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CHAPTER I 

NANOMATERIAL-BASED MATRICES FOR MATRIX-ASSISTED LASER DESORPTION / 

IONIZATION (MALDI) MASS SPECTROMETRY IMAGING 

1.1 An Introduction to MALDI Mass Spectrometry 

 Mass spectrometry (MS) is an inherently label-free method of chemical analysis which 

separates and detects ionized molecules based on their mass to charge ratio (m/z). As MS can 

only detect ionized molecules, the ionization process is integral to the quality of the observed 

mass spectrum. Low-energy, i.e. soft, ionization processes such as matrix-assisted laser 

desorption/ionization (MALDI) are capable of converting large molecules, e.g. proteins, to intact 

ions.
1-2

 In traditional MALDI, weak-organic-acid matrix molecules, shown in Table 1-1, are mixed 

and co-crystallized with non-volatile analytes. The matrix absorbs laser irradiation, leading to 

analyte desorption/ionization for MS, as shown in Figure 1-1. Over the past two decades, MALDI 

has proven to be crucial for molecular analysis. Several notable research areas which rely upon 

MALDI include label-free imaging of biomolecules directly from tissues and cells,
3-5

 rapid bacterial 

strain identification,
6
 and determination of polymer molecular weights with high accuracy.

7-8  
 

  

Analyte and Matrix Co-crystallization 

 Comprehensive mixing of matrix and analyte is critical for efficient MALDI-MS 

performance. Previous molecular imaging experiments have confirmed that analyte ion yields 

increase with analyte-matrix heterogeneity, and that analytes are often directly incorporated into 

organic matrix crystals.
9-10 

For these reasons, solution-based methods for analyte and matrix 

mixing and co-crystallization described below continue to be utilized, even as more reproducible 

but less heterogeneous methods such as matrix sublimation have been introduced.
11 

 Two primary methods exist for solution-based matrix and analyte co-crystallization. The 

most commonly used approach for mixing and spotting is the dried-droplet method, which can be 

traced back to the founding of MALDI in 1988.
1
 In the dried-droplet method, analyte and matrix  
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Figure 1-1. General schematic of matrix-assisted laser desorption/ionization (MALDI). The matrix 
is mixed with analyte and absorbs the UV laser irradiation, leading to matrix and analyte 
desorption from the substrate and ionization. Specific models for desorption and ionization are 
discussed in the text. 
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Name 
Exact Mass 

(Da) 
Molecular Structure 

2,5-dihydroxybenzoic acid (DHB) 154.0266 

 

α-cyano-4-hydroxycinnamic acid 
(CHCA) 

189.0426 

 

sinapinic acid (SA) 224.0685 

 

2’,4’,6’-Tryhydroxyacetophenone 
(THAP) 

168.0423 

 

dithranol 226.0630 

 
 

Table 1-1. Commonly used weak-organic-acid matrices for MALDI-MS. 
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are either pre-mixed and spotted on the plate or spotted from separate solutions on top of each 

other. Typically a total volume of 0.5 - 2 μL is used. The spot is allowed to dry at room 

temperature and pressure, or with slight heating. The solution is frequently a mixture of slightly-

acidic water and polar-organic solvent (e.g. ethanol), so drying is on the order of several minutes. 

Assuming the MALDI target has a hydrophobic coating on the surface, increasing the ratio of 

water to organic solvent will increase the contact angle of the droplet on the target and solvent 

evaporation time. In this case, matrix and/or analyte can precipitate out of solution before all liquid 

evaporates. As a result, analytes with some nonpolar character are typically incorporated into the 

center of the matrix crystal, whereas highly soluble species such as salts are found at crystal 

edges.
10

  

 The primary drawback of co-crystallization by the dried-droplet method is poor 

reproducibility. Matrix and analyte disperse unevenly during solvent evaporation, causing some 

matrix crystals to incorporate small amounts of analyte and others large amounts of analyte.
9
 The 

resulting matrix and analyte distributions can vary greatly, not only within the spot but also 

between replicate MALDI spots, limiting dried-droplet reproducibility. It is also thought that 

crystals which have high uptake of analyte generate the most ions for MS and contribute to the 

impressive limits-of-detection of MALDI-MS (typically low fmol to amol);
12

 these regions of high 

analyte uptake are known as hot-spots. Therefore, irregular crystallization is both the cause of 

both the main drawback and the main advantage of dried-droplet spotting. 

 In contrast with the dried-droplet approach, decreasing the aqueous content of the 

solution speeds up the evaporation process and leads to more homogenous matrix-analyte co-

crystallization. Known as the either the fast evaporation or thin layer method,
13-16

 matrix is spotted 

first on the plate from an organic solvent such as acetone. The matrix spreads out rapidly, 

producing uniform sub-micrometer crystals. Analyte is then spotted on top of matrix. Thus, 

analyte is incorporated evenly into the top layer of crystals and does not penetrate below. 

However, this method has two primary drawbacks. First, because organic solvents have lower 

surface tension than water and spread across a wide area on the plate, analytes are less 

concentrated due to the large spot. This results in less hot-spot formation and higher limits-of-
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detection. Second, this approach typically requires a wash step which may remove some 

analytes. Rapid evaporation methods such as these are used occasionally but not as frequently 

as standard dried-droplet spotting, which is typically simpler to perform and more sensitive.  

 

Desorption 

 In order to desorb both matrix and analyte from the crystalline state, laser energy must 

first be absorbed by the matrix. All matrices listed in Table 1-1 strongly absorb ultraviolet (UV) 

irradiation, and thus gas-phase and solid-state UV lasers are most commonly used for MALDI-

MS. Matrix ionization potentials are typically two to three times greater than the energy of a single 

UV laser photon (e.g. 3.7 eV for 337 nm emission).
17 

It had been suggested that matrix excitation 

may be a multi-photon event; however, most researchers now think that this energy gap is 

achieved by energy pooling due to the high number of matrix molecules present, as discussed 

below.
18 

 

 After laser absorption, the majority of this excess energy is converted to heat. However, 

the required time for heat dissipation within a matrix crystal (approx. 10 ns) is typically longer than 

a UV laser pulse width by a factor of two or three.
18

 If the matrix is unable to dissipate the heat in 

time, thermal confinement causes a “phase explosion” leading to ejection of matrix and trapped 

analyte from the top 10-100 nm of the crystal.
19

 It is thought the primary cause for desorption in 

UV laser MALDI-MS is this thermal confinement. Crucial to this process is that analytes are not 

overheated so that metastable fragmentation is minimized. Vertes et al. suggested this occurs via 

a “bottleneck” mechanism.
20

 Incorporation of analyte into the matrix lattice produces defects in 

the crystal; at these defects, energy transfer is less efficient as adjacent wavefunctions are not in-

phase. As a result, trapped analytes are cooler than matrix and are simply desorbed along with 

the surrounding material. Even fragile analytes may be desorbed without thermal degradation 

according to this model. 

 Laser fluence, energy per pulse per unit area, is also critical in the desorption process. 

Threshold MALDI fluence values are approximately 30 - 100 J/m
2
,
 
depending somewhat on

 
laser 

beam shape and matrix-to-analyte ratio.
21

 From detailed computational modeling studies, 
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Garrison et al. suggested there may actually be two thresholds: one threshold fluence for simple 

molecular desorption, and one threshold fluence for bulk desorption of molecules and clusters.
22

 

It was suggested the latter threshold may correspond to experimentally-observed fluence 

thresholds in MALDI-MS. As fluence increases above the experimental threshold, ion signal 

increases significantly. However, at some point chemical noise also increases, causing a 

reduction in signal-to-noise. Typically, optimal MALDI-MS performance is observed 2-3 times 

greater than threshold fluence.
18

 

 It has been proposed that vibrational confinement due to photoacoustic stress may play a 

role in phase explosion as well,
23

 but it is likely more significant for infrared (IR) laser MALDI in 

which the laser penetration depth is on the order of micrometers instead of nanometers.
24 

 Due to 

the poor spatial focusing of IR lasers in MS imaging experiments, IR laser MALDI is outside the 

scope of this document and will not be used in subsequent chapters. 

 

Ionization 

 Two general models are used to explain the mechanism of MALDI ionization: the cluster 

or “lucky survivor” model, and the gas phase protonation or excited-state proton transfer (ESPT) 

model. In the cluster model, it is thought analytes retain solution-based charges when crystallized 

with the matrix.
25-27

 Upon laser irradiation, analyte and matrix clusters are released into the gas 

phase, where charge neutralization occurs through charge transfer pathways with counter ions 

present. Hence, desorbed analytes which retain their charge for mass spectrometry are known as 

lucky survivors. One example of cluster-based neutralization is shown below: 

 

{ [A + nH]
n+

 + (n-1) X
-
 + x M }  [A+H]

+
 + (n-1) XH + x M 

 

where M is matrix, A is analyte, and X
-
 is a negative counter ion. Matrix aggregates observed in 

MALDI mass spectra are considered the primary evidence for the cluster-based ionization model. 

These are most evident in atmospheric pressure MALDI, where collisional cooling often stabilizes 

these intermediates. 
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 In the gas-phase protonation model, analytes are crystallized with matrix as neutrals or 

zwitterions.
28-31

 Upon laser irradiation, excited matrix molecules undergo gas-phase proton 

transfer reactions between each other, resulting in protonated matrix ions, or between matrix and 

analyte, resulting in protonated analyte ions in the plume, as shown below: 

 

MH + hν  MH
*
 

MH* + MH  [MH+H]
+
 + M

- 

MH* + A  M
-
 + [A+H]

+ 

[MH+H]
+
 + A  MH + [A+H]

+
 

 

where M is matrix and A is analyte.
32

 As mentioned above, energy pooling likely plays a role in 

this process. It is likely multiple excited-state matrix molecules work together to generate a single 

analyte ion.
33

 The body of evidence for the ESPT model is more developed than that of the 

cluster mechanism, and as a result most researchers consider this mechanism more applicable to 

common MALDI situations. However, evidence exists for both mechanisms. Recent efforts have 

focused on providing a unified mechanism of MALDI,
34

 but the unification of both models remains 

controversial.
35-36 

Nevertheless,
 
for both models it is generally agreed upon that the matrix plays 

key roles in analyte ion production, including: (i) suspension of analyte in solid crystals; (ii) 

absorption of laser irradiation to protect analyte from laser-induced fragmentation; (iii) desorption 

from the target surface; and (iv) formation of analyte ions for mass spectrometry. It is likely these 

protonation (or de-protonation) mechanisms occur in the matrix plume after desorption. 

 The MALDI process is typically most efficient when a high matrix-to-analyte mole ratio is 

utilized (500:1 - 5000:1), possibly due to the bottleneck model described above. A high matrix-to-

analyte ratio ensures that the majority of laser irradiation will strike matrix instead of analytes. If 

analytes are ionized intact, then additional ion isolation and fragmentation experiments may be 

performed post-ionization to provide insight into the structure of the selected ion of interest. This 

is known as tandem mass spectrometry (MS/MS).
37-38
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 When a high matrix-to-analyte ratio is used, matrix molecules also ionize each other, 

introducing matrix-based chemical noise into the mass spectrum. Matrix signals and clusters are 

habitually detected in the low-mass region of the spectrum (< 500 Da). As a result, MALDI matrix 

signals may overlap with low-molecular-weight analytes, complicating the spectrum and the 

resulting data analysis. Conversely, using a low matrix-to-analyte ratio (e.g. 25:1) can minimize or 

even eliminate this noise;
39-41

 however, this raises MALDI limits-of-detection and may also 

increase analyte in-source fragmentation due to direct laser absorption. For these reasons, non-

ionizing nanomaterials have been attracting interest as matrices for MALDI mass spectrometry. 

 

Time-of-flight Mass Analyzer 

 Although MALDI sources have been coupled to many different types of mass analyzers, 

by far the most common coupled to MALDI ionization is the time-of-flight (TOF) mass analyzer. 

TOF mass analyzers operate based upon the classic kinetic energy equation, solved for time: 

 

     
 

   
 
 

                                                                  (1) 

 

where t is ion flight time, m is ion mass, e is the elementary charge, V is applied voltage, and D is 

length of the flight tube.
42

  All ions in the source are imparted with the same kinetic energy (eV), 

and traverse through a field-free region towards the ion detector. Assuming all ions generated by 

MALDI are singly-charged, signals are resolved in time based upon inherent differences in their 

mass. TOF mass analyzers are commonly coupled with MALDI ionization (MALDI-TOF) due to 

the pulsed nature of both methods. In every TOF sequence, a common start time (to) is needed, 

and various ion flight times correlate to analyte ion mass-to-charge (m/z) values. Similarly, many 

UV lasers are inherently pulsed in nature. Therefore, individual UV laser pulses provide a sharp to 

for each TOF sequence. In practice, it is difficult to impart all ions with exactly the same kinetic 

energy. Typically a narrow distribution of kinetic energies is imparted, and the width of this 

distribution is directly related to TOF resolution. Time-lag focusing and the reflectron ion mirror 

are two commonly used solutions to correct for this in MALDI-TOF-MS.
42
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1.2  Nanomaterial MALDI Matrices 

 The use of nanomaterials as absorbing substrates for MALDI-TOF-MS dates back to 

1988 when Tanaka and colleagues utilized 30 nm cobalt nanoparticles suspended in glycerol to 

ionize intact proteins.
43

 Over the past several decades, advances in the fields of nanotechnology 

and mass spectrometry have led to many new types of matrices, including but not limited to 

nanoparticles, nanoporous substrates, quantum dots, nanotubes, nanowires, and graphene.
44

 

Nevertheless, it remains more common for researchers to utilize weak organic acids listed in 

Table 1-1 for co-crystallization with analytes and MALDI-MS analysis.  

 Similar to organic acid MALDI, it is thought thermal confinement plays a key role in 

desorption from nanoscale materials. Most nanomaterials have critical dimensions (particle 

diameter, pore-to-pore distance, post diameter, etc.) less than the thermal dissipation length (up 

to 200 nm).
45

 Rapid UV laser pulses generate heat in the material, leading to bulk desorption. 

However, other confinement processes are likely involved as well.
46

 Similar to the classic field 

desorption/ionization method in MS, materials with nanoscale posts or protrusions exhibit 

localized field enhancement which can lead to increased local temperatures and thus desorption 

efficiencies.
47 

Surface plasmon absorption in metallic nanoparticles appears to correlate with LDI 

performance as well.
48

 In these cases, nanomaterial size and shape (or aspect ratio) plays a 

crucial role in the absorption of UV irradiation and resulting confinement phenomena. 

 In contrast with organic acid MALDI, however, most nanomaterials are not direct proton 

sources. Analytes are frequently cationized (e.g. [M+Na]
+
) from nanomaterial matrices due to 

latent salt present either on the material surface or in the analyte solution.
49 

Protonated analyte 

ions may be detected from some nanomaterials, but the source of additional protons remains 

unclear. Potential proton sources include trapped acid molecules from solution, acidic surface 

groups (e.g. excited-state Si-OH from porous silicon),
 
or pre-formed ions through a lucky survivor-

like mechanism.
50-52

 

 Although both weak organic acids and nanomaterials are used as matrices for MALDI-

MS, functional differences exist between the two approaches. These differences include: (i) weak 

organic acids often generate intense chemical noise below 500 Da due to protonation, 
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fragmentation, and clustering, whereas many nanomaterials do not exhibit these traits;
53

  (ii) 

optimal weak organic acid to biomolecule mole ratios typically range from 10
3
:1 to 10

4
:1, whereas 

nanoparticle to analyte ratios can oftentimes be inverted (~1:10
7
-10

9
);

49
  and (iii) weak organic 

acids absorb most strongly at ultraviolet (UV) laser wavelengths, whereas nanomaterials such as 

porous silicon absorb a broad portion of the UV-visible spectrum.
53-54

 For these reasons, there 

appears to be an effort to distinguish between weak organic acid and nanomaterial MALDI-MS. In 

the recent literature, terms such as surface-assisted LDI (SALDI),
55

 matrix-free LDI,
53

 

nanomaterial-assisted LDI (NALDI),
56

 and nanoparticle-assisted LDI (nano-PALDI)
57

 have been 

used to describe nanomaterial-based methods. Substrate-based techniques such as 

desorption/ionization on porous silicon (DIOS)
58

 and nanostructure-initiator mass spectrometry 

(NIMS)
59

 also fall under the umbrella of nanomaterial matrices. At the current time, SALDI is the 

most common term to collectively describe these nanomaterial-based methods. However, the 

terminology in this field remains inconsistent.  

 From another perspective, all of these nanomaterial-based methods can be considered 

fundamentally MALDI in that nanoscale inorganic materials act as the matrix. Both weak organic 

acids and nanomaterials provide many of the same desirable qualities expected of a matrix, 

directly or indirectly, including a chromophore for the irradiation wavelength and a source of 

protonating or cationizing species. For purposes of clarity in this chapter, nanomaterial-based LDI 

is defined as nano-MALDI and weak organic acid LDI as MALDI. 

  Interest in nano-MALDI techniques has grown appreciably over the past several years, 

as shown in Figure 1-2. The appeal of using nanomaterials in mass spectrometry can be 

attributed to efficient absorption of laser irradiation, tunable optical properties based on 

morphological characteristics (e.g. nanoparticle size and shape),
49

  high surface area for analyte 

adsorption and pre-concentration,
60

 and surface derivatization capabilities for improved ionization 

efficiency
61

  or analyte capture.
62

 To date, the classic limitation of the nano-MALDI approaches 

has been an inability to ionize large proteins and other high-mass analytes, although recent data 

from Chiang et al. shows that HgTe nanostructures can be used to ionize 150 kDa proteins  
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Figure 1-2. Web of Science™ citations of nano-MALDI techniques, beginning with the first paper 
to use SALDI terminology in 1995 (Sunner et al.; Ref. 55). Specific search terms were: 
“Desorption Ionization on Silicon,” “DIOS Mass Spectrometry,” “Nanostructure Initiator Mass 
Spectrometry,” “NIMS Mass Spectrometry,” “Surface Assisted Laser Desorption Ionization,” 
“SALDI Mass Spectrometry,” “Nanoparticle Assisted Laser Desorption Ionization,” “nano-PALDI 
Mass Spectrometry,” and “Nanoparticle MALDI matrix.” Chart was compiled November 2013. 
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without additional liquid or crystalline matrix.
63

 An additional shortcoming is that the efficiency of 

analyte protonation for nano-MALDI is often less than for MALDI. Whereas MALDI produces 

mainly protonated quasi-molecular ions, many nanomaterial-based approaches, especially 

nanoparticles, generate a more varied distribution of protonated and cationized species. Several 

excellent reviews discuss these advantages and limitations of nano-MALDI in detail.
45-46,53,64-65

 

 MS imaging allows molecules to be detected based on their mass-to-charge ratio (m/z) 

and spatial location.
3-5 

As with MALDI, nano-MALDI may be used to generate molecular images 

from biological samples. In addition to the advantages of nano-MALDI for profiling measurements 

described above, nanomaterials also allow MS imaging to be performed using high spatial 

resolution. For MALDI-based MS imaging, the spatial resolution is primarily dependent upon UV 

laser spot size, typically 20-150 μm, and the size and homogeneity of the organic matrix 

crystals.
66

 Although the sizes of individual matrix crystals vary depending on solvent conditions 

and method of application, they are typically on a similar length scale as the laser spot size. In 

contrast, individual nanomaterial features (particle sizes, nanotube dimensions, etc.) are typically 

10-200 nm, which are much smaller than the spot size of a UV laser. Therefore, spatial resolution 

in nano-MALDI is primarily dependent on the laser spot size. 

