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Chapter I. Introduction 

1. Big Data in Medicine 

In 2009, the Health Information Technology for Economic and Clinical Health (HI-TECH) 

Act, allocated $15.5 billion to incentivize the adoption of Electronic Health Records (EHR) in the 

USA. A recent survey showed that this program has been largely successful with 72% of office-

based physicians using EHR systems in 2012 [1]. In 2011, it was estimated that 150 exabytes (1 

billion gigabytes) of data was stored by the US health care system, and will soon reach a zettabyte 

(1024 bytes) [2].  The National Institutes of Health started a program called “Big Data to 

Knowledge” [3] to “facilitate broad use of biomedical big data, develop and disseminate analysis 

methods and software, enhance training relevant for large-scale data analysis, and establish centers 

of excellence for biomedical big data.” These programs provided a great opportunity for computer 

scientists to use large-scale machine learning algorithms on clinical data [4]. 

The abundance of medical data presents new challenges for consolidation of information 

for decision making in the medical community in general, and the medical imaging community 

specifically. Physicians are confronted with the problem of ‘information overload’, affecting their 

ability to process important information and discard irrelevant data. Wilson, in his paper about 

technology in health care, defines information overload as “a perception on the part of the 

individual that flow of information associated with work tasks is greater than can be managed 

effectively”[5]. The problem of information overload also leads to errors or missed test results. 

Ash et al conducted a study of electronic medical record systems and showed that typical use of 

these systems fosters errors rather than reducing their likelihood, due to cognitive overload[6]. 

This can happen in the form of fragmented information – switching between screens instead of 
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having a complete overview. Reports have the problem of being “over-complete” while decreasing 

in readability and information value. These systems send too many alerts, reminders and warning 

messages, leading to a loss of crucial information in several instances [7].  

Radiologists face problems of fatigue and errors due to information overload in imaging 

systems [8]. The increase in the volume of imaging did not see an equal improvement in systems 

that automate information extraction and improve work flow for the radiologists. There is a need 

for technology that improves workflow in radiology departments [9], [10]. In a review article, Lee 

et al report that the retrospective error rate among radiologic examinations in 30%, and real-time 

error rate is 3-5% [11]. 75% of all malpractice claims are related to misdiagnosis against 

radiologists. Among the solutions proposed, Lee et al propose that improvement in computer-aided 

technology that can automate certain processes can vastly reduce the errors caused by radiologists 

and help with the visual fatigue faced by radiologists. Reiner et al suggest similar strategies to 

improve radiologist performance including, preliminary interpretation using CAD (computer-

aided diagnosis) systems, and automated extraction of imaging/report data [12]. In a recent article, 

Recht and Bryan discuss the importance of artificial intelligence (AI) to radiologists[13]. They 

envision a radiology practice of the future, where the role of the AI system is that of an aggregator 

of information, and the role of a radiologist as that of an expert interpreter. The AI system will 

perform the mundane tasks of assembling relevant information from a patient’s electronic medical 

record, identify anomalous regions in the patient’s scans, and prepare a report of important 

findings. The radiologist will perform value-added functions of making sense of the integrated 

data, making diagnoses, and interacting with patients and clinical teams to improve overall clinical 

care. They predict that AI systems will contribute to reducing stress and fatigue for the radiologists, 

and improving job satisfaction. 
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1.1. Machine Learning in Radiology 

AI and machine learning have been used extensively in the field of medical image analysis 

for various tasks such as segmentation of structures, image registration, computer-aided detection 

and diagnosis[14], [15]. Some application such as detection and segmentation of regions of interest 

would boost the performance of radiologists by performing mundane tasks and saving time, 

reducing fatigue, and improving productivity. Examples of such applications include localization 

of organs [16], lung nodule detection [17]–[19], and prostate lesion detection [20]. Some recent 

applications also provide automated annotations and text descriptions for new scans [21], [22]. A 

system such as this would be of great help to a radiologist by providing a template for a text report 

beforehand, so that less time can be spent on data entry. 

Recent computer-aided diagnosis systems show classification accuracy comparable with 

radiologists in limited test cases[23]–[25]. Kooi et al developed a CAD system to detect lesions 

on a breast mammography. They used features learned from convolutional neural networks along 

with hand crafted features [26] and compared the performance of their system to that of human 

performance in a patch level study. They found that there was no statistically significant difference 

in the performance. Giger et al developed a system to identify malignant breast lesions from 

diagnostic MRI (Magnetic Resonance Imaging). They demonstrated that the performance of a 

radiologist improved when their AI system was used as an aid from AUC (Area Under the Curve) 

of 0.7055 to 0.7575 and the mean sensitivity increased from 90.4% to 94.2%. This device recently 

received FDA clearance[27]. 

However, most of these systems perform image analysis task in isolation, i.e., they do not 

consider the context of the disease, the patient’s history, earlier test results and procedures and so 

on into consideration. This is one of the major drawbacks of current practice of medical image 
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analysis. In an article discussing the future of radiology, Blum and Zins discuss that while machine 

learning methods might become extremely good at detection, radiologists are still required to 

perform other important functions such as, integrating different sources of clinical data [28]. 

Similarly, Recht et al point out that while the current CAD systems are gaining proficiency in 

radiologic tasks, integrating clinical and imaging information is necessary for contextual reading 

of medical imaging [13].  

1.2. Context-Aware Image Analysis of the Eye Orbit 

In this work, we will develop machine learning methods to automatically analyze electronic 

medical data related to diseases of the optic nerve including imaging, past diagnoses, procedures, 

labs and other demographic information. Traditional medical image analysis studies focus on 

discovering single or multiple radiologic phenotypes associated with a disease. However, in the 

case of complex disease presentations, radiologic phenotypes are inadequate or incomplete in 

extracting relevant information about the disease as similar imaging features might be present in 

different diseases even though the pathological causes might be distinct. In the case of diseases of 

the optic nerve, visual disturbances are caused in a patient due to damage to the optic nerve. The 

causes for the damage range from systemic abnormalities such as endocrine problems, aging, 

neoplasms, or trauma. An overview of different conditions involving the optic nerve is presented 

in section 2 of this chapter.  Our goal in this work is to learn imaging and EMR biomarkers that 

are associated with visual function and optic nerve disease and use these biomarkers to model 

prognosis and diagnosis of the diseases. The main contribution of this work is to show that context-

aware models that are developed by integrating a patient’s health history into image analysis 

improve the outcomes of the statistical models. A full list of contributions of this work is presented 

in Section 3 of this chapter.  
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Briefly, the steps involved in achieving this goal are detailed below: 

1. Image Segmentation: We will develop models that will automatically segment the 

structures in the eye orbit, from clinically acquired computed tomography (CT) and 

magnetic resonance imaging (MRI). 

2. Discovering Biomarkers of Interest: We will extract relevant information from 

automatically segmented structures and evaluate their correlation with visual function 

such as with visual acuity, and visual field defects. 

3. Develop Tools for Extraction of EMR features: We will develop tools to extract 

EMR context signatures from past records of the patient, including past diagnoses, 

procedures, labs and so on. 

4. Develop Diagnostic Classifiers: We will develop machine learning methods to 

classify diseases of the optic nerve from control subjects. The ultimate goal of this 

study will be to develop a differential diagnosis classifier that is able to separate 

diseases of the optic nerve based on all of the information collected on them including 

imaging, and health history. 

2. Diseases of the Optic Nerve 

Diseases of the optic nerve affect millions of Americans each year. These diseases include 

a wide range of conditions such as glaucoma, thyroid eye disease, optic neuritis, papilledema, 

idiopathic intracranial hypertension, and orbital infections. Diagnosis and treatment planning of 

orbital conditions is done based on visual testing, careful review of the patient’s history and orbital 

imaging. In this work, we develop automated image analysis and machine learning algorithms that 

will aid in the process of diagnosis and prognosis prediction of the diseases of the optic nerve.  In 
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this section, we present an overview of the diseases and diagnostic challenges associated with these 

conditions.  

The complete list of conditions considered in this work is shown in Table I-1. These codes 

have been divided into five separate cohorts of related conditions as shown in the table. All of 

these diagnostic codes could lead to optic neuropathy, a condition where the optic nerve is 

damaged due to various types of pathology or trauma[29].  

A patient with optic neuropathy typically exhibits symptoms of sudden mild to severe 

vision loss in terms of both visual acuity and visual field defects. In most optic neuropathies, the 

origin of the damage to the optic nerve can be ascertained from other systemic problems or trauma 

such as an accident. For example, patients with past thyroid imbalances or tumors have 

compressive optic neuropathy; patients with giant cell arteritis have non-arteric ischemic optic 

neuropathy, patients with high intraocular pressure have glaucomatous optic neuropathy and so 

on. Diseases of the optic nerve can have serious consequences such as permanent blindness when 

not detected and treated within the window of opportunity.  Differential diagnosis of orbital 

conditions is often a challenging process where data from multiple sources need to be gathered to 

make a decision[30]. 

Figure I-1 shows the co-occurrence of these conditions in a group of 28,411 ophthalmology 

patients, whose records were collected from the Vanderbilt University Medical Center under IRB 

approval. ICD-9 codes within a cohort have a very high co-occurrence, however there is overlap 

between cohorts as well. Each node in Figure I-1 represents an ICD-9 code and is color-coded by 

its respective cohort. Each edge represents a co-occurrence measure between two nodes called the 

Dominant Confidence (DC) measure. The thickness of the edge represents the magnitude of DC, 

i.e. a thicker edge indicates a stronger co-occurrence. The DC measure between A and B is given 
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by 𝐷𝐶	(𝐴, 𝐵) = 𝑚𝑎𝑥(𝑃(𝐴|𝐵), 𝑃(𝐵|𝐴)), where P(A|B) is the conditional probability of having 

diagnosis A given diagnosis B, and P(B|A) is vice versa. The graph was created by calculating the 

DC measure for all 6,241 pairs of ICD9 codes.  

Table I-1. Cohort inclusion criteria 

Cohort ICD-9 codes Description 

Glaucoma 365.0*  Borderline glaucoma 
 

365.1*  Open-angle glaucoma 
 

365.2* Primary angle-closure glaucoma 
 

365.3* Corticosteroid-induced glaucoma 
 

365.4* Glaucoma associated with congenital anomalies, dystrophies, and systemic syndromes 
 

365.5* Glaucoma associated with disorders of the lens 
 

365.6* Glaucoma associated with other ocular disorders 
 

365.7* Glaucoma stage, unspecified 
 

365.8* Other specified forms of glaucoma 
 

365.9* Unspecified glaucoma 

Intrinsic Optic Nerve Disease 377.3* Optic Neuritis 

  377.4* Other disorders of optic nerve 

Optic Nerve Edema 348.2 Idiopathic intracranial hypertension 
 

377.0, 377.00 Papilledema 
 

377.01 Papilledema, increased intracranial pressure 
 

377.02 Papilledema, decreased ocular pressure 

Orbital Inflammation 376.0, 376.00 Acute inflammation of orbit 
 

376.01 Orbital cellulitis 
 

376.02 Orbital periostitis 
 

376.1 Chronic inflammation of orbit 
 

376.11 Orbital granuloma 
 

376.12 Orbital myositis 

  373.13 Abscess of eyelid 
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Thyroid Eye Disease 242.00 Toxic diffuse goiter without thyrotoxic crisis or storm 
 

376.2 Endocrine exophthalmos 
 

376.21 Thyrotoxic exophthalmos 
 

376.22 Exophthalmic ophthalmoplegia 

 
 

2.1. Disease Background 

2.1.1. Glaucoma 

Glaucoma is a group of conditions that are characterized by increased intra-ocular pressure 

and visual field defects. Glaucoma primarily affects the optic nerve head due to various 

pathological causes, resulting in glaucomatous optic neuropathy [31].  All types of glaucoma can 

potentially lead to blindness, making it the second leading cause of blindness in the world. 

Globally, 8.4 million of the 60 million people affected with glaucoma are blind [32]. The ocular 

hypertension treatment study showed that glaucomatous damage can be delayed or prevented 

altogether by controlling ocular pressure at early stages[33], [34]. A study conducted by Kolker 

showed that medically or surgically maintaining the intraocular pressure of patients affected by 

glaucoma to under 18 mm Hg prevented progressive decline in visual field loss[35]. Therefore, it 

is essential to detect glaucomatous optic neuropathy as early as possible to prevent permanent 

blindness. 
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2.1.2. Intrinsic Optic Nerve Disease 

The conditions included in the category of intrinsic optic nerve disease are optic neuritis 

and other disorders of the optic nerve. These conditions present with sudden loss in visual function 

due to damage to the optic nerve. Optic neuritis (ON) is a demyelinating inflammation of the optic 

nerve that can cause serious visual loss [36]. ON usually has good prognosis for vision outcome, 

since most patients fully recover their vision [37]. However, it is predictive of future multiple 

sclerosis [38], [39] and therefore early detection of ON is extremely important. Especially, since 

corticosteroids have been shown to improve vision and also prevent future MS lesions for at least 

two years for ON patients [40]. Some of the other neuropathies included in this category are: 

ischemic optic neuropathy which causes damage to the optic nerve due to lack of blood supply, 

and can result in permanent loss of vision[41]; optic nerve hypoplasia which is a non-progressive 

 

Figure I-1. Disease co-occurrence graph. Each node represents an ICD9 code, color-coded by the 
disease cohort. The thickness of the edges between two nodes is proportional to the probability of co-

occurrence of their ICD9 codes in the study population 
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congenital anomaly that can result in severe vision loss[42] and optic nerve sheath hemorrhage 

which is sometimes seen in trauma cases[43].  

2.1.3.  Optic Nerve Edema 

This category includes Idiopathic Intracranial Hypertension (IIH) and Papilledema. IIH is 

the presence of increased intracranial pressure (ICP) without a tumor or other lesions in the brain.  

IIH has devastating effects on vision, with blindness resulting in 10% of affected patients. Ney and 

all conducted a study to evaluate the levels of loss of visual function in IIH patients, and found 

that up to 83% of the patients have some loss of visual function in their visual fields [44].  The 

incidence of IIH is higher in women than in men, with various estimates of female to male 

incidence ratios ranging from 4:1 to 15:1. The average age of the people affected by IIH is 35 

years, and about 95% of affected people are obese [45]. IIH is also observed in children, however 

in this age group, there seems to be no association with gender or obesity [46]. IIH can be present 

with or without papilledema; when papilledema is present this condition is also called pseudotumor 

cerebri syndrome (PTCS). Patients with PTCS are affected by severe visual disturbances, whereas 

those without papilledema are not. Since severe and permanent vision loss is imminent in many of 

the patients, swift detection and immediate intervention is necessary. 

2.1.4. Thyroid Eye Disease 

Thyroid eye disease or Grave’s ophthalmopathy is associated with an autoimmune 

condition called Grave’s disease that affects the regulation of the thyroid hormone. It affects the 

soft tissues in the eye orbit, and can have devastating consequences without early treatment and 

management[47], [48]. The inflamed tissues in the orbit can lead to compressive damage to the 

optic nerve, which results in visual defects including visual field loss, color loss, and decreased 
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visual acuity. Vision loss due to thyroid disease is called dysthyroid optic neuropathy, which can 

lead to permanent blindness. Intervention options for thyroid eye disease include medication by 

immuno-suppressants as well as orbital decompression surgery. The treatment is more effective 

when the disease is detected in acute stages and controlled[49].  

2.1.5. Orbital Inflammation 

Orbital inflammation includes orbital cellulitis, orbital periostitis which are usually caused 

by infections. Acute orbital infections can have good prognosis when treated early, but any delay 

in intervention can cause irreversible blindness and, in some cases, death. JA Jr et al show that 

precipitous loss of vision can occur in patients with orbital aspergillosis without intervention in 

five case studies[50].  Yohai et al showed that in orbital mucormycosis the morbidity rate can be 

as high as 41% without early intervention[51]. This category also includes idiopathic inflammation 

of the orbit. The pathogenesis of idiopathic orbital inflammation is unknown and can affect 

multiple organs in the eye orbit including lacrimal glands, extraocular muscles and orbital fat [52]. 

Optic neuropathy is observed in some patients with orbital inflammation, which needs to be 

identified and treated with steroids to avoid permanent loss of vision. 

2.2. Clinical Observation Experience: Case Studies 

Detection and treatment of diseases that affect the optic nerve is a difficult process. The 

optic nerve is a very delicate structure and often, the window for intervention is very small. In my 

clinical observation experience, I observed ten different types of neuro-ophthalmological surgical 

procedures. In two of the cases that I observed, the patients had permanent vision loss as the 

window for intervention was missed. The problem with both these cases was not due to the 
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challenging nature of the diagnostic problem, but due to the fact that the physician missed a small 

detail because of information overload present in current day EMR systems. 

2.2.1. Case 1 

A female patient was diagnosed with IIH (Idiopathic Intracranial Hypertension) about 10 

years ago. Surgical intervention was not made at the time of diagnosis as the patient was on blood 

thinner medication from a previous DVT (deep vein thrombosis). The patient had severe vision 

loss due to IIH with almost complete vision loss in the left eye. There was remainder visual 

function in the temporal field. A new physician discovered that the patient’s DVT was an acute 

problem from a bypass surgery and therefore the patient need not have been on Coumadin (blood 

thinner) for 10 years. They immediately stopped the Coumadin medication and scheduled the 

patient for an Optic Nerve Sheath Fenestration procedure, to reduce the intracranial pressure and 

preserve the remaining vision. However, this intervention would not recover the lost visual 

function. 

The problem in this case was a communication gap between physicians in different 

departments regarding the patient’s medical history. With electronic medical records being 

digitized and maintained under one umbrella system, issues such as these can be prevented by 

having an automated system that can analyze co-morbid conditions and identify any 

contraindications or the lack thereof for therapeutic intervention. This is an example of information 

overload, all the necessary information to make the diagnosis and intervention was in the patient’s 

records, but the lack of tools that can manage this data and highlight relevant information caused 

a 10-year delay in intervention. 
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2.2.2. Case 2 

A patient had a fungal infection that invaded the orbital space of the left eye. An intra-

orbital catheter was placed for delivery of anti-fungal medicine directly to the affected region in 

order to treat the infection that could have potentially spread to the intracranial space. This patient 

went to the ER 6 months prior to the surgery complaining of a headache and blurred vision. When 

questioned by the ER staff about any trauma that might have occurred in the recent past, the patient 

mentioned a fall from 2 weeks prior to the ER visit. The ER staff immediately suspected that the 

fall could explain the symptoms. They performed a CT scan for indications of TBI (traumatic brain 

injury). The scan was clear and the patient was sent home. Five days later, the patient went blind 

in the affected eye. Another scan showed that there was visible infection in the orbital apex. The 

ER staff likely missed the infection as it is not common to check the orbital apex for infections in 

an ER visit. They also probably do not have the time or bandwidth to study the patient’s history to 

see if there were any related conditions, such as a sinus infection in the patient’s recent past. In 

this case, like the previous one, one of the problems is integration of electronic medical records to 

perform a quick analysis of co-morbid conditions. Another problem is that of identifying 

anomalies in imaging in a high-pressure, high-case-volume environment such as the ER.  

This is a perfect example where there is a need for a program that automatically identifies 

and detects biomarkers for orbital diseases so that radiologist on duty can review them quickly to 

identify high risk cases. Such a system can have a huge impact on productivity and prevention of 

adverse outcomes. 
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2.3. The Role of Orbital Imaging in Management of Diseases of the Optic Nerve 

Modern 3D imaging methods, such as computed tomography (CT) and magnetic resonance 

imaging (MRI), are used to establish the location of the pathology in orbital conditions. CT 

imaging can be used to compute measurements of the globe, extraocular muscles, and the optic 

nerve [53]. MRI is sensitive to optic nerve structure, inflammation, myelination, and axonal 

loss[54]–[56]. Imaging is used to compute volumetric changes observed in the optic nerve sheath 

as well changes in optic nerve diameter to diagnose IIH [56]–[59]. Optic nerve head deformity and 

optic nerve sheath distension  can be observed on T2-weighted MRI is used in diagnosis of 

papilledema[60], [61].   

Volumetric changes in extraocular muscles, and changes in the optic nerve are used to 

diagnose thyroid eye disease [62]. In addition to volumetric changes, other structural 

measurements such orbital apex angle, Barrett’s crowding index, and ratio of soft tissue to fat are 

used in diagnosis of thyroid eye disease [63]–[65].  MRI or CT imaging is used in diagnosis of 

orbital inflammation[66], to establish anatomic location and pathology. Some of the features 

observed are orbital fat infiltration, bone destruction, abscess, and diffuse inflammation of the 

extraocular muscles. MRI and CT imaging are also used in diagnosis of orbital infections[67], and 

pseudotumors[68], [69]. Hickman et al showed that the optic nerve area from an MRI can be used 

to evaluate the progression of optic neuritis [70]. They observed swelling and inflammation 

consistent with visual impairment. Features of optic neuritis can also be observed using clinical 

computed tomography (CT) images, when MRI is not available[71]. Harrigan et al quantitatively 

showed that radii of the optic nerve and the surrounding cerebrospinal fluid measured from MRI 

can be used to distinguish optic neuritis patients [72]. In fact several imaging studies of the eye 
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orbit have demonstrated the value of using orbital imaging to study diseases with complicated and 

challenging differential diagnosis[73]–[76]. 

In conclusion, orbital imaging captures several structural changes that are observed in 

diseases of the optic nerve. These changes serve as imaging biomarkers for detection, diagnosis 

and management of these diseases. In this work, we develop automated methods that will segment 

the structures in the eye orbit in clinical CT imaging and extract relevant structural features from 

these segmentations. This process of automated extraction can eventually be integrated into 

clinical practice to automate the detection of anomalous regions for review by a radiologist or a 

physician. Figure I-2 shows an example output of the structures segmented in a CT image using a 

multi-atlas segmentation pipeline. The features extracted from the image segmentation pipeline 

will be used for outcome modelling and diagnostic classification using machine learning.   

2.4. Importance of Contextual Information 

  Since many orbital conditions are systemic in nature, detection, diagnosis and 

therapeutic planning of these diseases require careful study of patient’s history and likelihood of 

disease as well. Other data collected for differential diagnosis includes lab tests and pathology 

tests. In orbital conditions, searching for system wide co-morbidities is particularly important. For 

example, IIH is associated with several systemic conditions such as Vitamin A deficiency, 

polycystic ovary syndrome, diabetes, thyroid disease, anemia, stroke, migraine, systemic lupus 

erythematous, pregnancy, menstrual dysfunction, and side-effects to certain medications [25],[56]. 

Thyroid eye disease is associated with past hypothyroidism, hyperthyroidism and Grave’s 

disease[47], [78], [79]. Optic nerve hypoplasia is associated with abnormalities in the central 

nervous system and endocrine system[42]. Glaucoma is associated with hypertension, 
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hyperlipidemia, systemic lupus, diabetes, hyperthyroidism, depression, and psychosis[80]. A 

multitude of systemic diseases can also cause other orbital inflammatory diseases[66], [81].  

  In this work, we will develop a tool that will summarize the relevant history for 

each condition in terms of past co-morbid conditions, and procedures to form disease EMR 

signatures. Image analysis studies in this work will be integrated with these EMR signatures to 

provide context for the biomarkers observed. We find that such context-aware studies improve 

outcome modelling when compared to traditional image analysis studies. 

3. Contributions 

In this work, we developed several image analysis and data analytic methods to analyze 

diagnostic information collected in the ophthalmology department at Vanderbilt University 

Medical Center. The data collected includes CT and MR imaging, demographic information, past 

diagnoses, procedure codes and labs. In this section, we will summarize the current contributions 

of this work. The first step in this process is to segment the relevant structures in the eye orbit, 

including the optic nerve, the globe, the extraocular muscles and orbital fat, and extract structural 

 

Figure I-2. Result of segmentation. The image on the left side shows an input CT image, and the 
image on the right shows the segmented structures using multi-atlas segmentation. The structures 

segmented here are: the eye globe, the optic nerve, the superior, inferior, lateral, and medial 
extraocular muscles, and the orbital fat. 
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measurements. The image analysis methods developed in this work are explained in section 3.1. 

