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CHAPTER 1 
 

Introduction to Magnetic Resonance Imaging Contrast and Relaxation in the Rotating 

Frame 

Objective 

The theories and experiments described in this thesis aim to advance the utilization of 

quantitative measures in magnetic resonance imaging (MRI) to characterize heterogeneous 

biological tissues at high static field strengths. More specifically, to advance the manner in which 

spin-locking techniques are utilized in both spectroscopic and imaging contexts to estimate 

intrinsic characteristics of the medium of interest. Spin-locking pulse sequences have the ability 

to probe relaxation mechanisms at a range of time scales by measuring the spin-lattice relaxation 

time in the rotating frame, T1ρ, and have been previously exploited to characterize tissues and 

assess pathological changes in various research and clinical applications. Similar experiments 

have been used in the past to investigate molecular interactions in various physiological or 

pathologic changes such as in animal stroke and tumor models (1–5), with activation in human 

brain in fMRI (6–9), in amyloid plaques in Alzheimer’s disease (10–14), knee cartilage 

degradation (15–18), and examining healthy tissues such as muscle, liver, spleen, kidney, and 

heart (19).  

The rate R1ρ is usually measured by applying an on-resonance spin-locking field along 

the direction of the bulk transverse magnetization in the rotating reference frame for a series of 

locking times. The decay of locked transverse magnetization with increasing locking time may 

usually be well fit to a mono-exponential with a characteristic time constant T1ρ (=1/R1ρ) (20, 

21). In conventional MRI, T1ρ-weighted imaging has been interpreted mainly as reflecting the 
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relatively slow motional characteristics of macromolecules, especially when implemented at low 

static field strengths (22, 23). While previous work has emphasized the contributions of slow 

macromolecular motions, at high field chemical exchange may become the primary mechanism 

affecting T1ρ. Although a few studies have measured exchange effects on T1ρ, most studies have 

failed to examine T1ρ at various locking fields. Chemical exchange begins to dominate relaxation 

at fields ≥ 3T, so spin-locking may provide novel information under these circumstances. 

Diffusion of water through microscopic susceptibility gradients may also cause transverse losses 

and so may also be a contributing mechanism at high fields that has been largely overlooked by 

the MR community. Advancing the methods of characterizing tissues using spin-locking 

methods will be valuable for the understanding of fundamental mechanisms influencing rotating 

frame relaxation and improving the detection and distinguishing between various pathologies. In 

this chapter a brief summary of the history of MRI is provided along with fundamental 

background that explains the manner in which MR experiments work and the critical processes 

that affect relaxation. 

Background and Literature Review 

A Brief History of NMR 

Magnetic resonance imaging has the unique versatility, compared to other imaging 

modalities, to generate unparalleled soft tissue contrast while maintaining sensitivity to a variety 

of fundamental physiologic processes. Though the first MR image was not acquired until 1973 

by Paul Lauterbur (24), the fundamentals of NMR had been previously under investigation for 

decades. The theory of intrinsic spin angular momentum was established in the early 1920’s 

when the Stern-Gerlach experiment was performed by shooting a collimated beam of silver 

atoms through an inhomogeneous magnetic field, splitting their trajectory (25, 26). The first 
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experiment that detected the NMR phenomenon years later was not in stationary bulk material, 

but rather with a beam of hydrogen molecules. In 1939 Kellogg, Rabi, and Ramsey found that 

when the beam of hydrogen molecules ran through a magnetic field and were subjected to RF 

radiation, absorption occurred at a well defined frequency (27, 28). While some experiments 

failed to detect the NMR phenomenon in solids (29), Purcell, Torrey, and Pound at MIT and 

Bloch, Hansen, and Packard at Stanford were successful in performing NMR experiments in 

bulk materials in 1946 (30–32) which paved the way for rapid discovery over subsequent years. 

In the same year Bloch also formulated the famous Bloch equations describing how an ensemble 

of nuclear magnetic moments form a classical magnetization vector that precesses in the 

transverse plane with respect to a static magnetic field. He did this by realizing the temporal 

change in the resultant angular momentum vector of an ensemble of nuclei would simply equal 

the total torque, which can be explained classically. Though this was a simplified theory, all 

experiments done were on a macroscopic scale, which made the theory very accurate and 

applicable. Bloch and Purcell eventually received the Nobel prize in 1952 for their work in 

experimental NMR. 

Bloembergen, Purcell, and Pound at Harvard laid out a detailed theory for NMR 

relaxation of nuclear spins in a strong magnetic field in 1948, two years after the first NMR 

experiments, which is sometimes referred to as BPP theory (33). They performed a multitude of 

experiments such as measuring the resonance peaks, line-widths, and relaxation times in multiple 

liquids with various viscosities, measured relaxation times in ice and hydrogen gas, examined the 

effects of paramagnetic ions, and derived theoretical expressions for the relaxation times. Hahn 

realized certain transverse relaxation could be refocused when he used Bloch’s theory to describe 

spin-echoes that he experimentally confirmed with experiments on glycerine in 1950 (34). The 
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Hahn spin-echo theory was later extended by Carr and Purcell in 1954 which would become 

useful for imaging later (35). Electronic shielding was also shown to have an effect on the 

resonance frequency in metals by W. Knight in 1949 (36), and by Proctor and Yu at Stanford and 

Dickinson at MIT in other chemical compounds in 1950 (37, 38). This was the first real evidence 

of chemical shifts influencing proton resonance frequencies, and the following year Arnold, 

Dharmatti, and Packard at Stanford discovered these chemical shifts in liquid organic 

compounds at 0.76 T (39). The discovery of chemical shifts in metals and organic compounds 

was vital in extending the applications of NMR to various types of spectroscopy and laid the 

foundation for assessing relevant physiologic processes like chemical exchange.   

The effects of exchange on NMR spectra were laid out by Gutowsky and McCall in 1953 

(40), and Albert Overhauser discovered the Overhauser effect by examining how electron spin 

populations affect spin polarization in the same year (41). This effect would prove to be vital to 

chemical exchange related techniques, especially chemical exchange saturation transfer (CEST) 

in the future. Two years later, Soloman analyzed the dipolar nature of the case of an interacting 

two-spin system further by calculating the transition probabilities per unit time between states in 

1955 at Harvard (42), which further advanced relaxation theory. Later the same year at Harvard, 

the first theory and experiments on relaxation in the rotating frame were performed by Alfred 

Redfield who called the experiment “rotary saturation” (20). Redfield laid out the theory for 

transforming the Hamiltonian into the rotating frame specifically for the case of solids, and 

expanded upon the theory making it more general using the density matrix formalism in 1957 

(43). The famous two pool model was applied to the Bloch equations by McConnell in 1958 

(44), but the first R1ρ investigation of chemical exchange did not occur until Deverell laid out a 

theory for exchange based R1ρ relaxation using the density matrix formalism and examined the 
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rate of isomerization in cyclohexane in 1970 (45). This was a very important result for the work 

of this thesis for reasons that will be apparent in subsequent chapters. Three years later, Paul 

Lauterbur coined the term “zeugmatography”, or “that which is used for joining” in Greek, when 

he constructed the first MR images of water in capillaries from a back projection reconstruction 

method in 1973 (24). It is noteworthy that Peter Mansfield also proposed using the Fourier 

transform method to acquire projections and images in 1973 (46), and Raymond Damadian 

arguably prompted both of these discoveries by demonstrating NMR relaxation times are 

measurably different in tumors compared to healthy tissues in 1971 (47). Even though 

Damadian’s contributions were significant, only Lauterbur and Mansfield were awarded a Nobel 

prize for their efforts in 2003. Since the first images were acquired, the fields of NMR and MRI 

have significantly progressed over the years to arguably become the most versatile imaging 

modality today. 

Classical Precession 

The Nuclear Magnetic Resonance phenomenon arises from nuclear spins interacting with 

a static external magnetic field. Nuclear magnetic interactions are quantum mechanical in nature, 

but explaining the interactions in a classical manner proves to be accurate and convenient since 

the vast majority of all NMR and MRI experiments are done on macroscopic ensembles of 

nuclei. Hydrogen nuclei are the most widely used, especially in MRI experiments, due to the 

abundance of water present in biological tissues. Nuclei with spin-1/2 such as 1H have 

microscopic dipole moments due to their total angular momentum. These magnetic dipoles will 

tend to align with an applied external field to create a bulk magnetization. For a spin-1/2 system, 

the ratio of spin-up to spin-down states can be calculated from the Boltzmann factor ratio 
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N↑

N↓

= e
−γ !B0

kT , which assumes spin-up is the higher energy state (48). This ratio corresponds to a 

spin excess of only ~3/million spins at physiologic temperature in a 1T magnetic field, but there 

is still a large detectable bulk magnetization since there are very large numbers of spins present 

in practical experiments. For this reason the following example will be shown in the context of 

classical physics, and a more accurate quantum mechanical treatment will be examined later to 

compare the classical equations to the quantum expectation values. The classical situation can be 

approached by treating each nucleus as a tiny current loop immersed in an external magnetic 

field as shown in Figure 1. 

 

Figure 1: The current loop (red) in a magnetic field (grey) results in a torque that creates the force 
vectors in blue that cause the loop to orient itself with respect to the static field. 
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Simple electrodynamics says this current loop will experience a torque ( N
!"

) due to the 

interaction of its magnetic dipole moment ( µ
!"

) with the magnetic field ( B
!"

) (49).  

  N
!"
= µ
!"
× B
!"

  0.1  

For this simple case, the dipole moment can be written as the product of the current with the area 

of the loop. The torque equation provides the basis for the precession in the classical derivation 

since the cross product hints that rotation is involved. In order to take the next step in deriving 

the equations of motion for the bulk magnetization, two important insights are needed. First, the 

fundamental definition of torque states that it describes the rate of change of the angular 

momentum  J
!"

.  

 
 
N
!"
= dJ
!"

dt
  0.2 

The total angular momentum of a nucleus is also related to the magnetic dipole moment through 

the gyromagnetic ratio in a very simple expression.  

  µ
!"
= γ J
!"

  0.3 

For a proton, as in the case of a hydrogen nucleus, γ = 2π(42.58 MHz/T). Combining equations 

0.1 - 0.3 with the simple notion that the bulk magnetization is related to an ensemble of dipole 

moments by  M
! "!

= nµ
!"

 (where n  is the number of dipoles per unit volume), the equations of 

motion for the vector form of the Bloch equations may be derived.  

 
 

dM
! "!

dt
= γ M
! "!

× B
!"

  0.4 
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These were the simple equations Bloch derived in 1946 without considering relaxation (which 

Bloch did include in his derivation), which will be described in further detail later. These are the 

fundamental classical phenomenological equations that describe the precession of magnetization 

in a static magnetic field. Equation 0.4 can be quantitatively shown to describe a precession of 

the bulk magnetization in the transverse plane with respect to the static field at the Larmor 

frequency ( ω 0 = γ B0 ) by calculating the cross product with the assumption that 

 M
! "!

= Mx x# +My y# +Mz z#  and  B
!"
= B0 z# . Performing this cross product and then integrating to 

solve for each component results in the following equations.  

 

Mx t( ) = Mx0 cos ω 0t( ) +My0 sin ω 0t( )
My t( ) = −Mx0 sin ω 0t( ) +My0 cos ω 0t( )
Mz t( ) = Mz0

  0.5 

Here Mx0 , My0 , and Mz0  are the initial components of the magnetization vector at time = 0 

immediately following a tip into the transverse plane. This may be simplified further by relating 

all the initial magnetization components to the overall vector M 0 = Mx0
2 +My0

2 +Mz0
2  with 

spherical coordinates.  
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Figure 2: Spherical coordinate system used to convey an arbitrary magnetization vector. 

Figure 2 describes the coordinates used to re-write Eq. 0.5 as follows.  

 

Mx t( ) = M 0 sin θ( )cos φ0 −ω 0t( )
My t( ) = M 0 sin θ( )sin φ0 −ω 0t( )
Mz t( ) = M 0 cos θ( )

  0.6 

The form of Eq. 0.6 makes the precession phenomenon abundantly evident and will act as an 

easy reference to compare the results of the quantum derivation of precession in the next section. 

Quantum Mechanical Basis for MRI 

 The classical case of nuclear precession in a magnetic field describes large ensembles of 

nuclei very well experimentally, but the nuclear interactions are truly quantum in nature and 
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important aspects of the appropriate theory should be noted. In order for a nucleus to be 

detectable in an NMR experiment, it must have intrinsic angular momentum, known as spin, that 

will result in a dipole moment analogous to what was described for the classical precession 

example. In the rare case when a nucleus has a spin of I = 0 such as in 12C, 16O, or 32S, no spin 

transitions may occur and the nucleus is thought to be “NMR silent” since it cannot produce a 

measureable signal with this technique. While NMR may be performed on any nucleus with spin 

I > 0, MRI is almost exclusively performed on the 1H nuclei of water molecules that possess I = 

1/2. There are naturally (2I + 1) degenerate spin states for a nucleus of spin I, but placing the 

nucleus in a magnetic field breaks the degeneracy by splitting the energy levels by a difference 

of  ΔE = !ω 0  through a phenomenon called “Zeeman Splitting” (50). The explicit dependence of 

the energy difference between states on the Larmor frequency (ω 0 ) should be noted since this is 

the origin of the resonance phenomenon. Transitions can occur only at that specific energy, so 

only on resonance RF radiation will excite the nuclei in any NMR experiment. The number of 

accessible spin states is (2I + 1), so spin-1/2 particles are the simplest case for NMR experiments 

because only 2 spin states exist and there are no quadrupolar effects that are present in particles 

with I ≥ 1.  

 Deriving the time dependence of the magnetic moment will provide insight into the 

behavior of this quantum system and allow the comparison of the results with those from the 

classical derivation. Solving for the equations of motion in a quantum system means finding the 

expectation value of the time dependent magnetic moment following the derivation of Haacke 

(48, 51).  

 
 
Ψ µ
!"
Ψ = Ψ†µ

!"
ΨdV∫   0.7 
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The state 
 

Cmψ me
− i
!
Emt

m=±1 2
∑  may be inserted into Eq. 0.7 to write the following form.  

 
 
Ψ µ
!"
Ψ = γV C ′m

* Cmψ ′m
† S
"
ψ me

i
#
ΔEt

′m
∑

m
∑   0.8 

In Eq. 0.8 
 
S
!
= "
2
σ
#!

, where  σ
!"

 is the vector of Pauli spin matrices, and V is the volume of the 

proton that came from the integration. In order to solve this expectation value, the term  ψ ′m
† S
!
ψ m  

needs to be examined in more detail. Substituting for  S
!

, it can be written as  

 
 

!
2
ψ ′m

† σ
"#
ψ m = !

2
x$δ ′m ,−m + 2miy$δ ′m ,−m + 2mz$δ ′m ,m( )   0.9 

since m can only be ±1/2. The coordinates may be transformed to spherical coordinates and 

keeping in mind ΔE = ħω0 and that the states are normalized so Ψ Ψ = 1 , the three components 

of Eq. 0.8 may be written as Eq. 0.10.  

 

 

Ψ µx Ψ = γ !
2
sin θ( )cos φ0 −ω 0t( )

Ψ µy Ψ = γ !
2
sin θ( )sin φ0 −ω 0t( )

Ψ µz Ψ = γ !
2
cos θ( )

  0.10 

Examining these equations shows these equations are identical to Eq. 0.6 when 
 
M 0 =

γ !
2

. This 

shows the quantum expectation value behaves as the classical case for a large ensemble of 

nuclei, as expected. 
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Adding Relaxation Terms to the Bloch Equations 

The first set of Bloch equations derived earlier described the manner in which 

magnetization precesses about a static magnetic field, but failed to take into account the 

extremely important phenomena of nuclear spin relaxation. It is important to note that an 

ensemble of spins is weakly coupled thermally to its surroundings and the relaxation occurs 

between surrounding molecules, sometimes referred to as the “lattice.” In order to derive an 

expression that describes longitudinal relaxation, the change in the number of spins in the spin-

up state needs to be written as Eq. 0.11 (48, 52).  

 dN+

dt
= N−nlW−+ − N+nhW+−   0.11 

Here, N± are the number of spins in the ±1/2 state, nl,h are the number of lattice states with low or 

high energy, and W+- and W-+ are the probability of transitions from the +1/2 to the -1/2 spin state 

or the -1/2 to the +1/2 state respectively. The system may be assumed to be in equilibrium and 

the approximation that W+- = W-+ = W may be used. The number of spins in each state may be re-

written as N± =
1
2
N ± ΔN( )  by defining the difference in spins ΔN = N+ - N- and the total 

number of spins N = N+ + N-. Using this notion, Eq. 0.11 can then be re-written as shown in Eq. 

0.12.  

 dΔN
dt

=WN nl − nh( )−WΔN nl + nh( )   0.12 

In order to put this expression in a more useful form, the difference in spin states at equilibrium 

may be found, which follows simply by setting the derivative of ΔN with respect to time equal to 
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zero to find ΔNeq =
nl − nh( )
nl + nh( )N . Plugging this back into the time derivative in Eq. 0.12 gives the 

following result.  

 dΔN
dt

=W nl + nh( ) ΔNeq − ΔN⎡⎣ ⎤⎦   0.13 

This expression is useful since nl and nh are assumed to be large and do not change, so W(nl + nh) 

is a constant with inverse time units. This can be interpreted as the rate of longitudinal relaxation, 

R1 which can be defined as 1/T1.  

 R1 =
1
T1

=W nl + nh( )   0.14 

Eq. 0.14 is really a statement of how fast spin-states may relax due to the number of states in the 

lattice the spins can interact with. ΔNeq and ΔN are directly related to the z-components of the 

magnetization and may be substituted for M0 and Mz respectively to quantify the evolution of the 

longitudinal magnetization in differential form.  

 
dMz

dt
=
M 0 −Mz

T1
  0.15 

 The spin-spin relaxation may be derived in a simpler manner since the transverse 

magnetization has been observed to decay exponentially due to the “fanning out” or dephasing of 

local contributions to magnetization within the plane, described by Eq. 0.16.  

  M
! "!

⊥ t( ) = M
! "!

⊥ 0( )e
− t
T2   0.16 
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Here,  M
! "!

⊥ = Mx x# +My y#  simply quantifies the entire transverse magnetization, t is the time, and 

T2 is the spin-spin relaxation time. In order to put this in a form that can be added to the Bloch 

equations, the derivative of both sides can be taken and simplified to Eq. 0.17.  

 
 

dM
! "!

⊥

dt
= − M
! "!

⊥

T2
= −R2M

! "!
⊥   0.17 

This now describes the time evolution of the transverse magnetization in differential form that 

can be added to the Bloch equations shown below. 

  

dMx

dt
= Δω 0My − R2Mx

dMy

dt
= −Δω 0Mx − R2My

dMz

dt
= R1 M 0 −Mz( )

  0.18 

These are the full Bloch equations that describe the precession of magnetization about the static 

B0 field with longitudinal and transverse relaxation. 

Introduction to Relaxation Theory 

 When a strong magnetic field interacts with a proton, the simplest atomic nucleus, the 

spin-1/2 particle to experiences a field dependent splitting in the energy levels of the two spin 

states, making one spin state more probable than the other. The important characteristic with 

respect to relaxation is how two neighboring nuclei acting as dipoles can interact. The following 

derivation is known as BPP theory (33). Classically, when two magnetic dipoles interact, the 

potential energy may be described by Eq. 0.19 (49, 53).  
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U = µ0
4π

µ
!"
1 i µ
!"
2

r3
− 3

µ
!"
1 i r
"( ) µ
!"
2 i r
"( )

r5
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  0.19 

Here µ0  is the permeability of free space,  µ
!"
1  and  µ

!"
2  are the dipole vectors, and r is the relative 

distance between nuclei. Quantum mechanically, the dipoles can be expressed as  µ
! = γ "I#  so the 

Hamiltonian may be written as Eq. 0.20.  

 

 

H! dd =
µ0γ 1γ 2"

2

4π
I#1 i I# 2
r3

− 3
I#1 i r
$( ) I# 2 i r

$( )
r5

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  0.20 

Expanding this Hamiltonian is a lengthy endeavor, but the results when transformed into polar 

coordinates are well documented and can be expressed as shown below (33, 54).  

 
 
H! dd =

µ0γ 1γ 2"
2

4πr3
A + B +C + D + E + F[ ]   0.21 

The factor 
 

µ0γ 1γ 2!
4πr3

 is commonly referred to as the dipolar coupling constant, while terms A – F 

are known as the dipolar alphabet, which are explicitly written in Eq. 0.22.  

 

A = −I1z I2z 3cos
2 θ( )−1( )

B = 1
4
I1+I2− + I1−I2+[ ] 3cos2 θ( )−1( )

C = − 3
2
I1z I2+ + I1+I2z⎡⎣ ⎤⎦sin θ( )cos θ( )e− iφ

D = − 3
2
I1z I2− + I1−I2z⎡⎣ ⎤⎦sin θ( )cos θ( )eiφ

E = − 3
4
I1+I2+ sin

2 θ( )e−2iφ

F = − 3
4
I1−I2− sin

2 θ( )e2iφ

  0.22 
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The I+ and I- terms are the quantum raising and lowering operators, which can be written as 

I± = Ix ± iIy . Terms A and B give rise to secular perturbations while terms C – F describe 

periodic perturbations of a much smaller amplitude (33).  

Since in general the two nuclei need not be the same, this system is often referred to as an 

AX, or heteronuclear, system with energy levels and transition rates described in Figure 3.  

 

Figure 3: Energy levels of a heteronuclear AX system with the corresponding transition rates. 

 

For simplicity, only the homonuclear system where the αβ and βα states are degenerate will be 

analyzed since this describes free water well. This degeneracy will cause W1A = W1X and the W0 

transition may be ignored since there is no change in energy due to the states being identical. 

There are only two transitions in this case, W1 and W2, which correspond to blue and red 

transitions respectively in Figure 3. Thus defining the spin-lattice relaxation similar to the 
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method in the previous section for the Bloch equations, the relaxation rate R1 may be found to be 

a function of the transition probabilities (54).  

 R1
dd = 2W1 +W2   0.23 

These transition probabilities may be written out explicitly below. 

 Wn = R
2 Am

2

m=−n

n

∑ G τ( )e− iω0τ dτ
−∞

∞

∫   0.24 

Here n = 1 or 2 since these are the possible transitions, R is the dipolar coupling constant, A is the 

angular part of the dipolar alphabet terms, G is a correlation function of the time-dependent 

molecular motions, and τ is the correlation time of the molecular motions. The integral in the 

right had side of Eq. 0.24 is called the spectral density, which may be written according to Eq. 

0.25.  

 J nω 0( ) = τ c
1+ n2ω 0

2τ c
2   0.25 

Plugging Eq.’s 0.24 and 0.25 into Eq. 0.23 leads to the following expression for the spin-lattice 

relaxation rate.  

 
 
R1
dd = 3R

2

10
J ω 0( ) + 4J 2ω 0( )⎡⎣ ⎤⎦ =

3γ 4µ0
2!2

10 4π( )2 r6
τ c

1+ω 0
2τ c

2 +
4τ c

1+ 4ω 0
2τ c

2

⎡

⎣
⎢

⎤

⎦
⎥   0.26 

The terms C – F in Eq. 0.22 thus affect R1 and in a similar manner, terms A and B contribute to 

R2. The spin-spin relaxation rate can be found by calculating these terms, of which A now 

contributes the term 3J(0), and written as Eq. 0.27.  
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R2
dd = 3R

2

20
3J 0( ) + 5J ω 0( ) + 2J 2ω 0( )⎡⎣ ⎤⎦ =

3γ 4µ0
2!2

20 4π( )2 r6
3τ c +

5τ c
1+ω 0

2τ c
2 +

2τ c
1+ 4ω 0

2τ c
2

⎡

⎣
⎢

⎤

⎦
⎥   0.27 

Finally, the spin-lattice relaxation rate in the rotating frame may be derived in a similar manner 

to Eq. 0.26, except in this case there will be a spectral density according to the Larmor frequency 

about the effective field that arises from the application of the spin-lock pulse (54–57).  

 
 
R1ρ
dd = 3R

2

20
3J 2ω1( ) + 5J ω 0( ) + 2J 2ω 0( )⎡⎣ ⎤⎦ =

3γ 4µ0
2!2

20 4π( )2 r6
3τ c

1+ 4ω1
2τ c

2 +
5τ c

1+ω 0
2τ c

2 +
2τ c

1+ 4ω 0
2τ c

2

⎡

⎣
⎢

⎤

⎦
⎥  0.28 

Eq. 0.28 looks almost identical to R2
dd , but it depends on the term 3J(2ω1) rather than 3J(0). It is 

also worthy to point out in the extreme narrowing case when  ω 0
2τ c

2 ≪1 ,   

 
 
R1
dd = R2

dd = R1ρ
dd = 3γ

4µ0
2!2τ c

2 4π( )2 r6
.   0.29 

This corresponds to very rapid motion with very short correlation times that will cause a long T1, 

which may occur in non-viscous fluids at relatively high temperatures. 

Factors Influencing R1ρ 

Though many important discoveries have been made in the field of MRI over the years 

with countless applications, this work primarily focuses on the applications of examining 

chemical exchange and diffusion through the spin-lattice relaxation rate in the rotating frame 

(R1ρ = 1/T1ρ). While many factors may contribute to spin-lattice relaxation in the rotating frame, 

the work reported in this dissertation provides evidence that at high static fields (≥3T) the 

contributions of chemical exchange and diffusion begin to dominate other effects like traditional 

dipolar effects. Both the chemical exchange and diffusion phenomena have been studied 
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significantly in various contexts within both NMR and MRI over the years, but relatively little 

work has been focused on their study by spin-lock MRI. Most of these previous studies of T1ρ-

based contrast have been performed at relatively low B0 fields, and these have emphasized the 

sensitivity of T1ρ measurements to slow molecular motions around the Larmor frequency 

corresponding to the locking field, typically from ~100 Hz to a few kHz (7, 11, 19, 58). The low 

frequency motions of macromolecules may affect water via dipolar interactions, and T1ρ may 

often provide a more specific probe of such effects than other relaxation measurements. 

Variations of R1ρ with locking field (R1ρ dispersion) then reflect changes in the spectral density 

of the local dipolar fields experienced by protons due to relatively slow molecular motions. 

However, at higher fields, there may be additional significant contributions to R1ρ (as well as R2) 

from chemical exchange between sites of different chemical shifts, and these increase rapidly 

with field strength and may dominate the dispersion curves measured experimentally (59). It is 

noteworthy that recent reports have shown that measured relaxation rates have a more complex 

dependence when spin-locking is achieved with a train of adiabatic pulses since the modulation 

in the pulse as a function of time changes the exchange conditions through the time dependent 

effective field (60, 61). Mäkelä et. al. investigated the B0 dependence of R1ρ dispersion in protein 

phantoms and rat brains in vivo and while they claim classical dipolar interactions are the most 

important mechanism, they also state that other effects such as diffusion and exchange are likely 

influencing the relaxation (56).  

Spin-locking pulse sequences are needed to measure R1ρ, and multiple forms of these 

sequences exist. All the experiments throughout this work use an advanced pulse sequence 

described by Witschey et. al. (62), but the simplest spin-lock preparation pulse is described 

below for illustrative purposes. Figure 4 illustrates a standard spin-locking pulse sequence and 
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the effects of each of the pulses on the precessing magnetization.  

 

Figure 4: a.) A hard pulse initially tips the magnetization into the transverse plane. b.) The locking 
pulse creates an effective field in the y-z plane that the magnetization precesses about. c.) The 

magnetization is tipped back to the longitudinal z-axis. 

 

The magnetization is initially tipped down 90° in to the transverse plane with a hard pulse along 

the x-direction in the rotating frame, placing the magnetization along the y-axis as shown in 

Figure 4a. The long duration, low amplitude locking pulse is applied along the magnetization in 

the y-direction in the rotating frame, but the field inhomogeneity represented by Δω causes the 

effective field to gain a z-component in the rotating frame as shown in Figure 4b. The 

magnetization relaxes while precessing around this effective field at a rate that depends on the 

locking amplitude and the spectral density function since interactions occurring at a frequency 

that is on the order of the effective field will induce relaxation. The remaining magnetization 

then returns to the longitudinal z-axis with the application of another hard pulse, this time along 
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the –x-direction as shown in Figure 4c. This simple locking pulse diagram is known as a 

preparatory pulse cluster and can be followed by another spectroscopic or imaging pulse 

sequence, making this a very flexible method for creating T1ρ weighted images. Changing the 

amplitude of the applied spin-locking pulse will increase the magnitude of the effective field, 

which will change the rate the magnetization relaxes. The range of frequencies accessible in a 

spin-locking experiment typically range from 101-104 Hz on small bore animal scanners, and up 

to 103 Hz on larger bore human scanners. This range of frequencies excludes many fast 

molecular tumbling that induces dipolar relaxation, which corresponds to correlation times on 

the order of 10-12 seconds for free water (63).  

Various sequences may be used to measure R1ρ but the most important sequence used in 

this work is that described by Witschey et. al. (62). The advantage of the Witschey sequence 

over other similar sequences is its ability to minimize artifacts arising from B0 and B1 

inhomogeneities. Pulse variations of locking sequences are shown below in Figure 5.  

 

Figure 5: Variations of spin-locking pulse sequences, each with features meant to mitigate image 
artifacts. 
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The spin-lock sequence shown in Figure 5a is the simplest possible sequence, but can suffer from 

significant B0, B1, and imperfect tip angle artifacts in practice. The rotary sequence was proposed 

to alleviate B1 artifacts from imperfect tip angles and low locking field oscillations (64), but 

these effects still linger in practice using this pulse. In 2007, Witschey proposed the sequence 

with the 180° pulse inserted in the center of the locking pulse shown in Figure 5c. This sequence 

performs very well in mitigating B0 and B1 inhomogeneities in practice, but continues to suffer 

from imperfect excitation flip angle effects. The first solution they proposed to this was to 

change the phase of the last 90° pulse to +x so the magnetization would end in the –z direction 

after the prep. This works well, but their second solution depicted in Figure 5d using adiabatic 

half passage pulses to excite performs the best in terms of minimizing artifacts mentioned. It is 

important to note the locking pulses are not adiabatic pulses, which may also be used to achieve 

spin-locking under the correct conditions (65–67), but are not of interest for this thesis. The 

adiabatic pulses do increase the overall Specific Absorption Rate (SAR) of the sequence, which 

may be a problem for many in vivo studies, but most of the work presented in this thesis are on 

phantoms that do not have require strict SAR limitations. Thus, the adiabatic Witschey sequence 

described in Figure 5d will be used in all experiments throughout this thesis. 