 Since comprehensive reviews on general nano-MALDI have been recently published 

(e.g. Refs. 45-46), the remainder of this chapter will focus on nano-MALDI as an MS imaging 

platform for the analysis of intact plant and animal tissue sections, as well as the potential of 

nano-MALDI in single-cell imaging. 

 

1.3 Biological Tissue Imaging using Nanomaterial Matrices 

Plant Tissues 

 In 2000, the genome of the flowering plant Arabidopsis thaliana was completed.
67

 Since 

then, researchers have been using MS to explore protein, lipid and metabolite profiles of A. 

thaliana in order to better understand systems-biology interactions.
68

  

 Current nano-MALDI methods are better suited for determining the spatial distributions of 

metabolites rather than proteins in A. thaliana. Flower petals are coated with a waxy protective 
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layer which makes it difficult to determine the location of proteins underneath the surface. 

Fortunately, however, lipids and nonpolar metabolites adsorb readily to both graphite and silver 

nanoparticles, and have been detected using LDI-MS imaging.
69-70

 In these experiments, 

nanoparticles are suspended in 2-propanol and coated onto the petals using a N2-based airbrush 

sprayer. Using this methodology, the solvent evaporates before reaching the sample, producing a 

homogenous colloidal layer.
69

 Additionally, surface analytes do not diffuse from their native 

locations before image acquisition.  

 Using nano-MALDI several classes of analytes have been detected and imaged from A. 

thaliana petals. In particular, surface lipids generated intense signals when cationized with silver 

from the colloidal layer.
70

 A limitation of the silver colloid method is that ionized silver clusters are 

also generated and give intense signals in the mass spectrum. However, these signals can be 

used to normalize analyte signal intensities, improving the reproducibility of the method.  

 Secondary metabolites are also commonly observed from A. thaliana petals. Unlike waxy 

lipids which cationized with silver (specifically because silver is electrophilic and coordinates with 

sites of unsaturation),
71

 secondary metabolites such as flavonoids and glycosidic flavonoids were 

ionized as [M-H]
-
 negative ions. In one study, graphite-based LDI-MS imaging was used to 

demonstrate the role of the enzyme flavonoid 3’-hydroxylase in the synthesis of quercetin and 

isorhamnetin.
72

 These two flavonoids were not observed in flavonoid 3’-hydroxylase knockouts, 

verifying the enzyme is directly involved in their synthetic pathways. Flavonoids themselves 

absorb UV irradiation and can be imaged from A. thaliana petals without nanomaterial target 

substrates;
73

 nevertheless, in-source fragmentation can occur due to the analyte absorbing 

excess energy. In contrast, multiple glycoside species can be detected intact and imaged using 

graphite.  

 Two important aspects of high-quality MS imaging are spatial resolution and mass 

resolution. The highest imaging spatial resolution achieved to date by nano-MALDI on A. thaliana 

was 12 μm; this was done using a nitrogen laser, a fiber-optic cable, and a laser spot size of 25 

μm using oversampling.
69

 However, a potential challenge with this optical approach is the large 

beam divergence from optical fibers resulting in energy loss at the desired target and 
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consequently decreased ion yields. While spatial resolution is primarily determined by the optical 

train in nano-MALDI, mass resolution is primarily determined by the mass analyzer (and the 

internal energy spread in the resulting ions imparted by the ion source). Using an LTQ-Orbitrap 

mass analyzer, two surface metabolites which differed by 0.035 Da were easily resolved and MS 

imaged using silver.
70

 A typical limitation of Orbitrap-based MS imaging is slow acquisition time, 

especially using high spatial resolution. However, a recently-described spiral rastering motion can 

accelerate Orbitrap image acquisition time by up to 50%.
74

  

 

Animal Tissues 

 The majority of nano-MALDI imaging performed to date has been on animal tissue 

sections cut to thicknesses of 3-20 μm using a cryostat. These section dimensions are 

complementary for both MALDI and nano-MALDI imaging MS, such that: (i) in order to generate 

quality molecular images from entire sections, routine lateral spatial resolutions (50-150 μm) are 

often sufficient; (ii) many small molecules and lipids are ionized from tissue with high efficiency; 

and (iii) tissue imaging data in the MALDI literature can be used as a frame-of-reference for novel 

nano-MALDI approaches.  

 When nanoparticles are used for MS imaging, typically they are applied to the tissue 

section using an airbrush sprayer. Silver,
75

 gold,
76-77

 iron
57,78 

and titanium dioxide
79

 particles have 

been applied in this manner. However, particles may also be generated solvent-free using a 

sputter-coater
80 

or by implantation into tissue.
81

 These approaches are similar to soft-landing MS 

techniques;
82-84

 dry-coating techniques are particularly intriguing due to their ability to control both 

particle size and deposition layer thickness. 

 On the other hand, in order to perform MS imaging from nanostructured surfaces, the 

tissue section must be applied to the nanostructures. One nanostructure-based approach, 

nanostructure-initiator mass spectrometry (NIMS), features a porous silicon surface containing 

fluorinated silane (initiator) molecules.
59,85-89

 In order to perform NIMS imaging, tissues are 

carefully sectioned to 3-5 μm in thickness and thaw mounted to the surface.
87

 Because the laser 

must pass through the tissue to reach the nanostructures, thicker sections reduce the energy to 
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the substrate and decrease ion yields. Somewhat thicker sections (15 μm) have been thaw 

mounted to graphene oxide/carbon nanotube surfaces for MS imaging, however.
90 

Commercially-

available NALDI™ targets have also been used for tissue imaging.
56,91-92

 Instead of thaw 

mounting tissue to the substrates, surface analytes have been transferred to the target by either 

imprinting
56,91 

or laser ablation.
92 

It is possible these new sample transfer methods may help to 

circumvent issues with sample thickness on nanostructured targets.   

 The majority of nano-MALDI images in the literature reveal the spatial distribution of lipids 

and fatty acid metabolites. Different lipid classes such as phospholipids, fatty acids, sphingolipids, 

and sterols have been imaged from tissue sections using nano-MALDI.
56-57,59,75-78,87-88,90-93

  

Phospholipids and sphingolipids are abundant in tissue and are frequently detected as [M+H]
+
, 

[M+Na]
+
, or [M+K]

+
 species. Fatty acids are typically detected in negative ion mode, whereas 

sterols are typically cationized with silver in positive ion mode.  

 As mentioned earlier, emerging nano-MALDI approaches are capable of detecting 

proteins larger than 100 kDa.
65

 However, in the context of MS imaging, 1.9 kDa is the largest m/z 

value for which a molecular image has been generated to date.
77

 Therefore, it is expected nano-

MALDI imaging of peptides and proteins will emerge in the near future. 

 Small analytes such as endogenous amino acids and exogenous drug molecules have 

also been imaged using nano-MALDI.
79-80,86,88,94-96 

While quantitation of small molecules by MS 

imaging is difficult, TiO2 nanoparticles allowed for the amino acid histidine to be quantitatively 

imaged with a relative standard deviation (RSD) of approximately 12%.
79

 An R
2
 value of 0.9976 

was obtained across a linear concentration range of 0.1-1.6 μg histidine/mm
3
 tissue. 

 Small molecules have also been imaged in three dimensions using serial tissue 

sections.
89

 Thin serial sections were thaw mounted to NIMS substrates and the two-dimensional 

images were acquired. After acquisition, molecular maps were aligned vertically using MATLAB. 

 Tissue imaging can be performed using high spatial and mass resolution when nano-

MALDI is coupled to proper MS instrumentation. Small regions of tissue have been imaged with 

10 μm spatial resolution using TOF mass analyzers.
75,78

 Most reflector-TOF instruments have 

good ion transmission and relatively high mass resolution (m/Δm typically 5,000-10,000), which is 
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sufficient for imaging low mass analytes. For larger analytes, higher mass resolution may be 

desired to resolve overlapping signals. Nanomaterial-based tissue imaging using an Orbitrap 

mass analyzer allows species to be resolved by small differences in m/z and identified by tandem 

MS. As mentioned earlier, the primary drawback of both high-spatial and high-mass resolution 

Orbitrap imaging is long data acquisition times.  

 

1.4 Prospects in Single-cell Imaging 

 While nano-MALDI imaging of plant and tissue sections is becoming more established in 

the literature, imaging intact molecules from individual cells presents a much greater challenge. In 

order to generate quality images of most cells, spatial resolution needs to approach 1 μm or less. 

At this resolution, UV lasers must be focused to a point scarcely wider than their diffraction limit 

(discussed further in Chapter 5). Additionally, small irradiation areas contain very few analyte 

molecules, requiring a very efficient and sensitive ionization process to generate sufficient signal-

to-noise.
97

 

 Given these challenges, nano-MALDI may prove to be a useful technique for high-spatial-

resolution MS imaging from cells. Nanomaterials have very high surface areas which allow 

analytes to be pre-concentrated in nanometer-sized regions before laser irradiation. As a result, 

these techniques require low fluence values for ionization,
98 

generate minimal in-source 

fragmentation,
99

 and ensure analytes remain in their native locations. Moreover, nano-MALDI 

methods have demonstrated impressive limits of detection for small molecules, down to 

zeptomole
100

 and potentially sub-zeptomole
59

 amounts. Because of these advantages, methods 

such as NIMS,
59

 nanopost array (NAPA),
100

 and DIOS
58,101

 are capable of detecting small 

molecules and lipids from individual cells. It is important to note several other laser-based 

approaches such as laser ablation electrospray ionization (LAESI)
102

 and single-cell MALDI
103-105 

have begun to demonstrate this ability as well. Cells used in all of these proof-of-concept 

experiments were rather large, however. Secondary ion mass spectrometry (SIMS) techniques 

have been capable of detecting analytes from sub-cellular regions for some time, but secondary 

ion yields of intact biomolecules are typically low.
106 

Developments in polyatomic cluster ion 
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beams such as C60 for SIMS may improve the detection of several types of biological molecules 

>500 Da.
107

 Nevertheless, due to a combination of spatial accuracy, soft ionization, and low limits 

of detection, nano-MALDI methods are particularly well-suited for direct imaging of intact 

metabolites and lipids from sub-cellular regions. 

 Regardless of the material used for LDI, further improvements in laser and/or ion optics 

are needed in order to detect molecules from single-micrometer regions within a cell. Noteworthy 

advances in high-resolution MALDI imaging include scanning microprobe laser optics,
108-111 

spatial-preserving ion optics for ion microscopy,
112-113 

and transmission-geometry.
105,114-115

 

Although fundamentally distinct, each method has achieved low-μm spatial resolutions while 

maintaining relatively soft ionization. However, none have been coupled with nanomaterial-based 

targets. Optical methods such as these can be coupled with nano-MALDI for more sensitive sub-

cellular imaging of intact biological molecules. 

 

1.5 Conclusions and Objectives 

 Specific nano-MALDI methods previously used for MS imaging are summarized in Table 

1-2. Together, these approaches are well-suited for imaging small metabolites and lipids from 

plant and animal tissue samples. Although the majority of nano-MALDI imaging techniques have 

been limited in their usable mass range, several emerging approaches are able to ionize kDa 

species and may be utilized for MS imaging of larger molecules such as proteins in the future. 

Due to high sensitivity, soft ionization, spatial resolution unhindered by organic matrix crystals, 

and potential integration with microscopy techniques, it is suggested that nano-MALDI techniques 

be coupled with recent developments in laser and/or ion optics for single-cell and even sub-

cellular MS imaging.  

 The primary purpose of my research in the McLean laboratory was to explore the NIMS 

platform for high-resolution MS imaging. In Chapter 2, the optimization of novel semi-transparent 

NIMS substrates for MS and optical imaging of cells is discussed. In Chapter 3, a hybrid NIMS-

MALDI strategy is evaluated, for the purpose of increasing ion yields such that sub-cellular 

sensitivity may be attained. 
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Approach Material(s) 
General 

Comments 
Imaging 

Applications 
Key 

Refs. 

     

DIOS 
Nanoporous n-

type pSi surface 

Sensitive, low noise, 
surface reproducibility/ 

stability can be an issue 
Cells, tissues 58, 101 

     

NIMS 
Nanoporous p-
type pSi surface 

w/ coating 

Sensitive, low noise, 
more robust than DIOS, 
requires very thin tissue 

sections 

Cells, tissues 59, 88 

     

NALDI 
Nanowire surface 
(ZnO, GaN, etc.) 

w/ coating 
Very similar to NIMS Tissues 56, 91 

     

GO-MWCNT 

Combined 
graphene oxide / 

carbon 
nanotubes 

Ions are primarily 
cationized, good surface 
reproducibility/ stability 

Tissues 90 

     
Nanoparticle-

based 
methods 
(SALDI, 

GALDI, etc.) 

Au, Ag, TiO2, 
Graphite, Fe, etc. 

Ions are primarily 
cationized, NPs applied 
directly onto sample (no 

issues with tissue 
thickness) 

Tissues 
57, 70, 75, 

79 

     

  
 
Table 1-2. Summary of nano-MALDI approaches used in biological MS imaging. 

 
 
 
 
 
 

  



 
 

19 
 

 As described in this chapter, materials are proving to be increasingly useful in MS 

research. On the other hand, structural MS techniques are also proving to be extremely useful in 

materials characterization. Another purpose of my research was to use structural MS techniques 

to characterize small molecules involved in materials chemistry processes. In Chapter 4, these 

isomeric species are characterized and differentiated by several MS and computational modeling 

methods. 
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CHAPTER II 

SEMI-TRANSPARENT NANOMATERIAL THIN FILMS FOR MASS SPECTROMETRY IMAGING 

AND OPTICAL MICROSCOPY 

2.1 Introduction 

 A number of irradiation-based methods may be used to perform MS imaging, including 

but not limited to SIMS,
1-3

 MALDI,
4-5

 laser ablation – inductively coupled plasma (LA-ICP-MS),
6-7 

and LAESI.
8-9 

Traditionally, SIMS has achieved the best spatial resolution (sub-μm), but its ability 

to ionize intact biological molecules has been limited. However, recent cluster-based ion beams 

such as C60
+
 have improved the usable mass range to approximately 1 kDa using low-μm spatial 

resolution.
10

 High-resolution MALDI imaging approaches such as scanning-microprobe MALDI 

(SMALDI) and ion microscopy make use of unique optics and instrumentation to image with 

spatial resolutions less than 10 μm.
11-14

 At this resolution, MALDI matrix application and the 

resulting co-crystallization with sample plays a significant role in the resulting quality of the 

images.
15

 LA-ICP-MS is capable of quantitative imaging, but is essentially limited to elemental 

analysis. The primary advantage of LAESI is that desorption occurs at atmospheric pressure, so 

little to no sample preparation is needed.
16

 Nevertheless, LAESI utilizes IR lasers which have 

cannot be focused as sharply as UV lasers used in MALDI or LA-ICP-MS due to diffraction limits. 

 While these methods differ in terms of strengths and limitations, a common trend has 

emerged: as imaging spatial resolution increases, sensitivity decreases. There are several likely 

causes for this observation. First, as sample desorption area decreases, there are fewer 

molecules to be ionized; therefore, ion yields decrease. Second, for techniques such as SIMS 

and MALDI, the energy required to ionize molecules increases significantly as the irradiation area 

is reduced.
17-18

 The resulting excess energy can induce analytes to fragment in the source region 

of the mass spectrometer. A goal of the biological MS imaging community is to circumvent these 

limitations in order to generate images with sub-cellular spatial resolution, high sensitivity, and 

soft ionization. 
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 Another method introduced in the previous chapter, NIMS, may lead to sub-cellular 

spatial resolution, high sensitivity and soft ionization of biomolecules.
19-20

 NIMS ionization utilizes 

energy-absorbing (laser- or ion-beam) nanoporous silicon substrates coated with viscous liquid 

initiators; these initiators help transfer energy to sample molecules but rarely ionize, generating 

mass spectra with very low background noise. This reduction in chemical noise leads to 

impressive sensitivity, especially in the low m/z region.
19,21

 Several factors likely contribute to this 

sensitivity, including efficient desorption from porous silicon (pSi) and initiators which can extract 

and pre-concentrate biological molecules.
22

 Although it is more common to use hydrophobic 

initiators, hydrophilic initiators have been shown to extract and ionize polar molecules as well.
23

 

Moreover, pores ~10 nm in diameter limit lateral diffusion of analyte molecules and ensure that 

MS images obtained using NIMS are spatially accurate.
24

 Current substrates, however, are 

formed on non-transparent Si wafers which do not allow for the visualization of cells by 

microscopy. In this chapter, novel semi-transparent NIMS films are introduced for both MS 

imaging and optical microscopy.  

 

2.2 Experimental Section 

Materials 

Angiotensin II and ethanol were obtained from Sigma-Aldrich USA. Hydrofluoric acid (48-

51% in water) was purchased from Acros Organics. Hydrogen peroxide (30%) and concentrated 

sulfuric acid were from Fisher Scientific. Bovine insulin (5 pmol/μL stock) was obtained from 

Waters Corporation and bis(heptadecafluoro-1,1,2,2-tetrahydrodecyl)tetramethyldisiloxane 

(BisF17) was obtained from Gelest. Transparent indium tin oxide (ITO) glass slides were obtained 

from Delta Technologies.  

 

Fabrication and Preparation of NIMS Films 

P-type crystalline silicon wafers (Boron-doped, ‹100› orientation, 0.01 Ω resistivity) were 

cut into squares using a diamond tip pen, were rinsed with deionized water, and then were 

soaked in piranha (2:1 concentrated H2SO4 : 30% H2O2) solution for 30 minutes. Chips were 
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rinsed thoroughly with deionized water and dried with nitrogen. Porous silicon was then formed 

using a 25% hydrofluoric acid solution (1:1 50% HF and ethanol) in a custom Teflon etching 

chamber with an etching area of 2 cm
2
. 

In order to form semi-transparent films, a two-step etching process was used. First, a 

constant current density was applied to etch pores perpendicular to the surface. For this step, 

both etching times and applied current densities were varied in order to produce pSi films with 

different porosities and thicknesses and to determine how the parameters affect film transparency 

and NIMS performance (see Table 2-1). Second, a higher current density was applied in a pulsed 

manner to break off the pSi films. Because of the high current density, a region of effectively 

100% porosity is formed at the pSi – Si wafer interface, resulting in film detachment.
25

 All films 

were removed using the following procedure. A current density of 250 mA/cm
2
 was applied for 1.7 

seconds and followed by 1.7 seconds of rest before the next current density pulse was applied. 

This was performed 2x over a time of 6.8 seconds. Then a current density of 210 mA/cm
2
 was 

applied for 1.7 seconds followed by 6.0 seconds of rest. This was repeated 10x over a time of 

77.0 seconds. Films were rinsed with ethanol and transferred from the silicon wafer to ITO-coated 

slides using tweezers. Films were manually attached to ITO-coated glass in a dish of ethanol. 

After attachment, films were oven dried at 80°C for 5 minutes to remove the trapped solvent.  

Before the addition of analytes for MS analysis, bare pSi films were briefly rinsed with 1% 

HNO3, deionized water and dried. 
 
Then, 30 μL of BisF17 initiator was spotted onto each pSi film, 

which was incubated for 45 minutes and then dried (N2 gas and low heat, repeated 3x). It was 

important to use a gentle stream of N2 when drying, or else films could crack or separate from the 

ITO-coated glass slides. NIMS films not used for cell imaging were stored at room temperature. 