Next, we showed that the measurements extracted from orbital imaging are correlated with visual 

function, and the phenotypes extracted from our statistical models match with clinical findings of 

disease subtypes. These clinical associations are explained further in section 3.2. Finally, we show 

that addition of EMR data in the form of past diagnoses and/or procedures improves outcome 

modelling and diagnostic classification, compared to models that use imaging alone. In section 

3.3, we briefly explain the methods developed to extract EMR data and the experiments designed 

to show that context aware image analysis models perform better. 

3.1. Segmentation of Orbital Imaging 

Multi-atlas methodology is suitable for identifying orbital structures such as the eye globe, 

the optic nerve, extraocular muscles and orbital fat from clinically acquired CT imaging. In this 

paradigm, a set of example atlases with expertly labelled structures are used to learn the 

segmentation in a new image. The procedure involves non-rigid registration of the atlases into the 

target image space, followed by label fusion of the registered atlases to learn the final label at each 

voxel in the target image. 

However, challenges arise in the identification of the individual extraocular rectus muscles 

that control eye movement. This is increasingly problematic in diseased eyes, where these muscles 

often appear to fuse at the back of the orbit (at the resolution of clinical computed tomography 

imaging) due to inflammation or crowding. We show that Kalman filters can be used to track the 

muscles in three-dimensions to refine multi-atlas segmentation and resolve ambiguity due to 

imaging resolution, noise, and artifacts. We further demonstrate the utility of the approach by 

correlating structural metrics of the eye orbit with clinical data and visual function measures in 

subjects with thyroid eye disease.  The pilot study demonstrates that automatically calculated 
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orbital metrics are strongly correlated with several clinical characteristics. Moreover, it is shown 

that the superior, inferior, medial and lateral rectus muscles obtained using Kalman filters are each 

correlated with different categories of functional deficit. These findings serve as foundation for 

further investigation in the use of CT imaging in the study, analysis and diagnosis of ocular 

diseases, specifically thyroid eye disease. The methodology and results of this work are presented 

in Chapter III. 

One of the main steps in the multi-atlas segmentation process is non-rigid registration of 

example atlases to the target space. Image registration involves identification of a transformation 

to fit a target image to a reference image space. The success of the registration process is vital for 

correct interpretation of the results of many medical image-processing applications, including 

multi-atlas segmentation. While there are several validation metrics employed in rigid registration 

to examine the accuracy of the method, non-rigid registrations (NRR) are validated subjectively 

in most cases, validated in offline cases, or validated based on image similarity metrics, all of 

which have been shown to poorly correlate with true registration quality. To counter this problem, 

we model the error for each target scan by expanding on the idea of Assessing Quality Using Image 

Registration Circuits (AQUIRC)[82], which created a model for error “quality” associated with 

NRR. In this work, we model the Dice similarity coefficient (DSC) error in the network, for a more 

interpretable measure. We test four functional models using a leave-one-out strategy to evaluate 

the relationship between edge DSC and circuit DSC: linear, quadratic, third order, or multiplicative 

models. We find that the quadratic model most accurately learns the NRR-DSC, with a median 

correlation coefficient of 0.58 with the true NRR-DSC, we call this the QUADRATIC (QUAlity 

of Dice in RegistrATIon Circuits) model. The QUADRATIC model is used for multi-atlas 

segmentation of the orbital structures in clinically acquired CT imaging based on majority vote. 
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Choosing the four best atlases predicted from the QUDRATIC model resulted in a 7% increase in 

the DSC between segmented image and true labels. The procedure for calculating registration error 

and results of the error models and segmentation are presented in chapter IV. 

3.2. Clinical Applications of Image Analysis 

3.2.1. Thyroid Eye Disease 

The purpose of this study is to understand the phenotypes of thyroid eye disease (TED) 

through data derived from a multi-atlas segmentation of computed tomography (CT) imaging in 

patients with thyroid eye disease. Images of 170 orbits of 85 retrospectively selected TED patients 

were analyzed with the automated segmentation tool developed as described in the section 3.1. 

Twenty-five bilateral orbital structural metrics were used to perform principal component analysis 

(PCA). The top two principal components which accounted for 60% of the variance, aligned with 

the description of TED subtypes in clinical literature. The first phenotype identified was the big 

volume phenotype with enlarged or inflamed muscles. The second phenotype was the stretched 

optic nerve phenotype, which indicated proptosis of the eye. Most of the subjects in the study have 

either of these characteristics or a combination of both. A Kendall rank correlation between the 

principal components (phenotypes) and clinical data showed that, the big volume phenotype was 

very strongly correlated (p-value<0.05) with motility defects, and loss of visual acuity. Whereas, 

the stretched optic nerve phenotype was strongly correlated (p-value<0.05) with a high Hertel, 

relatively better visual acuity, and smoking. The methodology and detailed results of this work are 

presented in Chapter V. 
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3.3. Contextualizing Medical Image Analysis with Electronic Health Histories  

3.3.1. PyPheWAS Python Package 

Natarajan et al conducted an analysis of the types of search queries in electronic health 

record systems, and showed that a majority of queries are informational in nature that look for past 

diagnoses, labs, and procedures. Billing codes for past diagnoses, procedures and labs can be easily 

collected from electronic medical records to be integrated into image analysis pipelines. 

We developed a python package called pyPheWAS to study the associations of clinical 

phenotypes with a particular disease of interest[83], [84]. In this package, related ICD-

9(International Classification of Disease version 9) codes or diagnostic billing codes are mapped 

to PheWAS codes[85] (Phenome Wide Association Study codes) or phecodes as defined by Denny 

et al. Each phecode gives a clinical phenotype e.g. “Visual disturbances”, includes symptoms such 

as blurred vision, diplopia, color vision loss and so on. Next, we compare these clinical phenotypes 

between two populations: the disease of interest and a control population. The comparison can be 

performed at different granularities of time and age. For example, queries can be used to compare 

only patient populations within an age range or compare records prior to the diagnosis of a disease 

only. We extended this functionality to procedure codes known as CPT (current procedural 

terminology) codes. We established custom grouping of CPT into ProWAS codes (Procedural 

Wide Association Study). In the future, we will extend the functionality to lab test results as well. 

Studies conducted based on phecodes will henceforth be referred to as phenome-disease 

association studies (PheDAS). With PheDAS, we can isolate the phenotypes most associated with 

a disease group. In other words, we develop an “EMR context signature” that consolidates a 

patient’s history of diagnoses and calculates its relative probabilities. Figure I-3 shows an example 
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of a PheDAS graph computed on preliminary data of 1000 patients with thyroid eye disease (TED) 

and other patients in the ophthalmology clinic to see the differences in presentation. In this graph, 

records that were present 1 year before the onset of disease were used to examine predictive 

factors. We see that TED is associated with several endocrine problems such as thyroid imbalances 

and abnormalities. It is also mildly correlated with heart conditions and menopause. These 

conditions are therefore relevant to the diagnosis of a new patient who might have TED. Context 

signatures such as these can easily be integrated into imaging studies to learn context-dependent 

models. 

3.3.2. Association of Visual Function with EMR-Radiological Phenotypes 

Multi-modal analyses of diseases of the optic nerve, that combine radiological imaging 

with other electronic medical records (EMR), improve understanding of visual function. We 

conducted a study of 55 patients with glaucoma and 32 patients with thyroid eye disease (TED). 

We collected their visual assessments, orbital CT imaging, and EMR data. We developed an 

image-processing pipeline that segmented and extracted structural metrics from CT images. We 

derived EMR phenotype vectors with the help of PheWAS (from diagnostic codes) and ProWAS 

(from treatment codes). Next, we performed a principal component analysis and multiple-

correspondence analysis to identify their association with visual function scores. We found that 

structural metrics derived from CT imaging are significantly associated with functional visual 

score for both glaucoma (R2=0.32) and TED (R2=0.4). Addition of EMR phenotype vectors to the 

model significantly improved (p<1E-04) the R2 to 0.4 for glaucoma and 0.54 for TED. The 

methodology and results of this study are presented in Chapter VI. 
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3.3.3. EMR Context Signatures Improve Diagnostic Classification 

EMR signatures that capture system-wide co-morbidities for a disease population within a 

given time interval are computed using the pyPheWAS package. We investigate the effect of 

integrating these EMR signatures with radiological data to improve diagnostic classification in 

disease domains known to have confounding factors because of variable and complex clinical 

presentation. Specifically, we focus on two studies: (1) a study of four major optic nerve related 

conditions and (2) a study of diabetes. Addition of EMR signature vectors to radiologically-derived 

structural metrics improves the area under the curve (AUC) for diagnostic classification using 

elastic net regression, for diseases of the optic nerve. For glaucoma, the AUC improves from 0.71 

to 0.83, for intrinsic optic nerve disease it increases from 0.72 to 0.91, for optic nerve edema it 

increases from 0.95 to 0.96, and for thyroid eye disease from 0.79 to 0.89. The EMR signatures 

recapitulate known comorbidities with diabetes, such as abnormal glucose but do not significantly 

modulate image-derived features. In summary, EMR signatures present a scalable and readily 

applicable method for using EMR context to increase the statistical power of image derived 

features. Detailed explanation of the methods and results of this work is presented in Chapter VII. 

3.3.4. Discovering Novel Disease Comorbidities using Electronic Medical Records 

Adaptation of digitized electronic medical records (EMR) at large hospitals and university 

medical centers provides unique opportunities to perform population level analyses for disease 

etiology and progression. In this work, we present a methodology that uses ICD-9 codes from large 

clinical databases to learn relationships between diseases.  The tool can be used to explore co-

occurring conditions, pre-morbid conditions and risk factors, disease progression and prognostic 

factors. Two primary concerns arise with association studies: the first is the problem of multiple 

comparisons which could lead to erroneous inferences. The second is that there is no statistic to 
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establish the novelty of a discovered association which is often useful in exploratory studies. In 

order to tackle these issues, we describe two new statistical measures. 1) We employ second-

generation p-values to record those associations that are clinically meaningful, and calculate the 

positive predictive value (PPV), which denotes the probability that an association is a true finding. 

2) We introduce a novel finding index (NFI), which indicates the extent to which the associations 

discovered via this framework are already well-known or well-studied in the scientific community. 

 

 

Figure I-3. EMR signature for Thyroid Eye Disease (TED) constructed using our custom pyPheWAS 
package, computed on a preliminary dataset. Shown here are the log odds ratio for conditions seen in 

TED patients 1 year before the onset of the disease. The right side of the line shows positively 
correlated conditions and right side of the line shows conditions not seen in TED patients. 
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This score is calculated based on calculating the frequency of hits from an automated PubMed 

search of a discovered relationship, and combining it with PPV. The approach described in this 

work is general can be used for any index disease as long as there is access to a large medical 

database which records ICD-9 codes. We show examples using three index diseases: Optic 

Neuritis, Alzheimer’s and Autism Spectrum Disorder (ASD). Detailed explanation of the methods 

and results of this work is presented in Chapter VIII. 
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Chapter II. Review of Technical Concepts 

In this body of work, we present data-driven methods to identify biomarkers for diseases 

of the optic nerve and predict disease outcomes. In this chapter, we provide a brief overview of 

the concepts involved including types of clinically acquired data from electronic health records, 

key image analysis and machine learning methods. 

1. Electronic Health Data 

Electronic health records (EHR) store a patient’s data in a digital form that can be easily 

accessed and processed by computers and, therefore, are conducive to big data analysis. EHR data 

comprises various types of records of a patient’s health. It includes structured data about 

medications and their prescription dates, laboratory tests and their results, and administrative and 

billing codes. It also comprises of unstructured data such as clinical notes. EHR systems store 

digital formats of medical images acquired for diagnostic purposes. At Vanderbilt University, 

paper records have been eliminated completely since 2004 [86]. As a result, the Vanderbilt 

University’s Research Derivative has longitudinal records of over two million patients spanning 

at least a decade. The rich data housed at Vanderbilt University is used for much of the research 

presented in this dissertation. In this section, we will elaborate on three main types of EHR data 

that was used in this work. 

1.1. Medical Images 

Medical imaging describes the process of capturing visual representation of internal organs 

and structures in the human body for the purpose of diagnosis, intervention or evaluating function. 

Various techniques are used to capture images of internal structures depending on the application 

and the nature of the organ of interest. Some common imaging modalities used in medical 
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diagnosis are: magnetic resonance imaging, computed tomography, medical ultrasonography, 

positron emission tomography, and endoscopy. The main imaging modality studied in this work 

is computed tomography of the eye orbits. 

Computed tomography (CT) obtains images of soft tissue structures and bones with X-ray 

measurements [65]. It was one of the first imaging techniques to distinguish between different 

tissue types owing to differential absorption of X-rays by materials of different densities. The CT 

equipment includes a helically rotating X-ray tube that acquires image of a volume at various 

angles. These images are then stitched together digitally and reconstructed to form a 3-dimensional 

representation of the internal structure. Practically, the CT scan can be represented as multiple 

slices of 2-dimensional images in any plane: sagittal, coronal or axial. These images are stored in 

DICOM (Digital Imaging and Communications in Medicine) format clinically. Unlike other 

imaging modalities, the intensity values in an image acquired through CTs can be interpreted 

biologically.  The intensity of each voxel of a CT scan is represented on a Hounsfield scale [87]. 

On the Hounsfield scale, the original X-ray measurements are rescaled such that the density of 

water at standard temperature and pressure is 0, and that of air is -1000. These intensity values are 

called Hounsfield units (HU). Consequently, each type of tissue in the human body has a distinct 

range of HU associated with it.  

The nature of CT images provides excellent contrast of the eye orbit which includes tissues 

of very different densities, namely: fat, extraocular muscles, the optic nerve and bone[65]. CT 

imaging is also quick and cheap to acquire, and can be rendered in any plane without significant 

artifacts. CT imaging is routinely used in diagnosis and treatment planning of optic nerve 

conditions. Most of the imaging data used in this work includes thin-slice (~1mm) CT scans of the 

orbit. The data are acquired in DICOM format, which contains PHI (Protected Health 
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Information). This data is then de-identified and converted to NifTI (Neuroimaging Informatics 

Technology Initiative) format, a data format which is used in medical imaging research. The 

anonymized NifTI files are stored on XNAT, an imaging informatics platform that facilitates 

efficient storage and processing of medical imaging data. 

1.2. Administrative Data 

EHR systems store different types of data collected during a clinic visit or hospitalization, 

which can be mined for information about a patient’s history. A lot of data about a patient’s health 

status is present in unstructured form such as clinic notes, discharge summaries, pathology reports 

and radiology reports. EHR systems also collect data collected that are used for billing and hospital 

administration. This data contain information about diagnosis and procedures in a codified form. 

The two main types of codes used ubiquitously are International Classification of Diseases (ICD) 

and Current Procedural Terminology (CPT). In much of this work, we use the administrative codes 

for analysis of a patient’s medical record. 

The ICD system is an international standard that is used to code diseases, signs and 

symptoms, injuries, mental disorders, and pregnancy and childbirth events[88]. These codes are 

provided each time a patient makes a visit to the clinic or a hospital. The 9th version of ICD coding 

system (ICD-9) is widely adapted in the medical informatics field. The ICD-9 codes are four- or 

five-digit codes that represent disease categories at different levels of granularity. The first three 

digits represent the main disease category, one or two decimal points signifying sub classifications 

of the main disease. For example, the code 415 represents acute pulmonary heart disease. 415.1 

denotes pulmonary embolism, and 415.11 and 415.12 denote iatrogenic and septic pulmonary 

embolism respectively. Over 15,000 ICD-9 codes are used to represent all of the possible 
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diagnostic categories. Recently, newer versions (10th and 11th) of the ICD system have been 

introduced. However, in this work we use the 9th version in this work as there has been extensive 

work in the field of informatics to extract clinical phenotypes from this classification system. 

Current Procedural Terminology (CPT) codes are defined by the American Medical 

Association to describe procedures and services administered to patients[89]. CPT codes are five-

digit codes that represent categories of medical procedures including surgeries, pathology 

examinations, labs, anesthesia, radiology exams, and therapeutic services. CPT and ICD codes 

together provide a complete picture of a patient’s health over time. Since they are present in EHR 

systems in categorical form, they are ideal for data analysis. 

1.3. Visual Disability Scores 

Additional data collected in this study includes scores for visual testing for patients with 

optic nerve conditions. Routine eye examination involves a visual acuity test using a Snellen 

chart[90], where the patient will be asked to read letters that become smaller at each line. The line 

of the Snellen chart at which the patient can comfortably see determines their uncorrected visual 

acuity. Another examination involves visual field testing which examines how well the patient can 

see in the entire field of vision. This is done by either a Goldmann perimetry test or tangent screen 

testing[91]. The test can show defects in central scotoma, altitudinal defect, Bjerrum’s scotoma, 

nasal step, depression of peripheral isopter or other field defects. American Medical Association 

defined nine visual outcomes[92], which are scores on a scale of 0-100 based to summarize a 

patient’s visual function based visual acuity and field testing:  

• Right and left visual acuity scores are calculated as VASod and VASos respectively.  

• The visual acuity for both eyes, VASou is calculated as the best of VASod and VASos.  
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• The functional acuity score, FAS is a weighted score of VASod, VASos, and VASou with 

weights 1:1:3. Right and left visual acuity scores are calculated as VASod and VASos 

respectively.  

• Right and left visual field scores are calculated as VFSod and VFSos respectively.  

• The visual field score for both eyes, VFSou is calculated as the best of VFSod and VFSos.  

• The functional field score, FFS is a weighted score of VFSod, VFSos, and VFSou with weights 

1:1:3.   

• An overall measure called functional visual score (FVS), is calculated as the average of FAS 

and FFS. 

2. Medical Data Analysis 

In this section, we present a brief overview of data analysis methods used in this work. 

Data analysis methods can be broadly classified into two parts, the first part involves image 

processing and informatics methods for data pre-processing and feature extraction. The second 

part involves using machine learning methods to learn outcomes from medical data. 

2.1. Medical Image Processing 

Medical images can be represented as a three-dimensional matrix of voxels, where each 

voxel denotes a corresponding volume in space of the structures being imaged. In the case of CT 

scans, the value of each voxel in the three-dimensional matrix corresponds to the density of the 

tissue volume that it represents. In other imaging modalities such as MRI, the voxel value denotes 

signal intensity based on the type of acquisition sequence such as T1, T2, PD or diffusion. Medical 

image processing can be described as the process of analyzing these matrices of voxels for better 

visualization, for interpretation, and to obtain quantitative measurements. In this section, we 
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discuss two important aspects of medical image processing, image registration and image 

segmentation. 

2.1.1. Image Registration 

Image registration, as it relates to medical imaging, describes that process of transforming 

images to a common coordinate space to achieve spatial correspondence, i.e., voxels at each spatial 

coordinate in each of the registered images correspond to the same anatomical structure[93]. 

Registration is useful is many data analysis scenarios, for instance when images from multiple 

subjects are aligned to summarize average anatomical structural properties of a specific population, 

or when images of the same subject are compared over time to evaluate the effect of an 

intervention. Image registration is also often used as a preliminary step in image segmentation. 

Image registration can be divided into two main categories: rigid and nonrigid.  Rigid registration 

can be described as a linear transformation of the image. Nonrigid registration (NRR) methods 

allow non-linear transformation of images.   

The registration process requires a deformation model, which defines geometric constraints 

for the image transformation and an objective function which finds criteria to match or align two 

images. For rigid registrations, the deformation model can only allow translations and rotations. 

For non-rigid registration, the deformation model can have millions of parameters. Holden et al 

provide a review of the types of geometric transformations that are used in image registration 

algorithms [94]. For matching criteria, several methods can be used to drive the registration 

process. Some methods use anatomical landmarks to align images [95], some methods used 

external landmarks called fiducials[96]. Some studies propose using intensity-based similarity 

metrics such as cross-correlation to find correspondence between two images [97]. Sotiras et al 
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provide a review of all types of objective functions and their corresponding optimization 

procedures used in image registration [98]. 

2.1.2. Image Segmentation 

Image segmentation of medical images can be described as a process of segmenting a 

digital image into composite parts, where each part has an anatomical meaning[99]. A medical 

image is usually represented as a collection of intensities in a matrix. The segmentation process 

helps identify a label that corresponds to a structure or organ of interest at each voxel. Quantitative 

measurements can be obtained for each structure of interest based on the segmentations. 

A popular method for segmentation of images is multi-atlas segmentation where, the 

segmentations in a new target image are learnt based on examples. In this approach, a set of scans 

or atlases are provided along with expertly marked labels which denote the class membership of 

each voxel. Here, class can be considered to be any distinct anatomical structure of interest in the 

image volume. Each of these atlases are non-rigidly registered to the target image space such that 

there is voxel-wise correspondence between each example atlas and the target image, which can 

be used to learn the labels in the new target scan. Registrations often have errors associated with 

them and perfect correspondence cannot always be assumed. Several label fusion methods were 

proposed to solve the problem of combining or fusing labels from example atlases. The simplest 

approach is to simply take a majority vote at each voxel. Let 𝐷 ∈ ℒD×F be the set of co-registered 

atlases, where N is the number of voxels, and R is the number of registrations. For each target 

voxel j, the probability that the voxel has a label s, is given by 

𝑃G𝑋I = 𝑠K𝐷L =
1

∑ 𝜖PQR
D
STU

V𝜖PQR

D

STU

𝛿(𝑠, 𝐷S,I) 
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where 𝛿 is the Kronecker delta given by, 

𝛿(𝑎, 𝑏) = Y 1, 𝑖𝑓	𝑎 = 𝑏
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

The errors associated with registered atlases could arise from different sources including 

errors due to marking the labels incorrectly, and errors due to registration. Errors could also be 

varying spatially and might be different for each label. Instead of performing a majority vote, each 

of these errors could be modelled explicitly. That is, instead of learning 𝑃G𝑋I = 𝑠K𝐷L, we could 

learn 𝑃G𝑋I = 𝑠K𝐷, 𝜃	L, where 𝜃 , which indicates the latent distribution of error due to raters, 

location or label, is also learnt simultaneously. A review of different approaches to label fusion 

can be found in a paper by Eugenio et al [100]. 

2.2. EMR Phenotype Extraction 

EMR contain several types of data including clinical summaries that are text data and 

billing codes, labs, medications which are categorical data. Historical data present in EHR records 

can be used to learn context-specific clinical information from which clinical decision-making 

regarding treatments and diagnosis can be improves. The main challenge in performing data 

analysis on clinical records is extracting clinical phenotypes from EHR data. A disease phenotype 

can be described as a set of characteristics or symptoms that consistently define the clinical 

presentation disease of interest. Automated methods of phenotype extraction have been proposed 

based on the type of clinical data. Clinical summaries such as physicians’ notes, discharge 

summaries, pathology reports and radiology reports are written in natural language by a care 

provider. Several natural language processing (NLP) algorithms have been proposed to extract 

features from unstructured clinical texts. cTAKES was developed by the Mayo clinic to extract 

phenotypes from clinical text[101]. The PheKB catalog provides algorithms to extract clinical 
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phenotypes from clinical text, labs, medications and  multiple sources in EMR[102]. Lia et al 

proposed i2b2, another natural language processing (NLP) system that used EMR to extract 

phenotypes[103]. Health Information Text Extraction (HITEx) is another tool that was developed 

to extract information from EMR including principal diagnosis, co-morbidities and smoking 

statues. These studies have shown promising results, but validation of these methods is a challenge. 

There is a lot of variation in styles and cultures of individual medical centers which introduce high 

variability in notes. In addition, there is a high chance that clinic notes are missing altogether due 

to inconsistent EHR practices between hospitals. All these issues make reproducibility for NLP 

algorithms a challenge. 

