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CHAPTER 1 

 

INTRODUCTION  

 

Vocal development in children with autism spectrum disorder (ASD) is an understudied 

area with potential clinical utility for enhancing language trajectories. Improving language 

trajectories and language outcomes is important for children with ASD because language skills 

predict social, adaptive, and vocational outcomes in this population (Billstedt, Gillberg, & 

Gillberg, 2005; Howlin, 2000). For children with ASD, assessing and targeting vocal 

development, which is the process through which children produce increasingly speech-like 

sounds (Oller, 2000), may be useful for four reasons. First, compared with only targeting lexical 

or grammatical development, targeting vocal communication during the preverbal stage of 

communication development might be more effective in facilitating language development if 

children are not “ready” for linguistic targets. Second, vocal development might indicate early 

response to intervention that targets lexical development. Third, vocal development might help 

explain why language intervention is effective in facilitating language in initially preverbal 

children with ASD. Finally, pretreatment vocal development might describe for whom 

communication intervention is effective in initially preverbal children with ASD. However, to 

experimentally evaluate these potential purposes for focusing on vocal development, 

researchers must be able to measure vocal development in a valid manner.  

Identifying valid vocal development measures for children with ASD is an essential 

prerequisite step to developing and evaluating interventions that may promote prelinguistic 

vocalizations and later language skills for children with ASD. Because there is no gold standard 

vocal development measure, one cannot correlate a new vocal measure with a gold standard 

vocal development measure to evaluate the new measure’s validity (i.e., criterion-related 

validity). Instead, one must draw on multiple sources of evidence to assess the degree to which 
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a variable demonstrates that it measures what it purports to measure (i.e., construct validation; 

Cronbach & Meehl, 1955). The strength of validity evidence, including construct validity, 

sensitivity to change, and incremental validity, influences the scientific usefulness of specific 

variables for specific purposes in research as well as clinical practice. This study assesses the 

validity of multiple variables purported to capture vocal development of children with ASD.  

In this introduction, we briefly describe vocal development in children with typical 

development and the continuity of babbling with spoken language. Then, we introduce various 

aspects of vocalizations that warrant further investigation for children with ASD. Next, we 

present theoretical and empirical support for investigating the validity of variables that assess 

these aspects of vocalizations. We conclude by explaining the need for additional evidence to 

measure vocal development in a valid manner for children with ASD and how the current study 

addresses that need with a large, longitudinal sample of young children with ASD.  

 

Vocal Development in Children with Typical Development  

Vocal development is critical for spoken language (Oller, 2000). Here, we define 

vocalizations as nonvegetative voiced sounds (i.e., created by vibrating vocal folds) created 

during exhalation (i.e., eggressive phonation) because English phonemes are produced by 

eggressive phonation. Children with typical development produce a variety of vocalizations 

before using spoken words as well as when they are producing a relatively small number of 

spoken words. Initially vocalizations are reflexive and primitive. Over time they become 

intentional, more speech-like, and are used for communicative purposes (Oller, 2000; Oller, 

Eilers, Neal, & Schwartz, 1999). Children progress from producing quasivowels (0 – 2 months), 

gooing (1 – 4 months), grunts, squeals, fully resonant vowels, and marginal babbling (3 – 8 

months) to canonical babbling (5 – 10 months; Oller, 2000). Canonical babbling sounds 

substantially more like adult speech than precanonical vocalizations because canonical babbling 

includes vowel-like and consonant-like sounds with rapid, adult-like transitions between them 
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(Oller et al., 1999). In typical development first words emerge around 12 months of age. As 

children’s expressive vocabulary sizes increases, they use a combination of babbling and 

speech during the second year of life. Also in the second year of life, vocal complexity 

increases, including consonant and syllable shape diversity as well as the ratio of words to 

nonwords (Wetherby, Cain, Yonclas, & Walker, 1988).  

Current evidence supports the continuity of babbling and spoken words in typical 

development, in contrast to the discontinuity theories posited in the past (e.g., Jakobson, 1968). 

For example, for individual children, the phonemes produced in babbling appear in early words 

productions more so than phonemes that were not produced in the babbling (McCune & 

Vihman, 2001; Oller, 2000; Vihman, 2017; Vihman, Macken, Miller, Simmons, & Miller, 1985). 

After 10 months of age, the acoustic characteristics of babbling vary across spoken languages 

(Oller, 2000; Rvachew, Mattock, Polka, & Ménard, 2006). The language-specific nature of 

babbling suggests that babbling and spoken words are related rather than independent 

developmental processes. Additionally, how frequently children with typical development 

vocalize (i.e., volubility) and the complexity of their vocalizations (e.g., inclusion of consonants 

and canonical syllables) correlate with later expressive language measures (e.g., Stoel-

Gammon, 1991; Watt, Wetherby, & Shumway, 2006). For example, consonant inventory close 

to age 2 (mean age = 20 months) predicts unique variance in expressive language scores on 

the Mullen Scales of Early Learning (MSEL; Mullen, 1995) above and beyond acts for joint 

attention and gesture inventory (Watt et al., 2006; Wetherby & Prizant, 2002). At 24 months of 

age, the number of consonants produced in the initial word position and the number of 

consonants produced in the final word position correlate with the concurrent number of different 

words produced, r = .79, p < .001, and r = .85, p < .001, respectively (Stoel-Gammon, 1989, 

1991).  

The influence of social interactions and reciprocity in vocal development has been 

investigated. The social feedback theory asserts that, “infants’ prelinguistic vocalizations, and 



 

4 

caregivers’ reactions to those immature sounds, create opportunities for social learning that 

afford infants knowledge of phonology” (Goldstein & Schwade, 2008, p. 522). Caregivers 

respond contingently to infants’ prelinguistic vocalizations based on the features and context of 

those vocalizations (Goldstein & West, 1999; Gros-Louis, West, Goldstein, & King, 2006) in 

ways that appear to support language development. For example, Gros-Louis et al. (2006) 

found that mothers imitated their children’s consonant-vowel vocalizations more frequently than 

their vowel-like vocalizations. Goldstein, King, and West (2003) asserted that according to the 

social feedback theory, infants produce more complex and more adult-like vocalizations 

following contingent adult responses within social interactions compared with noncontingent 

adult responses. Based on results of an experimental study with 6- to 10-month-old infants, 

Goldstein and Schwade (2008) concluded that infants produced either more fully resonant 

vowels or more consonant-vowel syllables, depending on how caregivers contingently 

responded to the children’s vocalizations (i.e., with a fully resonant vowel or a consonant-vowel 

syllable, respectively). This conclusion would support the social feedback theory. However, 

results of the key comparison between the contingent response group and the corresponding 

control group were not reported, even though this comparison was possible with the study 

design. Therefore, direct evidence of the impact of contingent versus noncontingent responses 

was not provided. Thus, additional empirical investigations are warranted.   

 

Potentially Important Aspects of Vocalizations for Children with ASD  

Various aspects of vocalizations can be used to describe vocal development and have 

potential validity for assessing vocal development in young children with ASD. We assert that 

volubility, communicative use, complexity, and reciprocity warrant further investigation based on 

several complementary theories as well as empirical evidence. After briefly defining each of 

these vocalization aspects here, in the following sections we describe theoretical and empirical 

evidence that provide the rationale for evaluating each aspect more thoroughly.  
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Volubility is defined as how frequently a child vocalizes (e.g., Patten et al., 2014). The 

specific types of vocalizations included in volubility measures have varied across researchers. 

For example, Shumway and Wetherby (2009) included only communicative vocalizations (i.e., 

excluded non-communicative vocalizations), and Oller et al. (2010) included only speech-related 

vocalizations (i.e., included prespeech vocalizations but excluded nonspeech-related sounds, 

such as crying and vegetative sounds). We define volubility as the number of vocalizations 

produced regardless of communicativeness or complexity (e.g., inclusion of a canonical syllable 

or consonant).  

Communicative use of vocalizations is defined as how frequently or consistently a child 

produces vocalizations in an apparent attempt to transmit a message to another person 

(Wetherby, Yonclas & Bryan, 1989). Because children do not always direct their vocalizations to 

another person, one would expect the numerical value of a measure of communicative 

vocalizations to be less than the numerical value of a measure of total vocalizations.  

Vocal complexity is defined as the frequency, consistency, or diversity with which a child 

produces vocalizations with certain features, such canonical syllables or consonants (e.g., 

Wetherby, Watt, Morgan, & Shumway, 2007; Woynaroski et al., 2017; Yoder, Watson, & 

Lambert, 2015). Example vocal complexity measures include the rate of consonant-vowel 

productions (Talbot, 2014), proportion of vocalizations with a canonical syllable (Woynaroski et 

al., 2017), and the diversity of key consonants used in communication acts (DKCC; Wetherby et 

al., 2007; Woynaroski et al., 2017).   

Vocal reciprocity is defined as the degree to which an adult vocal response to a child 

vocalization increases the likelihood of an immediately following child vocalization (Harbison et 

al., 2018). Vocal reciprocity measures capture the back and forth nature of vocal interactions.   
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Theoretical Support for Measuring Selected Aspects of Vocalizations 

 The theoretical bases for measuring various vocal variables overlap substantially. 

Although details vary across the social feedback theory, speech attunement framework, and 

transactional theory of spoken language development, these theories all center on the 

importance of interactions between children and adults for facilitating speech and language 

development. Thus, in addition to the older child-driven theoretical rationale for selecting the 

target vocal variables, one can make theoretical arguments involving bidirectional influence 

between child characteristics and adult input to justify the selection of volubility, communicative 

use of vocalizations, vocal complexity, and vocal reciprocity for facilitating language 

development in children with ASD. We describe below the key components of several 

potentially explanatory theories and hypotheses of language development that may be applied 

to children with ASD in general and to vocal development in this population more specifically.  

 

Social feedback theory. As described above, Goldstein and colleagues (2003, 2008) 

presented the social feedback theory as a potential explanation for vocal development in infants 

with typical development. This theory emphasizes the role of contingent caregiver responses to 

child vocalizations in social interactions for facilitating more complex child vocalizations over 

time. Similarly, Warlaumont, Richards, Gilkerson, and Oller (2014) proposed a “social feedback 

loop” in which (a) adults are more likely to respond to child vocalizations that are speech-related 

and (b) a child is more likely to produce speech-related vocalizations if an adult responded 

immediately to the child’s preceding utterance. Speech-related vocalizations include words as 

well as prespeech vocalizations (i.e., babbling; Oller et al., 2010). They posited that this social 

feedback loop may be disrupted in children with ASD because (a) children with ASD produce 

fewer total and/or speech-like vocalizations than children with typical development, (b) 

caregivers of children with ASD respond differently than caregivers of children with typical 
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development, and (c) children with ASD have a reduced ability to respond to adults’ contingent 

responses. This disruption might explain in part the language deficits in children with ASD.  

 

Speech attunement framework. “The speech attunement framework posits that the 

acquisition of articulate speech and appropriate prosody-voice requires a child to ‘tune in’ to the 

oral communications of the ambient community and to ‘tune up’ the phonological and phonetic 

behaviors subserving intelligible and socially appropriate speech, prosody, and voice 

production” (Shriberg, Paul, Black, & van Santen, 2011, p. 420). The speech attunement 

framework applies broadly to a number of speech production characteristics in children with 

ASD. In general, children with ASD may not “tune in” (i.e., attend to) and then be able to “tune 

up” to (i.e., broadly emulate) the general characteristics of adult speech due to deficits in social 

reciprocity. Deficits in self-monitoring speech, prosody, and voice also are posited to contribute 

to atypical vocal patterns in individuals with ASD (Shriberg et al., 2011). For young children with 

ASD in the early stages of language development, a reduced ability to “tune in” and “tune up” 

could explain their reduced use of typical, speech-like vocalizations.  

 

Transactional theory of spoken language development. The transactional theory of 

spoken language development considers child factors (e.g., cognitive, social and motor 

abilities), parent factors (e.g., linguistic input), and dyadic factors (i.e., parent-child) while 

emphasizing the bidirectional nature of the interactions between child and parent factors across 

development (Camarata & Yoder, 2002; Woynaroski, Yoder, Fey, & Warren, 2014). It posits that 

as a child’s speech and language skills increase, parents provide more complex input that 

scaffolds continued child growth (Camarata & Yoder, 2002; Woynaroski et al., 2014). Despite 

some mixed findings, bidirectional influences have been documented for vocalization 

development in children with typical development (Fagan & Doveikis, 2017). For example, the 

content of infant vocalizations and accompanying actions (e.g., play actions and directing eye 
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gaze) has been reported to influence how often and in what ways mothers respond to infant 

vocalizations (West & Rheingold, 1978; Yoder & Feagans, 1988). In initially preverbal children 

with ASD, Woynaroski et al. (2017) identified both parent (i.e., linguistic input) and child factors 

(i.e., intentional communication and receptive vocabulary) that predicted growth in DKCC. 

These findings provide support for the transactional theory of spoken language development in 

children with ASD. Additional support is provided by positive associations between parent verbal 

responsiveness (e.g., use of follow-in comments) and child spoken language skills in children 

with ASD (e.g., McDuffie & Yoder, 2010).  

 

Application to vocal development in children with ASD. Theoretically, improving 

volubility, communicative use of vocalizations, vocal complexity, and/or vocal reciprocity could 

facilitate language development in children with ASD. Logically, increasing the frequency with 

which children with ASD vocalize (i.e., volubility) would increase the number of child 

vocalizations upon which the caregivers could respond. Additionally, children who vocalize 

frequently may provide themselves with opportunities to fine-tune their productions to their 

intended vocal targets through the auditory feedback loop mechanism (Koopmans van Benium, 

Clement, & Van Den Dikkenberg-Pot, 2001; Siegel, Pick, & Gerber, 1984). The social feedback 

theory, speech attunement framework, and transactional theory of spoken language 

development all emphasize the interactive roles that adults and children play in vocal 

development. Therefore, complexity, communicative use, and/or vocal reciprocity warrant 

attention. Increasing the complexity of children’s vocalizations and/or the frequency with which 

children communicate with their vocalizations might elicit more frequent and/or more complex 

adult responses that then scaffold the child’s ability to produce more adult-like productions 

including spoken words. Additionally, increases in communicative use or complexity of 

vocalizations could signal that children are attempting to say words that they understand but 

cannot yet produce accurately enough to be understood (Woynaroski et al., 2016). These 
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theories of vocal development also provide theoretical support for the influence of vocal 

reciprocity. Increasing vocal reciprocity through intervention would increase the likelihood of 

adults responding to child vocalizations and children responding to adult vocal responses, which 

would increase the number of learning opportunities. Additionally, a relatively higher vocal 

reciprocity value may indicate that a child is attending to and affected by adult vocal responses. 

This relatively higher vocal reciprocity might increase the probability of the child up taking 

linguistic input from adults, which might facilitate the children’s language development.  

 

Empirical Support for Measuring Selected Aspects of Vocalizations 

When establishing the construct validity of particular vocal variables for specific 

purposes, some of the most relevant pieces of evidence are the correlations between the vocal 

variables of interest with expressive language outcomes or measures of precursors to 

expressive language. These correlations would be most relevant to the current study if they 

came from studies of children with ASD in the early stages of language learning to provide an 

estimate of the association among vocal variables and expressive language in the ASD 

population. Broadly, a recent meta-analysis revealed that vocalizations correlate strongly with 

current or future expressive language skills for children with ASD (r = .50; 95% CI [.23, .76]; 

McDaniel, D’Ambrose Slaboch, & Yoder, 2018). Although the findings were stronger for 

concurrent associations (r = 0.77, 95% CI [0.45, 1.0]) than longitudinal associations (r = 0.33; 

95% CI [0.05, 0.60]), the mean effect size for longitudinal associations was significant as well 

(McDaniel et al., 2018). Longitudinal associations provide stronger evidence of convergent 

validity than concurrent associations because in addition to providing evidence of an association 

between variables, they also provide evidence of a temporal precedence of the putative cause 

relative to the putative effect. Thus, longitudinal associations provide two of the three criteria for 

drawing a causal inference; whereas concurrent associations only provide one. The meta-

analysis included a variety of vocal variables including those purported to measure volubility, 
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communicative use, and vocal complexity. No studies reporting the correlation between vocal 

reciprocity at the prelinguistic level and expressive language for children with ASD met the 

inclusion criteria for the meta-analysis. In addition, the overall number of studies was too low to 

achieve sufficient power to test whether specific types of measures or variables yielded stronger 

correlations with expressive language than others. This correlational evidence from the meta-

analysis provides support for continuing to evaluate potential relations between vocalizations 

and later expressive language in children with ASD. 