Chemical exchange in the context of MRI describes the physical swapping of hydrogen 

nuclei between bulk water sites and amides, amines, or hydroxyls. The exchange rate and 

chemical shift of the smaller solute pool determine the magnitude of such exchange contributions 

to transverse dephasing, but the application of appropriately strong locking fields can reduce 

these effects. This ability to reduce exchange contributions by varying the locking field gives rise 

to a dispersion in R1ρ values with locking field that then provides information about exchange 

processes in the intermediate to fast time-scale regimes (68). This is of particular importance for 
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imaging compounds with fast exchanging protons such as in hydroxyl groups (−OH) found in 

compounds such as glucose or glutamic acid, key energy sources and neurotransmitters in the 

human brain respectively. Figure 6 depicts an example of chemical exchange between the bulk 

water pool labeled pool a, and a single glucose molecule labeled pool b.  

 

Figure 6: An example of chemical exchange between the bulk water pool and the glucose solute 
pool. The coupled exchange rates describe the rate of this process and are determined by the 

relative pool fractions of each pool. 

 

The protons in pools a (bulk water) and b (solute) exchange at different rates that depend on the 

relative pool fractions as pakab = pbkba, where pa and pb are the respective pool fractions. The R1ρ 

dispersion curve provides valuable information by exhibiting an inflection point at a frequency 

that is a function of the exchange rate and chemical shift. A corresponding dispersion of R2 
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values with pulse rate in CPMG sequences can in principle provide similar exchange information 

by comparing the different apparent T2 values obtained at long pulse spacings, where exchange 

will significantly influence the linewidth, and short pulse spacings, where exchange will have 

very little impact. However, the practicality of using multi-echo sequences in imaging is limited 

by technical constraints on achievable pulse rates to probing relatively slower exchange (59). 

Contrast in traditional MR images is the direct result of distinct intrinsic nuclear magnetic 

resonance (NMR) relaxation times between tissues. The spin-lattice relaxation time, T1, 

quantifies the time required to regrow 63% of the magnetization back to the z-axis equilibrium 

position. Similarly the aforementioned spin-spin relaxation time, T2, reports on the intrinsic 

transverse dephasing of magnetization during free precession (48). Furthermore, T2
* quantifies 

the transverse dephasing from field inhomogeneity that, unlike intrinsic T2 effects, can be 

reversed by applying the proper pulse sequence techniques. Different mechanisms contribute to 

each relaxation time, so estimating relaxation times can shed light on molecular processes 

present in the medium. Molecular tumbling, for example, contributes to R2 through the rapidly 

changing dipolar interactions between molecules arising from their magnetic moments and T1 is 

related to the spectral density of the medium since it quantifies the time scale of which the 

energy is distributed to the surrounding “lattice” (48). Other T1 effects do exist such as the 

coupling of nuclear spins to the radiation field to induce emission or absorption of radiation to 

change the spin-energy states. The transition probability for this coupling has been calculated in 

detail to be on the order of ~10-10 Hz under reasonable conditions though, making this effect 

hopelessly weak and essentially negligible experimentally (21).  

Studies have demonstrated dipolar interactions and cross-relaxation, or the relaxation due 

to the coupling of two different proton pools in the cross terms of the Solomon equations (42, 
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50), tend to decrease their contributions to relaxation as the static field increases (68). 

Subsequent studies reveal that some other mechanism increases transverse relaxation rates (R2) 

in protein solutions with increasing B0 field, contradictory to expectation (69). Since chemical 

exchange constitutes the breaking and forming of labile hydrogen molecular bonds, it contributes 

to R2 since the exchange sites typically have distinct local magnetic environments that cause 

dephasing when protons exchange back and forth. This change in local magnetic environment at 

exchange sites that stems from a shielding effect, due to the chemical shift caused by the electron 

cloud configuration, becomes more pronounced at higher static fields. Thus the exchange 

mechanism is thought to dominate traditional dipolar and cross-relaxation effects at very high 

fields. In addition to chemical exchange, the influences of diffusion through susceptibility-

induced gradients on transverse relaxation rates R2 and R2
* have been extensively analyzed by 

theory and computer simulations and studied experimentally (70–81). These effects are 

significant at high fields and will contribute in conjunction with exchange to dominate dipolar 

and cross relaxation effects.  

Effects other than chemical exchange have also been reported to affect the dispersions of 

R2 and R1ρ including water diffusion through internal field gradients caused by interfaces of 

unequal susceptibility. For example, Hills et al. reported a double dispersion behavior of R2 as a 

function of reciprocal CPMG 90°-180° pulse spacing at 7T in suspensions of packed sephadex 

beads carrying hydroxyl protons in water (82). The dispersion curve was compared to theoretical 

simulations that took only chemical exchange into account and accurately matched the short 

pulse spacing data, but failed to coincide with the long pulse spacing portion of the curve. This 

disparity for long pulse spacings was postulated to be due to water diffusion into and out of the 

sephadex beads as well as through the intrinsic gradients produced immediately outside the 
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beads. This diffusion produced a separate dispersion because the local field experienced by spins 

evolved on a much slower time scale (around 4 Hz) compared to the chemical exchange effects 

occurring at 2,500 Hz. The low frequency dispersion of R1ρ reflects the time scale over which 

magnetization is dephased, which directly depends on the magnetic microstructure of the 

medium. Similar findings were experimentally confirmed in plant tissues (83). We have more 

recently shown how diffusion through susceptibility gradients, in the absence of chemical 

exchange, can produce significant R1ρ dispersion and reveal details of the inhomogeneities 

causing the gradients, and that such effects are measureable in biological tissues. The 

experimental results described in subsequent chapters have verified the new theoretical 

predictions of such effects (84, 85). Diffusion of water through susceptibility gradients could be 

very relevant to studies of tissue microvasculature, which may induce intrinsic gradients within 

tissues. However, some previous studies have claimed T1ρ is not sensitive to changes in 

intravascular susceptibility. For example, Kettunen et. al. has shown T1ρ is only marginally 

sensitive to intravascular effects after injection of the susceptibility agent AMI-227 using a 

locking field of 1.6 G (≈ 6,800 Hz) whereas T2 was much more sensitive to these effects (86). 

We show below that significant effects are not expected using such a strong locking field, but 

that T1ρ is very sensitive to the presence of susceptibility agents when the locking field is much 

weaker. Simulations and theory described in this thesis indicate that diffusion-related R1ρ 

dispersion effects depend on the relationship between the locking field frequency and the time 

needed for water molecules to diffuse distances of the order of the size of the vessels, which is 

typically on the order of many milliseconds. Rane et. al. have recently provided strong evidence 

that T1ρ is sensitive to intravascular susceptibility changes at low locking fields by detecting 

BOLD signals in the brain at different locking strengths (9). Thus in addition to chemical 
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exchange, R1ρ dispersion measurements can report on diffusion processes in inhomogeneous 

tissues. 

Motivation for R1ρ Based Imaging 

The spin-lattice relaxation time in the rotating frame (T1ρ=1/R1ρ) was first investigated 

decades ago (20, 45, 87) and is a sort of hybrid of T1 and T2 that has considerable potential for 

characterizing tissues and assessing pathological or other changes in various research and clinical 

applications (88). The rate R1ρ is usually measured by applying an on-resonance spin-locking 

field along the direction of the bulk transverse magnetization in the rotating reference frame for 

an array of locking times. Subsequent measurements can be acquired at various locking 

amplitudes to obtain the dispersion of R1ρ. If the locked magnetization decays mono-

exponentially, which is the case in most experiments, then the time constant of the decay is T1ρ. 

Measurements of T1ρ have been used to characterize various media for many years (7, 10, 15, 86, 

89), but have not found widespread use in conventional MRI for different reasons. Moreover, 

few prior uses of spin-locking in imaging have emphasized the ability to quantify dynamic 

processes such as chemical exchange or diffusion at high fields. Chemical exchange is the most 

commonly investigated process with chemical exchange saturation transfer (CEST) experiments 

(90), with spin-locking gaining popularity. Spin-locking methods provide a promising means to 

quantify exchange rates in tissues that are dependent on important physiological parameters such 

as temperature, pH, and metabolite concentrations.  

R1ρ is well known to report on slow molecular motions and chemical exchange processes 

(45), and the dispersion of R1ρ with locking field can provide quantitative information about 

these processes occurring in the intermediate to fast time-scale regimes at high field where 

exchange is thought to dominate relaxation (91). There has been considerable recent interest of 
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measuring chemical exchange effects using CEST, but these methods rely on distinguishing 

chemical shifts while spin-locking measurements can provide complimentary information since 

they are sensitive to chemical exchange rates and are more robust for rates in the fast exchange 

regime (kex/Δωb>>1) where CEST spectra begin to coalesce. This is of particular importance for 

imaging compounds with hydroxyl groups (−OH) such as glucose or glutamic acid, key energy 

sources and neurotransmitters in the human brain respectively. Other experimental issues like 

direct water pool saturation and the Nuclear Overhauser Effect (NOE) that confound CEST 

calculations are avoided using R1ρ dispersion methods. Spin-locking experiments are sensitive to 

metabolite concentrations and pH, which are very important parameters for imaging cancer 

tissues since they often change significantly with respect to healthy tissues. The exchange 

mechanism can also be exploited to infer glucose metabolism using exogenous glucose 

analogues in tumors, which has been demonstrated with CEST and will be attempted using R1ρ 

dispersion imaging in this project. The dispersion of R1ρ will be shown to be sensitive to multiple 

exchange processes occurring simultaneously and can be used to quantify multiple rates or 

calculate parametric images depicting metabolite concentration in specific cases. Finally, R1ρ 

experiments are very easy to implement since a non-slice-selective spin-locking pulse cluster 

followed by a spoiler gradient simply needs to be added to the beginning of an imaging sequence 

to generate T1ρ weighted images. 

Conclusion 

 Spin-locking methods have been in use since the beginnings of NMR, but have never 

found widespread utility among the MRI community. A significant amount of previous R1ρ 

experiments did not take full advantage of the method by only taking measurements at a single 

locking field or were performed at low static fields. Rotating frame relaxation may provide novel 
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or in some cases, less ambiguous, information that is not available through traditional T1 or T2 

weighted acquisitions. New insights into rotating frame relaxation are presented in the 

subsequent chapters that highlight the ability of R1ρ dispersion methods to simultaneously 

quantify chemical exchange rates in multiple solute pools, calculate image contrast that reflects 

exchange rates, estimate solute concentrations in mixtures, and even infer sub-voxel geometric 

structural information through proper analysis of R1ρ data. All the experiments presented in this 

thesis are based on examining chemical exchange mechanisms or water diffusion in the presence 

of susceptibility gradients. In each of these methods, one key recurring concept is the entire 

dispersion curve is needed to properly derive robust quantitative data. Acquiring dispersion 

curves can be very time consuming, which may be unacceptable in certain clinical procedures, 

but these methods should still find plenty of use in other research realms like materials or food 

sciences, and below some simplified approaches are described that may be more practical. 

Hopefully the following results will encourage the use of R1ρ dispersion methods in a wider array 

of scientific studies moving forward. 
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CHAPTER 2 

Exchange Rate Contrast in MRI 

Introduction 

Motivation 

The aim in this thesis is to further develop and evaluate magnetic resonance imaging 

(MRI) methods that exploit novel contrast mechanisms based on chemical exchange and 

diffusion, which can be used to characterize tissues and assess tissue microstructure and 

composition in new ways. MRI continues to move to increasingly high field strengths, especially 

in important pre-clinical studies of small animal models of disease, and with increasing field 

different relaxation mechanisms evolve, providing new opportunities for characterizing tissues. 

In particular, water transverse relaxation in tissues at high fields is dominated by chemical 

exchange rather than dipole-dipole interactions, with additional contributions from diffusion 

through susceptibility gradients that mimic exchange. These processes are affected by very 

different factors than dipolar interactions, and they can be exploited to provide new types of 

image contrast. To date, Chemical Exchange Saturation Transfer (CEST) has been used to 

exploit exchange and provide information on amide and hydroxyl composition as well as pH, but 

relies on identifying components within tissues distinguished by their chemical shifts and is not 

well suited for detecting hydroxyl protons because their chemical shifts are small. Spin-locking 

sequences provide an alternative approach to exploiting exchange effects based on measurements 

of R1ρ. The following work shows the variation of R1ρ with the locking field amplitude (R1ρ 

dispersion) provides a way not only to quantify the parameters of the exchange, but also to 

emphasize contributions to image contrast from sub-populations of protons that exchange at 
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specific rates rather than possess specific chemical shifts. Rotating frame relaxometry therefore 

provides a method for detecting and measuring exchanging species and modifying image 

contrast with exchange-based effects. Before developing new contrast metrics, the theory is 

reviewed for how exchange affects R1ρ and some of the factors that affect R1ρ are evaluated. 

Two-Pool Models of Exchange 

Labile hydrogen protons such as hydroxyls (−OH), amides (NH+), or amines (NH2) may 

undergo physical exchange with solvent water protons at a rate dependent on several factors such 

as temperature, pH, and chemical environment. These exchange sites in general have different 

chemical shifts and intrinsic relaxation rates compared to water protons. The chemical shift 

differences correspond to different intrinsic precession rates so exchange leads to a mix of 

different phases resulting in transverse signal losses. Spin-locking methods typically first nutate 

the bulk magnetization into the transverse plane with either an adiabatic or hard RF pulse, and 

subsequently “lock” the magnetization by applying a relatively long duration, low amplitude RF 

pulse of strength B1 = ω1/γ along the direction of the magnetization as described in the previous 

chapter. Transverse magnetization under the influence of this continuous, in phase, and on-

resonance RF locking field decays along the same axis at the rate R1ρ = 1/T1ρ. Chemical shift 

differences introduce a small longitudinal field component, but increasing the locking amplitude 

tends to ensure the effective field remains in the transverse plane so that dephasing effects are 

reduced. This tends to decrease the relaxation rate R1ρ in a manner that depends on the time scale 

of the relevant molecular interactions corresponding to the locking field period. This differs from 

CEST experiments where saturation pulses are applied at a range of frequency offsets to partially 

saturate longitudinal magnetization to decrease the solvent signal after the exchange of saturated 

spins. Though the experiments are different, simulations have shown off-resonance spin-locking 
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and CEST are derived from the same eigenvalue of the Bloch-McConnell equations and the 

measurements are sensitive to the same exchange effects (92).  

Chemical exchange between water and surrounding labile protons in solute pools induces 

relaxation in the rotating frame, but only with a theoretical model can practical data about the 

medium be inferred. Multiple models have been proposed that explicitly quantify R1ρ relaxation, 

but most of these are related to deriving an equation that states the relaxation will be a function 

of the spectral density function at different frequencies. This notion, while true, lacks the ability 

to afford much insight into relevant parameters like chemical shifts or exchange rates. In order to 

theoretically evaluate the effects on R1ρ dispersion of exchange between water and one 

functional group with a distinct chemical shift, a two-pool exchange model may be adopted. A 

schematic of an arbitrary two-pool system is shown in Figure 7, each pool with intrinsic constant 

values of initial magnetization (related to concentration), R1, R2, and a chemical shift offset.  

 

Figure 7: Schematic of an exchanging two-pool system. Each pool has independent initial 
magnetizations, relaxation rates, chemical shifts, and coupled exchange rates. 

 

The bulk water pool can physically exchange protons back and forth with amide (-NH), amine (-

NH2), and hydroxyl (-OH) functional groups at a rate ( kab , kba ) dependent on factors including 
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temperature, concentration, and pH. McConnell analyzed this model in 1958 by assuming the 

exchange reactions were first order equilibrium reactions that occurred almost instantly, so 

protons spent a negligible amount of time in any intermediate radical stage (44). Also, the two 

pools have innate relaxation characteristics that are both independent of each other and 

independent of the exchange rates between pools. With these simple assumptions, the standard 

Bloch equations described in chapter 1 may be modified by adding linear terms that account for 

the exchange process and to account for the locking field ω1 . The two-pool Bloch-McConnell 

equations in matrix form are shown below (44).  
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 1.1 

In Eq. 1.1, Mia  is the ith magnetization component of pool a, R1,2a  are the longitudinal and 

transverse relaxation rates of pool a (bulk water pool), Δωa is the chemical shift of pool a, 

kab=
pb
pa
kba is the exchange rate from pool a to pool b (exchange pool), pa is the pool fraction of 

pool a, ω1 is the magnitude of the applied RF field along the x-direction in the rotating frame, 

and M0a is the equilibrium magnetization component of pool a. Pool b has identical expressions as 

pool a with switched indices. These first order coupled differential equations predict the 

evolution of magnetization with striking accuracy, but a closed form expression cannot be found 

without invoking certain simplifying assumptions. 

 Two model solutions of R1ρ from the Bloch-McConnell equations found using different 
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simplifying assumptions will be of interest for this work, the first was derived by Chopra et al. in 

1984 (93), and the second was derived by Trott and Palmer in 2002 (94). Both models derive 

closed form expressions by finding the largest real eigenvalue of the determinant in the 6x6 

matrix of Eq. 1.1, since this eigenvalue dominates the time evolution of the magnetization (94). 

Trott and Palmer solved these equations for R1ρ using the assumptions that R1
a = R1

b = R1 , 

R2
a = R2

b = R2 , and the solution is diluted ( pa ≫ pb ) to derive the following expression.  

 R1ρ = R1 sin
2 θ( ) + R2 cos2 θ( ) + sin2 θ( ) pa pbδ 2k

ω aeff
2 ωbeff

2 /ω eff
2 + k2

  1.2 

In Eq. 1.2, θ = tan−1 ω1 Δω( ) ,δ = Δωb − Δω a , k = kab + kba , ω aeff
2 = Δω a

2 +ω1
2 , ωbeff

2 = Δωb
2 +ω1

2

, and ω eff
2 = Δω 2 +ω1

2  where Δω  is a population averaged frequency offset. The first two terms 

on the left of Eq. 1.2 are the effective relaxation rates governed by spin-lattice contributions at 

high locking field and the transverse relaxation at low locking field, and the third term is the 

chemical exchange contribution Rex. This model may be used to fit for R1 , R2 , pa pb , and k  to 

estimate the exchange rate. The Trott and Palmer model has proven useful in various 

experiments, a more realistic analysis was provided in the Chopra model that assumes on 

resonance RF (Δω a = 0 ), asymmetric pool fractions ( pa ≫ pb ), and that exchange is not slow 

compared to relaxation ( R1
b + kba ≫ R1ρ ,  R2

b + kba ≫ R1ρ ). Under these conditions, finding the 

largest real eigenvalue leads to a different expression.  
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 In Eq. 1.3, the parameters R1ρ
∞ = R2
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⎟
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and Sρ
2 =

R1
b + kba( )

R2
b + kba( ) R2

b + kba( )2 + Δωb
2⎡

⎣
⎤
⎦ . This accords well with the situation in biological tissues 

and does in fact reduce to Eq. 1.3 for practical on-resonance conditions when R1
a = R1

b  and 

R2
a = R2

b . If R1ρ is measured over a range of locking fields, this model may be used to fit the 

dispersion curve for the three parameters R2 , R1ρ
∞ , and Sρ

2 . In the biologically relevant case when 

 kba ≫ R2
b ≥ R1

b , then Sρ
2 ≈ kba

2 + Δωb
2  and the exchange rate kba  can be explicitly found when the 

chemical shift is known. 

 Where the second derivative of Eq. 1.3 with respect to ω1  is equal to zero, the dispersion 

curve undergoes an inflection, and the corresponding locking field is then ω1
infl = Sρ

2 3 . The 

two models use slightly different assumptions in their respective derivations and give different 

functional forms, but produce almost identical results when simulated numerically with 

biologically relevant parameter values. They have been shown to model dynamical effects well 

for small exchanging proton pool fractions ( pb ≪1 ) in Bloch simulations as well as model 

systems of various metabolites (68, 91, 95). The Chopra model shown in Eq. 1.3 is slightly more 

general for the on-resonance spin-locking condition as the individual site relaxation rates do not 

need to be identical, so the hypothesis is this model will be more applicable to all the systems 

studied throughout this project. The Trott and Palmer model may be needed in certain scenarios 

such as when off-resonance locking pulses are used.  

 Elucidating the efficiency of chemical exchange in producing NMR relaxation will be 
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advantageous for improving quantitative MRI in both research and diagnostic settings. Previous 

studies have demonstrated dipolar interactions and cross-relaxation tend to decrease their 

relaxation contributions with field (96), and subsequent studies reveal that some other 

mechanism  increases R2 relaxation rates in protein solutions with static field (69). Chemical 

exchange has been shown to contribute to R1ρ relaxation through simulations and has been 

claimed to be the dominant factor of relaxation in many previous spin-locking experiments (68, 

91, 95, 97, 98), but no study to our knowledge systematically verifies that chemical exchange is 

the prime governing mechanism of the dispersion. The interactions thought to be responsible for 

the majority of the relaxation in exchanging systems are dipolar coupling, cross-relaxation, and 

chemical exchange between distinct pools (91, 99). Previous simulations have shown exchange 

alone can produce dispersion in R1ρ, but how these other effects contribute to the dispersion in 

conjunction with exchange has not been analyzed. Introducing deuterium to the system while 

keeping temperature and pH constant will alter the overall dipolar coupling and intramolecular 

cross-relaxation in the system without significantly modifying exchange dynamics. Thus the 

effects other than exchange may be reduced to quantify their contribution at many field strengths 

to determine if exchange really dominates in a certain regime.  

 The use of deuterium in NMR has a long history and has been used for many purposes. 

Deuterium is a stable isotope of hydrogen with spin-1 that occurs with a natural abundance of 

0.015% (100). It is commonly used in NMR for frequency locking to avoid drift in the resonance 

frequency throughout experiments and is used more directly for investigating protein structures 

and dynamics (101–110). The deuteron possesses a much smaller magnetic moment than the 

proton and thus has a smaller gyromagnetic ratio and a smaller dipolar field (27, 111). The 

nuclear mass of the deuteron is doubled and there is an isotope effect with respect to the 
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exchange dynamics (97, 112), but all these effects may be used to help establish the relative 

influences of exchange and dipolar effects at various fields. The deuterium nuclei replaces 

hydrogen nuclei rapidly through chemical exchange and the vastly different precession 

frequency of the deuteron causes these nuclei to be invisible to proton NMR, though direct 

detection may be performed with the right equipment (113). Thus deuteration of a medium in 

equilibrium undergoing exchange should result in decreased R1ρ values at low locking fields 

from the reduced exchange contribution and a reduction in the dipolar effects. Temperature and 

pH may also significantly affect chemical exchange parameters since these are known to 

influence most chemical reactions rates in general (114). Both have been investigated previously 

in chemical exchange experiments (69, 115–120), but few have studied the effects on R1ρ (91, 

95, 121, 122). Quantifying the magnitude of all these effects on R1ρ will further advance the 

understanding of how chemical exchange influences relaxation in the rotating frame. 

Exchange Rate Contrast 

Distinguishing tissues based on chemical exchange rates can aid in quantitatively 

characterizing diseased and healthy tissues non-invasively. One such method to do this may be 

done by deriving image intensity that depends directly on exchange rate. Cobb et. al. described a 

method to derive such a contrast through a method called Exchange Rate Contrast or ERC (98). 

The ERC can be used in spectroscopic and image based experiments by emphasizing exchanging 

species with a specific inflection point. The theory starts by assuming  kba ≫ R2
b ≥ R1

b  to write a 

simplified form of the Chopra R1ρ equation.  

 R1ρ ≈ R2
a + pb R2

b + kbaΔωb
2

kba
2 + Δωb

2 +ω1
2

⎡
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By measuring three relaxation rates at judiciously selected locking strengths of ω1 ≈ 0, ∞, and 

any intermediate value, Eq. 1.4 may be used to define the Exchange Rate Contrast (ERC) by 

which images may be generated that exhibit novel contrast based on the dominant exchange rates 

within the system.  

 ERC ω1( ) = 4 R1ρ ω1 = 0( )− R1ρ ω1( )⎡⎣ ⎤⎦ R1ρ ω1( )− R1ρ ω1 = ∞( )⎡⎣ ⎤⎦
R1ρ ω1 = 0( )− R1ρ ω1 = ∞( )⎡⎣ ⎤⎦

2   1.5 

Substituting Eq. 1.4 with the proper values of ω1  into Eq. 1.5, the ERC can be written in terms 

of the intrinsic tissue parameters.  

 ERC ω1( ) = 4 kba
2 + Δωb

2( )ω1
2

kba
2 + Δωb

2 +ω1
2( )2

  1.6  

The ERC is a smooth and Lorenztian-like curve when plotted versus ω1  that displays a peak 

value of 1 when ω1 = kba
2 + Δωb

2 . It falls off monotonically for values of ω1  different from this 

value, and the width of the ERC is described by the parameter α = ω1

kba
2 + Δωb

2
. The ERC is thus 

a spectral response function in which the magnitude depends on the relationship of the locking 

field to the exchange rate and chemical shift frequency. This provides the basis for producing 

images that emphasize species of particular exchange rates. Cobb et al. have shown this can be 

used in an imaging context for single site exchange to emphasize specific exchange rates in 

studies of potential exchange based contrast agents in vitro (68). The relaxation rates in Eq. 1.5 

may be replaced with image signal intensities (SI) from a single locking time at the respective 

locking amplitudes to produce parametric images that obey a similar behavior and emphasize the 
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protons undergoing exchange at a rate corresponding to the selected intermediate locking field, 

i.e. exchange weighted image contrast (EWIC).  

 EWIC = 4
SI ω1 = 0( )− SI ω1( )⎡⎣ ⎤⎦ SI ω1( )− SI ω1 = ∞( )⎡⎣ ⎤⎦

SI ω1 = 0( )− SI ω1 = ∞( )⎡⎣ ⎤⎦
2   1.7 

If this intermediate locking amplitude is chosen to be at the ERC peak of a specific exchanging 

species in the presence of single species exchange, then the derived image intensity will scale 

with the local concentration of that species. By changing the locking field of the acquired 

images, individual proton pools may be emphasized over others and distinguished by their 

specific exchange properties. The EWIC image is much faster to derive since it requires only 

three images, but is sensitive to the spin-lock time used for each image and thus, complicates the 

accurate estimation of the exchange rate. ERC maps calculated from R1ρ maps at 3 locking fields 

are much more robust in estimating exchange rates since there is no dependence on the locking 

time, but these require more images and longer acquisition times. The EWIC dependence on 

locking time needs to be assessed to determine how feasible this method is in practice. 

Specific Aims 

Five specific aims are addressed in the remainder of this chapter. 

Aim 1  

Compare the Trott and Palmer model to the Chorpa model by comparing both to Bloch-

McConnell simulations and fitting them to dispersions from phantom experiments under various 

conditions to ascertain which is the more accurate and appropriate model for each condition. The 

conditions will include slow (
 

kba
Δωb

≪1 ), intermediate (
 

kba
Δωb

∼1 ), and fast exchange (
 

kba
Δωb

≫1 ) 
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scenarios with both similar and disparate intrinsic pool relaxation rates to test the fast exchange 

and pool fraction assumptions the models employ. Various pool fractions will subsequently be 

examined to test how each model handles larger pool fractions since both assume very small 

solute pools. Finally, phantom experiments will be carried out and analyzed with both models to 

determine exchange rates on systems with known chemical shifts that have been examined using 

other methods such as NMR lineshape analysis and/or CEST. Metabolites will include glucose, 

ethanol, and myo-inositol. 

Aim 2  

Though evidence theoughout the literature suggest chemical exchange may dominate 

other relaxation mechanisms such as dipolar effects at high field, no study has examined this fact 

directly. Chemical exchange will be systematically confirmed to be the dominant effect in 

solutions at high fields by scanning 200 mM glucose solutions with deuterium concentrations 

ranging from 0-80 volume % at 4.7T, 7T, and 15T with a spin-locking sequence to measure the 

R1ρ dispersions. Analyzing the dispersion magnitudes and inflection points as a function of D2O 

concentration and field strength will provide insight into the exchange and dipolar contributions.  

Aim 3  

The fact chemical exchange dominates R1ρ relaxation at high field, physiologic factors 

that may greatly influence exchange parameters need to be examined to establish their impact. 

Specifically, the influence of temperature and pH on chemical exchange parameters at high fields 

are determined by scanning a 200 mM glucose solution with pH = 7 at temperatures ranging 

from bore temperature (19°C) to 40°C, and scanning multiple samples at bore temperature with 

pH values ranging from 2-12. 
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Aim 4 

 Compare the Exchange Rate Contrast (ERC) method with Exchange Weighted Image 

Contrast (EWIC). The spin-lock time used when acquiring images for the EWIC method may 

influence the image contrast and the extent of this effect needs to be determined. The theories 

will be examined to determine what conditions may cause the EWIC to deviate from the ERC 

and to derive a manner of estimating this deviation with hopes to minimize it. 

Aim 5 

Using the ERC method provides the potential for generating image contrast that 

emphasizes the presence of metabolites exchanging at specific rates. A glucose model system 

will be analyzed with the ERC method to determine what frequency that the ERC will accentuate 

glucose. This method will be examined in healthy and tumor tissues in vivo to assess its contrast 

with the contrasts available from R1ρ-weighted images and R1ρ maps. 

