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CHAPTER I 

 

INTRODUCTION 

 

 Type II topoisomerases are ubiquitous enzymes that regulate levels of DNA 

under- and overwinding and remove knots and tangles from the genetic material (1-7). 

These enzymes are essential for cell survival and play vital roles in virtually every 

nucleic acid process, including DNA replication, transcription, and recombination. They 

also are required for proper chromosome organization and segregation (1-7). 

 Beyond their critical physiological functions, type II topoisomerases are the 

targets for a number of drugs that significantly impact human health (2, 8-12). The 

human type II enzymes (topoisomerase IIα and topoisomerase IIβ) are the targets for 

some of the most widely prescribed anticancer drugs in clinical use (2, 8-12). 

Furthermore, the bacterial type II enzymes (gyrase and topoisomerase IV) are the targets 

for quinolones, which are the most efficacious and broad-spectrum class of oral 

antibacterial agents used worldwide (13-20). 

 Given the importance of type II topoisomerases to eukaryotic and bacterial cells 

and to human health, it is critical to understand how these enzymes interact with their 

DNA substrates and with drugs. These are the issues that form the focus for this 

dissertation. 
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Type II Topoisomerases 

 

Catalytic Cycle  

 Type II topoisomerases regulate superhelical density and remove tangles and 

knots by the double-stranded DNA passage reaction depicted in Figure 1 (1, 3, 5, 6, 8, 

21-23). These enzymes require a divalent metal ion (Mg2+ appears to be the physiological 

ion) and ATP in order to carry out their complete catalytic cycle.  

 Type II enzymes bind two segments of DNA (Step 1). The first segment bound by 

the enzyme is the double helix that will be cleaved and is referred to as the “Gate-” or 

“G-segment.” The second segment is the double helix that will be transported through the 

transient DNA gate and is referred to as the “Transport-” or “T-segment.” DNA binding 

requires no cofactors. In the presence of the active site Mg2+ ions, type II topoisomerases 

sample the DNA for malleability (Step 2) (24). Sequences that can be cleaved are bent to 

an angle of ~150º (depending on the enzyme) (25). Conversely, sequences that cannot be 

bent are not cleaved (24, 26). DNA bending induces significant strain in the G-segment, 

which is maximal at the scissile bonds on either strand of the double helix. A double-

stranded break is generated in the G-segment (Step 3) using a noncanonical two-metal-

ion mechanism (22, 27, 28). The type II enzymes contain two active site tyrosyl residues 

(located on different subunits), each of which makes a single-stranded DNA break. The 

scissile bonds on the two strands of the double helix are staggered, and cleavage 

generates 5’-termini with four-base single-stranded cohesive ends.  During the scission 

event, type II topoisomerases covalently attach to the 5’-termini of the cleaved DNA. 

These covalent enzyme-cleaved DNA complexes are known as “cleavage complexes.” 
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Figure 1. Catalytic cycle of type II topoisomerases. The homodimeric enzyme is shown 
in blue, the DNA double helix that is cleaved and acts as the DNA gate (G-segment) is 
shown in green, and the double helix that is transported through the DNA gate (T-
segment) is shown in yellow. Details of the individual reaction steps are given in the text. 
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Two molecules of ATP are bound by the enzyme, which triggers the closing of the N-

terminal protein gate, the opening of the DNA gate, and the translocation of the T-

segment through the gate (Step 4). Although hydrolysis of the cofactor is not a 

prerequisite for DNA translocation, it appears that this step proceeds more rapidly if it is 

preceded by hydrolysis of one of the bound ATP molecules. The cleaved DNA is 

rejoined (Step 5), the T-segment is released through the C-terminal protein gate (Step 6), 

and, upon hydrolysis of the second ATP molecule, type II enzymes regain the ability to 

initiate a new round of catalysis (Step 7).  

 

Bacterial Type II Topoisomerases 

 Bacteria contain two distinct type II topoisomerases, gyrase and topoisomerase 

IV. Gyrase was discovered in 1976 (29). It was the first type II topoisomerase to be 

described and is the only enzyme in this class to retain its historical name. Gyrase is 

comprised of two distinct subunits, GyrA and GyrB (~96 kDa and ~88 kDa, respectively) 

(Figure 2) and functions as an A2B2 tetramer (1, 3, 6, 7, 21). GyrA contains the active site 

tyrosyl residue that forms the covalent bond with DNA during scission, and GyrB 

contains consensus sequences for ATP binding.  

 Of the known type II topoisomerases, gyrase is the only enzyme that is capable of 

generating negative supercoils in the double helix without the assistance of additional 

DNA binding proteins or intercalators (1, 3, 6, 7, 21, 23). Gyrase accomplishes this feat 

by using a sign inversion mechanism (3, 7, 23, 30). The enzyme wraps the double helix 

around itself in a right-handed fashion such that it generates a constrained positive 

supercoil and a compensatory unconstrained negative supercoil. The C-terminal domain 
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Figure 2. Domain structures of type II topoisomerases. Bacterial (E. coli gyrase and 
topoisomerase IV) and eukaryotic (human topoisomerase IIα and IIβ) type IIA enzymes 
are shown. Regions of homology among the enzymes are indicated by colors. The N-
terminal (i.e., GyrB/ParE) homology domains (yellow) contain the regions responsible 
for ATP binding and hydrolysis. The central (i.e., GyrA/ParC) homology domains (blue) 
contain the active site tyrosyl residue that performs cleavage and ligation (C-L) and 
forms the covalent bond with DNA during scission. The variable C-terminal domains are 
shown in green for the bacterial enzymes and in red for the eukaryotic enzymes. These 
domains are involved in DNA topology sensing during the strand passage reaction. 
Subunits and domains are drawn proportionally to their length. The active site tyrosyl 
residue is indicated for each enzyme. 
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of the GyrA subunit, which adopts a unique DNA bending β-pinwheel conformation (31), 

is required for this chiral DNA wrapping event. As a result of the double-stranded DNA 

passage event, gyrase converts the positive supercoil to a negative supercoil.  

 Because of the intramolecular DNA wrapping mechanism used by gyrase, its 

ability to generate negative supercoils in the double helix is much more efficient than its 

ability to untangle or unknot the genetic material (which often requires an intermolecular 

interaction between separate DNA molecules) (1, 3, 6, 7, 21, 23). Consequently, the 

major physiological roles of DNA gyrase stem directly from its ability to underwind the 

double helix. DNA gyrase plays a critical role in opening DNA replication origins and 

removing positive supercoils that accumulate in front of replication forks and 

transcription complexes. In addition, because prokaryotes lack the highly organized 

chromatin structure that helps regulate supercoiling in eukaryotes, gyrase works in 

conjunction with the ω protein (a type IA topoisomerase that removes negative supercoils 

from the double helix) to set and maintain the global superhelical density in bacterial 

cells. 

 The second bacterial type II topoisomerase, topoisomerase IV, was discovered in 

1990 (1, 3, 6, 7, 21, 23). Like gyrase, this enzyme is an A2B2 tetramer (Figure 2). The two 

subunits of topoisomerase IV were first identified in Gram-negative species as proteins 

required for chromosome partitioning and were designated ParC (~88 kDa) and ParE 

(~70 kDa). Based on sequence analysis, it was determined that the ParC and ParE 

proteins were homologous to the A and B subunits of gyrase, respectively. Subsequent 

functional studies led to the discovery that the ParC/ParE complex constituted a novel 
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type II topoisomerase. In Gram-positive species, the subunits of topoisomerase IV are 

designated as gyrase-like proteins, GrlA and GrlB, respectively.  

 Despite the homology between topoisomerase IV and gyrase, the two enzymes 

display distinct properties that affect their physiological functions (1, 3, 6, 7, 21, 23). 

First, there are critical differences between the C-terminal domains of ParC/GrlA and 

GyrA. Instead of maintaining the “closed” β-pinwheel conformation seen in gyrase (31), 

this region of topoisomerase IV adopts an “open” conformation (32). This “broken” 

pinwheel cannot perform the chiral wrapping function that is necessary for the gyrase 

supercoiling reaction. Consequently, topoisomerase IV can remove positive and negative 

supercoils from DNA but cannot actively underwind the double helix. Rather, the C-

terminal domain of topoisomerase IV functions as a topology sensor that allows the 

enzyme to distinguish the handedness of DNA supercoils. As a result, topoisomerase IV 

is able to remove positive DNA supercoils (like those found ahead of replication forks) 

much more efficiently than it does negative supercoils (33, 34). This ability has led to 

speculation that topoisomerase IV may act ahead of DNA tracking systems to help gyrase 

alleviate overwinding of the double helix. However, the precise role of topoisomerase IV 

in this process has yet to be defined. 

 Second, because topoisomerase IV does not utilize the intramolecular chiral DNA 

wrapping mechanism of gyrase, it is much more efficient at catalyzing intermolecular 

reactions (i.e., those that require actions on two separate DNA molecules) (1, 3, 6, 7, 21, 

23). Thus, the ability of topoisomerase IV to resolve DNA tangles and knots is much 

more efficient than that of gyrase. As a result, the most important cellular functions of 

topoisomerase IV are the unlinking of daughter chromosomes following DNA replication 
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and the removal of DNA knots that are formed during recombination and other 

physiological processes. 

 

Eukaryotic Type II Topoisomerases 

 The eukaryotic type II enzyme, topoisomerase II, was discovered in 1980 (1, 3, 6, 

7, 21, 23). Like bacterial topoisomerase IV, topoisomerase II can remove supercoils from 

the double helix and can resolve DNA tangles and knots. Eukaryotes encode no “gyrase-

equivalent” topoisomerase that is able to actively underwind DNA. The supercoiling 

activity of gyrase has been obviated by the evolution of histones. Because nucleosomes 

wrap the genetic material in a left-handed superhelix (which underwinds the DNA), 

removal of the resulting compensatory positive supercoils by a non-gyrase topoisomerase 

leads to a net negative supercoiling of the eukaryotic genome (30). 