 

Volubility. Correlations between volubility and expressive language for children with 

ASD have been reported. For example, the frequency of total vocalizations correlated at the 

same time with the Communication and Symbolic Behavior Scales (CSBS) Speech composite 

score, a measure of spoken expressive language and speech-like vocalizations, (r = .47;           

p < .01; Plumb & Wetherby, 2013) for 18- to 24-month-old children with ASD. The correlation 

between the frequency of total vocalizations during the second year of life and the verbal 

developmental quotient on the MSEL (Mullen, 1995), a measure of verbal impairment relative to 

chronological age, at age 3 was also significant for children with ASD (r = .39; p < .01; Plumb & 

Wetherby, 2013). In addition to being coded conventionally, volubility has been measured using 

the Language ENvironment Analysis (LENA) system (LENA Research Foundation, 2015). The 

number of child speech-related vocalizations correlated (r = .33) with age-equivalency scores on 

the Preschool Language Scale – Fourth Edition (Zimmerman et al., 2002) for 3- to 5-year-old 

children with ASD (Dykstra et al., 2013). In contrast, the number of child vocalizations per hour 

did not correlate significantly with expressive language measured concurrently by the Vineland 

Adaptive Behavior Scales (VABS; Sparrow, Cicchetti, & Balla, 2005) Expressive Language raw 

score (r = .10) or the MSEL Expressive Language raw score (r = -.24; Rankine, 2016) for a 

sample of children with ASD with a mean chronological age of 76.92 months (SD = 31.78 
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months). The current study evaluated the incremental validity of automatic versus conventional 

measures of volubility in predicting expressive language in children with ASD.  

 

Communicative use. Correlations between communicative vocalizations specifically 

and expressive language in children with ASD have been reported as well. Plumb and Wetherby 

(2013) reported that communicative vocalizations in the second year of life predicted expressive 

language skills at age 3 above and beyond noncommunicative vocalizations. In contrast, 

Swineford (2011) did not report any significant correlations between the rate of communication 

acts with vocalizations within home observations and the CSBS Words subscale (r = .03) or the 

CSBS Speech composite (r = .13) concurrently for children suspected of having ASD (mean 

chronological age = 19.51 months; SD = 2.34 months).    

 

Complexity. Vocal complexity has been defined in multiple ways within two broad 

categories: (a) vocalizations with consonants and/or canonical syllables without differentiating 

diversity of consonants produced and (b) diversity of consonants produced. Within each of 

these two broad categories, there are two subordinate categories: those that are derived from 

(a) all vocalizations versus (b) only communicative vocalizations. The latter subordinate 

category of variables combines complexity concepts with communicative use concepts. Within 

this subordinate category of variables of vocal communication, the metric may be a count or a 

proportion in which the denominator refers to the communicative concept and the numerator 

refers to complexity concept. For example, several studies have examined consonant 

inventories within communicative vocalizations of children with ASD, rather than including all 

consonants regardless of communicative use. For the analyses and discussion purposes, we 

classify these variables within the complexity set of vocal variables because we judged the 

complexity component to be more prominent in the variable’s interpretation. For example, 

DKCC is conceptually most related to consonant inventory in all vocalizations, which is clearly a 
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complexity variable. Relatedly, proportion of communication acts with a canonical syllable is 

judged to be a complexity variable because it focuses on how consistently the child uses 

canonical syllables (a marker of complexity) as opposed to how consistently a child uses 

vocalizations for communicative purposes.  

For use of consonants within vocalizations, Talbot (2014) reported that the rate of 

consonant-vowel vocalizations produced at 9 months of age correlated (r = .84) with expressive 

language on the MSEL at 12 months of age for children with ASD. The Systematic Observation 

of Red Flags for Autism Spectrum Disorders in Young Children (SORF) and the Systematic 

Observation of Red Flags for Autism Spectrum Disorders in Young Children at Home (SORF-

Home) focus on the lack of communicative vocalizations with consonants as opposed to lack of 

vocalizations regardless of consonant use. MSEL verbal developmental quotient correlates 

negatively with concurrent lack of communicative vocalizations with consonants on the SORF    

(r = -.49; McCoy, 2013) and on the SORF-Home (r = -.57; Book, 2009). Relatedly, the rate of 

canonical babbling correlates with concurrent expressive language on the Reynell 

Developmental Learning Scales (r = .65, p < .05; Reynell & Gruber, 1990) in children with ASD 

(mean chronological age = 44.67 months; SD = 8.35 months; Sheinkopf, Mundy, Oller, & 

Steffens, 2000).    

For consonant inventory measures, Yoder et al. (2015) found that the inventory of 

consonants used in communication acts predicted expressive language growth in initially 

preverbal children with ASD over and above ten other putative predictors. Similarly, Wetherby et 

al. (2007) identified that inventory of consonants used in communication acts at 18 to 24 months 

was one of the “best predictors of verbal skills at 3 years” (p. 971), compared with numerous 

other possible predictors for children with ASD. Relatedly, a composite variable derived from the 

proportion of communication acts with a canonical syllable and DKCC strongly correlated with 

later expressive vocabulary in a sample of initially preverbal children with ASD (Woynaroski et 

al., 2017). In addition to the consonant inventory measures that consider communicative use of 
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vocalizations, consonant inventory without regard to communicative use predicts expressive 

language skills. Consonant inventory size differed between children with ASD with functional 

communication versus children with ASD without functional communication (Paul, Chawarska, 

Cicchetti, & Volkmar, 2008).  

 

Vocal reciprocity. Arguably, reasonable measures of vocal reciprocity are relatively 

new to the ASD literature. A new measure of vocal reciprocity, child reciprocal vocal 

contingency (RVC), warrants attention and continued investigation (Harbison et al., 2018). RVC 

quantifies vocal reciprocity from day-long audio samples collected in the child’s natural 

environment. RVC uses the three-event sequence of a child vocalization followed immediately 

by an adult vocalization followed immediately by a child vocalization. Unlike one proposed 

measure of vocal turn-taking (i.e., child conversational turn count; Gilkerson & Richards, 2008) 

and another putative measure of vocal reciprocity using three events (Warlaumont et al., 2014), 

RVC is designed to control for the chance occurrence of child vocalizations and adult 

vocalizations mathematically. This mathematical control is an essential feature of a dyadic vocal 

reciprocity measure. For children with ASD who were preverbal or in the early stages of word 

learning, RVC correlated with consonant inventory used within communication acts (r = .60), but 

did not correlate with chronological age (r = -.001), intellectual quotient (r = -.23), or parents’ 

formal education level (r = -.27; Harbison et al., 2018). Additionally, the association between 

RVC and consonant inventory in communication acts remained after statistically controlling for 

covariation with child volubility. These findings provide early evidence of construct validity for 

RVC and highlight the need for continued investigation of whether RVC measures what it 

purports to measure.   
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The Need for Additional Evidence of Validity for Vocal Variables  

When comparing evidence of validity among multiple vocal variables, evidence is likely 

to show that some variables have multiple sources of evidence for validity and that other 

variables have less evidence of validity. The more sources of validity evidence, the more 

scientifically useful a vocal measure is likely to be. For example, a measure may exhibit strong 

evidence of convergent construct validity with expressive language, but weak evidence that it is 

sensitive to change. A single analysis or test is insufficient for reporting the degree to which a 

measure exhibits construct validity (Cronbach & Meehl, 1955). Instead, multiple sources of 

evidence must be integrated and evaluated for the specific purpose of the variable of interest.  

Currently, nearly all evidence of validity for measuring vocal development in young 

children with ASD is convergent validity evidence (i.e., degree to which a variable correlates 

with other variables which it is predicted to correlate based on theory). Even though divergent 

validity is a key type of validity evidence (i.e., a variable does not correlate other variables with 

which it is not predicted to correlate based on theory; Campbell & Fiske, 1959), the literature 

base lacks such evidence for measuring vocal development in young children with ASD.  

The field would benefit from comparisons of validity evidence across vocal variables 

purported to serve the same purpose. Meta-analytic approaches have been underpowered and 

difficult to interpret for comparing associations with expressive language due to a relatively low 

number of available primary studies (McDaniel et al., 2018). The current study presents an 

opportunity to compare directly convergent validity, divergent validity, sensitive to change 

validity, and incremental validity of selected vocal variables from the same, relatively large 

sample of young children with ASD. It begins to fill this gap in the literature and move the field 

forward in selecting vocal measures that are most likely to yield meaningful, interpretable 

results. Each vocal variable is described in detail in the Method section.  
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Comparing Validity Evidence Across Vocal Variables  

Ultimately, this investigation sought to provide evidence of the comparative validity of 

different ways to quantify vocal development. However, there was no a priori consensus for how 

validity should be compared among competing variables. The research questions were 

organized around different ways to test the validity of variables. Within the discussion, two 

approaches organized the evidence to afford different methods of selecting vocal variables. The 

rationale for the approaches provided a rationale for the research questions.    

The first approach presents the presence or absence of significance of association or 

change for evidence of convergent validity, divergent validity, and sensitivity to change. Some 

investigators criticize counting the number of significant findings as the basis for selecting 

among vocal variables because statistical significance relies on a method that is influenced by 

sample size and the concept of null hypothesis testing, which some have discredited (Krantz, 

1999; Wilkinson, 1999). Therefore, we also used a threshold, above which we judged the effect 

size to be “large” (i.e., pseudo R2 > .25 for convergent validity or Cohen’s d > .8 for sensitivity to 

change). Effect size criteria for selecting variables are not relevant for divergent validity. 

Additionally, the threshold values for “large” are only conventions and might not make sense in 

the context of evaluating relative validity of vocal variables. Comparing significance and effect 

size across all vocal variables for all purposes simplifies the task of selecting vocal variables. 

However, selecting the variables with the greatest number of significant or large effect sizes 

across purposes ignores the fact that the most useful variable for a particular purpose may fail 

to provide value for other purposes. Arguably, a more useful approach is to select the vocal 

variables with significant and large effect sizes within a purpose (e.g., to predict expressive 

language or to show evidence of change). However, this comparison method ignores the fact 

that a slightly less valid measure may cost much less than a slightly more valid measure. 

 Thus, incremental validity of predicting expressive language for more elaborate or more 

costly variables was compared with that of simpler or more cost-effective variables as the 
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second approach. Using variables that are more elaborate and/or costly due to research staff 

training and coding costs is justifiable only when the more elaborate or more costly vocal 

variables yield more useful results than the less elaborate or less costly measures. Three ways 

to conceptualize elaborateness or cost are used in the current research. First, we compared 

simple volubility variables with more elaborate (and if measured from conventional 

communication samples, more costly) communicative use and complexity variables. Second, 

we compared RVC, which is a dyadic three-event variable, with communicative use and 

complexity variables, which are single actor, single event variables. Third, we compared the less 

costly data collection and variable derivation approach of automatic measures with the more 

costly approach of conventionally-coded variables, which requires human segmenting and 

classification of child vocalizations. To make elaborate (more costly) versus simple (less costly) 

variable comparisons, we used the concept and methods of testing incremental validity (i.e., 

significant association with expressive language after statistically controlling for another 

variable) to identify whether the more elaborate or costly measure added information above and 

beyond the information provided by the less elaborate or less costly measure.  

 

Purpose and Research Questions  

This study was designed to evaluate and compare quantitative evidence of validity for 

vocal variables purported to assess vocal development in young children with ASD. We 

addressed each of the following research questions for vocal variables purported to assess the 

following aspects of vocalizations in this population: (a) volubility, (b) communicative use of 

vocalizations, (c) vocal complexity, and (d) vocal reciprocity. Within volubility and vocal 

complexity, there are variables derived by automated (i.e., collected by LENA recording devices 

and computer analyzed without human transcription) and conventional coding (i.e., 

communication sampling methods and human coding of vocalizations) methods. Research 

questions 4, 5, and 6 use composite variables when theoretically and empirically justified to 
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provide the best estimate possible for volubility, communicative use of vocalizations, and vocal 

complexity. One vocalization aspect, vocal reciprocity, cannot be measured using a composite 

because only one known measure meets content validity for the construct.  

1. To assess convergent validity, does the vocal variable predict later expressive language 

skills? 

2. To assess divergent validity, does the vocal variable not predict later nonverbal cognitive 

skills?    

3. Does the vocal variable exhibit sensitivity to change?   

4. Compared with the relatively simple volubility vocal variables, does communicative use, 

complexity, or reciprocity account for additional unique variance in expressive language 

skills?  

5. Compared with the single actor, single event (less elaborate) communicative use and 

complexity variables, does the dyadic three-event (more elaborate) measure of vocal 

reciprocity account for unique variance in expressive language skills?  

6. Compared with less costly automated measures of the same vocalization aspect, do 

more costly conventionally-coded variables account for unique variance in expressive 

language skills?   
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CHAPTER 2  

 

  METHOD 

 

Institutional Review Boards at the Vanderbilt University, the University of Washington, 

and the University of Southern California at Davis approved all study procedures. Caregivers 

provided written informed consent prior to participants beginning the study.  

 

Participants 

The study includes 87 children (21 female, 66 male) who participated in the Toddlers 

with Autism: Developing Opportunities for Learning (TADPOLE) multi-site randomized controlled 

trial (Rogers, Estes, & Yoder, 2013). The TADPOLE study compared language and 

developmental outcomes of a sample of young children with ASD who were randomly assigned 

to a treatment style (i.e., discrete trial training or play-based using the Early Start Denver Model 

[Rogers & Dawson, 2009]) and intensity (i.e., 15 or 25 hours per week). More details on the 

intensity and style manipulations can be found in the grant application (Rogers et al., 2013). The 

details are not given here because there were few interactions with style or intensity. When 

such interactions occur, we simply examine associations within the relevant treatment groups 

due to an agreement with the principal investigator of the parent grant. The focus of this 

dissertation study is relative validity of vocal variables, not treatment efficacy. There is no 

emphasis on interpreting treatment effects in the current study. Participants met the following 

inclusion criteria: (a) chronological age of 13 to 30 months at study entry, (b) ambulatory without 

primary motor impairments affecting hand use, (c) meets diagnostic criteria for ASD, (d) overall 

developmental quotient of at least 35 on the MSEL (mental age / chronological age x 100), (e) 

English as a primary language (i.e., English spoken at least 60% of the time at home per 

caregiver report), and (f) hearing and visual acuity within normal limits per screening results. 
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ASD diagnosis was based on all of the following: (a) Diagnostic and Statistical Manual of Mental 

Disorders, Fifth Edition diagnostic criteria for ASD (American Psychiatric Association, 2013), (b) 

clinical consensus of diagnosis by two independent staff, one of whom is a licensed 

psychologist, based on observation and record review, (c) meeting full autism criteria on the 

Autism Diagnostic Interview-Revised (Lord, Rutter, & Le Couteur, 1994), (d) meeting autism 

cutoff on the Autism Diagnostic Observation Schedule for Toddlers (Luyster et al., 2009), and 

(e) diagnosis confidence rating of relatively confident or very confident assigned by assessor 

who evaluated the child. 

For study eligibility, the participants’ caregivers also agreed to complete the project, 

including parent coaching at home, in-home therapy 15 or 25 hours per week, and monthly 

clinic visits. Participants were excluded if they had been receiving 10 or more hours per week of 

intensive, curriculum-based therapy for at least one month. Participants were not excluded 

based on the presence of genetic disorders or other health conditions (e.g., Fragile X syndrome, 

seizures, and prematurity) in addition to ASD.  

Per caregiver report, 48 participants were reported to be white, 19 to be more than one 

race, 9 to be Asian, 7 to be black or African American, 1 to be American Indian / Alaskan native, 

1 to be Native Hawaiian or other Pacific islander, and 2 as unknown. Seventeen participants 

were reported to be Hispanic/Latino, 64 to be non-Hispanic, and 6 as unknown. Maternal 

education level was reported as follows: 1 had some high school, 6 had a high school diploma, 

25 had some college, 24 had a college degree, 6 had some graduate school, 22 had a graduate 

degree, and 1 reported “other.” See Table 1 for additional participant characteristics.  
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Table 1 
 
Participant Characteristics at Study Entry  
 

 
   Mean     SD   Min    Max 

Chronological age (months)  23.42 3.98 13.78 30.71 
Developmental quotient 58.83 17.96 31.04 121.98 
MSEL receptive language (age equivalent in months)  10.11 7.22 1 33 
MSEL expressive language (age equivalent in months)  11.97 4.71 4 27 
Note. Developmental quotient = mean of age equivalent scores for fine motor, visual reception, 
receptive language, and expressive language on the Mullen Scales of Early Learning divided by 
chronological age multiplied by 100; Max = maximum; Min = minimum; MSEL = Mullen Scales 
of Early Learning (Mullen, 1995).  
 