Administrative codes such as ICD-9 codes and CPT codes provide a good alternative since 

they are used in a standard form across all hospitals. There are a few issues with the use of ICD9 

codes for scientific research[104]: 1) The number of digits or the type of code used to describe a 

sign or symptom is inconsistent among doctors. 2) The hierarchical system here is designed such 

that there are multiple categories for common diseases and sometimes, just a single code for a 

complex disease—since they’re primarily designed for the purposes for measuring hospital 

utilization and billing[85]. To overcome these problems, Denny et al designed a conversion system 

from ICD9 codes to Phecodes such that the conceptual granularity of the codes is consistent across 

diseases with the help of medical experts. Phecodes are widely used in genomic research and are 

generally considered an acceptable standard in medical conceptual categorization. In this work, 

we convert the ICD9 codes to Phecodes for EMR feature extraction. In addition to Phecodes, we 

introduce our own coding system called ProWAS codes, which are used to group CPT codes. 
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2.3. Machine Learning  

In the previous section, we discussed methods to extract useful features from medical 

images and EHR data. In this section, we discuss machine learning methods that are used to learn 

outcomes from these features. Mitchell[105] formalizes machine learning as follows, “a computer 

program is said to learn from experience E with respect to some class of tasks T and performance 

measure P, if its performance at tasks in T, as measured by P, improves with experience E.” In the 

case of medical data, the experience E is features derived from images and EHR records. Several 

types of tasks T, can be learnt from medical data e.g., predicting the outcome of an intervention, 

diagnosis of a disease, or risk stratification of patients by clustering. The performance measure P 

depends on the task T, e.g. P could be used to measure the error rate of a machine learning model 

that is trying to predict an outcome. There are two main types of machine learning problems, 

unsupervised learning and supervised learning, which are discussed below. 

2.3.1. Unsupervised Learning 

In unsupervised learning, we are just given data without any labels[106]. The goal is to 

learn interesting structures from the data, without any knowledge about the desired output. One 

example of unsupervised learning is clustering. For example, given a set of data points of EMR 

records for subjects with optic neuropathy, including age, sex and symptoms, we would like to 

find clusters of disease subtypes in the data. Dimensionality reduction is another important type of 

unsupervised learning. It is used to project data in high-dimensional spaces (such as images) into 

a low dimensional subspace which captures the underlying information. A popular technique for 

dimensionality reduction is called principal component analysis (PCA). Given an 𝑛 −dimensional 

dataset, principal component analysis finds a lower, 𝑑 −dimensional subspace which can explain 
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most of the variance in the data. The 𝑑 −dimensional subspace can be represented by 𝑑 orthogonal 

vectors called principal components in a new coordinate system. Ghodsi provides a brief overview 

of different dimensionality reduction methods in [107]. 

2.3.2. Supervised Learning 

Supervised learning involves learning from data that has labels or targets[106]. For 

instance, as experience E, we have a set of CT scans of the eye orbit that are labelled as healthy or 

as having glaucoma. The task T, is to learn an algorithm which correctly predicts or classifies a 

new image of the eye orbit into one of the two categories or classes. The performance measure of 

this task would measure accuracy of the model, such as a 0-1 loss. The 0-1 loss of a particular 

example is 1 if the model predicts its diagnostic class correctly, and 0 if not. A common 

classification algorithm that is used in this work is logistic regression, which models the posterior 

probabilities of k classes via a linear function in x[106]. In the case of two classes the model can 

be written as, 

𝑙𝑜𝑔 i(jTU|PTk)
i(jTl|PTk)

= 𝛽n + 𝛽Up𝑥, 

where 𝑥 denotes the data points, 𝑦 denotes the output class, and 𝛽s represent parameters to 

be estimated to learn the relationship between 𝑥  and 𝑦 . Given N data points, let 𝑝(𝑥; 𝛽) =

𝑝(𝑦 = 𝑘|𝑋 = 𝑥; 𝛽).	Then, the log-likelihood for this can be written as, 

ℓ(𝛽) = 	V{𝑦S log𝑝(𝑥S; 𝛽) + (1 − 𝑦S) log(1 − 𝑝(𝑥S; 𝛽))}
F

STU

 

Logistic regression model is fit by maximizing the log-likelihood function ℓ(𝛽). This does 

not have a closed-form solution and an optimization procedure such as Newton-Raphson algorithm 
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or gradient descent is used to solve it. The complete derivation for this can be found in [106]. 

Often, when dimensionality of 𝑥	 is large, it could lead to overfitting. In the limit case of 

dimensionality of  𝑥 equaling N, the model can fit exactly to the training data but might not 

generalize very well to new data samples. The problem of overfitting can be handled by 

introducing regularization term to the log-likelihood function during the optimization process. Zou 

and Hastie describe a method called elastic net which uses a combination of L1 and L2 penalties 

to learn a sparse model when the number of parameters is very high[108]. Logistic regression is a 

very powerful method with high interpretability and can be used for diagnostic classifiers. Langer 

et al used logistic regression to detect prostate cancer on MRI scans. Other classification methods 

such as support vector machines[109], [110] have been used for detection of breast cancer; and 

Random forests have been used for identification of Alzheimer’s [111] .  

Machine learning can be used to solve other types of problems such as regression, in which 

the outcome is a continuous variable instead of a category. These types of algorithms can be used 

to learn a continuous clinical outcome. For example, to predict the visual disability of a patient 

from their CT imaging (Chapter VI). In fact, even the segmentation problem can be rephrased as 

a machine learning problem where the model is trying to learn voxel labels in a new scan based on 

experience from example atlases. A review of machine learning methods in radiology can be found 

in [112]. 

2.3.3. Deep Learning 

Recently, deep learning algorithms have shown incredible improvements in performance 

in medical image analysis[113]. Traditional approaches to machine learning in radiology relied on 

construction of manually designed features for description of images. Deep learning methods, on 
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the other hand, learn representations automatically. They learn multiple-levels of representations 

starting at individual pixel- or voxel-level and get more abstract at higher levels. The higher levels 

of patterns retain discriminative features, while suppressing irrelevant features. Most algorithms 

in medical image analysis use convolutional neural networks (CNN)[114]. A CNN has many 

layers. The first few are convolutional and pooling layers. A CNN has sparse connections, since 

there is local correlation in images. The inputs for units in convolutional layer m, come from a 

subset of units in layer m-1. The local patch in layer m-1, called a local receptive field, connects 

to one hidden neuron in layer m. The local receptive field is slid over the entire region of layer m-

1 to get the units in layer m. All of these local networks share the same weights, so that local image 

features in an image can be learnt irrespective of their position in the visual field. This also 

drastically reduces the number of parameters. Pooling layers are used immediately after the 

convolutional layers, to merge semantically similar features into one unit. Several pairs of 

convolutional and pooling layers are typically followed by fully connected layers. The final layer 

has an activation function such as logistic function or SoftMax to give the final classification.  

Deep learning in radiology has been used for medical image registration, Agrawal et al 

used features learned from deep learning for correspondence-based shape model which is used in 

statistical analysis of population anatomical shape[115]. Though multi-atlas segmentation methods 

have been the standard practice in medical imaging for a long time, several deep learning methods 

have been shown to improve upon stat-of-the-art results. Guo et al use SAE (Stacked Auto 

Encoder), a type of a deep neural network for hippocampus segmentation from infant MR 

images[116]. Roth et al present a method for automated detection of lymph nodes in CT images 

using a deep CNN[117]. Computer-aided diagnosis systems using deep learning are very popular 

in breast cancer screening [26], [118], [119]. They have also been used for TB screening[120], 
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Alzheimer’s detection[121], and lung nodule detection[122]. Litjens et al conducted a survey of 

deep learning methods used in various application of medical imaging in [26]. 

2.4. Other Statistical Concepts 

2.4.1. Correlation 

Often, in addition to predicting outcomes, one is also interested in learning correlations 

between features extracted from EHR data and clinical outcomes. Correlations can be used to 

examine the relationship between two variables of interest[123]. The most common type of 

correlation is the Pearson correlation, which examines a linear relationship between two variables. 

In this work, we use Kendall-Tau, which is a rank-based correlation as it is sensitive to non-linear 

relationships as well. Given two variables 𝑋  and 𝑌 , a pair (𝑥S, 𝑦S)  and G𝑥I, 𝑦IL  are called 

concordant if 𝑥S < 𝑦S  and 𝑥I < 𝑦I , or 𝑥S > 𝑦S  and 𝑥I > 𝑦I . (𝑥S, 𝑦S)  and G𝑥I, 𝑦IL  are called 

discordant if 𝑥S < 𝑦S  and 𝑥I > 𝑦I , or 𝑥S > 𝑦S  and 𝑥I < 𝑦I . The Kendall-Tau coefficient 𝜏  is 

defined by, 

𝜏 =
(𝑛𝑢𝑚𝑏𝑒𝑟	𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡	𝑝𝑎𝑖𝑟𝑠 − 𝑛𝑢𝑚𝑏𝑒𝑟	𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡	𝑝𝑎𝑖𝑟𝑠)	

𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑎𝑖𝑟𝑠  

To put it generally, the Kendall-Tau coefficient examines if X and Y increase together or 

X and Y decrease together. 

2.4.2. Hypothesis Testing 

In several methods described in this section, we are testing if a certain hypothesis is 

true[124]. For instance, in section 2.4.1. we describe a method to examine if two variables are 

correlated, and in section 2.3.2. we describe methods to test if certain variables can be used learn 
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outcomes based on empirical data. The process of statistically determining the probability that a 

hypothesis is indeed true, is called hypothesis testing. In order to do so, we formulate a null 

hypothesis 𝐻n and an alternate hypothesis 𝐻�. For instance, the null hypothesis could be that the 

volume of an optic nerve is not correlated with visual function score. The alternate hypothesis for 

this would be that the volume of an optic nerve is correlated with visual function. Next, we identify 

a statistical test that can be used to test this hypothesis. For Kendall-Tau correlation, 𝜏 would be 

the test statistic. Then, we compute a 𝑝 − 𝑣𝑎𝑙𝑢𝑒, which is the probability that the correlation 𝜏 

would be observed if the null-hypothesis was true. If 𝑝 ≤ 𝛼, where 𝛼	(usually set to 0.05) is the 

level of significance, then 𝐻n is rejected and 𝐻� is said to be valid.  

Problems can arise when multiple comparisons or tests are conducted at the same time. 

Since each test is evaluated as a probability, the chance of making a false discovery increases with 

the number of tests. Several techniques are proposed to tackle this problem. One such correction 

is the Bonferroni correction, where 𝐻n  is rejected if 𝑝	 ≤ 𝛼/𝑚 , where 𝑚  is the number of 

comparisons. The false discovery rate or the Benjamini-Hochberg procedure controls false 

discoveries by rejecting 𝐻n if 𝑝� ≤ 𝑘. 𝛼/𝑚, where 𝑝�  is the 𝑘�� largest p – value of the 𝑚 tests 

that satisfies the condition. Recently, a second-generation p-value was introduced by Blume et 

al[125], in which a null interval was suggested instead of a null-point hypothesis. In this case, the 

significant hypotheses have an effect size that fall completely outside of the pre-defined null 

interval



Chapter III. Structural Functional Associations of the Orbit in Thyroid Eye Disease: 
Kalman Filters to Track Extraocular Rectal Muscles 

Parts of this chapter have been published in Medical Imaging 2016: Image Processing, vol. 9784, 
p. 97841G. International Society for Optics and Photonics, 2016. 

1. Introduction 

Pathologies of the optic nerve and orbit, such as glaucoma, thyroid eye disease, multiple 

sclerosis, and optic neuritis impact millions of Americans. Successful treatment of these 

pathologies is sensitive to the early diagnosis. However, current diagnostic techniques are 

dependent on variable clinical presentations between patients and subjective clinical testing. A 

quantitative assessment of the orbital structures would provide objective markers to enhance 

diagnostic accuracy, improve timely intervention, and eventually, preserve visual function. 

Modern image processing and machine learning methods allow for the development of automated 

pipelines for large-scale analysis of these diseases. The primary task of such a pipeline is the 

automated identification of anatomical structures in the visual system, such as the optic nerve, 

extraocular rectal muscles, eye globe, and orbital fat, and automated computation of structural 

metrics to correlate with clinical characteristics. We have created a large-scale image processing 

and data analytics database on Pathologies of the Human Eye, Orbit, and The Optic Nerve 

(PHOTON) to better understand early disease stages, enable timely intervention, and improve 

disease management. PHOTON is a collection of electronic medical records and medical imaging 

spanning 5 major disease cohorts of 80 individual ICD-9 codes. As a pilot study on this database, 

we study thyroid eye disease using statistical label fusion methods and Kalman filters to identify 

orbital structures of interest and investigate correlations between these structures and eye 

functionality. 
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Presently, computed tomography (CT) imaging is the modality of choice in evaluating the 

orbit for evidence of thyroid eye disease[64]. In CT, the intensity of a pixel depends on the density 

of the tissue with respect to water. Therefore, distinct structures such as globe, nerve, muscle, and 

fat can be identified with a high accuracy. Extraocular muscle, bone, fat, and orbital volume indices 

are among the metrics used in previous study[61], [63], [85]–[96] as objective findings used to 

aide in early diagnosis. 

Our novel analysis pipeline builds off multi-atlas segmentation methods. Briefly, a human 

expert labels the anatomical structures of interest in a set of representative training images (i.e., 

the atlases). The structures are identified in each target image by registering the training atlas and 

assigning a label to each voxel in the target image by statistical voting. Recent studies have shown 

that the multi-atlas methodology is suitable for identifying orbital structures[97]–[100]. However, 

challenges arise in the identification of the individual extraocular muscles that control eye 

movement. This is increasingly problematic in diseased eyes, where the muscles often appear to 

fuse (at the resolution of clinical CT) at the back of the orbit due to inflammation. We propose the 

use of Kalman filters to track the muscles in three-dimensions and identify individual extraocular 

rectus muscles. The purpose of our study is to investigate a method of automatically generating 

orbital metrics from CT imaging and correlating these to known clinical characteristics. 

2. Methodology 

2.1. Data 

Eighty-five subjects between the ages on 18-85 were selected based on having met clinical 

criteria for thyroid eye disease and undergoing CT imaging as part of their regular clinical care. 

Of these, sixty-three (74%) were female. Variable CT imaging protocols (head, orbital, 
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maxillofacial, etc.) were acquired and the highest resolution scan without severe orbital artifact 

and with a field of view including the full optic nerves was manually selected for each of these 85 

patients. Clinical characteristics including demographic information, ocular mobility, visual 

acuity, color vision, and visual field testing were recorded. Institutional Review Board approval 

for this retrospective study was obtained at Vanderbilt University. 

Visual disability was assessed with the American Medical Association Functional Vision 

Score (FVS) which “provides criteria for evaluating permanent impairment of the visual system 

as it affects an individual's ability to perform activities of daily living” as a percentage of disability 

relative to a healthy control[101]. The FVS is characterized by four sub-scores: an individual 

assessment of visual acuity in each eye, Visual Acuity Score (VAS); a composite of visual acuity 

over both eyes, Functional Acuity Score (FAS); individual assessment of field perception in each 

eye, Visual Field Score (VFS); and the composite of field perception over both eyes, Functional 

Field Score (FFS). 

2.2. Multi-Atlas Segmentation 

The selected CT image for each patient was loaded into eXtensible Neuroimaging Archive 

Toolkit [102], [103] and automatically segmented using a previously described multi-atlas 

segmentation pipeline which uses non-local STAPLE, a label fusion algorithm, to identify the 

optic nerves (including surrounding CSF sheaths), rectus muscles, globes, and orbital fat. Briefly, 

segmentation followed a multi-atlas labeling framework[104] in which a set of manually labeled 

example scans were non-rigidly registered to each patient’s scan and statistical fusion was used to 

combine the labels from each of the examples to estimate the structure for each point in the target 
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scan. Figure III-1 (a) shows axial view of an input CT scan and 1 (b) shows the result of the multi-

atlas segmentation pipeline. 

2.3. Kalman Filters 

We use Kalman filters to identify the Superior Rectus Muscle, Inferior Rectus Muscle, 

Lateral Rectus Muscle and Medial Rectus Muscle from the muscle labels obtained from the multi-

atlas segmentation pipeline shown in Figure III-1(b). For each image volume, we start at a coronal 

slice at the center of the globe, where the muscles are well-separated, and use Kalman filters to 

track each muscle in the anterior to posterior direction (z-direction). The globe and the optic nerve 

pass through the center of the orbit and can be used as landmarks at each coronal slice to help 

identify the muscle positions. Five Kalman filters are defined for each of the four muscles and the 

landmarks. To keep the model simple, the centroids of the structures are used for tracking. 

Therefore, the state of system is the centroid of the two-dimensional slice in the coronal plane. The 

predicted state at slice 𝑧, given state 𝑧−1 is 

[�̅��𝑦��] = 	 �
1 0
0 1�

[𝑥��U𝑦��U] + 𝜖 (1) 

where 𝜖 is the process error defined by covariance R. That is, the process expects the 

muscle/nerve structure to be in the same position within a margin of error. Note that the control 

vector is eliminated as the tracking “moves” in the z-direction at a constant rate. At each step, the 

measured positions are given by a watershed calculation on the distance transform of a coronal 

slice, as seen in Figures III-1 (c) and (d). The predicted muscle positions of the previous step are 

used to impose a maxima on the distance transform. The current predicted position of each filter 

is then given by, 
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�𝑥����S���� , 𝑦����S����� = 	 �
1 0
0 1�

[𝑥���������, 𝑦���������] + 𝛿 (2) 

where 𝛿 is the measurement error defined by covariance Q. 

For each image volume, a region of interest is selected as the set of all the coronal slices 

containing muscle, globe, and the optic nerve. A Kalman filter is initiated for the centroids of globe 

and optic nerve, which are used as landmarks to identify the initial muscle positions.  

Initial labels for the rectus muscles are assigned based on their relative position to the 

landmark filter. Once the algorithm finds the first slice containing a rectus muscle, it initiates a 

Kalman filter for the muscle at that slice. The Kalman filter is then used to track that specific rectus 

muscle until the end of the orbit. The predicted mean �̅�𝑧, and variance �̅�𝑧 of the state at each 

position are given by, 

�̅�� = 𝐴𝜇��U (3) 

𝜎�� = 𝐴𝜎��U𝐴p + 𝑅 (4) 

Here, A is the identity matrix and R is the process error covariance. The Kalman gain 𝐾 is 

given by, 

𝐾 =	𝜎��𝐶p(𝐴𝜎��U𝐴p + 𝑄p) (5) 

 

This yields a predicted position 𝜇𝑧 and variance: 

𝜇� = 	 �̅�� + 𝐾(𝑀� − 𝐶�̅��) (6) 
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where, C is the identity matrix and Q is the measurement covariance. 

2.4. Automated Structural Metric Calculation 

Following multi-atlas segmentation and extraction of individual rectus muscles using 

Kalman filters, we compute descriptive features from the segmentation of the orbital anatomy for 

each patient to assess correlations between functional or clinical data and structural measures. 

These features included the (1-13) volume, maximum diameter, and average diameter for the 

superior, inferior, medial, and lateral rectus muscles and total rectus muscle volume[62], [92], 

[105], [106]; (14) Barrett index[90]; (15,16) volume and diameter of the globe[54], [61], [106], 

[107]; (17) orbital volume; (18) volume crowding index[93]; (19) orbital angle; (20) degree of 

proptosis; and (21-24) length, volume, average area, and maximum diameter of the optic 

nerve[108], [109]. All metrics were performed bilaterally, which resulted in 24 measures for each 

eye. 

3. Results 

Kalman filters provide a convenient mechanism to distinguish between individual rectus 

muscles in eye orbits segmented in the multi-atlas framework. Error covariance values for the 

process and the measurement are determined heuristically as follows:  

𝑅 = �1 0
0 1� (8) 

𝑄 =	 �0.1 0
0 0.1� (9) 

𝜎� = 	 (1 − 𝐾𝐶)𝜎�� (7) 
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Figure III-2 shows representative final segmented images in two-dimensional and three-

dimensional views. To assess the utility of this approach we compute geometrical metrics based 

on the identified orbital structures and see how they correlate with the subject’s clinical data which 

is routinely used in  the diagnosis of ocular disease[91], [92], such as visual disability scores, 

ocular motility, hertel score, color vision and neuropathy.  

In this pilot study, we compute the correlation between structural metrics from the 

segmentations and clinical data using a Spearman correlation. The results of univariate correlations 

for orbital metrics (including orbital volume, volumetric crowding index[96], and proptosis) and 

optic nerve metrics (include length, cross sectional area, volume, and diameter) are shown in Table 

III-1. Similarly, the correlations for clinical characteristics with muscle metrics are shown in Table 

III-2. Notice from Table III-1 that Hertel index measurements demonstrated strong correlation 

with nearly all optic nerve and orbital metrics. Additional findings included a strong correlation 

 

Figure III-1. Muscle tracking using Kalman filters: (A) Input CT scan (B) output of label fusion (C) 
distance transform with imposed maxima (D) measured muscle pieces (E) Coronal view of muscles with 
respect to landmark (F) the resultant five Kalman filters, for each eye, tracking the muscles. Note that 
the muscles are well-separated in the front of the orbit (B), but as we approach the back of the orbit 
there is no longer a clean boundary between them due to inflammation and crowding. The measured 
positions at each slice are given by a watershed calculation as shown in (C) and segmented in (D). A 

distance function is calculated over slice z wherein the value of each pixel is given by the distance to its 
nearest non-zero pixel as shown in (C), creating a contour where there is a maxima at the center of each 
of the four muscles. At each slice, the algorithm examines the top, bottom, right, and left quadrants for 
each of the four muscles as see in (E). In total, ten Kalman filters (5 for each eye) are used to track the 

muscles (F) which results in the 3-D tracks shown in (F).  
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between visual acuity and volumetric crowding index and between smoking and degree of 

proptosis. 

 

 

 

Several extraocular muscle metrics including average diameter, maximum diameter, and 

muscle volume of the superior rectus, inferior rectus, and lateral rectus demonstrated strong 

correlation (p-value <0.05) with the presence of ocular motility deficit. On the other hand, medial 

rectus muscle demonstrated only a mild correlation with motility deficit. Color vision 

measurements demonstrated strong correlation (p-value <0.05) with inferior rectus, medial rectus, 

Figure III-2. Representative segmentation in different views: (A) Coronal, (B) sagittal, (C) axial, and 
(D) 3-dimensional. 

Table III-1. Spearman rho correlations of orbital metrics with clinical 
characteristics. Yellow highlights indicate a p value less than 0.1, and 

green indicate p value less than 0.05. 
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and superior rectus muscle maximum diameters while demonstrating a mild correlation (p-value 

= 0.056) with the lateral rectus maximum diameter. Additional findings included a strong 

correlation between visual acuity and superior rectus maximum diameter.  

 

 

 

 

 

 

 

 

 

4. Discussion 

Identifying the individual ocular structures has significant advantages for the diagnosis, 

analysis and study of ocular diseases. Traditional methods of orbital segmentation are manual and 

tedious, or cannot capture the 3-D structure of orbital anatomy. In this study, we have shown the 

significant structural-functional correlations of the orbital structures such as muscles, the optic 

nerve, and eye globe with visual function and other clinical data. Further, we highlight the 

importance of studying each muscle separately by establishing that they have varying degrees of 

Table III-2. Spearman rho correlations of muscle metrics with clinical 
characteristics. Yellow highlights indicate a p value less than 0.1, and green 

indicate p value less than 0.05. 
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predictive power. We demonstrate that Kalman filters provide a simple, yet fast and efficient 

solution to improving muscle segmentation in diseased eye. The strong correlation demonstrated 

by several clinical characteristics with the automatically obtained orbital metrics serves as 

foundation for further investigation. In future study, machine learning methods can be employed 

to find latent features in these structures and robust models of disease and treatment can be built 

based on these algorithms.  

