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CHAPTER I

INTRODUCTION

This paper will examine the use of machine learning algorithms in intrusion detection. Machine learning

algorithms[1] use artificial intelligence and data-mining techniques to analyze and find patterns in data.

Intrusion detection is the art of detecting the break-ins of malicious attackers. Today, computer security

has grown in importance with the widespread use of the Internet. Firewalls[2] are commonly used to prevent

attacks from occurring. Antivirus and anti-spyware programs can help people to remove already existing

automated attacks from their computer. Access control limits physical and networked use of a computer.

However, an important component of setting up a secure system is to have some way to analyze the activity

on the computer and determine whether an attack has been launched against the computer. Such a system

is called an intrusion detection system. An intrusion detection system (IDS) can detect both the automated

and manual attacks that a human intruder launches on a network. The system can then decide on a course

of action: it may do anything from giving a simple alert message to taking action against the intrusion.

This thesis examines the differences between a Naive Bayes[1], a Decision Tree[1], and an Artificial Neural

Net (ANN)[1] to determine the relative strengths and weaknesses of using these approaches. The purpose

is to give an evaluation of the performance of these algorithms that will allow someone who wishes to use

one of these approaches to understand how accurate the approach is and under what conditions it works

well. In addition, a novel evaluation technique will be considered. Accuracy can be evaluated effectively

by using Receiver Operating Characteristic (ROC) curves[3]. Cost curves[4][5] can indicate the conditions

under which the algorithm works well. We will judge these approaches by their speed and accuracy. Also, the

benefits of on-line versus off-line approaches will be examined. These three approaches will also be compared

to other possible approaches. In addition, the responses of these three algorithms to different data sets will

be analyzed.

Chapter 2 will discuss background information on the problem. A short description of the field of

computer security is included. In addition, the literature on intrusion detection will be analyzed to determine

the progression of the field and the state-of-the art in IDS’s. Furthermore, the algorithms for decision trees,

Bayesian networks, and neural networks will be presented.

Chapter 3 discusses the procedure of the experiments that the author has run. Some details about the

naive Bayes and decision tree algorithms will be discussed. The programs that run the algorithms were either

coded by the author or were from the Weka data mining software[6][7]. The use of these programs, and the

steps taken to run the experiments and collect the data will be described. The computing environment used
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will be explained. In addition, the datasets used will be explained, as well as any modifications made to

these datasets.

Chapter 4 discusses the results of the work. Confusion matrices including the percentage of correctly

analyzed data is included, along with the percentages of false positives and negatives. The speed of the

systems are discussed, as well as possible aids in human comprehension that the systems afford.

Chapter 5 presents the conclusions drawn from the work. Future work is also presented.
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CHAPTER II

BACKGROUND

In this section, concepts relevant to the application of machine learning algorithms in intrusion detection

will be discussed. These concepts include computer security, machine learning, and the setup of local

networks. When discussing computer security, I will present a taxonomy of computer attacks and categorize

the defenses against such attacks. In machine learning, I will briefly present several different techniques,

comparing and contrasting these techniques.

Computer Security

An important subject in computer security is the general problem of intrusion detection[8]. There are a

large variety of methods in which the security of a system can be compromised. While physically compro-

mising a computer is an important security threat, we will focus on the problem of detecting intruders across

the network. Since all data must come through the network via packets, our goal is to examine the various

parts of the packet data to determine if an attack is in progress. Intrusion detection is sometimes considered

to describe only attacks from an external network and the term misuse is then assigned to describe attacks

from the internal network [8].

In order to understand what kinds of data may be useful for detecting intrusions, it is important to

consider the basic pathways that both legitimate and malicious users may traverse to use a system. The

three basic methods of accessing a computer are: physical access to the host computer, using a physical

network to access the computer, and using a wireless network. This thesis will focus on using a physical

network, as described below.

Physical Network

In this type of network, data is transmitted through the physical network (as opposed to a wireless

network) in the form of packets. Packets have three parts: a header, a payload, and a trailer[9]. The

header indicates the beginning of the packet. The payload carries the data being transmitted by the packet.

The trailer indicates the end of the packet. The Internet Protocol (IP) is used to communicate across

the Internet via IP addresses. It is a higher-level protocol that is used to carry information about many

lower-level protocols as described in 9 and [10].

Many large organizations, such as corporations and universities have their own local networks [11]. As an

example, consider a network constructed with eight CISCO machines functioning as routers and switches.
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These machines are dual connected in a ring with fiber-optic cables. They have two routers connected to the

commodity Internet, and two routers connected to the high speed, low latency Internet 2. Each router/switch

is connected to a closet containing 24 ports. The network uses firewalls and Virtual Private Networks (VPN).

This type of network setup can support an organization about the size of Vanderbilt University, which has

a similar setup[11].

Types of Attacks

There are a large variety of different attack types[12]. An attacker may attempt to guess a user’s

password. An attacker may also monitor the network to obtain the information they require to launch an

attack. Sometimes attackers try to put unauthorized programs onto computers that they have access to.

Sometimes they may steal information or corrupt information. They may also try to perform a denial of

service attack.

In the section below, various attacks are explained. These attacks may be referred to in other parts of

this document to describe the behavior of an IDS to some variants of the attack [12].

Buffer Overflow

A buffer overflow attack exploits code that does not check the bounds of a buffer. The attacker may

overwrite sensitive data on the stack of an executing process. For example, the instruction pointer on

the stack may be overwritten to point to an instruction that the attacker wishes to execute. A detailed

description of this problem, as well as possible remedies, can be found in [13].

Teardrop

A teardrop attack is an attack that exploits incorrect handling of overlapping packets. Teardrop is a type

of denial of service(DoS) attack because it crashes any machine that is vulnerable to this attack[12]. Some

older Windows and Linux systems have been reported to be vulnerable to this attack.

Ping of Death (PoD)

The ping of death is a denial of service(DoS) attack that uses improperly formatted pings. These ping

packets have a length greater than the 65535 octets that are allowed. Some Windows, Linux, and Macintosh

systems are vulnerable to this attack[12].
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Figure 1: Overlapping Packets

Attack Variations across Operating Systems

Attacks will vary across operating systems. Some operating systems that are discussed here include

Windows, Linux, and FreeBSD[14]. There are several factors that cause the variance in attacks across these

operating systems. Each operating system has different default behavior for handling incoming packets on

a network.

Packets do not always arrive in order. To prevent miscommunication, packets in the same connection are

numbered by the sender and then reconstructed by the receiving computer. The problem is that different

receivers construct packets differently.

For example, consider the problem of overlapping packets. If two packets have the same sequence number

in a connection, they are overlapping packets. In this case, the system must decide how to handle the

overlapping packets. The default behavior in Linux is to favor new packets, while the default behavior in

Windows is to favor old packets.

In [14], they state that the overlap behavior and response to incorrect options are two factors that can

differ between OSes. In [15], the concept of reassembly timeout and how it differs between operating systems

is explained in detail. All of the factors listed in these two papers determine how the operating system

handles packets. The defaults themselves do not cause the attacks, but rather allow an attacker to slip by

an IDS that doesn’t behave like the operating system it guards.

Overlap behavior is the behavior an operating system exhibits when responding to overlapping packets.

Overlapping packets are packets that are assigned the same TCP reassembly number and have other identical

fields but may have different payloads. Windows always favors older overlapping packets and discards the

newer packet, a policy called ’First’.

Packet sniffers gather information about packets but do not determine whether those packets are part
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of an attack or not. The packet information can help the user decide whether an attack is taking place,

however. Wireshark (previously called Ethereal)[16] is one open source packet sniffer.

Intrusion Detection

Intrusion Detection is the art of identifying attacks on a computer. While there are a large variety of

attacks, most of them fit into one of four categories:

1. Probe

2. Denial of Service (DoS)

3. User to Root

4. Remote to User

A probe attack is an attempt to learn specific setup information about a network or individual computer.

This is not exactly an attack in itself, but rather an attempt to learn information that could facilitate an

attack. A probe may be an indication of an impending attack. Many attacks are likely preceded by probes

of some sort.

A DoS is an attack that overloads the resources of a system and prevents legitimate users from accessing

the system. Such an attack is a concern for commercial applications or mission-critical network components.

A ’user to root’ attack is an attack where someone with user permissions attempts to gain root permis-

sions.

A ’remote to user’ attack is an attempt to go from an unauthenticated state with a system to a state

where the attacker has user permissions. This type of attack can then escalate into a ’user to root’ attack.

IDS systems can be described by several characteristics. One of these characteristics is the location they

watch for attacks. Thus, IDS’s can generally be divided into two categories (as stated in [17]):

1. Network Based IDS use raw packets as the data source

2. Host Based IDS of which there are three types:

(a) examines logs of host looking for attack patterns

(b) examines patterns in network traffic (but not in promiscuous mode, which would allow it to view

network traffic that is not addressed to the particular host the IDS resides on[18])

(c) executes both log-based and stack-based IDS
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3 types of detection techniques(as stated in [17]) are pattern, frequency, and anomaly. Pattern detection,

also known as signature detection, uses known information about attacks to detect them. Anomaly detection

requires the collection of normal activity, and flags any deviation from normal activity as abnormal (although

not necessarily an attack). Frequency detection checks for behavior that crosses a certain threshold [19].

Common Intrusion Detection Components

There are several common intrusion detection components. In the Common Intrusion Detection Frame-

work (CIDF) model [14] outlined in 1998, these are called:

1. event generators ("E-boxes") – the E-box gathers data and organizes it into events. Events can be

simply packets read off the wire or higher-level information.

2. analysis engines ("A-boxes")–Analyze input to detect attacks.

3. storage mechanisms ("D-boxes")–Store information from E-box and A-box. For example, the informa-

tion may be stored in a database for later retrieval [20].

4. countermeasures("C-boxes")–React to analysis information.

Problems with CIDF systems

Any intrusions detection system in the CIDF model is highly vulnerable to the following types of attacks:

1. Insertion: Insertion is the creation of packets that will be accepted only by the IDS. Usually, these

packets are malformed in some way so that they will be dropped by the target system. The target

system will reconstruct the message without the inserted packets, and this message can be an attack.

2. Evasion: Some IDS systems try to combat insertion techniques by rejecting bad packets. These can be

susceptible to evasion techniques. Evasion is the creation of packets that will be rejected by the IDS

but accepted by the target system.

3. Denial of Service: Denial of Service attacks on the IDS can affect its availability and thus leave the

target system open to attacks.

As stated by [15], Snort, an open source rule-based IDS[20], has since addressed many of the issues that

plagued the CIDF model.

Snort utilizes a preprocessor that can be customized to fit the default behavior of a variety of operating

systems. This preprocessor is customized through text-based configuration files. While it requires network
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administrators to have detailed knowledge of the operating systems used and their default behavior, this

knowledge will allow them to configure Snort to more accurately monitor the machines on their network.

However, many challenges still exist in the field of intrusion detection.

Previous Work

A paper [21] titled “The Base-Rate Fallacy and its Implications for the Difficulty of Intrusion Detection”

explains why trying to obtain low false alarm rates are one of the major challenges in ID. The base-rate

fallacy is the error of not taking the rate of occurence of an event into consideration when calculating the

probability that a given classification of the system is correct. The paper points out that because of the

base-rate fallacy, people may often view the percentage of false negatives as within an acceptable range

despite the fact that it is unacceptably high. The author demonstrates, through the use of Bayes theorem,

that the false negatives in actual intrusion detection systems are very high. They conclude that their results

present a challenge for the present models of intrusion detection, but that there is no conclusive evidence for

whether or not the types of modern-day systems can, with modifications, meet these standards. The paper

also points out the lack of data available in this area of study, as well as the neglect of most papers to discuss

several fundamental issues to intrusion detection. These are listed by the authors as:

• Effectiveness

• Efficiency

• Ease of Use

• Security

• Inter-Operability

• Transparency

This paper addresses the issue of effectiveness in terms of false alarms. The paper also states that even as

the false alarm rate is lowered, a trend exists that the false negatives increase.

