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Chapter I  

 

Overview of Dissertation 

 

The goal of this dissertation was to study Fragile X Mental Retardation Protein’s (FMRP) roles in 

neural circuit development and to advance our understanding of Fragile X syndrome (FXS), the human 

disorder caused by loss of this protein. FXS causes intellectual disability, autism spectrum disorder (ASD) 

and other neurological impairments, and is therefore a useful model for uncovering treatments for a wide 

variety of neuropathies (Harris et al., 2008). I performed my work in the Drosophila Giant Fiber (GF) neural 

circuit, which coordinates the escape reflex in response to threatening stimuli (Allen et al., 2006; Boerner 

and Godenschwege, 2011). More specifically, I used the central Giant Fiber Interneuron (GFI) as a model 

for neuron development and function due to its large size and amenability to manipulation. My initial 

experiments were intended to expand on research showing loss of FMRP causes overgrown synaptic 

connectivity with reduced maturity (Comery et al., 1997; Irwin et al., 2001; Zhang et al., 2001). FMRP is 

canonically known as an RNA-binding protein and my aim was to identify new target RNAs related to FXS 

connectivity defects, as well as to study other RNA-binding proteins which may partner with FMRP, such 

as Pumilio (Pum) and Staufen (Stau; Brown et al., 2001; Darnell et al., 2001, 2011; Dubnau et al., 2003; 

Vessey et al., 2006; Olesnicky et al., 2012; Pai et al., 2013). 

The GFI proved an amenable model neuron and I was able to identify a synaptic overgrowth 

phenotype in mutants null for the FMRP gene, Drosophila fragile x mental retardation 1 (dfmr1; Wan et 

al., 2000; Zhang et al., 2001). Pursuing this finding, I asked whether the overgrowth results from increased 

connections to normal partners or new connections to inappropriate partners. In the process of 

investigating this using dye injection to determine the GFI synaptic partners, I found that dfmr1 null 

neurons take up far more dye than paired controls, a puzzling phenotype that has never been reported 



2 
 

before. This finding was the focus of my first paper, included in this dissertation as Chapter 2 (Kennedy 

and Broadie, 2017). Another outcome of these dye filling experiments was the identification of several 

dye-coupled members of the GF circuit which had been previously unreported. A recently published 

library of Gal4 transgenic drivers, many of which provide near single-neuron resolution, allowed a fine-

scale mapping of this expanded GF circuit (Brand and Perrimon, 1993; Jenett et al., 2012; Tirian and 

Dickson, 2017). The identification of these neurons was the subject of my second paper, included in this 

dissertation as Chapter 3 (Kennedy and Broadie, 2018). 

While publishing these two papers, I continued to study the connectivity overgrowth in the GFI, 

looking for FMRP targets or RNA-binding proteins that might modulate the phenotype. However, a series 

of control experiments eventually uncovered a surprising result: the phenotype was not caused by loss of 

FMRP, but instead by a background mutation in the dfmr1 null line (dfmr150M; Zhang et al., 2001). As this 

phenotype is central to an important aspect of developmental neurobiology, namely how a neuron 

regulates synaptic connectivity, I pursued the mutation’s identity using whole genome sequencing (WGS). 

This work is ongoing but is expected to identify a gene that controls synaptogenesis. This work is described 

in Chapter 4 of this dissertation and is currently being finalized for publication. 

While this dissertation work has deviated significantly from the original aims, it has remained true 

to the broader intent of better understanding neurodevelopment and neuropathies. I discovered a new 

phenotype caused by loss of FMRP, which may underlie some of the symptoms of the FXS disease state. 

The expanded GF neural circuit described here characterizes numerous interconnected neurons, which 

may prove useful for more complex neurodevelopmental studies than have been possible before. And 

finally, the work on the synaptogenic gene mutation found in the background of the dfmr150M allele not 

only may open up a new set of targets with which to study synaptic growth and regulation, but also 

provides a cautionary tale on the background mutations that can accumulate in commonly used genetic 

lines. The remainder of this introduction provides background on the extensive literature on FXS, the GF 
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neural circuit, and synapse localization mechanisms. I then conclude with an outline of the remaining 

chapters. 

 

Fragile X Syndrome 

FXS is caused by the loss or inactivation of the fragile X mental retardation 1 (FMR1) gene and 

occurs in approximately 1:7,000 males and 1:11,000 females (Hunter et al., 2014). FXS is the leading 

known genetic cause of ASD and intellectual disability, and subsets of patients also present with attention 

deficits, anxiety, hyperactivity, childhood seizures, depression, elongated facial features, large ears and 

macroorchidism (Bailey et al., 2008). The FMR1 gene was first cloned in 1991 and has since been the 

subject of enormous study (Dietrich et al., 1991; Willemsen and Kooy, 2017). The majority of FXS cases 

are caused by a CGG triplicate expansion in the 3’ untranslated region (UTR) of the gene (Fu et al., 1991). 

Unaffected members of the population have 50 or fewer of these repeats, while those with 200 or more 

manifest the disorder, due to hypermethylation of the CGG repeats leading to gene silencing (Oberlé et 

al., 1991). Intermediate numbers of repeats are considered a “pre-mutation condition,” and are 

associated with disabilities, such as Fragile X-Associated Primary Ovarian Insufficiency (FXPOI) and Fragile 

X-Associated Tremor/Ataxia Syndrome (FXTAS, Jacquemont et al., 2007; Hunter et al., 2008). Several point 

mutations and deletions have also been uncovered that cause FXS by disrupting functional domains in the 

protein (Feng et al., 1997a; Myrick et al., 2015).  

Within neurons, FMRP localizes primarily to the cell body where it resides in the cytosol and 

traffics to and from the nucleus (Feng et al., 1997b; Doll and Broadie, 2015; He and Ge, 2017). FMRP is 

also observed in large protein/RNA granules trafficking along dendrites and into synaptic terminals (Fig. 

1, Kanai et al., 2004; Antar et al., 2005). Axonal growth cones contain FMRP and some research suggests 

FMRP is present in mature axons as well, though this remains contentious (Antar et al., 2006; Price et al., 

2006; Akins et al., 2017). FMRP expression in Glia has been observed to also play a role in neural 
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development, but this work is still in the early stages of research (Higashimori et al., 2013, 2016; Connor 

et al., 2017). The primary model organisms used for FXS research are mice and Drosophila. Zebrafish and 

Xenopus FXS models exist, but they are less well studied, with fewer than 10 total publications for each at 

the close of 2018. C. elegans interestingly does not appear to contain an FMR1 homolog, suggesting FMRP 

arose after brain evolution and specialization were well underway (Shtang et al., 1999).  

The enormous amount of research into FMRP function can be categorized in different ways. For 

this dissertation, I have summarized the research in four categories; 1) FMRP as an RNA-binding protein, 

2) FMRP as a channel-binding protein, 3) activity-dependent FMRP roles, and 4) clinical FXS treatment. 

 

FMRP: RNA-Binding Functions 

FMRP was originally characterized as an mRNA-binding protein and is currently recognized to have 

at least three RNA-binding domains: two heterogeneous nuclear ribonucleoprotein (hnRNP) K Homology 

(KH) domains and an Arginine-Glycine-Glycine (RGG) box (Ashley et al., 1993; Siomi et al., 1993, 1994; 

Darnell et al., 2005a). There is also reported to be a less well understood RNA-binding domain at the FMRP 

N-terminus (Adinolfi et al., 2003; Zalfa et al., 2005). The initial discovery that FMRP binds mRNA set off a 

search to determine target transcript(s), with the hope that misregulated expression could be corrected 

in clinical treatments. Unfortunately, multiple studies using a range of techniques have shown FMRP binds 

a long list of RNAs, with one early study showing up to 4% of brain RNAs are bound (Ashley et al., 1993). 

More recent studies have identified upwards of 900 putative mRNA targets (Brown et al., 2001; Darnell 

et al., 2011; Ascano et al., 2013). While overwhelming, these target lists provided candidates that could 

be studied in model organisms missing the FMR1 gene. The initial model established was the mouse FMR1 

knockout, generated in 1994 by a Dutch-Belgian consortium (The Dutch-Belgian Fragile X Consorthium et 

al., 1994). A Drosophila FXS model was later developed in 2000 and has been instrumental in studying the 

disease (Wan et al., 2000; Zhang et al., 2001). Humans and mice both have two FMRP paralogs, Fragile X 
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Mental Retardation Syndrome-Related Protein 1 and 2 (FXR1 and 2), which interact with FMRP and can 

also bind RNA (Tamanini et al., 1997; Spencer et al., 2006; Darnell et al., 2009). Drosophila has only the 

single dfmr1 gene and no known paralogs (Siomi et al., 1995; Zhang et al., 1995; Wan et al., 2000). The 

genetics of FMRP are further complicated by splicing: humans have at least five coding isoforms of the 

FMR1 gene, while flies have six, not including a large number of UTR isoforms (Flybase.org, 12/3/18; 

NCBI.NLM.NIH.gov 12/3/18). The roles of these many isoform are largely unknown.  

Over the course of nearly three decades of research on FMRP RNA-binding capabilities, three 

major results have emerged. First, the vast majority of target genes studied show increased expression 

when FMRP is lost, indicating FMRP acts primarily as a translational repressor (Brown et al., 2001; Darnell 

et al., 2001, 2005a; Phan et al., 2011; Niere et al., 2012; Gkogkas et al., 2014). However, exceptions exist 

including a list of very long RNAs, the postsynaptic scaffold Postsynaptic Density Protein 95 (PSD-95) and 

Diacylglycerol Kinase, Kappa (DgkK), all of which are cases of FMRP promoting expression as a translational 

activator (Zalfa et al., 2007; Bechara et al., 2009; Tabet et al., 2016; Greenblatt and Spradling, 2018). 

Reduced DgkK expression in FMR1 nulls has been proposed as the actual culprit in the loss of translational 

repression, as it acts in the Diacylglycerol (DAG) to Phosphatidic Acid (PA) conversion pathway thought to 

control general protein translation (McMahon and Rosbash, 2016; Tabet et al., 2016). Importantly, this 

argument suggests DgkK RNA is the primary FMRP target, and all others are false positives. However, this 

contradicts observations that FMRP binds the ribosome and can impede its procession along RNA, which 

has been suggested to be one mechanism of FMRP translational repression (Fig. 1, Darnell et al., 2011). 

Moreover, a wide range of independent studies have shown FMRP binding transcript targets (Kim et al., 

2009; Yan and Denman, 2011; Braat et al., 2015). 

The second result that has emerged is that FMRP uses a complex method to discriminate mRNA 

targets, which has thus far eluded researchers (Veneri et al., 2004; Darnell et al., 2005b). No agreed 

consensus binding sequence exists, although several motifs have been found, including UGGA, ACUK and 
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GAC (K = G or U). However, these motifs are not well agreed upon, nor complex enough to specifically 

delineate FMRP targets. Some work suggests high numbers of these motifs recruit sufficient FMRP to 

mediate its role in repression (Ascano et al., 2013; Ray et al., 2013; Suhl et al., 2014; Anderson et al., 2016). 

G-quartets and uridine tracts have also been suggested as guiding sequences, but again these structures 

are not specific to FMRP targets or present in all targets (Chen et al., 2003; Dolzhanskaya et al., 2003; 

Ramos et al., 2003). One difficulty in these experiments is that the list of FMRP targets is still 

indeterminate, thus preventing robust study. A consensus has also not been reached on the RNA region 

bound by FMRP, with groups separately finding either the UTR or the coding sequence is the primary 

target (Brown et al., 1998; Sung et al., 2003; Darnell et al., 2011; Ascano et al., 2013; Zhang et al., 2014b; 

Anderson et al., 2016). The lack of a target sequence has created speculation that FMRP uses other 

mechanisms to regulate transcripts. There is work showing FMRP acts via RNA interference (RNAi) 

machinery, and other forms of untranslated RNA, such as Brain Cytoplasmic RNA 1 (BC1), to block 

translation (Zalfa et al., 2003; Jin et al., 2004). Partner RNA-binding proteins (RBPs) such as Pum and Stau 

have been suggested as well, and have been shown to interact with FMRP at genetic, cellular and 

behavioral levels, but not yet in molecular terms (Barbee et al., 2006; Elvira et al., 2006; Wells, 2006; 

Bolduc et al., 2008; Sialana et al., 2016; Zhang et al., 2017). It is known that FMRP coexists with several 

RBPs in RNA granules, mobile conglomerations of RBPs, RNA, ribosomes and scaffolds which bind motor 

proteins and are trafficked along the neuronal cytoskeleton (Fig. 1; Anderson and Kedersha, 2006; Thomas 

et al., 2011).  

The third result that has emerged is that restoring many presumptive FMRP targets corrects FXS 

phenotypes. For example, corrected expression of Microtubule Associated Protein 1B (MAP1B, Drosophila 

Futsch), Charged multivesicular body protein 4A (Chmp4, Drosophila Shrub), matrix metalloproteases 

(MMPs), adenylyl cyclase, DAG kinase and others have ameliorated a range of phenotypes in mouse and 

Drosophila FXS disease models (Zhang et al., 2001; Lu et al., 2004; Siller and Broadie, 2011; Tabet et al., 
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2016; Sethna et al., 2017; Vita 

and Broadie, 2017). Frequently 

studied phenotypes include 

brain morphology, synaptic 

architecture, calcium signaling, 

long term potentiation and 

depression (LTP and LTD), 

learning and memory, anxiety, 

repetitive behavior, 

hyperactivity and seizures 

(Irwin et al., 2001; Nimchinsky 

et al., 2001; Bear et al., 2004; 

Bolduc et al., 2008; Gatto and 

Broadie, 2008; Spencer et al., 

2011; Gholizadeh et al., 2014; 

Koga et al., 2015; Ruby et al., 

2015; Doll and Broadie, 2016; 

Tian et al., 2017). Published studies often correct one FMRP target and find restoration of a subset of the 

known phenotypes. It is difficult to reconcile how so many different proteins can seemingly treat FXS in 

model organisms, but two possibilities might explain these results. First, targets may operate within 

overlapping pathways, and correcting one target may modify or stabilize multiple targets leading to the 

finding that multiple proteins can rescue the same phenotype (Bear et al., 2004; Sharma et al., 2010; Tabet 

et al., 2016). Second, the wide variety of disruptions seen in FXS means researchers could be rescuing 

some phenotypes with their experiment, but not others (Strumbos et al., 2010; Portera-Cailliau, 2011). In 

 
 
Figure 1. FMRP’s Roles in the Neuron 
FMRP (blue) travels in RNA granules with other RNA binding proteins (green, 
yellow, purple, dark red). These complexes are carried along the microtubule 
cytoskeleton attached to motor proteins such as kinesin (black). By stalling 
ribosomes (red) along mRNA, FMRP can repress translation. FMRP also 
regulates ion channels, such as Slack (orange), increasing their ion conductivity. 
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this case, the many FXS rescues in the literature are only partial, correcting a subset of the disrupted 

pathways. 

It is tempting to link all of the FXS symptoms together, suggesting, for example, that altered 

neuronal activity is due to overelaborated synaptic connectivity and is the root of weakened memory, 

seizures and hyperactivity; but it is worth remembering that FXS patients do not have homogenous 

symptom profiles (Bailey et al., 2008). Correcting one misregulated pathway may partially or completely 

fix one FXS phenotype, while leaving others uncorrected, and the total correction of the disorder may 

require repair of many separate pathways. The range of FXS severity suggests a third possibility to explain 

the disparate findings noted above: FXS is caused by the interaction of FMRP loss and other background 

mutations. This idea is supported by findings that different mouse strains display different FMR1 null 

phenotypes (Dobkin et al., 2000; Spencer et al., 2011). This could complicate the analysis of some of the 

rescue experiments mentioned above: clean genetic backgrounds in the mice and flies carrying the rescue 

construct could unintentionally mask background mutations, reducing phenotypes and emulating rescue 

(Burgess, 2011; Chandler et al., 2013). Overall, the disparate findings across FXS research may be 

reconcilable by attempting to place the many “verified” FMRP targets in common pathways and 

identifying core proteins responsible for specific phenotypes. Furthermore, background effects must be 

carefully accounted and controlled for to either remove modifiers or identify and bring them into the FXS 

disease model as potential therapeutic targets themselves. 

 

FMRP: Channel-Binding Functions 

Compared to well established RNA-binding roles the FMRP channel-binding function is a relatively 

new discovery, and the full implications have not yet been determined. FMRP has been shown to regulate 

expression levels of ion channels by RNA-binding mechanisms, but in 2010 it was found that FMRP also 

has a direct protein-protein interaction with the sodium-activated potassium channel Slack (Fig. 1, Brown 
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et al., 2010; Strumbos et al., 2010; Lee et al., 2011; Zhang et al., 2012). Later research showed that Big 

Potassium (BK) calcium-activated potassium channels also directly interact with FMRP (Deng et al., 2013; 

Zhang et al., 2014a). FMRP interaction with Slack causes an increase in the open state of the channel, 

helping to hyperpolarize neurons through increased net conductance. Therefore, FMRP loss may leave 

neurons more sensitive to stimulation, which is a phenotype often reported in FXS disease models (Zhang 

et al., 2012; Contractor et al., 2015). FMRP is also known to increase BK channel conductance, though 

researchers believe this is accomplished by increasing the sensitivity to calcium (Deng et al., 2013; Zhang 

et al., 2014a). BK channels shape action potentials by releasing potassium in response to high calcium 

levels (Contet et al., 2016). At presynaptic terminals they help end neurotransmitter release by 

terminating action potentials and repolarizing the neuron. The loss of FMRP causes action potential 

broadening as the BK channels are slower to respond to calcium influx, and thus delay repolarization (Deng 

et al., 2013). Interestingly, there is little to no strong evidence showing FMRP exists in mature axon 

terminals, indicating the interactions may be with somatic or dendritic BK channels, though several 

experiments have suggested this is not the case (Deng et al., 2013). Future studies may require enhanced 

imaging techniques to reveal FMRP at presynaptic sites or further examination of the FMRP-BK channel 

interaction in other neuronal compartments (Bock and Stuart, 2016). Lastly, FMRP has been shown to 

interact with the neuronal N-type voltage gated calcium channel, Cav2.2 (Ferron et al., 2014). Again, this 

interaction is shown to be direct, rather than RNA mediated; however, in contrast to the potassium 

channels, it appears FMRP does not regulate the biophysical properties of Cav2.2. Instead, FMRP 

participates in escorting the channel to the proteasome for degradation. When FMRP is lost Cav2.2 

degradation is diminished and levels increase. As Cav2.2 regulates synaptic vesicle release, one 

consequence of FMRP loss is increased vesicle exocytosis, which could be one source of the 

hyperexcitability seen in FXS models and patients (Turner et al., 1993; Bailey et al., 2008).  
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The FMRP-channel interaction raises the question of what role this function plays in the FXS 

disease state. A recent paper suggests loss of the channel interaction is responsible for intellectual 

disability and seizures in FXS patients. The authors identified a novel mutation in the FMRP coding 

sequence in an FXS patient that disrupts the segment of the protein responsible for binding to BK 

channels. Importantly, this FMRP single nucleotide polymorphism (SNP), R138Q, retains RNA binding 

capabilities thus suggesting channel binding is a critical part of FMRP function (Myrick et al., 2015). 

Separately, another human FMRP SNP, I367N, has been identified that blocks FMRP-ribosome interaction 

but does not impair channel binding. The patient with this mutation also displayed severe intellectual 

disability, seizures and other typical FXS symptoms. This suggests FMRP’s regulation of both RNA and 

channels is required to avoid neurological disorders (De Boulle et al., 1993; Feng et al., 1997a). It remains 

to be seen whether there is a functional association between the FMRP RNA-binding and channel-binding 

roles. One possibility is that these roles exist in separate compartments (pre- vs. postsynaptic), and 

separately impact cognitive development and function. Alternatively, these two functions may be linked, 

and FMRP presence on channels positions it to sense activity and alter RNA translation in response 

(Ferron, 2016). Such an interaction would be well in line with research on FMRP responses to neuronal 

activity. 

 

FMRP Response to Activity 

Over time a consensus has emerged that the primary function of FMRP is to regulate protein 

translation in response to neuronal activity, acting as an on-demand dispenser of new synaptic proteins 

(Zalfa et al., 2003; Weiler et al., 2004; Price et al., 2006). As noted above, this seems at odds with the vast 

bulk of FMRP concentration being in the soma rather than in neuronal processes or at synapses (Tang et 

al., 2001; Doll and Broadie, 2015). In addition, FMRP binds a wide array of disparate transcripts, and the 

majority of these target mRNAs are not localized to synapses or known to be involved in activity-
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dependent processes. Moreover, several studies have identified roles for FMRP in the neuronal soma and 

nucleus, albeit these studies are in the distinct minority (Shamay-Ramot et al., 2015; Filippini et al., 2017; 

Guo et al., 2017; Zhou et al., 2017). It remains to be seen whether FMRP’s critical neurodevelopmental 

functions take place at the soma or if this is simply a loading station for FMRP to pick up mRNAs and carry 

them into processes for activity-dependent translation. 

The metabotropic glutamate receptor (mGluR) theory posed in 2004 is the most studied 

mechanism of FMRP activity-dependent translation (Bear et al., 2004). mGluRs respond to specific activity 

patterns by enacting a protein synthesis dependent form of LTD which leads to the removal of excitatory 

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors from the 

postsynaptic membrane (Snyder et al., 2001; Xiao et al., 2001). Removal of AMPA receptors weakens, and 

can lead to removal of, synapses (Schikorski and Stevens, 1997; Nusser et al., 1998). According to the 

mGluR theory, the translation of the proteins necessary for AMPA removal is regulated by FMRP. The 

theory suggests activity triggers liberation of RNAs from FMRP control, permitting their translation and 

beginning the process of synaptic degradation. Importantly, FMRP represses its own mRNA, which is 

included in the liberated targets (Brown et al., 1998). The newly synthesized FMRP begins to repress the 

mRNAs again and terminates AMPA receptor removal, which is termed end-product inhibition. When 

FMRP is absent, the process becomes uncontrolled and excessive synaptic removal results, presumably 

leading to the immature synapses seen in human patients (Hinton et al., 1991). It seems likely other 

proteins are capable of at least partially regulating this process, otherwise no synapses would form in 

FMRP’s absence. Studies have also suggested FMRP is an intermediary between mGluR signaling and 

mammalian Target of Rapamycin (mTOR) and Extracellular-Signal Regulated Kinases (ERK). These proteins 

control complex signaling pathways, including regulating RNA translation via members of the translation 

machinery such as eukaryotic initiation factor complex 4F (eIF4F; Sharma et al., 2010; Sawicka et al., 2016; 

Ehyai et al., 2018). Both pathways have been shown to be hyperactivated when FMRP is lost, and their 
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inhibition can correct FXS model phenotypes (Wang et al., 2012; Richter et al., 2015; Sawicka et al., 2016). 

The overarching mGluR theory was supported by several studies in mouse and fly models, which show 

genetic and pharmacological approaches to reduce mGluR activity can correct FXS phenotypes (McBride 

et al., 2005; Yan et al., 2005; Pan and Broadie, 2007; Pan et al., 2008). However, clinical trials designed to 

transition this theory into a human treatment have thus far been unsuccessful. The mGluR antagonist 

Mavoglurant (AFQ056) failed to provide significant improvement in FXS patients (Jeste and Geschwind, 

2016). This result is not necessarily a repudiation of the mGluR theory (see below), but does mirror a string 

of failed clinical trials, suggesting the many roles of FMRP will not be so easily corrected (Erickson et al., 

2017).  

How does FMRP respond to activity? The protein is regulated by several phosphorylation sites, 

including the well-studied S500 site (S499 in mice, S406 in Drosophila; Ceman et al., 2003; Bartley et al., 

2016). Dephosphorylation of S500 permits translational activation and is accomplished through protein 

phosphatase 2A, which can be activated by stimulated membrane receptors (Narayanan et al., 2007). 

Phosphorylation of S500 is believed to trigger translational repression by FMRP (Coffee et al., 2012). This 

function is controlled by the kinases Casein Kinase II and p70 S6 kinase 1, and possibly others (Narayanan 

et al., 2008; Bhattacharya et al., 2012; Bartley et al., 2016). Recent research suggests sumoylation also 

contributes to FMRP activation (Khayachi et al., 2018). Each of these identified interactions, while 

complicating the picture of what FMRP does and how it functions, have provided potential therapeutic 

targets for future FXS treatment drug development.  

 

Clinical Studies on FXS 

The complex interactions of FMRP identified thus far have suggested numerous targets that might 

be susceptible to pharmacological treatment, resulting in many FXS clinical trials (Darnell and Klann, 

2013). Targets have included mGluR antagonists (e.g. Mavoglurant, Basimglurant), GABA receptor 
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agonists (e.g. Arbaclofen, Riluzole), MMP inhibitors (e.g. Minocycline), and ERK/mTOR pathway 

modulators (e.g. Lovastatin, Metformin; Bilousova et al., 2009; Erickson et al., 2011; Siller and Broadie, 

2011; Osterweil et al., 2013; Ligsay and Hagerman, 2016; Gantois et al., 2017). While some FXS patients 

have responded positively to treatments, often based on caregiver assessments, overall these trials have 

been largely unsuccessful in providing statistical improvements in various parameters (Table 1, Davenport 

et al., 2016; Erickson et al., 2017). It is unclear why successful treatments in model organisms have not 

yet been replicated in human patients, though several proposals exist. Model organisms are limited in 

their ability to replicate human-specific disease traits. Seizures, some forms of memory, and hyperactivity 

can be assessed fairly well in FXS models, but social and mental disorders such as ASD and intellectual 

disability are much harder to score. Thus some of the most crucial parts of the disorders scientists are 

attempting to correct are relatively inaccessible to their research (Watson and Platt, 2012; Sestan and 

State, 2018). 

 It can also be difficult to evaluate whether a drug has been effective in treating FXS. As noted 

above, FMRP loss impinges on many pathways and causes a wide range of symptoms in FXS patients. If 

these are mediated by separate pathways, distinct measurements may be needed for each symptom. 