 Eukaryotic species such as yeast and Drosophila encode only a single type II 

topoisomerase (i.e., topoisomerase II). However, vertebrates express two isoforms, 

topoisomerase IIα and topoisomerase IIβ (1, 3, 4, 6, 8, 21, 22, 35). These two isoforms 

share extensive amino acid sequence identity (~70%) but are encoded by separate genes 

(located at chromosomal bands 17q21-22 and 3p24 in humans, respectively). 

Topoisomerase IIα and topoisomerase IIβ also can be distinguished by their protomer 

molecular masses (~170 kDa and ~180 kDa, respectively).  

 Eukaryotic type II topoisomerases are homologous to the bacterial type II 

enzymes (Figure 2) (1, 3, 4, 6, 8, 21, 22, 35). However, the two subunits have fused into a 

single polypeptide, and the eukaryotic enzymes function as homodimers (as opposed to 

an A2B2 tetramer). On the basis of amino acid sequence comparisons with bacterial 
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gyrase, each topoisomerase II protomer can be divided into three distinct domains (Figure 

2). The N-terminal domain of the enzyme is homologous to GyrB and contains the 

binding site for ATP. The central domain is homologous to much of GyrA and contains 

the active site tyrosyl residue. The C-terminal domain of topoisomerase II, which 

occupies the same location on the protein as the C-terminal domain of GyrA/ParC/GrlA, 

is highly variable. This region shares little to no sequence similarity to the equivalent 

region in DNA gyrase or topoisomerase IV and differs considerably between type II 

topoisomerases, even across eukaryotic species. The C-terminal domain of eukaryotic 

topoisomerase II contains nuclear localization sequences as well as amino acid residues 

that interact with cellular components or are phosphorylated in vivo.  

 It is not obvious why vertebrates encode two distinct topoisomerase II isoforms. 

In contrast to gyrase and topoisomerase IV, enzymological differences between 

topoisomerase IIα and topoisomerase IIβ are subtle (1, 3, 4, 6, 8, 21, 22). In this regard, 

the only major characteristic that distinguishes topoisomerase IIα and topoisomerase IIβ 

is the ability to recognize the handedness of DNA supercoils (36). While the α isoform 

removes positive DNA supercoils ~10–fold faster than it does negative, the β isoform 

removes both at similar rates. As with topoisomerase IV, this topology sensing function 

of topoisomerase IIα is embodied in the C-terminal domain of the protein. 

 Topoisomerase II plays a number of essential roles in eukaryotic cells and 

participates in virtually every major process that involves movement or organization of 

the genetic material (1, 3, 4, 6, 8, 21, 22, 35). The enzyme unlinks tangled daughter 

chromosomes following replication and resolves DNA knots that are formed during 

recombination. It also helps to alleviate the torsional stress that accumulates ahead of 
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replication forks and transcription complexes. Topoisomerase II is required for proper 

chromosome condensation, cohesion, and segregation and appears to play roles in 

centromere function and chromatin remodeling. Finally, the enzyme is important for the 

maintenance of proper chromosome organization and structure and is the major non-

histone protein of the mitotic chromosome scaffold and the interphase nuclear matrix. 

 Topoisomerase IIα and topoisomerase IIβ have distinct patterns of expression and 

separate nuclear functions (1, 3, 4, 6, 8). Topoisomerase IIα is essential for the survival 

of proliferating cells and is regulated over cell and growth cycles. Enzyme levels increase 

throughout S-phase of the cell cycle and peak at the G2/M boundary. Although 

topoisomerase IIα is nearly non-existent in quiescent or differentiated tissues, rapidly 

proliferating cells contain as many as ~500,000 copies of the enzyme. Topoisomerase IIα 

is associated with replication forks, and its ability to preferentially relax positive 

supercoils (36) has led to speculation that it helps remove torsional stress ahead of the 

replication machinery. Furthermore, the enzyme remains tightly bound to chromosomes 

during mitosis. In light of the enzymological characteristics, regulation, and cell biology 

described above, it is believed that topoisomerase IIα is the isoform that functions in 

growth-related cellular processes (1, 3, 4, 6, 8). 

 Topoisomerase IIβ is dispensable at the cellular level, and its presence cannot 

compensate for the loss of topoisomerase IIα in mammalian cells (1, 3, 4, 6, 8, 37). 

However, the β isoform is required for proper neural development in mice (38). In 

contrast to topoisomerase IIα, the concentration of topoisomerase IIβ is independent of 

the cell cycle, and high levels of this isoform are found in most cell types regardless of 

proliferation status (1, 3, 4, 6, 8, 37). Topoisomerase IIβ dissociates from chromosomes 
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during mitosis. The sequences that govern the association/dissociation of topoisomerase 

II with mitotic chromosomes reside in the C-terminal domain (39). Ultimately, the 

physiological functions of the β isoform have yet to be fully defined. However, recent 

evidence suggests that topoisomerase IIβ plays an important role in the transcription of 

hormonally- or developmentally-regulated genes (40). 

 

Type II Topoisomerases as Cellular Toxins 

 Because type II topoisomerases must generate double-stranded DNA breaks prior 

to strand passage, they are inherently dangerous proteins. Thus, while necessary for cell 

viability, these enzymes also have the capacity to fragment the genome (2, 5-11). As a 

result of this “Jekyll-Hyde” persona, levels of cleavage complexes must be maintained in 

a critical balance (Figure 3).  

 Cleavage complexes are requisite intermediates in the strand passage reaction 

catalyzed by type II topoisomerases. Thus, a decrease in their concentration generally 

reflects a decrease in overall catalytic activity. Consequently, if cleavage complexes drop 

below threshold levels, topoisomerase IIα and gyrase are unable to maintain necessary 

rates of DNA replication and topoisomerase IIα and topoisomerase IV are unable to 

completely disentangle daughter chromosomes following replication. Consequently, cells 

die as a result of mitotic failure.  

 Conversely, if levels of cleavage complexes generated by gyrase or topoisomerase 

IV in bacteria or topoisomerase IIα or topoisomerase IIβ in eukaryotes increase, cells also 

suffer catastrophic physiological effects, but for different reasons (2, 3, 8-11, 41). When 

replication forks, transcription complexes, or other DNA tracking systems attempt to 
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Figure 3. Type II topoisomerases are essential but genotoxic enzymes. The balance 
between enzyme-mediated DNA cleavage (which is required for their physiological 
functions) and ligation is critical for the survival of bacterial and eukaryotic cells. If the 
level of enzyme–mediated DNA cleavage decreases below threshold levels, cells are not 
able to untangle daughter chromosomes and ultimately die of mitotic failure (left). If the 
level of cleavage becomes too high (right), the actions of DNA tracking systems can 
convert transient cleavage complexes to permanent double-stranded breaks. The resulting 
DNA breaks, as well as the inhibition of essential DNA processes, initiate recombination/ 
repair pathways and can generate chromosome translocations and other DNA aberrations. 
If the strand breaks overwhelm the cell, they can trigger cell death. This is the basis for 
the actions of several widely prescribed anticancer and antibacterial drugs. If cell death 
does not occur, mutations or chromosomal aberrations may be present in surviving 
populations. Exposure of human cells to topoisomerase II poisons is associated with the 
formation of specific types of t-AMLs and infant leukemias that involve the MLL (mixed 
lineage leukemia) gene at chromosome band 11q23 and t-APLs that feature t(15:17) 
chromosomal translocations between the PML (promyelocytic leukemia) and RARA 
(retinoic acid receptor α) genes (lower right arrow). The specific type II topoisomerases 
involved in the individual cellular processes described above are indicated in green. 
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traverse the covalent topoisomerase-DNA “roadblock,” accumulated cleavage 

intermediates are converted to strand breaks that are no longer tethered by protein-linked 

bridges. The ensuing damage induces recombination/repair pathways that can trigger 

mutations, chromosomal translocations, or other aberrations. If the DNA breaks 

overwhelm the repair process, their presence can initiate cell death pathways. However, if 

cells recover sufficiently, they may survive but contain damaged chromosomes. In some 

cases, chromosome aberrations may initiate a leukemogenic transformation in humans (2, 

8, 42-47).  

 

Topoisomerase II Poisons 

 Chemicals that increase levels of topoisomerase II-DNA cleavage complexes 

convert the enzyme to a potent cellular toxin that generates the chromosomal damage 

described above. These compounds are called topoisomerase II poisons to distinguish 

them from catalytic inhibitors of the enzyme (2, 8-11). Topoisomerase II poisons kill 

cells by a gain of function, inducing the enzyme to generate DNA strand breaks, as 

opposed to robbing the cell of the essential functions of the enzyme.  

This section will focus on poisons that affect the human type II topoisomerases, 

topoisomerase IIα and topoisomerase IIβ. Quinolones, which poison the bacterial type II 

enzymes, gyrase and topoisomerase IV, are discussed in the following section. 

 Based on their mechanism of action, topoisomerase II poisons can be categorized 

into two distinct classes, “interfacial poisons” and “covalent poisons” (2, 8, 10, 11, 48). 

Selected topoisomerase II poisons are shown in Figure 4. The characteristics and 
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Figure 4. Structures of selected topoisomerase II poisons that target the eukaryotic type II 
enzymes. Clinically used anticancer drugs that target topoisomerase II are shown on the 
left. Dietary topoisomerase II poisons are shown on the right. The catechol and quinone 
metabolites of etoposide (generated by CYP3A4 and cellular oxidases or redox cycling, 
respectively) are highlighted in the red box. Epigallocatechin gallate is abbreviated as 
EGCG. 
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distinguishing features of the two classes of topoisomerase II poisons are described in 

Figure 5. 

Interfacial poisons bind non-covalently to the cleavage complex at the protein-

DNA interface. They intercalate into the double helix at the cleaved scissile bond and 

impede the ability of topoisomerase II to rejoin the DNA ends (8, 10, 11, 49). In essence, 

interfacial poisons act as “molecular doorstops” and prevent the DNA gate from being 

closed. Examples, including etoposide, doxorubicin, mitoxantrone, and bioflavonoids 

such as genistein, are shown in Figure 4. 

 Covalent poisons function distal to the active site of topoisomerase II (2, 8, 48). 

