that afforded a valuable window of insight into the nature of students’ decisions 

and concepts during play (Figures 3 & 4). Our initial examination of these visualizations 

prompted discussion about how to characterize students’ actions while preserving validity. What 

follows is an example of the type of qualitative analysis that these kinds of visualizations can 

support. 

 
Figure 2. Visualization of one student's path through a level. 

Figure 3 shows a visualization of one student’s path through the first level of the SURGE 

game, specifically of the path they followed when they completed the level successfully for the 

first time. Grey circles represent the position of the player ship at N seconds after starting the 

level. Short black arrows represent player inputs. Thin grey arrows represent the direction of the 

ship at one second intervals. Black circles represent collisions of the ship. Note the “chain 

reaction” of collisions that occur at the right-hand region, starting at 23 seconds, from which the 

player never quite recovers. This seems to be the moment of departure, where the student’s 
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intuitive understanding is not up to the challenge provided by the game. We therefore examine 

that instant of gameplay more carefully (Figure 4).  

 

 
Figure 3. Detail of the "moment of departure" in the previous visualization. 

A step-by-step analysis of the moves and events represented in this visualization allows 

us to create a reasonably detailed interpretation that may account for the player’s chosen moves, 

and may allow insight into the player’s intentions and understandings. 

 At (21), the player is steadily moving right.  

 After (22), the player apparently decides she must turn upwards.  

 (22.25) An “UP” impulse is applied. 

 (22.48) Another “UP” impulse. We can see that the player has not accounted for 

inertia, suggesting that their intuitive model may not be compatible with 

Newtonian ideas of inertia in this context. It is probable that the player expects 

Surge’s ship to move “like a car” towards the direction it is pointed. 
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 (22.85) The player applies a “LEFT” impulse. This move is the correct one if the 

player wishes to arrest the rightward motion of Surge. Here it can be seen as a 

last-ditch correction to avoid colliding with the rightmost wall; although it is 

effective at partially correcting the course, this is a reactive move that may or may 

not evidence an understanding of inertia. 

 (22.89) A collision, the natural consequence of the player’s chosen combination 

of moves. A different combination, i.e. one that contained a “LEFT” move, would 

have prevented this collision.  

 (23) The player object is moving fast upwards and to the left. Note the long dotted 

arrow indicating the current velocity. 

 (22.3) The player applies another “UP” impulse, attempting to correct their 

direction. Again, the player does not account for inertia, and apparently expects 

the path to “right itself” in the way of a skidding car if enough “UP” impulses are 

applied without needing to account for horizontal inertia. 

 (23.56) A second collision, caused by an ineffective adjustment in (22.3) … etc  

In summary, the student does not apply a working model of inertia to inform her 

gameplay, and the result is a chain of collisions from which the player does not recover.  

How common was this pattern? This type of analysis can be very generative and provides 

a comprehensive view of gameplay actions and decisions; the next logical step was to create a 

systematic classification scheme to allow comparison and aggregation. To investigate the 

prevalence of this result, we created a visualization that contained aggregate results from the 

entire data set of players for this level, not just a single player (Figure 5). This graph shows the 

locations at which players collided with the walls of level the first level of Surge, selecting for 
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the first attempt in which each student successfully completed the level, i.e. the same data 

selection criteria as we used to generate the visualization in the previous case. 

 

 
Figure 4. “Heat map” visualization of collisions. 

In this graph, we can see that the “chain reaction” of collisions was a common 

phenomenon; students were not just making the same error, but were making it in the same 

moment of gameplay. This result encouraged us to seek further regularities and patterns of action 

and response, but Figure 5 also highlights limitations of this simple aggregate representation. 

One key limitation is that temporal and spatial variations between the paths of individual 

students occlude higher level similarities in patterns between students in the aggregate, e.g., 

while many students display the high level pattern described in the example in Figure 3, the 
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exact points of collision and application of thrusts vary enough that an aggregate representation 

of the points of collision in the level would imply a great variation in strategy and decision-

making from one student to another, whereas in reality, the detail discussed in the bullets about 

the events in Figures 3 and 4 may hold true for most cases. The converse may also be true; an 

aggregate representation could result in a clustering of game play actions that, in fact, resulted 

from very diverse forms of students’ thinking. We thus needed an approach to aggregation that 

could capture and process the patterns of play in richer manner, but given the scope of the data 

collected, qualitative coding of all students seemed unworkable. In light of this, we are now 

focusing on creating and testing computational data analysis routines to aid in interpreting the 

actions of SURGE players in a manner that captured larger patterns in their game play.  

Sequential Pattern Analysis 

The structure of the SURGE data initially suggested that we could detect patterns of 

actions that were common across the dataset or within certain groups.  A single student’s 

gameplay log can be seen as a chain of sequences, where each sequence corresponds to a 

challenging point in one of the game’s levels. It is during these instants where players must 

decide, based on their understanding, what is the most appropriate “move” to make in order to 

successfully navigate through that area of the level. Thus, it can be said that each chain carries a 

solution exercised by the player to a conceptual problem posed by the game. Given these 

premises, we initially concluded that a sequential pattern analysis might be appropriate for this 

type of data. 

Sequential pattern analysis (SPA) is a database-driven analytical technique that allows 

the identification of coherent actions from a complex series of recorded events (Agrawal & 

Srikant, 1995), and has been applied successfully in educational software contexts (Nesbit, Xu, 
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Winne, & Zhou, 2008; Zhou, Xu, Nesbit, & Winne, 2010). In essence, SPA consists of series of 

algorithms that, when given a sequenced input data, can find sub-sequences that occur in a 

proportion significantly greater than chance. These sub-sequences in SURGE involve common 

solutions for situations present in the game, which can then be pooled to produce response 

probabilities for the experimental group as a whole. Sequential pattern analyses require that 

researchers specify a certain set of sub-sequences that can be matched, in effect isolating them 

from any surrounding random actions. In effect, SPA can be thought of as a computerized coding 

process that is much more flexible and robust than simple automated pattern-matching. Figure 5 

outlines the specific steps involved in applying SPA to SURGE gameplay data.  

 
Figure 5. Overview of computerized data analysis of SURGE data using SPA. 

For example, suppose a player in SURGE is facing the situation illustrated in the inset of 

Figure 3. The player object is moving in the “right” direction and is coming up on an “up” turn. 
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The moves that a player may take in this kind of game scenario consist of applications of force in 

the cardinal directions, up/down/left/right (henceforth, U/D/L/R). Three common response 

patterns that we could expect would be: UL, LU, U, and UU. The first two responses indicate an 

emergent understanding of inertia; the student has accounted for the upward motion of the player 

object, cancelling it with an L move. The latter two indicate incomplete understanding, as the 

learner takes no action to stop his upward motion, expecting the U move to “carry” the player 

object. We can then collect and bin the responses that are functionally equivalent, e.g. LLUU, 

LULU, LLU, LU, etc., and code for move efficacy value (see Figure 5, step 3), then calculate the 

aggregate response value for each gameplay event (step 4). If this analysis were applied across 

the full game for all of the students in a dataset, it would be possible to trace the probability of 

correct and incorrect response; an increase in correct patterns of response from the beginning to 

the end of the game could then be constructed as evidence of learning. 

However, as we piloted SPA protocols it became apparent that, although SPA has the 

potential to be used to make sense of gameplay data in general, it would not be specifically 

appropriate as an analytic tool for SURGE data. The reasons are twofold. First, and most 

importantly, SURGE is a game of continuous action and the timing of moves is a crucial part of 

gameplay. Since SPA collapses sequences in the time dimension, no inference can be made from 

the different arrangement of moves in time, which, among other things, signals the difference 

between thoughtful planning and simple reaction. Second, because of the pooling of sub-

sequences that is required, SPA would not provide information on individual trajectories of 

learning, and thus our ability to reach one of our longer-term assessment goals (namely, to 

scaffold learning via adaptive feedback processes akin to formative assessment) would be 

compromised. Furthermore, it was unclear from our preliminary experiments whether SPA 
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algorithms would correctly account for cases of non-linear play (e.g., retrying or restarting a 

level), which to a certain degree became unavoidable as we built more and more game-like 

structures into SURGE. 

Hidden Markov Modeling 

In order to account for the challenges we encountered with SPA, we are now focusing our 

efforts toward a more sophisticated technique called Hidden Markov Modeling (HMM). HMM is 

a clustering methodology that shows promise in terms of its ability to properly account for the 

information carried by different patterns of gameplay sequences and its ability to operate in real 

time. Once limited in application to tasks such as signal processing (Rabiner, 1989), Hidden 

Markov Modeling has since been used in a wide range of areas, such as speech recognition and 

bioinformatics. In the field of education, HMM has been applied to the study of collaborative 

learning (e.g. Soller, Wiebe, & Lesgold, 2002; Soller & Lesgold, 2007), and for assessing and 

modeling student learning (e.g. Stevens, Johnson & Soller, 2005). The potential of HMM in 

analyzing gameplay data has not yet been extensively explored, although it has been successfully 

demonstrated in a similar context: the learning-by-teaching environment Betty’s Brain (Jeong et 

al., 2008). 

To clarify the justification for using HMM methodology for analyzing gameplay data, let 

us consider a hypothetical example. Suppose that a researcher is investigating the effect of a 

learning game. We imagine that at any given time point, a player has six available actions A, B, 

C, D, E, and F. These actions can correspond to different types of interactions, e.g. menu 

selections, placement of elements on the screen, travel to specific locations in the game world, 

etc. The gameplay data for this experiment would then consist of player/action/time triads. One 

approach to analyzing this type of data is to seed the game design with a specific action that 
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codes directly for the target learning goal. In our example, let that action be F, which by itself, 

can only tell whether the learner succeeded or failed. This action F would usually be a final step 

in a play session, but it also might be somewhere in the middle in a failed or sub-optimal state. 

The logs for a particular player might or might not include F, along with many other actions A 

through E in sequences and proportions that may look like a random noise.  A more traditional 

analytical technique would be to decide, solely based on the presence or absence of F, whether or 

not learning took place. However, this approach leaves several critical questions unaddressed. 

What specific actions or parts of the game design were most strongly connected to the learning 

outcome? In what sequence were they most productive?  

To answer these questions, we would have to know two things: whether there was any 

regularity or structure in the sequences of gameplay, and whether or not this regularity correlated 

with the desired learning outcome. In terms of the former, it is helpful to remember that the 

actions of the learner are not random; they are organized towards a specific goal, which we 

assume to be the game’s “victory condition”. All of a player’s actions are in service of this goal, 

but they do not proceed along a pre-determined sequence. Thus, there is some latent structure in 

the data that is provided by the game’s goals, even when there may be much variability in the 

sequences of actions that players perform. In this regard, HMM analysis proves useful. The 

central assumption of HMM is that each sequence of responses is derived stochastically from one 

or more underlying states (Jeong et al., 2008). Each of these states is linked in a “Markov chain”, 

namely, a discrete event-space where outcomes depend not on previous trajectories but only on 

the current states of the system. This is very useful for our purposes, since we cannot assume that 

a learner proceeds from action A to B to C and so forth until reaching the end-step F. Many 

trajectories are expected, but they will tend to cluster in some broad patterns or states. The 
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transitions between these states, from one pattern of game action to another, can be interpreted as 

learning. HMM is furthermore a modeling technique that can portray a clear account of how 

changes occur.  

A further advantage of HMM is that it can account for the differing pace at which 

learners play. A novice gamer might be very tentative in his play, while a thoughtful gamer 

might have a more deliberate style, and an expert gamer might be more inclined to take actions 

in quick, sudden bursts. Clearly, gameplay has a temporal texture which may modify, or mediate, 

the effect of certain sequence of actions. While several alternative cluster analysis methodologies 

can discover patterns in data in a static form, HMM can analyze data with a temporal dimension 

(i.e., data whose feature values change during the observation period) (Li & G. Biswas, 2002). 

Thus, we believe that HMM modeling is well-suited to applications within games for learning, 

where the dynamic features of students’ play can vary not only from student to student but also 

over time as learners become proficient in the game and the operating principles behind it.  

As in the case of SPA, HMM requires that the data be segmented into contexts (i.e., 

sections of game play that can be coded under the same criteria). In the case of SURGE, these 

contexts can be seen as corners or turns where the player must apply a combination of impulses 

to proceed. As with SPA, each of these contexts is encoded and binned to produce a response 

probability, but instead of comparing these responses by individual or by context, an algorithm is 

used to find the best fitting set of transitional (z) and output probabilities (a through d) that 

produce these probabilities from the various underlying states (Figure 7). As these transitional 

probabilities connect to underlying models that are assumed to evolve from one to another as 

part of a learning progression (expressed as z1 and z3 in Figure 7), then the emergence of strong 
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values for these probabilities, combined with weak values for the converse (z2) could be 

interpreted as evidence of learning. 

 
Figure 6. Schematic of the relationships between player actions and underlying states in HMM 

analysis. 

This use of Hidden Markov modeling has so far presented several challenges. As with 

other unsupervised learning analyses, HMM works best with a comparatively large data set in 

order to enable initial training of the model, so it requires prior piloting and reliable data-

gathering on a large scale. It is also computationally demanding and requires specialized 

technical know-how to implement because HMM software tools are generally not user-friendly. 

Furthermore, a typical HMM model requires that the researcher pre-determine the number of 

hidden states, which requires not only content knowledge but also a theory-guided stance about 

the form and nature of the conceptual change processes occurring in the learner. In the case of 

SURGE, these hidden states could be framed as forms of intuitive understanding concerning the 

operation of the laws of physics that inform the players’ actions in each context. The validity of 

these forms and the connections between them defined a priori could be considered arguable. 
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Also, as in factor analysis, the researcher must also provide meaning to the states that the HMM 

model reveals. Thus, HMM-based analysis of game-based learning activities requires strong 

theoretical assumptions about the learning happening through these activities. In response to this 

difficulty, we are currently implementing microgenetic study protocols with SURGE players in 

order to refine the theoretical assumptions we will use to frame the HMM analysis of game play. 

Concluding Thoughts and Avenues for Future Work 

Research into the use of video and computer games for learning has moved beyond an 

initial exploratory stage into more systematic evidence-based investigations of how games can be 

designed to bolster learning and provide more meaningful assessment. To bolster the case in 

favor of using games in educational contexts, it becomes necessary to construct a multi-faceted 

body of evidence that can more clearly demonstrate the diverse forms of learning that well-

designed games can promote. Our continuing efforts at developing these assessments in the 

context of the SURGE project are consistent with that goal.  

Furthermore, our investigations suggest the conditions under which the analysis of 

gameplay data becomes valuable to a program of research. The particular methods of analysis we 

used may not be appropriate in all cases; however, the practices that made these analytics fruitful 

are probably available to all researchers. More specifically, our investigations highlight the value 

of (a) theorizing the significance of game play actions for the learning process, and (b) capturing 

these actions at a level of detail that is appropriate for the research questions being asked. In the 

case of SURGE, our hypothesis was that individual game play actions were interpretable both 

individually and longitudinally. This notion was framed by the same theoretical background that 

informed the entire SURGE design, i.e. literature on conceptual change that accounts for naïve or 

intuitive knowledge (e.g. Parnafes, 2007; Clark, 2006; and earlier work by Roschelle, 1991, and 
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White, 1983), which itself flows from cognitivist perspectives on science learning. These 

theoretical commitments, however, are not necessary for gameplay data analysis to be useful. 

The more central questions are whether the process of playing the game (which may be tentative, 

experimental, and somewhat haphazard) reinforces a pattern of purposeful behavior in the 

learner that can be observed with some regularity, and whether these patterns can be shown to 

have any effect on desirable learning outcomes. If anything, our experience with these statistical 

methods indicates that gameplay data can be an intriguing source of this kind of evidence, and 

that future refinement of the tools and techniques will enable educational gaming researchers to 

craft more comprehensive accounts of student learning using this form of data. 

While any single approach to analyzing gameplay will likely portray game-based 

learning in an incomplete manner, we think that multi-method analyses of the behaviors and 

choices made by players during gameplay can provide novel perspectives that complement 

established analyses based on knowledge tests and clinical interviewing. While learners’ 

increasingly effective strategies and problem-solving approaches in a physics game like SURGE 

can be demonstrated through HMM, for example, it is important to correlate these improvements 

to other measures, including external measures of curriculum-based learning. Such an 

assessment strategy, based on triangulation of evidence from multiple sources through multiple 

analytical approaches, will facilitate detailed inquiry into questions about the nature, strength, 

and persistence of students’ learning while playing games. 
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CHAPTER III 

TWO SYSTEMS, TWO STANCES: A NOVEL THEORETICAL FRAMEWORK FOR 

MODEL-BASED LEARNING IN DIGITAL GAMES 

Introduction  

Players of digital games present a remarkable duality. On one hand, players of games 

often seem to sit in absorption, interacting with a complex digital game in an automatic and 

nearly effortless way. Observing an individual person at play, it might appear at times that the 

person is doing little more than reacting to stimuli, rarely demonstrating anything that resembles 

thinking or learning. On the other hand, players are also deeply reflective about the games they 

play. This is most visible in the online spaces where communities of players coalesce. In these 

spaces, we find that games are objects of analysis, inquiry, commentary, interpretation, and re-

interpretation. As a means of participation, these activities are in some ways as valid as playing 

the games themselves. 

This duality becomes more salient, and problematic, in the case of educational games. 

When the stated goal of a game is that its players learn particular content or concepts, the 

prevalence of automatic and reactive forms of play make it difficult to argue that anything is 

actually being learned beyond the performance requirements of the game itself. Ideally, the goal 

is that students engage with educational games in a thoughtful and purposeful way, using these 

games as tools for organizing their insights and furthering their understanding of the concepts the 

game is intended to teach. This is not to say that no learning can happen through automatic forms 

of play; it is certainly true that digital games can support learning of, for example, facts and 

procedural skills. A more challenging goal is to support learning of the causal relationships and 

functional properties that feature prominently in science education. These concepts may exist in 
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learners' minds in an intuitive form, and might thus be reinforced through intuitive play. 

However, the process of normalizing and organizing these intuitions into more formalized modes 

likely requires the learner to engage with digital games in a more deliberate, analytical manner. 

How can we make sense of this duality? How can we reconcile the two modes of digital 

gaming, the automatic and the thoughtful, into a coherent framework that explains how and what 

people learn from these games? How can we promote forms of play and learning that are more 

closely aligned with the goals of education, particularly science education? 

This paper explains what I call the Two Stance Model of game-based learning, which is 

my attempt to answer these questions from a cognitive perspective1. The Two Stance Model, or 

2SM for short, envisions that players of digital games shuttle between two distinct epistemic 

stances: (1) a "learning" stance, which is directed toward making sense of the games' rules, the 

entities and relationships it portrays and (2) a "playing" stance that is geared toward optimizing 

in-game performance and continuing play. Furthermore, I conjecture that people develop two 

distinct forms of knowledge through interacting with a game: (1) an understanding of the 

network of entities and causal structure of the interactive model and (2) a store of practical 

knowledge of how to act effectively within the game. The former relates to the question “how do 

things work?” while the latter answers the question, “how do I win?” The two epistemic stances 

are collections of resources that are geared and optimized for dealing with these two separate 

forms of knowledge. In the case of the Learner stance, the resources are used to make sense of 

the game’s rules, systems, and the entities that are represented in the simulated space. This is 

largely an internal process that implies the construction of a mental model. However, this mental 

                                                 
1 Cognitive perspectives are by no means the only productive ways to examine game-based learning. 

Sociocultural, situative, and embodied perspectives are also relevant and have extensive research histories. My 

choice to use a cognitive lens is based on the persuasiveness of the available scholarship in light of the overarching 

goals of the 2SM. 



38 

 

model is a hybrid; its contents and function are not limited to a single domain, and include 

elements of diverse origin. Among these elements are the particular qualities of the experience as 

intended by the designer, the person’s interpretation of the underlying logic that gives the game 

systems internal consistency and verisimilitude (the interactive model) and, in the case of games 

for science learning, the formalized system (the external model) that accounts for similar 

phenomena in the real-world. To express this hybridity, I call this particular form of mental 

model a simulacrum, and envision it as the main resource around which a person constructs his 

or her Learner stance. On the other hand, the Player stance collects resources concerned with 

navigating the goals that the game proposes in harmony with the person’s own individual goals 

of play. Knowledge about how to overcome the game’s challenges is stored in the form of 

recipes for efficient action, or heuristics. These heuristics have several properties that make them 

useful and valuable. Because of their utility, they are the privileged form of knowledge found in 

gaming literature and in the transactions of knowledge that underpin gaming communities. 

