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CHAPTER I 

 

INTRODUCTION 

 

Triple Negative Breast Cancer 

According to the National Cancer Institute, 1 in 8 women will develop invasive breast cancer 

during her lifetime, with over 200,000 women in the US diagnosed each year1. Approximately 

15% of these cancer diagnoses are classified as Triple Negative Breast Cancer (TNBC)2, 

meaning that these cancers lack the estrogen receptor (ER-), progesterone receptor (PR-) and 

lack of amplification of human epidermal growth factor receptor (Her2-) unlike other breast 

cancers. TNBC is a more aggressive form of breast cancer than ER+ or Her2 breast cancers. 

Patients presenting with TNBC typically have tumors of higher histological grade which are 

more likely to recur earlier at metastatic sites2. Like most cancers, breast cancer is a 

heterogeneous disease characterized by different morphologies, biology, and clinical evolution. 

This is due, in part, to the presence or absence of the different hormone receptors. These 

hormone receptors (ER, PR, Her2) are used for targeted therapies for breast cancer patients3,4. 

However, because TNBC cancers lack these receptors, they do not respond to these common 

targeted therapies. Therefore, in addition to radiation or surgery, the standard course of treatment 

is chemotherapy—which indiscriminately kills rapidly dividing cells, not just the cancer cells. 

Many patients do not respond well to chemotherapies, and their cancers tend to recur with early 

metastasis and a poor prognosis due to developed drug resistance5. Due to these issues with 
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TNBC treatment, there is a major need to understand the molecular basis of TNBC and to 

develop more effective treatments with this knowledge.  

 

TNBC subtypes 

Not only is breast cancer a heterogeneous disease, but the classification of TNBC is 

heterogeneous itself. Expression profiling done by the Pietenpol lab has established seven 

subtypes within TNBC (as seen in Table 1)6. Of these subtypes, the basal-like (BL) subtype 

represents the most prominent TNBC subtype. Therefore, the work presented in this thesis 

focuses on a BL2 model cell line, HCC1806.  The heterogeneity of the disease and the absence 

of well-defined molecular targets together make TNBC difficult to treat. My hope is to shed light 

on some up-and-coming treatments and to help gain insight into how to enhance these treatments 

for women with TNBC.   

 

Epigenetics in Cancer 

The traits that make up the morphology of a cell are encoded in the cell’s genome. The cells 

within an organism all have the same genetic background, with the exception of some somatic 

mutations. So, how do cells with the same genetic makeup become different tissues? While 

mutations may be the drivers for some cancers, including some subtypes of TNBC, not all 

TNBCs have common somatic mutations, which makes it difficult to identify driver mutations 

for targeted therapies7. How do some of these cells become cancerous while others remain 

healthy? One theory is that cancer is driven by abnormalities at both the epigenetic level as well 

as in the genomic DNA8.  
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Table 1: Preclinical Models for TNBC 

 

Cell Line Cancer Type Subtype Known Mutations 
HCC38 TNBC Basal-like 1 CDKN2A, TP53 
MDA-MB-
468 TNBC Basal-like 1 PTEN, RB1, SMAD4, TP53 

HCC1806 TNBC Basal-like 2 
CDKN2A, KDM6A, STK11, TP53, 
UTX 

SUM149 TNBC Basal-like 2 BRCA1 
MDA-MB-
453 TNBC Luminal CDH1, PIK3CA, PTEN 
CAL51 TNBC Mesenchymal PI3KCA 
    

  Controls   
  

MCF10A 
non-cancerous breast 

tissue 
  MCF7 ER+ breast cancer 
      
  HeLa Ovarian 
  HEK293 Kidney 
   

*Mutations taken from COSMIC database (sanger.ac.uk/genetics/CGP/cosmic/) 
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Epigenetics is the study of heritable changes in gene expression that do not involve changes to 

the DNA sequence itself.  The epigenome is made up of DNA methylation patterns and 

posttranslational histone modifications9, which help determine when a gene is turned on or off. 

These changes can affect gene expression patterns, and therefore physiology throughout normal-

development and in disease states8. Posttranslational modifications on histone tails make up the 

“histone code”. It is thought that much like the genetic code, the histone code can be decoded to 

reveal another layer of information on the genome10. The modification of histone tails regulates 

how compact or accessible the genome is to factors that control rates of transcription. Therefore, 

dysregulation of epigenetic control and disruption of the chromatin are hallmarks of 

tumorigenesis8, due to the cell’s ability to disrupt normal transcription. While there are many 

known epigenetic marks, this thesis focuses on acetylation of histone tails and a drug implicated 

with this modification in TNBC.  

The histone code can be read to reveal important biological regions of the genome, such as 

enhancers, promoters, heterochromatin, transcription termination sites (TTS), and repressed 

chromatin, to name a few. Promoters are cis-acting regions upstream of transcription start sites 

(TSS) of a gene where initiation of transcription occurs11. Enhancers are also cis-acting elements 

that activate transcription in an orientation and distance independent manner12. Transcription 

factors interact with promoters and enhancers to activate (or repress) transcription of genes. By 

defining active enhancers and promoters, we are able to gauge the epigenetic landscape and the 

potential effects of the epigenome on cancer cells.  
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Histone Deacetylases as Therapeutic Targets 

As the role of epigenetic dysregulation is becoming more apparent in cancer, inhibitors targeting 

proteins involved in the regulation of epigenetic marks are being developed by pharmaceutical 

companies. Histone acetylation was the first histone modification discovered 50 years ago and 

the acetylation of histones has since been associated with gene activation9. Importantly, histone 

deactylase inhibitors (HDACi) have recently emerged as promising anti-cancer drugs13.  

Many biological roles have been attributed to the 18 HDACs characterized in humans. These 

roles include the regulation of transcription, cell cycle progression, and DNA damage and 

replication9, emphasizing the complex role HDACs play in the cell. HDACs are further classified 

into four subcategories based on their homology to S. cerevisiae. One of the primary functions of 

HDACs is to oppose the actions of histone acetyltransferases (HATs). HATs acetylate the ε-

amino groups of lysine residues of histone tails while HDACs remove the acetylation from the 

histone tails, which restores the positive charge of the lysine residue9. The change in the charge 

is what creates the “opening” and “closing” of the chromatin structure due to the change of 

affinity between the histone and DNA. When there is no acetylation on the histone, the positive 

charge of the lysines creates a more compact, or closed, chromatin structure. The removal of this 

positive charge through acetylation decreases the histone’s affinity to the negatively charged 

DNA, which allows unwinding and opening of the chromatin9. This is why acetylation is 

associated with active transcription.  

Because of the reversible nature of epigenetic alterations, epigenetic therapy has become a 

promising candidate for cancer research8. HDACi especially are gaining traction as viable 

targeted therapies in certain cancers. As of November 2015, three HDACi, Vorinostat, 

Depsipeptide and Panobinostat, have been FDA approved. The first two were approved to treat 
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cutaneous T-cell lymphoma while the third just received approval to treat multiple myeloma 

(clinicaltrials.gov). At least 12 different HDAC inhibitors are in clinical trials for both 

hematologic and solid tumors. Indeed, class I HDACs are aberrantly overexpressed in several 

cancers, including breast and lung14-16. Although there are no FDA approved epigenetic drugs 

currently for the treatment of breast cancer17, Panobinostat is currently in clinical trials for use in 

breast cancer18.  Taken together, this led us to investigate the ability of Panobinostat to halt cell 

growth specifically in TNBC, since the physiological impact and mechanism of action in TNBC 

remains largely unknown.  

 

Tumor Suppressor Genes 

Tumor Suppressor Genes (TSGs) are often mutated in cancers. These genes get their name 

because they regulate cell growth through preventing uncontrolled growth. In normal functioning 

cells, TSGs work in balance with proto-oncogenes to keep the cell under regulated control. 

Cancer causing TSG mutations typically inactivate the TSG, which frees the cells from the 

growth suppression19. It is thought that most malignancies occur following inactivating 

mutations in TSGs and activating mutations in oncogenes. TSGs fall under many categories, but 

some common ones are DNA damage and repair genes (BRCA1/2, ATM), genes involved in 

signaling (PTEN, EGR1) and transcription factors (TP53, FOXA2)20. An imbalance of TSGs and 

oncogenes may lead to an imbalance of proliferation and homeostasis. As proliferation begins to 

dominate, uncontrolled growth occurs resulting in tumorigenesis.   
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Specific Aims and Summary of Results 

I hypothesize that transcription of TSGs is repressed in TNBC cells through aberrant epigenetic 

silencing via histone lysine deacetylation. My thesis project aims to test that increased chromatin 

acetylation associated with Panobinostat treatment leads to increased TSG expression and 

growth inhibition. This hypothesis is summarized in the model seen in Figure 1.  

To test this hypothesis, I proposed multiple methods to determine the effects of Panobinostat. I 

first set out to determine the physiological impact that HDAC inhibition has on TNBC cell 

growth. Using a spectrum of several preclinical models representing different TNBC subtypes, I 

found that nearly all TNBC subtypes tested are sensitive to the HDACi, Panobinostat. Since one 

of the primary actions of HDACs is deacetylating histones, I predicted that Panobinostat was 

causing increased acetylation of histones. It was confirmed through western blot analysis that 

specific histone marks were becoming hyperacetylated following Panobinostat treatment.  

In Aim 2, I set out to determine what the epigenetic changes were. I sought to answer the 

questions “where is the increase in acetylation located throughout the genome?” and “is the 

increase in acetylation correlated with an increase in transcription at these loci?”. As my model 

shows, I hypothesized that the increased acetylation of histones was occurring at the promoters 

and enhancers of TSGs. I also predicted that these TSGs would have upregulated expression 

following Panobinostat treatment. This upregulation would then be responsible for the growth 

hindrance of the TNBC cells. To identify the genes most sensitive to HDAC inhibition, I 

conducted a genome-wide transcription profiling by PRO-seq and a genome-wide epigenetic 

profiling by ChIP-exo at several time points of HDACi treatment.   
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Figure 1: Model for HDACi mediated impairment of TNBC cell growth. The epigenetic state 
of cancerous cells is aberrant, through deacetylation of lysine (K) on histone tails and other 
repressive marks (i.e.) H3K9me) leading to repression of TSGs. Panobinostat leads to the 
hyperacetylation of these repressed regulatory regions, enabling the transcription of TSGs and 
therefore inhibiting cell growth.  
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CHAPTER II 

 

PHYSIOLOGICAL EFFECTS OF HDAC INHIBITION ON TNBC CELLS 

 

Introduction 

While Hanahan and Weinberg established that the ability of cells to evade apoptosis is a 

hallmark of most cancers, each cancer may be unique in its mechanism for this evasion21. It is 

well documented that the epigenome of cancer cells is often dysregulated, and this dysregulation 

is one mechanism that may enable cells to bypass surveillance pathways that would otherwise 

cause the cells to undergo apoptosis or senescence.  

Due to the overwhelming evidence that the epigenome is dysregulated in cancers, investigators 

have begun evaluating the effectiveness of epigenomic therapies in clinical trials. One of these 

therapies is the HDACi, Panobinostat (LBH589). In other preclinical studies of Panobinostat, 

investigators have confirmed that Panobinostat is a potent pan-HDACi that has an inhibitory 

effect on a wide range of hematologic malignancies at low nanomolar concentrations22. These 

affects are hypothesized to be an effect of inhibiting multiple cancer related pathways and 

reversing the aberrant epigenetics implicated in tumorogenesis23.  There are currently a few 

preclinical studies occurring in solid tumors as well. Based on the preclinical studies, 

Panobinostat has undergone rapid clinical development, where it has been approved for use in 

some hematological malignancies and is currently in clinical trials for some solid tumors. In both 

hematological malignancies and solid tumors, Panobinostat has shown promising clinical 

responses with low levels of toxicity2. However, whether Panobinostat treatment results in the 

associated epigenetic changes in TNBC remains unclear. Establishing this link will enable 
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investigators to develop appropriate combinatorial therapies that may result in more effective 

TNBC cancer treatments.  

To test our hypothesis (Figure 1) that Panobinostat inhibits a broad panel of TNBC subtypes, I 

assessed Panobinostat’s effects on the cell growth of a representative panel of TNBC subtypes, 

characterized by the Pietenpol lab6. I further sought to characterize the effects Panobinostat had 

on histone acetylation and gene expression in the BL2 model, HCC1806. 

Since Panobinostat is an HDAC inhibitor, our model (Figure 1) predicts that Panobinostat 

treatment would cause an increase of histone acetylation in the cells. The Collins-Burow’s lab 

also showed that increased acetylation occurred following Panobinostat treatment2, but did not 

analyze this increase genome-wide. Again, I wanted to both verify and expand on their findings. 

I set out to show that in our model cell line, HCC1806, histone acetylation increased at multiple 

histone marks in the 16-hour time frame of our study. These preliminary studies will allow me to 

continue on to my in-depth epigenetic studies.  

 

Materials and Methods 

 

Cell lines 

Human TNBC (HCC-1806, HCC-38, MDA-MB-468, MDA-MB-453), human mammary 

epithelial cells (MCF-10A), cells characterized as ER-positive/PR-positive breast cancer (MCF-

7), human embryonic kidney cells (HEK293T), and human cervical adenocarcinoma cells 

(HeLa) were all obtained from ATCC.  SUM149 (TNBC cells) was provided by Asterand. CAL-

51 (TNBC) cells were obtained through the Leibniz-Institut DSMZ.  Each of the TNBC cell lines 

requires a different growth media, whose recipes are detailed in Table 2.  The cells were all  
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Table 2 
 

Cell culture conditions 
Cell Line Media Recipe 

HCC-1806 
RPMI 1640 (Gibco 11875-093), 10% bovine serum (Gibco 16170-
078), 1% penicillin/streptomycin (Gibco-15146-122), and 1% L. 
glutamine (Gibco  25030-081) 

HCC-38 RPMI 1640, 10% bovine serum, 1% penicillin/streptomycin and 1% 
L. glutamine 

SUM149 
Ham’s F12 (1:1) nutrient mix (Gibco 11765-054), 5% bovine serum, 
0.2 units of insulin/mL (Novolin), and 1µg/mL hydrocortisone 
(Sigma H0888) 

MDA-MB-468 DMEM (Gibco 11995-065), 10% bovine serum and 1% 
penicillin/streptomycin 

CAL51 DMEM, 10% bovine serum and 1% penicillin/streptomycin 
HEK293TA DMEM, 10% bovine serum and 1% penicillin/streptomycin 

HeLa DMEM, 10% bovine serum and 1% penicillin/streptomycin 

MDA-MB-453 DMEM, 10% bovine serum, and 1µg/100mL EGF (Life 
Technologies PHG0311) 

MCF7 Advanced DMEM (Gibco 12491-015), 10% bovine serum, 1% 
penicillin/streptomycin and  0.2 units of insulin/mL 

MCF10A 
DMEM/F-12 with HEPES (Gibco 11330-032), 5% bovine serum, 1% 
penicillin/streptomycin, 2µg/100mL EGF, .2 units of insulin/mL, 0.1 
mg/mL cholera toxin(Sigma C8052), and 0.5µg/mL hydrocortisone 
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maintained at 37°C in 5% CO2. 

 

Drug Screen 

Each adherent cell line was plated in triplicate in 96-well plates, at ~20% confluency in 100µl of 

media (Table 2) and allowed to attach to the microtiter plate overnight. To determine the IC50, 

the cells were then treated with a range of Panobinostat  (Selleck Chemicals #S1030) 

concentrations (10nM, 30nM, 100nM, 300nM, 1µM, 3µM, and 10µM) or an equivalent 

concentration of DMSO for 72 hours.   

