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CHAPTER I

INTRODUCTION

Among the algorithmic properties most investigated by algebraists is the problem of when a

given computably axiomatizable class K of first-order structures will have computable first-order

theory too. This problem was investigated for varieties of groups and rings beginning in the 1950s,

with signal contributions from Tarski and his students in the USA ([TMR53], [Szm55]) and from

the Russian school of Luzin, Ershov et al. ([Mal65], [Ers72], [Zam76], [Zam78]).

For many but not all interesting classes K, it was shown that not only is Th (K) undecidable,

but Th (Kfin) will frequently be so as well, where Kfin denotes the class of all finite structures in K.

We will say that K is (finitely) decidable if Th (K) (resp. Th (Kfin)) is a computable set of sentences.

For example, any variety of groups has decidable theory iff it contains only abelian groups (as

is showed in [Szm55] and [Zam78]). Szmielew actually showed more: the theory of abelian groups

has effective ∆-elimination for a nice class ∆ of definable properties, most of which are trivial in

the case of finite groups; one can use this to show without too much difficulty that every prevariety

of finite abelian groups has decidable theory. (For an exposition of this in modern notation, consult

[EF72].) Together with the famous construction by Olshanskii of a variety of groups whose smallest

nonabelian member is infinite ([Ols91]), shows that a variety can be undecidable and simultaneously

finitely-decidable. (Zamyatin had given an earlier example of this for varieties of rings in [Zam76].)

Kharlampovich and Sapir give a detailed survey of decidability and other algorithmic properties in

varieties (mostly associative and Lie varieties) in [KS95].

We restrict our attention in this paper to varieties of abstract algebras in a finite language. The

natural questions here are: given a computably axiomatizable variety V (in particular, a variety

of the form HSP (A) for some finite algebra A), is Th (V) (resp. Th (Vfin)) a computable set

of sentences? One immediately sees that Th (V) is computably enumerable, so the decidability

problem for V is equivalent to the computable enumerability of the set of sentences refutable in

some member of V; on the other hand, it is also clear that the set of sentences refuted in some

finite member of V is computably enumerable, while the set of sentences true in all these algebras

may not be.

In [MV89], McKenzie and Valeriote showed that locally-finite decidable varieties have a very

restricted structure theory. Such a variety must decompose as the varietal product of a discriminator

variety, a variety of modules, and a strongly-abelian variety. In particular,

Corollary I.1. If V is a locally-finite variety with decidable first-order theory, then every strongly-

solvable congruence of an algebra in V is strongly-abelian.

While the analogues betwen the decidability problem and the finite decidability problem are

strong, not all the necessary conditions for decidability transfer down; Corollary I.1 does, however,

as we will show in this paper (Theorem B).
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One of the properties that does not continue to hold is the direct decomposition theorem. In

[Idz97], P. Idziak gave a characterization of finitely-decidable locally-finite varieties with modular

congruence lattices; this characterization essentially gives a recipe for building a variety with no

possible direct decomposition into discriminator and affine varietal factors. One goal of Chapter

VI is to suggest a potential reformulation of the direct product criterion to make it work in the

finitely-decidable setting.

I–A. Results and outline of arguments

Our overall goal in this paper is to generalize as many properties as possible from the theory

of congruence-modular locally-finite finitely-decidable varieties to the non-modular setting. (See

Chapter II for definitions and notations.) The following are our main results:

Theorem A. Let S be a finite, subdirectly-irreducible algebra belonging to a finitely-decidable,

locally-finite variety. Then the strongly-solvable radical Radu(S) is comparable to every congruence

on S, and is either >S or meet-irreducible with boolean-type upper cover.

Theorem B. If A is a finite algebra in a locally-finite, finitely-decidable variety, then every

strongly-solvable congruence of A is strongly-abelian.

Theorem C. If V is a finitely-generated, finitely-decidable variety, then V has a finite residual

bound. In particular, every algebra in V is residually finite.

Theorem D. Let A be an algebra in a finitely-decidable variety. Let σ > ⊥A be the strongly-

solvable radical of A, and let

ť : C1 × C2 × · · · × C` → C0

be a σ-sorted term operation of A. Then the essential arity of ť is no greater than the maximal

arity of a σ-sorted decomposition term on C0.

(See Definition II.14 for the meaning of σ-sorted map.)

The plan of attack is as follows: We prove Theorem A in Chapter III. Then in Chapter

IV, we employ three semantic interpretation constructions of increasing length and complexity to

prove Theorem B. (This chapter makes the most difficult reading of the dissertation.) Chapter

V culminates in the proof of Theorem C, in which I employ some old methods from the study of

congruence-modular varieties and correct a mistake in a paper of McKenzie and Snow.

After this, we veer off into the territory of multi-sorted structures: Chapter VI defines two

constructions which take an ordinary single-sorted algebra, especially one which looks like a good

candidate for generating a finitely-decidable variety, and return a multi-sorted algebra which better

controls the propagation of nonabelian behavior in the variety this algebra generates. Lastly,

in Chapter VII, we use the more complicated of these constructions to generalize a theorem of

Valeriote. The original theorem provided an obstruction to finite decidability for strongly-abelian

varieties based on bounding the arities of term operations; the use of multi-sorted structures allows
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us to remove the hypothesis of strong abelianness (at the cost of making the statement of the

theorem more opaque).
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CHAPTER II

DEFINITIONS AND LOGICAL PRELIMINARIES

All numbered environments, such as theorems, definitions, etc will be numbered in a single

sequence within their respective chapters. The end of a proof will be marked with a box as usual;

the end of a claim will be marked with a numbered turnstile.

II–A. Algebraic basics

Throughout the paper, an algebra will be a structure in a first-order language with only operation

(and constant) symbols. We denote algebras in bold face A, and their underlying sets in lightface

A. ⊥A and >A denote respectively the discrete and total equivalence relations on A, which are

congruences of every algebraic structure on A.

As usual, a congruence of an algebra A is an equivalence relation preserved by all basic op-

erations of A. The lattice of congruences of A will be denoted Con(A). If Con(A) has a least

nontrivial congruence µ, we call A subdirectly-irreducible and µ its monolith. More generally, min-

imal nontrivial congruences are called atoms.

A polynomial operation is a function

x1, . . . , xk 7→ tA(x1, . . . , xk, ak+1, . . . , an)

for some L-term t and some elements ai ∈ A. The set of all polynomial operations of k or fewer

variables is denoted Polk(A). Unless otherwise specified, all first-order languages in this paper

have only finitely many basic symbols, all of which are operations (or constants). (An important

exception to this rule is the non-indexed algebras described on page 9.)

A class V of algebras is said to be residually κ if for each A ∈ V and each a 6= b ∈ A there exists

a homomorphism from A onto a some algebra B with |B| < κ, separating a from b. “Residually

ω” is usually called “residually finite”. A residual bound for V is any cardinal κ such that V is

residually κ. If every finitely generated A ∈ V is finite, we say V is locally-finite.

II–B. First-order properties and theories

If A a structure in the first-order language L, the theory Th (A) of A is the set of all L-sentences

true in A. If K is a class of L-structures, Th (K) is the set of all sentences true in all members of

K. We write Kfin for the class of all finite members of K and Thfin(K) for Th (Kfin).

A class K of L-algebras is a variety if it is axiomatized by some set of equations, that is, sentences

of the form

∀~v t1(~v) = t2(~v)

for some terms of the language. Equivalently, and more usefully for us, K is a variety iff it is closed
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under taking direct products, subalgebras, and surjective homomorphic images. (Cf [MMT87],

[BS81].) For a given algebra A (resp. class K of algebras) we denote the smallest variety containing

it by HSP (A) (resp. HSP (K)). A basic theorem originally due to Birkhoff asserts that if V is a

variety and κ any cardinal, then V contains a free algebra on κ generators. If κ < ω, elements of

this algebra are in canonical bijection (up to Th (V)-equivalence) with L-terms in κ variables.

II–C. The decidability and finite decidability problems

For a given finite structure A, it is a trivial matter to determine whether a given first-order sentence

holds in A; the same is not true for the problem of determining whether that same sentence holds

throughout some variety containing A, such as HSP (A).

Fact II.1. Let A be any finite algebra, V = HSP (A).

1 V is locally-finite and computably axiomatizable; it follows that Th (V) is computably enu-

merable. We will say that V is decidable if this set of sentences is computable.

2 The complement of Thfin(V), the set of all sentences falsified in some finite member of V,

is computably enumerable. We will say that V is finitely-decidable if this set of sentences is

computable.

There do exist finite algebras A such that HSP (A) is undecidable and/or finitely undecidable.

For example, by [Zam78], any non-abelian finite group generates an undecidable variety; for many

other instances of undecidable and/or finitely undecidable varieties, see [Mal65], [Ers72], [Zam76],

[Idz86], [MV89], [II88], [Idz89a], [Idz89b], and [Jeo99].

As the alert reader has seen in Fact II.1, there is a fundamental asymmetry between decidability

and finite decidability, as in the one case it is the set of provable sentences which is easily shown to

be enumerable, while in the other it is the refutable sentences. This asymmetry is not just apparent:

the two properties are in fact completely independent. Specific examples of the four possibilities

are given in [Szm55], [II88], [Ols91], and [Jeo99].

The principal tool this investigation will employ in establishing undecidability is the method of

interpretation. The reader is referred to standard texts [Hod93, Chapter 5], [BS81, Section V.5],

for full details; our conventions will be as follows:

Definition II.2. Let L0 be a single- or multi-sorted first-order language, with sort symbols

s1, . . . , s`, function symbols fi(v1, . . . , var(fi)), and predicate symbols ri(v1, . . . , var(Ri)). An in-

terpretation of the structure

M = 〈sM1 , . . . , sM` ; fMi , . . . , rMi , . . .〉

into the structure N (of a possibly different language L1) will mean a family of definable subsets

of N which jointly produce an isomorphic copy of M. (We allow finitely many parameters from N

in the definitions.) More precisely, the interpretation consists of L1-formulas
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� WHOi(v) for each sort symbol si;

� EQ(v1, v2)

� Fi(v0, v1, . . . , varfi) for each fi;

� Ri(v1, . . . , var(ri)) for each ri;

such that

� the extensions of the WHOi in N are nonempty and disjoint;

� EQ(x, y) holds only if WHOi(x) ∧WHOi(y) holds for some 1 ≤ i ≤ m, and on each WHOi,

the formula defines an equivalence relation ≈;

� for all function symbols f with type signature

f(si1 , . . . , siar(f))→ si0 ,

corresponding to the formula F (v0, . . . , var(f)),

– if N |= F (x0, x1, . . . , xar(f)) then WHOi0(x0), . . . ,WHOiar(f)(xar(f));

– for all x1 ∈ WHOi1(N), . . . , xar(f) ∈ WHOiar(f)(N) there exist elements x′1 ≈ x1, . . .,

x′ar(f) ≈ xar(f) and x0 so that N |= F (x0, x
′
1, . . . , x

′
ar(f)); and

– if

N |= F (x0, x1, . . . , xar(f))

N |= F (y0, y1, . . . , yar(f))

and

x1 ≈ y1, . . . , xar(f) ≈ yar(f)

then x0 ≈ y0,

inducing an operation WHO(f) on the indicated ≈-classes;

� for all predicate symbols r with type signature

r(si1 , . . . , siar(r))

corresponding to the formula R(v1, . . . , var(r)),

N |= R(x1, . . . , xar(r))

only if

N |= WHOi1(x1) ∧ · · · ∧WHOiar(r)(xar(r))

6



inducing the quotient predicate

WHO(r)(x1/ ≈, . . . , xar(r)/ ≈) ⇐⇒ ∃x′1 ≈ x1, . . . , x
′
ar(r) ≈ xar(r) R(x′1, . . . , x

′
ar(r))

on ≈-classes;

�

〈
sM1 , . . . , sM` ; fMi , . . . , rMi , . . .

〉 ∼= 〈WHOi/ ≈, . . . ,WHO`/ ≈; WHO(fi), . . . ,WHO(ri), . . .〉

Frequently the equivalence relation EQ will be true equality, in which case we will not mention

it explicitly.

Observe that if an undecidable class Gfin of finite structures interprets into Kfin as above, then

not only K but every class K′ ⊃ K of structures in the language is finitely undecidable as well: we

say that K is hereditarily finitely undecidable.

The classes we will be interpreting will be the class of graphs and the class E2, defined below.

For this investigation, a graph is a first-order structure G = 〈V ;E〉, where EG is a symmetric,

irreflexive binary relation. We will not enforce the distinction between an ordered edge 〈x, y〉 and

an unordered edge {x, y} for symmetric graphs. (It follows from our definition that graphs in our

sense do not possess multiple edges between a single pair of vertices.) It was shown by Ershov and

Rabin in the 1960s that graphs are both undecidable and finitely undecidable.

E2 is the class of structures E = 〈I;R0, R1〉 where each Ri is a binary predicate symbol whose

interpretation in the structure is an equivalence relation on I, such that RE
0 ∩ RE

1 = ⊥I . We will

sometimes refer to Th (E2) as the theory of two disjoint equivalence relations. [BS81, Corollary

5.16] shows that the theory of this class is undecidable and finitely undecidable.

(In fact, it can be shown that for each of the above classes, Th (K) is computably inseparable

from the set of sentences finitely refutable in K; but we will not need this stronger property.)

II–D. Abelian algebras, solvability, and TCT

Modern investigations in universal algebra are greatly aided by the linked toolboxes of the theory

of solvable and strongly-solvable algebras and congruences (see for example [FM87]) and the “tame

congruence theory” developed by McKenzie and Hobby in [HM88].

Let A be any algebra, and α, β, γ be congruences (or more generally, any binary relations) on

A. A is said to satisfy the term condition C(α, β; γ) if the implication

t(~a1,~b1) ≡γ t(~a1,~b2)

⇓

t(~a2,~b1) ≡γ t(~a2,~b2)
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is valid for all terms t and all tuples ~a1 ≡α ~a2 and ~b1 ≡β ~b2. If R,S ⊂ A, then we will write

C(R,S; γ) when we mean C(R2, S2; γ). If γ ≤ β ∈ Con(A) and C(β, β; γ), then we say that β is

abelian over γ. If C(β, β;⊥A) then we say that β is an abelian congruence. If C(>A,>A;⊥A) then

we say that A is an abelian algebra.

We can always transform a failure

t(~a1,~b1) = t(~a1,~b2)

but

t(~a2,~b1) 6= t(~a2,~b2)

of C(α, β; γ) into one

s(a′1,
~b′1) = s(a′1,

~b′2)

but (II.2.1)

s(a′2,
~b′1) 6= s(a′2,

~b′2)

where α-shifting occurs in only one variable. The same is not true in general for the β-shifted

variables; however, this is possible in the special case where all the elements in ~b1,~b2 are taken

from some U ⊂ A such that every operation on U is realized by a polynomial of A. We leave the

verification of this to the reader.

Another asymmetry between the roles played by the first two variables of the term condition has

to do with congruence generation. If R is a binary relation on A, then C(R, β; γ) holds iff C(ρ, β; γ)

does, where ρ is the least congruence of A identifying all the pairs in R ∪ γ. By comparison,

C(α,R; γ) holds iff C(α,S; γ), where S is the reflexive, symmetric subalgebra of A2 generated by

R.

If γ ≤ β ∈ Con(A), we say that β satisfies the strong term condition over γ, or that β is

strongly-abelian over γ, if for all terms t and tuples ~a1 ≡β ~a2, ~b1 ≡β ~b2 ≡β ~b3,

t(~a1,~b1) ≡γ t(~a2,~b2)

⇓

t(~a1,~b3) ≡γ t(~a2,~b3)

If C(β, β; γ), this condition is equivalent to the apparently weaker condition

~a1 ≡β ~a2 &~b1 ≡β ~b2 & t(~a1,~b1) ≡γ t(~a2,~b2) ⇒ ∀i, j t(~a1,~b1) ≡γ t(~ai,~bj)

which is easier to use.

If A is a locally-finite algebra and α− < α+ ∈ Con(A), we say that α+ is (strongly) solvable
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over α− if every chain of congruences

α− = β0 < β1 < · · · < βm−1 < βm = α+

admits a refinement

α− = γ0 < γ1 < · · · < γn−1 < γn = α+

such that each γi+1 is (strongly) abelian over γi.

Let A be an algebra. For any subset W ⊂ A, the non-indexed algebra A|W induced by A on

W is defined to have underlying set W , and a basic operation f(v1, . . . , tk) for each polynomial

f ∈ Polk(A) such that f(W k) ⊂ W . We do not usually wish to specify any more parsimonious

signature for an induced algebra; even if the signature of A was finite, A|W is not in general

representable as a first-order structure in any finite language.

If A is a finite algebra and and α ≺ β in Con(A) (that is, β is an upper cover of α in the

order-theoretic sense), an (α, β)-minimal set U ⊂ A is an inclusion-minimal polynomial image

e(A) of the algebra, where e ∈ Pol1(A) is required to be idempotent (e ◦ e = e) and to preserve

the α-inequivalence of some pair 〈a, b〉 ∈ β \ α. Clearly, every (α, β) minimal set has at least two

elements. If U is (α, β)-minimal, a β|U -class which properly contains two or more α|U -classes is

called a trace. The union of the traces included in U is called the body of U ; the remainder is called

the tail.

Theorem II.3 (Fundamental Theorem of Tame Congruence Theory, [HM88, Theorem 2.8, Theo-

rem 4.7, Lemma 4.8]). Let A be a finite algebra with congruences α ≺ β.

(1) All (α, β)-minimal sets U1, U2 are polynomially isomorphic, in the sense that there exists

f ∈ Pol1(A) which maps U1 bijectively to U2 in such a way that every induced operation

t2 ∈ U
Uk2
2

in the signature of A|U2
is the f -image of an operation

t1 ∈ U
Uk1
1

in the signature of A|U1
.

(2) Let N ⊂ U be any trace in an (α, β)-minimal set. If A|N/α|N is isomorphic to the two-

element boolean algebra, the two-element lattice, or the two-element semilattice, then we say

that the covering is of (respectively) boolean type (α
3
≺ β), lattice type (α

4
≺ β), or semilattice

type (α
5
≺ β). (This is well-defined by (1).)

(3) If none of these possibilities occur, then A|N/α|N is an abelian algebra, and is either isomor-

phic to a finite module over some ring, in which case the cover is of affine type (α
2
≺ β); or
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isomorphic to a finite G-set for some finite group G (unary type, α
1
≺ β). In the former case,

β is abelian over α but not strongly-abelian; in the latter, β is strongly-abelian over α.

We will write typ {A} ⊂ {1, 2, 3, 4, 5} for the set of tame congruence types which appear in

Con(A).

Let i 6= j be tame congruence types. We will say that the algebra A satisfies the (i, j)-transfer

principle if, for all covering chains

α1
i
≺ α2

j
≺ α3

there exists

α1

j
≺ βj ≤ α3

and likewise

α1 ≤ βi
i
≺ α3

Fact II.4. Let V be a finitely-decidable variety.

(1) V omits the lattice and semilattice tame congruence types.

(2) The (1,2), (2,1), (3,1), and (3,2) transfer principles hold throughout V; in particular,

(3) If S ∈ V is a finite subdirectly-irreducible algebra with boolean-type monolith, then typ {S} =

{3}. If the monolith is affine, then typ {S} ⊂ {2, 3}, and if the monolith is unary, then

typ {S} ⊂ {1, 3}.

(4) If A ∈ V and α
2,3
≺ β, then all (α, β)-minimal sets have no tail. In the boolean case, this

means that each minimal set contains just two elements, and every possible operation from

this set to itself is realized by a polynomial of the algebra.

Proof. (1) is proved in [HM88, Theorem 11.1]; it is a consequence of the fact that (finite) graphs

interpret semantically into each of

HSP (〈{0, 1};∧〉)

and

HSP (〈{0, 1};∧,∨〉)

(2) is proved in [VW92] and [Val94]; (3) follows immediately. (4) is also proved in [VW92].

It follows by [HM88, Theorem 8.5] that any locally-finite, finitely-decidable variety omitting the

unary type is congruence-modular.