 

 



Chapter IV. QUADRATIC: Quality of Dice in Registration Circuits  

Parts of this chapter have been published in Medical Imaging 2018: Image Processing, vol. 10574, 
p. 105740P. International Society for Optics and Photonics, 2018. 

1. Introduction 

Non-rigid registration (NRR) is used in various applications in the medical image 

processing community, such as comparing anatomical structures between patients, tracking change 

in anatomical structures over time within the same patient, and performing segmentation using 

multi-atlas algorithms[144], [150]. The ability to estimate the accuracy of NRR is vital in the 

correct interpretation of these results. Specifically, in use cases such as multi-atlas segmentation, 

the ability to quantify the magnitude and location of error associated with NRR procedures is 

important as it can propagate to further steps of the segmentation process. 

In the past, NRR was evaluated either subjectively by visual inspection [151] or offline 

evaluation of atlases based on an image similarity metric[152], [153]. The optimization process 

used by NRR inherently biases image similarity metrics, and often is not predictive of structural 

correspondence.  Quantifying the error in correspondence as a result of NRR in a target image is 

a challenging problem, with some calling automatic registration techniques impossible to 

validate[153]. Datteri et al have developed the AQUIRC (Assessing Quality Using Image 

Registration Circuits)[154], [155] model to assess registration quality is target images using 

registration circuits. The authors proposed to use registration circuits to model the local error 

associated with NRR and have shown moderate success in applying this to multi-atlas 

segmentation[82]. In the AQUIRC model, the error “quality” in edges of the circuits is measured. 

In our model, we use the idea of image registration circuits to estimate the actual error associated 

with each non-rigid deformation, in this case, the Dice Similarity Coefficient (DSC) of the edges 
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in the network. To model DSC in the network, we test four models to determine the relationship 

between edge DSC and circuit DSC. The success or failure of the non-rigid registration is predicted 

using the error model and is used for atlas selection in majority vote multi-atlas segmentation. We 

find that the quadratic error model is the most successful in modeling DSC error in registration 

circuits, we call this model QUADRATIC (QUAlity of Dice in RegistrATIon Circuits). 

2. Methods 

2.1. Data 

The data consists of 16 computed tomography scans of eye orbit collected at the Vanderbilt 

University Medical Center which were retrieved and de-identified under institutional review board 

approval and previously described in[156]. The following structures in the eye orbit were labeled 

by experts to form 16 atlases: the optic nerve, the globe, the rectus muscles, and orbital fat. A 

leave-one-out approach was used where one of the atlases was treated as a target scan, while the 

other 15 were used for NRR error modeling and segmentation. 

2.2. Registration 

Each of the 16 atlases was registered to the other 15 atlases using ANTS SyN 

registration[157], with cross-correlation metric. The registration process non-rigidly transforms 

each atlas to the target space such that a voxel-wise correspondence between the atlas and the 

target is estimated. The deformation field that was obtained by registering the atlases to the target 

space was used to propagate the expert labels from the atlas space to the target scan using nearest 

neighbor interpolation. 

The quality of the registration was measured based on structural correspondence between 

the target image and registered atlas. The structural correspondence was measured using the Dice 



52 

 

Similarity Coefficient (DSC). It gives a value between 0 and 1 indicating similarity between the 

target and the registered atlas, by calculating the proportion of voxels that are the same in both 

images. It is given by, 

𝐷𝑆𝐶 = 1 −
2|𝑋 ∩ 𝑌|
|𝑋| + |𝑌| 

The DSC value is computed for each of the four structures bilaterally as well as for the 

whole segmentation, we will refer to these DSC values as NRR-DSC (Non-Rigid registration Dice 

similarity coefficient), in order to differentiate it from DSC values obtained from segmentation 

results that will be computed later in the paper. 

2.3. Estimating the Error Model with Registration Circuit  

This paper builds on the idea of AQUIRC to use registration circuits of size 3 to estimate 

registration error[82]. To model the error associated with NRR for each target scan (𝐴�), the other 

15 scans are used as atlases (𝐴U − 𝐴U§), with known true labels, to construct 15𝑝3 circuits (𝑛 =

2730), having 15𝑝2 edges (𝑚 = 210). Each registration circuit consists of three atlases 𝐴k, 𝐴j, 

 

Figure IV-1. Example of an image registration circuit. The three atlases in the circuit, 𝑨𝒙,𝑨𝒚, 𝑨𝒛, and 
the transformations 𝑻𝒙𝒚, 𝑻𝒚𝒛,	and 𝑻𝒚𝒛. 𝑨𝒙	is transformed to 𝑨𝒙« = 𝑻𝒛𝒙 ¬𝑻𝒚𝒛 𝑻𝒙𝒚(𝑨𝒙)®¯ 
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and 𝐴� as shown in Figure IV-1. The non-rigid transformations from 𝐴k to 𝐴j, 𝐴j	to 𝐴� and 𝐴� to 

𝐴k, are computed as 𝑇kj,𝑇j�, and 𝑇�k respectively. The deformation fields calculated from the non-

rigid transformations are used to propagate the labels associated with 𝐴k through the circuit. 𝐴k is 

transformed to image space 𝐴j using transformation, 𝑇kj(𝐴k). Next, it is transformed to image 

space 𝐴�  using 𝑇j� 𝑇kj(	𝐴k)® , and then back to its original space to get 𝐴k« =

𝑇�k ¬𝑇j� 𝑇kj(𝐴k)®¯. The error associated with each of the edges of the circuit is evaluated by 

computing the NRR-DSC value between the true labels and propagated labels from the non-rigid 

transformation for each edge to give 𝜀kj, 𝜀j�, and 𝜀�k. The NRR-DSC value between true labels 

of 𝐴 and the propagated labels of 𝐴′ is the error associated with the registration circuit given by 

𝐸kj�. In this paper, we evaluate the non-linear relationship between edge error, 𝜀 and circuit error 

𝐸 with a Taylor series expansion up to the third order in 𝑓U (linear), 𝑓l (quadratic), 𝑓³ (third order), 

and also a multiplicative relationship in 𝑓 , which are given by 

𝑓UG𝜀kj, 𝜀j�, 𝜀�kL = 𝐸kj� = 𝑝n + 𝑝U𝜀kj + 𝑝l𝜀j� + 𝑝³𝜀�k            (1) 

𝑓lG𝜀kj, 𝜀j�, 𝜀�kL = 𝐸kj� = 𝑝n + 𝑝U𝜀kj + 𝑝l𝜀j� + 𝑝³𝜀�k + 𝑝´𝜀kjl + 𝑝§𝜀j�l + 𝑝µ𝜀�kl + 𝑝¶𝜀kj𝜀j� +

𝑝·𝜀j�𝜀�k + 𝑝¸𝜀�k𝜀kj                                            (2) 

𝑓³G𝜀kj, 𝜀j�, 𝜀�kL = 𝐸kj� = 𝑝n + 𝑝U𝜀kj + 𝑝l𝜀j� + 𝑝³𝜀�k + 𝑝´𝜀kjl + 𝑝§𝜀j�l + 𝑝µ𝜀�kl + 𝑝¶𝜀kj𝜀j� +

𝑝·𝜀j�𝜀�k + 𝑝¸𝜀�k𝜀kj + 𝑝Un𝜀kj³ + 𝑝UU𝜀j�³ + 𝑝Ul𝜀�k³ + 𝑝U³𝜀kjl 𝜀j� + 𝑝U´𝜀j�l 𝜀�k + 𝑝U§𝜀�kl 𝜀kj +

𝑝Uµ𝜀kj𝜀j�l + 𝑝U¶𝜀j�𝜀�kl + 𝑝U·𝜀�kl 𝜀kj + 𝑝U¸𝜀kj𝜀j�𝜀�k                                                         (3) 

𝑓 G𝜀kj, 𝜀j�, 𝜀�kL = 𝐸kj� = 𝑝n ∗ 𝑝U𝜀kj ∗ 𝑝l𝜀j� ∗ 𝑝³𝜀�k  or log𝐸kj� = log𝑝n + log 𝑝U𝜀kj +

log𝑝l𝜀j� + log 𝑝³𝜀�k                            (4) 
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Note that the edge errors are known for all of the 210 edges of the circuits since the true 

labels are known. The parameters, 𝑝S in models 1 through 4 are evaluated using the 2730 circuits 

using a generalized linear model with equations (1)-(4). Here, the response variable is the circuit 

error 𝐸kj� , and the independent variables are edge errors of the form 𝜀kj , 	𝜀j� , and 𝜀�k . The 

estimated parameters will be indicated by 𝑝º» . 

Next, the estimated parameters and known errors 𝜀, are used to learn the error between the 

target scan 𝐴� , and each of the 15 atlases, 𝐴U�U§ . 15𝑝2	(𝑛’=210) circuits are constructed with 

target scan 𝑆, where the circuit starts with an atlas. For example, given atlases 𝐴k, and 𝐴j, the 

following circuits are constructed: 𝐴k → 𝑇kj(𝐴k) → 𝑇j� 𝑇kj(𝐴k)® → 𝐴k«  and 𝐴k → 𝑇k�(𝐴k) →

𝑇��G𝑇k�(𝐴k)L → 𝐴k« . This leads to a system of 210 equations with 30 unknown variables 

(𝜀U�, 𝜀l�,… , 𝜀U§�, 𝜀�U, 𝜀�l,… , 𝜀�U§). For models 1 through 4, the systems of equations are: 

1. 𝑓¿UG𝜀kj, 𝜀j�, 𝜀�kL = 𝐸kj� = �̂�n + �̂�U𝜀kj + �̂�l𝜀j� + �̂�³𝜀�k 

2. 𝑓¿lG𝜀kj, 𝜀j�, 𝜀�kL = 𝐸kj� = �̂�n + �̂�U𝜀kj + �̂�l𝜀j� + �̂�³𝜀�k + �̂�´𝜀kjl + �̂�§𝜀j�l + �̂�µ𝜀�kl + �̂�¶𝜀kj𝜀j� + �̂�·𝜀j�𝜀�k +

�̂�¸𝜀�k𝜀kj 

3. 𝑓¿³G𝜀kj, 𝜀j�, 𝜀�kL = 𝐸kj� = �̂�n + �̂�U𝜀kj + �̂�l𝜀j� + �̂�³𝜀�k + �̂�´𝜀kjl + �̂�§𝜀j�l + �̂�µ𝜀�kl + �̂�¶𝜀kj𝜀j� + �̂�·𝜀j�𝜀�k +

�̂�¸𝜀�k𝜀kj + �̂�Un𝜀kj³ + �̂�UU𝜀j�³ + �̂�Ul𝜀�k³ + �̂�U³𝜀kjl 𝜀j� + �̂�U´𝜀j�l 𝜀�k + �̂�U§𝜀�kl 𝜀kj + �̂�Uµ𝜀kj𝜀j�l + �̂�U¶𝜀j�𝜀�kl + �̂�U·𝜀�kl 𝜀kj +

�̂�U¸𝜀kj𝜀j�𝜀�k 

4. log 𝑓ÁG𝜀kj, 𝜀j�, 𝜀�kL = log𝐸kj� = log �̂�n + log �̂�U𝜀kj + log �̂�l𝜀j� + log �̂�³𝜀�k 

The systems of equations are solved using the least squares non-linear (lsqnonlin) function 

in MATLAB for estimated edge errors:𝜀Û�, 𝜀l̂�, … , 𝜀Û§�, 𝜀�̂U, 𝜀�̂l, … , 𝜀�̂U§.  
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2.4. Majority Vote with Atlas Selection 

Multi-atlas segmentation based on majority vote is used to segment each target scan, with 

the other 15 scans used as atlases. The quality of the segmentation is dependent on the quality of 

the non-rigid registrations. Poor registrations to the target scan can worsen the final result of the 

segmentation. Predicting the NRR-DSC associated with each registration as described in section 

2.3 can help determine the atlases with best registration for atlas selection. The NRR-DSC 

estimates are sorted in descending order from the atlas with the best predicted-NRR-DSC (𝐴U« ) to 

the worst predicted-NRR-DSC (𝐴U§« ):	𝜀Û«� , 𝜀l̂«� , … , 𝜀Û§«� . In order to determine the number of 

atlases to select to achieve the maximum gain in performance, we perform multi-atlas 

segmentation 15 times, starting with the best atlas and adding the next best one until all the atlases 

are used. For the 𝑘�� segmentation, let 𝐴{�} = 𝐿�×F be the set of co-registered atlases where 𝑁 is 

the number of voxels, and 𝑘 is the number of registrations. For each target voxel 𝑗, the probability 

that the voxel has a label 𝑠, is given by 

𝑃G𝑋I = 𝑠K𝐷L =
1
𝑘V𝛿(𝑠, 𝐷S,I)

�

STU

 

where, 𝛿 is the Kronecker delta given by, 

𝛿(𝑎, 𝑏) = Y1, 𝑖𝑓	𝑎 = 𝑏				
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

The label decision at voxel 𝑗 is given by, 

arg� max 𝑃G𝑋I = 𝑠K𝐷L® 
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For each of the segmentations, the DSC between the true labels and the segmented labels 

is calculated to assess the quality of the segmentation. We will refer to this as the seg-DSC, in 

order to differentiate it from the NRR-DSC. 

3. Results 

3.1. Error Model 

We had a set of 16 atlases of the eye orbit with expertly marked labels for bilateral orbital 

structures including the globe, the optic nerve, the extraocular muscles, and periorbital fat. We 

used a leave-one-out approach to find the error model of the non-rigid registration by considering 

one of the atlases to be a target scan whose labels were unknown and using the other 15 scans as 

atlases. The NRR-DSC of the non-rigid registration from each of the 15 atlases to the target space 

is calculated as described in section 2.3 for each of the structures and the overall segmentation. 

The predicted NRR-DSC values using each model are compared to the true NRR-DSC values for 

 

Figure IV-2. The correlation between true and predicted NRR-DSC for each structure and the 
overall segmentation are shown for the four models. Red indicates the linear model, blue indicates 
the quadratic model, cyan indicates the third order model, and green indicates the multiplicative 

model. 
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each target atlas. The mean of the correlation values for the 16 target scans is shown in Figure IV-

2. The quadratic error model has the highest correlation (p-value<0.05) with the true NRR-DSC 

values for all of the structures except periorbital fat. The mean correlation between true and 

predicted NRR-DSC values for overall segmentation using the quadratic model was 0.58 (p-

value<0.001). We call this quadratic error model, QUADRATIC (QUAlity of Dice in 

RegistrATIon Circuits). 

 

 

3.2. Majority Vote Results 

The mean NRR-DSC predicted using QUADRATIC is used in atlas selection. Figure IV-

3A shows the concordance at the top between the true and estimated mean NRR-DSC values using 

the quadratic model. Concordance at the top for k atlases calculates the overlap between top k 

atlases based on true NRR-DSC and top k atlases based on estimated NRR-DSC. As described in 

section 2.4, 15 segmentations are performed for each target scan. For each of the segmentations, 

 

Figure IV-3. A. Concordance at the top between true and estimated NRR-DSC, i.e., the overlap between 
top k atlases and the predicted top k atlases. B. Majority vote results for the 15 segmentations, where kth 

segmentation has the top k predicted atlases (blue line), and true top k atlases (red dotted line). 
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the quality of the segmentation is measured by computing the seg-DSC between the true labels 

and the segmented labels. The ratio of seg-DSC between the top k atlases and all 15-atlases is 

computed to evaluate the gain in performance. Figure IV-3B shows the gain in performance by 

selecting the best atlases using the true NRR-DSC (red dotted line), and predicted NRR-DSC (blue 

line). The X-axis shows number of atlases selected, and the Y-axis shows the ratio of k:all seg-

DSC. Using the best 4 predicted atlases gives an improvement of 7% on an average. Figure IV-4 

shows the comparison between using the best 4 atlases to perform the majority vote and using all 

of the atlases. It can be seen that a gain in performance is observed in segmentation of all structures 

except the optic nerve using the atlas selection procedure. An example of the segmentation result 

can be seen in Figure IV-5.  

4. Conclusion 

Assessing the structural correspondence error in non-rigid registrations is one of the most 

challenging problems in medical image-processing.  In this paper, we expand on the previous work 

in AQUIRC to model error using registration circuits. In AQUIRC a multiplicative relationship 

was assumed between the error quality and circuit error. However, this relationship is not 

predictive of DSC error. We used a Taylor series expansion of up to third order to test other non-

linear relationships between edge and circuit DSC. We found that the QUADRATIC error model 

showed the best prediction of NRR-DSC.  
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In the past, atlas-selection was performed by selecting atlases based on image similarity 

metrics[158], manifolds computed on image similarity[159], [160], or using meta-data such as 

age[161]. However, neither method is a predictor of true local structural correspondence, which 

affects the quality of multi-atlas segmentation. In order to show that prediction of NRR-DSC using 

QUADRATIC can improve multi-atlas segmentation, we performed the simplest case of a majority 

vote based on the best overall predicted DSC. On an average, we observe a 7% improvement in 

the segmentation DSC using the atlases predicted as best from the quadratic error model. From 

Figure IV-3C, it can be seen that when there is a perfect prediction of the NRR-DSC, the 

improvement in segmentation-DSC can be up to 16%. This improvement can be achieved in future 

work through better optimization procedures to solve the non-linear system of equations to prevent 

local minimas. Additionally, the NRR-DSC value is predicted for each structure of the atlas, which 

could lead to innovative multi-atlas segmentation techniques where atlas selection can be applied 

 

Figure IV-4. Comparison between seg-DSC for each structure using atlas selection  with k=4 (shown 
in red) and no atlas selection (shown in blue). The seg-DSC values are calculated for the 16 scans 

using a leave-one-out strategy. 
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to each structure to improve overall segmentation. The ability to have a quantitative measure of 

non-rigid registration can lead to several improvements in multi-atlas segmentation algorithms. 

 

 

 

 

Figure IV-5. A. Shows the true labels of a scan. B. Shows labels segmented using the atlas selection 
(k=4) based on the QUADRATIC error model. C. Shows the labels segmented using all 15 atlases, 

without atlas selection. 
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Chapter V. Imaging Biomarkers in Thyroid Eye Disease and their Clinical Associations 

Parts of this chapter have been published in Journal of Medical Imaging 5.4 (2018): 044001. 

1.  Introduction 

Thyroid Eye Disease or Grave’s ophthalmopathy is a condition that affects muscles and 

other soft tissues in the eye orbits. It is most often associated with Grave’s disease, an autoimmune 

disorder causing hyperthyroidism. Computed tomography (CT) imaging of the orbit is standard 

 

Figure V-1. Image processing flow chart.  

 

 

Figure V-2. A. CT imaging of the head showing full view of the eye orbit. B. Result of segmentation 
showing: eye globes, optic nerve, orbital fat, superior rectus muscle, inferior rectus muscle, lateral 

rectus muscle, and medial rectus muscles. 
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clinical practice in the diagnosis and management of thyroid eye disease[65]. CT imaging shows 

distinct structures in the eye orbit such as globes, the optic nerve, extra ocular rectus muscles, and 

orbital fat. Previous studies have shown that volumetric and structural measurements of these 

structures are strongly associated with thyroid eye disease characteristics and risk for optic nerve 

pathologies[63], [64], [126], [127], [130], [132], [135], [136].  Studies have also described 

subtypes of thyroid eye disease based on clinical and orbital structural characteristics[162], [163]. 

However, these studies rely on manual measurements on orbital structures and subjective clinical 

criteria for description on subtypes[164], [165]. In this study, we develop an image-processing 

pipeline to automatically segment these structures, calculate structural metrics, perform PCA to 

identify dominant phenotypes or subtypes, and evaluate their associations with clinical 

characteristics.  

Table V-1. Clinical Characteristics. 

Clinical measure Description (assessment metrics) 

Logmar visual acuity Visual acuity using logmar chart (-0.3 – 1) 

Color Vision Ability to distinguish color. (0-20) 

Best corrected visual 
acuity 

Visual acuity with best possible lens correction 
denominator (20/10 – 20/200) 

Visual Acuity Score AMA defined visual acuity score (0-100) 

Functional Acuity 
Score 

Weighted visual acuity score (0-100) 

Visual Field Score AMA defined visual field perception score (0-100) 

Functional Field Score Weighted visual field score (0-100) 

Visual Function Score Percentage of ability when compared to healthy 
control (0-100) 

Hertel Measurement Measurement of proptosis using a Hertel 
exophthalmometer (in mm) 

Ocular Motility 
Defects 

Presence of difficulties in eye movement (0-
absent/1-present) 
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Optic Neuropathy Presence of optic neuropathy (0-absent/1-present) 

Smoking History History of smoking (0-non-smoker ,1-former 
smoker, 2-current smoker) 

 

2. Methods 

Eighty-five patients were retrospectively selected from Vanderbilt University Medical 

Center who had orbital CT imaging performed before any surgical intervention for thyroid eye 

disease, after exclusion criteria for imaging issues such as severe artifact and low resolution. 

Institutional Review Board approval was obtained at Vanderbilt University. CT Imaging and 

clinical information including visual disability testing and demographic information was recorded. 

2.1. CT Data 

The selected patients underwent CT imaging of the eye orbits as part of the regular clinical 

care. For each of the eighty-five selected patients the highest resolution scan pre-decompression 

surgery was manually selected. All of the selected scans had the complete view of orbital structures 

of interest bilaterally: eye globe, optic nerve, extraocular rectus muscles, and orbital fat. 

2.2. Clinical Data 

Clinically pertinent information was recorded for each patient such as age, sex and visual 

disability testing.  Eight measures of visual disability were recorded: logmar vision, color vision, 

best corrected visual acuity, AMA defined visual acuity score, visual field score, functional acuity 

score, functional field score, and functional vision score[92]. Clinical measures indicating the 

severity of the disease were collected such as Hertel measurements which describe the amount of 

proptosis[166], [167], ocular motility defects indicating difficulty in eye movement due to 

enlarged muscles[63], and presence of optic neuropathy, which is indicative of optic nerve 
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involvement[168], [169]. In addition, the smoking history of each patient was recorded as it is 

known to be highly associated with thyroid eye disease[163], [170]. Table V-1 presents the list of 

clinical characteristics used for the analysis. The clinical data was available at the time of the CT 

scan for all but 3 patients. The closest available clinical notes within 6 months were referred for 

these three patients.  

2.3. Image Processing 

Figure V-1 shows the image-processing pipeline. First, a three-step multi-atlas 

segmentation algorithm was employed to identify the orbital structures of interest. In the multi-

atlas paradigm a set of expertly labeled example CT atlases are used as training examples to obtain 

the segmentation from a new target CT atlas[138]. The first step involves rigidly registering each 

of the example atlases to the target image, and propagating the corresponding labels to the target 

space. The sum of the labels is used a probability map which gives the approximate location of the 

eye orbit. A padded region of voxels having greater than 0.5 probabilities is selected for cropping. 

The second step involves using non-rigid registration to register the cropped example atlases to 

the cropped target image obtained from step 1. The corresponding labels of the example atlases 

are propagated to the target space using the non-rigid deformations. Step 3 involves fusing the 

transformed labels in step 2, using non-local statistical label fusion[144], [171] to obtain the final 

segmentation of the eye globe, the optic nerve, the extraocular muscles, and the orbital fat. Kalman 

filters were used to segment muscle labels obtained from the multi-atlas algorithm into individual 

extraocular muscles: the superior rectus, the inferior rectus, the medial rectus, and the lateral rectus 

muscle[156]. 
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Once the final segmentation is obtained, the image-processing pipeline computes twenty-

five structural metrics bilaterally, describing the sizes and structural arrangements of the eye orbit. 

The complete list of metrics is shown in Table V-2. For each structure, the volume, cross-sectional 

area, and diameter/length are measured[53], [55], [62], [64], [146]–[149]. Indices of orbital 

crowding, i.e., Barrett’s muscle index[135] and volumetric crowding index[126] are computed. In 

addition, degree of proptosis[172] and orbital angle are computed[136]. 