 

MTT cell proliferation assay 

The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay is a colorimetric 

assay, in which cell proliferation is measured by the color change of the yellow MTT dye to the 

reduced formazan, which is purple in color. Each assay was performed according to 

manufacturer’s instructions (Sigma-Aldrich) in triplicate. Briefly, after 72 hours of drug 

treatment, media was replaced with fresh media and 10µl of MTT reagent was added to each 

well. Cells were incubated for 1-6 hours (until color change apparent) followed by the addition 

of 100µl of SDS solubilizing reagent to each well. After incubating plates overnight at 37°C, the 

absorbance was measured at 560nm. The percent viability was determined by the ratio of drug 

treated cells to DMSO treated cells.   

 

Immunoblot analysis 

Cell pellets were resuspended in 1x protein sample buffer (10% glycerol, 2.5% SDS, 0.7135M β-

mercaptoethanol, 0.002% bromophenol blue, 62.5mM Tris-HCl pH 6.8), and heated at 95°C for 
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5 minutes. SDS-PAGE was performed on 15% acrylamide gels, loading 1x105 cell equivalents of 

whole cell extract/well. The separated proteins were then transferred to 0.2µm nitrocellulose 

membranes at 30V for 70 min in western transfer buffer (25mM KH2PO4, 25mM K2HPO4, 

0.5mM EDTA pH 7.2) with 20% methanol. After transfer, the membranes were blocked with 5% 

milk in TBST (10mM Tris-Hcl, 5mM HCl, 150mM NaCl, 0.1% Tween 20) and then probed 

with Ac-Histone H3 (Lys9/14) (sc-8655, 1:500 dilution) from Santa Cruz Biotechnologies, 

H3K27Ac (ab4729, 1:2000 dilution) or H3K9Ac (ab4441, 1:2000 dilution) from Abcam. The 

membranes were then stripped with two washes in stripping buffer (1.5% glycine, 0.1% SDS, 

10% Tween 20, pH 2.2), as described by Abcam, and probed for Histone H3 (Santa Cruz; sc-

10809, 1:500 dilution) as a loading control. Each blot was probed with the appropriate anti-rabbit 

or anti-goat secondary antibody from Santa Cruz (sc-2004 or sc-2020). Proteins were detected 

with BioRad Clarity ECL substrate following manufacturer’s instructions and imaged using 

BioRad ImageQuant apparatus.  

 

Results and Discussion 

 

Cytotoxicity in response to Panobinostat 

Although a previous report showed that at least one TNBC cell line was sensitive to 

Panobinostat2, it was not known whether the full panel of TNBC subtypes were also sensitive to 

Panobinostat. Thus, I wanted to test Panobinostat’s effectiveness in a range of TNBC subtypes as 

defined by the Pietenpol lab (Table 1). After Panobinostat treatment for 72 hours, IC50s were 

determined for 10 cell lines. The IC50s were determined after graphing the MTT normalized 

absorbance vs. the Panobinostat treatment concentration and measured as the concentration of 
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Panobinostat in which 50% of the cells were viable as compared to DMSO control (set at 100% 

cell concentration). An example of this can be seen in Figure 2.  

Panobinostat appears to have potent anti-proliferative activity against TNBC cells. The non-

TNBC breast cells are less sensitive to the Panobinostat treatment than the TNBC cells, but are 

more sensitive than the other tissue controls. As shown in Figure 2, after 72 hours, the non-breast 

tissue cells remained insensitive to higher concentrations of Panobinostat. As seen in Figures 2 

and 3, the IC50 of HCC1806 was measured at 35nM. There is a plateau at higher concentration of 

the drug that does not dip down to 0% viability. This may be due to maximum inhibitory effect 

of the drug. The IC50s were determined in a similar way for each of the 10 cell lines tested which 

are summarized in Figure 3 and can be seen in Supplemental Figure 1 in Appendix C. The 

highest IC50 for the TNBC cell lines was MDA-MB-468 at 87nM, consistent with a previous 

report2. All of the other TNBC cell lines had IC50s between 20 and 40nM. The IC50s for the HeLa 

and HEK293 control cells were 313 and 436 nM, respectively. Meanwhile, the IC50s for the 

breast tissue control lines were 187 and 163nM for MCF7 and MCF10A, respectively. Due to 

these IC50s it is evident that TNBC is more sensitive to Panobinostat than other cell lines.  

These findings expand upon previous reports2, and confirm some of their initial findings. The 

Collins-Burow’s lab also found that MDA-MB-468 was the least sensitive TNBC cell line to 

Panobinostat treatment. The relatively higher resistance of MDA-MB-468 to Panobinostat does 

not appear to be subtype specific because HCC-38 is also basal-like (BL1) TNBC. It would be 

interesting to determine what features of MDA-MB-468 make it more resistant to Panobinostat, 

but currently this remains unknown. There are a few limitations to the previous report on 

Panobinostat sensitivity in TNBC.  Only a few subtypes of TNBC were tested with Panobinostat 

treatment instead of a full panel, there were few controls, and their sensitivity assays were not  
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Figure 2. HCC1806 sensitivity to Panobinostat. After 72 hours of treatment with varying 
ranges of Panobinostat concentrations, the HCC1806 cells were subjected to the MTT assay. The 
MTT absorbance for each Panobinostat treatment was normalized to the absorbance for cells 
treated with DMSO. This ratio was then plotted against Panobinostat concentration. The dashed 
line represents cell viability of 50%. The corresponding x-axis value (Panobinostat 
concentration) represents the IC50. This assay was done in triplicate, and error bars represent the 
standard deviation. A) The dose response curve for 0-500nM Panobinostat treatment. B) 
Zoomed-in dose response to 0-100nM Panobinostat treatment.  
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Figure 3. TNBC cells are more sensitive to Panobinostat than control.  
The IC50 for each cell line was determined by the MTT assay and dose response curves as 
described in Figure 3. The HCC1806 bar in red is the cell line focused on through the remainder 
of this thesis. Orange bars represent the other TNBC cell lines tested. The yellow bars are other 
breast tissue derived cell lines and the grey and black bars represent other control lines. Each cell 
line was tested in triplicate, and the error bars represent the standard deviation. P-values were 
determined through unpaired student’s t-test with unequal variance (*p-value<0.05, ** p-value 
<0.03, *** p-value <0.01, as compared to all TNBC cell lines), with respect to the IC50 of 
HCC1806. 
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dose dependent, so they were not able to quantitate IC50s. In their publication, the Collins-

Burows’ lab only tested ER+ breast cancer cells as a control. I expanded on this by using a non-

invasive breast-tissue derived cell line, MCF10A, and non-mammary tissue controls (HeLa and 

HEK293). The Collins-Burow group also only tested their control cells in 200nM of 

Panobinostat for 24 hours, and claimed that these cells were insensitive to the Panobinostat 

treatment. At these ranges, IC50s could not be determined for control cells. I showed that the cells 

used for controls remained insensitive at longer hours and higher concentrations of Panobinostat, 

and that a wider variety of TNBC cells were sensitive under the same conditions.  

 

Histone acetylation in response to HDACi 

At the onset of this project, Panobinostat was being used to treat TNBC in Phase 1 and Phase 2 

clinical trials, however the mechanism of action remained unestablished. After verifying that 

TNBC cells were sensitive to HDACi, I sought to determine if the bulk histone acetylation was 

increasing. However, since the discovery of HDAC proteins, it has also been found that HDACs 

can acetylate non-histone proteins, such tubulin and p5324,25. Mechanisms for HDACi induction 

of cell death have been proposed, such as interference with chaperone proteins, free radical 

generation and induction of DNA damage, and upregulation of some cell cycle regulators (such 

as p21)26.  Thus, while my model focuses on the epigenetic basis for HDACi sensitivity, we 

cannot rule out other contributing factors.  With the next aspect of my hypothesis, I tested 

whether HDACi treatment leads to an increase in histone acetylation. Immunoblot analysis 

(Figure 4) showed that histone acetylation did increase following Panobinostat treatment in 

TNBC cells. In each of the 3 replicates, the acetylation of histones increases over the course of 

16 hours. Also, note that each lysine I tested increased in acetylation: “bulk acetylation” at  
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Figure 4. Histone acetylation following Panobinostat Treatment. HCC1806 cells were treated 
with 150nM Panobinostat and harvested at 1, 4, or 16 hours. The vehicle control is DMSO 
treated HCC1806 cells. The blots were probed with the antibodies indicated on the left, with H3 
representing the loading control.  
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H3K9,14Ac, and lysine specific acetylation at H3K9 and H3K27. From this analysis, we can also 

see that acetylation begins to increase within 1 hour of treatment and continues to increase 

throughout the 16 hour time frame. This data allowed me to hone in on experimental conditions 

and continue on to the epigenetic and transcriptional profiling.  Thus, to minimize the 

contribution of indirect effects, for the work in Chapter III I focused our epigenetic and 

transcriptional studies within the early 1-4 hour time frame. 

In summary, I found that treating a diverse panel of TNBC cell lines with Panobinostat impaired 

their growth.  A caveat to my viability assay is that it does not distinguish between cytostatic and 

cytotoxic growth defects.  However, upon visual inspection of the treated cells, I found the 

confluency dramatically reduced below starting confluency (data not shown), which is consistent 

with at least some cytotoxic effect.  Importantly, I showed that TNBC cell growth was 

selectively sensitive to HDAC inhibition, compared to other unrelated cell lines. Then, I 

established that histone acetylation increases in HCC1806 cells. Each of these observations is 

consistent with our hypothesis that HDACi inhibits cell growth that is associated with changes in 

histone acetylation, which will be tested in more detail in Chapter III.  
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CHAPTER III 

 

EPIGENETIC AND TRANSCRIPTIONAL CHANGES ASSOCIATED WITH HDAC 
INIHIBITION 

 

Introduction 

Although there are many competing theories as to the mechanism behind cell death caused via 

HDAC inhibition, our model predicts that increased acetylation of enhancers and/or promoters of 

some TSGs leads to increased TSG expression, causing cell death. 

To test our model, I first established the baseline chromatin (epigenetic) state of the HCC1806 

cells. Chromatin states are defined by biologically meaningful combinations of chromatin marks 

linked both spatially and temporally27. These combinations of histone marks define certain 

regions of the genome with annotations such as enhancers, promoters and heterochromatin 

(Figure 5). To discover these states in the HCC1806 TNBC cell line I sought first to determine 

where each of the marks is found in the genome. I did this through ChIP-exo, a technique 

developed by the Pugh lab, focusing on the histone marks (Table 3) that the ENCODE project 

had previously published to discover chromatin states28.  After extensive epigenetic studies, these 

marks are known to be associated with specific regulatory regions of the genome; I have 

indicated the relevant marks, their location in the genome, and the proposed effects on gene 

repression in Figure 5 and Table 3. For example, Pol II, H3K4me3, H2A.Z, H3K27me3, and 

H3K27Ac can all be found at promoter regions. Some of these marks (H3K27me3) are 

associated with repressed promoters while others (H3K27Ac) are associated with activated 

promoters. By examining where in the genome these marks are found, we can establish which 

regions of the genome are active and which are likely being actively repressed. The same  
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Figure 5. Overview of Histone marks. This cschematic indicates which regions of the 
genome where histone marks and other proteins which we tested are typically located: 
promoters, enhancers and transcription termination sequences. Active chromatin is shaded 
green and repressive chromatin is shaded red27-29.  
 

Genomic Location 
Antibody 

Target Associated with 
Enhancer/Gene 

body H3K4me1 Activation 
Enhancer/Promoter H3K27Ac Activation 

Promoter H3K27me3 Repression 
Promoter H2A.Z Activation 
Promoter H3K4me3 Activation 

Gene Body H4K20me1 Activation/Repression 
Gene Body H3K4me2 Activation 
Insulator CTCF N/A 

Promoter/Gene 
Body Pol II Activation 

 
Table 3. Histone mark description. This table summarizes the information found in Figure 
5. It describes each of the antibodies used for ChIP-exo, where in the genome these histone 
modifications are typically found, and whether these histone marks are known to be 
associated with gene activation or repression27-29.  
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analysis can be performed on enhancer regions as well, using a different pattern of histone 

marks.  

By combining chromatin immunoprecipitation assays with high throughput sequencing, 

ChIP-seq is a powerful tool for mapping the genome-wide locations of proteins. While ChIP-

seq has been used to examine the DNA sequences for which transcription factors bind, it is 

also a powerful tool for examining the locations of different histone modifications 

throughout the genome30. The development of ChIP-exo has allowed improvement to 

resolution over the popular ChIP-seq technique. To improve resolution compared to ChIP-

seq, ChIP-exo applies lambda exonuclease to immunoprecipitated chromatin, thereby 

identifying cross-linked points31. The added advantage over ChIP-seq is that ChIP-exo 

improves the factor mapping resolution from a few hundred base pairs to only a couple of base 

pairs while simultaneously increasing signal to noise31. I applied ChIP-exo to each of the nine 

targets listed in Table 3.  As each cell type has a unique epigenetic landscape, these libraries will 

allow me to assess the epigenome of unperturbed HCC1806 cells and will also provide a 

reference map of chromatin states.  Identifying chromatin states in unperturbed HCC1806 cells 

will allow me to better interpret the changes in H3K27Ac occupancy after HDACi treatment. 

After examining where in the genome these marks are located, I wanted to evaluate regulatory 

regions in HCC1806 by analyzing the chromatin states. To learn chromatin states and the 

regulatory regions they define in HCC1806 cells, I used the computational program 

ChromHMM. The computational challenge for learning chromatin states from large data sets in 

multiple cell types is a bioinformatics’ burden. ChromHMM was developed to automate the 

process of learning chromatin states and characterizing a proposed biological function for each 

state27. ChromHMM uses Hidden Markov Modeling (HMM) to analyze each individual mark by  
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Figure 6. Model of ChromHMM pattern recognition. ChromHMM recognizes spatial patterns 
of chromatin marks across the genomes and classifies distinct patterns of histone marks and other 
factors. These states can then further be classified as different genomic regions passed on the 
absence or presence of particular marks. Each triangle is colored to represent a certain mark or 
factor as per the legend. The groupings of the states as promoters (Pol II, H3K4me3, and 
H3K27Ac), gene body (H4K20me1) and enhancer (H3K4me1 and H3K27Ac) based on the 
pattern of the particular histone marks.  
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examining the patterns that each mark forms and the relationship to other marks analyzed as seen 

in Figure 6. HMM is a common statistical tool used for temporal pattern recognition. The 

ChromHMM program utilizes HMM to process data on chromatin mark locations and outputs a 

number of states based on the probability that certain marks are found together. Each of these 

patterns can then be analyzed based on the presence or absence of certain marks to infer 

biological function, such promoters, enhancers, etc. The program uses the presence of different 

domains, such as proximity to TSS, exons, CpG islands, and Lamin B1 associated domains 

(LADs), to further annotate the different chromatin states27. ChromHMM learns patterns of 

recognition of different chromatin marks across the genome, and outputs them in such a way that 

you can annotate the regions as different chromatin states to learn the epigenetic profile of the 

cell-line.  

After learning the baseline for each of the states, I sought to determine the effect of Panobinostat 

on a representative epigenetic mark (H3K27Ac) after 1 or 4 hours of treatment. I focused my 

efforts on changes to H3K27Ac because this mark is found at both promoters and enhancers, and 

is associated with gene activation32,33. Therefore, this mark is a prime example for our hypothesis 

that increased acetylation at both promoters and enhancers leads to increased transcription of 

tumor suppressor genes, leading to cell death. Following our ChromHMM analysis on the 

HCC1806 baseline chromatin state, we can examine the learned regions (promoters and 

enhancers) and how H3K27Ac increases or decreases at each of these regions following 

Panobinostat treatment. Since H3K27Ac is found in both promoters and enhancers and activates 

the corresponding genes, it is an ideal target from which to start our analysis.  