The overall goals of this paper are to present the 2SM framework, review the theoretical 

bases it builds upon, and highlight the salient questions of game-based learning that it helps to 

clarify. The opening section presents the goals of the framework and the needs it is intended to 

address. The second section outlines the principal claims of this paper: the proposed function and 

main constructs of the 2SM. Then, I review research warranting the proposed structure and 

functions of the 2SM. The 2SM is an instantiation of a general theory of human cognition, the 

two-system theory, in the domain of digital games; thus, a brief overview of this theory figures 

prominently in this section. Next, I discuss implications of the 2SM for the design and research 

of both educational and non-educational games. The final section discusses the potential 

contributions of the 2SM to cognitive perspectives on games for learning. 
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Goals, context, and the need for the 2SM 

I will first outline the goals of the 2SM and the research needs it addresses. At first glance 

it might appear that there is no real need for the 2SM – it might not seem that educational games 

research has thus far lacked for theoretical perspectives of how and what people learn from 

games. Nearly all theoretical frameworks to date, however, have proven either unpersuasive or 

less than useful. Shaffer, Squire, Halverson and Gee (2004) noted that “most educational games 

to date had been produced in absence of any coherent theory of learning or underlying body of 

research.” In the ten years since, researchers have made considerable efforts to answer this 

challenge and produce viable theories of learning as they apply to games, yet the fact remains 

that an overwhelming majority of research into educational games is not grounded in sound 

learning theory. For example, of the 365 peer-reviewed articles on educational games published 

between 2000 and 2009, Wu, Hsiao, Lin, and Huang (2011) found that only 77 of them used a 

specific learning theory as a part of their work. This startling disconnect between empirical 

research and theoretical explanations can hardly be due to researchers deliberately ignoring 

theory. Rather, it can be interpreted as a sign that existing learning theory is simply not aligned 

to the goals of game-based learning research. 

One goal of the 2SM is to provide broadly-applicable theory. This means that the 2SM 

should have explanatory power in a wide range of game-based learning cases. This is an 

important consideration given the diverse nature of games and the diverse the ways in which 

people play them. Theories of learning that are fruitful in, for example, lab studies of individuals 

playing a puzzle-based game separately in a controlled environment might not be as relevant in a 

classroom or in geographically and temporally distributed Internet communities. Commitments 
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to theories of learning influence not only the design of educational games, but also the lens 

through which play and learning are observed. 

A commitment to a specific learning theory is not problematic in itself, yet any such 

theory must attend to how people actually play digital games. Some educational game theorists 

envision play as an activity delimited in time and space, with a given purpose and a given 

structure (e.g. Amory, 2007). This perspective is rapidly becoming obsolete. Gaming has become 

(or is in the process of becoming) a liminal activity, existing at and across the interface between 

formal and informal settings, social and individual enterprises, and regimented activity and free-

form play. Thanks to mobile technology and networked computing, many players experience 

games today less as a hobby or pastime and more as an ever-present, always accessible 

“background music” to their lives, with few contextual or chronological boundaries. These cases 

are particularly challenging for research because few if any experimental controls can be applied 

to them. On the other hand, if more controls are applied in service of simplifying inquiry and 

clarifying evidence, the controlled activity will move further from the messy realities of gaming 

as people naturally experience them, to the point that “games played for the purposes of 

educational research” may be argued to be a phenomenon of its own. Thus, game-based learning 

theory should have ecological validity, and be responsive to gaming-related phenomena as they 

occur “in the wild”. 

The 2SM aims for ecological validity in two ways. First, the 2SM describes two general-

purpose stances that would be observable in players of any game, not just an educational game. 

This is a crucial consideration given that educational and recreational games share a design 

language, to the extent that educational games often pass for leisure games, and vice versa. How 

accurate or persuasive would a specific theory be if it explained play and learning in one kind of 
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game but not in another? Second, the 2SM explicitly acknowledges and seeks to account for the 

learner’s motivation and agency, which strongly influence the two general-purpose stances. An 

oft unspoken assumption of educational games research is that students will always play to the 

best of their ability, for as long as the experiment or observation lasts. This assumption does not 

align well with the design language of digital games or with the enacted experiences of players. 

Players “in the wild” will simply cease to play if the game is too easy, too difficult, too 

monotonous, or is simply not providing the experiences they seek; players of educational games 

often have no such options. The 2SM sidesteps this by simply assuming that whoever does not 

want to play, will not play well. As we will discuss later, this desire to play well (i.e., to act in the 

game context in a way that satisfies a person’s goals) is the main driver of learning. From the 

perspective of the 2SM, without a will to play well, the Player stance is disrupted frequently, the 

Learner stance is rarely invoked, and learning simply does not happen.  

The last goal of the 2SM is to complement existing game-based learning theory, and thus 

support new research questions by providing a new interpretative lens. As a general-purpose 

framework, while the 2SM lacks the specificity of some existing theories, it does provide a 

bridge between the two major themes of game-based learning theory. The first theme relates to 

the way in which games are viewed, namely, as providers of educationally valuable experiences, 

much like school laboratories. A digital game is able to represent events and systems more 

diverse and detailed than what students would normally have access to. This capacity for 

complex representation and scaffolding is thought to afford learning opportunities that are novel 

and unheralded, and digital games are often portrayed as a special case of learning. Thus, this 

theme is more or less centered on guiding game design, as in e.g. Amory (2007), de Frietas & 

Oliver (2006), and Kiili (2005). With regard to this theme, the 2SM examines the interplay 
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between the intentional, or designed, features of a learning game and the ways in which these 

features influence a person’s epistemic stance. The second theme focuses inquiry on the gamer 

as a learner. This theme includes situative and socioconstructivist roots (e.g., Lave & Wenger, 

1991; Brown, Collins, & Duguid, 1989; Greeno, 1993). In this view, the virtue of games lies in 

that they allow learning by doing, and what students can “do” in a video game is often more 

complex and more demanding than what they are asked to do in school. The learner playing a 

video game appears engaged, enthusiastic, competent, and capable of intense bouts of 

collaboration, problem solving, observation, and experimentation. These are positive states for 

learning regardless of the particular topic or curricular focus. At least part of the theory-building 

effort within this second theme is devoted not only to helping learners achieve these states for the 

duration of play, but also to developing modes of play that empower learners to build effective 

and durable identities as they participate meaningfully within communities that value specialized 

performance. To this socioconstructivist theme, the 2SM provides clarity as to how and why 

social forms of play occur, and how and why specialized knowledge communities coalesce. The 

narratives for collaboration and specialized knowledge communities are incomplete without 

more comprehensive theory about what is being transacted and what the measure of value is – 

the 2SM contributes to this through the construct of heuristics. These points of intersection for 

the socioconstructivist theme, as well as the points of intersection for the design theme, are 

developed further in the Implications section later in this paper. 

Proposed Structure and Function of the 2SM 

This section operationalizes the proposed structure and function of the 2SM. Here I lay 

the main claims of the 2SM, which in subsequent sections I will explore, expand, and warrant 

through review of research across multiple fields.  
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Scope of Inquiry 

To put some helpful boundaries around these claims, I will define the scope of inquiry 

first, limiting the analysis to digital games designed around interactive models. Games of this 

kind exhibit certain structural and design characteristics which — while not universal — are 

quite prevalent and, I conjecture, extremely influential in shaping thinking and learning. 

Interactive models are computational models of real or hypothesized situations or phenomena 

that allow users to explore the implications of manipulating or modifying parameters in a 

purposeful way (see also Clark, Nelson, Sengupta, & D’Angelo, 2009). Reform perspectives on 

science education hold that exploratory interactions that allow students to test hypotheses and 

make inferences are valuable for science learning (Committee on Science Learning, 2007). This 

description generally fits real-world activities (e.g., laboratory experiments) as well as digital 

environments that provide accurate and interpretable responses to students’ explorations (e.g., 

games and simulations).  

However, a digital game is not simply an interactive model presented to students in raw 

form, such as spreadsheets or numeric display panels. Rather, games provide a set of interfaces, 

displays, activities, scaffolds, goals, and interactions that are intended to guide the learner, 

communicate the scope and degree of user control, and set useful boundaries around the scale 

and nature of what is being modeled; what I call the designed structure of experience, or DSE for 

short.  

The designed structure of experience refers mainly to certain characteristics of the users’ 

experience in these environments, specifically: (1) the phenomenological characteristics of the 

environment, (2) how adaptive the environment is to the user's goals, and (3) the quality of the 

feedback the user receives from the environment. These factors are denominated by time and 
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frequency, so that we can imagine them as densities, i.e. phenomenological density, goal density, 

and feedback density. Thus, an environment that is phenomenologically dense is one in which 

the events displayed in the environment are clearly perceptible, reasonably varied, 

representationally consistent, unambiguous, salient, and frequent. An experience is said to have 

goal density when a person's goals relative to the experience can be imported, created, revised, 

and completed at a brisk pace. Finally, we can say that an experience has feedback density when 

it exhibits clear, logical, and frequent responses to whatever changes a user may introduce. 

Digital games can be fairly described as experiences that are highly phenomenologically-

dense, highly goal-dense, and highly feedback-dense, although it may be more accurate to say 

that games are intended – “designed” – to be this way, because the ultimate judge of the structure 

of experience is the person who enacts that experience. Thus, the gaming experience has a 

certain degree of subjectivity and can diverge from the designer’s intent. For example, a digital 

game with a low goal density and low feedback density could be experienced as an animated 

film, regardless of what the designer intended. It becomes clear that a workable framework for 

learning with digital games must attend to the DSE – specifically, to phenomenology, goals, and 

feedback. 

The designed structure of experience is largely independent of the interactive model. Yet, 

not all digital games (educational or leisure) can be fairly said to include such a model. In some 

cases, games rely on more simple ludic forms (e.g. those that challenge a player’s dexterity, 

memory, reflexes, etc.) to provide some logic to the events and entities portrayed in the game. 

On the other hand, some games require the player to manipulate interactive models that are more 

sophisticated than those featured in simulations typically used in formal learning environments. 

These leisure games can focus on formal science concepts, for example, where the central 
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challenge involves navigation or manipulation based on Newtonian relationships (e.g., Kerbal 

Space Program) or the exploration, identification, and exploitation of mineral and ecological 

resources (e.g., Dwarf Fortress). If we also consider interactive models that represent complex 

networks of entities and relationships which do not necessarily correspond to real-world 

phenomena, then the domain of digital games that forefront interactive models becomes even 

larger. That domain now includes not only science-based examples, but also games like 

Civilization or SimCity in which the player develops cities and empires in the context of 

elaborate networks of resource production and consumption that mimic those in the real world, 

or EVE Online, where players collectively participate in a laissez-faire economy fueled by the 

production, refinement, sale, and destruction of resources directly caused by players’ interactions 

within the game.  

The broad term “digital game” thus captures a wide range of possible environments due 

to the range of variations in the scope and detail of interactive models and DSEs. However, 

interactive models are still hypothesized as the “learnable core” of many learning environments. 

Yet, as we argued in Clark and Martinez-Garza (2012), interactive models are not the exclusive 

province of games intended for science learning; most (although not all) digital games played for 

leisure include interactive models at the heart of the challenges they pose, even though the user 

might not be focused toward interacting with this model directly.  

Two Models, Two Stances 

Before discussing the Two Stance Model proper, we need to make two additional 

distinctions. The first distinction refers to the three types of models we will encounter while 

exploring the 2SM, that differ in terms of where they reside and what they are presumed to 

contain. These models vary substantially in terms of their domain, function, and where they are 
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said to reside. I will refer to most of these entities as “models” for simplicity and to accurately 

convey the terminology used by other researchers. However, I will attempt to define and 

differentiate these terms as much as possible to avoid confusion and enhance clarity. The 

resulting constructs are summarized and compared in Table 2. The second distinction relates to 

the state-of-mind or stance a person takes in interacting with these models. 

Models in the 2SM 

Models have a well-established history in both science and science education, and the 

term encompasses several different ontologies. The two most germane to this inquiry are what I 

call the “external model” and the “interactive model”. By ‘external model’, I mean the formal 

abstraction of the scientific phenomena of interest. These abstractions have both explicatory and 

predictive power and as such are frequent targets of science instruction (Clement, 2000; see also 

Lehrer & Schauble, 2005). By ‘interactive model’, I refer to programmed software instantiations 

of these formal abstractions. Since both external models and interactive models have pedagogical 

value, the ability to present them simultaneously in an engaging way is an important affordance 

for science education.  

A person who interacts with a game constructs some mental analogue as a necessary step 

in understanding its inner workings. The existence of this analogue is widely recognized by 

psychology and educational research, and is most often called a mental model (see Mayer, 2005). 

An accurate, flexible mental model is hypothesized to form a crucial aspect of science expertise 

(Chi, Glaser, & Rees, 1981), and thus, refining such a model is a focal pursuit of both science 

education and games for science learning research. The exact nature of this mental model, 

however, is somewhat underspecified (Doyle & Ford, 1998). The mainline view is represented 
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by Vosniadou and Brewer’s (1994) definition of a mental model as “a mental representation 

[whose] structure is analog to the states of the world that it represents” (p.125).  

Mental models are frequently featured in cognitivist explanations of the causal 

mechanisms behind science learning in digital games. In the literature on the use of games to 

support the goals of science education reviewed by Clark, Nelson, Sengupta, and D'Angelo 

(2009), 21 of the 83 papers cited contained some causal explanation for how games may help 

students learn science, and of those, 11 explicitly mentioned mental models. In these papers, both 

play and learning are envisioned to be driven by a unitary mental model that a learner forms in 

order to handle the challenges presented by the game. This mental model grows in sophistication 

and completeness through play and remains available to the student as a tool for problem 

solving. The explanations that researchers propose for digital learning vary somewhat, but they 

converge on a form best articulated by Moreno and Mayer (2000): “When students try hard to 

make sense of the presented material, they form a coherent mental model that enables them to 

apply what they learned to challenging new problem-solving situations (Mayer & Wittrock, 

1996)” (p. 727). 

In other words, the proposed mechanism for how students learn science from games is a 

two-step process. In the first step, students purposefully investigate the digital environment, and 

"try hard to make sense" of the entities, relationships, and regularities of the portrayed reality. 

The product of their effort is a "coherent mental model." In the second step, students evaluate 

situations and solve problems in some future moment using this very same mental model. 

Notably, the proposition that presenting students with an external model in the hopes that 

through engagement they will develop a parallel internal mental model also underlies much 

research on science learning in labs, inquiries, simulations, and other activities.  
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This explanation implies that the mental models that students create are relatively 

persistent, flexible, and context-independent. In other words, students form mental models that 

are fixed in long-term memory, that can be applied to help solve problems of various forms, and 

that can be transferred beyond the context in which they are formed. It is fundamentally true that 

people use mental models for all kinds of cognitive processes, including inference, judgment, 

and prediction (Johnson-Laird, 1983), and digital games should be no exception. It is also likely 

true that these mental models originate in inferences made from repeated experience 

(Gigerenzer, Hoffrage, & Kleinbölting, 1991; see also Hasher & Zacks, 1979). 

Some researchers propose additional properties of the mental models that students 

develop in the course of interacting with a digital game. For example, Rosenbaum, Klopfer and 

Perry (2007) equate increased understanding of a system with a more sophisticated mental 

model. Marino, Basham, and Beecher (2011) claim that video games promote mental models that 

have "coherence", using the term in the sense used by McNamara and Shapiro (2005), i.e. that 

mental models are well-structured representations built from a combination of the person's prior 

knowledge and the relevant conceptual elements from the game. The audiovisual affordances of 

the learning environment that aid the formation of mental models are also noted by Clark and 

Jorde (2004); Taylor, Pountney, and Baskett (2008); Jones, Minogue, Tretter, Negishi, and 

Taylor (2006); and Moreno and Mayer (2005). The mental model that a student forms is also 

envisioned by various authors as a tool for understanding and testing scientific theories (e.g., Li, 

2010; Bekebrede & Mayer, 2006; Anderson & Barnett, 2011). 

The underlying assumption is that external models and mental models are somehow 

parallel, either in their structure or their domain. Yet in the case of a digital game, what exactly is 

being represented? One possible answer is that the domain of this mental model is external 
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reality, the “real world”. So, for example, a player of Angry Birds forms a mental model about 

game-specific objects in parabolic trajectories but also to real world entities that exhibit similar 

properties, e.g. fly balls (as in baseball). If interactive models found in digital games exhibit this 

sort of “transitive property”, and if the resulting mental models have both explicatory and 

predictive capacity (as external models do), then it is clear why they would be valuable as 

pedagogical tools. 

However, if the domain of the mental model is not external reality, or not only external 

reality, then things grow somewhat more muddled. Although some research on games for 

learning seems to assume that playing games informs mental models that map seamlessly onto 

external reality, this proposition seems difficult to defend in absolute terms. First, bridging 

between in-game and real-world entities requires players to engage in a process of abstraction (or 

“high-road transfer”, Cobb, 2004) that is generally difficult and not often observed (see 

Detterman, 1993). Second, not all interactive models are wholly accurate representations of the 

“real world”. Interactive models may be sophisticated, yet need only be "sufficiently 

representative of the system to yield the desired information" (Apostel, 1961, p. 126) to function 

as the core of a game. So players of games would also have to negotiate the occasional mismatch 

between in-game representation and the information from their own senses (e.g., an interactive 

physics model might not include friction whereas the real world does). 

A more tenable proposition might be that players of digital games form mental models 

that only partially extend beyond the game to describe external reality. So what other uses might 

the mental model have? The systems control literature, a domain perhaps more akin to gaming 

than science education, offers some guidance here. In this literature, the purpose of mental 

models is to generate descriptions of the system's purpose, form explanations of the system's 
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functioning and the observed system states, and make predictions of future system states (Rouse 

& Morris, 1986). Any mental model that a person forms in response to a digital game has at least 

some control orientation; in other words, the mental model must provide some faculty that 

allows a player to exercise some measure of control over the game. Crucially, a person playing a 

digital game does not necessarily craft a mental model that accounts for the entire capabilities of 

the game’s interactive model, because in fact, such a comprehensive model is not required. To be 

perceived as effective, a mental model only needs to provide the user with a sense that he or she 

understands the game and is in control of it. Yet the mental model cannot only have a control 

orientation, because not all of a game’s phenomena flow from the player’s control. Aside from 

game events that are guided by the underlying interactive model, games also comprise a large 

variety of elements that are intended to structure the experience. These include, for instance, 

elements regarding the game’s interface, its characters and landscapes, narrative events, and 

interactions between game entities that exhibit regularity but are not subject to a player’s input. 

These elements must necessarily form part of the person’s mental model, even when they do not 

contribute to a control orientation. 

Thus, I argue that the mental models that arise in a player’s thinking when playing digital 

games are not exactly the same as the mental models that are hypothesized to influence science 

learning. Rather, the mental analogues that influence game play have a great deal of hybridity. 

They are in some measure informed both by external reality and by the figured world of the 

game, even when those two stand in conflict. They are also more control-oriented and more 

limited in scope, and thus may be less comprehensive, less accurate, and less consistent than the 

mental models as described by some researchers. The mental analogues are also strongly 

influenced by a person’s previous game-playing experiences. To represent this departure from a 
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mainline view of mental models, and to express this hybrid structure, I henceforth refer to the 

mental analogue as a simulacrum rather than mental model. Table 2 clarifies the distinctions 

between the model-related constructs from the perspective of the 2SM. 

Table 2.  

Taxonomy of model constructs 

 Target domain Goal Applicability Uses 

External model Physical reality 
Explanation and 

prediction 
Context-free 

Describing 

phenomena and 

predicting 

possible future 

states 

Interactive 

model 
Physical reality 

Representational 

fidelity 

Context-

unbound 

Pedagogical 

demonstration  

Supporting 

exploration 

Mental model Physical reality Understanding 
Context-

unbound 
Problem-solving 

Simulacrum Hybrid 
Risk-free 

experimentation 
Context-bound 

Testing and 

revising 

heuristics 

 

Stances in the 2SM  

Another necessary clarification for the 2SM involves stances. For the purposes of the 

2SM, the term “stance” refers to the state-of-mind or stance a person takes with regard to his or 

her simulacrum, or the game itself. When creating, refining, or applying a simulacrum, a person 

might have two distinct goals. The first is to understand the formal structure of the interactive 

model and the affordances of the causal relationships it represents. The second is to use the 

simulacrum as a laboratory where actions can be planned and evaluated in terms of their 

effectiveness at creating a desired state. These two sets of goals imply qualitatively different 

forms of thinking. A user in the learning stance might purposefully investigate the game in 
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search of information that confirms or disconfirms his or her understanding. A user in the control 

stance might engage in developing and adopting control strategies, selecting proper actions, and 

querying the game to determine whether or not these actions lead to desired results (for further 

description of the “control stance”, see Veldhuyzen & Stassen, 1977). To distinguish between 

these two stances, I envision the person seeking to further understand the interactive model as 

engaging in a "learner stance", and the person in the control stance who is actively working 

toward a goal as engaging in a "player stance". 

These stances are epistemological in function; they are formed by collections of resources 

that a person uses to decide how best to think about the game as they experience it. This 

definition follows from Hammer and Elby (2003), who conceptualize “naïve epistemologies” as 

collections of resources, each activated in appropriate and familiar contexts (see also Elby & 

Hammer, 2001). Hammer and Elby do not provide an exhaustive taxonomy of resources, but 

what these resources all have in common is their relation to context. According to Hammer and 

Elby, resources are activated in a way that is context-sensitive; in the process of thinking 

epistemologically, students select from the resources they have the ones that appear to be 

appropriate and productive in the current context. If the stances of the 2SM have this same 

texture, then people who play games assemble their stances based on (a) what their own personal 

trajectories as gamers have furnished them by way of resources, and (b) what the current context 

offers in terms of cues.  