Procedures 

The study’s constructs, procedures, and variables are listed in Table 2. Data are used 

from procedures administered across three time periods that spanned 12 months (Time 1 = 

study initiation / initiation of intervention; Time 2 = 6 months post study initiation / intervention 

midpoint; Time 3 = 12 months post study initiation / end of intervention). As described below 

some procedures were not administered at Time 2 due to resource constraints in the parent 

grant’s budget.  
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Table 2  
 
Study Constructs, Procedures, and Variables  
 

Construct Procedure(s) Variable 
Volubility  CSP & ECI Number of total vocalizations  
 Day-long audio samples Number of child speech-related vocalizations  
Communicative 

use of 
vocalizations  

CSP & ECI 
 

Number of CAs that include a vocalization   
Number of CAs that include a canonical syllable  
Proportion of vocalizations that are communicative 

Vocal complexity CSP & ECI Consonant inventory (regardless of communicative use)  
DKCC 
Proportion of CAs with a canonical syllable  
Proportion of vocalizations with a canonical syllable 
Number of vocalizations with a canonical syllable 

 Day-long audio samples ACPU-Consonants  
ACPU-Vowels  
IVD score 

Vocal reciprocity  Day-long audio samples RVC  
Expressive 

Language  
MB-CDI  Raw score for words said  
MSEL Expressive subscale age-equivalency score 

 VABS  Communication domain expressive subscale raw score  
 CSP  Number of different word roots said 
Nonverbal 

Cognitive Skills 
VABS 

 
Daily living skills subscale age-equivalency score 
Fine motor skills subscale age-equivalency score 

 MSEL Fine motor subscale age-equivalency score 
  Visual reception subscale age-equivalency score  
Note. ACPU = Average Count Per Utterance (Xu, Richards, & Gilkerson, 2014); CAs = communication 
acts; CSP = Communication Sample Procedure; DKCC = diversity of key consonants used in 
communication acts (Wetherby, Watt, Morgan, & Shumway, 2007; Woynaroski et al., 2017); ECI = Early 
Communication Index (Greenwood, Carta, Walker, Hughes, & Weathers, 2006; Luze, Linebarger, 
Greenwoord, & Carta, 2001); IVD = infraphonological vocal development (Oller et al., 2010); MB-CDI = 
MacArthur-Bates Communicative Development Inventory: Expressive vocabulary compilation form 
(Fenson et al., 2007); MSEL = Mullen Scales of Early Learning (Mullen, 1995); RVC = reciprocal vocal 
contingency (Harbison et al., 2018); VABS = Vineland Adaptive Behavior Scales, Second Edition 
(Sparrow, Cicchetti, & Balla, 2005). 
  

Day-long naturalistic audio samples. Participants’ families collected one day-long 

audio recording at Time 1 and one at Time 3 with the LENA system (LENA Research 

Foundation, 2015). The research team provided families with all necessary equipment and 

instructions. The LENA digital recording device (i.e., digital language processor [DLP]) was 

placed in the pocket of a specialized vest for the participant to wear for a full day (at least 12 

hours) with a goal of 16 hours of recording. No specifications were given regarding the day of 

the week or setting for the recording, except that the participant should not be ill or going 

swimming or to the pool with the LENA recording device. Caregivers were instructed to remove 
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the participant’s vest, with the recorder still on, and place it near the participant when he or she 

was sleeping or in the car. Families returned the DLP and other equipment to the research 

team. Trained research assistants downloaded the digital audio files from the DLPs to a 

designated computer for processing and analysis.  

 

Communication Sample Procedure. The Communication Sample Procedure (CSP) is 

a 15-min semi-structured free-play communication sample with a standard toy set in a lab 

setting with interspersed opportunities for the child to request clarification and to respond to an 

examiner’s topic change. The examiner’s interaction style is guided by specific principles 

designed to support productive engagement (e.g., follow the child’s lead and join in and play at 

the child’s demonstrated level of play) and communication (e.g., talking about topics related to 

child’s focus of attention, monitoring utterance length and complexity, and avoiding directives) 

as described in the procedure manual. The CSP was administered at Times 1 and 3.  

 

Early Communication Index (Greenwood, Carta, Walker, Hughes, & Weathers, 

2006; Luze, Linebarger, Greenwood, & Carta, 2001). The Early Communication Index (ECI), 

one of the Individual Growth and Development Inventories, is a 6-min play-based measure that 

uses a standard toy set in a lab setting. The general principles of examiner behavior and talk 

followed in the CSP are followed in the ECI as well. The ECI may be used frequently to monitor 

progress during intervention. It was administered monthly throughout the 12-month intervention 

period (i.e., Time 1 to Time 3) for a total of 13 administrations. To align with the available CSP 

data, we averaged the ECI sessions from the first 3 months for Time 1 and the sessions from 

the last 3 months for Time 3. 

 

 MacArthur-Bates Communicative Development Inventory (Fenson et al., 2007). 

Caregivers completed a compilation form (i.e., 720 total items from the Words and Gestures and 
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Words and Sentences vocabulary items) of the MacArthur-Bates Communicative Development 

Inventory (MB-CDI) for expressive vocabulary at all three time points. Caregivers marked words 

on the checklist that they observed their child saying at least once in the prior two weeks.  

 

 Mullen Scales of Early Learning (Mullen, 1995). The Mullen Scales of Early Learning 

(MSEL) was administered at three time points. The MSEL includes subscale scores for 

receptive language, expressive language, visual reception, and fine motor skills.  

 

 Vineland Adaptive Behavior Scales, Second Edition (Sparrow, Cicchetti, & Balla, 

2005). The examiner interviewed the participants’ caregiver(s) to complete the Vineland 

Adaptive Behavior Scales, Second Edition (VABS) at three time points. The VABS includes 

subscale scores for expressive language, daily living, and fine motor skills. 

  

Observational Coding 

Trained research assistants and the first author completed observational coding for the 

CSP and ECI using ProCoder DV (Tapp, 2003) and Systematic Analysis of Language 

Transcripts (SALT) software (Miller & Chapman, 2016). Volubility, production of vocalizations in 

communication acts, vocal complexity, and number of different words were coded from the CSP 

and ECI. CSP and ECI session variables from the same time period were averaged after 

checking for a sufficiently high correlation between them (i.e., r > .40).  

Coders completed four passes using timed event behavior sampling to code behaviors 

in the CSP and ECI necessary for deriving the vocal development variables. Trained research 

assistants on our team had already completed the first two passes. On the first pass, the coder 

identified codable and uncodable portions of each video file. “Uncodable” is defined as a period 

of at least 10 seconds during which the child’s face is not visible (e.g., turned away from camera 

or blocked from view by another person or an object). On the second pass, the coder identified 
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all communication acts within the codable time. The coder also classified each communication 

act as symbolic (i.e., single non-imitated word or multiple non-imitated words) or non-symbolic 

(i.e., imitated words or phrases, non-word vocalizations, and gestures) and orthographically 

transcribed words that the child said. The coding manual includes detailed communication act 

coding rules. See Table 3 for operational definitions of key concepts for coding.  
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Table 3 
 
Operational Definitions of Key Concepts for Coding  
 
Concept Operational Definition  
Canonical 

syllable 
Must include each of the following:  
(a) At least one consonant sound (i.e., /m/, /g/, /w/, “y,” j,” “ng,” /v/, /n/, 

/p/, /t/, /k/, /l/, /s/, /t/, /z/, /f/, /r/, /b/, /d/, “zh” “ch,” “sh,” and “th”)  
(b) At least one full vowel 
(c) Quick, uninterrupted transition from consonant to vowel or from 

vowel to consonant  
Communication 

act 
Behavior or set of behaviors must meet criteria for one of the following:  
(a) Word(s) (spoken or signed) 
(b) Nonword vocalization(s) with evidence of coordinated attention 
(c) One of the 15 specific gestures (i.e., tapping with fingers/hand, 

clapping, reaching, proximal pointing, distal pointing, “shh” gesture, 
head nod or head shake, wave, shoulder shrug, pantomime-like 
actions and depictive gestures, moving object toward adult, upturned 
palm, giving object, showing object, and hand as tool) with evidence 
of coordinated attention to message/referent and communication 
partner 

Coordinated 
attention  

Participant displays evidence of sequential or simultaneous attention to 
a person and an object or event within 3 seconds of his or her 
vocalization or gesture 

Spoken word Spoken words must meet the following criteria: 
(a) Represent a referent that is plausible within the context of the 

communication sample  
(b) Sufficiently approximate the adult pronunciation of the word 

Vocalization Nonvegetative voiced sounds (i.e., one that is created by vibrating vocal 
folds) created during exhalation (eggressive phonation) 

Spoken words are coded as vocalizations and also included as spoken 
words to allow separate analyses  

The following sounds are not coded as vocalizations:  
• Voiced laughs, voiced sighs, and voiced cries because they are 

difficult to differentiate from other non-communicative noises  
• Whispered productions because they do not include voicing  
• Isolated voiceless consonants (e.g., /f/, /s/, /k/, /t/, /p/, and “sh”) 

because they do not include voicing 
• Glottal fry because the false vocal folds, not true vocal folds, are 

used  
• Ingressive phonation (i.e., vocalizations made when inhaling)  
• Reflexive, vegetative sounds resulting from burps, hiccups, 

coughs, sneezes, throat clearings, clicking of tongue, and 
popping of lips 

!
The third and fourth passes were completed for the current study. Within the third pass, 

the coder identified and classified vocalizations that occurred within a communication act to 

indicate whether they contain one or more codable consonants (i.e., /m/, /n/, /b/ or /p/, /d/ or /t/, 
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/g/ or /k/, /w/, /l/, “y,” /s/, and “sh”) and/or a canonical syllable. On the final pass, the coder 

listened to the entire recording stopping it each time he or she heard a vocalization. For any 

vocalizations not already coded as part of a communication act, the coder marks the 

vocalization as a non-communicative vocalization and indicates whether it includes one or more 

codable consonants and/or a canonical syllable.  

 

Variables Derived from Observational Coding  

SALT software was used to calculate variables for each vocalization aspect when the 

variable was derived from the ECI or CSP. See Table 2 for the study variables.   

 

Volubility variables. Volubility is defined as the number of vocalizations produced. The 

vocalizations must be nonvegetative voiced sounds produced during exhalation. This variable 

includes communicative and noncommunicative vocalizations. One of the two volubility 

variables was derived from observational coding: number of total vocalizations.  

 

Communicative use of vocalizations variables. A communication act is defined as an 

intentional behavior or set of intentional behaviors that meets criteria for one of the following: (a) 

spoken or signed word(s), (b) nonword vocalization(s) with evidence of coordinated attention, or 

(c) one of 15 specific gestures with evidence of coordinated attention to message/referent and 

communication partner. Three variables were calculated for vocalizations in communication 

acts: (a) the number of communication acts that include a vocalization, (b) the number of 

communication acts that include a canonical syllable, and (c) the proportion of vocalizations that 

are communicative (i.e., within a communication act). Redundant variables were eliminated 

during the preliminary analyses based on an a priori intercorrelation level (i.e., r = .80).    
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Vocal complexity variables. A relatively large number of vocalization complexity 

variables were derived due to gaps in the literature regarding how to measure individual 

differences and changes in vocal complexity. Consonant inventory (regardless of 

communicative use), DKCC (Wetherby et al., 2007; Woynaroski et al., 2017), the proportion of 

communication acts with a canonical syllable, the proportion of vocalizations with a canonical 

syllable (regardless of communicative use), and the number of vocalizations with a canonical 

syllable were coded from the CSP and ECI. The proportion as well as the number of 

vocalizations with canonical syllables was coded because, theoretically, the consistency of 

canonical syllable use and number of times a child uses canonical syllables could be related to 

expressive language development, but for different reasons. As with the communicative use 

variables, redundant vocal complexity variables were eliminated empirically during the 

preliminary analyses.  

 

Automated Vocal Analysis  

To derive the five variables from the day-long audio recordings (see Table 2), we used 

several methods. The number of speech-related child vocalizations is available through the 

standard LENA Pro software package. However, Average Count Per Utterance – Consonants 

(ACPU-C; Xu, Richards, & Gilkerson, 2014), Average Count Per Utterance – Vowels (ACPU-V; 

Xu et al., 2014), infraphonological vocal development (IVD) score (Oller, et al., 2010), and RVC 

(Harbison, et al., 2018) scores are not yet available in the standard or research LENA software 

packages. The ACPU-C, ACPU-V, and IVD scores require raw scores derived the audio 

recordings via computer programs housed at the LENA Research Foundation. These variables 

were available as a result of a contract between Dr. Paul Yoder and the LENA Research 

Foundation. RVC was calculated through a freely available and publicly posted software 

program that uses the LENA Integrated Time Segments (ITS) files (Xu, Yapanel, Gray, & Baer, 

2008) as input (Harbison et al., 2018).  
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Regardless of the process through which each variable was obtained, all of the study’s 

automated vocal analyses rely on how the LENA system segments acoustic events and 

determines the sound source for each sound segment in the recordings. In the first step, 

acoustic events from the audio recording are divided into short segments. In the second step, 

the short sound segments are classified into one of eight preliminary categories: key child (i.e., 

child wearing the audio recorder), other child, adult male, adult female, overlapping sound, 

television and other electronic sound, noise, and silence. In the third step, the fit of each 

segment to the segment’s preliminary classification is compared with the silence model. If the 

segment is different from the silence model, the preliminary classification is maintained (e.g., 

“key child” remains “key child”). If not, the segment is reclassified as a secondary classification 

with a “faint” notation (e.g., “key child” classification becomes “key child – faint” classification). 

At this point, each sound segment has been identified and classified as one of 15 sound source 

categories.  

Sound segments that retained their classification as key child are analyzed further using 

a six-step process. First, the program divides key child events into one or more “child utterance 

clusters” (CUCs). The CUCs have key child-near as their source, are at least 600 ms, and are 

not interrupted by another speaker or by more than 800 ms of silence or noise. Second, “child 

utterances” (CUs) within the CUCs are identified. CUs are related to breath-groups of child 

vocalizations and interrupted for no more than 300 ms. Third, “child vocal islands” (CVIs) are 

identified in the CUs by patterns of high energy relative to the baseline energy level. Fourth, the 

CVIs are classified as (a) cries, (b) vegetative sounds (e.g., laughs, sneezes, or coughs), or (c) 

“speech-related vocal islands” (SVIs). The concept of SVIs is related to but not synonymous 

with syllables. Fifth, the SVIs are grouped or lumped into speech-related child utterances 

(SCUs), which are interrupted by sounds from other sources that are no more than 300 ms in 

duration. SCUs include words, babbling, and protophones (e.g., squeals, growls, and 

raspberries; Xu et al., 2008). Each SCU is considered analogous to a single child vocalization 
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(Oller et al., 2010). Adult vocalizations are identified through an analogous process. See Xu, 

Yapanel, and Gray (2009), VanDam and Silbert (2016), and Rankine (2016) for information on 

the reliability of LENA system’s classification of the audio recordings relative to human coding. 

The ITS file for each recording includes the stream of events (e.g., child vocalizations, adult 

vocalizations, and silence) and is used for various analyses.  

 

Variables Derived from Automated Vocal Analysis  

 

Volubility variable. For the automated vocal analysis measure, volubility is 

operationalized as the number of near child speech-related vocalizations (i.e., SCUs). These 

vocalizations are identified as SCUs within the LENA system (Oller et al., 2010). We generated 

this count variable of the number of child speech-related vocalizations when calculating RVC as 

described below. To be as similar as possible to the conventional measure of volubility, we used 

the total number of near child speech-related vocalization across the entire day-long recording. 

We did not use a rate metric that is available through the standard LENA software (i.e., number 

of near child vocalizations per hour, day, or month; Gilkerson & Richards, 2008). 

 

Vocal complexity variables. IVD score is conceptualized as a measure of vocal 

complexity (Oller et al., 2010; Yoder, Oller, Richards, Gray, & Gilkerson, 2013). To calculate IVD 

score, the SVIs within each SCU were classified as either possessing or not possessing each of 

12 characteristics of speech-likeness/syllabicity. IVD score is calculated the weighted sum of the 

raw scores. The raw scores are proportions of SVIs with a particular speech-like characteristic. 

The weights in the sum are the unstandardized regression coefficients from a multiple 

regression equation predicting age in the Oller et al. (2010) normative sample. The LENA 

Research Foundation provided the raw scores and the weights, and we computed IVD scores.  
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The ACPU-C and ACPU-V scores are based on Sphinx speech recognition software. 

Sphinx is used to derive the ACPU scores by estimating the number of times 39 phones occur 

within utterances produced in SCUs (Xu et al., 2014). The LENA Research Foundation uses 

noncommercially-available software that implements an algorithm that considers child age and 

gender information. It should be noted that Sphinx software was modeled only with adult data. 

For information about the validation process see Xu et al. (2008). ACPU-C and ACPU-V are 

related conceptually. Average Count Per Utterance – Consonants and Vowels (ACPU-C+V) is 

created by aggregating z-scores from ACPU-C and ACPU-V scores (Woynaroski et al., 2017) 

when the ACPU component variables correlate at or above r = .40. 

 

Vocal reciprocity variable. RVC is the operant contingency value for a three-event 

sequence: child vocalization (CV) ! adult vocalization (AV) ! CV (Harbison et al., 2018). From 

a content validity perspective, the back and forth nature of the vocal reciprocity construct 

arguably necessitates use of a three-event sequence. The RVC program uses the event lag 

with contiguous pauses sequential analysis method to prepare the vocal samples for analysis. 

This method retains the events of interest (i.e., CVs and AVs) and removes other events while 

maintaining the event sequence and temporal proximity of events by inserting fixed-duration 

pause events when neither key event occurs (Lloyd, Yoder, Tapp, & Staubitz, 2016). A 

simulation study found this method to be more accurate and less correlated with chance 

occurrence of the events of interest than other sequential analysis methods (Lloyd et al., 2016). 