To study the change in acetylation marks, we examined differential occupancy of H3K27Ac 

using the program HOMER. HOMER (Hypergeometric Optimization of Motif EnRichment) is a 
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suite of command line tools for next-gen sequencing analysis, including ChIP-seq (or –exo) and 

RNA-seq (or PRO-seq) analysis. For ChIP data, the software finds, annotates, quantifies, and 

applies statistical metrics to each peak34. The quantification of peaks from HOMER can then be 

used in a differential expression package, edgeR, to determine statistically significant (false 

discovery rate) changes in peak occupancy or expression. Using HOMER, we sought to uncover 

which genes and associated regions of the genome H2K27Ac occupancy is altered upon HDACi 

treatment.  

The final aspect of our model I wanted to test was the connection between histone modifications 

and gene expression.  To do this, I prepared PRO-seq libraries to collect data on de novo 

transcription before and after HDACi treatment. PRO-seq is a technique developed by the Lis 

lab, which modifies the classic nuclear run-on assay by adding a biotin-labeled nucleotide, 

allowing nascent transcripts to be isolated with streptavidin resin and mapped with next-

generation sequencing35. From these PRO-seq libraries, I was able to determine which genes 

were being upregulated after HDACi treatment, with a focus on TSGs (genes that encode a 

protein that protects the cell from dysregulated growth). Next, I applied k-means clustering to 

identify groups of genes with similar patterns of expression in response to HDACi.  These gene 

groups were further analyzed with Gene Ontology to reveal how biological pathways were 

affected. Then I aligned the transcriptionally upregulated genes with the differential H3K27Ac 

occupancy data to assess the link between promoter/enhancer acetylation and transcription in 

Panobinostat treated cells. Each of these steps and the results are detailed below in this final aim.  
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Materials and Methods 

In accordance with ENCODE guidelines, we prepared and sequenced at least two biological 

replicates for each sample library36.  

 

ChIP-exo 

In vivo Crosslinking, Cell Lysis and Chromatin Sonication 

In vivo crosslinking, cell lysis and chromatin sonication were performed as described previously 

by the Odom laboratory37. Cells were cross-linked with 1% formaldehyde solution for 10 

minutes at room temperature, and the reaction was quenched by adding 1/20 the volume of 2.5M 

glycine. Cells were then scraped from their plates and pelleted at 3000g for 4 min at 4°C. To 

obtain a nuclear lysate for ChIP that is free of most contaminating cytosolic proteins, the cell 

outer membrane is first lysed and solubilized, and then the nuclei are spun down. To lyse the 

cells, the pellet was resuspended in LB1 (50mM Hepes-KOH, pH 7.5, 140 mM NaCl, 1mM 

EDTA, 10% glycerol, 0.5% NP-40, 0.25% Triton X-100) and rocked at 4°C for 10 minutes. The 

nuclei were then pelleted at 4°C, 2000g, for 4 minutes. The pellet was washed in 10mL of LB2 

(10mM Tris-HCl, pH 8.0, 200mM NaCl, 1 mM EDTA, 0.5 mM EGTA) and rocked at 4°C for 5 

minutes. The suspension was pelleted at 2000g, 4°C for 5 minutes. The pellet was then 

resuspended in 1.5 mL LB3 (10mM Tris-HCl, pH 8.0, 100 mM NaCl, 1 mM EDTA, 0.5 mM 

EGTA, 0.1% Na-Deoxycholate, 0.5% N-lauroylsarcosine) to lyse the nuclear membrane. This 

suspension was then transferred to 15mL polystyrene tubes and sonicated using the Diagenode 

Biorupter, on medium power, for 2 cycles lasting 10 minutes of alternating 30 seconds on and 30 

seconds off (for 20 minutes total). After sonication, insoluble chromatin and nuclear debris were 

removed by centrifugation at 14,000rpm for 10 minutes at 4°C. The sonication conditions were 
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optimized to obtain DNA fragment lengths between 200-500bp (Appendix C-Supplemental 

Figure 2). This sonicated chromatin lysate is used in the ChIP assays detailed below. 

Antibodies 

The antibodies used for ChIP-exo and immunoblots include: Pol II (sc-899) from Santa Cruz 

Biotechnologies; H2A.Z (07-594), CTCF (07-729) and H3K27me3 (07-449) from Millipore; 

H3K27Ac (ab4729), H3K4me1 (ab8895), H3K4me2 (ab7766), H3K4me3 (ab8580), H3K9Ac 

(ab4441), and H4K20me1 (ab9051) from Abcam.  

Chromatin ImmunoPrecipitation-exonuclease 

A schematic of the ChIP-exo protocol described below can be seen in Appendix C, Supplemental 

Figure 3. Each ChIP assay was performed on 20-25 million cells using 5µg of antibody pre-

coupled to 2.5µl of PrG MagSepharose Xtra beads (GE Healthcare) for 4 hours at 4°C. After an 

overnight chromatin immunoprecipitation on a rotator at 4°C, the beads were washed 7 times in 

4°C lithium wash buffer (50mM HEPES, pH 7.6, 1mm EDTA, 0.7% Na-Deoxycholate, 1% NP-

40, 0.5 M LiCl) and then twice in 4°C Tris-HCl, pH 7.5. ChIP-exo proceeded as described 

previously38, with slight modifications noted below. The following incubations were performed 

on the PrG MagSepharose Xtra beads at 1400rpm in the thermomixer: 

1. End polishing: 1mM ATP, 100µM dNTPs, 1x NEB buffer 2 (50mM NaCl, 10mM Tris-

HCl, 10mM MgCl2, 1mM DTT, pH 7.9), 3U T4 DNA polymerase, 5U Klenow DNA 

polymerase, 10U T4 PNK at 30°C for 30 min.  

2. A-tailing: 100µM dATP, 1x NEB buffer 2, 5U Klenow 3’-5’ exo-minus at 37°C for 30 

min. 

3. Ligation of ExA2-adapter: 1mM ATP, 1x NEB buffer-2, 30pmol ExA2 adapter (with 

index for each sample), 1000U T4 DNA ligase at 25°C for 2 hours.  
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4. Nick Repair: 150µM dNTP, 1x Phi29 reaction buffer (50mM Tris-HCl pH 7.5, 10mM 

MgCl2, 10mM (NH4)2SO4, 1mM DTT, pH7.5), 15U phi29 DNA polymerase at 30°C for 

20 minutes. 

5. Kinase reaction: 1mM ATP, 1x NEB buffer-2, 10U T4 PNK, for 20 minutes at 37°C. 

6. Lambda exonuclease: 1x NEB Lambda exonuclease buffer (67 mM Glycine-HOH, 

2.5mM MgCl2, 50µg/mL BSA, pH 9.4) for 30 minutes at 37°C. 

7. RecJf nuclease: 1x NEB buffer-2, 30U RecJf exonuclease for 30 minutes at 37°C.  

8. Each previous step (1-7) was followed with 4 wash steps (2x RIPA-Lithium buffer 

washes, and 2x Tris-HCl pH7.5 washes).  

9. Elution and cross-link reversal: beads incubated overnight at 65°C with 20µg Proteinase 

K in 200µl ChIP elution buffer (50mM Tris-HCl pH 8.0, 10mM EDTA, 1% SDS). After 

overnight incubation, the supernatant was transferred to a new tube with 200µl TE buffer 

(10mM Tris, 1mM EDTA pH 7.4).  

10. The DNA was purified using phenol-chloroform-isoamyl alcohol extraction and ethanol 

precipitation. The DNA pellet was resuspended in 20µl ddH2O.  

11. P7 primer extension: The DNA is denatured at 95°C for 5 minutes and then added to 5 

pmol P7 primer and 1x Phi29 reaction buffer. This mixture was incubated for 5 minutes 

at 65°C and 2 minutes at 30°C. 10U of Phi29 polymerase was added to the reaction. This 

reaction was incubated in thermocycler for 20 minutes at 30°C and then 10 minutes at 

65°C. 

12. A-tailing: 0.1mM dATP, 1x NEB buffer-2, and 5U Klenow 3’-5’ exo minus were added 

to the previous reaction, which was then incubated at 37°C for 30 minutes and then 75°C 

for 20 minutes. 
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13. P5 adapter ligation: 15pmol ExA1-58/1, 1x NEB ligase buffer (50mM Tris-HCl, 10mM 

MgCl2, 1mM ATP, 10mM DTT at pH 7.5), and 1000U of T4 DNA ligase added to the 

previous reaction mix and incubated at 25°C for 2 hours.  

14. DNA was then purified using AMPure XP beads (1.8 times volume) from Agencourt for 

3 minutes. The beads were placed on a magnetic rack and the supernatant was discarded. 

The beads were then washed three times in 70% ethanol. The DNA was then eluted in 

10mM Tris-HCl pH 7.5. 

15. PCR amplification: The eluted DNA was PCR amplified using 0.5µM primers P1.3 and 

P2.1 in 1xQ5 reaction buffer (25mM TAPS-HCl pH 9.3, 50mM KCl, 2mM MgCl2, 1mM 

β-mercaptoethanol), 200µM of each dNTPs, and 1U of Q5 Hot Start DNA polymerase. 

PCR amplification was then run in the thermocycler with the following PCR program 

(Table 4).  

16. Gel-size purification: Excise PCR product between 200-500bp for each library from a 

1.5% agarose gel (Appendix C-Supplemental Figure 4). The product was then eluted 

from the gel using QIAquick Gel Extraction Kit (Qiagen) and eluted in 50µl of elution 

buffer (EB).  

17. Each library was quantified using a Qiagen Qbit fluorescence-based nucleic acid 

quantification system. Prior to sequencing, the Vanderbilt VANTAGE Sequencing Core 

conducted two quality control assays to verify DNA size (Agilent Bioanalyzer) and to 

precisely measure DNA concentration (qPCR). After libraries passed quality control, 

library DNA samples were sequenced on Illumina HiSeq 2500 or HiSeq3000/HiSeq4000 

systems following manufacturer’s protocol to obtain ~20M or more reads per library.  
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Table 4 
PCR program 

Temp (°C) Time Cycles 
98 30 sec 1 
98 10 sec  

21 52 30 sec 
72 20 sec 
72 2 min 1 
4 pause hold 
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Oligonucleotides 

Oligonucleotides used in the ChIP-exo protocol are described in Table 5.  

Oligonucleotide notes 

ExA2 has a 5’ phosphate required for lambda exonuclease digestion and a 3’ phosphothiorate 

(designated by the “S”) to prevent contaminating nuclease digestion of the sample DNA 3’-end. 

ExA1-58 also has a phosphothiorate before the terminal T, so as to prevent nuclease digestion. 

The ExA2 oligo needs to be annealed to the ExA2-33, prior to the ExA2 ligation in ChIP-exo. 

The ExA1-58 oligonucleotide also needs to be annealed to ExA1-13 oligonucleotide to create the 

double-stranded ExA1-58/13 adapter. The annealing is done by combining each oligonucleotide 

at a final 15µM concentration in 100mM Tris-HCl pH 7.5 and 50mM NaCl. The slow adapter 

annealing then occurs during the following thermocycler program: 95°C for 5 minutes, 72°C for 

5 minutes, 65°C for 2.5 minutes, 60°C for 2.5 minutes, 55°C for 1.5 minutes, 50°C for 1.5 

minutes, 45°C for 1.5 minutes, 40°C for 1.5 minutes, 30°C for 3 minutes, 20°C for 3 minutes, 

10°C for 3 minutes, and held at 4°C. The oligonucleotides were then aliquoted and stored in the -

80°C, until use.   

The barcode indexes used for Chip-exo (ExA2) and PRO-seq (RPI-index) are listed in the Table 

6.  

 

PRO-seq 

Nuclei Isolation 

Nuclear isolation was performed similarly to the method described previously,39 with the 

following modifications. First, cells were treated for 0, 1 and 4 hours with 150nM Panobinostat 
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Table 5 
ChIP-exo oligonucleotide sequences and purpose 

Name Sequence Purpose 
ExA2 5’/Phos/CAAGCAGAAGACGGCA

TACGAGATINDEXGTGACTGGA
GTTCAGACGTGTGCTCTTCCGA
TCST3’ 

Ligates to ChIP enriched DNA to 
add barcode sequence to each 
sample, which allows sample 
pooling and multiplexed 
sequencing 

ExA2-
33 

5’GATCGGAAGAGCACACGTCTGA
CTCCAGTCAC-3’ 
 

Required for Illumina sequencing 
chemistry 

ExA1-
58 

5’AATGATACGGCGACCACCGA
GATCTACACTCTTTCCCTACAC
GACGCTCTTCCGATCST-3’ 

Required for Illumina sequencing 
chemistry 

ExA1-
13 

5’ GATCGGAAGAGCG -3’ Required for Illumina sequencing 
chemistry 

P7 
primer 

5’ CTGGAGTTCAGACGT -3’ Used to fill-in ExA2 adapter 
complement 

P2.1 5’ AATGATACGGCGACCACC-3’ PCR amplification primer-anneals 
to ExA2 sequence 

P1.3 5’ 
CAAGCAGAAGACGGCATACGA
G-3’ 

PCR amplification primer- 
anneals to ExA1 sequence 

 

 

TABLE 6: ChIP-exo and PRO-seq Barcode Indexes 
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or DMSO and then nuclei were isolated from 3x107 cells. Four 15cm2 plates of 85% confluent 

HCC1806 cells were washed twice with cold PBS. Then, cold swelling buffer (10mM HEPES, 

pH 7.9, 340 mM Sucrose, 10nM KCl, 1.5mM MgCl2, 5mM DTT, Roche protease inhibitors 

cocktail) was added to each plate and incubated for 10 minutes. Cells were collected from the 

plate with rubber cell scrapers, pooled in to a 50mL tubes and cells were pelleted in a swinging 

bucket centrifuge at 1000g, 4°C for 5 minutes. Cells were then resuspended in lysis buffer 

(swelling buffer with 10%glycerol and 0.2% Triton X-100) and incubated on ice for 5 minutes.  

Then, the cells were dounce-homogenized 50 times to facilitate cell lysis. Lysis was verified by 

use of the vital stain, trypan blue. The nuclei were transferred to 15 mL tubes and then pelleted in 

swinging bucket rotor at 1200g, 4°C for 5 minutes. Nuclei were washed and pelleted in lysis 

buffer and then washed and pelleted once in glycerol storage buffer (50mM Tris-HCl pH 8.3, 

40% glycerol, 0.1 mM EDTA, 5 mM MgCl2, 5mM DTT, protease inhibitors cocktail (Roche)). 

Then, the nuclei were transferred to a 1.5 mL tube, resuspended in glycerol storage buffer at a 

concentration of 2.5-3.0 107/100µl of storage buffer and stored in -80°C until ready for use.   

Nuclear run-on reaction 

This procedure is summarized in Supplemental Figure 5, Appendix C. It is important to note that 

the Lis lab showed previously that no significant transcription occurs during the isolation 

protocol39. To begin the nuclear run-on reaction (NRO), 3x107 nuclei were added to 2x NRO 

mixture (10 mM Tris-HCl pH 8.0, 300mM KCl, 1% Sarkosyl, 5 mM MgCl2, 1mM DTT, 0.8 u/µl 

RNase inhibitor from Ambion) with 37.5µM ATP, UTP, and GTP, 500nM biotin-11-CTP 

(Roche), and the run-on proceded for 3 min at 30°C. Sarkosyl prevents transcription initiation by 

preventing reassociation of RNA polymerase to additional genomic locations (after nuclei 
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isolation)40. Therefore only genes that have engaged polymerase at the time of nuclear isolation 

will produce labeled transcripts. Importantly, transcripts produced prior to the addition of biotin-

nucleotides will not be included in the final library pool. Finally the sub-µM concentration of 

biotin-CTP limits elongation to only a few base pairs. This is how this procedure is able to 

measure nascent transcription. Total RNA was extracted with Trizol LS (Invitrogen) for 20 

minutes and then ethanol precipitated with 3x volume of 100% EtOH. The pellet was then 

washed in 75% EtOH, and resuspended in DEPC-treated H2O.  