The following fact will be of use later in the paper:

Theorem II.5 ([HM88, Chapter 7]). Let A be any finite algebra.

(1) Each of the relations

α
ss∼ β ⇐⇒ α is connected to β via covers of type 1

10



and

α
s∼ β ⇐⇒ α is connected to β via covers of types 1 and 2

is a lattice congruence of Con(A).

(2) If α ≤ β and γ ∈ Con(A) is any other congruence, and if the interval from α to β contains

only covers of type 1, then the same is true for each of the intervals γ∧α ≤ γ∧β, γ∨α ≤ γ∨β.

It follows that for every finite algebra A, the sets of congruences
ss∼-equivalent (resp.

s∼-

equivalent) to ⊥A have largest elements, which we call the strongly-solvable radical Radu(A) and

solvable radical Rad(A) of A.

II–E. Powers and subpowers

If A is an algebra and I is an index set, the direct power AI has its expected meaning. Elements

of this power will be denoted in one of two ways:

x = 〈xi〉i∈I
x = a|I0 ⊕ b|I1 ⊕ c|else

where I0 and I1 (and any other sets which appear) are of course understood to be disjoint subsets

of I.

A subalgebra

B ≤ AI

is a subpower of A. A subpower is subdirect if, for each i ∈ I and each a ∈ A there is some x ∈ B
with xi = a, and diagonal if, for each a ∈ A, the point a = a|I belongs to B.

If B ≤ AI , then every congruence of AI restricts to a congruence of B; when no confusion can

result, we will let it be clear from context whether we are referring to α ∈ Con(AI) or α ∈ Con(B).

We allow the same abuse of language for other subsets of B.

If A is an algebra, U ⊂ A, and B ≤ AI , we will frequently be interested in subsets of the form

U I ∩B. If the meaning is clear from context, we will usually abbreviate this to U I .

Proposition II.6. Let A be any algebra, and let e ∈ Pol1(A) be idempotent (that is, e ◦ e = e).

Then if U = e(A), and if B ≤ AI is any diagonal subpower of A, then U I ∩ B is an A-definable

subset of B.

Proof. Since B contains the diagonal, the function e = eI is realized as a polynomial of B. U I ∩B
is the set of fixed points of this polynomial.

Indeed, for any such diagonal subpower and for each k, the map

Polk(A) ↪→ Polk(B)

f(v1, . . . , fk) = t(v1, . . . , vk, a1, . . . , a`) 7→ t(v1, . . . , vk,a1, . . . ,a`) = f I

11



is an embedding (of clones), which we will make continual use of.

Lemma II.7. Let Ai, 1 ≤ i ≤ p be finite algebras with trivial strongly-solvable radical. Then every

B ≤s
∏
i

Ai

has trivial strongly-solvable radical.

Proof. We show the contrapositive: suppose that ⊥B
1
≺ α is an atom of Con(B). Then there is

some projection congruence ηj such that α∨ ηj > ηj . By Theorem II.5, since ⊥B
ss∼ α, ηj

ss∼ α∨ ηj ;
it follows that the strongly-solvable radical of Aj sits above α ∨ ηj .

If A1, . . . ,Ap,B are as in the previous Lemma, and all belong to some finitely-decidable variety,

then we can conclude (via the transfer principles) that in fact B has no unary-type covers anywhere

in its congruence lattice. This remains true if we introduce finitely many constant symbols in such

a way that each element of each Ai is named by at least one constant symbol; call these expansions

〈Ai;Ai〉. Lemma II.7 implies that HSP ({〈Ai;Ai〉}pi=1) is modular (since all minimal sets will have

empty tails), and so has Day (or Gumm) terms.

In particular, if we are considering a fixed finite B ≤s
∏
i Ai, we may introduce constant symbols

for each element of B and interpret them in the Ai via their coordinate projections. Then 〈B;B〉
has Day terms, which become Day polynomials when we reduct back out to the original language.

It follows that all the nice properties of congruence-modular varieties, such as most of the theory

of commutators, hold for B.

It is an open problem whether the finite decidability of

HSP (A1, . . . ,Ap)

implies the finite decidability of

HSP (〈A1;A1〉, . . . , 〈Ap;Ap〉)

The best we can say is that the latter variety must be ω-structured, in the sense of [MV89].

II–F. Multi-sorted structures

In the latter portion of the paper, we will begin to deal with multi-sorted algebras. The following

definitions will be of use there:

Definition II.8. Let

X1 ×X2 × · · · ×Xn
f→ Y

be a function. We say that f depends essentially on its ith variable if there exist a 6= a′ ∈ Xi and
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bj ∈ Xj (j 6= i) so that

f(b1, b2, . . . , bi−1, a, bi+1, . . . , bn) 6= f(b1, b2, . . . , bi−1, a
′, bi+1, . . . , bn)

(Clearly, if f depends on its ith variable, it follows that |Xi| > 1.)

In particular, if f is a term of the (ordinary first-order) algebra A, unless otherwise specified

each Xi is A; if M is a multi-sorted algebra, the default assumption is that each Xi is the entire

sort associated to the corresponding input variable of f .

Definition II.9. Let A be a finite set. We say that the operation d(v1, . . . , vK) is a decomposition

operation on A if

� d(A, . . . , A) ⊆ A;

� the action of d on A depends on all its variables;

� d(x, . . . , x) = x for all x ∈ A; and

�

d(d(x1,1, . . . , x1,K), d(x2,1, . . . , x2,K), . . . , d(xK,1, . . . , xK,K))

= (II.9.1)

d(x1,1, x2,2, . . . , xK,K)

for all xi,j ∈ A.

Typically, we will have in mind an algebraic structure on A or perhaps on some superset of A.

If the operation d is a term operation (resp. polynomial operation) of the structure A, we will call

it a decomposition term (resp. decomposition polynomial).

Proposition II.10 ([MV89, Lemma 11.3]). If A is a strongly-abelian algebra having an idempotent

term t(v1, . . . , vK) depending essentially on all its variables, then A has a decomposition term of

arity K.

It follows that in such an algebra, if t is a term which depends on all its variables and such that

t(x, x, . . . , x) is a permutation, then there is a decomposition term of the same arity as t.

Decomposition operators have a nice description in the case where A is strongly-abelian:

Proposition II.11 ([MV89, Lemma 11.4]). If A is a finite strongly-abelian algebra and K the

largest arity of a decomposition term d on A, then there exist finite sets A1, . . . , AK and an iso-

morphism ϕ from A to a structure B with underlying set A1 × · · · ×AK such that, if we denote

ϕ(a) =

a1

...

aK
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then

dB(ϕ(a1), ϕ(a2), . . . , ϕ(aK)) = ϕ

dA

a1

1 a1
2 · · · a1

K

a2
1 a2

2 · · · a1
K

...
...

. . .
...

aK1 aK2 · · · aKK


 =

a1
1

a2
2
...

aKK

In [MV89, Theorem 11.9], McKenzie and Valeriote showed that

Theorem II.12. If A is strongly-abelian and K the largest arity of a decomposition term over A,

then any other term’s depending on more than K variables implies that Th (V) and Thfin(V) are

undecidable for any variety V containing A.

Our goal is to generalize this result to algebras A which are not themselves strongly-abelian,

but do contain nontrivial strongly-abelian congruences.

Proposition II.13. Let A be a finite algebra with a strongly-abelian congruence τ . Let C ⊂ A be

any τ -class; then the non-indexed algebra

A|C = 〈C; {f|C : f ∈ Pol(A), f(C,C, . . . , C) ⊆ C}〉

is strongly-abelian.

It would be natural to search for a generalization of Theorem II.12 by looking at polynomials

which restrict to decomposition operations on τ -classes; however, we found this approach to have

attendant difficulties. Instead, we make the following definition:

Definition II.14. Let A be an algebra with a congruence α, let t(v1, . . . , v`, v`+1, . . . , v`+m) be a

term, and let C0, C1, . . . , C`+m be α-blocks such that t(C1, . . . , C`+m) ⊆ C0 and the action of t on

the rectangle C1× · · · ×C`+m depends only on some subset of the first ` variables. We will call the

restriction of t to the rectangle C1× · · · ×C` an “α-sorted term operation”, and use a symbol ť for

such a restricted operation. (Formally, we should specify what subset of the variables of t we are

selecting as the domain of ť, but this will be clear from context.)

In the course of proving Theorem D, we will need the following definitions:

Definition II.15. Let A be any algebra.

(1) We say that a term t(v1, . . . , vn) is left-invertible at vi if there exists a term r(v0, vn+1, . . . , vn+k)

such that

A |= vi = r(t(v1, . . . , vn), vn+1, . . . , vk)

(2) Likewise we call t(v1, . . . , vn) right-invertible if there exist terms si(v0, . . . , v`), 1 ≤ i ≤ n,

such that

A |= t(s1(v0, . . . , v`), . . . , sn(v0, . . . , v`)) = v0

14



CHAPTER III

CONGRUENCE GEOMETRY OF THE STRONGLY-SOLVABLE RADICAL

Our goal in this section will be the proof of Theorem A.

III–A. Coherence

Before we get directly to matters of decidability, we will need some preliminary technical material

of general algebraic interest.

Lemma III.1. Let S be a subdirectly-irreducible algebra in a finitely-decidable variety with unary-

type monolith µ. Then the centralizer of µ, the greatest congruence ζ such that C(ζ, µ;⊥), is

strongly-solvable.

Proof. This is proved in [IV01, Theorem 4].

Lemma III.2. Let A be a finite algebra with ⊥A
1
≺ δ, and let U be (⊥, δ)-minimal.

(1) If D1, . . . , Dk are δ-classes, then every mapping

f : D1 × · · · ×Dk → U

(where f ∈ Polk(A)) depends on no more than one of its variables.

(2) (Maroti’s Lemma) If δ ≤ β in Con(A) and C(β, δ|U ;⊥), and B1, . . . , Bk are β-classes, then

for every mapping

f : B1 ×B2 × · · · ×Bk → U

(where f ∈ Polk(A)) there exists 1 ≤ j ≤ k so that

~x ≡δ ~y and xj = yj ⇒ f(~x) = f(~y)

Proof. The second statement is Lemma 7.2 of [IMV09]; the first statement is a special case of the

second (or can be proved independently, as in [HM88, Theorem 5.6]).

Definition III.3 ([Kea93, Definition 4.1]). Let α ≺ β be a congruence cover of the finite algebra

A, and let γ ∈ Con(A). Let T denote the set of all (α, β)-traces in A. We say that (α, β) is

γ-coherent if ¯
N∈T

C(γ, β|N ;α) =⇒ C(γ, β;α)

If α = ⊥ then we will say that β is γ-coherent. Note, that since all (α, β)-traces are polynomially

isomorphic, C(γ, β|N ;α) holds for all N ∈ T iff it holds for any such N .
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Lemma III.4. Let A be any finite algebra with congruences ⊥
1
≺ δ and α

3
≺ β, such that β =

Cg(〈0, 1〉) for some (hence any) (α, β)-trace {0, 1}. Assume further that ¬C(β, δ;⊥). Then there

exists a polynomial p(x, y) = p(x, p(x, y)) taking values in some (⊥, δ)-minimal set U , so that

(1) If δ is β-coherent, then p(0, y) collapses traces to points and p(1, u) = u for all u ∈ U ;

(2) If δ is β-incoherent, then p(0, u) = u = p(1, u) for all u ∈ U , but for some c ∈ U , c ≡δ d,

d /∈ U ,

p(0, c) = p(0, d)

but

p(1, c) 6= p(1, d)

witnesses the failure of centralization.

Proof. Suppose first that δ is β-coherent. Then for some (⊥, δ)-trace N included in some minimal

set U , we have ¬C(β,N ;⊥). Since β is generated by {0, 1}, C({0, 1}, N ;⊥) must already be false.

Choose a witnessing package

t(0,~c) = t(0, ~d)

but

t(1,~c) 6= t(1, ~d)

where we may choose t so that its range lies entirely in U . The polynomial mapping t(1, ~y) is essen-

tially unary as a mapping from ~N into U ; say it depends on y1, and let p(x, y) = t(x, y, c2, c3, . . . ).

Then p(1, c1) = t(1,~c) 6= t(1, ~d) = p(1, d1) while p(0, c1) = p(0, d1). Iterating p in the second

variable if necessary, we get a polynomial satisfying the Lemma.

The other case requires a bit more work.

Assume now that for all traces N , we have C(β,N ;⊥). As in the first case, ¬C(β, δ;⊥) implies

that ¬C({0, 1}, δ;⊥) already. Take a witnessing package

t(0,~c) = t(0, ~d)

but

t(1,~c) 6= t(1, ~d)

where we may assume that the image of t is contained in some (⊥, δ)-minimal set U0. The map

t(0, ~y) : c1/δ × c2/δ × · · · → U0 depends only one one variable, say yk0 , and likewise t(1, ~y) on yk1 .

Claim III.4.1. k0 = k1

Suppose the Claim were false. Let q(x, y) = t(x, c1, . . . , ck1−1, y, ck1+1, . . . ). Then q(0, ck1) =

q(0, y) for all y ≡δ c1.
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Now, since ck1 ≡δ dk1 , there exists a sequence

ck1 = a0, a1, . . . , a` = dk1 (III.4.2)

where each pair {ai, ai+1} belong to a (⊥, δ)-trace Ni (i < `) included in a minimal set Ui = ei(A).

Since q(1, a0) 6= q(1, a`), there must exist some i < ` such that q(1, ai) 6= q(1, ai+1). But we have

already seen that q(0, ai) = q(0, ai+1), contradicting C({0, 1}, δ|Ni ;⊥). This proves the Claim, and

we may set k := k0 = k1. a III.4.1

Let a0, a1, . . . , a` be the sequence defined in (III.4.2); our assumption that {0, 1} centralizes Ni

means that for each i < `, q(0, y) is injective on Ni iff p(1, y) is.

Let i be the first index for which q(1, ai) 6= q(1, ai+1); then

q(0, dk) = q(0, ck) = q(0, a0) = q(0, a1) = . . . = q(0, ai)

but

q(1, dk) 6= q(1, ck) = q(1, a0) = q(1, a1) = . . . = q(1, ai)

Then with c = ai, d = dk, U = Ui, and p(v0, v1) equalling an iterate of ei ◦ q(v0, v1) such that

p(x, p(x, y)) = p(x, y) for all x, y ∈ A, the conclusions of the lemma are satisfied.

Lemma III.5. If ⊥A
1
≺ δ, α

3
≺ β, K = {0, 1}, and U are as in the statement of Lemma III.4, and

N ⊂ U is a trace, then at least one of C(K,N ;⊥) and C(N,K;⊥) must fail. In both cases, the

failure is witnessed by a binary polynomial which takes K ×N into U .

Proof. In the case where δ is β-coherent, the polynomial p found in that Lemma witnesses ¬C(K,N ;⊥).

So let C(β,N ;⊥) for all (⊥, δ)-traces N , and fix witnesses

c = p(0, c) = p(0, d)

but

c = p(1, c) 6= p(1, d)

where c ∈ U , c ≡δ d /∈ U , and the range of p is contained in U . We aim to show that C(N,K;⊥)

fails, and that its failure is witnessed by a binary polynomial of the claimed kind.

Let

c = a0, a1, . . . , a`−1, a` = d

be a walk from c to d through traces (see the discussion following Equation (III.4.2)). Since

p(0, ai) ≡δ p(0, a0) = c = p(1, a0) ≡δ p(1, ai)
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for all i ≤ `, we know that p(K, c/δ) ⊂ N . Now let {aj , aj+1} ⊂ Nj be the first step where

p(0, aj) = p(1, aj)

but

p(0, aj+1) 6= p(1, aj+1)

By hypothesis, j > 0. It follows that at least one, and hence both, of p(0, y) and p(1, y) are

polynomial isomorphisms from Nj to N . Let q ∈ Pol1(A) be the inverse isomorphism to p(0, y),

where q(a) = aj and q(a′) = aj+1. Then

p(0, q(a)) = p(0, aj) = p(1, aj) = p(1, q(a))

but

p(0, q(a′)) = p(0, aj+1) 6= p(1, aj+1) = p(1, q(a′))

so that p(x, q(y)) witnesses ¬C(N,K;⊥) as required.

III–B. Proof of Theorem A

Lemma III.6. Let A be a finite algebra, ⊥
1
≺ δ and α

3
≺ β, and let K = {0, 1} be (α, β)-

minimal, where β = Cg(〈0, 1〉). If ¬C(K, δ;⊥) and C(δ,K;⊥), then HSP (A) is hereditarily finitely

undecidable.

In other words, the centralizer of a boolean neighborhood must be disjoint from any of the

unary-type atoms (or at least those which that neighborhood does not itself centralize), if A is to

live in a finitely-decidable variety.

Proof. Fix a (⊥, µ)-minimal set U . By Lemma III.5, for any (⊥, δ)-trace N ⊂ U , at least one

of C(K,N ;⊥) or C(N,K;⊥) must fail. But if ¬C(N,K;⊥) then ¬C(δ,K;⊥), contrary to the

assumptions of the Lemma.

Hence ¬C(K,N ;⊥). Choose a witnessing package

q(0, c) = q(0, d)

but

q(1, c) 6= q(1, d)

Without loss of generality, we can assume that q(1, u) = u for all u ∈ U .

Our plan is to semantically interpret the class of graphs with at least three vertices into diagonal

subpowers of S. So let G = 〈V,E〉 be such a graph, and let I = V × {+,−} = V ±. Define
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D = D(G) ≤ AI to be generated by the diagonal together with the points

χβv := 1|{v+,v−} ⊕ 0|else (all v ∈ V )

χδe := d|{v+,w+} ⊕ c|else (all e = 〈v, w〉 ∈ E)

χδV + := d|V + ⊕ c|V −

Let ~χβ and ~χδ enumerate the respective sets of generators.

Observe that there cannot be any nonconstant polynomial map from N to {0, 1}. This implies

that D ∩ {0, 1}I consists of all points which are constant on each set {v+, v−}; in other words,

D|{0,1}I is canonically isomorphic to the boolean algebra 2V . This subset is definable (Proposition

II.6), as is its set of atoms {χβv : v ∈ V }; by abuse of language, we will allow ourselves to quantify

over these atoms by saying things like “there exists a vertex χβv ...”

Claim III.6.1. The set of those x ∈ D of the form d|{w+
1 ,w

+
2 }
⊕ c|else for two distinct vertices

w1, w2 ∈ V is definable (using the parameter χδV +).

It is sufficient to show that for x ∈ U I ∩D, x = d|{w+
1 ,w

+
2 }
⊕ c|else iff

q
(
χβw1

+ χβw2
,x
)

= q
(
χβw1

+ χβw2
, χδV +

)
(III.6.2)

and

q
(

(χβw1
+ χβw2

)′,x
)

= q
(

(χβw1
+ χβw2

)′, c
)

(III.6.3)

(where + is boolean join and ′ is boolean complement).

The direction (⇒) is a straightforward computation. For the reverse direction,

i ∈ {w+
1 , w

+
2 } =⇒ xi = q(1, xi) = q(1, (χδV +)i) = d

from equation (III.6.2), and similarly

i ∈ {w−1 , w
−
2 } =⇒ xi = q(1, xi) = q(1, (χδV +)i) = c

while equation (III.6.3) yields

i /∈ {w±1 , w
±
2 } =⇒ xi = p(1, xi) = p(1, c) = c

The proof of the claim is then accomplished by existentially quantifying χβw1 , χ
β
w2 . a III.6.1

Claim III.6.4. If x = d|{w+
1 ,w

+
2 }
⊕ c|else ∈ D then w1

E
— w2.

To see this, let x = d|{w+
1 ,w

+
2 }
⊕ c|else = t(~χβ, ~χδ) ∈ D for some polynomial t ∈ Pol|V |+|E|+1(A).