They contain reactive groups such as quinones or maleiamides and covalently adduct to 

cysteine (and potentially other amino acid) residues (48, 50-53). It is believed that 

covalent poisons increase levels of enzyme-mediated DNA cleavage by altering the 

conformation of the topoisomerase II N-terminal protein gate. Examples, including 

epigallocatechin gallate (EGCG) (54), which is prevalent in green tea, and curcumin (55), 

which is the major flavor and aromatic component in turmeric, are shown in Figure 4. 

 Covalent topoisomerase II poisons are found in a number of fruits, vegetables, 

and other plants that are common components in the human diet (48, 50, 53). Many of 

these foods, such as green tea and soy, are believed to have chemopreventative properties 

(48, 56). Covalent topoisomerase II poisons are also prevalent in medicinal herbs, such as 

turmeric and black seed (55, 57). 

 Topoisomerase II poisons represent some of the most important and widely 

prescribed anticancer drugs worldwide (2, 8-11, 48). At the present time, six of these 

agents are approved for use in the United States. Topoisomerase II-targeted drugs 
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Figure 5. Properties of interfacial and covalent topoisomerase II poisons. 
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encompass a diverse group of natural and synthetic compounds and are used to treat a 

variety of human malignancies (2, 8-11, 48). For example, etoposide and doxorubicin 

(and its derivatives) are front-line therapies for a myriad of systemic cancers and solid 

tumors, including leukemias, lymphomas, sarcomas, breast cancers, lung cancers, 

neuroblastoma, and germ-cell malignancies. Furthermore, mitoxantrone is used to treat 

breast cancer, acute myeloid leukemia, and non-Hodgkin lymphoma. In addition, it is 

used as a single agent to treat multiple sclerosis. 

 All clinically relevant topoisomerase II-targeted anticancer drugs act as interfacial 

poisons. Furthermore, they all affect the activities of both enzyme isoforms. However, the 

degree to which topoisomerase IIα and IIβ are targeted by any given drug and the relative 

contributions of the two isoforms to drug efficacy are not well understood (2, 8-11, 48). 

Although some drugs “prefer” one isoform over the other, no truly topoisomerase IIα- or 

topoisomerase IIβ-specific drugs are available for clinical use at the present time (12). 

 

Quinolone Antibacterials 

 Bacterial DNA gyrase and topoisomerase IV are the targets for quinolone-based 

antibacterial agents (13-20). Structures of selected quinolones are shown in Figure 6. 

Quinolones are an extremely successful drug family and are widely prescribed for 

the prophylaxis and treatment of infections in humans. Members of this drug class 

include the most active and most broad-spectrum oral antibacterials currently in clinical 

use. These agents are effective against a variety of pathogens, including Gram-negative 

and Gram-positive species (13-20).  
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Figure 6. Structures of selected quinolone antibacterial agents that target gyrase and 
topoisomerase IV. The figure shows the first generation quinolones nalidixic acid and 
oxolinic acid, the second-generation fluoroquinolones norfloxacin and ciprofloxacin, and 
the newer generation fluoroquinolones levofloxacin and moxifloxacin. Quinolone 
numbering is given on the structure of nalidixic acid. 
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 In parallel to the effects of anticancer drugs on human topoisomerases, quinolones 

increase levels of gyrase- and topoisomerase IV-DNA cleavage complexes (in large part) 

by inhibiting enzyme-mediated ligation of cleaved DNA (19, 58-60). Recently generated 

crystal structures provide strong evidence that these drugs contact both the protein and 

the DNA in the ternary complex and block ligation by intercalating into the double helix 

at the cleaved scissile bond (Figure 7) (61).  

 The founding quinolone, nalidixic acid (Figure 6), was first synthesized in the 

early 1960s (14, 18). This compound, along with the other early generation quinolones 

(such as oxolinic acid), was introduced into clinics throughout that decade for the 

treatment of urinary tract infections. Ultimately, these first-generation quinolones were 

dropped from clinical use due to their limited efficacy.  

 By the early 1980s, advancements in quinolone chemistry resulted in the 

development of second-generation compounds with considerably improved activity and 

pharmacokinetics (13-20). The most critical change was the introduction of a fluorine 

atom at the C-6 position (Figure 6). This alteration dramatically enhanced potency 

against gyrase and promoted drug uptake by the bacterial cell. The first clinically 

important “fluoroquinolone” was norfloxacin (Figure 6). It displayed much greater 

activity against Gram-negative bacteria than did earlier quinolones and also exhibited 

modest activity against some Gram-positive species. Due to poor tissue distribution and 

low serum levels, norfloxacin was restricted to the treatment of urinary tract infections 

and sexually transmitted diseases. Subsequent fluoroquinolones (Figure 6), such as 

ciprofloxacin, were the first family members to display clinical activity outside of the 

urinary tract. Ciprofloxacin is used to treat a variety of Gram-negative (and, to a lesser 
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Figure 7. Crystal structure of a moxifloxacin-stabilized Acinetobacter baumannii 
topoisomerase IV-DNA cleavage complex. The catalytic core of the enzyme is shown. 
Moxifloxacin is shown in red, the topoisomerase IV A and B subunits are shown in blue 
and green, respectively, and DNA is shown in yellow. Top: A top view of the cleavage 
complex showing two quinolone molecules intercalating four base pairs apart at the sites 
of DNA cleavage. Bottom: A front view (rotated by 90° from the top view) of the 
cleavage complex. Protein Data Bank accession 2XKK was visualized using Discovery 
Studio 3.5 Visualizer (Accelrys Software Inc.). Adapted from Wohlkonig et al. (61).  
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extent, Gram-positive) pathogens and has come to worldwide attention as the drug of 

choice for the treatment of anthrax.  

 Recently, newer generations of quinolones have emerged that display markedly 

higher activity against Gram-positive bacteria (13-20). Drugs such as levofloxacin and 

moxifloxacin (Figure 6) also display excellent activity against Gram-positive respiratory 

tract infections and have greatly extended the clinical range of this drug class.  

 

Quinolone Targeting 

 Gyrase was first identified as the toxic target for quinolones in Escherichia coli in 

1977 (62, 63). The discovery that the ParC/ParE subunits constituted topoisomerase IV 

raised the question of whether this topoisomerase also was a target for quinolones (64). 

Most subsequent studies concur that both enzymes are targets for quinolones in bacterial 

cells (17, 65). However, the relative contributions of gyrase and topoisomerase IV to drug 

efficacy are not well understood. Early studies suggested that gyrase rather than 

topoisomerase IV was the primary cytotoxic target for quinolones in Gram-negative 

bacteria, but that the opposite was true in Gram-positive species (14). However, recent 

studies indicate that this paradigm does not hold in all cases and that the issue of 

quinolone targeting needs to be evaluated on a strain-by-strain and drug-by-drug basis 

(17, 19). 

 

Quinolone Resistance and Enzyme Interactions 

 Resistance to antibacterial agents has become an increasingly important clinical 

issue (17-19, 65). Unfortunately (due in part to overuse), quinolone resistance is 
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becoming more prevalent. Although increased levels of multidrug efflux pumps often 

play a role in cases of high resistance, initial resistance to quinolones is usually 

associated with point mutations in the DNA cleavage-ligation subunits of gyrase (GyrA) 

and/or topoisomerase IV (ParC/GrlA). 

 The two most common mutations associated with quinolone resistance occur at 

Ser83 and Glu87 of GyrA (sequence numbering is based on E. coli GyrA) or the 

homologous residues of ParC/GrlA (17-19, 65). The enzyme in which a mutation occurs 

first is defined as the primary target for quinolones in a given bacterial species. This event 

generally confers <10–fold resistance. Subsequent mutation of the second enzyme often 

confers an additional order of magnitude of quinolone resistance. 

 Quinolone resistance is associated with a decreased affinity of gyrase or 

topoisomerase IV for the drug as well as a decreased ability of the drug to induce stable 

cleavage complexes and inhibit DNA ligation (18, 19, 66). Recent structural and 

biochemical evidence indicates that the basis for Ser83/Glu87-mediated resistance is 

related to the ability of quinolones to bind divalent metal ions (Figure 8) (19, 60, 61, 66-

68). The primary interaction of clinically relevant quinolones with gyrase and 

topoisomerase IV is coordinated through this metal ion via four water molecules, two of 

which are anchored by Ser83 and Glu87. Thus far, the presence of the water-metal ion 

bridge and its role in mediating interactions with clinically relevant quinolones has been 

demonstrated in topoisomerase IV. Although mutagenesis studies in gyrase are consistent 

with a critical role for the water-metal ion bridge, the existence of the bridge has yet to be 

demonstrated in gyrase.  
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Figure 8. Quinolone-topoisomerase IV binding is mediated by a water-metal ion bridge. 
Left: Crystal structure of a moxifloxacin-stabilized Acinetobacter baumannii topoisomer-
ase IV-DNA cleavage complex. Moxifloxacin is shown in black and the non-catalytic 
Mg2+ ion that is chelated by the C3/C4 keto acid of the quinolone and participates in the 
bridge is shown in green. The four water molecules that fill out the coordination sphere of 
the Mg2+ ion are shown in blue. The backbone of selected portions of the protein amino 
acid chain is shown in yellow. The side chains of the serine and acidic residues that form 
hydrogen bonds with the water molecules in the water-metal ion bridge are shown in red. 
For clarity, DNA has been omitted from the picture. Protein Data Bank accession 2XKK 
was visualized using Discovery Studio 3.5 Visualizer (Accelrys Software Inc.). Adapted 
from Wohlkonig et al. (61) Right: Simplified diagram of the water-metal ion bridge 
adapted from Aldred et al. (19). A generic quinolone is in black, the non-catalytic Mg2+ is 
orange, water molecules are blue, and the coordinating serine and acidic residues (B. 
anthracis topoisomerase IV numbering) are red and green, respectively. Blue dashed 
lines indicate the octahedral coordination sphere of the divalent metal ion. The red or 
green dashed lines represent hydrogen bonds between the serine side chain hydroxyl 
group or the acidic residue side chain carboxyl group and the water molecules. Bottom: 
Sequence alignment of the A subunits showing the serine and acidic residues (red) that 
coordinate the water-metal ion bridge. Sequences of A. baumannii (Ab), Bacillus 
anthracis (Ba), Escherichia coli (Ec), Staphylococcus aureus (Sa), and Streptococcus 
pneumoniae (Sp) gyrase (GyrA) and topoisomerase IV (ParC/GrlA) are shown. The 
homologous regions of human topoisomerase IIα (hTIIα) and IIβ (hTIIβ), which lack the 
residues necessary to coordinate the water-metal ion bridge interaction, are shown for 
comparison.
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Scope of the Dissertation 

 Because of the importance of type II topoisomerases to nucleic acid functions in 

human and bacterial cells and because of the wide use of anticancer and antibacterial 

agents that target these enzymes, it is important to understand how type II topoisomerases 

interact with it DNA substrate and with drugs. Therefore, the goals of this dissertation are 

to further our understanding of how human and bacterial type II topoisomerases interact 

with DNA and discern the handedness of DNA supercoils, how human topoisomerase IIα 

interacts with covalent poisons, and how bacterial gyrase interacts with quinolone 

antibacterials. 