Further, some of these symptoms are part of broad categories. Within intellectual disability should spatial 

learning or associative learning be monitored? For autistic children, which social or repetitive behavior 

tests should be applied? As one cannot tell which outcomes the drugs might improve, it is difficult to know 

what to assay when designing trials (Berry-Kravis et al., 2013). Another difficulty is determining when to 

treat. For ethical reasons, very few clinical trials have been conducted on children under the age of 5, but 

it could be that those are the only treatable timepoints for FXS (Caldwell et al., 2004; Jacquemont et al., 

2014). FMRP levels peak very early in development suggesting a specific role in brain formation (Lu et al., 

2004; Tessier and Broadie, 2008; Pacey et al., 2013). Much of the current FXS model research is conducted 

using rescue treatments that are present from conception. Because of this, it is unclear whether FMRP 
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roles are developmental, during adult function or both, leaving drug developers with the question of when 

treatment needs to be applied to maximally correct the disorder. Can pharmaceuticals applied to adults 

correct FXS, or must the treatment be given in utero? Some studies have addressed this timing issue; 

however, they are split on the answer with some suggesting correction is possible in adults (e.g. Michalon 

et al., 2012; Dolan et al., 2013; Sun et al., 2016), and others showing intervention must come during 

development (Doll and Broadie, 2016). 

Perhaps a more promising approach than drug treatment is the emerging possibility of genomic 

editing, which has the potential to clip away the excess FMR1 CGG repeats or correct SNPs to treat the 

disorder. Such treatment would have to overcome numerous technical and ethical challenges, but is  

making rapid progress (Park et al., 2015; Yrigollen and Davidson, 2019). Despite a single protein being the 

root cause of FXS, research into treating the disorder has been stymied by the extraordinary degree of 

complexity surrounding this protein. FMRP not only interacts with potentially hundreds of RNAs, but also 

directly regulates channels, and perhaps sits within the inner circle of extremely complex signal 

transduction pathways. Still, the field has made extraordinary gains in identifying FMRP roles in the brain 

and has come to understand much about autism and intellectual disability along the way. Many new drugs 

are in the pipeline which target newly identified FMRP pathways and researchers are optimistic that we 

are nearing a viable treatment despite past disappointments.  
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Drug Mechanism of Action 
Test Subject 

Age 
Clinical Trial 

Status 

Donepezil Acetylcholine esterase inhibitor 12+ Complete 

Ampalex AMPA receptor positive allosteric modulator 18-50 Complete 

Arbaclofen GABA receptor agonist 5-50 Complete 

Ganaxolone GABA receptor positive allosteric modulator 13-22 Complete 

Trofinetide Insulin like growth factor analog 12-45 Complete 

Basimglurant mGluR5 negative allosteric modulator 5-50 Complete 

Oxytocin Oxytocin receptor agonist 13-29 Complete 

Aripiprazole 
Serotonin receptor agonist, Dopamine receptor 

agonist/antagonist 
5-35 Complete 

Metadoxine 
Serotonin receptor antagonist, GABA transaminase 

inhibitor 
6-40 Complete 

Zoloft Serotonin transporter inhibitor (SSRI) 2-6 Complete 

Riluzole Sodium channel inhibitor 18+ Complete 

ZYN002 Cannabinoid receptor agonist 3-18 Ongoing 

Gaboxadol GABA receptor agonist 13-22 Ongoing 

AZD7325 GABA receptor positive allosteric modulator 18-50 Ongoing 

Acamprosate 
GABA receptor positive allosteric modulator, NMDA 

receptor antagonist 
5-55 Ongoing 

Mavoglurant mGluR5 antagonist 3-45 Ongoing 

Minocycline MMP9 inhibitor 3.5-55 Ongoing 

Metformin MMP9 inhibitor, ERK signaling inhibitor 10-17 Ongoing 

Lovastatin ERK signaling inhibitor 6-55 Ongoing 

BPN14770 Phosphodiesterase allosteric modulator 18-45 Ongoing 

Epigallocatechin 
Gallate (ECGC) 

Undetermined 6-60 Ongoing 

Vitamin C, E Undetermined 1-18 Ongoing 

 
Table 1. A Summary of Clinical Trials Performed for FXS. 

Clinical trials have been run for numerous drugs that target pathways associated with FMRP. Most 
studies have not resulted in beneficial outcomes for patients and have been abandoned. Some of the 
ongoing trials have shown promising results but are still in early stages. Pharmaceutical treatment 
has been attempted as early as 2 years of age to correct developmental disruptions. Data compiled 
from www.clinicaltrials.gov (accessed 2/1/19). 

http://www.clinicaltrials.gov/
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The Drosophila Genetic Model System 

This dissertation research was performed using the Drosophila genetic model, which is simple 

enough to assay single genes in single neurons, yet complex enough to have intricate brain organization 

and sophisticated behavioral outputs. The ~10-day lifecycle and large populations of Drosophila permit a 

wide range of genetic manipulations. The embryo develops for one day in the egg before hatching and 

entering the larval stage. The larvae go through three developmental stages, termed instars, with the first 

two instars lasting one day each and the third instar lasting two days. The larval stage is followed by a 

four-day pupal stage after which the adult ecloses and becomes sexually mature within eight hours. 

Drosophila genetics are relatively simple, with ~14,000 protein-coding genes on 4 chromosomes. Despite 

having fewer proteins than humans, Drosophila has homologs for ~75% of human disease causing genes 

(Reiter et al., 2001). One result of this slim genome is far fewer paralogs for each gene. For targets of 

FMRP, the reduced paralogs make for easier manipulations. MMPs for example are represented by 2 

genes in the fly, 24 in mice and 23 in humans (Page-McCaw et al., 2007; Dear et al., 2017). Similarly, 

Drosophila have 8 gap junction genes, part of the innexin family, while humans have gap junctions from 

two families: 3 genes for the closely related pannexins and 21 genes in the connexin family (Stebbings et 

al., 2002; Söhl and Willecke, 2003; Baranova et al., 2004). These simplifications help in manipulations of 

the nervous system such as, for example, determining and removing gap junctions expressed in a neuron 

of interest.  

The Drosophila genome is amenable to a myriad of manipulations. Mutagenesis was originally 

carried out by chemical or physical assault on DNA but was later simplified by the discovery of P-element 

transposons that can be inserted randomly into the genome (Spradling and Rubin, 1982; Price, 2005). 

These transposons can be imprecisely excised to create small mutations, such as the dfmr150M mutation 

used in this work (Rorth et al., 1998; Zhang et al., 2001; Kennedy and Broadie, 2017). P-elements have a 

preference for 5’ insertion in genes and typically avoid introns (Bellen et al., 2004; Aleksic et al., 2009). 
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Other transposons, such as Minos elements, are helping to probe more of the genome (Venken et al., 

2011). Of course, the Clustered Regularly Interspersed Palindromic Repeats (CRISPR) technique has 

obviated these strategies, making targeted Drosophila genome editing precise and routine (Jinek et al., 

2012; Gratz et al., 2013). Naturally, many mutations block viability or fertility, and balancer chromosomes 

are used to circumvent this problem (Casso et al., 1999). A lethal or infertile mutation of interest is 

maintained in a heterozygous state over a balancer which has its own lethal mutation. As neither 

chromosome can propagate as a homozygote, the mutation of interest in maintained over generations. 

Dominant markers make it easy to select for or against the balancer in genetic crosses. Balancer inversions 

block genetic recombination by interfering with chromosome alignment, thus preventing the shedding of 

deleterious mutations. 

Another powerful Drosophila resource is the binary Gal4/Upstream Activating Sequence (UAS) 

system, a yeast transcription factor/enhancer element pair that allows all manner of transgenic 

manipulations (Brand and Perrimon, 1993). The Gal4 sequence downstream of an enhancer region of 

interest drives expression in target cells (Mlodzik and Hiromi, 1992; Jenett et al., 2012). The UAS responder 

is linked to a protein coding or RNAi sequence, both of which are available for a wide range of genes (Dietzl 

et al., 2007; Ni et al., 2009). Endogenous genes, with or without tagged fluorophores, enable studies of 

rescue, localization and function (Zhang et al., 2002; Christiansen et al., 2011; Chen et al., 2014). 

Exogenous genes allow structural studies (membrane green fluorescent proteins (GFPs)), functional 

manipulations (channelrhodopsins (ChRs)), and calcium recordings (GCaMP), permitting exquisite cellular 

experiments (Nagel et al., 2003; Pfeiffer et al., 2010; Akerboom et al., 2012). Recently, two groups have 

made an enormous effort to randomly insert small Gal4 enhancer elements into individual fly lines and 

screen UAS-gfp expression patterns across the brain (Jenett et al., 2012; Tirian and Dickson, 2017). This 

has resulted in a collection of Gal4 drivers that can express in small subsets of neurons, even single cells, 

opening new avenues for circuit mapping, developmental studies and neuron-neuron interactions. This 
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technology was further expanded by creating split-Gal4 (spGal4) versions of many of these lines. spGal4s 

operate by expressing the DNA binding half and RNA polymerase recruiting half of Gal4 under separate 

enhancers, requiring an overlapping expression pattern to form a complete Gal4, thus greatly reducing 

the neurons targeted (Luan et al., 2006; Pfeiffer et al., 2010).  

In terms of neurodevelopment, the Drosophila brain provides an excellent model for research. 

Drosophila have ~100,000 neurons, which is much more tractable than the ~70 million found in mice 

(Herculano-Houzel et al., 2006; Chiang et al., 2011). Even with relatively few neurons, flies demonstrate a 

diverse behavioral repertoire controlled by fairly complex, but accessible, neural circuits (O’Kane, 2011; 

Kennedy and Broadie, 2018; Namiki et al., 2018). The high density of the central nervous system (CNS) 

means flies still must solve complex developmental problems such as axon pathfinding and target 

selection in a crowded arena, providing an accessible way to study such processes at high resolution. 

Moreover, rapid development makes the Drosophila brain amenable to live imaging of neuron formation 

and maturation. Drosophila is even beginning to challenge C. elegans, with a full mapping of all of the 

brain neurons and their synapses in the works (Zheng et al., 2017). Hence Drosophila provides a 

particularly attractive model for neurodevelopmental research and neurological disease modeling. Within 

the Drosophila nervous system, one of the best models for studying individual neuron formation and 

function is the Giant Fiber Circuit. 

 

Drosophila Giant Fiber Circuit 

 The Drosophila GF neural circuit, first described by Maxwell Power in 1948, is an escape reflex arc 

like those found in a range of invertebrates, from squid to cockroach (Hodgkin and Huxley, 1939; Power, 

1948; Keegan and Comer, 1993). The circuit rapidly carries information about threatening stimuli from 

sensory modalities to muscles, enabling a quick escape behavior (Pézier et al., 2014). GF neurons have 

been used extensively to study neurodevelopment and model human neuropathies including FXS,  
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Figure 2. Map of the Known Giant Fiber Circuit 
This cartoon represents the known neurons of the GF circuit prior to the work described in this dissertation. The 
Giant Commissural Interneuron (GCI, blue) interconnects the paired Giant Fiber Interneurons (GFI, green) in the 
Central Nervous System (CNS). The GFI axons descend into the Ventral Nerve Cord (VNC), which is composed of 
three Thoracic Ganglia (TG1-3) and an Abdominal Ganglion (AG). The GFI axons synapse on the Peripherally 
Synapsing Interneuron (PSI, orange) at the Inframedial Bride (IB), and the Tergotrochanteral Motor neuron (TTMn, 
red) along large axonal bends. All of these neurons are bilaterally symmetric, but only the GFIs are shown as such 
here for clarity. Not pictured are sensory neurons upstream of the GFI/GCI which activate the circuit in response to 
threatening stimuli, and the DLMns which control the wings.  
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tauopathies and L1 syndrome (Tanouye et al., 1981; Martinez et al., 2007; Kudumala et al., 2013; Lee and 

Godenschwege, 2014; Orr et al., 2014; Kadas et al., 2019). These studies take advantage of the known 

synaptic connectivity, established electrophysiology recording paradigms, and large neuron size. The GF 

circuit also contains numerous genetically tractable interneurons which permit the study of neuron-

neuron interactions at single cell resolution. 

The GF circuit architecture begins with visual, auditory and mechanical sensory organs collecting 

information on threatening stimuli, which is then passed to the central brain GFIs, the paired central 

interneurons which conduct responses downstream (Fig. 2, Allen et al., 2006; Pézier et al., 2014). The GFIs 

are interconnected by the Giant Commissural Interneurons (GCI) through mixed chemical/electrical 

synapses, which are believed to create a balanced response on both sides of the body. Each GFI projects 

an axon into the ventral nerve cord (VNC) where they come together at the posterior end of thoracic 

ganglion segment 1 (TG1) to form the Inframedial Bridge (IB). The axons then move latterly apart to 

terminate in large bends. These bends are the sites of synaptic output to the Tergotrochanteral motor 

neuron (TTMn), which controls the jump reflex of the central legs. The IB is a site of multiple small 

extensions from the GFI, and the location of mixed chemical and electrical synapses on the Peripherally 

Synapsing Interneuron (PSI). The PSI connects through a cholinergic synapse to the Dorsal Longitudinal 

Motor neurons (DLMns), which control the wing depressing muscles (Mejia et al., 2013).  

Several characteristics of the GF circuit make it appealing for studying neurodevelopment, 

including the large diameter neurons (Allen et al., 1998). As flies lack the myelin sheathing found in 

vertebrates, they use large neuron calibers to increase transmission speed. The GFI neurons are so large 

relative to the other Drosophila neurons that they can be individually recognized under a 10x microscope 

objective. This size offers two benefits. First, the GF neurons are easily targeted and manipulable, allowing 

access via glass electrodes which can deliver dye or other molecules. Dye injections rapidly label the entire 

neuron, with no requirement of transgenic labels such as GFP. As the GFI contains electrical synapses,  
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small tracers can also be injected to map 

connected neurons (Boerner and Godenschwege, 

2011). Second, the size of the GF neurons makes 

characterization and quantification much easier, 

allowing for rapid and confident assessment of 

diameters, synaptic sites, and structural 

abnormalities (Mejia et al., 2010; Kudumala et al., 

2013; Borgen et al., 2017). These neurons are also 

genetically tractable, and highly specific Gal4 

drivers are available to manipulate each neuron in 

the GF circuit. Early drivers (such as A307 and C17) 

were less specific, but still enabled excellent 

studies on GF circuit development (Phelan et al., 

1996; Allen et al., 1999). The Janelia Farms and 

Vienna Drosophila Resource Center collectives 

have since generated new drivers, which provide 

near single neuron resolution for most members of 

this circuit (Fig. 3; Jenett et al., 2012; Tirian and 

Dickson, 2017). The motor outputs of the GF circuit 

also allow electrophysiology characterization. A 

simple recording can be taken from the two muscle 

targets of the circuit, providing information on 

how the circuit develops and functions (Tanouye 

and Wyman, 1980; Augustin et al., 2011). 

 
 
Figure 3. Gal4 Driven Expression of mCD8::GFP in the GFI  
The 91H05-Gal4 driver expresses strongly and specifically 
in the GCI and GFI. The GCI runs horizontally across the 
CNS to interconnect the GFI. The large GFI cell bodies form 
dendrites in the CNS and send axons into the VNC, where 
they briefly contact at the IB and then diverge to form the 
characteristic bends.  
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The GFI is the best studied GF circuit neuron and has been the central focus of the studies here 

(Fig. 3). Bromodeoxyuridine (BrdU) labeling indicates the GFI is born during embryogenesis, although it 

waits until pupation to begin forming its connections (Allen et al., 1998). Once outgrowth begins, GFI 

axons reach their TTMn targets within about one day and then spend another day initiating synapse 

formation. On the last day of pupation the GFI neurons stabilize and mature their synaptic connections. 

The bendless (ben) mutation in an E2 ubiquitin-conjugating enzyme causes the GFI axon to terminate at 

the IB during development, losing its characteristic bend along the TTMn (Thomas and Wyman, 1984; 

Muralidhar and Thomas, 1993). This transition from axonal outgrowth to synaptogenesis is additionally 

controlled by the transmembrane cell-adhesion molecule Semaphorin-1a (Sema-1a), which helps guide 

the axon to postsynaptic partners (Murphey, 2003; Uthaman et al., 2008). Once the axon has arrived it 

removes Sema-1a from the surface, allowing synaptogenesis to proceed (Godenschwege et al., 2002). 

Further work indicated that the transmembrane cell adhesion molecule (CAM) Neuroglian (Nrg), located 

presynaptically on the GFI and postsynaptically on the TTMn, interacts homophilically to signal for Sema-

1a removal from the membrane, thus ending pathfinding/target recognition and initiating synaptogenesis 

(Godenschwege and Murphey, 2008). Interestingly, manipulating these targets only prevents TTMn 

synapses from forming; PSI synapses at the IB develop normally. This indicates separate membrane 

proteins dictate synapse formation, even within the same neuron.  

The GF circuit also provides an important model for electrical synapse connectivity. As noted 

above, the GFI connects to most of its targets through mixed chemical and electrical synapses. Electrical 

synapses transmit an action potential across a synapse almost instantaneously, as compared to ~0.5 

milliseconds for chemical synapses (Katz and Miledi, 1965, 1967; Wheatley, 1998). As noted above, the 

invertebrate gap junction family is referred to as innexins, which are homologous to pannexins in 

vertebrates (Baranova et al., 2004). Vertebrates also have a larger family of gap junctions known as 

connexins, which share no sequence homology with the innexins/pannexins, though they are structurally 
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similar, with four transmembrane domains (Phelan, 2005; Beyer and Berthoud, 2018). Invertebrate gap 

junctions are typically composed of six innexin subunits which create an innexon hemichannel, although 

some examples of eight member hemichannels have been reported (Ambrosi et al., 2010). Innexins can 

form homomeric or heteromeric hemichannels, and gap junctions can be homotypic or heterotypic, 

depending on whether the pre- and postsynaptic neurons use the same or different innexons. The GF 

circuit uses the Shaking-B (ShakB) innexin, which is spliced into three isoforms: ShakB(Neural (N)), 

ShakB(N+16) and ShakB(Lethal (L)). The GFI exclusively expresses ShakB(N+16) to form heterotypic gap 

junctions with the TTMn and PSI, which both use ShakB(L) (Phelan et al., 2008). These different 

combinations allow gap junctions to have variable properties, such as restricting flow of certain sized or 

charged molecules, and determining the direction of ionic flow (Nielsen et al., 2012). The pore size of gap 

junctions is typically capable of passing up to 1kDa molecules, thus allowing secondary messengers such 

as calcium and cyclic AMP through (Weber et al., 2004). Gap junctions can also pass dyes through their 

pores, which has aided efforts to map the GF circuit and study the processes of synapse formation and 

degradation (Bacon and Strausfeld, 1986; Jacobs et al., 2000; Pézier et al., 2014). 

 

Neural Circuit Mapping  

 The innate behavior of animals is a result of the wiring pattern in their nervous system. Evolution 

has long honed these systems to respond optimally to the local environment, creating a diverse repertoire 

of hard-wired behaviors necessary for acquisition of nutrients, reproduction, and offspring rearing. These 

innate behaviors contrast with learned behaviors, which are more evolutionarily recent and can be 

modified throughout life (Tierney, 1986). Researchers have long pursued maps of the neural circuitry 

responsible for a wide range of behaviors and taken many approaches to do so. An immense effort was 

made to map of the entire C. elegans hermaphrodite brain, which was published in an extensive electron 

microscopy (EM) study (White et al., 1986). More recently subsets of the Drosophila and mouse brain 
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have similarly been completely mapped (Chiang et al., 2011; Kasthuri et al., 2015; Eichler et al., 2017; 

Zheng et al., 2017). These mapping projects have several goals, including enabling studies on how different 

regions of the brain interconnect, how such connectivity has evolved, which circuits deteriorate in 

neurological disorders, and how neural circuits are assembled and change over time.  

Numerous lower resolution circuit maps have contributed greatly to neuroscience research in 

model organisms. In mice, these circuits range from the hippocampal trisynaptic circuit, composed of the 

dentate gyrus, CA1, and CA3 and thought to process and store memories, to the optic circuit in the retina, 

which is responsible for pre-processing incoming visual information (Sanes and Masland, 2015; Stepan et 

al., 2015). There are also circuits studied for their roles in disease, such as the dopamine neurons of the 

Basal Ganglia, whose degeneration leads to Parkinson’s disease (Rizzi and Tan, 2017). In Drosophila, 

alongside the work performed in the GF circuit, circuit maps connecting the olfactory system to the 

learning and memory centers of the mushroom body (MB) have helped drive enormous amounts of 

research on the mechanisms of synaptogenesis and activity-dependent synapse modification (Doll and 

Broadie, 2015; Golovin and Broadie, 2016; Hige, 2018). Similar to work in the mouse, the circuits of the 

fly visual system have allowed researchers to examine parallel neural pathways in neurons, and helped to 

predict and understand the organization found in the more complex vertebrate brains (Lee et al., 2003b; 

Sanes and Zipursky, 2010). As these circuits are increasingly mapped, more in depth experiments can be 

performed, such as simultaneously imaging activity in all of the neurons in a circuit to understand 

information flow (Chen et al., 2012; Prevedel et al., 2014; Streit et al., 2016). The C. elegans field is taking 

advantage of its complete nervous system map in an ambitious project to sequence the RNA in every 

neuron (Hammarlund et al., 2018). This project should enable comparative studies on individual neurons, 

providing answers on the transcriptional programs that underlie identities and the specificity of synaptic 

connectivity. Such experiments foreshadow what will be possible for higher order brains once their neural 

circuit maps are complete.  
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 Circuit mapping is accomplished through a number of means, with some of the most common 

examples summarized in Table 2 (Lichtman et al., 2008). The most thorough but labor intensive and time-

consuming is EM reconstruction which reveals neuron architecture and chemical and electrical synapses. 

As noted above, this was completed for the C. elegans hermaphrodite in 1986, while the male was 

completed much later, in 2012, due to its more complex connectome (White et al., 1986; Jarrell et al., 

2012). This approach is accelerating thanks to new serial EM techniques, such as Focused Ion 

Beam/Scanning Electron Microscopy (FIB/SEM), and automated reconstruction algorithms (Xu et al., 

2017; Zhao et al., 2018). While EM techniques can reconstruct the entire nervous system in an unbiased 

fashion, other approaches typically start with one neuron and identify its synaptic partners, slowly 

spiraling outwards through the circuit. Rabies virus can be expressed in a neuron of interest and then be 

tracked as it travels retrogradely across mammalian synapses (Wickersham et al., 2007). Wheat germ 

Method Mapping ability Advantages Disadvantages 

EM 
Reconstruction 

Neurons and their 
synapses 

Complete circuit and 
synapse map 

Expensive, slow 

Rabies Virus 
Chemically connected 

partners 

Precise; genetically 
controlled 

Mammalian only, slow 

Wheat Germ 
Agglutinin 

Chemically connected 
partners 

Simple to use, genetically 
controlled 

Imprecise, may not work 

trans-tango 
Chemically connected 

partners 

Genetically encoded, 
reveals first degree 

partners 

Does not work in all 
neurons 

Dye injection 
Electrically connected 

partners 
Rapid, cheap 

Requires gap junctions 
and large neurons 

MAPSeq 
Neuron projection 

pattern 
Rapid, large scale 

Expensive, target neurons 
not identified 

GRASP 
Confirms synaptic 

partnerships 

Genetically encoded, 
shows synapse location 

Requires knowledge of 
potential partners 

iBLINC 
Confirms synaptic 

partnerships 

Genetically encoded, 
shows synapse location 

Requires knowledge of 
potential partners 

 
Table 2. Summary of Circuit Mapping Methods 
Many methods are available for mapping neurons and their synapses, with several of the most commons approaches 
listed here. More thorough methods are often slower and more expensive, while partners and synapse locations can 
often be quickly determined by genetic manipulations. 
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agglutinin (WGA) is another trans-synaptic tracer that can reveal neuronal partners, though its 

effectiveness is questionable (Braz et al., 2002). More recent techniques have utilized the Gal4/UAS binary 

expression system to express pre- and postsynaptic transmembrane proteins that only interact in very 

close proximity. One recent example is trans-tango, which is constructed such that interaction of two 

contacting proteins across a synaptic cleft causes release of the QF transcription factor (which is similar 

to Gal4) in downstream neurons. QF acts on the QUAS enhancer to turn on a fluorescent protein, thus 

labeling partners of the neuron of interest (Talay et al., 2017). New partners can be identified by 

expressing the presynaptic half of the tool in the neuron of interest and the postsynaptic half pan-

neuronally. Once the partner neurons’ structures are identified, they can be pursued by screening through 

databases of known neurons (Akram et al., 2018; Otsuna et al., 2018). 

Other recent mapping approaches include GFP Reconstruction Across Synaptic Partners (GRASP) 

and in vivo Biotin Labeling of INtercellular Contacts (iBLINC). These techniques can test whether neurons 

are in close enough proximity to form synapses, identifying neuronal partners. GRASP uses a split GFP 

system with the two pieces of the protein expressed extracellularly on the membrane of the two potential 

partners. Contact between the neurons allows the GFP to recombine and fluoresce, signifying closely 

opposed membranes (Feinberg et al., 2008). iBLINC operates in a similar fashion, but uses a biotin-

conjugating enzyme to affix biotin to a proximal acceptor protein, priming it for avidin labeling (Desbois 

et al., 2015). Both of these techniques have been modified to enhance synapse labeling by fusing them to 

synaptic vesicle proteins, such as the v-SNARE Synaptobrevin (Syb; Macpherson et al., 2015). Another new 

technique, Multiplexed Analysis of Projections by Sequencing (MAPseq), harnesses high-throughput 

sequencing by creating randomly barcoded RNA expressing viral vectors, which are injected into a region 

of interest (Kebschull et al., 2016). The individual RNA barcodes expressed in each individual cell are 

trafficked out to axonal processes. The brain can then be dissected into regions of interest, each of which 

is used to generate an RNA library. Sequencing the libraries from each brain region reveals where the 
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barcodes localized, thus mapping where each injected neuron projects (Kebschull et al., 2016). Circuit 

mapping can also be accomplished through dye injection, albeit only in cases where the neurons share 

gap junctions. Gap junctions are not common in most mature circuits, so this technique is not frequently 

used; however, it is unparalleled in rapidly revealing connectivity. The original dyes consisted of colorful 

heavy metals (e.g. cobalt), but much better tools have become available, including lucifer yellow (LY), 

which is fluorescent, and neurobiotin (NB), which can be stained post-injection by fluorescently 

conjugated avidin (Levine and Tracey, 1973; Huang et al., 1992; Hanani, 2012).  