Without loss of generality, t’s image is contained in U . By inspecting the v− coordinates, we see
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that for any v ∈ V
t(0, . . . , 0, 1, 0, . . . , c, . . . , c) = c

(the 1 occurring in the vth place). Fix any w ∈ V ; then

xv
−

= t
(

(~χβ)w
−
, (~χδ)v

−
)

Moreover, since (~χβ)v
+

= (~χβ)v
−

for all v and C(δ, {0, 1};⊥), one has

t
(

(~χβ)v
+
, (~χδ)v

−
)

= t
(

(~χβ)v
−
, (~χδ)v

−
)

= t
(

(~χβ)w
−
, (~χδ)v

−
)

⇓

t
(

(~χβ)v
+
, (~χδ)v

+
)

= t
(

(~χβ)w
−
, (~χδ)v

+
)

In other words,

xi = t
(

(~χβ)w
−
, (~χδ)i

)
for all i ∈ I.

But as a polynomial on U , t((~χβ)w
−
, ~y) depends only on one variable, say t((~χβ)w

−
, ~y) = f(yk),

with yk corresponding to a generator χδk ∈ ~χδ; k is either an edge of G or V +. Since c, d are taken

from the same trace and f does not collapse traces to points, we must have that x = f(χδk) and

xi = xj iff (χδk)
i = (χδe)

j for all i, j ∈ I; since |V | > 2 and x has d at only has two coordinates (out

of at least six), k must be the edge 〈w1, w2〉. a III.6.4

We can now complete the semantic interpretation: V is defined as the atoms of {0, 1}I ∩D, and

v
E
— w iff there exists x as in Claim III.6.1 such that χβv and χβw are the two atoms witnessing the

truth of the formula in that Claim.

Lemma III.7. If S is a finite, subdirectly-irreducible algebra with unary-type monolith, and the

strongly-solvable radical of S is incomparable to some congruence of S, then HSP (S) is hereditarily

finitely undecidable.

Proof. Let S be subdirectly-irreducible, with unary-type monolith µ; let β be incomparable to the

strongly-solvable radical σ. Without loss of generality (see Fact II.4), typ {S} = {1, 3}, and some

lower cover of β is (strictly) below σ. Choose β ∧ σ
1
≺ α ≤ σ; clearly β ∧ σ = α ∧ β =: αβ

3
≺ β.

Choose an (αβ, β)-minimal set, which we may take without loss of generality to be polynomially

isomorphic to the two-element boolean algebra {0, 1}; similarly without loss of generality, β =

Cg(〈0, 1〉); also choose a (αβ, α)-minimal set U containing elements c ≡α\αβ d.

Now, by Lemma III.1, the centralizer of µ is solvable; hence ¬C({0, 1}, µ;⊥). By Lemma III.6,

we may assume that the centralizer of {0, 1} is the trivial congruence: for any a1 6= a2 in S, there
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exists a polynomial t(x, ~y) and tuples ~b0,~b1 from {0, 1} so that

t(a1,~b0) = t(a1,~b1)

but

t(a2,~b0) 6= t(a2,~b1)

Since S|{0,1} is a boolean algebra, the discussion after equation (II.2.1) shows that we can transform

this package into one using a binary polynomial:

s(a1, 0) = s(a1, 1)

but

s(a2, 0) 6= s(a2, 1)

witnessing that {a1, a2} does not centralize {0, 1}.
Our strategy is to interpret the class of graphs with at least five vertices into HSP (S), so let

G = 〈I, E〉 be any graph. Define D = D(G) ≤ SI to be the subalgebra generated by the constants

together with all points

χβi := 1|i ⊕ 0|else (i ∈ I)

and

χαe := d|{i,j} ⊕ c|else (e = {i, j} ∈ E)

By the usual arguments, {0, 1}I ⊆ D is a definable subset, as is the set of its atoms.

Let χβi be any atom in {0, 1}I . Let y, z be any elements of D. Then

p(0,y) = p(χβi ,y)

m

p(0, z) = p(χβi , z)

for all p ∈ Pol2(S) if and only if yi and zi are congruent modulo the centralizer of {0, 1}, i.e. are

equal. But S only has finitely many binary polynomial operations; hence the above condition is a

first-order property Φ(χβi ,y, z): we have proved

Claim III.7.1. If s ∈ S, i ∈ I, y ∈ D then yi = s iff Φ(χβi ,y, s).

Or in plainer English: D knows its own product structure. a III.7.1

In particular: the set of those x ∈ U I ∩D of the form d|{i0,i1} ⊕ c|else for precisely two vertices

i0, i1, is a definable subset. The generators χαe belong to this set.

Claim III.7.2. If i0 6= i1 and x = d|{i0,i1} ⊕ c|else ∈ D then i0
E
— i1.

So let

x = d|{i0,i1} ⊕ c|else = f(~χβ, ~χα)
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belong to D, where f ∈ Pol|I|+|E|(S) takes values in U and ~χα, ~χβ enumerate the two sets of

generators.

Let j ∈ I be any vertex. Then

xj = f
(

(~χβ)j , (~χα)j
)
≡β f

(
(~χβ)i0 , (~χα)j

)
≡α f

(
(~χβ)i0 , (~χα)i0

)
= xi0 ≡α xj

Hence

x ≡αβ f
(

(~χβ)i0 , ~χα
)

But considered as a mapping from α-classes into U , f((~χβ)i0 , ~v) depends modulo αβ on no more

than one of the edge-variables, say f((~χβ)i0 , ~v) = g(ve) for some e = {j0, j1} ∈ E; since x is not

constant modulo αβ, g cannot collapse traces to points, implying that x = g(χβe ) has the same

αβ-equivalence pattern as χαe . The two equal coordinates of x must match two equal coordinates

of χαe such that all other coordinates have a different value; since |V | > 4, the only set of such

coordinates is {j0, j1}; but this implies x = χαe , as desired. a III.7.2

We have shown that we can definably recover the edge relation of G on a definable set in

bijection with the vertex set of G.

The investigations of congruence modular finitely-decidable varieties identified quite early how

constrained the congruence geometry of such varieties must be. In particular, it was discovered

that the congruences above the solvable radical of a subdirectly-irreducible algebra in such a variety

were forced to be linearly ordered. Lemma III.7 allows us to remove the hypothesis of modularity:

Lemma III.8. Let S be a finite subdirectly-irreducible algebra with unary-type monolith. If the con-

gruence interval above the solvable radical of S is not linearly ordered, then HSP (S) is hereditarily

finitely undecidable.

Proof. Due to the transfer prinicples (see Fact II.4), we already know that typ {S} ⊂ {1, 3}; without

loss of generality, the solvable radical Rad(S) < >S and every cover above Rad(S) has boolean type.

If Rad(S) were to have just one upper cover, then S/Rad(S) would be subdirectly-irreducible with

boolean monolith; Idziak’s characterization ([Idz97]) implies then the whole interval [Rad(S),>]

would be a chain. Hence it suffices to show that the radical having at least two upper covers α0, α1

leads to a contradiction.

Theorem III.7 implies that every subcover of Rad(S) is meet-irreducible, so without loss of

generality (by passing to a quotient by such a subcover) we may assume that ⊥
1
≺ Rad(S) =: µ.

Let Ka = {0a, 1a} be respectively (µ, αa)-minimal sets (a ∈ {0, 1}).
We know that ¬C(Ka, µ;⊥) for a = 0, 1, since each of these sets generate a congruence above

the centralizer of µ. By Lemma III.6, we may also assume that ¬C(µ,Ka;⊥). Let

p0(c, 00) = p0(c, 10)

but

p0(d, 00) 6= p0(d, 10)
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witness this latter failure. Observe that p0(d, 00) ≡µ p0(d, 10); hence there exists q ∈ Pol1(S)

taking K0 injectively into some (⊥, µ)-trace N . Since µ = CgS(〈q(00), q(10)〉), we must have

¬C({q(00), q(10)},K1;⊥). Choose a witnessing package

p1(q(00), 01) = p1(q(00), 11)

but

p1(q(10), 01) 6= p1(q(10), 11)

Our strategy is to interpret the undecidable class E2 (see page 7) into the diagonal subpowers of

S. So let E = 〈I;R0, R1〉 |= E2, and define a diagonal subpower D = D(E) ≤ SI as the subalgebra

consisting of all x ∈ SI such that x is α0-constant on each block of R1 and α1-constant on each

block of R0. Note that, since 00, 10 are α0-congruent but not α1, a point x ∈ KI
0 belongs to

D iff it is constant on each R0-block. We conclude that D|K0
is canonically isomorphic to the

boolean algebra 2I/R0 ; the corresponding facts hold mutatis mutandis for KI
1 . Furthermore, these

two subsets are uniformly definable (by Lemma II.6). Let ATa(v) be a formula asserting that v

is an atom of the boolean algebra D|Ka , and let H be the (definable) set of pairs 〈y, z〉 such that

y = 10|By ⊕ 00|else is a K0-atom and z = 11|Bz ⊕ 01|else is a K1-atom.

Now, for each pair 〈y, z〉 ∈ H, the blocks coded by the two points are either empty or share one

i ∈ I. Write y ./ z if the intersection is nonempty. It suffices to show that the relation y ./ z is

definable. Why is this so? Since R0 ∩ R1 is trivial, every i ∈ I corresponds canonically to exactly

one 〈yi, zi〉 ∈ H, namely yi = (10)|i/R0
⊕ (00)|else and zi = (11)|i/R1

⊕ (01)|else. These two points are

./-related by construction. But if ./ is definable, the structure E can be recovered on the underlying

set ./ = {〈yi, zi〉 : i ∈ I} using the first-order theory of D, since 〈i, j〉 ∈ R0 (resp R1) iff yi = yj

(resp zi = zj).

To this end, observe: if 〈y, z〉 ∈ H and i ∈ I,

p1(q(yi), zi) 6= p1(q(yi), 01) ⇐⇒ zi 6= 01 and yi 6= 00

It follows that

p1(q(y), z) 6= p1(q(y), 01)

m

p1(q(yi), zi) 6= p1(q(yi), 01) for some i ∈ I

m

yi = 10 and zi = 11 for some i ∈ I

m

y ./ z

Proof of Theorem A. Let S be a finite, subdirectly-irreducible algebra with unary-type monolith,
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and belonging to some finitely-decidable variety V. If Radu(S) = >S then we are done. If not,

then Lemma III.7 tells us that Radu(S) is comparable to every congruence of S. The transfer

principles tell us that the affine tame-congruence type does not appear in Con(S); since V is

finitely-decidable, it follows that every upper cover of Radu(S) is of the boolean type. Lemma III.8

now implies that the radical has only one upper cover. Since S/Radu(S) is subdirectly-irreducible

with boolean monolith and belongs to the finitely-decidable variety V, its congruence lattice is a

chain of boolean-type covers.
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CHAPTER IV

STRONGLY-SOLVABLE IMPLIES STRONGLY ABELIAN

The goal of this chapter is to prove Theorem B. The arguments in this chapter are highly

technical; we have not at this time found any way to reduce their complexity. However, at a

high level, each of the main semantic interpretations found below can be read as asserting some

kind of “sparseness” in subalgebra or congruence generation resulting from assumptions of strong

solvability.

Denis Osin is fond of saying that group theory is infinitely distorted in mathematics, in the sense

that there are theorems about groups whose shortest purely group-theoretic proof requires heroic

strength of mind to read (never mind to discover), but whose proofs in The Book pass through

other seemingly unrelated fields of mathematics. It may well be the case that something similar

holds here.

IV–A. The radical centralizes minimal sets

The semantic interpretations constructed in this chapter (and following ones) depend on our ability

to define the strongly-solvable radical uniformly in a variety. The conclusions of the following lemma

can be shown to hold for either of the solvable radical, or the strongly-solvable radical, of any finite

algebra A; however, the proof of this more general theorem is no more enlightening for our purposes,

so we omit it.

Lemma IV.1. If A is any finite algebra in a finitely-decidable variety with strongly-solvable radical

σ, there exists a first-order formula with parameters from A which defines the congruence σI/Θ,

uniformly for all D/Θ, where I is any index set, ∆ ≤ D ≤ AI is any diagonal subpower, and

Θ ≤ σI ∩D ∈ Con(D).

Proof. The argument comes from the theory of snags (see [HM88] Chapter 7). Let E(A) denote

the collection of all idempotent polynomials with nontrivial range, and for each e ∈ E(A) choose

p ∈ Pol3(A) which is Malcev on the image of e if any such polynomial exists; if none, then let p

be second projection. Then we have that a pair 〈x, y〉 fails to belong to σ iff there is a congruence

cover α
2,3
≺ β below Cg(〈x, y〉) iff the following first-order formula is satisfied:∨

e∈E(A)

∨
f∈Pol1(A)

ef(y) = p(ef(y), ef(x), ef(x)) = p(ef(x), ef(x), ef(y))

6= p(ef(x), ef(x), ef(x)) = ef(x)

The formula is clearly false if every cover below 〈x, y〉 has type 1, while a cover of boolean or affine

type will guarantee the formula’s truth, since the minimal sets of that cover have empty tails and
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hence Malcev polynomials. This proves that the indicated formula defines [the complement of] σ

in A1, and its truth is preserved by factoring out by congruences under σ.

Now since the defining formula is quantifier-free, it is preseved in subpowers. Finally, if x ≡σI y,

e ∈ E(A), p(v1, v2, v3) = v2 and f ∈ Pol1(A),

p(ef(y), ef(x), ef(x)) = p(ef(x), ef(x), ef(y)) = p(ef(x), ef(x), ef(x)) = ef(x)

which is preserved under factoring out Θ. On the other hand, if xi 6≡σ yi, then the polynomials

which witness

ef(yi) ≡θ p(ef(yi), ef(xi), ef(xi)) 6≡θ ef(xi)

(θ being the projection of Θ into the ith coordinate) also witness it in D.

Lemma IV.2. Let S be a subdirectly-irreducible algebra with unary-type monolith µ and strongly-

solvable radical σ which is abelian over µ but not over ⊥S. Let U = e(S) be any (⊥S , µ)-minimal

set. If C(σ, µ|U ;⊥) fails in S, then HSP (S) is hereditarily finitely undecidable.

Proof. Since C(µ, µ|U ;⊥) always holds, we may climb the congruence lattice until we get a cover

µ ≤ θ0
1
≺ θ1 ≤ σ such that C(θ0, µ|U ;⊥) holds and C(θ1, µ|U ;⊥) does not. Fix a (θ0, θ1)-minimal set

U ′ = e′(S) with trace N ′ containing θ0-inequivalent elements a0, a1. Since these elements generate

θ1 over θ0, already ¬C(Cg(〈a0, a1〉), µ|U ;⊥), and we may take a witnessing package

t(a0,~b0) = t(a0,~b1)

but

t(a1,~b0) 6= t(a1,~b1)

There is no loss of generality in assuming that the image of t is contained in U .

Since µ is strongly-abelian, we may assume that ~b0 and ~b1 differ only in one place (say the first),

so that for q(v1, v2) = t(v1, v2, b
2, . . . , ), the polynomial q(a0, x) is constant on µ|U -blocks while the

polynomial q(a1, x) permutes U . (Observe that q(x, y) ∈ U for any x, y ∈ S.) Of course we may

by iterating q guarantee that for each u′ ∈ U ′, the operation q(u′, x) is idempotent. The same

argument shows that for each u′ ∈ U ′, q(u′, x) is either the identity on U (in which case we call u′

permutational) or else squashes each µ-block of U to a point (at which we call u′ collapsing). Since

C(θ0, µ|U ;⊥), these two properties are invariant under θ0-congruence.

Let N ⊆ U be any trace; we have that q(a0, N) = m0 for some m0 ∈ U . In fact, since σ is

abelian over µ, we have

q(a0,m0) = q(a1,m0)

⇓

m0 = q(a0, u) ≡µ q(a1, u) = u for any u ∈ N
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and thus m0 ∈ N ; more generally, we have that the polynomial v1 7→ q(a0, v1) retracts each trace

down to one of its points. Since N was a trace, there exists some m1 6= m0 in N , which we fix for

future use.

We want to semantically embed graphs into the diagonal subpowers of S, so let G = 〈V,E〉 be

a graph. Our index set I will equal V t {∞}. Our subpower S[G] will be the subalgebra of SI

generated by the diagonal together with

� for each vertex v ∈ V , the element

gv = a1|{v,∞} ⊕ a0|else

� for each edge {v1, v2} ∈ E, the element

gv1v2 = a1|{v1,v2,∞} ⊕ a0|else

and

� the element

χ∞ = m0|V ⊕m1|∞

Recall our notational convention (page 11) that for s ∈ S we will use a boldface s to denote the

corresponding diagonal element; let ~s be a fixed enumeration of these diagonal elements. Observe

that each generator, and hence every element of S[G], is constant modulo θ1; and that χ∞ is also

constant mod θ0 (indeed, mod µ).

Claim IV.2.1. Every element of (U ′)I ∩ S[G] assumes at most two values (mod θ0), with one

supported either on all of I, or on {v,∞} (for some v ∈ V ), or on {v1, v2,∞} (for some v1
E
— v2).

(As on page 11, we will drop the “ ∩ S[G]” when the context is unambiguous.)

Let x = t(gv, . . . ,gv1v2 , . . . , χ∞,~s) represent an arbitrary element of S[G] all of whose coordi-

nates lie in U ′. Without loss of generality (by precomposing with e′) t respects U ′; but then this

operation is sensitive (mod θ0) to changes (mod θ1) in no more than one of its variables. Since all

generators are constant (mod θ1), we conclude that the blocks of I on which x is constant (mod

θ0) coincide with those of whichever generator sits at the active place. a IV.2.1

We now identify a subset Γ of the universe, definable (using parameters for the diagonal elements

and χ∞) and a definable preorder � on Γ.

Set

Γ =
{
x ∈ (U ′)I : q(x,m0) = m0 & q(x, χ∞) = χ∞

}
and preorder it by

x� y ⇐⇒ ∀u,v ∈ U I q(x,u) = q(x,v)→ q(y,u) = q(y,v)
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Since the sets U I and (U ′)I are definable (Proposition II.6), it follws that � and its associated

equivalence relation ∼ are definable too. Let EQ(v1, v2) be a formula defining the equivalence ∼.

The second conjunct defining Γ implies that if x ∈ Γ then x is permutational at infinity. (So,

for example, Γ contains a1 but not a0.) The first implies that any non-permutational factor of x

must collapse N to m0. If x ∈ Γ, u1,u2 ∈ U I , and xi is not permutational, then q(x,u1) = q(x,u2)

implies ui1 ≡µ ui2.

Claim IV.2.2. For x ∈ Γ, define

supp(x) = {i ∈ I : xi is permutational}

= {i ∈ I : q(xi,m1) = m1}

(We already know that each support is either I or one of the sets {v1, v2,∞} (v1
E
— v2) or {v,∞}

(v ∈ G).) Then

x� y ⇐⇒ supp(x) ⊇ supp(y)

(⇒): If v ∈ supp(y) \ supp(x), take u = q(gv,m1). Then

q(x,u) = χ∞ = q(x, χ∞)

but

q(y,u)|v = q(yv,m1) = m1 6= m0 = q(y, χ∞)|v

so x 6� y.

(⇐): For t,u ∈ U I , q(x, t) = q(x,u) is equivalent to

t|supp(x) = u|supp(x) and for v /∈ supp(x), tv ≡µ uv

which implies

t|supp(y) = u|supp(y) and for v /∈ supp(y), tv ≡µ uv

which is equivalent to q(y, t) = q(y,u). a IV.2.2

As an immediate consequence, we have that every x ∈ Γ is ∼ to exactly one of {a1} ∪ {gv1v2 :

v1
E
— v2} ∪ {gv : v ∈ V }. The quotient partial order on Γ/ ∼ has height two, with a1 at level zero,

all the edges at level one and all the vertices at level two.

Let WHO(v1) be a formula asserting that v1 ∈ Γ and v1 is at �-level two. We have just

observed that the map w 7→ gw/ ∼ is a bijection of V with the extension of WHO(v1) modulo ∼
(which was already found to be a definable equivalence relation). Let EDGE(v1, v2) be a formula

asserting that there exists y ∈ Γ at �-level one such that y � v1 & y � v2. Then these formulas

recover the structure of G.
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IV–B. The action of the twin group

Definition IV.3. Let A be any algebra, U ⊆ A, and σ be the strongly-solvable radical of A. We

write

(1) SA
U := Pol1(A|U ) ∩ S(U) for the group of permutations of U realized as polynomials of A,

and

(2) TA
U for the subgroup consisting of those f ∈ SA

U such that for some term t(v0, . . . , vn) and

some ~d ≡σ ~e we have

A|U |= v0 = t(v0, ~e) & f(v0) = t(v0, ~d)

(Such a permutation is known as a σ-twin of the identity.)