It follows that the Player and Learner stances vary across people and games. For instance, 

players familiar with a given genre will have more developed resources than players that are less 

familiar; similarly, physicists may have qualitatively different simulacra available to them while 

playing a physics game than physics novices do. This is an important consideration that will no 
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doubt warrant future research, yet for the moment it does not present a significant challenge. The 

2SM only describes the form of the stances generally; it is more concerned with describing the 

stances’ functioning and how they interact to influence play and learning. The broad 

characteristics of the stances are given in Table 3.  

Table 3.  

Characteristics of the Player and Learner stances 

 Processes Goals Disrupted by 

Player stance 

Application of execution 

rules, evaluation of rule 

effectiveness after the fact 

Achieve desired 

psychological states, 

maintain agency 

Boredom, frustration 

Learner stance 

Definition and refinement of 

execution rules, testing their 

effectiveness 

Signal understanding 

of the interactive 

model, bolster agency 

and self-efficacy 

Interactive model that 

is inscrutable, 

inconsistent, abstruse. 

 In the 2SM framework, the Player stance contains, as one of many component resources, 

the person's motivation to engage. Ryan et al. (2006) found that motivation to engage with video 

games is strongly predicated on subjective experiences of autonomy, competence, and 

relatedness. These three constructs are described as basic human needs in self-determination 

theory (Deci & Ryan, 1985). While the basic needs explanation is more general than the games-

specific explanation (and not as easily linked to instruction or design), the basic needs 

explanation more fully and convincingly accounts for why people choose to play a particular 

game as well as why they choose to play any games at all. Several researchers of games, for 

example, have investigated why individuals choose to play one game over another (e.g. Bartle, 

1996; Sherry, Lucas, Greenberg, & Lachlan, 2006; Yee, 2006), and the general finding is that 

people choose their games based on an individual preference for certain psychological states 

(e.g., challenge, competition, social interaction, or a combination thereof). Regardless of whether 

he or she is seeking to get a good grade, win, perfect a moment of performance, connect with 
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fellow players, or simply learn about the underlying formal abstraction of the scientific 

phenomenon, the player is driven by the expectation and realization of experiences that trigger 

subjective feelings of autonomy, competence, and relatedness.  

Insofar as the person is able to find these experiences, then he or she will seek to continue 

to engage with the game. Yet in order to continue to engage (and access more of these 

experiences), the player must at times probe the complexities of the game's underlying 

interactive model, learn them, and learn from them. Learning is thus not merely a residual by-

product of engagement, but a necessary activity for free, effective, and purposeful action. The 

2SM conceptualizes a person’s ability to pursue free, effective, and purposeful action within the 

game environment as agency. In other words, people who are interacting with a game gain or 

maintain agency when they feel that they can direct the game towards their personal goals. 

Conversely, when a person does not feel that he or she can affect the game in a way that feels 

meaningful, we say that he or she has lost agency. One of the two stances – the Player stance – is 

specifically oriented toward maintaining this sense of agency, by collecting and organizing 

practical knowledge on how personal goals may be achieved. Thus, the desire to continue 

engagement, maintain agency, and advance personal goals provides the impetus for continued 

play and learning. 

Putting it all together: The proposed 2SM in action 

The constructs described thus far are, for the most part, closely related to well-established 

concepts in the research literature. What follows is a description of the hypothetical mechanism 

by which these constructs interact during game play, and how these interactions may influence 

thinking and learning within educational games. This description is speculative; I offer it to 

illustrate how the individual components of the 2SM, derived from non-adjacent fields of 
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inquiry, fit together into a more coherent whole. Many of the specifics of this description are 

supported by the literature (see Warrants section, following); some other specifics will require 

future research.  

Let us assume that a person begins play with a small initial store of motivation to engage 

but no knowledge of the game’s goals or its interactive model. The person's first instinct is to 

become situated within the environment, find the useful interfaces, and test the affordances of the 

environment with tentative actions. At this stage, previous experience playing similar games 

becomes important; if the person recognizes this particular game as a variant of a genre he or she 

has played before (and the game’s DSE supports this recognition), then the person may cue all of 

his or her existing knowledge as part of process of becoming situated in the game environment.  

Sometime during this process, and depending on the designed structure of experience, a goal will 

be suggested or will suggest itself to the player's thinking, immediately triggering a self-query, 

"how do I achieve this goal?” The self-query shifts the person towards a Learning stance, and a 

simulacrum is constructed in response to the query. This simulacrum may be partial, inaccurate, 

or inconsistent, but at this stage, its only requirement is that it suggests one or more steps that 

might bring the state of the interactive model closer to the goal state. These steps are rendered as 

heuristics ("When this, Do that") and relayed to the interactive model through whatever controls 

or interfaces the game allows. 

The interactive model processes the player's actions and outputs the appropriate response. 

The person is now in a position to evaluate the effect of the executed steps in terms of their 

effectiveness at modifying the state of the interactive model towards the goal state. Actions that 

prove effective are reinforced and actions that have a negative effect are rephrased as avoidance 

steps ("Don't do that"). Actions of negligible, ambiguous, or indeterminable effectiveness are 
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discarded. With repeated reinforcement, the player will begin linking the effectiveness of an 

action with the circumstances that are present whenever that action is invoked. Thus, effective 

rules, both execution and avoidance, are matched to the context cues from the virtual 

environment and stored as heuristics, i.e. "If this, do that." These heuristics are easy to 

remember, quick to access, and require nearly no cognitive effort to execute. 

Whenever players find themselves in a situation that is covered by one of their heuristics, 

they will in most cases default to that heuristic. In other cases, i.e. when the current conditions 

cannot be matched with the conditional part of any heuristic, players have two options. The first 

option is to attempt a coping strategy that allows play to continue even if the state of the game is 

not advanced toward the person’s goal in any obvious way. This strategy does not necessarily 

cue or reinforce a heuristic (thus, does not improve the player's apparent skill), but it allows the 

person to remain in the "player" stance. The second option is to shift to a Learning stance and re-

examine the simulacrum and use it to find new possible actions. The revised simulacrum is 

qualitatively similar to the one last used, since the reinforcement of effective actions also has the 

effect of reinforcing the simulacrum that suggested that action. In this manner, a person's 

simulacrum can evolve cumulatively and iteratively, but only if (a) the person is prompted by the 

absence of productive heuristics and (b) the person reconsiders the simulacrum for the purpose of 

generating new heuristics. If the player is never without a heuristic to apply, the simulacrum can 

be disregarded as the person simply defaults to the available heuristics. 

By the end of the interaction, a person has gathered three forms of knowledge about the 

game: (1) a collection of observations about the particular conditions that the game presents or 

can present, (2) a set of heuristics, i.e. rules of action whose activation criteria match up to these 

conditions, and (3) a simulacrum, or hybrid mental model, comprising a network of entities and 
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causal relationships involved in the interactive model and working theories of how these entities 

and relationships influence the game’s structure of experience.  

The person can reflect and communicate differently about these three forms of 

knowledge. Observations and depictions of states and conditions within the game can be readily 

described verbally, with the aid of physical gestures or other visual aids. Once a semantic 

domain (see Gee, 2007) has been established, communicating heuristics is equally simple, either 

verbally as an if-then statement, or through a demonstration. The person's simulacrum, however, 

is much more difficult to communicate — language has fewer tools for expressing networked 

causal relationships. More often than not, these relationships are rendered piecemeal as if-then 

statements, in a manner resembling p-prims (diSessa, 1993). Simulacra are heavily dependent on 

the person's specific play experience and trajectory, so that two different people playing the same 

game might develop two distinct mental depictions of the game's structures. Conversely, people 

playing the same game (assuming they are equally focused on optimal performance) will 

converge on similar heuristics. Also, we must keep in mind that simulacra are mainly 

reconsidered if and when the person encounters a situation for which he or she has no available 

heuristics. With increasing expertise and experience, and the concomitant development of useful 

heuristics to guide play, it is likely that simulacra are no longer cued at all. These three factors 

(difficulty of description, differentiation, and increasing dormancy) combine to make heuristics 

far more available to people, both individually and as a community, than simulacra. This may 

also potentially incentivize the learning heuristics during play (rather than the characteristics of 

the interactive model), since heuristics are more visible and accessible hallmarks of playing skill.  
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Warrants for the Proposed Structure and Mechanisms 

This section reviews and synthesizes research from across fields to warrant the proposed 

structures and mechanisms of the 2SM. The section first reviews the two-system theory of 

cognition upon which it builds and then reviews research supporting the structures and 

mechanisms of the 2SM distinguishing it from the two-system theory of cognition. 

The Two-System Theory of Cognition 

The 2SM seeks to explain the fact that players of digital games seem to be equally 

capable of quick decisions made with minimal information as well as slow deliberations that 

include a lot of data. This duality is not, however, unique to digital games: it is a feature of 

human cognition writ large. Digital gaming is simply one realm in which this feature has notable 

and, to a certain extent, problematic effects. Thus, general theories of human cognition that shed 

light on the aforementioned duality are especially relevant. A review of the literature shows that 

both elements of this duality in reasoning and choice have their own lines of research, yet the 

framework that harmonizes them is of comparatively recent mint. 

Contemporary scholarship has produced two broad perspectives for explaining human 

reasoning: classical rationality and bounded rationality. Classical rationality builds on 

Aristotelian and Hegelian notions of how the mind operates (see Chater & Oaksford, 1998; 

Smith, Langston, & Nisbett, 1992; Stenning & Van Lambalgen, 2008); it is also called 

unbounded rationality, as it describes logic-based processes of reasoning with little or no regard 

for how time-consuming or information-intensive these processes might be. The argument 

implicit in classical rationality is that, to the degree that people are capable of making optimal 

choices, the mind must be capable of whatever computations or information processes are 

required. In contrast, the bounded rationality approach suggests that it may be more appropriate 
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to acknowledge the peculiar properties and limits of the mind and environment; thus optimal 

performance is not a requirement or assumption of bounded rationality approaches (Gigerenzer 

& Goldstein, 1996; Gigerenzer & Selten, 2001). Bounded rationality therefore not only assumes 

that people are limited in computational power, time, and knowledge, but also that each 

environment varies in affordances for making information available. 

Simon (1956) proposed what is arguably the predominant theory of bounded rationality, 

which he called "satisficing". In this approach, people's minds reason in a way that makes mostly 

correct choices, but within the constraints of their limited abilities to search for and process 

information. These satisficing mechanisms might have biological origins that are evolutionarily 

ancient (e.g., Stanovich, 1999). They require little information or processing power, and they 

bear nearly none of the usual hallmarks of analytical reasoning, yet they produce results that are 

usually adequate for the situation at hand. A theoretical description of these mechanisms was 

given by Valiant (2013), who proposed a class of computations he calls "ecorithms", whereby an 

organism can act effectively within a system that the organism does not fully perceive nor 

understand. These "ecological algorithms" are computationally simple rules that, for example, 

allow an organism to learn non-trivial classes of concepts in a limited number of steps (see 

Valiant, 1984), making heuristics-based learning behavior possible even for relatively simple 

organisms.  

If satisficing and ecorithms can provide workable solutions to the challenges faced by 

relatively simple organisms, then these strategies must be available a fortiori to more cognitively 

sophisticated organisms, such as human beings. Yet when applied to humans, these explanations 

fail to account for the fact that people can and do, in some circumstances at least, make choices 

in a way that could be described as logic-based, optimizing, and information-rich (Conlisk, 1996; 
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Smith et al., 1992). Critics of bounded rationality also observe that many problem domains allow 

for both optimizing and satisficing approaches, such as business management (Odhnoff, 1965) or 

aircraft design (Brown, 1990). So although unbounded rationality seems unworkable and 

satisficing seems reductionist, it is clear there is a place in theories of cognition for both quick 

processes that work with limited information (satisficing and ecorithms) as well as more 

resource-intensive, rule-following, information-rich processes (unbounded rationality). 

Thus a synthetic approach, called the dual-process theory of cognition, aims to explain 

the simultaneous existence of, and the interplay between, the process of mind best described as 

"intuition", or effortless thought, and the more deliberate, purposeful activity usually called 

"reasoning" (Chaiken, 1980; Epstein, 1994; Nisbett, Peng, Choi, & Norenzayan, 2001; Sloman, 

1996; Stanovich, 1999). These modes of cognition are neutrally labeled in the literature as 

System 1 and System 2, respectively. The former is described as fast, automatic, associative, 

emotional, and opaque; the latter as slower, controlled, serial, and self-aware (see Evans, 2008; 

Kahneman, 2003). 

Many of the cognitive functions included in System 2 can be described using existing 

language and constructs from classical rationality (e.g. mental logic, deductive reasoning, mental 

modeling), some of which date to antiquity. In contrast, the study of System 1 has required more 

novel constructs. These constructs have to be robust enough to sustain the broad range of 

functions that System 1 is theorized to perform, yet to be simple enough to fit the general 

description of System 1 as fast, efficient, associative, instinctive, and automatic (see Gigerenzer 

& Goldstein, 1996). One construct that has shown much promise is heuristics. The extensive role 

of heuristics in human reasoning was the focus of the work of Kahneman and Tversky 

(Kahneman, Slovic, & Tversky, 1982; Kahneman & Tversky, 1973; Tversky & Kahneman, 
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1974), who proposed that the processes of human judgment are not just extremely-simplified 

rational (i.e. System 1) mechanisms. In Kahneman and Tversky's view, judgment relies on 

simple, efficient mental shortcuts, namely heuristics. While heuristics also appear in the 

description of satisficing, these satisficing heuristics are generally assumed to be a product of the 

structure of the environment and not necessarily useful outside a specific context. In contrast, 

Kahneman and Tversky (1973) propose a limited, stable set of general-purpose heuristics that 

underlie many of the judgments that people are called upon to make as part of their everyday 

thinking.  

Frederick (2002) further distinguishes between the “judgmental heuristics” of Kahneman 

and Tversky and what he calls "choice heuristics". Judgmental heuristics are invoked mostly 

with concrete stimuli that evoke an immediate impression, and result from cognitive processes 

that are rapid and not entirely controllable, and thus are associated with System 1. Choice 

heuristics, on the other hand, act on abstract stimuli that evoke no immediate impression, and are 

oriented towards arriving at some type of analytic solution. In other words, a person's choice 

heuristics are invoked in response to situations in which System 1 processes are not appropriate 

to the task at hand, and thus choice heuristics serve to manage System 2 processes (a function 

analogous to some aspects of meta-cognition). Crucially, choice heuristics are intentional; they 

are seen and experienced by people who use them as simplifying strategies. Thus, a decision 

maker is seen as one who modifies his or her heuristics strategically, selecting from known 

strategies the set that is most appropriate for the current task or context, based on the quantity 

and quality of information available (see Payne, Bettman, & Johnson, 1993). These strategies 

themselves are subject to the limits of bounded rationality and are often subject to satisficing, 

e.g. a person will consider their strategy as "good enough", given the limits in time, effort, and 
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available information. Similar processing assumptions are made by Evans (2006) in his heuristic-

analytic theory of reasoning. This theory proposes that System 1 processes cue default judgments 

that are (usually very casually) endorsed by System 2; however, purposeful deliberation may be 

applied to inhibit the biased response and formulate a reasoned response in its place. 

There are two main strands of the dual-processing theory; they differ in the hypothesized 

relationship between Systems 1 and 2. In one strand, (e.g., Sloman, 1996), both forms of 

processing are active in parallel, and in the other strand (e.g., Evans, 2006), they act sequentially 

and selectively depending on context. Research in both strands agrees that System 1 processing 

is more common in everyday tasks than System 2. The difference in effort required by these two 

systems indicates that the processes involved in System 1 are similar to basic performance-

oriented computations that the mind has evolved to make.  The biological origins of System 1, 

which are postulated to be shared with other animals, is a recurring theme in two-system theories 

of cognition (Evans, 2008). In parallel-processing theories of cognition, the preference for 

System 1 processes is explained as a strategy to minimize cognitive effort, i.e. the "cognitive 

miser" of Fiske and Taylor (1991). In sequential-processing theories, System 1 is seen as the 

default mode of cognition, with System 2 acting in a more supervisory, inhibitory, and/or 

interventionist role (see Stanovich, 1999). 

In summary, the two-system theory of cognition seeks to explain the fact that people 

seem to be equally capable of both quick decisions made with minimal information and also 

slow deliberations that include a lot of data. The evidence supporting the two-system theory of 

cognition is extensive and persuasive (e.g. Evans, 2003; Sloman, 1996). Furthermore, the two-

system theory explains this duality in reasoning without resorting to Bayesian notions of 

information processing, i.e. unbounded rationality, while still allowing for some analytical 
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mental processes. This account supports the view that people have extensive resources for 

making choices, judging, and acting in a low-effort, low-information way, as well as through 

more sophisticated reasoning through the manipulation of complex mental models. 

Expanding the Two-System Theory 

While the two-system theory of cognition is still undergoing extensive refinement and 

conceptual clarification (Evans & Stanovich, 2013), even in simple form it provides a useful 

structure for understanding how students reason with interactive models and what they may learn 

from them. The 2SM expands the two-system theory with two additional features, namely the 

simulacrum-interactive model dichotomy and the Player/Learner stance dichotomy. I will discuss 

existing warrants for these two dichotomies. 

Evidence for the simulacrum-interactive model dichotomy. The simulacrum / 

interactive model dichotomy has been suggested by other researchers who study the use of 

models for instruction. Rieber (1996) distinguishes between the "target system" (the system of 

interest) and the "mental model" (which represents the user's current understanding or working 

theory about the target system). These mental models form "the basis for the user's decision-

making and action when confronted with problems in the target system" (Rieber, 1996, p. 44; cf. 

Carroll, Olson, Anderson, & National Research Council Committee on Human Factors, 1987). 

This pragmatic orientation of mental models is echoed throughout the systems control literature, 

where mental models are seen mainly as internal mechanisms for forming control strategies or 

selecting appropriate courses of action (e.g., Rasmussen, 1983; Veldhuyzen & Stassen, 1977). 

This resonates with the 2SM’s construct definition of simulacrum, namely, in that they form and 

function around the need to exert and maintain control of a system.  
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The characterization of simulacra as incomplete and unstable follows closely from 

Norman's (1983) oft-cited observations on mental models. Norman proposes that "the models 

that people bring to bear on a task are not precise, elegant models" (p. 8), but rather, they are 

minimalistic and full of idiosyncratic quirks. Also, mental models are variously described in the 

literature at best as "analogical, incomplete, and sometimes very fragmentary" (Farooq & 

Dominick, 1988, p. 487) and at worst as "messy, sloppy, [...] indistinct knowledge structures" 

(Norman, 1983, p. 14). Simulacra, as mental models, inherit much of this “messiness”, and 

include a further source of “idiosyncratic quirkiness” in the form personal goals and motivation.  

A relevant example is found in Steingold and Johnson-Laird (2002), who studied the role 

of mental models in strategic thinking. Participants were asked to make an optimal choice in a 

simple two-player game where only two options were available to each player. Steingold and 

Johnson-Laird found that people regularly form mental models based only on their own options 

and not their opponents' options. This bias could be quite prevalent in digital games, such that 

people's simulacra might simply not account for the mechanisms and relationships that are not 

under their control. Another source of the "quirkiness" of simulacra might arise from what Zhang 

and Norman (1994) call "the representational effect", i.e. the potential for dramatically different 

cognitive behaviors to arise from different yet isomorphic representations of structures or 

relationships. Most games provide a variety of choices at any given moment, which may lead to 

many possible outcomes that, while not necessarily different in terms of representation, might 

still result in differences in individual users' mental models due to the representational effect. 

Evidence for the learner and player stance dichotomy. In terms of learner and player 

stances, Schwartz and Black (1996) presented compelling evidence that people will use 

modeling as part of a solution strategy during problem solving only when an applicable rule is 
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not available to them. Schwartz and Black conducted a series of experiments where the central 

task involved solving problems related to chains of gears. These problems could be solved either 

by using a parity rule that study participants could induce from the problems themselves, or by 

using a mental or a hybrid mental-gestural model of the behavior of chained gears. The problems 

were sequenced in such ways that rules could be more easily induced in some cases than in 

others, for example, by presenting several problems consecutively that could be solved using the 

same parity rule. Schwartz and Black associated quick response time with rule use: the absence 

of gestures as well as increased answer speed indicated that participants were reasoning without 

a dynamic model. Furthermore, the researchers found that most of the participants' errors 

occurred when the parameters of the problem were changed in such a way that an induced rule 

would not apply. In their discussion, Schwartz and Black identified three situations in which 

people used models: when they confronted a novel problem, when they needed to generalize 

rules, and when their rules failed (p. 493). These findings support the Player/Learner dichotomy 

in the sense of a heuristic “player” mode versus a model-building “learner” mode. 