 

Mechanisms of Synapse Localization 

 Neural circuits are formed when neurons project to specific locations, find their targets and create 

synapses. Integral to this process is the determination of how many synapses to make and how strongly 

to establish the overall synaptic connection between partners. Each synaptic connection will be modified 

throughout the life of the animal based on experiences, but the initial connection sets the stage for 

communication between the neurons (Cline, 2001). Neurons are particular in their synapse placement, 

restricting synapses to specific zones even if two partners contact multiple times or are in close proximity 

over long distances (Lin et al., 2001; Ango et al., 2004; Kummer et al., 2006; Kurshan et al., 2018). The 

reasons for this selectiveness are not entirely clear, but it may be for functional reasons, such as co-

localizing inputs from multiple neurons, placing synapses in range of modulatory neurotransmitters, such 

as serotonin, or positioning postsynapses a certain distance from the soma to manage their signaling 

strength (Koch et al., 1983; Arnth-Jensen et al., 2002; Williams and Stuart, 2003; Nadim and Bucher, 2014; 

Boivin and Nedivi, 2018). Synaptic zones may also be determined by temporal coincidence, occurring only 

at times when neurons are in contact and synaptogenesis occurs (Allen et al., 2006). There are likely many 

mechanisms controlling synapse localization, and we are just beginning to understand a few basic 

processes (Fig. 4).  
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Pruning is perhaps the best studied mechanism of determining synaptic localization. Neurons 

typically build excessive synapses with appropriate and inappropriate partners during development and 

later trim the excess away, often via activity-dependent synapse elimination (Tessier, 2009; Riccomagno 

and Kolodkin, 2015; Borgen et al., 2017). This pruning is achieved internally by co-opting proteins from 

the apoptosis pathway, including caspases (Unsain and Barker, 2015). Extracellularly, glia are recruited to 

remove unwanted synapses by phagocytosis (Schafer and Stevens, 2013). This process is not easily 

observable, making it difficult to parse out how much of the synaptic sculpting is due to pruning rather 

than general retraction of failed axonal outgrowths (Corty and Freeman, 2013). Further, it is unclear how 

synapses in appropriate partnerships are properly trimmed. It has been difficult to find markers that 

identify which synapses are to be removed and which should be maintained. Glia can also function as 

positive reinforcement for synapses. In vertebrate NMJs, glial Schwann cells are necessary for the 

formation of synapses between the motor neuron and the muscle, thus dictating synaptic zones (Sugiura 

and Lin, 2011; Darabid et al., 2014). Experiments with central interneurons have shown similar 

synaptogenic roles for glia (Singh et al., 2016; Farhy-Tselnicker et al., 2017). in C. elegans, epithelial cells 

can perform such roles by using trans-synaptic signaling to encourage synapse formation between 

neuronal and muscle targets (Shen and Bargmann, 2003). 

Synaptic sites can also be sculpted by extracellular morphogens. The extensive 

Wingless/Integrated (Wnt) family plays important roles in transsynaptic signaling, helping pre- and 

postsynaptic partners localize and grow their synapses (Budnik and Salinas, 2011; Park and Shen, 2012). 

Signaling occurs through many receptors, including the canonical target Frizzled (Fz), and leads to 

clustered synaptic components (e.g. PSD-95 and Bassoon (Bsn)), organized cytoskeletal architecture via 

microtubule binding proteins (e.g. MAP1B), and activation of synaptogenic modulatory kinases (e.g. 

Calcium /calmodulin-dependent protein kinase type II (CaMKII), Ciani et al., 2004; Ahmad-Annuar et al., 

2006; Farías et al., 2009). Wnts have also been shown to inhibit synapses in specific locations. In C. elegans 
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a high posterior Wnt gradient partially blocks synapse formation along the DA9 motor neuron which 

controls a muscle used for tail movement. High levels of Wnt cause Fz receptors on the DA9 axon to be 

endocytosed, which inactivates nearby neurexin (Nrx), a synaptic stabilization protein. Nearby synapses 

in low Wnt concentrations are unaffected (Klassen and Shen, 2007; Kurshan et al., 2018). An extensive 

array of other diffusible extracellular proteins are also at play in synapse patterning including 

Neurotrophins, Cholesterol, TGF-beta and Sonic Hedgehog (Shh), which can act at the local and tissue 

level (Vicario-Abejón et al., 2002; Salinas, 2003; Goritz et al., 2005; Harwell et al., 2012). 

The simplest mechanism for synaptic site selection might be neuronal positioning of 

transmembrane synaptogenic proteins on the extracellular membrane. However, it still remains unclear 

how often neurons decide cell-autonomously where to localize their synapses on their own (Ribeiro et al.,  

 

 

 
 
Figure 4. Modulators of Synaptic Formation During Development 
Neurons use a combination of mechanisms to localize their synapses and several examples are shown here. 
Morphogens can provide pro- or antisynaptic guidance, determining synaptic location by the concentration of the 
gradient. Phagocytic glia can prune away synapses by engulfing the neuronal contact sites. Prosynaptic cells, 
including glia and epithelial cells can promote synaptogenic contact between neurons. Neurons can also direct their 
own synapse formation by secreting diffusible signals or by directly contacting each other via cell adhesion 
molecules.  
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2018). One known mechanism is to have well-defined sub-regions within the membrane which contain 

site-restricted synaptogenic proteins. This is the case at the axon initial segment (AIS) of Purkinje neurons, 

where Spectrin is specifically localized to initiate synapses with GABAeric neurons (Ango et al., 2004). 

Other proteins involved in synapse initiation, such as Liprin-alpha, Nrx and Synaptic Cell Adhesion 

Molecule (SynCAM) are known to be a first step in synapse initiation, but there is not yet evidence for 

them localizing to highly specific sites in neuronal membranes prior to synapse formation the way Spectrin 

does at the AIS (Scheiffele et al., 2000; Biederer et al., 2002; Patel et al., 2006). In C. elegans, Nrx is 

required for a motor neuron to form synapses with a muscle target, but not a neighboring GABA neuron 

target. This suggests unique localization may occur to specify this synapse, but Nrx is widely expressed 

and has not been demonstrated to transit to specific sites prior to synapse formation (Philbrook et al., 

2018). Evidence for such prepatterning does exist at muscles, where postsynaptic regions are prepared in 

anticipation of the incoming neuron (Broadie and Bate, 1993; Jing et al., 2009). It remains to be seen 

whether neural synaptogenic proteins can accumulate before the partner neuron has arrived, or whether 

the arrival of the partner or support cells cause such proteins to aggregate. 

In summary, neurons have a variety of mechanisms to coordinate where and how strongly to 

synapse with their targets. The process can be controlled by extracellular morphogens, other cells (such 

as glia and epithelial cells), and intrinsically by cell-autonomous mechanisms. In this dissertation work, I 

have pursued new molecular mechanisms that control this process, which are detailed in Chapter 4. 

Synaptic localization is a key part in neural circuit development, and one of the many steps in the 

synaptogenic process that requires more intensive research.  

 

Summary 

In this dissertation, I studied neural development at single cell resolution using Drosophila genetic 

approaches and the GF circuit. I particularly focused on probing the Drosophila FXS disease model and 
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testing how FMRP loss affects the properties of a single GF neuron. These results, which are presented in 

Chapter 2, show a new phenotype wherein FMRP restricts dye entry into a neuron. While performing this 

work, I identified several previously unreported dye-coupled neurons that connect with the GF circuit, 

and characterized their structure, polarization and interactions with the central GFI. These findings are 

reported in Chapter 3. Finally, during further studies of the implications of FMRP loss in the GF circuit, I 

discovered a synaptic overgrowth phenotype caused by a background mutation in a commonly used FMRP 

null allele, dfmr150M. Using bulk segregant analysis (BSA) paired with WGS, I have begun the process of 

identifying the causative mutation and confirming its role in the overgrowth phenotype. These findings 

are currently being prepared for publication and are presented in Chapter 4. A summary of all of these 

results, and future directions for each project is contained in the concluding Chapter 5. Also included in 

Chapter 5 is a summary of two projects that were not published due to time constraints and negative 

data.  
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Abstract  

Fragile X Mental Retardation Protein (FMRP) loss causes Fragile X syndrome (FXS), a major disorder 

characterized by autism, intellectual disability, hyperactivity and seizures. FMRP is both an RNA- and 

channel-binding regulator, with critical roles in neural circuit formation and function. However, it 

remains unclear how these FMRP activities relate to each other and how dysfunction in their absence 

underlies FXS neurological symptoms. In testing circuit level defects in the Drosophila FXS model, we 

discovered a completely unexpected and highly robust neuronal dye iontophoresis phenotype in the 

well-mapped Giant Fiber (GF) circuit. Controlled dye injection into the GF Interneuron (GFI) results in a 

dramatic increase in dye uptake in neurons lacking FMRP. Transgenic wildtype FMRP reintroduction 

rescues the mutant defect, demonstrating a specific FMRP requirement. This phenotype affects only 

small dyes, but is independent of dye charge polarity. Surprisingly, the elevated dye iontophoresis 

persists in shaking B mutants that eliminate gap junctions and dye coupling among GF circuit neurons. 

We therefore used a wide range of manipulations to investigate the dye uptake defect, including timed 
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injection series, pharmacology and ion replacement, and optogenetic activity studies. The results show 

FMRP strongly limits the rate of dye entry via a cytosolic mechanism. This study reveals an unexpected 

new phenotype in a physical property of central neurons lacking FMRP that could underlie aspects of 

FXS disruption of neural function. 

 

Significance Statement   

FXS is a leading heritable cause of intellectual disability and autism spectrum disorders. Although 

researchers established the causal link with FMRP loss over 25 years ago, studies continue to reveal 

diverse FMRP functions. The Drosophila FXS model is key to discovering new FMRP roles, owing to its 

genetic malleability and individually-identified neuron maps. Taking advantage of a well-characterized 

Drosophila neural circuit, we discovered that neurons lacking FMRP take up dramatically more current-

injected small dye. After examining many neuronal properties, we determined that this dye defect is 

cytoplasmic and occurs due to a highly elevated dye iontophoresis rate. We also report several new factors 

affecting neuron dye uptake. Understanding how FMRP regulates iontophoresis should reveal new 

molecular factors underpinning FXS dysfunction. 

 

Introduction  

Fragile X syndrome (FXS), resulting from Fragile X Mental Retardation Protein (FMRP) loss, is the 

leading heritable cause of autism and intellectual disability, and displays comorbidity with numerous other 

neurological symptoms including attention deficit, hyperactivity and childhood seizures (Cowley et al., 

2016). FMRP is a complex protein with multiple neuronal functions. The canonical FMRP role is direct 

RNA-binding translation control, regulating activity-dependent expression of a large but indeterminate 

number of neuronal proteins (Darnell et al., 2011). Without FMRP, numerous proteins become 

overexpressed, significantly altering the neuronal proteome (Zhang et al., 2001; Cvetkovska et al., 2013; 
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Ifrim et al., 2015). The major non-canonical FMRP role is direct channel-binding, which regulates 

functional channel gating properties (Brown et al., 2010; Strumbos et al., 2010). Without FMRP, K+ and 

Ca2+ channels are dysregulated, altering both action potentials and synaptic transmission (Deng et al., 

2013; Contractor et al., 2015). A number of other diverse functions have also been ascribed to FMRP, such 

as miRNA regulation and chromatin stability control (Jin et al., 2004; Alpatov et al., 2014), expanding the 

already complex involvement of FMRP in neuronal development and function. Targeted and effective 

therapies for patients will require an understanding of how these diverse FMRP roles relate to FXS 

symptoms. 

Drosophila disease models provide a potent toolkit to discover novel neuronal mechanisms 

underlying neurological symptoms. The well-established Drosophila FXS disease model exhibits 

phenotypes analogous to human symptoms, including synaptic overgrowth, hyperactivity and 

learning/memory deficits (Zhang et al., 2001; Dockendorff et al., 2002; Bolduc et al., 2008), and continues 

to provide key new insights into FXS (Doll and Broadie, 2014, 2015, 2016; Golovin and Broadie, 2016). 

Elegant Drosophila brain neural circuit maps reveal individual neurons with single-cell resolution, enabling 

links between neuronal molecular changes and FXS circuitry defects. An excellent set of neurons for such 

work is the Giant Fiber (GF) circuit, a well-characterized escape circuit comprised of five readily identifiable 

neurons (King and Wyman, 1980; Allen et al., 1998), which require FMRP for proper circuit function 

(Martinez et al., 2007). This circuit collects sensory information and relays it to motor neurons via the 

large GF Interneuron (GFI), enabling rapid escape from aversive stimuli (Tanouye and Wyman, 1980). The 

toolkit for this circuit includes highly specific genetic reporters (Sun and Wyman, 1996) and an array of 

transgenic drivers that provide exquisite labeling and manipulation of individual GF neurons 

(Godenschwege et al., 2002; Lee and Godenschwege, 2014). The large size and easy accessibility of the 

GFI allows iontophoretic dye injection via sharp electrodes, a critical tool for circuit study (Boerner and 

Godenschwege, 2011). 
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Dye iontophoresis represents a classic strategy for neural circuit mapping and uncovering genes 

required for electrical synapse formation, with many studies in the extensively dye-coupled GF circuit 

(Phelan et al., 1996; Kudumala et al., 2013; Lee and Godenschwege, 2014). Small ionic dyes, such as 

neurobiotin and lucifer yellow, pass through gap junctions, labeling the electrically-coupled circuit (Lapper 

and Bolam, 1991; Hanani, 2012). Most experiments assay simple dye transfer between coupled neurons; 

however, a recent study tested quantitative relative dye transfer levels via gap junctions (Orr et al., 2014). 

Expanding on this quantitative dye iontophoresis approach, we began exploring GF circuit dye coupling in 

the FXS model to test hypothesized changes in circuit connectivity. Instead, we stumbled upon an 

unexpected and robust dye injection phenotype: Drosophila fmr1 (dfmr1) null mutant neurons take up 

dramatically more small, charged dyes injected via iontophoretic current. This defect is not related to a 

multitude of neuronal properties, including size, porosity and circuit connectivity. Indeed, we found a 

trend toward fewer gap junction electrical synapses in dfmr1 null neurons, and a persistent dye 

iontophoresis defect in neurons completely lacking all gap junction connections. We conclude FMRP 

regulates a cytosolic mechanism determining ionic uptake rates. This study provides new insights into 

quantitative iontophoresis, broadens understanding of multiple factors modulating neuronal dye 

injection, and identifies a new neurological disruption in this FXS disease model.  

 

Materials and Methods  

 

Drosophila Genetics  

All animals were maintained on standard cornmeal/agar/molasses Drosophila food in a 12-hour light:dark 

cycling incubator at 25oC. For channelrhodopsin experiments, food was made with 100µM all-trans retinal 

(ATR) or EtOH vehicle as a control (Ataman et al., 2008), and animals were reared in constant darkness. 

The following Drosophila lines were used for genetic crosses, with female offspring used for all 
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experiments: w1118 (RRID:BDSC_3605) | w1118; dfmr150M/TM6B, GFP, Hu (Zhang et al., 2001, 

RRID:BDSC_6930) | w1118; dfmr12/TM6, Hu (Dockendorff et al., 2002) | w1118; UAS-dfmr1, dfmr150M/TM6B, 

GFP, Hu (9557.3) (Zhang et al., 2001) | w1118; elav-Gal4/CyO (RRID:BDSC_8765) | w1118; elav-Gal4/CyO; 

dfmr150M/TM6, Hu | shakB2 (Blagburn et al., 1999) | shakB2; dfmr150M/TM6, GFP | w1118; P{GMR91H05-

Gal4}attP2 (Jenett et al., 2012, RRID:BDSC_40594) | w1118; UAS-chr2-xxl (Dawydow et al., 2014) |w1118; 

10XUAS-ivs-mcd8::rfp (RRID:BDSC_32219) | w1118; P{UAS-shaw.RA.FLAG}12B (Hodge et al., 2005, 

RRID:BDSC_55719) | w1118; UAS-irk2A/CyO, GFP (Dahal et al., 2012). All genotypes were verified with 

visible genotype markers when possible, and PCR when necessary. All crosses were allowed to lay eggs 

for 2-3 days, with offspring rearing densities carefully matched between compared genotypes. 

 

Dye Iontophoresis 

Experimental animals were selected from age-matched rearing tubes 10-13 days after egg laying, yielding 

staged adults 0-4 days in age. Genotyped animals were pinned submerged in physiological saline (Jan and 

Jan, 1976), and then cut along the dorsal midline to access the cervical connective (CC), as previously 

reported (Boerner and Godenschwege, 2011). Sharp glass electrodes (Kwik-Fil Borosilicate glass 1B100F-

4, World Precision Instruments) were pulled on a laser electrode puller (Model P-2000, Sutter Instrument 

Company) to 10MΩ resistance (3M KCl). Electrodes were filled by capillary action with one of the following 

dye solutions: 0.25% TRITC-Dextran (10kDa, Life Technologies) and 7% Neurobiotin (Vector Laboratories, 

RRID:AB_2313575), or 1% Lucifer Yellow (LY) potassium salt (Thermo Fisher Scientific). Dyes were 

dissolved in ddH2O or 2M potassium acetate (KAc), as indicated. Filled electrodes were placed on a silver-

chloride wire mounted on a PCS-5000 micromanipulator (Burleigh). The electrode tip was inserted into 

the Giant Fiber Interneuron (GFI) at the CC, while a ground electrode was placed in the bath saline. Voltage 

was manually controlled with a Grass square-pulse stimulator (S48, Astro-Med Inc), providing 7.5 100ms 

pulses/second for 2 minutes, unless otherwise noted. Delivery of 20nA current was monitored by tracking 
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the voltage drop across a 1MΩ resistor in the electrode circuit with an AxoClamp2B amplifier, connected 

to a Digidata 1320A data acquisition system (Axon Instruments), controlled by Clampex software (version 

9.2). Reversed polarity was used for LY experiments.  

 

Dye Injection Manipulations 

For channelrhodopsin experiments, preparations were illuminated with filtered blue light (440-470nm) 

from an EBQ100 isolated mercury lamp (Leistungselektronik Jena GmbH) for the duration of dye injection. 

Channelrhodopsin function was tested by behavioral response to blue light. For K+ channel blocking, 4-

aminopyridine (4-AP, Sigma-Aldrich; 10mM) was added in physiological saline prior to imaging (Singh and 

Singh, 1999). For cocktail experiments, tetraethylammonium chloride (TEA, Sigma-Aldrich; 10mM) was 

combined with 10mM 4-AP in the bath, with cesium chloride (140mM) dissolved in KAc-free NB dye 

injection solution. Drug was added at the beginning of the dissection, with exposure for >5 minutes prior 

to dye injection. All drug trial preparations were rinsed 3X in physiological saline with a 3-minute rest 

before fixation to prevent interaction between drug and fixative. Forced leak experiments were 

performed following the standard dye injection, followed by a second electrode containing 0.25% TRITC 

in 2M KAc that was placed into the dye-injected neuron. The order of genotypes assayed in all trials was 

changed for experiments each day to avoid any possible ordering experimental artifacts.  

 

Confocal Imaging  

After dye injections, the entire CNS (brain and thoracic ganglion) was dissected out and fixed for 30 mins 

in 4% paraformaldehyde (Electron Microscopy Services)/4% sucrose (Thermo Fisher Scientific) in 

phosphate-buffered saline (PBS, pH 7.2, Life Technology). Fixed preparations were rinsed 3X with PBS, and 

blocked for 1 hour with 1% bovine serum albumin (BSA, Sigma-Aldrich) in PBST (1X PBS, 0.2% Triton X-

100; Thermo Fisher Scientific). Labels were diluted in PBST with 0.2% BSA. The following labels were used: 
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Streptavidin::Cy5 (1:20, Life Technology), rabbit anti-ShakB (1:250, Phelan et al., 1996) and 633-

conjugated goat anti-rabbit (1:250; Life Technology, RRID:AB_141419). Neurobiotin was labeled with 

streptavidin::Cy5. Incubations were conducted either overnight at 4oC or 2 hours at room temperature 

(RT). Following antibody incubations, preparations were rinsed 3X for 30 minutes in PBST before a final 

30-minute rinse in PBS. Preparations were mounted on glass slides (Probe On Plus 25 x 75 x 1.0mm, 

Thermo Fisher Scientific) in 2, 2’-Thiodiethanol (TDE, Staudt et al., 2007). To prevent crushing, double-

sided poster tape (Scotch) was placed on each side of the brains. Coverslips (No. 1.5H, Zeiss) were sealed 

with nail polish (Hard as Nails, Sally Hansen). Fluorescent images were collected using a ZEISS LSM 510 

META laser-scanning confocal microscope with a 40X oil-immersion objective, focusing on the prothoracic 

and mesothoracic ganglia regions (Mu et al., 2014). Imaging settings were maintained across all samples, 

with the exception of GFI dendrites, which required increased brightness for the TRITC injection of w1118 

and dfmr150M, and the NB injection of shakB2 and shakB2; dfmr150M. Images show maximum Z-stack 

projections.  

 

Protein Quantification 

Brains were dissected in PBS from adult females (0-4 days at 25oC). 4 brains were collected on ice in lysis 

buffer (50mM Tris, 100mM NaCl, 1mM EDTA, 1mM PMSF, Protease Inhibitor Cocktail; Sigma-Aldrich), 

sonicated (Branson Model 102C, Sonifier 250 microtip) for 20 seconds, returned to ice for 20 minutes, 

then centrifuged at 14,000 RPM for 10 minutes. Protein samples were prepared using a BCA kit 

(ThermoFisher) and analyzed with a Nanodrop 2000c spectrophotometer (ThermoFisher). 

 

Data Analyses 

FIJI software was used for data quantification and processing (Schindelin et al., 2012, RRID:SCR_002285). 

For dye injection intensity quantification, the number of pixels at each intensity (0-255) was calculated for 
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each 8-bit image stack. A pixel cutoff of 59 was empirically determined to remove background with 

minimal signal loss. The total number of pixels above 59 in the full stack is reported as “dye injected.” GFI 

dendrites were quantified in the same manner after masking cell bodies, axons and dye-coupled neurons. 

A threshold of 90 was used for the TRITC dendrite quantification to offset changes in imaging brightness. 

Intensity quantification was automated using an ImageJ Macro script to remove any experimenter 

analytical bias. The dendritic structure was calculated by measuring the GFI primary branches using the 

FIJI Simple Neurite Trace plugin (Longair et al., 2011). For w1118 and dfmr150M, the TRITC signal was used, 

while for shakB2 and shakB2; dfmr150M NB signal was used for the structural comparisons. For anti-ShakB 

fluorescence quantification, the TRITC dye injection signal was used to create the region of interest (ROI) 

encompassing the GFI bend. This ROI was then overlaid onto the ShakB channel, and intensities of each 

pixel above the background threshold (40) were summed for all optical slices containing the GFI bend. All 

statistical analyses were performed using the Prism software (version 7, GraphPad, RRID:SCR_002798). 

All single pairwise comparisons were performed by two-tailed student’s t test for Gaussian distributions, 

and Mann-Whitney for non-Gaussian distributions. All multiple comparisons were performed using 

unpaired one-way ANOVA, with Tukey-Kramer pairwise post-hoc tests. Slope comparisons were 

performed using the ANCOVA test. In all figures, graphs show mean ± standard error of the mean (SEM) 

with the statistical comparisons displayed as p>0.05 (not significant; NS), p<0.05 (*), p<0.01 (**) and 

p<0.001 (***).  

 

Results  

 

FMRP Selectivity Limits Small Dye Iontophoresis into Neurons   

While studying Drosophila neural connectivity changes in dfmr1 null mutants, we discovered a 

surprising dye iontophoresis phenomenon (Fig. 5): neurons lacking FMRP accept far more neurobiotin 
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(NB, 287Da), but no more dextran-tetramethylrhodamine (TRITC, 10kDa), compared to matched genetic 

background controls. We pursued this intriguing finding in the Giant Fiber (GF) circuit by delivering 

controlled iontophoretic current to co-inject both NB and TRITC dyes into the GF Interneuron (GFI; 

Boerner and Godenschwege, 2011). TRITC provides a real-time confirmation of neuron identity, but 

cannot leave the neuron via gap junctions due to its large size (Phelan et al., 1996). In contrast, the much 

smaller NB readily crosses gap junctions and labels all of the electrically-coupled neurons within the circuit 

(Boerner and Godenschwege, 2010). Each brain hemisphere contains one GFI cell body and dendritic 

arbor (not pictured), with a large descending axon into the thoracic ganglion (TG) terminating in the 

mesothoracic ganglion with a characteristic bend visible by TRITC labeling (Fig. 5A, top, arrow). The GFI 

axon forms electrical synapses with Peripherally Synapsing Interneurons (PSI), visible by NB dye-coupled 

labeling (Fig. 5A, bottom, arrows), and the Tergotrochanteral Motor Neuron (TTMn), which projects to leg 

muscles (King and Wyman, 1980; Allen et al., 1998). We compared dye labeling in dfmr1 null mutants 

(w1118; dfmr150M) with genetic background controls (w1118). Representative images and data summaries 

are shown in Figure 5. 