A straightforward computation shows that TA
U is normal in SA

U .

Note that there is nothing special about the radical in this context; we can define α-twins for

any congruence α, but since we will be exclusively concerned with σ-twins in this investigation, we

will leave the definition more specialized so as to avoid needing a third parameter in the symbol

TA
U .

Proposition IV.4. Let A be a finite algebra. If ⊥A
1
≺ µ in Con(A) and U is (⊥, µ)-minimal, then

(1) SA
U acts transitively by polynomial isomorphisms on the set of traces inside U ;

(2) the action of SA
U on the body of U has at most two orbits;

(3) if some f ∈ SA
U nontrivially permutes some trace, then SA

U acts transitively on the body of

U .

Proof. That SA
U acts on traces is an easy consequence of the fact that µ is a congruence of the

algebra.

To transitivity: µ is generated by any of its nontrivial pairs, so let Ni ⊆ U (i = 1, 2) be traces

containing elements ai 6= bi. Then we can string a chain of elements

a2 = u0 6= u1 6= · · · 6= um+1 = b2

where {uj , uj+1} = {fj(a1), fj(b1)} for some fj ∈ SA
U . Then fm(N1) = N2. This argument actually

shows that b2 ∈ SA
U (a1) ∪SA

U (b1), which proves the second and third statements.

Lemma IV.5. Let S be a finite subdirectly-irreducible algebra with type-1 monolith µ and strongly-

solvable radical σ satisfying C(σ, σ;µ). Let U = e(S) be a (⊥, µ)-minimal set. If TS
U nontrivially

permutes some trace, then HSP (S) is hereditarily finitely undecidable.

Proof. The last statement of Proposition IV.4 ensures that SS
U acts transitively on the body of U ;

the same may not be true of the induced action of TS
U , but elementary group theory shows that
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SS
U/T

S
U acts in a well-defined and transitive way on the orbits of the action by TS

U . Since the action

of SS
U is transitive, we will use the symbol O(a) exclusively to refer to the orbit of the element

a ∈ Body(U) under the action by TS
U .

Claim IV.5.1. For each c ∈ Body(U),

|O(c) ∩N | > 1

where N is the trace containing c.

Let g(a) = b ≡µ\⊥ a and f(c) = a, where g ∈ TS
U is the hypothesized nontrivial permutation of

a trace and f ∈ SS
U . Then f−1 ◦ g ◦ f(c) ≡µ\⊥ c, which proves the claim. a IV.5.1

By Lemma IV.2, we may assume that C(σ, µ|U ;⊥). This immediately implies that if t(v0, . . . , vn)

is any term and ~c ≡σ ~d, and if t(U,~c), t(U, ~d) ⊆ U then these two polynomials are either both

permutations of U or both collapse traces into points.

Our plan is a bit more complicated this time around. Instead of semantically embedding

graphs into diagonal subpowers of S, we will embed them into algebras C[G] = D(G)/Θ, where

D(G) ≤ SI is a diagonal subpower of S and Θ ≤ σI . We will not attempt to show that Θ is a

definable congruence, uniformly or otherwise.

Fix your favorite graph G = 〈V,E〉. Define V ± = {v+, v− : v ∈ V } (the disjoint union of two

copies of V ), and set I = V ± t {∞}; each of the sets {v+, v−} as well as {∞} will be called a

“vertex block” or “V -block”. Let D = D(G) ≤ SI be the diagonal subpower generated by the set

Γ which is the union of the following three disjoint sets:

� Γ0 is the set of those x ∈ U I which are constant on each V -block and constant (mod σ) on

all of I.

� ΓV is the set of those x ∈ SI such that for some a ∈ Body(U), xi ∈ (a/σ)∩O(a) for all i ∈ I,

and for one v ∈ V , xv
+ ≡µ\⊥ xv

−
, while for all w 6= v, xw

+
= xw

−
. For convenience, if x and

v are as just described, we write Label(x) = 〈v, xv+〉.

� ΓE is like ΓV ; but instead of having one nonconstant vertex block, each point will have two,

at the blocks of v and w, where v
E
— w, and write Label(x) = 〈v, xv+ , w, xw+〉.

We will refer to the non-constant vertex blocks as “spikes”.

Observe that since each generator is constant modulo σ, every element of D is too.

Claim IV.5.2. D∩U I ⊂ Γ, and for every polynomial f ∈ SD
U and every v ∈ V , the v+ component

of f is the same function as the v− component.

(As is our convention, SD
U should really more precisely be SD

UI∩D, but that would be cumber-

some.)

Both parts of the claim are consequences of Maroti’s Lemma. To the first: let y = et(Γ0,ΓV ,ΓE)

be a typical element of D ∩ U I . There is one special input place where this term is sensitive to
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changes by µ; at all other places, flatten out all the spikes so that y = et′(Γ0,x) where x ∈ Γ is

the element at the special place. Then if x ∈ Γ0 or if et′(Γ0, ·) is not injective on U I then at each

coordinate t′(Γ0|i, ·) collapses µ into points; under those hypotheses, y ∈ Γ0.

On the other hand, if et′(Γ0, ·) permutes U I , then y has the same spike pattern that x had

(since every element of Γ0 is constant on V-blocks); furthermore, if x ∈ ΓV ∪ ΓE , we can conclude

that y takes all its values from one TS
U -orbit, since all the coordinatewise polynomials et′(Γ0|i, ·)

are σ-twins, and hence all in the same coset mod TS
U . But this means that y ∈ Γ already.

Similarly for the second part of the claim: let f(v0) = et(v0,Γ) ∈ SD
U ; then it is not possible for

the special variable to be anything except the first. The claim follows, since the other parameters

only vary up to µ on vertex blocks. a IV.5.2

In fact, let T (v0, . . . , vn) be a universal term for TS
U , i.e. there exist pairwise-σ tuples {~dg : g ∈

TS
U} so that g(v0) = T (v0, ~dg) for all g. (We leave it to the reader to verify that such a term exists.)

Then this term allows us to realize the full product TS
U
V t{∞}

as polynomial permutations of U I ; it

follows that SD
U is isomorphic to the inverse image of the diagonal subgroup under the canonical

projection

SS
U
V t{∞} −→ (SS

U/T
S
U )V t{∞}

We still have to define the congruence Θ. This is done as follows: Θ will be generated by

identifying those pairs 〈x,y〉 such that

� x,y ∈ Γ0 and for all i ∈ I, xi ≡µ yi, or

� x,y ∈ ΓV , Label(x) = Label(y) = 〈v, a〉 and for all i 6= v+, xi ≡µ yi, or

� x,y ∈ ΓE , Label(x) = Label(y) = 〈v, a, w, b〉, and for all i 6= v+, w+, xi ≡µ yi.

and we set C = C[G] = D/Θ. We will usually write, e.g., Γ instead of Γ/Θ when context makes it

unambiguous.

Claim IV.5.3. Θ|Γ consists of just the generating pairs and no more.

To see this, let 〈x,y〉 be a generating pair and f ∈ Pol1(D|U ). Then 〈f(x), f(y)〉 is clearly a

generating pair if f collapses µ to points, or if x and y belong to Γ0, so let f ∈ SD
U . Then if

x,y ∈ ΓV with Label(x) = Label(y) = 〈v, a〉 then

a = xv
+

= yv
+ ⇒ fv(a) = fv(xv

+
) = fv(yv

+
)

xi ≡µ yi ⇒ f i(xi) ≡µ f i(yi)

so 〈f(x), f(y)〉 is again a generating pair. The proof for generating pairs from ΓE is identical.

By Lemma IV.1, σI is a uniformly definable congruence; it follows that quantification over any

of the groups TD
Γ ,S

D
Γ ,T

C
Γ ,S

C
Γ is uniformly first-order in the respective algebra. Of course, we also

have that Γ (respectively U I/Θ) is a definable subset of both algebras as well, since it consists of

precisely the fixed points of the polynomial retraction e.

31



Claim IV.5.4. (i) If g ∈ TS
U , a ≡σ b and g(a) ≡µ a then g(b) ≡µ b.

(ii) Γ0 ∩ U I is uniformly definable (using at most n · |TS
U | parameters) in C.

The first part is true because C(σ, σ;µ):

a = T (a, ~did) ≡µ T (a, ~dg) = g(a)

⇓

b = T (b, ~did) ≡µ T (b, ~dg) = g(b)

where T (v0, . . . , vn) is the universal term for TS
U defined above. To the second: for each g ∈ TS

U let

~cg be constants so that

T (·,~cg) = id|V ⊕ g|∞

Then for x ∈ U I we have

T (x,~cg) ≡Θ x ⇐⇒ g(x∞) ≡µ x∞

Hence

x ∈ Γ0 ⇒ ∀g ∈ TS
U

(
T (x,~cg) ≡Θ x → T (x, ~dg) ≡Θ x

)
(where ~dg are the obvious diagonal elements), while if x ∈ ΓV (resp. ΓE) with label 〈v, a〉 (resp.

〈v, a, w, b〉) and g(a) ≡µ\⊥ a then g(x∞) ≡µ x∞ so

T (x,~cg) ≡Θ x and T (x, ~dg) 6≡Θ x

a IV.5.4

We are almost done: for the last step, define a preorder � on Γ \ Γ0 by

x� y ⇐⇒ ∃f ∈ SS
U ∃g ∈ TC

Γ

[
gf(x) ≡σ y &

∀h ∈ TC
Γ [hgf(x) 6≡Θ gf(x)→ h(y) 6≡Θ y]

]
Claim IV.5.5. (i) If x,y ∈ ΓV (resp. ΓE) are labeled by the same vertex (resp. edge), they are

�-equivalent.

(ii) If x,y ∈ ΓV (resp. ΓE) are labeled by different vertices (resp. edges), they are�-incomparable.

(iii) If x ∈ ΓE and y ∈ ΓV then x 6� y.

(iv) If x ∈ ΓV ,y ∈ ΓE , then x � y iff x is labeled by one of the endpoints of the edge which

labels y.

All parts of this claim are straightforward:

(i) Say x,y ∈ ΓE , Label(x) = 〈v, a1, w, b1〉 and Label(y) = 〈v, a2, w, b2〉. Then O(aj) = O(bj)

(j ∈ {1, 2}), and we can choose f ∈ SS
U so that fO(a1) = O(a2). Then we can choose
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{gi}i∈I ∈ TS
U so that gvf(a1) = a2, gwf(b1) = b2, and gif(xi) ≡µ yi for all other i, and set

g =
⊕
gi. Then in fact gf(x) ≡Θ y so x� y holds automatically. The proof is the same for

ΓV except easier.

(ii) Say x has a spike at a V-block where y does not, say at v. Then for every f ∈ SS
U and every

g ∈ TC
Γ , gf(x) has a spike at v, which y does not. Assume gf(x) ≡σ y. Choose h ∈ TS

U

such that hgvf(xv
+

) ≡µ\⊥ gvf(xv
+

); then h(yv
+

) ≡µ yv
+

. Let h ∈ TC
Γ be h on {v±} and the

identity on all other vertex blocks; then

hgf(x) 6≡Θ gf(x) & h(y) ≡Θ y

(iii) The same as in (ii).

(iv) The direction (⇒) is the same as in (ii). For (⇐), assume that Label(x) = 〈v, a1〉, Label(y) =

〈v, a2, w, b〉. Choose f ∈ SS
U with f(a1) = a2, and for i 6= v± choose gi ∈ TS

U so that

gif(xi) ≡µ yi, gv = id, g =
⊕

i g
i; then we have z := gf(x) ≡µ y and zv

+
= yv

+
. Conse-

quently, if h(z) 6≡Θ z then either

hi(zi) 6≡µ zi

for some i ∈ I, in which case hi(yi) 6≡µ yi, or

hv(yv
+

) = hv(zv
+

) 6= zv
+

= yv
+

so in either case h(y) 6≡Θ y. a IV.5.5

This completes the proof of the lemma, since up to �-biequivalence, vertices of G correspond

precisely to�-classes at level zero, edges to classes at level one, and two vertices are joined iff there

is a class properly dominating both.

IV–C. The strongly-solvable radical is abelian

Lemma IV.6. Let S be a finite subdirectly-irreducible algebra with unary-type monolith µ and

strongly-solvable radical σ satisfying C(σ, σ;µ), C(σ, µ;⊥), and C(µ, σ;⊥) but not C(σ, σ;⊥). Then

HSP (S) is hereditarily finitely undecidable.

Proof. Choose a package

c = t0(a0,~b0) = t0(a0,~b1)

but

m0 = t0(a1,~b0) 6= t0(a1,~b1) = m1

witnessing ¬C(σ, σ;⊥), where a0/σ = a1/σ =: A and ~b0 ≡σ ~b1. Since C(σ, σ;µ), m0 ≡µ m1, and

we may suppose that the range of t0(v0, . . . , v`) is included in a (⊥, µ)-minimal set U . Denote the

33



trace containing the mj by M .

We will be working with diagonal subpowers X ≤ SI and their quotients Y = X/Θ, where

Θ ≤ σ = σI ∩X2 ∈ Con(X). Lemma IV.1 once again implies that σ is a definable congruence in

all such Y.

We will wherever possible refer to elements of Y with x rather than x/Θ, with the understanding

that x ∈ SI is one representative. (Of course, this will necessitate showing that certain properties

are well-defined.)

For such algebras Y, and ~y1, ~y2 ≡σ ~b0 define

EY(~y1, ~y2) = {x ≡σ a0 : Y |= t0(x, ~y1) = t0(x, ~y2)}

In particular, we have

ES(~b0,~b1) ( A

and there is no loss of generality in assuming that the ~bj are chosen so that their equalizer set is

maximal for being properly included in A.

We will be using `-tuples extensively, so to avoid a proliferation of vector notation we will

reserve the letters b, y, z for `-tuples and a, x for single elements.

The plan is as follows: We want to interpret the class of graphs with at least three vertices into

HSP (S). Given such a graph G = 〈V,E〉, we will choose an index set I and a diagonal subpower

D ≤ SI , which will depend only on V , and then a congruence Θ ∈ Con(D) below σI (in fact, below

µI), which will depend on both V and E, and set C = D/Θ. Θ will be sparse in a sense we will

make precise. Then we will define a set B ⊂ C`, and show that a preorder � recovering the index

set I is definable there; vertices will interpret as unions of two �-biequivalence classes, and the

edge relation from G will be first-order definable on these vertices. Here “definable” will include

reference to |A|+ 1 parameters (in addition to the diagonal).

We begin with a graph G = 〈V,E〉, and set I = V ± t {∞} as in Lemma IV.5. Define D ≤ SI

to be the subalgebra consisting of all elements which are constant modulo σ. By the same logic

applied in Claim IV.5.2, SD
U consists of those f ∈ (SS

U )I such that all f i belong to the same coset

modulo TS
U . (Here the coordinate functions fv

+
, fv

−
may be different.) The relation C(σ, µ;⊥)

implies that a polynomial f(v0) = t(v0, ~d) whose image is contained in U I is either a permuation

of U at all coordinates or collapses traces to points at all coordinates. We note for future reference

that

Claim IV.6.1. if f1, f2 ∈ SS
U belong to the same coset modulo TS

U , and if f1(M) = M = f2(M)

then by Lemma IV.5 f1|M = f2|M

In particular, this is true if these are the coordinate functions of some f ∈ SD
U . a IV.6.1
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Let C = D/Θ, where Θ is the congruence on D generated by identifying

m1|v+ ⊕m0|I\{v+} ≡Θ m1|v− ⊕m0|I\{v−} (v ∈ V )

m1|{v+,w+} ⊕m0|I\{v+,w+} ≡Θ m1|{v−,w−} ⊕m0|I\{v−,w−} (v
E
— w)

Claim IV.6.2. (i) Θ ≤ µI , and if x1 ≡Θ x2 then x∞1 = x∞2 .

(ii) Θ|UI has blocks of cardinality 1 and 2 only.

(iii) If x1,x2 ∈ U I and x1 ≡Θ x2, then the set of coordinates where they differ is either empty,

one V -block {v+, v−}, or two V -blocks {v+, v−, w+, w−} where v
E
— w.

The first statement is clear. To see (ii), first observe that if f ∈ Pol1(D|U ) \SD
U then

f(m1|{v+} ⊕m0|I\{v+}) = f(m0|I) = f(m1|{v−} ⊕m0|I\{v−})

so it suffices to consider images of generating pairs under permutations f ∈ SD
U . Next, since SS

U/T
S
U

acts on orbits and since we may assume that O(m0) 6= O(m1), we may conclude that any image

f(m1|{v+}⊕m0|I\{v+}) takes values in one orbit at all coordinates except v+ and in a different orbit

there, and similarly for the other elements involved in the generating pairs. We prove the claim for

generators of the vertex type; the edge-type argument is no different.

Given any putative Θ|U -block of more than two elements, we can find a subset of three elements

of the form

x1 = f1(m1|{v+} ⊕m0|I\{v+}) = f2(m1|{v+} ⊕m0|I\{v+}) = x2

y1 = f1(m1|{v−} ⊕m0|I\{v−})
?
= f2(m1|{v−} ⊕m0|I\{v−}) = y2

or vice versa. The first line shows that f−1
2 ◦ f1(M I) = M I ; but since f−1

2 ◦ f1 ∈ TD
U , it must fix M I

pointwise. Hence y1 = y2.

Looking a little more closely at the argument, we see that in fact a pair of unequal elements

x1,x2 ∈ U I are Θ-related iff they are the image of a generating pair under some f ∈ SD
U . Claim

(iii) follows immediately. a IV.6.2

With this claim in hand, it is well-defined to speak of x∞ for x ∈ C. Furthermore, by Claim

IV.6.1, the image of any member of a generating pair under f ∈ SD
U cannot be a constant element.

(In other words, the constant elements of U I are isolated modulo Θ.)

Throughout the remainder of the proof, any `-tuple y or z will be assumed to be σ-congruent

to b0, and to satisfy the condition

c = t0(a0,b0) ≡Θ t0(a0,y) (IV.6.3)

(which is clearly first-order in C). Since c is isolated, this is in fact an equality. (For instance,

every `-tuple from {b0, b1}I satisfies this condition, and our life would be much easier if we could
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work with just that set. The following can be read as a way of coming as close to this as feasible.)

Claim IV.6.4. Define a parameter b = b1|∞⊕b0|I\{∞} which will be fixed throughout the remainder

of the proof. The predicates

ES(y∞, b0) = A

and

ES(y∞, b1) = A

(in the free variable y) are definable using b together with |A| other parameters.

This is because

ES(y∞, b0) = A ⇐⇒
∧
a∈A

a|∞ ⊕ a0|I\{∞} ∈ EC(b0,y)

ES(y∞, b1) = A ⇐⇒
∧
a∈A

a|∞ ⊕ a0|I\{∞} ∈ EC(b1,y)

We will not name or even make explicit mention of the parameters a|∞ ⊕ a0|I\{∞} any more,

but they are implicitly present in all that follows. a IV.6.4

The next claim does most of the heavy lifting in this lemma.

Claim IV.6.5. Suppose y satisfies condition (IV.6.3) and that ES(y∞, b1) = A. Then the set

P (y) :=

⊕
i 6=∞

ES(b0, y
i)⊕

(
A \ ES(b0, b1)

) /Θ

is a definable subset of C.