 

SEM Imaging of Porous Silicon 

Average pore diameters and film thicknesses were measured from SEM images using 

ImageJ software (NIH, http://rsbweb.nih.gov/ij/). Images were obtained on either a Hitachi S-4200 

or a Raith eLiNE microscope, both of which are in the Vanderbilt Institute of Nanoscale Science 

and Engineering (VINSE) core laboratory. Small pieces of pSi were broken off from larger films 
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and attached to conductive carbon tape for SEM surface imaging. Film thicknesses were 

determined by etching layers into a silicon wafer (each layer corresponding to the etching 

conditions of an individual film), cleaving the wafer in half and performing cross-sectional SEM 

imaging.  

 

NIMS Optimization and Analysis 

Optical density measurements were performed on a Cary UV-vis spectrometer. MS 

optimization experiments were performed on a Voyager-DE-STR mass spectrometer (Applied 

Biosystems) in both linear and reflectron TOF modes. The linear mode settings were as follows: 

100 ns delayed extraction, 95% grid, and 50 shots per spectrum.  Reflectron mode was used with 

the following settings: 140 ns delay, 70% grid, and 40 shots per spectrum. A nitrogen gas laser 

(337 nm) was used in all non-imaging experiments. A stock solution composed of 250 fmol/μL 

angiotensin II and 500 fmol/μL bovine insulin was prepared and used for MS optimization studies. 

On each film, three 1.0 μL spots were placed, and three spectra were taken for each spot (0-7000 

m/z range). Ion signal intensities were determined using the centroid function in Data Explorer 4.3 

software (Applied Biosystems) and averaged. Error bars correspond to one standard deviation. 

 

Cell Preparation 

 Cells were loaded onto NIMS substrates by Joshua Broussard (Webb group). HT1080 

cells were maintained in Dulbeco's Modified Eagles Medium or DMEM (Invitrogen) with 10% fetal 

bovine serum (FBS) (HyClone) and 1% penicillin/streptomycin (Invitrogen). Cells were then 

trypsinized with 0.25% Trypsin-EDTA (Invitrogen) and plated on the NIMS film. Cells were 

allowed to become confluent, and a scratch wound was made using a 20 μL pipet tip. Three 

hours post wounding, the growth media was removed and the sample was washed twice with 

dilute PBS. Excess PBS was aspirated, and the sample was frozen at -80 °C until analysis. 
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NIMS Imaging  

 Images were acquired using an external Nd:YAG laser (frequency tripled, 355 nm), a 

digital micromirror array,
26-27

 a Voyager DE-STR mass spectrometer (in linear mode) and MALDI 

MS Imaging Tool software (Novartis, maldi-msi.org). Images were obtained using 14 μm raster 

steps in MALDI MS Imaging Tool and processed using BioMap
 
software (Novartis, maldi-msi.org) 

without normalization. Single-pixel mass spectra were baseline corrected and processed using 

Data Explorer. Post-source decay (PSD) experiments were performed using the Voyager DE-

STR mass spectrometer using high laser energy and the timed ion selector (TIS). Lipids from the 

cell monolayer were extracted using 4:1 MeOH:H2O and placed on a clean NIMS film for PSD 

analysis. 

 

Optical Microscopy  

Phase-contrast microscopy was performed on a Leica DMIL microscope with a NPLAN 

5x phase 0 (NA 0.12) objective lens. 

 

Safety 

Piranha solution (2:1 concentrated H2SO4 : 30% H2O2) is a strong oxidant. All work with 

piranha solutions should be performed in a fume hood using the proper protective equipment, 

glass beakers and stainless steel tweezers. Let piranha waste cool for at least 24 hours before 

storage or neutralization. 

Hydrofluoric acid (HF) is extremely toxic. In addition to reading the MSDS report for HF, 

please consult reference 28. All HF chemistry should be performed in a fume hood with proper 

protective equipment, using Teflon or plastic containers and plastic tools.  

 

2.3 Results and Discussion 

NIMS Film Optimization  

 The purpose of our optimization experiments was to determine the best film parameters 

(pore size and film thickness) for both NIMS and optical microscopy. Pore diameters and film 
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thicknesses (i.e. pore depths) were first measured by SEM (Figure 2-1) because multiple 

substrates were prepared under different anodic etching conditions (Table 2-1). For all 

substrates, average pore diameters (< 20 nm) were three orders of magnitude less than pore 

depths (< 20 μm). For constant etching times, increasing the applied current density increased 

the etching rate and, thus, the resulting film thickness (Table 2-1). When current density was held 

constant, longer etching times also produced thicker films (Table 2-1). The etching time did not 

have a significant effect on pore diameter (Table 2-1). In summary, it was observed that both 

current density and etching time affected the film thickness, but current density affected the pore 

size more than etching time. These trends are consistent with prior studies on porous silicon.
29

 

 The film thickness plays a significant role in the transparency of the film. The pore size 

does not affect film transparency; the pores are small compared to visible wavelengths and hence 

are not expected to cause scattering losses that would reduce transparency. Silicon absorbs light 

of energy below the bandgap (1.1 eV), which includes UV and visible wavelengths. Optical 

density measurements were used to quantify the relationship between film thicknesses and light 

absorption (Figure 2-2A). UV and visible light absorption increased with increasing film thickness. 

Higher-energy visible wavelengths and UV light were absorbed strongly, while lower-energy 

visible wavelengths were absorbed to a lesser degree. In order to determine a threshold for 

evaluating transparency, percent transmission values at 700 nm were compared. Films less than 

15 μm in thickness transmitted >15% of 700 nm light and were considered sufficiently 

transparent. Films more than 15 μm in thickness allowed <15% of 700 nm through and were 

considered insufficiently transparent. A qualitative evaluation of transparency was also 

performed, and correlated well with our spectrophotometry studies (Figure 2-3). 

NIMS performance was plotted against film thickness (Figure 2-2B). Films less than 15 

μm are shown as open shapes in Figure 2-2B, and films above 15 μm are shown as dark 

shapes. Angiotensin II peptide ([M+H]
+
 = 1046.5 Da, 250 femtomoles in a ~100 μm spot) was the 

biomolecular standard which was desorbed from the surface and ionized. Between 8-13 μm,  
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Figure 2-1. Characterization of semi-transparent substrates by SEM. (a) Top view. Pores are 
approximately 10 nm in diameter. (b) Cross-sectional view. (c) Three pSi layers were etched on 
top of one another, and film thicknesses were measured. All film thickness values are presented 
in Table 2-1. 
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Film # Etch Time 
(s) 

Current Density 
(mA/cm

2
) 

Pore Depth 
(μm) 

Avg. Pore Diameter 
(nm) 

1 300 24 7.8 7 ± 3 (n = 101) 

2 300 36 9.8 12 ± 3 (n = 92) 

3 300 48 10.7 18 ± 5 (n = 85) 

4 450 24 11.9 9 ± 5 (n = 100) 

5 450 36 14.9 13 ± 5 (n = 80) 

6 450 48 16.1 17 ± 8 (n = 56) 

7 600 24 12.8 7 ± 4 (n = 72) 

8 600 36 16.9 11 ± 4 (n = 125) 

9 600 48 18.7 14 ± 7 (n = 195) 

 

Table 2-1. Relating etching conditions with film parameters. Film thicknesses and pore diameters 
were measured with SEM. Etching times and current densities correspond to non-pulsed etching 
which generated the porous silicon layers. All films were removed from the silicon wafer using the 
same procedure. 
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Figure 2-2. Optimization of semi-transparent substrates. (a) Optical density measurements of 
substrates with thicknesses of 8, 11, 16, and 19 μm. (b) Relating film thickness to NIMS 
performance. Intensities are the logarithm of peak areas generated from 250 femtomoles 
angiotensin II peptide. Different shapes correspond to different etching current densities from 
Table 2-1. Open shapes correspond to substrates which were sufficiently transparent (>15% 
transmission at 700 nm), while dark shapes correspond to substrates which were not sufficiently 
transparent for microscopy. The optimized film thickness (13 μm) for NIMS and optical 
microscopy is circled. (c) Characteristic mass spectra from optimized NIMS substrate. (top) 250 
femtomoles angiotensin II peptide (DRVYIPHF, [M+H]

+
 = 1046.5 Da); (bottom) 500 femtomoles 

bovine insulin ([M+H]
+ 

= 5734 Da). 
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Figure 2-3. Backlit CCD photographs of NIMS substrates above a metal grid. Semi-transparent 
NIMS films have thicknesses of (a) 10 μm, (b) 13 μm, and (c) 19 μm. Substrates for parts a-c are 
attached to ITO-coated glass slides. (d) Traditional NIMS surfaces on silicon wafers are not 
transparent. 
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signal from our substrates increased with film thickness. Similarly, Woo et. al. reported signal to 

noise increases using longer etching times (hence, thicker pSi) for standard NIMS.
21

 However, 

signal intensities began to level off above 13 μm due to detector saturation. Therefore, for 

optimum NIMS performance and transparency, it was determined that semi-transparent films 

should have thicknesses of 13 μm.  

Like standard NIMS wafers, our optimized films generated very low chemical noise in the 

low m/z region (Figure 2-2C, top). Several low-mass background peaks were observed rarely, 

however, and more pronounced when a spot without analyte was laser-irradiated (Figure 2-4). 

These molecules have been suggested to be alkylammonium salts used in the silicon fabrication 

process,
30

 and were minimized by a quick 1% HNO3 rinse before the addition of initiator. Although 

NIMS films produced very clean mass spectra, sensitivity decreased when analyzing larger 

molecules, resulting in a sensitive (femtomole) mass dynamic range of approximately 6 kDa 

(Figure 2-2C, bottom). Substrates were stable at room temperature for several months without a 

significant loss in performance (Figure 2-5). 

 

Cell Imaging 

 Cell signaling and collective cell migration play vital roles in many biological processes, 

including cancer.
31

 Therefore, this imaging platform was used to visualize molecular distributions 

at the leading edge of migrating cells. As a proof-of-concept experiment, a scratch-wounded 

HT1080 fibrosarcoma cell monolayer was imaged. A phase-contrast microscope image was 

obtained from the wounded cell monolayer on the semi-transparent NIMS surface prior to mass 

spectrometry imaging (Figure 2-6), verifying that enough visible light passes through the film for 

optical microscopy. Because material is laser-ablated for NIMS, optical microscopy was 

performed off-line, before MS imaging. Improvements in our MS instrumentation are required in 

order to perform microscopy and NIMS imaging in direct succession. 
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Figure 2-4. Background NIMS signals - observed only when irradiating an analyte-free region on 
the film using high laser fluence. Several peaks (86, 102, 130, 155 Da) correspond to those 
described in Wen et. al. (Ref. 30), which were suggested to be alkylammonium salts used in the 

silicon fabrication process. 
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Figure 2-5. Detection of 10 femtomoles of neurotensin peptide ([M+H]
+
 = 1673 Da). Spectrum 

was obtained from 3-month-old NIMS film stored at room temperature and air. 
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Figure 2-6. NIMS imaging and optical microscopy of cells. (a) Phase-contrast microscope image 
of scratch-wounded HT1080 cell monolayer on semi-transparent NIMS film. Scale bar is 250 μm. 
A single cell at the wound edge is contained in a 250 x 250 μm white box. (b) Single-pixel NIMS 
mass spectrum from wounded cell monolayer. Imaged masses are labeled. Mass spectrometry 
images of (c) PC 34:1 ([M+H]

+
 = 760.5 Da) and (d) PC 36:1 ([M+H]

+
 = 788.5 Da) allow cell 

membranes to be located. NIMS images were obtained with a spatial resolution of 14 μm. Signal 
intensities are expressed using a false coloring scale (low/blue  high/red). MS image scale bars 
correspond to 250 μm. Individual cells at the wound edge are contained in the 250 x 250 μm 
white box in part (d). 
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 For the imaging experiment outlined in this manuscript, a simplified version of an external 

laser-focusing system and a commercial TOF mass spectrometer was used to confirm the 

practicality of NIMS imaging (Figure 2-7). A single-pixel NIMS mass spectrum using 3 laser shots 

is shown in Figure 2-6B. Each image pixel was 14 μm in height and width (Figure 2-8). Two-

dimensional images of phosphatidylcholine or PC 34:1 (760.5 Da) and PC 36:1 (788.5 Da) are 

presented in Figures 2-6C and 2-6D, respectively. These lipids were specific to cell membranes, 

allowing for the wound to be differentiated from the cell monolayer and visualized in blue. Single 

cells at the wound edge are shown in the white 250 x 250 μm box in Figure 2-6D. Here, the 

ability to resolve PC lipids by their intact m/z values is demonstrated while maintaining a relatively 

high spatial resolution. Lipid identifications were supported by post-source decay (PSD) 

experiments (Figure 2-9). However, a more robust tandem MS approach (e.g. collision-induced 

dissociation) is needed to determine the exact composition of fatty acid tails. 

 Because NIMS is a surface-based technique, the efficiency of the laser 

desorption/ionization process is repressed when thick layers of material are present. 

Consequently, Siuzdak and colleagues have used very thin serial sections (3-5 μm) when 

performing NIMS tissue imaging experiments.
32

 Before our cell imaging experiments, monolayers 

attached to the NIMS film were placed in vacuum for at least 3 hours to degas the cells, 

decreasing their thickness and improving MS performance slightly. The BisF17 initiator has an 

extremely low vapor pressure, so the NIMS substrate was stable under high vacuum (≤ 10
-7

 Torr). 

Nevertheless, detecting biomolecules directly from cells was less efficient than from solutions 

spotted on the surface. As with standard NIMS, a primary limitation of semi-transparent NIMS is 

that sensitivity decreases with thick samples.   
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Figure 2-7. Schematic of instrumentation used for NIMS imaging. A frequency-tripled Nd:YAG 
laser (355 nm) is fired onto a digital micromirror device (inset), which redirects a small, selected 
portion of the beam towards the Voyager DE-STR mass spectrometer. The mass spectrometer is 
operated in either linear or reflector TOF mode. The timed ion selector (TIS) can be used to 
isolate m/z values for PSD fragmentation. 
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Figure 2-8. Raw NIMS image of m/z 788.5 (PC 36:1) from scratch-wounded HT1080 cell 
monolayer. Image was acquired using MALDI MS Imaging Tool software. Individual pixels are 14 
x 14 μm. Image covers a total area of 2.1 mm by 1.2 mm. 
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Figure 2-9. NIMS post-source decay (PSD) mass spectra of imaged phospholipids (760.5 Da, PC 
34:1; 788.5 Da, PC 36:1). Fragments of 184 Da support PC assignments. Lipids were extracted 
from cells using 4:1 methanol to water and placed on a fresh substrate before analysis. 
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 An additional limitation of this approach is that, like MALDI, higher fluence is needed to 

generate sufficient signal for imaging from low-micrometer dimensions. This tends to introduce 

more chemical noise into the NIMS mass spectrum and can reduce the softness of ionization. 

Theoretically, NIMS imaging resolution is limited only by the diffraction limit of the laser used, and 

not by crystal size of a co-crystalizing MALDI matrix. Practically, however, NIMS spatial resolution 

is determined not only by laser spot size but also laser fluence and sensitivity.  

 

2.4 Conclusions 

 In conclusion, porous silicon films have been developed which allow for the pairing of 

optical microscopy and the molecular mapping capabilities of NIMS. Unlike MALDI, NIMS 

generates little chemical noise and is thus a powerful method for analyzing small molecules, 

metabolites, peptides and even small proteins with sensitivity and 14 μm spatial resolution. As 

our instrumentation and spatial resolution improves, the strength of coupling NIMS with optical 

microscopy is the potential to target specific biological molecules in precisely defined sub-cellular 

regions. 
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CHAPTER III 

HYBRID ORGANIC-INORGANIC NANOMATERIAL MATRIX FOR ENHANCED IONIZATION OF 

BIOLOGICAL MOLECULES 

3.1 Introduction 

 Several advantageous properties of the NIMS platform previously described - low 

chemical noise, high-specificity surface interactions based on fluorine-fluorine affinity, high 

sensitivity for small analytes, etc. - can be attributed to the Teflon-like BisF17 initiator shown in 

Figure 3-1a.
1-4

 For example, the low background noise in NIMS is likely due to the UV 

transparency of the BisF17 initiator. When the substrate is irradiated, the laser energy passes 

through the initiator and is absorbed strongly by top layer of porous silicon. Energy is transferred 

rapidly to the initiator as heat, leading to soft desorption of initiator and analyte. Due to the low 

proton affinity of the initiator, however, only the analyte is detected by the mass spectrometer. On 

the other hand, because the initiator is not a direct proton source like organic MALDI matrix, 

analytes with low proton affinities are typically detected as cationized species. 

 However, the primary limitation of NIMS when compared to traditional MALDI is reduced 

sensitivity for higher-mass analytes such as large peptides and proteins.
5
 There are likely two 

main causes for this observation. First, the energy cost of large-analyte desorption is likely higher 

in NIMS than in MALDI. In traditional MALDI, peptides and proteins are directly incorporated into 

organic matrix crystals.
6
 Although the energetic cost of desorbing a large analyte molecule (e.g. 

protein) is higher than a small analyte molecule (e.g. metabolite), large analytes are diluted in the 

matrix crystal so that adjacent matrix molecules can pool excess energy together and release the 

analyte into the gas phase as described in Chapter 1. In NIMS, no mixing occurs between the pSi 

matrix target and analytes. The initiator absorbs energy from the pSi as heat and desorbs with 

analyte. Therefore, localized energy pooling is reduced and fewer intact analytes are desorbed. 

Second, analyte protonation is likely a less efficient process in NIMS than in MALDI. In traditional 

MALDI, gas-phase protonation occurs so that desorbed neutrals are ionized in the matrix plume. 

In NIMS, the initiator is not a proton source. It is unclear if gas-phase protonation occurs via 
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Figure 3-1. Tested compounds for composite matrix-initiator surface. (a) BisF17, or 
bis(heptadecafluoro-1,1,2,2-tetrahydrodecyl)tetramethyldisiloxane; (b)-(f) Novel perfluorinated 
matrix compounds designed and synthesized at Vanderbilt. 
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desorbed Si-OH clusters.
7
 If it does occur, it is possible the efficiency of this mechanism is lower 

than in MALDI. 

 Motivated by previous surface chemistry strategies for improved specificity and/or 

sensitivity in nano-MALDI,
4,8-13

 it was hypothesized a photoactive MALDI matrix containing a 

perfluorinated tag which has affinity for the initiator could both improve NIMS ion yields of higher-

mass analytes and suppress chemical noise in the mass spectrum. To test this hypothesis, five 

matrix derivatives (Figure 3-1b - 3-1f) were synthesized to interact with the BisF17 initiator via 

fluorine-fluorine interactions as shown in Figure 3-2. Three compounds were modelled after 2,5-

dihydroxybenzoic acid (2,5-DHB), one after sinapinic acid (SA), and one after alpha-cyano-4-

hydroxycinnamic acid (CHCA), organic matrices shown in Table 1-1. In this chapter, NIMS 

performance of each matrix was monitored, and a potential hybrid mechanism was determined.  