Base Hydrolysis 

The extracted RNA was subjected to base hydrolysis for 10 min on ice.  This was done by 

adding NaOH to the RNA for a final concentration of 0.2 N for 10 minutes. The reaction was 

quenched by adding 25µl of 1M Tris-HCl pH 6.8. The reaction was then run through a P-30 

column (Bio-Rad) according to the manufacturer’s instructions to remove salts, nucleotides and 

small molecules from the reaction.  

Purification of biotin-CTP incorporated nascent RNA 

Homo-tetramers of Straptavidin have an extremely high affinity for biotin with a Kd on the order 

of ~10-14 mol/L41. We exploited this to pull out the nascent transcripts, which are tagged with 

biotin, from the reaction mixture. To begin, 30µl of Streptavadin M280 (Invitrogen) beads were 

washed once in a solution containing 0.1 N NaOH and 50mM NaCl. Then the beads were 

washed twice in 100mM NaCl and resuspended in binding buffer (10mM Tris-HCl pH 7.4, 

300mM NaCl, 0.1% Triton X-100). Total purified nuclear RNA was incubated with the beads for 

20 minutes at room temperature. The beads were then washed once in high salt wash (50mM 

Tris-HCl pH 7.4, 2M NaCl, 0.5% Triton X-100), once in binding buffer, and once in no salt 
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wash (5mM Tris-HCl pH 7.4, 0.1% Triton X-100).  The bound RNA was then extracted from the 

beads twice with Trizol for 10 minutes. The extraction was pooled and then RNA was EtOH 

precipitated as described previously.  

3’ RNA adapter ligation 

The purpose of this step is to attach the 3’ adapter to the nascent RNA. The nascent RNA was 

resuspended in DEPC-H2O with 20 pmol of the Rev3 adapter. To remove any secondary RNA 

structures, the mixture was heated to 65°C for 1 min. The reaction was then diluted to 10pmol 

Rev3 with 1x T4 RNA ligase buffer (50mM Tris-HCl pH 7.5, 10mM MgCl2, 1mM DTT), 2U/µL 

RNase inhibitor, 1mM ATP and 10U T4 RNA ligase I. This reaction proceeded for 6 hours at 

20°C and was then kept at 4°C until the following morning.   

2nd Purification of biotin-CTP incorporated nascent RNA 

This Streptavidin bead binding and RNA extraction proceeded as described in the “Purification 

of biotin-CTP incorporated nascent RNA” step above.  

5’ cap and triphosphate repair 

In order to prepare the 5’ end for subsequent ligations, the 5’ cap must be removed. Tobacco 

Acid Pyrophosphatase (TAP, Epicenter) removes the 5’ cap from the RNA transcripts. The RNA 

was incubated in 1x TAP buffer (50mM sodium acetate pH 6.0, 1mM EDTA, 0.1% β-

mercaptoethanol, and 0.01% Triton X-100), 2.5U TAP, and 1U/µl RNase inhibitor for 2 hours at 

37°C. The RNA was then extracted once with Trizol and ethanol precipitated as described 

previously.  
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Then, Polynucleotide Kinase (PNK, NEB) was used to ensure a 5’-phosphate is present for 

subsequent ligation. The precipitated RNA is resuspended in DEPC-H2O and then added to PNK 

mix with a final concentration of 1x PNK buffer (70mM Tris-HCl pH 7.6, 10mM MgCl2, 5mM 

DTT), 1mM ATP, 1U/µL RNase inhibitor, and 5U T4 PNK. The reaction proceeded at 37°C for 

1 hour. Then, RNA was extracted again by Trizol and EtOH precipitated.  

5’ RNA adapter ligation 

After the 5’ end of the RNA is repaired, the 5’ adapter can be ligated to the RNA. This was done 

similar to the 3’ adapter ligation (but with a different adapter) as follows: The nascent RNA was 

again resuspended in DEPC-H2O with 20 pmol of VRA5 adapter. This suspension was heated at 

65°C for 1 minute to remove any secondary RNA structures and then placed on ice. Then, the 

reaction was diluted to 10 pmol VRA5 adapter with 1x T4 RNA ligase buffer, 2U/µL RNase 

inhibitor, 1mM ATP and 10U T4 RNA ligase I. This reaction proceeded for 6 hours at 20°C and 

was then kept at 4°C overnight.   

3rd Purification of biotin-CTP incorporated nascent RNA 

This Streptavidin bead binding and RNA extraction proceeded as described in the “Purification 

of biotin-CTP incorporated nascent RNA” step above. 

Reverse transcription 

The RNA must be converted into a cDNA library prior to Illumina sequencing. This was done by 

reverse transcription of purified nascent RNA. The RP1 primer was used for reverse 

transcription. The RNA was first resuspended in 50pmol of RP1 primer and heated to 65°C for 5 

minutes. Then, the reaction buffer was added to the mixture for a final concentration of 1x first 
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strand synthesis buffer (50mM Tris-HCl pH 8.3, 75mM KCl, 3mM MgCl2), 10 mM DTT, 

625pmol each dNTP and 1U/µl RNase inhibitor. After incubating for 3 minutes at 48°C, 200U of 

Superscript III Reverse Transcriptase Invitrogen) was added to the reaction. This reaction was 

then incubated for 20 minutes at 44°C and then 52°C for 45 minutes, and then held at 4°C.   

Test amplification 

This step is used to optimize the PCR cycle number for each library. First, 8µl of H2O was added 

to the 10µl of RNA from the reverse transcriptase reaction.  Then, 1µL (or 1/18 of the total 

RNA) was diluted 8 fold. Then, 7 more four-fold serial dilutions were made by taking 2µL of the 

previous dilution and adding it to 6µL of H2O. PCR was done in the following reaction mix: 1x 

HF buffer (25 mM TAPS-HCl pH 9.3, 50mM KCl, 1.5mM MgCl, 1mM β-mercaptoethanol), 1M 

Betaine, 0.25µM primer Gx2short, 0.25µM RP1 short primer, 0.25mM each dNTP, and 0.4U of 

Phusion High-Fidelity DNA polymerase. The reaction ran for 35 cycles of 95°C denaturation, 

56°C annealing, and 72°C extension for 30 seconds at each step. The results were analyzed by 

electrophoresis on a 2% agarose gel. The library should run as a DNA smear between 60bp-

300bp (Appendix C, Supplemental Figure 6). The dilution that has the smear closest to this range 

was used to determine the cycle numbers for the full scale amplification.   

Full scale amplification PCR 

The remainder of the reverse transcriptase product was used for the full scale amplification. The 

same reaction mixture was used as in the test amplification, however, 12.5 pmol of RP1 and 12.5 

pmol of RPI-index primers were used in lieu of Gx2 short and RP1 short. The libraries were then 

amplified for 25-29 cycles depending on the results from the test amplification. The PCR product 
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was run on a 2% agarose gel and size excised for 200-400bp smear (Appendix C, Supplemental 

Figure 7). The DNA was then extracted from the gel using QIAquick Gel Extraction Kit 

(Qiagen) and eluted in 50µl of elution buffer (EB).  

Each library was quantified using a Qbit and sequenced on Illumina HiSeq 2500 following 

manufacturer’s protocol.  

Oligonucleotides 

The oligonucleotides used in the PRO-seq protocol are described in Table 7. The indexes are 

described in Table 6.  

 

Data analysis 

ChIP-exo sequence read mapping and data pre-processing 

All sample libraries were sequenced at the Vanderbilt VANTAGE core as single-read and 50 

nucleotides in length. According to ENCODE guidelines36, we targeted 20 million or more reads 

per data set. Reads that passed the base-calling quality filter were mapped to the hg19 human 

reference genome with BWA42 using default parameters. We filtered out reads mapping to 

multiple locations, and retained only uniquely mapped reads with SAMtools v0.1.1843. This step 

provides an initial metric of library quality by looking at uniquely mapped read ratios (Appendix 

C-Supplemental Table 1).  SAMtools was also used to sort the BAM files and create index files 

to view the aligned reads in the Interactive Genomics Viewer (IGV)44. We converted the BAM 

files to BED files using BEDtools v2.12.045. At this stage, the chromosomes were listed as 

numerical values. The tools used later in the pipeline do not recognize chromosomes in this 

format, so we reformatted the file to change “1” to “chr1”, “2” to “chr2” and so forth using    
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Table 7 
PRO-seq Oligonucleotide Sequences and Purpose 

Name Sequence Purpose 
Rev3 5'phosphate-

GAUCGUCGGACUGUAGAACUCU
GAAC-/3InvdT/ 

3’ RNA Adapter, template for 
Reverse transcription primer. 

VRA
5 

5'-CCUUGGCACCCGAGAAUUCCA 5’ RNA Adapter, recognized by 
PCR primers  

RP1 5’- 
AATGATACGGCGACCACCGAGAT
CTACAC 
GTTCAGAGTTCTACAGTCCGA  
 

Required for Illumina 
sequencing chemistry 

Gx2 
short 

5’-CAGAGTTCTACAGTCCGA  
 

Test PCR primer 

RP1 
short 

5’-CCTTGGCACCCGAGAATTCCA 
 

Test PCR primer 

RPI-
index  

5'-
CAAGCAGAAGACGGCATACGAG
AT INDEX GTGACTGGAGTT 
CCTTGGCACCCGAGAATTCCA 
 

Adds barcode sequence to each 
sample, which allows for 
sample pooling when 
sequencing 
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UNIX command line: 

sed ‘/^[^#]/s/^/chr/’ inputfile.bed > inputfile_chr.bed 

These files also contained short chromosome contigs that have little annotation and disrupt 

downstream analysis, such as chrGL000191.1, that needed to be removed. These chromosome 

contigs were removed with the UNIX command line: 

sed ‘/chrGL*/d’ inputfile_chr.bed > inputfile_chr_sed.bed 

These large BED file sizes were then converted to a more concise Genetrack Index (*.idx) file 

format using the tabs2genetrack.py python script. Each individual biological replicate was then 

subjected to peak calling using GeneTrack46 with a sigma of 20 (smoothes reads to call peaks) 

and an exclusion zone of 40 around each peak (prevents other peaks from being called in this 

region). Peaks were then paired if they existed on opposite strands and were offset by <80 bp 

(offsets in the downstream or 3’ direction) and were binned with a bin size of 3. Peaks in the 

ENCODE backlist region, which represents non-specific sequencing and/or mapping artifacts 

found in nearly all data sets, were removed36. Biological replicate reproducibility was assessed 

by first matching peak-pairs across replicates and then fitting a Pearson-correlation to the 

resulting scatter plot, with each axis representing a biological replicate.  Biological replicates that 

are reproducible have a strong positive correlation (R-value > 0.5) (see Appendix C-

Supplemental Figure 8). In nearly all instances, since our replicates met this criteria, we merged 

the reads from each individual biological replicate data set, and ran the merged BAM files 

through the same pipeline described above to call peaks.  
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PRO-seq data processing 

The PRO-seq data processing was performed in the same manner as ChIP-exo up to and 

including the peak-calling step. The ENCODE blacklist peaks36 were removed from the peak 

calling outputs. Replicate correlation graphs can be seen in Appendix C Supplemental Figure 9.  

 

ChIP-exo data analysis 

Hidden Markov Modeling of ChIP-exo data 

To determine the chromatin states and their locations across the HCC1806 genome, the merged 

files for each of the histone marks, CTCF, and Pol II were subjected to multivariate Hidden 

Markov Modeling with ChromHMM27. ChromHMM is an automated program that outputs 

chromatin state annotation using combinations of chromatin modification patterns. It models the 

chromatin states through observing combinations of chromatin marks using product independent 

Bernoulli random variables. This program creates robust learning of complete patterns of many 

chromatin modificaitons27.  

To conduct the ChromHMM analysis, first, BED files for all 6 histone modifications 

(H3K27me3, H4K20me1, H3K27Ac, H3K4me1, H3K4me2, H3K4me3) one histone variant 

(H2A.Z), one chromatin insulator (CTCF) and Pol II (with the “chr” added and the non-normal 

chromosomes removed) were converted to binary data using the BinarizeBed function, meaning 

the data is converted to the absence or presence of the mark across the genome. Then, the binary 

data can be piped into the LearnModel function, which will learn a certain number of chromatin 

states, based on the input. To identify the minimum number of non-redundant chromatin states, 

we processed the learn model with 4, 8, 12, 16, 20, and 24 number states. The LearnModel will 
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produce segmentation of chromatin states based on the input “numstates” option. The program 

generates both data files and graphical reports on: 1) emission states, 2) emission order/ 

transition states, 3) emission states’ biological category, and 4) emission states’ distances to TSS 

or TTS. The model with 12 chromatin states was chosen to proceed with further analysis, 

because it was the minimum state number that stratified the data without redundant states.  

Analyzing differential H3K27Ac ChIP-exo occupancy with HOMER 

HOMER is an all inclusive software suite that can analyze ChIP-seq and ChIP-exo peaks. It is 

able to find and annotate peaks based on read densities. These peak quantifications can then be 

used for RPKM analysis or differential occupancy analysis34.  Here, we use HOMER to find the 

RPKM for our Pol II libraries and to quantify peaks in our H3K27Ac libraries to prepare them 

for differential occupancy analysis with edgeR. The pre-processed replicates for PRO-seq were 

not merged, as HOMER accepts replicates in the input.  HOMER was run on the Pol II, PRO-

seq, and H3K27Ac data sets. To generate correctly formatted input files for HOMER, I 

converted our BED files to BAM files using BEDtools bedtoBam function. This eliminated the 

possibility that our BED files would not be read correctly. The BAM files were then used to 

create Tag Directories with the makeTagDirectory function, which transforms the data into a 

platform independent format and performs quality control checks (such as checking GC content). 

We then used the findPeaks function to find enriched peaks within our data. For the Pol II data 

set, we used the –groseq function within the findPeaks program, because this would take into 

account variable size peaks, unlike the –factor function created for transcription factor peaks. 

The RPKM was determined with the analyzeRepeats.pl script, with the default normalization and 

the –rpkm function. The default normalizes each of the total reads to 10 million reads. The –

rpkm function reports the normalized values as reads per kilobase per million mapped reads.  
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For the H2K27Ac data analysis, we used the –histone option, which calls peaks for broad regions 

of enrichment and variable width peaks. Then, we used the annotatePeaks.pl program with no 

normalization (-noadj option) to print the reads from each time point (DMSO, 1hr Pan and 4hr 

Pan) for each gene. A directory with the merged DMSO H3K27Ac data was used to create a tag 

directory and this tag directory was run through findPeaks as a control. This findPeaks output file 

was used as the control for annotatePeaks.pl, so only peaks that were called in the DMSO file 

were used to compare peaks in each of the Panobinostat time points.  

edgeR 

HOMER does not include its own package to find statistically significant differentially 

expressed/occupied genes. However, it does have a package that pipes the data obtained from 

HOMER’s analyzeRepeats package out to the R Bioconductor package edgeR47 for differential 

expression analysis. The edgeR package is able to compute the differential expression through 

normalization of the total reads per transcript using an overdispersed Poisson statistical model. 