Upon injection, TRITC distributes uniformly along the GFI axon to the distal terminating bend in 

both controls (Fig. 5A, top left) and dfmr1 nulls (Fig. 5A, top right). Dimmer signal towards the bend results 

from the axon moving progressively deeper into the semi-opaque tissue, which restricts light 

transmission. There was no quantifiable difference in TRITC dye loading between the two genotypes (Fig. 
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 5B). Mean TRITC signal was 2.8x104±0.3x104 pixels in controls (n=36) versus 2.6x104±0.3x104 pixels in 

*  
 
Figure 5. Selective Small Dye Iontophoresis is Increased in dfmr1 Null Neurons 
A, Representative images of the Giant Fiber Interneuron (GFI) co-injected with 10kDa dextran conjugated 
tetramethylrhodamine isothiocyanate (TRITC, red; top) and 287Da neurobiotin (NB, yellow; bottom) dissolved in 2M 
KAc. Images show the thoracic ganglion for w1118 genetic background (control, left) and dfmr150M null mutant (right). 
TRITC-dextran is too large to escape the injected GFI neuron, while NB passes through gap junctions to dye-coupled 
neurons in the GF neural circuit. Arrows indicates GFI bend (top) and Peripherally Synapsing Interneuron (PSI, 
bottom). Arrowheads indicate coupled cell bodies. Scale bar: 20µm. B, Quantification of TRITC (red) and NB (yellow) 
dye injection displayed as mean ± SEM. TRITC: control n=36, dfmr1 n=33. NB: control n=37, dfmr1 n=36. C, Voltage 
required to deliver 20nA of current to the GFI neuron in control and dfmr1 null mutants. Voltage is shown at the 
start (left) and end (middle) of each two-minute injection, and also as the net voltage change after a two-minute 
injection (right). Control n=38, dfmr1 n=35. Significance determined from two-tailed unpaired t tests (B) or two-
tailed Mann-Whitney tests (C): p***<0.001 and not significant (NS). 
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dfmr1 nulls (n=33), an indistinguishable difference in loading (p=0.64, two-tailed unpaired t test). In sharp  

contrast, control GFIs contain visibly less NB dye in the axon, especially at the terminal bend (Fig. 5A, 

bottom left), compared to dfmr1 null mutants (Fig. 5A, bottom right). Moreover, the mutants display 

much more NB signal in the coupled PSI (arrows) and other labeled neurons, including their cell bodies 

(arrowheads). Null dfmr1 GFIs are not visibly coupled to any neurons not labeled in controls and maintain 

a normal circuit pattern. Upon quantification, we found dfmr1 null neurons take up nearly 3-fold more NB 

dye than controls (Fig. 5B). Mean NB dye intensity in controls was 4.4x104±1.1x104 (n=37) compared to 

12.8x104±1.7x104 in dfmr150M mutants (n=36), a very highly significant increase (p=6.2x10-5, two-tailed 

unpaired t test). This selective dye iontophoresis defect is highly replicable and extremely robust, 

providing an excellent new measure for the effects of FMRP loss. Furthermore, such a genotypic 

difference in iontophoretic dye loading has never been reported for any mutant condition, to our 

knowledge. 

 To test if current delivery differences might cause the differential dye loading between genotypes, 

we next recorded the voltage required to deliver a constant current (Fig. 5C). Any voltage change must be 

coupled with a resistance change to maintain a constant current. Differing voltage requirements between 

genotypes would reveal altered conductivity throughout the dye delivery circuit, such as altered plasma 

membrane permeability. Comparing genetic background controls to dfmr1 null mutants, we recorded the 

voltage required to deliver 20nA currents over a 2-minute interval, but found no significant differences 

between the two genotypes (Fig. 5C). The voltage did not differ at the onset of current injection (control: 

8.0±0.9 volts, n=38; dfmr150M: 6.8±0.8 volts, n=35, p=0.21, two-tailed Mann-Whitney test; Fig. 5C) or at 

the end of current injection (control: 7.1±0.7 volts; dfmr150M: 8.0±1.1 volts, p=0.66, two-tailed Mann-

Whitney test; Fig. 5C). The net voltage change also did not differ between the genotypes (control: 0.9±0.7 

volts; dfmr150M: -1.2±1.0 volts, p=0.44, two-tailed Mann-Whitney test; Fig. 5C). Detailed analyses of instant 

current readings (1kHz) throughout the injection period also revealed no differential fluctuations between 
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genotypes that could account for loading differences (not shown). These findings show the electrical 

circuit resistance does not differ between dfmr1 nulls and background controls, and indicate that the 

elevated NB loading in mutants must result from altered fundamental neuron properties in the absence 

of FMRP.  

 

FMRP-Dependent and Charge-Independent Dye Iontophoresis Defect 

We next tested whether the altered neuronal properties were specifically due to loss of FMRP. 

We first compared the w1118 genetic background control (Fig. 6A, top left) with a second, independent 

dfmr1 null allele, dfmr12 (Fig. 6A, top right). To rule out recessive background effects, we tested the 

heteroallelic combination with dfmr150M. This mutant replicated the specific NB dye loading defect 

(control: 3.9x104±1.3x104, n=6; dfmr12/50M: 12.1 x104±1.1x104, n=6, p=0.0008, two-tailed unpaired t test; 

Fig. 6B), supporting a causative FMRP role. We next tested if transgenic expression of wildtype dFMRP in 

dfmr1 null neurons rescues the phenotype using neuron-specific elav-Gal4 as the driver (Brand and 

Perrimon, 1993). Dye loading in the rescue condition was comparable to the paired control, and greatly 

reduced compared to the dfmr1 null (Fig. 6A,B). Quantification supports the conclusion that wildtype 

dFMRP reintroduction rescues the dye loading phenotype (elav-Gal4/+: 6.1x104±1.3x104, n=17; elav-

Gal4/+; dfmr150M, UAS-dfmr1/dfmr150M: 7.8x104±1.5x104, n=18; elav-Gal4/+; dfmr150M/dfmr150M: 

13.4x104±1.9x104, n=13), with no significant difference between control and rescue conditions (p=0.68), 

but a significant difference existing between the rescue and mutant (p=0.03) and persisting between the 

control and mutant (p=0.005, unpaired ANOVA, Tukey-Kramer pairwise post-hoc test; Fig. 6B). Taken 

together, these findings confirm that FMRP specifically regulates NB dye iontophoresis, ruling out genetic 

background and non-specific effects. 

We next tested whether the dye loading phenotype is NB-specific or occurs with other small dyes. 

We repeated the dye injection studies with the commonly-used negatively charged small dye lucifer  
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Figure 6. Dye Iontophoresis Defect is FMRP Dependent and Charge Independent 
A, Representative NB images of GFI injections (2M KAc) for w1118 genetic background (control, top left), heteroallelic 
dfmr1 null (dfmr12/dfmr150M, top right), wildtype UAS-dfmr1 driven with neural elav-Gal4 (rescue, bottom left) in 
dfmr150M null background and the dfmr150M null alone (bottom right). Scale bar: 20µm. B, Quantification of dye 
injection in the above four genotypes. The heteroallelic combination and transgenic rescue experiment occurred 
independently and are displayed with their separate genetic controls. All graphs show data as mean ± SEM. 
Heteroallelic: control n=6, dfmr12/50M n=6. Rescue: control n=17, rescue n=18, dfmr150M n=13. C, Representative 
images of lucifer yellow dye injections (in ddH2O) into the GFI neuron in the w1118 genetic background (control, top) 
and dfmr150M null mutant (bottom). Scale bar: 20µm. D, Quantification of lucifer yellow injection in both genotypes. 
Control n=13, dfmr1 n=12. Significance determined from two-tailed unpaired t test (B, left; D) and unpaired ANOVA 
(B, right): p*<0.05, p**<0.01, p***<0.001 and not significant (NS). 
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yellow (LY, 430Da), which had the added benefit of testing for a role of charge polarity (Hanani, 2012). LY 

is fluorescent and visible during injection, requiring no amplification prior to imaging. Utilizing the same  

iontophoresis paradigm, but with reversed polarity, we again found a dramatic increase in dye uptake in 

the dfmr1 mutants (Fig. 6C). Compared to w1118 genetic controls (top), dfmr1 nulls load far more LY dye 

(bottom), with increased signal continuously along the descending axon and terminating bend (Fig. 6C). Y 

passage to electrically coupled neurons is much slower than NB, thereby largely limiting analysis to the 

injected GFI (Boerner and Godenschwege, 2011). Similar to NB dye, quantification shows controls 

(1.6x104±0.3x104, n=13) loaded 3-fold less LY dye than dfmr1 null mutants (5.6x104±0.5x104, n=12), a very 

highly significant difference (p=3.1x10-6, two-tailed unpaired t test; Fig. 6D). These results show the dfmr1 

mutant defect is generalizable for small dyes, regardless of dye charge polarity. The selective elevation in 

small dye iontophoresis, with large TRITC dye loading unchanged, strongly suggested the phenotype arises 

from a gap junction mechanism. 

 

Increased Dye Iontophoresis Persists in the Absence of Gap Junctions 

The obvious factor that could determine dye loading based on dye size is gap junction electrical 

synapses. FXS patients and models exhibit synaptic overgrowth (Comery et al., 1997; Irwin et al., 2000; 

Zhang et al., 2001; Doll and Broadie, 2015), but these analyses have focused on chemical, not electrical, 

synapses. We hypothesized that increased electrical connectivity mirrors increased chemical synapse 

connectivity in the FXS disease state, promoting dye movement into electrically-coupled neurons and 

thereby bringing more total dye into the GF circuit. All GFI electrical synapses require the Shaking B 

(ShakB) N+16 isoform (Phelan et al., 2008), allowing tests of gap junction abundance between controls 

and dfmr1 nulls. Using a ShakB N+16 antibody, TRITC injected neurons were assayed for fluorescence 

intensity at TTMn synapses along the GFI bend (Fig. 7A). Contrary to our hypothesis, we found ShakB levels 

in controls (top) trend higher than in dfmr1 nulls (bottom). ShakB punctae along the GFI bend (arrows)  
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Figure 7. Null dfmr1 Neurons Manifest Dye Injection Defect Without Gap Junctions  
A, Representative images of anti-ShakB labeling in the GFI for the w1118 genetic background (control, top) and 
dfmr150M null mutant (bottom). White outline indicates GFI bend as labeled by injected TRITC signal. ShakB signal 
intensity is represented as a heat map. Arrows indicate ShakB punctae. Scale bar: 5µm. B, Quantification of ShakB 
signal intensity in both genotypes, displayed as mean ± SEM. Control n=27, dfmr1 n=26. C, Representative NB 
injections into the GFI (2M KAc) for the shakB2 single mutant (left) and shakB2; dfmr150M double mutant (right). Scale 
bar: 10µm. D, Quantification of the injected dye levels in both genotypes, displayed as mean ± SEM. Control n=30, 
dfmr1 n=31. Significance was determined from two-tailed unpaired t tests: p**<0.01 and not significant (NS). 
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connect to the TTMn (Phelan et al., 2008). Punctae were reduced in dfmr1 mutants, potentially indicating 

weaker connections (Fig. 7A). Quantification of ShakB intensity shows weak mutant signal (control: 

2.5x105±0.5x105, n=27; dfmr150M: 1.6x105±0.2x105, n=26), although the decrease is not significant with a 

large sample size (p=0.13, two-tailed unpaired t test; Fig. 7B). This surprising finding runs counter to our 

hypothesis that the dye iontophoresis defect results from increased gap junction connectivity. However, 

it remained possible that gap junctions in dfmr1 mutants are more conductive or spend more time in an 

open conformation than controls (Niculescu and Lohmann, 2014), thus promoting a loading increase.  

To determine if gap junction changes cause increased dye loading in dfmr1 nulls, we examined 

GFI dye injection patterns in the shakB2 null mutant, an allele that does not produce the ShakB N+16 

isoform, thus completely uncoupling GFI connectivity (Blagburn et al., 1999). We performed NB dye 

injections on both shakB2 null mutants and shakB2; dfmr150M double null mutants. The shakB2 allele 

completely abolished all dye coupling in both cases, preventing injected NB dye from leaving the GFI (Fig. 

7C). Again, against our expectations, the excessive NB dye loading defect persisted in dfmr1 nulls in the 

absence of gap junctions. In shakB2 single mutants (left), the NB signal is much reduced all along the 

descending GFI axon as well as terminal bend, compared to the relatively highly elevated signal in shakB2; 

dfmr150M double mutants (Fig. 7C, right). Quantification of dye loading shows nearly twice the signal in 

dfmr1 nulls compared to the matched single mutant controls (shakB2: 1.7x104±0.3x104, n=30; shakB2; 

dfmr150M: 3.1x104±0.4x104, n=31), a very significant increase (p=0.0025, two-tailed unpaired t test; Fig. 

7D). Note that we used only 10-second injections in these shakB2 studies, as the above 2-minute injection 

paradigm caused complete loss of NB/TRITC signals, presumably due to GFI lysis from overloading a 

constrained volume via electroosmotic effects (see Discussion). Taken together, these findings indicate 

the dye iontophoresis defect in dfmr1 null neurons does not depend on gap junction electrical synapses.  

 Having ruled out connectivity changes, we next turned to intrinsic neuron properties to trace the 

impacted mechanism.  
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GFI Dendrites are Structurally Unaltered and Display Dye Loading Defect 

The polarized structure of neurons provides one hypothesis for the mechanism underlying 

increased dye loading: dye compartmentalization varies between genotypes. We therefore tested 

whether increased dfmr1 null axonal dye levels result from reduced dendritic dye accumulation, due 

either to inhibited retrograde dye movement or decreased dendrite architecture. We measured dendritic 

dye loading, volume and coverage in both the w1118 and shakB2 genetic backgrounds to address dye-

coupled and -uncoupled circuits. Representative images in Figure 8A show the complete GFI dendritic 

field, with a dorsal projection connecting the cell body (arrowhead), and the GFI axon projecting towards 

the bottom right in each image (arrow). Control dendrites (e.g. shakB2, top left) load significantly less NB 

dye than dfmr1 mutants (shakB2; dfmr150M, top right), in the absence of discernable structural differences. 

Quantification of NB signal in w1118 controls versus dfmr1 nulls (Fig. 8B, left), and shakB2 versus shakB2; 

dfmr150M (Fig. 8B, right), shows elevated dye loading in dendrites replicating axonal phenotypes. Both 

conditions show significant increases in dfmr1 nulls (control: 0.1x104±0.03x104, n=20; dfmr150M: 

1.6x104±0.2x104, n=20, p=2.7x10-7, two-tailed unpaired t test. shakB2: 2.1x104±0.4x104, n=27; shakB2; 

dfmr150M: 3.4x104±0.3x104, n=30, p=0.009, two-tailed unpaired t test; Fig. 8B). This finding indicates there 

is not a reduction in dye in dfmr1 null dendrites relative to controls that could offset the increase seen in 

axons. 

To determine whether the dfmr1 null GFI dendritic architecture is reduced, thereby forcing more 

injected NB dye into axons, we measured dendritic length, volume and coverage. TRITC labeling in the GFI 

dendrites shows no detectable changes in the GFI dendritic field comparing w1118 controls (left) and dfmr1 

nulls (right; Fig. 8A, bottom). Quantification of the injected TRITC dye shows dendrite volume in the 

controls (3.2x104±0.5x104, n=17) trends smaller than dfmr1 nulls (3.8x104±0.8x104, n=17), but the 

difference is not significant (p=0.54, two-tailed unpaired t test; Fig. 8C). Measurement of the primary 

dendritic branches also shows similar dendritic branch length between w1118 controls (148.2±7.1µm, n=17)  
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Figure 8. Specific Small Dye Iontophoresis is Increased in dfmr1 GFI Dendritic Arbors 
A, Representative images of the GFI dendritic arbors in shakB2 single mutant (top left) and shakB2; dfmr150M double 
mutants (top right) labeled with NB injection (yellow, ddH2O), and w1118 genetic control (bottom left) and dfmr150M 
null (bottom right) labeled with TRITC injection (red, ddH2O). Arrowheads indicate dendritic projections connected 
to the cell body (out of focus). Arrows indicate the descending axons. Scale bars: 5µm. B, NB injection quantification 
of GFI dendritic arbor for w1118 control versus dfmr150M null (left), and shakB2 versus shakB2; dfmr150M (right), 
displayed as the mean ± SEM. w1118 n=20, dfmr150M n=20, shakB2 n=27, shakB2; dfmr150M n=30. C, TRITC injection 
quantification of GFI dendritic arbor for w1118 control versus dfmr150M null, displayed as the mean ± SEM. w1118 n=17, 
dfmr150M n=17. D, Dendritic branch length quantification for w1118 control versus dfmr150M null (left), and shakB2 
versus shakB2; dfmr150M (right), displayed as the mean ± SEM. w1118 n=17, dfmr150M n=18, shakB2 n=26, shakB2; 
dfmr150M n=28. Significance was determined from two-tailed unpaired t tests: p**<0.01, p***<0.001 and not 
significant (NS). 
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and dfmr1 null mutants (dfmr150M: 146.4±6.0µm, n=18, p=0.85, two-tailed unpaired t test; Fig. 8D, left). 

Likewise, dendritic branching was similar in the dye-uncoupled circuit comparing shakB2 versus shakB2; 

dfmr150M double mutants (shakB2: 166.6±3.3µm, n=26; shakB2; dfmr150M: 157.3±4.2µm, n=28, p=0.09, 

two-tailed unpaired t test; Fig. 8D, right). Overall, dye loading is increased in dfmr1 null dendrites, similar 

to our findings in axons, indicating the dye loading increase occurs throughout the neuron. Moreover, 

gross dendritic arbor volume and branching is unchanged in dfmr1 mutants, ruling out the possibility that 

smaller dfmr1 dendrites drive more dye entry into axons. It is worth noting that there is similarly elevated 

dye loading in the dfmr1 null cell bodies relative to controls (not pictured). Given this global increase in 

dye iontophoresis, we next tested multiple other neuronal properties that could impact dye uptake. 

 

Intrinsic Neuronal Properties Unrelated to Dye Injection Defect  

 We first tested whether an increase in axon size could elevate NB dye loading in dfmr1 nulls, 

despite unaltered TRITC uptake (Fig. 5). We hypothesized larger volume, could accommodate more 

injected dye, causing the noticeable increase in signal along the GFI axon. We used the TRITC signal, an 

internal control unchanged between genotypes, to measure GFI axon diameter in control (left) versus 

dfmr1 null (right) neurons (Fig. 9A). We found no difference in diameter between genotypes over a GFI 

axonal length of 40µm (Fig. 9B), with controls averaging 4.9±0.2µm (n=15) and dfmr1 nulls 5.0±0.2µm 

(n=16) in diameter, a non-significant difference (p=0.79, two-tailed unpaired t test; Fig. 9B). We confirmed 

this finding by labeling the GFI with membrane RFP (UAS-mcd8::rfp) driven with a GFI-specific Gal4 driver 

(91H05-Gal4; Jenett et al., 2012). With this independent transgenic label (not shown), we again found 

similar axonal diameters comparing dfmr1 nulls (5.9±0.4µm, n=12) versus controls (5.2±0.3µm, n=12; 

p=0.16, two-tailed unpaired t test), showing FMRP loss does not impact size. We also tested dfmr1 

mutants for elevated protein levels as a consequence of increased translation by extracting protein from 

control versus dfmr1 null brains and comparing protein levels using the BCA assay. Quantified  



51 
 

 

 
 

Figure 9. Dye Injection Defect is not Related to Multiple GFI Neuron Properties  
A, Representative TRITC injections (ddH2O) showing the GFI descending axon for w1118 genetic background (control, 
left) and dfmr150M null mutant (right). Scale bar: 5µm. B, Quantification of the axon diameter in both genotypes, 
displayed as the mean ± SEM. Control n=15, dfmr1 n=16. C, Representative NB dye injections into GFI for the w1118 
genetic background (control, top) and the dfmr150M null mutant (bottom) using only KAc-free dye solution (ddH2O). 
Scale bar: 20µm. D, Quantification of the injected dye levels, displayed as mean ± SEM. Control n=25, dfmr1 n=26. 
E, Representative NB injections (ddH2O) into GFI for w1118 genetic background (control, panel 1, 3) and dfmr150M null 
mutant (panel 2, 4). After dye injection, samples were either immediately dissected (0 min) or injected with TRITC 
for 5 minutes (5m) with positive current prior to dissection. Scale bar: 20µm. F, Quantification of injected dye levels, 
displayed as the mean ± SEM. 0m: control n=6, dfmr1 n=6. 5m: control n=6, dfmr1 n=5. Significance determined 
from two-tailed unpaired t test (D) and unpaired ANOVA (F): p*<0.05, p***<0.001 and not significant (NS). 
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comparisons of total brain protein levels confirm a highly significant increase in dfmr1 nulls relative to 

controls by 14.5% (w1118 control: 1.40±0.04µg/brain, n=11; dfmr150M: 1.61±0.03µg/brain, n=11, p=0.0003, 

two-tailed unpaired t test). Thus, neuron size is unchanged in dfmr1 mutants but protein concentration is 

elevated, consistent with expectations. We next explored the possibility that the standard 2M potassium 

acetate (KAc) in the dye injection electrode (Phelan et al., 1996; Kudumala et al., 2013; Lee and 

Godenschwege, 2014) is related to the iontophoretic differences between genotypes. We hypothesized 

that dfmr1 mutants preferentially accept NB+ ions over K+ ions from the electrode due to intrinsic 

differences in membrane K+ conductivity, characteristic of FXS disease models (Strumbos et al., 2010; Lee 

et al., 2011). We repeated dye injections with NB/TRITC dissolved in ddH2O and found far more NB loaded 

in both controls and mutants (Fig. 9C). Incredibly, KAc-free injection controls contained as much dye signal 

as 2M KAc injected dfmr1 null mutants typically display (compare Figs. 9C and 5A). KAc-free injection in 

dfmr1 nulls revealed far more dye-coupled neurons, showing the extraordinary degree of GF circuit 

connectivity. In both genotypes, signal increased in GFIs and coupled neurons; however, the relative 

difference between dfmr1 null and control remained unchanged (Fig. 9C,D). Mutants show a 3.5-fold 

increase in NB signal over controls (control: 23.6x104±2.1x104, n=25; dfmr150M: 82.3x104±5.7x104, n=26), 

a very significant elevation (p=6.2x10-11, two-tailed unpaired t test; Fig. 9D). While this does not rule out 

a role for neuronal [K+] or K+ channel function in the dye loading phenotype, we found K+ in the dye 

solution has no demonstrable impact on relative dye loading between controls and dfmr1 nulls. We 

further explore the role for K+ currents later (see below), but first we tested a simpler explanation: does 

loss of FMRP reduce NB dye leakage from neurons? 

Besides gap junctions, many neuronal membrane pores permit escape of small ionic molecules 

(like NB) to the extracellular space, including innexin hemi-channels, transient receptor potential (TRP) 

channels and purinergic receptors (Bennett et al., 2003; Meyers et al., 2003). The broad FMRP role in 

mRNA translational regulation makes disruption of these protein levels a possibility in the FXS disease 
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state, although only tenuous links are currently known (Darnell et al., 2011; Naviaux et al., 2013; Kong et 

al., 2014). We used multiple experiments to test the hypothesis that membrane pores cause controls to 

leak more dye than dfmr1 null neurons. First, we modified our protocol to rapidly fix brains after 2M KAc 

dye injection, dramatically shortening the potential NB dye leak period. When comparing the new rapid-

fix w1118 control and dfmr1 null neurons, we found no correction of the NB dye loading defect (control: 

5.3x104±1.7x104, n=9; dfmr150M: 16.4x104±2.1x104, n=10), with a highly significant increase in mutants 

(p=0.0007, two-tailed unpaired t test; not shown). Second, we performed above KAc-free injections and 

then allowed preparations to sit for 5 minutes (5m) after injection, to intensify the effects of putative dye 

leakage. Quantification of dye loading shows no difference in signal with increased time for leakage (no 

delay (0m) w1118: 30.1x104±4.8x104, n=7; delay (5m) w1118: 38.8x104±6.6x104, n=8; p=0.32, two-tailed 

unpaired t test; not shown). Together, these two studies do not support a passive dye leakage effect 

causing the differential dye loading. 

In a final trial, we tested the hypothesis that NB dye leakage occurs only during the actual current 

injection. The hypothesis was that controls produce more membrane pores than dfmr1 nulls, but only 

current can drive NB through these pores, permitting leakage solely during iontophoresis. We tested this 

idea by performing KAc-free NB/TRITC injections for 2 minutes, and then injecting TRITC dissolved in 2M 

KAc for another 5 minutes. We found no difference between standard injections (Fig. 9E, 0 min) and 

additional current injections (Fig. 9E, 5 min) for either controls or dfmr1 mutants, clearly ruling out the 

possibility of an electrically induced dye leak from the GFI. Moreover, the dye iontophoresis defect was 

not modulated, with far more NB signal in dfmr1 mutants compared to controls (Fig. 9E). Quantification 

shows that injected dye remains following prolonged post-injection current for 5 minutes (0m control 

(c0): 27.6x104±3.2x104, n=6; 0m dfmr150M (d0): 85.5x104±6.7x104, n=6; 5m control (c5): 24.7x104±3.4x104, 

n=6; 5m dfmr150M (d5): 86.8x104±27.9x104, n=5), with significant differences persisting in all comparisons 

between controls and mutants (c0 v. d0: p=0.018, c0 v. c5: p=0.998, c0 v. d5: p=0.022, c5 v. d0: p=0.013, 
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c5 v. d5: p=0.015, d0 v. d5: p=1.00, unpaired ANOVA, Tukey-Kramer pairwise post-hoc test; Fig. 9F). After 

ruling out the possibility that dye leaks from the circuit, we turned our attention to cation movement to 

test whether changes in endogenous K+ conductance alters NB injection. 

 

Ionic Manipulations Alter Dye Loading but do not Resolve dfmr1 Defect  

A recent large body of work links FMRP to K+ channel expression and function (Brown et al., 2010; 

Strumbos et al., 2010; Gross et al., 2011; Lee et al., 2011; Deng et al., 2013). We therefore hypothesized 

that dfmr1 neurons more efficiently expel K+ ions, reducing charge buildup to permit accumulation of 

more NB+ ions. The above work supports this hypothesis by showing that removing KAc from the injection 

solution increases dye signal (Fig. 9C,D). We first used the K+ channel blocker 4-aminopyridine (4-AP, 

10mM; Singh and Singh, 1999) to test whether reduced K+ conductance impairs NB dye loading (Fig. 10A). 