 

3.2 Experimental Section 

Materials 

 NIMS substrates were synthesized as in Chapter 2. Novel matrix compounds were 

synthesized by Plamen Christov of the Vanderbilt Institute for Chemical Biology Chemical 

Synthesis core and were characterized by nuclear magnetic resonance (NMR; Plamen), IR, and 

accurate mass (Table 3-1). These details are presented in Appendix D. Matrices were dissolved 

in 99.9% ethanol / 0.1% formic acid and applied to the target. The bis(heptadecafluoro-1,1,2,2-

tetrahydrodecyl)tetramethyldisiloxane (BisF17) initiator was obtained from Gelest. Peptides and 

proteins were obtained from Sigma.    

 

Mass Spectrometry 

 NIMS-MALDI experiments were performed using a Voyager DE-STR mass spectrometer 

in the reflector TOF configuration, except for in the analysis of ubiquitin protein (linear TOF 

configuration). Reflector mode TOF settings were as follows:  20 kV acceleration voltage, 70% 

grid voltage, 200 ns extraction delay,  m/z range 100 - 2000, 50 shots per spectrum, laser 

intensity ranging from 1800 - 2500 (arb. units). Linear mode TOF settings were as follows: 20 kV  



 
 

53 
 

 

 

 

 

 

 

 

Figure 3-2. Hypothesized surface orientation for perfluorinated MALDI matrices on NIMS surface. 
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Matrix 
Compound 

Molecular 
Formula 

Theo. Mass 
(Da) 

Meas. Mass 
(Da) 

Error 
(ppm) 

ε a  337 n  
(M

-1
 cm

-1
) 

 
VU0470056 

(SA-56) 

 
C26H15F17O3 

 
698.0749, 

[M
•
]
+
 

 
698.0751 

 
+0.29 

 
2.7 ± 0.3 x 10

4 

 
 

VU0470057 
(DHB-57) 

 
C24H15F17O4 

 
689.0620, [M-

H]
+
 

 
689.0605 

 
-2.18 

 
8.7 ± 0.5 x 10

3 

 
 

VU0470058 
(DHB-58) 

 
C14H11F9O4 

 
453.0151, 

[M+K]
+
 

 
453.0132 

 
-4.19 

 
1.3 ± 0.1 x 10

3 

 
 

VU0470059 
(DHB-59) 

 
C25H17F17O5 

 
719.0726, [M-

H]
+
 

 
719.0740 

 
+1.95 

 
7.7 ± 0.6 x 10

3 

 
 

VU0470060 
(CHCA-60) 

 
C21H13F17N2O2 

 
649.0778, 

[M+H]
+
 

 
649.0789 

 
+1.69 

 
3.5 ± 0.3 x 10

4 

 

Table 3-1. General information for 5 compounds. Accurate mass and molar absorptivity raw data 

may be found in Appendix D. 
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acceleration voltage, 90% grid voltage, 400 ns extraction delay, m/z range 2000 - 20000, 75 

shots per spectrum, laser intensity ranging from 2200 - 2600 (arb. units). 

 Accurate mass measurements on novel matrices were performed without additional 

MALDI matrix using a Synapt G2-S mass spectrometer in LDI-IM-MS resolution mode. Synapt 

G2-S instrument settings include: m/z range 300 - 2000, laser intensity 250 (arb. units), IM wave 

velocity 650 m/s, IM wave height 40.0 V. All G2-S settings are provided in the Appendix. 

 

UV-Vis Spectroscopy 

 UV-Vis measurements were performed on a Cary UV-Vis spectrometer. Each compound 

was 25 μM in 100% ethanol and diluted in series as necessary. Data was continuously 

background subtracted using an ethanol blank. Molar absorptivity values were calculated at 337 

nm, the wavelength of nitrogen laser used with the Voyager DE-STR mass spectrometer. 

 

Bond Energies  

 Bond energy calculations were performed by Sarah Stow (McLean group) using 

Gaussian 09 software.
14

 

 

3.3 Results and Discussion   

 Previous studies on MALDI matrix selection show that it can be difficult to predict the 

success or failure of a specific compound based solely on structure.
15-16

 In these studies, various 

positional isomers were evaluated for MALDI performance (e.g. 2,5-DHB vs. 2,6-DHB) and 

several interesting observations were made, including: excited-state matrix processes appear to 

be related to the position of -OH and -COOH functional groups; ion yields increase when the 

matrix surface area increases; and the strength of laser absorption is not directly correlated to 

matrix performance. Based on these observations, probing the relationship of matrix performance 

and UV laser absorption in our system was of great interest for practical purposes and for better 

understanding of the NIMS mechanism. In particular, the prospect of a hybrid NIMS-MALDI 
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mechanism was intriguing because the NIMS surface itself has high surface area and absorbs 

UV laser irradiation.  

 The neuropeptide bradykinin (RPPGFSPFR) and an acidic analog (DPPGFSPFD) were 

used to compare MS performance between different matrix-initiator combinations and against a 

NIMS control having only initiator as shown in Figure 3-3a. When SA-56, DHB-58, or CHCA-60 

were combined with initiator, decreases in signal were observed compared to the control. 

Combining DHB-57 matrix with initiator resulted in similar performance for the bradykinin peptide 

as the control, yet lower performance for the acidic analog. In contrast, we observed a significant 

improvement in bradykinin signal when DHB-59 was combined with initiator relative to the control. 

However, ion yields for the acidic analog were effectively the same relative to control. We find it 

particularly interesting that, for both DHB-57 and DHB-59, there was a greater difference in signal 

between the basic peptide and the acidic peptide relative to traditional NIMS control (see below). 

  In addition, UV-vis absorption spectroscopy was performed on all five compounds for 

NIMS enhancement (Fig. 3-3b). Additionally, the molar absorptivity of each was determined at 

337 nm, the wavelength of nitrogen lasers commonly used for LDI (Table 3-1). DHB-56 and 

CHCA-60 absorbed strongly in the UV, whereas DHB-57 and DHB-59 absorbed UV light less 

strongly. DHB-58 absorbed the least amount of UV light of the five compounds.  

 From the MS and UV-Vis absorption data, three potential mechanisms exist for 

composite matrix-NIMS: two which suppress ion signal, and one which can (potentially) enhance 

ion signal. For the compounds which absorb strongly at 337 nm (SA-56 and CHCA-60), both 

matrix and analyte directly desorb from the NIMS surface without allowing the laser irradiation to 

enter the pores. As a result, advantages of using the NIMS surface (high surface area, acidic 

surface chemistry, etc.) are minimized and ion yields are low. Ion yields are low also for the 

compound which does not absorb strongly at 337 nm (DHB-58). In this second mechanism, only 

a small amount of laser energy is absorbed by the surface matrix, preventing the laser from 

penetrating down to the NIMS surface. As a result, the thick layers of inactive material likely stifle 

desorption and reduce ion yields. Two reports on nano-MALDI confirm that sensitivity decreases 

when large amounts of material are present on the surface, clogging up the pores.
17-18
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Figure 3-3. (a) Comparison of novel matrices for hybrid NIMS-MALDI relative to standard NIMS 
(Control). Intensity values were obtained by integrating peak areas (n=3). A basic (RPPGFSPFR) 
and an acidic peptide (DPPGFSPFD) were used for comparative purposes. (b) UV-visible 
absorption spectra of 5 compounds. Common UV wavelengths for NIMS and/or MALDI are 337 
nm and 355 nm. 
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 In contrast with these two suppressive mechanisms, it was observed that the compounds 

which absorbed moderately at 337 nm (DHB-57 and DHB-59) demonstrated acceptable LDI-MS 

performance. In fact, using DHB-59 in combination with BisF17 initiator showed considerable 

improvement over traditional NIMS. Figure 3-4 shows the mass spectrum of bradykinin obtained  

using (a) traditional MALDI (2,5-DHB), (b) only DHB-59 matrix without NIMS, (c) traditional NIMS 

without DHB-59 matrix, and (d) NIMS with DHB-59 matrix. When a moderately-absorbing matrix 

and the BisF17 initiator are combined, the matrix can both absorb laser energy to assist in LDI 

while also allowing laser energy into the pores for sufficient absorption and release of initiator, 

matrix, and analyte into the gas phase.  

 To probe this third mechanism further, it was explored whether DHB-59 could act as a 

matrix without the NIMS substrate. Direct LDI-MS data was obtained for the matrix, and also 

when the matrix was mixed with bradykinin. Direct LDI-MS of DHB-59 generated a minor [M+Na]
+
 

peak at 743 Da and a more intense fragment peak at 567 Da which corresponds to cleavage of 

the ester bond between the DHB moiety and the rest of the molecule as shown in Figure 3-5a. 

Bond energy calculations showed this was the weakest cleavable bond (2.04 eV). This energy is 

less than the energy of a single nitrogen laser photon (3.68 eV), further validating DHB-59 is 

photocleaved (Fig. 3-5b-c). It is notable the [M+H]
+
 ion was not observed for DHB-59. Moreover, 

no signal for the matrix fragment was observed, suggesting this moiety neutralizes back to 2,5-

DHB in the gas phase. The re-neutralized matrix molecule may be a source of protons for 

analytes; however, it appears to be in a low-energy state, as it is much less efficient at analyte 

protonation than in traditional MALDI. When DHB-59 was laser-irradiated with bradykinin, signal 

was not observed at normal laser fluence (Fig. 3-4b), and only faintly at high laser fluence as 

shown in Figure 3-6.  

 While the photocleaved matrix portion of DHB-59 may assist marginally in analyte 

protonation, the majority of evidence suggests signal enhancement comes from another matrix 

role. This is also consistent with earlier data, which showed large differences in signal between 

RPPGFSPFR and DPPGFSPFD (Fig. 3-3a). If DHB-59 is a significant proton source, increased 
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Figure 3-4. Mass spectra of 50 pmol bradykinin peptide (RPPGFSPFR, 1061 Da) using (a) 
traditional MALDI matrix (2,5-DHB); (b) only DHB-59 matrix (no NIMS), (c) traditional NIMS 
without DHB-59 matrix, and (d) NIMS combined with DHB-59 matrix. Peptide was detected using 
Voyager DE-STR in positive ion mode and reflector TOF configuration. 
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Figure 3-5. Evidence for photocleaving of DHB-59. (a) Direct laser desorption/ionization mass 
spectrum of DHB-59. The fragment at 567 Da is the base peak of the spectrum. However, no 
signal is observed for the matrix moiety. (b) Six bond energies were calculated for DHB-59 using 
Gaussian 09 software. (c) Calculations confirm the ester bond is the weakest. The energy of the 
bond, 2.04 eV, is significantly less than the energy of a single 337 nm photon (3.68 eV). 
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Figure 3-6. Detection of bradykinin peptide (1061 Da, 97 counts) was minimal using DHB-59 as a 
matrix without NIMS substrate. High laser energy was required to observe any signal. 
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ion signal for both basic and acidic peptides relative to the NIMS control would be expected. 

Surprisingly, the proton source likely remains either Si-OH surface groups or acidified solvent 

trapped in the pores, resulting in pre-formed ions – possibly both.
12,19

  

 The primary area of enhancement is likely analyte mixing and dilution on the NIMS 

surface. The matrix moiety likely orients itself away from the porous silicon surface, as shown in 

Figure 3-2 (similar to that in Ref. 4). Acting similar to a surfactant, it reduces analyte clumping 

and allows more material to adsorb to the NIMS surface for desorption/ionization. Evidence for 

this can be observed via the CCD camera in the source of the mass spectrometer. Without 

matrix, analyte tends to clump on the NIMS surface coated with initiator. However, with the matrix 

present as well, less clumping is observed. In this case, the analyte can better interact with the 

surface for LDI-MS. This would also explain the better performance of the DHB-59 matrix over the 

DHB-57 matrix. DHB-59 has an additional oxygen atom in the linker region which reduces the 

overall hydrophobicity of the matrix molecule, resulting in better analyte/matrix mixing. 

 Similar to traditional MALDI matrix,
20

 DHB-59 matrix signal can be suppressed using a 

low matrix-to-analyte ratio as shown in Figure 3-7. A matrix-to-analyte ratio of approximately 10:1 

- 25:1 gave optimal performance. Notably, when combining NIMS and MALDI approaches, 

increasing the amount of analyte is not necessary to minimize matrix signals and simplify the 

mass spectrum. Because of the presence of the NIMS surface, simply decreasing the amount of 

matrix can generate mass spectra with (at most) one background signal. 

 Using this hybrid surface, we improved the detection capabilities of ACTH(18-39) peptide 

and ubiquitin protein (Figure 3-8). To our knowledge, singly-charged ubiquitin (8.6 kDa) is the 

highest m/z value detected by NIMS to date. A previous report showed that NIMS can generate 

multiply-charged ions of a 29 kDa protein with a lower net m/z;
1
 however, we have not observed 

this phenomenon in our work, and no other NIMS manuscripts in the literature have described 

this behavior. If multiple-charging does occur from NIMS surfaces, it is likely not possible at 

biologically relevant concentrations. 
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Figure 3-7. Demonstration of the matrix suppression effect using DHB-59 matrix and NIMS 
surface. Matrix to analyte ratios are reported in mol:mol. The amount of analyte (bradykinin, 1061 
Da) was held constant at 50 pmol. 
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Figure 3-8. Improved detection of peptides and proteins. (a) Mass spectrum of ACTH 18-39 
peptide (2465 Da, the second isotope is most intense) using (top) BisF17 initiator only and 
(bottom) BisF17 initiator with DHB-59. Peptide was at 35 pmol concentration. (b) Mass spectrum 
of ubiquitin protein (8565 Da) using (top) BisF17 initiator only and (bottom) BisF17 initiator with 
DHB-59. Protein was at 1 pmol concentration, detected using linear TOF configuration. Ubiquitin 
spectra were baseline corrected. 
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3.4 Conclusions 

 In summary, DHB-59 was found to improve MS performance of peptides and proteins 

when combined with the NIMS substrate. At this point in our work, matrix-enhanced NIMS 

demonstrates consistently clean spectra (containing one background signal) across a mass 

dynamic range of 0 - 8.5 kDa.  

 Here, significant evidence is presented which supports the idea that DHB-59 acts as a 

mediator between analytes and the perfluorinated NIMS surface. This allows for more efficient 

energy transfer during desorption and improved ion yields of large analytes. Future 

structure/activity relationship studies on DHB-59 may lead to better analyte protonation 

capabilities as well, further extending the mass range and improving signal-to-noise for high 

spatial resolution MS imaging of peptides and proteins in biological systems. 
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CHAPTER IV 

STRUCTURAL ANALYSIS OF ISOMERIC POLYMER PRECURSORS BY MASS 

SPECTROMETRY AND ION MOBILITY - MASS SPECTROMETRY 

4.1 Introduction 

 As discussed in previous chapters, materials chemistry can provide unique advantages in 

mass spectrometry research, such as the development of novel matrices for MALDI-MS. On the 

other hand, mass spectrometry-based methods can provide unique information concerning the 

characterization of both inorganic materials
1-5

 and organic polymers.
6-8

 This chapter will focus on 

the analysis of polymer precursor molecules by electrospray ionization (ESI), a continuous ion 

source directly from solution introduced by Fenn et al. in 1989.
9
 

 One ubiquitous type of polymer is polyurethane (Figure 4-1). Polyurethanes are 

inherently complex and thus structural characterization of these polymers can be challenging. 

Intrinsic distributions of molecular size and cross-linking produce structural heterogeneity,
10

 even 

amongst purified samples. Additional heterogeneity can arise from varying amounts of hard and 

soft block segments and structural variations within the segments themselves.  

 Methylenedianiline (MDA) is used to synthesize methylene diphenyl diisocyanate (MDI), 

the major hard block component of polyurethanes. Most formulations of industrial grade MDA 

primarily contain 4,4’-MDA, along with a number of structural isomers and multimers.
11-13

 The 

purpose of this research is to fully characterize structural variations within MDA mixtures and 

eventually MDI mixtures. However, in order to better understand complex mixtures of MDA and 

MDI, it is first necessary to study dimeric MDA regioisomers that differ only by the position of 

amine functional groups, as shown in Figure 4-2 (asterisks indicate unique protonation sites). By 

characterizing specific dimer species, we can gain insight into the behavior of more complex 

multimeric structures, and eventually determine relative abundances in complex MDA mixtures. 

Previous MDA studies in the literature were typically done in a workplace exposure context, and 

utilized gas chromatography - mass spectrometry (GC-MS),
13-15

 or more recently liquid 

chromatography - mass spectrometry (LC-MS) detection.
16-21

  Limitations of these methods for  
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Figure 4-1. Basic structure of polyurethane. The subject of this study is methylenedianiline 
(MDA), a precursor to the hard block segment. 
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Figure 4-2. Structures of MDA positional isomers (theo. neutral molecule monoisotopic mass = 
198.12 Da). Potential protonation sites are labeled with an asterisk. 
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MDA characterization include the necessity for sample derivatization (GC-MS), and an inability to 

detect and differentiate low abundance isomers such as 2,4’-MDA and 2,2’-MDA  (both GC-MS 

and LC-MS). In contrast, techniques which probe gas-phase structural conformations may 

provide insight into the characterization and discrimination of even low-abundance isomers 

without requiring sample pre-treatment. 

 Ion mobility - mass spectrometry (IM-MS) is a gas-phase electrophoretic separation 

technique coupled to a mass measurement technique and thus is capable of differentiating 

isomeric species and characterizing these species by ion size and mass.  In IM, ions are subject 

to low energy collisions with a neutral buffer gas, and subsequently separated by their effective 

gas-phase surface area.
22-25

  Ions which possess a large cross-sectional area experience a high 

number of collisions and are impeded, whereas ions which possess a smaller cross-sectional 

area experience fewer collisions and traverse the IM drift region more rapidly. The mobility of ions 

can be expressed using the following equation: 

   
 

       
                                                                     (2) 

where K is defined as the mobility, l is the length of the tube, E is the voltage gradient, and t0 is 

the drift time. Due to differences in temperature and pressure, the reduced mobility K0 is 

commonly reported also: 
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where T is the temperature (in Kelvin) and P is the buffer gas pressure (in Torr). Gas-phase ion 

size and shape are described by the molecular collision cross section (CCS), which can be 

calculated directly using the elution time from an electrostatic drift tube (typically on the order of 

milliseconds) using the Mason-Schamp equation: 
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where   is the CCS, z is the charge state of the ion, e is the elementary charge, kB is the 

Boltzmann constant, T is the temperature, mA is the mass of the analyte ion, mB is the mass of 
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the neutral buffer gas, K is the mobility of the ion (see Equation 2 above), P is the pressure, and 

N0 is the gas number density constant. Coupled with molecular modeling studies, CCS data can 

be used to investigate three-dimensional gas-phase structures. A more detailed explanation of 

IM-MS methodology as well as potential applications for polymer analysis can be found 

elsewhere in the literature.
26-33

   

 The additional dimension of separation based on the size and shape of gas-phase ions 

allows for the differentiation of isobaric species based on CCS. IM characterization of low-

molecular-weight structural isomers was first studied by Hagen over two decades ago using a 

stand-alone (no MS) ambient pressure drift tube instrument.
34-35

 Small but reproducible CCS 

differences were observed for isomers due to factors such as the position of unique atoms (e.g. 

nitrogen in a carbon ring system), location of functional groups, and connectivity of aromatic ring 

systems. For example, a consistent trend was observed for substituted toluene isomers, where 

substitution at the meta position led to higher CCS values than substitutions at para or ortho 

positions.
34

 Nevertheless, at the time Hagen was limited in his ability to fully interpret the data due 

to the lack of robust MS detection.  