Snort [22] is open source intrusion detection software. This software uses rules created by security experts

to detect intrusions. A Snort rule resembles the rules found in firewalls. One example of such a rule (similar

to one in [23]) is:

alert tcp any any -> any 21 (msg: “FTP ROOT”; content:"user root";)

is a Snort rule that will alert the user when someone tries to log in as root over FTP (port 21). The software

is primarily composed of four components(as described in [20]):
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1. packet sniffer and decoder using libpcap, an application primarily used for packet capture[24].

2. preprocessor examines for malformations, anomalies, and noncompliance.

3. compares normalized stream re-assembled data against rule base.

4. output and alerting module writes and logs packets in various ways according to the configuration.

Snort also has the following modes:

1. Packet Sniffer mode

2. Intrusion Detection Mode

In addition, Snort is a command line tool uses a rule-based method to detect attacks over a network. To

perform this task, Snort has a NIDS (network intrusion detection system) mode. The software uses rules to

detect attacks on the network. These rules must be written by people with experience with network attacks.

The rules used in Snort are similar to firewall rules. Snort may be used by other Intrusion Detection systems

to collect data for training an Intrusion Detection system.

Snort can be configured to work with various software. Some of this software includes:

1. Barnyard: Barnyard is a program used to interface between Snort and a MySQL database. Though

Snort can perform the task of placing entries in the database itself, Barnyard is specialized for this purpose.

2. MySQL: A MySQL database can be used to store all events captured by Snort, either through a Snort

plugin or through Barnyard

3. Custom intrusion detection systems

The paper [25] discusses a prototype design for a multi-agent system. This design of this system involves

two multi-agent systems. The first system, called Adaptive Hierarchical Agent-based Intrusion Detection

System(AHA!IDS), is intended to provide the ability to improve detection capabilities, whereas the Adaptive

Agent-Based Intrusion Response system (AAIRS), is intended to provide the ability to improve responses.

Some potential issues with this architecture include:

• No results are cited by the authors–the prototype has not been implemented

• The plan for implementation is somewhat vague.

[26] discusses some of the work that has been done in the Columbia IDS project. This paper states that:

• Much work has been done in the area of rule-based detection
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• Research has been done in data mining algorithms that propose useful feature sets for modeling attacks.

e.g Madam/ID

• Attacks on IDS’s themselves are a concern

The following systems were used in the Columbia IDS project:

• RIPPER: AT&T software using a rule-based system of machine learning

• JUDGE: entire IDS system that was developed at Columbia University

The authors identified several problems that need to be addressed. One issue is that intrusion detection

commonly only uses rules. For this they propose using a hybrid system that uses both signature-based and

anomaly-based techniques. Signature based techniques use known information about the structure of an

attack to alert the IDS user, while anomoly based techniques use known information about normal behavior

to alert the IDS user when behavior is out of the ordinary. This author hypothesizes that the approach they

descrbe could possibly increase the accuracy of the system, but requires more work to collect information

than one technique or the other. Another issue is that data-mining techniques tend to require non-noisy

training data. They have therefore designed a system that uses probabilities to handle noise in training data.

They also discuss the use of data-mining as an anti-virus tool.

In [27] the STAT framework, a modular approach to attack modeling languages, is described. This

approach utilizes abstraction-based intrusion detection in distributed environments. It also utilizes a hierar-

chical model for event abstraction, signatures, and system views.

In “Testing Intrusion detection systems: a critique of the 1998 and 1999 DARPA intrusion detection

system evaluations as performed by Lincoln Laboratory”[28], the authors state that there is little prior work

evaluating Intrusion Detection. They also point out the following problems with the evaluations:

• They were developed from attackers point of view, not the attacked

• Synthesized attack data is problematic

The paper titled “Mimicry attacks on host-based intrusion detection systems”, [29] describes what a mimicry

attack is. The authors state that it allows the attacker to conceal their attack from the IDS. This article

demonstrates the vulnerability of a certain IDS to mimicry attacks.

The MORPHEUS system [30] was created as a tool to use on an unlabeled training set to ensure that

the set consists of only normal activity. It can be used with anomaly detection tools in order to increase

the chances of feeding them a data set with normal activity. They use motifs for the purpose of classifying
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normal data, which is described also as "clean" data. Motifs are defined as a sequence of system call sequences

(SCS’s). They are a subsequence of a total set of SCS’s. Two motif extraction processes are described: auto-

match and cross-match. Auto match looks for matching subsequences in a single sequence. Cross-match

looks for matching subsequences across several sequences. Using the motif data, outliers corresponding to

anomalous activity can be calculated with LOF (local outlier factor). MORPEUS was tested in conjunction

with two anomaly detection systems, STIDE and LERAD. MORPHEUS improved attack detection for

the ftpd and ps applications in both STIDE and LERAD but not for other applications since the other

applications had attacks that were different in character than the ones in the training set, and which were

therefore detected by the anomaly detection systems anyway.

In [31] , the authors examine the possibility of using sequences of system calls for classifying intru-

sions.They use a method called anomaly dictionaries to perform this function.

In [32] describe a system called DOME. This host-based ID checks that system calls are being made from

executables running on the system.

The authors of [33] describe a way to build a model of suspicion. This model states that a system should

check any behavior that is a little unusual by performing a more thorough examination. However, it should

not assume that all abnormal behavior is an attack. The authors state that such a model could link disparate

indications of an attack together.

A paper by [34] titled “EMERALD: Event Monitoring Enabling Responses to Anomalous Live Distur-

bances” discusses an architecture that is suitable for intrusion detection in large networks, employs distributed

real-time analysis, and can detect coordinated attacks. The authors state that this solution does not replace

but complements host-based approaches. Emerald uses light-weight monitors to accomplish the many tasks

it is to perform. These monitors can be coded and tested separately and then integrated into a single tool.

[35] focus on drawing conclusions about the implementation of EMERALD, which at this point is under-

way. No results are cited, but the authors state that they expect the system to perform well.

Work with EMERALD continued in [36], where the eXpert-BSM monitor is described. The system is

stated to have been successfully deployed in more than one system and some results of the monitor usage

are presented.

Additional monitors are described in [37], [38], and [39]. Use of P-BEST in EMERALD is described in

[40]. The Production-Based Expert System Toolset (PBEST) uses rules, which the system can construct

from reasoning about facts that it is given.
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Machine Learning Intrusion Detection Algorithms

A paper [41] called "ADAM: A Testbed for Exploring the Use of Data Mining in Intrusion Detection"

discusses a testbed for data-mining approaches in intrusion detection.

ADAM (Audit Data Analysis and Mining) is an intrusion detector built to detect intrusions using data

mining techniques. It first absorbs training data known to be free of attacks. Then it uses an algorithm to

group attacks, unknown behavior, and false alarms. It uses association rules to store knowledge about the

data. In the future, they wish to decrease the necessity of training data, which is difficult to obtain. They

also want to combine results from a sensor network.

ADAM has several useful capabilities. The authors describe ADAM as capable of:

* Classifying an item as a known attack.

* Classifying an item as a normal event.

* Classifying an item as an unknown attack.

* Match audit trail data to the rules it gives rise to.

ADAM operates by first storing a collection of normal behavior by mining data known to be free of

attacks. Then it uses an on-line method to compare incoming connections to the normal dataset. Those

that do not match are further examined. Then ADAM uses a classifier to place the suspicious data into one

of three categories: false alarm, unknown attack, or known attack.

ADAM, when tested against six other techniques, was found to be the second best[41] in total number of

correct evaluations. It was found to be the third best[41] when calculating the percent of attacks it detects.

This seems to indicate that ADAM has a higher false negative rate than false positive rate. While this may

cause it to miss attacks, it decreases the number of false positive alerts issued.

In [42], the authors propose a method of intrusion detection using an evolving fuzzy neural network.

This type of learning algorithm combines artificial neural networks (ANNs) and Fuzzy Inference Systems

(FIS’s), as well as evolutionary algorithms. They create an algorithm that uses fuzzy rules and allow new

neurons to be created in order to accomplish this. They use Snort to gather data for training the algorithm.

They compared their technique to an unaugmented neural network. The classification accuracy of the two

algorithms was similar and both had a very high accuracy for the types of attacks compared. They indicate

that they also had better results by using 40% fewer input variables.

ADMIT [43] is an anomaly-based intrusion detection system that works by clustering its data to distin-

guish between normal and anomalous computer use. It is host-based, as opposed to network-based. The

security issues this IDS handles therefore involve those such as detecting anomalous use after the intruder
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has already gained access to the system, perhaps by using an unattended terminal, guessing a password, or

being an authorized user.

Some of the advantages of ADMIT are that the system only presents the centers of clusters to the

administrator, with the hope that this will reduce the data that the administrator must cope with. In

addition, the authors state that it requires less training time than other methods. In addition, their system

had more correct categorization of behavior than another system using the same dataset. Lastly, ADMIT

can perform real-time intrusion detection, as opposed to needing to be run offline.

The paper explains the algorithms used in detail. It also discusses the dataset used, which was taken

from a thesis by T. Lane from Perdue University. In addition, the paper cites that the detection rate was as

high as 80.3%, the false positives being as low as 15.3%. The paper also describes how the authors varied

parameters in their algorithm and gives a summary of how these changes affected the results.

In “Artificial Intelligence Techniques Applied to Intrusion Detection”, [44] propose a technique for in-

trusion detection using neural networks and fuzzy logic. Data capture is accomplished using Snort. They

propose an architecture for an IIDS (Intelligent Intrusion Detection System). Their work is in a preliminary

stage and no experimental results are given in the paper.

In “Intrusion Detection in Wireless Networks using Clustering Techniques with Expert Analysis” [45]

present an unsupervised learning approach for intrusion detection.

In “An Approach to Implement a Network Intrusion Detection System using Genetic Algorithms”, [46]

discusses a genetic Algorithm as an Alternative Tool For Security Audit Trails Analysis (GASSATA) The

paper describes an approach whereby the GA evaluates rules and discards bad rules, while generating more

rules to reduce the false alarm rate and increase the intrusion detection rate. No results of the detection

rate are available yet.

In “A Data Mining Approach for Database Intrusion Detection” [47] describe a system that uses data

mining on data dependencies in a database to identify transactions corresponding to an attack.

In “Data Mining Aided Signature Discovery in Network-based Intrusion Detection System” [48] implement

a system called SigSniffer. This method combines data mining and rule-based approaches. The authors claim

this represents an improved approach to data mining for signatures. The data mining methods are used to

create a signature discovery system (SDS).

In “The Utilization of Artificial Intelligence in a Hybrid Intrusion Detection System” [49] , intrusion

detection using trend analysis, fuzzy logic and neural networks is discussed.

In “Application of a Distributed Data Mining Approach to Network Intrusion Detection” [50], the au-

thors state that collecting and analyzing data from several hosts may not be possible. Therefore, instead of

attempting this, they create a network profile with distributed data analysis. The network profile records
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information about the network instead of information about the individual intrusions. In the system de-

scribed, they transfer only the location of data on a computer (not the data itself) to be compiled into a

decision tree. They can also compress the transfer of indices to the location of such data on the network.

Both [44] and [42] have examined the possibility of applying a combination of fuzzy logic and neural

networks to intrusion detection. The latter examines the difference between a typical ANN and their own

fuzzy neural net hybrid. These differences are somewhat small, which may indicate that a typical neural net

performs just as well if the statistical significance of the results is taken into account. However, the fuzzy

neural net runs faster.