We inserted 2-s pauses based on the duration of pauses in conversations between adults and 

infants with typical development and high-risk infant siblings of children with ASD (Gros-Louis et 

al., 2006; Northrup & Iverson, 2015). The three-event sequences composed of various 

combinations of the CVs, AVs, and 2-s pauses were tallied into one of the four cells in a 2x2 

contingency table, depending on the sequence and occurrence of the event types. Using the 

cell labels in Figure 1, the RVC value was computed using the formula [a/(a+b)] - [c/(c+d)]. 
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Positive RVC scores provide correlational evidence that immediately preceding adult vocal 

responses to preceding child vocalizations influence the child’s following vocal response. A 

positive RVC indicates that child vocalizations are more likely to follow adult vocal responses to 

child vocalizations than other events. Importantly, compared to other proposed measures of 

sequential association, the operant contingency value mathematically controls for the chance 

sequencing of the events as well or better than others (Hammond, 1980; Lloyd, Kennedy, & 

Yoder, 2013; Martens, Gertz, Werder, Rymanowski, & Shankar, 2014). RVC has been shown to 

be more related to precursors of expressive language in initially preverbal or early verbal 

children with ASD than competing measures of vocal reciprocity, particularly when controlling 

for chance sequencing of events (Harbison et al., 2018). 

 

Figure 1 
 
Contingency Table for Calculating Reciprocal Vocal Contingency   

 
 

 
Event 3 

  
CV (not CV) 

 
 

Events 1 and 2 

[CV ! AV] 
a 

 
[CV ! AV] ! CV 

b 
 

[CV ! AV] ! (not CV) 

(not [CV ! AV]) 
c 

 
(not [CV ! AV]) ! CV 

d 
 

(not [CV ! AV]) ! (not CV) 
 
Note. 2x2 contingency table; cell labels (i.e., a, b, c, and d) are centered at the top of each of 
the four cells; AV = adult vocalization; CV = child vocalization; CV ! AV = child vocalization 
followed by an adult vocalization within 2 s without any intervening events.  
 

Interobserver Reliability 

A trained secondary coder independently coded a random sample of > 20% of coded 

sessions for each time point for variables derived from the CSP and ECI. The primary coder 

was blind to which sessions would be coded for reliability. Training included reading the coding 

manual and an initial training session with an expert coder including a didactic presentation, a 
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question and answer session, and group coding of non-participants with discrepancy 

discussions. After the initial training session, coders independently coded novel videos and 

participated in discrepancy discussions until the secondary coder reached criterion of at least 

.80 small/large agreement for three consecutive videos (Yoder, Lloyd, & Symons, 2018). After 

initial training was complete, coders completed discrepancy discussions for each reliability set 

(i.e., group of five videos from which one reliability video was randomly chosen and completed 

for reliability before proceeding to the next set) to prevent coder drift. The primary coder’s 

coding was used in the analyses. Interobserver reliability was estimated using intraclass 

correlation coefficients (ICCs) with absolute agreement and participant and observer as random 

factors. ICCs account for differences in unitizing and classifying behaviors between coders and 

for the variance among participants on the component variables addressing the research 

questions.   
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CHAPTER 3 

 

RESULTS   

 

Preliminary Analyses 

Before addressing the primary research questions, we assessed each variable’s 

reliability, eliminated redundant vocal variables, and created several types of composite 

variables for specific purposes. Composite variables created by aggregating multiple variables 

increase the short-term stability of constructs of interest (Sandbank & Yoder, 2014; Yoder et al., 

2018). Theoretically-related variables were only aggregated if they exhibited a correlation 

coefficient of r > .40 (Cohen & Cohen, 1984). 

 

Reliability. For all conventionally-coded variables combined, the mean ICC was .93   

(SD = .11). ICCs are reported for the conventionally-coded variables by time period and 

procedure in Table 4. Means and standard deviations are reported for ECI ICCs because these 

values were calculated from months 1 through 3 for Time 1 and months 11 through 3 for Time 3. 

We used a benchmark of .70 when interpreting the ICCs, which Mitchell (1979) interpreted as 

“very good”. Only two variables fell below .70 for the ICC: ECI Month 3 proportion of 

vocalizations that are communicative (ICC = .64) and CSP Time 3 proportion of communication 

acts with a canonical syllable (ICC = .24). ECI Month 3 proportion of vocalizations that are 

communicative was included in the analyses because although .64 is below .70, ECI Time 3 

proportion of vocalizations that are communicative correlated strongly with the same variable 

measured within the CSP at Time 3 (r = .75). This high correlation suggests that the ECI Time 3 

proportion of vocalizations that are communicative is likely to be useful scientifically. In contrast, 

CSP Time 3 proportion of communication acts with a canonical syllable exhibited a low 

correlation with the same variable within the ECI at Time 3 (r = .31). This low correlation 
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provides additional evidence that CSP Time 3 proportion of communication acts with a 

canonical syllable is not sufficiently reliable to be useful scientifically. Thus, we excluded this 

variable at both time points from all analyses.  

 

Table 4  

Intraclass Correlation Coefficients for Conventionally-Coded Vocal Variables by Time and 

Procedure  

 Time 1 Time 3 

Variable CSP 
ECI 

Mean (SD) CSP 
ECI 

Mean (SD) 
Number of total vocalizations  .99 .99 (.01) .99 .99 (.01) 
Number of CAs that include a vocalization .97 .97 (.01) .99 .98 (.02) 
Number of CAs that include a canonical syllable  .97 .98 (.02) .99 .97 (.03) 
Proportion of vocalizations that are communicative .84 .84 (.17) .98 .96 (.03) 
Consonant inventory (regardless of communicative 

use) 
.94 .89 (.04) .93 .96 (.01) 

DKCC .79 .90 (.02) .98 .96 (.02) 
Proportion of CAs with a canonical syllable  .89 .81 (.07) .24 .87 (.07) 
Proportion of vocalizations with a canonical syllable .96 .92 (.06) .97 .92 (.04) 
Number of vocalizations with a canonical syllable .97 .98 (.01) .99 .98 (.02) 
Note. CSP = Communication Sample Procedure; DKCC = diversity of key consonants used in 
communication acts (Wetherby, Watt, Morgan, & Shumway, 2007; Woynaroski et al., 2017);  
ECI = Early Communication Index (Greenwood, Carta, Walker, Hughes, & Weathers, 2006; 
Luze, Linebarger, Greenwoord, & Carta, 2001); Time 1 = study initiation; Time 3 = 12 months 
after study initiation; ECI intraclass correlation coefficients are reported as means of months 1-3 
for Time 1 and months 11-13 for Time 3.  
 

Eliminating redundant vocal variables. We identified and removed variables highly 

correlated with other variables that purport to measure the same aspect of vocalizations at Time 

1 because such high correlations indicate redundancy. The redundant variables were excluded 

from all analyses (i.e., Times 1 and 3). For communicative use, the communication samples 

were coded for (a) the number of communication acts that include a vocalization, (b) the number 

of communication acts that include a canonical syllable, and (c) the proportion of vocalizations 

that are communicative. The number of communication acts with a vocalization correlated 

almost perfectly with the number of communication acts with a canonical syllable at Time 1       
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(r = .99). See Appendix A for intercorrelations between vocal variables of the same vocalization 

aspect. We retained communication acts that include a vocalization to provide a variable varying 

from the total vocalizations volubility variable in only one aspect (i.e., communicativeness). 

Thus, we eliminated the number of communication acts that include a canonical syllable.  

For complexity, the communication samples were coded for five variables (see Table 2). 

Recall that the proportion of communication acts with a canonical syllable was eliminated due to 

low reliability. Consonant inventory (regardless of communicative use) and DKCC correlated 

very highly at Time 1 (r = .85). Number of vocalizations with a canonical syllable also correlated 

highly with DKCC (r = .86) at Time 1. In children with ASD, there is relatively greater empirical 

evidence for the association between expressive language and DKCC compared with the other 

vocal variables (e.g., Wetherby et al., 2007; Yoder et al., 2015). Thus, we eliminated consonant 

inventory and the number of vocalizations with a canonical syllable. DKCC and the proportion of 

vocalizations with a canonical syllable remained.  

 

Creating composite variables. If the intercorrelation among component variables 

posited to measure the same construct warranted it, we created composite variables for the 

expressive language and the nonverbal cognitive skills constructs to be used in the multilevel 

models, for variables derived from conventional coding of the CSP and ECI, and for the 

complexity variables derived from automated analyses. We calculated and averaged the z-

scores for each component variable using the sample’s mean and standard deviation at Time 3 

to create the composite variable of interest.  

The component variables of the expressive language composite (see Table 2) all 

correlated with each other at r > .40 at each time point. The component variables of the 

nonverbal cognitive skills composite (see Table 2) all correlated at r > .40 at each time point, 

except for Time 2 VABS fine motor skills and Time 2 MSEL visual recognition subscale (r = .37). 
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Because these components correlated sufficiently at Times 1 and 3 and with all other 

component variables at each time point, both were retained for the composite at Time 2.  

We created composite variables for variables conventionally-coded from the CSP and 

ECI. ECI values were calculated by averaging values across months 1 through 3 for Time 1 and 

months 11 through 13 for Time 3. Thus, values for each conventional coding variable include 

data from one CSP sample and three ECI samples. Correlations between Time 1 CSP and 

Time 1 ECI correlated at r > .60 for all of the retained vocal variables. The z-scores for the CSP 

and ECI values were averaged to create variables for the conventionally-coded measures.   

To reduce the number of analyses used to address the incremental validity research 

questions, we computed composites for retained component variables at Time 1 if they 

correlated above r = .40. The number of communication acts with a vocalization and the 

proportion of vocalizations that are communicative correlated sufficiently (r = .70). Similarly, 

DKCC and proportion of vocalizations with a canonical syllable also correlated sufficiently          

(r = .79). The average z-score transformations of the component variables were the composite 

variables.  

We planned to create a composite variable from the ACPU-C, ACPU-V, and IVD score 

automated variables for increased stability and construct validity (Woynaroski et al., 2017). 

Because ACPU-C and ACPU-V correlated strongly (r = .82), we aggregated them to form the 

ACPU-C+V variable by calculating and averaging the z-scores for each component variable. 

However, ACPU-C+V was not sufficiently correlated with IVD score (r = .26). Thus, ACPU-C+V 

and IVD score were analyzed separately for all analyses.   

For volubility, total vocalizations measured via conventional coding and the number of 

child speech-related vocalizations from automated analyses were not sufficiently correlated to 

create a composite variable (r = .37 at Time 1; r = .27 at Time 3). Thus, total vocalizations and 

number of child speech-related vocalizations were analyzed separately.  
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Evaluating Evidence of Convergent Validity  

For evidence of convergent validity we tested whether each vocal variable predicted 

later expressive language using growth curve modeling with full maximum likelihood estimation 

(Enders, 2010). By centering time in study at Time 3, the intercepts of the growth model are 

interpretable for the participants’ expressive language skills at the final study period, which is 

the end of the intervention period. Significant fixed coefficients for the predictor variable of a 

model with the expressive language composite as the dependent variable provide evidence of 

convergent validity.  

The initial step of mixed level modeling is to identify the unconditional growth model. We 

used a build-up approach for model selection. The random intercept, fixed slope model provided 

evidence of a better fit than a fixed intercept, fixed slope model (i.e., empty model). The -2 log 

likelihood value decreased from 633 for the fixed intercept, fixed slope model to 421 for the 

random intercept, fixed slope model. Although the -2 log likelihood value decreased further for 

the random intercept, random slope model relative to the random intercept, fixed slope model, 

the correlation between slope and intercept was very high (r = .92). Due to this high covariance 

of the intercept and slope and the desire to use the most parsimonious growth model, we chose 

to use the random intercept, fixed slope model. The high covariance between the intercept and 

slope means that there is limited variance remaining to be explained by predictor variables in 

the model. The growth parameter of interest was intercept, which was interpreted as the best 

estimate of end point (Time 3) expressive language.  

The style and/or intensity of treatment that the participants received could potentially 

influence the correlations among key variables. That is, it is possible that the strength of the 

association with later expressive language and/or patterns of change differ for vocalization 

measures for children in different treatment groups. Because the sample size prevented 

reasonable analysis of intensity x style x predictor three-way interactions, we examined whether 

the association between vocal variables and the intercept of growth of expressive language 
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varied by intensity or style. To check for interactions, we added a group by predictor product 

term to the main effects of group and predictor in the model. None of the product terms between 

group and predictor were significant for the models predicting expressive language. 

Consequently, the models for this research question include participants pooled across groups.  

To evaluate for evidence of convergent validity, we added each vocal variable to the 

random intercept, fixed slope model predicting the end point-centered intercept of growth of 

expressive language (i.e., best estimate of the Time 3 expressive language) one at a time. As 

shown in Table 5, all variables were significant predictors except for IVD score. All significant 

associations were positive. See Appendix B for complete results for all models. No evidence of 

heteroscedasticity was observed. All residuals fell within the acceptable parameters for 

skewness and kurtosis of < |.8| and < |3.0|, respectively (Tabachnick & Fidell, 2001). The 

pseudo R2 value provides an effect size that represents the amount of explainable variance 

explained by the predictor variable (e.g., number of total vocalizations). It is the proportional 

reduction in residual variance that occurs when a predictor is added (Singer & Willett, 2003). 

Mathematically pseudo R2 is the difference between the residual variance of the intercept 

between the full model (i.e., includes the vocal predictor variable of interest) and the reduced 

model (i.e., excludes the vocal predictor variable of interest) divided by the residual variance of 

the intercept for the reduced model. Conceptually, pseudo R2 means the proportion of the 

growth model or growth parameter that is explained by the more elaborate or full model relative 

to the less elaborate or unconditional model. Using pseudo R2 > .25 as an indication of a large 

effect size, number of communication acts that include a vocalization, proportion of 

vocalizations that are communicative, DKCC, and proportion of vocalizations with a canonical 

syllable at Time 1 have a large association with the best estimate of later expressive language. 
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Table 5 

Fixed Effects Estimates for Vocal Variables Predicting End Point Expressive Language  

Vocal Variable Coeff. SE t df p Pseudo R
2
 

Number of total vocalizations  0.26 0.07 3.74 88.57 <.001 .16 
Number of child speech-related 

vocalizations  
2.9x104 6.8x105 4.35 83.89 <.001 .19 

Number of CAs that include a 
vocalization  

0.86 0.10 8.64 86.16 <.001 .54 

Proportion of vocalizations that are 
communicative  

0.69 0.07 9.35 85.55 <.001 .59 

DKCC 0.59 0.06 9.41 85.86 <.001 .60 
Proportion of vocalizations with a 

canonical syllable  
0.38 0.05 7.26 86.20 <.001 .44 

ACPU-C+V  0.27 0.10 2.71 86.50 .01 .08 
IVD score  0.00    0.01 -0.32 84.66 .75 .00 
RVC  2.45 0.92 2.67 85.67 .01 .08 
Note. ACPU-C+V = Average count per utterance – consonants + vowels (Woynaroski et al., 
2017; Xu, Richards, & Gilkerson, 2014); Coeff. = coefficient value; DKCC = diversity of key 
consonants used in communication acts (Wetherby, Watt, Morgan, & Shumway, 2007; 
Woynaroski et al., 2017); IVD = Infraphonological vocal development (Oller et al., 2010); 
Pseudo R2 = 1 – (covariance parameter for intercept of model with the vocal variable of interest 
/ covariance parameter for intercept of model without the vocal variable of interest); RVC = 
reciprocal vocal contingency (Harbison et al., 2018).   
 

Evaluating Evidence of Divergent Validity 

 For evidence of divergent validity, we evaluated whether each vocal development 

variable predicted the end point-centered intercept of the growth of nonverbal cognitive skills, 

which can be interpreted as predicting the best estimate of end point (i.e., Time 3) nonverbal 

cognitive skills. Theoretically, vocalization measures should not be significant predictors of 

nonverbal cognitive skills. Time in study is centered at Time 3 to yield intercepts interpretable for 

the participants’ skills at the final study period. Associations with the intercept of growth on 

nonverbal cognitive skills are expected to be low and nonsignificant. We rely on significance to 

define what is considered low. Given the large sample size, this approach is quite reasonable.  

As with the model predicting expressive language, we used a build-up approach for 

model selection for the model predicting nonverbal cognitive skills. The random intercept, 
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random slope model provided evidence of a better fit than the fixed intercept, fixed slope model 

and the fixed intercept, random slope model. The -2 log likelihood value decreased from 633 for 

the fixed intercept, fixed slope model to 421 for the random intercept, fixed slope model to 314 

for the random intercept, random slope model. The intercorrelation between the intercept and 

slope for the random intercept, random slope model was acceptable (r = .79). As shown in 

Table 6, only the main effect for total vocalizations was a significant predictor of end point 

nonverbal cognitive skills. See Appendix C for complete results for all models. No evidence of 

heteroscedasticity was observed. All residuals fell within the acceptable parameters for 

skewness and kurtosis (Tabachnick & Fidell, 2001).  