 An introduction to bacterial and human type II topoisomerases, topoisomerase II 

poisons, and quinolone antibacterials is presented in Chapter I.  

 Chapter II describes the characterization of the catalytic core of human 

topoisomerase IIα. Results further define the distinct contributions of the N-terminal gate 

and the catalytic core to topoisomerase II function. The work demonstrates that the 

catalytic core senses the handedness of DNA supercoils during cleavage, while the N-

terminal gate is critical for capturing the transport-segment and for the activity of 

covalent poisons. These findings have been published (69). 

 Chapter III describes the ability of Bacillus anthracis gyrase to discern the 

handedness of DNA supercoils during DNA cleavage. Results also lay the groundwork 

for future studies on assessing the role of the water-metal ion bridge in mediating 

interactions between gyrase and clinically relevant quinolones. 

 Concluding remarks on the research presented in this dissertation are provided in 

Chapter IV. 
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CHAPTER II 

 

THE CATALYTIC CORE OF HUMAN TOPOISOMERASE IIα: INSIGHTS INTO 
ENZYME–DNA INTERACTIONS AND DRUG MECHANISM 

 

Introduction 

 As discussed in the previous chapter, eukaryotic type II topoisomerases function 

as homodimeric proteins. On the basis of homology with DNA gyrase, these enzymes can 

be divided into three domains: the N-terminal domain, the catalytic core, and the C-

terminal domain (4-8, 70). The N-terminal domain contains the site of ATP binding and 

hydrolysis. ATP binding triggers dimerization of the N-terminal domain, which helps 

capture the T-segment and closes the N-terminal protein gate (71). This action induces 

the transport of the T-segment passage through the open gate in the G-segment (4-8, 70, 

71). The catalytic core of topoisomerase II contains the active site tyrosine that cleaves 

and covalently attaches to the DNA. It also forms a second protein gate that allows the T-

segment to exit the enzyme following strand passage. The C-terminal domain is the least 

understood portion of topoisomerase II. It is highly variable and contains nuclear 

localization sequences and sites of phosphorylation (2, 7, 8). Although it is not necessary 

for catalytic activity, the C-terminal domain is involved in the recognition of DNA 

geometry during strand passage and provides different type II topoisomerases with unique 

capabilities. In human topoisomerase IIα, the C-terminal domain allows the enzyme to 

relax positively supercoiled (i.e., overwound) DNA that accumulates ahead of replication 

forks ten times faster than it does negatively supercoiled (i.e., underwound) molecules 
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(36, 72). In contrast, topoisomerase IIβ relaxes positive and negative DNA supercoils at 

the same rate (36, 72).  

 Although only topoisomerase IIα is able to recognize the handedness of DNA 

supercoils during relaxation, both isoforms are able to distinguish between positive and 

negative supercoils during DNA cleavage (73). Topoisomerase IIα and topoisomerase IIβ 

maintain higher levels of cleavage complexes with underwound as compared to 

overwound molecules. In spite of the important role played by the C-terminal domain in 

distinguishing DNA geometry during relaxation, this portion of the enzyme is not 

involved in recognizing supercoil handedness during DNA cleavage (72). It is not 

obvious which domain of topoisomerase II is responsible for this recognition. Given the 

role of the N-terminal gate in capturing the T-segment and that of the catalytic core in 

cleaving the G-segment, both are likely candidates.  

 In addition, despite the suggested role of the N-terminal gate in the actions of 

covalent poisons (74, 75), the portion of topoisomerase II that mediates the effects of 

these compounds has not been established. Further complicating this issue, covalent 

poisons have been shown to adduct cysteine residues in both the N-terminal gate and the 

catalytic core of topoisomerase IIα (51, 53).  

 To address the above issues, the DNA cleavage activity of the catalytic core of 

human topoisomerase IIα was characterized. Results indicate that the catalytic core is 

sufficient for the enzyme to recognize DNA supercoil handedness during the cleavage 

reaction. However, the catalytic core alone displayed little ability to cleave DNA 

substrates that did not intrinsically provide the enzyme with a transport segment (i.e., 
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substrates that did not contain crossovers). Finally, the N-terminal gate is necessary for 

cleavage enhancement by covalent poisons. 

 
Experimental Procedures  

 

Enzymes  

The truncated hTop2α∆1175 (containing amino acids 1-1175) was constructed as 

described previously (76). Human topoisomerase IIα and hTop2α∆1175 were expressed 

in S. cerevisiae JEL-1∆top1 and purified as described by Kingma et al. (77). The 

catalytic core of human topoisomerase IIα (containing residues 431-1193) (78) was 

expressed in yeast cells and purified using a Ni2+-nitriloacetic acid agarose column 

(Qiagen) as described previously (79, 80). The enzyme was stored at -80 °C as a 1.5 

mg/mL stock in 50 mM Tris-HCl, pH 7.8, 0.1 mM EDTA, 750 mM KCl, 5% glycerol. 

For all of the enzymes examined, the concentration of dithiothreitol carried over from 

purification protocols was <2 µM in final reaction mixtures. 

 

DNA Substrates 

 Negatively supercoiled pBR322 plasmid DNA was prepared using a Plasmid 

Mega Kit (Qiagen) as described by the manufacturer. Positively supercoiled pBR322 

DNA was prepared by treating negatively supercoiled molecules with recombinant 

Archaeoglobus fulgidus reverse gyrase (36, 81). The number of positive supercoils was 

comparable to the number of negative supercoils in the original pBR322 preparations 

(36). For experiments comparing positively and negatively supercoiled DNA, the 

negatively supercoiled plasmid was processed identically to the positively supercoiled 
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molecules except that reverse gyrase was omitted from reaction mixtures. Relaxed 

pBR322 plasmid DNA was generated by treating negatively supercoiled pBR322 with 

topoisomerase I and purified as described previously (67). 

 

Drugs 

 Etoposide, benzoquinone, and thymoquinone were purchased from Sigma-

Aldrich. Etoposide was stored at room temperature as a 20 mM solution in 100% DMSO. 

Benzoquinone was stored at -20 °C as a 20 mM solution in water. Thymoquinone was 

stored at 4 °C as a 40 mM solution in 100% DMSO. The quinolone CP-115,953 was the 

gift of Thomas D. Gootz and Paul R. McGuirk (Pfizer). It was stored at -20 °C as a 40 

mM solution in 0.1 N NaOH and was diluted five-fold with 10 mM Tris–HCl (pH 7.9) 

immediately prior to use. Etoposide quinone was synthesized as described previously 

(82-84) and was stored at 4 °C as a 20 mM solution in 100% DMSO. 

 

Plasmid DNA Cleavage 

DNA cleavage reactions were carried out using the procedure of Fortune and 

Osheroff (85). Reaction mixtures contained 10 nM pBR322 and 150 nM wild-type 

topoisomerase IIα, 80 nM hTop2α∆1175, or 430 nM catalytic core in a total of 20 µL of 

cleavage buffer [10 mM Tris-HCl (pH 7.9), 5 mM MgCl2, 100 mM KCl, 0.1 mM EDTA, 

and 2.5% (v/v) glycerol]. Reaction mixtures were incubated at 37 °C for 6 min, and 

enzyme−DNA cleavage complexes were trapped by the addition of 2 μL of 5% SDS 

followed by 2 μL of 250 mM EDTA (pH 8.0). Proteinase K (2 μL of a 0.8 mg/mL 

solution) was added, and samples were incubated at 45 °C for 30 min to digest the 
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enzyme. Samples were mixed with 2 µL of agarose loading dye [60% sucrose in 10 mM 

Tris-HCl (pH 7.9), 0.5% bromophenol blue, and 0.5% xylene cyanol FF], heated at 45 °C 

for 2 min, and subjected to electrophoresis in 1% agarose gels in 40 mM Tris-acetate (pH 

8.3) and 2 mM EDTA containing 0.5 μg/mL ethidium bromide. DNA bands were 

visualized by UV light and quantified using an Alpha Innotech digital imaging system. 

DNA cleavage was monitored by the conversion of supercoiled plasmid to linear 

molecules. 

 Note that lower levels of hTop2α∆1175 were used in reaction mixtures because in 

the presence of Mg2+, the protein displays ~2–fold higher levels of DNA cleavage than 

does wild-type topoisomerase IIα (76). Conversely, higher levels of the catalytic core 

were used because it displays lower levels of baseline DNA cleavage than does the wild-

type enzyme in reactions containing Mg2+ (see Figure 10). 

 DNA cleavage reactions were carried out in the presence of 0–250 µM etoposide, 

0–20 µM CP–115,953, or 0–100 µM benzoquinone, thymoquinone, or etoposide 

quinone. Alternatively, MgCl2 was omitted from the cleavage buffer and reaction 

mixtures contained 0–5 mM CaCl2. 