In the table below, the columns categorize the type of Intrusion detection as anomaly detection, rule-

based, machine learning, or hybrid. A system can be in more than one category. Hybrid systems employ

more than one technique (such as using both rule-based and machine learning approaches).

Table 1: Categories of Intrusion Detection Systems

Anomaly Detection Rule-Based Machine Learning Hybrid

ADMIT SNORT EFuNN ADAM

Decision Tree MORPHEUS Decision Tree EMERALD

Naive Bayes Naive Bayes

RIPPER

Experimental Results of Machine Learning Systems

In [42], the authors compared an Evolving Fuzzy Neural Network (EFuNN) and an Artificial Neural

Network (ANN). They used a modified version of the DARPA Intrusion Detection Evaluation data provided

by MIT Labs. The original dataset contained 4,940,000 connection records with 41 attributes each. They

processed this into 11,982 records. The training dataset was selected from this set to have 5092 records.

The testing dataset was selected to have 6890 records. They also reduced the number of attributes to 13,14,

15,17, and 16 for Normal, DOS, U2L, U2R and Probe, respectively.
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Table 2: Comparison between EFuNN and ANN

Percentage Correctly Identified

EFuNN ANN

Normal 99.56% 99.57%

Probe 99.88% 94.62%

DOS 98.99% 98.97%

U2R 65.00% 59.00%

R2L 97.26% 97.02%

From the table, it can be seen that the U2R class has the lowest percentage of correctly identified connec-

tions. The authors state that the EFuNN took a few seconds in the training phase while the ANN took a

few minutes. They conclude that the rapid training time was a result of reducing the number of attributes.

In addition, this author believes that the small number of training examples also contributed significantly

to the fast training time. However, the paper does not present the tradeoffs of using a different numbers of

attributes.

In another paper[51], the authors compared the results of clustering using a swarm algorithm with the

results of some other unsupervised training algorithms. They recorded the results the system obtained at

five different values of the swarm similarity coefficient, β. Swarm similarity calculates the integration of the

similarity of an example with another example. When used to aid clustering, it can be calculated as:

f(oi) =
∑

ojεNeigh(r) |1−
d(oi,oj)

β |

Where Neigh(r) is the neighborhood, usually a circular region of radius r. The value d(oi, oj)is the

distance between examples oi and oj . This distance can be either Euclidean or Manhattan distance. β, the

swarm similarity coefficient, determines how similar clusters are and how fast the algorithm converges.

When run on the KDD training dataset[52], the detection rate varied between 25.34% and 99.97% as β

varied, and the false positive rate varied between .67% and 20.1%. In the KDD testing dataset, the detection

rate varied between 21.23% and 93.07%, and the false positive rate varied between .11% and 8.24%.

The results were then compared to the unsupervised approaches tested in [53] over a ROC curve. These

approaches included Clustering, K-NN, and SVM. The highest detection rates were 93%, 91%, and 98%

respectively. The highest false positive rates were all 10%.

The authors state that their approach is better when the detection rate is high. This is due to the lower

false positive rate in the testing dataset.

15



Figure 2: ROC Curve obtained by Weka

Evaluation Methods

Receiver Operating Characteristic (ROC) curves, identify how the true positives vary with the false

positives[54]. An example of a ROC curve, obtained from the open source software Weka[6][7], is shown in

Figure 2.

The area under these curves signifies how well the test used can distinguish between the examples. The

more the example classes overlap relative to the test, the less the area under the ROC curve will be. ROC

curves show how well a test does at distinguishing between classes without taking the relative frequency of

the classes into account. The author has observed that in the ROC curves created by the Decision Tree

in Weka, there are few points. This is most likely because many of the decision tree branches are discrete.

Whether an edge is followed is therefore a binary decision (e.g. Something either is or isn’t an ftp connection).

On continuous valued attributes, the numbers can be changed to affect the number of examples classified as

normal and as an attack)
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Cost curves complement the use of ROC curves in that they allow a person to quickly compare how two

algorithms perform over differences in class frequency[54][5][4]. the expected cost of two algorithms given

the probability cost function (PCF). The PCF can be expressed as the following:

PFC(pos) = p(pos)c(neg|pos)
p(pos)c(neg|pos)+p(neg)c(pos|neg)

where p(pos) is the probability of a positive classification, p(neg) is the probability of a negative classifi-

cation, c(neg|pos) is the cost of misclassifying a positive example as negative, and c(pos|neg) is the cost of

misclassifying a negative example as positive. The PCF for positive examples increases as the probability of

a positive example increases and when the cost of misclassifying a positive example as negative increases.

An additional interesting question is to ask how a supervised learning algorithm changes when the training

data changes. Supervised learning is learning with labeled training data[1]. This question has particular

relevance to the tests done in this thesis because these tests use simulated data (from [52]). This data

contains a large number of attacks compared to the amount of normal data. Therefore, it would be useful

to know how well this simulated data can be used to train intrusion detection systems in discovering real

attacks. Measuring how the performance of the learning algorithm changes when the training data is altered

(e.g. by removing entries, changing the relative percentages of classes, and grouping classes together in

various ways) could be useful.

One problem in training supervised learning algorithms in intrusion detection is that test data is difficult

to obtain. In addition, the data used is often not real data. Privacy concerns make the use of real data

challenging. Perhaps obtaining real data using ’honeypots’[55] could help to eliminate privacy concerns.

While this might make the network unrealistic, the attacks performed on it would be real attacks.

Datasets

This section explains what datasets the various systems described above were run on.

Many of the tests conducted used the 1999 KDD Cup data [52] in their tests, although they used it in

different ways. Some of them used the larger dataset and others used the dataset containing 10 percent of

the larger dataset.

The 1999 KDD Cup data is actually a version of the 1998 dataset from the MIT Lincoln Laboratory

DARPA Intrusion Detection Evaluation [56].

The KDD Cup 10% testing data contains 311, 029 entries in total. The testing data contains 60,593

normal entries (19.48% of the total). The testing data also contains 250,436 attack entries (80.52% of the

total entries).

The KDD Cup 10% training data contains a total of 494,020 entries. It contains 97,277 normal entries

(19.69 %) and 396,743 attack entries (80.31% of the total).
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A paper discussing the ADMIT IDS [43] uses a dataset that was taken from a thesis by T. Lane from

Perdue University.

MIT Lincoln Laboratory has several datasets that are part of the DARPA Intrusion Detection Evaluation.

These are divided into 1998, 1999, and 2000 datasets. The 1998 dataset contains seven weeks of training

data and two weeks of testing data. The 1999 DARPA Intrusion data contains three weeks of training data

and two weeks of testing data. The 2000 DARPA Intrusion data contains datasets for two scenarios where

a novice attacker runs an attack against a naive defender.

Machine Learning

Two categories of machine learning are supervised learning and unsupervised learning. Supervised learn-

ing uses labeled training data, whereas unsupervised learning uses unlabled training data. Supervised algo-

rithms classify examples into known classes, whereas clustering algorithms first discover the classe and then

categorize them[1]. This section will focus on supervised learning with the machine learning techniques of

Decision Trees, Naive Bayes, and Artificial Neural Networks (ANN).

Decision Trees

A Decision Tree is a representation of how to make a decision according to a particular attribute set[1].

Any given Decision Tree is completely deterministic, although some algorithms can alter their trees given

additional knowledge (e.g. [57]). Each node of a decision tree is some attribute, with the branches repre-

senting alternative values of that attribute. Leaves represent the class to place an example in. To make a

decision using a decision tree, select a set of values for an attribute and start at the root of the tree. Using

the value of the root attribute, make a choice of which branch to take. Then continue making such choices

at each node until a leaf node is reached. The decision in this leaf node is (hopefully) the best decision to

make given the information available. Building Decision Trees is a form of supervised learning. A decision

tree must use a heuristic to determine which attribute is the most informative attribute, since this attribute

will be placed at the root of the tree. The ’most informative attribute’ heuristic is taken from information

theory, which is a method to calculate the information in a piece of data independent of its meaning[58]. It

seeks to calculate the information content of any piece of data by thinking of the answer as a series of bits.

Therefore, a one bit answer encodes one bit of yes/no information.

Decision trees are dependent on the order of the data, and it is possible for the optimality of the tree

to change when changing the order of the data. However, the heuristic used is designed to minimize this

difference.
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Figure 3: Decision Tree

Information Theory

Information theory proposes a method to measure the amount of information in a given piece of data.
Information is defined in terms of a set of possible messages[58]. The more information is in the data, the
greater the number of possible messages out of which this particular message must be chosen. For example,
if the value of the message m can be {heads, tails} then m can communicate 1 bit of information. That
is, it can take on two possible values. The message n chosen from the set {0, 1} communicates the same
amount of information. In addition, a message p chosen from the set {a,b,c} contains more information than
the messages m and n. Information under this definition is independent from the concept of the semantic
value of the message. Let vi be the value i of an attribute. Let n be the number of possible values that the
attribute can take. Then the information in bits needed to describe the attribute is:

Ientropy = −
n∑

i=1

P (vi) log P (vi)

For example, the information in bits needed for a fair coin is:

−.5 log2(.5)− .5 log2(.5) = −.5(−1)− .5(−1) = .5 + .5 = 1

The amount of information in bits needed for a weighted coin where heads comes up only 25% of the

time:

−.25 log2(.25)− .75 log2(.75) = .25(−4) + .75(.41) = 1.31 = 1.31

For example, if the event always occurs, then logiP(vi) is 0 where P(vi) is 1, and undefined everywhere

else. So the information needed to characterize the attribute is zero. The answer is already known in advance.

If the event never occurs, then P(vi) is zero and logiP(vi) is undefined. This means that because the event

has never happened, it is not possible to characterize anything about the event.

Let Y be the number of ’yes’ answers and N be the number of ’no’ answers. The information needed to

answer a yes/no question is then the information that one would need before knowing anything about the

attribute values. This can be summarized as the information:

Ineededwithoutattribute( Y
Y +N , N

Y +N ) = − Y
Y +N log2(

Y
Y +N )− N

Y +N log2(
N

Y +N )
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Ineededwithattribute =
V∑

i=1

Yi + Ni

Y + N
Iwithoutattributevalue( Yi

Yi+Ni
, Ni

Yi+Ni
)

Igain = Ineededwithoutattribute − Ineededwithattribute

Information gain calculates the difference in the amount of information required to obtain the answer

before and after a given value of a variable is found. The larger this difference is, the higher the information

gain is. The smaller this difference is, the more information is required to obtain the answer. Another way

to think of this is that the larger the information gain, the more useful the variable is to determining the

answer. The smaller the information gain is, the less useful the variable value is to obtaining the answer.

Naive Bayes

The naive Bayes model is a heavily simplified Bayesian probability model[1]. In this model, consider

the probability of an end result given several related evidence variables. The probability of the end result

is encoded in the model along with the probability of the evidence variables occurring given that the end

result occurs. The probability of an evidence variable given that the end result occurs is assumed to be

independent of the probability of other evidence variables given that the end result occurs.

Now we will consider an example. Suppose that a hypothetical car alarm that responds correctly 99%

of the time. The other 1% is divided into two categories, false positives, and false negatives. False positives

make up all the situations in which the car alarm goes off, but where there is no criminal activity occurring.

Assume that 1% of the time that the alarm rings, that this is the case. False negatives make up all of the

situations in which the car alarm does not go off, but there is an attempted theft. Assume that this event

also makes up 1% of all cases in which the alarm does not go off. Now, assume that the probability of

criminal activity occurring with this particular car to be 1% in any given hour. Over a period of 1 hour, the

car is left unsupervised. The alarm goes off once in this time–what is the probability that a theft occurred

when the alarm went off? What is the probability that a theft did not occur when the alarm went off?