The statistical significance is then computed using the Fisher’s exact test47. To find differential 

expression from our data, I started with the output .txt file from annotatePeaks.pl and ran it 

through the getDiffExpression.pl, which used edgeR to calculate the differential expression of 

genes. I filtered out the genes that had an FDR greater than 5%. 

ChIP-exo heatmaps using ChAsE 

ChAsE is a Java based computational tool that provides a graphical interface for analysis of our 

epigenetic data using interactive heatmaps and plots48. Since ChAsE only accepts sequence data 

files in the bigWig format, we converted our BAM files to bigWig format. The other input file 

required by ChAsE is a GFF format reference file containing annotation intervals ±2 kilobases 
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from TSSs or TTSs) to display. ChAsE then aligns the sequencing reads in bigWig files to the 

reference intervals. We then sorted the output heatmaps based on descending maximum peak and 

maximum peak position. These were created for each of our ChIP libraries.  

 

PRO-seq data analysis 

HOMER 

HOMER is also an all inclusive software suite for analyzing transcript abundance34. Here, I used 

HOMER to quantify my PRO-seq libraries, and to prepare the data for further differential 

expression. First, I converted each PRO-seq BED file replicate to a BAM file using BEDtools 

bedtoBam function. Tag directories were created from the BAM files with the 

makeTagDirectory function.  At this stage, I used the option –flip to flip the strands in the PRO-

seq data. The PRO-seq data is strand specific, but in the BWA mapping phase the reads were 

mapped to the opposite strand. Using –flip corrected this problem. After the Tag Directories 

were made, I used the findPeaks program to find enriched transcripts. This program can be used 

for both transcripts and finding peaks in ChIP data. To specify transcripts, the –groseq function 

was used. The –groseq function attempts de novo transcript identification from strand specific 

nascent RNA sequencing reads. HOMER has built in functions to quantify RNA expression in 

genes. I used HOMER’s analyzeRepeats.pl program to create a gene expression matrix from 

each of our Tag Directories and then quantify the PRO-seq data. I used the “rna” option to 

specify which transcripts to analyze. This option forces the quantification from the RefSeq 

annotation for the specified genome—in this case hg19. I also used the option “–count genes” to 

have the program count tags throughout the whole gene body and not just exons. This is because 
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PRO-seq produces nascent transcripts, so reads can map to any part of the gene, not just exons 

(like post-processing RNA-seq libraries). I also wanted to quantify transcription in the positive 

direction of gene orientation, so I used the function “-strand +”, which will measure reads on the 

positive strand (relative to the gene orientation). The analyzeRepeats.pl program allows us to 

calculate the RPKM through its normalization functions. So, I used the default normalization 

function which normalizes all of the total reads of each library to 10 million reads and the -rpkm 

function. The RPKM for each individual biological replicate was plotted against its 

corresponding replicate to determine positive correlation (see Supplemental Figure 9 in 

Appendix C).  

edgeR 

First, I ran analyzeRepeats.pl with all the same options as above, however instead of normalizing 

and finding the RPKM, I forced no normalization with -noadj and used -condenseGenes to report 

only one isoform of a gene per locus. I used the output .txt file from running analyzeRepeats.pl 

and ran it through the getDiffExpression.pl, which used edgeR to calculate the differential 

expression of genes. I filtered out the genes that had a FDR greater than 5%, to keep only 

statistically significant changes in gene expression.  

Cluster analysis of differentially expressed genes 

I used the open source Cluster v3.0 software49 to cluster the gene expression data by K-means 

clustering on genes using the Euclidean distance similarity metric. A variety of cluster numbers 

were run (from k=4-12) and the number of clusters was chosen based on the minimum number 

with the greatest separation of non-redundant clusters. Clustering was done on 1h Panobinostat 

over DMSO and 4h Panobinostat over DMSO as one data set, and 1h Panobinostat over DMSO 



 46  

with 4h Panobinostat over 1h Panobinostat as another data set. This second data set was included 

to show if genes continued to increase in expression as time went on or whether most genes 

increased in expression drastically at the onset of Panobinostat treatment and plateaued in 

expression by 4 hours. Six clusters was deemed the best k value for both of the samples, and the 

6 clusters were used for all further analysis. Java TreeView50 was used to view the clusters and 

create heatmap plots.  

Gene ontology and pathway analysis of cluster groups 

Gene ontology is the bioinformatics study of the relationships of a group of gene products 

enriched within a dataset. The list of genes gathered from each cluster above was piped into 

DAVID 6.751.  This program reported clusters of gene ontologies as well as KEGG pathway 

analyses, based on DAVID defaults. We then collected the gene ontologies that had an 

enrichment factor greater than 2 and a p-value less than 1.0x10-4. The top six factors (or the gene 

ontologies with the smallest p-values) were reported.  

 

Results and Discussion 

In this aim, I sought to define the chromatin state of HCC1806 cells. I also sought to examine 

how a specific chromatin state was altered following Panobinostat treatment by looking at the 

changes to H3K27Ac occupancy as a proxy for promoter/enhancer chromatin states. Finally, I 

compared these changes to the changes in transcription following HDACi treatment.  
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HCC1806 Chromatin State 

Determining the chromatin states of different cell types probes the understanding of the 

mechanisms of human development and the etiology of many human diseases. By examining and 

predicting regulatory regions, we can develop a better understanding of the disease state.  

In order to look at the chromatin state of HCC1806, I performed ChIP-exo on multiple histone 

marks, CTCF, H2A.Z and Pol II (Figure 5 and Table 3). Some of these histone marks have been 

well characterized and correlate with specific regions of the genome, such as TSS or enhancers29. 

I established HCC1806’s baseline distribution of chromatin states when treated with DMSO 

vehicle using HMM so that I could compare drug-induced changes to the baseline state. The 

results of these ChIP experiments are summarized in Figures 6-8.  

ChAsE heatmaps were generated for each histone mark ChIP-exo library in DMSO HCC1806 

cells (Figure 6). The heat maps represent read density around the promoter (TSS) and TTS. As 

seen in the model of chromatin marks (Figure 5), H3K4me3, H3K4me2, H2A.Z and H3K27Ac 

are typically found at the promoters28,29,36,52,53. This was verified by our ChAsE heatmaps. In 

Figure 6A, the columns are centered around the TSS. Pol II, H3K4me3, H3K4me2, H2A.Z and 

H3K27Ac all have a high density of reads around the TSS (as seen by red color in the heatmaps). 

The rows are sorted based on Pol II density, so it is interesting to see that the genes with high 

densities of Pol II at the TSS also have corresponding high densities at the promoter in all of the 

promoter marking histone marks (H3K4me3, H3K4me2, H2A.Z and H3K27Ac). Meanwhile, 

H3K27me3, is also commonly associated with promoters, but it is associated with repressed 

regions28,36. So, it makes sense that H3K27me3 has very low density of reads around TSS that 

have high Pol II density with higher H3K27me3 density occurring at genes with low or no Pol II. 
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Figure 7. ChAsE heat maps of histone marks at TSS and TTS. ChIP-exo libraries were 
prepared for Pol II, H2A.Z, H3K4me3, H3K4me2, H3K4me1, H3K27Ac, H3K27me3, 
H4K20me1, and CTCF in DMSO treated HCC1806 cells. Heatmaps were produced by ChAsE 
and densities were sorted by Pol II densities or location. Each row represents one gene, with 
18,793 lines/genes present. Red color indicates high densities and green indicates low density. A) 
densities +/- 2000 bp from the TSS sorted by Pol II densities. B) densities +/- 2000 bp from the 
TTS sorted by Pol II densities C) densities +/- 2000 bp from the TSS sorted by Pol II location. 
Input is included to show background densities.      
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It appears that H3K4me1 does not occupy the promoter, but rather several nucleosomes down 

from the promoter. This is consistent with previous knowledge (Figure 5) that H3K4me1 is 

present in intragenic activating regions of the genome, with enrichment just downstream of 

TSS36. It should be noted that H3K4me1 is also a mark of distal regulatory elements, such as 

enhancers28,36. CTCF is an insulator protein, meaning that it resides at a genomic boundary that 

blocks interactions between enhancers and promoters54. CTCF is thought to help regulate the 3D 

structure of chromatin. So, consistent with previous reports, CTCF has low density at both the 

TSS and TTS.  So far, our findings of HCC1806 histone marks at promoters agree with the 

literature.  

In contrast, relative to the termination site (TTS), there were no uniformly enriched patterns for 

the previously mentioned marks (Pol II, H3K4me3, H3K4me2, H2A.Z and H3K27Ac). There 

seems to be a few residual higher density genes, and they all correlate with Pol II, as discussed 

previously. This could be due, in part, to an overlap of the TTS with another gene’s TSS, but 

these instances are uncommon in the human genome. Notably, the only mark that differs in 

regard to TTS peaks is H4K20me1, which our model predicts would be found at the TTS36.  

There is a higher density of H4K20me1 reads around the TTS than the other marks (as indicated 

by more red and yellow color in the heatmap). This correlation may not look as striking, but this 

is simply because the genes are still sorted by Pol II density, which would have a different 

pattern than H4K20me1. The input shows that there is no unusual spike in read densities and is 

included as a control for background, however there is a modest but uniform depletion of reads 

near the promoter of most genes.  

Another interesting feature of the ChAsE heatmaps is the apparent trend of mutual exclusivity of 

Pol II and the certain histone marks. You can see that where Pol II has the highest density peaks 
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.(TSS), the histone densities are located just to the left or the right with low density of reads at 

the location where Pol II density is highest. In vitro, when Pol II encounters nucleosomes, it 

pauses transiently, which has been well characterized as nucleosome-induced Pol II arrest55. 

Figure 6C is a different way of viewing the data from Figure 6A. In Figure 6C, the Pol II density 

is sorted by location relative to the TSS. This still shows that H3K4me3, H3K4me2, H2A.Z and 

H3K27Ac are found at active promoters (TSS where Pol II resides). This is another nice way to 

visualize the mutual exclusivity of the histone marks and Pol II.  

The ChAsE heatmaps are useful tools for examining the positions of histone marks genome 

wide, identifying trends, and assessing the overall relationships across the data. However, it is 

not ideal for focusing in on a single gene. In genome-wide analyses, it is valuable to balance 

global trends with anecdotal examples that illustrate those trends in more detail at a single gene 

level.  For this we used the Integrative Genomics Viewer (IGV), developed by the Broad 

Institute, to examine what each mark looked like at the TSS and enhancers of genes of interest 

(Figure 7). Shown in Figure 7 is the FOXA2 gene locus, which is a tumor suppressor gene that is 

of interest given our model (Figure 1). The FOXA2 gene is a hepatocyte transcription factor that 

is typically a transcriptional activator for liver specific genes like albumin. It is characterized as a 

tumor suppressor gene because the protein suppresses metastasis and the epithelial-to-

mesenchymal transition (EMT) in human lung cancers56. The dysregulation of FOXA2 has been 

noted in other cancers, including breast cancer57. 

The first thing to note in the browser view is that RNA Pol II does not have a peak within the 

FOXA2 gene, suggesting that this gene may not be transcribed in the untreated HCC1806 cells. 

There are, however, strong H3K4me2 and H3K4me3 peaks at the promoter of FOXA2. There is 

no H3K27Ac peak within the gene body, but there is a dispersion of H3K27me3 (the repressive 
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Figure 8: Browser view of ChIP signal at FOXA2. An IGV browser screen shot encompassing 
the FOXA2 gene. The track is shown for each of the marks (labeled to the left) I performed 
ChIP-exo on for HCC1806 cells (DMSO control). 
 

 

  

  



 52  

mark) throughout the gene body, consistent with this gene being in an inactive or repressed state. 

H3K4me1, CTCF and H2A.Z have slight occupancy, but no major peaks. The genome browser 

allows us determine which genes are associated with specific marks, and whether transcription is 

occurring. This adds value to global heatmap analysis patterns by illustrating the genome-wide 

trends in greater detail. 

De novo chromatin state discovery 

After analyzing these histone marks in respect to known TSS and TTS, I wanted to determine 

other regions of the genome where these marks may localize. Cellular epigenomes for cells in 

different tissues or diseases are fundamentally distinct. The epigenome plays a major role in 

conferring cellular identity and contributes to the stable expression profile for each cell type. In 

diseases, such as cancer, which are heterogeneous, the mutational and molecular profiles (such as 

the epigenetic landscape) of cells differ. While the mutational profile of many given cancers has 

been studied previously, the epigenomic landscapes of many cancer types remains unknown58. In 

order to examine the epigenetic landscape (or chromatin state) of HCC1806 TNBC cells, I used 

ChromHMM to run multivariate Hidden Markov Modeling (HMM) on the before-mentioned 

histone marks, CTCF and Pol II. HMM is a statistical model used for temporal pattern 

recognition, which has previously been manipulated to discover de novo regulatory regions in the 

genome. When used with chromatin mark data, the HMM model can learn patterns of chromatin 

mark locations and establish what regions of the genome each pattern is typically associated 

with.  The discrete chromatin states learned from HMM can be used to infer biological function 

for each of the states, allowing us to make testable predictions for chromatin state functions. The 

ChromHMM program takes the aligned reads for each mark tested and outputs learned 

chromatin state model parameters and the state assignments for each genomic category based on 
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Figure 9. Predicting genomic regions with HMM. ChromHMM was run on the following 
HCC1806 ChIP-libraries for the DMSO control (Pol II, H2A.Z, H3K4me3, H3K4me2, 
H3K4me1, H3K27Ac, H3K27me3, H4K20me1, and CTCF). Twelve chromatin states were 
learned, because twelve chromatin states produced the greatest stratification without duplication. 
A) Heatmap representation of chromatin marks/proteins associated with each learned state (1-
12). Blue represents the presence of that particular mark in the associated state, while white 
represents the absence of a mark. Functional annotation inferences for each state are listed below 
the heatmap and color-coded. B) The transition matrix shows the probability that the state in the 
row will transition to the state in the column. (*denotes the most likely state transition in the 
matrix, which is ~20% probable). C) The first row indicates the relative percentage of the 
genome represented by each state. The following rows show the relative fold enrichments of 
each state for the annotations listed (eg: CpG Island, RefSeq Exon, etc.). D) The enrichment of 
each state within -/+2000bp from the TSSs. E) The enrichment of each state within -/+2000bp of 
the TTS.   
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the temporal and spatial patterns. Figure 8A summarizes the 12 chromatin states resolved by 

ChromHMM from my nine ChIP-exo libraries. I chose to use 12 states because this learned 

model produced the best stratification of states without repeating any states. Figure 8A also 

summarizes our inferences (or predictions) for the biological function of each state, based on the 

combination of marks that are known to associate with specific regions (i.e. H3K4me3 with 

promoters) and the proximity of each state to a given gene annotation (Figure 8D-E), and other 

properties (Figure 8C).  

The first output from the ChromHMM program is the “emission order”, which are the learned 

chromatin states for our given model (Figure 8A). ChromHMM captures the emission orders as 

the frequency in which different histone mark combinations are found nearby one another. We 

then assigned a predicted biological role to each of the learned states. 

Promoters are defined as the region of DNA located near the TSS where transcription of the 

associated gene is initiated59. Epigenetically, promoters are marked by the presence of 

H3K4me360. In fact, in metazoan H3K4me3 is thought to play a role in active transcription, 

possibly through interactions with the TAF3 subunit of TFIID61. Since chromatin states 1 and 2 

are the only states enriched for H3K4me3, we predicted they would be the promoter regions. 