Comparing control (top) and dfmr1 nulls (bottom) without (left) or with 4-AP (right), we found blocking K+ 

channels greatly reduced dye loading in both genotypes. Importantly, however, a significant difference 

between drug-treated controls and dfmr1 null mutants remains despite the major reduction in dye uptake 

(Fig. 10A). Quantification shows that 4-AP treatment strongly reduces NB loading, but also that the dfmr1 

defect persists (control 0mM 4-AP (c-): 8.4x104±1.2x104, n=15; dfmr150M 0mM 4-AP (d-): 18.2x104±1.7x104, 

n=15; control 10mM 4-AP (c+): 2.2x104±0.7x104, n=15; dfmr150M 10mM 4-AP (d+): 10.1x104±1.2x104, 

n=15), with highly significant differences remaining (c- v. d-: p<0.0001, c- v. c+: p=0.004, c- v. d+: p=0.79, 

c+ v. d-: p=0.0001, c+ v. d+: p=0.0002, d- v. d+: p=0.0001, unpaired ANOVA, Tukey-Kramer pairwise post-

hoc test; Fig. 10B). Thus, K+ channel function appears not to explain the dfmr1 defect. 

To rule out the possibility that 4-AP was not fully blocking all K+ channels involved in the 

phenotype, we assayed a cocktail consisting of both 4-AP (10mM) and tetraethylammonium (TEA, 10mM) 

in the bath, and cesium chloride (140mM) in the injection pipette. We again found reduced NB dye 

loading, but the expanded cocktail still does not correct the relative dfmr1 mutant phenotype (control  
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untreated (c-): 24.3x104±3.4x104, n=16; dfmr150M untreated (d-): 49.4x104±5.4x104, n=14; control K+ 

cocktail (c+): 6.3x104±1.2x104, n=17; dfmr150M K+ cocktail (d+): 19.4x104±2.7x104, n=16, c- v. d-: p<0.0001, 

c- v. c+: p=0.0007, c- v. d+: p=0.29, c+ v. d-: p= p<0.0001, c+ v. d+: p=0.0124, d- v. d+: p<0.0001, unpaired 

 
 
Figure 10. K+ Channel Block Reduces Dye Loading Without Correcting dfmr1 Defect  
A, Representative NB dye injections (2M KAc) into GFI in w1118 genetic background (control, top) and dfmr150M null 
mutant (bottom). Samples were bathed in standard saline (left) or standard saline + 10mM 4-AP (right). Scale bar: 
20µm. B, Quantification of injected dye levels, displayed as mean ± SEM. 0mM 4-AP: control n=15, dfmr1 n=15. 
10mM 4-AP: control n=15, dfmr1 n=15. C, Representative NB injections into GFI (ddH2O) for elav-Gal4 driven UAS-
chr2-xxl animals raised on EtOH vehicle (top) or ATR co-factor (bottom). Scale bar: 20µm. D, Quantification of 
injected NB dye levels for both elav-Gal4 and 91H05-Gal4 (images not shown) driven UAS-chr2-xxl, displayed as mean 
± SEM. elav: EtOH n=14, ATR n=14. 91H05: EtOH n=10, ATR n=12. E, Representative NB dye injections into GFI 
(ddH2O) using an internal ground also within the GFI for the w1118 genetic background (top) and dfmr150M null mutant 
(bottom). Scale bar: 20µm. F, Quantification of injected dye levels for both genotypes, displayed as mean ± SEM. 
Control n=9, dfmr1 n=10. Significance determined with two-tailed unpaired t test (F) and unpaired ANOVA (B, D): 
p**<0.01, p***<0.001 and not significant (NS). 
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ANOVA, Tukey-Kramer pairwise post-hoc test). We also repeated assays with the LY- dye to test whether 

the reduced dye loading caused by K+ channel blockade is specific to cationic dyes. We found that 10mM 

4-AP during LY injection also reduces dye uptake in both control and dfmr1 null neurons and maintains 

the pattern of increased loading in the absence of FMRP (LY control 0mM 4-AP (c-): 1.0x104±0.3x104, n=35; 

LY dfmr150M 0mM 4-AP (d-): 2.3x104±0.4x104, n=34; LY control 10mM 4-AP (c+): 0.5x104±0.2x104, n=36; LY 

dfmr150M 10mM 4-AP (d+): 0.7x104±0.2x104, n=36, c- v. d-: p=0.017, c- v. c+: p=0.57, c- v. d+: p=0.85, c+ v. 

d-: p=0.0002, c+ v. d+: p=0.96, d- v. d+: p=0.0012, unpaired ANOVA, Tukey-Kramer pairwise post-hoc test). 

Note that the lowered dye injection levels following 4-AP application makes fluorescence readings more 

variable and complicates determination of the significance of the LY effects. We conclude that 4-AP 

reduces NB/LY dye loading in both genotypes, but blocking K+ channels does not alleviate differential dye 

loading between dfmr1 and controls. To further test the role of ionic conductance, we next assayed 

increased conductivity. 

We increased K+ conductance via K+ channel overexpression, including Irk2 (Inwardly rectifying K+ 

channel 2; mammalian Kir2.1) and Shaw (Shaker cognate w; mammalian Kv3.2). Neural elav-Gal4 driven 

Irk2A causes a trending but non-significant increase in NB dye loading (elav/+ control: 22.2x104±2.5x104, 

n=25; elav/UAS-irk2: 30.9x104±4.1x104, n=22, p=0.08, two-tailed unpaired t test). Neural elav-Gal4 Shaw 

overexpression proved to be lethal and therefore could not be examined, but targeted GFI-specific 91H05-

Gal4 driven Shaw expression has no discernable effect on dye loading (91H05/+: 57.5x104±4.7x104, n=14; 

91H05/UAS-shaw: 58.4x104±7.0x104, n=14, p=0.91, two-tailed unpaired t test). We also used blue light-

gated channelrhodopsin with the all-trans retinal (ATR) co-factor (Nagel et al., 2003) to provide temporal 

and pharmacological control over elevated cation conductivity. To maximize current, we used high-

conductance ChR2-XXL channels (Dawydow et al., 2014) both pan-neuronally (elav-Gal4) and targeted to 

the GFI (91H05-Gal4). Both drivers show no difference in dye loading between controls fed the EtOH 

vehicle (Fig. 10C, top) and experimentals fed the essential ATR co-factor (bottom). Quantification shows 
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ChR2-XXL activation causes no increase in dye loading for either driver (elav-Gal4 EtOH: 52.4x104±5.5x104, 

n=14; elav ATR: 55.4x104±8.9x104, n=14, p=0.78, two-tailed unpaired t test; 91H05-Gal4 EtOH: 

63.5x104±8.4x104, n=10; 91H05 ATR: 55.7x104±7.9x104, n=12, p=0.5, two-tailed unpaired t test; Fig. 10D). 

These results show increased K+ permeability is unlikely to be the cause of increased dfmr1 dye loading. 

To more broadly test if conductance across the membrane alters dye loading we inserted both 

dye iontophoresis and ground electrodes into the GFI neuron, short-circuiting current flow across the 

membrane. We hypothesized that this “closed circuit” should prevent the dye loading phenotype if the 

dfmr1 dye defect arises from membrane conductivity differences. With this dye injection paradigm (KAc-

free), the dfmr1 dye defect persisted (Fig. 10E). Controls showed the normal basal labeling of the injected 

GFI and dye-coupled neurons (top), whereas dfmr1 null mutants showed an elevated, intense dye signal 

(bottom). Quantification of injected dye shows an internal ground maintains the iontophoresis defect 

(control: 15.0x104±3.0x104, n=9; dfmr150M: 56.0x104±6.3x104, n=10), with a highly significant effect 

(p=5.5x10-5, two-tailed unpaired t test; Fig. 10F). Thus, results from removing the plasma membrane from 

the injection circuit suggest the defect does not arise from membrane ionic flux differences between the 

genotypes. Taken together, blocking K+ channels with 4-AP reduces total dye loading dramatically, but 

does not equalize signal in controls and dfmr1 mutants, dye loading is not impacted by introducing 

Drosophila K+ or exogenous cation channels and removing membrane roles does not correct differential 

dye loading. This suggests that cytoplasmic changes in the absence of FMRP must contribute to the rate 

at which small charged dyes accumulate in neurons during iontophoresis.  

 

Elevated Intracellular Dye Iontophoresis Rate in dfmr1 Null Neurons  

To test how more NB dye enters the GF circuit over time in dfmr1 null mutants, we performed 

KAc-free dye injections for a series of durations: 10 seconds, 30 seconds, 1 minute and 2 minutes (Fig. 11). 

We hypothesized dye signal would increase linearly as a function of time in both genotypes, with a 
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reduced slope in controls compared to mutants. To our surprise, timed injection results showed a much 

more striking difference in dye loading (Fig. 11A): control neurons display relatively limited dye uptake 

increases after the first 10 seconds of injection (left) compared with dfmr1 null’s steady, strong increase 

at each time point (right). In controls, the GFI axon and PSI cell bodies did not load significantly more dye 

over time, and the coupled neurons remained relatively weakly labeled after they reached an apparent 

equilibrium point (Fig. 11A). In sharp contrast, the dfmr1 mutants began with similar NB dye levels 

compared to controls in the first 10 seconds, but then continuously accumulated more dye in the injected 

GFI as well as dye-coupled neurons, as evidenced by the dramatically broadening circuit dye incorporation 

over time. In dfmr1 nulls, dye-coupled neurons that were not visible after 10 seconds of iontophoresis 

began to reach the quantification threshold after 30 seconds, and greatly contributed to the overall signal 

by 2 minutes (Fig. 11A). Note that dye was present in the same circuit neurons for both genotypes, and 

the broader pattern in dfmr1 nulls results from more neurons crossing the quantification threshold, rather 

than new circuit partners. 

Quantified comparisons show a significantly elevated rate of dye loading in dfmr1 mutants (Fig. 

11B). After 10 seconds of injection, there was no significant difference (control: 18.0x104±3.4x104, n=10; 

dfmr150M: 20.9x104± 2.3x104, n=10; p=0.48), but by 30 seconds a small but significant elevation was 

apparent in the mutants (control: 29.1x104±5.0x104, n=10; dfmr150M: 44.0x104±3.9x104, n=10; p=0.03). 

After a full minute, a 2.5-fold increase was present in dfmr1 nulls (control: 27.0x104±5.4x104, n=10; 

dfmr150M: 68.3x104±7.5x104, n=9; p=4.7x10-4), which grew to more than a 4-fold increase by 2 minutes of 

injection (control: 24.6x104±3.5x104, n=10; dfmr150M: 101.4x104±10.1x104, n=10; p=1.6x10-5, two-tailed 

unpaired t test; Fig. 11B). The result is a significant difference in the dye loading slope (p=0.003 unpaired 

ANCOVA), with a nearly 25-fold increase in the dfmr1 nulls compared to the matched controls (Fig. 11B). 

In contrast to NB dye, TRITC levels increased linearly at a comparable rate between the two genotypes 

(Fig. 11A, insets), with no significant difference between the slopes (p=0.61, unpaired ANCOVA),  
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Figure 11. Dye Iontophoresis Rate is Highly Elevated in dfmr1 Null Mutant Neurons  
A, Representative NB dye injection (ddH2O) images of GFI for the w1118 genetic background (control, left) and 
dfmr150M null mutant (right) with progressively increasing periods of iontophoresis (10, 30, 60 and 120 seconds). The 
main images show NB dye loading, and insets show co-injected TRITC dye loading within the same neurons. All 
images display pixels above the threshold of 59. Scale bar: 20µm. B, Quantification of injected dye levels at each of 
the 4 time points for both genotypes, displayed as mean ± SEM. Control 10s n=10, control 30s n=10, control 1m 
n=10, control 2m n=10, dfmr1 10s n=10, dfmr1 30s n=10, dfmr1 1m n=9, dfmr1 2m n=10. Significance determined 
from two-tailed unpaired t test (points) and unpaired ANCOVA (slope): p*<0.05, p**<0.01, p***<0.001 and not 
significant (NS). 
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supporting our findings that FMRP loss does not affect TRITC dye loading (Fig. 5) Together, these results 

show a highly selective FMRP-dependent dye iontophoresis rate defect, with dfmr1-null mutants losing a 

temporal restriction on iontophoresis. We conclude the FXS model lacks a barrier to small charged dye 

uptake, increasing dye loading in injected neurons and, consequently, signal throughout the electrically-

coupled circuit.  

 

Discussion  

We have discovered an unexpected new effect of FMRP loss in the Drosophila FXS model: dye 

iontophoresis rates dramatically increase in neurons lacking FMRP, with the effect dependent on dye size 

but not charge. The defect is gap junction independent, but also increases dye transfer to downstream 

electrically-coupled neurons within the circuit. Evidence that genotype differences can affect neural dye 

iontophoresis is totally unprecedented, to our knowledge, despite extensive dye injection studies over 

many decades (Schofield, 2008; Lanciego and Wouterlood, 2011; Hanani, 2012). Both NB and LY dye 

loading defects are striking, but the absence of loading differences for the larger TRITC dye complicates 

the findings. Trans-dermal studies show electromigration primarily drives rapid electrophoretic ion 

movement for small molecules, while the slower movement of larger molecules depends more on 

electroosmosis (Marro et al., 2001; Kalia et al., 2004). Electroosmosis is an electric field dependent solvent 

flow caused by bulk movement of ions that accumulate along solid-liquid interfaces (Pikal, 2001). Here, 

this would result in ionic flux along the electrode sides, carrying a slow flow of solvent and larger dye 

molecules into the neuron. This effect may explain why larger TRITC responds differently than smaller NB 

and LY dyes: the slow electroosmotic solvent flow remains unchanged in dfmr1 mutants, while the rapid 

electromigration rate becomes significantly disrupted.  

Several tests show FMRP loss specifically causes dye iontophoresis elevation. First, we replicated 

the defect with a second dfmr1 null allele, ruling out non-specific recessive effects. Second, we rescued 
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the phenotype with wildtype FMRP targeted to neurons, showing neuronal FMRP restricts dye uptake. 

Third, we showed the defect in shakB2 mutants in the Oregon-R background, not only ruling out gap 

junction connectivity defects (discussed below), but also showing persistence across genetic backgrounds. 

We found the defect is not NB-specific by repeating with negatively charged LY, eliminating NB-specific 

explanations, such as biotinidase degradation (Mishra et al., 2010), and positive charge specific theories, 

such as anionic precipitation. Gap junction coupling only allows passage of small molecules (<1kDa), 

regardless of charge, and seemed the obvious explanation here (Weber et al., 2004). Increased electrical 

synapses appeared a predicted consequence of well-reported FXS synaptic overgrowth and hyper-

connectivity (Comery et al., 1997; Irwin et al., 2001; Zhang et al., 2001; Doll and Broadie, 2015). Indeed, 

recent work hints that FXS models have elevated gap junctions (Kong et al., 2014). However, we found 

dfmr1 nulls show a trending gap junction reduction (ShakB levels), and complete gap junction loss (shakB2 

null) does not correct the dfmr1 dye loading phenotype. Likewise, LY loading was primarily limited to the 

GFI under our injection conditions, similar to shakB2 results, further confirming that dye movement to 

coupled neurons is not required for differential dye loading. Note the dye loading differences between 

dfmr1 and control were reduced in the shakB2 background, suggesting partial rescue. The assay’s shorter 

injection times may explain the difference, but it is possible that elevated interneuron connectivity is a 

separable neuronal property causing dfmr1 nulls to increase dye uptake.  

 In our experiments, the only manipulation that increased dye loading was removing K+ from the 

injection electrode, although the dfmr1 phenotype persisted. The likely explanation is that dye no longer 

competes with smaller, more mobile, K+ ions and thus constitutes more of the injection current; a shift 

well-known in trans-dermal iontophoresis (Pikal, 2001). K+-free injection allows lower currents to deliver 

more dye over shorter periods, an advantage employed in subsequent experiments. The dfmr1 dye 

loading defect holds for dyes of both polarities, so it remained possible, although not parsimonious, that 

FMRP loss disrupts multiple ion channel classes, altering anionic and cationic flow. We first tested K+ 



62 
 

channel function, known to be disrupted in FXS models (Brager and Johnston, 2014; Contractor et al., 

2015). Importantly, application of K+ channel blocker 4-AP (Singh and Singh, 1999) reduces dye loading, 

although the relative dfmr1 phenotype persisted. A relationship between K+ currents and iontophoretic 

loading has not been previously reported, to our knowledge, but suggests that increased dfmr1 dye 

loading could result from elevated K+ currents (Contractor et al., 2015). However, we could not 

significantly increase dye loading by elevating conductance with Irk2 or Shaw K+ channels, or transgenic 

channelrhodopsin. Of course, changes to endogenous K+ conductance in dfmr1 nulls may not be 

sufficiently replicated with channel manipulations. However, persistence of the phenotype after removal 

of the plasma membrane from the injection circuit supports the conclusion that ion channels are not the 

primary cause of altered dfmr1 null dye loading.  

Another possibility is that dfmr1 null neurons have a shifted iontophoretic current composition 

that does not affect net current flow. The current composition is the percent of charge carried by each 

ion group in the system. Each ionic contribution is determined by its charge, concentration, size and 

surrounding environment, represented by the transference number (Sackin and Boulpaep, 1981). FMRP 

loss could shift current composition, making it more difficult for neuronal ions to enter the electrode, 

favoring instead dye ions entering the neuron. This could be accomplished either by changing the ratio of 

ion groups in the cytoplasm or the cytoplasmic viscosity ions experience. The importance of ion ratios was 

demonstrated when we removed the small K+ ion from the dye injection electrode and caused more dye 

to enter neurons without changing the iontophoretic current. A related change could occur in dfmr1 null 

neurons, with the mutant cytoplasm containing a higher ratio of large ions than controls, thus reducing 

average cytoplasmic ion speed and favoring dye transfer into the neuron. An increase in large ion 

concentration may be a consequence of the known disruptions to multiple ion channel classes in the FXS 

model, altering neuronal resting ionic concentrations (Contractor et al., 2015). Testing such a hypothesis 

may require more sophisticated channel manipulations. Alternatively, the increased protein 
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concentrations in dfmr1 nulls, confirmed in this work, could shift current composition to favor dye uptake 

if their charged residues alter the ionic composition of the cytosol (Qin et al., 2005; Tessier and Broadie, 

2008). A similar shift could come from byproducts of disrupted enzymatic metabolism in the FXS condition 

(Lima-Cabello et al., 2016). Importantly, correcting protein levels via slowing the elevated translation rate 

ameliorates many FXS symptoms (Bolduc et al., 2008; Osterweil et al., 2013), and could prove equally 

efficacious for the increased dfmr1 null dye loading.  

In timed iontophoresis experiments, control neurons approach dye equilibrium after just 10 

seconds of injection, whereas dfmr1 null neurons exhibit constant dye accumulation over minutes. The 

limitation on dye loading is not caused by leakage, as fluorescence intensity remains constant regardless 

of time between dye injection and fixation. Dye loading was increased in all regions of dfmr1 null neurons, 

including dendrites and axons, showing that differential dye compartmentalization or preferential 

subcellular filling does not explain the defect. We also rule out neuronal dye capacity, as both dendrite 

and axon sizes are unaltered. Moreover, any internal capacity differences would similarly affect the larger 

TRITC dye, which loaded equally in both genotypes. Further, iontophoretic differences based on neuronal 

capacity would not permit the increased dye loading caused by removing K+ from the injection electrode. 

It is possible that increased cytoplasmic viscosity in dfmr1 nulls shifts the ratio of incoming to outgoing 

ions by altering ionic flux (Kühn et al., 2011). This defect could arise from increased cytosolic concentration 

of proteins resulting from the loss of FMRP translational repression (Qin et al., 2005; Tessier and Broadie, 

2008), Such a disruption would have wide-ranging developmental and functional effects on neural circuits 

in the FXS disease state.  

In conclusion, we have uncovered a robust new consequence of FMRP loss in Drosophila FXS model 

neurons. Quantitative dye iontophoresis reveals dfmr1 null neurons selectively lack an impediment to 

small charged dye entry. The FMRP mechanism limits iontophoretic rate, strictly capping the maximum 

dye transfer. The dfmr1 mutant defect is limited to small NB+1 and LY-1 dyes, with no effect on the larger 
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TRITC+1 dye. Increased gap junction coupling seemed the obvious explanation for our findings, but 

persistence of the NB loading defect in shakB2 nulls lacking gap junctions, as well as the GFI-restricted LY 

loading defect in dfmr1 nulls, rules out neuronal coupling as causative. Neuron size, membrane porosity 

and ion channel function all appear to play negligible roles in the phenotype. This study has also shed new 

light on the classic iontophoretic dye-injection technique, showing that: 1) genotype can dictate dye 

iontophoresis rate, 2) ionic composition can limit dye loading, and 3) K+ channel currents can enhance dye 

transfer. All of these findings are unprecedented, despite extensive dye studies for decades, and force us 

to expand our understanding of this classic technique. FMRP regulates numerous transcript targets 

(Darnell et al., 2011), primarily repressing translation (Cvetkovska et al., 2013; Ifrim et al., 2015), and also 

regulates numerous ion channel classes (Contractor et al., 2015), providing several avenues for future 

investigation of the FMRP intersection with dye loading. Determining the causative mechanism(s) 

underlying disrupted dye iontophoresis will be a difficult, albeit important goal, as it may help identify 

neuronal causes of FXS symptoms. 
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Chapter III 

 

Newly Identified Electrically Coupled Neurons Support Development of the Drosophila Giant Fiber 

Model Circuit 

 

This paper has been published under the same title in eNeuro, 2018. 

Nine movies were included as part of this work which can be found at 

http://www.eneuro.org/content/early/2018/11/22/ENEURO.0346-18.2018 
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Abstract  

The Drosophila Giant Fiber (GF) escape circuit is an extensively studied model for neuron connectivity and 

function. Researchers have long taken advantage of the simple linear neuronal pathway, which begins at 

peripheral sensory modalities, travels through the central GF Interneuron (GFI) to motor neurons, and 

terminates on wing/leg muscles. This circuit is more complex than it seems however, as there exists a 

complex web of coupled neurons connected to the GFI, which widely innervate the thoracic ganglion. 

Here, we define four new neuron clusters dye-coupled to the central GFI, which we name GF Coupled 

(GFC) 1-4. We identify new transgenic Gal4 drivers that express specifically in these neurons, and map 

both neuronal architecture and synaptic polarity. GFC1-4 share a central site of GFI connectivity, the 

Inframedial Bridge (IB), where the neurons each form electrical synapses. Targeted apoptotic ablation of 
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GFC1 reveals a key role for proper development of the GF circuit, including the maintenance of GFI 

connectivity with upstream and downstream synaptic partners. GFC1 ablation frequently results in loss of 

one GFI, which is always compensated for by contralateral innervation from a branch of the persisting GFI 

axon. Overall, this work reveals extensively coupled interconnectivity within the GF circuit, and the 

requirement of coupled neurons for circuit development. Identification of this large population of 

electrically-coupled neurons in this classic model, and the ability to genetically manipulate these 

electrically synapsed neurons, expands the GF system capabilities for the nuanced, sophisticated circuit 

dissection necessary for deeper investigations into brain formation. 

 

Significance Statement  

Genetic model neural circuits with individually identifiable neurons help us understand how nervous 

systems wire together during development, and then operate through coordinated chemical and 

electrical signaling. The Drosophila Giant Fiber circuit has long served as such a model, due to large neuron 

size, genetic malleability and easily visualized behavioral output: a jump in response to a threat. This study 

unveils new members of this circuit, all of which synapse with the circuit at one site on the central Giant 

Fiber Interneuron. We use new tools to identify and transgenically manipulate these neurons and show 

that these neurons are required for proper circuit development. This study provides a detailed circuit map 

for further dissection of neuronal connectivity and electrically-coupled communication. 

 

Introduction  

The Drosophila Giant Fiber (GF) circuit is particularly suitable for single-neuron resolution 

neurodevelopmental studies for a number of reasons, all related to its role as an escape response circuit 

(Allen et al., 2006; Boerner and Godenschwege, 2011). The need for rapid signal conduction from the 

senses through brain to muscles promoted evolution of very large neurons throughout this circuit, 
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facilitating their visualization and manipulation (Power, 1948; Borgen et al., 2017). This enlargement is 

most prominent in the long-distance Giant Fiber Interneuron (GFI), which consolidates sensory 

information in the brain and projects through the neck into the thoracic ganglion (TG) via giant axons 

(Allen et al., 1998; Pézier et al., 2014). To increase communication speed and fidelity between neurons, 

the GF circuitry uses mixed chemical and electrical synapses (Thomas and Wyman, 1984; Blagburn et al., 

1999; Fayyazuddin et al., 2006). These electrical synapses, composed of the Shaking-B innexin, can pass 

small tracer dyes to identify coupled partner neurons (Phelan et al., 1996). 

The GF circuit targets two large muscle sets used for rapid escape behavior, the Tergotrochanteral 

Muscle (TTM), which controls the legs for jumping, and the Dorsal Longitudinal Muscle (DLM), which 

controls the wings (Tanouye and Wyman, 1980). The escape behavior is easily scored and muscles are 

accessible to electrophysiological recordings, providing two outlets to study whole circuit function 

(Martinez et al., 2007; Augustin et al., 2011; von Reyn et al., 2014). The GFI connects to the TTM via the 

Tergotrochanteral Motor neuron (TTMn) and to the DLM via the Peripherally Synapsing Interneuron (PSI), 

which in turn synapses onto the Dorsal Longitudinal Motor neuron (DLMn; Tanouye and Wyman, 1980; 

Allen et al., 2006). While the GF circuit is reported to be quite simple, electrophoretic injections with small 

dyes make it clear that the GFI is actually part of a much larger circuit network of undescribed neurons 

(Boerner and Godenschwege, 2011; Enneking et al., 2013; Kennedy and Broadie, 2017).  