One way to approach this problem is to use the concept of natural frequencies[59]. Natural frequencies

translate the probability into concrete whole numbers before transferring them back into probabilities. For

example, a probability that a fair coin gives heads can be thought of as the idea that out of 1000 cases, 500

will be heads.

Examining the car burglary case, we know that the probability that a theft occurred is 1% in any hour.

Therefore, in considering the natural frequency, we can assume that over a period of 10,000 hours, 100 hours

will have thefts (since there is a 1% probability for theft in any hour). This period of 10,000 hours can

therefore be divided into two categories: those that have thefts, and those that do not. The number of hours

having thefts, as stated earlier, is 100. the number of hours not having thefts is 9,900. Therefore, in the
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number of hours having thefts, 100, the car alarm will, on average, go off 99 times. the other 1 time it will

not go off. In the 9,900 hours in which no thefts occur, the alarm will go off 99 times. 9,801 times, it will

not go off. Therefore, the total number of hours with alarms is 198. The total number of hours without

alarms is 9,802. So the probability that a theft occurred when the alarm went off is 99/198, or 50%. The

probability that a theft did not occur given that the alarm went off is 99/198, also 50%. Note that despite

the fact that the false negatives only occur 1% of the time, the alarm is nonetheless incorrect 50% of the

time that it goes off due to the fact that thefts occur much less commonly than non-thefts.

The above problem can also be expressed as follows:

Let P (correct) = .98

Let P (alarm|event) = P (falsepos) = .01

Let P (alarm|event) = P (falseneg) = .01

Let P (event) = .01

Therefore,

P (correct|event) = P (falseneg) = .99

P (alarm) = P (correct|event)×P (event)+P (falsepos)×P (event) = .99×.01+.01×.99 = .0099+.0099 =

.0198

P (alarm|event) = P (falsepos) = P (alarm|event) = .99

P (event|alarm) = P (alarm|event)×P (event)
P (alarm) = .99×.01

.0198 = .0099
.0198 = .5 (using Bayes’s rule)

P (event|alarm) = P (alarm|event)×P (event)
P (alarm) = .01×.99

.0198 = .5 (using Bayes’s rule)

As can be seen from the above example, the number of false positives must be reduced to significantly

to prevent the alarm from becoming more annoying than helpful.

Now, we will consider the alarm example using a naive Bayes classifier. Assume that we have a set of

examples that monitor some attributes such as whether it is raining, whether an earthquake has occurred,

where the car is parked, etc. Lets assume that we also know, using this monitor, about the behavior of

the alarm under these conditions. In addition, having knowledge of these attributes, we record whether or

not a theft actually occurred. We will consider the category of whether a theft occurred or not as the class

for the naive Bayes classifier. This is the knowledge that we are interested in. The other attributes will be

considered as knowledge that may give us evidence that the theft has occurred (the actual usefulness of this

knowledge as evidence will be discussed later).

The naive Bayes classifier operates on a strong independence assumption[1]. This means that the proba-

bility of one attribute does not affect the probability of another. For example, we assume that the probability

of an earthquake does not affect the probability that the alarm goes off. So for two events X and Y, the

probability of X occurring given that Y occurs is simply the probability that X occurs. In other words,
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P (X|Y ) = P (X)

The strong independence assumption is unrealistic in most situations. Given a series of n attributes, the

naive Bayes classifier makes 2n! independence assumptions. Nevertheless, the results of the naive Bayes

classifier are often correct. [60] examines the circumstances under which the naive Bayes classifier performs

well and why. They state that that the error is a result of three factors: training data noise, bias, and

variance. Training data noise can only be minimized by choosing good training data. The training data

must be divided into various groups by the machine learning algorithm. Bias is the error due to groupings

in the training data being too large. Variance is the error due to these groupings being too small. The error

due to bias in zero-one loss is stated to be generally much lower than the error from variance.

In the training phase, the naive Bayes algorithm calculates the probabilities of a theft given a particular

attribute and then stores this probability. This is repeated for each attribute. The time taken on this

activity is proportional to n, the number of attributes, and the amount of time taken to calculate the

relevant probabilities for each attribute. The amount of time taken to calculate the probability of theft for

an attribute is proportional to e, the number of examples given to calculate the probability from, and vi,

the number of different values that attribute ai can take. Therefore, the amount of time taken to finish the

training phase is O(
n∑

i=1

aivie). In practice,
n∑

i=1

aivi � e, so this value can be considered a constant and thus

the time taken is O(e). Therefore, the naive Bayes training phase is linear with the number of examples

given.

In the testing phase, the amount of time taken to calculate the probability of the given class for each

example in the worst case is proportional to n, the number of attributes. Assuming that the index vi, the

value of the attribute, can be accessed in constant time, the time taken to find the relevant probabilities

and multiply them together is O(n) for each example. Given e examples, the time taken is proportional to

O(ne). Because it is generally true that e � n, the time taken in the worst case is therefore O(e). Thus the

testing phase takes the same amount of time in the worst case as the training phase. For each example in

the testing phase, the following multiplication is performed to calculate the predicted class of the example:

P (Class, v1, v2, ..., vn) = P (Class)
∏n

i=1 P (vi|Class)

Then, we calculate:

P (Class, v1, v2, ..., vn) = P (Class)
∏n

i=1 P (vi|Class)

The probability that is greater is the one that our naive Bayes model assumes the answer to be. It should

be noted that both examples above should be divided by
∏n

i=1 P (vi) over the entire set of examples. This

is necessary to calculate P (Class|v1, v2, ..., vn) or P (Class|v1, v2, ..., vn) according to Bayes’s rule. However,
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as this is the same for both equations, it is unnecessary and therefore not included in the final calculation

to save a constant factor of time.

Artificial Neural Networks

An artificial neural network (ANN), as described by [1], is a network in which the most important

component is called a ’neuron’. The neuron has connections to other neurons through which it receives and

transmits data. The neuron performs the following computation: the values of the connections into the

neuron are multiplied by the respective weights of those connections:

Let ykbe the value sent over the kth connection

Let wkbe the weight sent over the kth connection

aj =
∑p

k=1 wkyk

Then, a non-linear activation function f is applied to to this value:

yj = f(aj)

A common choice for f is the sigmoid function, f(x) = 1
1+e−x . However, other choices for the activation

function include the tanh function.

The neurons are arranged into two or more layers. The data goes through the layers in a linear fashion,

going first through the input layer, passing through each hidden layer in turn, until it is finally output by

the final layer. Hidden layers are the layers between the input and output layers in a feedforward neural

network[1].

The process of back-propagation is one method used by neural networks in order to learn the data set[1].

The neural net first goes through forward propagation and then compares its output with the actual classes

of the examples. It then adjusts the weights of each layer to better learn the results. Each phase of forward-

propagation and backpropagation is called an epoch. A neural net continues running epochs until a certain

threshold of accuracy is reached or a certain amount of epochs have been run, whichever comes first.

Backpropagation updates the weights of the hidden and output layer. This method is discussed in [1]

and [61].
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CHAPTER III

EXPERIMENTS

Algorithms Used

The algorithms used were Naive Bayes, Decision Tree, and an Artificial Neural Network (ANN) using

feedforward propagation and backpropagation for learning.

Programs Used

The author programmed two Python programs which run the Decision Tree and Naive Bayes algorithms.

These programs accept training data and testing data and will then implement the training and testing

phases of the algorithms. The programs are supervised learning algorithms and require the labels that

identify the training and the testing data to appear in the data sets. The programs output the decision tree

and naive Bayes data structures after the training phase and confusion matrices of correctly and incorrectly

classified results after the testing phase.

The open source software Weka[6][7] was also used to collect data.

Procedure to collect data

Python program data collection

The Python algorithms for the decision tree and the naive Bayes algorithm were programmed by the

author. The original datasets for the 10% testing and 10% training sets from the KDD Cup website are

used in their original format for the Python algorithms. These datasets are found in the corrected.gz and

kddcup.data_10_percent.gz in [52]. They were derived by a detailed analysis of useful attributes from

the data in the MIT Lincoln Laboratory experiment[56]. The extraction of the attributes from this data is

described in [62]. However, the authors do not appear to say how the 10 percent data is related to the original

data. The original data is not used in the experiments in this thesis, however. Only the 10 percent data, and

subsets of this data extracted using Weka[6][7], was used. These subsets preserve the relative percentages of

the attack and normal classes. The decision tree algorithm was based closely on the algorithm for creating

a decision tree found in [1]. The naive Bayes is also based closely on the description of the algorithm found

in [1]. These algorithms do not have any options for the user to choose besides those relating to the training

set and testing set to be used. They output a model after training is performed and a confusion matrix after

testing is performed. They also time the training and testing phases.
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Weka program data collection

For each machine learning algorithm, the algorithm was always trained with the training data, and testing

was performed with either the testing data or the training data. In addition, the option to output detailed

statistics was selected and to output the model. The model consist of all the information necessary to

reproduce the trained machine learning data structure (e.g. the decision tree, naive bayes, or neural network

trained on the 10% dataset).

The option -Xmx1024m was used to increase the memory available to the JRE to 1024 MB. Naive Bayes

algorithm outputs the results of training and testing, as well as the model for the naive Bayes.

Besides the options mentioned above, the Weka naive Bayes and J48 decision tree algorithms were run

using the defaults, and no other options were selected for them.

For the multilayer perceptron algorithm, several parameters could be chosen by the user. The leaning

rate is .3, the momentum is .2, the nominal-to-binary filter option is True, the normalize attribute option is

true, the normalize numeric class option is true, the number of hidden layers is 1, the training time ( number

of epochs) is 50, and the validation threshold is 20. These values are mostly the default values. However,

the number of hidden layers and epochs has been decreased from the default in order to make the neural

network run faster (since it is the slowest algorithm).

Later, to collect data on the testing times and to ensure that all testing times were from the same

computer, the previously collected models from the 1%, 5%, 10%, 20%, 30%, 40%, 50% and 100% of the

10% 1999 UCI KDD training dataset were run on the full 10% 1999 UCI KDD testing dataset using a

Windows batch file that also recorded timestamps before and after each testing phase was run so that the

time taken to run each testing phase could be calculated.

Dataset Details

KDD

The datafiles used are from the University of California, Irvine Knowledge Discovery and Data Mining

(UCI KDD) website[52]. The data files give the necessary information to create and train the algorithms.

The kddcup.names file lists the class types, including ’normal.’, which signifies that no attack is in

progress. The attack types are back, buffer_overflow, ftp_write, guess_passwd, imap, ipsweep, land, load-

module, multihop, neptune, nmap, normal, perl, phf, pod, portsweep, rootkit, satan, smurf, spy, teardrop,

warezclient, and warezmaster. The .names file also list the attribute names. Each attribute name states

whether it is a continuous or symbolic variable. A symbolic variable has a finite number of possible values

and can be completely enumerated. A continuous variable cannot be enumerated.
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Each example uses forty-one attributes, and the testing data contains 23 different classes. The attributes

can be divided into three types:

Table 3: Basic Features of individual TCP connections
feature name description type

duration length (number of seconds) of the connection continuous

protocol type type of protocol, e.g. tcp, udp, etc. symbolic

service network service on the destination, e.g., http, telnet, etc. symbolic

flag normal or error status of the connection symbolic

src_bytes number of data bytes from source to destination continuous

dst_bytes number of data bytes from destination to source continuous

land 1 if connection is from/to the same host/port; 0 otherwise symbolic

wrong_fragment number of “wrong” fragments continuous

urgent number of urgent packets continuous

Table 4: Content features suggested by domain knowledge

feature name description type

hot number of “hot” indicators continuous

num_failed_logins number of failed login attempts continuous

logged_in 1 if successfully loggin in, 0 otherwise discrete

num_compromised number of “compromised” conditions continuous

root_shell 1 if root shell obtained, 0 otherwise symbolic

su_attempted 1 if “su root” command attempted, 0 otherwise symbolic

num_root number of “root” accesses continuous

num_file_creations number file creation operations continuous

num_shells number of shell prompts continuous

num_access_files number of operations on access control files continuous

num_outbound_cmds number of outbound commands in an ftp session continuous

is_hot_login 1 if the login belongs to the “hot” list, 0 otherwise symbolic

is_guest login 1 if the login is a “guest” login, 0 otherwise symbolic
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Table 5: A two-second window where various traffic features were computed

feature name description type

count # of connections to the same host as this one in the past two seconds continuous

Note: the following features refer to these same-host connections

serror_rate % of connections that have “SYN” errors continuous

rerror_rate % of connections that have “REJ” errors continuous

same_srv_rate % of connections to the same service continuous

diff_srv_rate % connections to different services continuous

srv_count # of connections to the same service as this one in the past two seconds continuous

Note: The following features refer to these same-service connections.

srv_serror_rate % of connections that have “SYN” errors continuous

srv_rerror_rate % of connections that have “REJ” errors continuous

srv_diff_host_rate % of connections to different hosts continuous

The kddcup.data file lists the value of the class and the value of the attributes. It should be noted that

neither [52] nor [62], the main references in this thesis for this dataset, mention what a “hot” indicator is.