 Inspired by Hagen’s work, MS/MS, IM-MS, and IM-MS/MS methods were used to fully 

characterize and differentiate MDA dimeric standards.  CCS values were obtained for each 

isomer, which provides significant insight into isomeric gas-phase conformation(s) and their 

respective stabilities. Moreover, computational modeling was utilized to assist our interpretation of 

IM-MS data, and to facilitate connecting isomeric differences in CCS with molecular structures. 

 

4.2 Experimental Section 

Materials 

 4,4’-MDA, 2,4’-MDA, and 2,2’-MDA were provided by Dr. Stefan Wershofen, Bayer 

MaterialScience AG, 47812 Krefeld, Germany. Their authenticity was established by 
13

C and 
1
H 

NMR.  Methanol and formic acid were obtained from Sigma-Aldrich USA. Alkali salts and 

tetralkylammonium salts were obtained from Sigma-Aldrich with the exception of sodium chloride 

(Thermo Fisher Scientific).  
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Instrumentation 

 Traveling-wave IM-MS 

 MS, MS/MS, and traveling-wave IM-MS (T-wave) data were obtained on interchangeable 

Synapt G2 and G2-S (Waters Corporation, Milford, MA) mass spectrometers. The T-wave 

platform differs from traditional drift-tube ion mobility (DTIM) in that it utilizes electrodynamic 

rather than electrostatic fields. Thus, T-wave drift times cannot be inserted directly into the 

Mason-Schamp equation, as the exact quantitative nature of the T-wave electrodynamic field is 

unknown. Nevertheless, T-wave CCS values can be determined when measurements are 

calibrated using DTIM CCS values from the literature.
26

 In order to obtain CCS values from T-

wave measurements, a series of quaternary ammonium salts were used as calibration standards 

in conjunction with their literature DTIM CCS values.
36

  

 All samples were analyzed as positive ions. The T-wave drift cell was operated with a 

pressure of 3 mbar (2.25 Torr), an electrodynamic wave height of 35 V and velocity of 700 m/s, 

and the TOF resolution (m/Δm) was approximately 20,000. Polymer samples were dissolved at a 

concentration of 0.10 mg/mL in 9:1 methanol:water containing 0.1% formic acid (v/v). When metal 

salts were used, each was at a final concentration of 0.050 mg/mL. A direct infusion flow rate of 

6.00 μL/min was used for all samples. Other instrument settings were as follows: 3.00 kV 

capillary voltage, 80 °C source temperature, 150 °C desolvation temperature, 10 V sampling 

cone, 2 V extraction cone, 20 L/hr cone gas flow, 1 mL/min trap gas flow, 90 mL/min IMS gas 

flow. All collision-induced dissociation (CID) experiments were performed prior to T-wave mobility 

separation. The TOF calibration was performed using sodium formate clusters. 

 Center-of-mass (COM) collision energies were converted from lab-frame collision 

energies using the following equation: 

 

          (
  a 

  a       n
)                                                      (5) 

 

Lab-frame energies are the voltages applied in the tandem MS instrumentation, while COM 

energy is essentially the available energy for molecular rearrangement or fragmentation.
37
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Therefore, COM energy typically has more useful interpretation power across various instrument 

platforms.
38

 

  

 Electrostatic Drift-tube IM-MS 

 DTIM measurements using N2 buffer gas were performed on a prototype ESI-IM-

QTOFMS instrument (Agilent Technologies, Santa Clara, CA).
39

 Details of this instrumentation 

are provided elsewhere, but briefly the IM-MS consists of a 78 cm uniform-field drift tube coupled 

to a high resolution quadrupole-TOF-MS (m/Δm 40,000).  The buffer gas was maintained at a 

pressure of ca. 4 Torr and drift voltages were varied in order to correct for the non-IM flight time of 

ions through the interfacing ion optics. CCS values were calculated from drift times using the 

Mason-Schamp equation. Polymer samples were at a concentration of 0.095 mg/mL in 9:1 

methanol:water containing 0.1% formic acid (v/v); also, LiCl and NaCl were added to the solution 

so that each had a final concentration of 0.025 mg/mL. A direct infusion flow rate of 6.00 μL/min 

was used. 

   

Computational and Modeling Data 

 As IM is a coarse-grained structural measurement, IM-MS results are often 

supplemented with computational studies to gain further insight into the gas phase conformations 

of the molecules of interest.
40

 These studies generally include two steps: 1) computationally 

sampling of the conformational space and 2) theoretical determination of CCS values for the 

generated conformations.  More detailed structural information can then be inferred from closer 

inspection of generated conformations that align with experimental CCS values. Although 

different methods exist for both conformational sampling and theoretical determination of CCS 

values, the following protocol was used by Sarah Stow (McLean group). A geometry optimization 

at the Hartree-Fock level with a 6-31G* basis set was performed with Gaussian 09 for all of the 

possible protonation sites on each isomer (2,2’-MDA: 2 sites, 2,4’-MDA: 3 sites, and 4,4’-MDA: 1 

site).
41

 Partial charges for each molecule were derived from ab initio electrostatic potential 

calculations using a 6-31G* basis set.  These partial charges were then fitted using the restrained 
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electrostatic potential (RESP) program in AMBER.
42-43

 For each of the protonated, isomers, a 

short energy minimization was performed in AMBER followed by a 10 ps molecular dynamic 

simulation to heat the molecule to 1200K.  Then, a long molecular dynamic simulation was run at 

1200K for 9,000 ps.  Structural snapshots were saved every 16,667 steps during the simulation, 

resulting in 3,000 structural snapshots.  These high-energy structural snapshots were then cooled 

to 300K during a 15 ps molecular dynamic simulation.  

 MOBCAL software was used to theoretically determine the collision cross section of the 

resulting conformations.
44-46

 First, the projection approximation was used to generate helium 

collision cross section values.  For comparison with the nitrogen experimental values, nitrogen 

trajectory method values were determined for a set of conformations spanning the entire collision 

cross section range.  These values were used to create a linear function to convert the remaining 

projection approximation values to nitrogen trajectory method values. The computational 

conformational space plots were then aligned with the experimental data to give structural insight 

to the MDA isomers.
47 

 

4.3 Results and Discussion  

I. Characterization by MS and Tandem MS 

 Previously, underivatized 4,4’-MDA has been studied using LC-MS/MS 

instrumentation.
16-21

 In these studies, the fragmentation of the 4,4’-MDA parent ion ([M+H]
+
 = 199 

Da) was monitored by means of a transition characteristic signal at 106 Da. However, to the best 

of our knowledge no research has been reported for 2,2’-MDA and 2,4’-MDA structural isomers 

using modern LC-MS techniques. 

 In the present study, both of these signals (199 Da, 106 Da) were observed in the 4,4’-

MDA, 2,2’-MDA and 2,4’-MDA direct infusion mass spectra as shown in Figure 4-3a - Figure 4-

3c. The base peak of the 4,4’-MDA spectrum is the [M+H]
+
 signal at 199 Da, but for 2,2’-MDA 

and 2,4’-MDA the 106 Da fragment is the base peak. An additional signal, although low in 

abundance, is observed at 211 Da (see below).  
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Figure 4-3. (left) Mass spectra of MDA isomers using direct infusion ESI-TOFMS for (a) 4,4’-
MDA, (b) 2,2’-MDA, and (c) 2,4’-MDA. (right) Tandem mass spectra for parent ions ([M+H]

+
 = 

199.13 Da) of (d) 4,4’-MDA, (e) 2,2’-MDA, and (f) 2,4’-MDA. Center-of-mass collision energies 
are shown at right; corresponding lab-frame collision energies are 40 eV, 8 eV, and 0 eV, 
respectively. For 2,4’-MDA, no collision energy was required for dissociation. 
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 Tandem mass spectra of protonated 4,4’-MDA, 2,2’-MDA and 2,4’-MDA are presented in 

Figure 4-3d - Figure 4-3f, and potential corresponding structures of fragment signals are shown 

in Table 4-1. Unsurprisingly, the fragmentation spectra of all the isomers are relatively similar. 

However, while 4,4’-MDA required high collision energy to generate fragments (Fig. 4-3d), 2,2’-

MDA and 2,4’-MDA required minimal or no additional energy to induce dissociation (Fig. 4-3e, 4-

3f). Because of the high collision energy required to fragment 4,4’-MDA, additional signals of 165 

Da and 180 Da are observed which are not present in 2,2’-MDA and 2,4’-MDA tandem mass 

spectra. Additional fragmentation data concerning the low-intensity 211 Da signal is shown in 

Figure 4-4. The likely source of this ion is a very low abundance multimer which fragments into 

the 211 Da structure. 

 In order to compare the gas-phase stabilities of the three isomers, the conversion from 

199 Da to 106 Da was monitored as a function of applied collision energy for all three isomers as 

shown in Figure 4-5. Both lab-frame and center-of-mass (COM) collision energies are displayed. 

It is clear that 4,4’-MDA (double para-substitution) is significantly more stable than either 2,2’-

MDA (double ortho-substitution) or 2,4’-MDA (combined ortho- and para-substitution). For 

example, when 2.0 eV (COM) are applied to the 4,4’-MDA isomer, over 95% of the normalized 

signal remains in the 199 Da parent ion. However, at that same energy, the 199 Da parent ions 

for both 2,2’-MDA and 2,4’-MDA are entirely depleted. The underlying cause of this key difference 

as well as minor differences in the gas-phase behavior of 2,2’-MDA and 2,4’-MDA will be 

discussed later in the manuscript, as these observations were corroborated by other methods of 

structural analysis. 

 A potential complicating factor in MS-based analysis of these compounds is the uncertain 

location of the additional proton that creates the [M+H]
+
 ions. Literature on aniline suggests two 

potential protonation sites in the gas-phase, one on the amine and one on the aromatic ring para 

to the amine.
48-52

 Recently, Eberlin and coworkers demonstrated that aniline molecules 

protonated at the amine group can be resolved from those protonated on the ring using T-wave 

separation.
53

 Because MDA isomers are essentially two aniline molecules connected by a 

methylene bridge, it is probable this behavior applies to MDA as well. Therefore, as tandem MS  
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Theoretical m/z Observed m/z Proposed Structure(s) 

77.04 77.04 

 

89.04 89.04 

 

106.07 106.07 

 

165.07 165.07 

 

180.08 180.08 

 

 

Table 4-1. Possible structures of commonly-observed MDA fragment ions. 
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Figure 4-4 (a) Tandem mass spectrum for 211 Da observed in the 4,4’-MDA sample. A center-of-
mass collision energy of 4.9 eV was applied (40 eV lab-frame). (b) Proposed structure for the 211 
Da species. Most fragment signals for 211 Da match the 199 Da fragments shown in Table 4-1, 
suggesting a similar structure to the MDA isomers. 
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Figure 4-5. Collision-induced dissociation curves monitoring the transition of respective 199 Da 
parent ions to 106 Da fragment ions. Individual curves for 4,4’-MDA (solid line; circles), 2,2’-MDA 
(short dash, squares), and 2,4’-MDA (long dash; triangles) are superimposed. Both center-of-
mass and lab-frame collision energies are shown.  
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alone was unable to provide clarity about how protonation sites affect gas-phase structures, 

structural analysis by IM and computational methods were required. 

 

II. Structural analysis using IM-MS and computational methods 

 Using both T-wave and DTIM instrumentation, CCS values were obtained for the [M+H]
+
, 

[M+Li]
+
, and [M+Na]

+
 ions of the three isomers as shown in Table 4-2. Due to inherent 

differences in instrumentation and data analysis between T-wave and DTIM methodology, small 

differences for CCS values between platforms were expected, as observed in Table 4-2. In order 

to obtain CCS values from T-wave instrumentation, the use of calibration standards is required; in 

contrast, DTIM CCS values can be directly calculated from the kinetic theory of gases using the 

Mason-Schamp equation.
22-24

 Therefore, it is expected that the DTIM CCS values are more 

accurate than the T-wave CCS values. In this study, DTIM CCS values were systematically 

higher than T-wave CCS values by 3.4 ± 0.5% Å
2
 (N2). The hypothesis is that this systematic 

difference between T-wave and DTIM CCS values results from the calibration of the former and 

from the exposure of the charge on the MDA molecules. For the tetraalkylammonium ions used 

for T-wave CCS calibration, the charge resides in the center of the molecule and is surrounded by 

hydrocarbon tails. These tails essentially shield the charged region from the polarizable N2 drift 

gas. As a result, only weak inelastic collisions occur between the tetraalkylammonium calibrants 

and N2. However, in our MDA system, the charge is not shielded, and thus the MDA ions are 

expected to experience stronger inelastic interactions with N2 which are not accounted for using 

the current calibration strategy. 

 Within each data set, the CCS values for the [M+Li]
+
 and [M+Na]

+
 ions were similar. This 

suggests that metal cations interact with both electron-rich aromatic rings in the gas phase. In 

contrast, significant differences in CCS for the [M+H]
+
 ions were observed between 4,4’-MDA and 

2,2’-MDA, suggesting the protonation site is not centrally located in the structure.  For 2,4’-MDA, 

two CCS values in T-wave were observed, but only one corresponding CCS value for DTIM was 

observed. This will be discussed later, as further analysis of the role of protonation on gas-phase 

stability was necessary to explain this observation.  
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MDA Species (Ion) T-wave N2 (Å
2
) DTIM N2 (Å

2
) 

4,4’ [M+H]
+ 

156.0 + 0.7
 

162.7 + 0.3 

4,4’ [M+Li]
+
 143.4 + 1.9 147.8 + 0.3 

4,4’ [M+Na]
+
 145.5 + 1.0 149.7 + 0.3 

2,2’ [M+H]
+
 139.9 + 1.8 145.0 + 0.2 

2,2’ [M+Li]
+
 143.5 + 0.6 148.6 + 0.2 

2,2’ [M+Na]
+ 

144.2 + 1.9 149.1 + 0.3 

2,4’ [M+H]
+
 (#1) 139.9 + 1.1 145.4 + 0.4 

2,4’ [M+H]
+
 (#2) 155.9 + 0.5 N/A 

2,4’ [M+Li]
+
 143.3 + 0.3 147.1 + 0.4 

2,4’ [M+Na]
+
 144.6 + 2.1 150.3 + 0.5 

 

Table 4-2. Collision cross-section values of various MDA ions obtained on T-wave and drift tube 
IM-MS instrumentation. Errors shown represent the respective standard deviations. 
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 Only one type of protonation site is available for 4,4’-MDA, at the para-amino groups (p-

NH2). However, two potential sites exist for 2,2’-MDA and three for 2,4’-MDA, as shown by the 

asterisks in Fig. 4-2.  For 2,2’-MDA, protonation can occur at either the ortho-amino groups (o-

NH2) or the aromatic ring opposite the ortho-amino group (ring). On 2,4’-MDA,  p-NH2, o-NH2 and 

ring sites are all present, and any one of these may be protonated.  

 While CCS measurements were obtained using both T-wave and DTIM platforms, the 

majority of IM-MS and IM-MS/MS data was obtained using the T-wave platform and will therefore 

be the focus of this report.  Extracted CCS profiles of the protonated isomers (199 Da) obtained 

using IM-MS are shown in Figure 4-6a. One conformation of 4,4’-MDA was generated with a 

CCS of 156 Å
2
 while 2,2’-MDA generated one conformation with a CCS of 140 Å

2
. In contrast, 

2,4-MDA generated two conformations having CCS values of 156 Å
2 

and 140 Å
2
. The alignment 

of these two values with the 4,4’-MDA and 2,2’-MDA CCS values in Fig. 4-6a (dotted line) 

indicate similar respective conformations. 

 Additionally, an IM-MS/MS structural depletion study was performed to connect the gas-

phase stabilities of these conformations with potential protonation sites. In Figure 4-7, IM profiles 

were obtained for the protonated isomers using different collision energies and corresponding 

drift times were converted to CCS values. Consistent with earlier tandem MS data, 4,4’-MDA has 

one primary conformation (156 Å
2
) which begins to deplete when high collision energy (3.1 eV) is 

applied as shown in Fig. 4-7a. We can assign this CCS value to a conformation which is p-NH2 

protonated, as 4,4’-MDA cannot be protonated at other positions. Because 2,4’-MDA contains 

one p-NH2 site as well, its CCS value of 156 Å
2 

is also assigned to p-NH2 protonation. Evidence 

for this is shown in Figure 4-7b, where the ~45% depletion rate of the larger 2,4’-MDA 

conformation for 3.1 eV matches that of 4,4’-MDA shown in Fig. 4-7a. Because both of these 

conformations are rather resistant to collisionally-induced depletion and fragmentation, it is 

deduced that p-NH2 protonation generates species that are relatively stable in the gas-phase.  
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Figure 4-6. (a) CCS profiles of 4,4’-MDA (solid line), 2,2’-MDA (short dash), and 2,4’-MDA (long 
dash) [M+H]

+ 
ions extracted from T-wave data. Vertical lines are added for visual alignment. (b) 

Conformations for the possible protonation sites for the (a) 4,4’-MDA, (b) 2,2’-MDA, and (c) 2,4’-
MDA were generated using computational conformational search methods. The theoretical 
nitrogen CCS is plotted against the relative energy for each computationally generated 
conformation.  Conformations for the p-NH2 protonated isomers are shown in black, the o-NH2 
protonated isomers are shown in red and the ring protonated isomers in blue. 
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Figure 4-7. Collisionally-activated CCS profiles of [M+H]

+
 ions for (a) 4,4’-MDA, (b) 2,2’-MDA, 

and (c) 2,4’-MDA. Center-of-mass energies are shown; corresponding lab-frame energies are 0 
eV, 10 eV, and 25 eV, respectively. Note the difference in scales of the y-axes for (a) - (c). Inset 
relative percentages represent signal intensities compared to those without collisional activation. 
Vertical lines are added for visual alignment. 
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 In contrast, the low-intensity conformations for 2,2’-MDA and 2,4’-MDA of 140 Å
2
 were 

less stable, leading to significant depletion upon collisional activation (Fig. 4-7b - 4-7c). Both of 

these conformations were entirely depleted when 3.1 eV of energy was applied. These are more 

difficult to assign structurally, as two remaining protonation sites exist for the isomers (o-NH2 and 

ring).  Conformations of all the possible protonation sites for the three isomers were generated 

using theoretical conformational search methods to provide further structural insight.  For each of 

the six protonation sites 3,000 conformations were generated and the theoretical CCS value and 

energy was determined and plotted for each conformation in Figure 4-6b.  The protonation sites 

are indicated by the following colors: the p-NH2 conformations are shown in black, the o-NH2 

conformations are shown in red, and the ring conformations are shown in blue. The p-NH2 

conformations for both the 2,4’-MDA isomer and the 4,4’-MDA isomer demonstrate close 

theoretical CCS alignment and thus support the assignment of  the larger observed CCS value. 

For o-NH2 and ring protonation sites in 2,2’-MDA and 2,4’-MDA, theoretical CCS values are 

similar, which makes it difficult to differentiate these protonation sites by CCS. However, the 2,2’-

MDA and 2,4’-MDA maps shown in Fig. 4-6b do suggest that protonation at the o-NH2 position 

creates higher energy conformations than those with ring protonation. High-energy conformations 

likely correspond to species that undergo metastable fragmentation in the mass spectrometer, 

which was observed for 2,2’-MDA and 2,4’-MDA as noted earlier in Figs. 4-3 and 4-4. Therefore, 

it is likely that o-NH2 protonation leads to metastable fragmentation into 106 Da, whereas ring 

protonation is somewhat more stable and allows detection of (at least some of) these ions as 

intact 199 Da species. 