Methods 

Comparing R1ρ Models 

 The R1ρ dispersion methods described throughout this thesis provide new methods for 

quantitatively characterizing biological tissues, but this requires an accurate R1ρ model to assess 

the exchange dynamics. Both the Trott and Chopra models of exchange were derived in a very 

similar manner, so both were expected to perform quite well under most practical conditions but 

no comparison has been reported in the literature. In order to determine if one model would out-

perform the other, comparing both models to various simulations was the first step. Finite 

difference Bloch-McConnell equations (Eq. 1.1) were evaluated in 5 ns time steps, with locking 

times up to 250 ms for each of the 50 spin-lock amplitudes ranging from 10 – 10,000 Hz. All R1ρ 
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dispersion simulations were performed assuming a static field of 7T with pb = 1% for fast, 

intermediate, and slow exchange regimes. The fast exchange simulations assumed the chemical 

shift difference of the solute pool was Δωb = 0.4 ppm (~119 Hz) and the exchange rate was kba = 

2,400 Hz, giving a ratio of 
kba
Δωb

 ≈ 20. While this is not extremely fast exchange, the ratio is still 

more than an order of magnitude faster than intermediate exchange. The intermediate exchange 

simulations used a chemical shift of Δωb = 1 ppm (298 Hz) with an exchange rate of kba = 298 

Hz to give a ratio of 
kba
Δωb

 = 1, and the slow exchange simulations used a chemical shift of Δωb 

= 6 ppm (1,788 Hz) with an exchange rate of kba = 100 Hz to give a ratio of 
kba
Δωb

 ≈ 0.05. Each 

scenario was run using two sets of intrinsic pool relaxation rates, one with equal rates of R1
a = R1

b  

= 0.1 Hz and R2
a = R2

b  = 0.4 Hz and one with unequal rates of R1
a  = 0.1 Hz, R1

b  =1.0 Hz, R2
a  = 

0.4 Hz, and R2
b  = 4.0 Hz. All six simulations were compared to the theoretical Chopra and Trott 

models and the error was quantified using the sum of squares of the differences between the 

model and the simulated points since this is the quantity that would be minimized while 

performing a non-linear least squares fitting. Each set of simulated data was also fit to both the 

Chopra and Trott models with linear regression to mimic the procedure of fitting to experimental 

data in order to asses the accuracy of the exchange rate predictions calculated from the fitting 

method. Finally, the effect of the solute pool fraction was assessed by performing simulations 

using the parameter values of R1
a  = 0.1 Hz, R1

b  =1.0 Hz, R2
a  = 0.4 Hz, R2

b  = 4.0 Hz, Δωb = 1 

ppm (298 Hz), and of kba = 298 Hz with a solute pool fraction varying from pb = 0.5 – 4%. The 

calculated exchange rates were compared to the true exchange rates implemented in each of the 

pool fraction scenarios. 
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 R1ρ experiments were performed on solutions of PBS mixed with 200 mM glucose, 200 

mM myo-inositol, and 1 M ethanol to evaluate the fitting of each model to experimental data. R1ρ 

dispersions were acquired by measuring the signal decay at 5 locking times ranging from 0.01 – 

1 sec for each of the 10 locking amplitudes ranging from ~40 – 10,000 Hz. Each R1ρ value was 

estimated by fitting the decay curves to a mono-exponential model and the R1ρ points were 

subsequently fit to each model. The Trott model will typically be implemented with the 

assumptions of asymmetric pool fractions and on-resonance RF, where the terms 

ω aeff
2 ωbeff

2 ω eff
2 =ωbeff

2  and δ = Δωb.  This model can therefore be fit for the variables R1, R2, papb, 

and k if the chemical shift is known, or the pool fraction can be assumed to be small (~1%) and 

the model can fit for R1, R2, Δωb, and k. The chemical shift is known in all subsequent 

experiments so the pool fraction was used as a fitting parameter. The Chopra model was 

implemented to fit for R2, R1ρ
∞ , and Sρ

2  while assuming  kba ≫ R1
b − R2

b . This means 

Sρ
2 = kba

2 + Δωb
2  and since the chemical shift was known the exchange rate could be estimated, but 

the rate and chemical shift cannot each be determined directly from the Chopra model fitting. 

The models were used to estimate the exchange rates to compare how different the estimates 

were since the exact exchange rate could not be determined. The experiments were all performed 

at 20° C and 37°C to test the fitting methods for different exchange rates in the same systems. 

Effects of Deuteration 

 Dipolar effects are known to govern transverse relaxation in water and tissue at low fields 

(23), but chemical exchange between water molecules and labile protons such as those on amide, 

amine, or hydroxyl groups are believed to be the dominant mechanism of R1ρ dispersion at high 

static fields where the chemical shift frequencies become larger (68, 91). Although computer 
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simulations and theory predict this trend (98, 123), there has been no systematic experimental 

study to our knowledge that quantifies the evolution of dominant effects from dipolar 

interactions at low field strengths to chemical exchange at high field strengths. To verify and 

illustrate when exchange begins to dominate at high fields, experiments were performed at static 

fields of 4.7T and 7T on solutions of constant concentrations of exchanging species with varying 

levels of deuteration. Substitution of protons with deuterons reduces dipolar coupling but also 

reduces the number of protonated sites available for exchange. Solutions of 200 mM glucose 

were prepared in PBS with 0, 20, 40, 60, and 80% deuterium oxide, and proton R1ρ dispersions 

were measured with 10 logarithmically spaced locking fields ranging from 50-8,000 Hz at each 

static field strength, each with six logarithmically spaced locking times ranging from 20 ms - 1 

sec. A simple mono-exponential fit was used to determine the relaxation rate, R1ρ, from the 

decay curves. The spin-locking pulse sequence used was the standard pulse sequence described 

in chapter 1 by Witschey et al. designed to mitigate B0 and B1 field inhomogeneities (62). 

Dispersions were fit using the Chopra model of Eq. 1.3 to estimate exchange parameters and 

analyze the effects of B0 and deuteration. While the low frequency limit of the dispersion 

provides information about T2 values, T1 values corresponding to the asymptotic limit of the 

dispersion curve were more accurately measured using a standard inversion recovery sequence. 

Effects of Temperature and pH 

 Temperature and pH may greatly affect the exchange parameters and, therefore, the 

corresponding R1ρ dispersion. In order to establish the effects of temperature, R1ρ dispersion 

curves were measured at 7T for a 200 mM glucose sample (pH = 7.4) at five temperatures 

ranging from 19°C to 40°C. The sample was heated by blowing hot air down the bore of the 

magnet and the temperature was monitored using a thermocouple attached to an animal 
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physiologic monitoring system (SA Instruments, Stony Brook, NY). Dispersions were measured 

by acquiring signals from 5 spin-locking times ranging from 0.01 – 1 sec for each of the 10 

logarithmically spaced locking amplitudes ranging from 50 – 10,000 Hz. The decay curves were 

fit to a mono-exponential model and the resulting R1ρ values were fit to the Chopra model for 

analysis. The effects of pH were determined by measuring R1ρ dispersions in two sets of samples 

of 200 mM glucose. One set consisted of seven samples with pH ranging from 3 – 9 and the 

other set consisted of five samples with a smaller range of pH from 6.00 – 7.40. All 

measurements were made at 7T and the dispersions were acquired in the same manner as the 

temperature dispersions, but all at bore temperature (19°C). The Chopra model was used again in 

fitting the dispersion data to determine exchange rates assuming a chemical shift of Δωb = 1ppm. 

Exchange Rate Contrast vs. Exchange Weighted Image Contrast 

 The method of Exchange Rate Contrast was first examined through simulations similar to 

those from Aim 1. Finite difference Bloch-McConnell simulations were performed to simulate 

R1ρ dispersion curves for five exchange rates ranging from kba = 100 – 10,000 Hz with Δωb = 1 

ppm, pb = 1%, R1
a  = 0.1 Hz, R1

b  =1.0 Hz, R2
a  = 0.4 Hz, R2

b  = 4.0 Hz, and dt = 5 ns. The 

simulations were performed for 50 logarithmically spaced locking amplitudes ranging from 50 – 

5,000 Hz and fit to the 2-pool Chopra model described above to obtain smooth R1ρ dispersions 

that were used to calculate the ERC curves using Eq. 1.5. The peak of each ERC was compared 

to the theoretical peak of ω1 = kba
2 + Δωb

2  to test the accuracy of the model. Determining the 

accuracy and practicality of the EWIC method was done by deriving an expression for the peak 

of the EWIC described in Eq. 1.7 as a function of the locking time and plotting EWIC curves at 

various times against an ERC curve. The shift in the EWIC curves were directly compared to the 

ERC curve. 
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Exchange Rate Contrast in vivo 

 The feasibility of using Exchange Rate Contrast imaging was assessed in a glucose model 

system and in vivo. In order to determine the locking amplitude that would generate ERC 

contrast emphasizing glucose exchange in tumor tissue, the glucose dispersion at pH = 6.7 used 

in the earlier pH experiments was analyzed with the ERC method. This pH was chosen since, 

even though there is significant variation within malignant tissue, the pH range of 5.8 – 7.6 has 

been reported in rodent tumors (124, 125).  A healthy Sprague-Dawley rat was imaged at 7T 

using a spin-lock prepped single shot EPI sequence to acquire R1ρ weighted images at 10 

logarithmically spaced locking fields ranging from ~50 – 10,000 Hz, each with 5 locking times 

ranging from 1 – 100 ms. The rat was anesthetized using a 2%/98% isoflurane/oxygen mixture 

and the rectal temperature and respiration were mointored with an animal physiologic system R1ρ 

maps were calculated for each locking strength on a voxel by voxel basis by assuming a simple 

monoexponential decay model. With the peak ERC frequency known from the model system 

analysis, the R1ρ map, an R1ρ weighted image, and the ERC image at the closest locking 

frequency were compared and evaluated. 

Results and Discussion 

Comparing R1ρ Models 

Comparing the Chopra and Trott models of R1ρ relaxation under various conditions may 

help determine which model estimates exchange parameters more accurately in practice. The 

first comparison between the Chopra and Trott models was done by simulating the R1ρ dispersion 

of slow exchange with the ratio 
kba
Δωb

 ≈ 0.05.  
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Figure 8: Simulated R1ρ dispersion curves compared to the Chopra and Trott models. a,b.) 
Simulations with different sets of intrinsic pool relaxation rates. c,d.) Simulated data fit to each 

model to compare the calculated exchange rates to the true rate that was simulated. 

 

Figure 8a shows the simulated R1ρ dispersion in blue with the theoretical Chopra curve in red and 

the theoretical Trott curve in black for slow exchange with both pools relaxing at identical rates. 

The sum of squares for the Chopra model compared to the simulated values is 8.42x10-3, which 

is 41 times smaller than the Trott sum of squares of 3.49x10-1. Slow exchange with different pool 

relaxation rates is shown in Figure 8b, but since the theoretical Trott model does not allow for 

different pool relaxation rates, the Trott curve has identical rates and is the same as the Trott 

curve in Figure 8a. The Chopra sum of squares for different rates in Figure 8b is 7.55x10-3, 
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which is 47 time smaller than the Trott value of 3.55x10-1. For each scenario, the Chopra model 

qualitatively performs much better at low locking fields since the Trott model exhibits a strange 

decrease in relaxation rates at low B1. This phenomenon can be mitigated by changing the 

relaxation and exchange parameters, as will be seen in the fitting, but this will cause more 

inaccurate estimates of the exchange parameters in practice. When the pool relaxation rates are 

different, the high locking field limit of the dispersion increases slightly which is predicted by 

the Chopra model but, not surprisingly, is not accounted for in the Trott model. Another 

noteworthy behavior is the fact that the inflection point occurs at such a high locking frequency 

since, even though the exchange is very slow, the inflection point is a function of the exchange 

rate and the large chemical shift in this case. Since the theoretical curves are different than the 

simulated data, fitting the data to these models may significantly decrease the accuracy of the 

estimated exchange parameters. Figure 8c,d show the fits for both the Chopra and Trott models 

under each scenario. When the relaxation rates are the same between pools, neither model 

performs well since they both assume fast exchange. While the true simulated exchange rate is 

kba = 100 Hz, the estimated exchange rate for the Chopra model is almost 3 times larger at 290 

Hz and the Trott model is an order of magnitude off at 10 Hz. When the pool relaxation rates are 

different, the Chopra model performs better by estimating a rate of 68 Hz (factor of 1.5 different) 

while the Trott model does even worse by estimating a rate of 4 Hz. The Trott model should 

theoretically perform worse in the second scenario since this breaks the assumption that both 

pools have identical relaxation rates while the Chopra model has no such condition. Since both 

scenarios show the Trott model significantly underestimating the relaxation rates, this implies the 

chemical shift term greatly influences the estimation since the inflection point will be a function 

of these two parameters. The Chopra model outperforms the Trott model in the slow exchange 
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regime due to the low locking amplitude behaviors, but neither model necessarily excels in this 

regime. Both models are expected to perform much better for the intermediate and fast exchange 

regimes since these are the conditions for which the models were derived. 

 The simulations performed for intermediate exchange were similar in their behavior, and, 

while the Chopra model still slightly outperformed the Trott model, both models did in fact 

perform better than in the slow exchange regime. The exchange rate for the intermediate regime 

was simply set equal to the chemical shift term so the ratio 
kba
Δωb

= 1 .  

 

Figure 9: Simulated R1ρ dispersions for the intermediate exchange regime. a,b.) Comparison of each 
simulated dispersion to the theoretical Trott and Chopra models. c,d.) Examining the estimated 

exchange rates from fitting the simulated data to each model. 
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Figure 9a and b shows the simulated R1ρ dispersion plotted against the theoretical Chopra and 

Trott model curves for the cases of identical and different pool relaxation rates respectively. In 

the case of identical pool relaxation rates, the Chopra model has a sum of squares error of 

7.99x10-2 while the Trott model has a 2.6 times larger sum of squares error of 2.06x10-1. The 

Trott model again begins to show a slight dip in relaxation rates at very low locking fields in 

both scenarios, but the behavior is much less pronounced than it was in the slow exchange 

regime. In the case if different pool relaxation rates, the Chopra sum of squares error is 7.67x10-2 

which is ~3 times smaller than the Trott value of 2.27x10-1. The models slightly underestimate 

the low locking field limit in both scenarios and the Trott model does not account for the modest 

increase in the high locking field limit, similar to the behaviors in the slow exchange regime. 

Fitting each model to the simulated data, as shown in Figure 9c and d, estimated the exchange 

rate better than in the slow exchange scenario, as expected. For the case of identical exchange 

rates, the Chopra model predicted an exchange rate of 139 Hz, which is ~2 times smaller than the 

true value of kba = 298 Hz. The Trott model performed remarkably better than in the slow 

exchange regime by predicting an exchange rate of 201 Hz, which was also better than the 

Chopra model. Under the more realistic case of when the pool relaxation rates were different, the 

Chopa model estimated the rate to be 162 Hz while the Trott model greatly underestimated the 

rate to be 42 Hz. Again the Trott model did not perform well when the relaxation rates were 

different between pools, which has proven to limit the functionality of the model. 

Both models were expected to perform quite well in the fast exchange regime since this 

was the true condition that both the models are based on. Examining the simulated curves in 

Figure 10a shows that both theoretical curves do in fact predict the simulated curve quite well 

qualitatively for the case of identical pool relaxation rates. 
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Figure 10: Simulated R1ρ dispersions for the fast exchange regime. a,b.) Comparison of each 
simulated dispersion to the theoretical Chopra and Trott models. c,d.) Examining the estimated 

exchange rates from fitting the simulated data to each model. 

 

The sum of squares for the Chopra model for the case of identical relaxation rates was 1.55x10-2 

which was ~3 times smaller than the Trott sum of squares of 4.61x10-2. The Trott model still 

exhibits the dip at low locking fields, but the simulation surprisingly shows a similar dip that is 

less pronounced. This dip was not in the previous scenarios and may be a consequence of slight 

oscillations in the signal decay curves as a result of off-resonance effects due to the fast 

exchange. In the case where the pool relaxation rates are different, the Chopra sum of squares is 

1.59x10-2, which is 9.7 times smaller than the Trott value of 1.55x10-1. The Trott model again 
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struggled with the case of different pool relaxation rates. Examining the estimated exchange rates 

from fitting each model to the data tells a different story though. For the case of identical 

relaxation rates, the Chopra model estimated an exchange rate of 2,445 Hz, which was roughly 

1.9% different than the true value of kba = 2,400 Hz, while the Trott model estimated a rate of 

2,432 Hz that was only 1.3% off the true value. When the pool exchange rates were different, the 

Chopra model predicted an exchange rate of 2,440 Hz (1.7% different) and the Trott model 

performed better by estimating a rate of 2,429 Hz (1.2% different). The fact that the Chopra 

model exhibited a more accurate theoretical curve for the specified exchange parameter in each 

scenario makes it somewhat surprising that the Trott model was more accurate in the estimation 

of the exchange rate. The estimations were only marginally better and the Chopra model would 

still be deemed acceptable under most circumstances, but the Trott model slightly out-performed 

the Chopra model for the fast exchange regime.  

Experimentally, the concentration of an exchanging metabolite may not be known so the 

effect of the pool fraction on the overall R1ρ dispersion and on the estimation of the exchange 

rate may be vital. Changes in metabolite concentrations may occur naturally in diseased tissues 

or intentionally with the use of an exogenous contrast agent. The effect of changing the pool 

fraction was assessed for each model by fitting them to simulated data for various solute 

concentrations. The simulated data along with the corresponding fit from each model is shown 

below in Figure 11.  
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Figure 11: a.) Simulated R1ρ dispersions for pool fractions from 0.5% - 4% were fit to both the 
Chopra and Trott Models. b.) The estimated exchange rates from each fit were compared to the 

simulated exchange rate of 3,000 Hz (dotted black line). 

 

The important parameters to note were the exchange rate was 3,000 Hz for each simulation, the 

chemical shift was Δωb = 0.5 ppm, the exchange ratio was 
kba
Δωb

= 20 , and the pool fraction 

varied from 0.5 – 4%. Each model appears to fit the data well in the simulated regions just like 

the previous simulations, but the Trott model exhibits a strange behavior below the 50 Hz 

locking limit shown in Figure 11a. The relaxation rates begin to decrease rather then approach an 

asymptotic value like the Chopra model, which could cause problems for calculating the ERC 

later. Examining the estimated exchange rates in Figure 11b reveals the accuracy of each model. 

Both models perform very well at the lowest pool fraction of 0.5%, but then begin to 

overestimate the exchange rate by ~3% when pb ≥ 1%. While the accuracy in both models is 

slightly compromised at high pool fractions, the Trott model surprisingly performs slightly 

better. Though realistic pool fractions in live tissues should not reach these concentrations, so the 

models are very comparable. 
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 Fitting models to simulated data will provide insight into the theoretical accuracy of each 

model, but fitting the models to experimental data points may reveal more about the behaviors of 

each model since the data are affected by noise that may propogate as uncertainty in estimating 

exchange parameters. In the simulated examples shown above, the exact exchange rate was 

known since that parameter was manually input before the simulation, but experimentally this 

rate can be difficult to calculate exactly since it relies on so many factors. For this reason, only 

hydroxyls groups were tested to ensure the fast exchanging species would agree with the rapid 

exchange assumptions made by each model. Below in Figure 12 are two plots for 200 mM 

glucose at 20°C and 37°C that compare both models at each temperature.  

 

Figure 12: 7T R1ρ dispersions of 200 mM glucose at 20°C (a) and 37°C (b). The data are fit to both 
the Chopra and Trott models to estimate the exchange rates at each temperature. 

 

Both models assumed Δωb = 0.7 ppm to compute very similar exchange rates that were well 

within the expected range for hydroxyl exchange for (95, 121). While the Chopra model assumed 

a pool fraction of 1%, fitting to the Trott model estimated a pool fraction of pb ≈ 4%. The 

estimated exchange rates of kchopra = 3,871 Hz and ktrott = 3,836 Hz were only 0.9% different for 

the 20°C case and for the 37°C case the rates of kchopra = 8,540 Hz and ktrott = 8,649 Hz were only 

1.3% different, but the Trott model exhibits strange behavior in the low locking field limit that 
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was a result of off-resonance effects from the chemical shift, the exchange rate, and the solute 

pool fraction. The myo-inositol dispersions were very similar in their behaviors. 

 

Figure 13: 7T R1ρ dispersions of 200 mM myo-inositol at 20C (a) and 37C (b). The data are fit to 
both the Chopra and Trott models to estimate the exchange rates at each temperature. 

 
 
All the fitted curves in Figure 13 look very good for these data even though the Trott model 

continues to exhibit the dip at low locking fields. The Trott model estimated pb ≈ 8% for the 

myo-inositol pool while the Chopra model still assumed a 1% pool fraction. The exchange rates 

of kchopra = 2,446 Hz and ktrott = 2,415 Hz were 1.3% different at 20°C while the rates of kchopra = 

4,552 Hz and ktrott = 4,501 Hz were only 1.1% different. The myo-inositol estimated exchange 

rates were notably slower than those in the glucose solutions which has been confirmed by other 

experiments in the literature (121). Exchange-based R1ρ dispersions resulting from multiple 

exchanging groups are common with metabolites like glucose and myo-inositol that have 5 and 6 

different hydroxyl groups respectively, each with a very slightly different chemical shift. The 

dispersion curve will in fact be the sum of 5 or 6 separate dispersions that will all overlap to form 

a single indistinguishable curve since all are from hydroxyls. Other samples such as ethanol only 

have one hydroxyl group so only one exchange-based dispersion will contribute, so the overall 

dispersion magnitude should theoretically be much lower as a direct function of ethanol 
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concentration. The ethanol sample was prepared with higher concentration to counteract this 

effect, which is shown in Figure 14.  

 

Figure 14: 7T R1ρ dispersions of 1M ethanol solutions at 20°C (a) and 37°C (b). These data were fit 
to both models at each temperature to estimate the exchange rates. 

 

Even though the ethanol solution should have a similar pool fraction to that of the glucose 

solution, the Trott model estimated pb ≈ 10%. The estimated exchange rates of kchopra = 1,845 Hz 

and ktrott = 1,869 Hz were 1.3% different at 20°C and the rates kchopra = 2,903 Hz and ktrott = 2,953 

Hz were 1.7% different at 37°C, roughly the same as with the other solutions. The Trott model 

again displays the strange low locking amplitude behavior. 

Effects of Deuteration 

Establishing the manner in which chemical exchange dominates dipolar relaxation effects 

at high field is critical in more fully understanding the origin of relaxation within tissues. Adding 

deuterium to solutions will decrease the proton pool fractions and alter the overall exchange 

contribution to relaxation. R1ρ dispersion analysis provides a method to examine the exchange 

dynamics as protons are substituted with deuterons. Figure 15a and b demonstrate that increasing 
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the deuterium concentration reduces relaxation rates at low locking field and the magnitudes of 

the variations of R1ρ with locking field decrease in a concentration-dependent manner. 

 

Figure 15: a,b.) R1ρ dispersions of 200 mM glucose solutions with different amounts of D2O present 
at 4.7T and 7T. c.) Measured R1 values for each sample at 4.7T and 7T. 

 

These data are consistent with the loss of chemical exchange contributions to spin-lattice 

relaxation in the rotating frame as protons are substituted by deuterons. The dispersion 

magnitudes and the effects of deuteration on the dispersions also increase as the static field 

increases as shown in Figure 15b. This is due to the increased influence of exchange on 

relaxation at higher fields. Figure 15c shows the proton R1 values decrease significantly as D2O 

concentration increases, as expected, because the dipolar field of the deuteron is much less than 

the proton (126). Since both the exchange contribution and dipolar effects decrease with D2O 

concentration, the dipolar effects need to be isolated in order to determine how they behave with 

field strength. To do this, the low locking field limits of the dispersions, R1ρ(0), were examined 

as a function of deuteration as shown in Figure 16. 
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Figure 16: The low locking field limit of R1ρ plotted as a function of D2O for both 4.7T and 7T. 
Extrapolating the linear fit for each field strength allows the estimation of the dipolar contributions 

when the sample is fully deuterated at 0% 1H. 

 
Fitting the low limit R1ρ values vs. proton concentration to a straight line allows one to 

extrapolate to estimate the amount of dipolar interactions when no exchange contribution is 

present. The estimated contribution of dipolar effects is roughly 59% lower at 7T than at 4.7T, as 

expected, confirming dipolar interactions decrease with field. The slope of the fitted line 

increases by a factor of 1.82 at 7T compared to 4.7T due to the effect of chemical exchange, 

close to the theoretical prediction (excluding all other factors) of 2.25. Moreover, the effective 

exchange rate is slowed by the introduction of deuterium as expected (112), which is evident by 

the shift of the inflection points of the dispersions to lower frequencies. The slowed exchange 

rate helps reduce the dispersion magnitude and is shown to have a larger effect at higher field.  
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Effects of Temperature and pH 

Temperature effects were investigated by collecting R1ρ dispersions in a solution of 200 

mM glucose dissolved in PBS for temperatures ranging from 19°C - 40°C. The effect of pH was 

also determined by collecting R1ρ dispersions in multiple solutions of 200 mM glucose dissolved 

in PBS at 19°C for pH = 3 – 9. Figure 17a and Figure 17b show that increasing the temperature 

increases exchange rates as derived from the fits to the dispersion data.  

 

Figure 17: a.) R1ρ dispersions of 200 mM glucose solution at verious temperatures at 7T. b.) 
Exchange rates calculated from fitting for each temperature. c.) R1ρ dispersions for 200 mM glucose 
solutions at 7T for various pH values. d.) Exchange rates calculated from fitting for each pH value. 

 

The dispersion magnitudes increase to a maximum value and then decrease beyond a certain high 

exchange rate, but the inflection points of the dispersions increase monotonically with 
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temperature. Although temperature and pH both significantly affect the rates of exchange 

between proton pools, changing the pH has more complex effects because the exchange rate 

reaches a minimum just above pH = 6, and increases with a change of pH in either direction as 

shown by the estimated exchange rates in Figure 17d which are derived from the dispersions 

shown in Figure 17c. R1ρ dispersions were measured over a smaller pH range to illustrate the 

manner in which small increases in pH around physiological levels may cause large changes in 

the exchange rate and a measureable shift and increase in the dispersion inflection. Figure 18 

shows the dispersions and exchange rates for a 200 mM glucose solution over a pH range from 

6.0 – 7.4.  

 

Figure 18: a.) R1rho dispersions of 200 mM glucose over a smaller range of pH values. b.) The 
estimated exchange rates calculated from the dispersion fits. 

 

The exchange rates increase monotonically with pH and double in value over this range. This 

change in exchange rate, without changing glucose concentration, potentially provides a method 

to detect changes in temperature and pH in live tissues. It is important to note that the whole 

dispersion should be analyzed rather than one locking field since the relaxation rates will depend 

on a multitude of factors and the inflection point will not be known. One example of this can be 
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seen by examining the same samples from Figure 18 at 4.7T rather than 7T. Figure 19a shows 

the resulting R1ρ dispersions, note the dispersions do not continually increase in magnitude.  

 

Figure 19: a.) R1ρ dispersions of 200 mM glucose at 4.7T for pH = 6.0 - 7.4. b.) Theoretical R1ρ 
dispersion magnitudes are shown as a function of exchange rate for various B0 field strengths. 

 

This occurs because the magnitude will reach a maximum value at a particular exchange rate and 

begin to diminish as the rate increases. This peak value will be a function of the chemical shift 

and field strength shown in Figure 19b. This optimal exchange rate may be calculated by finding 

the difference R2 − R1ρ
∞ , setting the derivative with respect to kba equal to zero, and solving for 

kba.  

 
kba =

9 R2
b( )3 + 3 27 R2

b( )4 Δωb
2 +18 R2

b( )2 Δωb
2 − Δωb

6 + 9R2
bΔωb
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+

9 R2
b( )2 + 3Δωb

2

34 3 9 R2
b( )3 + 3 27 R2

b( )4 Δωb
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b( )2 Δωb
4 − Δωb

6 + 9R2
bΔωb

23

  1.8 

Eq. 1.8 may be useful when the intrinsic relaxation rates and chemical shifts are known, but it 

reveals only the exchange rate that maximizes the dispersion magnitude and fails to provide any 

insight into what rate the sample will physically exhibit exchange under any conditions. 
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 Adequate knowledge of the complete dispersion curve enables the explicit derivation of 

exchange parameters according to the Chopra relationship. However, location of the inflection 

point in the dispersion curve itself is sufficient to accurately estimate key intrinsic properties 

related to exchange. This inflection point varies monotonically with exchange rate as shown for 

two different chemical shifts at multiple static field strengths in Figure 20.  

 

Figure 20: R1ρ dispersion inflection point frequencies plotted as functions of chemical exchange 
rates at multiple field strengths for two chemical shifts of Δωb = 1 ppm (a) and Δωb = 3.5 ppm (b). 

 

For each chemical shift, the inflection point eventually begins to increase linearly with exchange 

rate at all fields and is linear at lower exchange rates for smaller chemical shifts. This 

relationship between the inflection point and the exchange rate is especially useful for faster 

exchanging metabolites possessing smaller chemical shifts such as hydroxyls. The exchange rate 

has an explicit relationship to both temperature and pH as shown in Figure 17b and Figure 18b. 

Thus, in principle, changes in the inflection point may be used to detect changes in temperature 

and pH. Moreover, simply measuring the dispersion change from three R1ρ values, which is 

faster but more limited, may also be used to detect changes in temperature or pH assuming the 

concentration of exchanging species does not change. Figure 18a shows the dispersion 



 63 

magnitude increases monotonically with exchange rate for a small range of pH values. Figure 21 

shows the dependence of the ratio 
R1ρ ω1 = 0( )− R1ρ ω1 = ∞( )
R1ρ ω1( )− R1ρ ω1 = ∞( )

⎡

⎣
⎢

⎤

⎦
⎥ , which according to equation 3 

can be simplified to 1+ ω1
2

Sρ
2 = 1+ ω1

2

kba
2 + Δωb

2 .  

 

Figure 21: The R1ρ ratio plotted for multiple field strengths decreases with exchange rate but 
provides a fast method for estimating exchange rates in practice. 

 

The curves in Figure 21 assume Δωb = 1 ppm, R1ρ
∞  = 0.8 Hz, R2 = 5 Hz, and B1 = 500 Hz. This 

ratio, which may be easily calculated from three R1ρ values, will have a direct relationship to the 

exchange rate and may be used for quick estimations without explicit fitting assuming the 
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chemical shift is known. The ratio shown in Figure 21 depicts greater changes at lower fields 

since the chemical shift dominates the equation at high fields.  

Exchange Rate Contrast vs. Exchange Weighted Image Contrast 

The accuracy of the ERC method was first assessed by simulating R1ρ dispersions for 

different exchange rates to calculate ERC curves and comparing the peak value of the simulated 

curve to the theoretical peak value. The R1ρ dispersions and resulting ERC curves shown in 

Figure 22 illustrate the manner in which the ERC peak shifts with exchange rate.  