2.4. Statistical Analysis 

To identify structural phenotypes, a principal component analysis was performed over the 

twenty-five z-scored structural metrics for each eye. The top two components corresponding to the 

two major TED subtypes were crossed with the twelve clinical characteristics using a Kendall rank 

correlation test.  

A rank correlation was used because several associations can be non-linear, however the 

relative change in clinical measures with changes in structural metrics is important to note. The 

significance of the correlation is computed using a permutation distribution of the correlation 

coefficient, which has the expected value of 0 under null hypothesis. 

3. Results 

The image processing pipeline produced segmentations of orbital structures in the eye as 

shown in Figure V-2: the eye globe, the optic nerve, the superior rectus muscle, the inferior rectus 

muscle, the lateral rectus muscle, and the medial rectus muscle, and the orbital fat. Twenty-five 

structural metrics are computed from these structures as seen in Table V-2. 
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3.1. PCA of Structural Metrics: TED Subtypes 

The twenty-five structural metrics obtained from CT imaging are used to perform a 

principal component analysis. Table V-3 shows the factor loadings of the metrics for top twelve 

components that explain 97% of the variance. The top two components, which explain over 60% 

of the total variance, show two distinct clusters of metrics. Component 1 shows characteristics 

with large size and volume measurements of the extraocular muscles. Component 2 shows longer 

and thinner optic nerves with increased orbital fat (volumetric crowding index is lower). These 

two clusters of structural metrics align with Nunery’s classification of TED subtypes[162], [163]. 

Nunery describes a subtype of TED patients with motility defects and enlarged extraocular muscles 

(component 1 or Type 1) and a subtype without motility defects and increased orbital fat 

 

Figure V-3. Subtypes of thyroid eye disease. A. Example of subtype 1 showing big muscles - with high 
values along component 1. B. Example of subtype 2 showing longer and thinner optic nerve, and greater 

orbital fat – with high values along component 2. 
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(component 2 or Type 2). Examples of the two subtypes of segmented labels are shown in Figure 

V-3. 

3.2. Correlation Subtypes of TED and Clinical Characteristics 

The top two components corresponding to the two major subtypes of TED are crossed with 

the twelve clinical characteristics, as shown in Table V-4. Component 1, with enlarged extraocular 

muscles, is highly correlated with ocular motility (p<0.05) as postulated by Nunery. It is also 

associated it vision loss (logmar visual acuity and AMA visual acuity score). Component 2, with 

longer and thinner optic nerve and higher orbital fat, does not correlate with ocular motility issues 

also aligning with Nunery’s description. Component 2 is correlated (p<0.05) with Hertel 

measurements indicating that this group has more proptosis. Component 2 is negatively correlated 

with vision loss, indicating relatively lower effects on vision compared to component 1. A positive 

smoking history is associated with component 2.  

Table V-2. Structural Metrics. 

Metric # Structural Metric 

Size/Volumetric measurements 

1-5 Superior, Inferior, Lateral, Medial rectus, and Total muscle 
volumes 

6-9 Superior, Inferior, Lateral, Medial rectus muscle maximum 
diameter 

10-13 Superior, Inferior, Lateral, Medial rectus muscle average 
diameter 

14 Globe volume 

15 Globe diameter 

16 Optic nerve volume 

17-18 Optic nerve length and traditional length 

19 Optic nerve average area 
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20 Optic nerve maximum diameter 

21 Orbital volume 

Crowding indices 

22 Barrett’s index 

23 Volumetric crowding index 

Orbital structure metrics 

24 Degree of proptosis 

25 Orbital Angle 

 

Table V-3. Factor loadings of 12 principal components of the structural metrics explaining 97.46% of the 
variance. The top two principal components are enclosed in a red box. Positive loadings are green, and 

negative loadings are red. 

 
Comp 1  Comp 2  Comp 3  Comp 4  Comp 5  Comp 6  Comp 7  Comp 8  Comp 9  Comp 10  Comp 11  Comp 12  

Explained Variance 46.3% 13.0% 10.1% 6.5% 4.7% 4.0% 3.7% 3.0% 2.5% 1.4% 1.3% 0.9% 

Superior Muscle Volume   0.24 -0.02 0.13 -0.24 -0.08 0.39 0.02 0.11 -0.01 0.06 0.14 -0.11 

Inferior Muscle Volume   0.25 0.14 -0.02 0.13 -0.04 0.03 0.05 -0.16 0.11 0.34 -0.09 -0.24 

Lateral Muscle Volume   0.26 0.08 -0.20 0.07 0.13 -0.04 -0.23 -0.15 -0.14 -0.29 0.07 -0.15 

Medial Muscle Volume   0.26 -0.05 -0.04 -0.08 0.08 -0.18 0.35 0.14 -0.03 -0.03 0.11 -0.23 

Superior Muscle DiameterAvg   0.23 -0.07 0.08 -0.22 -0.03 0.42 -0.09 0.09 -0.05 -0.08 -0.05 -0.15 

Inferior Muscle DiameterAvg   0.24 0.08 -0.07 0.22 -0.07 0.09 0.11 -0.27 0.12 0.31 -0.22 -0.08 

Lateral Muscle DiameterAvg   0.24 0.01 -0.23 0.09 0.12 -0.05 -0.25 -0.13 -0.11 -0.26 0.09 -0.15 

Medial Muscle DiameterAvg   0.23 -0.10 -0.04 -0.09 0.12 -0.24 0.38 0.11 0.09 -0.11 0.04 -0.17 

Superior Muscle DiameterMax   0.21 -0.10 0.14 -0.20 0.01 0.47 0.02 0.04 0.15 -0.20 -0.27 0.28 

Inferior Muscle DiameterMax   0.20 0.13 -0.15 0.29 -0.01 0.07 0.16 -0.19 0.08 0.22 -0.29 0.36 

Lateral Muscle DiameterMax   0.22 0.06 -0.25 0.14 0.09 -0.02 -0.19 -0.20 -0.10 -0.31 0.05 0.26 

Medial Muscle DiameterMax   0.22 -0.13 -0.07 0.02 0.07 -0.13 0.50 0.22 0.01 -0.23 -0.02 0.32 

Total Muscle Volume   0.29 0.05 -0.05 -0.02 0.03 0.06 0.02 -0.03 -0.03 0.00 0.07 -0.20 

Barrett Index   0.17 0.03 -0.25 0.23 0.07 0.12 -0.21 0.59 0.04 0.39 0.44 0.21 

Globe Volume   0.11 -0.06 0.52 0.39 0.04 -0.05 -0.07 0.05 0.01 -0.09 0.04 -0.05 
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4. Discussion 

Thyroid eye disease is a serious condition that can lead to temporary or permanent loss of 

vision in some patients[133], [173]. Often, the clinical manifestations or characteristics of the 

disease can be confounding and variable in presentation. CT imaging is often used clinically, to 

make diagnostic and prognostic evaluations. An objective and quantitative assessment of the CT 

imaging and their related clinical characteristics can improve diagnosis and intervention. 

In this study, we developed a novel method to automatically segment CT images of the eye 

orbit, extract structural descriptive metrics, and structural subtypes. The image-processing pipeline 

establishes a new quantitative method to identify characteristics of thyroid eye disease through 

clinically acquired CT imaging. 

 

Globe Diameter   0.11 -0.07 0.51 0.38 0.04 -0.07 -0.07 0.06 0.03 -0.09 0.04 -0.02 

ON Length   0.14 0.33 0.06 -0.16 -0.19 -0.28 -0.28 0.20 0.59 -0.21 -0.08 0.16 

ON Length Traditional   0.10 0.44 0.06 -0.19 -0.18 -0.17 0.02 0.07 0.10 0.05 -0.10 -0.17 

ON Volume   0.23 -0.13 0.10 -0.25 -0.21 -0.25 -0.16 -0.05 -0.14 0.21 0.02 -0.04 

ON Avg Area   0.20 -0.29 0.06 -0.19 -0.16 -0.22 -0.15 -0.10 -0.18 0.15 0.04 0.08 

ON Max Diameter   0.16 -0.35 0.07 -0.17 -0.16 -0.21 -0.11 -0.17 0.00 0.15 0.02 0.37 

Orbital Volume   0.18 0.29 0.32 -0.02 0.04 0.04 0.12 -0.23 -0.12 -0.01 0.40 0.17 

Volumetric Crowding Index   0.13 -0.38 -0.08 0.22 -0.01 -0.06 -0.19 0.27 0.10 -0.04 -0.40 -0.25 

Proptosis   0.07 0.30 0.16 -0.18 0.48 -0.16 -0.13 0.26 -0.48 0.15 -0.43 0.14 

Angle   -0.01 -0.18 0.06 -0.21 0.72 -0.04 -0.10 -0.22 0.47 0.19 0.12 -0.03 

Scale 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 
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Table V-4. Kendall rank correlation between clinical characteristics and the top two principal 
components representing the two phenotypes of thyroid of disease. Component 1 represents bigger 

muscle phenotype. Component 2 represents longer and thinner optic nerve. 

 

 

 

 

 

 

 

 

 

Moreover, we develop a method to identify the two important subtypes of thyroid eye 

disease from CT imaging. Though these subtypes have been described in terms of their clinical 

manifestations and through manual measurements of CT imaging, our study is the first to show 

the presence of these subtypes through a quantitative procedure. These subtypes were crossed with 

clinical characteristics to objectively establish associations observed in clinical literature such as 

Type 1 is associated with ocular motility, while Type 2 is not[63], [131], [137]; Type 1 is 

associated with more severe vision loss than Type 2[174]; Type 2 is associated with increased 

proptosis[163]; and Type 2 is associated with smoking[175].  

 Clinical Characteristics Comp 1  Comp 2  

Logmar visual acuity 0.14 -0.08 

Color vision -0.07 0.05 

Best corrected visual acuity 0.13 -0.23 

Visual acuity score -0.16 0.15 

Functional acuity score -0.15 0.16 

Visual field score -0.04 0.16 

Functional field score -0.04 0.14 

Functional vision score  -0.10 0.18 

Hertel measurement -0.01 0.35 

Motility Defect  0.17 0.07 

Optic neuropathy  -0.03 -0.07 

Smoking   0.08 0.16 
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Chapter VI. EMR-Radiological Phenotypes in Diseases of the Optic Nerve and their 
Association with Visual Function 

Parts of this chapter have been published in Deep Learning in Medical Image Analysis and 
Multimodal Learning for Clinical Decision Support, pp. 373-381. Springer, Cham, 2017. 

1. Introduction 

Pathologies of the optic nerve affect millions of Americans each year and can severely 

affect an individual’s quality of life due to loss of visual function[176]. Accurate characterization 

of these diseases and timely intervention can preserve visual function. 3D computed tomography 

(CT) imaging of the eye orbit can captures structural changes in the eye orbit, which indicate the 

extent of disease progression and characterizes pathology. In prior studies[156], [177], a 

quantitative relationship between 3D structural metrics of the eye orbit was shown to be associated 

with visual outcomes such as visual acuity and field vision in patients with optic nerve disorders. 

However, the percentage of explained variance due to structural data was low (R2 ~ 0.1-0.2). 

Several factors influence a model’s ability to explain outcomes, particularly the selection of 

predictive features. Also, while information is available in radiological imaging, evaluation of 

radiology within the context of an individual’s health history is important in determining functional 

changes, progression of disease, and prognosis. With the rise in adoption of digital electronic 

medical record (EMR) systems in the US health care system[178], [179], these records are 

available to medical research scientists with increasing ease.  

In this study we develop an automated pipeline for segmentation and metric calculation of 

CT eye orbits for glaucoma and thyroid eye disease (TED). Further, we show that integrating EMR 

data, such as ICD-9 (International Classification of Diseases – 9) codes, and CPT (Current 
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Procedural Terminology) codes, with imaging biomarkers improves the explained variance of 

disease outcomes.  

 

2. Methods 

2.1. Data 

The study was conducted on a retrospective cohort of patients at Vanderbilt University 

Medical Center. Subjects were retrieved under Institutional Review Board (IRB) approval based 

on both having met clinical criteria for eye disease and undergoing CT imaging as part of their 

regular clinical care. The data collected include imaging records, visual testing, demographic data, 

complete ICD-9 codes and CPT codes. The disease groups included in this study are glaucoma 

(n=55) and TED (n=32).  

2.2. Outcomes: Visual Function Scores 

The outcomes in this study were calculated based on clinical visual acuity and visual field 

testing. Nine different outcome measures are calculated for a complete visual function evaluation 

as defined by the American Medical Association[92]. Right and left visual acuity scores are 

calculated as VASod and VASos respectively. The visual acuity for both eyes, VASou is calculated 

as the best of VASod and VASos . The functional acuity score, FAS is a weighted score of VASod, 

VASos, and VASou with weights 1:1:3. The scores from visual field testing, VFSod, VFSos, VFSou, 

and FFS are calculated similarly. A final score of visual function called functional visual score 

(FVS), is calculated as the average of FAS and FFS. 
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2.3. Image processing 

Figure VI-1 shows the image segmentation pipeline. First, multi-atlas segmentation was 

employed to identify four labels: the globe, the optic nerve, the extraocular muscles and the 

periorbital fat. A set of twenty-five expertly labeled example 3D CT atlases is used as training 

examples to obtain the segmentation from a new input scan. Each of the example atlases is non-

rigidly registered to the cropped input image space[157]. The corresponding labels of the example 

atlases are propagated to the input image space using the non-rigid deformations. Next, non-local 

statistical label fusion is used to obtain a segmented result with the four labels [144]. Segmenting 

the individual extraocular rectus muscles is challenging in diseased eyes, since obtaining true 

labels is difficult at the back of the orbit due to inflammation. So, we employ Kalman filters to 

segment muscle labels obtained from the multi-atlas algorithm[156] to identify the superior rectus 

muscle, the inferior rectus muscle, the lateral rectus muscle, the medial rectus muscle. Once the 

final segmentation is obtained twenty-five structural metrics are computed bilaterally[177]. For 

each structure, the volume, cross-sectional area, and diameter/length are measured. Indices of 

orbital crowding, i.e., Barrett’s muscle index and volumetric crowding index are computed. In 

addition, degree of proptosis and orbital angle are computed. For each patient, 𝑖, a vector with 50 

elements is constructed for 25 structural metrics computed bilaterally, 

𝒙Ép
{𝒊} = [𝑠𝑚U_ËÌ	𝑠𝑚l_ËÌ … 	𝑠𝑚l§_ËÌ	𝑠𝑚U_ËÍ	𝑠𝑚l_ËÍ … 	𝑠𝑚l§_ËÍ] 

where, 𝑠𝑚�_Î�  indicates 𝑘��	 structural metric of the left eye and 𝑠𝑚�_Î�  indicates 

𝑘��	structural metric of the left eye. 
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Figure VI-1. Overview of image segmentation. Multi-atlas label fusion is used to segment the optic nerve, 
globe, muscle, and orbital fat. Kalman filters are used to segment the four individual extraocular muscles 

based on the result to achieve the final 3D segmentation result. 

 

From the EMR, complete ICD-9 codes and CPT codes were extracted for diagnostic and 

treatment information for each patient. However, only the ICD-9 and CPT codes available one 

month or more before the diagnosis are considered, since we are interested in understanding how 

a patient’s history provides a context for imaging information. 

PheWAS codes. There are over 14,000 ICD-9 codes defined. A hierarchical system was 

defined that maps each ICD-9 code to a smaller group of 1865 phenotype codes originally used in 

phenome-wide association studies (PheWAS) [180]. Each phenotype, called a PheWAS code, 

indicates a related group of medical diagnoses and conditions.  

ProWAS codes. We introduce a similar hierarchical grouping to map each CPT code to a 

group of related procedures, which we indicate by a procedure wide association study (ProWAS) 

code. We define 1682 ProWAS codes, which are finer granularity subgroups of the Clinical 

Classification Systems coding provided by the Healthcare Cost and Utilization Project (HCUP) 

Agency for Healthcare Research and Quality [181].  

For each patient, 𝑖, a binary vector with 1865 elements, 𝒙i��ÏÐÑ
{S}   is defined, 
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𝒙i��ÏÐÑ
{𝒊} = [𝑑U	𝑑l 	…	𝑑U·µ§	] 

where, 𝑑�  is 1 if the patient 𝑖  has had the diagnosis phenotype 𝑑�  in the past and 0 

otherwise. Similarly, a binary vector, 𝒙i�ÎÏÐÑ
{S}  is defined with 1682 elements, 

𝒙i�ÎÏÐÑ
{𝒊} = [𝑡U	𝑡l 	…	𝑡Uµ·l	] 

where, 𝑡�  is 1 if the patient 𝑖  has had the treatment phenotype 𝑡�  in the past and 0 

otherwise. 

2.4. Dimensionality Reduction: PCA and MCA 

A large amount of data is available for each patient; the final data vector for a patient 𝑖 has 

3597 elements in it. However, the data are correlated with each other, and it is possible to find 

underlying principal variables in the data. For the structural metrics, a principal component 

analysis (PCA) [182] is performed to reduce the dimensionality of the dataset. The first five 

principal components explaining about three fourths of the variance are extracted to give, for 

subject	𝑖, 

𝒙Ép_���
{S} = [	𝑠𝑚U

« 			𝑠𝑚l
« 		… 			𝑠𝑚§

« ]…… . . (1) 

For the PheWAS and ProWAS binary vectors, multiple correspondence analysis (MCA) 

[183] is used to extract orthogonal components that are decomposed using the 𝜒l-statistic. The 

first five components are considered for both PheWAS and ProWAS vectors. As a result of MCA, 

we get two vectors of smaller dimensionality for each patient, 

𝒙i��ÏÐÑ_Ó��
{S} = [𝑑U« 		𝑑l« 	…		d§« ]………… . . (2) 

𝒙i�ÎÏÐÑ_Ó��
{S} = [𝑡U« 		𝑡l« …	t§« ]…………… . . (3) 
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2.5. Stepwise Generalized Linear Model 

The visual acuity scores are between 0 and 100 with most patients having scores close to 

100 and values closer to 0 being extremely rare. This makes the distribution of the visual outcomes 

left skewed. Therefore, a generalized regression model (GLM) with a Poisson distribution [184] 

is used to find the explanatory value of each set of datasets, given by equations (1), (2) and (3), 

and all the data together. These datasets are regressed over the visual outcome scores𝒔×, where𝑠× ∈

{𝑉𝐴𝑆ÎÙ, 𝑉𝐴𝑆Î�, 𝑉𝐴𝑆Î�, 𝑉𝐴𝑆, 𝐹𝐴𝑆, 𝑉𝐹𝑆ÎÙ, 𝑉𝐹𝑆Î�, 𝑉𝐹𝑆Î�, 𝐹𝐹𝑆, 𝐹𝑉𝑆}. Four models are defined for 

each	𝑣, 

𝑀1: 	𝑠× = 𝛽n + 𝛽U𝑠𝑚U
« + ⋯+ 𝛽�𝑠𝑚�

« + 𝛽�ÝU𝑑�« +⋯+ 𝛽�ÝÞ𝑑Þ« + 𝛽�ÝÞÝU𝑡U« + ⋯+ 𝛽�ÝÞÝÓ𝑡Ó«
+ βàÝáÝâÝU𝑎𝑔𝑒 + 𝛽�ÝÞÝÓÝl𝑠𝑒𝑥	 + 	𝜖 

𝑀2: 	𝑠× = 𝛽n + 𝛽U𝑠𝑚U
« + ⋯+ 𝛽�𝑠𝑚�

« + βàÝU𝑎𝑔𝑒 + 𝛽�Ýl𝑠𝑒𝑥	 + 𝜖 

𝑀3: 	𝑠× = 𝛽n +	𝛽U𝑑U« + ⋯+ 𝛽Þ𝑑Þ« + βáÝU𝑎𝑔𝑒 + 𝛽ÞÝl𝑠𝑒𝑥	 + 𝜖 

𝑀4:	𝑠× = 𝛽n	+	𝛽U𝑡U« +⋯+ 𝛽Ó𝑡Ó« + βâÝU𝑎𝑔𝑒 + 𝛽ÓÝl𝑠𝑒𝑥	 + 𝜖 

The four models are built using stepwise regression[185], with forward selection of 

variables. At each step, the variable that most significantly improves the model deviance is added 

until there is no more improvement. The explained variance of each model, 𝑅l is noted.  

2.6. Test of Deviance 

The deviance of a model 𝑀, with fitted parameters 𝜃ä is given by, 

𝐷(𝑀) = −2log 𝑝G𝑦K𝜃äL® − logG𝑝(𝑦|𝜃�)L® 

where, 𝜃� are the parameters of the saturated model, i.e., a model with parameters for each 

data point such that it is fitted exactly. The deviance can be used to test significance between two 

nested models 𝑀�(𝜃ä� |X) and 𝑀å(𝜃äå |X), where 𝜃ä� ⊂ 𝜃äå  and the difference in the parameters 

between the two models is given by 𝛿. The difference of the deviance between the two models 
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follows a 𝜒l −squared distribution with degree of freedom	𝛿. The null hypothesis, 𝐻n	for the test 

of deviance is that adding 𝛿 parameters to model 𝑀�	to get 𝑀å does not improve the model. This 

test is used to compare models M2-4 with M1. 

3. Results 

 The average age group for glaucoma cohort is 65.4±19.5 years and 72% of the 

subjects were female. 91% of TED subjects were female, and the average age for this group is 

57.8±16.2 years. On an average, each patient had 410 ICD-9 codes, and 660 CPT codes recorded. 

Figure VI-2 shows the individual distribution by sex along the first two components of the three 

datasets in models M2, M3, and M4. For glaucoma, the first component of the PCA on structural 

metrics corresponded to muscle and optic nerve measurements, and the second component 

corresponded to orbital and globe measurements. For TED, the first component corresponded to 

mostly muscle measurements, and the second component corresponded to measurements of the 

optic nerve. Some of the conditions associated with the first MCA component of the ICD-9 vector 

for Glaucoma are malaise, osteoarthrosis, and hypovolemia, and conditions associated with the 

second component included female genitourinary symptoms and symptoms associated with the 

eye such as pain and swelling. The first MCA component for TED’s ICD-9 vector was associated 

with conditions including hyperlipidemia, diabetes, and circulatory problems, and some of the 

conditions most associated with the second MCA component were myalgia and abnormal blood 

chemistry. For the CPT vector for glaucoma, the first dimension was associated with a wide range 

of procedures such as CT scans, and pathology labs, and the second component was associated 

with cardiac testing. For TED, the first component was associated with procedures such as 

urinalysis and blood work, the second component was associated with physical therapy related 

procedures. 
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Figure VI-2. Distribution of individuals by sex along the first two components from equations (1), (2), and 
(3). Red and blue indicate 95% confidence ellipses for females and males respectively. (A) 𝒙𝑪𝑻_𝒑𝒄𝒂  for 

glaucoma. (B) 𝒙𝑷𝒉𝒆𝑾𝑨𝑺_𝒎𝒄𝒂  for glaucoma. (C) 𝒙𝑷𝒓𝒐𝑾𝑨𝑺_𝒎𝒄𝒂  for glaucoma. (D) 𝒙𝑪𝑻_𝒑𝒄𝒂 for TED. (E) 
𝒙𝑷𝒉𝒆𝑾𝑨𝑺_𝒎𝒄𝒂 for TED. (F) 𝒙𝑷𝒓𝒐𝑾𝑨𝑺_𝒎𝒄𝒂 for TED. 

Tables VI-1 and VI-3 show the 𝑅l values of models M1, M2, M3, and M4 regressed over 

functional visual scores for glaucoma and TED respectively. The behavior of the models is the 

same for both the diseases. Addition of treatment and diagnostic phenotypes to model M2 to get 

model M1 results in significant improvement of explained variance in most of the visual outcomes: 

FVS, FFS, VFSou, VFSod, VFSos, VASod and VASos. The 𝑅l values that improve between model 

M2 to M1 are indicated by ** in Tables VI-1 and VI-3. The statistical significance of this 

improvement is tested using the test of deviance as described in section 2.7. Tables VI-2 and VI-4 

show the p-values of the tests of deviance performed between M1 and its nested models M2, M3, 

and M4.  