 

DNA Cleavage Site Utilization 

DNA cleavage sites were mapped using a modification (86) of the procedure of 

O’Reilly and Kreuzer (87). A unique derivative of pUC19 (pMP-bcr6) was used as 

substrate for DNA cleavage site utilization experiments. The substrate was generated by 

modifying pUC19 to include a region of PML intron 6 that contains an established 

breakpoint associated with therapy-related acute promyelocytic leukemia. The genomic 
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DNA of human CEM cells was prepared using standard protocols according to the 

manufacturer's instructions for the DNeasy Blood and Tissue Kit (Qiagen). 5’-

GGGGGGATCCTTCTGCAAAGGCCACCTACC-3’ and 5’-AGGGGAAGCTTCACT-

GTCCCCATTCTCAGC-3’ primers were synthesized for amplifying a 319-bp region of 

the PML gene (44157-44475 on GenBank accession number NG029036) with the CEM 

genomic DNA as template. Purified clones containing the insert were transformed into 

XL1-Blue cells and sequenced with M13 primers by Vantage (Vanderbilt Technologies 

for Advanced Sequencing.) pMP-bcr6 was linearized by treatment with Acc651. Terminal 

5′-phosphates were removed by treatment with calf intestinal alkaline phosphatase and 

replaced with [32P]phosphate using T4 polynucleotide kinase and [γ-32P]ATP. The DNA 

was treated with EcoRI, and the 2968-bp singly end-labeled fragment was purified from 

the small EcoRI−Acc651 fragment by being passed through a CHROMA SPIN+TE-100 

column (Clontech).  

 Reaction mixtures contained 1 nM labeled pMP-bcr6 and 60 nM wild-type human 

topoisomerase IIα or 115 nM catalytic core in 50 µL of DNA cleavage buffer (containing 

5 mM Ca2+) in the absence or presence of compounds. Reaction mixtures were incubated 

at 37 °C for 6 min, and enzyme−DNA cleavage complexes were trapped by the addition 

of 5 μL of 5% SDS followed by 4 µL of 250 mM EDTA (pH 8.0). Proteinase K (5 µL of 

a 0.8 mg/mL solution) was added, and samples were incubated at 45 °C for 30 min to 

digest the enzyme. DNA products were precipitated with ethanol and resuspended in 5 

µL of polyacrylamide gel loading buffer [10% agarose gel loading buffer, 80% 

formamide, 100 mM Tris-borate (pH 8.3), and 2 mM EDTA]. Samples were subjected to 

electrophoresis in denaturing 6% polyacrylamide sequencing gels. Gels were dried in 



31 
 

vacuo, and DNA cleavage products were visualized with a Bio-Rad Molecular Imager 

FX. 

 

Results and Discussion 

 

Recognition of Supercoil Geometry by Human Topoisomerase IIα 

Human type II topoisomerases can distinguish the handedness of DNA supercoils 

during scission and maintain levels of cleavage complexes with negatively supercoiled 

DNA that are ~2-4–fold higher than those seen with positively supercoiled molecules 

(Figure 9, left) (73). Several lines of evidence indicate that the C-terminal domain of 

topoisomerase II is not involved in this recognition (72, 73). Most notably, deletion of the 

C-terminal domain of human topoisomerase IIα does not affect the ability of the enzyme 

to preferentially cleave underwound molecules (72).  

 It is not clear which portion of topoisomerase IIα is responsible for the 

recognition of DNA geometry during cleavage. Although DNA cleavage is mediated by 

the catalytic core of the enzyme, rates of cleavage can be modulated by changes in the N-

terminal gate (24, 88) Therefore, the ability of the catalytic core of topoisomerase IIα to 

cleave negatively and positively supercoiled DNA was assessed. As shown in Figure 9 

(right), the catalytic core retained the ability to recognize supercoil handedness and 

preferentially cleaved negatively supercoiled plasmid.  

 The above experiments substituted Ca2+ for Mg2+ as the required divalent metal 

ion in order to generate levels of DNA cleavage that were high enough to reliably 

quantify enzyme-mediated DNA scission under conditions that did not include anticancer 
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Figure 9. The catalytic core of human topoisomerase IIα preferentially cleaves negatively 
supercoiled DNA in the presence of Ca2+. The ability of wild-type topoisomerase IIα 
(WT, left panel) and the catalytic core (CC, right panel) to cleave negatively [(-)SC, filled 
circles] or positively [(+)SC, open circles] supercoiled plasmid DNA is shown. Error bars 
represent the standard deviation of at least three independent experiments. 

WT CC 
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drugs (22). Previous work demonstrated that Ca2+ does not affect DNA cleavage site 

selection by topoisomerase IIα or the ability of type II enzymes to recognize DNA 

supercoil geometry (73, 89). Although the catalytic core displayed a preference for 

negatively supercoiled DNA that was similar to that of wild-type topoisomerase IIα 

(Figure 9), it exhibited unexpectedly high levels of DNA cleavage in the presence of 

Ca2+. The underlying basis for this high level of Ca2+-supported DNA cleavage is not 

known.  

 To further confirm the ability of the catalytic core to distinguish supercoil 

geometry, DNA cleavage was examined in the presence of Mg2+ and topoisomerase II 

poisons (Figure 10). Etoposide and the quinolone CP-115,953 are well-characterized 

interfacial poisons that do not intercalate into DNA (which would change the apparent 

topology of the plasmid substrate) (90, 91). Similar to results seen with Ca2+, the catalytic 

core maintained higher levels of cleavage complexes with negatively as compared to 

positively supercoiled DNA in the presence of Mg2+ and interfacial topoisomerase II 

poisons. 

 These results provide strong evidence that the ability to distinguish the geometry 

of DNA supercoils during cleavage is embedded in the catalytic core of human 

topoisomerase IIα. 

 

Role of the N-Terminal Gate of Topoisomerase IIα in Mediating Interactions with the T-
Segment of DNA 

Topoisomerase II binds negatively supercoiled DNA at sites of helix-helix 

crossovers, and it has been proposed that this ability to bind DNA crossovers allows 

topoisomerase II to distinguish between relaxed and supercoiled molecules (89, 92). 



34 
 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. The catalytic core of human topoisomerase IIα preferentially cleaves 
negatively supercoiled DNA in the presence of etoposide and CP-115,953. The ability of 
wild-type topoisomerase IIα (WT, black) and the catalytic core (CC, red) to cleave 
negatively [(-)SC, filled circles] or positively [(+)SC, open circles] supercoiled plasmid 
DNA in the presence of etoposide (left panel) or CP-115,953 (right panel) is shown. 
Results for CP-115,953 are not shown at concentrations above 10 µM with the wild-type 
enzyme because the drug induced multiple cleavage events per plasmid. The inset shows 
cleavage induced by the catalytic core in the presence of 250 μM etoposide. Error bars 
represent the standard deviation of at least three independent experiments. 
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Although it has not been rigorously demonstrated, it is believed that the two DNA helices 

at the crossover become the G- and T-segments. 

 Studies with oligonucleotides indicate that binding of the T-segment greatly 

stimulates topoisomerase II-mediated cleavage of the G-segment (24, 93). These findings 

suggest that the T-segment plays an important role in the ability of topoisomerase II to 

identify and relax DNA supercoils. Although the N-terminal gate of the protein plays a 

critical role in capturing the T-segment and passing it through the DNA gate, it is not 

known whether the initial interaction with the T-segment is mediated by this portion of 

topoisomerase II or by the catalytic core of the enzyme. Therefore, we examined the 

ability of the catalytic core of topoisomerase IIα to cleave DNA that does not contain 

intrinsic crossovers. 

 In the first experiment, a linearized plasmid was used as the DNA substrate. 

Etoposide was included in experiments to increase levels of DNA scission. As seen in 

Figure 11, wild-type human topoisomerase IIα was able to cleave the DNA in the 

absence or presence of drug. Cleavage was enhanced when ATP was added to reaction 

mixtures. One interpretation of this finding is that in the presence of ATP, the N-terminal 

gate is able to capture the T-segment, thereby stimulating DNA scission. In contrast, the 

catalytic core of the enzyme was unable to cleave the linearized plasmid under any of the 

above conditions. Furthermore, no DNA cleavage was seen when the concentration of the 

catalytic core was increased 5-fold, or when Mg2+ was used in place of Ca2+ in reaction 

mixtures (not shown). These findings suggest that the N-terminal gate plays a critical role 

in mediating interactions with the T-segment. 
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Figure 11. Effects of etoposide on sites of DNA cleavage mediated by wild-type human 
topoisomerase IIα and the catalytic core. An autoradiogram of a polyacrylamide gel 
depicting DNA sites cleaved by wild-type topoisomerase IIα (WT) and the catalytic core 
(CC) is shown. Reaction mixtures contained no enzyme (DNA), enzyme in the absence 
of drug (No Drug), or enzyme in the presence of 20 μM etoposide with or without 1 mM 
ATP. Lanes shown were taken from different portions of the same gel. The 
autoradiogram is representative of three independent experiments. 
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 To further explore this conclusion, the ability of wild-type topoisomerase IIα and 

the catalytic core to cleave relaxed DNA was examined (Figure 12). In contrast to 

negatively supercoiled plasmid, which contains numerous inherent DNA crossovers, 

relaxed molecules contain few, if any intrinsic sites of helix-helix juxtaposition. For this 

reason, topoisomerase II preferentially cleaves negatively supercoiled over relaxed 

molecules (compare scission in Figures 10 and 12) (89). 

 Wild-type topoisomerase IIα was able to cleave relaxed plasmid (Figure 12, left), 

suggesting that the full-length enzyme can capture a transport-helix even when there are 

few intrinsic crossovers in the DNA substrate. When ATP was added to reaction 

mixtures, levels of cleavage increased ~9–fold (left), consistent with the conclusion that 

ATP induces closing of the N-terminal gate, stabilizing the capture of the T-segment. 

Although ATP also stimulates the ability of the intact enzyme to cleave negatively 

supercoiled plasmid (Figure 12, right), this enhancement is much smaller (~2–fold). The 

presence of high levels of helix-helix crossovers in the negatively supercoiled plasmid 

facilitates interactions between the intact enzyme and helix-helix crossovers, partially 

obviating the need for T-segment capture by the addition of ATP.  

 In contrast to topoisomerase IIα that contained its N-terminal gate, the catalytic 

core was unable to cleave relaxed plasmid in the absence or presence of ATP (Figure 12, 

left). Moreover, the addition of ATP did not enhance cleavage of negatively supercoiled 

plasmid (right).  