 

Figure 22: a.) Two-pool R1ρ dispersions with exchange rates ranging from 100 - 10,000 Hz. b.) ERC 
curves calculated from the fitted R1ρ dispersions with vertical dotted lines indicating the peak 

positions. 

 

The shifting ERC peak positions are identified by the vertical dotted lines in Figure 22b. The 

fitted peak positions were compared to the theoretical peak positions, ω1 = kba
2 +ωb

2 , with a 

mean percent difference of 1.5%. This may have arisen from uncertainty in the R1ρ estimation 

from the low locking amplitude decay curves, which exhibited slight oscillations that will be 

described in chapter 6. These oscillations could not easily be remedied by smaller simulated time 
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steps or changing the fitting function to a more complicated function that was not mono-

exponential, but regardless, the error magnitudes were very small. 

 The ERC method provides a novel way to emphasize metabolites by their exchange rates 

in an imaging context, and the EWIC method provides a less time consuming technique for 

acquiring similar information since only one image is needed per locking amplitude and the rate 

R1ρ is never directly calculated. A limitation arises from the fact that the acquired images are 

R1ρ-weighted and possess a dependence on the locking time, slt. This dependence may shift the 

peak of the EWIC curve by an amount that depends not only on the locking time, but also on the 

intrinsic relaxation rates, the chemical shift of the solute pool, and the exchange rate. 

 

Figure 23: The colored theoretical EWIC curves are shown to shift to higher locking amplitudes 
compared to the black ERC curve as the locking time increases. 
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Figure 23 reveals and example of how the EWIC curve can shift by changing the locking times 

used for the images to calculate the curve. The shift in peak position can be calculated 

theoretically by assuming the signal will decay mono-exponentially with a rate R1ρ so the low, 

intermediate, and high amplitude images may be represented by Eq. 1.9 using the Chopra 

relation for R1ρ.  

 

I1 = M 0e
−R1ρ 0( )slt = M 0e

−R2slt

I2 = M 0e
−R1ρslt = M 0e

−
R2+

R1ρ
∞ ω1

2

Sρ
2

1+ω1
2

Sρ
2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

slt

I3 = M 0e
−R1ρ ∞( )slt = M 0e

−R1ρ
∞ slt

  1.9 

By substituting these equations for the signal intensities in Eq. 1.7, taking the first derivative, and 

setting it equal to zero, an expression may be derived for the locking amplitude of the EWIC 

peak as shown in Eq. 1.10.  

 ω1 = Sρ
R1ρ

∞ − R2( )slt
ln 1+ e R1ρ

∞ −R2( )slt

2

⎛

⎝
⎜

⎞

⎠
⎟

−1   1.10 

Here, the R1ρ
∞ , R2 , and Sρ  parameters are the same Chopra terms that are simply functions of the 

intrinsic pool relaxation rates, chemical shift, and exchange rate.  
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Figure 24: EWIC peak frequency as a function of locking time 5 different dispersion magnitudes. 

 

This theoretical EWIC peak is shown to increase with spin-lock time in Figure 24 and the 

amount the peak can shift depends on the dispersion magnitude, or the difference of R2 − R1ρ
∞ . 

The EWIC approaches the ERC for very short locking times, but practically this would decrease 

the contrast to noise between images since it decreases the amount of time available for the 

signal to relax. There is no standard method to determine the optimal locking time for the EWIC 

method since the relaxation rates and signal to noise ratio will change between experiments. 

Fully accounting for the shift requires measuring the R1ρ dispersion parameters, but with the 

same information the more robust ERC method may then be used. 
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Exchange Rate Contrast in vivo 

The glucose model system of pH = 6.7 from the pH experiments was analyzed using the 

ERC method to determine at what frequency glucose displays a peak value at realistic malignant 

tissue pH. The dispersion for the model system along with its corresponding ERC curve are 

shown in Figure 25.  

 

Figure 25: R1ρ dispersion (a) and ERC curve (b) for 200 mM glucose solution in PBS with pH = 6.7. 

 

The error bars on the ERC points are noticeably larger than on the R1ρ dispersion points, which is 

a result of the propagation of uncertainty in the ERC equation in Eq. 1.5. The experimental ERC 

curve was fit to the model described in Eq. 1.6, which exhibited a calculated peak at a locking 

frequency of 532 Hz. ERC images at this frequency should thus emphasize regions of glucose at 

this pH, and suppress regions without glucose or other metabolites exchanging at this rate.  

Though the tumor tissue is expected to exhibit very heterogeneous pH values, the ERC 

only emphasizes those corresponding to the selected locking field resulting in accentuated tumor 

tissue contrast compared to the surrounding healthy tissue. A live rat was imaged at 7T using a 

spin-lock prepped single shot EPI sequence, with the corresponding images at the locking 
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amplitude of 562 Hz shown in Figure 26. The R1ρ-weighted image shown in the top right is at the 

locking time of 50 ms since this displayed the best combination of contrast and signal to noise 

ratio compared to the other locking times, and all zoomed in color images were simply masked 

with a hand-drawn ROI to only show the brain.  

 

Figure 26: Comparison of an R1ρ image at 562 Hz with a locking time of 50 ms, a R1ρ map at 562 
Hz, and an ERC image at 562 Hz. 

 

Qualitatively, the R1ρ map and the ERC image provide very similar differences in contrast 

between malignant tumor tissue and healthy tissue, though the tumor is hypointense in the R1ρ 

map while it is hyperintense in the ERC image. Quantitatively, there is a 27% increase in tumor 
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signal intensity, a 23% drop in average tumor R1ρ, and a 26% increase in tumor ERC, all of 

which are shown below in Figure 27. The important feature to note is that the ERC in the tumor 

region appears much higher than in the surrounding healthy tissue, implying significant glucose 

exchange based on the previously analyzed model system. The surrounding tissue did in fact 

display increased ERC values at higher locking amplitude where glucose under normal 

physiologic conditions would be emphasized (image not shown) which almost matched the ERC 

in the tumor. The fact the tumor displays hyperintense ERC values at a range of locking 

amplitudes, while the healthy tissue only peaks around a locking amplitude corresponding to 

physiological exchange conditions, implies there is much heterogeneity in pH within the tumor 

tissue. This heterogeneity has been well recorded in the literature but also may be partially 

explained through pH differences in the intracellular and extracellular space which have been 

previously reported (124). The contrasts in Figure 26 were quantitatively compared below in 

Figure 27 by drawing symmetric ROI’s over the tumor region and the healthy tissue on the 

opposite side of the brain.  

 

Figure 27: Average intensities for the R1ρ image, the R1ρ map, and the ERC image with error bars 
representing ± 1 standard deviation. The normal and tumor regions displayed significant contrasts 

in all images (p < 0.05). 
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All three images exhibited statistically significant contrast (p < 0.05) when comparing the two 

ROI’s. The standard deviation in the normal tissue of the ERC image possessed more variability 

than any of the other measures, which can be qualitatively seen by the image in Figure 26 and 

the large error bar in Figure 27. That makes the fact the tumor region in the ERC image showed 

the smallest relative variability of any measure very interesting. Similar behavior can be seen 

when examining Figure 25b, since the ERC value at the peak displayed extremely small 

uncertainty and the error bars became larger as the frequency deviated further from the peak 

value. This may again be attributed to the propagation of error when the image is calculated. 

When the locking frequency is very low or very high, the relaxation rate will be very close to 

either R2  or R1ρ
∞ . The difference of these values with respect to the intermediate value will 

theoretically approach zero, and any noise fluctuation can cause large errors in the ERC 

calculation. On the other hand, at the peak of the ERC, the relaxation rate is as far as possible 

from both R2  and R1ρ
∞ , so noise fluctuations are small in comparison and do not have the same 

affect in this case. Even though the relative contrast is similar in each image, the ERC image 

provides the benefit of selectively emphasizing the exchange rate, which neither the R1ρ 

weighted image or R1ρ map do. Both of these images will be affected by all exchanging species 

that are sufficiently fast, so the ERC method provides more specificity. Exchange Rate Contrast 

imaging looks to have ample potential in various imaging applications, especially with 

chemically exchanging exogenous contrast agents, moving forward. 

Conclusions 

 Chemical exchange has been shown to be a powerful relaxation mechanism, especially at 

high fields, with the potential to be used to estimate pertinent physiologic parameters such as 
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temperature and pH with proper calibration, which would be immensely beneficial in cancer 

imaging. The Chopra and Trott models of the contribution of chemical exchange to R1ρ 

relaxation are very comparable under most conditions and provide relatively accurate exchange 

parameter estimates, but overall the Chopra model has been shown to be slightly superior for the 

experiments performed throughout this thesis. The Chopra model has more general assumptions 

in its derivation and performed better for the slow and intermediate exchange regimes in general. 

The low locking field behavior of the Trott model shown in the fitting to pool fraction 

simulations and glucose solutions may affect exchange rate calculations and influence ERC 

imaging in practice. For these reasons, the Chopra model was deemed the preferred method, 

even though the Trott model would be needed for off-resonance spin-locking. The ERC method 

provided very useful information by emphasizing pools with specific exchange rates. The EWIC 

method provides a more practical method to calculate parametric images reflecting specific 

exchange rates, but the derived contrast is made more complicated by the dependence on the 

spin-lock time used. For relatively small dispersion magnitudes, which will occur with very low 

concentrations, this EWIC peak shift will be small and may possibly be ignored. Otherwise, the 

ERC method is much more robust. This method was successful in generating image contrast 

depicting exchanging glucose in the acidic malignant tissue of a rat brain tumor. The relative 

contrast was very similar to that available from R1ρ weighted images and R1ρ maps, but this 

method provided more specificity and looks to have possible potential in various research 

applications. 
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CHAPTER 3 

Rotating Frame Relaxation in Systems of n-Exchanging Pools 

Introduction and Theory 

Extended Chopra Model 

Exchange effects may be exploited at high B0 field strengths using spin-locking 

measurements to estimate exchange rates in NMR or to generate variable exchange-based 

contrasts in MRI (59, 68). The R1ρ dispersion profile exhibits an inflection point at a 

characteristic frequency determined by the exchange dynamics of the system. For realistic tissues 

of interest, more than one exchanging species may be present and contribute to the overall 

relaxation. Systems with multiple exchanging species, each with unique exchange rates and 

chemical shifts, will produce multi-dispersion R1ρ data that may be fit using an appropriate 

model to estimate the exchange rates of up to two separate species. Though this process may be 

expanded for any number of pools, fitting dispersion curves in practice to more than two sets of 

dispersion parameters becomes too imprecise to estimate the parameter values with any 

reasonable accuracy. Though more than two sites can theoretically contribute to the overall R1ρ 

relaxation, often times their effects will be negligible due to low concentrations or very slow 

exchange. The major species for exchange in tissues are hydroxyls and amides, which form two 

distinct groupings based on their rates of exchange. Thus, one or two exchange sites may 

describe R1ρ relaxation in tissues exhibiting exchange in vivo in practice, which makes the 

double dispersion method a relevant and useful extension of the theory.  

Two distinct exchanging species (other than bulk water) with different chemical shifts 
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and exchange rates will produce a double dispersion phenomenon that can be approximated very 

well by linearly adding individual exchange contributions of the dispersions for small pool 

fractions, and can be generally extended to n exchange pools. Figure 28 schematically shows an 

arbitrary 3-pool system where each pool possesses unique initial magnetizations, intrinsic 

relaxation rates, and chemical shifts. Exchange can occur between any pool, but only exchange 

between the bulk water pool with a solute pool is typically considered since the solute pools are 

assumed to be small. This assumption implies that exchange between solute pools, referred to as 

minor exchange, has a negligible effect on the overall relaxation of the system, which is why 

these arrows and rate constants are labeled in gray. 

 

Figure 28: Schematic of an arbitrary 3-pool system with unique initial magnetizations, relaxation 
rates, and chemical shifts. Arrows and rate constants represent exchange between each pool with 

minor exchange between solute pools in gray since this is typically ignored. 
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The Bloch-McConnell equations may be extended to include a third pool by simply 

adding the corresponding rate constants to account for exchange between all pools to the same 

component equations (127). The 3-pool Bloch-McConnell equations are expressed below.  
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  2.1 

In Eq. 2.1, M 0
a,b,c  are the equilibrium magnetizations of each pool. In order to properly extend 

the previously described Chopra theory, these 3-pool coupled differential equations would need 

to be solved, which would be very tedious and superfluous. A simpler procedure would be to 

start by re-writing the Chopra R1ρ equation in Eq. 1.3. Substituting the definitions of R2 , R1ρ
∞ , 

and Sρ
2  back into the equation, a long form expression may be derived that proves to be 

insightful (93).  
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  2.2  

In Eq. 2.2, the first term is the offset relaxation rate when no exchange is present which is why it 

relies only on the relaxation rate of the dominant bulk water pool (a). The second term 

encompasses the entire exchange contribution to R1ρ from the solute pool. Note that R2
a  in the 

first term is not multiplied by its respective pool fraction, because Pa  is assumed to be 1 since the 

underlying assumptions in the derivation was  Pa ≫ Pb . By keeping this assumption, adding 

another pool simply means adding a third term to Eq. 2.2 that is almost identical to the second 

term, with indices corresponding to that exchange pool. Using this strategy, the Chopra equation 

may be collapsed again to a more compact form that resembles the original theory.  
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∑   2.3  

In Eq. 2.3, the n −1( )R2a  term is subtracted from the sum since only the exchange contributions 

and not the bulk water relaxation rate need to be added. Eq. 2.3 also assumes there is negligible 

exchange between solute pools which can be referred to as minor exchange (e.g. kcb = 0 ). This 

theory will be useful in situations where double dispersions occur to estimate the exchange rates 

of two different solute pools, but may fall apart when minor exchange is significant. It is 

noteworthy to point out Trott et al. also derived an R1ρ expression for n-pool exchange as an 

extension of their theory described in chapter 2 (128). This was extended further to include an 
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expression accounting for minor exchange but consists of too many variables to fit for, making it 

impractical to estimate exchange parameters experimentally. Simulations demonstrating minor 

exchange effects on spin-locking experiments were performed by Trott et al. but only in the 

context of its effects on the exchange terms of the Trott model (128). To our knowledge, general 

simulations of minor exchange effects on R1ρ dispersion have not been reported in the literature, 

and systems with exchange dependent double dispersions have only rarely been mentioned (97). 

Extended Exchange Rate Contrast 

Deriving image contrast based on chemical exchange rates can provide new ways to 

characterize tissues. One important method for producing such images is using the Exchange 

Rate Contrast (ERC) method described for 2-pool exchange in chapter 2. The ERC method 

combined R1ρ values from three locking strengths (0, ω1 , ∞) to derive contrast that exhibited a 

peak value of 1 when ω1 = kba
2 + Δωb

2 , and falls off quickly as ω1  deviates from that value. The 

ERC theory may be extended to three pools by simply extending the R1ρ equation used in Eq. 1.5 

to account for exchange with a second solute pool, in a similar manner to how the Chopra model 

was extended to 3-pools.  
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Eq. 2.4 was simplified by assuming again that  kba ≫ R2
b ≥ R1

b ,  kca ≫ R2
c ≥ R1

c , and  pa ≫ pb ∼ pc . 

The ERC equation was described in chapter 2 and is re-written here for reference.  

 ERC ω1( ) = 4 R1ρ 0( )− R1ρ ω1( )⎡⎣ ⎤⎦ R1ρ ω1( )− R1ρ ∞( )⎡⎣ ⎤⎦
R1ρ 0( )− R1ρ ∞( )⎡⎣ ⎤⎦

2   2.5 



 78 

Plugging Eq. 2.4 into Eq. 2.5 and significantly simplifying terms, the 3-pool ERC equation may 

be written as Eq. 2.6.  

 ERC ω1( ) = 4ω1
2β ησ

ξ 2
  2.6 

The terms in this condensed ERC equation may be written out with the defined parameters as 

shown in Eq. 2.7.  
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  2.7 

The magnitude of the 3-pool ERC curve will be governed heavily by the frequency spread 

between the peaks of each separate pool. The spread in ERC peak frequencies may be 

represented by the effective exchange parameter ΔKeff = kba
2 + Δωb

2 − kca
2 + Δω c

2 , which is 

simply the difference in the peak positions in Hz. When the concentration of one solute pool is 

non-existent or negligible, pool c for example, Eq. 2.6 collapses down to Eq. 1.6 and only a 

single ERC peak will be exhibited. The overall ERC curve will shift and become a function of 

both individual ERC curves as the concentration of pool c increases until the concentration of the 

other solute pool (pool b) becomes negligible with respect to pool c. The ERC curve at this point 

becomes an individual ERC curve and Eq. 2.6 again collapses down to Eq. 1.6 for pool c. The 

maximum available contrast in ERC is then simply the difference in the individual ERC curves 

at the locking strength ω1 = kca
2 + Δω c

2  where pool c exhibits a peak as shown by the vertical 
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dotted lines in Figure 29.  

 

Figure 29: Maximum theoretical ERC contrast is shown to be 99% when the peaks are separated 
by 20 kHz and only 50% when they are separated by 5 kHz. 

 

The maximum available contrast can then be written as Eq. 2.8.  
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Eq. 2.8 equals zero when kba
2 + Δωb

2 = kca
2 + Δω c

2  and approaches 1 when the peaks are separated 

by a large frequency spread and these values become very different.  
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Specific Aims 

Aim 1  

To assess 3-pool exchange under various conditions through finite difference Bloch-

McConnell simulations. The relative exchange rates between the bulk water pool and the solute 

pools are the most important parameters in these simulations and scenarios will represent very 

similar and very disparate exchange rates to elucidate the R1ρ dispersion behaviors. Performing 

simulations for these scenarios will help qualitatively and quantitatively demonstrate the manner 

in which these dispersions add and determine if certain experiments are feasible. 

Aim 2  

Validate the simulated behaviors from Aim 1 by performing spin-locking experiments to 

acquire dispersions of individual solutions of creatine, glucose, and uracil along with mixtures of 

creatine with glucose and creatine with uracil. These exchanging species were selected to test the 

double dispersion fitting method under the two distinct scenarios of mixtures with similar 

exchange rates (glucose and creatine) and mixtures with very different exchange rates (uracil and 

creatine). Comparing the dispersions of the individual solutions with the double dispersions of 

the mixtures should elucidate the manner in which these dispersions add experimentally. 

Aim 3  

Simulate Exchange Rate Contrast in 3-pool systems through analysis of similar Bloch-

McConnell simulations. The ERC curves will be calculated from the corresponding simulated 

dispersion curves with various theoretical concentrations. The relative position of the dispersion 

inflection points in a double dispersion curve will have a significant effect on the available 

contrast in the extended ERC method. In order to quantify how the inflection frequencies impact 
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the available contrast and provide precedence for determining if experiments are feasible, 

multiple sets of simulations will be run with varying relative inflection frequencies. 

Aim 4  

Confirm the simulated behaviors in model systems of glucose and uracil by imaging 

these solutions with a spin-locking pulse sequence at 7T. ERC images will be calculated from 

R1ρ maps generated from the spin-locking experiments at the locking frequency corresponding to 

the ERC peak of glucose to produce image contrast directly related to glucose concentration. 

Methods 

3-Pool Bloch McConnell Simulations and Experiments 

 Multiple exchanging populations may each have an effect on both CEST spectra and R1ρ 

dispersions. Cobb et al. verified the manner in which CEST spectra add for the case of peptide 

and sugar exchange pools (98) and Trott et al. have shown how the exchange dependent 

contributions to R1ρ change as a function of the population averaged chemical shift (128). The 

effects of chemical exchange on R1ρ dispersion in mixtures are further quantified here using 

Bloch-McConnell finite difference simulations. Exchange rates of two different species mixed in 

water were selected to be close together for one scenario (1 kHz and 3 kHz) and far apart in 

another (1 kHz and 30 kHz) to visually demonstrate the nature in which the dispersion 

contribution from each species adds for small pool fractions. Simulations were performed using 

three exchange pools with pb = pc = 1%, Δωb = 0.75 ppm, Δωc = 0.5 ppm, R1a = R1b = R1c = 0.1 

Hz, R2a = R2b = R2c = 0.4 Hz, kba = 1 kHz, and kca = 3 kHz. The scenario with very different 

exchange rates assumed Δωb = 0.75 ppm, Δωc = 1.75 ppm, and kca = 30 kHz. Furthermore, 

simulations were conducted with various exchange rates from 0 Hz up to 5 kHz between pools b 
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and c to determine the degree in which exchange between minor pools affects R1ρ dispersion. 

The signal magnitudes calculated during the finite difference simulations, with time steps of dt = 

10 nanoseconds, were fit to mono-exponential decay functions to determine R1ρ for each of the 

30 locking strengths. All simulated R1ρ points were fit to Eq. 2.3 to obtain the double dispersion 

curve, determine the feasibility of fitting this model to data, and how the fitted parameters 

compared to the designated simulation parameters in each scenario.  

Subsequently, solutions of PBS mixed with 100 mM creatine, 100 mM glucose, 50 mM 

uracil, and mixtures of 100 mM creatine with 100 mM glucose and 100 mM creatine with 50 

mM uracil were prepared and studied at 7T to measure R1ρ dispersions and validate how the 

dispersions add in practice. The chemical structures of the exchanging species with their 

hydroxyl, amide, and amine groups are shown in Figure 30. 

 

Figure 30: Chemical structures for the creatine, glucose, and uracil metabolites used in the mixture 
solution experiments. 

 

Glucose shows there are 5 separate hydroxyl groups that will each undergo exchange at their 

own rate and chemical shift, but the dispersion will effectively represent the average of each site, 
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which was Δωb = 1.5 ppm for glucose (121, 129). Creatine and uracil should display similar 

behavior, but the average chemical shifts were Δωb = 1.8 ppm and Δωb = 10.9 ppm respectively 

(130–132). The dispersion curves were acquired at a temperature of T = 37°C to elevate the 

exchange rates and 10 logarithmically spaced spin-lock amplitudes ranging from 50-10,000 Hz 

were used, each with five logarithmically spaced spin-lock times ranging from 0.01-1 sec. Each 

decay curve was fit to a mono-exponential decay model to determine R1ρ at each locking field, 

and the R1ρ points were fit to Eq. 2.3 to estimate the experimental exchange parameters. The 

contribution of each species was determined from the double dispersion model and compared to 

the dispersion curve of the corresponding individual solution since these dispersions should be 

linearly independent for small pool fractions. This will help to determine to feasibility of this 

technique for both the similar and disparate exchange rate scenarios.  

3-Pool ERC Simulations and Experiments 

 Bloch-McConnell simulations were performed with two distinct solute pools for ERC 

analysis. Similarly to the 3-pool R1ρ simulations discussed earlier, only one of the solute pool 

fractions of (pool c) was varied while the other was held constant. Exchange rates of the two 

sites were chosen to be kba  = 20,000 Hz and kca  = 500 Hz which were disparate for illustrative 

purposes. The pool fraction for pool b remained constant at 1% while pool c varied from 0-1% to 

change the relative magnitudes of each dispersion in the double dispersion curve. Finite 

difference Bloch simulations were performed with time steps of 2 ns to generate signal decay 

curves that were subsequently fit to a mono-exponential model to determine R1ρ for 30 locking 

fields ranging from 40 Hz to 5 kHz. The simulated R1ρ points were fit to Eq. 2.3 to obtain the 

double dispersion curves that were then analyzed using the ERC equation described in Eq. 2.6. 

The ERC values were examined for each pool fraction at the spin-lock amplitude of 160 Hz, 
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since this was the corresponding amplitude that generated the maximum ERC value of 1 for the 

simulated dispersion of pool c alone. The ERC magnitude was then plotted against the 

concentration of pool c to obtain the curve depicting the concentration dependence. Taking this 

concentration dependent curve a step further, more curves were simulated in the same manner 

but with the ERC peaks at various relative frequency differences. The first ERC curve was 

simulated to have a peak at ω1 = kba
2 + Δωb

2 = 200 Hz, with other ERC curves with peaks 

ranging from 400 – 2,200 Hz to demonstrate the manner in which the maximum available 

contrast depends on the frequency difference between ERC peaks. 

 Solutions of 40 mM uracil mixed with concentrations of glucose ranging from 0-200 mM 

were imaged at 7T using a R1ρ weighted Fast Spin Echo sequence to confirm the ERC simulation 

behavior experimentally. R1ρ dispersion curves were measured by acquiring 5 images with 

exponentially spaced spin-lock times ranging from 0.01 – 1 sec for each of the 12 locking 

amplitudes that were logarithmically spaced from 50 – 10,000 Hz. R1ρ maps were calculated on a 

voxel by voxel basis for each of the 12 locking strengths assuming a mono-exponential decay 

model, and the dispersions were then calculated by ROI analysis. The ERC method in Eq. 1.5 

was then used to derive a concentration dependent image by using an intermediate locking 

amplitude of ω1 = 545 Hz, the peak frequency of the pure glucose ERC curve. ROI analysis 

quantified the mean ERC intensity in each sample, which was plotted against glucose 

concentration to obtain the concentration dependence of the ERC. 

Results and Discussion 

3-Pool R1ρ Simulations and Experiments 

Simulations of 3-pool exchanging systems were performed using the 3-pool Bloch-
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McConnell equations described in Eq. 2.1. Figure 31a and Figure 31c clearly show the manner in 

which R1ρ dispersions add as if they were linearly independent of each other.  

 

Figure 31: a,c.) Simulated R1ρ dispersions for individual exchange pools (red and blue), with both 
pools simulated simultaneously (black), which is compared to the addition of the individual curves 
(orange). b,d.) Simulated R1ρ double dispersions with the addition of minor exchange described by 

rates of 0 – 5,000 Hz. 

 

The orange curves Figure 31a and Figure 31c represent the addition of the solid red and blue 

curves in the manner described in Eq. 2.3, which are compared to the simulated black curve. The 

orange and black curves are not identical as expected due to the discrepancy in the pool fractions 

between simulations. The individual curves in blue and red each have pool fractions of pa = 99% 
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and pb = 1%, while the black curve has pool fractions of pa = 98% and pb = pc = 1%. The 1% 

change in bulk water pool fraction accounts for the two curves being unequal at low locking 

fields. The scenario when solute pools possess similar exchange rates, shown in Figure 31a, may 

prove too difficult to fit the double dispersion to Eq. 2.3 to extract accurate exchange parameters 

from each pool since the dispersions overlap so closely. The resulting curve behaves too much 

like a single dispersion and too much uncertainty is expected in fitting for multiple exchange 

rates. The other scenario with very different exchange rates, shown in Figure 31c, allows each 

contribution to be clearly differentiated in the black double dispersion curve. These simulations 

did not account for the contributions to R1ρ that may occur from the natural abundance of H2O17 

(0.037 atomic %), which may slightly affect the low B1 dispersion, though such effects should be 

small compared to the exchange effects due to the size of the pool fractions used in the 

simulation (133–135). Fitting this curve to Eq. 2.3 should provide much more accurate exchange 

rate estimates for both pools.  

The simulations revealed the behavior of exchanging systems under various conditions 

and, even though minor exchange cannot be easily assessed experimentally, Figure 31b and 

Figure 31d depict the extent of influence minor exchange has on a system as a function of 

exchange rate. The black curves are the individual contributions and the colored curves represent 

specific rates of exchange between pools b and c. Figure 31b shows how increasing the minor 

exchange rate increases the dispersion magnitude and appears to slightly shift the overall 

dispersion to higher frequencies. This behavior should be expected since a third exchange 

contribution begins to influence the curve by effectively adding a third dispersion. The influence 

relies on the fact that pools b and c have different chemical shifts. If the pools had magnetically 

equivalent environments (Δωb = Δωc), then the change in the dispersion would be less 
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exaggerated even if the intrinsic pool relaxation rates were different since the chemical shift will 

dominate these differences at high field. This effect should also decrease with smaller solute pool 

fractions. The scenario in Figure 31d shows the effect of minor exchange when the individual 

dispersion inflection points are very easily resolved due to different exchange rates of the pools 

with the bulk water pool. Minor exchange again mostly affects the low locking field values, but 

as the minor exchange rate becomes very fast, the dispersions begin to coalesce and appear to be 

a single dispersion. This occurs due to the fact that the exchange between minor pools is much 

faster than the exchange between pools a and b (kba) so when a proton from pool a exchanges to 

one of the solute pools, it may then bounce back and forth between solute pools and average out 

their effects. This effect should diminish with pool fraction, and with smaller pool fractions in 

practice, the minor exchange rate should not be very high in solutions due to the statistical 

chance of interacting with the bulk water pool would be so much greater than the chance of 

solute pools interacting. Experimentally, minor exchange cannot be practically measured in a 

single solution with R1ρ dispersion methods. It may potentially be inferred by measuring the 

dispersion of the solute components separately, predict the double dispersion, and calculate the 

difference between the measured and predicted double dispersions, but this would require very 

significant exchange that will again be improbable for small pool fractions. 

Minor exchange was ignored for the experiments performed to measure double 

dispersions in solutions of 100 mM creatine mixed with either 100 mM glucose or 50 mM uracil. 

These solutions were selected in order to depict comparable scenarios to Figure 31 with similar 

and very disparate exchange parameters. Figure 32a and Figure 32c show the measured R1ρ 

dispersion along with the fitted double dispersion curves from Eq. 2.3 for the individual 

contributions in blue and red, along with the mixture curve in black.  
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Figure 32: a,c.) Measured R1rho dispersions in solutions of creatine, glucose, and uracil along with 
double dispersions of corresponding mixtures in black. b,d.) The double dispersion fit for each pool 

contribution is compared to the individually measured contributions. 