ENCODE found that after H3K9Ac, H3K4me3 is the most important mark for determining 

regulatory region associations36. H3K9Ac marks active regulatory elements with a preference for 

promoters36. This data would have added interesting insights, however I had difficulty producing 

high quality ChIP libraries with our H3K9Ac antibodies, thus we do not have data for this mark 

to help corroborate putative promoters regions marked by H3K4me3. The reason for this is still 

unknown, but may be in part because of the low occupancy of H3K9Ac in the DMSO samples 
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(Figure 4). However, we were able to define promoters based on the H3K4me3 mark and 

H2A.Z, which is also known to be enriched at promoters53. 

Both predicted promoter states are also enriched for H3K4me1, H3K4me2, and H2A.Z. Because 

H2A.Z is a histone variant that is essential for chromatin architecture, it is known to flank 

promoters of actively transcribed genes as well as other regions of the genome, such as 

chromatin boundary elements, centromeres and replication origins53. H2A.Z is thought to 

contribute to higher order chromatin structure by altering interactions between tails of nearby 

histones53. Aside from the promoter regions, we also see H2A.Z enriched in our predicted 

enhancer regions. H3K4me1 and H3K4me2 are also found in both promoter and enhancer 

regions. According to the ENCODE database, H3K4me2 does mark both regulatory elements36. 

Meanwhile, H3K4me1 is associated primarily with enhancer elements62, which I will discuss in 

more detail below. The enrichment of H3K4me1 in our predicted promoter regions may be due 

to the H3K4me1 peaks that are found just distal of the TSS36. Our promoter predictions may 

have lumped these more distal peaks in with marks that are more proximal to the TSS and are 

what we associate with the promoter region.  

Based on the distribution and co-occurrence of these 4 marks, we inferred 2 promoter regions. 

We split these two promoter classifications into a strong promoter and a weak promoter 

classification based on the amount of Pol II occupying these regions. In gene regulation, a 

promoter is classified as strong or weak according to its affinity for RNA polymerase (Pol II)52. 

State 1, which we have titled the strong promoter, has higher enrichment of Pol II than state 2, 

the weak promoter. Along with the differential Pol II enrichment in promoters, H3K27Ac is 

known to specifically mark active regulatory regions at both promoters and enhancers33,63. The 

Zhao lab found that histone acetylation positively correlated with increased gene expression, but 
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they found that different marks associated with different regions of the genome33. They 

particularly found H3K27Ac at promoters that typically correlated with increased transcription33. 

This is another reason for our differentiation between the weak and strong promoters. Thus, our 

HMM results predict that the inferred strong promoter would be more active, and therefore 

associated with higher levels of H3K27Ac and Pol II at the promoter.  

While H3K4me3 marks promoters, enhancers are marked with H3K4me1 and the absence of 

H3K4me364. Enhancers are cis-active elements that activate transcription in a distance and 

orientation independent fashion12. We classified one weak enhancer (State 3) and two strong 

enhancerss (States 4 and 5). Each one of these states is indeed marked by the presence of 

H3K4me1 and the lack of H3K4me3. State 6 also meets these qualifications, but the reasoning 

behind categorizing it as a transcription state will be discussed in more detail below. We used 

H3K27Ac enrichment to help classify our enhancers. While H3K4me1 is found at all predicted 

enhancers, H3K27Ac is known to differentiate active and poised enhancers much like 

promoters32. The Jaenisch lab found that enhancers with the H3K27Ac mark correlate well with 

enhanced proximal gene activity32, and they therefore determined that H3K27Ac is a good 

candidate mark for active enhancers, while H3K4me1 marks both active and inactive 

enhancers32,62. As seen in Figure 8A, the chromatin state we predicted for a weak enhancer has 

H3K4me1 enrichment but very little to no H3K27Ac or Pol II enrichment. Meanwhile, the two 

states predicted to be strong enhancers are enriched for all three. Pol II is also known to be 

enriched at active enhancers. Although the reasoning remains elusive, this is consistent with 

reports of transcription over enhancer regions65. One explanation is that enhancers loop Pol II to 

the corresponding promoter62, and that this incidental transcription is much like divergent 
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transcription. Nonetheless, our predictions for enhancers are consistent with their known features 

based on current literature12,32,62,65. 

The next states we predicted were the transcription states. One state (State 6) was deemed a 

transcription state because of the enrichment of H4K20me1. H4K20me1 has been found to be 

enriched in active chromatin downstream of the transcription start site66. Because H4K20me1 is 

typically found at the 5’ end of genes36, State 6 was predicted to be active transcription instead of 

an enhancer. However, it should be noted that State 6 can not be ruled out as an enhancer, since 

enhancers can be found intragenically as well. The high enrichment of Pol II in State 6 and 7 also 

coincides with active transcription. Again, it does not rule out the possibility of other biological 

states; however, the appearance of Pol II and lack of H2A.Z combined in these two states is a 

good indicator of transcription. As previously mentioned, H2A.Z typically flanks regulatory 

regions (such as enhancers and promoters). These observations combined are why we predict 

State 6 and 7 as transcription states.  

The next three learned states were classified as heterochromatin. Heterochromatin is the tightly 

packed form of DNA typically made up of repetitive DNA and a low density of genes9. While 

little transcription typically occurs in heterochromatin, it is a fluid structure meaning 

heterochromatin is capable of transitioning into active states. These three states were categorized 

as heterochromatin and/or “no signal” due to their lack of histone marks with ChIP-seq reads in 

these regions. A caveat to note is that heterochromatin harbors certain repression associated 

histone modifications (H3K9me3) that would better identify heterochromatin36,67, but I did not 

examine these marks.  The only factor that had ChIP read enrichment found throughout the entire 

genome was the insulator protein, CTCF, which is likely to be found on the outside of the 

tightly-packed, dense chromatin because a primary role of CTCF is mediating intra- and 
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interchromosomal contacts and establishing higher order chromatin structure68. Other factors or 

marks may be “hidden” or unreachable by ChIP antibodies in the dense heterochromatin.  

The final prediction we made was for repressed states. We defined “repressed states” as genes or 

other dynamic regions of the genome that were actively repressed at the time of harvest in our 

HCC1806 cell line. This repressed state is most likely euchromatin, meaning that it is not 

densely packed like the predicted heterochromatin states. These states were predicted as 

repressed states because of the enrichment of H3K27me3. H3K27me3 enrichment is typically 

found at the promoter and throughout the gene body of repressed genes69. One interesting thing 

to note is that H3K27me3 is also found in State 2, which is a weak promoter state. The Majewski 

lab has shown that there is a subset of H3K27me3 found at TSSs associated with bivalent genes. 

Bivalent genes are defined here as genes that are marked with both H3K4me3 (promoter mark) 

and H3K27me3 (repressive mark). One caveat is that these genes may not be marked with both 

histone modifications in the same cell, but instead different cells within the population may have 

the different marks at the same location. However, if in the same cell, it is thought that the 

combination for these two marks keeps the gene poised to respond to environmental cues, such 

as developmental or growth signals69. This fits with our prediction that State 2 is a “weak” 

promoter. So, by reviewing literature and carefully analyzing which marks were found in which 

state, we were able to infer a biological role for each of the 12 states the ChromHMM model 

learned. More importantly, we now experimentally measured where these states are located 

throughout the HCC1806 genome.  These chromatin state locations are likely unique to the 

HCC1806 TNBC BL2 preclinical cell model. 

After ChromHMM learns the different emission states, it outputs transition states for each 

learned state. This is used to show how robust the learned states are. Transition probability is 
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based on the probability that within 200bp of the interval on the chromosome another state will 

be found. Each state has very low probabilities of transitioning to another state (Figure 8B), 

which is seen from the strong blue diagonal line. This diagonal line is the desired outcome for 

this analysis. At the extreme, only one state has > 0.25 probability of transitioning to another 

state. State 3, the predicted weak enhancer, has 0.25 probability of transitioning to state 10, one 

of the heterochromatin states. This means that 25 out of 100 times the state 10 is found within 

200bp of state 3. This heat map illustrates the stable separation of our states. So, we believe that 

this transition matrix solidifies the separation of the 12 states we have chosen.  

Next, the ChromHMM program overlaps each of the 12 states with known annotated features of 

the genome (Figure 8C). The heat map indicates the relative fold enrichments of each chromatin 

states for each of the annotations. The first row shows the relative frequency of each of the states 

throughout the entire genome. This indicates that the repressed states and heterochromatin make 

up the majority of the genome. Meanwhile, the transcription states, strong promoters, and strong 

enhancers do not represent a large proportion of the genome. However, we would not expect 

these regions to take up the majority of the genome, because the ENCODE project found that 

less than a fifth of the genome regulates the 2% of the genome that encodes proteins36.  

The remainder of the heat map shows the distribution of each state for different annotations 

(Figure 8C). The first of which is CpG islands, which represent promoter regions62. States 1 and 

2 have the strongest enrichment of CpG islands, which correlates with our prediction that these 

states are promoters. The next five annotations are from RefSeq, which is the NCBI reference 

sequence database. The first of these is RefSeq Exon, which is found mainly at the two predicted 

promoter states. The RefSeq exon annotation is a list of exons that are found in the reference 

cDNA libraries, from 5’ to 3’.  The states defined by ChromHMM are not meant to match the 
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classical definitions of regions, like promoters. Instead, ChromHMM identifies regions of the 

genome that have histone modifications typical of promoter regions. This is one reason why the 

ChromHMM promoter region may match RefSeq Exon regions. The promoter states may extend 

into the body of the gene because one of the defining marks (H3K4me3) is known to spread 

downstream of the TSS. In fact the spreading of H3K4me3 indicates genes that are essential for 

the identity and function of the given cell type70. Therefore, we are still confident that States 1&2 

are promoter regions. The next annotation is RefSeq genes, which is a list primarily of protein 

coding regions of the genome and encompasses the body of the gene. It makes sense then that all 

of the states that Pol II is found in (states 1-7 and 12) are RefSeq gene annotated regions. This 

includes both the ChromHMM promoter and transcription states. The enhancer states are also 

weakly enriched in this annotation. This could be because enhancers are often found 

intragenically within introns71. Lastly, the repressed states are also slightly represented in the 

RefSeq gene annotations. All of the states should include some genes, so this annotation fits with 

our predictions.  

The next three states represent specific regions of the gene itself (Figure 8C). The first is the 

TTS. Every state seems to have some regions that overlap with TTS annotated regions. State 6 

and 7 have a higher proportion of TTS than the other states, which makes sense because these are 

our transcription states. State 6 specifically was enriched for H4K20me1, which is a mark of 

TTS. However, TTS are found all throughout the genome so the fact that all states have some 

TTS annotated regions included is not surprising. The TSS heatmap densities are not quite as 

dispersed as the TTS, but there are still many states that have TSSs. The two states with the 

highest enrichment are our defined promoter regions (States 1&2). The other more enriched sites 

are the transcription states (States 6&7).  Next, the ChromHMM program zooms in on the TSS 
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region, with regions only 2kb from the TSS. With this narrowed down region, only the two 

promoter regions were enriched for this annotation. Again, these annotations fit well with our 

predictions.  

The final annotation included is for repressive chromatin environments (or heterochromatin) in 

the genome. They use Lamin B1 associated domains (LAD) annotation to represent these regions 

of the genome. LADs are regions of the genome that are located in close proximity—possibly 

anchored to—the nuclear lamin. The borders of these domains are typically surrounded by CTCF 

or by CpG islands that are located away from the LAD72. In agreement with our prediction of 

this chromatin state as heterochromatic/no signal, our heterochromatin states (States 8-10) are 

enriched for this annotation. The surrounding regions are transcription and a repressed state, 

which may indicate that these regions may move in and out of attachment to the nuclear lamin. 

Taken together, the predictions we made on our states based on the histone marks are in general 

agreement with the annotated regions found in each of the states.  

In the final two images that ChromHMM generates, the program zooms in on the TSS and TTS 

to see which states are found within 2kb of each. In Figure 8D, we look at +/- 2000bp from the 

TSS. Again, we see that only State 1 and State 2 are found within this range of annotated TSSs. 

It seems that the strong promoter (State 1), is centered right around the TSSs while the weak 

promoter (State 2) is enriched slightly more downstream from the TSS. I think that these weak 

promoters may represent poised promoters for inactive genes, so it is interesting that the marks 

associated with weak promoters center ~1000bp from the TSS. The second heat map (Figure 8E) 

is similar to Figure 8D, but this time it zooms in to the TTS. Again, there is not too much 

interesting here as TTSs are found throughout the entire genome. This image does not show 
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much more information than Figure 8C already conveyed, but rather portrays a distance 

relationship for each chromatin state with prominent genomic features.  

Through using ChromHMM we were able to generate a lot of predictions about certain regions 

in the HCC1806 genome, and reveal their corresponding locations. We found regions that are 

likely to be promoters and enhancers as well as regions that are repressed by H3K27me3 or are 

repressed through compaction in heterochromatin. While this information is available for a 

variety of cell lines, until now, this information was unknown for the HCC1806 cell line—which 

is significant since no cell line, tissue type or tumor type is identical in their epigenetic 

landscape. Importantly, this information can be used to provide an epigenetic frame-of-reference 

for how the different marks observed alter in response to different developmental signals or drug 

treatments. You can examine which regions change from repressed to active transcription, or 

poised to active promoters. Thus, ChromHMM is a very powerful tool to examine de novo 

chromatin states within a genome.  

 

Genome-wide H3K27Ac changes in response to Panobinostat treatment 

After examining the untreated epigenetic landscape of HCC1806, I was interested in changes 

brought on by the Panobinostat treatments. For the remaining studies, I chose to focus on 

H3K27Ac because of the nature of the drug treatment. With Panobinostat being an HDACi, I 

expected H3K27Ac to increase and I wanted to examine whether this increase was genome wide 

or in specific areas of the genome.  

To examine this question I used the program HOMER, which is an all-inclusive suite of analysis 

tools for ChIP and expression data. The program can find peaks, annotate peaks (or transcripts)  



 63  

 

  



 64  

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: Differential expression and differential H3K27Ac occupancy reveal correlation 
between H3K27Ac and change in expression. Heat maps show the differential expression and 
H3K27Ac differential occupancy between DMSO, 1 and 4 hour Panobinostat treatment.  
Yellow=increased expression or occupancy and Blue=decreased. A) Incremental differential 
expression was compared for 1 hour Panobinostat over DMSO and 4 hour Panobinostat over 
DMSO. Each column is a comparison of the 2 indicated experiments and each row represents a 
gene.  A total of 4344 genes/rows are present.  Differential H3K27Ac occupancy was aligned 
with the statistically significant differentially expressed genes. Promoters were any reads within 
2000bp of the TSS and enhancer/distal regions were those more than 2000bp outside of the TSS. 
Also Pol II RPKM was used as a control that the clusters did not have aberrant expression 
patterns prior to treatment. B) Log fold change of gene expression vs log fold change of 
H3K27Ac occupancy at both promoters and enhancers for those shown in A. C) Differential 
expression was compared for 1 hour Panobinostat over DMSO and 4 hour Panobinostat over 1 
hour Panobinostat. Each column is a comparison of the 2 indicated experiments and each row 
represents a gene.  A total of 4004 genes/rows are present. Differential H3K27Ac occupancy was 
aligned with the statistically significant differentially expressed genes. Again, promoters were 
any reads within 2000bp of the TSS, enhancer regions were any region further than 2000bp from 
a TSS. The Pol II RPKM control was included as well. D) Log fold change of gene expression vs 
log fold change of H3K27Ac occupancy at both promoters and enhancers for those shown in C. 
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and prepare quantification of the peaks to be used for differential expression or occupancy 

analysis. I used the differential analysis to examine areas in the genome where H3K27Ac levels 

were altered the greatest (Figure 9).  