However, it is interesting to note that composite visual acuity scores VASou and FAS do 

not show an improvement between models M2 and M1, even though the right and left acuity scores 

VASod and VASos do. Note from the definition of these scores that they weight the best performing 

eye higher. This might indicate that changes in visual acuity might not be bilateral in these 

conditions. Whereas, for visual field scores the behavior of the individual eye scores is reflected 
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in the composite scores, indicating that visual field changes might be bilateral in glaucoma and 

TED.  

Table VI-1. Explained variance in Glaucoma. ** indicates that model M1 is significantly better than 
model M2, i.e. using structural metrics alone, based on the p-values in Table VI-2. 

 

 

 

 

 

Table VI-2. Test of deviance. Na indicates that the model is the same in both M1 and M2, as the same 
features were selected. 

 

 

 

 

Table VI-3. Explained variance in TED. ** indicates that model M1 is significantly better than model 
M2, i.e. using structural metrics alone, based on the p-values in Table VI-4. 

 

 

 

 

 

Table VI-4. Test of deviance. Na indicates that the model is  the same in both M1 and M2, as the same 
features were selected. 

R2 VASod VASos VFSod VFSod VASou VFSou FFS FVS FAS 

M1 0.48** 0.33** 0.47** 0.39** 0.24 0.27** 0.33** 0.40** 0.35 

M2 0.45 0.13 0.37 0.16 0.24 0.18 0.23 0.33 0.35 

M3 0.07 0.07 0.16 0.08 0.08 0.05 0.08 0.07 0.00 

M4 0.04 0.00 0.20 0.06 0.00 0.05 0.09 0.06 0.00 

p-value VASod VASos VFSod VFSod VASou VFSou FFS FVS FAS 

M1 vs M2 4.30E-05 5.89E-09 2.92E-26 3.31E-38 na 5.38E-07 1.34E-07 1.18E-07 na 

M1 vs M3 1.66E-28 1.55E-10 3.17E-62 9.70E-46 0.001 2.65E-11 8.46E-15 2.39E-26 2.40E-06 

M1 vs M4 1.42E-29 3.59E-12 3.22E-58 8.32E-47 0.0005 8.48E-12 2.35E-14 3.15E-26 2.40E-06 

R2 VASod
 VASos VFSo

d 

VFSo

d 

VASou VFSo

u 

FFS FVS FAS 

M1 0.61** 0.30** 0.59** 0.37** 0.28 0.36** 0.42** 0.54** 0.44 

M2 0.49 0.23 0.45 0.26 0.28 0.23 0.28 0.40 0.44 

M3 0.30 0.22 0.33 0.24 0.16 0.20 0.24 0.28 0.20 

M4 0.28 0.18 0.29 0.18 0.16 0.17 0.19 0.29 0.20 

p-value VASod VASos VFSod VFSod VASou VFSou FFS FVS FAS 

M1 vs M2 4.56E-06 0.00027 5.15E-24 6.75E-07 na 4.38E-08 7.50E-09 9.70E-10 na 
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4. Discussion 

To identify imaging biomarkers associated with diseases of the optic nerve such as 

glaucoma and thyroid eye disease, their relationship with visual function scores must be 

established. This study shows that addition of treatment and diagnostic phenotypes derived through 

MCA on ProWAS and PheWAS data can improve traditional imaging biomarker studies by 

providing the context of an individual’s health history from clinical data. This is the first known 

study with the application of ProWAS mapping to identify treatment phenotypes for eye disease. 

We show that structural metrics of the eye orbit derived from CT imaging, treatment, and 

diagnostic phenotypes show a significant association with visual function scores and explain about 

40% - 60% of the variance for visual outcomes in glaucoma and thyroid eye disease. 

M1 vs M3 1.09E-17 0.00049 7.27E-45 1.23E-08 na 7.02E-10 1.88E-12 3.53E-18 1.12E-05 

M1 vs M4 1.60E-18 6.84E-05 4.61E-52 1.30E-10 na 9.51E-12 6.77E-15 2.36E-19 1.12E-05 
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Chapter VII. Electronic Medical Record Context Signatures Improve Diagnostic 

Classification using Medical Image Computing  

Parts of this chapter have been published in in IEEE Journal of Biomedical and Health 
Informatics. doi: 10.1109/JBHI.2018.2890084 

1. Introduction 

With the advent of digitization of medical records, extensive medical data are available to 

perform large-scale studies that were previously difficult to implement[1]. However, so-called “big 

data” analyses also present new challenges for consolidation of information and integration of 

newer methods with established practices in the medical image processing community. 

For example, automatic detection and diagnosis systems have been developed for medical 

image processing [2], [3], brain tumor classification[4], detection of prostate lesions[5], risk 

assessment in traumatic brain injury[6], and detection of breast cancer[7], demonstrating that 

medical images contain quantitative diagnostic information. However, when physicians make 

diagnoses in practice, they integrate multi-modal patient information, including medical history, 

laboratory tests, medication exposures, etc. Because much of this information can be extracted 

computationally from the electronic medical record (EMR)[8]–[10], we propose using EMR-

derived patient signatures alongside imaging data to improve the accuracy of image analysis.  

Specifically, we build on the Phenome Wide Association Study (PheWAS) [11], [12] 

paradigm that identifies relationships between targeted genotypes and clinical phenotypes. The 

phenotypes are clinical diseases represented by codes derived from EMR billing codes such as the 

International Classification of Diseases, Ninth Revision (ICD-9) codes. ICD9 codes are 

hierarchical, with the three digits codes representing a major disease category, followed by a 

decimal or two to describe subtypes and specific symptoms. For example, Code 377 represents 
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“Disorders of the optic nerve and visual pathway”; 377.0 represents “Papilledema”, a specific 

disorder of the optic nerve pathway; and 377.01 represents “Papilledema with decreased ocular 

pressure”. However, there are a few issues with the use of ICD9 codes directly for scientific 

research [13]. 1. The number of digits or the type of code used to describe a sign or symptom is 

inconsistent among doctors. 2. The hierarchical system here is designed such that there are multiple 

categories for common diseases and sometimes, just a single code for a complex disease—since 

Table VII-1. Overview of the data used and analyses performed from the two studies. 

Center Study 1: VUMC Study 2: BLSA 

Data 

Study population • Individuals with disease codes for glaucoma, 
intrinsic optic nerve disease, thyroid eye disease, 
optic nerve edema. 

• Individuals with hearing loss for controls. 

• Individuals from the Baltimore Longitudinal 
Study of Aging (BLSA). 

Dataset E ICD-9 codes and demographic data for 29,214 

individuals from the study population collected over all 

visits. 

ICD-9 codes and demographic data for 1,715 

individuals from the study population collected over 

all visits. 

   

Dataset RE Computed tomography (CT) imaging of the eye orbit for 

1,451 subjects along with ICD-9 codes for all visits, and 

demographic data. 

Magnetic resonance imaging (MRI) of the brain of 

124 subjects along with ICD-9 codes for all visits, 

and demographic data. 

Analyses 

Case-control 

experiments 

1. Glaucoma vs. healthy control 
2. Intrinsic optic nerve disease vs. healthy  control 
3. Thyroid eye disease vs. healthy control 
4. Optic nerve edema vs. healthy control 
5. Glaucoma vs. other 
6. Intrinsic optic nerve disease vs. other 
7. Thyroid eye disease vs. other 

1. Diabetes vs. control 
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they’re primarily designed for the purposes for measuring hospital utilization and billing[12]. To 

overcome these problems, Denny et al designed a conversion system from ICD9 codes to PheWAS 

codes such that the conceptual granularity of the codes is consistent across diseases with the help 

of medical experts[11]. PheWAS codes are widely used in genomic research and are generally 

considered an acceptable standard in medical conceptual categorization. In this work, we convert 

the ICD9 codes to PheWAS codes for EMR feature extraction.  We developed a Python package 

that uses the same PheWAS-ICD-9 mappings to study the associations of these clinical phenotypes 

with a particular disease of interest [14]. We refer to this approach as a phenome-disease 

association study (PheDAS). With PheDAS, we isolate the phenotypes most associated with a 

disease group prior to the diagnosis of the disease. In other words, we develop an “EMR context 

signature” that consolidates a patient’s history of diagnoses and symptoms into a binary vector. 

We add this signature to radiological image features and evaluate the improvement it provides in 

disease classification.   

We illustrate the PheDAS approach using two studies. In the first study, we evaluate the 

role of EMR context signatures in improving classification accuracy of four disease groups 

affecting the optic nerve: glaucoma, intrinsic optic nerve disease (optic neuritis and other optic 

nerve disorders), thyroid eye disease (TED), and optic nerve edema (papilledema and idiopathic 

intracranial hypertension). These groups were chosen because the conditions can present with 

similar initial symptoms and co-morbidities, making detection challenging. However, early 

classification and intervention are often needed to preserve visual function. Xiuya et al and 

Chaganti et al have also shown that visual function for these subjects is correlated with radiological 

features derived from computed tomography (CT) and magnetic resonance (MR) imaging [15], 

[16]. Herein, we evaluate the role of EMR context signatures in improving classification accuracy 
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for each of the four disease groups. In the second study, we use EMR to extract the context 

signature of a well-defined disease, and assess the classification accuracy gained by integrating 

this with neuroimaging information. For this study, we examine diabetes in an aging 

population[17]. Symptomatic risk factors for diabetes are well understood, for example impaired 

glucose levels are highly predictive of future diabetes [18]. Recent studies have also shown that 

diabetes is mildly correlated with cortical and white matter signal changes and white matter hyper 

intensities in the brain[17], [19]. However, classification of diabetes based on imaging remains a 

harder problem, as it depends on various other issues such as variance in disease population, 

disease stage etc. We use EMR signatures and brain MRI data acquired in the aging study to 

investigate the classification accuracy for Diabetes.  

2. Methods  

2.1. Glossary of Terms 

We use the following terms to disambiguate between the multiple levels of our study 

design: 

Study: An observational study of a group of individuals sharing similar type of data 

collected at the same center. Each study has one or more case-control experiments designed to 

compare subjects who have a disease and those who do not. 

Disease group: A clinical classification of individuals having a health condition.  

Control group: Individuals in a study that are not classified as belonging to a disease group 

are considered as the control group.  

Case-control experiment: An experiment within a study to compare a disease group with a 

control group. 
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Dataset: A type of data collected within a study. Dataset E has a set of individuals with 

only EMR data, while dataset RE has a different set of individuals with both EMR and radiological 

imaging data.  

Class: An engineering term for group (disease or control). An individual’s class label is a 

categorical indicator of which class the patient belongs to. The algorithms presented fall under 

classification approaches in which a procedure is created to infer a class label for each subject.  

 

Figure VII-1. Overview for each case control experiment. In step 1, the EMR phenotypes associated 
with disease D, Psig are learnt from dataset E. In Step 2, EMR context signature vectors, XEMR are 
calculated from Psig and XRad is calculated from imaging. XRE, XRad, and XEMR are used to train an 

elastic net classifier and ROC curves are computed. 
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ICD-9 code: A code used to describe a diagnosis or a health problem as defined by the 

International Classification of Diseases version 9 (ICD-9). There are roughly ~15,000 ICD-9 codes 

defined. 

PheWAS code: A code based on hierarchical categorization of ICD-9 codes that describes 

a diagnostic “phenotype” by grouping a set of related ICD-9 codes. The ~15,000 ICD-9 codes are 

mapped to 1865 PheWAS codes [20]. 

PheDAS: A phenome-disease association study, which is used to identify all the diagnostic 

phenotypes associated with a disease group. 

EMR context signature: A binary vector describing an individual’s history that is calculated 

using PheDAS. 

2.2. Overview 

We use data from two studies to evaluate the PheDAS framework (Table I). The first study, 

collected at Vanderbilt University Medical Center (VUMC), characterizes diseases of the optic 

nerve within four major disease groups: glaucoma, intrinsic optic nerve disease, thyroid eye 

disease and optic nerve edema. These diseases have a complex presentation, similar symptoms, 

and frequently co-occur. The control group for this study is a group of individuals with hearing 

loss who were chosen for having similar imaging data available. In the first study, we build 

classifiers to classify disease groups from control group. Additionally, we build a one v. all to 

classify each optic nerve disease group from the other optic nerve diseases. 

The second study uses data from the Baltimore Longitudinal Study of Aging (BLSA)[21], 

a study that collects longitudinal data of an aging population in order to examine changes in the 

brain as a person ages. In this study, our “treatment” group are individuals who were diagnosed 
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with diabetes. The control group for this study is individuals in BLSA who had no diagnosis of 

diabetes. Since risk factors for diabetes are well understood, it is used as a validation for our 

method for deriving EMR phenotypes. 

For each study, we examine two separate datasets: dataset E, which is a large EMR-only 

dataset and dataset RE, which is a smaller EMR and radiological dataset. Dataset E is used to 

identify EMR phenotypes that are most associated with a given disease group using PheDAS. 

These phenotypes are used to construct EMR context signatures in the dataset RE to evaluate 

additional predictive value that EMR data provides to imaging studies. 𝑋ç, an 𝑁U × 𝑃U matrix, is 

constructed using dataset E with demographic data and ICD-9 data, where 𝑁U is the number of 

subjects and 𝑃U is the number of significant EMR phenotypes identified. 𝑋Dç, an 𝑁l × 𝑃l matrix, 

is constructed using dataset RE which comprises of radiological imaging data and EMR data for 

both control and treatment groups, where 𝑁l is the number of subjects and 𝑃l is the number of 

parameters. 𝑋Dç can be written as,  

 

										𝑋Dç = [𝑋D��		𝑋çèD]                       (1) 

 

where,  𝑋D��  contains the radiological imaging features for all the subjects and 𝑋çèD  

contains binary vectors describing the EMR context signature for all the subjects. 𝑁U equals 29,214 

in study 1 and 1,715 in study 2. 𝑁l equals 1,451 in study 1, and 124 in study 2. 

We conduct seven case-control experiments in study 1. The first four experiments, where 

each of the four disease groups is compared with controls. And an additional three experiments, 

where each disease group is compared with other disease groups in a one v. all fashion. We conduct 
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one case-control experiment in study 2, comparing individuals with diabetes to those without the 

disease. The data for each case-control experiment is described in section 2C. The procedure for a 

case-control experiment is shown in Fig. 1. In the first step, we construct 𝑋ç from dataset E and 

use PheDAS to find the EMR phenotypes associated with the disease in the experiment as 

described in section 2D. In step two, we use dataset RE to construct radiological imaging features 

𝑋D��, as described in section 2E and EMR context signature vectors	𝑋çèD, as described in the end 

of section 2D. Finally, we evaluate the EMR context signatures 𝑋çèD , the imaging features 

𝑋D��,	and the combination of the two, using an elastic net paradigm [22] as described in section 

2F and construct their Receiver Operating Characteristic (ROC) curves [23] for comparison. 

2.3.  Data 

2.3.1. Study 1: Diseases of the Optic Nerve 

We collect ICD-9 codes, and demographic data for datasets E for each of the four disease 

groups and controls. For datasets RE, we collect computed tomography (CT) imaging of the eye 

orbit for each of the four disease groups and controls. The anonymized CT images were acquired 

clinically at Vanderbilt University Medical Center (VUMC) under varied settings and a wide range 

of scanners such as Phillips, Marconi, and GE (detailed acquisition parameters were not available). 

The CT imaging for disease population was acquired for subjects who have had an ICD-9 code 

belonging to one of the four main disease groups: glaucoma, intrinsic optic nerve disease, thyroid 

eye disease, and optic nerve edema. The detailed description of ICD-9 codes to identify a disease 

group is shown in Table II. The CT imaging for control subjects was acquired from subjects with 

hearing loss who had no other known vision problems as the clinical imaging protocols for these 
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subjects was similar to the imaging acquired for those with optic nerve disorders in terms of 

acquisition parameters and field of view.  

For each disease group d, the counts and ages for datasets 𝑋ç
{�}, and 𝑋Dç

{�}, are shown in 

Table III, along with age-matched controls. The controls for 𝑋ç
{�}, are all individuals in study 1 

who do not belong to disease group d, i.e. individuals belonging to other disease groups and 

hearing loss patients not included in 𝑋Dç
{�}. 𝑋ç

{�} is used to learn EMR context signatures for each 

𝑑.  

Table VII-2. Disease groups in Study 1 and the ICD-9 codes used to identify them 

Disease group ICD-9 codes 

Glaucoma 365.0* (Borderline glaucoma), 365.1* (Open-angle glaucoma), 365.2* (Primary angle-

closure glaucoma), 365.3* (Corticosteroid-induced glaucoma), 365.4* (Glaucoma 

associated with congenital anomalies, dystrophies, and systemic syndromes), 365.5* 

(Glaucoma associated with disorders of the lens), 365.6* (Glaucoma associated with other 

ocular disorders), 365.7* (Glaucoma stage, unspecified), 365.8* (Other specified forms of 

glaucoma), and 365.9*(Unspecified glaucoma) 

Intrinsic Optic Nerve Disease  377.3* (Optic Neuritis), and 377.4* (Other disorders of optic nerve) 

Optic Nerve Edema 348.2 (Idiopathic intracranial hypertension), 377.0 and 377.00 (Papilledema), 377.01 

(Papilledema, increased intracranial pressure), and 377.02 (Papilledema, decreased ocular 

pressure) 

Thyroid Disease 242.00 (Toxic diffuse goiter without thyrotoxic crisis or storm), 376.2 (Endocrine 

exophthalmos), 376.21 (Thyrotoxic exophthalmos), and 376.22 (Exophthalmic 

ophthalmoplegia) 
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𝑋Dç
{�}  is used to conduct two experiments to evaluate the predictive value of EMR and 

imaging data for each 𝑑:  

Disease vs. healthy control subjects: The predictive value of EMR and imaging data is 

evaluated when compared to healthy control subjects. The controls for in this case are age-matched 

hearing loss patients. There are four case-control studies, one for each disease. 

Disease vs. other disease groups: The predictive value of EMR and imaging data is 

evaluated when compared to subjects with other optic nerve diseases. The controls for this case 

are subjects who have never had disease 𝑑 , but had one of the other three eye diseases. For 

example, subjects with glaucoma are compared with subjects who have never had glaucoma but 

had one of the following: intrinsic optic nerve disease, optic nerve edema or thyroid eye disease. 

In this category, subjects with optic nerve edema did not have enough age-matched controls, 

resulting in only three case-control studies.  

Only ICD-9 codes recorded one year prior to of the diagnosis are included for both 𝑋ç
{�}, 

and 𝑋Dç
{�}. 

2.3.2. Study 2: Diabetes 

We collect ICD-9 codes, and demographic data for dataset E. For dataset RE, we collect 

magnetic resonance (MR) imaging of the brain for the disease group and controls along with ICD-

9 codes.  
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The EMR dataset 𝑋ç
{�S�é}, has 245 patients with diabetes and 1470 age-matched controls, 

comprised of other subjects in the study without diabetes. The dataset with radiology data and 

EMR 𝑋Dç
{�S�é}, has 62 participants with diabetes and 62 age-matched controls. Their average ages 

are shown in Table III.  Only ICD-9 codes recorded one year prior to of diagnosis are included for 

both 𝑋ç
{�S�é} and 𝑋Dç

{�S�é}. 

 

Figure VII-2. Process flow of PheDAS.  ICD-9 data for each visit and class information is extracted from 
EMR in step 1. Next, the data is censored by eliminating visits up to tc years before the time of diagnosis, 

tdx. In step 3, ICD-9 codes are mapped to the PheWAS codes. In step 4, the data is age matched in 1:2 
ratio with controls. In step 5, a logistic regression model is trained for each PheWAS code to determine if 
it is associated with the disease. In step 6, the EMR signature vector is constructed with conditions that 

are positively associated with the disease. 
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2.4.  Phenome-Disease Association Study (PheDAS) 

We use our custom package pyPheWAS  to extract EMR context signatures as described 

in this section[14]. First, phenome-disease associations are identified from EMR dataset E as 

shown in Fig. 2, for each case-control experiment. Two tables are extracted from dataset E for 

each disease group and their respective controls. The first table contains the subject identifier and 

each ICD-9 recorded for that subject along with the date. The second table consists of demographic 

information for each subject including current age, diagnosis class (1=disease group, 0=controls), 

age of the subject at the diagnosis, and sex. Next, the data are right censored such that all the time 

points that occur up to tc years before the diagnosis are eliminated, so that conditions that are 

temporally predictive of, or precursors to the diagnosis can be identified. In this paper, tc = 1. The 

first table now contains only ICD-9 codes for visits before the diagnosis. The ages of the subjects 

are recalculated to reflect the censoring. Next, the ICD-9 codes are mapped to 1865 diagnostic 
 

Table VII-3. Average ages (in years) for control and disease population for study 1 and study 2. 

Disease Group Dataset E Dataset RE (Disease vs. Healthy) Dataset RE (Disease vs. Other) 

Control Disease Control Disease Control Disease 

Glaucoma 55.31±18.59  

(n=11,474) 

55.31±18.76  

(n=11, 499) 

56.12±17.6  

(n=75) 

56.2±17.67                   

(n=75) 

58.10±9.40 

(n=25) 

58.12±9.76 

(n=25) 

Intrinsic Optic Nerve 

Disease 

43.6±23.2  

(n=2198)       

43.55±23.24          

(n=1, 099) 

43.29±21.02  

(n=135) 

43.3±21.0  

(n=135)  

47.41±16.97 

(n=27) 

47.51±16.91 

(n=27) 

Optic Nerve Edema 28.32±19.09 

(n=1604) 

28.25±19.06  

(n=802) 

28.25±19.06  

(n=115) 

30.47±16.58  

(n=115) 

- - 

Thyroid Eye Disease 43.1±19.06  

(n=3114) 

43.32±18  

(n=1557) 

50.73±15.20  

(n=40) 

50.65±15.27  

(n=40) 

49.98±17.86 

(n=15) 

50.26±17.30 

(n=15) 
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phenotype codes or PheWAS codes as defined in Denny et al[11]. These codes are denoted by C, 

where 𝐶 = {𝑐�|𝑘 = 1… 	1865}. Next, the diseases and controls are age-matched in a 1:2 ratio, 

when available, i.e., for each subject in the disease group, two subjects in the control group are 

selected whose ages are within 2 years. For each subject, an aggregate measure, 𝑀�ì , of the 

PheWAS code 𝑐�, is calculated. The PheDAS software supports computing 𝑀�ì  by one of the 

following: 

1. A binary variable, indicating presence or absence of the code in the subject’s history. 

2. A count, indicating the number of times the code was recorded in the subject’s history. 

3. Duration, indicating the time between the first time the code was recorded and the last time it 

was recorded. 

In this paper, the binary measure is computed. Finally, the last recorded age of the subject 

for the given code, 𝐴�ì, is calculated. Sex is the only other covariate that is considered. From this 

data, XE is given by, 

𝑋ç = �𝑠𝑒𝑥Fí×	U				𝑀�í
Fí×	U					𝐴�í

Fí×	U 	…				𝑀�íîïð
Fí×	U					𝐴�íîïð

Fí×	U�
Fí×	ií  

Each subject belongs to class 1 (disease) or 0 (control). Each diagnostic phenotype 𝑐� is 

associated either with 1 or with 0 or is not associated with either. Logistic regression is used to 

determine the association between each 𝑐�	and the disease of interest: 

𝑝(𝑐𝑙𝑎𝑠𝑠 = 𝑑𝑖𝑠𝑒𝑎𝑠𝑒	| 𝑐�) ~ logit(𝛽nì +	𝛽Uì𝑀�ì +	𝛽lì𝐴�ì + 𝛽³ì𝑠𝑒𝑥) 

The p-value of 𝛽Uì , the coefficient of the binary aggregate measure, is used to determine 

the significance of the association between the PheWAS code 𝑐� and the diagnosis of the disease. 