 

Table 6 

Fixed Effects Estimates for Main Effects of Vocal Variables Predicting End Point Nonverbal 

Cognitive Skills  

Vocal Variable Coeff. SE t df p 

Number of total vocalizations  0.13 0.06 2.16 86.42 .03 
Number of child speech-related vocalizations  6.7x105  5.8x105  1.16 84.49 .25 
Number of communication acts that include a 

vocalization  
0.06 0.11 0.54 86.09 .59 

Proportion of vocalizations that are communicative  -0.06 0.09 -0.75 86.85 .46 
DKCC  0.02 0.07 0.25 86.14 .81 
Proportion of vocalizations with a canonical syllable  -0.04 0.05 -0.70 86.14 .49 
ACPU-C+V  -0.10 0.08 -1.24 84.85 .22 
IVD score 0.01 0.01 1.04 84.53 .30 
RVC  0.13 0.73 0.17 84.55 .86 
Note. ACPU-C+V = Average count per utterance – consonants + vowels (Woynaroski et al., 
2017; Xu, Richards, & Gilkerson, 2014); Coeff. = coefficient value; DKCC = diversity of key 
consonants used in communication acts (Wetherby, Watt, Morgan, & Shumway, 2007; 
Woynaroski et al., 2017); IVD = infraphonological vocal development (Oller et al., 2010); RVC = 
reciprocal vocal contingency (Harbison et al., 2018).   
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Evaluating Evidence of Sensitivity to Change 

A significant difference between Time 1 and Time 3 via a paired t-test is evidence of 

sensitivity to change (see Table 7). All of the variables except IVD score exhibited evidence of 

sensitivity to change. The only significant group by predictor interaction was for number of child 

speech-related vocalizations. The high intensity group demonstrated evidence of sensitivity to 

change (t(36) = 4.25, p < .001). The low intensity group did not (t(36) = -0.77, p = .45). There 

was no significant difference between the high and low intensity groups at Time 1 for number of 

child speech-related vocalizations (t(82) = 0.93, p = .35).  

 

Table 7 

Results of Paired t-Tests from Time 1 to Time 3 

Vocal Variable Mean  SD 95% CI t d  
Number of total vocalizations  0.76 0.76 [0.59, 0.93] 8.95 0.88*** 
Number of child speech-related 

vocalizations  410.87 1074.74 [161.87, 659.86] 3.29 0.40** 

Number of communication acts that 
include a vocalization 0.73 0.75 [0.56, 0.89] 8.70 0.88*** 

Proportion of vocalizations that are 
communicative 0.79 0.77 [0.61, 0.96] 9.16 0.91*** 

DKCC 1.13 0.79 [0.95, 1.30] 12.80 1.32*** 
Proportion of vocalizations with a 

canonical syllable  1.00 1.03 [0.77, 1.22] 8.72 1.03*** 

ACPU-C+V 0.71 0.96 [0.49, 0.93] 6.30 0.85*** 
IVD score 2.52 11.59 [-0.19, 5.22] 1.86 0.27 
RVC 0.02 0.09 [0.00, 0.04] 1.96 0.27* 
Note. * = p < .05, ** = p < .01; *** = p < .001; p values are for two-tailed significance tests; 
ACPU-C+V = Average count per utterance – consonants + vowels score (Woynaroski et al., 
2017; Xu, Richards, & Gilkerson, 2014); d = within subjects effect size accounting for correlation 
between Time 1 and Time 3; DKCC = diversity of key consonants used in communication acts 
(Wetherby, Watt, Morgan, & Shumway, 2007; Woynaroski et al., 2017); IVD = infraphonological 
vocal development (Oller et al., 2010); RVC = reciprocal vocal contingency (Harbison et al., 
2018).   
 
Evaluating Incremental Validity Relative to Volubility 

To evaluate the incremental validity for aspects of vocalizations, we assessed the 

incremental validity of composite measures of these vocalization aspects when possible. Recall 
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that the composite for communicative use includes (a) the number of communication acts that 

include a vocalization and (b) the proportion of vocalizations that are communicative. Similarly, 

the composite for complexity includes (a) DKCC and (b) the proportion of vocalizations with a 

canonical syllable. Based on the evidence for convergent validity, divergent validity, and 

sensitivity to change, we used ACPU-C+V instead of IVD score to evaluate the incremental 

validity of an automated variable for vocal complexity.  

To test for incremental validity relative to volubility, we added communicative use, 

complexity, or reciprocity vocal variables to a model with volubility. Because total vocalizations 

and the number of child speech-related vocalizations were not sufficiently correlated, separate 

models were used for each. No predictor by group interaction effects were observed. The 

unstandardized coefficients, standard errors, and significance for the predictor variables are 

displayed in Tables 8 and 9. See Appendix D for complete results for all models. 

 

Table 8  

Unstandardized Coefficients (Standard Errors) and Significance for More Elaborate Vocal 

Variables Predicting End Point Expressive Language After Controlling for Conventionally-Coded 

Volubility   

 
TV 

Comm. 
composite 

Complexity 
composite 

ACPU- 
C+V RVC 

Pseudo R2 

change 
Comm. -0.01 (0.06) 0.91 (0.10)*** 

   
.61 

Complexity  -0.11 (0.07) 
 

0.60 (0.08)*** 
 

.50 

 
0.27 (0.07)*** 

  
0.24 (0.09)** 

 
.10 

RVC 0.25 (0.07)** 
   

1.79 (0.88)* .07 
Note. * = p < .05; ** = p < .01; *** = p < .001; ACPU-C+V = Average count per utterance – consonants + 
vowels score (Woynaroski et al., 2017; Xu, Richards, & Gilkerson, 2014); Comm. = communicative use; 
Pseudo R2 change = 1 – (covariance parameter for intercept of model with more elaborate vocal variable 
added / covariance parameter for intercept of model only including volubility); RVC = reciprocal vocal 
contingency (Harbison et al., 2018); TV = total vocalizations.  
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Table 9  

Unstandardized Coefficients (Standard Errors) and Significance for More Elaborate Vocal 

Variables Predicting End Point Expressive Language After Controlling for an Automated 

Volubility Variable    

 
CHNSP 

Comm. 
composite 

Complexity 
composite 

ACPU-
C+V RVC 

Pseudo R2 

change 
Comm. 9.7x105 (5.2x105) 0.83(0.09)*** 

   
.62 

Complexity  9.5x105(6.9x105) 
 

0.47(0.06)*** 
 

.49 

 
2.6x104(6.9x105)*** 

  
0.17(0.09) 

 
.05 

RVC 2.6x104(7.9x105)** 
   

0.79(1.00) .01 
Note. ** = p < .01; *** = p < .001; ACPU-C+V = Average count per utterance – consonants + vowels score 
(Woynaroski et al., 2017; Xu, Richards, & Gilkerson, 2014); CHNSP = number of child speech-related 
vocalizations; Comm. = communicative use; Pseudo R2 change = 1 – (covariance parameter for intercept 
of model with more elaborate vocal variable added / covariance parameter for intercept of model only 
including volubility); RVC = reciprocal vocal contingency (Harbison et al., 2018).  
 

The communicative use composite accounted for a large incremental effect size 

regardless of the volubility measure that was controlled (pseudo R2 change = .50 and .49) and 

was significant after controlling for total vocalizations from the communication samples,    

t(85.43) = 9.29, p < .001, and after controlling for the number of child speech-related 

vocalizations from the day-long audio recordings, t(83.88) = 9.39, p  < .001. Neither of the 

volubility variables showed incremental validity in predicting later expressive language when the 

communicative use composite was controlled.   

When the complexity composite from the conventional communication samples was 

used as the vocal complexity measure, it accounted for a large incremental effect size 

regardless of the volubility measure that was controlled (pseudo R2 change = .61 and .60) and 

was statistically significant after controlling for total vocalizations from the communication 

samples, t(84.71) = 7.74, p < .001, and after controlling for number of child speech-related 

vocalizations, t(85.03) = 7.42, p < .001. Neither of the volubility variables showed incremental 

validity in predicting later expressive language when the complexity composite was controlled.   
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When the ACPU-C+V was used as the measure of complexity, it only showed 

incremental validity relative to the conventionally-coded volubility variable, t(86.67) = 2.69,         

p < .01. Total vocalizations measured conventionally was a significant predictor of end point 

expressive language, t(87.07) = 3.93, p < .001. ACPU-C+V did not exhibit incremental validity 

relative to the number of child speech-related vocalizations from the day-long audio recordings, 

t(87.01) = 1.84, p = .07. The number of child speech-related vocalizations was a significant 

predictor of end point expressive language, t(84.41) = 3.69, p < .001. 

RVC incrementally predicted later expressive language only when total vocalizations 

was the measure of volubility that was controlled, t(86.89) = 2.03, p < .05. RVC did not predict 

later expressive language when the number of child speech-related vocalizations from day-long 

audio recordings were controlled (p = .43). The latter is noteworthy because the automated 

measure of volubility is the base rate of child vocalizations in the same day-long sample from 

which the RVC is derived. 

 

Evaluating Incremental Validity of RVC Relative to Communicative Use and Complexity  

To evaluate the incremental validity of the dyadic three-event variable, RVC, relative to 

the single actor, single event variables of communicative use and complexity, we added RVC to 

a model with only the communicative use composite from the communication samples or each 

of the two complexity variables (i.e., complexity composite from the communication samples or 

ACPU-C+V from the day-long audio recordings) to predict end point expressive language. See 

Table 10 for results. When either the communicative use or the complexity composite from the 

communication samples were statistically controlled, RVC no longer predicted end point 

expressive language, p = .27 or p = .74, respectively. In contrast, when ACPU-C+V, an 

automated measure of complexity, was controlled, RVC was a significant predictor of end point 

expressive language, t(87.06) = 2.13, p =.04; ACPU-C+V was a significant predictor as well, 

t(86.64) = 2.08, p = .04. 
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Table 10 

Coefficient (Standard Errors) and Significance for RVC, a Dyadic Three-Event Variable, 

Predicting End Point Expressive Language After Controlling for Single Actor / Single Event 

Variables    

Single Actor / Single Event Variable  RVC - A Dyadic Three-Event Variable 
Variable Coefficient  Coefficient Pseudo R2 change for RVC 
Communicative composite 

(conventional) 
0.87 (0.09)***  0.72 (0.64) 

 
.04 

Complexity composite 
(conventional) 

0.51 (0.06)***  0.24 (0.74) 
 

.00 

ACPU-C+V 0.21 (0.10)*  1.93 (0.93)* .06 
Note. * = p < .05; *** = p < .001; ACPU-C+V = Average count per utterance – consonants + 
vowels score (Woynaroski et al., 2017; Xu, Richards, & Gilkerson, 2014); Pseudo R2 change = 1 
– (covariance parameter for intercept of model with more elaborate vocal variable added / 
covariance parameter for intercept of model only including the less elaborate vocal variable); 
RVC = reciprocal vocal contingency (Harbison et al., 2018). 
 

Evaluating Incremental Validity of Conventionally-Coded Measures Relative to 

Automated Measures of the Same Construct  

To evaluate the incremental validity of conventionally-coded measures to automated 

measures of volubility and complexity, we added both measures in the same model to predict 

end point expressive language. See Table 11 for results. When the automated variable of the 

number of child speech-related vocalizations was added to the model with the conventionally-

coded total vocalizations variable, total vocalizations and number of child speech-related 

vocalizations were significant predictors of end point expressive language, t(88.21) = 2.66,          

p < .01, and t(85.11) = 3.07, p < .01, respectively. When the automated complexity variable of 

ACPU-C+V was added to the model with the conventionally-coded complexity composite, only 

the complexity composite was a significant predictor of end point expressive language,     

t(85.33) = 8.26, p < .001. ACPU-C+V was not (t(87.23) = 0.88, p = .38). Adding the complexity 

composite to the model yielded a large effect size (pseudo R2 change = .54).  
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Table 11 

Coefficient (Standard Errors) and Significance for the Conventionally-Coded Vocal Variable 

Predicting End Point Expressive Language After Controlling for the Automated Vocal Variable    

Note. ** = p < .01; *** = p < .001; ACPU-C+V = average count per utterance – consonants + 
vowels (Woynaroski et al., 2017; Xu, Richards, & Gilkerson, 2014); Pseudo R2 change = 1 – 
(covariance parameter for intercept of model with conventionally-coded vocal variable added / 
covariance parameter for intercept of model only including the automated vocal variable).  
 
  

Automated Vocal Variable  Conventionally-Coded Vocal Variable 

Variable Coefficient 
 

Variable Coefficient 
Pseudo R2 

change  
Number of child 

speech-related 
vocalizations 

2.2x104 (7.1x105)**  Number of total 
vocalizations  

0.19 (0.07)** .10 

ACPU-C+V 0.07 (0.08)  Complexity 
composite 

0.50 (0.06)*** .54 
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CHAPTER 4  

 

DISCUSSION 

  

Summary of Relative Validity of Vocal Variables  

 Because there is not yet consensus on how to compare the relative validity of competing 

variables, we present the results in multiple ways to aid readers with differing preferences. Nine 

vocal variables were evaluated for convergent validity, divergent validity, and sensitivity to 

change. See Table 12 for a substantive summary of the results.  

 

Table 12  

Summary of Evidence of Convergent Validity, Divergent Validity, and Sensitivity to Change  

Construct Vocal Variable 

Evidence of 
Convergent 

Validity 
(RQ1) 

Evidence of 
Divergent 
Validity 
(RQ2)  

Evidence of 
Sensitivity to 

Change 
(RQ3) 

Volubility Number of total vocalizations  Yes No Yes+ 

 Number of child speech-
related vocalizations  

Yes Yes Mixed 

Communicative 
Use  

Number of communication acts 
that include a vocalization  

Yes+ Yes Yes+ 

 Proportion of vocalizations that 
are communicative  

Yes+ Yes Yes+ 

Complexity  DKCC Yes+ Yes Yes+ 

 Proportion of vocalizations with 
a canonical syllable  

Yes+ Yes Yes+ 

 ACPU-C+V  Yes Yes Yes+ 

 IVD score  No Yes No 
Vocal Reciprocity  RVC  Yes Yes Yes 
Note. + = large effect size, defined as pseudo R2 > .25 (for convergent validity) or Cohen’s d > .8 
(for sensitivity to change); ACPU-C+V = average count per utterance – consonants + vowels 
(Woynaroski et al., 2017; Xu, Richards, & Gilkerson, 2014); DKCC = diversity of key consonants 
used in communication acts (Wetherby, Watt, Morgan, & Shumway, 2007; Woynaroski et al., 
2017); IVD = infraphonological vocal development (Oller et al., 2010); RVC = reciprocal vocal 
contingency (Harbison et al., 2018).  
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If we use the presence or absence of significant results as the criterion for assigning 

validity and summarizing across these three purposes, six variables presented with consistent 

positive evidence for all three purposes (i.e., number of communication acts that include a 

vocalization, proportion of vocalizations that are communicative, DKCC, proportion of 

vocalizations with a canonical syllable, ACPU-C+V, and RVC). However, we do not recommend 

using the number of validity tests as the basis for selecting vocal variables. Doing so ignores the 

relative effect size of the associations or change and may result in ignoring variables that may 

be most valid for particular purposes. Thus, effect-size informed, purpose-specific decisions are 

more likely to be useful. Using above-threshold effect size as a basis for selecting variables, 

four variables showed evidence of validity to predict expressive language and show sensitivity 

to change (i.e., number of communication acts that include a vocalization, proportion of 

vocalizations that are communicative, DKCC, and proportion of vocalizations with a canonical 

syllable). Note that these four variables are all conventionally-coded, two measure 

communicative use and two measure complexity. DKCC had the largest effect size for 

convergent validity and for sensitivity to change.  

 If we instead use criteria of the strongest evidence for construct validity (i.e., convergent 

and divergent validity together), then the variables that are most supported are the two 

measures of communicative use (i.e., number of communicative acts that include a vocalization 

and proportion of vocalizations that are communicative) and the two conventionally-coded 

measures of complexity (i.e., DKCC and proportion of vocalizations with a canonical syllable). If 

we use the criterion of which variables show a large effect size for sensitivity to change, then six 

variables are most supported (i.e., number of total vocalizations, number of communication acts 

that include a vocalization, proportion of vocalizations that are communicative, DKCC, 

proportion of vocalizations with a canonical syllable, and ACPU-C+V).  

 If we choose to identify which variables show the strongest evidence of convergent 

validity (i.e., prediction of later expressive language), our most rigorous evidence is provided by 
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tests of incremental validity. See Table 13 for a substantive summary of the incremental validity 

results.  

 

Table 13  

Summary of Evidence of Incremental Validity for Predicting Later Expressive Language  

Note. * = significant incremental validity; ns = non-significant incremental validity; ACPU-C+V = 
average count per utterance – consonants + vowels (Woynaroski et al., 2017; Xu, Richards, & 
Gilkerson, 2014); RVC = reciprocal vocal contingency (Harbison et al., 2018).  
 

For the purpose of predicting expressive language, measuring complexity or 

communicative use of vocalizations has incremental validity after controlling for volubility. To 

estimate vocal complexity, it is likely worth the effort to conventionally code communication 

samples. The incremental validity of the automated measure of vocal complexity (i.e., ACPU-

C+V) was nonsignificant after controlling for the automated measure of volubility.  

Incremental validity comparisons of automated versus conventionally-coded variables 

allowed us to test whether it was worth the cost of conventionally-coded communication 

Comparison Less Elaborate/Less Costly Variable More Elaborate/More Costly Variable 
More elaborate / 

more costly 
versus volubility 

nsVolubility (conventional or 
automated) 

*Communicative composite 
(conventional) 

nsVolubility (conventional or 
automated)  

*Complexity composite (conventional) 

*Number of total vocalizations 
(conventional) 

*ACPU-C+V (automated) 

*Number of child speech-related 
vocalizations (automated)  

nsACPU-C+V (automated) 

*Number of total vocalizations 
(conventional) 

*RVC (automated) 

*Number of child speech-related 
vocalizations (automated) 

nsRVC (automated) 

RVC versus 
communicative 
use or 
complexity  

*Communicative composite 
(conventional) 

nsRVC (automated) 

*Complexity composite 
(conventional) 

nsRVC (automated) 

*ACPU-C+V (automated) *RVC (automated) 

Automated versus 
conventionally-
coded  

*Number of child speech-related 
vocalizations (automated) 

*Number of total vocalizations 
(conventional)  

nsACPU-C+V (automated) *Complexity composite (conventional) 
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samples to measure similar constructs. We found evidence of incremental validity of the 

automated volubility variable when compared to the conventional measure of volubility. 