 These experiments lead to the conclusion that the catalytic core of human 

topoisomerase IIα cannot efficiently capture the T-segment. More importantly, they also 

lead to the conclusion that the N-terminal gate of the enzyme plays a critical role in 
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Figure 12. Effects of ATP on cleavage of relaxed and negatively supercoiled DNA by 
wild-type human topoisomerase IIα and the catalytic core. The ability of wild-type 
topoisomerase IIα (WT, black) and the catalytic core (CC, red) to cleave relaxed DNA 
(left panel) or negatively supercoiled DNA (right panel) in the presence of etoposide is 
shown. Experiments were carried out in the absence (filled symbols) or presence (open 
symbols) of 500 μM ATP. Experiments with negatively supercoiled DNA contained 50 
µM etoposide. Error bars represent the standard deviation of at least three independent 
experiments. Statistically significant difference is noted by an asterisk (*p < 0.01). 
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mediating the initial interaction with the T-segment. In the absence of this protein 

domain, the catalytic core is able to cleave supercoiled plasmid primarily because the 

substrate carries intrinsic DNA crossovers. Thus, the substrate is able to present the T-

segment to the enzyme, even in the absence of the protein domain that normally mediates 

the interaction with the second DNA double helix.  

 

Role of the N-Terminal Gate of Human Topoisomerase IIα in Mediating the Actions of 
Covalent Poisons 

A number of environmental, dietary, and medicinal compounds act as covalent 

topoisomerase II poisons (48, 50, 53-55, 57, 74, 75, 94-96). Compared to interfacial 

poisons, the mechanistic basis for the actions of covalent poisons is less well understood. 

These compounds form adducts with the enzyme (48, 50-53). At the present time, only 

cysteine adducts have been characterized. It has been proposed that the ability of covalent 

poisons to close the N-terminal gate plays an important role in mediating their ability to 

increase levels of topoisomerase II-DNA cleavage complexes (74, 75). However, 

modified residues have been identified in both the N-terminal gate and the catalytic core 

(51, 53). 

 In order to explore the role of the N-terminal gate in the actions of covalent 

poisons, the effects of benzoquinone (94) and thymoquinone (57) on DNA cleavage 

mediated by wild-type topoisomerase IIα and the catalytic core were examined. Effects 

on cleavage mediated by a truncated human enzyme lacking the C-terminal domain 

(hTop2α∆1175) also were determined as a control. Benzoquinone and thymoquinone 

displayed similar abilities to increase cleavage complexes formed with full-length 

topoisomerase IIα or hTop2α∆1175 and negatively supercoiled plasmid (Figure 13). This 
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Figure 13. Covalent poisons do not enhance DNA cleavage mediated by the catalytic core 
of human topoisomerase IIα. Effects of benzoquinone (left) and thymoquinone (right) on 
DNA cleavage mediated by wild-type human topoisomerase IIα (black), the catalytic 
core (red), and hTop2α∆1175 (blue) are shown. Error bars represent the standard 
deviation of at least three independent experiments. 
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finding demonstrates that the C-terminal domain plays no significant role in mediating 

the actions of covalent topoisomerase II poisons. In marked contrast, neither compound 

displayed any ability to enhance DNA cleavage mediated by the catalytic core. This 

result indicates that the N-terminal gate of topoisomerase IIα is critical for the actions of 

covalent poisons. Furthermore, it provides yet another distinction between interfacial 

poisons (which do not require the N-terminal gate to stimulate topoisomerase II-mediated 

DNA cleavage; see Figure 10) and covalent poisons. 

 In further contrast to interfacial poisons, covalent topoisomerase II poisons 

display the hallmark characteristic of inactivating the enzyme when the two are incubated 

prior to the addition of DNA (50, 94). Even though the inactivation can be explained by 

the ability of covalent poisons to close the N-terminal protein gate (thus preventing DNA 

from entering the active site of topoisomerase II) (51, 75), this proposed mechanism is 

controversial. Indeed, treatment of human topoisomerase IIα with benzoquinone or PCB 

quinones blocks the ability of the enzyme to cleave oligonucleotides that are able to bind 

to the protein and diffuse into the active site without entering through the protein gate 

(51). This finding implies that mechanisms besides the proposed closing of the N-

terminal gate may contribute to enzyme inactivation by covalent poisons. 

 To address this controversy, benzoquinone and thymoquinone were incubated 

with wild-type topoisomerase IIα, hTop2α∆1175, or the catalytic core prior to the 

addition of negatively supercoiled plasmid and the effects on DNA cleavage were 

assessed. Assays with the catalytic core were carried out in the presence of Ca2+ in order 

to raise baseline levels of DNA cleavage (see Figure 9). As seen in Figure 14, 

benzoquinone and thymoquinone inactivated all three enzymes. Thus, while covalent  
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Figure 14. Covalent poisons inactivate human topoisomerase IIα enzymes when 
incubated with the protein prior to the addition of DNA. The DNA cleavage activities of 
wild-type human topoisomerase IIα (black), the catalytic core (red), and hTop2α∆1175 
(blue) were monitored in the presence of 50 µM benzoquinone (left) or 50 µM 
thymoquinone (right). DNA cleavage levels were calculated relative to cleavage induced 
when the drug and the enzyme were not incubated prior to DNA addition. Error bars 
represent the standard deviation of at least three independent experiments. 
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poisons require the N-terminal gate in order to stimulate DNA cleavage mediated by 

topoisomerase II, they do not require this portion of the protein to inactivate the enzyme. 

Although the closing of the N-terminal gate may contribute to topoisomerase II 

inactivation, clearly other mechanisms can produce a similar effect. 

 

Mechanism of Action of Etoposide Quinone 

Etoposide has been linked to the generation of treatment-related acute myeloid 

leukemia (12, 42, 45, 46, 97), and etoposide quinone, a metabolite of etoposide (83, 98), 

has been implicated in this process (99). These leukemias feature rearrangements of the 

MLL gene at chromosomal band 11q23 and are believed to be triggered by drug-induced 

DNA cleavage events mediated by human type II topoisomerases (12, 42, 45, 46, 97). 

Although etoposide is an interfacial topoisomerase II poison, several studies indicate that 

etoposide quinone acts primarily as a covalent poison (84, 100, 101). However, it is not 

known whether the covalent interaction of the quinone with topoisomerase II masks the 

fact that the metabolite also can act as an interfacial poison.  

 Previous studies indicate that the pendant E-ring of etoposide is critical to its 

actions as an interfacial poison (Figure 15) (102-104). Substitution of either the 3’ or 5’ 

methoxy groups with a hydroxyl moiety has little effect on drug activity (100, 105). 

Thus, the catechol metabolite of etoposide displays an activity (and mechanism) similar 

to that of the parent drug. Removal of the 4’ hydroxyl moiety or substitution by a 

methoxy group greatly compromises the activity of etoposide (103, 104). However, it is 

not known whether substitution by a carbonyl group affects the ability of etoposide to 

function as an interfacial poison. 
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Figure 15. Etoposide quinone enhances DNA cleavage mediated by the catalytic core of 
human topoisomerase IIα. The effects of etoposide quinone on DNA cleavage mediated 
by wild-type human topoisomerase IIα (black), the catalytic core (red), and 
hTop2α∆1175 (blue) are shown. Cleavage reactions with etoposide quinone and the 
catalytic core that included 10 µM K3[Fe(CN)6] (open circles) also are shown. The 
structure of etoposide and the E-rings of etoposide catechol and etoposide quinone are 
depicted at right. Error bars represent the standard deviation of at least three independent 
experiments. 
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 The experiments shown in Figure 13 provide a method to determine whether 

etoposide quinone can function as an interfacial poison in addition to acting as a covalent 

poison. If etoposide quinone functions purely as a covalent poison, it should have no 

effect on DNA cleavage mediated by the catalytic core. However, if it retains the ability 

to act as an interfacial poison (despite the fact that it can also act as a covalent poison), it 

should display at least some activity against the catalytic core. As seen in Figure 15, 

etoposide quinone retains partial activity against the catalytic core of human 

topoisomerase IIα. It is possible that this activity reflects the fact that a portion of the 

etoposide quinone preparation has been reduced over time to the catechol, which is an 

interfacial topoisomerase II poison. To address this possibility, the effect of 10 µM 

K3[Fe(CN)6] on the ability of etoposide quinone to enhance DNA cleavage mediated by 

the catalytic core was assessed. The oxidant, which converts the catechol to the quinone 

(100), had little effect on the actions of etoposide quinone against the catalytic core. 

Although etoposide quinone functions primarily as a covalent topoisomerase II poison, 

these findings indicate that it still retains a modest ability to act as an interfacial poison of 

human topoisomerase IIα. 

 

Conclusions 

 The N-terminal gate and the catalytic core of type II topoisomerases work 

coordinately to capture, cleave, and transport DNA during the DNA strand passage 

reaction. Although this coordination is essential for proper enzyme function, it has 

obscured the individual contributions of these two domains to important aspects of 

enzyme–DNA interactions and drug mechanism. Previous studies have shown that the C-
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terminal domain of human topoisomerase IIα is responsible for DNA geometry 

recognition during relaxation; however, the present results indicate that the catalytic core 

is the portion of the enzyme that senses the handedness of DNA supercoils during the 

cleavage reaction (Figure 16). Conversely, the N-terminal gate plays critical roles in the 

capture of the T-segment.  