To show this, we will need one auxiliary definition which will be repeatedly useful:

Definition. If ES(y∞1 , b0) = A = ES(y∞2 , b1), write y1 ∝ y2 if the following equivalent conditions

are satisfied:

(1) ES(yi1, y
i
2) = A for all i 6=∞

(2) EC(b0, b) ⊆ EC(y1,y2)

To see that these conditions are in fact equivalent, in the direction (1) ⇒ (2), if t0(x,b0) ≡Θ

t0(x, b), then

t0(x∞, y∞1 ) = t0(x∞, b0) = t0(x∞, b1) = t0(x∞, y∞2 )
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so that t0(x,y1) is in fact equal to t0(x,y2). Conversely, fix i 6=∞ and a ∈ A. We know that

c = t0(a0,y1) = t0(a0,y2)

and

t0(a|i ⊕ a0|I\{i},b0) = t0(a|i ⊕ a0|I\{i}, b)

hence

t0(a|i ⊕ a0|I\{i},y1) ≡Θ t0(a|i ⊕ a0|I\{i},y2)

and these elements do not differ except possibly at i; hence they are in fact equal, showing that

t0(a, yi1) = t0(a, yi2)

Note that condition (2) is clearly first-order.

Now to the proof of Claim IV.6.5: let y be as in the statement, and let z be the tuple which

agrees with b0 at ∞ and with y everywhere else, so z ∝ y.

Now assume further that x ∈ P (y). Then

t0(x,b0) = t0(x, z) and

t0(x, b) = t0(x,y) and

t0(x,b0) 6≡Θ t0(x, b)

We have shown

x ∈ P (y)⇒ ∃z ≡σ b0 ES(z∞, b0) = A and z ∝ y and

x ∈ EC(b0, z) ∩ EC(b,y) and

x /∈ EC(b0, b)

Next, we show that the converse holds as well.

Assume the following:

x ∈ AI but not in P (y) (IV.6.6)

z ≡σ b0 with ES(z∞, b0) = A (IV.6.7)

z ∝ y (IV.6.8)

x ∈ EC(b0, z) ∩ EC(b,y) (IV.6.9)

We must show that x ∈ EC(b0, b).

By (IV.6.6), we know that for some i 6= ∞, xi /∈ ES(b0, y
i). By (IV.6.8), ES(yi, zi) = A for all

i 6=∞.
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Working in D, define elements

u00 = t0(x,b0) t0(x, z) = u01

u10 = t0(x, b) t0(x,y) = u11

Our assumptions imply the following:

u∞10 = u∞11 since ES(y∞, b1) = A (IV.6.10)

u∞00 = u∞01 by (IV.6.7) (IV.6.11)

i 6=∞⇒ ui00 = ui10 (obvious) (IV.6.12)

i 6=∞⇒ ui01 = ui11 by (IV.6.8) (IV.6.13)

u00 ≡Θ u01 by (IV.6.9) (IV.6.14)

u10 ≡Θ u11 by (IV.6.9) (IV.6.15)

u10 6= u11 by (IV.6.6) (IV.6.16)

Together, these imply that u00 6= u01 also.

Choose f ∈ SD
U so that {f(u10), f(u11)} is a generating pair for Θ, and let wij = f(uij). Then

(IV.6.10)-(IV.6.16) are still true of the wij . By definition, w10,w11 ∈ M I ; the same is true of

w00,w01, which is shown as follows: for i 6=∞, wi0j = wi1j ∈ M , while at ∞ we can use C(σ, σ;µ)

to get

f∞t0(a0, b0) = f∞t0(a0, b1)

⇓

w∞01 = w∞00 = f∞t0(x∞, b0) ≡µ f∞t0(x∞, b1) = w∞10 ∈M

Similarly, we may choose g ∈ SD
U so that {g(w00),g(w01)} is a generating pair for Θ, whose

nontriviality is guaranteed by (IV.6.16). But we have gi(M) = M for all i ∈ I, so we may assume

(by Claim IV.6.1) that gi = gj = g for all i, j ∈ I.

Now: since {w10,w11} form a generating pair for Θ and since |V | ≥ 3, there exists v ∈ V so

that wv
+

10 = wv
+

11 . This value cannot be m1, so we have

wv
+

00 = wv
+

10 = m0 = wv
+

11 = wv
+

01

Hence

g(wv
+

00 ) = g(m0) = g(wv
+

01 )
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which implies g(m0) = m0 (since {g(w00),g(w01)} are a generating pair). But then

(g(w00))∞ = m0 = (g(w01))∞

⇓

w∞00 = m0 = w∞01 = w∞10 = w∞11

⇓

w00 = w10

⇓

u00 = u10

⇓

x ∈ EC(b0, b)

This completes the proof of Claim IV.6.5. a IV.6.5

The foregoing claim implies that the mapping

y 7→ ES(b0, y
i)

on the set of those points y ≡σ b0 such that

ES(y∞, b1) = A

is invariant modulo Θ. Let y be such a point. For any a ∈ A, a ∈ EC(b,y) iff a belongs to all the

factor sets ES(b0, y
i) (i 6=∞). It follows that the set B of those y such that

ES(b0, b1) ⊆ ES(b0, y
i) for all i 6=∞ and ES(y∞, b1) = A

that is, those y such that

ES(b0, y
i) ∈

{
ES(b0, b1), A

}
for all i 6=∞

is definable (by asserting that a ∈ EC(b,y) for each a ∈ ES(b0, b1)). We may define a preorder on

B by

y1 � y2 ⇐⇒ P (y2) ⊆ P (y1)

(Note the reverse inclusion.) Because we chose ES(b0, b1) maximal, the associated partial order is

isomorphic to the boolean algebra with 2|V | atoms. Indeed, each tuple b1|i,∞ ⊕ b0|I\{i,∞} sits at

�-level 1; we denote the elements at�-levels one and two by B1 and B2 respectively. Let WHO(v0)

be a formula (in the parameters we have already mentioned) asserting that v0 ∈ B1.

For y ∈ B1, let χ(y) denote the (unique) coordinate i 6=∞ such that ES(b0, y
i) = ES(b0, b1) ( A.

If χ(y) ∈ {v+, v−} we set |χ|(y) = v.
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Assume that |χ|(y1) = |χ|(y2). Then either χ(y1) = χ(y2), which we know to be definable, or

for some v ∈ V we have χ(y1) = v+ and χ(y2) = v− (or vice versa). Define

b+ = b1|v+,∞ ⊕ b0|else b− = b1|v−,∞ ⊕ b0|else

Then b+,b− ∈ B1, χ(y1) = χ(b+), and χ(y2) = χ(b−). Next define

z+ = b1|v+ ⊕ b0|else z− = b1|v− ⊕ b0|else

Then z+ ∝ b+, z− ∝ b−, and

t0(a1, z
+) = m1|v+ ⊕m0|else ≡Θ m1|v− ⊕m0|else = t0(a1, z

−)

We have shown that for y1,y2 ∈ B1,

|χ|(y1) = |χ|(y2)⇒ C |= χ(y1) = χ(y2) or

∃v3, v4, v5, v6,WHO(v3) & WHO(v4) &

χ(y1) = χ(v3) & χ(y2) = χ(v4) &

v5 ∝ v3 & v6 ∝ v4 &

t0(a1, v5) = t0(a1, v6)

Let the last formula be denoted EQ(y1,y2), with the understanding that the variables v3 through

v6 are really `-tuples.

Claim IV.6.17. The converse holds too; that is, the formula EQ(v1, v2) defines the equivalence

relation |χ|(v1) = |χ|(v2) on B1.

To show this, let χ(y1) = v+, say, and χ(y2) /∈ {v+, v−}; we must show ¬EQ(y1,y2). To this

end, let y3,y4 ∈ B1 with χ(y3) = χ(y1), χ(y4) = χ(y2), and let z5 ∝ y3, z6 ∝ y4. Then for i 6=∞,

t0(a1, z
i
5) = t0(a1, y

i
3) and t0(a1, z

i
6) = t0(a1, y

i
4) by the definition of the relation ∝. Hence

If i =∞ then t0(a1, z
i
5) = t0(a1, b0) = t0(a1, z

i
6)

If i = v+ then t0(a1, z
i
5) = t0(a1, y

i
3) 6= t0(a1, b0) = t0(a1, y

i
4) = t0(a1, z

i
6)

If i = χ(y2) then t0(a1, z
i
5) = t0(a1, y

i
3) = t0(a1, b0) 6= t0(a1, y

i
4) = t0(a1, z

i
6)

Otherwise t0(a1, z
i
5) = t0(a1, y

i
3) = t0(a1, b0) = t0(a1, y

i
4) = t0(a1, z

i
6)

We have that t0(a1, z5) differs from t0(a1, z6) in exactly two coordinates, which do not form a

V-block; hence these two elements are not Θ-congruent. This proves the claim. a IV.6.17

All that remains is to show that the edge relation is recoverable, so suppose v
E
— w, |χ|(y1) = v
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and |χ|(y2) = w. Let χ(y+
v ) = v+, χ(y−v ) = v−, χ(y+

w) = w+, χ(y−w) = w−, and define

b+
vw = b1|v+,w+,∞ ⊕ b0|else b−vw = b1|v−,w−,∞ ⊕ b0|else

We have b+
vw,b

−
vw ∈ B2, y+

v ,y
+
w � b+

vw, and y−v ,y
−
w � b−vw. Next define

z+
vw = b1|v+,w+ ⊕ b0|else z−vw = b1|v−,w− ⊕ b0|else

Then z+
vw ∝ b+

vw, z−vw ∝ b−vw, and

t0(a1, z
+
vw) = m1|v+,w+ ⊕m0|else ≡Θ m1|v−,w− ⊕m0|else = t0(a1, z

−
vw)

We have shown that for y1,y2 ∈ B1,

|χ|(y1)
E
— |χ|(y2) ⇒ ∃v3, . . . , v10

∧
3≤j≤6

vj ∈ B1 &
∧

7≤j≤8

vj ∈ B2 &

|χ|(v3) = |χ|(v4) = |χ|(y1) 6= |χ|(y2) = |χ|(v5) = |χ|(v6) &

χ(v3) 6= χ(v4) & χ(v5) 6= χ(v6) &

v3, v5 � v7 & v4, v6 � v8 &

v9 ∝ v7 & v10 ∝ v8 & t0(a1, v9) = t0(a1, v10)

Call this formula EDGE(y1,y2) (again all variables v3 through v10 are secretly `-tuples).

Claim IV.6.18. The converse holds too; that is, the formula EDGE(v1, v2) recovers the edge

relation of G on B1/|χ|.

The proof is similar to the last claim’s. Assume |χ|(y1) 6= |χ|(y2) and |χ|(y1) 6 E— |χ|(y2). Let

y3, . . . ,y8, z9, z10 be as in the statement. Then since z9 ∝ y7 and z10 ∝ y8, for all i 6=∞ we have

t0(a1, y
i
7) = t0(a1, z

i
9) t0(a1, y

i
8) = t0(a1, z

i
10)

By assumption, ES(b0, z
∞
9 ) = A = ES(b0, z

∞
10), so in particular

t0(a1, z
∞
9 ) = t0(a1, b0) = t0(a1, z

∞
10)
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Now for i ∈ V ±

If i ∈ {χ(y3), χ(y5)}

then t0(a1, z
i
9) = t0(a1, y

i
7) 6= t0(a1, b0) = t0(a1, y

i
8) = t0(a1, z

i
10)

If i ∈ {χ(y4), χ(y6)}

then t0(a1, z
i
9) = t0(a1, y

i
7) = t0(a1, b0) 6= t0(a1, y

i
8) = t0(a1, z

i
10)

Otherwise

t0(a1, z
i
9) = t0(a1, y

i
7) = t0(a1, b0) = t0(a1, y

i
8) = t0(a1, z

i
10)

Hence t0(a1, z9) differs from t0(a1, z10) on a set of precisely four coordinates {v+, v−, w+, w−} where

v 6 E— w. It follows that

t0(a1, z9) 6≡Θ t0(a1, z10)

which proves the Claim. a IV.6.18

We have shown that the hereditarily undecidable class of finite graphs can (with possibly finitely

many exceptions) be interpreted uniformly into finite members of HSP (S); hence this variety is

hereditarily finitely undecidable.

Lemma IV.7. The strongly-solvable radical of every finite algebra lying in a finitely-decidable

variety is abelian.

Proof. Let S be a counterexample of minimum possible cardinality, with strongly-solvable radical

σ. We aim for a contradiction.

Claim IV.7.1. S is subdirectly-irreducible.

To see this, let

t(a1,~b1) = t(a1,~b2)

but

t(a2,~b1) 6= t(a2,~b2)

witness ¬C(σ, σ;⊥S), and let α be maximal for separating t(a2,~b1) from t(a2,~b2). Then α is meet-

irreducible and α ∨ σ is strongly-solvable over α. Then the strongly-solvable radical of S/α is not

abelian, so if α > ⊥S then S/α would be a smaller counterexample. a IV.7.1

Let µ denote the monolith of S. Again by minimality, we also have that C(σ, σ;µ). Of course,

since σ is nontrivial, the monolith has unary type. By Lemma III.1, the centralizer of µ is a

strongly-solvable congruence. We have that S satisfies all the hypotheses of Lemma IV.2, but by

assumption, HSP (S) is not finitely undecidable; hence we must have that for all (⊥S , µ)-minimal

sets U , C(σ, µ|U ;⊥).
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Now by Lemma IV.5, we have that for any (⊥, µ)-minimal set U , the action of TS
U inside any

trace N ⊂ U is trivial.

Claim IV.7.2. C(µ, σ;⊥); equivalently, [µ, σ] = ⊥.

Suppose otherwise. Choose a witnessing package

t(a1,~b1) = t(a1,~b2)

but

t(a2,~b1) 6= t(a2,~b2)

such that a1, a2 belong to some traceN inside a (⊥, µ)-minimal set U and the polynomial t(v0, . . . , vk)

respects U . Then it is not possible for either of the functions

fi(v0) = t(v0,~bi)

(i = 1, 2) to collapse traces to points; hence these two functions are twin elements of SS
U .

But then the first line (equality) says that f−1
2 ◦ f1(a1) = a1, implying that f−1

2 ◦ f1(N) = N ;

but the second line yields f−1
2 ◦ f1(a2) 6= a2. This contradiction proves the claim. a IV.7.2

By Theorem 4.5 of [Kea93], Claim IV.7.2 implies that µ is σ-coherent. We have already

shown that the hypothesis of the coherence property,
˘

N C(σ, µ|N ;⊥), holds; hence we have both

C(µ, σ;⊥) and C(σ, µ;⊥).

This shows that S satisfies all the hypotheses of Lemma IV.6. Since our assumption was that

HSP (S) is not finitely undecidable, we must have C(σ, σ;⊥). But this contradicts our choice of S

as a counterexample.

IV–D. Proof of Theorem B

We have spent considerable effort to show that failures of abelianness in strongly-solvable congru-

ences are bad. But could it not be the case that a strongly-solvable congruence could be abelian

but not strongly-abelian? It turns out the answer is no:

Lemma IV.8 ([MV89, Theorem 7.4]). If F is a finite algebra with a strongly-solvable congruence

which is abelian but not strongly-abelian, then HS(F2) contains an algebra with a strongly-solvable

congruence which is not abelian.

Proof. Let σ ∈ Con(F) be strongly-solvable and abelian, but not strongly-abelian. If σ is not

abelian over some congruence beneath it, we are done; so without loss of generality σ is strongly-

abelian over every nontrivial congruence ⊥ < α ≤ σ. (Else pass from F to its quotient by a

congruence maximal for σ not being strongly-abelian over it.) We have that

σ × σ = η−1
1 (σ) ∧ η−1

2 (σ)
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is a strongly-solvable congruence of F2.

Let

c1 = t(a1,~b1) 6= t(a1,~b2) = c3

c2 = t(a2,~b1) 6= t(a2,~b2) = c1

witness the failure of strong abelian-ness of σ over ⊥F . Since σ is strongly-abelian over every

nontrivial α ≤ σ, it follows that c1 ≡α c2 ≡α c3 for all such α; in particular, there is only one

congruence atom µ = Cg(〈c1, c2〉) = Cg(〈c1, c3〉) below σ.

Since C(σ, σ;⊥), for any polynomial p(x) ∈ Pol1(F) we have

p(c1) = p(t(a1,~b1)) = p(t(a2,~b1)) = p(c2)

m (IV.8.1)

p(c3) = p(t(a1,~b2)) = p(t(a2,~b2)) = p(c1)

Our proof will proceed somewhat differently depending on whether a1, a2 could be chosen µ-

equivalent. If this is not possible, then for all polynomials s and all m1 ≡µ m2 and ~u1 ≡σ ~u2,

s(m1, ~u1) = s(m2, ~u2) ⇒ s(m1, ~u1) = s(m1, ~u2) = s(m2, ~u1) (IV.8.2)

In both cases, let C ≤ F2 be the subalgebra generated by the diagonal together with
(
a1
a2

)
. Then

as subalgebras, C ≤ σ, and if a1 ≡µ a2 then C ≤ µ. Let β ∈ Con(C) be generated by identifying(
c1
c2

)
≡β
(
c3
c1

)
. We will show that σ × σ is not abelian over β.

Claim IV.8.3.
(
c1
c1

)
is isolated mod β; that is, there do not exist f ∈ Pol1(F) and

(
e1i
e2i

)
∈ C such

that (
c1

c1

)
=

(
f(c1, ~e1)

f(c2, ~e2)

)
6=
(
f(c3, ~e1)

f(c1, ~e2)

)
=

(
d1

d2

)
Suppose first that a1 could not be chosen µ-congruent to a2. By equation (IV.8.2), c1 =

f(c2, ~e1) = f(c1, ~e2) = d2; it follows by equation (IV.8.1) that c1 = f(c1, ~e1) = f(c3, ~e1) = d1. This

contradiction proves the first case of the claim.

In the other case, assume that a1 ≡µ a2, so that C is a subalgebra of µ, which is a strongly-

abelian congruence. The equality f(c1, ~e1) = f(c2, ~e2) implies that

c1 = f(c2, ~e2) = f(c2, ~e1) = f(c1, ~e2) = d2

Equation (IV.8.1) implies that f(c3, ~e1) = c1 too. a IV.8.3
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With the previous claim in place, the following failure of the term condition(
c1

c2

)
= t

((
a1

a2

)
,

(~b1
~b1

))
≡β t

((
a1

a2

)
,

(~b2
~b2

))
=

(
c3

c1

)
(
c2

c2

)
= t

((
a2

a2

)
,

(~b1
~b1

))
6≡β t

((
a2

a2

)
,

(~b2
~b2

))
=

(
c1

c1

)
shows that σ × σ is not abelian over β.

Proof of Theorem B. By Lemma IV.8, if A is any finite algebra whose strongly-solvable radical

is not strongly-abelian, then HSP (A) contains a finite algebra whose strongly-solvable radical is

nonabelian. By Lemma IV.7, such an algebra cannot lie in any finitely-decidable variety.
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CHAPTER V

RESIDUAL FINITENESS

The goal of this chapter is to prove Theorem C. For the remainder of this section, fix a finitely

generated, finitely-decidable variety V, say V = HSP (K), where K is a finite set of finite algebras.

Lemma V.1. V contains only finitely many subdirectly-irreducible finite algebras whose monolith

is of boolean type.

Proof. We will show that in fact every finite subdirectly-irreducible

S ∈ HSP (K)

with boolean-type monolith already belongs to HS(K).

So let S be a quotient of

B ≤
p∏
i=1

Ai

where each Ai ∈ K and p is the smallest number of factors for which such a representation exists;

say S ∼= B/π, where π is meet-irreducible, with upper cover µ such that typ(π, µ) = 3. The

minimality of p implies that each η̂i =
∧
j 6=i ηj has no congruence θ above it such that B/θ ∼= S; in

particular, for each i, η̂i ∨ π ≥ µ.

Choose some (π, µ)-minimal set U = e(B). Then U has empty tail and only one trace, so

U = {x,y}. Let β = Cg(〈x,y〉), and observe that µ = π ∨ β.

Claim V.1.1. Con(B) = I[⊥, π] t I[β,>].

The disjointness is obvious. Let θ 6≤ π. Then θ ∨ π ≥ µ, and in particular identifies x and y.

String a chain of elements between them:

x ≡θ z1 ≡π z2 ≡θ · · · ≡π zn ≡θ y

and hit this chain with e:

x = e(x) ≡θ e(z1) ≡π e(z2) ≡θ · · · ≡π e(zn) ≡θ e(y) = y

The resulting chain is in U , so the π-links are trivial, implying that x ≡θ y, as claimed. a V.1.1

We have already seen that η̂i 6≤ π for any 1 ≤ i ≤ p; by the claim, each η̂i identifies x and y.