The testing data for the 10 percent data set contains 311,029 examples. These examples contain 60,593

normal items and 250,436 attacks. Therefore, this data is most likely atypical because it contains more

attacks than normal data. The attack connections make up 80.52% of the dataset.

The training dataset contains 494,020 items. There are 97,277 normal connections and 39,6743 attack

connections. The attacks make up 80.31% of the dataset.

For the Weka algorithms, the dataset was converted to arff format, which is a standard data mining

format used by Weka. This was accomplished by first converting the file to csv format using Cream, a

version of Vim[63]. The CSV format is a standard comma-separated format[7][6]. The version of the csv

format read by WEKA has a row of entries at the top that lists the name of each attribute[7]. In this step,

a line with the feature names as given above was added, along with the classification name. Then the lines

were processed using Cream to contain only the classes ’normal’ and ’attack’ (i.e. any class that wasn’t

normal was changed to read ’attack’). Next, the Weka CSVLoader was used to convert both the training

and the testing dataset (now in csv format) to arff format. The two arff headers were manually compared

27



and merged to form a single arff header with all the possible attribute values from both the testing and the

training phase (Weka requires that the arff headers for the testing and training data match).

Subsets of the 10% dataset

Using the Weka resampling filter, several subsets of the 10% dataset were derived. These subsets make

up 1%, 5%, 10%, 20%, 30%, 40%, and 50% of size of the 10% dataset found on the KDD Cup website. They

were constructed in such a way that they preserve the relative percentages of attack and normal data from

the original 10% dataset.
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CHAPTER IV

RESULTS

In this section, a novel method for evaluating the results is introduced. This method takes into account

the relative sizes of the classes to each other in the dataset. This allows the user of the IDS to evaluate

how well it will predict the classes given the distribution of the dataset. In Figure 4 and Table 6 below,

NKrepresents the set of those examples that are known to be normal, AK , represents those that are known

to be attacks, NC represents those that are classified as normal, and AC represents those that are classified

as attacks. In the Venn diagram below, the four possible situations are shown. Normal connections may be

classified as an attack or may be classified as normal and attacks may be classified as an attack or as normal

data. Usually when the rates in a confusion matrix are calculated, they are calculated out of the total of

the class by definition, as shown in the confusion matrix on the left below. In the method presented in this

paper, they are calculated out of the total classified as normal or classified as attacks. This makes it easy

to see the percentages from the IDS user’s point of view, who will not know the actual nature of the data

ahead of time, but will know the classification given by the IDS.

Table 6: Two different perspectives

classified as classified as

normal attack normal(NC) attack(AC)

known as normal (NK) NKΛNC

NK

NKΛAC

NK
known as normal NKΛNC

NC

NKΛAC

AC

attack (AK) AKΛNC

AK

AKΛAC

AK
attack AKΛNC

NC

AKΛAC

AC

Running Time Performance

The running time of the algorithms was obtained by running the programs on an eMachines computer

with a 2.93 GHz Pentium 4 processor and with 512 Mb DDR SDRAM.

Performance of the Python Algorithms

The testing data for the 10 percent data set contains 311,029 examples. These examples contain 60,593

normal items and 250,436 attacks. Therefore, this data is most likely atypical because it contains more

attacks than normal data. The training dataset contains 494020 items. There are 97277 normal connections
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Figure 4: Venn Diagram of AK ,NK ,AC , and NC

and 396743 attack connections. For the 10 percent kddcup dataset, the naive Bayes ran faster than the

decision tree. The total running time on this data of the training phase for the naive Bayes algorithm was

8.27 hours. The total time taken to create the naive Bayes data structure was 5.59 hours. The total running

time for the training phase of the decision tree was 10.8 hours. The total time taken to create the decision

tree data structure was 8.19 hours. These tests were run on an eMachines computer with a 2.93 GHz Pentium

4 processor and with 512 Mb DDR SDRAM.

The testing phase took less time to run. When the algorithm was run on the testing data for the 10%

1999 UCI KDD dataset, this phase took 1.73 hours for the naive Bayes and .77 hours for the decision tree.

Weka Algorithms

For the Weka algorithms, the training times for the three algorithms are shown in Figure 5. The left

graph shows all of the points graphed, whereas the graph on the right shows a zoomed in portion of the

bottom of the graph to better illustrate the differences between the Naive Bayes and J48 Decision Tree

algorithm.

As the graph demonstrates, the training time for the multilayer perceptron grows very quickly with the

size of the data compared to the other two algorithms. In addition, the Weka algorithms for the naive bayes

and decision tree are much faster than the Python algorithms used. While the reasons for this are presently

unknown, it may be due to algorithmic differences in the way the datasets are processed. Of the Weka

algorithms, the multilayer perceptron algorithm takes the longest time to train among all of the dataset

sizes tested, taking 11.68 hours to complete for the 50% dataset. The naive Bayes is the fastest of the three

datasets on all of the data sizes, and the J48 is the second fastest on all data sizes. The naive Bayes completes
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Figure 5: Training Time vs Training Data Size (left) and magnification of bottom of left figure (right)

the training phase in at most 32.2 seconds, while the J48 decision tree completes the training phase in at

most 11 minutes and 30.74 seconds.

The testing time for the algorithms was considerably shorter than the training time. The testing time

is the time for the full 10% dataset. This also changed depending on the training set, though the size of

the testing data was kept constant. This is due to the training set affecting the model used. The change

in testing time is especially large for the multilayer perceptron algorithm, taking over 14 minutes and 11

seconds to complete with the 50% dataset. While the exact causes of this result are uncertain, it has been

observed that the file size of the multilayer perceptron model (which is in binary format) grows as the size

of the training data grows. It is possible that it keeps some information that would be proportional to the

number of examples in the training data, such as information about backpropagation weight changes for

each item. In [61], the author mentions that weight changes might be collected and then added up later.

The testing time for the J48 Decision Tree and the Naive Bayes algorithm was nearly constant, however.

Between the 5% and 100% of the 10% training dataset, the J48 decision tree does not vary by more than .25

seconds, while the Naive Bayes does not vary by more than .52 seconds. Both of these algorithms take the

longest to complete the testing phase when trained on 1% of the 10% 1999 UCI KDD dataset. The naive

Bayes takes at most 52.97 seconds to complete the testing phase while the J48 algorithm takes at most 17.53

seconds. The Naive Bayes goes down to 39.35 seconds at the 5% of the 10% dataset while the J48 Decision

Tree goes down to 10.79 seconds at the 5% of the 10% dataset.
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Figure 6: Training Data Size vs Testing Time

Classification Evaluation

The experiment results in this section show the differences in false positives and false negatives in the

data. A false positive occurs when the the IDS flags a connection as an attack when it is not. A false

negative occurs when the IDS flags a connection as normal when it is actually an attack. The accuracy rates

for each algorithm are also recorded below. The accuracy rate is the percentage of the connections that are

correctly classified over the total number of connections.

The decision tree and naive Bayes were trained on the KDD 10 percent training data and tested on the

KDD 10 percent testing data of the KDD data set and results were obtained. The results are listed in the

confusion matrices below (rows are actual value and columns are predicted value). The confusion matrices

are listed as follows First, the rates for true negatives, false negatives, false positives, and true negatives

are given out of the total number of normal connections by definition or the total number of attacks by

definition. Lastly, the rates for true negatives, false negatives, true positives, and true negatives are given

out of the total number of connections classified as normal or the total number of connections classified

as attack connections. This is done for both the training and testing phases. The probabilities p(c|k) and

p(k|c) are defined as the probability that the connection will be classified as the given classification by the

IDS given the known classification (p(c|k)) and the probability that the known classification is a given class

given that the classification by the IDS is known (p(k|c)).

These results are similar to the results found in [64]. The Percent Correct Classification (PCC) values

(i.e. the accuracy) are slightly better than the values given in [64], but the difference in the percentage values

is less than 1%.
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When the Decision Tree and Naive Bayes were both trained and tested on the 10 percent training data,

the results were as listed in Table 7.

Table 7: Python Decision Tree vs Python Naive Bayes

N. Bayes D. Tree

Eval on

Testing Set

p(c|k) p(c|k)

Normal (84374) Attack(226655) Normal(83603) Attack(227426)

Normal (60593) 98.2 1.8 99.35 0.65

Attack (250436) 9.93 90.07 9.34 90.66

p(k|c) p(k|c)

Normal(84374) Attack(226655) Normal(83603) Attack(227426)

Normal (60593) 70.52 0.48 72.01 0.17

Attack (250436) 29.48 99.52 27.99 99.83

Eval on

Training Set

p(c|k) p(c|k)

Normal(101883) Attack(392137) Normal(100879) Attack(393141)

Normal(97277) 99.31 0.69 99.15 0.85

Attack(396743) 1.33 98.67 1.12 98.88

p(k|c) p(k|c)

Normal(101883) Attack(392137) Normal(100879) Attack(393141)

Normal(97277) 94.82 0.17 95.61 0.21

Attack(396743) 5.18 99.83 4.39 99.79

The accuracy of the algorithms when trained on the 10% KDD Cup training data is given in Figure 7.

The bar graph shows that the accuracy was noticeably higher when the algorithm was tested on the

training data than when it was tested on the testing data.

False alarm rates for KDD 10 percent training data used for training and KDD 10 percent
testing used for testing

The false alarm rates for naive Bayes and the decision tree are 1.8% and .65%, respectively.

These values may seem fairly low, but there are several factors to consider that may make expending

effort to lower these quantities desirable. Firstly, it is important to look at the ratio of the number of false

alarms to the total number of alarms (both false and real). The importance of this ratio is that it indicates
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Figure 7: Accuracy rates on training and testing data

whether or not the IDS is “crying wolf” all the time. In the naive Bayes, this ratio is .48%. In the decision

tree, this ratio is .17%. These are even smaller, but not as small as the .001% false positive rate, which is

the amount that [21] recommends to have a system with a tolerable number of false alarms. Also, the data

in this data set consists largely of attacks. Therefore, the math discussed in [21] works in favor of the IDS in

these circumstances. That is, since there are a lot of attacks compared to normal activity (in fact there are

more attacks than normal activity), and most of these are detected, the number of false alarms compared to

the number of actual attacks is likely to be small anyway. In a real system, the number of attacks packets

is likely to be low compared to the number of normal packets, making even a small percentage of falsely

classified normal packets large compared to the number of actual attacks.