At this point, I will only discuss the differential occupancy of H3K27Ac, and I will look more in-

depth at the connection to gene expression shortly.  In Figure 9A and 9C, for H3K27Ac at both 

promoters and enhancers/distal regions there are some genes in which H3K27Ac occupancy 

increases (yellow) while there are some genes where H3K27Ac occupancy decreases (blue). It is 

interesting to note that in the promoter regions the majority of the H3K27Ac increase occurs 

within the first hour, while some of the enhancer regions do not increase until the 4 hour time 

point (Figure 8A and 8C). This could indicate that acetylation at promoters is necessary for 

transcription, whereas an increase of acetylation at enhancers is only needed to increase the 

current level of transcription, and is therefore a secondary location of acetylation.  

Finally, to independently corroborate the HOMER-based assignment of differential H3K27Ac as 

presumably being enhancers, I wanted to determine if these regions actually mapped to the 

regions we defined in the HCC1806 genome from our ChromHMM analysis. I used the 

intersectBed function to see which of the distal/enhancer regions where H3K27Ac occupancy 

changed significantly (FDR<5%) were defined as any of the enhancer states (states 3-5) by the 

ChromHMM analysis (Figure 10).  Remarkably, we found that 75% of the distal regions with 

differential H3K27Ac occupancy indeed resided within ChromHMM annotated enhancers. This 

may be skewed slightly as the presence of H3K27Ac helped to define some of the ChromHMM 

states to begin with. However, this is still important to note that regulatory regions are 

specifically increasing in H3K27Ac occupancy, and not just random distal regions of the 

genome.  
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Figure 11. Majority of distal H3K27Ac differentially occupied regions are HMM 
enhancers. The total number of differentially expressed H3K27Ac occupied distal (>2000bp 
from TSS) regions aligned to the regions defined as enhancers by ChromHMM (States 3-5). P-
value 1.5x10-125. P-value was calculated using the chi-squared test.  
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Gene expression changes post Panobinostat treatment 

After looking at the changes in histone acetylation, our model predicts a corresponding increase 

in gene expression following Panobinostat treatment. An increase in histone acetylation 

following Panobinostat treatment will coincide with an increase in the expression of the genes 

associated with modified acetylation. To test this prediction, I first examined the changes of gene  

expression by itself. The first panels in figure 9A and 9C show the statistically significant (FDR 

<0.05) differentially expressed genes for Panobinostat 1 hour and Panobinostat 4 hour 

treatments. There were many genes with increased expression, but there were almost as many 

genes with decreased expression. While we do not know the mechanism behind decreased 

expression of the latter set of genes, such changes in gene expression could be due to a secondary 

events following HDAC inhibition.  There is precedence for such indirect effects in the 

literature73.  To provide more biological insight into the groups of genes that displayed increased 

or decreased expression in response to Panobinostat, I conducted gene ontology and pathway 

analysis on the six clusters of genes presented in Figure 9C (incremental differential expression). 

This could provide insight into which biological pathways were being altered the most following 

Panobinostat treatment.  

Because the incremental Panobinostat 1hr treatment over DMSO clustered with Panobinostat 4hr 

treatment over Panobinostat 1hr treatment (Figure 9C) more distinctly resolved each cluster, I 

chose to examine these clusters in more depth (as opposed to Figure 9A); this analysis is 

summarized in Table 8. However, it should be noted that both clusters had very similar gene 

ontology annotations. The first 3 clusters include the genes that have increased expression levels. 

According to the gene ontology, some transcription factor genes, such as FOXA2, increase in 

expression. Cell cycle proteins also increase in expression, which may include regulators of the  
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Table 8: Gene Ontology and Pathway Analysis  
Cluster # of Genes Gene Ontology (p-value) Pathway (p-value) 

1 221 Regulator of Transcription (n=52, 10-7): 
ie) Myb, FoxA2, Pou51 

TGF-β (10-2)* 
Wnt (10-2)* 

2 1249 Cell cycle (n=69, 10-4) 
Drug response (n=25, 10-3) 

p53 (n=7, 10-4) 
MAPK (n= 25,  
10-2)* 

3 837 Chromatin assembly/disassembly (n=17, 
10-6) 
Regulation of cell death (n=45, 10-3) 

Hedgehog (n=6,  
10-1)* 

4 
 

832 Cell proliferation (n=38, 10-7) Cancer signaling 
(n=28, 10-5) * 

5 1027 Immune response (n=43, 10-4) NF-ΚB  (n=4, 10-2) 
6 178 Inflammatory response (n=11, 10-5)  

 

*FDA-approved inhibitor on the market targeting this pathway 
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cell cycle that halt unfit cells at certain checkpoints. This does, in fact, correlate with our model. 

FOXA2 is a known tumor suppressor in lung cancer, so the increase of FOXA2 following 

Panobinostat treatment should inhibit tumor growth. Cell cycle regulators and regulators of cell 

death increasing could also have a similar effect as tumor suppressor genes. 

It is also interesting to look at the gene ontology of genes whose expression decreases. In the 

three clusters with decreased expression, cell proliferation and immune/inflammatory response 

are enriched, meaning that expression of proteins related to these pathways is decreasing. 

According to Hanahan and Weinberg, these are all pathways that cancer cells use to generate 

uncontrolled growth21. This shows that our prediction is correct—pathways that help shut down 

growth, such as TSGs, are upregulated. While our model did not predict that oncogenes would be 

shut down—it is interesting to see that these pathways are indeed downregulated.  

However, an interesting response is that most of the pathways that are upregulated involve both 

oncogenes and tumor suppressor genes, such as Wnt, TGF-β, MAPK and TP5374-77. The dual 

roles of these pathways can make them difficult to treat, as they need to be maintained at a 

healthy balance. These pathways may get out of control and could be a good target for cells that 

exhibit Panobinostat resistance. It is important to note that some of the pathways that are 

upregulated, such as the TGF-β, Wnt, MAPK, and Hedgehog pathways have FDA approved 

drugs already on the market74,77-79. These drugs can be tested in combination with Panobinostat 

to see if cell death is expedited with these combinatorial therapies.  

I wanted to test the extent to which the genes whose expression changes observed in the 

clustering analysis were TSGs, as I previously hypothesized. To do this, I did a similar analysis 

as H3K27Ac mapped to ChromHMM enhancer regions. In doing so, I found that 93 of the 716 

TSGs80 were upregulated (13%) following Panobinostat treatment (Figure 11).  
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Figure 12. Venn Diagram comparing TSG to genes upregulated after Panobinostat 
treatment. I used IntersectBed to compare the lists on 716 TSGs to our list of upregulated genes 
following 1 hour of Panobinostat treatment. P-value=5x10-7, as calculated by chi-squared tests.  
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I found that the upregulated TSGs had an average of 1.92 fold expression change and that ~5% 

of the upregulated genes were tumor suppressor genes, supporting my hypothesis. However, it 

should be noted that 91 down-regulated genes were also on the list of 716 TSGs, suggesting that 

not all TSGs respond in the same way to Panobinostat treatment. Presumably, the downregulated 

TSGs, although expressed at some detectable level in the HCC1806 tumor cells, were not able to 

subvert the oncogenic signaling pathway to drive the cell toward apoptosis.   

 

Correlation between expression and H3K27Ac  

While we learned a great deal from the expression analysis, our hypothesis was that increases in 

H3K27Ac occupancy are linked to increases in expression of TSGs in response to HDACi 

treatment. Although this general trend between H3K27Ac and expression has been observed 

previously in literature32,62, it is not known how this occurs over time in response to Panobinostat  

in a TNBC preclinical model. I found that, especially at promoters, the H3K27Ac change in 

occupancy correlated with changes in expression (Figure 9B and 9D).  In both examples, the 

correlation of expression and H3K27Ac at one hour Panobinostat treatment has an R-value of 

~0.75 at the promoters. Interestingly, this correlation goes down greatly by 4 hours, with an R-

value between 0.2 and 0.35. The shape of the distribution also flattens after one hour. At one 

hour Panobinostat treatment, the correlation between expression and occupancy at promoters has 

a slope of 0.32, meaning that for every 32% H3K27Ac relative fold occupancy increase, 

expression would increase by 100%. By four hours of treatment the slope decreased to 0.08. 

Meaning that expression may still be increasing, but H3K27Ac occupancy has ceased increasing. 

This makes sense with the treatment of Panobinostat to the cells. By four hours the occupancy of 

H3K27Ac may have maxed out at these locations, and because HDACs are inhibited, they are 
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not able to remove the acetylation. Therefore, by this time the acetylation of histones at these 

locations may be static-or unchanging. However, the high levels of histone acetylation at these 

locations are still signaling increased transcription. Therefore, while acetylation is maxed out, 

transcription levels can continue to increase.  

We see a similar trend with the enhancers, although it is less drastic than the promoter regions. 

The correlation R-values at enhancers are all under 0.4. The slope for the enhancers is only 0.17 

after one hour of treatment as well. This is about half of what we observed at the promoter. This 

means that for an increase of 17% H3K27Ac occupancy we see an increase of expression by 

100%. This also tapers off by 4 hours as well, though, with a slope below 0.01—meaning that 

expression may still be increasing but H3K27Ac occupancy has stopped increasing. This 

tapering off at both locations is most likely due to the fact that H3K27Ac occupancy has reached 

its maximum occupancy at these locations and has not been able to be removed, because of the 

inhibition of HDACs. Again, you get a build-up of the H3K27Ac early on, but this continues to 

signal transcription, creating a constant increase of transcription at these sites. This analysis 

provides a genome-wide view of the correlation between acetylation and expression. Again, 

since they were positively correlated, this result supports our hypothesis that increased 

acetylation causes an increase of transcription, and that while H3K27Ac maxes out at earlier 

time points, an increase of expression at these genes continues to occur after the H3K27Ac 

tapering.  

I then wanted to zoom into a gene-by-gene view of some of the TSGs that were upregulated 

upon Panobinostat treatment. To do this we established a list of possible candidates by filtering 

genes for the highest changes in gene expression and then filtered this list to look at TSG. We 

chose to examine FOXA2 more in depth because it was one of the only TSGs in the 50 genes  
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Figure 13. IGV Browser view of H3K27Ac increasing with Panobinostat treatment at TSG 
FOXA2.  A browser view showing 52kb of the FOXA2 gene, with genome tracks for H3K27Ac 
treated with DMSO (vehicle) and 1 and 4 hour Panobinostat as well as PRO-seq tracks for the 
same treatments.  
  



 74  

with highest expression changes, so examining this gene is more relevant to my hypothesis than 

a non-tumor suppressor gene with slightly higher expression changes. We previously looked at 

FOXA2 prior to Panobinostat treatment, but now I wanted to look at changes in H3K27Ac peaks 

in response to Panobinostat (Figure 12). This browser view shows us that FOXA2 does indeed 

increase in both expression and H3K27Ac occupancy following Panobinostat treatment. You can 

see that there is a marked increase (11-fold) of transcription for FOXA2 between DMSO and 1 

hour Panobinostat libraries. The reads for PRO-seq also increase drastically (37-fold) in the same 

time period. So, it appears that H3K27Ac occupancy and transcription increase together. You 

can also see that transcription continues to increase into the 4 hour time period; however, when 

you look at the occupancy of H3K27Ac at 4 hours there is a decrease from the 1 hour—but still a 

net increase from the DMSO treated libraries. This is similar to what we saw globally in Figure 

9. Again, my interpretation is that the transcription levels appear to continue to increase even 

though H3K27Ac occupancy is no longer changing—most likely because there is already a 

maximum of H3K27Ac at the promoter, allowing transcription to proceed. 

Another anecdotal example of a TSG that increased in transcription following Panobinostat 

treatment in HCC1806 cells was EGR1. EGR1 is a transcription factor, so it falls into the gene 

ontology corresponding to cluster 1 (Table 8), similar to FOXA2. EGR1 is an immediate early 

gene implicated in differentiation. The genes that EGR1 targets are required for differentiation 

and mitogenesis, which is why EGR1 is classified as a tumor suppressor gene81. Much like 

FOXA2 regulation, we see a coincident increase in both H3K27Ac occupancy and gene 

expression following Panobinostat treatment (Figure 13) at the ERG1 gene. 

Accordingly, much like FOXA2, we see an increase of H3K27Ac (1.7 fold) between the DMSO 

treated sample and the Panobinostat 1 hour sample at the ERG1 promoter. We chose to examine  
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Figure 14. IGV browser view of H3K27Ac increasing with Panobinostat treatment at TSG 
EGR1.  A browser view showing 37kb of the EGR1 gene, with genome tracks for H3K27Ac 
treated with DMSO (vehicle) and 1 and 4 hour Panobinostat as well as PRO-seq tracks for the 
same treatments. The tracks are all normalized to show the same number of reads as equivalent 
density.  
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the EGR1 gene, because it too was a TSG that fell in the top 50 genes with significant gene 

expression increases, and unlike FOXA2, EGR1 had a large fold change in H3K27Ac occupancy 

at an enhancer region. The acetylation also goes down slightly in the 4 hour Panobinostat treated 

sample much like we saw in FOXA2, but still remains higher than the DMSO treated base-line. 

Again, we see an increase of transcription (4.8 fold) that corresponds with the H3K27Ac 

occupancy increase between DMSO and 1 hour Panobinostat. In this case, the transcription 

appears to go down again by the 4 hour time point. The difference between the continued 

increase of FOXA2 transcription but the decrease in EGR1 transcription at 4 hours may be linked 

to histone acetylation levels—as FOXA2 has a much greater fold increase than EGR1 so more 

H3K27Ac may continue to activate transcription at extended periods of time. Another difference 

between the two browser views of the TSGs is that you can see an EGR1 enhancer in the genome 

browser, but no enhancer is shown in the FOXA2 browser view. The enhancer is downstream 

from the EGR1 TSS, but it also experiences an increase of histone acetylation between the 

DMSO and 1hr Panobinostat treatments (3.1 fold). This enhancer acetylation may play a role in 

increased expression levels as well. However, our experiments are not able to tease apart which 

acetylation plays a greater role on expression levels. Both of these browser views are 

representative illustrations of gene level examples of the genome-wide analysis we saw in Figure 

9.  

 

Concluding Remarks 

In conclusion, our results support the model I originally hypothesized. First, I showed that a wide 

range of TNBC cells were sensitive to Panobinostat, as compared to other cancer and non-
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cancerous cell lines. Next, I presented that Panobinostat treatment caused an increase of 

acetylation levels in HCC1806 cells and that acetylation continues to increase globally up to (and 

possibly beyond) 16 hours of Panobinostat treatment. These observations had been published, 

with limitations, by the Collins-Burow’s lab previously2. I show that Panobinostat is effective in 

suppressing growth in many subtypes of TNBC and then verified that the cell lines I would be 

working with for the remainder of the project also exhibited sensitivity and increased histone 

acetylation.  

After examining the phenotype of Panobinostat treated TNBC cells, I wanted to uncover the link 

between epigenetics, transcription and cell death. I started by looking at epigenetic and 

transcriptional changes that occur following the drug treatment. To uncover epigenetic changes, I 

had to first look at the epigenetic landscape of untreated HCC1806 cells. I used ChromHMM to 

identify 12 de novo chromatin states and their locations within the genome including promoters, 

enhancers, transcription, heterochromatin, and repressed states.  