 

These curves were also compared to pure PBS for reference, which should not theoretically 

exhibit any R1ρ dispersion. It should be noted that the exchange of –NH in uracil is fast, but the 

large chemical shift of the exchanging sites is ~11 ppm which also causes the dispersion to have 

such a high inflection point frequency. The double dispersion for the creatine + glucose mixture 

appears to be a single dispersion since the individual inflections overlap so closely, only 

separated by 269 Hz. This makes the fitting of each solute contribution very difficult, which is 

apparent in Figure 32b. The solid blue and red lines representing the fitted contributions of the 
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two solute pools are very different in magnitude and inflection frequency than the individually 

measured contributions represented by the dotted red and blue lines. Examining the exchange 

rates accentuates the shortcomings of this method, since the single dispersion estimate of the 

creatine exchange rate was kba = 1,978 Hz and the estimate from the double dispersion fitting 

was kba = 20,204 Hz, roughly an order of magnitude different. The single glucose exchange rate 

was estimated to be kba = 6,270 Hz, while the double dispersion method estimated a 39% 

different rate of kba = 4,241 Hz. This demonstrates how dispersions overlapping too closely will 

result in a large discrepancy and/or uncertainty in the estimated exchange rates. The double 

dispersion for the creatine + uracil mixture was much more distinguishable since the inflection 

points were separated by 2,334 Hz. This allowed a much more accurate fitting of the 

contributions from each solute pool shown in Figure 32d. The creatine exchange rate estimated 

from the double dispersion fitting was kba = 1,945 Hz, only 1.7% different compared to the 

accepted value of kba = 1,978 Hz from the single dispersion fit. The estimated uracil rate was kba 

= 23,234 Hz which was roughly 10% different than the single dispersion fit of kba = 21,034 Hz.  

3-Pool ERC Simulations and Experiments 

 The double dispersion method has been shown to be capable of estimating chemical 

exchange parameters in systems of up to 2 solute pools with reasonably distinguishable 

dispersion profiles. This analysis may be extended with the exchange rate contrast (ERC) method 

described earlier for a single solute pool to derive concentration dependent images in mixtures. 

Simulations were conducted to determine how double dispersion R1ρ curves would influence 

ERC curves shown in Figure 33.  
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Figure 33: a.) Simulated R1rho dispersions with increasing pool fraction of pc = 0 - 1%. b.) The 
corresponding ERC curves calculated from the simulated R1rho dispersion curves with the position 
of the pool c peak shown by the thick black line. c.) The ERC values of all concentrations along the 

thick black line at the locking field of 160 Hz. 

 

Pool a was assumed to be the bulk water pool, pool b was the constant pool fraction (pb = 1%) 

fast exchanging species, and pool c varied in pool fraction from pc = 0 – 1%. The double 

dispersions were fit to Eq. 2.3 and plotted in solid lines in Figure 33a, with the resulting ERC 

curves plotted in solid lines in Figure 33b. The simulated ERC points were calculated by using 

the fitted asymptotic values for R2  and R1ρ
∞ . Figure 33c shows the ERC value for each 

concentration along the thick vertical black line in Figure 33b, which is the frequency that pool c 

exhibits an ERC peak. The result is a concentration dependent, monotonically increasing curve 

quantified by Eq. 2.6 with ω1 = kca
2 + Δω c

2  shown below.  
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This curve will have the maximum contrast described by Eq. 2.8, and this contrast will change as 



 91 

the peaks of the individual ERC curves change. Figure 34b shows the manner in which the 

concentration dependent ERC function described in Eq. 2.9 changes with peak separation, 

ΔKeff = kba
2 + Δωb

2 − kca
2 + Δω c

2 .  

 

Figure 34: a.) Theoretical ERC curves with peak separations from 200 - 2,000 Hz. b.) The pool 
fraction dependent ERC values for each pair of ERC peaks. 

 

Less separation between peaks causes the double dispersion to become less discernable which 

results in less available contrast. The change in contrast is greatest for small pool fractions, and 

at low pool fractions it is greater for larger peak separations. For example, a change in ERC of 

0.25 corresponds to adding Δpc = 0.15% when ΔKeff = 2,000 Hz, compared to adding a pool 

fraction of Δpc = 1.62% for ΔKeff = 200 Hz. This method could potentially be used in vivo by 

injecting a specific concentration of an exchanging species with known exchange parameters to 

quantify the concentration of an existing metabolite. Since realistic concentrations used in live 

tissues are typically very low, choosing an exogenous agent with a large chemical shift that 

exchanges extremely fast would maximize the utility. 
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Calculating R1ρ maps in solutions of uracil mixed with various concentrations of glucose 

allows the ERC equations in Eq. 2.5 and Eq. 2.6 to be used to calculated images where the 

intensity specifically scales with the pool fractions of the solute pools. 

 

Figure 35: a.) R1ρ map of glucose and uracil solutions at a locking strength of 545 Hz. b.) The 
corresponding R1ρ dispersion curves of each sample in the R1ρ map calculated from ROI analysis. 

 

Figure 35a shows the R1ρ map of these solutions at the locking amplitude of 545 Hz, since this is 

the frequency that glucose expresses a peak ERC value, and the dispersions of each mixture 

solution are plotted in Figure 35b. Note the increase in R1ρ at low locking fields as the 

concentration of either solute pool changes. Pure PBS (pH = 7.4) was scanned in the middle of 

the R1ρ map for reference to show there is no dispersion in the relaxation in the absence of 

exchange. The inflection points of the pure glucose and pure uracil curves occurred at ω1 = 288 

Hz and ω1 = 1,337 Hz respectively, giving a separation of 1,049 Hz between curves. This means 

the corresponding ERC curve vs. pool fraction should look very close to the yellow theoretical 

curve in Figure 34b. ERC images were derived on a voxel by voxel basis and ROI analysis was 

performed on each sample to calculate the average ERC as a function of glucose concentration 
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shown below in Figure 36.  

 

Figure 36: a.) ERC map at a locking strength of 545 Hz emphasizes solutions with glucose due to its 
exchange rate. b.) The mean ERC values are plotted as a function of glucose concentration. 

 

The utility of this method may be illustrated by observing how the ERC image contrast in Figure 

36a is notably different than that in the R1ρ map in Figure 35a. Specifically, the 200 mM glucose 

sample exhibits a decrease in R1ρ compared to the mixture of 200 mM glucose with 40 mM 

uracil since this contrast is sensitive to the relaxation caused by both solute pools. The 200 mM 

glucose sample expresses a higher intensity than the corresponding mixture in the ERC map 

because this contrast effectively relies on the exchange rate since the intermediate locking field 

was chosen to be at the glucose ERC peak. The curve in Figure 36b shows the same 

monotonically increasing concentration dependent behavior simulated in Figure 33c.  

Conclusions 

 Here we conclude 3-pool analysis using R1ρ double dispersion analysis or ERC analysis 

can be useful in assessing or characterizing tissues in a more realistic manner than a simple 2-

pool model. In order to accurately assess a 3-pool system using the techniques described above, 
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the dispersion curves due to the two solute pools must be sufficiently separated so they are 

distinguishable. If the curves are indistinguishable, then the system may be analyzed with a 2-

pool model to derive average exchange parameters of the solute pools, or another technique may 

be used like CEST that is more sensitive to the chemical shift differences. Either way, it should 

be emphasized the entire dispersion is needed for these techniques, not the relaxation rate at only 

one locking field like a number of studies have done. Exchange between solute pools, or minor 

exchange, may potentially affect the overall R1ρ dispersion curve significantly when the 

exchange is fast compared to the exchange between the solute pools and the bulk water pool. 

This is thought to be very unlikely in most practical tissues since the concentrations of the solute 

pools will be very small compared to the water pool, so any effects will be small or negligible in 

these systems. The ERC method was shown to be powerful in chapter 2 by providing the ability 

to emphasize metabolites based on their exchange rates, but an even greater advantage exists for 

this method in a 3-pool system. The ability to derive concentration dependent image contrast was 

shown to be feasible in model systems of glucose and uracil, meaning this method may be 

potentially useful by injecting a contrast agent such as uracil with a very high R1ρ inflection 

point. It should be noted that the ERC method cannot be used to derive concentration dependent 

images in a system with only 1 solute pool, since there will be no shift in the ERC peak with an 

increase in concentration. It should also be pointed out that these results were obtained by 

increasing the glucose concentration to 200 mM, which is very high considering normal blood 

glucose levels are roughly 5-6 mM in the blood (136, 137) and roughly 1 mM in the brain (138–

140). Future studies should look into quantifying the minimum dispersion separation needed to 

make this method viable and testing the feasibility of these techniques in vivo in healthy and 

diseased tissues.  
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This approach was successful in distinguishing solute pools based on exchange rates, but 

does not possess the same spectral selectivity of other techniques like CEST. R1ρ dispersion may 

present notable advantages when compounds exist that have the same side groups, e.g. amides, 

but different exchange rates. Moreover, for fast exchanging hydroxyls, the problem of separating 

the resonance from water does not arise. The derived ERC image contrast surpasses the available 

contrast available from standard CEST MTR asymmetry techniques for many scenarios, and has 

potential for in vivo studies with an injectable contrast agent of an exchanging species. This 

technique eliminates common experimental problems encountered with CEST such as the 

possibility of direct water saturation while attempting to saturate protons with small chemical 

shifts and asymmetric CEST spectra that confound accurate MTR asymmetry calculations due to 

NOE effects (119, 141, 142). CEST experiments have been used to examine glucose metabolism 

in a similar manner to FDG-PET by injecting natural D-glucose or an analogue such as 2-deoxy-

D-glucose (2DG) as an exogenous contrast agent to analyze the increase in hydroxyl exchange 

after cellular glucose uptake (143–148). In the following chapter, the advantages of spin-locking 

experiments over CEST are demonstrated to provide more robust measurements of either glucose 

analogue since they are more adept in quantifying fast hydroxyl exchange. 
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CHAPTER 4 

Detection of Exogenous Contrast Agents Using Spin-Locking Pulse Sequences in Model 

Systems and in vivo 

Introduction and Theory 

 Monitoring glucose metabolism in tissues with MRI would significantly aid in the 

detection, characterization, and evaluation of treatment efficacy in solid tumors. New cancer 

treatments often target glucose metabolism since one of the key features of cancer cells is how 

they increase metabolism through aerobic glycolysis in order to proliferate more efficiently (149, 

150). Glucose metabolism unfortunately cannot be directly measured or even inferred from 

simple relaxometry measurements, but utilizing 2-Deoxy-D-Glucose (2DG) as an exogenous 

contrast agent offers a potential work around to indirectly imply levels of glycolysis (151). 2DG 

is typically taken up by cells in a similar manner as glucose and subsequently phosphorylated by 

hexokinase but not metabolized further due to the missing hydroxyl group compared to glucose 

(148). Unlike glucose, which is phosphorylated into glucose-6-phosphate and then converted into 

fructose-6-phosphate, 2-deoxyglucose-6-phosphate cannot be converted to fructose-6-phosphate 

so its metabolism ceases (152). The result is an accumulation of trapped 2-deoxyglucose-6-

phosphate in the cells that alter spin-locked relaxation rates through fast hydroxyl chemical 

exchange. The mechanism 2DG uses is very similar to that used in FDG PET imaging studies 

which has already been worked into RECIST 1.1 (153), but 2DG MRI is potentially a safer 

alternative since it uses no radioactive tracers. The 18F-2-deoxy-2-fluoro-D-glucose used in FDG 

PET is a labeled radioactive tracer is also taken up an trapped in cells and emits two 511 keV 

photons that may be measured by a ring of detectors, but the radioactivity prevents it from being 
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reused in patients and the short lived isotopes require a coordinated effort between production, 

administration, and imaging to be successful (154). Other radioactive labeled versions of 2DG, 

such as that labeled with 13C, have been used for similar purposes, but each method suffers from 

the same problems as FDG PET (152, 155). Chemical Exchange Saturation Transfer (CEST) 

studies have already utilized 2DG to successfully monitor glucose uptake and even distinguish 

tumor types by measuring the attenuated water signal caused by the exchange with labile protons 

that have been saturated with off-resonance saturation pulses (146, 148). There are conflicting 

reports about whether this can be done with regular D-glucose, since one study reported that 

blood glucose levels remain elevated 30 minutes after the glucose infusion ends while another 

study reports glucose levels drop immediately after terminating the infusion or after a bolus 

injection (147, 148). Here, R1ρ dispersion methods are employed to assess the detection of 2DG 

in model systems and in vivo. 

 R1ρ dispersion methods have been shown to be capable of deriving image contrast that 

emphasizes exchanging metabolites of specific chemical exchange rates and chemical shifts. In 

order to compare R1ρ dispersion imaging methods with those of CEST for the exceedingly low 

concentrations expected in vivo, R1ρ contrast needs to be defined.  

 R1ρ  contrast =
S high( )− S low( )

S0

  3.1 

In Eq. 3.1, S represents the signal intensity at either high or low locking amplitude and S0 is the 

signal intensity when no locking amplitude is applied during the spin-lock pulse cluster. The 

signal intensity of the R1ρ contrast will be heavily influenced by chemical exchange effects and 

provides a more appropriate measure to compare to CEST than ERC at low concentrations. 
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Similarly, a CEST contrast may be defined by using MTRasymmetry analysis of a CEST z-spectrum 

acquired by measuring signal as a function of a saturation pulse frequency (156).  

 CEST contrast =
S reference( )− S label( )

S0

  3.2 

In Eq. 3.2, S represents the image intensity at either the resonance-offset frequency of the 2DG 

peak or the frequency corresponding to the symmetric point on the opposite side of the water 

peak and S0 represented the signal in the absence of a saturation pulse. These measures could be 

quantitatively evaluated to compare the available contrast from each technique. 

Specific Aims 

Aim 1  

CEST has become very widely used within the MR community over the past decade for 

its spectral selectivity and ease of use. R1ρ dispersion methods potentially provide 

complementary information that could supplement or maybe replace the need for CEST 

acquisitions in certain cases. In order to assess the theoretical ability of each technique to detect 

2DG, numerical simulations will be performed to compare the available R1ρ and CEST contrasts. 

Aim 2 

Quantifying glucose metabolism in live tissues would drastically improve magnetic 

resonance based cancer imaging methods. The current gold standard for measuring glucose 

uptake in vivo is by using FDG-PET, which relies on short-lived radioactive isotopes to directly 

measure trapped FDG. MR methods such as spin-locking and CEST have been proposed to 

detect the glucose analogue, 2DG, that would provide similar information as FDG-PET. Here the 

ability of R1ρ dispersion and CEST techniques will be evaluated for detecting 2-Deoxy-D-
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Glucose in model systems and ex vivo tissue homogenates. 

Aim 3  

Simulations and model systems provide ideal ways to control the conditions and 

environments of the proposed experiment, but systems in vivo may present multiple factors that 

could potentially affect the experimental measurements. Here, the abilities of both R1ρ dispersion 

and CEST to assess glucose uptake in rat brains in vivo are evaluated at 7T by imaging the brain 

before and after a 2DG injection. 

Methods 

Numerical R1ρ and CEST Simulations 

The effects of 2DG hydroxyl exchange on both R1ρ dispersion and CEST need to be 

theoretically confirmed. Realistic tissue simulations were implemented by employing slightly 

modified 3-pool Bloch McConnell equations described below in MATLAB with a bulk water 

pool (pool a), a solid component pool (pool b), and a 2DG solute pool (pool c) (157).  
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In Eq. 3.3, the components are the same as in previous chapters with ωrf quantifies the off-

resonance frequency of the saturation pulse and W in the z-component of the solid pool was the 

saturation rate of that pool, which is expressed below in Eq. 3.4 for specific relaxation times of 

the tissue (158–160).  

 W = πω1
2 dθ sin θ( ) 2
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Chemical exchange was assumed to be present between the bulk water pool and 2DG, 

magnetization transfer (MT) was assumed to be present between bulk water and the solid 

component, and no chemical exchange occurred between the solid component and the 2DG pool. 

The 2DG solute pool relaxation times were T1
c = 1 R1

c = 1.5 sec and T2
c = 1 R1

c = 15 ms with a 

chemical shift of Δωc = 1 ppm, while the solid component relaxation times were T1
c = 1 R1

c = 1.5 

s and T2
c = 1 R1

c = 15 µs with a chemical shift of Δωb = 1 ppm and an exchange rate of kba = 25 

Hz. The R1ρ and CEST contrasts defined above were numerically evaluated for range of values 

for the exchange rate (kca = 1 – 5 kHz), 2DG pool fraction (pc = 0.5 – 2.5%), water longitudinal 

relaxation time (T1
a = 1 R1

a = 0.5 – 2.5 s), water transverse relaxation time (T2
a = 1 R2

a = 20 – 100 

ms), and solid component pool fraction (pb = 3 – 15%). One parameter was varied at a time with 

the default parameters being kca = 2 kHz, pc = 1%, T1
a = 1.5 s, T2

a = 60 ms, and pb = 9%. R1ρ 

dispersions were simulated with 6 spin-lock times ranging from 1 – 100 ms for each of the 7 

locking amplitudes logarithmically spaced from 10 – 10,000 Hz, and R1ρ contrast was calculated 

assuming the S(high) was the signal from the locking amplitude of 10,000 Hz and S(low) was the 

signal from the locking amplitude of 100 Hz at a locking time of 40 ms. R1ρ values were 

calculated by fitting the simulated decay curves to a simple monoexponential decay model. 
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CEST Z-spectra were calculated by sweeping through a frequency offset range of -5 – 5 ppm (-

1,500 Hz – 1,500 Hz at 7T) in 61 increments of 0.167 ppm (50 Hz at 7T) with a 1 µT (42.6 Hz) 

saturation pulse power lasting 2 sec. CEST contrast was calculated using Eq. 3.2 by assuming 

S(reference) was the signal for the -1 ppm (-300 Hz at 7T) offset,  S(label) was the signal from 

the 1 ppm (300 Hz at 7T) offset. The resulting R1ρ contrasts and CEST contrasts were plotted and 

analyzed to determine which method offered more contrast due to exchange with the 2DG pool. 

R1ρ and CEST Measurements in Model Systems of 2DG 

Experimental confirmation of the ability of R1ρ and CEST techniques to quantify 

exchange effects due to 2DG was needed for validation. In order to test and compare the imaging 

techniques, model systems of simple 2DG solutions in phosphate buffered saline (PBS) and rat 

brain tissue homogenates mixed with 2DG solution were prepared and imaged. The 2DG 

solutions were prepared at concentrations of 50 – 150 mM with 0.05 mM MnCl2 to shorten T1 

and T2, and titrated to a pH of 7.0. The homogenate samples were prepared by excising fresh 

brain tissue from Sprague-Dawley rats, washing the tissue with ice-cold PBS, and subsequently 

homogenized in various concentrations of buffered solutions of 2DG so the final concentrations 

ranged from 0 – 100 mM. R1ρ dispersions were measured in both model systems at 7T using a 

single shot echo-planar imaging (EPI) sequence with TR = 2 s, FOV = 30mm x 30mm (64x64 

matrix), a bandwidth of 250 kHz, an echo time of 50 ms, and a slice thickness of 2 mm. The 

2DG solutions were imaged with 5 locking times ranging from 1 – 100 ms for each of the 9 

logarithmically spaced locking amplitudes ranging from 100 – 10,000 Hz before ROI analysis 

was performed and the signals were fit to a monoexponential decay curve to estimate R1ρ at each 

locking field. The homogenates were imaged using 6 logarithmically spaced locking times from 

20 ms to 1 s for each of the 9 locking amplitudes from 100 – 10,000 Hz again. R1ρ contrast was 
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calculated as a function of 2DG concentration by using S(low) and S(high) to be the images at 

locking powers of 100 Hz and 3,160 Hz respectively, each with a locking time of 50 ms for all 

dispersion curves. CEST Z-spectra were acquired for the 2DG solutions with the same saturation 

powers as described in the simulations, and CEST contrast was calculated as a function of 2DG 

concentration. The resulting dispersions, Z-spectra, R1ρ contrasts, and CEST contrasts were all 

plotted and analyzed to determine which method provides superior contrast experimentally. 

R1ρ and CEST Measurements in Rat Brains in vivo 

The model systems examined possessed high concentrations that are unlikely in live 

tissues, so rat brains were imaged in vivo before and after being infused with 2DG. Five Sprague-

Dawley rats were imaged at 7T, four healthy rats and one that had been inoculated with a 9L 

tumor. The rats were prepped by inserting a polyethylene catheter (PE50) into the tail vein, they 

were anesthetized with a 2%/98% isoflurane/oxygen mixture, and the temperature and 

respiration were monitored with an animal physiologic system. The internal temperature was 

measured by a rectal thermometer and held constant at 37 °C by a warm-air feedback system. 

The imaging of the rats began 20 minutes before the infusion with the same single shot EPI 

sequences and imaging parameters described above for the 2DG phantom experiments to 

measure R1ρ dispersions and CEST Z-spectra. Subsequently the rats were given a 3 mL bolus 

injection of 0.5 M 2DG solution followed by a slow infusion of 2 mL/hour for 90 minutes 

through the tail vein catheter. R1ρ dispersions and CEST Z-spectra were continually collected 

with the same imaging parameters for 90 minutes after the start of the infusion and R1ρ contrast 

and CEST contrast were calculated at each time point to generate a time course curve that should 

theoretically reflect the 2DG tissue concentration.  
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Results and Discussion 

Numerical R1ρ and CEST Simulations 

MR methods such as R1ρ dispersion and CEST allow indirect detection of the glucose 

analogue through their sensitivity to the chemical exchange mechanism. Both R1ρ and CEST 

methods have been successfully confirmed to be sensitive to changes in 2DG concentration 

through simulations that vary different exchange parameters shown below in Figure 37.  

 

Figure 37: Simulated R1ρ dispersions and R1ρ contrasts plotted as functions of various exchange 
parameters (a-f). Z-spectra and CEST contrasts plotted as a function of the same exchange 

parameters for comparison (g-l). 
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The R1ρ contrast showed sensitivity to all the tested parameters except T1
a , while CEST contrast 

was sensitive to all parameters tested. The R1ρ contrast curves generated higher contrast than the 

simulated CEST contrast curves in almost every point for each of the simulated parameters. R1ρ 

contrast displayed a greater positive change and magnitude than CEST contrast for T2
a  and pc, 

and exhibited a smaller negative change in contrast and greater magnitude as a function of pb. 

Though the greater contrasts were favorable, the fact that R1ρ exhibited greater changes to the T2
a  

and pc parameters may be argued as being a negative aspect of the technique since this shows the 

method may be changed by a number of factors that may influence experimental results. It 

should be pointed out that CEST contrast exhibited a greater change in contrast for all other 

simulated parameters though. The behavior of the contrast equations with respect to changing the 

exchange rate showed that CEST contrast does offer greater sensitivity at low exchange rates 

while R1ρ contrast quickly overcomes CEST and offers better contrast at fast exchange rates. 

This behavior and the manner in which the R1ρ contrast displays a maximum at a specific 

exchange rate before beginning to decrease at faster exchange rates were both predicted in 

chapter 2. Eq. 1.8 shows that the maximum R1ρ dispersion magnitude, and hence R1 contrast, will 

be a function of the intrinsic chemical shift (Δωc) and transverse relaxation rate ( R2
c ). The ratio 

kca
Δω c

≈ 6.7, which put the exchange in the intermediate to fast regime and the corresponding Z-

spectrum results in very close overlapping dips that produce a small MTRasym curve. 

Experimentally there would be a risk of direct water saturation while attempting to saturate the 

solute pool, which could make estimating accurate exchange parameters more difficult. This did 

not negatively impact the R1ρ contrast since the method does not rely on distinguishing the solute 

pool on the chemical shift, but was rather shown to work very well in this exchange regime in 
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chapter 2. Since CEST was shown to be affected by more exchange parameters and generate 

lower CEST contrast than the competing R1ρ contrast for the majority of the simulations, the R1ρ 

dispersion method was shown to outperform the CEST for the theoretical case of 2DG chemical 

exchange. CEST contrast would most likely outperform R1ρ with slower exchanging exogenous 

agents, but 2DG exchange under physiologic conditions is better assessed with R1ρ. 

R1ρ and CEST Measurements in Model Systems of 2DG 

Model systems of both liquid 2DG solutions and rat brain tissue homogenates were 

prepared with various concentrations of the glucose analogue to determine how it affected both 

R1ρ contrast experimentally, which is shown in Figure 38.  

 

Figure 38: R1ρ dispersions for 2DG phantoms and homogenates at various concentrations (a,c). The 
corresponding R1ρ contrasts plotted as a function of 2DG concentration (b,d). 
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The phantom solutions of 2DG displayed roughly a linear increase in R1ρ contrast as a function 

of concentration, and the homogenates displayed a similar behavior at concentrations below 100 

mM. The homogenate samples displayed an interesting behavior at high locking fields where 

they appear to form a double dispersion that remains constant with 2DG concentration. This may 

be due to other existing metabolites in the tissue, but this should not negatively affect the 

calculations since multiple pools were shown to produce linearly independent dispersions. The 

corresponding Z-spectra and CEST contrasts are shown below in Figure 39 for the 2DG 

phantoms.  

 

Figure 39: CEST Z-spectra with pulse powers of 1, 2, and 3 T for 2DG phantoms with 
concentrations of 50, 100, and 150 mM (a,b,c). The corresponding CEST contrasts are plotted as a 

function of 2DG concentration (d). 
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The CEST data are shown at the saturation pulse powers of 1, 2, and 3 µT for all three 

concentrations, and display a broadening dip in the Z-spectra at higher saturation powers. This 

broadening shifts the peaks of the MTRasym curves due to greater direct water saturation and 

hence affects the CEST contrast calculations shown in Figure 39d. The CEST contrast 

calculations were done at an offset of 1 ppm and did not display the same linear behavior as the 

previously analyzed R1ρ contrast. The 1 µT saturation pulse produced a nearly linear CEST 

contrast dependence on 2DG concentration, but exhibited a smaller magnitude and slope than the 

R1ρ method since stronger irradiation pulses are required to efficiently saturate fast exchanging 

protons. This conflict between efficiently saturating the solute protons without directly saturating 

the water protons may be optimized to find the most advantageous power, but this will almost 

always produce less contrast compared to R1ρ contrast protons in the fast exchange regime. The 

higher power saturation pulses generate CEST contrast curves that appear to reach a maximum 

and begin to decrease due to the water saturation. This peak appears to occur at lower 

concentrations for higher powers due to the direct water saturation, which means CEST contrast 

works best while utilizing low irradiation powers for very low concentrations of 2DG. The R1ρ 

contrast did not display power dependence and worked well for the same range of 

concentrations, showing this method is more suitable for the fast hydroxyl exchange exhibited by 

the 2DG systems examined here. 

R1ρ and CEST Measurements in Rat Brains in vivo 

Imaging tissues in live animals presents new problems including physiologic motion that 

can result in image artifacts and low metabolite concentration that may make indirect detection 

with R1ρ or CEST methods difficult. For these reasons, maximizing contrast becomes paramount 

in vivo for any purpose. R1ρ and CEST methods were used to examine rat brains in vivo during a 
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constant slow infusion of 2DG through a tail vein injection. R1ρ dispersions, Z-spectra, and the 

time courses of R1ρ and CEST contrasts are plotted below in Figure 40.  

 

Figure 40: The R1ρ dispersions and Z-spectra are plotted for 4 time points for rat #1 (a,c). The 
corresponding R1ρ and CEST contrasts are plotted for all 4 healthy rats as a function of time (b.d). 

 

The changes in both the R1ρ dispersion curves and Z-spectra were very small due to the low 

concentrations in the tissue at any given time. This is reflected in the very small changes in the 

R1ρ and CEST contrasts shown in Figure 40b and Figure 40d respectively. The CEST time 

courses displayed such minute changes, no conclusions could be confidently drawn and the 
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curves were not reliably repeatable. The R1ρ contrast time course curves were repeatable and 

displayed a constant increase in contrast for the first hour before leveling off. The contrast curves 

expressed much greater magnitudes than the CEST contrast curves and changed by an average of 

7.5x10-3 over the first 60 minutes where they continually increase in concentration. A fifth rat 

with a 9L tumor was also imaged shown below in Figure 41.  

 

Figure 41: a.) R1ρ contrast time course in normal and tumor regions of the brain. b.) Anatomical 
image of the brain to illustrate the tumor region acquired prior to the infusion. c,d.) R1ρ contrast 

image depicting greater tumor differentiation reflecting elevated 2DG levels compared to the CEST 
contrast image. Both images represent the time point 70 minutes after the start of infusion. 
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ROI analysis was performed in the tumor and in a healthy region of the brain to plot the time 

course of R1ρ contrast in each region shown in Figure 41a. While the normal tissue displays a 

very small increase in R1ρ contrast, the tumor region exhibits a substantially larger increase over 

the same time span. This behavior was expected since the 2DG should become trapped in the 

cells and tumors have been shown to exhibit heightened glucose metabolism (149, 150, 161, 

162). The heightened glucose metabolism may also explain why the tumor tissue recorded a 

lower baseline R1ρ contrast than the normal tissue. The R1ρ and CEST contrast images are not 

extremely high resolution, but the R1ρ image clearly shows increased contrast in the tumor region 

compared to CEST. The R1ρ method has been shown to be the superior contrast method to probe 

2DG exchange in rat brains in vivo. 