The sign of the co-efficient determines the direction of the association. The threshold for 
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significance, pbh, is given by the false discovery rate[24]. The set of significant PheWAS codes 

that are positively correlated with the disease is given by 𝐶�Sñ = {𝑐�∗|	𝑝 − 𝑣𝑎𝑙𝑢𝑒	𝑜𝑓	𝛽Uì∗ <

𝑝é�	𝑎𝑛𝑑	𝛽Uì∗ > 0}. To illustrate this process, Fig. 3 presents 𝐶�Sñ  for Glaucoma dataset, 𝑋ç
{ñÞ�Ù�}. 

Next, the ICD-9 codes are mapped to PheWAS codes in dataset RE of the as described 

above, for each disease group. The set of phenotypes positively associated with the disease D, 

𝐶�Sñ , that was identified using dataset E is used to construct EMR context signature vectors 𝑋çèD, 

from dataset RE (refer to equation	(1)), 

𝑋çèD = �𝑠𝑒𝑥	𝑎𝑔𝑒		𝑀�í∗
Fò×U		𝑀�ò∗

Fò×U … �
Fò×iò

                                        (2) 

where 𝑐�∗ 	 ∈ 𝐶�Sñ  and 𝑀�ì∗
Fò×U is the binary vector of aggregate measures for 𝑐�∗  for each of 

the 𝑁l subjects. 

2.5.  Image processing 

2.5.1. Study 1: Diseases of the Optic Nerve 

CT imaging from dataset RE is used in study 1 to extract radiological imaging features, 

𝑋D��. Multi-atlas segmentation [25] is used to segment the optic nerve, globes, extraocular rectus 

muscles, and orbital fat from CT imaging, as illustrated in Fig. 4. A set of 25 example atlases with 

expertly marked labels for the orbital structures are used to segment the structures in a new target 

scan. First, the target image is registered to the example atlases to localize the eye orbit and crop 

it using a bounding box[26]. This is done since target atlases can have varying fields of view from 

a whole head scan to a scan limited to the eye orbit. A down-sampled version of the target image 

is used for this step since it is faster, and a rough registration is sufficient to identify a bounding 

box. Once the eye orbit is localized, the full-resolution images of the cropped target space are used. 
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Next, the example scans are non-rigidly registered [27] to the cropped target space and the expertly 

labeled structures are propagated to the target space. The registered labels in the target space are 

combined using non-local statistical label fusion [28] to identify the globe, optic nerve, muscles, 

and fat.  

However, challenges arise in the identification of the individual extraocular rectus muscles 

that control eye movement. This is increasingly problematic in diseased eyes, where these muscles 

often appear to fuse at the back of the orbit (at the resolution of clinical computed tomography 

 

Figure VII-4. Process flow of image segmentation for study 1. In the first block, a set of atlases along 
with expertly marked labels for multi atlas segmentation protocol are shown. In the second block, the 

multi-atlas segmentation process where each of the example atlases is non-rigidly registered to the 
target atlas, and the labels are propagated using this deformation are shown. Statistical label fusion is 

used to achieve the final labels. In the third block, the muscle label obtained from multi-atlas 
segmentation is further split into four extraocular rectus muscles using Kalman filters are shown. In the 

fourth block, the structural metrics calculated from the segmentation are shown. 

 

 

 

Figure VII-3. Example result of phenotype extraction.  Shown here are all the positively correlated 
phenotypes with Glaucoma. A few key associations are labelled. The complete list of associated 

conditions is shown in Table B1 of the supplementary material. 
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imaging) due to inflammation or crowding. Kalman filters are used to isolate the individual 

extraocular muscles from the muscle labels obtained from the multi-atlas segmentation pipeline as 

described by Chaganti et al[15].  We start at a coronal slice at the center of the globe, where the 

muscles are well-separated, and use Kalman filters to track each muscle in z-direction. After the 

segmentation, thirty-six volume, size and intensity metrics are calculated as described in Chaganti 

et al[15]. These orbital structural metrics included the (#1-#20) volume, maximum diameter, 

average diameter, median intensity, and interquartile range of the intensities for the superior, 

inferior, medial, and lateral rectus muscles and total rectus muscle volume; (#21) Barrett muscle 

index; (#22-#25) volume, diameter, median intensity and the interquartile range of the intensities 

of the globe; (#26) orbital volume; (#27) volume crowding index; (#28) orbital angle; (#29) degree 

of proptosis; (#30) length along the optic nerve, and (#31-#36) traditional length, volume, average 

area, maximum diameter, median intensity, and the interquartile range of intensities of the optic 

nerve. All structural metrics are computed bilaterally, and their mean is used for analysis. The 

radiological imaging data vector 𝑋D��, in equation (1) is formed from these metrics, 

𝑋D�� = [	𝑠𝑚U
Fò×U	𝑠𝑚l

Fò×U … 	𝑠𝑚³µ
Fò×U]                                                     (3) 

where, 𝑠𝑚�  is the average of the 𝑘��	structural metric of the left and right eye. 

2.5.2. Study 2: Diabetes 

In study 2, XôõÍ is calculated from segmented MR images of the brain as described in [29]. 

A multi-atlas segmentation paradigm is used for the segmentation. Briefly, scans are first affinely 

registered [30] to the MNI305 atlas[31]. Then, multi-atlas segmentation is performed on each 

subject. 45 MPRAGE images from OASIS dataset are used as original atlases which are manually 

labeled with 133 labels (132 brain regions and 1 background) by the  
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BrainCOLOR protocol[32]. Multi-atlas segmentation produces regional masks for each of the 133 

labels. The volume of each label, except the background, is computed by integrating the individual 

masks, and a radiological imaging data vector XôõÍ, is formed, 

XôõÍ = [	smU
÷ò×U	sml

÷ò×U … 	smU³l
÷ò×U] 

where, smà is the volume of the kùú	brain region. 

2.6.  Classification 

A binary classifier is trained on dataset RE for each case-control experiment to distinguish 

subjects belonging to the disease group from the control group. The data vector 𝑋Dç, is calculated 

from equations 2, 3, and 4 as follows, 

𝑋Dç = [	𝑋D�� 𝑋çèD]Fò×iò 

The relative performance of each of 𝑋Dç, 𝑋D��, and 𝑋çèD  is evaluated. For each X, we 

model 

𝑃(𝑦S = 𝑑𝑖𝑠𝑒𝑎𝑠𝑒|𝑋 = 𝑥S) = 	
𝑒ûüÝûýkR

1 + 𝑒ûüÝûýkR
 

We use logistic regression with elastic net regularization[22] . The following penalized log 

likelihood function is minimized to derive the 𝛽 for the logistic regression model, 

min 	– 	"V 𝑦S(
F

STU
𝛽n + 𝛽p𝑥S) 	− logG1 + 𝑒ûüÝû

ýkRL# 	+ 𝜆[(1 − 𝛼)‖𝛽‖ll/2		 + 𝛼‖𝛽‖U] 

Here, 𝛼 is fixed at 0.5, and 𝜆	that provides the optimal test error is selected. ‖𝛽‖ll is the 

ridge penalty and ‖𝛽‖U is the lasso penalty[33]. 
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We use ROC curves to evaluate the performance of the model. We build the final model 

using all of the data, and the extra-sample ROC estimate is computed using bootstrapping for 

optimism correction[34]–[36]. The extra sample error is the generalization error of the model, 

which is estimated as described in this section.  

From the original 𝑋Fò×iò, a sample, 𝑋�
Fò×iò , of size 𝑁l is selected with replacement and 

the model is fitted to it. Let 𝑋�Ý denote the positive class samples, and 𝑋�� denote negative class 

samples of 𝑋� . Let 𝑋Î�SñÝ  denote the positive class samples, and 𝑋Î�Sñ�  denote negative class 

samples of 𝑋. Let 𝑓�Á  be the classification rule for the model fitted over the dataset 𝑋�. The true and 

false positive rates, 𝑡𝑝𝑟�,�(𝑡) and 𝑓𝑝𝑟�,�(𝑡), of applying 𝑓�Á  to 𝑋� are calculated over thresholds 𝑡, 

𝑡𝑝𝑟�,�(𝑡) = 	
1

𝑠𝑖𝑧𝑒(𝑋�Ý)
V 𝐼G𝑓�Á(𝑥S) ≥ 𝑡L

kR,jR∈P()
, 𝑡 ∈ [0,1] 

𝑓𝑝𝑟�,�(𝑡) = 	
1

𝑠𝑖𝑧𝑒(𝑋��)
V 𝐼G𝑓�Á(𝑥S) ≥ 𝑡L

kR,jR∈P(*
, 𝑡 ∈ [0,1] 

Similarly, the true and false positive rates, 𝑡𝑝𝑟�,Î�Sñ(𝑡) and 𝑓𝑝𝑟�,Î�Sñ(𝑡), of applying 𝑓�Á  to 

𝑋 are calculated over thresholds 𝑡, 

𝑡𝑝𝑟�,Î�Sñ(𝑡) = 	
1

𝑠𝑖𝑧𝑒G𝑋Î�SñÝ L
V 𝐼G𝑓�Á(𝑥S) ≥ 𝑡L

kR,jR∈P+,R-
)

, 𝑡 ∈ [0,1] 

𝑓𝑝𝑟�,Î�Sñ(𝑡) = 	
1

𝑠𝑖𝑧𝑒G𝑋Î�Sñ� L
V 𝐼G𝑓�Á(𝑥S) ≥ 𝑡L

kR,jR∈P+,R-
*

, 𝑡 ∈ [0,1] 

Now, we model all of the points in the original dataset X using elastic net regression to 

obtain a new classification rule, 𝑓¿Î�Sñ. Next, we calculate the apparent true and false positive rates, 

𝑡𝑝𝑟���(𝑡) and 𝑓𝑝𝑟���(𝑡), of applying 𝑓¿Î�Sñ to	𝑋. This would give an optimistic estimate, but we 

correct for that using the optimism correction approach[34]:  
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𝑡𝑝𝑟�Î�������(𝑡) = 	 𝑡𝑝𝑟���(𝑡) − .
1

num0ËËùÌù1õ2
3V𝑡𝑝𝑟�,�(𝑡) − 	𝑡𝑝𝑟Î�Sñ,�(𝑡)®

�

, 𝑡 ∈ [0,1] 

𝑓𝑝𝑟�Î�������(𝑡) = 	𝑓𝑝𝑟���(𝑡) −	(
1

num0ËËùÌù1õ2
)V𝑓𝑝𝑟�,�(𝑡) −	𝑓𝑝𝑟Î�Sñ,�(𝑡)®

�

, 𝑡 ∈ [0,1] 

The optimism corrected receiver operating characteristic curve is given by, 

𝑅𝑂𝐶(. ) = 5G𝑡𝑝𝑟�Î�������(𝑡), 𝑓𝑝𝑟�Î�������(𝑡)LK𝑡	 ∈ 0: 0.01: 1} 

The corrected area under the curve is calculated for the ROC using the trapezoidal rule[23]. 

3. Results 

3.1. Study 1: Diseases of the Optic Nerve 

3.1.1. Case-Control Experiment: Glaucoma vs. Healthy Controls 

Structural metrics derived from CT imaging are moderately successful in distinguishing 

disease and control groups with an AUC of 0.71 (Fig. 5A). The EMR context signature vector 

results in slightly more successful prediction with an AUC of 0.76. However, the model that was 

built upon using both sets of data has much higher prediction accuracy, with an AUC of 0.83.  

3.1.2. Case-Control Experiment: Intrinsic Optic Nerve Disease vs. Healthy Controls 

Structural metrics derived from CT imaging are successful in distinguishing disease and 

control groups with an AUC of 0.72 (Fig. 5B). The EMR context signature vector results in an 

AUC of 0.85. The model that was built upon using both sets of data has higher prediction accuracy 

than either of the former models, with an AUC of 0.91.  
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3.1.3. Case-Control Experiment: Optic Nerve Edema vs. Healthy Controls 

Structural metrics derived from CT imaging have a high AUC of 0.96 (Fig. 5C). The EMR 

context signature vector results in an AUC of 0.95. The model that was built upon using both sets 

of data has slightly higher prediction accuracy with an AUC of 0.96. 

3.1.4. Case-Control Experiment: Thyroid Eye Disease vs. Healthy Controls 

Structural metrics derived from CT imaging are successful in distinguishing disease and 

control groups with an AUC of 0.79 (Fig. 5D). The EMR context signature vector results in an 

 

Figure VII-5. Disease vs. healthy control results of elastic net classifier for study. Green line indicates the curve 
for EMR data, blue line indicates the curve for imaging data, and the red line indicates the curve for EMR + 

imaging data.1. 5A. shows the result for glaucoma, 5B shows the result for intrinsic optic nerve disease, 5C shows 
the result for optic nerve edema, and 5D shows the result for thyroid eye disease. 
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AUC of 0.78. The model that was built upon using both sets of data has higher prediction accuracy 

than either of the former models, with an AUC of 0.89.  

3.1.5. Case-Control Experiment: Glaucoma vs. Other Diseases 

Structural metrics derived from CT imaging are mildly predictive in distinguishing disease 

and control groups with an AUC of 0.66 (Fig. 6A). The EMR context signature vector is more 

predictive with an AUC of 0.88. The predictive value of the combined model that was built using 

both sets of data has an improved prediction accuracy with an AUC of 0.91.  

3.1.6. Case-Control Experiment: Intrinsic Optic Nerve Disease vs. Other Diseases  

Structural metrics derived from CT imaging are mildly successful in distinguishing disease 

and control groups with an AUC of 0.68 (Fig. 6B). The EMR context signature vector results in 

an AUC of 0.85. The model that was built upon using both sets of data has higher prediction 

accuracy than either with an AUC of 0.90.  

3.1.7. Case-control experiment: Thyroid eye disease vs. other diseases  

Structural metrics derived from CT imaging are successful in distinguishing disease and 

control groups with an AUC of 0.74 (Fig. 6C). The EMR context signature vector results in an 

AUC of 0.73. The combined model has a much higher prediction accuracy than either with an 

AUC of 0.90.  

3.2. Study 2: Diabetes 

Structural metrics derived from MR are slightly better than chance, with an AUC of 0.58, 

as seen in Fig. 7. The EMR context signature vector has an AUC of 0.83. The model that was built 
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upon using both sets of data does not select any imaging features in the elastic net model, and 

demonstrated an AUC of 0.85 using abnormal glucose as the only selected feature. 

4. Discussion 

Although success has been reported in several studies that were able to train diagnostic 

classifiers using medical imaging data in various domains, these studies do not consider the 

variability of presentation in radiology due to individual patient histories. One way to circumvent 

this problem is to use data available in electronic medical records to develop context-based 

 

Figure VII-6. Disease vs. other results of elastic net classifier for study 1. Green line indicates the 
curve for EMR data, blue line indicates the curve for imaging data, and the red line indicates the 

curve for EMR + imaging data.1. 6A. shows the result for glaucoma, 6B shows the result for intrinsic 
optic nerve disease, 6C shows the result for thyroid eye disease. 
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diagnostic classifiers. In this paper, we develop methods for multi-modal big data studies in 

medical image processing that use EMR information, i.e., data from medical images as well other 

EMR data such as ICD-9 codes. One of the challenging problems in such studies is to consolidate 

data from EMR records that can be integrated with imaging data. We develop PheDAS, a method 

to extract diagnostic phenotypes associated with a given condition and transform it into a binary 

EMR signature vector. In fact, our custom Python package provides provisions to transform the 

data using other aggregate measures such as counts of the diagnostic phenotypes, and duration of 

the diagnostic phenotypes[14].  

Our main contribution in this paper is evaluation of these context-based diagnostic 

classifiers using two large-scale studies. In our two studies, we look at two different datasets: study 

1 in which significant predictive value for imaging data is observed and study 2 in which the 

predictive value of imaging data is minimal. In study 1, we find that both structural metrics and 

PheWAS phenotypes are moderately successful in distinguishing disease groups from controls for 

diseases of the optic nerve. However, in all four of the disease groups, we saw that addition of the 

EMR context signature vectors increases the predictive power of the classifiers, making a strong 

case for context-based imaging studies that consider the whole story of the patient with the help 

of information readily available in EMR. In study 2, which was considered to be our validation 

dataset to evaluate the EMR-phenotype extraction, abnormal glucose, the most important clinical 

predictor of diabetes[18], [37], is selected as the only predictor by our final model, thus validating 

the methodology. The context-based classifier for diabetes does not select any imaging features 

and shows a final AUC of 0.85 using abnormal as a sole feature.  

Upon further evaluation of the EMR and imaging phenotypes identified in study 1, several 

findings align with those reported in medical literature. Thyroid eye disease is associated with a 
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history of Grave’s disease, an autoimmune disorder that causes problems with thyroid regulation 

[38], [39]. The final model for thyroid eye disease selects phenotypes associated with thyroid 

imbalances such as hyperthyroidism. The imaging phenotypes selected in this model are proptosis, 

optic nerve length, and inferior muscle volume and diameter. According to radiology literature, 

these are some of the most distinct features of TED [40], [41] and inferior muscle is the most 

commonly affected muscle[42].  

The final model for glaucoma identified systemic problems such as diabetes, 

hyperlipidemia, hypertension, and miscellaneous visual changes as the most predictive, which 

coincide with common glaucoma co-morbidities reported in medical literature [43]. The EMR 

context vector for intrinsic optic nerve disease shows a history of multiple sclerosis and other 

demyelinating diseases of the central nervous system as significant, which is reported widely in 

medical literature as well[44], [45]. For both glaucoma and intrinsic optic nerve disease the 

structural changes from imaging calculated in this study were shown to be predictive in 

differentiating the subject population from controls. 

 The optic nerve edema disease group consists of papilledema and idiopathic 

intracranial hypertension. Previous studies show that volumetric changes of the optic nerve are 

important features used for diagnosis of these conditions [46]–[49]. Our final model identified 

optic nerve volume, length and intensity, as some of the important predictors of this disease group, 

thereby achieving a very high AUC of 0.95. The systemic causes for idiopathic intracranial 

hypertension are not known [50]. The presentation is variable and is associated with other co-

morbidities such as obesity, migraine, nausea, depression and so on. Our final model identifies 

these EMR features as significant, however they do not significantly improve the final prediction 

over imaging features. The reason for this could be that EMR features for this condition are 
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inconsistent and variable, whereas imaging features are quite distinct and consistent across the 

subjects. 

In future studies, we will develop methods to incorporate other data routinely available in 

EMR such as procedure codes and labs into the context vectors to develop comprehensive clinical 

decision support models. 
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Chapter VIII. Discovering Novel Disease Comorbidities using Electronic Medical Records 

1. Introduction 

Electronic medical record (EMR) systems have increasingly been leveraged for clinical 

and medical research. EMR data provides several advantages including large sample sizes that are 

often required to obtain statistically significant results in observational studies. They contain a rich 

variety of data including lab results, medications, clinical notes, administrative and billing codes, 

images and so on.  Large-scale EMR databases also provide access to a wider range of diseases to 

study. Moreover, models developed on real-world data will be more generalizable than carefully 

selected homogenous cohort studies. Applications of EMR-based models in clinical research range 

from studying adverse drug events [210], [211], performing pragmatic clinical trials[212], 

predicting clinical outcomes[213], predicting hospital readmission rates[214], and genome-wide 

association studies[215]. In this work, we introduce a tool to perform an association study to 

identify disease comorbidities using EMR databases at different timepoints. 

Early association studies were prospective trials that recruited case and control subjects to 

identify genetic variants associated with a disease of interest, called GWAS (genome-wide 

association study). However, there has been significant effort recently to use existing data from 

other sources such as observational data from EMR databases. In 2007, the eMERGE (Electronic 

Medical Records and Genomics) consortium was formed to facilitate large-scale genomic research 

by linking DNA biorepositories to EMR systems in 7 clinical sites and 2 pediatric sites [216]. 

Denny et al have used EMR-based definitions of diseases to perform reverse GWAS studies i.e., 

to identify all clinical phenotypes association with a genetic variant of interest[180]. The concept 

of association studies has been expanded to study disease-wide comorbidities as well. Engels et al 
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used a Medicare claims database to study comorbidities associated with Non-Hodgkin’s 

Lymphoma[217].  Hanauer et al developed a disease-wide comorbidity map, similar to the 

molecular concept map (MCM) using EMR records[218]. Roque et al used clinical text and ICD-

10 codes to stratify patients by phenotypes, and identify clusters of co-occurring conditions[219]. 

Holmes et al used a combination of discharge summaries, ICD-9 codes, PubMed database and 

Wikipedia articles to identify co-morbidities in three rare diseases [220].  

There are several challenges in the design and analysis of disease co-morbidity, including: 

1) Identifying disease phenotypes from EMR, 2) Identifying comorbidities that occur at different 

stages: before diagnosis, co-occurring, and after diagnosis, 3) Identifying clinically relevant 

associations, 4) Identifying novel associations that were previously unknown or understudied. In 

this work, we describe phenome-disease association study or PheDAS, an EMR-based open-source 

association study tool to evaluate relationships between an index disease (disease of interest) and 

other clinical phenotypes.  

A disease phenotype can be described as a set of characteristics or symptoms that 

consistently define the clinical presentation disease of interest. Several studies have been 

conducted to automatically extract phenotypes from EMR data such as billing codes and clinical 

summaries. Lasko et al describe a method that uses an unsupervised data-driven approach to 

identify latent phenotypes from EMR[221]. cTAKES was developed by Mayo clinic to extract 

phenotypes from clinical text[101]. The PheKB catalog provides algorithms to extract clinical 

phenotypes using multiple sources in EMR[102]. i2b2 is another natural language processing 

(NLP) system that used EMR to extract phenotypes[103]. While these studies have shown promise, 

there are still ongoing analyses to study the generalizability of these methods across all databases 

and in cases where there are missing data types. Meanwhile, the adaptation of phecodes has proven 
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successful in genetic association studies. Phecodes were defined by Denny et al, based on 

hierarchical categorization of ICD-9 codes[180]. ICD-9 codes are universally available in EMR 

databases, so phecodes can be readily adapted with any given use case. They have the added benefit 

of easy interpretation when compared to other methods that describe phenotypes through complex 

algorithms that use different types of data. In this work, we use phecodes to define our disease 

phenotypes. 

Previous studies of disease comorbidity show the overall associations in terms of a graph, 

or a list. Often, it is a challenge to separate comorbid conditions to identify those that are predictive 

and those that are a consequence of an index disease. Our tool provides data cleaning and censoring 

abilities to address these questions. The longitudinal data available for each patient in an EMR 

database can be used to design various types of experiments including selection of specific age 

intervals, censoring the disease diagnosis to study only predictive factors before the diagnosis of 

the disease, or studying the future progression of a disease. In this paper, we will demonstrate a 

use case for each of these scenarios. 

In such studies, there is a problem of multiple hypothesis testing, since several associations 

are studied at the same time. Previous association studies employed tradition multiple hypothesis 

corrections such as Bonferroni, false discovery rate (FDR), or permutation testing[222], [223]. 

Despite these measures, association studies have suffered from the problem of 

reproducibility[224]. GWAS studies are usually followed by meta analyses and replication studies 

to identify truly significant results[225]. For reduced false discoveries and improved 

interpretability, we use second generation p-values proposed by Blume et al [125]. Second 

generation p-value approach was introduced to tackle the common challenges that arise with 
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traditional p-values. In this approach, a clinically meaningful or relevant null-interval is set prior 

to the analysis.  

Once the significant associations are identified, quantifying the quality and relevance of 

these associations remains a huge unaddressed challenge. Exploratory association studies can be 

validated when they find and replicate well-known results. In genetic association studies, meta 

analyses are used to substantiate results[225]. In previous disease co-morbidities, associations 

were manually reviewed by experts to recognize well-known results[220]. Another main 

advantage of association studies is hypothesis generation for future research questions. These tools 

could potentially be used to discover new empirical associations that have previously been 

unexplored by the scientific community. In our tool, we introduce a new measure called Novelty 

Finding Index that quantifies and ranks the novelty of a finding automatically by performing an 

automated clinical literature search using PubMed.  