 The use of different topoisomerase IIα constructs also provided considerable 

insight into the actions of covalent topoisomerase II poisons (Figure 16). Whereas the N-

terminal gate is necessary for the enhancement of DNA cleavage by these compounds, 

residues within the catalytic core may be responsible for the inhibition of catalytic 

function that follows the incubation of covalent poisons with topoisomerase II prior to the 

addition of DNA. Finally, the ability of interfacial poisons, but not covalent poisons, to 

enhance DNA cleavage mediated by the catalytic core allowed us to further characterize 

the mechanism of action of etoposide quinone. Although this important drug metabolite 

functions primarily as a covalent poison, it still retains the ability to act in an interfacial 

manner. 
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Figure 16. Domains of human topoisomerase IIα and their involvement in DNA 
geometry recognition and drug activity. The enzyme is divided into three domains: the N-
terminal gate (blue, amino acid residues 1-430), which contains the ATPase active site; 
the catalytic core (red, residues 431-1193), which contains the TOPRIM domain (the 
portion that binds the catalytic divalent metal ions) and the DNA cleavage/ligation active 
site tyrosine residue (Y805); and the C-terminal domain (green, residues 1193-1531) (1, 
3, 4, 6, 8, 21, 22, 35). Functions associated with each domain are indicated. Three 
cysteine residues (C) are indicated in the N-terminal gate (C300, C392, and C405 from 
left to right). Cys300 has been identified as a site of attachment of isothiocyanate-based 
covalent topoisomerase II poisons (53). However, it has not been established whether 
attachment at this residue plays a role in the actions of these agents (53). Cys392 and 
Cys405 have been identified as sites of attachment of quinone-based covalent poisons 
(51), and substitution of alanine residues at these positions results in an ~2–fold 
resistance to a variety of covalent poisons (51, 55, 57).  
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CHAPTER III 

 

PRELIMINARY CHARACTERIZATION OF DNA GEOMETRY RECOGNITION BY 
BACILLUS ANTHRACIS GYRASE AND DRUG INTERACTIONS WITH THE 

BACTERIAL ENZYME 

 

Introduction 

 Globally, the bacterial chromosome is negatively supercoiled (it is ~6% 

underwound) (30). However, when helicases convert double-stranded to single-stranded 

DNA, they do so without unwinding the two plectonemically coiled strands of the double 

helix. Thus, in contrast to bulk DNA, the DNA immediately ahead of replication forks, 

transcription complexes, and other tracking systems is overwound (i.e., positively 

supercoiled) (30, 106). Because collisions with DNA tracking systems are critical for the 

conversion of transient topoisomerase-DNA cleavage complexes to permanent strand 

breaks, the cleavage complexes most likely to produce permanent strand breaks should be 

formed on overwound DNA (8, 107). Consequently, the ability of type II topoisomerases 

to cleave positively supercoiled DNA significantly impacts the potential response of cells 

to antibacterial drugs. 

 Previous studies indicate that human topoisomerase IIα and topoisomerase IIβ 

both are able to discern the geometry of DNA supercoils and maintain lower levels (~2– 

to 4–fold) of cleavage complexes with positively as compared to negatively supercoiled 

plasmids (73). Conversely, studies with E. coli topoisomerase IV suggest that this 

bacterial type II enzyme maintains higher levels of cleavage complexes with positively 

supercoiled molecules (33). 
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 Gyrase is believed to be the enzyme primarily responsible for removing positive 

supercoils ahead of DNA tracking systems in bacteria (1, 7, 30). However, at the present 

time, nothing is known about the effects of supercoil geometry on DNA cleavage 

mediated by gyrase or on the sensitivity of the enzyme to quinolone antibacterials. 

 As described in Chapter I, interactions of quinolones with topoisomerase IV are 

mediated through a water-metal ion bridge that is anchored by a highly conserved serine 

and an acidic residue located four amino acids away (Ser81 and Asp85 in B. anthracis 

gyrase, respectively) (19, 60, 61, 66-68). However, the role of the bridge appears to vary 

between species. Although B. anthracis topoisomerase IV uses the water-metal ion 

bridge as the primary mechanism to bind quinolones (19, 60, 66, 68), E. coli 

topoisomerase IV uses the bridge to properly align clinically relevant quinolones (67).  

Even though gyrase is the primary cellular target for quinolones in many bacterial 

species, including B. anthracis, the role of the water-metal ion bridge in mediating drug 

interactions has not yet been assessed. Alterations in the above conserved serine and 

acidic amino acid residues are the most common resistance mutations observed in gyrase 

from a multitude of species (19). Thus, it is highly likely that the water-metal ion bridge 

plays a critical role in coordinating quinolones and gyrase. However, the use of the bridge 

by gyrase has not yet been demonstrated and the role that the bridge plays in coordinating 

quinolone interactions remains an open question.  

In order to address the two issues described above, the ability of B. anthracis 

gyrase to discern supercoil geometry during DNA cleavage was assessed. Results 

indicate that like the human type II enzymes, both the wild-type bacterial enzyme and a 

common quinolone resistant mutant enzyme maintain lower levels of cleavage complexes 
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with positively supercoiled substrates. Finally, as a first step toward characterizing the 

role of the water-metal ion bridge in mediating quinolone interactions with gyrase, the 

sensitivity of wild-type and GyrAS85L gyrase to quinolones and quinazolinediones [a 

quinolone-like compound that does not require the bridge to interact with bacterial type II 

enzymes (60, 66, 68)] was assessed. The GyrAS85L mutant enzyme was utilized for these 

experiments because it is the most common mutation observed when selecting for 

quinolone resistant strains of B. anthracis in laboratory settings (108). Preliminary 

findings support the hypothesis that gyrase uses the bridge to coordinate quinolone 

interactions and lay the groundwork for future studies on this important mechanistic 

issue. 

  

Experimental Procedures  

 

Enzymes 

 B. anthracis gyrase enzymes were purified using the procedure of Dong et al. 

(109) with modifications. Genes encoding wild-type B. anthracis GyrA and GyrB were 

individually PCR-amplified from B. anthracis Sterne 34F2 chromosomal DNA and 

cloned into the pET15b (Novagen) expression vector, which provided an N-terminus 

6×His tag. Mutant quinolone-resistant GyrAS85L gyrase was generated by QuikChange 

(Stratagene) site-directed mutagenesis of the wild-type expression vector. Recombinant 

subunits were individually expressed in an E. coli BL21(DE3) ΔslyD strain. Cells were 

lysed by resuspension in CelLytic B (Sigma) containing protease inhibitors (Roche 

Complete Protease Inhibitor Cocktail, EDTA-free) and one passage through a French 
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press at 20,000 psi. The cell lysate was centrifuged at 20,000 × g for 30 min at 4°C to 

remove debris. The cleared lysate was incubated with 2 mL Ni-NTA agarose beads 

(Qiagen) for 1 h at 4°C with end-over-end rotation. Following batch binding, the beads 

were pelleted by centrifugation at 100 × g at 4°C and were then washed with a buffer 

containing 1 M NaCl, 60 mM imidazole, and 20 mM Tris-HCl (pH 7.9) for 30 min at 4°C 

with end-over-end rotation. Next, the beads underwent a series of four 1-min washes with 

a buffer containing 500 mM NaCl, 60 mM imidazole, and 20 mM Tris-HCl (pH 7.9). 

Finally, the beads were loaded into a column, and the proteins were eluted at 4°C with 12 

mL of a buffer containing 500 mM NaCl, 1 M imidazole, and 20 mM Tris-HCl (pH 7.9). 

Twelve 1-mL fractions were collected, and fractions 2-11 were combined, injected into a 

20kDa MWCO Slide-a-Lyzer dialysis cassette (Thermo), and dialyzed against 200 mM 

NaCl and 50 mM Tris-HCl (pH 7.5) at 4°C for 4 hours. The proteins were then dialyzed 

overnight at 4°C into 200 mM NaCl, 50 mM Tris-HCl (pH 7.5), and 20% glycerol and 

were subsequently stored at -80°C. Protein concentrations were determined by A280 

measurements, and the quality and purity of the subunits was determined by Coomassie 

staining following separation on a 7.5% SDS-PAGE gel. In all assays, gyrase was used as 

a 1:1 mixture of GyrA:GyrB. 

 

DNA Substrates 

 Negatively and positively supercoiled pBR322 plasmid DNA was prepared as 

described in Chapter II. 
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Drugs 

 Ciprofloxacin was obtained from LKT Laboratories and CP-115,953 was the gift 

of Thomas D. Gootz and Paul R. McGuirk (Pfizer). Both quinolones were stored at -20°C 

as a 40 mM stock solution in 0.1 N NaOH, and diluted five-fold with 10 mM Tris-HCl 

(pH 7.9) immediately prior to use.  Levofloxacin was obtained from Sigma-Aldrich and 

8-methyl-3’-(AM)P-quinazoline-2,4-dione was the gift of Dr. Robert Kerns (University 

of Iowa). These latter two compounds were stored at 4°C as 20 mM stock solutions in 

DMSO. 

 

Plasmid DNA Cleavage   

 DNA cleavage reactions were carried out using the procedure of Fortune and 

Osheroff (85). Reactions contained 250 nM wild-type or GyrAS85L mutant gyrase and 10 

nM negatively or positively supercoiled pBR322 in a total of 20 µL of 50 mM Tris-HCl 

(pH 7.5), 5 mM MgCl2, 100 mM potassium glutamate, 50 µg/mL bovine serum albumin, 

and 5 mM DTT. Reaction mixtures were incubated at 37°C for 30 min, and enzyme-

DNA cleavage complexes were trapped by the addition of 2 µL of 5% SDS followed by 2 

µL of 250 mM EDTA (pH 8.0). Proteinase K (2 µL of a 0.8 mg/mL solution) was added, 

and samples were incubated at 45°C for 45 min to digest the enzyme. Samples were 

mixed with 2 µL of agarose gel loading buffer, heated at 45°C for 5 min, and subjected to 

electrophoresis in 1% agarose gels in 40 mM Tris-acetate (pH 8.3) and 2 mM EDTA 

containing 0.5 µg/mL ethidium bromide. DNA bands were visualized and quantified as 

described above. DNA cleavage was monitored by the conversion of supercoiled plasmid 

to linear molecules.  
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Results and Discussion 

 

Recognition of Supercoil Geometry by Wild-Type B. anthracis Gyrase 

 As a first step toward analyzing the recognition of DNA geometry by gyrase, the 

effects of supercoil handedness on the level of DNA cleavage mediated by the wild-type 

B. anthracis enzyme were assessed in the presence of ciprofloxacin. The data shown in 

Figure 17 provide strong evidence that gyrase is able to discern the geometry of DNA 

supercoils. As was found with the human type II enzymes (73), gyrase maintained ~2–

fold lower levels of cleavage complexes when positively supercoiled (as opposed to 

negatively supercoiled) DNA was used as a substrate. Assays were carried out in the 

presence of ciprofloxacin in order to increase levels of DNA scission. However, as 

reflected in the zero ciprofloxacin data point, the enzyme is able to discern DNA 

geometry even in the absence of drug (a similar result can be seen in Figure 19). This 

conclusion recently has been confirmed by a more extensive study carried out by Rachel 

Ashley in the Osheroff laboratory. 