However, the nature of the machine learning algorithm may work in our favor if it can be given a method

to incorporate new data that it sees in real-time. This is because the more recent data that the algorithm is

able to process (assuming it can be correctly identified), the more it becomes able to identify new instances

of normal behavior and new attacks (in general). Because it would likely be impossible to know with

100% certainty whether the data identified in real-time has been identified correctly, a certain amount of

misclassification must be tolerated. However, the algorithm must be able to calculate the probability that

it has identified an attack correctly in order make this misclassification manageable.

Accuracy and False Alarms

As seen above, the percentage of false positives compared to the total number of alarms is very low.

However, the number of attacks not detected is very high. The percentage of data flagged as normal that is

actually an attack (out of all the data flagged as normal) is 29% by the naive Bayes and 28% for the decision

tree algorithm. Clearly, this number is very high. The accuracy in this instance is high (which is the same
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Figure 8: Training Data Size vs. Accuracy

as the PCC values above). However, the percentage of the non-alarm connections that are false negatives

would be fairly high. These results indicate that the algorithm may have been overtrained.

Experiments using Weka

Experiments were also run using the Weka software[7][6], version 3.4.8. Three of the standard classification

algorithms included in the Weka software package were used. These algorithms were the Naive Bayes,

Decision Tree, and Multilayer Perceptron. The Multilayer Perceptron has A+1 input neurons (where A

is the number of attributes, and the extra neuron is a threshold neuron), C output neurons (where C is

the number of classes), and a user-specified number of hidden neurons (In the experiments in this section,

this number was one). The testing phase of these experiments was run using the 10% UCI KDD testing

dataset found in [52]. Training was done using 1%, 5%, 10%, 20%, 30%, 40%, 50%, and 100% subsets of the

10% training data subset. The results are shown in the graph and two tables below. The graph presents a

comparison of the accuracy of each algorithm when trained on the different datasets. The tables present the

confusion matrices for the three Weka algorithms on each of the datasets. For each confusion matrix, the

columns represent whether the connections were classified as normal or attack and the rows represent the

actual class of the data.

As the graph above demonstrates, the accuracy of the three algorithms changes very little over the

datasets tested, with the exception of the noticeable decrease in performance of the multilayer perceptron

algorithm when the 5% of 10% dataset is used. It is unknown why this decrease in performance occurs.

35



Possibly some quality of the dataset has affected the algorithm (while all datasets preserve the qualities of

the class values-that is, relative percentages of attack and normal data in the full 10% dataset-they do not

necessarily preserve the qualities of the attribute values). However, if this is the case, then this difference

does not seem to affect the other algorithms, indicating that they can handle the difference in the dataset

better.

Table IV represents the classification abilities of the Naive Bayes, Decision Tree, and Multilayer Per-

ceptron when they are trained on 1%, 5%,10%, 20%,30%, 40%, and 50% of the 10% 1999 UCI KDD CUP

training data. All trained algorithms below were tested on the full 10% 1999 UCI KDD CUP testing data.

The numbers in the ’Normal’ and ’Attack’ columns are the total number of connections classified as normal

and attack, respectively. The total number of known normal items is 60,593 and the total number of known

attacks is 250,436 in the 10% 1999 UCI KDD CUP training data.

Table 8: Attacker’s perspective of WEKA classifications

Naïve Bayes Decision Tree Multilayer Perceptron

Trained on 1% of 10% Trained on 1% of 10% Trained on 1% of 10%

Normal

(85120)

Attack

(225909)

Normal

(81711)

Attack

(229318)

Normal

(83327)

Attack

(227702)

Normal 96.95 3.05 97.07 2.93 97.9 2.1

Attack 10.53 89.47 9.14 90.86 9.59 90.41

Trained on 5% of 10% Trained on 5% of 10% Trained on 5% of 10%

Normal

(85884)

Attack

(225145)

Normal

(82726)

Attack

(228303)

Normal

(115783)

Attack

(195246)

Normal 97.53 2.47 99.4 0.6 98.58 1.42

Attack 10.7 89.3 8.98 91.02 22.38 77.62

Trained on 10% of 10% Trained on 10% of 10% Trained on 10% of 10%

Normal

(85812)

Attack

(225217)

Normal

(81834)

Attack

(229195)

Normal

(83502)

Attack

(227527)

Normal 97.53 2.47 99.45 0.55 98.3 1.7

Attack 10.67 89.33 8.62 91.38 9.56 90.44

Trained on 20% of 10% Trained on 20% of 10% Trained on 20% of 10%

Normal

(85933)

Attack

(225096)

Normal

(82663)

Attack

(228366)

Normal

(82906)

Attack

(228123)
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Normal 97.61 2.39 99.51 0.49 97.87 2.13

Attack 10.7 89.3 8.93 91.07 9.42 90.58

Trained on 30% of 10% Trained on 30% of 10% Trained on 30% of 10%

Normal

(85990)

Attack

(225039)

Normal

(82136)

Attack

(228893)

Normal

(83688)

Attack

(227341)

Normal 97.64 2.36 99.54 0.46 98.46 1.54

Attack 10.71 89.29 8.71 91.29 9.59 90.41

Trained on 40% of 10% Trained on 40% of 10% Trained on 40% of 10%

Normal

(85992)

Attack

(225037)

Normal

(82065)

Attack

(228964)

Normal

(83833)

Attack

(227196)

Normal 97.63 2.37 99.47 0.53 98.46 1.54

Attack 10.71 89.29 8.7 91.3 9.65 90.35

Trained in 50% of 10% Trained on 50% of 10% Trained on 50% of 10%

Normal

(85992)

Attack

(225037)

Normal

(82132)

Attack

(228896)

Normal

(83507)

Attack

(227196)

Normal 97.64 2.36 99.48 0.52 98.41 1.59

Attack 10.71 89.29 8.73 91.27 9.53 90.47

Trained on 100% of 10% Trained on 100% of 10% Trained on 100% of 10%

Normal

(84250)

Attack

(226779)

Normal

(82825)

Attack

(228204)

Normal (–) Attack (–)

Normal 97.62 2.38 99.44 0.56 – –

Attack 10.02 89.98 9.01 90.99 – –

In the table above, we can make several observations:

1. The performance of the machine learning algorithms does not change much between 1% and 100% of

the 10% dataset. One exception to this is the performance of the multilayer perceptron on the 5% of

10% dataset. The performance using this algorithm decreases by 12.79 percentage points before going

back up to around 90%.
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2. The three machine learning algorithms have very similar performance overall when compared to each

other.

3. The performance of the three machine learning algorithms in correctly classifying the normal and attack

data is very high (except for the previously mentioned deviation from this trend). The classification

of the normal data is approximately between 97% and 99% for the normal data and between 89% and

91% for the attack data. The performance of the algorithms is significantly better at the classification

normal data than at the classification of attack data. It is stated in [52] that some attacks in the testing

data are not found in the training data. This may be the cause of the difference in performance.

In the next table, we will examine the data from a different perspective. In this table, we will examine

the items in the confusion matrices (TN, FP, FN, TP) as divided by the total items in their classification.

This perspective can help the IDS user discover the percentage of alarms that are false positives and the

percentage of non-alarms that are false negatives. This data is important to the IDS user. An IDS does not

have the same perspective as the attacker. The IDS user is concerned about the number of false alarms out

of the total alarms, whereas the attacker is concerned about the total number of false alarms out of the total

number of attacks. As can be seen by comparing the Table and Table 9 below, these two totals may differ.

Table 9: User’s Perspective of WEKA classifications

Naïve Bayes Decision Tree Multilayer Perceptron

Trained on 1% of 10% Trained on 1% of 10% Trained on 1% of 10%

Normal

(85120)

Attack

(225909)

Normal

(81711)

Attack

(229318)

Normal

(83327)

Attack

(227702)

Normal 69.01 0.82 71.98 0.78 71.19 0.56

Attack 30.99 99.18 28.02 99.22 28.81 99.44

Trained on 5% of 10% Trained on 5% of 10% Trained on 5% of 10%

Normal

(85884)

Attack

(225145)

Normal

(82726)

Attack

(228303)

Normal

(115783)

Attack

(195246)

Normal 68.81 0.66 72.81 0.16 51.59 0.44

Attack 31.19 99.34 27.19 99.84 48.41 99.56

Trained on 10% of 10% Trained on 10% of 10% Trained on 10% of 10%

Normal

(85812)

Attack

(225217)

Normal

(81834)

Attack

(229195)

Normal

(83502)

Attack

(227527)
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Normal 68.87 0.66 73.63 0.15 71.33 0.45

Attack 31.13 99.34 26.37 99.85 28.67 99.55

Trained on 20% of 10% Trained on 20% of 10% Trained on 20% of 10%

Normal

(85933)

Attack

(225096)

Normal

(82663)

Attack

(228366)

Normal

(82906)

Attack

(228123)

Normal 68.83 0.64 72.94 0.13 71.53 0.57

Attack 31.17 99.36 27.06 99.87 28.47 99.43

Trained on 30% of 10% Trained on 30% of 10% Trained on 30% of 10%

Normal

(85990)

Attack

(225039)

Normal

(82136)

Attack

(228893)

Normal

(83688)

Attack

(227341)

Normal 68.8 0.64 73.43 0.12 71.29 0.41

Attack 31.2 99.36 26.57 99.88 28.71 99.59

Trained on 40% of 10% Trained on 40% of 10% Trained on 40% of 10%

Normal

(85992)

Attack

(225037)

Normal

(82065)

Attack

(228964)

Normal

(83833)

Attack

(227196)

Normal 68.8 0.64 73.45 0.14 71.16 0.41

Attack 31.2 99.36 26.55 99.86 28.84 99.59

Trained in 50% of 10% Trained on 50% of 10% Trained on 50% of 10%

Normal

(85992)

Attack

(225037)

Normal

(82132)

Attack

(228896)

Normal

(83507)

Attack

(227196)

Normal 68.8 0.64 73.39 0.14 71.4 0.42

Attack 31.2 99.36 26.61 99.86 28.6 99.58

Trained on 100% of 10% Trained on 100% of 10% Trained on 100% of 10%

Normal

(84250)

Attack

(226779)

Normal

(82825)

Attack

(228204)

Normal (–) Attack (–)

Normal 70.21 0.64 72.75 0.15 – –

Attack 29.79 99.36 27.25 99.85 – –

From the Table 9, we get a different picture of the classification. Though the differences between the

algorithms are still similar when compared to each other and when compared over the different training data,
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the data classified as normal shows an unacceptably large percentage of false negatives. This new method

of classification indicates how the distribution of data used affects the classification abilities of the IDS from

the perspective of the IDS user.

Additional Weka Experiments

In the previous section, Weka experiments using the training and testing set available from the UCI

KDD website were used. These can be easily compared to previous experiments. However, they are only

from one randomized distribution of the dataset. In this section, a different dataset, as well as subsets

of this new dataset, will be explored. The new datasets for testing and training were derived by first

combining the original 10% training and 10% testing datasets from the UCI KDD files into a single large

file. Then the datasets used in this section were derived using the Weka StratifiedRemoveFolds filter. The

StratifiedRemoveFolds filter divides the input file into n equally sized partitions, called folds, which each

have some arrangement of examples that preserve the class distribution in the original file but are otherwise

randomly arranged[7][6]. The options for this filter include the random seed, the number of folds, and the

particular fold extracted. The random seed was set to 0-9. The number of folds was set to 2 and the

particular fold extracted was set to 1 or 2.

In the next step, subsets were extracted from each of these 10 new training datasets using the Weka

resampling filter that was used in the previous experiments. These subsets were 1%,5%,10%,20%,30%,40%,

and 50% of the randomized training datasets. The new training datasets have 402,524 examples in total. The

dataset has 78,935 normal connections and 323,589 attack connections. This means that the data contains

a total of 80.39% attack connections.