Conclusions 

 Radioactive imaging methods using the labeled glucose analogue 2DG have the benefit 

of direct metabolite detection and FDG PET has already been an approved methodology that is 

beginning to be implemented in cancer treatments. Using glucose and analogues of glucose in 

MRI has become a topic of interest within the MR community over the past few years with more 

research emerging each year (121, 146–148, 163). The analysis above shows that in the case of 

2DG, spin-locking measurements are more sensitive to the fast hydroxyl exchange and provide 

better chemical exchange dependent contrast than that available from CEST. CEST methods may 

be more proficient in quantifying chemical exchange in the slow exchange regime, but for fast 

exchange problems such as direct water saturation become significant and affect data. The 

concentrations used in this study were very high for the phantoms and homogenates were the 

effects were abundantly obvious, but were much lower in vivo since the amount of glucose was 

slowly infused and constantly regulated naturally by the rat. The concentrations in vivo could not 
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be increased to arbitrarily large values since 2DG may produce toxicity effects. Others have 

shown 2DG is relatively safe but can cause significant drops in blood pressure and decreases in 

respiratory frequency with large intravenous doses (164). Vijayaraghavan et. al. determined an 

oral LD50 > 8,000 mg/kg in mice and rats was considered safe and no deaths were exhibited with 

this dosage (164). Another potential advantage of 2DG MRI over FDG-PET is that FDG has 

demonstrated greater toxicity as a glycolytic inhibitor than 2DG (165). Though this overall 

toxicity has been shown to be relatively low for both compounds in rats and mice, some 

investigators have attempted to used 2DG as an anti-cancer drug by using it to impede tumor cell 

glycolysis or using it to supplement other chemotherapies (166–168). Further investigation of the 

use of 2DG may need to be performed to assess the optimal dosage or its potential with other 

spin-locking methods such as calculating parametric exchange rate contrast (ERC) images that 

emphasize regions of heightened glucose metabolism. 
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CHAPTER 5 

Characterizing Heterogeneous Media by Analyzing the Spatial Scales of Susceptibility 

Variations With R1ρ Dispersion 

Introduction 

 Previous chapters discussed how spin-locking induces precession about the effective field 

and overcomes the exchange effect of nuclei jumping between two sites with distinct chemical 

shifts when the frequency is on the order of the time scale of the exchange process. Analogously, 

water diffusion in the presence of inhomogeneities causing intrinsic susceptibility gradients also 

gives rise to dispersion in R1ρ due to the randomly fluctuating local field experienced by 

diffusing spins (84, 169). Such variations arise in several contexts, notably within trabecular 

bone (170), in the presence of vasculature containing paramagnetic agents or deoxyhemoglobin 

(171), or in tissues that accumulate iron-bearing proteins (172–174). The intrinsic gradients 

cause dispersion to a degree that depends on the gradient strength at an inflection frequency that 

corresponds to the time scale of the local field fluctuations, which provides information about the 

mean spacing between inclusions. In general the local field variations experienced by nuclei are 

complex and usually random but may be described by a correlation function with a characteristic 

correlation time (τ c ). The corresponding effects on R1ρ have been considered much less often, 

and one study even reports seeing increases in R1ρ with locking field, contradictory to what is 

expected (170). The effect on R1ρ dispersion may not be frequently considered in the literature 

because a theoretical basis for how rapidly fluctuating fields modify R1ρ has not been established 

until recently. The overall purpose of the work reported here was to develop a novel imaging 

approach for characterizing inhomogeneous biological tissues distinguished by intrinsic spatial 
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variations of magnetic susceptibility. 

Where susceptibility variations within a sample volume or image voxel are produced by 

discrete inhomogeneities or inclusions, such as the presence of paramagnetic particles, or 

deoxyhemoglobin within the microvasculature, the magnitude and spatial extent of the field 

perturbations depend on the nature and sizes of the inhomogeneities (175).  

 

Figure 42: An example of four nuclei diffusing though a simulated gradient field induced by packed 
microspheres. Following the paths shows how the local field experienced by these nuclei fluctuates 

with time. 

 

The influences of diffusion amongst such inhomogeneities, exemplified in Figure 42, on 

transverse relaxation rates R2 and R2
* have been previously extensively analyzed by theory and 

computer simulations, and studied experimentally in vitro and in vivo (70–81), and various 
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regimes have been defined for how diffusion affects relaxation in spin echo and gradient echo 

imaging. However, the corresponding effects on R1ρ have been much less considered previously. 

Lammentausta et al (170) reported measurements of T1ρ for water within trabecular bone but 

noted “to our knowledge there is currently no theoretical formalism considering T1ρ relaxation 

during diffusion in local field gradients.” Moreover, they measured increases of R1ρ with respect 

to the locking field amplitude for water in bone, contradictory to what would be expected. They 

noted that “a more complete theoretical formalism… is required to better understand the 

behavior of T1ρ relaxation under these kinds of experimental conditions.” Others, e.g. Kettunen 

et al (171), examined the effects of changes in intravascular susceptibility from the use of iron 

oxide contrast agents but saw little change in R1ρ at a single (relatively high) locking field. 

However, they did not measure the dispersion at other fields, though they did confirm that R1ρ 

decreases when blood is oxygenated because of changes in exchange-mediated relaxation by 

deoxyhemoglobin. 

 Here, a new simple analytic relationship is derived between the dispersion of R1ρ 

measureable by spin-locking methods and the rate of diffusion within spatially varying gradient 

fields. We subsequently use this theoretical result to predict how R1ρ may be used to quantify 

aspects of diffusive behaviors and intrinsic susceptibility variations in inhomogeneous media. 

The derivation hinges on the assumption that the gradient field oscillates sinusoidally to allow 

the math to work, and the model needs to be tested to confirm its utility in practical experiments. 

Given that real intrinsic gradients may not be well described with a single spatial frequency, it is 

of interest to explore whether this simple analysis may be used as an approximate description of 

more complex media, and used to extract useful characteristics such as the average spatial 

dimensions of the inhomogeneities in the media. Methods for quantifying these spatial scales of 
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intrinsic tissue variations may have far reaching applications for quantitative characterization of 

inhomogeneous material, and in biological applications, for the evaluation of pathologies. The 

effects of diffusion through simple geometries exhibiting intrinsic susceptibility gradients on 

transverse relaxation rates R2 and R2
* have been extensively investigated before through 

simulation, theory, and experiments (73, 78, 176–178). Simulations of diffusion within vascular 

networks have also been performed to evaluate geometry dependent effects on transverse 

relaxation (81, 179). However, no previous simulation has quantified the effects of diffusion 

through susceptibility-induced gradients in the presence of spin-locking fields, which will be 

done here. Although the expression for the ideal case we analyze is only an approximation to 

realistic situations, we show how reasonable estimates may be obtained of novel material 

properties that can be used for quantitative tissue characterization. 

Theory 

Deriving the Influence of Diffusion on R1ρ 

In order to derive the expression for diffusion based R1ρ, the approach of Deverell et al. 

(45) was adopted for analyzing the behavior of a system of spin-1/2 nuclei subject to a static 

magnetic field B0 =
ω 0

γ
 and an on-resonance rotating field of frequency ω 0  and amplitude 

B1 =
ω1

γ
 . They considered the effects of a time varying perturbation field δω t( )  that fluctuates 

with an average correlation time τ c  and which can induce relaxation of the magnetization 

aligned with B1 . If  δωτ c ≪1  and  δω ≪ω1 ≪ω 0 , Deverell et al. show that the contribution to 

R1ρ from time-varying field perturbations depends on the spectral content of the autocorrelation 

of field variations experienced by the nuclei at the relevant locking frequency.  
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 R1ρ =
1
2

δω t( )δω t −τ( )cos ω1τ( )dτ
−∞

∞

∫   4.1 

Eq. 4.1 describes the relaxation behavior of nuclei diffusing through a spatially varying field, 

b x( ) , such that  

 δω t( ) = γ b x( ) = γ b x t( )( ).  4.2 

Here, the special case where the field varies sinusoidally in one dimension is considered. Cowan 

(180) has analyzed the correlation of displacements and fields experienced by spins diffusing in 

such a medium. In this case,  

 b x( ) = Asin qx( )   4.3 

where q  is the spatial frequency of the variation. Real fields in practice do not vary sinusoidally, 

but they do fluctuate about a mean value with some deviation that is determined by the gradient 

strength and the geometry. The spatial derivative of the field is then  

 
∂b x( )
∂x

= Aqcos qx( ).   4.4 

The mean squared gradient, g , can be represented as  

 g2 = A2q2

2
  4.5 

so that  

 b x( ) = 2 g
q
sin qx( )   4.6 
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where a linear gradient corresponds to the case q = 0 . Substituting for the correlation of the 

frequency variations,  

 δω t( )δω t −τ( ) = γ 2 b 0( )b τ( ) = 2 γ g
q

⎛
⎝⎜

⎞
⎠⎟

2

sin qx 0( )( )sin qx t( )( ) .   4.7 

The position x t( )  changes with time and the displacement may be written as  

 Δx τ( ) = x τ( )− x 0( )   4.8 

so that  

 δω t( )δω t −τ( ) = 2 γ g
q

⎛
⎝⎜

⎞
⎠⎟

2

sin2 qx 0( )( )cos qΔx τ( )( ) + sin qx 0( )( )sin qΔx τ( )( )cos qx 0( )( ){ }.  4.9 

Since the displacement and the starting position are not correlated for random diffusion, the 

second term on the right is zero, the average of the term sin2 qx 0( )( )  is ½, and  

 δω t( )δω t −τ( ) = 2 γ g
q

⎛
⎝⎜

⎞
⎠⎟

2
1
2
cos qΔx τ( )( ) .   4.10 

For random Brownian motion, the probability distribution of Δx t( )  for unrestricted diffusion is 

Gaussian so that  

 P Δx( ) = 1
2π Δx2

e
− Δx2

2 Δx2 .  4.11 

Then  
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 1
2
cos qΔx τ( )( ) = 1

2
cos qΔx τ( )( )P Δx τ( )( )dΔx = 12 e

−
q2 Δx2 τ( )

2

−∞

∞

∫   4.12 

where  

 Δx2 τ( ) = 2Dτ   4.13 

and D  is the usual self-diffusion coefficient. Putting Eq.’s 4.10 - 4.13 together, we obtain  

 δω t( )δω t −τ( ) = 2 γ g
q

⎛
⎝⎜

⎞
⎠⎟

2
1
2
e−q

2Dτ .  4.14 

Many physical realistic correlation functions decay exponentially, and such functions are 

commonly adopted in relaxation theories such as that of the original analysis of Bloombergen, 

Purcell, and Pound (33). Substituting Eq. 4.14 into Eq. 4.1 leads to  

 R1ρ =
1
2

γ g
q

⎛
⎝⎜

⎞
⎠⎟

2

e−q
2Dτ cos ω1τ( )dτ

−∞

∞

∫   4.15 

or after evaluating the integral,  

 R1ρ =
γ 2g2D

q2D( )2 +ω1
2
.   4.16 

Eq. 4.16 states that the values of R1ρ will disperse for different locking fields and are strongly 

dependent on the gradient strength and the spatial frequency. Setting the second derivative of Eq. 

4.16 with respect to ω1  to zero, one can find the dispersion curve exhibits an inflection point that 

corresponds directly to the spatial distribution of the medium at ω1
inflection = q

2D
3

. A characteristic 
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locking field frequency ω c  may be defined for a specific spatial frequency q , ω c =
1
τ c

= q2D , so 

that  

 R1ρ = γ
2g2D τ c

2

1+ω1
2τ c

2 .   4.17 

This curve has an inflection (i.e. the steepest part of the curve where the second derivative 

d 2R1ρ
dω1

2 = 0 ) when ω1
2 = 1

3τ c
2 . The interval τ c , or the correlation time, is an intrinsic characteristic 

of the medium that depends on the spatial scale of the inhomogeneities but not the magnitude of 

the susceptibility variations, which lies solely in the g2D term. The correlation time is literally 

the time required for diffusing the spatial scale of inhomogeneity within the sample, or one 

period of the oscillating field.  

Interpreting Diffusion Parameters 

Equation 4.17 provides a useful starting point for the interpretation of R1ρ measurements 

of media with quasi-periodic distributions of non-uniform susceptibility at different locking 

fields. For example, spherical objects in a magnetic field produce an internal field that differs 

from the external field according to their susceptibility difference. Field gradients are generated 

external to the surfaces and decrease with distance (48, 181). Both R2
* and R1ρ will depend on 

the applied field ( B0 ), the magnetic susceptibility between the particle and the surrounding 

material (Δχ ), and the object radius ( R ) (182). For an array of small particles in relatively close 

proximity the field will vary across space and the characteristic spatial frequency will be of the 

order of q = π
R

. R1ρ will then show an inflection in the dispersion when ω1 =
π 2D
3R2

, i.e. when 
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the period of spin nutation about the locking field matches the time to diffuse the characteristic 

dimension of the inhomogeneity. For D  = 2.5 x 10-5 cm2/s, dispersion over the range of ≈ 23 - 

363 Hz is expected for inhomogeneities of diameters 20 - 5 µm respectively. 

 The spatial frequency parameter q  in the correlation time is what relates the spatial 

distribution to our relaxation rate, but the medium may not be adequately described by a single 

spatial frequency. In practice, the parameter will represent an averaged effective spatial 

frequency over the medium that will be referred to as qeff . The precise meaning of qeff  will 

depend on the exact nature of the field distribution, but to assist in its interpretation the derived 

values of qeff  will be compared to a characteristic measure of an arbitrary field distribution, a 

measure of width of the spatial frequency distribution calculated from the second moment of the 

spatial frequency power spectrum of the ΔBz  field.  

 q theory =
kx
2 + ky

2 + kz
2( ) FΔB kx ,ky ,kz( ) 2 dkx dky dkz∫∫∫

FΔB kx ,ky ,kz( ) 2 dkx dky dkz∫∫∫
  4.18 

In Eq. 4.18, kx,y,z  and FΔB kx ,ky ,kz( )  are the spatial frequencies and the Fourier transform of the 

ΔBz  field respectively. Eq. 4.18 is similar to the resolution index used by Van Vleck to calculate 

a mean squared RF absorption frequency (183) and later by Gore et al. to assess the resolution of 

ultrasound imaging systems with a corresponding transfer function (184), but here it is used to 

quantify the spatial changes in the local field diffusing protons experience. In the spatial domain,  

 q theory =
∇ΔBz( )2 dxdydz∫∫∫
ΔBz( )2 dxdydz∫∫∫

.   4.19 
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 Quantifying the correlation time experimentally is a primary goal of this work since this 

will allow the direct characterization of spatial distributions of inhomogeneities in tissues. 

Practically, collecting enough data to measure a dispersion curve may be very time consuming so 

being able to quantify the correlation time from a smaller set of images would be very 

advantageous. Using inspiration from the ERC method described earlier, another image 

combination technique will allow us to directly quantify the correlation time. Assuming the 

signal everywhere decays mono-exponentially with relaxation rate R1ρ under the influence of a 

locking pulse, the general image signal value can be written as  

 S = S0e
−R1ρt .   4.20 

Acquiring images at 3 distinct locking strengths of ω1 ≈ 0 , ω1 , and  ω1 ∼ ∞ , the correlation time 

can be directly calculated by combining these images according to Eq. 4.21.  

 τ c =
1
ω1

log I∞( )− log I0( )
log I∞( )− log Iω1( ) −1   4.21 

Here in Eq. 4.21, I0 , Iω1 , and I∞  are the image intensities at ω1 ≈ 0 , ω1= an intermediate value, 

and  ω1 ∼ ∞  respectively. The intermediate value of ω1  must occur somewhere on the order of 

the inflection point and will ideally correspond to a value of R1ρ that is midway between the 

asymptotic values of R1ρ(0) and R1ρ(∞). This method may require very high SNR acquisitions 

due to the logarithm of each image inside the square root, but this does allow for quick parameter 

estimation using only three images. The feasibility of using the theory and methods above will be 

assessed through simulations and experiments. 
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Specific Aims 

Aim 1  

The theory above derives the first theoretical expression relating diffusion of spins 

through susceptibility gradients to spin-lattice relaxation in the rotating frame. The theoretical 

magnitude of diffusion effects on R1ρ dispersion may be assessed by performing 3D finite 

difference simulations of water diffusing about unit cells of spheres that are packed in various 

manners as well as packed cylinders. The different geometries will be analyzed for their 

influence on the relaxation behavior and the estimated spatial frequency parameter described in 

Eq. 4.18. Different values of volume susceptibility will be examined to determine the sensitivity 

of rotating frame relaxation to susceptibility gradients. 

Aim 2  

With simulated confirmation of diffusion effects completed, experimental evidence needs 

to be gathered to validate diffusion effects in the presence of susceptibility gradients have 

significant influence on R1ρ dispersion at high field in model systems. Samples of packed 

polystyrene microspheres of various sphere sizes will be scanned at 7T. The estimated gradient 

parameters need to be examined for consistency and the correlation time mapping method 

described in Eq. 4.21 may be evaluated for feasibility and accuracy. 

Methods 

R1ρ Diffusion Simulations 

In order to quantify the effects of diffusion on R1ρ relaxation, 3D finite difference Bloch 

simulations were performed in MATLAB by assigning specified unit cells and calculating ΔB0 

offsets through the principle of superposition in the spaces between the spheres and cylinders. 
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Three different unit cells were used shown in Figure 43, a spaced out Body-Centered Cubic 

(BCC) packing structure, a spaced out Face-Centered Cubic (FCC) packing structure, and a 

packed cylinder structure.  

 

Figure 43: The 3 unit cells used for simulating diffusion through susceptibility variations. Each 
structure was assigned radii and spaced out to achieve specific volume fractions. 

 

Two scenarios were simulated for each packing structure, constant volume fraction with various 

radii and constant radius with varying volume fraction. Changing the geometries in this manner 

should create different internal ΔBz field patterns resulting in different R1ρ dispersion behaviors. 

The unit cells of impenetrable spheres and cylinders were generated in MATLAB using 

64x64x64 matrices and the ΔBz field was calculated using the principle of superposition with the 

following equations specifying the field shift for a single sphere or cylinder due to a 

susceptibility interface (48).  

 
ΔBz

sphere = Δχ
3
a3

r3
3cos2 θ( )−1⎡⎣ ⎤⎦B0

ΔBz
cylinder = Δχ

2
a2

ρ 2 cos 2φ( )B0
  4.22 

In Eq. 4.22, Δχ is the difference in susceptibility between the solid medium and the surrounding 
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water, a is the radius of the sphere, r is the distance from the sphere, θ is the azimuthal angle 

with respect to the z-axis, B0 is the static field strength, ρ is the distance from the cylinder, and ϕ 

is the radial angle about the cylinder axis. 

 All simulations were conducted with the magnetization starting along the x-axis with 

time steps of 2 µsec and with the parameters R1 = 0.385 Hz, R2 = 0.833 Hz, with 60 different 

locking times ranging from 10 to 120 ms, and 12 locking fields ranging from 1 – 2,000 Hz. The 

low amplitude locking field was set at 5 Hz rather than 1 Hz to better capture the region of 

dispersion for small radii. A first set of fields was calculated with a constant volume fraction of 

60% but with varying radii ranging from a  = 5-15 µm. A second set of fields was calculated 

using a constant radius of a  = 5 µm with varying volume fractions from 30 – 60%. The effects 

of spin diffusion were estimated by discrete sampling of the magnetization on a 64x64x64 grid, 

calculating the spin displacement probabilities prior to starting the simulation using D  = 2.5 

µm2/ms, and redistributing the magnetization after every time step by multiplying the sparse 

transition matrix with the vector of magnetization at every position as described by Xu et al 

(185). Periodic boundary conditions were also implemented in the transition matrix to ensure 

edge effects at the boundaries of the unit cell did not contribute significant errors to the 

simulations. The simulations stepped through the Bloch equations describe in Eq. 4.23, with the 

ΔBz offset absorbed into the chemical shift term (Δω0) in every 3D voxel.  

 

dMx t( )
dt

= Δω 0My t( )− R2Mx t( )
dMy t( )
dt

= −Δω 0Mx t( )− R2My t( ) +ω1Mz t( )
dMz t( )
dt

= −ω1My t( ) + R1 M 0 −Mz t( )⎡⎣ ⎤⎦

  4.23 
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The field deviations, ΔBz, were calculated in the space between the impenetrable spheres and 

cylinders by assuming the volume susceptibility was that of polystyrene, -8.21x10-6 (186, 187). 

The x-axis signal values as a function of time were fit to a monoexponential decay model to 

estimate the relaxation rates for different locking fields and later used to fit to the expression 

below. More simulations were performed by changing the susceptibility difference (Δχ  = 1 - 6 

times polystyrene) to show that susceptibility will affect only the gradient strength and geometry 

estimates can still be made from the data. Also, one more set of simulations were executed by 

changing the grid sizes to achieve various voxel resolutions (0.171 µm – 0.314 µm) to show how 

significant pixelation effects can affect the simulated dispersions. 

R1ρ Diffusion Experiments 

Simulations are able to predict the behavior of very controlled systems, but real 

experimental systems of packed spheres will have random packing placements that may change 

the relaxation behavior. In order to demonstrate the feasibility of using this theory 

experimentally, a series of samples consisting of closely packed polystyrene microspheres 

(Polysciences Inc., PA, USA) in deionized (DI) water with diameters ranging from 1 – 90 µm 

were prepared. Spectroscopic measurements of R1ρ were performed at 7T using 10 

logarithmically spaced spin-lock amplitudes ranging from ω1

2π
 ≈ 2 – 1,000 Hz, each with 6 

logarithmically spaced spin-lock times from 20 ms to 1 second. Temperature was monitored by 

the use of a thermocouple attached to an animal physiologic monitoring system (SA Instruments, 

Stony Brook, NY) and maintained at 20° C. Dispersions were obtained by calculating R1ρ values 

at each locking amplitude by a least squares fitting to a mono-exponential decay model, as 

described in previous chapters, and these values were fit to Eq. 4.16 to estimate g2D and q2D. 
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The correlation times were compared to those simulated with the BCC packing structure. 

 The packed samples with radii of 1 µm, 4.5 µm, 10 µm, and 20 µm were subsequently 

imaged at 7T with a 128x128 matrix and a 24mm x 24mm field of view (188 µm resolution) 

using a spin-lock prepped Fast Spin Echo acquisition with a fixed locking time (150 msec) and 

three different spin-lock amplitudes (0 Hz, 300 Hz, 1000 Hz) spanning an appropriate range that 

was derived by inspection of the measured dispersion curves. The spin-locking pre-pulse was the 

same as the spectroscopic sequence with the addition of a reverse adiabatic 90° pulse followed 

by a crusher gradient to spoil residual transverse magnetization before the Fast Spin Echo 

acquisition. The three images acquired with different values of the locking amplitude were then 

combined on a voxel by voxel basis as described in Eq. 4.21 to map the correlation times in each 

sample. Finally, the four samples were imaged twice more after being dispersed in larger 

volumes of water to increase the average spacing between spheres. Each of the original samples 

were packed in 20 µL of water, partially filling 0.6 mL tubes to start, and 100 µL of water was 

added to each bringing the total amount of water in each sample to 120 µL. The spheres were 

evenly dispersed in a BR-2000 vortexer (Bio Rad, Hercules, CA) so the average space between 

the spheres was d ≈ V
N

3 , where V and N are the total volume of water and number of spheres 

respectively. The samples of larger beads contained fewer spheres with larger spacing between 

them. During the time of measurement, only the spheres 45 µm diameter and larger showed 

small signs of settlement, and the others maintained reasonably uniform suspensions. The 

samples were imaged using the same method to depict how the correlation time changed with 

sphere spacing. This was repeated after adding another 100 µL of water to each of the samples 

bringing the total volume of water to 220 µL for the last images.  
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Results and Discussion 

R1ρ Diffusion Simulations 

A specific goal of these studies was to evaluate whether the analysis used previously for 

sinusoidal gradients of single spatial frequency could be usefully extended to more complex 

arrays of inhomogeneities. R1ρ measurements are shown to be very sensitive to diffusion effects 

in the presence of susceptibility gradients through simulations and experiments on packed 

microspheres. The calculated dispersion curves for the three types of structures are shown in 

Figure 44 for constant volume fractions with varying radii and for constant radii with varying 

volume fractions.  

 

Figure 44: a-c.) R1ρ dispersions for various radii with 60% volume fractions packed in BCC, FCC, 
and Cylinder structures respectively. d-f.) R1ρ dispersions for various volume fractions of BCC, 

FCC, and Cylinder structures with 5 µm radii. 

 

For constant volume fraction, in all samples the degree of dispersion increased near-linearly with 
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the radius of the perturbers. For these samples, the distance between inhomogeneities increases 

and the mean gradients decrease as the radius gets larger since the gradient is, by definition, the 

derivative of the field. The inflection points of the dispersions moved to lower locking field 

amplitudes with radius corresponding to the field variations having lower spatial frequencies so 

that the spins experience more slowly varying field fluctuations with longer correlation times. 

With increasing volume fraction but constant radius, the inflection points moved to higher 

locking fields, reflecting the increased spatial frequency of the average fields and a 

corresponding shorter correlation time. However, while the dispersion magnitudes for the FCC 

and cylinder structures decreased with volume fraction, the BCC structures displayed the 

opposite behavior. These differences reflect the manner in which the average field gradients 

behave for the different geometries as the number density of perturbers increases. Note that the 

inflection points were not influenced by the choice of Δχ and the resolution of the grid had only a 

small impact on the dispersion curves. For example, Figure 45 shows simulations for R = 5 µm, 

60% volume fraction, BCC structures with various susceptibility differences and matrix sizes. 

 

Figure 45: a.) R1ρ dispersions for R = 5 µm, 60% volume fraction BCC structures with 
susceptibilities 1 - 6 times that of polystyrene. b.) R1ρ dispersions of the same structure with varying 

matrix sizes to change the voxel resolutions. 
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The inflection points for each case do not change by more than 1.5% for the Δχ  plots and no 

more than 4.5% for the matrix size plots indicating these parameters have little influence on the 

simulated dispersion when compared to the effects of changing the sphere radii or volume 

fraction of the spheres. The simulation results confirm that larger intrinsic gradients cause greater 

contributions to relaxation at low locking fields, and that more rapidly varying fields correspond 

to higher inflection point frequencies in the dispersions. Larger spheres (and cylinders) generate 

smaller gradients at their surfaces as evident by taking the derivative of Eq. 4.22, and so 

diffusion effects on R1ρ dispersion are smaller. On the other hand, larger structures (at constant 

volume fraction) are spaced further apart and generate more slowly varying fields (lower spatial 

frequency) so the correlation time of field fluctuations experienced by the spins is longer and the 

inflection point shifts to lower locking field. Our simulations differ from the traditional two-pool 

model, which designate free and bound water pools that exchange instantaneously, and 

incorporate a more continuous transition of the effective field the spins experience. Our model 

does not take into account the possibility of water adsorption or other interactions at the sphere 

surfaces. Regardless, the above results demonstrate that free diffusion through susceptibility 

gradients may produce similar dispersion behavior in R1ρ as chemical exchange mechanisms. 

The behavior in the simulations of the BCC structures with varying volume fraction in Figure 

44d should be noted because the reason they behave differently from the FCC or cylinder 

structures is not intuitive. The low frequency asymptotic R1ρ values increased with volume 

fraction for the BCC structures because the correlation time decreased more slowly than the 

increase in the mean gradient magnitude, whereas the FCC and cylinder structures showed 

relatively slower increases in their gradient magnitudes reflecting differences in the geometrical 

properties of the systems. The correlation time, however, is independent of the relaxation rates 



 130 

and the mean gradient strength. It reflects the spatial frequency content of the field variations and 

not their magnitudes. 

The correlation time for every dispersion curve in Figure 44 is plotted as a function of 

radius or volume fraction in Figure 46.  

 

Figure 46: a.) Correlation times plotted against radius for each packing structure at 60 % volume 
fraction. b.) Correlation times plotted against volume fraction for each packing structure with 5 µm 

radii. 

 

These are inversely related to the locking field at the inflection point of the dispersion curve, i.e. 

ω1
inflection = 1

3τ c
, and increased with radius and decreased with volume fraction for all structures 

as expected. The correlation times will be compared with the experimental correlation times 

later. Assuming that the diffusion coefficient D = 2.5 µm2/ms, using τ c =
1

qeff
2 D

, values of the 

effective spatial frequency qeff were derived and compared to the width of the spatial frequency 

spectrum calculated from Eq. 4.18 by plotting q theory  vs. qeff as shown in Figure 47.  
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Figure 47: Theoretical spatial frequency plotted versus the fitted spatial frequency assuming D = 
2.5 µm2/ms for varying radii in each of the packing structures. 

 

Remarkably, there was a strong linear correlation between these different measures of the field 

characteristics for all structures, suggesting that the derived parameter qeff  reliably captures 

essential features of the fields and that its absolute value may be interpreted as a direct measure 

of the average spatial scale of the intrinsic field variations. Real magnetic field variations from 

arbitrary arrays of inhomogeneities are likely to be complex and distributed over a range of 

values.  

A common approach to capturing salient features of random fields is to compute higher 

moments of the field distribution, and the second moment or variance of the power spectrum is 
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one such metric. Thus, q theory  defined above is potentially a parameter for describing and 

differentiating arbitrary field distributions. The fact that it scales linearly with our derived spatial 

frequency parameter qeff is remarkable and suggests that qeff itself is a robust indicator of intrinsic 

properties of the sample with a distinct physical interpretation. Mapping qeff via the correlation 

time in an imaging context may provide a means to characterize the spatial variations of fields 

produced by perturbing structures without being significantly influenced by gradient strengths. 

This was shown to be quick and feasible in polystyrene phantoms by combining just three 

images (84). In biological tissues mapping qeff has potential, for example, for estimating mean 

microvascular densities and sizes in tumor regions with chaotic vasculature, or helping interpret 

the nature of fMRI activation maps by identifying the scale of vascular structures. Recently, 

Rane et al. showed that by adding a spin-lock prep pulse before a turbo spin-echo (TSE) 

sequence in human fMRI studies of the brain, smaller vasculature could be emphasized over 

larger venous structures to increase the spatial selectivity of the BOLD effect (9). The increase of 

oxygenated blood upon activation decreases extravascular gradients, but by judicious choice of 

the locking field the dephasing effects caused by larger structures can be suppressed. The TSE-

fMRI applications will be described in further detail in chapter 7. This sensitivity to structural 

geometry in spin-locking methods is not readily available in other exchange sensitive techniques 

like CEST. There are also likely to be applications of this approach for the characterization of 

inhomogeneities in other media in which nuclear spins are able to diffuse. 

R1ρ Diffusion Experiments 

 Diffusion effects have been shown through simulations to significantly influence R1ρ 

relaxation in a manner that only increases with static field strength, but relatively few studies 

have explicitly examined or demonstrated this experimentally. Lammentausta et al. (170) 
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reported diffusion effects of water in trabecular bone, but their results show a different behavior 

to this work and behave contrary to theoretical expectations. The cause of the discrepancy is 

unclear, but it may be noted that the gradients they studied may have been stronger and they 

studied mainly stronger locking fields and worked at lower main field. Others (188, 189) have 

reported measurements of R1ρ but not the dispersion with locking field. Here, significant 

dispersion in R1ρ with locking field was apparent for all polystyrene microsphere samples shown 

in Figure 48.  

 

Figure 48: R1ρ dispersions of polystyrene microspheres ranging from 1 - 90 µm in diameter. 