 The fact that gyrase maintains lower levels of cleavage complexes with positively 

supercoiled substrates contributes to the ability of the enzyme to alleviate torsional stress 

ahead of replication forks in a safe manner. However, it also renders gyrase an 

intrinsically less sensitive physiological target for quinolone antibacterial drugs. 

 

Characterization of GyrAS85L B. anthracis Gyrase 

 The most commonly observed quinolone resistance mutations occur in amino acid 

residues that are proposed to anchor the water-metal ion bridge. Consequently, the  
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Figure 17. Recognition of DNA geometry by B. anthracis gyrase during DNA cleavage 
in the presence of ciprofloxacin. DNA cleavage with negatively [(–SC), red circles] and 
positively [(+SC), blue circles] supercoiled DNA is shown. Error bars represent the 
standard deviation of three or more independent experiments. 
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characterization of these enzymes and their drug interactions has played an instrumental 

role in furthering our understanding of the role that the bridge plays in coordinating 

quinolone-based drugs. It also has provided tremendous insight into the basis of 

quinolone resistance and potential mechanisms for overcoming this drug resistance. 

 Although a series of structural and biochemical studies have provided a 

reasonable understanding of how the water-metal ion bridge affects quinolone 

interactions with topoisomerase IV (19, 60, 61, 66-68), parallel studies have yet to be 

carried out with gyrase. Therefore, a preliminary characterization of GyrAS85L B. 

anthracis gyrase was undertaken. GyrAS85L gyrase was used because it contains the most 

common quinolone resistance mutation observed in laboratory studies with B. anthracis 

(108). Note that Ser85 is homologous to the serine residue that has been shown to anchor 

the water-metal ion bridge in topoisomerase IV (61). 

 Because quinolones increase levels of enzyme-generated DNA cleavage 

complexes, these drugs depend on enzyme activity to support their function. Thus, if a 

mutation results in a loss of enzyme activity, it could cause quinolone resistance, even if 

it did not directly affect drug-enzyme interactions. Therefore, before characterizing the 

quinolone sensitivity of GyrAS85L gyrase, its intrinsic DNA cleavage activity was 

compared to that of the wild-type B. anthracis enzyme (Figure 18). The DNA cleavage 

activity of the mutant enzyme in the absence of drugs was actually somewhat higher than 

that seen with wild-type gyrase. A similar increase in DNA scission activity has been 

seen in resistance mutations at the equivalent residue in B. anthracis topoisomerase IV 

(66). Thus, quinolone resistance observed in cells carrying GyrAS85L gyrase is not due to a 

loss of enzyme activity. 
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Figure 18. DNA cleavage activity of wild-type and GyrAS85L B. anthracis gyrase. The 
activities of the wild-type (WT, blue bars) and GyrAS85L (S85L, red bars) mutant enzymes 
are shown. Error bars represent the standard deviation of three or more independent 
experiments. 
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 In order to explore the mechanism of quinolone action and resistance, the next 

experiments examined the effects of drugs on DNA cleavage mediated by wild-type and 

GyrAS85L gyrase. Ciprofloxacin and levofloxacin, two clinically used quinolones, as well 

as CP-115,953, an experimental quinolone that displays high activity against bacterial 

and eukaryotic type II enzymes (91), were used for these studies. In addition, 8-methyl-

3’-(AM)P-quinazoline-2,4-dione, a quinolone-like drug that lacks the C3,4-keto acid 

required to chelate divalent metal ions, was used. This latter compound occupies the 

same interaction domain on topoisomerase IV as clinically relevant quinolones (110), but 

does not utilize the water-metal ion bridge (66). Rather, it interacts with the enzyme 

through novel contacts with its 3’-(AM)P moiety (68). 

 Although some differences in drug potency were noted, all of the compounds 

fundamentally had the same effect on wild-type B. anthracis gyrase and enhanced DNA 

cleavage >20–fold (Figure 19). In contrast, the quinolones displayed much lower activity 

against GyrAS85L gyrase. The two clinically used quinolones showed nearly no ability to 

enhance DNA cleavage and the potency of CP-115,953 was reduced considerably 

compared to its effects on wild-type gyrase (Figure 19). Despite the significant drop in 

activity seen with the quinolones, the quinazolinedione, which does not require a divalent 

metal ion, maintained the majority of its activity against GyrAS85L gyrase (Figure 19). 

These findings, although preliminary, strongly suggest that B. anthracis gyrase interacts 

with clinically relevant quinolones through the water-metal ion bridge. 
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Figure 19. Effects of quinolones and 8-methyl-quinazoline-2,4-dione on the DNA 
cleavage activities of wild-type and GyrAS85L B. anthracis gyrase. DNA cleavage 
mediated by wild-type (WT) GyrAS85L gyrase in the presence of drugs are shown in the 
left and right panels, respectively. Results with ciprofloxacin (blue circles), CP-115,953 
(green circles), levofloxacin (yellow circles), and 8-methyl-3’-(AM)P-quinazoline-2,4-
dione (Dione, red circles) are shown for the mutant enzymes. Error bars represent the 
standard deviation of three or more independent experiments. Structures of the drugs are 
shown above the graphs. 
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Recognition of DNA Geometry by GyrAS85L B. anthracis Gyrase 

 The finding that GyrAS85L gyrase is still sensitive to 8-methyl-3’-(AM)P-

quinazoline-2,4-dione provided an opportunity to determine whether this common 

quinolone resistance mutation alters the ability of the enzyme to discern supercoil 

geometry during cleavage. As seen in Figure 20, the mutant enzyme retained its ability to 

recognize supercoil geometry and maintained lower levels of cleavage complexes with 

the positively supercoiled substrate. 

 

Conclusions 

 Although the ability of topoisomerase IV to discern supercoil geometry and 

utilize the water-metal ion bridge to coordinate quinolones has been examined (33), we 

know very little about these two critical issues for gyrase. The present chapter describes 

preliminary studies designed to address this deficiency. 

 Results indicate that B. anthracis gyrase can discern supercoil geometry and (like 

the eukaryotic type II enzymes) maintains lower levels of DNA cleavage complexes with 

positively supercoiled substrates. As discussed earlier, this makes gyrase a “safer” 

enzyme to act ahead of replication forks. However, it may decrease the ability of 

quinolones to enhance gyrase-mediated DNA cleavage in bacterial cells. Thus, it may 

have a negative impact on drug sensitivity. 

 Finally, preliminary studies with GyrAS85L gyrase strongly suggest that the B. 

anthracis enzyme interacts with quinolones through the water-metal ion bridge. This 

work sets the stage for more detailed future studies on gyrase. 
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Figure 20. Recognition of DNA geometry by wild-type and GyrAS85L mutant B. anthracis 
gyrase during DNA cleavage in the presence of 8-methyl-3’-(AM)P-quinazoline-2,4-
dione. DNA cleavage by wild-type (WT, circles) and GyrAS85L (S85L, squares) mutant 
gyrase with negatively [(–SC), red) and positively [(+SC), blue) supercoiled DNA is 
shown. Error bars represent the standard deviation of three or more independent 
experiments. 
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CHAPTER IV 

 

CONCLUSIONS 

 

 The work described in this dissertation has addressed a number of fundamental 

issues regarding the basis by which eukaryotic and bacterial type II topoisomerases 

recognize and interact with their DNA substrates and topoisomerase II poisons. Studies 

presented in Chapter II demonstrate that the ability of human topoisomerase IIα to 

discern supercoil geometry during DNA cleavage resides in the catalytic core of the 

enzyme. They also define new roles for the N-terminal domain in capturing the T-

segment of DNA during the strand passage reaction.  

 Chapter II demonstrates that covalent poisons require the N-terminal domain of 

topoisomerase IIα in order to enhance DNA cleavage. This finding is consistent with 

previous models for how covalent poisons function (74, 75). An intriguing result from the 

work in this chapter is the finding that covalent poisons do not require the N-terminal 

domain in order to inhibit enzyme activity when incubated with topoisomerase IIα prior 

to the addition of DNA. This finding strongly suggests that the ability of covalent poisons 

to increase or abrogate enzyme-mediated DNA cleavage (depending on the incubation 

conditions) results from different mechanisms. 

 Finally, the work presented in Chapter III, although preliminary in nature, adds 

substantially to our understanding of how gyrase recognizes and interacts with DNA and 

quinolones. This study lays the groundwork for detailed mechanistic studies. 
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Future Directions 

 The studies described above have opened several new vistas for the Osheroff 

laboratory. First, the finding that covalent poisons require the N-terminal domain of 

topoisomerase IIα to enhance enzyme-mediated DNA cleavage, but only require the 

catalytic core to inhibit enzyme function, provides strong evidence that our earlier 

“unified” theory for the actions of covalent poisons is incorrect. Therefore, the Osheroff 

laboratory plans to incubate the catalytic core of the enzyme with a variety of covalent 

poisons and determine the residues that may be responsible for the inhibitory activities of 

these compounds. One intriguing possibility is that covalent poisons adduct one or more 

active site amino acid residues when DNA is not present.   

 The work on the recognition of supercoil geometry by B. anthracis gyrase 

currently is being extended to DNA supercoiling reactions. Preliminary results indicate 

that the enzyme removes positive supercoils >10–fold faster than it generates negative 

supercoils in relaxed DNA. These findings suggest that gyrase may be an enzyme that 

was designed to function primarily on overwound molecules. It also raises the question of 

whether the conversion of positively supercoiled DNA to relaxed molecules by gyrase 

utilizes a different mechanism than the conversion of relaxed substrates to negatively 

supercoiled molecules.  

 Finally, given the importance of gyrase as a drug target, it is imperative to 

determine the basis by which quinolones interact with the enzyme. The preliminary 

studies described in Chapter III have set the stage for a detailed analysis of the role 

played by the water-metal ion bridge in mediating interactions of quinolone antibacterials 

with B. anthracis gyrase. These studies currently are underway. 
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