In Tables 10, 11, 12, and 13 in this section and the next section, the means and standard deviations for

each training set was calculated for the three algorithms: Naive Bayes, J48 Decision Tree, and Multilayer

Perceptron. The equation used for the standard deviation was

sN−1 =
√

( 1
N−1 )ΣN

i=1(xi − x)2 .

This equation is also known as the square root of the bias-corrected variance[65].

In Table 10, the data is from the perspective of the attacker.

Table 10: Attacker’s perspective on new dataset classifications

Naïve Bayes Decision Tree Multilayer Perceptron

Trained on 1% of rand. train. Trained on 1% of rand. train. Trained on 1% of of rand. train.
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Normal

(92345.3)

Attack

(310178.7)

Normal

(81063.3)

Attack

(321460.7)

Normal

(88586.8)

Attack

(313937.2)

Normal mean: 97.66

std dev:0.89

mean: 2.34

std dev:0.89

mean:97.1

std dev:1.26

mean:2.9

std dev:1.26

mean:99.09

std dev:0.41

mean:0.91

std dev:0.41

Attack mean: 4.72

std dev:0.09

mean:95.28

std dev:0.09

mean:1.37

std dev:0.37

mean:98.63

std dev:0.37

mean:3.21

std dev:0.59

mean:96.79

std dev:0.59

Trained on 5% of rand. train. Trained on 5% of rand. train. Trained on 5% of rand. train.

Normal

(92483.6)

Attack

(310040)

Normal

(79425.5)

Attack

(323098.5)

Normal

(87737.3)

Attack

(314786.7)

Normal mean: 98.2

std dev:0.13

mean: 1.8

std dev:0.13

mean:97.52

std dev:0.61

mean:2.48

std dev:0.61

mean:99.23

std dev:0.56

mean:0.77

std dev:0.56

Attack mean: 4.63

std dev:0.19

mean: 95.37

std dev:0.19

mean:0.76

std dev:0.15

mean:99.24

std dev:0.15

mean:2.91

std dev:0.42

mean:97.09

std dev:0.42

Trained on 10% of rand. train. Trained on 10% of rand. train. Trained on 10% of rand. train.

Normal

(92840.7)

Attack

(309683.3)

Normal

(79760.1)

Attack

(322763.9)

Normal

(88226.5)

Attack

(314297.5)

Normal mean: 98.32

std dev:0.09

mean:1.68

std dev:0.09

mean:98

std dev:0.53

mean:2

std dev:0.53

mean:99.36

std dev:0.29

mean:0.64

std dev:0.29

Attack mean:4.71

std dev:0.15

mean:95.27

std dev:0.15

mean:0.74

std dev:0.15

mean:99.26

std dev:0.15

mean:3.03

std dev:0.52

mean:96.97

std dev:0.52

Trained on 20% of rand. train. Trained on 20% of rand. train. Trained on 20% of rand. train.

Normal

(92955.7)

Attack

(309568.3)

Normal

(78941.5)

Attack

(323582.5)

Normal

(88484.6)

Attack

(314039.4)

Normal mean:98.38

std dev:0.09

mean:1.62

std dev:0.09

mean: 97.65

std dev:0.41

mean:2.35

std dev:0.41

mean:99.49

std dev:0.26

mean:0.51

std dev:0.26

Attack mean:4.73

std dev:0.04

mean:95.27

std dev:0.04

mean:0.58

std dev:0.09

mean:99.42

std dev:0.09

mean:3.08

std dev:0.49

mean:96.92

std dev:0.49

Trained on 30% of rand. train. Trained on 30% of rand. train. Trained on 30% of rand. train.

Normal

(93066.2)

Attack

(309457.8)

Normal

(78951.4)

Attack

(323572.6)

Normal

(87860.5)

Attack

(314663.5)
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Normal mean:98.42

std dev:0.08

mean:1.58

std dev:0.08

mean:97.7

std dev:0.46

mean:2.3

std dev:0.46

mean:99.35

std dev:0.39

mean:0.65

std dev:0.39

Attack mean:4.75

std dev:0.05

mean:95.25

std dev:0.05

mean:0.57

std dev:0.11

mean:99.43

std dev:0.11

mean:2.92

std dev:0.47

mean:97.08

std dev:0.47

Trained on 40% of rand. train. Trained on 40% of rand. train. Trained on 40% of rand. train.

Normal

(93173.8)

Attack

(309350.2)

Normal

(78964.2)

Attack

(323559.8)

Normal

(87599.4)

Attack

(314924.6)

Normal mean:98.45

std dev:0.08

mean:1.55

std dev:0.08

mean:97.74

std dev:0.27

mean:2.26

std dev:0.27

mean:99.25

std dev:0.46

mean:0.75

std dev:0.46

Attack mean:4.78

std dev:0.04

mean:95.22

std dev:0.04

mean:0.56

std dev:0.07

mean:99.44

std dev:0.07

mean:2.86

std dev:0.41

mean:97.14

std dev:0.41

Trained in 50% of rand. train. Trained on 50% of rand. train. Trained on 50% of rand. train.

Normal

(93215.7)

Attack

(309308.3)

Normal

(78803.8)

Attack

(323720.2)

Normal

(86894.9)

Attack

(315629.1)

Normal mean:98.48

std dev:0.07

mean:1.52

std dev:0.07

mean:97.69

std dev:0.1

mean:2.31

std dev:0.1

mean:99.33

std dev:0.19

mean:0.67

std dev:0.19

Attack mean:4.79

std dev:0.05

mean:95.21

std dev:0.05

mean:0.52

std dev:0.02

mean:99.48

std dev:0.02

mean:2.62

std dev:0.33

mean:97.38

std dev:0.33

Trained on 100% of rand. train. Trained on 100% of rand. train. Trained on 100% of rand. train.

Normal

(93292.7)

Attack

(309231.3)

Normal

(78835.4)

Attack

(323688.6)

Normal (–) Attack (–)

Normal mean: 98.51

std dev:0.03

mean:1.49

std dev:0.03

mean:97.8

std dev:0.06

mean:2.2

std dev:0.06

mean:–

std dev:–

mean:–

std dev:–

Attack mean:4.8

std dev:0.04

mean:95.2

std dev:0.04

mean:0.51

std dev:0.02

mean:99.49

std dev:0.02

mean:–

std dev:–

mean:–

std dev:–

In Table 11, the data is from the perspective of the IDS user. There is an overall downward trend for

the standard deviation for all of the machine learning algorithms to decrease as the percentage of the data

used increases. The numbers suggest that these algorithms will exhibit more consistent performance on a

larger dataset. The standard deviation for the Multilayer Perceptron normal connections are the highest
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for all the datasets tested. Since the ZeroR (which simply classifies every instance as the majority class,

which is in this case ’attack’) algorithm was correct on an average of 80% of the attack cases and 0% of

the normal cases, the algorithms below show an improvement from this base rate performance of 20%, 19%,

and 20% for the attack cases and 83%, 98%, and 90% with normal cases in the 50% randomized training

data. This indicates that these algorithms significantly outperform the base rate performance. In addition,

this data indicates that the decision tree clearly has the best classification rate of the three algorithms on

the datasets used. Table 11 shows that the J48 decision tree outperforms the other two algorithms on the

1%, 5%, 10%,20%, 30%, 40%, and 50% datasets and outperforms the naive bayes on the 100% datasets (the

multilayer perceptron was not tested on the 100% datasets). In addition, the standard deviations are smaller

than the differences in performance of the three algorithms, so this difference is statistically significant.

Table 11: User’s perspective on new dataset classifications

Naïve Bayes Decision Tree Multilayer Perceptron

Trained on 1% of rand. train. Trained on 1% of rand. train. Trained on 1% of of rand. train.

Normal

(85120)

Attack

(225909)

Normal

(81711)

Attack

(229318)

Normal

(83327)

Attack

(227702)

Normal mean:83.47

std dev:0.21

mean:0.6

std dev:0.22

mean:94.55

std dev:1.34

mean:0.71

std dev:0.31

mean:88.29

std dev:1.82

mean:0.23

std dev:0.1

Attack mean:16.53

std dev:0.21

mean:99.4

std dev:0.22

mean:5.45

std dev:1.34

mean:99.29

std dev:0.31

mean:11.71

std dev:1.82

mean:99.77

std dev:0.1

Trained on 5% of rand. train. Trained on 5% of rand. train. Trained on 5% of of rand. train.

Normal

(92483.6)

Attack

(310040)

Normal

(79425.5)

Attack

(323098.5)

Normal

(87737.3)

Attack

(314786.7)

Normal mean:83.82

std dev:0.57

mean:0.46

std dev:0.03

mean:96.92

std dev:0.59

mean:0.61

std dev:0.15

mean:89.28

std dev:1.33

mean:0.19

std dev:0.14

Attack mean:16.18

std dev:0.57

mean:99.54

std dev:0.03

mean:3.08

std dev:0.59

mean:99.39

std dev:0.15

mean:10.72

std dev:1.33

mean:99.81

std dev:0.14

Trained on 10% of rand. train. Trained on 10% of rand. train. Trained on 10% of of rand. train.

Normal

(92840.7)

Attack

(309683.3)

Normal

(79760.1)

Attack

(322763.9)

Normal

(88226.5)

Attack

(314297.5)

Normal mean:83.59

std dev:0.45

mean:0.43

std dev:0.02

mean:96.99

std dev:0.58

mean:0.49

std dev:0.13

mean:88.9

std dev:1.66

mean:0.16

std dev:0.07
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Attack mean:16.41

std dev:0.45

mean:99.57

std dev:0.02

mean:3.01

std dev:0.58

mean:99.51

std dev:0.13

mean:11.1

std dev:1.66

mean:99.84

std dev:0.07

Trained on 20% of rand. train. Trained on 20% of rand. train. Trained on 20% of of rand. train.

Normal

(92955.7)

Attack

(309568.3)

Normal

(78941.5)

Attack

(323582.5)

Normal

(88484.6)

Attack

(314039.4)

Normal mean:83.54

std dev:0.12

mean:0.41

std dev:0.02

mean:97.64

std dev:0.37

mean:0.57

std dev:0.1

mean:88.75

std dev:1.57

mean:0.13

std dev:0.06

Attack mean:16.46

std dev:0.12

mean:99.59

std dev:0.02

mean:2.36

std dev:0.37

mean:99.43

std dev:0.1

mean:11.25

std dev:1.57

mean:99.87

std dev:0.06

Trained on 30% of rand. train. Trained on 30% of rand. train. Trained on 30% of of rand. train.

Normal

(93066.2)

Attack

(309457.8)

Normal

(78951.4)

Attack

(323572.6)

Normal

(87860.5)

Attack

(314663.5)

Normal mean:83.48

std dev:0.14

mean:0.4

std dev:0.02

mean:97.68

std dev:0.42

mean:0.56

std dev:0.11

mean:89.26

std dev:1.49

mean:0.16

std dev:0.1

Attack mean:16.52

std dev:0.14

mean:99.6

std dev:0.02

mean:2.32

std dev:0.42

mean:99.44

std dev:0.11

mean:10.74

std dev:1.49

mean:99.84

std dev:0.1

Trained on 40% of rand. train. Trained on 40% of rand. train. Trained on 40% of of rand. train.

Normal

(93173.8)

Attack

(309350.2)

Normal

(78964.2)

Attack

(323559.8)

Normal

(87599.4)

Attack

(314924.6)

Normal mean:83.4

std dev:0.12

mean:0.4

std dev:0.02

mean:97.71

std dev:0.27

mean:0.55

std dev:0.06

mean:89.44

std dev:1.32

mean:0.19

std dev:0.11

Attack mean:16.6

std dev:0.12

mean:99.6

std dev:0.02

mean:2.29

std dev:0.27

mean:99.45

std dev:0.06

mean:10.56

std dev:1.32

mean:99.81

std dev:0.11

Trained on 50% of rand. train. Trained on 50% of rand. train. Trained on 50% of of rand. train.