Similar findings appear in Gijlers and de Jong (2013), who investigated the use of 

concept maps to aid learning in an inquiry activity based on a kinematics simulation. Gijlers and 

de Jong coded the utterances of dyads and examined and classified them according to their 

transformative (i.e. directly yielding of knowledge) or social dimensions. One social dimension 

code was "integration-oriented consensus-building.” Gijlers and de Jong found that the relative 

prevalence of these types of utterances correlated with improved learning outcomes along three 

measures. Interestingly, integration-oriented consensus-building talk frequently appears in the 

form of heuristics (e.g., "if mass increases, we will go slower," "velocity has something to do 

with acceleration," or "the distance covered also depends on the initial velocity"). These type of 
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utterances were often bracketed in the excerpts provided in Giljers and de Jong by talk related to 

experimentation and elicitation, suggesting that the dyads were transitioning between heuristic 

and systematic approaches. 

 Finally, Parnafes and diSessa (2004) found evidence of students coordinating two forms 

of reasoning around a physics simulation. These forms of reasoning were described as "model-

based" and "constraint-based", following a distinction made in the artificial intelligence 

literature. Model-based reasoning was described as principled and integrated, and used mainly to 

examine plans and alternative actions – a description closely matching the Learner stance; 

constraint-based reasoning was seen as heuristic and simplifying, and focused on finding and 

using means-ends strategies – in other words, a control-oriented goal-seeking form of thinking, 

which possibly coincides with the Player stance.  

Schwartz and Black (1996), Gijlers and de Jong (2013), and Parnafes and diSessa (2004)  

thus converge on the notion that the peculiar task demands of systems simulations produce 

clusters of behaviors oriented towards processing or control (i.e., the Learner and Player 

stances). These clusters of behaviors adapt to changes in a person’s moment-to-moment needs 

regarding their continued participation in the activity. 

Evidence from game-based learning research and gaming communities. Two studies 

in particular shed some light on the 2SM in terms of social spaces and gaming communities.  

Steinkuehler & Duncan (2008) studied the Internet forums where players post and 

communicate about the massively multiplayer online game World of Warcraft. Steinkuehler & 

Duncan coded specifically for scientific habits of mind, defined as a combination of scientific 

discursive practices, reasoning, and tacit epistemologies. They found that “model-based 

reasoning” (i.e. using some form of model to understand the system being considered) accounted 
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for 11% of the forum posts in the sample corpus. In contrast, 58% of the posts exhibited 

“systems based reasoning”. This code includes reasoning in terms of inputs and outputs, a close 

parallel to both constraint-based reasoning and the 2SM construct of heuristics. Furthermore, 

30% of the posts in the corpus exhibited an “absolutist epistemology” (from Khun, 1992). 

According to the authors, this stance “might serve someone well when operating in a virtual 

world where there really is a single algorithm (or set of algorithms) underlying a specific 

phenomenon and success is only a matter of finding them” (p. 539). This is exactly the attitude a 

person would have when acting from a very strong Player stance.  

While Steinkuehler and Duncan’s findings are certainly suggestive, it is important to 

keep in mind that their data comes from forum participation which, generally speaking, selects 

for players who might prefer participating in the community via an open-ended exploratory 

argument, as in Khun’s “evaluative epistemology”. Thus, it may be that means-end reasoning 

and absolutist epistemologies are most likely far more prevalent among players of World of 

Warcraft than the ratios Steinkuehler and Duncan report.  

Schrader and McCreery (2008) investigated expertise as a function of game-related 

behaviors in a massively multiplayer online game. The authors conducted a factor analysis on a 

questionnaire of game behaviors. They found that the question “I learned what I needed to 

become an expert from my own trial and error” clustered with behaviors associated with game 

performance, e.g. “I understand the underlying game mechanics”, and “I frequently try to think 

of new ways to react to in-game situations”, but this correlation was by far the weakest in that 

factor. Conversely, the same question (endogenous attribution of game performance) correlated 

negatively with two other items that indicated exogenous attribution, e.g. “I reached my level of 

expertise due to another player’s guidance.” Another factor collected four knowledge-seeking 
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behaviors (although the authors label this factor as “Technology Competence”, as in, knowing 

how to make the knowledge readily available within the game interface), asking for example, if 

players have other programs running to check information, or use multiple resources to solve in-

game challenges. This factor, along with the game-performance factor (that included the 

endogenous attribution item) and another relating to status, was positively correlated with game 

expertise. On the other hand, exogenous attribution of game knowledge correlated negatively 

with game expertise. In other words, players who consider themselves experts frequently make 

use of outside sources yet tend to think that they learned the game by themselves; people who 

don’t see themselves as expert players don’t seek community-created knowledge and attribute 

their knowledge to the mentorship of other players. 

Schrader and McCreery do not develop this theme, but the nature of their data and their 

analysis supports some conjectures. First, players of games feel they gain status (i.e. relatedness 

and public recognition of their competence, cf. Deci & Ryan, 1984) when they become skilled, 

and that the hallmark of a skilled player is seeking and using condensed sources of information. 

This indicates that performance and goal-seeking orientations, i.e. the Player Stance, inherently 

drive players towards gaining and using effective knowledge, wherever it is available. As to the 

origins of their own effective knowledge, more skilled players do not attribute their skill to the 

mentorship of other players, yet they do not unanimously attribute their skill to their own trial 

and error experiences. This makes sense if the process of growing more skilled involved 

shuttling in and out of the use of trial and error as a source of understanding (i.e. a Learner 

stance) and included tapping into other sources of knowledge. 
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Implications for Design and Learning 

Thus far, I have conceptualized how learning from games happens from a 2SM 

perspective and presented evidence from diverse research programs that support the constructs 

and processes here proposed. I will now discuss the implications of 2SM as it impacts the design 

of learning environments and the range of learning outcomes that are possible.  

Goals for design 

From a 2SM perspective, the success of a game as a pedagogical tool depends mainly on 

two factors: (1) whether or not the student’s simulacrum remains accessible after it loses its 

value as a tool to guide effective play, and (2) whether the simulacrum and heuristics that the 

student generates during play are useful in the target domain. The goals of the designer are 

therefore (1) to build enough support, feedback, and reinforcement into the learning environment 

so that the learner simulacrum is strengthened throughout play, and (2) to structure game 

mechanics such that the simulacrum and likely heuristics for optimal play support understanding 

or problem-solving in the target domain. The negotiation of these priorities might shift according 

to how a particular domain’s notion of expert knowledge balances between abstract yet flexible 

understanding of a system’s workings and quick execution of procedures that are known to be 

effective. In the case of the former, the simulacrum is the privileged form of knowledge; the goal 

becomes to enable the simulacrum to enter the student's long-term memory as the kind of 

context-free causal/relational cognitive structure that more resembles what some scholars view 

as expert knowledge (cf. Chi, Feltovich, & Glaser, 1981). On the other hand, if heuristics are the 

preferred mode of knowledge for a particular domain, then it is likely the development of 

expertise via games more closely resembles skill acquisition (cf. Anderson, 1987). 
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Alignment between external model, interactive model, and simulacrum 

An ongoing challenge in game-based learning research is the matter of “alignment”, 

namely, ensuring that what students actually learn from an educational game coincides with both 

the designers’ intent and an externally-validated curriculum (Kebritchi, 2010; Squire & Jenkins, 

2003). Mental model-based explanations of student learning generally frame this alignment as a 

matter of creating accurate facsimiles of the formal abstractions of scientific phenomena, 

encoding them into the interactive model, and providing the necessary tools and scaffolds so 

students can best “make sense of” the interactive model. Accurate interactive models, along with 

useful scaffolds to make the model more clear and apparent, are hypothesized to result in more 

effective mental models. 

The 2SM shifts the issue of alignment from accuracy in the sense of fidelity of 

representation to accuracy in the sense of proximity between the task demands of the game and 

those of the curriculum topic of interest. A good example of this latter form of proximity is 

Dragon Box, a puzzle game intended to help students learn concepts of algebra. Designed by 

Jean-Baptiste Huynh and Patrick Marchal, Dragon Box has garnered international attention for 

its effective treatment of what is typically a difficult range of ideas for younger students to grasp. 

While no peer-reviewed studies are currently available, there is abundant anecdotal evidence 

available that pre-algebraic students are able to solve Algebra 1 problems after playing Dragon 

Box for as little as 42 minutes (Shapiro, 2013).  

From the 2SM perspective, Dragon Box succeeds, at least in part, because the 

simulacrum that students form while playing the game is closely associated to the form that 

algebra problems tend to take, e.g. isolating the variable, or balancing the equation. Not only are 

the steps and processes similar in both the game and the real-world application, but so are the 
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goals. This similarity in goal structure is rather unique. Researchers have noted that games could 

portray not only the knowledge base of science and the material methods of science inquiry, but 

also its purposes, priorities, and objectives, e.g. Shaffer (2005); Barab, Gresalfi, & Ingram-Goble 

(2010). One example of this enriched portrayal of science can be found in the Quest Atlantis 

games, or in the FoldIt protein research simulation/puzzle game. However, the disconnection 

between the goal structure of Quest Atlantis and that of the typical science unit is inevitably felt 

by students, and thus the mental structures that students form to successfully navigate both forms 

of learning are perhaps not interoperable. FoldIt and Dragon Box, on the other hand, hew so 

closely to the goal structures of the discipline that alignment is tight; students may see the game 

and the respective disciplinary practices as being integrated procedural knowledge. Thus, from 

the 2SM perspective, Dragon Box is a prime example of a game that successfully manages the 

“alignment” challenge and structures students’ thinking in a manner closely tied to the learning 

domain targeted by the game. 

Helping students form robust mental models 

Helping students form robust mental models that can be applied across contexts has also 

historically been a strong focus of inquiry. Research from the past three decades provides 

substantial insight into the design of games to support students’ ability to engage with them, 

understand them, and use them as tools for thinking. In fact, this goal has arguably been the 

overall design imperative in research on educational games, in line with existing principles of 

instructional design and multimedia learning (e.g. R. C. Clark & Mayer, 2011). Yet behind these 

principles lies the baseline assumption that once learners form their mental models, these models 

remain available to students at some later time. The 2SM framework problematizes that 

assumption by suggesting that simulacra, like all System 2 processes, are pre-empted by System 
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1 processes such as rules and heuristics whenever these are available (Schwartz & Black, 1996). 

In fact, given that System 1 mechanisms are the preferred mechanism for everyday thought, it is 

perhaps incidental that students retain any knowledge at all resembling a mental model that is 

useful in new contexts. 

Thus, the challenge for designers of educational games is to help students store and recall 

their simulacra, which may run counter to the students' own cognitive biases against using them. 

The question then becomes, how can designers disrupt a person’s natural tendency to discard 

simulacra? As discussed in this paper, a person is most likely to stop attending to his or her 

simulacrum (a) once effective rules or heuristics have been derived from the simulacrum and (b) 

once the heuristics cover all possible situations the player cares to affect. With regard to the first 

condition, it is probably not feasible to prevent students from forming heuristics. People have 

strong incentive to maintain agency, and they express this agency by directing the interactive 

model towards a desired state. Effective control-oriented rules are therefore constantly being 

created, selectively matched to available data, and evaluated for effect (in a matter reminiscent of 

the description of production systems in Neches, Langley, & Klahr, 1987). These cognitive 

processes are associative and prone to automatization. It is therefore unlikely that the designer 

can interrupt them without damaging people’s agency and ability to continue to engage. 

The second approach to preserving simulacra is potentially more promising. If a game is 

designed in such a way that it is constantly offering new goals as well as elements and 

constraints, then at no time do a person’s heuristics provide good-enough play actions for all 

possible situations. On the contrary, the person must return to his or her simulacrum (from Player 

stance to Learner stance) to revise and refine it to include the new structures. If the person does 

not expand his or her simulacrum, then the simulacrum will lose its usefulness at predicting 
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states in the interactive model and evaluating the effectiveness of the potential actions. In this 

situation, the person cannot retain agency, and his or her ability to engage effectively quickly 

decays. Thus, whenever the game introduces new elements and these new elements are different 

enough that the person cannot cope with them using existing heuristics, the person shifts from 

Player stance back into the Learner stance, the simulacrum is re-invoked, and the process of 

modeling begins again (so person can eventually shift back to Player stance). If this chain of 

events happens frequently enough, the person will reinforce the mental model, rather than the set 

of heuristics. This may, in turn, result in greater availability of the mental model for problem-

solving in other contexts. 

Dragon Box appears to effectively transition users between Player stance and Learner 

stance with a very extensive and gradual level progression. Dragon Box contains 200 levels, each 

building on the prior levels, and almost all of them add a new quirk, wrinkle, or complexity. As 

new symbols and new rules are introduced, students must constantly adjust their simulacra to 

keep pace. This prevents students from settling on effort-reducing strategies such as heuristics; 

however, the heuristics that do form are closely aligned the tasks and subtasks found in algebra 

problems in any case. 

A similar example of the effect of constantly evolving challenges can be found in the 

recreational game Dwarf Fortress, a construction and management simulation akin to SimCity or 

Railroad Tycoon. What makes Dwarf Fortress different is the depth and detail of its modeled 

world, whose principles operate with a regularity and complexity far beyond most digital games. 

The game includes systems to simulate basic economic activities like farming, fishing, hunting, 

and a broad variety of crafts, such as smithing, masonry, and brewing. Each of these activities is 

supported by simulations of resource growth and propagation (i.e., seeds that grow into plants 
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that bear fruit, fish and wild game that reproduce, and predators that compete with the dwarves 

for the same food resources), and the behavior and interactions of materials (e.g. wood burns, 

iron melts, bones decompose, and water that flows into magma produces obsidian and steam).  

The complexity and depth of Dwarf Fortress’ interactive model means that the learning 

curve for the game is uncommonly steep. Furthermore, there are specific in-game events that, 

when game conditions are met, trigger an explosion of systemic complexity. For example, when 

the fortress reaches a certain population, the “dwarven economy” will activate, introducing 

issues of monetary policy, wealth disparity and allocation of labor, forcing players to mint 

coinage, set tax rates and deal with the supply and demand of goods. Thus, players remain 

constantly off-balance: just when the current difficulty fades as the challenges are mastered, new 

and more complex goals appear, exposing new functionalities of the interactive model. From the 

2SM perspective, simulacra are constantly undergoing revision and are never quite discarded, 

and conversely, the heuristics that people form are (at best) very general guidelines to smooth 

play, because no general-purpose or always-applicable rules are possible. 

Dwarf Fortress exposes a tension, however, between the equally desirable goals of (a) 

proficiency with the concepts, entities, and relationships of the interactive model and (b) 

learners’ sense of self-efficacy and motivation. There is something fundamentally off-putting 

about complex games like Dwarf Fortress. The sense of disorientation that they produce, of not 

knowing exactly all that is going on, is arguably not an optimal starting point for learning. The 

reality is that educational games depend largely on their motivational affordances for their buy-

in. Teachers and educators are receptive to games because students tend to find them engaging. It 

thus seems counterproductive to make games complex and disorienting. On the other hand, the 

depth and responsiveness of the interactive model encased in Dwarf Fortress is closest to the 
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letter and spirit of the justification for using interactive models in the first place, viz. to allow 

users to investigate the causes of phenomena, and explore the implications of manipulating 

certain parameters (p. 10, this paper). This tension is perhaps not one that can be resolved, but it 

can be studied and negotiated through skillful design. 

Attending to social texture 

Designing educational games from the perspective of the 2SM also requires the designer 

to attend to the social texture of the context in which the game is played. The two stances are 

epistemological constructs, and as such, refer mainly to private cognition. However, the 

boundaries of these stances are not impermeable, and can inform and be informed by social 

interaction. My conjecture is that most such interactions will center on the circulation of 

heuristics. The heuristics construct, as described in the 2SM, is a form of knowledge that is easy 

to transmit, easy to decode, easy to remember, and highly portable. As such, a person’s heuristics 

can become social capital and commodities among player communities. Effective heuristics are 

prized by players because these heuristics are often the difference between progress and 

frustration, between satisfying and unsatisfying play. The person who describes his or her 

heuristics to others gains social currency, a form of prestige that comes from being the person 

who “figured it out”. This effect can be observed both in classrooms, where ad hoc co-operative 

play and helping behaviors are common, as well as in distributed online spaces, where game 

knowledge is freely shared in a form of potlatch or gift economy. The skillful use and 

application of this knowledge is also encouraged when it directly improves a person’s level of 

play, since this improvement is a source of prestige (as shown by Schrader & McCreery, 2008).  

The heuristics component of the 2SM supports transactivity in this regard. While 

simulacra are unwieldy to communicate and share, heuristics are easy to express both in written 
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and spoken form, and the phenomenological regularity of the common game experience means 

that heuristics are difficult to misunderstand or misapply. Heuristics thus support online social 

interactions around the game, often in the form of prescriptions for expert play (e.g. FAQs2, 

“walkthroughs”, “cheats”, or tips), and provide impetus for the affinity spaces that organize these 

interactions around learning and mastery (i.e. “big-G games”, as discussed by Gee, 2008). These 

transactions are framed largely in terms of how to play games optimally, with comparatively 

little emphasis on formal analysis of how the game works. 

Cognitive explanations of game-based learning often rely on interpreting the interactions 

of the learner with the learning environment rather than taking a broader situated view 

encompassing collaboration and community. This is not an insurmountable limitation in the case 

of games that are structured around one-to-one user-to-computer interactions. Yet educational 

games are frequently used in classrooms without clearly defined user boundaries; it is very 

difficult to determine the degree to which a mental analogue arises from individual cognitive 

effort as opposed to participation alongside other students in a collaborative enterprise. In fact, 

even in games designed for solo play, ad hoc collaborations between students are more likely the 

norm and not the exception (e.g., the student-directed collaborative task pursuit in single-player 

games described by Sharritt, 2008, and Nilsson and Jakobsson, 2011). Other naturalistic settings, 

such as massively-multiplayer online games, also share this very thin border between private and 

shared cognition.  

                                                 
2 For “frequently asked questions”, a genre of guide document in which a community of more expert 

players collect information for the benefit of more novice players in an effort to limit redundancy. This genre is 

described extensively by Gee (2004), along with its print analogue, the “strategy guide”. The fact that these 

documents exist indicates that different players have consistent enough experiences so that many questions become 

“frequently asked”. 
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The 2SM provides a plausible structure for these collaborations. Essentially, students in 

classrooms use a sort of distributed Learner stance. When individuals induce effective rules 

through the processes described above, they can make them available to others as needed. If 

people become stuck in the game, they have the option of consulting their peers instead of 

querying their own simulacra. If a rule of effective action is available, more often than not a 

more proficient player will share it, although help-seeking and help-giving behavior based on the 

exchange of heuristics is likely mediated by the norms and sociocultural practices that operate in 

that particular classroom. If a rule of effective action is not available or forthcoming, then 

students can continue playing on their own or collaborate in a shared Learner stance until a rule 

is found. These ad hoc collaborations are made possible by the portability and context-unbound 

nature of heuristics. If heuristics did not have these qualities, help-seeking and help-giving would 

involve higher cost in time and effort. Ad hoc collaborations would thus be far rarer.  

Connecting educational and leisure games 

One final issue concerns the applicability of the 2SM (or any learning theory) to both 

educational and leisure games. It may be argued that games for learning require different theories 

than leisure games in order to account for the added demands of learning. Yet to a large extent, 

the 2SM treats educational and leisure games as one and the same. The fact that certain games 

are conceptualized as helping to teach specific content is more an artifact of their design and 

intended application than any departure from the medium as a whole (see Gee, 2003). From a 

2SM perspective, there are only two main differences. First, the elective versus compulsory 

nature of out-of-school versus in-school gaming probably has some bearing on the resources 

available to the Player stance. Second, classrooms generally present lower barriers to 

collaboration compared to gaming “in the wild” due to the direct physical colocation of the 
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participants, emphasizing the importance of attending to the sociocognitive structure of the 

game-playing community. In other respects, games are games; they use the same structures of 

experience, the same design language, the same technologies, the same genre conventions, and 

the same semantics. Thus, I propose that we might prefer a unitary theory like the 2SM, one that 

allows for taxonomies and contexts yet helps explain the thinking and learning of all players of 

all kinds of games. 

Conclusions 

This paper began by focusing on a perplexing duality; players of digital games appear to 

both act automatically and reflect deeply. I have proposed that this duality, as problematic as it 

might seem if we assume that learning only happens during moments of analysis and reflection, 

is perhaps not specific to digital games, but rather a feature of human cognition in general. As 

such, there is significant and persuasive scholarship that demonstrates how this duality in our 

thinking and learning capacities works, and I have endeavored to synthesize and summarize this 

research here.  