However, the value of investing in equipment for an automated measure of volubility ought to be 

considered in the context of the incremental validity of predicting expressive language 

controlling for other vocal variables. As mentioned earlier, there is weaker or mixed evidence to 

consider including measures of volubility in a battery of vocal variables when evaluated from the 

perspective of overall validity and purpose-specific validity as compared to conventional 

measures of complexity and communicative use. 

In contrast to the automated versus conventional volubility comparison results, only the 

conventionally-coded complexity measure accounted for unique variance in predicting end point 

expressive language skills when both the automated (i.e., ACPU-C+V) and conventionally-

coded variables were in the model. These results provide additional evidence in support of 

conventionally-coded vocal complexity measures, despite the resources required.   

Another important finding appeared when considering the full set of results. The findings 

do not support the construct validity of IVD score for measuring vocal development of young 

children with ASD who are in the early stages of word learning. IVD score did not exhibit 

evidence of convergent validity or sensitivity to change. These results bring into question the 

validity of the IVD score for assessing vocal development in young children with ASD. They 

conflict with evidence supporting the convergent validity of IVD score, as described in more 

detail below (Woynaroski et al., 2017).  

Similarly, these data do not support using the RVC as an incrementally-valid predictor of 

expressive language in children with ASD and conflict with some earlier findings. As indicated in 

the introduction, RVC was designed to be predict convergent validity variables such as 

expressive language after controlling for the chance sequential occurrence of adult and child 

vocalizations (which is computed from their base rates). In this study, RVC was not an 

incrementally-valid predictor of expressive language after controlling for the automated measure 
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of child volubility. This finding conflicts with past evidence that RVC was related to expressive 

communication in a smaller sample of children with ASD (n = 21; Harbison et al., 2018). 

Reasons to consider current study findings as more informative of the validity of RVC than 

Harbison et al. (2018) include the larger sample size, the more informative research design, and 

a multi-measure approach to estimating expressive language in the current study.  

 

The Current Study Findings Relative to the Extant Literature 

The pattern of results highlights the value of considering the communicative use and 

complexity of vocalizations when evaluating vocal development in young children with ASD. The 

value observed in considering communicative use and/or complexity aligns with the social 

feedback theory, the speech attunement framework, and the transactional theory of spoken 

language development. However, there are also child-driven theories that support the selection 

of communicative use and complexity vocal variables as putative predictors of expressive 

language. Thus, the current study does not support one theory over another in a definitive way. 

As indicated in the introduction, there is much converging evidence across studies to support 

the validity of measuring complexity and communicative use of vocalizations. In this section we 

identify specific findings within the extant literature for which the current findings are 

replications. See Table 14 for a summary.  
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Table 14 

Replicated Findings Identified in Extant Literature and Current Study  

Vocal Variable 
Convergent  

Validity 
Divergent 
Validity 

Sensitivity to 
Change  

Number of total vocalizations  Plumb (2008) N/A Brian et al. 
(2017)  

Number of child speech-related 
vocalizations  

  Dykstra et al. 
(2013) 

Number of communication acts 
that include a vocalization 

Plumb (2008)   

Proportion of vocalizations that 
are communicative 

   

DKCC Wetherby et al. 
(2007) 

Woynaroski (2014) 
& Woynaroski et 
al. (2017) 

Yoder et al. (2015) 

 Woynaroski et 
al. (2016) 

 

Proportion of vocalizations with a 
canonical syllable  

   

ACPU-C+V  Woynaroski et al. 
(2017) 

  

IVD score N/A  N/A 
RVC Harbison et al. 

(2018) 
Harbison et al. 

(2018) 
 

Note. N/A = not applicable because finding not identified in current study; ACPU-C+V = average 
count per utterance – consonants + vowels (Woynaroski et al., 2017; Xu, Richards, & Gilkerson, 
2014); DKCC = diversity of key consonants used in communication acts (Wetherby, Watt, 
Morgan, & Shumway, 2007; Woynaroski et al., 2017); IVD = infraphonological vocal 
development (Oller et al., 2010); RVC = reciprocal vocal contingency (Harbison et al., 2018).   

 

Convergent validity based on significant correlations with current or later expressive 

language has been reported for the number of total vocalizations (Plumb, 2008), the number 

communication acts that include a vocalization (Plumb, 2008), DKCC (Wetherby et al., 2007; 

Woynaroski, 2014; Woynaroski et al., 2017; Yoder et al., 2015), ACPU-C+V (Woynaroski et al., 

2017), and RVC (Harbison et al., 2018). DKCC has previously exhibited incremental validity as 

well (Yoder et al., 2015). Thus, these findings from the current study are replications, 

decreasing the likelihood that they are sample specific results and increasing the likelihood for 

future replications. In contrast, Plumb and Wetherby (2013) did not identify a significant relation 
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between proportion of vocalizations that are communicative and expressive language as 

measured by the verbal development quotient on the MSEL. The current study may have 

identified this previously unidentified relation in part due to the relatively large sample size and 

use of growth curve modeling to generate a better estimate of end point expressive language 

than an observed measure at a single time point (Singer & Willett, 2003). Additionally, the 

current study quantified expressive language using multiple measures, in contrast to the sole 

use of the MSEL in Plumb and Wetherby (2013).  

No known extant studies report convergent validity for assessing vocal development in 

young children with ASD for the proportion of vocalizations that include a canonical syllable. 

However, Williams (2013) evaluated a variable similar to the proportion of vocalizations that 

include a canonical syllable in testing the correlation between the percent of syllables that are 

canonical and the MSEL Early Language Composite and the MSEL Expressive Language 

Composite for 15 infant siblings of children with ASD who were 6 months old and at high-risk for 

ASD. This vocal variable is similar to, but not synonymous with, proportion of vocalizations that 

include a consonant. The results were non-significant for the Early Language and Expressive 

Language composites, r = -.21 and r = .21, respectively. The fact that most infant siblings will 

not have ASD and the relatively younger and smaller sample as well as the use of different 

language measures relative to the current study may explain the incongruent findings.  

 The results of the current study also differ from Woynaroski et al. (2017) who reported 

that IVD score exhibited predictive validity for spoken vocabulary. In Woynaroski et al. (2017) 

IVD score and ACPU-C+V, another automatic putative measure of vocal complexity, correlated 

sufficiently (r = .45; p = .023) to aggregate; however, in the current study they did not. Possible 

reasons for differences between the current study and Woynaroski et al. (2017) include 

differences in the number of day-long audio recordings per child, the interval between the IVD 

score and expressive language measurement, and the characteristics of the sample. In 

Woynaroski et al. (2017), two day-long audio recordings were used to estimate IVD score. Only 
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one day-long audio sample per child per time period was available for the current study. In 

addition, Woynaroski et al. (2017) tested the correlation between the vocal variables and 

expressive vocabulary 4 months later. We used multi-level modeling to test whether the vocal 

variables predicted the best estimate of expressive language 12 months later. Participants in 

Woynaroski et al. (2017) were all preverbal (i.e., no more than 20 spoken words at study 

initiation), whereas the participants in the current study exhibited more varied expressive 

language skills at study initiation.  

Comparisons between the extant literature and current findings for divergent validity are 

very limited. The only known study to assess the divergent validity of a vocal variable for 

assessing vocal development in young children with ASD is Harbison et al. (2018), which 

evaluated divergent validity of RVC. Although Harbison et al. (2018) used different divergent 

validity nodes (i.e., chronological age, intellectual quotient, and parents’ formal education level) 

than the current study, the current study and Harbison et al. (2018) provide positive evidence of 

divergent validity for RVC assessing vocal development in young children with ASD. 

Unfortunately, the lack of incremental validity of the RVC in the current study weakens the 

support for the RVC as a measure of reciprocal vocal interaction. 

Evidence for sensitivity to change of vocal variables in children with ASD change can be 

drawn from studies examining change in vocal variables over time, even when the study does 

not specifically identify the analysis as one of sensitivity to change. Brian, Smith, Zwaigenbaum 

and Bryson (2017) conducted a randomized control trial on the efficacy of Social ABCs, a 

parent-mediated intervention. They reported increased child vocal initiations from the beginning 

to the end of the 12-week intervention period (z = 4.206, p < .001). Using an automated 

measure of volubility, Dykstra et al. (2013) reported that the rate of speech-related child 

vocalizations per minute from day-long LENA recordings increased from the beginning to the 

end of the school year for a sample of 40 children with ASD (mean age = 3.95 years). This rate 

measure is analogous to our automated measure of volubility. For a measure of vocal 
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complexity, Woynaroski et al. (2016) reported significant simple linear growth in DKCC for 87 

initially preverbal children with ASD across 16 months in a longitudinal correlational study. Thus, 

the evidence for sensitivity to change for DKCC in the current sample replicates this finding.  

 

Limitations  

 Five limitations should be acknowledged. First, validation refers to a specific variable, 

use, and population (Yoder et al., 2018). Therefore, findings from this study may not directly 

transfer to other variables derived from the same data collection methods, uses, or populations. 

The current investigation selected vocal variables for the purpose of measuring vocal 

development in young children with ASD in the early stages of language learning. Second, 

multiple t-tests were conducted without alpha adjustment when assessing significance of 

predicted associations and change, which increases the risk for Type I errors. Although the 

number of variables was reduced to partially address family-wise error due to multiple 

significance tests without alpha adjustment, there are still many significance tests per research 

question. Replication of associations with expressive language that are new to the field are 

needed to ensure those findings are not sample specific. Despite some novel findings, many of 

the predictors of expressive language have been detected in other samples of children with 

ASD, as described above (e.g., Harbison et al., 2018; McDaniel et al., 2018; Plumb & Wetherby, 

2013; Wetherby et al., 2007; Woynaroski et al., 2017; Yoder et al., 2015). It is unlikely that these 

associations have been found to be significant due to unadjusted multiple significance testing. 

Third, only one day-long LENA recording was collected per participant per time period. Thus, 

the degree of stability across days could not be assessed and the use of a single sample may 

not have been sufficiently stable to optimize the automated variables. Results may have differed 

if two or more day-long samples per participant per time point were utilized, particularly for RVC. 

RVC has been shown to be stable across two day-long samples in children with ASD (Harbison 

et al., 2018). However, past work has shown that IVD is stable with only one day-long sample 
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(Woynaroski et al., 2017; Yoder et al., 2013). Thus, the absence of validity for IVD score is not 

solely due to the use of a single day-long sample. Fourth, clear divisions among variables that 

measure communicative use versus complexity were not possible in every case. For example, 

DKCC considers communicative use as well as complexity. Even so, there was incremental 

validity of complexity and communicative use after controlling for the other. Fifth, the 

correlational and single-group pre-post design used to test the validity of the selected vocal 

variables prevents confident inferences that predictors cause criterion variables or that the 

treatments caused the change in the vocal variables. The one exception is that it appears that 

the high intensity treatment caused more change in the number of child speech-related 

vocalizations than did the low intensity treatment. However, the lack of theoretical rationale for 

intensity or style of treatment affecting volubility, only when measured using the automated 

method and the large number of significance tests, lead us to conclude this finding was likely 

sample specific. 

 

Strengths  

 Six strengths should be acknowledged. First, we addressed not only convergent validity, 

but also divergent validity when assessing construct validity. Divergent validity evidence is 

notably sparse in the literature. Thus, the current findings provide a unique contribution to the 

literature, particularly the literature on children with ASD and vocal measures in any population. 

Second, this study includes conventionally-coded and automated vocal variables for the same 

participants, which enables direct comparisons of two ways to derive volubility and complexity. 

Third, we used multilevel modeling to provide the best estimate of end point expressive 

language and end point nonverbal cognitive skills, rather than relying on the observed value 

(Singer & Willett, 2003). Fourth, the study duration of 12 months provides a relatively long, and 

meaningful, period of time for predicting growth. Intervention goals are often written for yearlong 

intervals. This current study design permitted addressing predictive validity, one important 
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purpose for which vocal variables are often needed. Fifth, this study includes a relatively large 

sample size for this population, which increased the power to detect effects and permitted the 

use of multi-level models with the necessary number of predictors to address the research 

questions. Sixth, multiple ways to compare the validity of multiple vocal variables were 

presented to meet the different needs of readers with different perspectives regarding how to 

select among the many vocal variables.  

 

Implications  

Consistent with the rationale for conducting this study, the results provide guidance for 

selecting variables for a variety of studies related to vocal development and language 

development of children with ASD. Overall, the results support the measurement of 

communicative use and complexity when assessing vocal development in young children with 

ASD, particularly when derived by human coding of communication samples. One can use 

these findings when selecting study variables for different purposes for which assessing and 

targeting vocal development may be useful. These potential purposes include increasing the 

effectiveness of communication intervention, identifying early response to intervention, 

explaining why intervention is effective, and for whom intervention is effective in initially 

preverbal children with ASD. For example, when selecting variables that might mediate 

treatment effects on expressive language, the findings suggest that using variables of 

communicative use and complexity may maximize the probability of detecting the putative 

mediated effect of early language interaction on expressive language through midpoint vocal 

development. As another example, one might consider using variables that demonstrate 

sensitivity to change to assess progress in vocal complexity (e.g., proportion of vocalizations 

that are communicative or DKCC) over a vocal complexity variable that did not exhibit sensitivity 

to change (e.g., IVD score).   
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Future Directions  

 Further investigation is required to validate the tested variables with other populations of 

children, such as children with language impairment without ASD or children with ASD at 

different communication skills. Relatedly, because construct validity is judged based on a 

network of nodes (Cronbach & Meehl, 1955), additional nodes for convergent and divergent 

validity may be explored to increase the confidence in the current results. For instance, 

correlations with receptive language may be considered for convergent validity nodes. It may 

not be intuitive to predict that vocal variables may predict receptive language, but past work has 

shown that DKCC was predicted by receptive language (Woynaroski et al., 2016). One possible 

explanation for this finding is that children may be trying to use words they understand prior to 

being able to make themselves understood. Other divergent validity nodes could also be 

considered. Given the mixed evidence for the construct validity of RVC for young children with 

ASD in the early stages of language learning, additional work to optimize this measure is 

warranted. For example, at least two day-long samples might be needed to improve the 

incremental validity of the RVC over volubility. Future studies could investigate whether there is 

a particular communication or language level for which RVC is most valid as well as how to 

minimize error from the sampling procedures (e.g., using multiple day-long samples per time 

point).  

Although general categories of cost were determined for the current study, detailed cost 

analyses were not possible. Future studies should also consider the specific cost of variables to 

inform variable selection and planning of later investigations. Relatedly, whether variables that 

may most readily transfer to clinical practice (e.g., DKCC and proportion of vocalizations with 

canonical syllables) can be coded live reliably, and with what amount of training, warrants 

further investigation. If these variables can be coded reliably, their use may be encouraged 

within clinical and research settings with appropriate training.      
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Conclusion  

The current study offers crucial new knowledge for the broader scientific community to 

measure vocal development within and across young children with ASD. Key findings include 

strong evidence of construct validity and incremental validity for predicting expressive language 

using conventional methods to measure complexity and communicative use of vocalizations in 

young children with ASD. These results support the use of conventional measures of complexity 

and communicative use of vocalizations in future studies of language intervention in children 

with ASD.  
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Appendix A 
 

Intercorrelations Between Vocal Variables of Communicative Use and Complexity  
 
Intercorrelations Between Communicative Use Vocal Variables at Time 1  

 
1 2 3 

Number of CAs that include a vocalization 1 
  Number of CAs that include a CS .985** 1 

 Proportion of vocalizations that are communicative  .699** .673** 1 
Note. ** = p < .01; CA = communication act; CS = canonical syllable.  
 
 
Intercorrelations Between Communicative Use Vocal Variables at Time 3  

 
1 2 3 

Number of CAs that include a vocalization 1 
  Number of CAs that include a CS  .996** 1 

 Proportion of vocalizations that are communicative  .789** .803** 1 
Note. ** = p < .01; CA = communication act; CS = canonical syllable.  
 
 
Intercorrelations Between Conventionally-Coded Vocal Variables for Complexity at Time 1 

 
1 2 3 4 5 

1. Consonant inventory  1 
  

  
2. DKCC .853** 1 

 
  

3. Proportion of CAs with a CS  .682** .633** 1   
4. Proportion of vocalizations with a CS .828** .789** .713** 1  
5. Number of vocalizations with a CS  .847** .857** .618** .769** 1 
Note. ** = p < .01; CA = communication act; CS = canonical syllable; DKCC = diversity of key 
consonants used in communication acts (Wetherby, Watt, Morgan, & Shumway, 2007; 
Woynaroski et al., 2017).  
 