This larger GF circuit should come as no surprise, as most classically studied circuits are 

continuously being updated to include new neurons, increasing appreciation of the complexity and 

interconnectivity within the brain (Lin et al., 2016; Talay et al., 2017; Zheng et al., 2017; Cande et al., 2018). 

Describing the wiring diagrams of classic circuits within model brains is important for understanding how 

local circuits accomplish processing tasks, while also overriding or promoting behaviors controlled by 

separated but interconnected circuits (Gaudry and Kristan, 2009; Stensmyr et al., 2012; von Reyn et al., 

2014). More complex model circuits can better help answer questions about how circuits develop and 
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evolve over time (Ward et al., 2015; Tosches, 2017). Combining GF circuit manipulability with the full 

complement of GFI-coupled neurons should enable robust new avenues for experimentation on how 

neurons select partners, determine synaptic strength and regulate neighboring circuits. 

In this study, we use neurobiotin dye injection to map previously uncharacterized GF Coupled 

(GFC) neurons. We take advantage of the Flylight Gal4 library collection to identify transgenic drivers for 

the GFCs (Brand and Perrimon, 1993; Jenett et al., 2012). This approach defined four new GFI-coupled 

neuron clusters (GFC1-4) within the GF circuit, which we characterize for their architecture, neuronal 

polarity and synaptic connectivity. We show that the Inframedial Bridge (IB; Allen et al., 1998) is the GFI 

site where all the GFC neurons come together to synapse with the circuit. We ablate GF neurons by 

transgenic expression of the apoptotic Head Involution Defective (Hid) protein (Zhou et al., 1997) to find 

that GFC1 and PSI are required for proper GFI development. We also find GFI axons always compensate 

for loss of their bilaterally symmetric partner through new contralateral innervation. Together, this work 

broadens the known GF circuit and opens new avenues for studying electrically-coupled circuit 

development, function and plasticity. 

 

Materials and Methods 

 

Drosophila Genetics  

All animals were maintained on a standard cornmeal/agar/molasses Drosophila food in a 12-hour 

light:dark cycling incubator at 25oC. Timed-lay eggs were collected for 2-3 days, and experimental animals 

were selected from rearing tubes 10-14 days later. The following Drosophila lines were used for genetic 

crosses: w1118 (RRID:BDSC_3605) | w1118; P{GMR78A06-Gal4}attP2 (Jenett et al., 2012) | w1118; 

P{GMR73C07-Gal4}attP2 (RRID:BDSC_46689) | w1118; P{GMR24H07-Gal4}attP2 (RRID:BDSC_49317) | 

w1118; P{GMR42A06-Gal4}attP2 (RRID:BDSC_41245) | w1118; R10B11-p65.AD}attP40 (Dionne et al., 2018; 
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RRID:BDSC_68807) | w1118; P{GMR14A06-Gal4.DBD}attP2 (RRID:BDSC_68738) | w1118, y1; 10X UAS-ivs-

mcd8::gfp attP40 (Pfeiffer et al., 2010) | UAS-hid.Z/CyO (Zhou et al., 1997; RRID:BDSC_65403) | w1118; 

UAS-denmark, UAS-syt::gfp (Zhang et al., 2002; Nicolai et al., 2010; RRID:BDSC_33064). Both females and 

males were used in this study, with sex-specific selection stated in figure legends. All genotypes were 

verified with visible markers.  

 

Dye Iontophoresis 

GFI dye injections were performed similar to the previously published methods (Boerner and 

Godenschwege, 2011; Kennedy and Broadie, 2017). Briefly; glass electrodes (Kwik-Fil Borosilicate glass 

1B100F-4, World Precision Instruments) were pulled on a laser electrode puller (Model P-2000, Sutter 

Instrument Company) to 10MΩ resistance (3M KCl). Electrodes were filled with 0.25% TRITC-Dextran 

(10kDa, Life Technologies) and 7% neurobiotin (Vector Laboratories, RRID:AB_2313575) in ddH2O. Filled 

electrodes were placed on a silver-chloride wire mounted on a PCS-5000 micromanipulator (Burleigh). 

Animals in physiological saline were cut along the dorsal midline to access the cervical connective (CC), at 

which electrodes were inserted into the GFI. A square-pulse stimulator (Grass S48, Astro-Med) provided 

7.5 100ms pulses/second for 2 mins with the 20nA injected current monitored by an AxoClamp2B 

amplifier. A Digidata data acquisition system (1320A, Axon Instruments) was controlled with Clampex 9.2 

software.  

 

Confocal Imaging  

Brains were fixed for 30 mins in 4% paraformaldehyde/sucrose (Electron Microscopy Services) in 

phosphate-buffered saline (PBS, pH 7.2, Life Technology) and then rinsed 3X with PBS, and blocked for 1 

hr with 1% bovine serum albumin (BSA, Sigma-Aldrich) in PBST (PBS + 0.2% Triton X-100; Thermo Fisher 

Scientific). Labels were diluted in PBST with 0.2% BSA. The following labels were used: Streptavidin::Cy5 
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(1:20, Life Technology), rabbit anti-ShakB (1:250, Phelan et al., 1996), rabbit anti-GFP (1:2000; Abcam, 

RRID:AB_303395), FITC Goat anti-GFP (1:500; Abcam, RRID:AB_305635), Rabbit anti-RFP (1:500; Rockland, 

RRID:AB_2209751), Alexa 488-conjugated donkey anti-goat (1:250; Thermo Fisher, RRID:AB_2534102), 

Alexa 488-conjugated donkey anti-rabbit (1:250; Thermo Fisher, RRID:AB_2556546), Alexa-568 

conjugated donkey anti-rabbit (1:250; Thermo Fisher, RRID:AB_2534017), Alexa-647 conjugated donkey 

anti-rabbit (1:250; Thermo Fisher, RRID:AB_2536183), and Alexa-633 conjugated goat anti-rabbit (1:250; 

Thermo Fisher, RRID:AB_141419). Next, preparations were rinsed 3X for 30 mins in PBST, 1X in PBS, and 

then mounted on glass microscope slides (Probe On Plus 25 x 75 x 1.0mm, Thermo Fisher Scientific) in 2, 

2’-Thiodiethanol (TDE, Sigma-Aldrich; Staudt et al., 2007). To prevent crushing, double-sided poster tape 

(Scotch) was placed on each side of the brains. Coverslips (No. 1.5H, Zeiss) were sealed with nail polish 

(Hard as Nails, Sally Hansen). Fluorescent images were collected using a ZEISS LSM 880 confocal 

microscope with an AiryScan module, which has increased lateral resolution (161nm) and signal-to-noise 

ratio (Sivaguru et al., 2016). Images show maximum Z-stack projections under standard confocal mode, 

unless otherwise noted in the figure legends.  

 

Data Analyses 

Data processing and image creation was done with FIJI software (version 2, RRID:SCR_002285; 

Schindelin et al., 2012; Schneider et al., 2012). Neuronal models and movies were created using Imaris 

(version 9.2, RRID:SCR_007370). 
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Results  

 

The Giant Fiber Circuit Exhibits Extensive Dye-Coupled Connectivity 

Small, gap junction permeable dyes used to study the Giant Fiber (GF) circuit have consistently 

revealed an extensive, but uncharacterized, network of dye-coupled neurons (Boerner and 

Godenschwege, 2011; Enneking et al., 2013; Kennedy and Broadie, 2017). In order to thoroughly study 

the architecture and properties of these neurons, we iontophoretically injected the Giant Fiber 

Interneuron (GFI) with the highly gap-junction permeable neurobiotin (NB) dye, and then labeled the 

brains post-hoc with a streptavidin-conjugated fluorophore (Huang et al., 1992). Consistent with 

previously published work, this intracellular dye injection reveals an extensive network of neurons dye-

coupled to the GFI (Fig. 12). This dye-coupling is the direct result of gap junction connectivity, as 

eliminating gap junctions using shaking-B mutants (shakB2) prevents all NB dye transfer (data not shown; 

Blagburn et al., 1999; Kennedy and Broadie, 2017). A summary of this newly identified GF circuitry is 

shown in Figure 12. 

 Although there are a large number of dye-labeled processes widely distributed throughout the 

thoracic ganglion (TG; Fig. 12A), all published GF circuit maps name only two GFI-coupled cells: 1) 

Tergotrochanteral Motor neuron (TTMn) and 2) Peripherally Synapsing Interneuron (PSI; Fig. 12B, ‘old 

circuit map’). Here, we map and characterize all of the dye-coupled neurons whose projections we can 

trace back to an identifiable cell soma. We have named these neurons “Giant Fiber Coupled” (GFC) 

followed by an identifying number (Fig. 12A, B). In this study, we report the characterization of 4 neuron 

clusters (GFC1-4), each of which represents a bilaterally-symmetric set of 2-7 neurons (Fig. 12B, ‘new 

circuit map’). The processes of these neurons contact the descending GFI axons and reach into all three 

TG segments (TG1-3), but do not cross into the brain or abdominal ganglion (AG). To understand how the 

GFCs integrate into the GF circuit, we began by obtaining selective genetic access to these neurons. 
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Transgenic Gal4 Drivers for Newly Identified Giant Fiber Coupled Neurons 

 To accurately map and manipulate the separate GFC neuron populations, we set forth to identify 

Gal4 drivers with highly specific expression for each GFC using two approaches. First, we conducted an in 

silico screen through the entire Janelia FlyLight library, which includes lines generated from the Vienna 

Tiles project (9,436 lines; Jenett et al., 2012; Tirian and Dickson, 2017). Using images of the GFI dye-labeled 

 
 
Figure 12. Giant Fiber Interneuron Dye Injection Reveals Coupled Neurons 
A, The Giant Fiber Interneuron (GFI) iontophoretically injected with neurobiotin (yellow) shows extensive dye-
coupling to neurons in the thoracic ganglion (TG). The established GFI-coupled neurons are 1) the Peripherally 
Synapsing Interneuron (PSI; orange) and 2) the Tergotrochanteral Motor neuron (TTMn; red). The newly identified 
GFCs project into all three TG segments (TG1-3), but do not extend into the abdominal ganglia (AG). B, Left: The old 
GF circuit map showing both of the previously characterized GFI (green) dye-coupled neurons: PSI (orange) and TTMn 
(red). Right: The new GF circuit map with the addition of all the newly identified GFC neurons from this study: GFC1 
(blue), GFC2 (purple), GFC3 (dark green) and GFC4 (yellow). 
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circuit (Fig. 12A), we screened for matching GFP expression patterns (Fig. 13). We identified highly specific 

Gal4 drivers for GFC1 (78A06; Fig. 13A) and GFC2 (73C07; Fig. 13B), as well as less specific drivers for GFC3 

and GFC4. Second, for cleaner GFC3 and GFC4 drivers, we used the recent automated Color-depth 

Maximum Intensity Projection (MIP) tool for the Drosophila transgenic database (Otsuna et al., 2018). 

Using the less specific driver lines as templates to search this library, we screened for specific Gal4 drivers 

for GFC3 and GFC4. This complementary approach uncovered a highly specific driver for GFC3 (24H07; 

Fig. 13C), and a combined driver for GFC3/4 (42A06; Fig. 13D). During our search with the MIP tool, we 

identified many additional GF circuit drivers, aside from the ones used in this study. We selected the  

cleanest drivers and report them in Table 3 for use in future experiments.  

 

 To confirm that the new Gal4 transgenic driver lines label the bona fide GFC components of the 

GF circuit, we crossed each Gal4 line with the UAS-mcd8::gfp membrane reporter (Fig. 13, column 1) and 

injected the GFI with NB (Fig. 13, column 2). The merged images show perfect overlap between each 

transgenic driver line and the specified subset of the dye labeled neurons (Fig. 13, column 3). Cell bodies 

are strongly labeled in all cases (arrowheads), and individual neuronal processes of GFC1-4 can be traced 

for both the GFP and NB signals (arrows). However, in some cases, such as GFC2 (73C07-Gal4), the dye 

injection signal is much dimmer than for other neurons, such as GFC1 (78A06-Gal4). Each GFC cluster is 

schematically represented within the TG, with full color on one side (Fig. 12 color scheme) and dashed  

GFI GCI TTMn PSI GFC1 GFC2 GFC3 

R14A01 R32C04 R25D08 R26E04 R93E07 R13C08 R44D02 

VT004455 R74E09 R88F07 R75E05 R87D02 R77C12 R58E04 

VT042336 VT002209 VT038335 VT030598 VT059438 VT043662 R75D03 
 
Table 3. Transgenic Gal4 Driver Lines for the Giant Fiber Circuit 
New Gal4 drivers (distinct from those used in this study) that express selectively within the GF circuit, as compiled 
from the Janelia Flylight and Vienna Tiles library collections. Selective lines for GFC4 have not been uncovered and 
thus are not reported here. Abbreviations: GFI: Giant Fiber Interneuron, GCI: Giant Commissural Interneuron, TTMn: 
Tergotrochanteral Motor neuron, PSI: Peripherally Synapsing Interneuron, GFC: Giant Fiber Coupled neurons. 
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Figure 13. Transgenic Gal4 Drivers for the Newly Identified GFC Neurons  
Gal4-driven expression of UAS-mcd8::gfp (green, column 1) overlapping with the GFI injection of neurobiotin dye 
(yellow, column 2) showing the identification of GFC drivers (merge, column 3). Arrows indicate processes with 
overlapping GFP and NB labeling, and arrowheads show the GFC cell bodies. The GFC neurons are drawn both in 
color (Fig. 12 color scheme) and perforated outlines to show their bilateral pattern (column 4). Thoracic ganglia (TG) 
segments are selected to best show GFC projection architecture. All injections were performed on females. A, 
78A06-Gal4 labels GFC1. The driver strength is relatively weak, with a somewhat stochastic labeling of the GFC1 
neurons. B, 73C07-Gal4 labels GFC2. This driver is moderately strong, but also labels other neurons. C, 24H07-Gal4 
labels GFC3. This driver strength is moderate, with labeling of other neurons. D, 42A06-Gal4 labels both GFC3 and 
GFC4 neurons. The driver is relatively weak, with stochastic labeling of GFC4 neurons.  
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outlines on the other side, to show each individual GFC neuron as well as their bilaterally symmetrical 

pattern (Fig. 13, column 4). Using these Gal4-driven GFP expression patterns, we are able to map each 

GFC cluster within the TG. 

 

Projection Architecture of GFC Neurons Within the Thoracic Ganglion 

 GFC1 is comprised of 2 bilaterally symmetrical neurons on each side of TG2 (Fig. 13A). Each soma 

projects a process medially, which crosses the midline at the Inframedial Bridge (IB; Allen et al., 1998) and 

then splits, sending one branch anteriorly and one posteriorly. The anterior process travels halfway up 

TG1, then bends laterally and ventrally to terminate in the anterior corner of TG1, almost at the ventral-

most point of the TG (Fig. 13A). This process extends several thin terminals, beginning in the same plane 

as the GFI bend. The posterior process splits halfway down TG2, just below the GFI bend. One branch 

proceeds laterally, then turns posteriorly towards the TG2 edge, with a ventral dive and several thin 

terminals, before terminating in the TG2 posterior lateral corner (Fig. 13A). The other process descends 

into TG3, bends inward towards the midline, then laterally to the anterior edge. From here, the process 

projects posteriorly and ventrally to end in a similar fashion to the other two terminals (Fig. 13A). All three 

GFC1 projections appear to innervate the leg neuropils (Namiki et al., 2018).  

 The 7 bilaterally symmetric GFC2 neurons are largely restricted to TG2 (Fig. 13B). These cell bodies 

neighbor GFC1 and similarly project fasciculating processes medially. However, two-thirds of the way to 

the midline, the processes bend posteriorly and then laterally, to curve ventrally towards the lower edge 

of TG2 in the region of the GFI axon bend (Fig. 13B). The processes then curve anteriorly back towards the 

cell bodies, with a slight dorsal trajectory before termination, projecting several short, heavily-branched 

termini in anterior and posterior directions. Another process doubles back towards the posterior 

deflection, travels medially to the midline and then sends out two branches posteriorly (Fig. 13B). One 

curves ventrolaterally to terminate along the first ventral spiral, and the other travels dorsolaterally along 
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the path of the original anterior process, terminating as it turns up towards the soma. There are two other 

processes that depart from the midline: one travels dorsally and slightly posteriorly before terminating, 

and one projects anteriorly and dorsolaterally to terminate in the lower central TG1 (Fig. 13B). These 

processes both appear to innervate the wing neuropils (Namiki et al., 2018). 

 GFC3 is comprised of 5 bilaterally symmetrical neurons with the cell bodies positioned dorsally in 

the posteriolateral corner of TG2 (Fig. 13C). These cells send out fasciculating processes that first proceed 

ventrally in a medial-anterior direction up to the central IB connection with the GFI. At the IB, extensive 

GFC3 branches are visible, extending laterally and dorsally, but no further in either anterior or ventral 

directions (Fig. 13C). These processes also track along the large terminal bend of the GFI axon. Dorsal to 

the IB, the main GFC3 processes reverse course to travel posteriolaterally, while remaining ipsilateral to 

their cell bodies. The projection direction is ventral until TG3 is reached, at which point the processes 

move dorsally once again (Fig. 13C). These processes terminate near the anterior portion of TG3 within 

the leg neuropil, in a series of thin processes at approximately the same axial plane as the IB and GFI 

axonal bends (Fig. 13C). Of note, both GFC1 and GFC3 were unintentionally captured in a recent screen 

for descending neurons (Namiki et al., 2018). 

The 4 bilaterally symmetric GFC4 neurons are largely restricted to TG1 (Fig. 13D). The GFC4 cell 

bodies lie in the TG1 dorsal lateroposterior corner. The GFC4 processes first fasciculate to project 

ventrally, then posterior-medially, running to the central IB (Fig. 13D). From the IB, the GFC4 processes 

then reverse course, remaining ipsilateral to their cell bodies as they project dorsally, back the way they 

came towards their cell bodies (Fig. 13D). When the GFC4 processes are directly below their cell bodies, 

they turn ventrally, and then travel towards the TG1 anteriolateral corner to terminate in long finger-like 

projects (Fig. 13D). Like the other GFCs, the GFC4 processes appear to innervate the leg neuropils (Namiki 

et al., 2018). Overall, these transgenic driver lines allow detailed analysis of GFC architecture, and provide 
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highly specific genetic control over the GFC neurons. To determine how these neurons interact with the 

GF circuit, we next examined their contact points with the GFI. 

 

The Inframedial Bridge Connectivity Site of GFI-GFC Intersection 

 GFC1-4 are all dye-coupled to GFI via direct or indirect gap junction connections (Fig. 12), and all 

of these neurons project to the central Inframedial Bridge (IB) to overlap with the GFI (Fig. 13). The IB has 

been defined as a region proximal to the GFI lateral axonal bend, where the GFI axon puts forth tufted 

projections and connects to the PSI (Allen et al., 1998). We therefore hypothesized the IB is the primary 

site of GFI-GFC connectivity. To determine the location of potential synaptic sites between the GFI and 

GFCs, we injected the GFI with the large, non-permeant dye tetramethylrhodamine (TRITC-dextran, 10 

kDa; Boerner and Godenschwege, 2011; Enneking et al., 2013; Kennedy and Broadie, 2017) for all the 

UAS-mcd8::gfp labeled GFC1-4 lines (Fig. 14). We then assayed for overlap regions where GFC membrane 

signal (Fig. 14, column 1) contacts the GFI TRITC signal (Fig. 14, column 2). Merging the two channels to 

create static (Fig. 14, column 3) and dynamic (Movies 1-4) 3D reconstructions of the spatial overlap 

provides clear identification of GFI-GFC contact points.  

GFP and TRITC signals are color coded by depth to visualize the Z dimension (FIJI plugin: Temporal-

Color Code), with neurons proximal in Z space displaying the same color (Fig. 14, columns 1, 2). Overlap 

between neurons is shown for GFCs (green) and GFI (magenta; Fig. 14, column 3). The results show that 

GFC1 contacts the GFI only at the IB with a simple crossing branch (Fig. 14A, arrows; Movie 1). GFC2-4 also 

contact the GFI directly at the IB, but with a much higher level of complexity (Fig. 14B-D, arrows; Movie 

2-4). Further, GFC2 and 3 have processes that branch from the IB and overlap the large terminal bend of 

the GFI axon (Fig. 14B,C; arrowheads; Movies 2 and 3). This is the first example, to our knowledge, of any 

contact along the GFI axonal bend other than TTMn. We also observe a third contact point between GFI 

and GFC3. The GFI axon bend occasionally extends small processes, which can contact GFC3 on posteriorly 
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descending processes (Fig. 14C, arrowhead; magnified in inset). As these overlaps are likely sites for gap 

junction connectivity within the circuit, we investigated these membrane contacts for electrical synapses.  

 

Shaking-B Gap Junction Synapses Between GFI and GFC Neurons  

 The GF circuit is characterized by mixed chemical and electrical synapses (Blagburn et al., 1999; 

Allen et al., 2006). To map GFI-GFC electrical synapses, we labeled for the Shaking-B (ShakB) innexin, using 

an antibody recognizing the “N+16” isoform present at GFI synapses (Phelan et al., 2008). Flies in which 

GFC1-4 neurons are labeled with UAS-mcd8::gfp (Fig. 15, column 1, green) were GFI-injected with TRITC 

(column 2, magenta) and co-labeled with ShakB antibody (column 3, cyan). All three channels were 

modeled with 3D rendering software to visualize ShakB-positive GFI-GFC contacts (Fig. 15, column 4; 

Movies 5-9). GFC1 (78A06-Gal4) exhibits a simple arborization, with a process coming across the IB, and 

making a characteristic anterior-posterior split (Fig. 15A; Movie 5). ShakB is clearly visible in the 3D 

models, localized between the GFI and GFC1 as the process exits the IB (arrows and inset). GFC1 projects 

axons to all three TG segments, indicating that there is a set of outputs triggered by the GFI escape 

response in parallel to TTM and DLM activation.  

 GFC2 neurons have a larger process field, forming a hemi-circle in front of the GFI (Fig. 15B; Movie 

6). Multiple ShakB electrical synapses clearly occur between the GFI and GFC2, although due to the 

complexity of these connections, it is not possible to determine if the GFI is contacting the GFC2 processes 

that come from the contra- or ipsilateral sides of the TG, or both (Fig. 15B). GFC2 also contacts the GFI 

along the distal axonal bend (Fig. 14B), so we also investigated these sites for ShakB co-localization. The 

results show contact between the GFI and GFC2 near the tip of the bend, however ShakB punctae are 

rarely seen co-localizing at these contacts (Fig. 15C; Movie 7), suggesting these are primarily chemical 

synapse connections. GFC3 has the most extensive IB contacts among all the GFCs, as well as broad 

interactions with surrounding neurons (Fig. 15D; Movie 8). GFC3 contacts the GFI with ShakB electrical  
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Figure 14. The GFI Interacts with the GFC Neurons at the Inframedial Bridge  
Gal4 lines driving UAS-mcd8::gfp (column 1) intersect with the GFI axon revealed by injection of 
tetramethylrhodamine (TRITC, column 2), at the GFI Inframedial Bridge (IB) and the GFI axonal bend (merge, column 
3). The first 2 columns use depth color coding to represent Z-position within the TG, with more dorsal regions 
displaying cool colors and ventral regions displaying warm colors (see color scale bar in A, column 2). Arrows indicate 
overlapping membrane contact between GFCs and GFI at the IB. Arrowheads indicate GFC contact at the GFI axon 
bend. All injected flies are female. A, GFC1 (78A06-Gal4) interacts with the GFI exclusively at the IB. B, GFC2 (73C07-
Gal4) interacts with the GFI at the IB, and the GFI axonal bend. C, GFC3 (24H07-Gal4) interacts with the GFI 
extensively at the IB and the GFI axonal bend. The GFI also produces small side projections that contact GFC3 (inset, 
arrowheads). D, GFC4 (42A06-Gal4) interacts with the GFI at the IB. 
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synapses (arrows), but GFC3 branches extending beyond the IB are mostly ShakB negative (Fig. 15D), 

indicating few electrical synapses. GFC3 contacts the GFI axon bend even more extensively than GFC2, but 

similarly has a small number of ShakB electrical synapse contacts (Fig. 15E; Movie 9). All images of GFI-

GFC3 IB contact sites exhibit ShakB-positive electrical synapses, but only one image of the GFI-GFC3 axonal 

bend shows a synaptic connection (Fig. 15E, arrow). GFI axon bends are presynaptic to the TTMn, with 

extensive ShakB electrical synapses (Phelan et al., 2008), but it appears only a small portion of this gap 

junction connectivity is used for GFC2 and 3, with the primary GFI-GFC electrical connections in the IB (Fig. 

15B,D). Without a GFC4-specific driver, we are unable to specifically test GFI-GFC4 ShakB synaptic 

connections. To determine the direction of information flow across GFI-GFC synapses, as well as 

connectivity in other regions of the TG, we next mapped the pre- and postsynaptic neuronal polarity of 

GFC1-4 synapses. 