Normal

(93215.7)

Attack

(309308.3)

Normal

(78803.8)

Attack

(323720.2)

Normal

(86894.9)

Attack

(315629.1)

Normal mean:83.39

std dev:0.13

mean:0.39

std dev:0.02

mean:97.86

std dev:0.07

mean:0.56

std dev:0.02

mean:90.23

std dev:1.09

mean:0.17

std dev:0.05

Attack mean:16.61

std dev:0.13

mean:99.61

std dev:0.02

mean:2.14

std dev:0.07

mean:99.44

std dev:0.02

mean:9.77

std dev:1.09

mean:99.82

std dev:0.05

Trained on 100% of rand. train. Trained on 100% of rand. train. Trained on 100% of of rand. train.
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Normal

(93292.7)

Attack

(309231.3)

Normal

(78835.4)

Attack

(323688.6)

Normal (–) Attack (–)

Normal mean:83.35

std dev:0.12

mean:0.38

std dev:0.01

mean:97.92

std dev:0.08

mean:0.54

std dev:0.02

mean:–

std dev:–

mean:–

std dev:–

Attack mean:16.65

std dev:0.12

mean:99.62

std dev:0.01

mean:2.08

std dev:0.08

mean:99.46

std dev:0.02

mean:–

std dev:–

mean:–

std dev:–

Neural Net Experiments With Hidden Layer Nodes

Experiments were done to determine how the number of hidden layers might affect the performance of

the neural network. In these experiments, the 10 training files obtained for each of the 1%,5%,10%,20%,30%,

and 40% datasets by using StratifiedRemoveFolds on the file combining the 10% training and testing set

(as was used on the previous 2 tables above) were used. These experiments were done using one hidden

layer with the following numbers of neurons: 2,3,4,5, and 6. The data was calculated from the attackers

perspective and the user’s perspective. Table 12 shows the data from the attacker’s perspective.
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The information in Table 12 can be evaluated by observing the changes in the means as the number

of neuron in the hidden layer increases. From this data, it can be seen that the best classifications of

normal data are at 5,3,3,2,5 and 5 neurons at 1%,5%,10%,20%, 30%, and 40% respectively. The best overall

performance is 98.13% and is obtained using 3 neurons with the 5% training data. This data suggests

that only a small percentage of the training set is necessary for good performance. However, the standard

deviations for the best and worst classifications are larger than the difference between the best and worst

classifications. Therefore, the data cannot conclusively suggest an optimum number of neurons. In addition,

the results obtained using 1 neuron are similar to the results obtained using 2,3,4,5, or 6 neurons, and are

often within one standard deviation of each other.

In Table 13 the data is given from the user’s perspective. This table shows that the user recieves the best

classifications of normal data at 3,3,3,2,5, and 5 neurons at 1%,5%,10%,20%,30%, and 40% of the training

data respectively. This information suggests that 3 neurons is the best number of neurons to use for 30%

of the training data or less. The data also suggests that 5 neurons gives the best classifications for datasets

of 10% of the training data or less. In addition, the best overall performance for normal data classification

(a correct classification of 92.87%) is obtained using 3 neurons at 1% of the training data. This information

suggests that using a small percentage of the training data with three neurons gives the best performance for

the multilayer perceptron. However, the standard deviations for the best and worst values are again larger

than the difference between the best and worst classifications. This perspective also shows little difference

between using 1 neuron versus 2-6 neurons, with results often close to or within one standard deviation of

each other.
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CHAPTER V

CONCLUSION AND FUTURE WORK

Conclusion

An IDS user has different concerns from an attacker. The IDS user is concerned about the number of

false alarms out of the total alarms, whereas the attacker is concerned about the total number of false alarms

out of the total number of attacks. As shown in the four equations below, these two totals may differ.

Using an ordinary confusion matrix, the percentages that are of interest to the attacker can be calculated

by dividing each entry by the horizontal sum of its row. The percentages that are relevant to the IDS user

can be calculated by dividing each entry by the vertical sum of its column.

From the information shown above, we can see that when considering the data from the attacker’s point

of view, the percentage of false negatives can be calculated by dividing the attacks not found by the IDS by

the total attacks and the false positives can be found by dividing the normal data that causes an alarm by

the total normal data. On the other hand, the IDS user wants to know the percentage of total alarms that

the false positives make up. In addition, they would like to know the percentage of non-alarm data made up

by the false negatives (data that is actually an attack). It is noticed that the percentages given in [64] are

only from the attacker’s point of view. The four equations below state the method used to calculate the 2

different points of view, where AK and NK are those examples known to be attacks and normal, respectively,

and where AC and NC are those classified as attack and normal connections, respectively.

Attacker’s False Negatives: AK∧NC

AK

Attacker’s False Positives: NK∧AC

NK

IDS User False Negatives: AK∧NC

NC

IDS User False Positives: NK∧AC

AC

It is important to note that the distribution of false alarms and false negatives from the user’s perspective

is affected by the relative sizes of the classes, whereas the distribution from the attacker’s perspective is not.

From these experiments it can be concluded that the machine learning algorithms used would misclassify

an undesirably large amount of data when the number of attack connections is much larger than the number

of normal connections. In a real network, there may be times when this type of activity occurs. For example,

during a DoS attack, attack data may exceed normal data. Such attacks may target certain networks more

frequently than others. For example, the network for a popular website may be the target of a DoS attack.

In other circumstances, normal connections may greatly exceed attack connections.
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The Weka Multilayer Perceptron runs much more slowly than the Weka Naive Bayes and J48 decision tree.

This is likely a result of the fact that the size of the model for the multilayer perceptron grows considerably

each time the training data is increased. This may be a result of the way that the Weka Multilayer Perceptron

algorithm stores backpropagation information, although due to the apparent lack of documentation on this

issue, some other factor may be the actual cause.

Future Research

The algorithms tested use supervised learning algorithms. These algorithms require an offline training

phase, but the testing phase requires much less time and future work could investigate how well it can be

adapted to performing online. The main difficulties in adapting these techniques for practical use are the

difficulties involved in acquiring labeled training data and in investigating how the training on this dataset

can be useful in classifying real datasets.

Another possible application is to use the machine learning algorithm models to create new rules for

rule-based IDS’s such as Snort. Once they have been trained and tested, rules could be extracted from

examining the data structures of the machine learning algorithms. These rules might then be used in Snort

or another online intrusion detection system. In order to accomplish this, however, the algorithms might

have to be run on a new dataset to obtain rules that would be useful to Snort or another rule-based IDS.

This dataset would use only attributes examined by such an IDS.

In addition, a classifier which uses the dataset and the results of several classifiers on that dataset may

be of interest. Such a technique can be found in [66] and [67]. This technique can result in improved

performance and the identification of which portions of the dataset that each classifier identifies well. Such

a classifier might be run on the dataset used in this thesis along with the classifications of that dataset given

by the Naive Bayes, Decision Tree and Multilayer Perceptron. The performance of this classifier could then

be compared to the use of these three classifiers by themselves to determine if an increase in performance is

obtained.

It is possible that honeypots[55] simulating various types of networks may be able to obtain a more

realistic view of what actual attacks are like than the 1999 UCI KDD dataset used in this thesis. However,

honeypots are designed to collect attack data only. The advantage of the honeypot is that it has no authorized

activity, and so any activity found on it is therefore unauthorized. However, it might be possible to somehow

combine this activity with simulated normal activity, perhaps by combining it with a dataset that contains

simulated normal activity. The simulated normal activity should resemble actual normal activity as much

as possible. Another possibility would be to compare it with a dataset that contains both simulated normal
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and attack connections (such as from the UCI KDD dataset). In this way it may be possible to obtain more

accurate data about intrusions without using data from real networks.
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APPENDIX

The Backpropagation Learning Algorithm

In an artificial neural network (ANN), backpropagation can be used to update the weights in the hidden

layers. In order to perform backpropagation, the ANN must first calculate δE
δwi,j

, the derivative of the error,

E, with respect to the weight, w, of the link from neuron j to neuron i (this error is calculated by traveling

the links backward, from i to j). There is only one error, E, which is the sum of the errors of the output

neurons. The value is calculated as follows:

Let v be the total number of examples.

Let z be the total number of neurons in the output layer.

Let e be the example for which the error is being calculated.

Let j be the output neuron for which the error is being calculated (the hidden nodes use this error to

compute their δ’s since the error of those nodes cannot be directly calculated).

predicted = f(
∑z

j=1 wkyk) = f(aj)

E = 1
2

∑v
e=0

∑z
j=0(actuale,n − predictede,n)2

= 1
2

∑v
e=0

∑z
j=0(actuale,n − f(

∑p
i=1 wkvk))2

= 1
2

∑v
e=0

∑z
j=0(actuale,n − f(aj))2

= 1
2

∑v
e=0

∑z
j=0(actuale,n − yj)2

(where p is the number of neurons in the layer previous to the output layer)

E =
∑z

e=0 Ee

Ee = 1
2

∑z
j=0(actuale,n − yj)2

δE

δwj,i
=

v∑
e=0

δEe

δwj,i

Using the chain rule it can be determined that
δEe

δwj,i
=

∑ δEe

δaj

δaj

δwj,i
.

δj =
δEe

δaj
=

δEe

δyj

δyj

δaj

Let u = actuale,n − yj

Then Ee = 1
2

∑z
n=0(u)2 =

∑z
n=0

1
2 (u)2

δEe

δyj
=

δEe

δu

δu

δyj
= (

∑z
n=0 u)u′ = (

∑z
j=0 actual − yj)(0− 1) = −(

∑z
j=0 actual − yj)

δyj

δaj
= f ′(aj) = f(aj)(1− f(aj)) = yj(1− yj) (in the case of the sigmoid function)

δj =
δEe

δaj
=

δEe

δyj

δyj

δaj
= −

z∑
e=0

(actuale,j − ye,j)f(ae,j)(1− f(ae,j)) = −
z∑

e=0

(actuale,j − ye,j)ye,j(1− ye,j) (for

output nodes when using the sigmoid function)
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where Err =
∑z

e=0(actuale,j − ye,j).

To calculate δk for the hidden layers, a different chain rule derivation can be used.

δk =
δEe

δak
=

δEe

δaj

δaj

δak

Where j is now the index to the neurons in the layer to which the output ak is sent. This gives

δk =
δEe

δak
= δj

δaj

δak

The second factor can then be calculated. Let z now be the total number of neurons in layer k

aj =
∑z

j=0 wj,kf(ak) =
∑z

j=0 wj,kyk,

we can see that
δaj

δak
=

δaj

δf(ak)
δf(ak)

δak
.

Therefore, let aj = wk,jf(ak) = wk,jyk and use the chain rule to obtain the first part as
δaj

δf(ak)
=

z∑
j=0

wk,j .

The value is therefore wk,j for all nodes j connected to k. If the neural net is not fully-connected, then

some of these values will be zero.

The second part can be calculated as
δf(ak)

δak
= f ′(ak).

Therefore,
δaj

δak
= (

z∑
j=0

wk,j)f ′(ak).

This means that

δk =
δEe

δak
= δj

δaj

δak
= (

∑z
j=0 δjwk,j)f ′(ak).

For the sigmoid function, the equation is

δk =
δEe

δak
= δj

δaj

δak
= (

∑z
j=0 δjwk,j)f(ak)(1− f(ak)) = (

∑z
j=0 δjwk,j)yk(1− yk).

Now, recall that
δEe

δwk,j
=

∑
δj

δak

δwk,j
.

Because ak = wk,jyl,
δak

δwk,j
= yl, where yl is the input to node k from node l.
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