 Although the stability of the MDA isomers is related to protonation site, it should be noted 

that small differences in energy can change the relative abundances of each site. As shown in 

Table 4-2, the p-NH2 protonation site for 2,4’-MDA was not observed using DTIM instrumentation, 

while this protonation site was observed in low abundance using T-wave instrumentation (e.g. 

Fig. 4-6a). This is likely due to the different ion sources for the two platforms, which results in 

different voltages, ion transmission efficiencies, etc. As mentioned earlier, previous studies on 

aniline protonation in the gas-phase suggest that the two protonation sites (-NH2 or ring) are 
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relatively close in energy. Therefore, the relative abundances of aniline protonation sites can 

fluctuate due to of small changes in experimental conditions [39]. Likewise, MDA protonation sites 

appear to be close in energy, and the relative abundances of the protonation sites can change as 

well. This explains why the p-NH2 conformation of 2,4’-MDA is observed in low abundance using 

T-wave instrumentation but not using DTIM instrumentation. However, once the MDA compounds 

are protonated, the relative order of stability across both platforms is consistent as shown in 

Table 4-3. 

 A closer look at computationally generated conformations gives further insight into the 

metastable nature of the o-NH2 protonated isomers. The conformations were clustered based on 

root-mean-square deviation (RMSD) resulting in ten representative structures.  These structures 

for the possible protonation sites for the three isomers can be found in the Supplemental 

Information, but the most populated conformations are shown in Figure 4-8.  The most populated 

conformation for 4,4’-MDA is shown in Fig. 4-8a. This molecule exhibits an extended structure, 

consistent with experimental CCS data shown in Table 4-2. Conformations for 2,2’-MDA are 

shown in Fig. 4-8b - 4-8d.  The conformations in Fig. 4-7b - 4-7c show o-NH2 protonated 2,2’-

MDA, whereas the conformation in Fig. 4-8d shows ring protonation.  Two o-NH2 protonated 

isomers are needed here to explain two of our experimental observations.  Fig. 4-8b is 

representative of the metastable o-NH2 protonation, while Fig. 4-8c is representative of a slightly 

more stable and highly populated o-NH2 protonation.  When the proton resides between the two 

amine groups, a more stable conformation is achieved, which may explain why a slightly more 

stable 2,2’-MDA isomer is shown in Fig. 4-4 compared to the 2,4’-MDA isomer.  These three 

conformations are all representative of a smaller structure, which is consistent with the 

experimental CCS data shown in Table 4-2.  Conformations for 2,4’-MDA are shown in Fig. 4-8e 

- 4-8g.  Fig. 4-8e shows the p-NH2 protonation whereas Fig. 4-8f shows o-NH2 protonation and 

Fig. 4-8g shows ring protonation.  The conformation in Fig. 4-8e is representative of the 

extended structure similar to the conformation shown in Fig. 4-8a, which supports the 

experimental CCS alignment for both 4,4’-MDA and the larger 2,4’-MDA conformation.    
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[M+H]
+
 Species T-wave IM DTIM 

4,4'-MDA 97 ± 2% 99.89 ± 0.01% 

2,2'-MDA 3.9 ± 0.1% 47.1 ± 0.2% 

2,4'-MDA 0.9 ± 0.4% 37.6 ± 0.6% 

 

Table 4-3. Comparison of relative gas-phase stabilities (100% max) between traveling-wave IM 
and DTIM instrument platforms. Values reflect the percent abundance of the 199 Da parent ion 
relative to the 106 Da fragment. n = 3 for each value. For both instrument platforms, 4,4’-MDA is 
significantly more stable than 2,2’-MDA and 2,4’-MDA. However, in both cases 2,2’-MDA is 
slightly more stable than 2,4’-MDA. 
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Figure 4-8. RMSD clustering representatives from computational conformational sampling are 
shown for each of the protonation sites. (a) 4,4’-MDA p-NH2 protonated, (b) 2,2’-MDA o-NH2 
protonated, (c) 2,2’-MDA o-NH2  protonated, (d) 2,2’-MDA ring protonated, (e) 2,4’-MDA p-NH2 
protonated, (f) 2,4’-MDA o-NH2 protonated, and (g) 2,4’-MDA ring protonated. Red circles indicate 
the additional proton.  Labeled bond distances are used to show the proximity of the additional 
proton to the bridging carbon that would lead to a 1-5 hydrogen shift fragmentation of the dimer.  
A percentage is shown below each conformation to show how many conformations the selected 
one represents, as a result of RMSD clustering.  Two conformations are shown for the 2,2-MDA 
o-NH2 protonated dimer due to two favorable conformations that result from this protonation. 
experimental CCS alignment for both 4,4’-MDA and the larger 2,4’-MDA conformation.   
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The conformations shown in Fig. 4-8f - 4-8g are representative of a smaller structure, which is 

also consistent with the experimental CCS data in Table 4-2.  The smaller structures observed for 

the o-NH2 protonation and ring protonation for 2,2’-MDA and 2,4’-MDA support the alignment of 

their experimental CCS values. 

 

III.  Mechanism for protonation and fragmentation of MDA isomers 

 Combining tandem MS, IM-MS, IM-MS/MS, and computational modeling data, 

mechanisms for protonation and fragmentation of MDA structural isomers are proposed in Figure 

4-9. The gas-phase stability of each isomer is inherently related to both the position of the amine 

groups and the location of the additional proton. The 4,4’-MDA isomer can only be protonated at 

p-NH2 groups and is the most stable gas-phase ion that was observed. When a large collision 

energy is applied to the 4,4’-MDA parent ion, a loss of a hydrogen radical occurs, leading to alpha 

cleavage and formation of the 106 Da fragment. As collision energy continues to increase, other 

pathways also emerge, forming other fragments (Fig. 4-3d). On the other hand, 2,2’-MDA can be 

protonated at either the o-NH2 or ring position. When 2,2’-MDA is protonated on an o-NH2 group, 

even without applied collision energy, it readily undergoes a 1,5-hydrogen shift, due to the 

proximity of the amine hydrogen to the bridging carbon on the opposite aromatic ring (Fig. 4-8b), 

which leads to formation of the 106 Da fragment and neutral aniline. The driving force for this 

process is likely the stability of the products: aniline can either remain neutral or further 

decompose to 77 Da as shown in Fig. 4-3e - 4-3f, and the 106 Da fragment can further rearrange 

to a tropylium-like ion of the same mass (see Refs. 16, 48). This mechanism which describes the 

metastable behavior of these ions explains why detection of o-NH2 protonated 2,4’-MDA or 2,2’-

MDA is minimal. As a result, the primary conformation observed for the 2,2’-MDA [M+H]
+
 ion (199 

Da) is composed of ring protonated species. When a moderate collision energy is applied to ring 

protonated 2,2’-MDA, loss of a hydrogen radical on the ring leads to rearrangement and formation 

of the 106 Da fragment as well. Finally, 2,4’-MDA may be protonated at all three sites. 

Protonation at the o-NH2 leads to significant metastable fragmentation due to a 1,5-hydrogen shift 

(Fig. 4-8f) as in 2,2’-MDA, and protonation at the ring position leads to hydrogen radical loss and  
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Figure 4-9. Proposed protonated structures and 199 Da  106 Da fragmentation pathways for 
MDA isomers. Activation energy is abbreviated EA. 
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rearrangement upon collisional activation. In contrast, protonation at the p-NH2 results in a more 

stable conformation which fragments through a mechanism similar to that of 4,4’-MDA. 

 

4.4 Conclusions 

 In this study, MDA structural isomers were characterized and differentiated by their gas-

phase stabilities and potential protonation sites using a combination of structural insights guided 

by MS, IM, and theoretical modeling. These results confirm that, similar to aniline, MDA may be 

protonated at amine positions or at ring positions in the gas-phase. Structural differences 

between positional isomers play a large role in determining the gas-phase stability as does the 

site of protonation. The collective use of tandem MS, IM-MS, IM-MS/MS, and computational 

methods allowed us to gain significant structural understanding of this system and suggests that 

a holistic approach to studying positional isomers is of great utility. 

 A more thorough understanding of MDA behavior in the gas-phase will lead to a more 

comprehensive characterization of industrial MDA mixtures and better understanding of 

polyurethane fragmentation in mass spectrometry. These results on the dimeric isomers suggest 

IM-MS methods of characterizing larger multimers and MDA mixtures will prove beneficial to fully 

understand not only the molecular composition of the sample but also the structural differences 

between isobaric species within the sample.  
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CHAPTER V 

CONCLUSIONS AND FUTURE DIRECTIONS 

5.1 Conclusions 

 Nanomaterials are uniquely suited as matrices for MALDI-MS due to impressive 

sensitivity, low background signals, and capabilities in high-spatial-resolution MS imaging of 

biological samples. In this dissertation, advances using the NIMS platform were detailed so that 

future researchers may utilize it for single-cell MS imaging. Previous NIMS targets were not 

transparent, which made it difficult to locate the biological sample on the substrate. To solve this 

challenge, we introduced semi-transparent pSi thin films as novel NIMS substrates. Although pSi 

absorbs in the visible, it was found substrates less than 15 μm in thickness allowed sufficient 

visible light to pass through so that samples can be analyzed using phase-contrast microscopy. 

Substrates were optimized for both transparency and NIMS performance so that MS imaging of 

lipids using a single-cell spatial resolution could be performed. Nevertheless, the reproducibility of 

MS imaging experiments from this substrate was somewhat inconsistent, which inspired us to 

pursue novel ways of enhancing ion yields from the target. Hybrid NIMS-MALDI matrices were 

introduced which have affinity towards the NIMS initiator via fluorous-phase interactions. One 

matrix, DHB-59, improved S/N of biological molecules and may be used in MS imaging 

experiments in the future. 

 While materials chemistry developments are improving MS-related techniques, structural 

MS techniques are also proving critical in the characterization of inorganic and organic materials. 

A comprehensive IM-based approach supported by computational modeling was described for 

the structural characterization and differentiation of polyurethane-hard-block precursor molecules. 

It was determined that, in addition to differences in the location of functional groups, protonation 

site significantly affected the stability of gas-phase analytes. MDA regioisomers were rapidly 

differentiated using IM-MS and IM-MS/MS based on this principle.  
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5.2 Dynamic Light Patterning-based NIMS Imaging 

 As described in earlier chapters, NIMS targets have been developed for MS imaging of 

biological substrates. These targets demonstrate impressive limits-of-detection and generate 

minimal matrix background signals, simplifying the mass spectrum when compared to traditional 

MALDI-MS which utilizes weak-organic-acid matrix. Nevertheless, two challenges remain in the 

development and refinement of the NIMS imaging platform which may be addressed in order to 

perform reproducible, high-spatial-resolution MS imaging at the single-cell level. 

 Although NIMS has shown good limits-of-detection for metabolites and peptides, it 

remains a challenge to reproducibly image these molecules from cells. The primary cause of this 

is the very low volume of a typical mammalian cell, approximately 500 fL for a cell with 10 μm 

diameter.
1 

Therefore, the amounts of biological molecules within a cell are less than normal MS 

sample amounts. When laser irradiation is used, the majority of cellular material is desorbed from 

one or several laser pulses at the target; therefore, it is crucial to ensure that the efficiency of 

ionization for desorbed material is maximized so that all desorbed analytes may be detected 

rapidly. An additional cause is the complex matrix of cellular material which can lead to ion 

suppression effects. Further development of VU-59 matrix as described in Chapter 3 may 

continue to improve ion yields from the NIMS surface. Based on the experiments outlined in that 

chapter, it appears that VU-59 does not assist in analyte protonation but in fact improves analyte 

mixing with the NIMS surface and initiator. If structure-activity relationship studies are performed 

on VU-59 so that proton donation is optimized, it may improve NIMS ion yields such that single-

cell sensitivity is reproducibly attained. 

 Another challenge in single-cell MS and MS imaging is laser spatial resolution, as 

described in Chapter 1. Within a factor of two or so, resolving power is limited by diffraction to the 

wavelength of the irradiation, from the equation: 

 

       n           
            

 
                                                   (6) 
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where λ is the wavelength of the laser, f is the focal length, and D is the diameter of the objective 

lens used.
2
 This means that resolving nanometer-spaced features in cells by MS imaging will 

likely remain a challenge, even when optical alignment is ideal. It has been shown that imaging 

resolution can overcome the diffraction limit if the light coupled with a tip within 1 wavelength of 

the target (near-field). Near-field optical strategies are currently being developed for ICP-MS,
3-4

 

but it remains unclear if this approach will be able to desorb and/or ionize intact biomolecules.  

 Due to these challenges with sensitivity and spatial resolution, it is likely the best spatial 

resolution of our NIMS imaging platform will prove to be 2-3 μm. Current efforts to focus the laser 

to this diameter are shown in Figure 5-1; however, sufficient MS signal cannot be detected from 

cells at this resolution. The best spatial resolution achieved to date has been 14 μm (see Fig. 2-6 

and Fig. 2-8). A spatial resolution of 2-3 μm would be at the cutting-edge of the field, and would 

allow for the resolution of sub-cellular features in larger cells such as fibroblasts and neurons. In 

order to achieve this resolution, the dynamic light patterning (DLP) optical system shown in 

Figure 5-2 will be re-aligned using the frequency-tripled Tempest Nd:YAG laser (355 nm) at low 

energy. Once alignment is proper (evaluated by SEM imaging of burn marks as shown in Fig. 5-

1), laser energy may be increased for MS imaging. High-energy irradiation on the DLP chips can 

lead to irreversible damage over time. However, these chips are commercially available and may 

be interchanged as necessary. Combining this optical platform with VU-59 matrix-enhanced 

NIMS may allow for 2-3 μm spatial resolution. This DLP-NIMS platform could be used for not only 

single-cell MS imaging but also spatial profiling. 

  

5.3 Phosphopeptide-affinity NIMS Targets 

 Because NIMS targets are coated with the perfluorinated BisF17 initiator (Fig. 3-1a), this 

allows for analytes which have been tagged with a perfluorinated moiety to have very high affinity 

to the surface, as shown by Ref.  4 from Chapter 3. NIMS surface derivatization may be tailored 

for many applications; one particular application of interest is phosphopeptide enrichment. 

Phosphopeptides are typically enriched using metallic oxides such as titanium dioxide (TiO2) due   
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Figure 5-1. SEM images of UV laser burn marks on Au reveal laser focusing at target. (left) 
When approx. 3000 DLP mirrors deflect the laser to the target, the beam diameter is 15 μm; 
(center) when approx. 600 DLP mirrors deflect the laser to the target, the beam diameter is 5 μm; 
(right) when approx. 100 DLP mirrors deflect the laser to the target, the beam diameter is 2 μm. 
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Figure 5-2. (a) Schematic of DLP optical train. (b) Thought experiment where the DLP system 
may be used to generate unique MS profiles within different regions of a cell. Adapted with 
permission from Kliman, M. Advanced Structural and Spatial Analysis of Lipids using Ion Mobility 
- Mass Spectrometry. Dissertation, Vanderbilt University, Nashville, TN, 2011. 
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to hard acid-base interactions.
5-6

 It is possible combining materials such as these with NIMS 

sensitivity may lead to both high-specificity and high-sensitivity phosphopeptide analysis. 

 Initial experiments coupling TiO2 particles with NIMS substrates for phosphopeptide 

enrichment are described herein. The potential advantage of coupling high-specificity 

phosphopeptide pre-concentration methods with NIMS sensitivity is shown in Figure 5-3. NIMS is 

able to detect 8.5 femtomoles of a synthetic phosphopeptide, and 85 attomoles with a S/N of 

greater than 3. 

 TiO2 particles were synthesized from titanium (IV) tetraisopropoxide using a modified sol-

gel method
7
 and were characterized by SEM and energy dispersive X-ray spectroscopy (EDX) as 

shown in Figure 5-4. Particles were 0.5 ± 0.2 μm in diameter, and were greater than 95% Ti and 

O by mass. When the interactions between TiO2 particles and the NIMS target were studied, it 

was observed that TiO2 particles had very low affinity for the surface. Particles would rapidly flake 

off of the substrate. This makes sense chemically, as the perfluorinated BisF17 initiator on the 

NIMS surface is essentially ambiphobic. Studies on the development of a surface-based 

phosphopeptide affinity assay on the NIMS substrate were inconclusive for this reason. It is 

possible that use of the porous silicon target without the BisF17 initiator may circumvent this 

issue; however, this has not been explored to date. 

 Another route for phosphopeptide enrichment via NIMS (without TiO2) may be 

derivatization of the phosphorylation site with a perfluorinated tag which sticks to the NIMS 

initiator. This is a similar idea to that of Brittain et al., who derivatized phosphopeptides with a 

perfluorinated tag and used a fluorous affinity column to purify them before MS analysis.
8
 Due to 

the high specificity of fluorine-fluorine interactions, the authors were able to readily separate 

tagged peptides from complex biological matrices such as a Jurkat cell whole protein digest. It 

was also shown that tagged phosphopeptides fragmented normally for proper identification. Using 

the NIMS surface as both an affinity target and an ionization source would simplify sample 

preparation (on-chip washing, no elution step required) and improve MS analysis greatly. 
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Figure 5-3. NIMS detection of LGAPPAPPGpSPR phosphopeptide at (a) 8.5 fmol and (b) 85 
amol concentration. Peptide was detected using a Voyager DE-STR mass spectrometer in linear 
mode. 
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Figure 5-4. Characterization of synthesized TiO2 particles by (a) SEM and (b) EDX. EDX was 

performed with the assistance of Dr. Tony Hmelo. 
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5.4  Structural Analysis of Multimeric Polymer Precursor Materials 

ESI Characterization of Multimers 

 The experiments described in Chapter 4 for the analysis of methylenedianiline (MDA) 

isomers provide a specific roadmap for the analysis of larger MDA multimers. Early studies on 

larger forms of MDA confirm similar behavior between the dimeric species and the multimers. 

However, one minor difference has been observed. Multimeric species such as the MDA trimer 

(Figure 5-5) and tetramer ionize as [M+H]
+
 similar to MDA dimers, however they also tend to 

cationize readily as well (e.g. [M+Na]
+
 ions) as shown in Figure 5-6. Future studies on MDA 

multimers will focus on cation affinities and the resulting gas-phase stability of the complexes in 

order to differentiate isobaric structures. 

 Likewise, complex MDA mixtures of multimers will be analyzed using structural MS. 

Using the Synapt G2 and G2-S mass spectrometers, tandem MS may be performed after IM 

separation. This should allow for the separation of isomeric structures by either protonation site or 

cation affinity, and then differentiation by tandem MS patterns. It is likely this analytical approach 

will prove useful for not only MDA but also methyl diphenyl diisocyanate (MDI) and even simple 

polyurethane polymers. 