But now observe that if p were to be greater than 1, we would have

〈x,y〉 ∈ η̂1 ∩ η̂2 = ⊥

which would be absurd. Hence p = 1 and the theorem follows.
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Lemma V.2. V contains only finitely many subdirectly-irreducible finite algebras whose monolith

is of affine type.

The proof adapts from, but corrects an error in, [MS05] Section 12.

Proof. Let S ∈ HSP (K) be subdirectly-irreducible with affine monolith; say S = B/π, where

B ≤s
p∏
i=1

Ai (Ai ∈ K)

Without loss of generality K = HS(K), and the representation is minimal in the sense that S is not

representable in this way by fewer than p factors from K, and moreover if βi ∈ Con(Ai) and S is a

quotient of a subalgebra of
∏
i Ai/βi then all βi are trivial.

Claim V.2.1. Let σi denote the strongly-solvable radical of Ai, and σ1 × · · · × σp = σ ∈ Con(B).

Then σ ≤ π.

Suppose this were false. Let

⊥B ≤ α−
1
≺ α+ ≤ σ

such that α− ≤ π but π ≤ β−
2,3
≺ β+ = α+ ∨ π. Then the covers α−

1
≺ α+ and β−

2,3
≺ β+ are

projective, which is absurd (cf. Theorem II.5). a V.2.1

Our minimality assumption implies now that each Ai in the representation of B has trivial

strongly-solvable radical. By Lemma II.7, B has Day polynomials; hence the term condition on

congruences of B is symmetric in the first two variables.

It follows by Theorem 10.1 of [FM87] that S/ζ ∈ HS(K), where ζ denotes the centralizer of the

monolith µ; in particular,

|S/ζ| ≤ max{|A| : A ∈ K}

We will be done if we can show that there is also a bound on the number of elements of each

ζ-block. From now on we will forget about B and work only in S. Let {Ci = ri/ζ : 1 ≤ i ≤ `} be

an injective enumeration (with fixed representatives) of the ζ-classes, C any fixed one of them, and

U a (⊥S , µ)-minimal set containing a monolith pair {0, a}.
As before, we have a Malcev polynomial m(v1, v2, v3) on U ; furthermore, if Q ⊆ U denotes the

ζ-class of 0 in U , then m respects Q. Since the tail of U is empty, S|U is then an abelian Malcev

algebra. By a standard argument, the operation m(x, y, z) = x − y + z defines an abelian group

operation on Q under which 0 is the identity element.

Claim V.2.2. The set of polynomial functions

R = {f(v) ∈ Pol1(S|Q) : f(0) = 0}

is a ring of endomorphisms of Q (under pointwise addition and function composition), and the size

of R is bounded independent of S.
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The only nontrivial piece of the first part is that each such f respects addition:

f(x) = f(x− y + y) + f(0) = f(y − y + 0) + f(x) = f(x)

⇓

f(x+ y) = f(x− 0 + y) + f(0) = f(y − 0 + 0) + f(x) = f(y) + f(x)

The second comes from the fact that each f ∈ R is given by an ` + 1-ary term operation in a

uniform way: if f(x) = t(x,~s) then

0 = t(0, ~s)− t(0, ~s) = t(0, ~r)− t(0, ~r)

⇓

t(x,~s) = t(x,~s)− t(0, ~s) = t(x,~r)− t(0, ~r)

where ~r denotes the chosen representatives of the ζ-classes. Hence |R| ≤ |FV(1 + `)|. a V.2.2

Now: for any s1 6= s2 ∈ S, there exists a polynomial f(v0) = t(v0, ~s) so that t(s1, ~s) = 0 and

t(s2, ~s) = a. In particular, if s1 = 0, s2 ∈ Q then we may take f ∈ R.

What this shows is that Q is subdirectly-irreducible as an R-module. By Theorem 1 of [Kea91],

|Q| ≤ |R|.
Now we are almost done: we have already noted that for each c, d ∈ C there exists a term

t(v0, . . . , v|S|) with t(c, ~s) = 0, t(d,~s) = a. One has

et(d,~s)− et(d,~s) = et(d, ~r)− et(d, ~r)

⇓

a = et(d,~s)− et(c, ~s) = et(d, ~r)− et(c, ~r)

where all these values must lie in Q. Hence the map

C → QFV (1+`)

x 7→ 〈et(x,~r) : t ∈ FV(1 + `)〉

is injective.

We have shown

|C| ≤ |Q||FV (1+`)| ≤ |R||FV (1+`)| ≤ |FV(1 + `)||FV (1+`)|

which, combined with the fact that

|S| ≤ |C| ·max
A∈K

(|A|)

completes the proof.
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We will need the following technical lemma limiting the number of variables which can be

independent (modulo a strongly-abelian congruence) in a polynomial operation.

Lemma V.3. Let A be a finite algebra in a locally-finite variety V, and β a strongly-abelian

congruence on A, and t(v0, ~v1, . . . , ~v`) be any polynomial operation of A. Let M = log |FV(`+ 2)|.
Then there exist subsets v̆i ⊂ ~vi of size no more than M , such that for any β-blocks B1, . . . , B` the

mapping

A× ~B1 × · · · × ~B` → A

〈a,~b1, . . . ,~b`〉 7→ t(a,~b1, . . . ,~b`) (V.3.1)

depends only on the variables v0 and v̆i.

Proof. For simplicity, we show the case ` = 2. Let t(v0, v
1
1, . . . , v

k1
1 , v

1
2, . . . , v

k2
2 ) be our term, and

let 2k1 > |FV(4)|.
For S ⊂ {1, . . . , k1} let pS(v0, x, y, v2) be the substitution instance of t obtained by identifying

all vi2 to the single variable v2, and substituting x for vi1 if i ∈ S and y if not. Then by Pigeonhole,

there exist S 6= S′ so that V |= pS = pS′ . Say k1 ∈ S but not S′; we claim that no mapping as in

(V.3.1) can depend on vk11 .

To see this, let a ∈ A, b, c ∈ B1, and d ∈ B2. Let qS(v0, x, y, v
k1
1 , v2) be like pS , except that vk11

is left unsubstituted, and likewise for qS′ . Then

qS(a, b, c, b, d) = qS′(a, b, c, c, d)

But now since β is strongly-abelian, if ~x ≡β b and ~y ≡β d, the strong term condition gives that

t(a, ~x, b, ~y) = t(a, ~x, c, ~y)

so t is insensitive to changes modulo β in the vk11 coordinate. Similarly, if 2k2 > |FV(4)| then t is

insensitive to changes mod β in some coordinate vi2. The general result now follows by a downward

induction.

Lemma V.4. V contains only finitely many subdirectly-irreducible finite algebras whose monolith

is of unary type.

Proof. Let S ∈ V be subdirectly-irreducible with unary-type monolith

µ = CgS(〈c, d〉)

We already know that typ {S} ⊂ {1, 3}. By Theorem B, the strongly-solvable radical σ is a strongly-

abelian congruence. Theorem A tells us that either σ = >S or is meet-irreducible with upper cover

of boolean type. In either case,

` := |S/σ| ≤Mbool
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(where Mbool denotes the maximum cardinality of a finite SI in V with boolean-type monolith).

Fix some enumeration 〈~s1, . . . , ~s`〉 of S with each σ-block Bi enumerated together. We must now

put a uniform bound on the size of σ-blocks.

Let B be any σ-block. Since any unequal pair of elements generates a congruence above µ, we

have that for any b 6= b′ ∈ B, there exists a unary polynomial p(v0) = t(v0, ~s1, . . . , ~s`) such that

p(b) = c iff p(b′) 6= c. By Lemma V.3, these terms depend (up to changes mod σ) on v0 and subsets

s̆i, 1 ≤ i ≤ `, each of size no more than M := log(FV(`+ 2)). Let P = BM
1 × · · · ×BM

` .

For b ∈ B, we define a subset G(b) ⊂ FV(1 + `M) to consist of those terms t(x, ~y) such that for

some ~p ∈ P , t(b, ~p) = c. Observe that for any b1 6= b2, at least one of G(b1), G(b2) is nonempty.

Claim V.4.1. The mapping b 7→ G(b) is injective.

Let b1 6= b2, and assume towards a contradiction that G(b1) = G(b2). Choose a term t and a

~p1 ∈ Σ so that c = t(b1, ~p1) 6= t(b2, ~p1). Then t ∈ G(b1) = G(b2), so we can choose ~p2 ∈ Σ so that

t(b2, ~p2) = c. Hence we have a failure

c = t(b1, ~p1) t(b1, ~p2)

c 6= t(b2, ~p1) t(b2, ~p2) = c

of the strong term condition, since the entries are equal along the diagonal but not along the rows

and columns. This contradicts the strong abelianness of σ. a V.4.1

We have just shown that

|B| ≤ 2|FV (1+`M)|

which is uniformly bounded in V. This completes the proof.

Proof of Theorem C. Since V is locally-finite, it suffices to prove that V contains only finitely many

finite subdirectly-irreducible algebras. (It is a well-known result, originally due to Quackenbush,

that an infinite SI algebra in a locally-finite variety has arbitrarily large finite SI subalgebras

generated by a monolith pair together with other elements.) Since V is finitely-decidable, it omits

the semilattice and lattice types altogether; and Lemmas V.1, V.2, and V.4 combine to show that

there are only finitely many SIs in V with monoliths of the boolean, affine, or unary types.
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CHAPTER VI

TWO MULTI-SORTED CONSTRUCTIONS

We will be building two multi-sorted languages from which to effect an interpretation. While

it is possible to formalize multi-sorted model theory entirely in a usual first-order setting, this

formalization takes away much of the naturality of the multi-sorted definition. In particular, the

first-order formalization “gets wrong” the structural operations of direct product and substructure;

these are key for us, since we will be constructing varieties in our sorted model classes.

Definition VI.1. For our purposes, if L is a finite multi-sorted first-order language, every sort

must have nonempty extension in every L-structure. It follows (cf [ARV12]) that the Birkhoff

variety theorem holds without modification for L-structures.

Notation VI.2. Every atomic formula Φ(v1, v2, . . .) of a multi-sorted language must implicitly or

explicitly determine what sort each variable must be assigned from. We call this the type signature

of the formula. In particular, for a term t we write

t(S1, S2, . . .)→ S0

to denote that the formula

t(x1, x2, . . .) = x0

is meaningful only if x0 ∈ S0, x1 ∈ S1, x2 ∈ S2, and so forth.

For the remainder of this and the next section, fix a finite (single-sorted) algebraic language L

and a finite L-algebra A with a congruence α whose congruence classes are C1, . . . , CM .

VI–A. The sorted language Lα corresponding to a congruence α

Definition VI.3. The multi-sorted first-order language Lα will have the following nonlogical sym-

bols:

For each 1 ≤ i ≤M , the language will have a sort symbol 〈i〉.
For each basic operation symbol f(v1, . . . , vn) of L and all indices 1 ≤ i1, . . . , in ≤ M , Lα will

have a basic operations symbol fi1···in of type signature

fi1···in (〈i1〉 , 〈i2〉 , . . . , 〈in〉)→ 〈i0〉

where

Ci1 × · · · × Cin
tA→ Ci0 .

Construction VI.4. (1) We define an Lα-structure Aα in the natural way: each sort

〈i〉A
α

= Ci
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and if xk ∈ Cik for 1 ≤ k ≤ n,

fA
α

i1···in(x1, . . . , xn) = fA(x1, . . . , xn).

(2) More generally, let B be any L-structure such with a congruence αB such that there exists

an isomorphism ϕ : A/α→ B/αB. Define an Lα-structure Bα by declaring

〈i〉B
α

= ϕ(Ci)

and defining the basic operations

fB
α

i1···in(x1, . . . , xn) = fB(x1, . . . , xn)

for any xk ∈ ϕ(Cik). Note that the isomorphism ϕ will usually be clear in practice, so we do

not include it as a visible parameter in the symbol Bα. Similarly, we will usually refer to the

distinguished congruence of B as α rather than αB.

Proposition VI.5. Let M = Bα and N = Cα.

(1) Let D ≤ B have nonempty intersection with each α-class; then D satisfies the hypotheses of

Construction VI.4(2), and Dα is a substructure of M. Moreover, every substructure of M is

obtained in this way.

(2) Let θ ≤ α be a congruence on B; then B/θ satisfies the hypotheses of Construction VI.4(2),

and (B/θ)α is a homomorphic image of M. Moreover, every homomorphic image of M is

obtained in this way.

(3) Let D ≤ B×C be the subalgebra consisting of all pairs 〈b, c〉 such that ϕ−1(b/α) = ϕ−1(c/α).

Then D satisfies the hypotheses of Construction VI.4(2), and Dα is the product of M and N

in the sense of Lα. (This generalizes to any number of factors.)

As mentioned above, the classical proof that a class is equationally axiomatizable iff it is closed

under taking products, substructures, and homomorphic images is valid for multi-sorted algebras,

so it makes sense to talk about the variety V(Aα) = HSP (Aα). A representation of the free

algebras in this variety as subalgebras of a direct power of Aα, where the index set is itself a power

of Aα, does exist; but is not straightforward to write down, and one is better off thinking of free

algebras as algebras of terms. Note that the trivial algebra in this variety is the one where each

sort is a singleton, i.e. (A/α)α.

Lemma VI.6. (1) The sorted structure Bα is abelian (resp. strongly-abelian) if and only if the

congruence α was a (strongly) abelian congruence of B.

(2) If A belongs to a finitely-decidable variety and α is a (strongly) solvable congruence, then

HSP (Aα) is a (strongly) abelian variety.
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Proof. (1): A failure of the (strong) term condition C(α, α;⊥) in B is readily convertible into a

failure of the corresponding condition C(>,>;⊥) in Bα, and vice versa.

(2): By Theorem B, (strongly) solvable congruences in HSP (A) are (strongly) abelian.

If HSP (Aα) were to fail to be (strongly) abelian, this failure would be witnessed in a finitely

generated, and hence finite, structure M. We may suppose M = N/ϑ, where N is a substructure

of a direct power (Aα)X .

As we saw in Lemma VI.5, this direct power is the image under •α of the subalgebra P of AX

consisting of all α-constant tuples. Since any failure of (strong) abelianness would project to a

failure at some coordinate,

αP = αX ∩ (P × P )

is (strongly) abelian. Hence (Aα)X is (strongly) abelian.

We know that N = Bα for some B ≤ P, and moreover that

αB = αP ∩ (B ×B);

it follows any failure of (strong) abelianness in B would have represented one in P already. Hence

N is (strongly) abelian.

Finally, we have that there must exist θ ∈ Con(B) such that (B/θ)α = N/ϑ = M. But since α

is (strongly) abelian in B, θ is (strongly) solvable, and hence (strongly) abelian as well; and just

as in (1) any witness to the failure of the (strong) term condition C(>,>;ϑ) in N would give rise

to a failure of the corresponding condition C(α, α; θ) in B.

Corollary VI.7. If A belongs to any finitely-decidable variety and α is either the solvable radical

or the strongly-solvable radical of A, then HSP (Aα) semantically interprets into HSP (A).

Proof. The key observation is that, by Lemma IV.1, each of the congruences in the statement of

the theorem is uniformly definable in HSP (A), and our construction guarantees that αB is the

(strongly) solvable radical of B whenever α was of A.

Let c1, . . . , cM be new constant symbols. Take any M = Bα ∈ HSP (Aα), where M and B

can be taken to be on the same underlying set. First, assign ci to an arbitrary element of ϕ(Ci)

for each i. Then one can recover the sort of x by asserting that x and ci are congruent modulo

the radical; likewise the assertion fi1···in(x1, . . . , xn) = x0 is true in M iff each xk ≡Rad(B) cik and

f(x1, . . . , xn) = x0 in B.

It follows that whenever HSP (Aα) is finitely axiomatizable (which happens, for instance, when

the variety is strongly-abelian), then the (finite) undecidability of HSP (Aα) implies the (finite)

undecidability HSP (A) too.
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VI–B. The sorted language Aα[ corresponding to a strongly-abelian congruence α

The construction in the previous section required no assumptions about α. If, however, α is

strongly-abelian, then we can introduce a further sorted construction, generalizing that effected

by McKenzie and Valeriote in [MV89, Chapter 11]. For the remainder of this section, we add the

assumption that α is strongly-abelian.

Recall (Proposition II.13) that each induced algebra

A|Ci = 〈Ci ; {f ∈ Pol(A) : f(Ci, . . . , Ci) ⊆ Ci}〉

is a strongly-abelian algebra. For each 1 ≤ i ≤M , let Ki be the greatest arity of a decomposition

α-sorted term operation on Ci. (See Definition II.9 for a review of decomposition operators.) Fix

operators

di(v1, . . . , vKi) = Di(v1, . . . , vn,~a)

witnessing this; that is, di is a Ki-ary decomposition operator on Ci and Di(~x,~a) = Di(~x,~a
′)

whenever ~x ∈ Ci and ~a ≡α ~a′. By Proposition II.11, this determines a product decomposition

Ci = Ci,1 × · · · × Ci,Ki .

Definition VI.8. The multi-sorted first-order language Lα[ will have the following nonlogical

symbols:

For each 1 ≤ i ≤M and each 1 ≤ j ≤ Ki, the language will have a sort symbol 〈i, j〉.
For each α-sorted term operation

f(v1, . . . , vn) = t(v1, . . . , vn,~a) : Ci1 × · · ·Cin → Ci0

(~a ∈ Cin+1 × · · · ×Cin′ ) and each 1 ≤ j ≤ Ki0 the language Lα[ will have a basic operation of type

declaration

tji1···inin+1···in′


〈i1, 1〉 〈i2, 1〉 · · · 〈in, 1〉
〈i1, 2〉 〈i2, 2〉 · · · 〈in, 2〉

...
...

. . .
...

〈i1,Ki1〉 〈i2,Ki2〉 · · · 〈in,Kin〉

→ 〈i0, j〉 .
Note that every term t(v1, . . . , vn) of A is automatically a α-sorted term operation when re-

stricted to any product of n α-classes, so the entire atomic diagram of A is encoded in that of

Aα[. We will see in a moment that Aα[ is strongly-abelian; it follows that the language Lα[ may

be taken to be finite.

Proposition VI.9. Every term in the language Lα[ is obtained from one of the basic operations

tji1···in by possibly identifying some variables of the same sort.

The proof (by induction) is left to the reader.
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Construction VI.10. (1) We define an Lα[-structure Aα[ analogously to our definition of Aα

in Construction VI.4(1): each sort

〈i, j〉A
α[

= Ci,j

Now if tji1···inin+1···in′
is a basic operation symbol and xk,j ∈ Cik,j for 1 ≤ k ≤ n and 1 ≤ j ≤

Kik , set

xk =


xk,1

xk,2
...

xk,Kik

 (1 ≤ k ≤ n)

and choose any ~a ∈ Cin+1 × · · · × Cin′ . Let

tA(x1, . . . , xn,~a) = x0 =


x0,1

x0,2

...

x0,Ki0


It now makes sense to define

tji1···inin+1···in′


x1,1 x2,1 · · · xn,1

x1,2 x2,2 · · · xn,2
...

...
. . .

...

x1,Ki1
x2,Ki2

· · · xn,Kin

 = x0,j

(2) The foregoing construction generalizes to any L-structure B having a congruence αB such that

there exists an isomorphism ϕ : A/α→ B/αB, and such that the same termsDi(v1, . . . , vKi , . . . , vn′)

define decomposition α-sorted terms on the classes ϕ(Ci), with constants taken from the same

classes ϕ(Cin+1), . . . , ϕ(Cin′ ). (We do not require that no decomposition operator on ϕ(Ci)

have larger arity.)

Under these hypotheses, each αB class ϕ(Ci) decomposes into a product of Ki factors as

above, and the analogous definition produces a well-defined Lα[-structure Bα[.

We state without proof the analogues of the lemmata of Section VI–A., since all the proofs

differ only in the bookkeeping:

Proposition VI.11. Let M = Bα[ and N = Cα[.