 
Intercorrelations Between Conventionally-Coded Vocal Variables for Complexity at Time 3  

 
1 2 3 4 5 

1. Consonant inventory  1 
  

  
2. DKCC .878** 1 

 
  

3. Proportion of CAs with a CS  .714** .665** 1   
4. Proportion of vocalizations with a CS .818** .872** .757** 1  
5. Number of vocalizations with a CS  .752** .750** .512** .675** 1 
Note. ** = p <.01; CA = communication act; CS = canonical syllable; DKCC = diversity of key 
consonants used in communication acts (Wetherby, Watt, Morgan, & Shumway, 2007; 
Woynaroski et al., 2017).  
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Intercorrelations Between Automated Vocal Variables for Complexity at Time 1  

 
1 2 3 

1. ACPU-C  1 
  2. ACPU-V .824** 1 

 3. IVD score  .123 .361** 1 
Note. ** = p < .01; ACPU-C = average count per utterance – consonants (Xu, Richards, & 
Gilkerson, 2014); ACPU-V = average count per utterance – vowels (Xu, Richards, & Gilkerson, 
2014); IVD = infraphonological vocal development (Oller et al., 2010).  
 
 
Intercorrelations Between Automated Vocal Variables for Complexity at Time 3  

 
1 2 3 

1. ACPU-C  1 
  2. ACPU-V .910** 1 

 3. IVD score  -.056 .007 1 
Note. ** = p < .01; ACPU-C = average count per utterance – consonants (Xu, Richards, & 
Gilkerson, 2014); ACPU-V = average count per utterance – vowels (Xu, Richards, & Gilkerson, 
2014); IVD = infraphonological vocal development (Oller et al., 2010). 
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Appendix B 
 

Growth Curve Model Results for Convergent Validity Analyses 
 
Estimates of Fixed Effects for Empty Model  

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept -0.66 0.07 86.48 -9.80 <.001 -0.79 -0.53 

 
Covariance Parameters for Empty Model  

Parameter Estimate SE Wald Z p Lower CI Upper CI 
Residual 0.58 0.06 9.10 <.001 0.47 0.72 
Intercept 0.19 0.06 3.01 <.01 0.10 0.36 

 
 
Estimates of Fixed Effects for Random Intercept Fixed Slope Model  

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept 0.01 0.07 132.26 0.11 .92 -0.14 0.15 
Time 0.11 0.01 167.98 20.49 <.001 0.10 0.12 

 
Covariance Parameters for Random Intercept Fixed Slope Model  

Parameter Estimate SE Wald Z p Lower CI Upper CI 
Residual 0.16 0.02 9.10 <.001 0.13 0.20 
Intercept 0.31 0.06 5.57 <.001 0.22 0.45 

 
 
Estimates of Fixed Effects for Model with Total Vocalizations as Predictor Variable   

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept 0.21 0.09 119.83 2.36 .02 0.03 0.38 
Time  0.11 0.01 167.02 20.51 <.001 0.10 0.12 
Total vocalizations  0.26 0.07 88.57 3.74 <.001 0.12 0.40 

 
Covariance Parameters for Model with Total Vocalizations as Predictor Variable   

Parameter Estimate SE Wald Z p Lower CI Upper CI 
Residual 0.16 0.02 9.08 <.001 0.13 0.20 
Intercept 0.26 0.05 5.36 <.001 0.18 0.38 

 
 
Estimates of Fixed Effects for Model with Number of Child Speech-Related Vocalizations as 
Predictor Variable   

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept -0.47 0.13 95.74 -3.57 .001 -0.72 -0.21 
Time  0.11 0.01 163.29 20.23 <.001 0.10 0.12 
Number of child 

speech-related 
vocalizations 

2.9x104 6.8x105 83.89 4.25 <.001 1.5x104 4.3x104 
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Covariance Parameters for Model with Number of Child Speech-Related Vocalizations as 
Predictor Variable   

Parameter Estimate SE Wald Z p Lower CI Upper CI 
Residual 0.16 0.02 8.98 <.001 0.13 0.20 
Intercept 0.25 0.05 5.29 <.001 0.18 0.37 

 
 
Estimates of Fixed Effects for Model with Number of Communication Acts that Include a 
Vocalization as Predictor Variable   

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept 0.63 0.09 112.58 6.82 <.001 0.45 0.81 
Time  0.11 0.01 168.00 20.59 <.001 0.10 0.12 
Number of 

communication 
acts that include a 
vocalization  

0.86 0.10 86.16 8.64 <.001 0.66 1.05 

 
Covariance Parameters for Model with Number of Communication Acts that Include a 
Vocalization as Predictor Variable   

Parameter Estimate SE Wald Z p Lower CI Upper CI 
Residual 0.16 0.02 9.09 <.001 0.13 0.20 
Intercept 0.14 0.03 4.62 <.001 0.09 0.22 

 
 
Estimates of Fixed Effects for Model with Proportion of Vocalizations that are Communicative as 
Predictor Variable  

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept 0.56 0.08 118.55 6.84 <.001 0.40 0.72 
Time  0.11 0.01 168.63 20.54 <.001 0.10 0.12 
Proportion of 

vocalizations that 
are communicative 

0.69 0.07 85.55 9.35 <.001 0.55 0.84 

 
Covariance Parameters for Model with Proportion of Vocalizations that are Communicative as 
Predictor Variable   

Parameter Estimate SE Wald Z p Lower CI Upper CI 
Residual 0.16 0.02 9.11 <.001 0.13 0.20 
Intercept 0.13 0.03 4.49 <.001 0.08 0.20 

 
 
Estimates of Fixed Effects for Model with Diversity of Key Consonants Used in Communication 
Acts as Predictor Variable  

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept 0.67 0.09 115.54 7.43 <.001 0.49 0.85 
Time  0.11 0.01 166.38 20.62 <.001 0.10 0.12 
DKCC   0.59 0.06 85.86 9.41 <.001 0.47 0.72 

Note. DKCC = diversity of key consonants used in communication acts (Wetherby, Watt, 
Morgan, & Shumway, 2007; Woynaroski et al., 2017).  
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Covariance Parameters for Model with Diversity of Key Consonants Used in Communication 
Acts as Predictor Variable 

Parameter Estimate SE Wald Z p Lower CI Upper CI 
Residual 0.17 0.02 9.05 <.001 0.13 0.21 
Intercept 0.13 0.03 4.35 <.001 0.08 0.20 

 
 
Estimates of Fixed Effects for Model with Proportion of Vocalizations with a Canonical Syllable 
as Predictor Variable  

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept 0.38 0.08 122.95 4.76 <.001 0.22 0.54 
Time  0.11 0.01 167.90 20.55 <.001 0.10 0.12 
Proportion of 

vocalizations with a 
canonical syllable  

0.38 0.05 86.20 7.26 <.001 0.28 0.48 

 
Covariance Parameters for Model with Proportion of Vocalizations with a Canonical Syllable as 
Predictor Variable 

Parameter Estimate SE Wald Z p Lower CI Upper CI 
Residual 0.16 0.02 9.10 <.001 0.13 0.20 
Intercept 0.18 0.04 4.90 <.001 0.12 0.26 

 
 
Estimates of Fixed Effects for Model with ACPU-C+V as Predictor Variable  

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept 0.19 0.10 103.79 1.93 .06 -0.01 0.40 
Time  0.11 0.01 163.23 20.20 <.001 0.10 0.12 
ACPU-C+V 0.27 0.10 86.50 2.71 <.01 0.07 0.46 

Note. ACPU-C+V = average count per utterance – consonants + vowels (Woynaroski et al., 
2017; Xu, Richards, & Gilkerson, 2014).  
 
Covariance Parameters for Model with ACPU-C+V as Predictor Variable 

Parameter Estimate SE Wald Z p Lower CI Upper CI 
Residual 0.16 0.02 8.98 <.001 0.13 0.20 
Intercept 0.29 0.05 5.43 <.001 0.20 0.42 

Note. ACPU-C+V = average count per utterance – consonants + vowels (Woynaroski et al., 
2017; Xu, Richards, & Gilkerson, 2014).  
 
 
Estimates of Fixed Effects for Model with Infraphonological Vocal Development Score as 
Predictor Variable  

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept 0.04 0.14 94.11 0.29 .77 -0.24 0.32 
Time  0.11 0.01 163.07 20.22 <.001 0.10 0.12 
Infraphonological 

vocal development 
score  

0.00 0.01 84.66 -0.32 .75 -0.02 0.01 
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Covariance Parameters for Model with Infraphonological Vocal Development Score as Predictor 
Variable 

Parameter Estimate SE Wald Z p Lower CI Upper CI 
Residual 0.16 0.02 8.98 <.001 0.13 0.20 
Intercept 0.32 0.06 5.51 <.001 0.22 0.46 

 
 
Estimates of Fixed Effects for Model with Reciprocal Vocal Contingency as Predictor Variable  

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept -0.51 0.21 90.93 -2.48 .02 -0.92 -0.10 
Time  0.11 0.01 162.83 20.19 <.001 0.10 0.12 
Reciprocal vocal 

contingency 
2.45 0.92 85.67 2.67 <.01 0.62 4.27 

 
Covariance Parameters for Model with Reciprocal Vocal Contingency as Predictor Variable 

Parameter Estimate SE Wald Z p Lower CI Upper CI 
Residual 0.16 0.02 8.97 <.001 0.13 0.20 
Intercept 0.29 0.05 5.41 <.001 0.20 0.42 
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Appendix C 
 

Growth Curve Model Results for Divergent Validity Analyses 
 
Estimates of Fixed Effects for Empty Model  

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept -0.67 0.07 86.66 -10.33 <.001 -0.80 -0.54 

 
Covariance Parameters for Empty Model  

Parameter Estimate SE Wald Z p Lower CI Upper CI 
Residual 0.58 0.06 9.04 <.001 0.47 0.73 
Intercept 0.16 0.06 2.72 <.01 0.08 0.33 

 
 
Estimates of Fixed Effects for Random Intercept Fixed Slope Model  

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept 0.04 0.07 124.17 0.51 .61 -0.10 0.17 
Time 0.11 0.00 165.19 25.38 <.001 0.11 0.12 

 
Covariance Parameters for Random Intercept Fixed Slope Model  

Parameter Estimate SE Wald Z p Lower CI Upper CI 
Residual 0.12 0.01 9.02 <.001 0.10 0.15 
Intercept 0.30 0.05 5.79 <.001 0.21 0.42 

 
 
Estimates of Fixed Effects for Random Intercept Random Slope Model  

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept 0.03 0.09 86.99 0.39 .70 -0.14 0.20 
Time 0.11 0.01 80.33 21.35 .00 0.10 0.12 

 
Covariance Parameters for Random Intercept Random Slope Model  

 
 
Estimates of Fixed Effects for Model with Total Vocalizations as Predictor Variable   

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept 0.11 0.09 106.72 1.23 .22 -0.07 0.30 
Time  0.11 0.01 79.20 21.33 <.001 0.10 0.12 
Total vocalizations  0.13 0.06 86.42 2.16 .03 0.01 0.25 

 
  

Parameter  Estimate SE Wald Z p Lower CI Upper CI 
Residual  0.07 0.01 6.29 <.001 0.05 0.10 
Intercept + Time  UN (1,1) 0.55 0.09 5.81 <.001 0.39 0.77 
 UN (2,1) 0.02 0.01 4.31 <.001 0.01 0.03 
 UN (2,2) 0.001 4.0x104 3.24 .001 7.1x104 0.002 
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Covariance Parameters for Model with Total Vocalizations as Predictor Variable   

 
 
Estimates of Fixed Effects for Model with Number of Child Speech-Related Vocalizations as 
Predictor Variable   

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept -0.10 0.13 125.25 -0.79 .43 -0.35 0.15 
Time  0.11 0.01 77.47 20.82 <.001 0.10 0.12 
Number of child 

speech-related 
vocalizations 

6.7x105  5.8x105  84.49 1.16 .25 -4.8x105 1.8x104  

 
Covariance Parameters for Model with Number of Child Speech-Related Vocalizations as 
Predictor Variable   

 
 
Estimates of Fixed Effects for Model with Number of Communication Acts that Include a 
Vocalization as Predictor Variable   

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept 0.06 0.12 122.27 0.55 .58 -0.17 0.29 
Time  0.11 0.01 79.30 21.33 <.001 0.10 0.12 
Number of 

communication 
acts that include 
vocalization  

0.06 0.11 86.09 0.54 .59 -0.16 0.28 

 
Covariance Parameters for Model with Number of Communication Acts that Include a 
Vocalization as Predictor Variable   

Parameter  Estimate SE Wald Z p Lower CI Upper CI 
Residual  0.07 0.01 6.25 <.001 0.05 0.10 
Intercept + Time  UN (1,1) 0.54 0.09 5.77 <.001 0.39 0.76 
 UN (2,1) 0.02 0.01 4.25 <.001 0.01 0.03 
 UN (2,2) 0.001 4.0x104 3.16 <.01 6.7x104 0.002 

 
 
  

Parameter  Estimate SE Wald Z p Lower CI Upper CI 
Residual  0.07 0.01 6.25 <.001 0.05 0.10 
Intercept + Time  UN (1,1) 0.51 0.09 5.66 <.001 0.36 0.72 
 UN (2,1) 0.02 0.01 4.17 <.001 0.01 0.03 
 UN (2,2) 0.001 4.0x104 3.16 <.01 6.7x104 0.002 

Parameter  Estimate SE Wald Z p Lower CI Upper CI 
Residual  0.07 0.01 6.17 <.001 0.05 0.10 
Intercept + Time  UN (1,1) 0.54 0.10 5.69 <.001 0.38 0.76 
 UN (2,1) 0.02 0.01 4.31 <.001 0.01 0.03 
 UN (2,2) 0.001 4.1x104 3.15 <.01 6.9x104 0.002 
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Estimates of Fixed Effects for Model with Proportion of Vocalizations that are Communicative as 
Predictor Variable  

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept -0.03 0.11 118.62 -0.26 .79 -0.24 0.19 
Time  0.11 0.01 79.22 21.32 <.001 0.10 0.12 
Proportion of 

vocalizations that 
are communicative 

-0.06 0.09 86.85 -0.75 .46 -0.23 0.11 

 
Covariance Parameters for Model with Proportion of Vocalizations that are Communicative as 
Predictor Variable  

 
 
Estimates of Fixed Effects for Model with Diversity of Key Consonants Used in Communication 
Acts as Predictor Variable  

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept 0.04 0.12 122.26 0.35 .73 -0.19 0.27 
Time  0.11 0.01 79.31 21.33 <.001 0.10 0.12 
DKCC   0.02 0.07 86.14 0.25 .81 -0.13 0.16 

Note. DKCC = diversity of key consonants used in communication acts (Wetherby, Watt, 
Morgan, & Shumway, 2007; Woynaroski et al., 2017).  
 
Covariance Parameters for Model with Diversity of Key Consonants Used in Communication 
Acts as Predictor Variable  

 
 
Estimates of Fixed Effects for Model with Proportion of Vocalizations with a Canonical Syllable 
as Predictor Variable  

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept -0.01 0.10 113.38 -0.15 .89 -0.21 0.18 
Time  0.11 0.01 79.27 21.32 <.001 0.10 0.12 
Proportion of 

vocalizations with a 
canonical syllable  

-0.04 0.05 86.14 -0.70 .49 -0.14 0.07 

 
  

Parameter  Estimate SE Wald Z p Lower CI Upper CI 
Residual  0.07 0.01 6.25 <.001 0.05 0.10 
Intercept + Time  UN (1,1) 0.55 0.10 5.77 <.001 0.39 0.77 
 UN (2,1) 0.02 0.01 4.26 <.001 0.01 0.03 
 UN (2,2) 0.001 4.0x104 3.17 <.01 6.7x104 0.002 

Parameter  Estimate SE Wald Z p Lower CI Upper CI 
Residual  0.07 0.01 6.25 <.001 0.05 0.10 
Intercept + Time  UN (1,1) 0.55 0.09 5.77 <.001 0.39 0.77 
 UN (2,1) 0.02 0.01 4.25 <.001 0.01 0.03 
 UN (2,2) 0.001 4.0x104 3.16 <.01 6.7x104 0.002 
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Covariance Parameters for Model with Proportion of Vocalizations with a Canonical Syllable as 
Predictor Variable 

 
 
Estimates of Fixed Effects for Model with ACPU-C+V as Predictor Variable  

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept -0.06 0.10 112.57 -0.61 .54 -0.27 0.14 
Time  0.11 0.01 77.33 20.81 <.001 0.10 0.12 
ACPU-C+V -0.10 0.08 84.85 -1.24 .22 -0.25 0.06 

Note. ACPU-C+V = average count per utterance – consonants + vowels (Woynaroski et al., 
2017; Xu, Richards, & Gilkerson, 2014).  
 
Covariance Parameters for Model with ACPU-C+V as Predictor Variable 

Note. ACPU-C+V = average count per utterance – consonants + vowels (Woynaroski et al., 
2017; Xu, Richards, & Gilkerson, 2014).  
 