Once the identities and locations for the chromatin states in vehicle treated HCC1806 cells was 

discovered, I could start analyzing changes in acetylation at different regions of the genome. For 

this thesis, I focused solely on H3K27 acetylation because it is found at both promoters and 

enhancers, and is linked to increased expression of the genes where the modification is found. I 

observed that H3K27Ac increased in both promoter and enhancer regions in the genome. I 

utilized the learned states from ChromHMM to verify that these regions were most likely 

enhancers, and found that 75% of the distal (non promoter) regions where we saw an increase of 

H3K27Ac were indeed classified as enhancers.  
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Along with H3K27Ac occupancy increases, I also saw an increase of expression in a subset of 

genes. Specifically, our model predicted that some tumor suppressor genes would increase in 

H3K27Ac occupancy due to HDAC inhibition and subsequently would increase in expression to 

drive the cell toward programmed cell death. I examined the proportions of TSGs in the up-

regulated genes, and found that 93 out of 716 TSGs (13%) were statistically significantly 

upregulated following Panobinostat treatment of one hour.  This agrees with our model that 

TSGs will be upregulated following Panobinostat treatment. However, it should be noted that 

almost as many TSGs were down regulated following Panobinostat treatment. The reasoning 

behind this requires a more in-depth analysis and follow-up experiments that are beyond the 

scope of this thesis.  This would be interesting to examine in the future directions of this project.  

The final aspect of this project was examining the link between histone acetylation and increased 

expression. I found that at promoters, increased expression strongly correlated with increased 

transcription following one hour of Panobinostat treatment. I also found that there was a positive 

correlation between H3K27Ac occupancy at enhancers and gene expression; however, the 

correlation was weaker at enhancers than at promoters. These correlations also seemed to 

decrease drastically by 4 hours, indicating that, in fact, the maximum acetylation may have been 

reached at earlier time points, while expression continued to increase.  

Importantly, my work on this project uncovered pathways involved in the Panobinostat response. 

Identification of these pathways have implications in the rational design of combinatorial 

therapies. Thus, experiments that follow up on this work could have a lasting impact on the lives 

of patients with TNBC.  
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In conclusion, my results and analyses support the model proposed in Figure 1 for how growth of 

HCC1806 TNBC cells are inhibited by blocking HDAC activity pharmacologically with 

Panobinostat. The results of this study are novel because it combines different genomics 

approaches to understand why TNBC cell are sensitive to HDACi from an epigenetic point of 

view.  Although HDACi induced epigenetic changes are the focus of this thesis as one model for 

how growth of TNBC cells are impaired by HDAC inhibition, there are competing models that 

have been proposed.  For example, one model posits that there could be other proteins that are 

acetylated, such as p53, α-tubulin or HIF-1α23, that cause the change in expression. The histone 

acetylation at these genes may just be a side effect, and not a contributing factor—although this 

is less likely. So, while our model has held up through our experiments, I have not eliminated all 

other possibilities for mechanisms behind Panobinostat induced cell death. I would have to 

perform site-specific acetylation experiments to verify causal links between histone acetylation 

and increases of expression. To do this you could use CRISPR-Cas9 linked to p300 to direct the 

p300 mediated enhancer acetylation of H3K27 at specific enhancer loci. Then one could measure 

the expression levels of the adjacent gene or cell growth rates. This would help verify the causal 

link of H3K27 acetylation to both increased transcription rates and cell death, but this is not a 

trivial experiment. We would also have to do overexpression assays to probe which genes are 

mainly responsible for the cell death. For example, in future experiments, one could overexpress 

ERG1 or FOXA2 in our HCC1806 cell line and measure cell growth rates, to determine if the 

increase of expression of these TSGs is responsible for the cell death of HCC1806 cells 

following Panobinostat treatment. More likely than not, there are multiple genes whose 

expression changes are responsible for Panobinostat induced cell death. Therefore, my 

experiments are consistent with our model. Our analysis reports correlations with HDACi 
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treatment epigenetic changes and cell death. Because these experiments only indicate correlation, 

additional experiments to test the predictions our analysis makes are needed to corroborate the 

hypothesis.  
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APPENDIX A 

 

LIST OF FILE FORMATS 

 

BAM  Compressed binary version of the data from SAM files 

BED  This format provides a flexible way to display data in an annotation track. 

BED files differ between programs, but have three required fields (chr=name 

of chromosome, chrStart and chrEnd positions).  

BigWig  This is a format used to display dense and continuous data in a genome 

browser. BigWig will “bin” the data to show a continuous “bar-graph”-like 

figure across the genome.  

FastQ  Text-based format for storing a DNA sequence with its corresponding quality 

scores 

Genetrack index (*.idx files) A tab-separated file that lists chromosome number (chr), genomic 

coordinates and the values on the forward or reverse strand. These files are 

used as inputs for peak calling programs.  

GFF  A tab separated file with nine required fields: sequence name (chr), source 

(program generates this feature), features (name of this type of feature), start 

position, end position, score (between 0-100), strand (+/-), frame (reading 

frame, 0-2, for coding exon), group (all lines with same group linked).  

SAM  Sequence Alignment/Map file. A compact representation of nucleotide 

sequence alignments which is index-able.   
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APPENDIX B 

 

LIST OF ANALYSIS TOOLS  

 

BedTools  This software suite covers a wide range of genomic analysis tools that allows 

you to merge, intersect, count, etc. genomic reads from a variety of file 

formats45. BedTools was used to merge our BAM files and to convert BAM 

files to BED files.  

BWA  Burrows-Wheeler Aligner: software that maps low-divergent sequences to a 

large reference genome42. BWA was used to map libraries to the hg19 

genome.  

ChAsE  Software with interactive graphical interface to develop heat maps and 

clustering of genomic data48. ChAsE was used on our epigenetic data to 

provide heatmaps centered at TSS and TTS.  

ChromHMM An automated software program for learning chromatin states by observing 

combinations of chromatin modification patterns27. We used ChromHMM to 

uncover regulatory regions of the HCC1806 genome. 

Cluster  This program performs cluster analysis on transcriptional data. We used k-

means clustering on our data-sets49. Together, with TreeView, the programs 

are used for analyzing and visualizing the results of our PRO-seq and ChIP-

exo experiments.  

DAVID  Database for Annotation, Visualization and Integrated Discovery. It is a 

database with comprehensive set of functional annotation tools to examine 
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biological meaning behind large datasets51. We used DAVID for gene 

ontology classifications. 

edgeR  A bioconductor package used for differential expression analysis47. Used to 

find the differential expression of DMSO, 1hr and 4hr Panobinostat PRO-seq 

and H3K27Ac ChIP-exo libraries. 

GeneTrack  Python software for data storage and analysis. GeneTrack fits the data (read 

positions and density) and generates peak predictions46. We used GeneTrack 

to call peaks for both ChIP-exo and PRO-seq libraries. 

HOMER  Hypergenometric Optimization of Motif Enrichment. A suite of motif 

discovery software tools. HOMER encompasses programs to find peaks or 

transcript densities and then allows you to quantify these peaks in RPKM. 

While it does not encompass its own differential expression program, you can 

pipe the quantification from HOMER into edgeR for differential expression 

analysis34. We used HOMER to find RPKM for PRO-seq and ChIP-exo and to 

prepare the data for differential expression analysis of PRO-seq libraries and 

differential H3K27Ac occupancy. 

IGV  Integrative Genomics Viewer. A visualization tool for exploring large 

genomic datasets44. We used IGV to create localized screen-shots at genes of 

interest.  

Java TreeView A program to allow interactive visualization of the Cluster results50. Used to 

visualize clusters from PRO-seq data, Pol II RPKMs and H3K27Ac peak data.  
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SAMtools  A software suite that provides tools to manipulate SAM and BAM files, such 

as sorting, indexing and merging43. We used SAMtools to sort and index 

BAM files.  

Tabs2genetrack A custom python script used to create the *.idx file from BED files. We used 

in the pre-processing stage prior to peak calling.  

UNIX  Multitasking computer operating system which executes programs from 

multiple languages. We used UNIX to run all of the above programs, and we 

used command line to perform some extraneous modifications (see Methods).  
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APPENDIX C 

 

SUPPLEMENTAL FIGURES 

 

 

Supplemental Figure 1. Panobinostat Dose Response Curves. After 72 hours of treatment 
with varying ranges of Panobinostat concentrations, the cells were subjected to the MTT assay. 
The MTT absorbance for each Panobinostat treatment was normalized to the absorbance for cells 
treated with DMSO. This ratio was then plotted against Panobinostat concentration. The dashed 
line represents cell viability of 50%. The corresponding x-axis value (Panobinostat 
concentration) represents the IC50. This assay was done in triplicate, and error bars represent the 
standard deviation.  



 86  

 

Supplemental Figure 2. Sonication Check for HCC1806. The HCC1806 cells were processed 
as described in the methods of Chapter III. After sonication, 10µl of the sample was removed 
and kept on ice while another 10µl was added to 1x the volume of TE-RNAse with Proteinase K. 
This later sample was heated at 37°C for 30 minutes to reverse the crosslinking (Rev samples).  
All samples were run on a 1.5% agarose gel at 200V for 45 minutes. The DMSO, Pan 1hr, Pan 4 
hr, and Pan 16 hr samples refer to the treatment period of the cells prior to lysis and sonication. 
These cells were sonicated but did not undergo reversal of crosslinking. The DNA should run as 
a wide smear >500bp, because proteins are still cross-linked to the DNA. The DMSO rev, Pan 
1hr rev, Pan 4 hr rev, and Pan 16 hr rev samples were the same samples as above, but were 
subjected to reverse crosslinking. These samples run in a smear between 100-500bp confirming 
that 20 min of sonication is appropriate to prepare DNA for ChIP-exo.  
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Supplemental Figure 3. Schematic of ChIP-exo. This schematic outlines the steps in the ChIP-
exo library preparation.  
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Supplemental Figure 4. ChIP-exo library excision for HCC1806. This is an example of a 
library test gel run on all of the ChIP-exo libraries to perform size exclusion for DNA fragments 
outside the 200-500bp. Agarose (1.5%) gels are run on libraries just after the PCR amplification. 
The smear between 200-500bp is physically excised from the gel, to remove larger DNA 
fragments and the adapter dimers (at 125bp). These smears then undergo gel extractions and are 
then quantified prior to submission to sequencing. The (+) control is a previous ChIP library and 
the (-) control is a no template PCR reaction. Each of the libraries (Pan 1hr H3K9Ac and 
H3K27Ac, and Pan 4hr H3K9Ac and H3K27Ac) were prepared in biological duplicates (1 and 
2). Pan 4hr H3K9Ac-2 is an example of a library that has too low a smear density, so the 
quantification of the library is low and the quality of the library is also low.  
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Supplemental Figure 5. PRO-seq summary. This schematic summarizes the PRO-seq 
protocol. Nuclei are isolated and biotin-NTP is added to the nuclei. The biotin-NTP is then 
incorporated into the nascent transcripts, and the biotin-RNA is affinity purified with streptavidin 
to prepare a library for deep sequencing.  
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Supplemental Figure 6. HCC1806 PRO-seq Test Amplification. This is an example of the test 
amplification run on each PRO-seq library made. The purpose of the test amplification is to 
determine what PCR cycle is appropriate for full-scale amplification of each library (i.e. relative 
cycles), because over amplification can cause inaccurate read counts when sequenced. The 
samples are diluted in water and run for 35 cycles. Each dilution represents a step-wise cycle 
number for full scale amplification. The first dilution (or the most concentrated sample) is 
equivalent to 31 PCR cycles (Relative cycles), with each serial dilution representing 2 less 
cycles. The relative cycle that produces a smear between 200-500bp is the ideal cycle number for 
full scale. In each of the test amplifications, the lower dilutions showed smears the entire way up 
the gel, for unknown reasons. All libraries we sequenced for PRO-seq had ideal smears at 25-29 
relative cycles. This sample was HCC1806 cells treated with Panobinostat for 16 hours.  
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Supplemental Figure 7. PRO-seq library check example for HCC1806. This gel was run on 
fully amplified PRO-seq libraries. In this gel the prepared libraries were HCC1806 untreated (not 
included in this thesis), Panobinostat 1hr treatment and Panobinostat 4 hr treatment. Library 
smears should run between 150-400 bp. The adapter dimer runs at 120bp. The 150-400bp smear 
was excised from the gel and subjected to gel extraction to prepare libraries for sequencing. The 
lower panel shows the gel post excision. The positive control is PCR that was run on a previous 
PRO-seq library. The negative control was a no template PCR.  
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Supplemental Figure 8. ChIP-exo Replicate Matching. Replicate matching was performed on 
each biological replicate as described in the ChIP-exo data processing Methods Section. Each 
replicate tallied the normalized peak paired reads and then plotted this log2 normalization against 
its corresponding biological replicate. A linear model was fit to the data, and the Pearson 
Correlation (R-value) for each was plotted in the bar graph above. A positive correlation was 
confirmed for each data set, so the data was merged and the merged data was used for all further 
analysis.   
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Supplemental Figure 9. PRO-seq Replicate Matching. Replicate matching was done on 
RPKM values for each of the PRO-seq replicates at each time point. A linear model was fit to the 
data and a Pearson-correlation (R-value) was found for each. Each of the R-values were greater 
than 0.75, so we believe the replicates were reproducible.  
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IP Antibody Method Treatment 
Rep1 Uniquely 
Mapped Reads 

Rep1 Unique 
Mapping Rate 

Rep2 Uniquely 
Mapped Reads 

Rep2 Unique 
Mapping Rate 

CTCF Millipore 07-729 ChIP-exo Vehicle (DMSO)  50,338,238  0.81  45,941,823  0.70 
H2AZ Millipore 07-594 ChIP-exo Vehicle (DMSO)  30,152,515  0.72  18,871,682  0.76 
H3K27ac ab4729 ChIP-exo Vehicle (DMSO)  16,499,902  0.51  29,929,229  0.68 
H3K27me3 Millipore 07-449 ChIP-exo Vehicle (DMSO)  28,166,034  0.76  31,048,885  0.83 
H3K4me1 ab8895 ChIP-exo Vehicle (DMSO)  30,710,984  0.70  26,865,944  0.72 
H3K4me2 ab7766 ChIP-exo Vehicle (DMSO)  21,002,075  0.75  56,272,491  0.76 
H3K4me3 ab8580 ChIP-exo Vehicle (DMSO)  29,367,448  0.79  57,633,130  0.75 
H4K20me1 ab9051 ChIP-exo Vehicle (DMSO)  58,682,522  0.74  34,349,834  0.77 
Pol2 sc-899 ChIP-exo Vehicle (DMSO)  59,331,303  0.72  23,255,073  0.73 
Stat3 sc-482 ChIP-exo Vehicle (DMSO)  37,062,439  0.76  11,765,498  0.73 
-- -- PRO-seq Vehicle (DMSO)  32,425,568  0.70  40,395,247  0.46 
H3K9ac ab4441 ChIP-exo 1hr Panobinostat  27,980,881  0.93  24,738,573  0.93 
H3K27ac ab4729 ChIP-exo 1hr Panobinostat  26,058,943  0.92  30,995,107  0.91 
-- -- PRO-seq 1hr Panobinostat  36,292,690  0.68  54,559,196  0.64 
H3K27ac ab4729 ChIP-exo 4hr Panobinostat  24,341,541  0.93  26,516,559  0.92 
H3K9ac ab4441 ChIP-exo 4hr Panobinostat  23,767,030  0.92  22,673,957  0.91 
-- -- PRO-seq 4hr Panobinostat  33,831,021  0.67  45,749,131  0.56 
-- -- Input DMSO/Pan  79,302,832  0.65  19,939,197  0.71 
 

Supplemental Table 1. Summary of sequencing reads. The table gives an overview of the quality of the reads for each IP. The 
antibody, and experiment (both method and treatment are included). Then I include the number of uniquely mapped reads for each of 
the biological replicates, because we aimed for each library to have 20 Million reads. This helps us determine the quality of our 
library. I also displayed the uniquely mapped read rate, which is the number of uniquely mapped reads to the number of total reads. 
Mapping rates are an initial indicator of library quality.   
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