(1) Let D ≤ B have nonempty intersection with each α-class; then D satisfies the hypotheses of

Construction VI.10(2), and Dα[ is a substructure of M. Moreover, every substructure of M

is obtained in this way.
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(2) Let θ ≤ α be a congruence on B; then B/θ satisfies the hypotheses of Construction VI.10(2),

and (B/θ)α[ is a homomorphic image of M. Moreover, every homomorphic image of M is

obtained in this way.

(3) Let D ≤ B×C be the subalgebra consisting of all pairs 〈b, c〉 such that ϕ−1(b/α) = ϕ−1(c/α).

Then D satisfies the hypotheses of Construction VI.10(2), and Dα[ is the product of M and

N in the sense of Lα. (This generalizes to any number of factors.)

Lemma VI.12. (1) The smallest equationally axiomatizable class containing Aα[ is the closure

of
{
Aα[

}
under HSP; this class is axiomatized by the set of all equations which hold in Aα[.

This variety is finitely axiomatizable.

(2) The sorted structure Bα[ is abelian (resp. strongly-abelian) if and only if the congruence α

was a (strongly) abelian congruence of B.

(3) If A belongs to a finitely-decidable variety and α is a (strongly) solvable congruence, then

HSP
(
Aα[

)
is a (strongly) abelian variety.

(4) If A belongs to any finitely-decidable variety and α is the strongly-solvable radical of A, then

HSP
(
Aα[

)
semantically interprets into HSP (A).

Proof. The only new statement here is that HSP
(
Aα[

)
is finitely axiomatizable.

It is well known (e.g. [MV89, Theorem 0.17]) that an (ordinary single-sorted) algebra X is

strongly-abelian if and only if for each term t(v1, . . . , vn) there exist equivalence relations E1, . . . , En

on X such that for all x1, y1 . . . , xn, yn ∈ X,

t(x1, . . . , xn) = t(y1, . . . , yn) ⇐⇒ 〈x1, y1〉 ∈ E1, . . . , 〈xn, yn〉 ∈ En.

Likewise, a congruence α is strongly-abelian iff for each term t and all α-classes

Ci1 × · · · × Cin
t→ C0

there exist equivalence relations Ek on Cik such that for all xk, yk ∈ Cik ,

t(x1, . . . , xn) = t(y1, . . . , yn) ⇐⇒ 〈x1, y1〉 ∈ E1, . . . , 〈xn, yn〉 ∈ En.

It follows that such a term action cannot depend on more than log2(|Ci0 |) of its variables; in

HSP
(
Aα[

)
, this means that the basic operation tji1···in can only depend essentially on at most

log2(|Ci0 |)·maxiKi variables. Since there are only finitely many equations using this many variables,

and since HSP
(
Aα[

)
is axiomatized by the subset of these which are true in Aα[, we are done.
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CHAPTER VII

ARITY BOUNDS IN HSP
(
Aσ[

)
This chapter is devoted to the proof of Theorem D. Most of the technical work is done by the

following theorem, whose proof will occupy the first two sections:

Theorem VII.1. Let A be a finite algebra in a variety where every strongly-solvable congruence

is strongly-abelian. Let σ be the strongly-solvable radical of A,

Ci1 × · · · × Cin
t→ Ci0 (VII.1.1)

be any σ-sorted term operation, and let Ki0 be the greatest arity of a σ-sorted decomposition term

on Ci0. If the map in (VII.1.1) depends essentially on more than Ki0 variables, then the class of

bipartite graphs interprets semantically into HSP
(
Aσ[

)
.

The construction and proof that follows is based on a construction first developed by Matt

Valeriote for his thesis, and subsequently used in [MV89] and [HV91].

VII–A. Preparatory lemmas

In this section, let A be a fixed finite algebra satisfying the hypotheses of Theorem VII.1. As

before, we choose a fixed enumeration C1, . . . , CM of the σ-classes. Fix σ-sorted decomposition

terms

di(v1, . . . , vKi) = Di(v1, . . . , vKi ,~a) : CKii → Ci

of maximal arity.

Proposition VII.2. The algebra Aσ[ is essentially unary if and only if every σ-sorted term oper-

ation

Ci1 × · · · × Cin
t→ Ci0 (VII.2.1)

depends on at most Ki0 variables.

Proof. We prove each contrapositive.

(⇒): Let the action of t(v1, . . . , vKi0+1, . . .) on the box in Equation (VII.2.1) depend essentially

on at least the first Ki0 + 1 variables. Choose a witnessing assignment

t(a, b2, . . . , bn) 6= t(a′, b2, . . . , bn)

in the first variable: then for some 1 ≤ j ≤ Ki0 ,

t(a, b2, . . . , bn) 6∼j t(a′, b2, . . . , bn)
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where

x ∼j y ⇐⇒ x =

x1

x2

...

xK

, y =

y1

y2

...

yK

and xj = yj (VII.2.1)

For this j, the term tji1···in depends on one of the variables in its first column. Similarly, for each

of the variables v2, . . . , vKi0+1 one of the terms tji1···in depends on a variable in the corresponding

column. Now use the pigeonhole principle to get one of the tji1···in depending on at least two

variables.

(⇐):

Claim VII.2.2. If tji1···in depends in Aσ[ on the variable in column c and row r, then in A the

operation

di0

(
y1, . . . , yj−1, t

(
di1

(
x1

1, . . . , x
Ki1
1

)
, . . . , din

(
x1
n, . . . , x

Kin
n

))
, . . . , yKi0

)
depends on xrc (as well as on each of the ys).

To see this, pick a witnessing package

tji1···in


b11 b12 · · · b1n

b21 b22 · · · b2n
...

... a
...

b
Ki1
1 b

Ki2
2 · · · b

Kin
n

 6= tji1···in


b11 b12 · · · b1n

b21 b22 · · · b2n
...

... a′
...

b
Ki1
1 b

Ki2
2 · · · b

Kin
n


Upstairs in A this becomes

t(b1, . . . , â, . . . , bn) 6∼j t(b1, . . . , â′, . . . , bn)

(see Equation VII.2.1) which is what we need. a VII.2.2

Now, let s be any term of Lσ[ which depends in Aσ[ on two of its variables. Without loss of

generality, we may take s to be equal to tji1···in , since identification of variables can never increase

essential arity. Let s depend on vrc , v
r′
c′ ; then the term

di0

(
y1, . . . , yj−1, t

(
di1

(
x1

1, . . . , x
Ki1
1

)
, . . . , din

(
x1
n, . . . , x

Kin
n

))
, . . . , yKi0

)
depends on all the y variables and xrc, x

r′
c′ .

Lemma VII.3. Let t(v1, v2, . . . , vn) be an Lσ[-term.

(1) If the formula t(v1, v1, v3, . . . , vn) = v1 is well-formed and holds universally in Aσ[, then t is

essentially unary in Aσ[.
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(2) If for some terms sk(v1, v2, . . .), the formula

t(s1(~v), s2(~v), . . . , sn(~v)) = v1

is well-formed and holds universally in Aσ[ (in which case we call t right-invertible) then t is

essentially unary in Aσ[.

Proof. (1) For any y3, y
′
3, . . . , yn, y

′
n in the appropriate sorts, the ranges of the polynomials

t(v1, v2, ~y), t(v1, v2, ~y′)

are not disjoint. Since Aσ[ is strongly-abelian, all such polynomials must in fact be equal.

Let t be a specialization of sji1i2··· for some term s(x1, x2, . . .) in L. Since v1, v2 have the same

sort as t, we may as well assume that v1 represents the j coordinate of x1, and similarly for

v2. The operation

g(y1, y2, . . . , jj−1, x1, x2, . . . , yj+1, . . . , yKi0 )

=

di0(y1, y2, . . . , yj−1, s(x1, x2, . . .), yj+1, . . . , yKi0 )

then depends only on the variables shown (i.e. not on x3, . . .) as a function on

Ci0 × · · · × Ci0︸ ︷︷ ︸
j−1

×Ci0 × Ci0 × Ci3 × · · · × Ci` × Ci0 × · · · × Ci0︸ ︷︷ ︸
n−j

→ Ci0

and is idempotent on the variables in sort 〈i0, j〉. Hence A has a σ-sorted term

g(y1, . . . , yj−1, x1, x2, yj+1, . . . , yKi0 )

which is an idempotent operation on Ci0 and depends on all the yk. By maximality this

operation cannot depend on both x1 and x2, implying that t did not depend on both v1 and

v2 to begin with.

(2) Let v1
1, . . . , v

n
1 be variables of the first input sort of s. By part (1), the term

t(s1(v1
1, v2, . . .), s2(v1

1, v2, . . .), . . . , sn−1(v1
1, v2, . . .), sn(vn1 , v2, . . .))

depends on none of v2, . . . , vn and on only one of v1
1, v

n
1 . Proceeding inductively, we see that

t̂(v1
1, v

2
1, . . . , v

n
1 , v2, . . .) = t(s1(v1

1, v2, . . .), s2(v2
1, v2, . . .), . . . , sn(vn1 , v2, . . .))
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depends on just one variable, say v1
1, and in fact

t̂(v1
1, v

2
1, . . . , v

n
1 , v2, . . .) = v1

1.

We claim that t depends only on its first variable. To see this, let a1, a2, a
′
2, . . . , an, a

′
n,
~b be

any elements of the appropriate sorts. Define

u = t(a1, a2, . . . , an)

u′ = t(a1, a
′
2, . . . , a

′
n)

q2 = s2(a2,~b)

q′2 = s2(a′2,
~b)

...

q′n = sn(a′n,
~b)

Then since the ranges of t(v1, a2, . . . , an) and t(v1, q2, . . . , qn) both contain u, these two poly-

nomials must be equal; likewise the polynomials t(v1, a
′
1, . . . , a

′
n) and t(v1, q

′
2, . . . , q

′
n). But

u = t(s1(u,~b), q2, . . . , qn) = t(s1(u,~b), q′2, . . . , q
′
n)

⇓

t(v1, q2, . . . , qn) = t(v1, q
′
2, . . . , q

′
n)

which shows that

t(v1, a2, . . . , an) = t(v1, q2, . . . , qn)

= t(v1, q
′
2, . . . , q

′
n)

= t(v1, a
′
2, . . . , a

′
n)

Since ak, a
′
k were arbitrary, we are done.

Lemma VII.4. If Aσ[ is not essentially unary, then there is an Lσ[-term depending essentially in

Aσ[ on at least two variables and not left-invertible at either.

Proof. We show how to take a term depending essentially on v1, v2 and invertible at v1, and produce

a new term depending essentially on v2 and at another variable v0 (possibly of a different sort than

v1) and not invertible at v0. We will then show that if we started with a term which was not

left-invertible at v2, then the new term we construct still has this property.

Assume that t(v1, v2, . . . , vn) depends essentially on v1 and v2, and that

s(t(v1, . . . , vn), vn+1, . . .) = v1 (VII.4.1)
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The same logic used in part (1) of Lemma VII.3 guarantees that s cannot depend on any variable

except the first, so we will write s(x) as if it were a unary term.

Let

t̂(v0, v2, . . . , vn) = t(s(v0), v2, . . . , vn)

Since s maps the output sort of t onto the sort of v1 in Aσ[, this new term t̂ must depend essentially

on v0 and v2.

Claim VII.4.2. t̂ is not left-invertible at v0.

Suppose elsewise: let

r(t̂(v0, v2, . . . , vn)) = v0

Define another term

q(v0, v2, v
′
2, ~w) = t̂(t̂(v0, v2, ~w), v′2, ~w)

(where ~w = v3, . . . , vn). Then on the one hand

t̂(v0, v2, ~w) = r(t̂(t̂(v0, v2, ~w), v′2, ~w))

= r(q(v0, v2, v
′
2, ~w))

so q must depend essentially on v2. But on the other hand

q(v0, v2, v
′
2, ~w) = t̂(t̂(v0, v2, ~w), v′2, ~w)

= t(s(t̂(v0, v2, ~w)), v′2, ~w)

= t(s(t(s(v0), v2, ~w)), v′2, ~w)

= t(s(v0), v′2, ~w)

which does not depend on v2. a VII.4.2

Lastly, we must show that if t̂ were left-invertible at v2 then t would already have been. This

is not hard: suppose

v2 = r2(t̂(v0, v2, . . . , vn)) = r(t(s(v0), v2, . . . , vn))

Again using the logic of part (1) of lemma VII.3, the term

r(t(s(v0), v2, . . . , vn))

can only depend on v2; since by Equation (VII.4.1), v1 ∈ ran(s) (considered as elements of the free

algebra FV(Aσ[)(v0, v1, v2, . . .)), we must have that r2 inverts t as well.

Construction VII.5. Let X be any sorted family of generators for a free algebra F = F(X) in

V(Aσ[). Let f0 be an arbitrary fixed element of F , and let F′ = F(X ∪ {z}), where z is a new free
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generator of the same sort as f0.

Generate a congruence θ ∈ Con(F′) from all pairs

〈t(f0, ~u), t(z, ~u)〉

such that ~u ∈ F and t(v0, ~v) is not left-invertible at v0. (Observe that if a term g ∈ F occurs as the

second member t(z, ~u) of such a pair, by freeness we get that t does not depend on its first variable,

so that the pair is in fact trivial.)

Lemma VII.6. Let F,F′, and θ be as in Construction VII.5. If a ∈ F and a ≡θ b, then either

a = b or 〈a, b〉 is a generating pair.

Proof. Suppose we have basic nontrivial θ-links a—c—b, where

〈a, c〉 = 〈t1(f0, ~u1), t1(z, ~u1)〉

Case 1:

〈c, b〉 = 〈p2(t2(f0, ~u2)), p2(t2(z, ~u2))〉

where p2(v0) = g2(v0, z, ~w2) ∈ Pol1(Aσ[) for some terms g, ~w ∈ F .

We have

c = t1(z, ~u1) = g2(t2(f0, ~u2), z, ~w2)

and since z is a free generator, we may substitute any term for z in the above equation. In particular,

a = t1(f0, ~u1) = g2(t2(f0, ~u2), f0, ~w2)

b = g2(t2(z, ~u2), z, ~w2) (VII.6.1)

We will be done with Case 1 if we can establish

Claim VII.6.2. g2(t2(v0, ~u2), v0, ~w2) is not left-invertible at v0.

Suppose the contrary, say

r(g2(t2(v0, ~u2), v0, ~w2)) = v0 (VII.6.3)

By Lemma VII.3, the term

r(g2(t2(v0, ~u2), v1, ~w2))

must depend only on v0 or v1, and because of Equation (VII.6.3) must project to the active variable.

Moreover, it cannot be v0, since then this would be a left-inversion of t2(v0, ~u2). But if v1 were the

active variable, we would have

v1 = r(g2(t2(v0, ~u2), v1, ~w2)) = r(g2(t2(f0, ~u2), v1, ~w2)) = r(t1(v1, ~u1))

contradicting our assumption that t1(v1, ~u1) was not invertible. a VII.6.2
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Now Equation (VII.6.1) shows that 〈a, b〉 is a generating pair.

Case 2: As before,

〈a, c〉 = 〈t1(f0, ~u1), t1(z, ~u1)〉

but now

〈c, b〉 = 〈p2(t2(z, ~u)), p2(t2(f0, ~u2))〉

with p2 a polynomial as before. Since

c = t1(z, ~u1) = g2(t2(z, ~u2), z, ~w2)

and z is a free generator, the same equation holds under any substitution for z:

a = t1(f0, ~u1) = g2(t2(f0, ~u2), f0, ~w2)

b = g2(t2(f0, ~u2), z, ~w2)

As before, the following claim suffices:

Claim VII.6.4. g2(t2(f0, ~u2), v0, ~w2) is not left-invertible at v0.

If it were, so

r(g2(t2(f0, ~u2), v0, ~w2)) = v0

then the range of this polynomial contains the whole sort of f0. In particular,

r(c) ∈ ran (r(g2(t2(z, ~u2), •, ~w2))) ∩ ran (r(g2(t2(f0, ~u2), •, ~w2)))

By strong abelianness, the two polynomials in the above equation should be equal, contradicting

our original assumptions. a VII.6.4

Proposition VII.7. Let F,F′, and θ be as in Construction VII.5. Then z is isolated (mod θ).

Proof. Let {z, x} = {p(t(f0, ~u)), p(t(z, ~u))} be a basic θ-pair, where p(v0) = g(v0, z, ~w) as in the

previous lemma.

First suppose

z = p(t(z, ~u)) = g(t(z, ~u), z, ~w)

Then by Lemma VII.3, (g(t(v0, ~u), v1, ~w) depends only on one variable, either v0 or v1. Moreover,

v0 is not a possibility, since then t would be left-invertible. We conclude that g(t(v0, ~u), v1, ~w) = v1

throughout HSP
(
Aσ[

)
.

Next suppose

z = p(t(f0, ~u)) = g(t(f0, ~u), z, ~w)
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Then g(t(v0, ~u), v1, ~w) is right-invertible; invoking Lemma VII.3 again, this term is essentially unary,

and since f0 ∈ F and z is not, the dependency must be on v1; hence

g(t(v0, ~u), v1, ~w) = v1

is valid in HSP
(
Aσ[

)
.

In either case, we conclude that z = x.

The content of the previous two lemmas is that, for F,F′, f0, and θ defined in this way, and for

C = F′/θ, we have that F is an isomorphic substructure of C, and f0 and z are indistinguishable

by the action of non-left-invertible terms t(•, ~u) taken from F .

Recall that since Aσ[ is strongly-abelian, there is an upper bound on the essential arity of terms

over this algebra. (For example, |A| ·maxiKi would work.) Let T be a finite set of Lσ[ terms such

that every term operation of Aσ[ is given (up to renaming of variables) by one of the terms in T .

For each sort 〈i, j〉, let N〈i,j〉 ⊂ T be the set of all terms t(v0, v1, . . .) such that v0 has sort 〈i, j〉
and t is not left-invertible at v0. Then the relations

a ∝〈i,j〉 b ⇐⇒
∧

t∈N〈i,j〉

∀~u t(a, ~u) = t(b, ~u)

together comprise a definable equivalence relation on any M ∈ HSP
(
Aσ[

)
. We will usually write

a ∝ b instead of a ∝〈i,j〉 b.
It is clear from the definition that a ∝ b in a product

∏
x∈X Bx if and only if ax ∝ bx in each

stalk.

Proposition VII.8. If s(v0, v1, . . . , vn) is a right-invertible term depending only on v0, then for any

M ∈ HSP
(
Aσ[

)
, any a ∝ b ∈M , and any x1, . . . , xn ∈M of the appropriate sorts, s(a, x1, . . . xn) ∝

s(b, x1, . . . xn).

Proof. Say the sort of v0 is 〈i, j〉. Let

s(t0(y, ~z), v1, . . . , vn) = y

and let t(v0, . . . , v`) ∈ N〈i,j〉. It suffices to show that

t(s(v0, . . . , vn), vn+1, . . . , vn+`) ∈ N〈i,j〉

too.

Suppose otherwise: then for some essentially unary term r(v0, . . .) we have

r(t(s(v0, . . . , vn), vn+1, . . . , vn+`)) = v0
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Then

t0(y, ~z) = r(t(s(t0(y, ~z), . . . , vn), vn+1, . . . , vn+`))

= r(t(y, vn+1, . . . , vn+`))

y = s(t0(y, ~z), v1, . . . , vn)

= s(r(t(y, vn+1, . . . , vn+`)), v1, . . . , vn)

contradicting our assumption that t was not left-invertible at its first variable.

VII–B. Proof of Theorem D

We are now ready to prove Theorem VII.1.