The Two Stance Model represents the first attempt to reify this general theory of 

cognition explicitly into the realm of game-based learning. The 2SM, as I have argued here, has 

a number of promising features that may perhaps shed some light on the persistent challenge of 

designing a game that helps students learn in such a way that their improved performance in-

game has some bearing on their proficiency out-of-game. Among these features are (a) improved 

explanatory power regarding intrapersonal variation in learning from games; (b) more complete 

theory regarding individual needs, goals, and agency; (c) a more extensive account of 

collaboration and community; and (d) improved perspective on knowledge-rich interactions in 

online affinity spaces. These affordances harmonize well with existing theories of learning, as 
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befits a synthetic approach like the 2SM. Clearly, there are issues regarding game-based learning 

that the 2SM can probably not address. In these cases, I have tried to limit my claims by 

deferring to more applicable theory in matters of scope (as in the initial sections of this paper) or 

by indicating where the 2SM might share a point of contact and focus with general theories of 

learning, as I have done later in my argument. 

While the 2SM is conjectural, and therefore destined to undergo revision and refinement, 

the research literature provides promising indicia that support its general premises. The work that 

remains is to craft specific investigations to demonstrate the 2SM empirically. Meeting this 

challenge will require a mix of observational and quantitative methodologies including 

sophisticated pattern-finding analytics that support linking game behaviors to epistemological 

stances to learning outcomes. Fortunately, this combined methodological approach can leverage 

a burgeoning foundation of tools in the field of game-based learning, as scholars recognize and 

seek to account for the richness and complexity of game-based phenomena. Enriched multiple-

perspective research strategies, supported by both existing theory as well as new frameworks like 

the 2SM, promise to support more sophisticated student understanding, help learners build more 

powerful identities, and advance our understanding of the rapidly-evolving world of digital 

gaming. 
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CHAPTER IV 

INVESTIGATING EPISTEMIC STANCES IN GAME PLAY WITH DATA MINING 

Introduction 

Digital games are potentially powerful vehicles for learning (Gee, 2007; Prensky, 2006; 

Mayo, 2009; Shaffer, Squire, Halverson, & Gee, 2005; Rieber, 1996; Squire et al., 2003) and 

numerous empirical studies have linked classroom use of educational games to increased 

learning outcomes in science (e.g., Annetta, Minogue, Holmes, & Cheng, 2009; Dieterle, 2009; 

Neulight, Kafai, Kao, Foley, & Galas, 2007; Squire, Barnett, Grant, & Higginbotham, 2004). 

Several reviews have concluded that game-based learning offers numerous theoretical and 

practical affordances that can help foster students' conceptual understanding, engagement, and 

self-efficacy (Aldrich, 2003; Cassell & Jenkins, 1998; Kafai, Heeter, Denner, & Sun, 2008; 

Kirriemuir & Mcfarlane, 2004; Martinez-Garza, Clark, & Nelson, 2012; Munz, Schumm, 

Wiesebrock, & Allgower, 2007). Clark, Tanner-Smith, and Killingsworth (2015) find favorable 

support for the use of educational games overall, but particularly in cases where games are 

augmented through application of sound learning theory. 

While the general question of whether games can provide productive contexts for 

learning is approaching consensus, how and why games work is a more open question. A large 

number of constructs receive attention as potentially important for game-based learning 

(Linehan, Kirman, Lawson, & Chan, 2011; Dondlinger, 2007), including constructs as varied as 

fun, feedback, engagement, flow, problem solving, narrative, etc. Several scholars have proposed 

design principles to optimally leverage some or all of these constructs (e.g. Annetta, 2010; Kelle, 

Klempke, & Specht, 2011; Tobias & Fletcher, 2007; Plass, Homer, & Kinzer, 2014). Also, 

educational games claim a broad spectrum of possible learning outcomes (Martinez-Garza, 
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Clark, & Nelson, 2013b) which, when combined with the vast range of gaming genres, gaming 

populations, and technology platforms educational researchers have available, creates a vast and 

constantly changing space of inquiry that resists generalized claims. Furthermore, digital games 

also present unique assessment challenges. Since games often incorporate novel student activities 

for which there are no well-established existing measurement methods, measures often need to 

be developed along with the game in an iterative fashion (Harpstead, Myers, & Aleven, 2013). 

Thus, some scholars have called for increased methodological rigor and emphasis on usable (i.e. 

generalizable) knowledge in educational games research (Dede, 2011; Foster & Mishra, 2008). 

Regardless of the variation in theoretical framing, methods, or learning outcomes, the 

common denominator of all game-based learning research is the act of learners’ play. Thus, a 

general claim of game-based learning research can be phrased as “if a learner plays this 

particular game, he or she will learn this particular thing.” Warranting that claim requires 

identifying who exactly is the player and what exactly is the game, justifying and defining the 

educational goal, and analyzing the evidence to determine if the goal has been reached - indeed, 

a significant portion of research is devoted to these ends. I would include one additional part: 

unpacking what exactly constitutes “play”, i.e. what choices the player has available, what 

informs those choices, and what feedback the game offers in response. Much inquiry into game-

based learning is directed towards explicating issues that influence and structure educational 

gaming, e.g. design considerations, materials and curricula to support educational games, 

detection of learning outcomes, etc., although not so much play itself. Generally speaking, the 

act of play as the central driver of learning is somewhat under-examined in the educational 

gaming literature. Among the possible reasons for this lack of focus are (1) the general difficulty 
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of observing, encoding, and analyzing play systematically, and (2) the limitations of general 

theoretical frameworks that might help operationalize play in meaningful actionable ways. 

Previous educational research efforts that analyzed digital game play at the individual 

level have relied primarily on observational methods (e.g., Annetta, Minogue, Holmes, & Chang, 

2009; Hou, 2012; Sengupta, Krinks, & Clark, 2015). Observational studies that aim for thick 

description (Geertz, 1973) of gamers at play explicate this richness and often succeed in building 

strong cases for learning (e.g. Squire, DeVane, & Durga, 2008). However, investigations of play 

that use a learner’s in situ performance as an indicator of the learning are generally limited in 

scope and scale by the costs and demands of observation and coding. A possible way to address 

this limitation involves the use of log file data. Learners’ actions within the game environment, 

when recorded and compiled, can potentially produce a rich and detailed account that can be 

productively analyzed using methods of statistical computing (Martinez-Garza, Clark, & Nelson, 

2012). These statistical computing methods, variously known as learning analytics (LA), or 

educational data mining (EDM), could be used not only for assessment of learning (as we 

proposed in Clark, Martinez-Garza, Biswas, Luecht & Sengupta, 2012) but also to find 

underlying structure and regularity in learners’ play that would in turn inform meaningful 

generalizations about what constitutes learning through play in a game environment. Using a 

combination of log file data and learning analytics, educational games scholarship could 

potentially transcend these limitations without abandoning deep qualitative analysis (Berland, 

Baker, & Blikstein, 2014). 
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Goal and Structure of this Paper 

This paper has two goals. The first goal is to investigate the basic claims of the proposed 

Two-System Framework of Game-Based Learning (Martinez-Garza & Clark, revise and 

resubmit), a cognitive perspective that may serve as part of a general-use explanatory framework 

for educational gaming. The second goal is to explore and demonstrate the use of automatically-

collected log files of student play as evidence through educational data mining techniques. These 

techniques have drawn interest from researchers seeking a more nuanced understanding of 

student action within digital environments. The data mining techniques featured in this paper 

could potentially find general use, and this paper aims at offering a demonstration of plausible 

methods and processes that are suited for the specific challenges of game play data.  

The sections immediately following lay out the necessary groundwork for addressing 

these goals. The context for this research is an educational game intended to help middle school 

students develop a better understanding of Newtonian kinematics. Among its other 

functionalities, this particular game stores all student actions and collects them in a central 

database. The Conceptual Framework section describes this game, titled The Fuzzy Chronicles, 

in some detail. Then, a summary of the Two-System Framework (or 2SM) is presented, followed 

by specific discussion on the implications of the 2SM in the context of The Fuzzy Chronicles. A 

brief overview of current research that makes use of log files from digital educational 

environments as evidence rounds out the Conceptual Framework section.  

Afterward, I articulate the first goal more specifically as two research questions. An 

overview of the studies and participants, definition of the Player and Evidence models, and the 

treatment protocol for EPIGAME data is then provided. Each question is investigated in its own 

section, with separate Results and Discussion subsections. In the Conclusions, I outline some of 
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the opportunities and difficulties of using educational data mining on digital game play logs, 

future directions for this kind of research, and also propose improved design factors for 

educational games that might better promote students' behaviors during play to more closely 

align with those behaviors found linked to positive learning outcomes. 

Conceptual Framework 

Overview of the Game Environment: The Fuzzy Chronicles 

For this study, I used the educational game titled The Fuzzy Chronicles, codenamed 

EPIGAME. The Fuzzy Chronicles is the third iteration of the SURGE line of digital games 

intended to help students advance their understanding of Newtonian kinematics. EPIGAME was 

designed principally by Douglas B. Clark and developed in collaboration with the University of 

California at Berkeley’s WISE project and Filament Games with grants from the Institute of 

Education Sciences at the US Department of Education and the National Science Foundation. 

The Fuzzy Chronicles (hereafter, EPIGAME) takes the form of a series of puzzles 

presented as a science fiction adventure. Students play as the space navigator Surge, who must 

find and rescue space capsules piloted by Fuzzies, adorable but somewhat hapless creatures who 

are stranded in space. In order to accomplish these rescues, the player must navigate Surge’s 

spaceship through a two-dimensional spatial grid (see Figure 7 and Figure 8) by tracing a 

Trajectory to the stationary Fuzzy, then placing Actions at Waypoints along that Trajectory. Most 

Actions take the form of Boosts that propel Surge’s ship in one the four cardinal directions with 

an amount of force that the player chooses. Game play is divided into Levels, each comprising a 

separate navigational and/or rescue challenge. All Levels have a Start Point and an End Gate, 

and may also optionally contain obstacles, such as impenetrable Nebulas and Radiation, as well 

as Velocity Gates and Mass Gates that impede Surge’s progress. These Gates signal an attribute 
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of Surge’s capsule (i.e., a specific velocity or mass) that the player is required to match before 

the Gate will open. Colliding with a Nebula, a Radiation field, or a Gate causes the destruction of 

the Surge capsule and any rescued Fuzzies, thus failing the Level. 

 
Figure 7. Anatomy of an EPIGAME level. (1) Start Point (2) Velocity Gate (3) Laser 

Deactivator (or "Button") (4) Nebula (5) Matching Button and Laser (note green color of both) 

(6) End Gate (7) available Actions. 

The interactive structure of EPIGAME has two phases - a Planning Phase and an Action 

Phase. In the Planning Phase, players decide their Trajectory and place their Actions 

appropriately. The player signals the end of the Planning Phase by hitting the Run Lever, thus 

starting the Action Phase. In this phase, Surge’s capsule follows the player’s plan, which may 
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result either in a successful navigation to the End Gate and the rescue of any stranded Fuzzies or 

the destruction of Surge’s capsule. If successful, the player moves on to the next Level. If the 

player is not successful and Surge’s capsule is destroyed, he or she is returned to the Planning 

Phase in order to change the planned Trajectory and/or add or remove Actions before triggering 

a new Action Phase. Together, a Planning Phase and its resultant Action Phase are called an 

Attempt (which may be successful or unsuccessful). 

 
Figure 8. An Attempt in process. The player is setting direction (8) and force (9) parameters on 

an Action. The player has set a Trajectory (10) through several Waypoints (a-e). To begin the 

Attempt, the player presses the Launch Lever (11). 
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In theory, a player may complete the game having needed only one Attempt (i.e. one 

Planning Phase and one Action Phase) per Level. In reality, players often require multiple 

Attempts before they successfully advance. In a given Level, the player is free to construct a plan 

for the entire Trajectory for the level and place all necessary actions before first activating of the 

Run Lever. Alternatively, players may also choose to segment the Trajectory and place only a 

few Actions at a time, thereby solving the level incrementally, i.e., draw part of a trajectory, 

place a few actions, activate the Run Lever, see what happens, and adjust and extend the 

trajectory and actions iteratively through multiple cycles of attempts. The game neither suggests 

nor encourages either approach, so a player may select whichever method he or she finds more 

suitable.  

A full game of EPIGAME as designed for this study consists of 32 Levels of generally 

increasing complexity. Each subsequent level more often than not requires more Actions than the 

previous ones, contains more challenges and obstacles, and demands more effort by the player to 

plan and strategize for success. Because of this, it is likely that any player of EPIGAME will find 

at least one level that requires multiple Attempts in order to succeed. Some levels, particularly 

near the end of the game, allow only a very limited margin of error. Therefore, progress in the 

game requires to player to be persistent at times, take several different approaches when faced 

with apparently insurmountable levels of difficulty, and explore and experiment with different 

combinations of Actions to find a correct solution for each Level. 

The Two-System Framework of Game-based Learning 

A goal of this paper is to investigate a theory of game-based learning called the Two-

Stance Model framework, or 2SM (Martinez-Garza & Clark, revise and resubmit). The 2SM 

framework seeks to support a more sophisticated understanding of how and what people learn 
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from digital games. It was motivated by the contrast between recent scholarship that finds 

uneven evidence that people learn much from digital games (Young et al., 2012) and the 

observation that players inhabit rich ecologies of knowledge about the games they play (Gee, 

2007) that include often-impressive feats of cognition.  

Many digital games can be accurately described as software models of scientific 

phenomena encased within game-like structures that are intended to increase player engagement. 

In the case of educational games, the intention is that students develop understanding of the 

principles that underlie these phenomena through the thoughtful and purposeful exploration of 

their scientific models. The premise of the 2SM framework is that players of educational games 

do not necessarily form accurate mental analogues of the software models that drive the 

phenomena they experience in-game (i.e. the encased “simulation”); rather, they create a second-

order model (as in, a model of a model of a phenomenon) that is oriented towards explaining the 

functioning of the encased simulation, predicting its future states, and allowing the user to feel 

that he or she understands the simulation or game, and has some measure of control over it.  

These two stances can be conceptualized further using features from the two-system 

model of cognition (Evans, 2008). Two-system models of cognition distinguish between 

effortless thought, or “intuition”, and deliberate purposeful “reasoning”. These modes of 

cognition are neutrally labeled as System 1 and System 2, respectively. The former is described 

as fast, automatic, associative, emotional, and opaque; the latter as slower, controlled, serial and 

self-aware. In the 2SM framework, System 1 is associated with the “player” stance and System 2 

with the “learner” stance. 

Players might have two distinct goals when interacting with a game’s encased simulation. 

The first involves develop their second-order model to better understand the simulation and use it 
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as a laboratory the objects and relationships within the simulation can be investigated. The 

second goal involves executing various game actions to manipulate the simulation to create a 

desired state (i.e., winning). These two sets of goals imply different forms of thinking about the 

information being presented by the digital game. Our hypotheses are that (a) the first goal 

prioritizes or incentivizes an inquiry stance oriented towards purposeful and systematic 

investigation of the operating principles of the encased simulation; and that (b) the second goal 

prioritizes or incentivizes a heuristic-driven problem-solving stance oriented towards efficiently 

achieving the player’s goals. A user in the inquiry (or “learner”) stance might probe the 

simulation for information that confirms their understanding. A user in the problem-solving (or 

“player”) stance might only engage in exploratory actions and observing whether these actions 

lead to positive results.  

Starting from the two-system model of cognition, we proposed the following mechanistic 

explanation for how people play and learn from digital games. A person begins play, and a goal 

will be suggested to the player’s thinking, immediately triggering a self-query, “how do I achieve 

this goal?” The self-query shifts the person towards the learning stance, and in response to the 

query a second-order model is constructed. This model’s functional requirement is that it suggest 

actions that would bring the state of the game closer to what the person has identified as a goal 

state. These actions are rendered as execution steps (“Do that”) and enacted in the simulation 

through the game’s interface. Actions that prove effective are reinforced and actions that have a 

negative effect are rephrased as avoidance steps (“Don’t do that”). With repeated reinforcement, 

effective rules are matched to the context cues from the environment and stored as conditionals, 

i.e. “If this, do that.” These conditionals are easy to remember, quick to access, and require 

nearly no cognitive effort to execute: they fit the functional definition of heuristics. 
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Whenever the player finds herself in a situation that is covered by a stored rule, she will 

in most cases default to doing what that rule stipulates. In other cases, the player must shift to a 

learning stance, reinstate the second-order model and use it to find new possible actions. If the 

player is never without a rule to apply, the model is most likely deactivated — the person 

defaults to System 1-style processing, i.e. fast, effortless, intuitive heuristics. Thus, through play, 

a person gathers three forms of knowledge about the game: (a) the conditions that the game 

presents, (b) a set of heuristics, i.e. rules of action whose activation criteria match these 

conditions, and (c) a second-order mental model, an idiosyncratic explanation of how the game 

produces the observed conditions. In the case of educational gaming, these three forms of 

knowledge combine to form part of the learning benefit that students may develop from playing 

the game. 

The 2SM is a novel application of two-system theory of reasoning to educational games. 

There are suggestive findings from adjacent programs of research that examine forms of 

reasoning within and around digital learning environments that hint at its validity (e.g. Parnafes 

& Disessa, 2004; Gijlers & de Jong, 2013). One of the goals of this paper is to explore the 

fundamental claims of the 2SM, namely that traces of students’ System 1 and System 2 

reasoning can be observed during play, and that preference for one stance over another has a 

significant effect on learning. These possible effects are explored in more detail in the following 

section.  

Implications of the 2SM for Learning 

In the 2SM, stances are defined as collections of resources (see Hammer & Elby, 2003). 

The framework stipulates that the two stances that can be associated with cognitive processes 

described in the two-system theory of cognition (Sloman, 1996; Stanovich, 1999; Kahneman, 
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2003; Evans, 2008). Thus, a stance or collection of resources organized around System 1 would 

be optimized for processing speed and effortless thought, while a stance organized around 

System 2 would be primed for information use and deliberative reasoning. Stances, like 

resources, are cued around task demands; certain tasks, e.g. driving a car, are structured in a way 

that they discourage analytic reasoning, while others, like academic writing, are less amenable to 

quick, associative thinking. That said, human beings are biased in general towards System 1 

reasoning as an effort-saving and time-saving strategy (Reyna & Ellis, 1994). 

The question then becomes, which of the two stances is most conducive to learning? 

Intuitively, it would seem that the effortful, analytic processes described as System 2 that drive 

the Learner stance would be preferred over faster, less deliberate thinking. This would be 

particularly true in the case of games that are conceptually integrated (Clark & Martinez-Garza, 

2012) because such games are designed in such a way that thinking about game rules and 

challenges closely parallels thinking about science concepts and relationships. However, it is 

unlikely that an educational game can sustain System 2-type processing over long periods. First, 

players will tend to find ways to save time and effort when negotiating cognitively-demanding 

challenges, i.e. the "cognitive miser" of Fiske and Taylor (1991). Second, players facing a game 

they consider too challenging may simply disengage, thus negating any educational benefit the 

game might offer. Thus, a “happy medium” may be more desirable in which players both (a) 

reflect deeply about concepts and ideas represented in the game and (b) put their understanding 

into practice in motivating and interesting ways. 

As many educational games, EPIGAME is intended to invite learners to think and reason 

about the concepts and relationships the game portrays and not to merely passively experience 

them. Players of EPIGAME encounter obstacles and situations of increasing difficulty that are 
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designed not only to provide opportunities for learning but also to adapt to players’ increasing 

knowledge and proficiency over the course of the game. Ideally, students encounter game levels 

whose difficulty matches but does not significantly exceed their own skill - this alignment keeps 

interest and engagement high even in the face of ostensibly higher cognitive demands (cf. “flow” 

in Csikszentmihalyi, 1991). This adaptation is not perfect: students may encounter game levels 

that are too difficult or too easy. The goal is ultimately not to shield students from difficulty but 

to provide enough scaffolding and feedback so that the perceived difficulty remains manageable. 

We propose that a player’s response to perceived difficulty is what cues the stances. 

Which stance gets cued may depend largely on each player’s developing understanding of the 

concepts and relationships underlying the game. Early in the game, the perceived difficulty may 

be influenced by the learner’s prior experience with similar games, or familiarity with the game’s 

targeted concepts and relationships. Thus, the player’s prior knowledge of the game, or the 

principles behind the game’s encased simulation may also be a significant factor that cues and 

organizes the stances. For instance, players with low prior knowledge might prefer a slower, 

more methodical approach, while players who feel confident in their understanding might play 

faster, and with less tentativeness, because they may have a more detailed and functional internal 

model. Later in the game, once all players have had similar opportunities to engage with the 

game’s challenges, these differences might not be so stark, or they may disappear altogether. 

Therefore, it becomes important to examine the learners’ game play to ascertain how the game’s 

varying set of structures and experiences influence players’ learning. 