 

Pre- and Postsynaptic Polarity of Thoracic Ganglion GFC Neurons 

To investigate GFC postsynaptic domains, we used the UAS-denmark dendrite reporter, 

composed of the exogenous mouse ICAM5 dendritic protein fused to RFP (Nicolai et al., 2010). For 

presynaptic labeling, we used the UAS-synaptotagmin::gfp (Syt::GFP) reporter, composed of the 

Synaptotagmin1 (Syt1) integral synaptic vesicle protein fused to GFP (Zhang et al., 2002). In GFC1, the 

DenMark signal is absent from the finger-like projections at the process termini (Fig. 16A, column 1), and 

Syt::GFP is strongly present in a punctate array, indicating these processes are presynaptic sites (Fig. 16A, 

column 2). In contrast, DenMark strongly labels GFC1 within the IB (arrow), indicating this site is 

postsynaptic to the GFI (Fig. 16A, image column 3, top). The Syt::GFP signal is absent (Fig. 16A, image 

column 3, bottom), suggesting the IB site is solely for input. Together, these data indicate GFC1 neurons 

receive presynaptic input onto their dendrites at the IB and then project their contralateral axons for 

synaptic output into the leg neuropil (Namiki et al., 2018). 
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Figure 15. GFCs Form Electrical Synapses with the GFI at the Inframedial Bridge 
Electrical synapses between GFI and GFC neurons are shown in Gal4-driven UAS-mcd8::gfp animals (green, column 
1) with TRITC dye injection into the GFI (magenta, column 2), while co-labeling with the Shaking-B antibody (cyan, 
column 3). Images were taken using the microscope’s AiryScan mode. The three merged channels (column 4) show 
the regions of shared ShakB contact between GFI-GFCs. Arrows indicate sites of the GFI-GFC ShakB synaptic contacts 
(magnified in insets). All injected flies are female. A, GFC1 (78A06-Gal4) makes ShakB electrical synapse contacts 
with the GFI at the IB. B, GFC2 (73C07-Gal4) forms several ShakB electrical synapse contacts with the GFI. C, GFC2 
(73C07-Gal4) contacts the GFI along the axonal bend. D, GFC3 (24H07-Gal4) contacts the GFI with multiple ShakB 
electrical synapses. E, GFC3 (24H07-Gal4) minimally contacts the GFI along the axonal bend (arrow). 
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 In contrast, GFC2 looped processes are strongly labeled by DenMark, including contacts at the GFI 

axon bend (Fig. 16B, column 1), with strongly co-localizing Syt::GFP (column 2). Only the dorsolaterally 

projecting processes in the wing neuropil display Syt::GFP without DenMark present. Similarly within the 

IB, DenMark and Syt::GFP again co-localize, although DenMark is at a low level (Fig. 16B, image column 

3). Thus, GFC2 neurons appear to have many co-localized pre- and postsynaptic domains. Note that it is 

not possible to tell where in the loop GFC2 processes double back, and the pre- and postsynaptic 

compartments may be in separate, adjacent processes (Fig. 16B). Based on our ShakB findings (Fig. 15B), 

it is likely GFI and GFC2 directly synapse, but both appear presynaptic at the IB and they may also share 

postsynaptic targets that mediate GFI-GFC2 coupling. Another possibility is that GFI-GFC2 dye transfer 

does not occur at the IB, but instead they couple indirectly via an intermediary neuron. This could explain 

why the GFC2 is relatively poorly labeled by NB dye injection into the GFI, compared to other GFCs. 

 GFC3 has pre- and postsynaptic domains similar to GFC1 (Fig. 16C). The GFC3 long finger-like 

process projections in TG3 have very weak DenMark signal (column 1) and very clear Syt::GFP punctae 

(column 2). Therefore, these sites are presumably presynaptic in leg neuropil (Namiki et al., 2018). At the 

IB, GFC3 strongly expresses DenMark (Fig. 16C, image column 3), which is thus postsynaptic. However, 

Denmark expression expands beyond the IB to include GFC3 branches that parallel the GFI axon bend and 

descending processes (Fig. 16C, arrowheads). Syt:GFP is undetectable at all of these GFC3 sites, indicating 

they are solely postsynaptic (Fig. 16C, image column 3). Surprisingly, DenMark/Syt::GFP expression is 

lethal with the 42A06-Gal4 driver, and we were therefore unable to evaluate GFC4 pre- and postsynaptic 

domains. Based on similarities to GFC3, we predict GFC4 has postsynaptic sites at the IB and presynaptic 

sites in the TG1 leg neuropil. Overall, DenMark and Syt::GFP clearly distinguish pre- and postsynaptic 

regions of all GFC neurons, except GFC2. As the GFCs are so intimately interconnected with the GFI, we 

next tested if these coupled neurons play a role in GF circuit development or maintenance. 
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GFC Requirements for the Development of GF Circuit Architecture 

 We used Gal4-targeted expression of the Head Involution Defective (Hid) protein to drive 

apoptosis in GFC neurons, in an attempt to eliminate each GFC and study the effects on the GF circuit 

architecture (Zhou et al., 1997; Muthukumar et al., 2014). Unfortunately, all of the GFC drivers used above 

(Fig. 13) are lethal in combination with UAS-hid. We repeated the study using split-Gal4 (spGal4) lines 

10B11-AD ꓵ 14A06-DBD (Luan et al., 2006; Pfeiffer et al., 2010; Dionne et al., 2018) to eliminate the 

apoptosis of off-target cells. These spGal4 lines were identified using the MIP search tool, and were 

selected for their strong expression in GFC1 with minimal overlap in non-specific neurons. This spGal4 

combination expresses strongly in GFC1, but also in PSI, as seen when crossed with UAS-mcd8::gfp (Fig. 

17A, green) with injected TRITC (magenta) to label the GFI. In the brain (Fig. 17A, top), only TRITC dye is 

present in the GFI, where the GFI cell bodies (arrow) and their dendrites (arrowheads) reside. Importantly, 

no mCD8::GFP is present in the GFI (Fig. 17A, green). Similarly, the Giant Commissural Interneuron (GCI), 

which interconnects the GFIs, displays no mCD8::GFP. In the TG, GFC1 (arrow) and PSI (arrowhead) 

express mCD8::GFP (Fig. 17A, bottom). 

 NB dye injection into GFI in a UAS-hid/+ control animal shows both GFIs labeled in the brain (Fig. 

17B, arrows). The GCI (arrowheads) interconnecting the GFI cell bodies (Allen et al., 1998) is also dye 

labeled. In the TG, the intact dye-coupled GF circuit is present in all UAS-hid /+ control animals (Fig. 17B, 

bottom). When the spGal4 driver is crossed to UAS-hid and the GFI injected with NB, GFC1 is ablated in 

18/20 animals (90%); fully in 14/20, partially in 4/20 (Fig. 17C). Partial ablations are defined as several, but 

not all, neurons within GFC1 clusters being killed. PSI is eliminated in 16/20 animals (80%). Two animals 

had no visible cervical connective (CC) axons and could not be injected for analysis. The ablation of coupled 

cells causes stronger dye labeling in the persisting neurons, as expected due to the reduced volume of the 

GF circuit. As a consequence, the standard 2-minute NB dye injection can cause lysis of the GF circuit, and 

therefore injection times were reduced to <30 seconds for these ablation experiments. This finding is  
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Figure 16. Pre- and Postsynaptic Polarity of the Newly Identified GFC Neurons 
GFC neuronal polarity is shown using the dendrite/soma label DenMark (magenta) and the presynaptic label 
Synaptotagmin::GFP (Syt::GFP, green). Substacks of the regions of interest for each GFC are shown for DenMark 
(column 1) and Syt::GFP (column 2), with above and below paired comparisons (image column 3). Arrows indicate 
the position of the Inframedial Bridge (IB). GFC schematic representations are shown (center column), with regions 
of interest outlined in black boxes. A, GFC1 (78A06-Gal4) processes are labeled by presynaptic Syt::GFP in both TG1 
(top) and TG2 (bottom) segments, while the IB is labeled by postsynaptic DenMark. B, GFC2 (73C07-Gal4) processes 
in TG2 (column 1) are co-labeled by both DenMark (column 1) and the Syt::GFP marker (column 2). The IB is labeled 
by presynaptic Syt::GFP, but also has the DenMark signal (column 4). C, GFC3 (24H07-Gal4) has punctate Syt::GFP 
within the finger-like processes in TG3 (column 2). The IB is labeled by DenMark, with no Syt::GFP marker (column 
4). GFC3 processes along the GFI axonal bend also express the DenMark label (arrowheads). 
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similar to previous reports when GFI dye coupling is eliminated through lack of interconnecting gap 

junctions (Kennedy and Broadie, 2017).  

 When testing the GF circuit for connectivity changes, we find GFC1/PSI ablation causes a striking 

impact on GFI development (Fig. 17C). All control animals (UAS-hid/+, n=21) display a completely normal 

dye-coupled GF circuit without detectable defects (Fig. 17B). With targeted UAS-hid ablation (spGal4 

10B11-AD ꓵ 14A06-DBD>UAS-hid, n=20 animals), in 9/14 animals (~65%) with complete GFC1 ablation 

(including 1 case with the PSI present; Fig. 17C, arrowhead), one of the GFI neurons is completely absent 

(Fig. 17D,E). In partial GFC1 ablation cases, only 1/4 animals (25%) lost a GFI. When a GFI is lost, there is 

no visible dye within the neuron, including the soma and the axon (Fig. 17C), and we only detect one axon 

traveling through the CC by light microscopy. The remaining GFI always extends a compensating axon to 

the contralateral side (10/10 animals; 100%) and forms a normal terminal axon bend (Fig. 17C, arrow).  

 Targeted UAS-hid expression is restricted to GFC1 and PS1, with no evidence of either GFI or GCI 

expression. A full summary of the experimental results is compared between UAS-hid/+ controls (n=21) 

and the spGal4 10B11-AD ꓵ 14A06-DBD>UAS-hid targeted ablation (n=20; Fig. 17D,E). Interestingly, in an 

animal with a fully intact GFC1 and only PSI ablation, both GFIs are present. In an animal with neither PSI 

nor GFC1 ablated, both GFIs are present (Fig. 17D,E). PSI ablation alone does not appear to be responsible 

for GFI loss, as GFI loss occurs when GFC1 alone is missing, but not when PSI alone is missing. We therefore 

conclude that GFC1 helps maintain GFI during GF circuit development. Another interesting ablation result 

is the loss of GFI dye-coupling to GCI in 5/10 animals (50%) where a GFI is lost (Fig. 17C). Surprisingly, this 

loss of GCI also occurs in 2 animals where both GFIs are present; one with only GFC1 ablated, and the 

other with only PSI ablated. These results suggest the GFC neurons, alongside the classic GF circuit 

neurons, play an important role in neural circuit development.  
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Figure 17. GFC Neurons Support GF Circuit Architectural Development 
A, The GFI labeled by iontophoretically injected TRITC (magenta) reveals the soma (arrow) and dendritic branches 
(arrowheads) in the brain (top panel), and descending axon in thoracic ganglion (bottom panel). Split-Gal4 (spGal4) 
10B11-AD ꓵ 14A06-DBD drives UAS-mcd8::gfp (green) in GFC1 (bottom, arrow) and PSI (bottom, arrowhead). B, 
Iontophoretic NB injection into the GFI (yellow) in the UAS-hid/+ control reveals the GFI (arrows) interconnected by 
the Giant Commissural Interneurons (GCI, arrowheads) in the brain (top panel), and normal dye-coupling in the 
thoracic ganglion (bottom panel). C, Driving UAS-hid with spGal4 10B11-AD ꓵ 14A06-DBD results in the loss of GFC1 
with occasional PSI survival (arrowhead). When GFC1 is ablated, the GCI labeling is often lost (top), one of the GFI 
axons is typically absent, and the remaining GFI axon always extends a compensatory contralateral axon projection 
(arrow). All NB injections were performed on males. D, Schematic representations of GF circuit outcomes with UAS-
hid/+ controls and spGal4 10B11-AD ꓵ 14A06-DBD driven UAS-hid cell ablation. Not pictured are instances where 
neither GFC1 or PSI are ablated, and instances where both GFIs are absent. E, Frequency of each GF circuit outcome 
with the targeted spGal4 10B11-AD ꓵ 14A06-DBD driven UAS-hid cell ablation. The pie chart color is coded to dots 
at the bottom of schematics in panel D. The sample size for UAS-hid/+ genetic controls is 21 animals, and for the 
spGal4 cell ablation is 20 animals. 
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Discussion  

 We describe here newly discovered neurons in the classic Drosophila Giant Fiber (GF) neural 

circuit (Power, 1948; Sun and Wyman, 1997; Jacobs et al., 2000; Allen et al., 2006) by characterizing four 

Giant Fiber Coupled (GFC) neuron clusters. We identify specific transgenic drivers to both label and 

manipulate GFC1-4, and map neuronal architecture and polarity. We show these neurons couple to the 

Giant Fiber Interneuron (GFI) via ShakB N+16 innexin (Phelan et al., 2008) primarily at the central 

Inframedial Bridge (IB; Allen et al., 1998), but also at the downstream axonal bend. Alongside the already 

well-established benefits of this circuit, including the large cell size, genetic malleability and accessible 

functional/behavioral readouts (Power, 1948; Tanouye and Wyman, 1980; Phelan et al., 1996; Trimarchi 

et al., 1999), this expanded set of coupled neurons can aid future experiments in neurodevelopment, such 

as the study of axonal selection between multiple dendritic partners. This circuit map could be further 

refined using advanced tools, such as MultiColor FlpOut (Nern et al., 2015), as was recently accomplished 

for Drosophila brain descending neurons (Namiki et al., 2018). 

This detailed circuit map is most useful for genetic analyses of electrical synapse partner 

connectivity between individually defined neurons. The GFCs identified in this study are comprised of 2-7 

bilaterally symmetrical neurons clustered on each side of the thoracic ganglion (TG) segments. Similar 

clusters of repeated neurons with apparent connectivity redundancy have been recently identified in 

Drosophila brain descending neurons, where it is also unclear why neurons have such tightly overlapping 

projection patterns (Namiki et al., 2018). We have insufficient resolution to determine whether the GFC 

neurons truly are duplicates, or if they have distinct, proximally adjacent synaptic targets, like the closely 

overlapping Kenyon cells of the adult brain Mushroom Body (Crittenden et al., 1998). It has been proposed 

that neuron duplication may allow for a sliding scale of response within a circuit, whereby more neurons 

are activated to increase the strength of the response. Alternatively, if the neurons contact similar 



88 
 

proximal synaptic targets, their role may be to provide ultra-fine control of muscle movement in the GF 

circuit escape response (Namiki et al., 2018). 

 Complex leg and wing movements are thought to be controlled by extensive TG neural circuits, 

which are activated by a small number of descending neurons, including the GFI dedicated to rapid escape 

behavior (Cardona et al., 2009; Hsu and Bhandawat, 2016; Cande et al., 2018; Namiki et al., 2018). The 

roles of GFC neurons uncovered here have yet to be elucidated, although their electrical coupling to the 

GFI strongly suggests a close relationship to behaviors promoting or otherwise facilitating the rapid escape 

jump-and-flight response. Our preliminary attempts to optogenetically activate the GFC neurons through 

blue-light stimulation of Gal4-targeted ChR2-H134R (Nagel et al., 2005) or ChOP-XXL (Dawydow et al., 

2014) channels did not produce behaviors. We suspect the stimulation paradigm was not strong enough, 

that appropriate sensory co-stimulation conditions may not have been provided (von Reyn et al., 2014), 

that behavioral scoring methods were not sensitive enough to detect subtle motor output changes (Cande 

et al., 2018), or that these neurons modulate internal processes not directly manifest in rapid escape 

behavior (Joseph et al., 2017).  

Based on the very recently proposed ventral nerve cord (VNC) regional map (Namiki et al., 2018), 

the most likely targets of the 4 GFCs identified here are the TG1-3 leg neuropils. GFC2 also appears to 

target the TG2 wing neuropil. Both leg and wing outputs are integral to the GF circuit escape response 

(von Reyn et al., 2014). GFC1 targets all three TG leg neuropil segments; GFC2 targets TG2; and GFC3 and 

GFC4 target TG3 and TG1, respectively. This extensive leg neuropil connectivity may regulate tension in 

the front and hind legs, allowing the central legs to execute a more effective escape jump (Trimarchi and 

Schneiderman, 1993; von Reyn et al., 2014; Namiki et al., 2018). In support of this hypothesis, our work 

indicates GFCs 1-3 are all directly gap junction coupled to the descending GFI, receiving input primarily at 

the IB, and thus share in the rapid conduction speed of the GF circuit (Phelan et al., 2008). Further, GFC3 
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neurons extend postsynaptic processes that parallel the PSI processes, indicating GFC3 may collect input 

from multiple neurons in the GF circuit.  

Like the PSI, all 4 GFCs appear to synapse on their downstream targets via only chemical synapses, 

based on Syt::GFP synaptic vesicle marker and lack of ShakB electrical synapse labeling at GFC termini 

(Allen et al., 2006). It might appear possible that another innexin could mediate these GFC connections 

(Stebbings et al., 2002; Phelan, 2005); however, the complete absence of dye-coupling to neurons 

downstream of GFCs indicates electrical synapses are absent. In contrast to the other GFCs, GFC2 appears 

both pre- and postsynaptic at the IB connectivity hub, suggesting it may share postsynaptic partners with 

GFI, potentially including GFC1, 3, 4 and/or PSI. Given this circuit connectivity, GFC2 may trigger the rapid 

escape jump reflex independently of the GFI, in a parallel circuit output long speculated to exist, but not 

previously identified (Trimarchi and Schneiderman, 1995; Fotowat et al., 2009). Indeed, GFC2 extends 

presynaptic processes into the Tergotrochanteral Motor neuron dendritic field, thus mimicking GFI 

connectivity (King and Wyman, 1980).  

 DenMark and Syt::GFP reporters are extremely useful in defining neuron polarity (Zhang et al., 

2002; Nicolai et al., 2010; Bidaye et al., 2014; Frank et al., 2015), but they have limitations that can make 

interpretation difficult. Both reporters preferentially mark appropriate synaptic regions, but can mis-

localize due to transgenic overexpression (Chen et al., 2014; Kanca et al., 2017). A likely example here is 

dim DenMark signal near bright Syt::GFP punctae (Fig. 16C). DenMark signal-to-noise is much worse than 

the IB labeling, while Syt::GFP signal-to-noise is much stronger; hence our conclusion this region is 

presynaptic. A more problematic example may be the DenMark/Syt::GFP overlap in GFC2 (Fig. 16B). This 

labeling likely shows adjacent pre- and postsynaptic processes, which we cannot distinguish; although 

shared compartments have been reported in Mushroom Body Kenyon cells (Christiansen et al., 2011; 

Zheng et al., 2018). It is also worth noting the 73C07-Gal4 line for GFC2 is the strongest driver employed 

and may cause DenMark or Syt::GFP mis-localization via transgenic overexpression (Chen et al., 2014; 



90 
 

Kanca et al., 2017). The 42A06-Gal4 driver for GFC3/4 is lethal with UAS-denmark, syt::gfp, showing these 

markers can also have detrimental effects. 

Our targeted ablation studies indicate a role for GFCs in GF circuit development, and demonstrate 

the ability of the circuit to compensate for the loss of a GFI, much like ocular dominance columns in Hubel 

and Wiesel’s classic work (Hubel and Wiesel, 1970; Hubel et al., 1977). PSI ablation does not appear to be 

responsible for the GFI loss, based on the fact that GFIs are present when PSI alone is ablated, and GFIs 

are lost only when GFC1 is ablated. Another impact of ablation is lost GCI coupling when a GFI, GFC1 or 

PSI is removed. As GCI coupling loss occurs both when GFC1 alone is lost and when PSI alone is lost, it 

appears that complete GF circuit formation depends upon feedback from multiple circuit members 

(Kandler and Katz, 1995; Hanganu et al., 2009; Maher et al., 2009; Belousov and Fontes, 2013). This finding 

suggests neurons not directly coupled can feedback through an intermediary circuit neuron; an intriguing 

but poorly studied hypothesis (Kandler and Katz, 1995; Belousov and Fontes, 2013). We note that the 

TTMn only occasionally dye-couples with GFI, suggesting gap junction transitions between open and 

closed states could also contribute.  

Previous studies have shown ablation of the GFI using neurotoxins, such as ricin (Smith et al., 

1996), and have even found that single GFIs are lost at very low frequency in wildtype animals (Allen et 

al., 1998). In the latter case, the authors also found midline crossing of a compensatory contralateral 

process from the enduring GFI, as in our work. We hypothesize the GFI loss reported here results from 

lost GFI stabilization by GFC1 due to loss of trophic/synaptic signaling or physical contact (Gorin and 

Johnson, 1979; Pearson and Stoffler, 1992; Antonini and Stryker, 1993; Crowley et al., 1994; Uesaka, 2005; 

Gibson and Ma, 2011). Other GFI postsynaptic targets (PSI, TTMn, GFC2-4) presumably also participate in 

GFI stabilization, although Gal4 drivers tested thus far for these neurons have proved lethal in 

combination with UAS-hid (Zhou et al., 1997; Muthukumar et al., 2014). These animals die early in 

development, showing the need for spGal4 lines capable of avoiding off-target cells. Pursuing this 
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phenotype with more specific drivers and screening approaches could elucidate molecular mechanisms 

these neurons use to stabilize synaptic partners (Cohen-Cory, 2002). 

Other methods shown to cause GFI axonal retraction and neuronal loss include blocking 

membrane endocytosis (e.g. using dominant negative shibire/Dynamin) and the overexpression of select 

transmembrane receptors, such as Semaphorin-1A (Godenschwege et al., 2002; Murphey, 2003; 

Godenschwege and Murphey, 2008). However, in these cases, GFI axon retraction is typically only to the 

IB, rather than beyond the CC, or causing complete cell loss. The molecular pathways responsible for these 

phenotypes may be shared with the axon retraction caused by loss of synaptic partners, with 

Highwire/MYCBP2, Wallenda/DLK and Basket/JNK as prime candidates (Ghosh et al., 2011; Borgen et al., 

2017). While gap junctions play extensive roles in neuronal development (Elias and Kriegstein, 2008; 

Belousov and Fontes, 2013; Baker and Macagno, 2017), it is unlikely that GFI loss results from loss of 

electrical coupling only, as the total removal of gap junctions from the GFI does not cause axon retraction 

or neuronal cell death (Blagburn et al., 1999). 

The GFI axon split across the midline in response to the absence of its partner is reminiscent of 

sensory neuron plasticity following input deprivation (Poirier et al., 2006; Collignon et al., 2009; 

Rabinowitch et al., 2016) and motor circuit development changes in response to lost motor neurons 

(Modney and Muller, 1994; Büschges et al., 2000). This corrective rewiring could stem from either normal 

pathfinding and synaptogenesis, or new repair pathways activated in response to unpartnered neurons. 

The axon split duplication with a GFI loss is different from the recent report on failed GFI pruning (Borgen 

et al., 2017), as the new GFI axon path is always a perfect mirror-image of the normal axon bend, rather 

than an untrimmed posteriorly branched axon outgrowth. This new circuit rewiring model could be used 

in Drosophila genetic screens of GF circuit development (Mohr, 2014; Bassett et al., 2015; Heigwer et al., 

2018) to help answer a number of important questions. Such work will be greatly aided by single-cell 

transgenic manipulation of pre- and postsynaptic neurons in the GF circuit.  
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 In conclusion, we hope that the increase in manipulatable GFI coupled neurons reported here will 

further enhance this genetic model circuit. The GF circuit is ideally suited to query a wide range of 

important neurodevelopmental questions, including mechanisms of pathfinding, target recognition, 

synaptogenesis and stabilization during neural circuit assembly and maintenance. Although the GF circuit 

is rightly considered one of the most straightforward and accessible Drosophila circuits, the higher degree 

of connectivity revealed in this study indicates a greater complexity, which is amenable to answering more 

in-depth questions. The large number of inputs onto, and outputs from, this model circuit provides further 

evidence that even the most basic circuits are deeply interconnected with the rest of the brain circuitry. 

As the benefits of single-cell resolution studies cannot be overstated, we hope this enlarged GF circuit 

model, and the transgenic tools characterized here, will help form part of the underpinning for future 

work on neural circuit dynamics. 
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Chapter IV 

 

dfmr150M Background Mutation Causes Hyper-Connectivity Within the GF Circuit 

 

This manuscript is currently being prepared for publication 

 

Abstract 

Neural circuits are assembled during development when neurons synapse with selected partners, 

though these initial contacts are often imprecise and need to be optimized by maturity. Connections with 

appropriate partners are stabilized as mature synapses while others are retracted or pruned away. 

Disruptions to synaptic formation and refinement impair circuit connectivity and are associated with a 

range of neurological disorders. One of the best studied is Fragile X syndrome (FXS), a heritable cause of 

intellectual disability and autism spectrum disorder (ASD) often characterized by excessive neuronal 

overgrowth. Fragile X Mental Retardation Protein (FMRP) loss causes FXS, likely due to its many roles in 

synapse development. In the well-characterized Drosophila FXS disease model, we identified 

overelaborated synaptic connections in the central Giant Fiber (GF) circuit, with excessive filopodial 

processes during synaptogenesis and overabundant synaptic projections at maturity in the GF Interneuron 

(GFI) axon. The excess contacts contain both chemical and electrical synapse markers and target known 

GF circuit neurons, causing circuit hyper-connectivity. Despite striking similarities to well-characterized 

FXS synaptic defects, we discovered that a background mutation(s) in our disease model is responsible for 

this phenotype. We are pursuing the mutation via bulk segregant analysis and whole-genome sequencing, 

using dye injection to track the phenotype. This ongoing work is expected to reveal new proteins and 

molecular mechanisms that regulate synaptic connectivity during neural circuit development, potentially 

in concert with FMRP. 
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Introduction 

During the early stages in neural circuit formation, axons and dendrites extend transitory synaptic 

processes that contact local partners (Jontes et al., 2000; Tashiro et al., 2003; Waites et al., 2005). Nascent 

synapses are formed in excess, overgrowing appropriate and inappropriate targets, only to be refined 

over time through retraction or glial pruning, sculpting mature connectivity patterns (Riccomagno and 

Kolodkin, 2015). With the onset of environmental input, this refinement process continues and is 

mediated by sensory-driven synaptic activity (Penn, 2001). The overall synaptic pattern is coordinated by 

an array of secreted morphogens, transmembrane receptors and cytoskeletal regulators (Salinas, 2003; 

Favuzzi and Rico, 2018; Südhof, 2018). Disrupted synapse formation and maturation cause severe 

neurological disorders, including ASD and intellectual disability (Melom and Littleton, 2011). Fragile X 

syndrome (FXS) patients display both symptoms, making this monogenic disorder a key model to study 

the link between impaired synaptic development and disease (Pfeiffer and Huber, 2009). 