Proof. Let A be a finite algebra with strongly-solvable radical σ such that every strongly-solvable

congruence in HSP (A) is strongly-abelian, and suppose that Aσ[ is not essentially unary. By

Lemma VII.4, we may fix a term q(v1, . . . , v`) depending essentially on v1, v2 but not left-invertible

at either. Let X be a sorted collection of free generators: one x〈i,j〉 for each sort 〈i, j〉, as well as

two generators a0, a1 of the sort of v1 and two more b0, b1 of the sort of v2. Let

v1 ∗ v2 = q(v1, v2, x〈i3,j3〉, . . . , x〈i`,j`〉) ∈ Pol2(F(X))

and define elements

0 = a0 ∗ b0
1 = a0 ∗ b1
2 = a1 ∗ b0
3 = a1 ∗ b1

(These elements are all distinct since ∗ depends on both variables.) Let 〈i0, j0〉 be the type of these

four elements, and let C = F′/θ, where F′ and θ are built according to Construction VII.5, with 0

playing the role of f0. As we remarked before, F ≤ C.

We first observe that, by construction, for any t(v0, . . . , vn) ∈ N〈i0,j0〉 and any ~u ∈ F ,

C |= t(0, ~u) = t(z, ~u)

Since C is strongly-abelian, it follows that the polynomials t(0, •) and t(z, •) are equal: that is,

C |= 0 ∝ z.

Claim VII.1.1. {0, 1, 2, 3} are pairwise ∝-inequivalent.

We will show that 0 6∝ 1; the remaining cases are similar.
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Suppose for the sake of contradiction that 0 ∝ 1. Observe that 0 ∝ 1 in F also.

Subclaim VII.1.1a. Under the hypothesis that 0 ∝ 1, 3 is isolated modulo β = CgF(〈0, 1〉).

To see this, let 3 ∈ {g(0, ~u), g(1, ~u)} for some term g. Then we have

3 = a1 ∗ b1 = g(a0 ∗ b, ~u)

for b either b0 or b1; since a0 appears on the right but not the right and F is free,

g(a0 ∗ b, ~u) = g(a1 ∗ b, ~u)

Thus the polynomial is not injective on 〈i0, j0〉, so g(v0, ~u) cannot be left-invertible, and hence

belongs to N〈i0,j0〉.

Our assumption that 0 ∝ 1 now forces g(0, ~u) to be equal to g(1, ~u). a VII.1.1a

In particular, 2 6≡β 3. But then

a0 ∗ b0 ≡β a0 ∗ b1
but

a1 ∗ b0 6≡β a1 ∗ b1

so β is not abelian. This is a contradiction; the remaining five cases are proved analogously.a VII.1.1

Our plan is to semantically interpret the class of bipartite graphs without isolated vertices into

HSP
(
Aσ[

)
. (It is well known that the theory of bipartite graphs is computably inseparable from

the set of sentences false in some finite bipartite graph.) Our strategy will be to define an algebra

D(G) for each graph G, and then to show that certain relations are uniformly first-order definable

in these algebras. (Here “uniformly” means that the respective relations are defined via the same

first-order formulas for all D(G); the subsets defined by these formulas in algebras in HSP
(
Aσ[

)
but not of the form D(G) may be quite strange and bear no resemblance to the relations we intend.)

For us, a bipartite graph will be a two-sorted structure G =
〈
RG, BG ; EG〉, where E has type

signature 〈R,B〉.

Construction VII.9. Let G be a bipartite graph. We define a subpower D = D(G) ≤ CΓ as

follows: the index set Γ = RG tBG t {♣,♠}, and D is generated by all points

ιx = x|Γ (x ∈ X)

χv = a1|v ⊕ a0|else (v ∈ RG)

χv = b1|v ⊕ b0|else (v ∈ BG)

χe,♣ = 2|v ⊕ 1|w ⊕ z|♣ ⊕ 0|else (e = 〈v, w〉 ∈ EG)

χe,♠ = 2|v ⊕ 1|w ⊕ z|♠ ⊕ 0|else (e = 〈v, w〉 ∈ EG)
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We let

χR = {χv : v ∈ RG}

χB = {χv : v ∈ GG}

χE = {χe,♣, χe,♠ : e ∈ EG}

By abuse of notation, X will still denote the set of diagonal generators ιx. We will suppose that

we have constant symbols for all the ιx, so that X (and hence F , the subalgebra generated by X)

is a uniformly definable subset of D.

Note that D is not quite a diagonal subpower; it contains all diagonal elements from F, but

none of those from C \ F.

Claim VII.1.2. If for some term t and elements ~x of D, t(x1, . . . ,xn) is equal to one of the

non-diagonal generators, then t is right-invertible (and hence essentially unary).

Suppose first that t(x1, . . . ,xn) = χv ∈ χR. Then

a1 = χvv = t(xv1, . . . , x
v
n)

and all the elements in this equality belong to F . Since F is free, this is precisely the statement

that t is right-invertible.

The case where v is a blue vertex is the same.

Next let t(x1, . . . ,xn) = χe,♣. Then

z = (χe,♣)♣ = t(x♣1 , . . . , x
♣
n )

so that in F′, z ≡θ t(y1, . . . , yn) for yk/θ = x♣k . By Proposition VII.7,

t(y1, . . . , yk) = z

once again showing that t is right-invertible. a VII.1.2

The set NRINV ⊂ D of all x such that

x is neither diagonal nor in the image of any term which is not right-invertible.

is uniformly first-order, and we have just shown that every off-diagonal generator lies in this set.

While it would be nice if this were actually the set of off-diagonal generators, this might be too

much to ask.

To get around this, define x ≤ y in D if for some essentially unary term t(v0, . . .) we have

x = tD(y, . . .). Then ≤ is a definable preorder, and its associated partial order ∼ is of course

definable too, as is the property of being in a maximal ∼-equivalence class.

Claim VII.1.3. The map χ 7→ χ/ ∼ is a bijection of off-diagonal generators to ≤-maximal ∼-

classes containing a member of NRINV.
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To prove this, we must first show that no two distinct off-diagonal generators are ≤-related.

This is done by exhaustive case analysis; none of the cases are hard, but there are a lot of them.

We show two, and leave the rest to the skeptic.

For our first model case, suppose v is a red vertex and χv ≤ χe,♣ for some e. Then for some

essentially unary term t(v0, . . .),

χv = t(χe,♣)

a0 = (χv)
♠ = t

(
(χe,♣)♠ , . . .

)
= t(0, . . .) = t(a0 ∗ b0, . . .)

Since a0, b0 were free generators, this would imply that the operation v0 ∗ v1 is left-invertible at v0,

a contradiction.

Next suppose χe,♣ ≤ χv. Then

χe,♣ = t(χv, . . .)

z = (χe,♣)♣ = t
(

(χv)
♣ , . . .

)
∈ F

a contradiction. The rest of the cases are handled similarly.

So we have that if we have generators x1 ≤ x2 then x1 = x2. Now: suppose that y ∈ NRINV.

We have y = t(x1, . . . ,xn) for some term t and some generators xk. But by assumption, t is

right-invertible, hence depends only on one variable (say the first). In other words y ≤ x1. Hence

every maximal ∼-class containing a member of NRINV contains a generator.

Lastly, if x0 is an off-diagonal generator and x0y ∈ NRINV, then x0 ≤ y ≤ x1 for some generator

x1. By the previous part, x0 = x1. This shows that the ∼-class of every off-diagonal generator is

maximal. a VII.1.3

Let GEN be the set of all elements of D ∼-equivalent to an off-diagonal generator. As we have

just seen, this set is uniformly definable: y ∈ GEN if and only if

y ∈ NRINV and for all y′ ∈ NRINV, y ≤ y′ → y′ ≤ y.

We want to be able to distinguish between edge-type and vertex-type generators. To do this,

first observe that for any edge e, χe,♣ ∝ χe,♠ since the relation holds in every factor. This prompts

us to set EDGEGEN to be the subset of GEN consisting of all x such that

There exist x′,y ∈ GEN with x ∼ x′, x 6∼ y, and x′ ∝ y.

This set is clearly definable.

Claim VII.1.4. For y ∈ GEN, y ∈ EDGEGEN if and only if the (unique) generator in y/ ∼ has

edge type.

By construction, each χe,♣ and each χe,♠ belong to EDGEGEN. Also, EDGEGEN is clearly a

union of ∼-classes.
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Hence it suffices to show that χv /∈ EDGEGEN for any vertex v. Suppose this were false: then

we would have elements x ∼ χv and y 6∼ χv with x ∝ y. Let γ be the generator ∼-equivalent to y.

Since x ∼ χv, they are connected by essentially unary terms

x = f1(χv) χv = f2(x)

and likewise

y = g1(γ) γ = g2(y)

Since all four of these elements are in GEN, the terms fk, gk must in fact be right-invertible. By

Proposition VII.8,

γ = g2(y) ∝ g2(x) = g2 ◦ f1(χv)

Note that g2 ◦ f1 is right-invertible.

Case 1: γ = χw for some w 6= v.

Without loss of generality, w is a red vertex. We have χwv = χ♣v , so

a0 = γ♣ ∝ g2 ◦ f1(χ♣v ) = g2 ◦ f1(χwv ) ∝ γw = a1

which is impossible.

Case 2: γ = χe,♣ for some edge. Then e contains an endpoint w 6= v, which we may suppose

again to be red.

Since χwv = χ♣v ,

2 = γw ∝ g2 ◦ f1(χwv ) = g2 ◦ f1(χ♣v ) ∝ γ♣ = z

But this is likewise impossible. a VII.1.4

With this in hand, we know that the set VERTEXGEN of all x ∈ GEN which are not in EDGEGEN

is (uniformly first-order) definable. This set is, of course, better known as the set of all x which

are ∼-equivalent to one of the χv.

Lastly, let EDGE(x, y) be a formula asserting that

x ∈ VERTEXGEN and y ∈ VERTEXGEN and there exist x′ ∼ x, y′ ∼ y and w ∈
EDGEGEN such that w ∝ x′ ∗ y′.

Claim VII.1.5. For x,y ∈ VERTEXGEN, D |= EDGE(x,y) iff there exists an edge e = {v, w} such

that x ∼ χv and y ∼ χw.
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(⇐): If the red vertex v has an edge to the blue vertex w, then

χv ∗ χw =
(
a1|v ⊕ a0|else

)
∗
(
b1|w ⊕ b0|else

)
= a1 ∗ b0|v ⊕ a0 ∗ b1|w ⊕ a0 ∗ b0|else

= 2|v ⊕ 1|w ⊕ 0|else

∝ 2|v ⊕ 1|w ⊕ z|♣ ⊕ 0|else

= χe,♣

(⇒): Assume EDGE(x,y). Fix

x′ ∼ x ∼ χv
y′ ∼ y ∼ χw

x′ ∗ y′ ∝ w ∼ χe,♣

(The proof is the same if w ∼ χe,♠.)

Since all these points are members of GEN, we may choose right-invertible terms so that

χe,♣ = f(w) x′ = g(χv) y′ = h(χw)

Then f is right-invertible and

f(w) ∝ f(x′ ∗ y′) = f(g(χv) ∗ h(χw))

We will be done if we can show that e = 〈v, w〉.
If this were false, we could choose an endpoint u ∈ e \ {v, w}, which we may suppose is red.

Then

χuv = χ♣v = a0 χuw = χ♣w = b0

so

2 = χue,♣ = f(wu) ∝ f(g(χuv ) ∗ h(χuw))

= f(g(χ♣v ) ∗ h(χ♣w)) ∝ f(w♣) = χ♣e,♣ = z

a contradiction. a VII.1.5

Observe that since G has no isolated vertices, the subsets VERTEXRED and VERTEXBLUE

of VERTEXGEN consisting of those x which are ∼-equivalent to a red (resp. a blue) vertex are

definable using the EDGE relation.

The foregoing shows that

〈VERTEXRED/ ∼,VERTEXBLUE/ ∼ ; EDGE〉
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is isomorphic to our original bipartite graph G; since all the relations in this isomorphism are

uniformly definable, we have effected a semantic embedding of bipartite graphs into HSP
(
Aσ[

)
.

Proof of Theorem D. Theorem VII.1 shows that, if A has a σ-sorted term operation depending on

too many variables, then HSP
(
Aσ[

)
is hereditarily finitely undecidable. But we have already seen

in Lemma VI.12 that HSP
(
Aσ[

)
semantically embeds into HSP (A). Since semantic interpretability

is transitive, we are done.
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CHAPTER VIII

NEXT STEPS

Pawel Idziak is fond of saying that if you want to prove something is undecidable, use local

structure; if you want decidability, think global. We have followed the first part of this maxim in this

paper, by compressing “bad behavior” down to minimal sets and finding small sets of parameters

which ensure that the propagation of the behavior through subpower generation is well-controlled.

However, all the results in this paper are, in a sense, negative; we do not provide any sufficient

conditions guaranteeing that HSPfin (A) has decidable theory. A very few such conditions exist in

the literature; as mentioned, the most comprehensive is that given by Idziak in [Idz97], which not

only provides sufficient conditions, but characterizes finitely-decidable congruence-modular varieties

up to the (still wide-open) problem of determining for which finite rings R the variety of R-modules

is finitely-decidable. In particular, the construction provides an effective procedure for answering

the finite decidability problem for HSPfin (A) so long as all congruence covers in this prevariety

have the boolean type.

The other broad sufficient condition is provided by Valeriote and McKenzie; it asserts that

a strongly-abelian locally-finite variety is either semantically bi-interpretable with a multi-sorted

unary variety whose free algebra is chain-preordered by divisibility, or else (by a variant of the

construction in Chapter VII) admits a semantic interpretation of graphs. The latter theorem was

generalized in [HV91] to remove the hypothesis of local-finiteness; their proof allows the variety to

be multi-sorted.

In the case of decidable varieties, [MV89, Chapter 13] shows that an ordinary single-sorted

variety which is abelian and which does not decompose as the varietal product of affine and strongly-

abelian subvarieties must be undecidable and finitely undecidable. Hart, Starchenko and Valeriote

subsequently pushed the model-theoretic method further in [HSV94], which showed that for any

variety V, either V decomposes as the varietal product of an affine subvariety and a strongly-abelian

subvariety, or V is large in the sense of stability theory: it must have continuously many countable

models and fail to be superstable.

These two last-mentioned proofs have radically different character from each other; and my

immediate project is to understand the details of each, and determine if either can be adapted (or

an entirely new method developed) to show the following:

Suppose we consider finite algebras A such that the solvable radical σ = Rad(A) is comparable

to every congruence of A. (This is not as restrictive as it sounds; one can show that in every variety

which we might hope to show is finitely-decidable, every algebra is residually in this class.) Let

σ1, σ2 be respectively the least congruence below Rad(A) such that the included interval consists

of only unary-type (resp. affine-type) covers.

Problem 1. (1) Show that Aσ is the direct product (in the sense of Lσ) of (A/σ1)σ and (A/σ2)σ.

(2) Show that HSP (Aσ) is the varietal product of HSP ((A/σ1)σ) and HSP ((A/σ2)σ).
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If this is done, it should become manageable to establish necessary and sufficient conditions,

as in [Idz97], for a computable reduction of Th (V) to the theory of some modules obtainable in a

nice way from the affine part of the variety. (This is accomplished, Pawel would say, by thinking

globally and very hard.)

This would do for finitely-generated varieties. The corresponding problems for locally-finite

varieties which are not finitely-generated may not be much harder, though there are open questions

here which sound like they ought to be easy, and are not:

Problem 2. It is known that every finitely-generated discriminator variety is decidable. Charac-

terize the decidability of locally-finite discriminator varieties.

Lastly, in all cases that I am aware of, the theory of a locally-finite variety is either computable

or equivalent to the Halting Problem.

Problem 3. (1) Does there exist a locally-finite variety whose first-order theory is undecidable

but properly Turing-below ∅′?

(2) Does there exist a locally-finite variety whose set of finitely-refuted sentences is undecidable

but properly Turing-below ∅′?

(3) Given an arbitrary c.e. Turing degree D, does there exist a variety V such that Th (V) ≡T D?

(4) Given an arbitrary Π1 Turing degree D, does there exist a variety V such that Thfin(V) ≡T D?

It is, naturally, of interest to know if the latter two can be answered affirmatively if we require

the language of V to be finite.
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[ARV12] Jǐŕı Adámek, Jǐŕı Rosickỳ, and Enrico M Vitale. “Birkhoff’s variety theorem in many

sorts”. In: Algebra universalis 68.1–2 (2012), pp. 39–42.

[BS81] Stanley Burris and Hantamantagouda Sankappanavar. A course in universal algebra.

Vol. 78. Graduate Texts in Mathematics. Springer-Verlag, New York, 1981.

[EF72] Paul C Eklof and Edward R Fischer. “The elementary theory of abelian groups”. In:

Annals of Mathematical Logic 4.2 (1972), pp. 115–171.

[Ers72] Yuri Ershov. “Elementary Theories of Groups”. In: Doklady Akademii Nauk SSSR 203

(1972), pp. 1240–1243.

[FM87] Ralph Freese and Ralph McKenzie. Commutator theory for congruence modular vari-

eties. Cambridge University Press, 1987.

[HSV94] Bradd Hart, Sergei Starchenko, and Matthew Valeriote. “Vaughts conjecture for vari-

eties”. In: Transactions of the American Mathematical Society 342.1 (1994), pp. 173–

196.

[HV91] Bradd Hart and Matthew Valeriote. “A structure theorem for strongly abelian varieties

with few models”. In: The Journal of Symbolic Logic 56.3 (1991), pp. 832–852.

[HM88] David Hobby and Ralph McKenzie. The Structure of Finite Algebras. Vol. 76. Contem-

porary Mathematics. American Mathematical Society, 1988.

[Hod93] Wilfrid Hodges. Model theory. Vol. 42. Cambridge University Press, 1993.

[Idz86] Katarzyna Idziak. “Undecidability of Brouwerian Semilattices”. In: Algebra Universalis

22 (1986), pp. 298–301.

[II88] Katarzyna Idziak and Pawel Idziak. “Decidability Problem for Finite Heyting Alge-

bras”. In: Journal of Symbolic Logic 53.3 (1988), pp. 729–735.

[Idz89a] Pawel Idziak. “Varieties with decidable finite algebras I: Linearity”. In: Algebra Uni-

versalis 26 (1989), pp. 234–246.

[Idz89b] Pawel Idziak. “Varieties with decidable finite algebras II: Permutability”. In: Algebra

Universalis 26 (1989), pp. 247–256.

[Idz97] Pawel Idziak. “A characterization of finitely decidable congruence modular varieties”.

In: Transactions of the American Mathematical Society 349.3 (1997), pp. 903–934.

[IMV09] Pawel Idziak, Ralph McKenzie, and Matthew Valeriote. “The Structure of Locally Finite

Varieties with Polynomially Many Models”. In: Journal of the American Mathematical

Society 22.1 (2009), pp. 119–165.

[IV01] Pawel Idziak and Matthew Valeriote. “A Property of the Solvable Radical in Finitely

Decidable Varieties”. In: Fundamenta Mathematicae 170 (2001), pp. 69–86.

74



[Jeo99] Joohee Jeong. “A Decidable Variety that is Finitely Undecidable”. In: The Journal of

Symbolic Logic 64.2 (1999), pp. 651–677.

[Kea93] Keith Kearnes. “An Order-theoretic Property of the Commutator”. In: International

Journal of Algebra and Computation 3.4 (1993), pp. 491–533.

[Kea91] Keith A Kearnes. “Residual bounds for varieties of modules”. In: Algebra Universalis

28.3 (1991), pp. 448–452.

[KS95] Olga Kharlampovich and Mark Sapir. “Algorithmic problems in varieties”. In: Interna-

tional Journal of Algebra and Computation 5 (1995), pp. 379–602.

[Mal65] A.I. Malcev. “On a correspondence between rings and groups”. In: AMS Translations

45 (1965). Russian original article in Mathematics: Sbornik 50 (1960), pp. 221–231.

[MMT87] Ralph McKenzie, George McNulty, and Walter Taylor. Algebras, lattices, varieties.

Vol. I. Wadsworth & Brooks Cole, 1987.

[MS05] Ralph McKenzie and John Snow. “Congruence modular varieties: commutator theory

and its uses”. In: Structural Theory of Automata, Semigroups, and Universal Algebra.

NATO Science Series 207 (2005), pp. 273–329.

[MV89] Ralph McKenzie and Matthew Valeriote. The Structure of Decidable Locally Finite

Varieties. Progress in Mathematics. Birkhäuser, 1989.
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