Learning Analytics in Educational Gaming 

Digital environments that promote learning should prompt a change in student behavior 

within that environment. If an educational game is designed in such a way that that students are 
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able to apply what they learn in the context of the game, then these changes in behavior should 

be reflected not only in external measures of learning, but in play itself. If so, then these changes 

are potentially recoverable and traceable from log data post hoc. However, even comparatively 

simple games allow for a broad range of player interactions, all of which leave their varied and 

distinct traces. Changes in student behaviors that signal learning can therefore be easily lost in 

the vastness and complexity of the available data. Methods based on learning analytics (LA) can 

provide researchers with tools to classify, predict, and discover latent structural regularities even 

in data sets as voluminous and idiosyncratic as game play logs (Berland et al., 2014). LA 

techniques not only can help us characterize and describe learning behavior, but they can also 

deploy Markov-type approaches (e.g. Bayesian knowledge tracing and performance factors 

analysis) to provide some insight into latent student knowledge. Interestingly, these Markov-type 

models could be used for prediction, and not just description; for example, to guide adaptive 

scaffolding and feedback. That said, while more research is required for these applications to 

achieve their full promise, significant on-going work is already exploring and refining the use of 

learning analytics on data logs from educational environments. 

The use of in-game performance data as evidence of learning outcomes has been 

proposed by Shute (Shute & Ventura, 2013) and others. Shute and colleagues propose that a 

learner’s actions within the game environment can used as a form of assessment when evaluated 

against an evidence model, as per the evidence centered design (ECD) assessment framework 

(Mislevy, Almond, & Lukas, 2003). Under this framework, evidence models are preceded by 

activity models, which are contextualized and tailored to the particular affordances and 

constraints of the learning environment. One implementation of ECD which seems particularly 

suited to educational games, called “stealth assessment”, aims to collect evidence model data is 
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directly from the learning environment, bypassing the need for overt knowledge testing that may 

detract from the play experience. Using this methodology, Shute and Ventura have measured 

both learning of specific knowledge, e.g. as qualitative physics (Ventura, Shute, & Small, 2014), 

and also broad cognitive skills and traits, such as persistence (Ventura, Shute, & Zhao, 2013), 

and 21st-century skills (Shute, 2011). 

Activity models can become highly complex, especially in the case of games where many 

different interactions are possible. This complexity often leads to a large number of observable 

variables, which in turn complicates the task of formalizing them into an evidence model. Thus, 

researchers have found value in machine-learning (ML) techniques of computational statistics 

that can make finding patterns and relationships between large numbers of variables more 

tractable. Examples of educational games where researchers have used ML techniques to analyze 

student performance data along an ECD paradigm are the investigation of systems thinking in 

SimCityEDU (R. J. Mislevy et al., 2014) and inquiry skills in Mission Biotech (Lamb, Annetta, 

Vallett, & Sadler, 2014). ECD models that are focused on content-specific outcomes that apply 

ML techniques are also feasible, e.g. the investigation of student learning of biological processes 

of stem cells in Progenitor X (Halverson & Owen, 2014); of fraction arithmetic in Save Patch 

(Kerr & Chung, 2012); and of Newtonian mechanics in Impulse (Rowe, Asbell-Clarke, & Baker, 

2015). There are several more exemplars of ML techniques being used to characterize learners’ 

performance in digital environments, although these focus either on learning environments that 

are simulation-based (rather than game-like) or they do not align exactly with an ECD paradigm.  

Researchers have successfully applied ML techniques, for example, to describe (a) students’ 

science inquiry activity in Science Assistments (Gobert, Sao Pedro, Baker, Toto, & Montalvo, 

2012) and in Virtual Performance Assessments (Baker & Clarke-Midura, 2013; Clarke-Midura & 
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Dede, 2010); (b) students’ developing engineering thinking in Nephrotex (Chesler et al., 2015); 

and (c) students’ understanding of genetics in BioLogica (Buckley et al., 2004).  

Research Questions 

The groundwork laid thus far has discussed the 2SM as a theoretical perspective for 

examining game play and discussed learning analytics as an approach for analyzing game play 

through data logs. The next step is to articulate the specific hypotheses and the kinds of evidence 

that might support them. As mentioned in the Goals section, this paper has two research 

questions, which we expand upon in greater detail in the following paragraphs. 

Question 1: Can the Two Stances of the 2SM, as Specified by the Framework, be detected 

in Game Play Data? 

 The first question is intended to test a cornerstone claim of the 2SM, while also 

evaluating whether the 2SM is a useful lens for interpreting game play data as recorded in The 

Fuzzy Chronicles. The hypothesis is that game play logs exhibit an underlying interpretable 

structure when features relevant to the 2SM are selected and analyzed. Alternatively, in the case 

of the null hypothesis, there would be no such structure, or it would not be easily interpretable, or 

the structures revealed do not correlate significantly with learning outcomes. Such a result would 

indicate that gameplay is more like a stochastic process, or idiosyncratic, or that players are 

using purely reactive or arational processes rather than those grounded in cognitive models of 

performance. 

Question 2: How Do Changes in Students’ Functional Understanding of the Game Relate to 

Performance on a Test of Conceptual Understanding?  

The second question refers to the feasibility of directly assessing students’ emergent 

understanding of the concepts of Newtonian kinematics represented in The Fuzzy Chronicles 
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based on their solutions to small, localized challenges. Each manoeuvre the students are asked to 

make in EPIGAME (starting and stopping, changing directions, keeping to a set velocity, picking 

up or throwing an object, etc.) are designed to reify a relevant concept or cognitive resource. By 

identifying and analyzing students’ actions with regard to challenges of the same type, both 

within a student and over time, or between students, we can better understand how these 

challenges focus thought and learning for individual players. Since EPIGAME is intended to be a 

conceptually-integrated game (Clark & Martinez-Garza, 2012), the hypothesis is that improved 

performance in these conceptually-laden challenges indicates greater understanding of the 

underlying principles of Newtonian kinematics. If the null hypothesis were true, variations in 

student performance would not correlate significantly with learning outcomes.  

Methods 

Studies and Participants 

To investigate the research questions, two experimental runs using EPIGAME were 

performed in the months of March and April 2015. The first run was used to address possible 

confounds, as well as pilot the gameplay data “pipeline”, i.e. the entire process of collecting, 

collating, testing, and analyzing EPIGAME logs. We report on study 1, the pilot study, only 

briefly as foundation and comparison for study 2. The second study, which is the focus of the 

current manuscript, deployed the full data analytic process to investigate both research questions. 

The two studies used the same EPIGAME version, the same assessments, and had roughly the 

same duration. 

Study 1 (pilot study). The participants were 86 ninth grade students from a public high 

school in Middle Tennessee. In this study, the students were divided into four groups, each 

randomly assigned into a Solomon four-group design (Solomon, 1949) (Figure 9). The two non-
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treatment groups participated in their normal classroom curriculum on the topic of force and 

motion, while the treatment groups only played the game for three 90-minute sessions. 

Approximately 20 minutes were reserved at the beginning and end of the entire study for a 21-

item multiple-choice test intended to assess the students’ conceptual and qualitative 

understanding of Newton’s First and Second Law. Two of the groups (one treatment, one non-

treatment) completed pre-tests; all four groups completed post-tests 5 days after the experiment 

began.  

The 4-group Solomon experimental design was used in order to obtain a test of the 

internal validity of the post-hoc effect sizes, and test for interactions between the pre-test and the 

intervention. My initial conjecture (in line with the 2SM) was that high pre-test score (indicating 

high prior conceptual understanding of physics) would enable players to form more advanced 

play strategies. The use of these strategies would then be reflected in post-test gains. However, 

students might also be primed by the relationships and situations that appear in the pre-test, and 

post-test gains might correspond not to differences in game play or in prior knowledge, but in a 

testing effect. Thus, the goal of Study 1 was (1) to determine whether the version of EPIGAME 

was effective as a learning experience, (2) to investigate any possible testing effects, and (3) to 

prototype the data collection protocol and some of the analytical techniques. The statistical 

treatment of the four-group design that allows this disentanglement can be found in Braver and 

Braver (1988). 
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Figure 9. The Solomon 4-group design. Graphic from Braver & Braver (1988). 

Two-way within-subjects ANOVA (Table 4) performed on the assessment data showed 

that students in Study 1 made significant pre-post gains (F = 10.61, df = 104, p < 0.01), with no 

strong evidence in favor of testing effects (F = 1.11, df = 104, p = 0.29), or interactions between 

pre-test scores and treatment (F = 0.36, df = 104, p = 0.55). This represents strong evidence that 

whatever knowledge students are bringing into game play was not gleaned from the pre-test, nor 

did the pre-test prime students as to which relationships or interactions were important and thus 

biasing performance in the post-test. 

Table 4.  

Two-way within-subjects analysis of variance for Study 1 

Effect DFn DFd F p ges 

pretest 1 104 1.1161 0.29 0.010618460 

treatment 1 104 10.614 0.002 ** 0.092608905 

pretest:treatment   1 104 0.3552 0.55 0.003404688 

 

Study 2 (research study). Study 1 helped to discard two competing hypothesis: that 

EPIGAME was not effective as a learning tool (and thus any patterns or changes in game play 

could not affect learning) and that pre-testing rather than gameplay was the source of any 
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observed pre- to post-test gains. The remaining hypothesis, i.e. that differences in game play 

were the source of pre- to post-test gains, was the focus of Study 2. In this second study, 123 

seventh grade students from a public middle school in Middle Tennessee used the EPIGAME 

software as part of their normal classroom instruction for five consecutive class periods of 45 

minutes each.   

As in the prior study, each student had his or her own computer and was specifically 

instructed to avoid sharing information. The blanket policy was to provide encouragement or 

hints in lieu of direct assistance, but help was provided to students who appeared intractably 

stuck, were having technical issues, or had urgent questions about the game interface. As in 

Study 1, approximately 20 minutes were reserved at the beginning and end of the intervention for 

a 21-item test of conceptual understanding of force in motion. In this study, all students who 

were present at the first and last day of the intervention were asked to complete the assessment. 

Thus, students who participated in each of the two studies generated two forms of data: 

pre-post assessment data and game play data. The pre-post assessment data was anonymized and 

students with missing pre or post test scores were dropped from the study. In the case of students 

with complete pre and post scores, a unique ID was generated for each; that unique ID was used 

to link the assessment data with the game play data. 

Of the 123 students who participated in the study, 104 provided both pre- and post-tests. 

A matched-pairs t-test showed a statistically significant increase in test performance (t = 11.702, 

df = 103, p < 0.0001) (Figure 10). The value of Cohen’s d suggests a large effect size (d = 1.62). 
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Figure 10. Boxplot of pre- and post-test results for Study 2. 

Emulating the Evidence-Centered Design Approach 

In the Learning Analytics in Educational Gaming section (above), a significant portion of 

the research reviewed that used learning analytics to make sense of students’ process or log data 

used an evidence-centered design (ECD) framework for assessment as well. ECD offers several 

notable advantages for this form of research, viz.: 

1. the Student Model serves to constrain the number of latent variables that the ML 

algorithm must infer, aiding in model fit 

2. the Evidence Model provides identification rules and ready-made coding 

schemes, boosting the interpretability of the final model 

3. the Task Model pre-selects observed variables likely to be significant, obviating 

the need for dimensionality-reducing steps, e.g. a Principal Components Analysis 

to help reduce the number of observed variables to a tractable number. 
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Considering these advantages, it is clear that learning analytics and ECD processes are 

well-suited for each other. Unfortunately, it is likely unworkable to apply the ECD framework 

retrospectively, as the products of ECD are intended to address the specific purposes of that 

particular assessment (Mislevy, Almond, & Lukas, 2003). Thus, the goal would be to emulate 

some useful features of ECD, i.e. the Student Model and the Evidence Model. The Student 

Model can be operationalized in terms of the hypothesized dynamics of the 2SM. The Evidence 

Model would then map these dynamics into the observable variables. The end result will not be 

nearly as robust as the full ECD evidentiary argument, but will at least qualify as a cognitive 

model of task performance, i.e. an illustration of the thinking processes underlying the 

knowledge and skills students apply in vivo when solving educational tasks in a specific domain 

(Leighton & Gierl, 2007, p. 10). 

An important feature of learning analytics and machine learning methods is that they 

generally do not aim to produce results that have inherent meaning. Unlike statistical treatments 

of parametric data (e.g. pre/post test results), in which a statistically-significant result indicates a 

change in the participants’ behavior along a measured construct, machine learning and data-

mining algorithms generate, at most, descriptions of likely patterns and structures present in the 

data. It is up to the analyst to interpret what those patterns and structures mean, and evaluate 

whether or not they support the proposition being researched (Vellido, Martin-Guerroro, & 

Lisboa, 2012).  

Ideally, the interpretation of patterns and structures revealed by learning analytics are 

supported by robust theory. That is, that features discovered in the data align with existing 

constructs and relevant explanations for the learning phenomena being studied. In this case, the 

proposed interpretive lens is provided by the 2SM. Under the 2SM framework, students use 
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collections of resources (or Stances) that organize around the cognitive processes that are 

optimized for fast (“Player”) or slow (“Learner”) processing. Thus, the first task is to theorize 

how these stances would manifest as students play EPIGAME; in other words, how the “fast” 

and “slow” resources would affect game play. Evoking the evidence centered design paradigm, 

we will call this operationalization the “Student Model”. The second task is then to create an 

Evidence Model, that is, to deduce how the actions and strategies defined in the Student Model 

will appear in the gameplay data logs. The goal of the Evidence Model is to select, from all the 

information contained in the logs, which pieces of data are most likely to characterize the 

operations defined in the Student Model. 

The student model. 

The trial-based dichotomous pass/fail task structure of EPIGAME suggests two general 

strategies for arriving at a solution, one mainly using “fast” processing, and the other using 

“slow” processing. These strategies (or modes) are: 

1) Additive-Iterative Mode, when a student solves a level through a step-by-step 

iterative accumulation of actions, each checked for efficacy in a separate Attempt. 

2) Solve-and-Debug Mode, in which an entire solution is drafted whole-cloth, then 

corrected only if and as necessary. 

While both of these approaches imply that the learner is thinking, they differ in what 

students are thinking with, and what they are thinking toward. A player using the Additive-

Iterative Mode does not necessarily have to have a working knowledge of the game’s concepts 

and relationships in mind; all he or she requires is that EPIGAME provide an unambiguous 

signal that each added action is a step towards a solution (which EPIGAME provides, in the way 

of visually-clear animations, e.g., of Surge’s capsule exploding or of the Exit Gate being 
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activated). The Additive-Iterative Mode can be thought of as related to Parnafes and diSessa’s 

(2004) “constraint-based thinking.” On the other hand, a Solve-and-Debug approach necessitates 

that the player have a vision of a solution. Armed with a good working knowledge of the rules of 

operation, a player might feel more capable with taking more actions within each trial because he 

or she has a reasonable expectation that those actions will be effective. The Solve-and-Debug 

Mode can be thought of as related to Parnafes and diSessa’s (2004) “model-based thinking.” 

The evidence model. 

The two strategies described above represent the best estimate of the forms of play that 

players are most likely to use. While these forms of play sound very different mechanistically, it 

is useful to think of them as opposite ends along a continuum. On one end of this continuum, the 

Solve-and-Debug Mode is slow to plan, is more likely to be correct, and if it is not, it may 

require only small, effective fixes. On the other end, the Additive-Iterative Mode is fast, less 

likely to be correct (since a player using this mode may not always define a full solution), and 

the iterative fixes are more error-prone. Thus, the differences between these two approaches may 

be captured with only a few contrasting parameters (Table 5). 

Table 5.  

Forms of solution and their likely parameters 

Parameters Additive-Iterative Solve-and-Debug 

Response time Low High 

Error rate High Low 

Actions per attempt Low High 

 

The first and third parameters, Response time and Actions per attempt, are 

straightforward and directly observable in the data. A longer Response Time indicates slower, 
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more deliberate processing; shorter Response Time corresponds to quick decision-making. 

Similarly, the number of Actions per attempt is likely specific to each Mode: more Actions taken 

in the same attempt implies a more elaborate, thought-out plan, while fewer Actions might 

indicate iterations or corrections. 

The second parameter, Error rate, will have to be computed from other variables. 

Broadly speaking, the difference in Error rate between the two Modes represents the willingness 

of players to accept failed Attempts. Failure during an Attempt is more or less required in the 

Additive-Iterative Mode, since a player may consider failure as a “partial success” if it creates a 

baseline upon which he or she can iterate. A student using this Mode may also create a partial 

solution with some set of parameters he or she knows, and guess at the remaining parameters, 

counting on the fact that the game will provide actionable feedback. On the other hand, failed 

Attempts when using the Solve-and-Debug mode are more likely to be unintentional or 

unforeseen mistakes, rather than intentional probes or guesses. Players using the Solve-and-

Debug mode seek to avoid error rather than accept it as inevitable. Thus, the Error rate parameter 

should incorporate information on how often students fail a level repeatedly, as this continued 

error would indicate unsuccessful guessing and/or low-information processes such as exhaustive 

testing of all the available actions. 

Treatment of the EPIGAME logs 

The data analysis of EPIGAME logs from Study 2 proceeded in four phases:  

1. data normalization and integrity checks,  

2. variable selection and dimensionality reduction, 

3. clustering of student gameplay data and sequence mining, for Question 1, and 

4. contextual feature mapping, for Question 2.  
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Phase 1: The initial corpus of gameplay, recovered directly from the classroom WISE 

server, was composed of 16,239 records. Each record was comprised of one particular student’s 

attempt to solve one particular level. The particular build of The Fuzzy Chronicles used in this 

study had 32 levels; thus each student produced an average of 132 attempts, approximately 4 

attempts per level. Each record comprised a JSON object detailing the specific parameters of the 

attempt the student performed, i.e. where on the map an action was placed, how much time the 

student took to plan their actions, which values the student chose for each parameter of each 

action, etc. The dataset contained approximately 1.1 million of these gameplay parameters. 

I then extracted a set of variables to help characterize each attempt.  Broadly speaking, I 

extracted two kinds of variables: observed and derived variables. Observed variables were 

characteristics of gameplay directly recorded by the EPIGAME software (for example, planning 

time). Derived variables were those discovered through logical tests or comparisons performed 

on observed variables, akin to a coding scheme. A total of 23 observed and derived variables 

were defined, each capturing an element or aspect of gameplay (see Appendix A for a more 

complete description of these variables). These 23 variables were selected on the basis of their 

ability to describe differentially the parameters for the forms of solution described in Table 5.  

Phase 2: Generally, when using LA techniques it is most desirable to have a dataset with 

the smallest, most meaningful set of variables possible. Datasets with large numbers of variables 

are computationally very expensive to process, and such data is vulnerable to a variety of 

phenomena that distort results and complicate these types of analyses. In order to select only the 

most meaningful variables, I performed a Principal Components Analysis (PCA) on the dataset 

(16,239 attempts x 23 variables) using the FactoMineR software for R (Husson, Josse, Le, and 

Mazet, 2007). The PCA returned 3 components with eigenvalues greater than 1, with a total of 
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72.1% variance explained by those three components. The full results of the PCA are included in 

Table 6 (below). The variables associated with the components were: 

1) Component 1:  

a) tl.Modifys, a count of how many modifications a student made to the parameters of 

placed Actions, e.g. changing a Boost from 10N to 20N increases tl.Modify by 1. 

b) tj.Adds, a count of how many Waypoints were added to the Trajectory. 

c) planningTime.log, the observed time students spend planning and placing elements, in 

seconds, logarithmically transformed to e.g. amplify the difference between planning 

times of 5 and 8 seconds but deemphasize the difference between 47 and 50 seconds. 

d) eff.actions.added, a derived variable counting how many new Actions were executed 

effectively on a given attempt compared to the previous attempt. 

2) Component 2: 

a) par. A model-based effectiveness score, derived from a Markov-chain model of the 

combined series of outcomes of all the students’ plays of each level. Each student 

generated a chain of Attempts of length nmax with 6 possible end states3 x for each attempt 

n per level. The Markov-chain model simulates a memoryless random process following 

the observed transition probabilities in end states x among all the student-generated 

chains for that level. The model is then used to calculate the posterior probability of a 

Success state occurring randomly at the end of an (n-th + 1) Attempt given the state at the 

end of the n-th Attempt. These probabilities can range from [0,1], with 0 (i.e., no chance 

of success on the next attempt) being indicative of random play, and 1 (certainty of 

success in 1 more attempt) indicating expert play. In other words, the par metric asks, “if 

                                                 
3 See Appendix A for description of the six end states as recorded in EPIGAME data logs. 
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this student were playing totally randomly, given that his or her last attempt ended in 

State x, what is the probability that he or she will find the Success Gate through sheer 

chance in one more attempt?” An important property of this metric is that it penalizes 

very long chains of Attempts and rewards navigating to the Success Gate on the first 

Attempt. The par score was later transformed into par.sqrt via a square-root 

transformation to make the probabilities more legible. 

b) par.delta.sqrt. The change in value of the par.sqrt metric from attempt n-1 to n for the 

current level and student.  

3) Component 3: 

a) is.abort , an observed variable that tests whether or not the student manually aborted the 

attempt using the Abort button. 

b) fail.same, a derived variable that tests, if an Attempt n was failed, whether or not a 

student failed that Attempt at the same place in the map as the (n-1)th Attempt and 

whether both Attempts failed for the same reason. A TRUE value indicates a consecutive 

unsuccessful attempt by a student to navigate past a specific obstacle on the map.  

Table 6.  