 

The behaviors of the dispersions are consistent with simulations in the sense that smaller packed 

beads generate R1ρ dispersions with higher inflection points (smaller correlation times) and 

smaller dispersion magnitudes. Even though all samples were polystyrene, the 1 µm diameter 
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micrsospheres were crosslinked with Divinylbenzene (DVB) during the manufacturing process, 

which may account for the faster relaxation rates shown by the green curve in Figure 48. Even 

with this deviation in the asymptotic relaxation limits, the 1 µm diameter sample still follows the 

trend of the inflection frequency. The gradient (g2D) and inverse correlation time (q2D) 

parameters were estimated in the fitting process to evaluate the intrinsic gradient strengths 

between spheres and a measure of the average spacing between spheres.  

 

Figure 49: a.) g2D plotted versus radius shows a gradient strength dependence of r-0.915. b.) 
Experimental correlation times (red) are shown to match well with the simulated correlation times 

(blue) from the BCC structures. 

 

Figure 49a shows how the gradient parameter decreases with sphere radius, as expected. Taking 

the derivative of ΔBz
sphere  in Eq. 4.22 reveals the gradient strength, g, at the surface (r = a) of the 

sphere should fall off as 1
r

, close to the fitted value of r-0.915 exhibited here. Figure 49b shows 

the correlation times, τc, for the microspheres agree well with the BCC simulations described 

earlier, but begin to diverge for larger radii. This effect was thought to be due to the tighter 
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packing of the larger beads since they settled much faster, which would explain lower correlation 

times than the simulations that were exactly a volume fraction of 60%. It should be noted the 

simulated results did not include radii below 3 µm due to the computation time necessary to 

carry out the simulations with these spatial resolutions. Also, whereas double dispersion curves 

are observed when there are 2 exchanging species, they not expected for diffusion amongst 

mixtures of different sized inhomogeneities. The double dispersion for mixtures of compounds 

with different chemical shifts reflects the discrete possibilities of frequencies of the exchanging 

species. By contrast, dephasing by diffusion corresponds to motion through a continuously 

varying field, and the addition of different sized inhomogeneities merely changes the scales and 

magnitudes of gradient values to still form a smoothly varying field distribution that will be 

averaged in the experimental signal acquisition. 

 The microsphere samples were also imaged to derive correlation time maps using Eq. 

4.21 and to test this method for different sphere volume fractions. Figure 50a shows the 

correlation time map for the samples with sphere diameters of 1 µm, 4.5 µm, 10 µm, and 20 µm.  

 

Figure 50: a.) Correlation time map (seconds) for microsphere samples ranging from 1 - 20 µm in 
diameter. b.) Correlation times for each sample with different sphere spacings achieved by diluting. 
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Mapping the correlation times clearly provides image contrast that reflects the size of the 

spheres. This method looks to have potential in mapping cell sizes or vessel sizes in relatively 

homogeneous tissues since Figure 50a generated ~4x the image intensity that corresponds to a 

size difference of 9.5 µm in radius. The average correlation times from the imaging method were 

plotted versus the average spacing between the spheres shown in Figure 50b. The points for each 

sample correspond to the spheres being dispersed in 20 µL, 120 µL, and 220 µL of water 

respectively. The correlation time increased almost linearly with bead spacing since this 

corresponded to lower sphere volume fractions. This provides a reasonably fast procedure for 

estimating the correlation times without collecting entire dispersion curves, though it should be 

noted that the choice in locking amplitude of the intermediate image should be chosen based on 

the position of the inflection points to maximize the accuracy of the method. Thus, knowing the 

dispersion behaviors may still be important, even if the correlation times are the only parameters 

of interest. 

Conclusions 

 Random Brownian motion of water in the presence of intrinsic susceptibility gradients 

has been shown to induce significant rotating frame relaxation at low locking fields. Measuring 

the dispersion in R1ρ for systems containing magnetic inhomogeneities can provide information 

about the spatial extent or the geometry of the perturbers. The simulations show the spatial 

frequency parameter, q, directly reflects the characteristic frequency of the spatially fluctuating 

field experienced by diffusing protons and is independent of the gradient strength. This spatial 

frequency of the field cannot be measured directly, but the above simulations show derived 

values of q parameter may act as adequate surrogate measures of intrinsic structure. One 
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limitation of the simulation study was that some of the results were affected by the discrete 

pixelation of the structures, which may have affected the estimation of spatial frequencies, 

especially in the volume fraction simulations. Changing the radius with constant volume fraction 

was the equivalent to keeping the same structure and simply increasing the assigned voxel 

spacings, but changing the volume fraction meant calculating entirely new structures. The digital 

resolution of the structures and relative resolution of the ΔBz fields tended to decrease with 

smaller volume fractions, and edge effects may cause voxels immediately surrounding the 

spheres or cylinders to be weighted more as simulated spins spend more time on average in these 

positions. Lower spatial resolution of stronger gradients may result in a more smoothed gradient 

field that changes the spatial frequency spectra. However, the simulations with varying matrix 

sizes in figure 3b show that the resolution had a small effect on the R2 limit and did not 

significantly change the calculated inflection frequency. The effect should be evaluated but does 

not change any of the trends of the simulations presented here. The data above clearly show this 

method may be used to infer average spatial distributions on the sub-voxel level. 

Spin-echo and gradient-echo measurements have previously been shown to characterize 

susceptibility variations within tissues, and appropriate comparisons between these have been 

used to infer spatial scales e.g. vessel size imaging (77, 190–193). Here, an alternative approach 

is shown using a spin-locking imaging method to derive parametric images characterizing the 

dimensions of inhomogeneities that, at high field, cause dephasing via diffusion. Note that for 

scales of practical interest, these dispersion effects occur at much lower frequencies than the 

range in which chemical exchange effects between labile protons and water cause dispersion in 

R1ρ with locking field, which should allow for separate analysis of each relaxation mechanism 

(91). Further imaging studies examining the behavior of different media and the influence of 



 138 

microvasculature will be of particular interest. Tissue microvasculature may be considered as 

producing susceptibility inhomogeneities within tissues with a characteristic scale and 

separation. However, the simple theory outlined here, while providing a useful pragmatic guide 

to the interaction of rotating frame relaxation and diffusion in inhomogeneous materials, may 

need to be refined for accurate practical applications in more complex media. For example, more 

complex and realistic correlation functions may be required to properly describe vasculature in 

which multiple scale parameters and modified assumptions must be incorporated, as have 

previously been considered for transverse relaxation effects (78–81). For the more general case, 

as long as the correlation function decays exponentially, the same type of R1ρ dependence is 

predicted but with a more realistic and appropriate interpretation of the effective spatial 

frequency qeff. Other specific cases have been investigated by others for other relaxation 

processes (78, 176, 179, 194). One other caveat to using this method is the correlation time will 

have a direct dependence on temperature due to its relation to the diffusion coefficient, D. This 

may complicate certain experiments, but as long as the temperature remains constant throughout 

the duration of an experiment, this dependence may be largely ignored. This theory does provide 

a basis for using spin-locking pulse sequences to quantify tissue parameters based on either 

gradient strength or spatial geometry. Other applications of interest for this technique that will be 

explored later include analyzing systems with both diffusion and chemical exchange (such as 

blood) or emphasizing specific vessel sizes in fMRI activation experiments. 
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CHAPTER 6 

Analyzing Systems With Both Chemical Exchange and Diffusion in the Presence of 

Susceptibility Gradients With R1ρ Dispersion 

Introduction and Theory 

 Few prior reports of spin-lock imaging have emphasized its ability to quantify dynamic 

processes such as chemical exchange or diffusion at high fields. Both exchange and diffusion in 

the presence of susceptibility gradients create dispersion in R1ρ by inducing rapidly changing 

local fields that experienced by the protons of interest. Each of these effects has been shown in 

previous chapters to contribute to rotating frame relaxation in a manner that may be analyzed to 

indicate the time scale of the changing local fields experienced by the spins. In realistic tissue 

systems, both effects are often present and may be simultaneously significant. The processes are 

believed to be independent of each other and therefore each will contribute a single R1ρ 

dispersion, resulting in a double dispersion similar to the case of three-pool exchange explained 

earlier. Relevant systems such as blood, liver, regions tissues with dense microvasculature, or 

any tissues that accumulate iron-bearing proteins are complex and may exhibit both effects 

simultaneously. Blood, for example, may contain low concentrations of multiple exchanging 

metabolites like glucose and creatine in the plasma, while simultaneously consisting of a 

significant amount of red blood cells (RBC’s) that can hold either oxygenated or deoxygenated 

hemoglobin that will cause diffusion effects due to their drastically different susceptibility (195, 

196). This means there could be a significant exchange and/or diffusion effects contributing to 

the overall R1ρ dispersion in different locking regimes. Most of the exchange processes naturally 

occurring in blood are all close in exchange rates and add to produce an overall coalesced 
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dispersion that is difficult to resolve, similar to the example in Figure 32a,b. Differentiating the 

contributions from individual metabolites cannot be achieved in this case, but a general exchange 

based dispersion that encompasses all the metabolites may be defined. A pictorial example of 

simultaneous diffusion and chemical exchange is shown in Figure 51.  

 

Figure 51: Illustration of chemical exchange occurring in the presence of susceptibility gradients. 

 

Dispersion resulting from proton diffusion through susceptibility gradients will typically occur at 

much lower locking amplitudes than the exchange based dispersion since the time scale of the 
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interactions dictates the inflection point frequencies. The representation in Figure 51 is not drawn 

to scale, but the magnetic perturbers are orders of magnitude larger than the molecules 

undergoing exchange so diffusion about these will be relatively slow. The local field experienced 

by a proton in hydroxyl exchange fluctuates much faster than a proton diffusing around 

inclusions on the order of 1-100 µm in diameter, which means all the diffusion effects will 

contribute to a general diffusion based dispersion at lower locking fields than the dispersion 

arising from exchange based contributions.  

 The overarching theory to how a system with both diffusion and exchange would affect 

R1ρ dispersion has already been explained in chapters 2, 3, and 5 since these processes should act 

similar with or without the other, so this theory is a special case extension of those. The 3-pool 

simulations and experiments described in chapter 3 demonstrated simultaneous chemical 

exchange between different metabolites with unique exchange parameters gave rise to linearly 

independent R1ρ dispersions. For this reason and the lack of evidence suggesting local field 

variations may affect exchange rates, exchange and diffusion are also expected to be independent 

processes that contribute unique R1ρ dispersions. This may be represented explicitly by Eq. 5.1.  
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This expression may be used to describe a system containing a dominant exchanging pool and 

with significant intrinsic gradients that affect water diffusion and to fit for R2, R1ρ
∞ , Sρ

2 , g2D, and 

q2D. Similar to the case of n-pool exchange where only two solute pools could be accounted for 

in the analysis due to practical limitations in the fitting procedure, only one exchange based 
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dispersion and one diffusion based dispersion can practically be accounted for with Eq. 5.1. 

More than two dispersions in the experimentally accessible spin-lock amplitude range would 

result in excessive overlap, generating high uncertainty in the estimation of all parameters. When 

multiple exchange pools contribute to very similar overlapping dispersions, the resulting 

estimated parameters will reflect the weighted average of solute pools. This is a fundamental 

limitation to spin-locking but the theory may still be useful when the diffusion and exchange 

dispersions can be resolved.  

Specific Aims 

Aim 1  

Previous studies have not demonstrated exchange and diffusion effects are independent in 

their contributions to spin-locking experiments, or have tried resolving these effects using R1ρ 

dispersion analysis. The first goal of this chapter is to test the feasibility of analyzing systems 

with both chemical exchange and diffusion present by adding chemical exchange to the 3D finite 

difference simulations in chapter 5. These results will be compared to simulated cases of pure 

exchange and diffusion with the same simulated parameters by themselves to demonstrate their 

independent nature. 

Aim 2  

Realistic biological media present new challenges in terms of having different 

susceptibility variations, random geometries, and multiple exchanging metabolites present. This 

theory will be used to confirm these effects can be analyzed simultaneously in the 

physiologically relevant system of whole bovine blood ex vivo. Blood exemplifies a system with 

multiple exchanging metabolites with similar exchange parameters, which will test the ability of 
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this method to produce average exchange parameter estimates in the presence of diffusion. 

Aim 3  

Other solid biological tissues will not be as homogeneous as blood since there will be 

blood present with vasculature and other tissue interfaces. Measuring R1ρ dispersions in livers 

with and without a susceptibility contrast agent will confirm the feasibility of this technique to 

assess cell sizes in relatively homogeneous regions of solid tissues. 

Methods 

Simulations with Exchange and Diffusion 

Both chemical exchange and diffusion have been shown through simulations and 

experiments to significantly contribute to R1ρ dispersions measured with spin-locking pulse 

sequences separately. Both effects were simulated simultaneously using spatially resolves Bloch 

McConnell equations with the same finite difference method described in chapter 5.  
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These are simply the 2-pool Bloch McConnell equations, but now the chemical shift terms (Δωa, 

Δωb) are 3D matrices describing the spatially resolved local field offset due to the susceptibility 

variations and the spatially independent chemical shift of the respective pool. This method 

assumed the concentration of both pools was constant everywhere (well mixed), the exchanging 

system is in equilibrium, and that diffusion has no effect on the exchange rate. Simulations were 

performed using the same BCC structures described in chapter 5 with 12 locking fields varying 

from B1 = 10 - 5,000 Hz, kb = 6,000 Hz, a solute chemical shift of Δωb = 3 ppm, and a time step 

dt = 400 ns to ensure kbdt << 1 in order to keep the simulation stable. The structures were kept at 

a constant volume fraction of 60% while the radii were varied from 5 – 12 µm. When exchange 

was added, small but significant oscillations were observed in the signal decay with low locking 

fields caused by off-resonance effects so, rather than fitting to a monoexponential decay model, 

the approach of Yaun et al. was adopted to account for these oscillations with a T2ρ term in the 

following equation (197).  

 Signal = S0 cos α( )cos2 θ( )e
−SLTT2ρ + sin2 θ( )e

−SLTT1ρ⎡
⎣⎢

⎤
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  5.3 

In Eq. 5.3, α = SLT
2

ω1
2 + Δω 0

2 , θ = tan−1 ω1
Δω 0( ) , and SLT was the spin-locking time. With 

low locking field, θ→0 and the oscillatory T2ρ  term becomes significant, but goes to zero as ω1 

>> Δω0. The R1ρ values estimated using this model were plotted and fit to the model described in 

Eq. 5.1. The estimated diffusion and exchange parameters from the system with both effects 

were compared to the parameters from systems with diffusion and exchange alone for accuracy 

and consistency. The individual simulations were performed on the same structures with either 

Δχ = 0 (no diffusion effects) or pb = 0 (no exchange effects). 
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Measuring R1ρ Dispersions in Blood 

 Measuring double dispersions in biological media presents more potential complications 

than are encountered in simulations such as noisy signal acquisitions, physiological motion, or 

very low concentrations of exchanging metabolites. In order to demonstrate that diffusion and 

chemical exchange effects are independent experimentally, the simple system of bovine blood 

with varying levels of oxygen saturation was chosen for analysis. The ex vivo system of whole 

blood made it possible to prevent any physiologic motion and boast relatively high metabolite 

concentrations in the plasma. Fresh whole bovine blood with Na-Citrate anticoagulant (Lampire 

Biological Laboratories) was acquired and the blood was bubbled with pure O2 to achieve 

oxygen saturations of 70, 73, 77, 85, 89, and 94%, as measured by a blood gas analyzer. 

Changing the blood oxygenation will alter the amount of paramagnetic deoxyhemoglobin in the 

RBC’s compared to diamagnetic oxygenated hemoglobin. More deoxyhemoglobin will result in 

stronger internal susceptibility gradients within the blood and greater low frequency dispersion 

magnitudes. The blood was constantly rocked to hinder the precipitation of RBC’s, and though 

hematocrit (Hct) was not directly measured, nothing was done to alter the physiologic level 

which should be ~40% based on previous studies. The blood was then immediately placed in 5 

mm NMR tubes and imaged at 7 T with a T1ρ-weighted Fast Spin-Echo sequence using a 

repetition time of TR = 2 sec, echo train length of 4, 64x64 voxel matrix, and six logarithmically 

spaced spin-lock times from 10-100 ms, each measured at 10 logarithmically spaced spin-lock 

amplitudes ranging from 50-6,000 Hz. ROI analysis was performed on each sample to evaluate 

the average signal intensity of each sample for every locking time and amplitude. There was no 

evidence of oscillations in the acquired signal decays so the decay points were fit to a simple 

monoexponential decay function to estimate R1ρ. The resulting double dispersions were fit to the 
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model in Eq. 5.1 to estimate exchange and diffusion parameters simultaneously for each oxygen 

saturation level. The two components of the fitted double dispersion were separated compared 

for each oxygen saturation to identify and quantify the trends in the low frequency diffusion 

based dispersion, since only the diffusion effects should be altered by the oxygen saturation. 

Measuring R1ρ Dispersions in Rat Liver 

 Pools of whole blood constituted a very simplistic biological system, but in solid tissues 

more interfaces will be present and the medium may be much more complex. Rat livers were 

examined due to their large (~5% body weight), relatively homogenous nature with respect to 

other organs that have very similar vasculature to human livers (198). Liver cells, vessels, and 

metabolites like glycogen will all contribute to the overall R1ρ dispersion. Four healthy Sprague-

Dawley Rats were sacrificed and the livers were immediately removed, placed in a plastic tube, 

and imaged at 7T using a spin-lock prepped fast spin-echo pulse sequence with TR = 5 sec., an 

echo train length of 4, 15 locking amplitudes from 1 – 2,000 Hz, each with 6 locking times from 

10 – 80 ms. The 90 images for each liver were acquired with 64x64 matrix and a 16 mm field of 

view (250 µm resolution), and ROI analysis was performed to estimate the average signal 

intensity at every locking time and amplitude. The signal was again fit to a monoexponential 

decay model to estimate R1ρ, and the double dispersion was fit to Eq. 5.1 to quantify the 

diffusion and exchange parameters. Four additional rats were sedated with isoflurane, given a tail 

vein injection of 0.5 mmol/kg Gd-DTPA, and kept alive for 10 minutes post injection to allow 

for the agent to circulate and accumulate in the extravascular extracellular space in the liver 

naturally before being sacrificed to remove the livers. The gadolinium was expected to pool in 

the extracellular space of the liver and not the vessels, so the dispersions with Gd-DTPA should 

emphasize the effects on magnetic inhomogeneity of the liver cells over the vessels. 
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Results and Discussion 

Simulations with Exchange and Diffusion 

Simulating chemical exchange in the presence of diffusion effects was expected to 

produce linearly independent R1ρ dispersions similar to the manner 3-pool exchange gave rise to 

independent double dispersions. The linear independence assumption in the situation of 

exchange and diffusion should be more accurate since the pool fraction ratios do not change as 

they did when a third pool was added in the exchange simulation in chapter 3. Analyzing the R1ρ 

simulations showed both exchange and diffusion are independent of each other and can be 

analyzed simultaneously when the inflection points of the two resulting dispersions are separated 

by a reasonable frequency difference. Figure 52a shows the simulated double dispersions 

resulting from the BCC unit cells with radii from 5 – 12 µm. The exchange and diffusion time 

scales are different enough for the double dispersions to be distinctive in most of the simulated 

cases, but they begin to coalesce as the radius decreases. 

 

Figure 52: a.) Simulated R1ρ dispersions for the case of chemical exchange and diffusion for the 
BCC structures. b.) The R = 10 µm double dispersion compared to individual effects shows the 

effects are independent of one another. 
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Changing the structural dimensions alters the behavior of the low frequency diffusion based 

dispersion but has no bearing on the higher frequency exchange based dispersion, as expected. 

The dispersion magnitudes increased and the inflection points of the diffusion based dispersion 

decreased in the same manner as the pure diffusion simulations in chapter 5. The effects were 

shown to be independent of one another in Figure 52b. Adding the pure diffusion (blue) and pure 

exchange (red) curves results in the orange curve that coincides very well with the simulated 

black double dispersion. The estimated exchange parameters from the double dispersions were 

compared to the theoretical values and the diffusion parameters were compared to those from the 

individual dispersions in Figure 53.  

 

Figure 53: Estimated exchange parameters compared to the theoretical values (a,b). The estimated 
diffusion parameters were compared to the individual diffusion parameters from chapter 5 (c,d). 
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The exchange parameters were very consistent and accurately estimated compared to the 

theoretical values shown in Figure 53a,b. The exchange parameters R2 , R1ρ
∞ , and kba varied by 

less than 4%, 1.5%, and 5.1% respectively for all simulated radii sizes. The general trend for all 

the parameters was the larger radii structures gave rise to more accurate estimates. This was 

because the dispersions from the smaller radii structures coalesced and increased the uncertainty 

in the estimates. The diffusion parameters in Figure 53c,d were not able to be compared to 

theoretical values, but were instead compared to the estimates from the pure diffusion 

simulations in chapter 5. The g2D and q2D parameters have drastic differences of 52.3% and 

28.3% for R = 5 µm respectively, but the estimates are much more accurate for R ≥ 7 µm with 

percent differences less than 12.5% and 4.8% respectively.  

The simulated signal decay curves were notably no longer monoexponential when both 

effects were present, but could be accounted for by Eq. 5.3. Figure 54 illustrates the difference in 

the decay curves when both effects are present compared to when only diffusion contributes to 

the relaxation.  

 

Figure 54: Simulated spin-locked signal decay in the presence of only diffusion (a) and in the 
presence of both diffusion and exchange (b) may be accounted for with different decay models. 
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The solid red curves depict the least squares best fit for each scenario and demonstrates the 

oscillations in the decay curves may be adequately accounted for when present. The T2ρ 

component in the model needed to be accounted for since the oscillations were present but was 

ignored for when analyzing the dispersions since only R1ρ was being analyzed. The off-

resonance effects were significant enough to produce signal oscillations but were small enough 

to be accurately accounted for with the model described by Yaun et al. When the off-resonance 

terms in the Bloch equations become too large, the oscillations may become substantial enough 

that they cannot be accounted for with Eq. 5.3 and a new model may be needed. 

Measuring R1ρ Dispersions in Blood 

 R1ρ dispersion in whole blood should be affected by both diffusion about susceptibility 

gradients due to the presence of deoxyhemoglobin in RBC’s, and chemical exchange from 

metabolites in the surrounding plasma. R1ρ maps were calculated for each of the 10 locking 

amplitudes, and the map corresponding to the amplitude of 50 Hz is shown in Figure 55a.  

 

Figure 55: a.) R1ρ map calculated in whole bovine blood at the locking field of 50 Hz for all 
oxygenation levels. b.) The corresponding R1ρ double dispersions. 
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Note the manner in which the relaxation rates tend to increase at the bottom of each sample, 

which is thought to be due to the settling of the blood cells throughout the scan. This behavior 

was unavoidable since rocking the blood during the scan would be very difficult and cause 

considerable artifacts. Keeping this in mind, the dispersion points were calculated using ROI 

analysis over the bottom half of each sample to ensure the high RBC concentrations were 

captured and the diffusion effects would be significant. The blood double dispersions calculated 

from R1ρ maps using Eq. 5.1 are shown in Figure 55b confirm higher relaxation rates were 

measureable in the lower oxygen saturation samples due to the presence of more paramagnetic 

deoxyhemoglobin in the RBC’s. The double dispersion phenomenon is apparent in these curves 

and the individual fitted contributions of diffusion and chemical exchange from Eq. 5.1 are 

plotted in Figure 56a.  

 

Figure 56: a.) The exchange and diffusion portions of Eq. 6.1 are plotted individually to show the 
manner in which the diffusion dispersion decreases with oxygen saturation. b.) The gradient 

strength parameter decreases as expected with sO2. c.) The spatial frequency parameter decreases 
with sO2 indicating a smaller concentration of cells containing deoxyhemoglobin. 

 

Note how the chemical exchange based curves stayed relatively consistent while the diffusion 

based curves were greatly affected by oxygen saturation and diminish as the deoxyhemoglobin 

constituent in the blood decreases. The g2D parameter used in the fitting procedure represents the 
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mean field offset magnitude for that dispersion, and is shown to decrease in the expected manner 

in Figure 56b. The more paramagnetic present in the cells in any given blood sample should 

correspond to a greater the average internal gradient strength. The spatial frequency parameter, 

q2D, displayed a tendency to decrease with a rate of ~53 Hz/% sO2 corresponding to more space 

between cells on average with higher saturation levels. This was an unexpected finding since the 

average cell spacing should remain constant. The average correlation time for all the blood 

samples was τc ≈ 0.55 ms, and in order to elucidate the meaning of this calculated parameter, the 

simulations performed in chapter need to be reexamined. The BCC simulations with varying 

radii coincided very well with the experimental system of packed polystyrene microspheres, so 

fitting an exponential curve to the correlation times provides an approximate function that relates 

τc to the radius of the packed spheres.  

 

Figure 57: The simulated correlation times from the BCC structures were related to radius by 
fitting to an exponential model. 
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This function shown in Figure 57 relates τc ≈ 0.55 ms to a radius of R ≈ 4.18 µm, within the 

previously reported range of 3.75 – 4.35 µm (199). Given this is not a direct measure of radius 

and the fact that multiple factors like packing fraction, temperature, or shape of the perturbers 

may influence the estimated correlation times, this estimate is remarkably accurate compared to 

the expected range for RBC’s.  

It is noteworthy that Silvennoinen et. al. performed more elaborate whole bovine blood 

R1ρ dispersion experiments at 4.7T examining multiple oxygen saturation levels as well as 

multiple hematocrit levels and a lysate sample (200). These experiments revealed similar 

increases in the low locking field limit, but the locking fields used only went down to 0.2 G (≈ 

850 Hz), which is significantly higher than the lower limit of 50 Hz reached in the experiment 

described above. The higher frequencies are unable to accurately detect the double dispersion 

phenomenon described in this thesis. Their study concluded that exchange and diffusion effects 

both influence the dispersion, but also stated that the difference in mobility of hemoglobin in 

cells and free solution may play a critical role. This may be the case, but for situations when only 

the oxygen saturation changes, as described above, the high frequency dispersion stays constant 

and the low frequency dispersion is clearly governed by the oxygenation level and intrinsic 

susceptibility. Clearly this approach can be used to estimate characteristic dimensions of tissue 

microstructure related to cell sizes or vascular spacings, depending on what dominates the 

variation of intrinsic susceptibility. 

Measuring R1ρ Dispersions in Rat Liver 

 Rat livers present more complex tissue structures since there will be blood, vasculature, 

and multiple types of cells all simultaneously contributing to R1ρ relaxation. Eight fresh rat livers 

from Sprague-Dawley rats were imaged, 4 with Gd-DTPA injection and 4 controls, with the 
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resulting R1ρ double dispersions shown below in Figure 58.  

 

Figure 58: R1ρ dispersions in 8 separate rat livers at 7T, 4 after a tail vein injection of Gd-DTPA 
and 4 controls without Gd-DTPA. 

 

The relaxation rates are noticeably faster than any of the simulations or phantom studies 

presented in previous chapters since there are many avenues for relaxation to occur in real 

tissues. The double dispersion is prominent in every liver, with and without gadolinium, and no 

noticeable shift in either inflection point due to gadolinium injection can be plainly seen visually 

from the dispersions. The low frequency dispersions display a very large magnitude and occur at 

much lower frequencies than detectable exchange based dispersions are expected to arise so the 

dispersion is most likely due to significant susceptibility effects arising from both the cells and 

vessels present. Examining the fitted parameters reveals there was no significant difference 
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between proton exchange rates before and after the Gd-DTPA injection, which exchanged 

relatively fast with an average estimated exchange rate of kba = 5,266 Hz. Though this rate may 

be fast, it is still within reason for the hydroxyl exchange in glycogen at under physiological 

conditions. Figure 59a shows a statistically significant (p << 0.05) decrease in average T1 before 

and after injection, which indicated the gadolinium did in fact enter the liver.  

 

Figure 59: Average values of rat liver T1 (a) and the correlation times, τc (b), before and after a tail 
vein injection of Gd-DTPA. Both parameters revealed statistically significant changes. 

 

The concentration of Gd-DTPA can be estimated by examining the change in T1 before and after 

injection, and can be quantified in Eq. 5.4 shown below (201).  

 Gd-DTPA[ ] = R 1
T1

− 1
T1,Baseline

⎛
⎝⎜

⎞
⎠⎟

  5.4 

Using this formula, the livers were infused with an average concentration of [Gd-DTPA] ≈ 0.25 

mM, which is small but significant due to the intrinsic susceptibility of the gadolinium. The 

statistically significant drop in correlation time from τc = 13.27 ms for the controls to τc = 10.77 
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ms with Gd-DTPA (Δτc = -2.5 ms) shown in Figure 59b indicated smaller structures were being 

emphasized in the relaxation process. This provides evidence that the liver cells became more 

dominant than the vasculature in promoting relaxation, though both probably continued to 

contribute. The susceptibility of Gd-DTPA is ~3x that of blood, so the cells should indeed 

dominate any vessels containing blood theoretically (202–205). Gd-DTPA should have 

practically no presence within the vasculature since it was allowed to circulate and pool in the 

liver naturally for 10 minutes prior to the removal of the liver.  

Since the cells should be packed relatively homogeneously, the equation relating 

correlation time to radius shown in Figure 57 may be used to estimate cell sizes. The model 

estimates a cells radius of R = 16.8 µm when the Gd-DTPA is present, larger than previously 

reported values but still reasonable in magnitude (206). The overestimated value could be due to 

multiple factors including the cells being non-spherical, the cells having an unknown structure 

and packing fraction, and other contributions like intracellular water. The small shift in 

correlation time, coupled with the fact it was statistically significant, means the cells and the 

vasculature would give rise to very similar diffusion based dispersions by themselves. It is 

noteworthy that this scenario differs from the microsphere experiments in chapter 5 and even the 

blood experiments described above since rather than changing the susceptibility of the perturbers 

(like in the case of the blood cells), here the susceptibility of the surrounding medium where the 

diffusion occurs changes with the introduction of extracellular Gd-DTPA. Though the physical 

situation is reversed, the principle of the gradients resulting from the difference in susceptibilities 

between the intra- and extracellular spaces remains the same. The intrinsic pool relaxation rates 

may be slightly altered, but the simulations in chapter 2 showed this to have relatively small 

effects on the overall exchange based dispersion behavior, and only the low frequency diffusion 
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based dispersion should change significantly. This method has shown both exchange and 

diffusion effects may be exploited using R1ρ dispersion methods to infer quantitative information 

about exchange rates and tissue structures of realistic biological media.  