 

MALDI Characterization of MDA Dimers 

 Additionally, MDA dimers were analyzed using MALDI. Samples were dissolved for 

MALDI analysis at a concentration of 1 mg/mL in 9:1 methanol:water containing 0.1% formic acid 

(v/v). After experimenting with several matrices, CHCA matrix was chosen due to its minimal 

overlap with MDA signals. CHCA matrix was dissolved at a concentration of 10 mg/mL in 2:1 

acetonitrile to water. When metal salts were used, each was at a concentration of 1 mg/mL in the 

9:1 methanol to water solvent. Sample, matrix, and cation solutions were then mixed in a 4:5:1 

ratio. Traveling-wave mass spectrometers use a frequency-tripled Nd:YAG laser which emit 355 

nm ultraviolet light at a 1 kHz pulse repetition rate. Laser attenuation ranged from 200 to 280 

(arbitrary units). TOF calibration was performed using CHCA matrix cluster peaks and peptides. 
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Figure 5-5. Two (of eight potential) isobaric trimer structures. To see all unique structures, please 

consult reference 9. 
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Figure 5-6. Zoomed-in mass spectrum of MDA trimer species using ESI. It is likely the 316 Da 
signal corresponds to the 211 Da signal shown in Fig. 4-3 with an additional ring. However, more 
experiments are necessary to confirm this. The trimer also shows a fairly significant [M+Na]

+
 

signal. 

 

 

  



 
 

108 
 

 For MALDI data, significant formation of cationized dimers such as [M+Na]
+
 was not 

observed. This was similar to ESI data. Additionally, 4,4’-MDA generated a stronger [M+H]
+
 

signal and less 106 Da fragmentation than either 2,2’-MDA or 2,4’-MDA. Unlike ESI data, 

however, the base peak of the 4,4’-MDA spectrum is not the [M+H]
+
 signal but instead the [M-H]

+
 

signal (197 Da). 2,4’-MDA also generated an intense [M-H]
+
 signal in MALDI, and showed less 

fragmentation to 106 Da than in ESI. Of the three isomers, 2,2’-MDA generated the weakest 

molecular ion signal for all three ions. Tandem MS data for the 197 Da signal is shown in Figure 

5-7. From the 4,4’-MDA sample, this signal likely corresponds to the following structure: 

 

Many of the possible fragment ion structures for this signal match those shown in Table 4-1 in 

Chapter 4. However, the structure(s) of 197 Da signals from 2,2’-MDA and 2,4’-MDA are unclear. 

The tandem mass spectra show signals with higher m/z than the parent ion, suggesting ion 

chemistry is occurring in the MS instrumentation (after quadrupole isolation). Several additional 

signals were observed in the MALDI-TOFMS spectra as well, including 144 Da and 210 Da. It is 

likely these are also byproducts of MALDI-induced ion chemistry. Possible structures for the 144 

Da and 210 Da signals are presented below: 
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Figure 5-7. Tandem mass spectra for 197 Da observed in the MALDI spectrum of each isomer. A 

center-of-mass collision energy of 2.5 eV was applied (20 eV lab-frame). 
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It is unclear whether these signals originate from MDA or the MDA-CHCA matrix adducts. Further 

investigation into the effects of MALDI ionization on MDA isomers by IM-MS and IM-MS/MS is 

needed. 
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APPENDIX 

A. Protocol for Fabrication of NIMS Substrates 

Cutting 

(1) Use low resistivity (0.01 Ω), p-type (B-doped) < 1 0 0 > silicon wafers  

(2) Use an O-ring to line up area needed for etching apparatus 

(3) Scratch (dull side) edges with diamond tip pen 

i. Work parallel to cut flat planes 

 

Cleaning (perform in fume hood) 

(1) Rinse cut wafers with DI H2O multiple times 

(2) Dry with nitrogen gas 

(3) Put chips (shiny side up) on the bottom of a large labeled glass beaker 

(4) Slowly add 20mL conc. H2SO4 to beaker 

(5) Slowly add 10mL 30% H2O2, solution will become hot, give off fumes 

i. Let piranha soak for 30 minutes 

ii. Note: Piranha solution (2:1 H2SO4: H2O2) breaks down traces of 

organic material. It is explosive upon contact with organic 

solvents (i.e. acetone, ethanol, etc.). Always use stainless steel 

tweezers and glass beakers, no plastic. Also, do not store hot 

piranha solution, it will explode due to gas pressure buildup. 

Always let a (labeled) piranha beaker cool for 24 hours 

before storage/removal. 

(6) Remove each wafer with stainless steel tweezers one by one, rinsing 

thoroughly with DI H2O and drying with nitrogen (3x per wafer). 
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Etching (perform in fume hood) 

i. Note: HF is an extremely hazardous chemical. Consult an HF 

MSDS sheet before etching. While etching, one should use 

caution and should be wearing a lab coat, goggles and 

nitrile gloves (I wear two layers and change the outer layer 

frequently). Keep the hood as low as you can while working 

comfortably. Also, do not use glass beakers with HF, only plastic 

tweezers, beakers and containers. Know where the calcium 

gluconate gel is located before you begin. 

(1) Make a 25% HF solution as follows: 

i. Add 20mL ethanol to plastic bottle. Add 20mL 50% HF solution 

to bottle. Label bottle “25% HF in EtOH” with name and date. 

Again, be very careful with HF solutions. 

(2) Set up Teflon etching apparatus. The easiest way is to put the wafer on the base 

(w/ O-ring) upside down, put on the silver foil, flip right-side up and slide on. 

Make sure silver base electrode is flat on bottom so no leaking occurs. 

Tighten, but not too hard. 

(3) Using plastic droppers, add 25% HF solution to well until base level is completely 

submerged. 

(4) Attach red wire to gold base electrode and black wire to platinum wire 

electrode. Turn off light in hood. 

(5) Using LABview software, run etching experiment of choice. Films require 2 

phases, a consistent etching phase and high-current, short timescale pulses to 

break off the bottom layer. 

(6) Etching procedures: 

i. Wafer: Etch with 24 mA/cm
2
 for 600 seconds. 

ii. Film: Etch with 24 mA/cm
2
 for 600 seconds. Then etch with 250 

mA/cm
2
 for 1.7 seconds on, 1.7 seconds off. Repeat 2x. Wait a 
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minute, then etch with 210 mA/cm
2
 for 1.7 seconds on, 6 

seconds off. Repeat 8-10x as needed. 

(7) After etching is complete, remove wires. Remove HF solution with plastic dropper 

and place in HF waste. Rinse cell with ethanol (3x minimum), putting washings 

in the HF waste beaker. When rinsing films, do not spray ethanol straight on the 

wafer, but around the edges of the basin. Films will break when sprayed directly. 

i. Wafer: Dismantle cell and rinse wafer with ethanol, dry with 

nitrogen (3x). Place wafer in oven @ 60° C for 5 minutes. 

ii. Film: Dismantle cell so that wafer sits on top. Using plastic 

tweezers, carefully crack the edges around the circle to break off 

the film. Fill a petri dish halfway with ethanol, place ITO-coated 

slide in the dish and carefully transfer film onto the slide. Let dry 

for a few minutes, you may use a very light stream of nitrogen to 

aid drying. Then place in oven @ 60 °C for 5 minutes. 

(8) Let wafer or film sit (covered) for 24+ hours to ensure full oxidation before the 

next step. 

 

Initiator Loading (perform in fume hood) 

(1) Continuously spot and remove from surface 1% (by volume) HNO3 solution. Be 

careful not to rinse edges heavily or else film may detach from ITO glass slide. 

(2) Using 100 L micropipette, spot 50-60 μL (wafer) or 20-30 μL (small film) initiator 

onto porous silicon.  

i. Let sit in a hood for 45 minutes to 1 hour. 

(3) Remove excess initiator with nitrogen (in the hood). When drying a film, be 

careful not to use too much pressure or else film will crack and break. The wafers 

are more stable. 

(4) Dry with nitrogen, use a heat gun (setting 2-4, pointed at the back of the 

wafer/film, not the top) for 3 to 5 seconds. Repeat this step 3x. 
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i. Note: You should be able to see the excess initiator remove. 

After three drying steps, wafer/film should appear dry. 

(5)  Let sit for a few minutes before use. 

(6) Commonly used initiators are fluorinated compounds. Excess initiator should be 

collected in a petri dish, absorbed, and stored as solid halogenated waste.  
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B. Protocol for SEM of NIMS Substrates 

 

(1) When imaging p-type porous silicon, try to obtain a SEM image with a scale bar 

around 200 to 300 nm long (approximately 100,000 magnification) to see pores 

but also capture a large number. 

(2) Open image in ImageJ. 

(3) Optimize pore / background contrast using PROCESS  SMOOTH or 

SHARPEN and/or IMAGE  ADJUST  BRIGHTNESS/CONTRAST. 

(4) Calibrate image scale with pixels from image.  Draw a line across the scale bar 

on the image. Click on ANALYZE  SET SCALE. The length of the line is 

already measure in pixels (DISTANCE IN PIXELS). Change KNOWN DISTANCE 

to distance given next to the image’s scale bar, and change UNIT OF LENGTH 

to nm. Click GLOBAL to apply scale to all images which come from the original 

image. Scale will have to be readjusted for new images. 

(5) In order to select for pores, use or IMAGE  ADJUST  THRESHOLD. Press 

APPLY when black pores are only region not highlighted. A black and white 

image will be created.  

(6) Remove very small / unclear pores by PROCESS  FILTER  MEDIAN. Adjust 

PIXEL RADIUS as desired and press PREVIEW before removing them. 

(7) Create defined edges for the pores using PROCESS  FIND EDGES.  

(8) Click on ANALYZE  SET MEASUREMENTS. Select FERET’S DIAMETER, 

LIMIT TO THRESHOLD, SCIENTIFIC NOTATION, DISPLAY LABEL. Feret’s 

Diameter is like a caliper which measures the distance across the pore. 
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(9) Click on ANALYZE  ANALYZE PARTICLES. On the SHOW scrollbar, select 

ELLIPSES. Also check the DISPLAY RESULTS and CLEAR RESULTS (prior 

ones, if necessary). 

(10) RESULTS pop-up will contain data. The column labeled FERET will contain pore 

diameters. Within the RESULTS tab, click EDIT  SUMMARIZE to see average, 

standard deviation, minimum and maximum diameters. RESULTS tab can be 

saved as an .xls file to be viewed in Microsoft Excel. 
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C. SEM Images of NIMS Substrates 

 

SEM Images Obtained on Hitachi S-4200 Microscope (Film #1 - #9) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Film #1. 
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Film #2. 
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Film #3. 
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Film #4. 
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Film #5. 
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Film #6. 
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Film #7. 
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Film #8. 
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Film #9. 
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Side-view (300 s films). 
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Side-view (450 s films). 
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Side-view (600 s films). 
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High-resolution SEM Images Obtained on Raith e-Line (Courtesy of Judson Ryckman) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Top-view. 
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Top-view (2). 
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Side-view (zoom out). 

 

 

 

 

 



 
 

133 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cross-sectional view (zoom in). 
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Cross-sectional view (zoom in 2). 
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D. NIMS Supplemental Material 

Materials and Methods 

 Novel compounds were synthesized by Plamen Christov from the VICB Chemical 

Synthesis Core. All commercial chemicals were of the highest quality available and used without 

further purification. The reactions were monitored by thin layer chromatography (TLC) on Merck 

silica gel 60 F254 plates, visualization with 254 nm UV light. 

 

NMR Spectroscopy (VICB Core) 

  
1
H, 

13
C and 

19
F NMR spectra were recorded on Bruker NMR spectrometers operating at 

400, 100 and 380 MHz, respectively, in the indicated solvents. Chemical shifts are noted below. 

 

Synthesis of (E)-4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)benzyl 3-(4-

hydroxy-3,5-dimethoxyphenyl)acrylate (VU0470056, or SA-56). 

 In a flame dried flask, sinapic acid (100 mg, 0.446 mmols) was added, followed by 

addition of dry tetrahydrofuran (8 mL). Triphenyl phosphine (118 mg, 0.446 mmols) and 4-

(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)benzyl alcohol (247 mg, 0.446 mmols) 

were added at room temperature. After stirring at room temperature for 15 min, diisopropyl 

azodicarboxylate (88 μL, 0.446 mmols) was added and the reaction mixture was stirred at room 

temperature overnight. The solvent was removed and the residue was purified by ISCO flash 

chromatography (hexane and ethyl acetate; 0-5% ethyl acetate for 15 min). Obtained 150 mg of 

solid product (30%).
1
H-NMR (DMSO-d6) δ 7.58 (d, 1 H, J = 16 Hz), 7.36 (s, 4H), 7.03 (s, 2H), 6.58 

(d, 1H, J = 16Hz), 5.17 (s, 2H), 3.79 (s, 6H), 2.91-2.87 (m, 2H), 2.67-2.52 (m, 2H); 
13

C 

NMR(Acetone-d6)  δ 166.3, 147.9, 145.4, 139.1, 138.5, 135.1, 128.5, 125.1, 114.8, 105.9, 65.1, 

55.7, 32.1, 25.6;  
19

F NMR (Acetone-d6) δ  -126.7, -123.9, -123.2, -122.4, -122.2, -114.8, -81.6.  
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Synthesis of  4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)benzyl 2,5-

dihydroxybenzoate (VU0470057, or DHB-57). 

 In a flame dried flask, 2,5-dihydroxybenzoic acid (50 mg, 0.324 mmols) was added, 

followed by addition of dry tetrahydrofuran (8 mL). Triphenyl phosphine (85 mg, 0.324 mmols) 

and 4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)benzyl alcohol (179 mg, 0.324 

mmols) were added at room temperature. After stirring at room temperature for 15 min, 

diisopropyl azodicarboxylate (64 μL, 0.324 mmols) was added and the reaction mixture was 

stirred at room temperature overnight. The solvent was removed and the residue was purified by 

ISCO flash chromatography (hexane and ethyl acetate; 0-5% ethyl acetate for 15 min). Obtained 

165 mg of solid product (74%).
1
H-NMR (DMSO-d6) δ 7.42 (d, 1H, J = 8 Hz), 7.37 (d, 1H,  J = 8 

Hz), 7.15 (d, 1H, J = 4 Hz), 6.97 (dd, 1H, J1= 4Hz, J2= 8Hz), 6.83 (d, 1H, J = 8Hz), 5.34 (s, 2H), 

2.92-2.88 (m, 2H), 2.58-2.54 (m, 2H); 
13

C-NMR (Acetone-d6) δ 170.3, 155.5, 150.0, 140.3, 134.8, 

129.4, 124.4, 118.7, 114.7, 112.6, 67.2, 32.8, 26.4; 
19

F NMR(Acetone-d6) δ -126.7, -123.9, -123.2, 

-122.4, -122.2, -114.8, -81.6.  

 

Synthesis of 2-hydroxy-5-((4,4,5,5,6,6,7,7,7-nonafluoroheptyl)oxy)benzoic acid (VU0470058, or 

DHB-58). 

 In a flame dried flask, 2,5-dihydroxybenzoic acid (50 mg, 0.324 mmols) was added, 

followed by addition of dry dimethylformamide (7 mL). Sodium hydride (28 mg, 0.712 mmols) was 

added at room temperature, followed immediately with addition of 3-(perfluorobutyl)propyl iodide 

(75 μL, 0.356 mmols). After stirring at room temperature for 2h, the reaction mixture was cooled 

down, water (5 mL) and neutralized with hydrochloric acid (0.1 M). . Ethyl acetate (75 mL) was 

added and the organic layers were washed with water (3 x 50 mL). The organic layers were dried 

over anhydrous magnesium sulfate, filtered and removed in vacuum. The residue was purified by 

ISCO flash chromatography (methylene chloride and methanol; 0-25% methanol for 15 min). 

Obtained 84 mg of solid product (62%).
1
H-NMR (DMSO-d6) δ 7.27 (d, 1H, J = 4 Hz), 7.15 (dd, 1H, 

J1= 4Hz, J2 = 8 Hz), 6.98 (d, 1H, J = 8 Hz), 4.03 (tr, 2H, J = 4 Hz), 2.44-2.33 (m, 2H), 2.00-1.91 
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(m, 2H); 
13

C NMR(Acetone-d6) 172.4, 157.3, 152.0, 125.2, 119.8, 119.7, 199.0, 114.6, 113.1, 

67.9, 28.25, 21.3;  
19

F NMR(Acetone-d6) δ  -126.7, -124.9, -115.0, -81.9.  

 

Synthesis of 4-((4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroundecyl)oxy)benzyl 2,5-

dihydroxybenzoate  (VU0470059, or DHB-59). 

 In a flame dried flask, 2,5-dihydroxybenzoic acid (50 mg, 0.324 mmols) was added, 

followed by addition of dry tetrahydrofuran (8 mL). Triphenyl phosphine (85 mg, 0.324 mmols) 

and 4-[3-(perfluorooctyl)-1-propyloxy]benzyl alcohol  (190 mg, 0.324 mmols) were added at room 

temperature. After stirring at room temperature for 15 min, diisopropyl azodicarboxylate (64 μL, 

0.324 mmols) was added and the reaction mixture was stirred at room temperature overnight. 

The solvent was removed and the residue was purified by ISCO flash chromatography 

(methylene chloride and methanol; 0-5% methanol for 15 min). Obtained 94 mg of solid product 

(40%).
1
H-NMR (DMSO-d6) δ 7.42 (d, 1 H, J = 8 Hz), 7.13 (d, 1H, 3 Hz), 6.99 (d, 1H, J = 8Hz), 

6.95 (d, 1H, J= 3Hz), 6.82 (d, 1H, J = 8 Hz), 5.23 (s, 2H), 4.09 (tr, 2H, J = 4 Hz), 2.44-2.33 (m, 

2H), 2.03-1.92 (m, 2H), 
13

C-NMR (Acetone-d6) δ 170.9, 160.0, 155.0, 150.5, 131.3, 129.0, 125.1, 

118.9, 115.5, 115.0, 113.0, 67.6, 67.2, 28.3, 21.3, 
19

F NMR(Acetone-d6) δ -126.6, -123.9, -123.2, -

122.3, -114.7, -81.6.  

 

Synthesis of (E)-2-cyano-N-(4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroundecyl)-3-(4-

hydroxyphenyl)acrylamide. (VU0470060, or CHCA-60). 

 In a flame dried flask, alpha-cyano-4-hydroxycinnamic acid (50 mg, 0.264 mmols) was 

added, followed by addition of dry dimethylformamide (DMF, 7 mL), 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDC, 56 mg, 0.290 mmols), hydroxybenzotriazole (HOBt, 40 

mg, 0.29 mmols) and triethylamine (TEA, 41 μL, 0.29 mmols). After stirring for 15 min at room 

temperature,   3-(perfluorooctyl)propylamine (70 μL, 0.237 mmols) was added and the reaction 

mixture was stirred overnight at room temperature. Ethyl acetate (75 ml) was added and the 

organic layers were washed with water (3 x 50 mL). The organic layers were dried over 

anhydrous magnesium sulfate, filtered and removed in vacuum. The residue was purified by 
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ISCO flash chromatography (methylene chloride and methanol; 0-10% methanol for 15 min). 

Obtained 100 mg of solid product (65% yield). 
1
H-NMR (DMSO-d6) δ 8.37 (tr, 1 H, J = 4 Hz), 8.02 

(s, 1H), 7.85 (d, 1H, J = 8 Hz), 6.90 (d, 1H, J = 8Hz), 3.20 (tr, 2H, J = 4Hz), 2.27-2.20 (m, 2H), 

1.79-1.72 (m, 2H); 
13

C-NMR (Acetone-d6 ) δ 162.3, 161.0, 151.8, 133.7, 124.5, 117.5, 116.7, 

101.6, 39.6, 28.8, 21.1; 
19

F NMR(Acetone-d6 ) δ -126.7, -123.9, -123.2, -122.4, -122.2, -114.5, -

81.6. 

 

Note: all matrices were re-protonated using 0.1% formic acid in 99.9% ethanol (v/v). 