Results of the Principal Components Analysis 

 

 Component 

 1 2 3 4 5 

tl.Modifys  0.4746  0.0015  0.0000  0.0001  0.0014  

tj.Adds  0.4173  0.0078  0.0000  0.0001  0.0000  

eff.actions.added  0.1787  0.0000  0.0014  0.2471  0.0000  

par.sqrt  0.0345  0.4694  0.0000  0.0000  0.0005  

par.delta.sqrt  0.0001  0.7498  0.0000  0.0002  0.0005  

planningTime.log  0.3297  0.0028  0.0000  0.0274  0.0000  

fail.same  0.0854  0.0048  0.1082  0.0000  0.0890  

is.abort  0.0000  0.0014  0.6434  0.0000  0.0220  

Note: values are given as squared cosines 
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Further analysis revealed that since par.sqrt and par.delta.sqrt were linear combinations 

of each other, par.sqrt could be discarded in favor of par.delta.sqrt, which has the higher squared 

cosine for Component 2. At this point, further treatment of the data followed the line of inquiry 

specific to each research question. Relevant details can be found in their respective sections 

below. 

Research Question 1: Can the Two Stances of the 2SM be Detected in Game Play Data? 

The main claim of the 2SM is that the stances organize around fast- and slow-processing 

mechanisms; thus, it is reasonable to look for play strategies that embody fast and slow play. 

After the dimensionality reduction process (above), we are left with a manageable number of 

variables which are nonetheless theoretically significant and useful in describing these strategies. 

To explore Research Question 1, we next apply LA techniques exploring the variables in terms 

of clustering and then in terms of sequence mining. We then discuss the implications of the 

findings in terms Research Question 1 and the proposed 2SM framework. 

Clustering 

The next step in the analysis is to examine the dataset to determine whether students’ 

play has some latent order or structure that can be brought into focus using our theoretically-

relevant variables. To find this possible structure, I will use clustering, i.e. an unsupervised 

classification method. The goal of a clustering algorithm is to find the groups of observations 

whose features are more similar within-group than with regard to the data at large. Since this 

technique is unsupervised, I do not provide a pre-determined classification scheme for the 

software to “learn”; the rationale being that if a clustering algorithm returns a reasonably-

interpretable set of clusters, and these clusters were created by interactions between 
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theoretically-significant variables, then that is a solid indication that the theory describes latent 

structures of the data. 

With the final list of seven variables already selected, I proceeded to create a similarity 

matrix using Gower’s coefficient to account for the mixed data types. Then, I performed affinity 

propagation clustering with the resulting similarity matrix. Affinity propagation (AP) clustering 

is a clustering (i.e. unsupervised classification) method that takes as input measures of similarity 

between pairs of data points and simultaneously considers all data points as potential exemplars. 

Real-valued messages are exchanged between data points until a high-quality set of exemplars 

and corresponding clusters gradually emerges (Frey & Dueck, 2007). This method was selected 

as preferable to the more conventional k-means/k-mediods method because of its ability to 

produce a set of meaningful exemplars for each cluster – a vital consideration given the need to 

later interpret the characteristics of each cluster. 
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The AP clustering algorithm converged on a set of 145 “proto-clusters” after 260 

iterations. These “proto-clusters” were then collapsed using an agglomerative method akin to 

hierarchical clustering. The resulting cluster dendrogram is given in Figure 11. 

 

Figure 11. Cluster dendrogram of the AP clustering result. 

Visual inspection of the cluster dendrogram suggested that a “cut” at 0.905 altitude would 

reduce the number of clusters to a manageable six. This clustering solution was codenamed 

part.6. The “goodness of fit” of an AP clustering solution is difficult to ascertain via standard 

methods (e.g. Rand coefficients) because AP clustering does not necessarily aim to produce 

compact clusters – rather to maximize the “representativeness” of the chosen exemplars. In order 

to determine the adequacy of the part.6 solution, I created a heatmap from the similarity matrix 

(Figure 12).  
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Figure 12. Heatmap of the similarity matrix, along with the dendrogram of the part.6 clustering 

solution. 

The heatmap revealed 3 well-delimited and cohesive clusters along the diagonal, as well 

as one large cluster with some internal structure, and two additional smaller clusters. I iterated on 

the part.6 solution several times in an attempt to resolve Cluster 2 (corresponding to the yellow 

region) into 3+ smaller clusters as suggested by the heatmap, but no satisfactory solution was 

found that preserved the other clusters, and thus the part.6 solution prevailed. The distribution of 

Attempts across the six clusters of the part.6 solution are given in Figure 13.  
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Figure 13. Histogram of the distribution of Attempts across part.6 clusters. 

Before proceeding to the sequence mining, I studied the properties of the part.6 

clustering. As noted above, the preliminary variable reduction through PCA left us with only 7 

theoretically-significant variables out of the original 26. The part.6 solution represents a 

mathematical arrangement of students’ attempts that have some similar structure in terms of 

these 7 variables. Figure 14, below, shows a generalized pairs plot (Emerson et al., 2012) that 

helps visualize how the structure of each cluster responds to each of the featured variables.  
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Figure 14. Generalized pairs plot (Emerson, et al., 2012) of the 7 theoretically-significant variables with the highest 

eigenvalues, plotted against each other, and classified according to the part.6 solution (rightmost column). 
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From each of the clusters I visually examined the exemplar chosen by the AP clustering 

algorithm, the two nearest neighbors to the exemplar, and two random members of that cluster. 

The 5 members of each cluster were compared, both by themselves and in context of the 

sequence of level attempts in which they occurred. Based on this analysis, I labeled the clusters 

qualitatively according to a general description of the students’ actions therein: 

 Cluster 1 (in red): ABORTS. Students recognize that the level is going to fail and 

press the “Abort the Mission” button to preserve momentum of play rather than 

allow the simulation to end on its own. 

 Cluster 2 (in yellow): TINKER. Students add a few actions, advance a little 

further along in the level, and fail (but not in the same place in the map as the 

previous Attempt). 

 Cluster 3 (in green): LONG ABORTS. Very long planning episodes (> 100 

seconds) that end in Abort. A very sparse cluster, barely distinguishable from 

Cluster 1. Possibly indicates a deletion and restart of the solved level in progress. 

 Cluster 4 (in cyan): FUTILITY. Students make a few changes, but fail exactly in 

the same place in the map against the same obstacle as their previous attempt. 

 Cluster 5 (in dark blue): WINNING. Students make one or more changes or 

additions that result in a successful attempt, thus completing the level. 

 Cluster 6 (in pink): PLANNING. Students spend a long time and add actions as 

well as trajectory elements (i.e., added both categories of elements). These 

attempts are occasionally successful, but not always. 

Further investigation revealed that cluster assignments have some structure both in terms 

of when they occur in the order of play (i.e. early levels vs. later levels in Figure 9), and in terms 
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of learning outcomes of the student that produced them (i.e., in terms of pre-post learning gains 

in Figure 16). 

 
Figure 15. Frequency of part.6 cluster assignment by level. Blank columns represent steps 

without student interaction. 
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Figure 16. Frequency of part.6 cluster assignment by pre-post test score gain. Blank columns are 

unobserved gain scores. 

As we can see, the relative distribution of the cluster assignments may be sensitive to the 

learning outcome of the student (Figure 16). In other words, the levels played by students at a 

given level of pre-post test performance may have different ratio of cluster assignments than 

those of students at a different level of performance. The different frequency profiles in Figures 5 

and 6 suggest, furthermore, that the differences are not entirely due to how far students progress 

into the game. It is clear, then, that the part.6 cluster solution provides not only a set of 

meaningful code assignments that describe students’ play, but also that these assignments are 

related somehow to learning outcomes. Figure 10 further suggests that cluster patterns evolve as 

students progress through the game. 
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Sequence Mining 

Sequence mining is a methodology intended to find patterns in sequence data, e.g. words 

in a sample of natural language or genes in a protein. The main requirement is that the order of 

the components be as significant, or more significant, than their frequency. The question 

sequence mining asks is, “given a set of items that form sequences, what are the most common 

smaller sequences to be found within and across those sequences?” In the case of EPIGAME 

data, the components to be sequenced are cluster membership codes; in other words, my goal is 

to investigate how students’ actions, described individually in general terms by the clustering 

procedure, appear in succession as a part of a chain of actions intended to solve a level. 

The dataset contained 2730 such sequences, i.e. the students’ combined attempts to solve 

any level totaled 2730, an average of 22.2 levels per student. Each sequence was comprised of 

the series of each student’s attempts to solve a single level; thus, the length of these sequences 

ranged from 1 to 140 (i.e. the minimum and maximum number of consecutive attempts recorded 

in a single level). To perform the sequence mining, I used the TraMineR package for R 

(Gabadinho, Ritschard, Muller, & Studer, 2011). This package has the capability to calculate the 

relative importance of subsequences of elements within the element chains of sequence data. The 

relative importance of subsequences is measured not in terms of their frequency but in terms of 

"support", i.e. what proportion of sequences in the overall sample can claim a given subsequence 

as a subsequence of itself? The mining algorithm was configured to seek only first-order 

subsequences (i.e. only events that happen exactly consecutively are considered to be in 

sequence), and the minimum support level was set at 0.01. Thus to qualify for analysis, a 

subsequence would have to be supported by at least 27 sequences. An additional parameter was 

set so that the support of subsequences of n identical codes would be consolidated across all 
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sequences found of one or more identical codes. The algorithm returned 47 candidate 

subsequences, which were then ordered by support. The results of the sequence mining are given 

in Figure 17, below: 

 
Figure 17. The 25 highest-supported subsequences. Words in parenthesis indicate cluster 

assignment of the sequenced items, following the part.6 solution (above). 

 The height of the bars in the graph indicate the support for that subsequence, and they 

are ordered by decreasing support. Support for the unitary subsequences, e.g. (TINKER), the 

most common one, are quite high since, for example, a sequence of (TINKER) - (TINKER) - 

(TINKER) can claim the subsequence (TINKER) a total of 6 times. Recalling that Cluster 2 

stands for TINKER, thus, there are an above-random number of sequences containing long 

chains of TINKER, and similar above-random chains of FUTILITY. The high support value of 

WINNING is to be expected since 97% of all sequences end with WINNING (that is how 

students advance in the game, after all). 

To investigate the relationship between play sequences and learning, I then classified 

students according to their pre-post test performance. Since the group of students as a whole 

gained significantly in their pre- to post- test scores, I chose a classification strategy that would 



127 

 

qualify their gains relative to the group. The resulting classification scheme is summarized in 

Table 7 (below). The “High Prior” group consisted of students who scored in the upper quartile 

in both pre- and post-tests. The “Low Prior” group is likewise formed of students who scored in 

the bottom quartile of the pre- and post- test. A third group, “Learned” contains students whose 

pre-test scores were in the lower three quartiles but who improved their score by at least one 

quartile. A fourth group, “Null”, collected students whose pre-test was in the higher three 

quartiles but did not show a significant increase in their scores. The number of students in each 

classification was 14, 13, 23, and 54, respectively. 

Table 7.  

Classification of Students by relative pre-post gains 

 Post-test score (quartile) 

Pre-test score (quartile) 1st 2nd – 3rd 4th 

1st Low Prior  Learned Learned  

2nd – 3rd Null  Null  Learned 

4th Null Null High Prior  

 

These assignments were used as discriminant groups, so that each detected subsequence’s 

support could be tested for correlation with learning outcomes via a Chi-square test. Table 8 

contains the 18 subsequences with the highest Chi-square statistic; support for these 

subsequences thus varies by discriminant group in a statistically significant way. The graph of 

the resulting support values for each subsequence according to the student classification group is 

provided in Figure 18 (below). 
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Table 8.  

Sequence analysis by discriminant group 

 

    Support by Group 

Subsequence p  Chi-Sq  

High 

Prior Learned 

Low 

Prior Null 

(WINNING) 0.0000 115.7115  0.4229 0.5991 0.8068 0.6943 

(FUTILITY) 0.0000 113.2765  0.1676 0.3251 0.5398 0.4332 

(TINKER) – (FUTILITY) 0.0000 98.5601  0.1144 0.2391 0.4489 0.3351 

(FUTILITY) – (TINKER) 0.0000 33.9205  0.0638 0.1254 0.2159 0.1667 

(TINKER) – (FUTILITY) – 

(TINKER) 

0.0000 32.1598  0.0293 0.0904 0.1477 0.1221 

(PLANNING) – (WINNING) 0.0001 29.0500  0.0426 0.0087 0.0000 0.0089 

(PLANNING) 0.0003 26.8821  0.1915 0.1181 0.0795 0.0971 

(FUTILITY) – (TINKER) – 

(FUTILITY) 

0.0006 25.2825  0.0133 0.0466 0.1023 0.0704 

(FUTILITY) – (ABORT) – 

(TINKER) 

0.0006 25.2800  0.0160 0.0364 0.1023 0.0357 

(ABORT) – (TINKER) 0.0013 23.7677  0.0851 0.1516 0.2273 0.1738 

(ABORT) – (TINKER) – 

(FUTILITY) 

0.0021 22.7801  0.0213 0.0598 0.1193 0.0766 

(FUTILITY) – (ABORT)  0.0051 20.8867  0.0372 0.0554 0.1364 0.0668 

(ABORT) 0.0178 18.2497  0.2181 0.2770 0.3636 0.3164 

(TINKER) – (ABORT) – (TINKER) 

– (FUTILITY) 

0.0560 15.7918  0.0080 0.0204 0.0625 0.0321 

(TINKER) – (WINNING) 0.0983 14.5475  0.1489 0.2259 0.2784 0.2193 

(LONG ABORT) 0.1368 13.7978  0.0346 0.0160 0.0057 0.0089 

(FUTILITY) – (WINNING) 0.1510 13.5705  0.0293 0.0671 0.0795 0.0847 

(TINKER) 0.1528 13.5422  0.8617 0.9038 0.9432 0.9180 
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Figure 18. Sequencing analysis by group. 
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In Figure 18, red bars indicate subsequences with significantly less support than under the 

assumption of independence. Conversely, blue-colored bars indicates significantly more support. 

Sequences in white show no statistically-significant across all four groups. These significances 

are computed at the 0.01 level; light-blue and light-red bars indicate significance at the p = 0.05 

level. For significance testing, the p-values were Bonferroni-corrected for the multiple 

comparison. This correction increases the probability of false negatives is compared to the 

probability of false positives, but protects against incorrectly rejecting the null hypothesis (i.e. 

that the support values for the subsequences do not vary across discriminant groups). 

This group-discriminant sequencing analysis suggests that students in the High Prior 

knowledge group have sharply fewer FUTILITY subsequences, fewer TINKER-FUTILITY and 

FUTILITY-TINKER, ABORT-TINKER, TINKER-FUTILITY-TINKER, and FUTILITY-

TINKER-FUTILITY cycles, and substantially more PLANNING chains. Conversely, students 

with Low Prior knowledge are more likely to present longer FUTILITY chains, and more 

TINKER-FUTILITY cycles. These students are also more likely to follow FUTILITY with 

ABORT, ostensibly because they recognize the probable outcome of that attempt would also 

have been FUTILITY. Students in the middle two quartiles who do demonstrate a relative 

increase in their conceptual understanding also show more FUTILITY chains and slightly more 

TINKER-FUTILITY chains. 

Discussion 

The Importance of Prior Knowledge. The sequence analysis reveals that students with 

High or Low Prior knowledge play very differently than their peers. Students who have High 

Prior knowledge plan more and exhibit very few sequences of attempts in which they are stuck. 

They are not as likely to attempt small iterative fixes, preferring more complex and thought-out 
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solutions. On the other hand, if students consistently demonstrate repeated failure on the same 

obstacle over large numbers of attempts (i.e. in a FUTILITY sequence), it is less likely that they 

improved their learning, regardless of their level of prior knowledge. No particular way of 

playing (in other words, no subsequence exhibited by students in the Learned group) seems to 

correlate with relative learning gains independently of prior knowledge. 

This finding suggests that students’ gameplay choices are strongly influenced by their 

prior knowledge. It may be fairly argued that High Prior knowledge students played a very 

different game than their Low Prior peers. The former group approaches the game as a “planning 

game”, preferring the creation of complete solutions that require only small adjustments, making 

full use of the Solve-and-Debug strategy hypothesized in the Student Model. The latter group 

likely sees the game as a “guess and check game” or “tweaking game”, where a solution emerges 

gradually out of extended iterating cycles of more-or-less purposeful trial-and-error - described 

earlier as an Additive-Iterative strategy.  

Why are students in the Low Prior group more likely to use the Additive-Iterative 

strategy? From the 2SM perspective, these students could be said to prefer low-effort, low-

information, control-oriented processing strategies. The 2SM conceptualizes these as being 

closer to the Player Stance, which privileges feedback from the game environment to evaluate 

success. Students who play in the Additive-Iterative mode are more reliant on feedback from the 

game, since such feedback (rather than evaluation of internalized models) represents their main 

source of information about how the game operates. On the other hand, students who play the 

“planning game” can rely more on their own ability to visualize and predict how the game will 

respond to their input, and thus probably require less feedback from “tweaking” or “guessing and 
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checking”. This distinction correlates well with the general descriptions in the Two-System 

Framework of the Player Stance and Learner Stance, respectively.  

Implications for Design. The results of the gameplay data analysis from EPIGAME 

generally support the notion that patterns of play related to the Player Stance are not optimal for 

learning. Students who persist in fast strategies are not likely to improve their learning relative to 

their peers, and students who make the highest relative gains do not prefer fast strategies overall. 

The analysis shows that a tolerance or preference for Attempt sequences with a high reliance on 

FUTILITY are associated with lower learning outcomes. 

In the 2SM framework, multiple FUTILITY attempts with low average time per attempt 

can be understood as a strategy for obtaining feedback from the game’s model as a way to avoid 

having to use slower, more intensive reasoning processes such as the second-order model. The 

goal of this strategy is to serve the player’s agency and sense of control, and preserve the 

momentum of play. It may be argued that use of the Player Stance helps students remain 

motivated and engaged even in the face of failure, and long after the novelty of the game has 

worn off. Yet, as we have seen, in the case of EPIGAME, the Player Stance and its associated 

play strategies are associated with lower learning gains. Then, the immediate question becomes, 

can the Player Stance be disrupted in order to promote learning? Or in the context of EPIGAME, 

can a student playing the “tweaking game” be nudged towards playing the game more as a 

“planning game”? Can a game be designed in such a way that this “nudge” occurs automatically? 

In the case of EPIGAME, the tutorials might provide a clue as to how this “nudge” can 

occur early in play (see Question 2). Whatever the eventual form that this encouragement takes, 

the effectiveness of this feature depends on having a method to detect whether or not a student 

has settled in a Player Stance. This “detector” could be built upon the analysis here described: 
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the game could use a similar process of unsupervised clustering I used to arrive at the part.6 

solution as a guide to classify students’ actions in real time, and then detect the sequences of play 

which, as we have seen, are not strongly associated with learning. This added functionality 

would allow specific feedback to be provided to students, e.g. early in their play before they 

commit to playing a “tweaking game” (c.f. Clark, Martinez-Garza, Biswas, Leucht, & Sengupta, 

2012). Lastly, if the game can be made so that, once it has gathered enough student data to 

predict a student’s play characteristics, the game can modulate its difficulty to make sure that the 

student faces challenges appropriate to the student’s level of skill and knowledge, while 

compensating for the tendency of students to choose low-effort strategies if doing so preserves 

the momentum of play. These three additional functionalities could all be potentially very 

powerful ways to promote student learning with games, and they are all made possible by an 

expanded understanding of how students actually play. 

These findings should also motivate discussion about how much and what kinds of 

support students should receive during game-based learning opportunities. Lower-performing 

students’ over-reliance on fast strategies might be more of an adaptive response to being forced 

to play a game that is too difficult as opposed to an intentional strategy choice in response to 

their perceptions of what the game is about. In this case, automated feedback and adaptation as 

discussed above would also be useful. Students who are facing intractable difficulty could be 

detected and helped automatically. It is also possible that students perseverating in fast strategies 

are doing so transgressively (see Aarseth, 2007), i.e. as a rejection of the game’s challenge and a 

personal disinvestment from the game’s outcomes. This low-effort position is radically different 

from the low-ability position described above, but in terms of data logs it would look rather 

similar. The analytics used in this study are not well-suited to detect the difference between low 
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effort and low ability, although some scholars have had success with specific detection 

algorithms for disengagement in the context of science simulations (Gobert, Baker, & Wixon, 

2015).  