Conclusions 

 Diffusion is typically a slower process than chemical exchange and can therefore be 

analyzed simultaneously using R1ρ methods in realistic tissue. The sensitivity of spin-locking 

pulse sequences to gradient geometry has been exploited to estimate mean spatial frequencies of 

small inhomogeneities to overall dephasing. Simulations have verified the manner in which free 

diffusion in the presence of susceptibility-induced gradients promotes dispersion in 

measurements of R1ρ, how chemical exchange acts independently of diffusion and typically 

occurs on a faster time scale, and that the characteristic inflection point in a dispersion plot 

reflects a measure of the spatial frequency spectral content of the field distribution for complex 

three dimensional fields. The point of inflection for diffusion or exchange-based dispersions 

elucidates the time scale of the respective interactions. This was evident in the double dispersion 

chemical exchange simulations in chapter 3 where the slower exchange process produces an 

inflection at a much lower frequency than the faster exchange process. This was also the case in 

the hybrid systems described above with both diffusion through internal gradients and chemical 

exchange occurring. The process of water molecules diffusing through a medium typically 

occurs with = 2.5 µm2/ms, so gradients that repeat every 10 µm translate to a correlation time 

of ~1 msec which is much longer than the fast exchange times seen with hydroxyls. Diffusive 

effects were shown to be detectable in biological tissues and measures of R1ρ dispersion could be 

used to derive a structural measure of interest. The methods described above very accurately 

estimated the average size of red blood cells by comparing the dispersions to simulations, and 

D
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also predicted the average liver cell size within reason. Further simulations may be needed to 

examine the effects of non-spherical magnetic perturbers on R1ρ dispersion and the effects of 

both cells and cylindrical vessels simultaneously promoting R1ρ relaxation. Other experiments 

examining the increased correlation times in blood with sO2 and the effects of changing the 

intravascular space in tissues like the brain should be performed to evaluate if and why the 

correlation time unexpectedly exhibits a shift. Overall, spin-locking has proven to be a powerful 

technique with the ability to probe both chemical exchange and diffusion to characterize tissues 

in a ways previously unavailable. 
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CHAPTER 7 

Spin-Locking Preparation Pulses in Functional MRI 

Introduction 

 The previous chapters have shown how R1ρ measurements may be valuable in a variety of 

different settings to assess the underlying processes of chemical exchange and diffusion. There 

are other applications in which R1ρ methods may be useful including functional MRI (fMRI). 

These experiments are able to detect subtle hemodynamic changes that may result from evoked 

or resting-state neuronal activity through a mechanism known as the Blood Oxygen Level 

Dependent (BOLD) effect (207–209). The BOLD effect was discovered in 1992 and originates 

from a change in blood flow and/or volume accompanied with a change in the concentration of 

RBC’s with paramagnetic deoxyhemoglobin (210, 211). This principle has already been shown 

to be effective in promoting R1ρ relaxation in the previous chapter by imaging whole blood with 

different oxygen saturation levels. Evoked neuronal activity may result in a hemodynamic rush 

of oxygenated blood to an activated region that will decrease the local field gradients and result 

in a slight signal intensity increase. The characteristics of the susceptibility induced gradients 

have been shown to originate mostly from the influence of deoxyhemoglobin and significantly 

affect proton transverse relaxation (71, 212–215). Figure 60 illustrates the manner in which 

deoxyhemoglobin in RBC’s generate local field gradients in the intravascular space. Most fMRI 

studies utilize transverse relaxation described by R2
∗  through gradient echo planar imaging (EPI) 

methods due to their rapid acquisitions and sensitivity to minute changes in local field gradients. 

Though this technique may be indirectly sensitive to neuronal activity through the BOLD effect, 

many other factors may affect the acquired signal such as static field strength, echo time (TE), or 
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changes in blood volume and flow.  

 

Figure 60: Red blood cells containing paramagnetic deoxyhemoglobin (blue) generate relatively 
large local field gradients that can induce transverse dephasing. 

 

Signal may also originate from different tissue compartments like the intra- and extravascular 

space, but the former tend to decrease at high fields resulting in the bulk of the signal originating 

from the extravascular protons in the tissue, similar to the diffusion simulations performed for 

cylindrical inhomogeneities described in chapter 5. Spin-echo acquisitions have been used to 

reduce static dephasing resulting from intrinsic gradients generated by large vessels, but water 

diffusion through the field gradients in the extravascular space remains significant since it cannot 

be refocused (216–219). These diffusion effects have been shown in previous chapters and by 

others to be dependent on the magnitude and spatial characteristics of the field gradients, as well 

as the static field and echo time, which means both gradient-echo and spin-echo sequences will 

be influenced by greater microvascular effects at high fields (175, 220, 221).  

 Spin-locking techniques have been shown in chapters 5 and 6 to be sensitive to the spatial 

scales of field variations in magnetically inhomogeneous media. Acquiring R1ρ dispersion curves 

allows the average correlation times to be determined that reflect the average spacing between 

inclusions, but acquiring the entire dispersion curves is very time consuming in practice and 
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impractical for fMRI experiments. Though dispersion analysis may be impractical, R1ρ weighted 

images have been shown previously to be advantageous in fMRI by generating contrast that 

differs from standard gradient echo acquisitions (6, 8). Most previous studies of R1ρ weighted 

fMRI have been acquired with relatively high locking amplitudes, typically strengths of ω1 ≥ 400 

Hz, and have attributed the relaxation effects to changes in blood volume and chemical exchange 

(7, 222, 223). While this may be the case, the contrast in R1ρ weighted images will depend on the 

spacing between inhomogeneities, which will be a function of the average size and packing 

fraction as described by the diffusion theory in chapter 5. The rate of relaxation due to diffusion 

can be quantified by Eq. 6.1.  

 R1ρ =
γ 2g2D

q2D( )2 +ω1
2

  6.1 

Here, g is the gradient strength, q is the spatial frequency of the ΔBz field, and D is the self-

diffusion coefficient. The correlation time, τ c =
1
q2D

, is an important parameter that represents 

the time needed for a spin to diffuse the characteristic length of the gradient field on average. 

The relaxation rate will then depend on the relative magnitudes of the correlation time and the 

locking field, ω1, so stronger locking amplitudes will tend to suppress relaxation due to 

structures with higher correlation times. This shows that low locking field R1ρ relaxation will be 

dominated by large structures with small q values since the rate has a dependence of q-4, and 

smaller structures will begin to dominate as the locking field becomes larger. Thus, spin-locking 

enables the ability to selectively emphasize certain ranges of vessel sizes that cannot be 

effectively done with standard gradient-echo or spin-echo techniques. Without the application of 

a locking field, the relaxation rate will approach standard diffusion based transverse relaxation, 
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R2
diff , and possess contrast similar to traditional fMRI experiments that is dominated by large-

scale structures like draining veins. Utilizing a lower locking field than previous experiments 

such as 80 Hz, will prompt R1ρ to exhibit the largest change in contrast to structures with a radius 

≈ 8 µm (q ≈ 0.393 µm-1). For perspective, R1ρ contributions at this locking field from an object 

with a radius of 1 cm should decrease by a factor of ~108 when compared with R1ρ at ω1 = 0, 

while an object with radius 0.1 cm will only be decreased by a factor of ~104. Effects due to even 

smaller objects on the order of 1 µm will not be significantly attenuated and will dominate 

relaxation. Thus, by judiciously selecting an appropriate locking amplitude, the relaxation should 

emphasize the contributions from smaller structures with significant susceptibility variations that 

may be of importance like microvasculature. This work attempts to use the selectivity afforded 

through R1ρ weighted fMRI to compare the contrasts at different locking amplitudes.  

Specific Aims 

Aim 1  

R1ρ methods have rarely been used to measure hemodynamic responses in animal or 

human brains, and the studies that have used spin-lock prep pulses use only high locking 

amplitudes. Here, the sensitivity of spin-locking to vessel sizes is used to selectively emphasize 

vessels of specific dimensions in functional MRI with the hopes of eventually improving the 

detection of brain activation. R1ρ fMRI will be investigated with low and high locking 

amplitudes of ω1 = 80 Hz and 400 Hz respectively to determine their effect on activation maps. 

Methods 

 Eight (5 male, 3 female) live, healthy, adult patient volunteers aged 26 - 32 were imaged 

at 3T using a R1ρ weighted fMRI protocol approved by the Institutional Review Board. Each 
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volunteer was subjected to visual checkerboard stimulation that flickered at 8 Hz with equal 

duration blank display before and after for 7 functional runs consisting of 5 blocks of 36 seconds. 

Each patient was imaged using a single slice turbo spin echo (TSE) with slices passing through 

the visual cortex with a matrix size of 96 x 96 and 3 x 3 x 4 mm3 spatial resolution. Six 

functional runs using the R1ρ prep pulse described by Witschey et. al. were acquired for ω1 = 80 

Hz and 400 Hz using locking times of 20, 50, and 80 ms with a minimal echo time of TE = 5.3 

ms to minimize R2
∗  contributions and a repetition time of 2.2 s (62). These locking times were 

chosen based on the previously reported grey matter value of T1ρ ≈ 99 ms at ω1 = 500 Hz (7). In 

order to minimize conditioning or other systematic effects, the order of the ω1 = 80 Hz and 400 

Hz acquisitions were randomized. T2 weighted fMRI images were collected with the same 

sequence and parameters, but here the locking time was 50 ms and ω1 = 0 Hz to attain T2 

contrast. Finally, conventional gradient echo EPI fMRI images were collected with matrix size = 

96 x 96 with of 3.5 mm isotropic spatial resolution, a repetition time of 2 s, and an echo time of 

30 ms. In an effort to reduce the acquisition time, only 3 blocks of the visual checkerboard 

stimulus was used. 

 The data were analyzed by combining the ω1 = 80 Hz and 400 Hz into one time series, 

leaving out the first and last two time points of the blank screen interval to minimize transition 

effects. The slices were motion corrected using previously described methods with the Analysis 

of Functional NeuroImages (AFNI) software package (224, 225). R1ρ maps were calculated at 

each locking amplitude on a voxel by voxel basis using a linear log fit to each locking time point. 

Average R1ρ values were calculated in cortical grey and white matter using ROI analysis along 

with baseline R1ρ values during the blank screen intervals. The fMRI Expert Analysis Tool 

(FEAT) in the FSL software library was used to fit each series to a general linear model (226, 
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227). The voxels in the visual cortex were corrected for multiple comparisons and only those 

with an activation threshold z > 4 with the standard threshold of P < 0.05 were considered for 

further analysis. Percent signal changes were calculated in the selected voxels for the T2-

weighted sequence and in the voxels for both the ω1 = 80 Hz and 400 Hz of the R1ρ sequence to 

calculate the time course of the hemodynamic response. A rate of change in fMRI signal was 

also calculated for the 11 second transition period (5 points) after the start of the flashing 

checkerboard by using a linear fit to compare the measured responses from each of the BOLD, 

T2-weighted, and both R1ρ methods at ω1 = 80 Hz and 400 Hz with 50 ms. Statistical significance 

testing was performed in MATLAB using a paired non-parametric test to report p-values. 

Results and Discussion 

 In the absence of any visual stimuli, there was no statistically significant difference in the 

R1ρ of white matter or grey matter at ω1 = 80 Hz and ω1 = 400 Hz. The white matter displayed 

values of R1ρ = 74 ± 14 ms and 77 ± 18 ms (p = 0.89) at ω1 = 80 Hz and ω1 = 400 Hz 

respectively, while grey matter displayed values of R1ρ = 91 ± 17 ms and 93 ± 16 ms (p = 0.18) 

respectively. This lack of change was important to report since it shows no significant dispersion 

in either tissue with locking field at 3T. Previous experiments have shown dispersion in tissues 

may be quite large under certain conditions, but the locking fields used here are lower than those 

used for chemical exchange experiments and the static field is significantly lower than all 

experiments described in previous chapters (≥ 4.7T). Even if chemical exchange contributed, the 

locking fields used were not strong enough to overcome their contribution to relaxation, making 

them inconsequential. This shows that there is no statistically significant change in tissue 

relaxation rate due to changes in the concentration of deoxyhemoglobin while at rest.  
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The checkerboard visual stimulus did elicit statistically significant changes throughout 

the visual cortex. Figure 61 shows the activation maps with the corresponding Z-scores for one 

volunteer using each of the gradient–echo BOLD, T2 prepared BOLD, 80 Hz T1ρ prepped, and 

400 Hz T1ρ prepped pulse sequences.  

 

Figure 61: Activation maps for one volunteer using each sequence. The number of significant pixels 
decreases from left to right due to the sequences becoming more selective. 

 

Comparing the activation map derived from the R1ρ weighted images with the standard activation 

maps shows this method is more selective in their detection. The number of significant voxels for 

each sequence decreased from left to right since each of the sequences became more selective by 

either refocusing magnetization or increasing the locking amplitude of the preparation pulses. 

The T1ρ-weighted image corresponding to ω1 = 400 Hz exhibited a drastic decrease in significant 

voxels (p < 0.01) when compared to the other three images, which can be interpreted to be due to 

the strength of the locking pulse overcoming the majority of the susceptibility induced dephasing 

from the deoxyhemoglobin in large vessels. Though the low resolution inhibits finer 

differentiation of vasculature contributions, the interpretation follows from the results of the 

diffusion experiments in previous chapters. For completeness, the voxels in the frontal cortex 

were analyzed as a control region and showed no statistically significant change in signal with 
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the application of the visual stimulus. Figure 62 shows the time course of both the frontal cortex 

and visual cortex to illustrate the effect in both regions.  

 

Figure 62: Time course of the frontal cortex and the visual cortex shows only significant changes 
due to the stimulus occurred in the visual cortex. 

 

The time courses indicated that no significant changes in relaxation occurred due to the 

application of a stimulus outside of the visual cortex. This provided further evidence the change 

in signal was due to the BOLD effect, which also then implied the spin-locked sequences with 

fewer voxels showing significant signal change were more selective than the traditional gradient-

echo BOLD or spin-echo BOLD sequences.  
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The average percent signal change for all sequences after the application of the 

checkerboard stimulus is shown in Figure 63a. All the acquisitions displayed statistically 

significant (p < 0.01) changes in signal except the 80 Hz spin-lock and T2 prep pulses.  

 

Figure 63: a.) Percent signal change plotted for all sequences, with statistical significance indicated 
by *. b.) The change in T1ρ compared at both locking fields was shown to be statistically significant. 

 

The percent signal changes were BOLD = 1.9 ± 0.3%, T2 prep = 1.3 ± 0.4%, T1ρ prep (ω1 = 80 

Hz) = 1.1 ± 0.4%, and T1ρ prep (ω1 = 400 Hz) = 0.7 ± 0.2%. Figure 63b indicates the average 

changes in T1ρ at ω1 = 80 Hz and 400 Hz were significantly different, indicating more relaxation 

contributions were suppressed at the higher locking amplitude. Figure 64 below shows the 

average signal changes at each locking time for each of the spin-lock pulses at 80 Hz and 400 

Hz. These data indicated greater changes in signal occurred at longer locking times and that 

significant changes in signal between the two locking powers only occurred at longer times 

indicated by ** (p < 0.05) and * (p < 0.01). This behavior was simply due to the fact that there 

was not enough time for the signal to adequately dephase to measure large differences since the 

rates of relaxation were so similar between locking amplitudes. 
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Figure 64: Percent signal change in the visual cortex resulting from the spin-lock sequence at each 
amplitude. Statistical significance with p < 0.05 represented by ** while * represented p < 0.01. 

 

The locking time of 80 ms produced a larger p-value than at the time of 50 ms due to a 

substantial drop in SNR, which caused more variability and increased the uncertainty in the 

measurements. These effects were similar to the signal changes reported in BOLD acquisitions 

with changes in echo-time, assuming TE ≤ T2
* for ω1 = 400 Hz (6).  

 The time courses in the visual cortex are shown for all 4 sequences collapsed across all 

subjects and acquisitions in Figure 65. The data shown here are in accord with Figure 61 and 

Figure 63 in that the percent signal change decreases from BOLD to T2-weighted, and on down 

to the locking field of 400 Hz. The BOLD acquisition displayed significantly higher (p < 0.05) 

signal changes than all other sequences, and showed the greatest rate of change in signal (0.25 ± 

0.05 %/s) upon the onset of the stimulus. The derivative of the averaged BOLD signal time 

course peaked at ~2.0 s, while the T2 and T1ρ prepped sequences peaked at ~4.4 s. 
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Figure 65: Signal change time course for all 4 pulse sequences collapsed across all subjects and 
acquisitions. The solid horizontal bar indicates the application of the visual stimulus. 

 

This is in contrast to previous reports that showed R1ρ weighted signals increased faster than 

BOLD signals (8), which must be explained by a non-vascular contribution to the relaxation. The 

above data agree with other previous reports of gradient-echo BOLD acquisitions display signals 

that increase more rapidly than spin-echo BOLD due to the gradient-echo sequences being 

sensitive to both static dephasing as well as contributions from larger vessels. The T2-weighted 

acquisitions are more sensitive to smaller vessels since they refocus some of the larger vessel 

contributions, but they are not as flexible as the T1ρ-weighted sequences since they have the 

ability to tune the locking field to desired amplitudes. The fact that the signal change in the 80 

Hz locking pulse was smaller than the T2-weighted signal, and the 400 Hz experiment showed a 

larger decrease, again suggested these sequences were more selective in emphasizing only 

smaller vessel contributions. 
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Conclusions 

 The diffusion R1ρ theory presented in chapter 5 was successfully applied to the 

application of detecting the BOLD effect in fMRI to increase the specificity of the acquired 

activation maps. This represents the first work of directly comparing the effects of multiple 

locking fields on BOLD signal changes. Traditional spin-echo BOLD has been shown to be 

sensitive to smaller vessel contributions than gradient-echo BOLD, but still lacks the specificity 

and flexibility of spin-lock prepped sequences since they do not apply tunable locking fields. 

Other studies that applied T1ρ sequences to fMRI applications in the past only used one relatively 

high locking field of ω1 ≥ 400 Hz. One study in particular by Jin et. al. (8) did perform 

measurements at a range of locking fields from 500 – 2,000 Hz and largely attributed signal 

changes to chemical exchange effects, in agreement with everything presented in previous 

chapters. This study, and all other studies, did not explain the effect that spin-locking may 

suppress signal from vessels that create gradient fields that fluctuate slowly compared to the 

applied locking field. This conclusion makes this work novel and proves that spin-lock fMRI 

methods provide a more specific alternative to traditional fMRI methods. 
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CHAPTER 8 

Conclusions and Future Directions 

Chemical Exchange R1ρ Dispersion Methods 

 Three separate models of R1ρ were discussed in the first two chapters, the dipolar 

contributions were described by BPP theory, and chemical exchange effects were quantified by 

the Trott and Chopra theories. The exchange theories were revealed to produce very similar 

results numerically, but the Chopra model was determined to be superior since it was derived on 

more realistic assumptions and performed moderately better in simulations and fitting to 

experimental data. Deuterium substitution of protons in glucose at 4.7T and 7T demonstrated the 

manner in which dipolar effects decreased and exchange effects increased with static field 

strength. This notion had been expressed previously, but no systematic experiment previously 

demonstrated the effects in the manner presented here. Realizing the tremendous importance of 

exchange on spin-locked relaxation, the effects of temperature and pH were examined to 

establish their influence on R1ρ dispersion and verify the feasibility of calculating exchange 

parameters in such systems for realistic applications. For example, the significant monotonic 

increase of exchange rate over physiologically relevant pH ranges implies chemical exchange 

based imaging may provide the capacity to estimate acidic pH changes in regions of solid 

tumors. This method was shown to have significant potential since the inflection point of R1ρ 

dispersions was shown to increase roughly linearly with exchange rate for metabolites like 

glucose that exhibit hydroxyl exchange in the fast exchange regime. Other specialized methods 

using R1ρ dispersion analysis including Exchange Rate Contrast (ERC) and Exchange Weighted 

Image Contrast (EWIC) were analyzed and compared. Though they provide similar information, 
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the ERC method was verified to be more robust due to the strong dependence on the specified 

locking time shown by the EWIC method. ERC and EWIC images provide new ways to 

emphasize protons of specific exchange rates and regions of altered exchange due, for example, 

to pH changes.  

 The first two chapters discussed idealized examples of biological tissue that may not be 

applicable to all cases. The Chopra model was extended to n-pools, though it was shown that 

more than 3 pools introduced too many variables to be experimentally useful. In the case of 2 

solute pools (3 total pools), a double dispersion was produced that almost identically reflected 

the linear addition of the two individual dispersions. The slight disparity at low locking fields 

may be attributed to slight pool fraction differences in the simulations as well as very minor 

coupling of the solute pools through the exchange terms in the Bloch-McConnell equations. This 

effect was shown to be small for realistic pool fractions and not affect the corresponding 

inflection points, assuring the method was practical for estimating exchange parameters. The 

simulations established minor exchange had the potential to affect R1ρ dispersion, but was 

deemed insignificant for practical biological scenarios since pool fractions would be very low 

and the exchange would have to be extremely fast. This double dispersion analysis was shown to 

predict exchange parameters well when the individual inflections were distinctly separated by 

large frequency differences, but failed when the inflections overlapped closely. When the 

dispersions were distinguishable, simulations and experiments demonstrated the ERC method 

could also be extended to 3-pools to generate image contrast that directly reflected solute 

concentrations. This method was proven feasible to separate glucose and uracil in mixtures, 

though the technique does possess limitations since the concentrations used were larger than 

most metabolites in live tissues. Further studies are required to assess the method in vivo using a 
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fast exchanging exogenous contrast agent with known concentration and known exchange 

parameters to quantify the natural concentrations of a slower exchanging metabolite such as 

acidic glucose or creatine. 

R1ρ Dispersion vs. CEST 

 R1ρ and Chemical Exchange Saturation Transfer (CEST) methods were directly compared 

in chapter 4 in the application of detecting increased glucose uptake in tumor tissue. The 

difficulties of working were realized in this section since the tissue concentration of injected 2-

Deoxy-D-glucose (2DG) was so dilute. For this reason, R1ρ contrast was introduced and used to 

compare against CEST methods. R1ρ dispersions and CEST Z-spectra were simulated with 

parameters similar to those expected in a system of 2DG, and the effects of varying single 

parameters were evaluated. CEST was shown to be sensitive to more parameters than R1ρ 

contrast, making it less specific and more difficult to analyze in realistic systems. The CEST 

simulations were also negatively affected by direct water saturation, which was of no concern in 

the spin-locking acquisitions. R1ρ contrast was shown to be superior experimentally by exhibiting 

greater contrast magnitudes and a near linear dependence with 2DG concentration in solutions 

and tissue homogenates, which was not the case for the Z-spectra in the same model solutions 

that were complicated from direct water saturation effects. Similar results were discovered when 

the methods were compared using in vivo injections of 2DG in live rats. The R1ρ contrast showed 

a monotonically increasing trend in contrast with the 2DG infusion with greater magnitudes than 

the seemingly random changes in CEST contrast in the same rats. The R1ρ contrast curve in 

malignant tissue exhibited significant increases upon 2DG infusion that were not present in the 

surrounding healthy tissue, indicating this method may be used to estimate glucose uptake in 

vivo in means similar to established FDG-PET methods. The experiment focused on the specific 
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glucose analogue 2DG, which displayed exchange behavior that made spin-locking methods 

more advantageous. It should be noted CEST still provides complementary information to R1ρ 

dispersion and is more suited for slower exchanging metabolites. The 2DG experiment simply 

highlights the utility of R1ρ dispersion methods in situations when CEST is not optimal. 

R1ρ Diffusion Methods 

 Proton diffusion through a medium with intrinsic susceptibility gradients was proven to 

contribute significantly to spin-locked relaxation rates in chapter 5. Though these effects have 

been mentioned in the literature to influence spin-lattice relaxation in the rotating frame, few 

have directly investigated them and no quantitative model of these effects had been presented 

prior to this work. This R1ρ-diffusion model, though hinged on an oversimplified notion of a 

sinusoidally oscillating local field, was proven to be useful in estimating the sizes of packed 

inhomogeneities through simulations and microsphere experiments. The derived correlation time 

directly relates the average spatial frequency of the immensely complicated fluctuating local 

field to a characteristic distance through the rate of diffusion, which was assumed to be 2.5 

µm2/ms throughout this work. The simulations revealed the resulting R1ρ dispersion magnitudes 

were related to the gradient strength while the inflection points, and hence the correlation times, 

were related to the spacing between the packed spheres and cylinders. This was confirmed in the 

microsphere experiments through dispersion analysis and through the mapping of the correlation 

time with different sphere packing fractions. The novel equation used in mapping the correlation 

times provides the means to potentially map vessel densities or cell sizes in dense tissues, but it 

should be noted this method requires very high SNR acquisitions since noisy voxels and artifacts 

may prominently propagate through the equation. The effects of diffusion were shown to be 

completely independent of chemical exchange effects through simulations since the two effects 
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resulted in a double dispersion that was the uncoupled linear superposition of single dispersions. 

Similar problems to those encountered in the 3-pool exchange simulations arose when the 

inflection points overlapped and the dispersions coalesced. The parameters could not be 

accurately estimated in this situation, so this is an inherent limitation of examining multiple 

processes in general using R1ρ dispersion methods. This theory allows the use of spin-locking 

methods to elucidate novel information about sub-voxel geometric structures experimentally. 

Combined Effects and Applications 

Quantifying R1ρ diffusion effects in biological tissues was shown to provide viable 

experimental metrics in various applications. The simplest of these systems was whole bovine 

blood, where both chemical exchange and diffusion were present in the plasma surrounding the 

Red Blood Cells (RBC’s). These effects were again demonstrated to be independent by only 

measuring distinct changes in the low frequency diffusion-based dispersion when varying the 

blood oxygen saturation. The diffusion performed well since the gradients decreased roughly 

exponentially with oxygen saturation and were independent of the spatial frequency. Average 

RBC sizes were estimated to be ~4.18 µm by comparing the parameter to the values attained 

through simulations, which was remarkably close to previously reported values and 

demonstrated the accuracy and usefulness of the method. Rat livers were analyzed ex vivo since 

they represented more complex solid tissues that should exhibit simultaneous exchange and 

diffusion effects. The liver experiments measured statistically significant decreases in correlation 

times with the presence of gadolinium, indicating smaller cells were being emphasized over 

larger vessels. This demonstrated the ability to measure changes in real tissues with realistic 

concentrations of contrast agents. Finally, the R1ρ diffusion theory was applied to the application 

of fMRI with the hopes of increasing the specificity of derived activation maps. This was the 
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first study to directly link the effects of using different locking fields in a preparation pulse to 

detect BOLD effects due to vasculature of different scales. These data indicated spin-locked 

fMRI generated significantly different contrast that more selectively emphasized smaller 

vasculature than traditional gradient-echo and spin-echo BOLD sequences. This method offered 

more flexibility by allowing the locking field to be tuned to different amplitudes to reflect 

different sizes of vessels. Further research needs to be conducted to establish R1ρ fMRI as a 

viable alternative method and to apply the R1ρ diffusion theory to different biological models for 

more thorough tissue characterization. 

Overall Evaluations of R1ρ Methods 

R1ρ dispersion methods have proven to be very powerful in the context of elucidating 

characteristics of chemical exchange and proton diffusion through intrinsic susceptibility 

gradients at high static fields. Many studies of R1ρ exist at low fields that are more similar to 

traditional T1 or T2 sequences due to their sensitivity to traditional dipolar or cross-relaxation 

effects. This work has provided a wealth of evidence that spin-locking methods may provide 

novel contrasts at high field that can more quantitatively characterize and differentiate tissues 

across multiple pathologies. A potentially important and recurring conclusion from studies of the 

dispersion of tissues is that no single locking field is adequate to emphasize or quantify the 

presence of exchanging species. The low locking field values of T1ρ may reflect multiple 

contributions, whereas the chemical exchange contributions are substantially reduced at 

appropriate higher locking fields. Thus it is essentially the difference in rates between low and 

higher locking fields that indicates the presence and magnitude of exchanging species, not the 

values at either one condition. This should be borne in mind when using spin locking sequences 

to quantify, for example, the presence of a dominant exchangeable species such as proteoglycans 
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in knee cartilage due to degeneration (228). Two important limitations of R1ρ dispersion methods 

are the long acquisition times to collect entire dispersions and the necessary RF power to capture 

rapid chemical exchange effects. Both of these hurt the potential of using rotating frame 

relaxation clinically since acquisition times need to be minimized and human scanners cannot 

reach the same high power B1 levels as the animal research scanners used here. This calls for 

more research in parametric imaging techniques like the correlation time mapping or ERC 

methods that require fewer images than entire R1ρ dispersions. 

Another recurring conclusion from every chapter in this thesis is that the inflection point 

of the dispersion in R1ρ provides quantitative information on the time scale of the interactions 

responsible for the dispersion. The first 4 chapters focused on the chemical exchange 

contributions while the 3 subsequent chapters discussed the implications of diffusion on R1ρ 

dispersion. In all of these chapters, including the scenarios that analyzed double dispersions, the 

inflection points of the dispersions were the most important parameter for quantifying the rates 

of any process. R1ρ dispersion provides an accessible method to calculate exchange rates or 

correlation times that could aid in quantifying parameters reflecting various physico-chemical 

processes. There were limitations in quantifying these parameters in the cases when multiple 

dispersions overlap, or in the case of significant chemical exchange between solute pools in 

mixtures. The methods described above cannot completely overcome these effects so they need 

to be recognized when they occur in practice. These limitations should not discourage the use of 

spin-locking experiments since they may still be applied to many applications. Exchange 

between multiple solute pools is expected to be negligible in most biological tissues though due 

to realistic metabolite concentrations though, so this effect needs to be considered only in special 

cases. Also, even though individual pool parameters cannot be derived when exchange-based 
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dispersions overlap, an overall baseline dispersion may be defined that can be useful in detecting 

changes due to exogenous contrast agents or other diffusion-based effects. Collectively, these 

studies suggest spin-locking methods can be a powerful adjunct to the range of MRI methods 

available for studies of tissue and for the detection of pathological or physiological changes, 

especially at higher magnetic field strengths. 
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