Estimates of Fixed Effects for Model with Infraphonological Vocal Development Score as 
Predictor Variable  

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept -0.09 0.12 124.51 -0.69 .49 -0.33 0.16 
Time  0.11 0.01 77.41 20.82 <.001 0.10 0.12 
Infraphonological 

vocal development 
score  

0.01 0.01 84.53 1.04 .30 -0.01 0.02 

 
Covariance Parameters for Model with Infraphonological Vocal Development Score as Predictor 
Variable  

 
 
  

Parameter  Estimate SE Wald Z p Lower CI Upper CI 
Residual  0.07 0.01 6.25 <.001 0.05 0.10 
Intercept + Time  UN (1,1) 0.54 0.09 5.77 <.001 0.39 0.76 
 UN (2,1) 0.02 0.01 4.25 <.001 0.01 0.03 
 UN (2,2) 0.001 4.0x104 3.16 <.01 6.7x104 0.002 

Parameter  Estimate SE Wald Z p Lower CI Upper CI 
Residual  0.07 0.01 6.17 <.001 0.05 0.10 
Intercept + Time  UN (1,1) 0.53 0.09 5.65 <.001 0.37 0.75 
 UN (2,1) 0.02 0.01 4.27 <.001 0.01 0.03 
 UN (2,2) 0.001 4.0x104 3.15 <.01 6.9x104 0.002 

Parameter  Estimate SE Wald Z p Lower CI Upper CI 
Residual  0.07 0.01 6.17 <.001 0.05 0.10 
Intercept + Time  UN (1,1) 0.54 0.10 5.69 <.001 0.38 0.76 
 UN (2,1) 0.02 0.01 4.31 <.001 0.01 0.03 
 UN (2,2) 0.001 4.1x104 3.15 <.01 6.9x104 0.002 
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Estimates of Fixed Effects for Model with Reciprocal Vocal Contingency as Predictor Variable  
Parameter Estimate SE df t p Lower CI Upper CI 

Intercept -0.02 0.18 110.19 -0.11 .91 -0.37 0.33 
Time  0.11 0.01 77.42 20.81 <.001 0.10 0.12 
Reciprocal vocal 

contingency 
0.13 0.73 84.55 0.17 .86 -1.33 1.59 

 
Covariance Parameters for Model with Reciprocal Vocal Contingency as Predictor Variable 

 
  

Parameter  Estimate SE Wald Z p Lower CI Upper CI 
Residual  0.07 0.01 6.17 <.001 0.05 0.10 
Intercept + Time  UN (1,1) 0.54 0.10 5.68 <.001 0.39 0.77 
 UN (2,1) 0.02 0.01 4.29 <.001 0.01 0.03 
 UN (2,2) 0.001 4.1x104 3.15 <.01 6.9x104 0.002 
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Appendix D 
 

Growth Curve Model Results for Incremental Validity Analyses 
 
Research Question 4:  
 
Estimates of Fixed Effects for Model with Only Total Vocalizations   

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept 0.21 0.09 119.83 2.36 <.01 0.03 0.38 
Time  0.11 0.01 167.02 20.51 <.001 0.10 0.12 
Total vocalizations 0.26 0.07 88.57 3.74 <.001 0.12 0.40 

 
Covariance Parameters for Model with Only Total Vocalizations 

Parameter Estimate SE Wald Z p Lower CI Upper CI 
Residual 0.16 0.02 9.08 <.001 0.13 0.20 
Intercept 0.26 0.05 5.36 <.001 0.18 0.38 

 
 
Estimates of Fixed Effects for Model with Total Vocalizations and Communicative Use 

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept 0.69 0.08 117.88 8.26 <.001 0.53 0.86 
Time 0.11 0.01 168.65 20.59 <.001 0.10 0.12 
Total vocalizations -0.01 0.06 89.15 -0.25 .80 -0.13 0.10 
Communicative use 

composite  
0.91 0.10 85.43 9.29 <.001 0.72 1.11 

 
Covariance Parameters for Model with Total Vocalizations and Communicative Use 

Parameter Estimate SE Wald Z p Lower CI Upper CI 
Residual 0.16 0.02 9.11 <.001 0.13 0.20 
Intercept 0.10 0.03 4.14 <.001 0.06 0.17 

 
 
Estimates of Fixed Effects for Model with Total Vocalizations and Complexity  

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept 0.55 0.08 121.01 6.64 <.001 0.39 0.71 
Time 0.11 0.01 167.74 20.60 <.001 0.10 0.12 
Total vocalizations -0.11 0.07 87.00 -1.50 .14 -0.25 0.04 
Complexity 

composite  
0.60 0.08 84.71 7.74 <.001 0.44 0.75 

 
Covariance Parameters for Model with Total Vocalizations and Complexity 

Parameter Estimate SE Wald Z p Lower CI Upper CI 
Residual 0.16 0.02 9.09 <.001 0.13 0.20 
Intercept 0.13 0.03 4.49 <.001 0.09 0.20 
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Estimates of Fixed Effects for Model with Total Vocalizations and ACPU-C+V 
Parameter Estimate SE df t p Lower CI Upper CI 

Intercept 0.38 0.10 103.67 3.62 <.001 0.17 0.59 
Time 0.11 0.01 163.29 20.28 <.001 0.10 0.12 
Total vocalizations  0.27 0.07 87.07 3.93 <.001 0.13 0.40 
ACPU-C+V 0.24 0.09 86.67 2.69 <.01 0.06 0.42 

Note. ACPU-C+V = average count per utterance – consonants + vowels (Woynaroski et al., 
2017; Xu, Richards, & Gilkerson, 2014).  
 
Covariance Parameters for Model with Total Vocalizations and ACPU-C+V 

Parameter Estimate SE Wald Z p Lower CI Upper CI 
Residual 0.16 0.02 8.98 <.001 0.13 0.20 
Intercept 0.24 0.05 5.25 <.001 0.17 0.35 

Note. ACPU-C+V = average count per utterance – consonants + vowels (Woynaroski et al., 
2017; Xu, Richards, & Gilkerson, 2014).  
 
 
Estimates of Fixed Effects for Model with Total Vocalizations and Reciprocal Vocal Contingency  

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept -0.19 0.21 93.85 -0.87 .39 -0.61 0.24 
Time 0.11 0.01 162.96 20.27 <.001 0.10 0.12 
Total vocalizations 0.25 0.07 87.73 3.49 .001 0.11 0.39 
Reciprocal vocal 

contingency 
1.79 0.88 86.89 2.03 <.05 0.04 3.53 

 
Covariance Parameters for Model with Total Vocalizations and Reciprocal Vocal Contingency 

Parameter Estimate SE Wald Z p Lower CI Upper CI 
Residual 0.16 0.02 8.97 <.001 0.13 0.20 
Intercept 0.25 0.05 5.25 <.001 0.17 0.36 

 
 
Estimates of Fixed Effects for Model with Only Number of Child Speech-Related Vocalizations   

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept -0.47 0.13 95.74 -3.57 .001 -0.72 -0.21 
Time 0.11 0.01 163.29 20.23 <.001 0.10 0.12 
Number of child 

speech-related 
vocalizations  

2.9x104 6.8x105 83.89 4.25 <.001 1.5x104 4.3x104 

 
Covariance Parameters for Model with Only Number of Child Speech-Related Vocalizations 

Parameter Estimate SE Wald Z p Lower CI Upper CI 
Residual 0.16 0.02 8.98 <.001 0.13 0.20 
Intercept 0.25 0.05 5.29 <.001 0.18 0.37 
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Estimates of Fixed Effects for Model with Number of Child Speech-Related Vocalizations and 
Communicative Use 

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept 0.48 0.14 94.78 3.49 <.01 0.21 0.75 
Time 0.11 0.01 164.67 20.39 <.001 0.10 0.12 
Number of child 

speech-related 
vocalizations 

9.8x105 5.2x105 83.81 1.89 .06 -5.0x106 2.0x104 

Communicative use 
composite 

0.83 0.09 83.88 9.39 <.001 0.66 1.01 

 
Covariance Parameters for Model with Number of Child Speech-Related Vocalizations and 
Communicative Use 

Parameter Estimate SE Wald Z p Lower CI Upper CI 
Residual 0.16 0.02 8.99 <.001 0.13 0.20 
Intercept 0.10 0.02 3.99 <.001 0.06 0.16 

 
 
Estimates of Fixed Effects for Model with Number of Child Speech-Related Vocalizations and 
Complexity 

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept 0.35 0.15 94.78 2.30 .02 0.05 0.64 
Time 0.11 0.01 163.51 20.39 <.001 0.10 0.12 
Number of child 

speech-related 
vocalizations 

9.5x105 6.9x105 83.77 1.62 .11 -2.2x105 2.1x104 

Complexity composite 0.47 0.06 85.03 7.42 <.001 0.35 0.60 
 
Covariance Parameters for Model with Number of Child Speech-Related Vocalizations and 
Complexity 

Parameter Estimate SE Wald Z p Lower CI Upper CI 
Residual 0.16 0.02 8.97 <.001 0.13 0.20 
Intercept 0.13 0.03 4.44 <.001 0.08 0.20 

 
 
Estimates of Fixed Effects for Model with Number of Child Speech-Related Vocalizations and 
ACPU-C+V 

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept -0.29 0.16 92.12 -1.78 .08 -0.61 0.03 
Time 0.11 0.01 163.45 20.21 <.001 0.10 0.12 
Number of child 

speech-related 
vocalizations 

2.6x104 6.9x105 84.41 3.69 <.001 1.2x104 3.9x104 

ACPU-C+V 0.17 0.09 87.01 1.84 .07 -0.01 0.36 
Note. ACPU-C+V = average count per utterance – consonants + vowels (Woynaroski et al., 
2017; Xu, Richards, & Gilkerson, 2014).  
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Covariance Parameters for Model with Number of Child Speech-Related Vocalizations and 
ACPU-C+V 

Parameter Estimate SE Wald Z p Lower CI Upper CI 
Residual 0.16 0.02 8.98 <.001 0.13 0.20 
Intercept 0.24 0.05 5.25 <.001 0.17 0.35 

Note. ACPU-C+V = average count per utterance – consonants + vowels (Woynaroski et al., 
2017; Xu, Richards, & Gilkerson, 2014).  
 
 
Estimates of Fixed Effects for Model with Number of Child Speech-Related Vocalizations and 
Reciprocal Vocal Contingency  

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept -0.58 0.20 91.49 -2.97 <.01 -0.97 -0.19 
Time 0.11 0.01 163.13 20.21 <.001 0.10 0.12 
Number of child 

speech-related 
vocalizations 

2.6x104 7.9x105 83.46 3.29 <.01 1.0x104 4.1x104 

Reciprocal vocal 
contingency  

0.79 1.00 85.56 0.79 .43 -1.20 2.79 

 
Covariance Parameters for Model with Number of Child Speech-Related Vocalizations and 
Reciprocal Vocal Contingency 

Parameter Estimate SE Wald Z p Lower CI Upper CI 
Residual 0.16 0.02 8.97 <.001 0.13 0.20 
Intercept 0.25 0.05 5.27 <.001 0.17 0.36 

 
 
Research Question 5:  
 
Estimates of Fixed Effects for Model with Only Communicative Use Composite    

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept 0.69 0.08 117.42 8.29 <.001 0.53 0.86 
Time  0.11 0.01 168.65 20.60 <.001 0.10 0.12 
Communicative use 

composite 
0.90 0.08 85.60 10.71 <.001 0.73 1.07 

 
Covariance Parameters for Model with Only Communicative Use Composite    

Parameter Estimate SE Wald Z p Lower CI Upper CI 
Residual 0.16 0.02 9.10 <.001 0.13 0.20 
Intercept 0.10 0.03 4.14 <.001 0.06 0.17 
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Estimates of Fixed Effects for Model with Communicative Use Composite and Reciprocal Vocal 
Contingency  

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept 0.52 0.17 95.00 2.98 <.01 0.17 0.86 
Time 0.11 0.01 164.57 20.37 <.001 0.10 0.12 
Communicative use 

composite  
0.87 0.09 84.39 10.17 <.001 0.70 1.05 

Reciprocal vocal 
contingency  

0.72 0.64 87.15 1.12 .27 -0.56 1.99 

 
Covariance Parameters for Model with Communicative Use Composite and Reciprocal Vocal 
Contingency 

Parameter Estimate SE Wald Z p Lower CI Upper CI 
Residual 0.16 0.02 8.99 <.001 0.13 0.20 
Intercept 0.10 0.02 4.06 <.001 0.06 0.16 

 
 
Estimates of Fixed Effects for Model with Only Complexity Composite    

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept 0.55 0.08 119.88 6.60 <.001 0.39 0.72 
Time  0.11 0.01 167.41 20.60 <.001 0.10 0.12 
Complexity Composite 0.52 0.06 86.03 8.94 <.001 0.40 0.63 

 
Covariance Parameters for Model with Only Complexity Composite    

Parameter Estimate SE Wald Z p Lower CI Upper CI 
Residual 0.17 0.02 9.08 <.001 0.13 0.20 
Intercept 0.14 0.03 4.52 <.001 0.09 0.21 

 
 
Estimates of Fixed Effects for Model with Complexity Composite and Reciprocal Vocal 
Contingency  

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept 0.49 0.20 95.01 2.47 .02 0.10 0.88 
Time 0.11 0.01 163.29 20.39 <.001 0.10 0.12 
Complexity 

composite  
0.51 0.06 85.95 8.20 <.001 0.39 0.63 

Reciprocal vocal 
contingency  

0.24 0.74 87.37 0.33 .74 -1.22 1.71 

 
Covariance Parameters for Model with Complexity Composite and Reciprocal Vocal 
Contingency 

Parameter Estimate SE Wald Z p Lower CI Upper CI 
Residual 0.16 0.02 8.96 <.001 0.13 0.20 
Intercept 0.14 0.03 4.49 <.001 0.09 0.21 
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Estimates of Fixed Effects for Model with Only ACPU-C+V    
Parameter Estimate SE df t p Lower CI Upper CI 

Intercept 0.19 0.10 103.79 1.93 .06 -0.01 0.40 
Time  0.11 0.01 163.23 20.20 <.001 0.10 0.12 
ACPU-C+V 0.27 0.10 86.50 2.71 .01 0.07 0.46 

Note. ACPU-C+V = average count per utterance – consonants + vowels (Woynaroski et al., 
2017; Xu, Richards, & Gilkerson, 2014).  
 
Covariance Parameters for Model with Only ACPU-C+V    

Parameter Estimate SE Wald Z p Lower CI Upper CI 
Residual 0.16 0.02 8.98 <.001 0.13 0.20 
Intercept 0.29 0.05 5.43 <.001 0.20 0.42 

Note. ACPU-C+V = average count per utterance – consonants + vowels (Woynaroski et al., 
2017; Xu, Richards, & Gilkerson, 2014).  
 
 
Estimates of Fixed Effects for Model with ACPU-C+V and Reciprocal Vocal Contingency  

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept -0.25 0.24 90.86 -1.06 .29 -0.72 0.22 
Time 0.11 0.01 163.09 20.17 <.001 0.10 0.12 
ACPU-C+V  0.21 0.10 87.06 2.13 .04 0.01 0.41 
Reciprocal vocal 

contingency  
1.93 0.93 86.64 2.08 .04 0.08 3.77 

Note. ACPU-C+V = average count per utterance – consonants + vowels (Woynaroski et al., 
2017; Xu, Richards, & Gilkerson, 2014).  
 
Covariance Parameters for Model with Complexity Composite and Reciprocal Vocal 
Contingency 

Parameter Estimate SE Wald Z p Lower CI Upper CI 
Residual 0.16 0.02 8.98 <.001 0.13 0.20 
Intercept 0.27 0.05 5.36 <.001 0.19 0.39 

 
 
Research Question 6:  
 
Estimates of Fixed Effects for Model with Total Vocalizations and Number of Child Speech-
Related Vocalizations  

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept -0.20 0.16 96.04 -1.27 .21 -0.52 0.11 
Time 0.11 0.01 163.29 20.29  <.001 0.10 0.12 
Total vocalizations 0.19 0.07 88.21 2.66 <.01 0.05 0.34 
Number of child 

speech-related 
vocalizations 

2.2x104 7.1x105 85.11 3.07 <.01 7.7x105 3.6x104 
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Covariance Parameters for Model with Total Vocalizations and Number of Child Speech-
Related Vocalizations 

Parameter Estimate SE Wald Z p Lower CI Upper CI 
Residual 0.16 0.02 8.98 <.001 0.13 0.20 
Intercept 0.23 0.04 5.18 <.001 0.16 0.34 

 
 
Estimates of Fixed Effects for Model with Complexity Composite and ACPU-C+V 

Parameter Estimate SE df t p Lower CI Upper CI 
Intercept 0.58 0.09 109.20 6.38 <.001 0.40 0.76 
Time 0.11 0.01 163.49 20.38 <.001 0.10 0.12 
Complexity 

composite  
0.50 0.06 85.33 8.26 <.001 0.38 0.62 

ACPU-C+V 0.07 0.08 87.23 0.88 .38 -0.09 0.22 
Note. ACPU-C+V = average count per utterance – consonants + vowels (Woynaroski et al., 
2017; Xu, Richards, & Gilkerson, 2014).  
 
Covariance Parameters for Model with Complexity Composite and ACPU-C+V  

Parameter Estimate SE Wald Z p Lower CI Upper CI 
Residual 0.16 0.02 8.97 <.001 0.13 0.20 
Intercept 0.13 0.03 4.49 <.001 0.09 0.21 
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