 

IR spectroscopy data for 5 compounds (McLean Lab) 

 Approximately 250 mg of potassium bromide (KBr) was mixed with 2 mg of each matrix 

using a mortar and pestle. Approximately 100 mg was placed into a press to form pellets. Data 

was obtained on a Thermo Nicolet IR spectrometer. No background subtraction or signal 

correction was performed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

139 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

140 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

141 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

142 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

143 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

144 
 

Accurate MS data for 5 compounds (McLean Lab) 

 Compounds were dissolved at a concentration of 1 mg/mL in 99.9% ethanol / 0.1% 

formic acid (v/v), and 1 μL of solution was spotted on the plate for each. No additional matrix was 

added. Accurate mass data were obtained on a Waters Synapt G2-S mass spectrometer in LDI-

IM-TOFMS mode using a 355 nm Nd:YAG solid-state laser. Spectra were centered and externally 

calibrated. After manual calibration, mass errors were less than 5 ppm (see Table 1). 

 Instrument settings were as follows: positive LDI ion mode; mobility TOF; resolution; laser 

attenuation, 300 (arb. units); mass range, 300-2000 Da; trap gas flow, 2 mL/min; helium cell gas 

flow, 180, IMS gas flow, 90 mL/min, cooling gas flow, 15; trap DC entrance, 3; trap DC bias, 45; 

trap DC, -2; trap DC exit, 0; IMS DC entrance, 25; helium cell DC, 35; helium exit, -5; IMS bias, 3; 

IMS DC exit, 0; transfer DC entrance, 4; transfer DC exit, 15; IMS wave velocity, 650 m/s; IMS 

wave height, 40 V; mobility trapping release time, 200 μs; IMS wave delay, 200 μs; source 

pressure, 3.79 x 10
-4

 mbar; sample plate pressure, 3.75 x 10
-1

 mbar; trap pressure, 2.01 x 10
-2

 

mbar; IMS pressure, 3.07 mbar; transfer pressure, 2.11 x 10
-2

 mbar; TOF pressure, 6.36 x 10
-7

 

mbar. 

 Labeled accurate mass spectra (zoomed-in) and full peak lists (m/z, intensity) are shown 

for all compounds below. It is important to mention VU0470056, VU0470057, and VU0470059 

photocleaved upon laser irradiation, which led to low parent ion signal intensity. For these 

compounds, the base peak of the spectrum corresponds to fragmentation at the matrix / linker 

bond (e.g. Figure 3-5); these values are highlighted in yellow. 
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(m/z, intensity) 300.09, 21128; 301.07, 23180; 311.08, 23262; 313.10, 29017; 323.22, 31365; 
324.09, 22525; 326.10, 23746; 327.11, 20948; 335.08, 22278; 337.10, 24568; 339.11, 21213; 
409.09, 19567; 435.11, 19075; 461.05, 19105; 479.04, 16277; 481.06, 18822; 499.05, 125165; 
500.05, 25053; 513.06, 21776; 516.07, 20138; 517.04, 16968; 519.05, 132970; 520.06, 26944; 
533.07, 16887; 536.08, 21472; 537.05, 2353406; 537.24, 26022; 538.05, 365338; 539.05, 28251; 
551.06, 116820; 552.06, 30239; 554.07, 380911; 555.07, 66989; 563.06, 29412; 567.06, 18400; 
568.05, 62901; 577.04, 39856; 613.01, 17462; 639.09, 16307; 659.28, 20957; 671.08, 16275; 
673.09, 14382; 683.08, 16785; 687.10, 14619; 697.09, 15533; 701.09, 14345; 703.11, 15179; 
713.09, 26416; 715.10, 14088; 719.99, 22979; 720.99, 14798; 727.10, 14306; 739.10, 16976; 
755.07, 13425; 783.09, 38577; 784.10, 16299; 785.10, 20703; 799.07, 21897; 801.07, 17153; 
839.99, 18720; 840.99, 13819; 887.98, 12742; 911.99, 12142; 983.99, 12166; 1007.99, 12300; 
1097.08, 18695; 1113.06, 10666; 1199.99, 10274; 1200.98, 10750; 1224.99, 10405. 
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(m/z, intensity) 308.29, 16529; 378.38, 9004; 406.41, 6710; 499.05, 43100; 500.05, 7180; 
516.07, 7932; 517.04, 6492; 519.05, 30361; 535.03, 5310; 536.03, 7071; 536.08, 6556; 537.05, 
2992046; 537.17, 18548; 537.24, 83200; 537.35, 20380; 537.68, 7568; 538.05, 577798; 538.24, 
5743; 539.05, 41135; 551.06, 13276; 552.06, 118713; 553.06, 22430; 554.07, 509631; 555.07, 
69214; 556.08, 6790; 561.04, 8649; 563.06, 23807; 566.07, 8203; 567.06, 9031; 568.05, 65653; 
569.05, 12198; 575.06, 6202; 577.04, 8671; 587.06, 8060; 589.07, 5807; 591.05, 18405; 594.07, 
6467; 601.08, 11673; 603.05, 9556; 617.07, 8285; 625.07, 5349; 627.05, 8064;  629.07, 11350; 
630.08, 4917; 637.30, 17592; 639.09, 5735; 641.07, 7950; 643.05, 69804; 644.06, 18094; 
645.06, 101078; 646.07, 56622; 647.08, 12781; 655.06, 4961; 657.07, 18570; 658.07, 6014; 
659.07, 7023; 660.08, 6938; 661.06, 5161; 669.06, 9571; 671.05, 11220; 672.05, 6859; 673.06, 
97796; 674.07, 27806; 675.08, 10064; 683.08, 4833; 687.04, 25708; 688.05, 8254; 689.05, 
90659; 690.07, 42781; 691.07, 15265; 692.09, 4778; 697.05, 5979; 699.08, 5447; 703.08, 5201; 
704.07, 4798; 707.07, 5073; 712.04, 4715; 713.05, 28196; 714.05, 8290; 728.01, 6769; 729.03, 
71950; 730.03, 17555;  731.03, 7241; 753.08, 4725; 781.08, 8304; 797.07, 11640; 798.08, 5761; 
809.08, 5824; 826.08, 4631; 1072.12, 3803; 1073.08, 5982;  1090.10, 12987; 1091.11, 5057; 
1137.10, 3521; 1165.10, 4900; 1179.08, 8075; 1180.09, 4528;  1181.10, 13520; 1182.10, 13330; 
1183.11, 4574; 1209.10, 7749; 1210.11, 4015; 1223.06, 3934; 1225.09, 13448; 1226.10, 18188; 
1227.10, 7795; 1228.11, 5676; 1249.08, 3790; 1265.06, 3726. 
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(m/z, intensity) 311.29, 13968; 323.22, 13092; 372.34, 7053; 388.02, 7997; 414.06, 16363; 
426.01, 36984; 427.02, 9152; 429.02, 6908; 429.23, 6562; 432.01, 7249; 436.03, 13963; 437.04, 
108562; 438.04, 14790; 442.01, 10143; 444.02, 15340; 452.00, 9540; 453.00, 25033; 454.01, 
9170; 455.01, 12448; 459.02, 15978; 460.02, 7891; 469.02, 6649; 470.02, 11793; 471.01, 
133940; 472.01, 22089; 473.02, 12153; 486.00, 23519; 487.01, 5470; 488.02, 8285; 489.02, 
96975; 490.03, 18672; 491.02, 7422; 494.02, 6051; 495.04, 5966; 498.00, 5544; 504.01, 8502; ; 
511.04, 35402; 512.04, 10572; 513.05, 6912; 528.96, 7190; 529.05, 19168; 805.07, 5104; 
821.06, 6177; 822.05, 5429; 823.06, 12356; 827.04, 4221; 831.07, 12747; 833.07, 6302; 847.05, 
19653; 848.05, 7323; 849.05, 18539; 850.05, 11507; 865.04, 12385; 866.03, 10583; 867.05, 
26058; 868.05, 9272; 885.06, 9067. 
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(m/z, intensity) 326.37, 10679; 355.06, 6375; 415.03, 5991; 429.08, 5881; 503.10, 5342; 529.06, 
29578; 530.06, 6971; 549.06, 19784; 565.04, 7771; 567.05, 994173; 567.25, 5580; 568.06, 
172679; 569.06, 14535; 581.04, 8298; 591.17, 6282; 598.06, 15609; 673.06, 6627; 673.09, 9144; 
675.07, 11617, 701.07, 7649; 703.07, 9828; 719.06, 21344; 719.99, 61618; 721.00, 48453; 
722.00, 14055; 839.99, 10896; 840.99, 7177; 1133.11, 5368. 
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(m/z, intensity) 478.04, 62103; 549.08, 96071; 567.03, 18591; 582.06, 70100; 633.06, 22109; 
647.05, 21411; 649.07, 383354; 650.08, 99480; 651.08, 33789; 653.06, 14780; 659.28, 24952; 
669.03, 46236; 671.05, 712993; 672.06, 145621; 673.07, 53306; 675.25, 17284; 685.01, 40315; 
687.03, 672079; 688.03, 153933; 689.03, 101162; 690.03, 21025; 693.03 ,23813; 705.02, 
48360; 706.03, 14156; 707.02, 202425; 708.03, 47337; 709.01, 42833; 724.98, 18908; 725.03, 
44792; 1297.13, 25435; 1298.13, 10213; 1319.11, 57524; 1320.12, 25223; 1335.09, 45458; 
1336.09, 19009; 1337.10, 9870. 
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E. MDA Supplemental Material 

NMR Spectroscopy of Purified MDA Isomers (Don Stec) 

 NMR experiments were acquired using a 14.0 T Bruker magnet equipped with a Bruker 

AV-III console operating at 600.13 MHz.  All spectra were acquired in 5mm NMR tubes using a 

Bruker 5 mm TCI cryogenically cooled NMR probe. Chemical shifts were referenced internally to 

DMSO (2.49 ppm) which also served as the 
2
H lock solvents.   For 1D 1H NMR, typical 

experimental conditions included 32K data points, 13 ppm sweep width, a recycle delay of 1.5 

seconds and 64 scans. For 1D 13C NMR, typical experimental conditions included 32K data 

points, 250 ppm sweep width, 20
o
 excitation pulse, a recycle delay of 2 seconds and 512 scans. 

Multiplicity-edited HSQC experiments were acquired using a 1024 x 256 data matrix, a J(C-H) 

value of 145 Hz which resulted in a multiplicity selection delay of 34 ms, a recycle delay of 1.5 

seconds and 64 scans per increment along with GARP decoupling on 
13

C during the acquisition 

time (150 ms). The data was processed using a p/2 shifted squared sine window function and 

displayed with CH/CH3 signals phased positive and CH2 signals phased negative.  
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Supporting Computational Data (Sarah Stow) 

 

 

 

p-NH2 4,4’-MDA Conformational space plot for the para-amine protonated 4,4’-MDA. The 3,000 
generated conformations are represented in grey, the clustering representative conformations are 
labeled with letters that correspond to the structures in the following two pages.  The asterisk 
indicates the structures that are shown in Chapter 4. 
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p-NH2 4,4’-MDA Clustering analysis of 3,000 conformations of the para-amine protonated 4,4’-
MDA.  Clustering is based on root mean square distance of atoms of superimposed structures.  
The vertical black bar indicates the RMSD cutoff (1.40 Å) used to select the conformations 
(circled) for further analysis. The asterisk represents the structures shown in Chapter 4. 
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p-NH2 4,4’-MDA Representative conformations of the para-amine protonated 4,4’-MDA 
generated from an elevated temperate molecular dynamic protocol.  Carbon atoms are shown in 
dark grey, hydrogen in light grey, and nitrogen in blue.  The asterisk represents the structures 
shown in Chapter 4.  The number of conformations each of these represents from clustering is 
shown below the conformation. 
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o-NH2  , ’-MDA  Conformational space plot for the ortho-amine protonated 2,2’-MDA. The 3,000 
generated conformations are represented in grey, the clustering representative conformation are 
labeled with letters that correspond to the structures in on the following two pages. The asterisk 
indicates the structures that are shown in Chapter 4. 
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o-NH2  , ’-MDA  Clustering analysis of 3,000 conformations of the ortho-amine protonated 2,2’-
MDA.  Clustering is based on root mean square distance of atoms of superimposed structures.  
The vertical black bar indicates the RMSD cutoff (1.20 Å) used to select the conformations 
(circled) for further analysis. The asterisk represents the structures shown in Chapter 4. 
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o-NH2  , ’-MDA Representative conformations of the ortho-amine protonated 2,2’-MDA 
generated from an elevated temperate molecular dynamic protocol.  Carbon atoms are shown in 
dark grey, hydrogen in light grey, and nitrogen in blue.  The asterisk represents the structures 
shown in the paper.  The number of conformations each of these represents from clustering is 
shown below the conformation. 
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ring  , ’-MDA Conformational space plot for the ring-protonated 2,2’-MDA.  The 3,000 generated 
conformations are represented in grey, the clustering representative conformations are labeled 
with letters that correspond to the structures in the following two pages.  The asterisk indicates 
the structures that are shown in Chapter 4. 
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ring  , ’-MDA Clustering analysis of 3,000 conformations of the ring-protonated 2,2’-MDA.  
Clustering is based on root mean square distance of atoms of superimposed structures.  The 
vertical black bar indicates the RMSD cutoff (1.26 Å) used to select the conformations (circled) for 
further analysis. The asterisk represents the structures shown in Chapter 4. 
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ring  , ’-MDA Representative conformations of the ring-protonated 2,2’-MDA generated from an 
elevated temperate molecular dynamic protocol. Carbon atoms are shown in dark grey, hydrogen 
in light grey, and nitrogen in blue. The asterisk represents the structures shown in Chapter 4.  
The number of conformations each of these represents from clustering is shown below the 
conformation. 
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p-NH2  ,4’-MDA  Conformational space plot for the para-amine protonated 2,4’-MDA.  The 3,000 
generated conformations are represented in grey, the clustering representative conformation are 
labeled with letters that correspond to the structures in the following two pages.  The asterisk 
indicates the structures that are shown in Chapter 4. 
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p-NH2  ,4’-MDA  Clustering analysis of 3,000 conformations of the para-amine protonated 2,4’-
MDA.  Clustering is based on root mean square distance of atoms of superimposed structures.  
The vertical black bar indicates the RMSD cutoff (1.35 Å) used to select the conformations 
(circled) for further analysis. The asterisk represents the structures shown in Chapter 4. 
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p-NH2  ,4’-MDA  Representative conformations of the para-amine protonated 2,4’-MDA 
generated from an elevated temperate molecular dynamic protocol.  Carbon atoms are shown in 
dark grey, hydrogen in light grey, and nitrogen in blue.  The asterisk represents the structures 
shown in Chapter 4.  The number of conformations each of these represents from clustering is 
shown below the conformation. 
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o-NH2 2,4’-MDA  Conformational space plot for ortho-amine protonated 2,4’-MDA. The 3,000 
generated conformations are represented in grey, the clustering representative conformations are 
labeled with letters that correspond to the structures in the following two pages. The asterisk 
indicates the structures that are shown in Chapter 4. 
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o-NH2 2,4’-MDA  Clustering analysis of 3,000 conformations of the ortho-amine protonated 2,4’-
MDA.  Clustering is based on root mean square distance of atoms of superimposed structures.  
The vertical black bar indicates the RMSD cutoff (1.35 Å) used to select the conformations 
(circled) for further analysis. The asterisk represents the structures shown in Chapter 4. 
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o-NH2 2,4’-MDA Representative conformations of the ortho-amine protonated 2,4’-MDA 
generated from an elevated temperate molecular dynamic protocol.  Carbon atoms are shown in 
dark grey, hydrogen in light grey, and nitrogen in blue.  The asterisk represents the structures 
shown in Chapter 4.  The number of conformations each of these represents from clustering is 
shown below the conformation. 

 

 



 
 

172 
 

 

 

 

 

ring  ,4’-MDA Conformational space plot for the ring-protonated 2,4’-MDA.  The 3,000 generated 
conformations are represented in grey, the clustering representative conformations are labeled 
with letters that correspond to the structures in the following two pages.  The asterisk indicates 
the structures that are shown in Chapter 4. 
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ring 2,4’-MDA Clustering analysis of 3,000 conformations of the ring-protonated 2,4’-MDA.  
Clustering is based on root mean square distance of atoms of superimposed structures.  The 
vertical black bar indicates the RMSD cutoff (1.25 Å) used to select the conformations (circled) for 
further analysis. The asterisk represents the structures shown in Chapter 4. 
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ring  ,4’-MDA Representative conformations of the ring-protonated 2,4’-MDA generated from an 
elevated temperate molecular dynamic protocol.  Carbon atoms are shown in dark grey, 
hydrogen in light grey, and nitrogen in blue.  The asterisk represents the structures shown in 
Chapter 4.  The number of conformations each of these represents from clustering is shown 
below the conformation. 
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F.  Raw Mass Spectrometry Data from Dissertation Figures (pre-calib.; no baseline corr.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2c (top). 
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Figure 2-2c (bottom). 
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Figure 2-4. 
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Figure 2-5. 
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Figure 2-6b. 
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Figure 2-9a. 
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Figure 2-9b.  
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Figure 3-4a. 
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Figure 3-4b. 
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Figure 3-4c. 
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Figure 3-4d. 
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Figure 3-5a. 
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Figure 3-6. 
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Figure 3-7 (top). 
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Figure 3-7 (middle). 
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Figure 3-7 (bottom). 
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Figure 3-8a (top). 



 
 

192 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-8a (bottom). 
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Figure 3-8b (top). 
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Figure 3-8b (bottom). 
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Figure 4-3 (left). 
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Figure 4-3 (right).  
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Figure 4-4 (left). 
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Figure 5-3a. 
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Figure 5-3b. 
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Figure 5-6. 
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Figure 5-7. 
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G.  Raw Ion Mobility Data from Dissertation Figures (before CCS conversion) 

 

 

Figure 4-6a. 
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Figure 4-7a. 
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Figure 4-7b. 
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Figure 4-7c. 
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H. References of Adaptation for Chapters 

 

At the time of the writing of this dissertation, the chapters were modified from manuscripts either 
in publication, in submission, or in preparation for submission, as shown below. 

 

CHAPTER I.  Forsythe, J. G.; McLean, J. A. Nanomaterial-based MALDI-MS Imaging of 
Biological Samples. In preparation for submission to The Analyst. 

 

CHAPTER II. Forsythe, J. G.; Broussard, J. A.; Lawrie, J. L.; Kliman, M.; Jiao, Y.; Weiss, S. M.; 
Webb, D. J.; McLean, J. A. Semitransparent Nanostructured Films for Imaging 
Mass Spectrometry and Optical Microscopy. Anal. Chem. 2012, 84, 10665-

10670. 

 

CHAPTER III. Forsythe, J. G.; Christov, P.; Portonovo, P.; Stow, S. M.; McLean, J. A. 
Composite Matrix-initiator Surface for Enhanced Nanostructure-initiator Mass 
Spectrometry. In preparation for submission to ChemComm. 

 

CHAPTER IV. Forsythe, J. G.; Stow, S. M.; Nefzger, H.; Kwiecien, N. W.; May, J. C.; McLean, J. 
A.; Hercules, D. M. Structural Characterization of Methylenedianiline 
Regioisomers by Ion Mobility and Mass Spectrometry I. Electrospray Ionization of 
Dimers. Submitted to Anal. Chem. 
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