In this study, as in much of classroom-based educational game research, I relied on pre-

existing classroom norms for expectations on student behavior and effort. Also, the presence and 

expert eye of the teacher to help identify and gently correct students who were off-task, and to 

offer guidance to those few students who may have found the game too demanding, was 

indispensable. I observed and respected these practices while fully knowing that their effects 

would disturb the central assumption that the data logs record students’ actions and only 

students’ actions. This tension points to an inherent limitation of the data logging approach. Data 

logging can only account for what happens within the student-computer interaction, and 

classroom technology use often involves, or even privileges, person-to-person interactions. It is 

during these kinds of interactions that teachers (and often peers) help students make sense of the 

game when the game itself doesn’t offer the necessary scaffolds, whether motivational or 

content-related. These interactions may have effects on participating students’ play that would be 

captured by data logging but be difficult for LA techniques to correctly explain or attribute. It 

may be that future work that harnesses data log analytics for adaptive feedback might approach, 

or perhaps even duplicate, the classroom teacher’s ability to identify apathy and helplessness in 

the classroom context, or the knowledgeable peer willingness to dispense timely hints. Until that 

time, however, we accept some imperfection and “mangling” of the record, and look for 

opportunities to more deeply integrate log-based analytics with observational and grounded 

methods. 
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Research Question 2: Effect of Changes in Students’ Game Performance on Pre-post Test 

Performance 

The main learning goal of EPIGAME is to help students build deeper understanding of 

Newtonian kinematics. Thus, a portion of the game’s rules and systems deal with inertia and the 

relationship between force and velocity. Ideally, as students improve in their ability to solve 

inertial challenges, their conceptual understanding (per an external measure) should likewise 

improve. From the previous analysis (see Question 1 section, above), we know that students with 

different degrees of prior knowledge approach the game differently and play in sharply different 

ways. In terms of Question 2, I investigated whether these differences in game play correlate 

with differences in performance in the specific game situations intended to help students develop 

concepts of inertia.  

The first step in in this analysis was coding the conceptual challenges. Each challenge is a 

situation on the game map where a student has to apply one or two maneuvers to advance past 

that situation. The selected challenges all deal with inertia and/or Newton’s second law of 

motion. These concepts can be portrayed in EPIGAME in one of four ways: 

1. The student must navigate Surge from rest up to a certain velocity by applying an 

unbalanced force (Figure 19). There are 46 such challenges, and they were coded 

as fromStop. 

2. The student must bring Surge from a constant velocity to a stop by applying one 

or more forces opposed to the direction of motion (35 challenges, coded as 

toStop). (Figure 20) 
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3. The student must increase the velocity of Surge to a certain level while Surge is in 

motion by applying an unbalanced force in the direction of motion (4 challenges, 

coded as speedUp). (Figure 21) 

4. The student must decrease the velocity of Surge to a certain level while Surge is 

in motion by applying an unbalanced force opposite the direction of motion (5 

challenges, coded as slowDown). (Figure 21) 

 

 
Figure 19. A fromStop challenge. Players begin motion from rest at point B and navigate toward 

C. 

 

 
Figure 20. A toStop challenge. Players must completely stop at B before proceeding to C. 
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Figure 21. A slowDown (left) and a speedUp challenge (right). In both cases, student must apply 

an unbalanced force at B. 

 Each challenge was identified through visual inspection of the levels, its location and 

type recorded (fromStop, toStop, speedUp, or slowDown), and a consecutive serial number 

assigned. Only the first 90 challenges students encounter while playing EPIGAME were coded. 

The rationale for this limit is that the conceptual nature of these challenges changes in the latter 

levels, first when changes in mass are introduced, and then when students have to deal with 

forces applied in action-reaction pairs. Thus, the first 90 challenges students encounter before 

these increases in complexity are the most conceptually similar and can be safely compared. 
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Furthermore, these first 90 challenges are where we might be most likely to see trajectories of 

improvement because it tracks students from the beginning of the game where the learning curve 

may prove the clearest. 

Then, the overall gameplay dataset was filtered through a conditional join in order to 

identify which attempts ended at one of the coded challenges. A total of 2175 attempts were 

identified. Later, I decided to reduce the sample to 1282 attempts corresponding to the first 15 

challenges of each type, under the rationale that the unbalanced number of challenges per type 

(e.g. 46 fromStop vs. 4 slowDown) would likely lead to problems with the model fit if I used the 

challenge type as a covariate. 

 
Figure 22. Mean errors per student per Conceptual challenge. Student achievement groups are in 

columns. Challenge types are in rows. 

 

Next, I proceeded to fit a generalized linear model to the data. Since the dependent 

variable is a count (i.e. positive whole numbers only), then a Poisson regression would be most 
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appropriate. However, the data showed considerable overdispersion, and thus a negative 

binomial regression was chosen. 

Results 

The statistics of the generalized linear model are provided in Table 9. In this model, the 

High Prior classification and fromStop challenge type are the model references. The statistically-

significant predictors of student errors per Conceptual challenge are Challenge instance, and as 

noted, the type of challenge is not a statistically significant predictor. Furthermore, a previous 

iteration of the model showed that the interaction terms of the predictors were also not 

statistically significant. Thus, the variables best suited to predict the number of errors students 

commit are the number of similar challenges already faced and the students’ prior knowledge.  

Table 9.  

Coefficients of the negative binomial regression model 

 
Dependent variable: number of errors per Challenge 

 
Estimate Std. Error p-value 

Challenge instance -0.064*** 0.008 >0.001*** 

Learned 0.484*** 0.148 0.001*** 

Low Prior 0.744*** 0.153 >0.001*** 

Null 0.654*** 0.140 >0.001*** 

slowDown Challenge 0.112 0.090 0,21 

speedUp Challenge 0.008 0.093 0.93 

toStop Challenge 0.040 0.067 0.55 

Constant 1.117*** 0.150 >0.001*** 

Observations 1,282   

Log Likelihood -3,221.669   

theta 1.371***  0.066  

Akaike Inf. Crit. 6,459.338   

Note: ***p<0.01   
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Discussion 

The generalized linear model fit to the challenge data confirms the (admittedly 

straightforward but encouraging) hypothesis that students tend to make fewer errors on a 

challenge each successive time they encounter a challenge of the same type. More surprising is 

that the mean number of errors can also be predicted on the basis of a student’s prior knowledge 

grouping. In other words, the first 15 times students face challenges of a given type, students 

who score highly on the pre-test are likely to commit as few as half as many errors as students 

who did not score highly.  

A possible explanation is suggested by the bar chart matrix on Figure 22. We can see 

there that students in the High Prior column make fewer errors overall, but more importantly, 

commit nearly no errors the first time they face a challenge of a given type. Students in other 

groups commit at least 3 errors on average, often more. Unless High Prior students have played 

EPIGAME before (which they have not), one could assume that High Prior students would make 

at least a few errors when they initially encounter a challenge, while they internally navigate how 

their understanding of physics does or does not apply to the situations and rules of the game. But 

the near total absence of errors on initial contact with challenge types suggests that High Prior 

students already know something directly relevant to these challenges. 

There are at least two other sources of knowledge (besides any prior EPIGAME 

experience) students might be drawing on when they face new challenges. First, they may be 

drawing on inferences made from the pre-test. However, I demonstrated in Study 1 that 

EPIGAME and the EPIGAME assessment are free of testing effects (see Methods section), so a 

“priming” effect is unlikely. The other source might be the tutorial animations embedded in 

EPIGAME. There are two types of tutorials. At levels 1, 4, 8, 10 and 11, the tutorial animations 
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are essentially worked examples – students watch as the Mentor character demonstrates, e.g. how 

to apply forces, how to draw Waypoints, how to start the trial, etc. These animations are intended 

to guide students as they learn the game’s interfaces, design conventions, etc. On the other hand, 

the tutorials at levels 2 and 7 are contrasting cases (Figure 23). These animations take the form 

of experiments: a challenge is approached with several combinations of parameters, of which 

only one is correct. The student must deduce from this demonstration why that particular 

maneuver was effective. While the “worked example” tutorials show the hows of EPIGAME, the 

“contrasting case” tutorials show the whys. 

 
Figure 23. A "contrasting case" tutorial. The use of 10N and 30N are both incorrect for a 2m/s 

Velocity Gate. 
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My explanation for the low rate of error of High Prior knowledge students during initial 

trials relative to their lower-prior-knowledge peers is grounded in the 2SM. The 2SM defines 

two broad classes of knowledge regarding “how to play”: heuristics and internal models. The 

“worked example” tutorials, with their emphasis on how to execute specific maneuvers, have 

more “heuristicness” than “modelness”. Conversely, the “contrasting cases” tutorial focus 

strongly on the variables and relationships at play, suggesting more model quality. It may be that 

the main difference between High Prior students and their peers is which form of tutorial they 

chose to focus on. Since each form of tutorial primes a different form of knowledge about “how 

to play”, students with a strong preference for one form of tutorial over the other may approach 

the game with different kinds of knowledge and thus play in different ways. And in fact, these 

differing styles of play do emerge (see Question 1), with High Prior students (and only High 

Prior students) showing a marked preference for slow, deliberate play and small tolerance for 

error. In contrast, students in the Low Prior and Null learning groups prefer iterative, “tweaking” 

gameplay that is inherently more fast-paced, yet they tend to accrue errors at each challenge, 

often as many as 10, 20 or more (see Figure 22). In summary, it may be that the tutorials – 

necessary parts of the game experience – can “prime” the 2SM stances according to (a) the forms 

the tutorials take (prescriptive vs. descriptive) and (b) how salient and useful the player finds the 

information presented in the tutorials themselves. 

Implications 

In order to access the potential and intended benefits of educational games, students must 

first learn to play the game itself. This step, while commonsensical, can easily be glossed over 

during design; when it comes to introducing unfamiliar digital games into the classroom, we 

might hold the notion that young learners can simply “pick it up” and “figure it out”, since they 
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may already be “gamers”. Thus, materials intended to help students orient themselves in the 

game environment and learn how to reach gameplay goals may not receive as much design 

attention as they should. Furthermore, when games are used in an educational setting, these 

materials compete for classroom time with the main game, where the target curricular material is 

most likely to reside. Ideally, we would prefer if students spend only a little time “learning to 

play” and as much time as possible simply “learning.” 

Our findings problematize these design assumptions. First, by showing how prior 

knowledge can structure gameplay to a great extent (see Question 1). Students who enter the 

game experience with a good working knowledge of the concepts and relationships are less 

reliant on more feedback-rich and iterative, yet ultimately more laborious, “tweaking” styles of 

play. Also, the analysis suggests that the way the game teaches students to play, i.e. by following 

a procedure or operationalizing a relationship, may also be an important influence on learners, 

even when this learning is focused squarely on game-specific knowledge and not on curricular 

concepts and relationships. 

If prior knowledge and differential use of tutorial materials can structure and influence 

play (and thus, learning), then a greater emphasis must be placed on game functionality that 

supports students who do not initially enjoy or leverage these advantages. For example, lack of 

prior knowledge can be addressed with scaffolding, and gameplay difficulty can be adapted to 

reduce repeated error. These and other measures should be considered as means to ensure that all 

students can access substantially similar game experiences and thus, hopefully, more equitable 

positive learning outcomes.  
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Overall Conclusions 

On the Generalizability of the Current Methodology 

The work described in this paper has followed a methodology that is not limited to 

investigating EPIGAME logs. The general methodology is versatile and feasible for use in other 

contexts. Starting from a robust and detailed record of students’ interactions with a digital 

environment and a theoretical framework that supports conjectures as to why certain patterns of 

action create opportunities for the desired change, researchers can define the important features 

of those patterns and then use those features to investigate the data record using whatever LA 

techniques are most appropriate for that particular type of data. 

A more novel focus of this analysis (one featured in Research Question 2) is that it aims 

to track development of students’ conceptual understanding at the level of particular concepts of 

inertia using finer-grained observations centered on particular gameplay regions. These regions 

are intended to highlight specific content, and thus student performance in these regions is more 

closely tied to conceptual understanding than gross-level summative measures. These summative 

measures have been successfully used in the past and may be appropriate and sufficient for some 

research questions. However, the use of finer-grained contextual data offers the advantage of 

supporting claims of students’ conceptual understanding of individual concepts (e.g., inertia or 

First Law), rather than broad performance constructs (e.g., knowing how to play EPIGAME). 

Which is not to say that the EPIGAME data structure and focus (and thus the associated 

analysis) are universal. The trial-retrial structure of game play and the grain size of the data 

capture are not necessarily common to all educational games. The specific combination of play 

structure and grain size warranted the sequence mining and contextual feature mapping. Other 

digital environments will have different interactive structures, and thus algorithms and 
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techniques possibly better suited to the questions being asked. Fortunately, the state of the art of 

learning analytics is increasing both the accessibility and variety of statistical computing 

software, making it suitable for a wider variety of data structures, game mechanics, and learning 

foci. 

One thing that will likely remain invariant, however, is the expertise of the analyst and 

his or her familiarity with the context and the data. In this paper, my own long association with 

EPIGAME data, as well as observations accumulated over multiple opportunities to facilitate 

students’ play of EPIGAME, facilitated the creation of the derived variables, the process of 

interpreting the part.6 clustering, and the use of sequencing as a way to add meaning to the 

cluster assignments. It is unlikely that this kind of intimate understanding of the affordances and 

constraints of particular games and data can be substituted by generic software. Although it can, 

perhaps, be supplemented. Until that time, however, the skill of the analyst, as in all 

interpretative observational methods of research, will be crucial to success. 

What the Findings Say about the 2SM 

The 2SM is intended as a general-purpose framework for player cognition during game 

play; it is comprehensive and not intended as specific to any kind of game or any target domain. 

Because of this generality, it requires many constructs and mechanisms to explain phenomena of 

play. Furthermore, most of these constructs and mechanisms are entirely latent, existing only in 

the player’s mind, perhaps only for brief moments of time. For these reasons, it is unlikely that a 

single study, however ambitious, could prove the 2SM as a theory. 

The findings in this paper suggest that, while still very much unproven as a whole, the 

basic underpinnings of the 2SM pass muster. We see the indicia of both fast, low-information 

play and slow, deliberative play. More importantly, these styles of play co-vary strongly with 
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learning outcomes, indicating that fast styles of play may not support students in developing 

knowledge of a form transferable beyond to the game (in this case focusing on Newtonian 

kinematics). Some students perseverate in guess-and-check iteration, relying entirely on the 

game to provide the necessary feedback, instead of using all available information to infer some 

generalizable rule they can use to increase their effectiveness. We can see from the Contextual 

Mapping analysis how some students never seem to stop making errors in parts of the game 

relating to a specific concept, even when they’ve already cleared a similar challenge 10 times or 

more.  

That said, the finding that prior knowledge strongly influences play, even in the early 

stages, is problematic in terms of the 2SM. First, because it inverses the proposed way that 

Stances get cued. In the original framing of the 2SM, the Learner Stance is cued by a task that is 

too demanding, where the player has no fast effortless rule to apply. However, the results in this 

paper strongly support the claim that the opposite may be true, i.e. that (perceived) high task 

demands cue the Player stance as an effort-saving strategy that is ultimately maladaptive in terms 

of learning. The second challenge to the 2SM comes from the necessity of having students “learn 

to play” the game before they actually “play” it. This instructional phase, and its consequences, 

were not addressed originally in the 2SM. Yet as we have discussed previously, the Tutorial 

materials and other instructional affordances might bias students towards one form of reasoning 

or another, independently of how the student would otherwise organize his or her epistemic 

Stance. 

These findings suggest that revisions of the 2SM are warranted in at least two lines. On 

one hand, the role of prior knowledge as an epistemic resource, largely ignored in the original 

framing. The 2SM envisions a player with well-defined goals for play but a “blank slate” in 
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terms of pre-existing knowledge about the game. Further research that specifically targets the 

effect of prior knowledge, and of knowledge gleaned early in play from tutorial materials is 

warranted, and those findings integrated into the 2SM. Another possible revision involves the 

issue of task demands and their possible role in cueing other resources, such as mastery or 

performance orientations (Pintrich, 2000). The 2SM does not explicitly consider whether a 

player finds a given game situation “easy” or “difficult”; rather it only considers what epistemic 

resources the player has at hand (heuristics or second-order models). Yet the findings in this 

study highlight that Player Stance related patterns of play may also be a coping strategy to deal 

with game situations students find too difficult. For the 2SM to properly account for these coping 

strategies, a study might be designed where versions of the game of various difficulty levels are 

assigned to students at different levels of achievement, either by pre-test score or by an 

automated adaptive functionality. All that said, these revisions, while necessary and warranted, 

do not necessarily threaten the validity of the framework as a whole. They merely remind us that 

the Two-System Framework is, after all, young theory, and must co-evolve with the evidence, 

whether that evidence supports or resists it.  
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Appendix A 

Observed and derived variables in the EPIGAME log data 

 

Table 10. 

Catalog of variables in the Study 2 dataset 

Variable name Meaning Type Notes 

Student ID  Identification Anonymized to a 

serial number 

Experiment ID  Identification  

Date and Time  Identification  

Step Visit Number of times student has 

visited that Level (step) 

Observed  

Attempt  Observed Only Attempt = 1 was 

used 

attemptTrial Order of this Attempt within a 

series of Attempts (i.e. a Trial) 

Observed  

totalTrials Combined number of Attempts 

in all Trials of this Level by this 

student 

Observed  

endState Did the player succeed (=1), fail 

(=0), or abort (=2)? 

Observed  

endScore Score obtained by that student at 

the end of that Trial 

Observed  

scoreImproved Did the student increase their 

Score this Attempt? 

Derived  

trialTime Length of time a between this 

Attempt and the end of the 

previous Attempt 

Observed Incorrectly named in 

software, should be 

“attemptTime” 

actionsUsed 

 

How many Actions were placed 

on Waypoints during the 

Planning Phase 

Observed  

isExit Did the student leave the Level 

after this Attempt? 

Observed  

timeLine Position of the time cursor on the 

Timeline at level end 

Observed More relevant in the 

Timeline version of 

EPIGAME. Students 

in the present studies 

did not have access to 

the time cursor. 

attemptTrial.max Maximum value of the variable 

attemptTrial for that student for 

that level 

Derived  
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p.attemptTrial Measure of progress of Attempts 

within the Trial 

Derived Calculated as 

(attemptTrial / 

attemptTrial.max) 

p.totalTrials Measure of progress of Attempts 

within the combined chain of 

Attempts over all Trials 

Derived Calculated as 

[attemptTrial + (sum 

of all 

attemptTrial.max of 

all previous trials) / 

totalTrials] 

ending.event The state of the game that caused 

the Level to end. 

Observed Allowed states: 

Success Gate, 

Navigation Error, 

Mass Gate collision, 

Velocity Gate 

collision, Laser 

collision, Abort. 

ended.at.action Number of actions that fired 

successfully 

Observed  

Par Model-derived metric of 

effectiveness.  

Derived See “Treatment of 

EPIGAME logs” for 

complete description. 

planningTime Duration of the Planning Phase Observed  

tl.Adds Addition of Actions to the 

Timeline 

Observed  

tl.Deletes Deletion of Actions from the 

Timeline 

Observed Very rare (mean = 

0.05 deletions per 

Attempt) 

tl.Modifys Modification of parameters of 

Actions already in the Timeline 

Observed  

tl.Moves Actions moved within the 

Timeline 

Observed Very rare (mean = 

0.17 moves per 

Attempt) 

added.Tl.Total Sum of Timeline Adds, Deletes, 

Modifys and Moves 

Derived  

tj.Adds Waypoints added to the 

Trajectory 

Observed  

tj.Modifys, 

tj.Moves, 

tj.Deletes 

Analogous to the Timeline 

(prefix: tl.) count variables 

Observed These variables exist 

in the record but no 

instance of these 

types of events were 

recorded.  

locX, locY Coordinates of Surge’s spaceship 

when an event or Action 

occurred 

Observed  

fail.same Did this Attempt fail at the same 

location, for the same reason? 

Derived  
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eff.actions.added How many Actions fired in this 

Attempt compared to the number 

that fired in the preceding 

Attempt? 

Derived Could be negative. 

par.delta Difference in the par metric 

between this Attempt and the 

previous one 

Derived  

par.sqrt, 

par.delta.sqrt 

Square-root transformations of 

the par and par.delta variables 

Derived  

is.abort Did the student press the Abort 

button before the level otherwise 

ended? 

Derived Software also 

registers the Abort 

button press in the 

endState variable. 

ActionLog Combined variable that registers 

the Actions applied to Surge 

during the Attempt 

Observed Includes position, 

type, and location of 

each Action applied 

EventLog Combined variable that registers 

important moments of gameplay 

not caused by Actions 

Observed Not fully functional 

in this version of 

EPIGAME 

Serial Serial number of the Conceptual 

challenge 

Derived 

(from 

ActionLog) 

 

failed.to In case of failure of a Conceptual 

challenge, the specific action the 

student did not do  

Derived 

(from 

ActionLog) 

Possible values: 

fromStop, toStop, 

speedUp, slowdown 

is.colinear Does this Conceptual challenge 

also require students to execute a 

turn? 

Derived 

(from 

ActionLog) 

 

constant.mass Do students have to account for 

changes to Surge’s mass during 

the Conceptual challenge? 

Derived 

(from 

ActionLog) 

Only Conceptual 

challenges that pass 

this test were 

analyzed here 

Pre, Post The student’s pre- and post-test 

scores, respectively 

Observed  

bin.1 Classification of students 

according to beginning and 

ending quartile in assessment 

score 

Derived See “Question 1: 

Sequence Mining” for 

detailed description 

of this classification 

 