We demonstrate the use of this tool in three studies: 1) We will use this tool to identify 

comorbidities of Autism Spectrum Disorder (ASD) among subjects of ages 7 and above (excluding 

early childhood). 2) We will identify predictive clinical phenotypes for Alzheimer’s disease that 

appear five years prior to a diagnosis. 3) We will identify the clinical phenotypes that present after 

a diagnosis of Optic Neuritis, that show that variability of prognosis in this condition. 

2. Methods  

2.1. Data 

2.1.1. Case-Control Study 1: Autism Spectrum Disorder 

The data for this study, including demographic and ICD-9 codes, was collected at the 

Vanderbilt Kennedy Center. The index disease group for this study was defined by patients with a 
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diagnosis of ASD (ICD-9 codes – 299.*). The control group is defined by subjects with typical 

development. 

2.1.2. Case-Control Study 2: Alzheimer’s Disease 

The data for this study was collected through the Baltimore Longitudinal Study of Aging 

(BLSA), a study that collects longitudinal data of an aging population in order to examine changes 

in the brain as a person ages[198]. The data contains self-reported ICD-9 codes and demographic 

data. In this study, the index disease group is defined by individuals who were diagnosed with 

Alzheimer’s disease. The control group for this study is individuals in BLSA who had no cognitive 

impairment. 

2.1.3. Case-Control Study 3: Optic Neuritis 

The data for this study was collected from Vanderbilt University’s Synthetic Derivative 

under IRB approval.  It contains EMR data including ICD-9 codes and demographic information. 

The index disease group is defined by patients with codes 377.30-377.39. The control group for 

this study are subjects with other disorders of the optic nerve or subjects with hearing loss. 

2.2. Phenome-Disease Association Study 

We developed a python tool to perform phenome-disease association studies (PheDAS). 

PheDAS is used to identify clinical phenotypes that are associated with a given index disease. A 

clinical phenotype or a phecode is a code based on hierarchical categorization of ICD-9 

(International Classification of Disease - 9) codes, which describes a diagnostic “phenotype” by 

grouping a set of related ICD-9 codes. The ~15,000 ICD-9 codes are mapped to 1865 phecodes as 

described by Denny et al (2013). For example, “depression” phecode 296.2 groups the ICD-9 

codes of “major depressive disorder, single episode, mild degree” (ICD-9 = 296.21), “major 
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depressive disorder, recurrent episode, mild degree” (ICD-9 = 292.31), and “depressive disorder 

NEC” (ICD-9 = 311).  For each phecode, a set of exclusion codes are also defined which can be 

used to select a control cohort. 

Given a disease group and a control group, the PheDAS tool performs a set of logistic 

regressions to identify significant phenotypes associated with the disease. A flowchart of the 

process is shown in Figure VIII-1. The ICD-9 codes for each clinical visit and other demographic 

information are extracted from each subject’s electronic medical record (EMR). Optionally, the 

time interval for extraction of ICD-9 codes can also be adjusted according to the study design. This 

can be done by, 

Censoring by age-interval: Selecting an age range within which to perform the analysis. 

(Ex. In study 1, we analyze the differences between ASD and control population after age 7); or 

 

Figure VIII-1. Flow chart for phenome-disease association study. The input patient data required for 
this analysis is demographic data and clinic visits data. The data is prepared by performing data 

censoring and control matching based on the experimental design. Next, the ICD-9 codes are converted 
to phecodes. Finally, logistic regression is performed for each phecode based on aggregate measures 

and demographic features as described in section 2.2. 
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Left-censoring with respect to diagnosis: Selecting a time interval prior to year of 

diagnosis. (Ex. In study 2, we analyze the differences between Alzheimer’s and control population 

0-5 years before the diagnosis of the disease); or 

Right-censoring with respect to diagnosis: Selecting a time interval post the year of 

diagnosis. (Ex. In study 3, we analyze the differences between Optic Neuritis and control 

population 0-5 years after the diagnosis of the disease). 

After defining the interval of the study, ICD-9 codes are extracted for all clinic visits during 

the period and converted to phecodes for every using the mapping provided by Denny et al. These 

codes are denoted by 𝐶 = {𝑐�|𝑘 = 1. . .1865}. For each code 𝑐� , an aggregate measure 𝑚�	 is 

computed in order to perform the logistic regression. The regression tool can be set to one of the 

following options:  

• Binary measure: aggregate codes to indicate the presence or absence of the phenotype 𝑐�(𝑚�= 

0 or 1),  

• Count measure: aggregate codes to indicate the number of times  𝑐�  was present in a subject’s 

EMR (𝑚� = 𝑛), or  

• Duration measure: aggregate codes to indicate the time interval between the first and the last 

time the phenotype  𝑐�  was recorded in a subject’s EMR (𝑚� = 𝑡). 

Additional covariates such as age and sex can also be provided, if available. For each  𝑐�, 

the following logistic regression is performed,                             

𝑝(𝑐𝑙𝑎𝑠𝑠 = 𝑑𝑖𝑠𝑒𝑎𝑠𝑒|𝑐�) 	= 	𝑙𝑜𝑔𝑖𝑡(𝜃n 	+ 𝜃U𝑚� + 𝜃l𝑎� + 𝜃³𝑠�), 

where, 𝑎�  is age and 𝑠�  is sex. The co-efficient of the aggregate measure 𝜃U  is used to 

determine the significance of the association between the disease and phenotype  𝑐�  . The 
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framework for determining the significance based on this point estimate is described in the 

following sections. 

2.3. Second-Generation P-value 

We used the second-generation p-value (SGPV) approach described by Blume et al (2018) 

to prioritize or rank potential associations. The SGPV framework requires (1) a pre-defined 

“indifference zone” or interval null hypothesis around the null effect to denote the set of effect 

magnitudes that would not be clinically meaningful and (2) an uncertainty interval for the observed 

association, e.g. a confidence interval, likelihood support interval, or credible interval. The SGPV, 

denoted by 𝑝6 , measures the overlap between the data-supported effect sizes (#2) and the interval 

null (#1). See Blume (2018) for details.  

The SGPV equals 0 when #2 and #1 do not overlap. In this case the data only support effect 

sizes in the alternative hypothesis space. We take all cases where the SGPV is zero, 𝑝6 = 0, to be 

clinically interesting and statistically ‘significant’. In contrast, when 𝑝6 = 1, the data support only 

effects that are null or nearly null and not of clinical interest. These results would confirm the lack 

of association. SGPVs between 0 and 1 are treated as inconclusive as the data support both null 

and alternative hypotheses.  

2.4. Positive Predictive Value 

It is of interest to know how reliable SGPV finding are when 𝑝6 = 0 and whether or not 

this finding as already known in the literature. To address these two important questions, we 

estimated the positive predictive value (PPV) when the SGPV is zero and developed a “novelty 

score” by scraping and searching relevant abstracts in PubMed. In order to compute the PPV (1 - 
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false discovery rate), we also need to know the point estimate and standard error for the association 

of interest, which is often available from interval #2.  

Let 𝜃ä be the point estimate,  𝑉ä7 be the estimated variance, and let G𝜃äÞ, 𝜃äÙL be the lower and 

upper bounds of the uncertainty interval. Define the interval null hypothesis as 𝐻n: 𝜃 ∈ 𝛩n =

[𝜃n�, 𝜃nÝ], as compared to the typical point null hypothesis of 𝐻n: 𝜃 = 𝜃n (here 𝜃n� = 𝜃nÝ = 𝜃n). 

Note that this yields an alternative hypothesis of the form 𝐻U: 𝜃 ∈ 𝛩U = (−∞, 𝜃n�) ∪ (𝜃nÝ,∞). The 

PPV is the probability that the null hypothesis is true, given that 𝑆𝐺𝑃𝑉 = 0. This is just  

𝑃𝑃𝑉 = 1 − <1 +
1 − 𝛽=
𝛼> 		

1 − 𝜋n
𝜋n

@
�U

 

where 1 − 𝛽= = 𝑃(𝑝6 = 0	|	𝐻U) is the power function of the SGPV averaged over the 

alternative space, and  𝛼> = 𝑃(𝑝6 = 0	|	𝐻n) is the Type I Error function of the SGPV averaged 

over the null space, and 𝜋n = 𝑃(𝐻n) is the analysts’ a-priori probability of the null hypothesis 

before data were collected. Computational details require some integration and are provided in the 

appendix, and for our examples we set 𝜋n = 0.5 which is the default non-informative approach. 

2.5. Novelty Finding Index 

The ‘novelty score’ is intended to approximate the extent to which a finding is well-studied 

in the literature. We used published abstracts from the PubMed database to construct the ‘novelty 

score’ as follows: For each index disease, and for each phecode-disease pairing, we obtained the 

number of published papers in which these are mentioned in the title, abstract, or keywords section. 

In order to search PubMed database, we convert phecodes to search strings using the 

metathesaurus database provided as a part of the unified medical language system (UMLS)[226], 

as shown in Figure VIII- 2. The UMLS metathesaurus defines unique medical concepts that are 
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unchanged over time, identified by the Concept Unique Identifier (CUI). It links strings with the 

same meaning from over 200 different source vocabularies to the same CUI. ICD-9 codes are 

included as a part of source vocabularies provided by UMLS. For each phecode, the ICD-9 codes 

attached to it are linked to a CUI. Next, all possible strings associated with the CUI are extracted 

from the metathesaurus to be used as search strings. Henceforth, we will take 'mentioned' to mean 

the CUI terms linked to a phecode to be mentioned in either the title, abstract, or keywords section.  

We then compute the proportions of published papers that mention the phecode-disease 

pairing out of all published papers that mention the disease (termed the ‘PubMed proportion’). 

This proportion measures whether the associations between the outcome and the predictor 

phecodes are well-studied in the literature. Note that well-studied does not necessarily mean well-

known to be associated (i.e., the PubMed proportion should not be interpreted as the estimated 

probability that an association exists). We denoted the novelty score by 𝑁� = 1 − 𝐹ä(𝑥), where 

 

Figure VIII-2. Searching PubMed for associations. For each Phecode, all the ICD-9 codes associated 
with it are mapped to their CUIs (concept unique identifiers). Next, all the strings associated with the 
CUIs in UMLS metathesaurus. These strings are used to search all the titles, abstracts and keywords 

in the PubMed database to identify the counts of academic research papers associated with each 
phecode. 
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𝐹ä(𝑥) is the empirical cumulative distribution function estimated with the PubMed proportions 

under consideration. 

Then, to provide a ranking that accounts for the reliability of the finding (PPV) and its 

relative novelty (𝑁�), we use a Novel Finding Index (NFI) defined as 𝑁𝐹𝐼	 = 	 (𝑃𝑃𝑉 ⋅𝑁�) ∗ 100. 

The NFI is used to rank associations; its magnitude is not important or interpretable in an absolute 

sense. Significant associations (𝑝6 = 0) with NFI near 0 indicate that the finding is well-known 

and/or not reliable, while significant associations with NFI near 100 indicate that the finding is 

potentially novel and likely to be reliable.  

3. Results  

In this section we present the results of the PheDAS association study for three index 

diseases, with different censoring conditions. 

3.1. Case-Control Study 1: Autism Spectrum Disorder 

For ASD, we censored the data to remove all visits from early childhood. We look at 

significant associations after age 7 in patients diagnosed with ASD. This cohort consists of 1234 

(926M and 308F) patients diagnosed with ASD and 1234 (932 M and 302F) age-matched controls. 

A binary aggregate measure was used for this analysis. Figure VIII-3 shows significant 

associations ranked by novel finding score. The null interval for this study was picked to be [0.3, 

1.5]. We see several expected associations such as epilepsy and mood disorders. Among novel 

findings we see increased while blood count, hemorrhoids and glaucoma.  

3.2. Case-Control Study 2: Alzheimer’s Disease 

For Alzheimer’s disease, we right censored the data with respect to the year of diagnosis. 

We look at significant associations 0-5 years before the diagnosis of Alzheimer’s disease. For this 
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study, we selected the binary aggregate measure for 242 (145M and 97F) subjects with 

Alzheimer’s and 789 age- and sex-matched controls (499M and 290F). Figure VIII-4 shows 

significant associations ranked by novel finding score. The null interval for this study was picked 

to be [0.3, 1.1]. We see several expected associations such as psychosis, cerebral degenerations, 

and abnormality of gait. Among novel findings we see several musculoskeletal disorders and 

infections.  

 

Figure VIII-3. Significant associations for ASD 

3.3. Case-Control Study 2: Optic Neuritis 

For optic neuritis, we left censored the data with respect to the year of diagnosis. We look 

at significant associations 0-5 years post the first optic neuritis diagnosis. We performed this study 

over 1085 (685M and 405F) subjects with optic neuritis and 1085 (685M and 405F) age- and sex-

matched controls. Figure VIII-5 shows significant associations ranked by novel finding score. The 
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null interval for this study was picked to be [0.3, 2]. We see several expected associations that are 

seen in yellow including visual disturbances, blindness, and multiple sclerosis (MS). Among the 

novel findings, we see increased skull and face fractures, and subarachnoid hemorrhage. While 

these conditions are not directly linked to optic neuritis, these are associated with MS, which could 

be one of the complications associated with optic neuritis. 

 

Figure VIII-4. Significant associations in Alzheimer's disease 

4. Discussion 

In this paper, we describe a general tool for discovering disease co-morbidities at different 

stages of presentation, from EMR data that is routinely collected during clinic visits. We utilized 

the concept of second-generation p-values to identify significant associations. In this approach, we 

specify a null interval for effects size that are scientifically uninteresting a priori to identify 

meaningful findings. The statistical interpretation of the second-generation p-values is intuitive, 

they describe the fraction of empirically derived intervals that overlap with the null-intervals. 

When 𝑝6 = 0 , the null hypothesis is rejected and we properly conclude that the finding is 
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significant.  The interval null hypothesis eliminates the need for adjustments that traditional p-

values require to control false discovery, thus eliminating a major problem of reproducibility that 

most association studies have.  

 

Figure VIII-5. Significant conditions in Optic Neuritis 

In this paper, we introduce a novel approach to rank the significant findings based on prior 

scientific knowledge. We do this by comparing each disease-phecode finding to the number of 

papers that can be found on PubMed that mention both the index disease as well as the phecode as 

a proportion of the number of papers published on the index disease. We define a novelty score 

(see section 2.3), which moves the PubMed proportion, which in some sense is on an absolute 

scale, onto a relative scale. For example, Parkinson’s disease is scored low on the novelty score 

(i.e. not considered to be a novel finding) because it is the 5th most frequent predictor phecode 

that is studied with Alzheimer’s, despite the fact that it has only been studied in about 5% of the 

papers that mention Alzheimer’s. A novelty finding index (NFI) is derived from novelty score and 

the positive predictive value of the association, to indicate the novelty and reliability of the finding. 
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This method has a two-fold benefit. The first, the methodology presented in this paper can be 

validated by the novelty finding index by automatically identifying phecode predictors that are 

well-known by the scientific community. The researcher is assured that that results of the 

experiment are indeed correct, thereby increasing confidence in the analysis. For instance, in our 

ASD example we see a majority of significant associations that have a low NFI and are well-

understood by the ASD research community: psychiatric conditions, developmental disorders and 

seizure disorders. The second advantage of this method is that it could be used for hypothesis 

exploration. Conditions with a high NFI can be used to drive new studies to investigate 

associations that are empirically present in the data but have not been well-studied previously. For 

example, in the ASD study we found that “hemorrhoids” was a significant finding and had a high 

NFI. This direct link has not been studied extensively in medical literature. However, it is well-

known that autism is associated with several gastro-intestinal problems, which could explain 

complications with hemorrhoids.  
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Chapter IX. Conclusions and Future Work 

1. Summary 

The goal of this thesis was to develop a system that performs automated analysis of a 

patient’s electronic medical history including past clinical visits and imaging, to identify salient 

features and develop models for predicting clinical outcomes. The rationale behind this work is 

that early detection and intervention in diseases of the optic nerve and orbit is important and 

necessary. Several studies have shown that the outcomes for conditions affecting the optic nerve 

can be severe, resulting in permanent blindness if timely intervention is not performed. We 

identified that one of the main problems was inundation of data from different sources, modalities 

and departments which makes the task of diagnosis and intervention planning a very difficult 

problem, especially in acute situations. In high-pressure environments, sifting through gigabytes 

of patient data to identify the right problem is challenging. Especially in the case of optic nerve 

conditions, where data from different sources needs to be evaluated simultaneously. Therefore, 

our solution was to develop automated analysis methods for CT imaging and EMR data. We found 

that information for early prediction of disease and disease function can be obtained from 

radiological imaging such as CT and MR and electronic medical records. We developed an image 

processing system to analyze imaging in the orbit to automatically detect important structures and 

their measurements. We developed an EMR analysis system to automatically identify potential co-

morbidities and past risk factors that explain ophthalmological symptoms. We showed that this 

information has predictive value by developing models that showed correlations with prognosis 

markers such as visual disability scores. Furthermore, we showed that analyzing images in the 

context of a patient’s story obtained from the EMR improves traditional images analyses. In this 
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work, we laid the groundwork to demonstrate for the first time that automated data analysis of 

orbital imaging and EMR have the potential to identify diseases early. This work can potentially 

impact identification and intervention in conditions related to the orbit and the optic nerve to 

prevent permanent vision loss. Additional analyses and retrospective trials are needed to evaluate 

if this system can be used in the clinic. If implemented successfully, it can streamline the workflow 

in ER departments and ophthalmology departments.  

2. Image Analysis of the Eye Orbit 

Diseases of the optic nerve such as glaucoma, optic neuropathy, papilledema, idiopathic 

intracranial hypertension, thyroid eye disease and other orbital infections affect millions of people 

every year. These conditions could lead to permanent blindness or severe vision loss if not treated 

in a timely manner. Quantitative assessment of the optic nerve and other structures of interest can 

improve early detection and thereby facilitate timely intervention and prevention of vision loss. In 

this work, we explored the use of automated image analysis methods to objectively assess 

clinically acquired imaging. We developed an automated image analysis pipeline to identify the 

structures in the eye orbit and compute quantitative metrics to evaluate the extent of disease.  

2.1. Main Contributions 

• We were the first to develop a fully automated image analysis pipeline to segment orbital 

structures from clinical CT images using a multi-atlas framework. The following structures 

were segmented: the optic nerve, the globe, extraocular muscles and orbital fat (Chapter III). 

• We showed that Kalman filters can be used in medical image data processing to segment 

structures that are difficult to identify with multitask segmentation. We used Kalman filters 

to track and separate the multi-atlas extraocular rectus muscles label into the four constituent 
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muscles: superior, inferior, lateral and medial rectus muscles (Chapter III). As a result of this 

work, we were able to demonstrate the differential involvement of the four extraocular 

muscles in thyroid eye disease. This result has previously been postulated in clinical 

literature, but it was never shown empirically in a large cohort before. 

• Assessing the quality of non-rigid registration is an extremely challenging problem. We 

developed a method called QUADRATIC (Quality of Dice in Registration Circuits) to 

estimate the Dice error associated with non-rigid registration, using the concept of 

registration circuits (Chapter IV). The ability to have a quantitative measure of non-rigid 

registration can lead to improved interpretation of data analyses that rely on non-rigid 

registration to draw conclusions about disease populations. It could also be used in 

applications such as atlas selection for multi-atlas methods. 

• We identified imaging phenotypes for Thyroid Eye disease using principal component 

analysis. We showed that the imaging phenotypes derived from clinical data corresponded to 

the hypothesized presentation of thyroid eye disease in clinical literature (Chapter V). 

3. Extracting Phenotypes from Electronic Medical Records 

Adaptation of digitized electronic medical records (EMR) at large hospitals and university 

medical centers provides unique opportunities to perform population level analyses for disease 

etiology and progression. In this work, we present a methodology that uses ICD-9 codes from large 

clinical databases to learn relationships between diseases. Often, medically relevant information 

is present in the past records of a patient’s EMR. Most clinical decisions are made after a thorough 

review of a patient’s historical diagnoses, labs and procedures. We developed tools to 

automatically identify significant co-morbidities and conditions associated with an index disease 

using historical data from EMR databases. 
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3.1. Main Contributions 

• We released a custom open-source python package called pyPheWAS to extract diagnostic 

and procedural phenotypes from EMR data. This is a highly generalizable tool, which is used 

learn associations between a disease and EMR phenotypes with various options for selection 

of time interval, age interval, censoring, age matching, and plotting (Chapter VII). This tool 

can be used by researchers interested in learning about co-morbidities in any medical 

condition, as long as they have access to an EMR database that records ICD-9 codes. 

• With the help of new statistical measures (second generation p-values and novel finding 

index), we showed that significant co-morbidities identified through the pyPheWAS tool can 

be automatically ranked by novelty of the finding based on a novel method that searches the 

PubMed database (Chapter VIII). As a result of this work, we developed a custom shiny app 

which can be used for exploratory analyses to discover novel hypotheses for research.  

4. Contextualizing Medical Image Analyses with Electronic Health Histories  

Medical image analysis studies are used to study anatomical structures of interest using 

imaging modalities such as computed tomography, magnetic resonance imaging, positron 

emission tomography and so on. Traditionally, these studies focused on identify interesting 

imaging features such as shape, volume, or intensity to identify disease or function. More recently, 

deep learning methodologies have been used to automatically identify disease or function with 

variants of convolutional neural networks. However, in several medical problems, the answers lie 

in several different sources of data, including a patient’s medical history, past diagnoses and 

procedures, medications and so on. Often, clinical imaging of patients is interpreted within the 

context of the entire patient story. Therefore, there is a need to develop models that integrate data 
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from multiple sources to form composite models of disease prediction. In this work, we 

demonstrate that addition of data from electronic health records improves traditional image 

processing studies. 

4.1. Main Contributions 

• This work was the first to show that features extracted from CT imaging of the eye orbit are 

correlated with visual function scores. Further we demonstrated that addition of EMR 

phenotypes to the imaging data improved the correlations with visual function (chapter VI). 

This result was an important first-step to show that context-based models that integrate 

patient histories from EMR can be used to improve image processing studies. 

• We were also the first to show that imaging features from the eye orbit can be used to 

classify control CT scans from scans of diseases of the optic nerve. In this analysis, we once 

again tested and proved that addition of EMR phenotypes, namely the diagnostic phenotypes 

as additional features to the classifier improves the classification accuracy of the model 

(chapter VII). 

5. Concluding Remarks 

The main contribution of this work was to show that context-aware models that include 

EMR phenotypes along with imaging markers consistently perform better than traditional analysis 

using imaging markers alone. While imaging plays an important role in the diagnosis of several 

diseases, the patient’s story needs to be tied together across different departments to form a 

composite picture of complete medical history. Most studies in medical image analysis develop 

models that focus on learning geometrical and intensity-based features in medical images such as 

CT and MR to develop predictive models. On the other hand, medical informatics community is 
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focused on developing models that use clinical data alone to study phenotype extraction, and 

provide clinical decision support. This is the first work of its kind that combines methods from the 

two fields to show that integrated models can be used predict optic nerve diseases better than 

standalone methods. As a result of this work, we released an open-source python package called 

pyPheWAS that can be installed and used by researchers. The concepts discussed in this work 

could be easily extended to study other clinically relevant problems, for example intervention 

planning and risk management. In chapter VII and chapter VIII, we show examples of this work 

being applied to other diseases diabetes, autism spectrum disorder, and Alzheimer’s disease. The 

image and EMR analysis methods developed in this work can be generalized to any disease area 

where the presentation is complex and requires a thorough evaluation of different data resources.  

In order to implement systems that can be translated into the clinic, we propose that the direction 

of big data in medicine should be focused on developing integrated models that learn from a 

composite picture derived from multiple sources of data. 
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