The FXS disease state is caused by loss of the mRNA- and channel-binding Fragile X Mental 

Retardation Protein (FMRP; Darnell et al., 2011; Ferron, 2016). Overelaborated and immature synapses 

are hallmark phenotypes in FXS patients and model systems. Most commonly the synaptic overgrowth 

has been documented in dendritic branches and postsynaptic spines, although studies have also identified 

overgrown axonal branches and supernumerary presynapses as well (Hinton et al., 1991; Comery et al., 

1997; Greenough et al., 2001; Lee et al., 2003a; Pan et al., 2004; Tessier and Broadie, 2008; Vita and 

Broadie, 2017). While many mechanisms have been proposed for this synaptic overelaboration, including 

enhanced metabotropic glutamate receptor (mGluR) signaling, elevated microtubule and actin 

cytoskeleton stabilization and disrupted synapse pruning (Zhang et al., 2001; Bear et al., 2004; Tessier and 

Broadie, 2008), core consensus pathways have been slow to emerge. 
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In the current study, we used the well-characterized Drosophila FXS model to pursue mechanisms 

of synaptic connectivity defects. Specifically, we focused on the Giant Fiber (GF) neural circuit due to its 

large size, well-mapped neurons and the availability of transgenic tools (Power, 1948; Allen et al., 2006). 

We were seeking to model FXS synaptic connectivity defects in a simple, tractable neural circuit with single 

cell resolution to test the numerous proposed disease mechanisms. We focused particularly on the central 

GF Interneurons (GFI); a pair of bilaterally symmetric neurons, with cell bodies and dendrites in the central 

brain and large axons that project into the thoracic ganglia (Koto et al., 1981). GFI axons synapse first onto 

the Peripherally Synapsing Interneuron (PSI) and Giant Fiber Coupled 1-4 (GFC1-4) neurons at the 

Inframedial Bridge (IB), and then diverge to form two large bends that synapse onto the Tergotrochanteral 

Motor neuron (TTMn) and GFC2-3 (Tanouye and Wyman, 1980; Allen et al., 1998, 2006; Kennedy and 

Broadie, 2018).  

We initially set out to test whether the GFI displays an overgrowth phenotype using the common 

FXS disease model null allele, dfmr150M (Zhang et al., 2001). Consistent with numerous published reports, 

dfmr150M mutants displayed excess filopodia during GFI synaptogenesis and increased mature synaptic 

projections at several timepoints relative to controls, suggesting GFI synaptic connectivity is sensitive to 

FMRP loss as expected (Zhang et al., 2001; Michel, 2004; Kim et al., 2013; Doll and Broadie, 2015; Vita and 

Broadie, 2017). The projections synapse on GFC2 and 3, indicating the overgrowth is redundant within the 

GF circuit and inappropriate connections are not formed. However, subsequent experiments revealed 

that FMRP loss alone does not cause the GFI synaptic defects and that a background mutation(s) in the 

dfmr150M stock is the source. We are currently using bulk segregant analysis (BSA) with whole genome 

sequencing to identify the nature of the genetic change (Pool, 2016). Once identified, we expect this 

discovery will shed new light on the mechanisms of synaptogenesis. 
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Materials and Methods 

 

Drosophila Genetics  

All animals were maintained on a standard cornmeal/agar/molasses Drosophila food in a 12-hour 

light:dark cycling incubator at 25oC. Timed-lay eggs were collected for 2-3 days, and experimental animals 

were selected from rearing tubes 10-14 days later, unless otherwise noted. The following Drosophila lines 

were used for genetic crosses: w1118 (RRID:BDSC_3605) | w1118; dfmr150M/TM6B, tb, hu, gfp (Zhang et al., 

2001, RRID:BDSC_6930) | w1118; dfmr12/TM6, hu (Dockendorff et al., 2002) | w1118; dfmr1B55 (Inoue et al., 

2002) | w1118; Df(3R)BSC621/TM6C, cu1 sb1 (dfmr1 deficiency, RRID:BDSC_25696, Cook et al., 2012) | 

shakB2 (Blagburn et al., 1999) | shakB2; dfmr150M/TM6B, tb, hu, gfp | w1118; P{GMR91H05-Gal4}attP2 

(RRID:BDSC_40594) | w1118; P{GMR91H05-Gal4}attP2; dfmr150M/TM6B, tb, hu, gfp | dfmr1.14/CyO, gfp; 

dfmr150M/ TM6, tb, sb (Dockendorff et al., 2002) | w1118; P{GMR73C07-Gal4}attP2 (RRID:BDSC_46689) | 

w1118; P{GMR24H07-Gal4}attP2 (RRID:BDSC_49317) | w1118; elav-Gal4 (RRID:BDSC_8765, Luo et al., 1994) 

| w*; P{da.G32-Gal4}UH1 (Wodarz et al., 1995) | w1118, y1; 10X UAS-ivs-mcd8::gfp attP40 (Pfeiffer et al., 

2010) | w*; P{UAS-ivs-mcd8::rfp}attP40 (RRID:BDSC_32219) | w1118, y1; 10X UAS-ivs-mcd8::gfp attP40; 

dfmr150M/TM6B, tb, hu, gfp | y1, sc*, v1; TRiP.HMS00248 (RNAi1, Perkins et al., 2015, RRID:BDSC_34944) 

| y1, sc*, v1; P{y[+t7.7] v[+t1.8] TRiP.GL00075 (RNAi2, Perkins et al., 2015, RRID:BDSC_35200) | w*; 

PBac{brp(FRT.Stop)gfp} (Brp-FSF-GFP; Chen et al., 2014; RRID:BDSC_55753) | y1 w*; P{ UAS-flp1.D} (Duffy 

et al., 1998; RRID:BDSC_4539) | UAS-flp1.D/CyO, gfp; 91H05-Gal4 | UAS-rfp/CyO, gfp; Brp-FSF-GFP | UAS-

flp1.D; 91H05-Gal4, dfmr150M/TM6B, tb, hu, gfp | UAS-rfp; Brp-FSF, dfmr150M/TM6, tb, sb.  

 

Dye Iontophoresis 

GFI dye injection was performed similarly to previously published methods (Boerner and 

Godenschwege, 2011; Kennedy and Broadie, 2017). Briefly, glass electrodes (Kwik-Fil Borosilicate glass 
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1B100F-4, World Precision Instruments) were pulled on a laser electrode puller (Model P-2000, Sutter 

Instrument Company) to 10MΩ resistance (3M KCl). Electrodes were filled with 0.25% TRITC-dextran 

(10kDa, Life Technologies) and 7% neurobiotin (Vector Laboratories, RRID:AB_2313575) in ddH2O. Filled 

electrodes were placed on a silver-chloride wire mounted on a PCS-5000 micromanipulator (Burleigh). 

Animals in Jans’ saline were cut along the dorsal midline to access the cervical connective, where 

electrodes were inserted into the GFI axon (Jan and Jan, 1976). A square-pulse stimulator (Grass S48, 

Astro-Med) provided 7.5 100ms pulses/second for 2 mins with 20nA injected current, monitored by an 

AxoClamp2B amplifier. A Digidata data acquisition system (1320A, Axon Instruments) was controlled with 

Clampex 9.2 software.  

 

Confocal Imaging  

Brains were fixed in 4% paraformaldehyde/sucrose (Electron Microscopy Services) in phosphate-

buffered saline (PBS, pH 7.2, Life Technology) for 30 mins, washed 3X with PBS, and then blocked for 1 hr 

with 1% bovine serum albumin (BSA, Sigma-Aldrich) in PBST (PBS + 0.2% Triton X-100; Thermo Fisher 

Scientific). Primary and secondary labeling was performed for either 2 hrs at room temperature or 

overnight at 4oC. All probes were diluted in PBST with 0.2% BSA. The following probes were used: 

Streptavidin::Cy5 (1:20, Life Technology), rabbit anti-ShakB (1:200, Phelan et al., 1996), rabbit anti-GFP 

(1:2000; Abcam, RRID:AB_303395), FITC Goat anti-GFP (1:500; Abcam, RRID:AB_305635), Rabbit anti-RFP 

(1:500; Rockland, RRID:AB_2209751), Alexa 488-conjugated donkey anti-goat (1:250; Thermo Fisher, 

RRID:AB_2534102), Alexa 488-conjugated donkey anti-rabbit (1:250; Thermo Fisher, RRID:AB_2556546), 

Alexa 568-conjugated donkey anti-rabbit (1:250; Thermo Fisher, RRID:AB_2534017), Alexa 647-

conjugated donkey anti-rabbit (1:250; Thermo Fisher, RRID:AB_2536183), and Alexa 633-conjugated goat 

anti-rabbit (1:250; Thermo Fisher, RRID:AB_141419). Preparations were then washed 3X for 30 mins in 

PBST, 1X in PBS, and mounted on glass microscope slides (Probe On Plus 25 x 75 x 1.0mm, Thermo Fisher 
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Scientific) in 2, 2’-Thiodiethanol (TDE, Sigma-Aldrich; Staudt et al., 2007). To prevent crushing, double-

sided poster tape (Scotch) was placed on each side of the brains. Coverslips (No. 1.5H, Zeiss) were sealed 

with nail polish (Hard as Nails, Sally Hansen). Fluorescent images were collected using either a Zeiss LSM 

510 META confocal microscope or a ZEISS LSM 880 confocal microscope with an Airyscan module. Images 

show maximum Z-stack projections, unless otherwise noted in the figure legends. Occasionally 

bidirectional scans were misaligned. Such instances were corrected using the FIJI plugin “Correct X Shift.” 

 

Western Blotting 

Brains were dissected from adult females in PBS with a protease inhibitor (cOmplete mini EDTA-free 

protease inhibitor cocktail; Roche). Four brains were collected in RIPA buffer (150mM NaCl, 1% Triton X-

100, 50mM Tris, 0.5% Sodium deoxycholate, 0.1% SDS, 1mM EDTA, 50mM TRIS, 1mM PMSF, Protease 

Inhibitor Cocktail; Sigma-Aldrich) on ice and sonicated for 20 secs (Branson Model 102C, Sonifier 250 

microtip). Samples were mixed with 4X LDS buffer (ThermoFisher), brought to 5% beta-mercaptoethanol 

(Sigma-Aldrich), allowed to incubate at room temperature for 20 mins, boiled at 100oC for 10 mins and 

centrifuged at 14,000 RPM for 10 mins. The equivalent of two brains worth of protein was loaded on a 

4%-16% Bis Tris SDS gel (ThermoFisher) in 1x MES buffer (ThermoFisher). After running, the protein was 

transferred overnight in 1X transfer buffer/20% methanol (ThermoFisher). Following transfer, the 

membrane was dried for 1 hr, blocked with 2% milk (Kroger) in TBS-T (150mM NaCl, 0.1% Tween, 5mM 

KCl, 25mM Tris, pH7.6) for 1 hr at room temperature and then stained with primary antibody in 2% 

milk/TBS-T for 2 hrs at room temperature (mouse anti-FMRP (1:3,000, Sigma-Aldrich F4554) Rabbit anti-

α-tubulin (1:40,000, AbCam Ab52866)). The primary was removed with six 5-min TBS-T washes and the 

membrane was incubated with secondary (800 Goat anti-mouse (1:20,000, Rockland), Alexa 680 goat anti-

rabbit (1:20,000, ThermoFisher)) in 2% milk/TBS-T for 2 hrs at room temperature. The secondary was 

washed 6 times in TBS-T for 5 mins and then imaged (LI-COR Odyssey). 
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Bulk Segregant Analysis and Whole Genome Sequencing 

The bulk segregant lines were created with multiple generations of inbreeding. To begin, w1118 

males were crossed with w1118; dfmr150M/ TM6B, tb, hu, gfp females, and the transheterozygous offspring 

(w1118; dfmr150M/+) were interbred. The offspring of this cross were then interbred. This process was 

repeated for a total of 12 generations. Flies from the 9th, 10th 11th, and 12th generations were GFI injected 

according to the above dye iontophoresis protocol, with the body cryopreserved at -80oC. Upon 

completion of GFI dye injection and projection quantification, bodies were combined into 3 pools based 

on quantified GFI projection number; 0-3 projections were placed in the control pool, 5-6 projections in 

the heterozygous pool and 7+ projections in the homozygous mutant pool. DNA was extracted from each 

pool using the Qiagen DNeasy Blood and Tissue extraction kit (Qiagen, Cat # 69504). 150bp paired-end 

read whole genome sequencing was performed on the samples (Hudson Alpha, Illumina NovaSeq). 

 

Data Analyses 

Data processing was done with FIJI software (version 2, RRID:SCR_002285; Schindelin et al., 2012; 

Schneider et al., 2012). GFI projection number represents the projections from one GFI bend, below the 

IB. If both GFI arms were visible, projection number was averaged. GFI projection lengths were quantified 

using the FIJI Simple Neurite Trace plugin and were only included if their total length was greater than or 

equal to 2µm (Longair et al., 2011). For branched projections, the longest continuous branch was followed 

and the whole structure was counted as one projection. All statistical analyses were performed using 

Prism software v7 (GraphPad, RRID:SCR_002798). All single pairwise comparisons were performed by 

two-tailed student's t test. All multiple comparisons were performed using an unpaired one-way ANOVA, 

with Tukey–Kramer pairwise post hoc tests. In all figures, graphs show the mean ± SEM with the statistical 

comparisons displayed as: NS (not significant) p>0.05), (*) p<0.05, (**) p<0.01 and (***) p<0.001. 
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Results  

 

The dfmr150M Allele Causes Excess GFI Axonal Projections 

The large central Giant Fiber Interneuron (GFI) can be labeled at single-neuron resolution by 

injecting TRITC-dextran into the axon in the cervical connective (Fig. 18A; Boerner and Godenschwege, 

2011). Co-injecting with the small gap junction-permeant Neurobiotin (NB) tracer labels electrically 

coupled partners (Fig. 18A; Huang et al., 1992; Kennedy and Broadie, 2018). The primary presynaptic sites 

of the GFI are at the Inframedial Bridge (IB; Fig. 18A, arrowhead), which synapses with the Peripherally 

Synapsing Interneuron (PSI) and Giant Fiber Coupled (GFC) neurons 1-4, and the axonal bends (Fig. 18A, 

arrows), which synapse with the Tergotrochanteral Motor neuron (TTMn) and GFC2-3 (King and Wyman, 

1980; Allen et al., 1998; Kennedy and Broadie, 2018). The GFI can be genetically targeted at near single-

cell resolution using the 91H05-Gal4 driver, permitting a myriad of transgenic manipulations (Borgen et 

al., 2017). Using GFI-targeted expression of membrane-tethered GFP (mCD8::GFP) or the iontophoretic 

injection of TRITC-dextran and NB tracer dyes, we identified occasional projections along the GFI axonal 

bend (Fig. 18B, arrows). These putative synaptic contacts were assayed in our Fragile X syndrome (FXS) 

model, which is characterized by disrupted synapse formation and refinement (Hinton et al., 1991; 

Comery et al., 1997; Tessier and Broadie, 2008). 

We first compared control (w1118) and dfmr1 null (dfmr150M) GFIs expressing mCD8::GFP and found 

a very strong axonal projection phenotype when FMRP is removed (Fig. 19A). GFI axonal bends in controls 

display only a few projections, whereas dfmr1 mutants have many projections growing from the bends, 

several of which were of substantive size and complexity (Fig. 19A, arrows). Quantification of projections 

>2µm in length shows controls have an average of 1.4±0.5 projections/bend, while dfmr1 nulls have 

6.0±0.7, a significant increase (p=1.6×10−4, two-tailed unpaired t test; Fig. 19C). To ensure these 

projections were not caused by the Gal4 driver or UAS construct, we next dye-injected the GFI axon in the  
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Figure 18. Presynaptic Projections From the Giant Fiber Interneuron Terminal Bend 
A, Co-injection of TRITC-dextran (magenta) and Neurobiotin (yellow) into the Giant Fiber Interneuron (GFI) labels 
the neuron and all the gap-junction connected GF circuit neurons. Visible are the Peripherally Synapsing Interneuron 
(PSI), the Tergotrochanteral Motor neuron (TTMn) cell body and Giant Fiber Coupled (GFC) 1-4. The GFI Inframedial 
Bridge (IB, arrowhead) and axonal bends (arrow) located in the second thoracic ganglion segment are the two 
presynaptic sites. B, Enlarged image of the GFI axonal bend (see box in A) showing outgrown projections of unknown 
connectivity (arrows). Scale bar represents 25µm in full image and 5µm in inset. 
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stock w1118 and dfmr150M lines with TRITC-dextran (Fig. 19B). When axonal projections are compared with 

this labeling strategy, we again find supernumerary processes in dfmr150M relative to the w1118 background 

control (Fig. 19B). Quantification shows control GFIs have an average of 3.3±0.2 projections/bend while 

dfmr1 nulls have 7.8±0.4, again a significant elevation (p=4.7×10−20, two-tailed unpaired t test; Fig. 19D). 

Taken together, the findings suggest the GFI axonal projections would be ideal to study how FMRP loss 

affects synaptic connectivity in the Drosophila FXS model. The projection phenotype is robust and 

relatively easy to measure, so we sought to characterize the defect more fully before dissecting the 

molecular mechanism responsible for the overgrowth.  

 

Increased Axonal Projections Present During Early GFI Synaptogenesis 

We first investigated when the overgrown axonal projections develop during GF circuit formation. 

The GFI reaches its TTMn target approximately 24 hours after puparium formation (APF), at which point 

synaptogenesis begins. Synapse formation lasts for approximately one day (24-48 hours APF; Allen et al., 

1998). In order to examine this synaptogenesis period, we collected animals at approximately 34-50 hours 

APF by selecting for the “yellow body” localized between the Malpighian tubules on the dorsal side of the 

pupae (Paul and Bownes, 1981). The GFI 91H05-Gal4 driver was used to express UAS-mcd8::gfp and 

examine axonal bend projections over the developmental time course (Fig. 20A). Both control (w1118) and 

dfmr1 null (dfmr150M) GFIs exhibit far more extensive projection outgrowth than what was seen in adults, 

but the mutants show a much greater elevation (Fig. 20A, arrows). These early GFI projections are usually 

far more slender than the ones found in adults suggesting they are immature filopodial processes 

searching for synaptic partners (Tashiro et al., 2003; Armijo-Weingart and Gallo, 2017). Quantification 

shows that controls have 7.8±1.0 projections/bend and dfmr1 nulls have 17.8±1.2 (p =1.3×10−6, two-tailed 

unpaired t test; Fig. 20B, left). Thus, the FXS model defect is apparent at the early stages of 

synaptogenesis. 
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Figure 19. Supernumerary GFI Axonal Projections in dfmr150M Null Mutants 
A, The Giant Fiber Interneuron (GFI) visualized with 91H05-Gal4 driving the membrane marker UAS-mcd8::gfp 
(green) in w1118 genetic control (left) and dfmr150M null (right). In controls the axonal bends have few detectable 
projections compared to an excess number of overgrown projections in the mutants. Arrows indicate the 
projections. B, Iontophoretic dye injection of TRITC-dextran (magenta) in w1118 (left) and dfmr150M (right) stocks 
show the same phenotype. Scale bars in both images: 5µm. C, Quantification of the GFP-labeled axonal 
projections. w1118, n=8; dfmr150M, n=8. D, Quantification of the TRITC labeled projections. w1118, n=62; dfmr150M, 
n=48.  
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We next assayed later stages in GF circuit development, testing two timepoints during synaptic 

maturation (Fig. 20A): 73-78 hours APF and 75-90 hours APF, identified by gray and black colored pupal 

wings, respectively. At each time point, dfmr1 nulls still display more GFI axonal projections compared to 

matched controls, albeit with a progressive decrease in projection number over time (Fig. 20A,B). Note 

the w1118 controls decreased their projection number by 73-78 hours APF but showed little decline at 75-

90 hours APF (Fig. 20A). Quantification supported these observations, showing 73-78 hour controls have 

3.7±0.5 projections/bend, while dfmr1 nulls have 14.1±0.8 (p=2.7×10−9, two-tailed unpaired t test; Fig. 

20B, middle). By 75-90 hours, controls exhibit 3.5±0.3 projections and dfmr1 mutants 9.2±0.9 (p=2.6×10−6, 

two-tailed unpaired t test; Fig. 20B, right). Synaptic overgrowth in FXS models may occur during initial 

synaptic formation or due to a failure to properly prune synapses (Antar et al., 2006; Gatto and Broadie, 

2008; Patel et al., 2014; Connor et al., 2017). Our results indicate GFI overgrowth begins at early 

synaptogenesis stages but does not rule out a role for faulty pruning later. Some FXS reports show that 

early synaptic overgrowth is rectified in adults (Antar et al., 2006; Bilousova et al., 2009; He and Portera-

Cailliau, 2013), so we next assayed whether the excess GFI projections form mature, persistent synapses. 

 

Overgrown Axonal Projections Contain Chemical Synaptic Machinery 

 Synaptic markers are notoriously difficult to image in dense neural regions such as the GFI thoracic 

ganglia neuropil (Chen et al., 2014; Koles et al., 2016). Antibody labeling for presynaptic markers paired 

with standard confocal microscopy does not provide sufficient resolution to distinguish whether the 

synaptic marker is in a neuron of interest or neighboring neurons (Hiesinger et al., 2001; Urwyler et al., 

2015). Another commonly used approach, the Gal4/UAS transgenic expression of labeled presynaptic 

markers in neurons of interest, often leads to overexpression which can cause mis-localization and protein 

aggregation (Christiansen et al., 2011; Chen et al., 2014; Koles et al., 2016). To avoid these difficulties, we 

employ here the Synaptic Tagging with Recombination (STaR) technique to label Bruchpilot (Brp), a well- 
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Figure 20. GFI Axonal Projection Overgrowth Begins Early in Synaptogenesis 
A, The Giant Fiber Interneuron (GFI) axonal bends visualized with 91H05-Gal4 driven UAS-mcd8::gfp (green) during 
development in genetic control (w1118, left) and dfmr1 null mutant (dfmr150M, right) at 34-50 hours after puparium 
formation (APF, top), 73-78 hours APF (center) and 75-90 hours APF (bottom). Arrows indicate projections. Scale 
bar: 10µm. B. Quantification of the axonal projections at all 3 timepoints for both genotypes. Sample sizes: 34-50h: 
w1118, n=12; dfmr150M, n=13. 73-78h: w1118, n=10; dfmr150M, n=10. 75-90h: w1118, n=12; dfmr150M, n=12.  
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studied presynaptic active zone scaffold organizer (Wagh et al., 2006; Chen et al., 2014). STaR labeling 

requires a stop codon flanked by Flp Recombination Target (FRT) sites followed by a GFP sequence that is 

inserted downstream of a protein of interest (Brp-FSF-GFP; Fig. 21). Separately, the flippase (UAS-flp) is 

expressed in the neuron of interest to remove the FRT sites and enclosed stop codon, thus permitting 

readthrough from Brp to GFP (Brp::GFP; Fig. 21). 

 We took advantage of this STaR labeling method to determine if the presynaptic Brp scaffold is 

present in the GFI axonal bend projections and to assay the maintenance of these synaptic projections 

from eclosion through adult maturity (Fig. 21). For these analyses, 91H05-Gal4 was used to drive 

expression of both membrane mCD8::RFP and Flp to create GFP-labeled Brp in the marked GFI (Fig. 21A). 

w1118 and dfmr150M animals were assayed immediately post-eclosion (1 hour), during a common activity-

dependent refinement period (1 day), and at adult maturity (1 week) to assay for the persistence of GFI 

synaptic projections throughout life (Fig. 21A; Doll and Broadie, 2015). Results show that the majority of 

control and dfmr1 mutant projections contained the Brp presynaptic scaffold, indicating they contain 

chemical synapses and are presynaptic processes (Fig. 21A). The small Brp::GFP puncta (green) are clearly 

visible in GFI projections (magenta), both along the projection shafts and at the tips (Fig. 21A, inset). The 

total synaptic projection number appears to remain steady from 1 hour post-eclosion to maturity at 1 

week after eclosion (Fig. 21A), suggesting either that these projections are being created and removed at 

the same rate, or, more likely, that they are stable mature synapses that persist into adulthood (Holtmaat 

et al., 2009).  

Quantification of the synaptic projections shows that 1 hour animals have both Brp-negative and 

Brp-positive processes, albeit with the majority containing chemical synapses (Fig. 21B). In both 

categories, w1118 controls have far fewer projections compared to dfmr1 nulls (w1118: total 

projections/bend 2.7±0.3, Brp+ projections/bend 1.7±0.2; dfmr150M: total projections/bend 6.3±0.5, 

p=1.4×10−5, two-tailed unpaired t test; Brp+ projections/bend 5.8±0.3, p=2.7×10−9, two-tailed unpaired t 
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test, Fig. 21B). By 1 day, nearly all projections were Brp positive in both genotypes, with far more in the 

mutants (w1118: total projections/bend 2.1±0.4, Brp+ projections/bend 2.0±0.4; dfmr150M: total 

projections/bend 5.1±0.6, p=2.0×10−4, two-tailed unpaired t test, Brp+ projections/bend: 5.0±0.5, 

p=2.8×10−6, two-tailed unpaired t test, Fig. 21B). At 1 week, projection numbers were similar to 1 day, and 

every projection had chemical synapses, with more in the mutants (w1118: Brp+ projections/bend 2.3±0.4; 

dfmr150M: Brp+ projections/bend 5.5±0.5, p=1.1×10−4, two-tailed unpaired t test; Fig. 21B). Together, 

these findings show axonal projections that extend from the GFI bend likely make synaptic connections 

with postsynaptic partners. As the GFI uses mixed chemical and electrical synapses, we next tested 

whether these axonal projections also contain electrical synapse markers. 

 

Overgrown Axonal Projections Contain Electrical Synapses 

 Unlike most synaptic protein antibodies, the Shaking-B (ShakB) antibody specifically labels GF 

electrical synapses, permitting simple imaging analyses (Phelan et al., 1996). To test whether GFI axon 

projections electrically couple to partner neurons the GFI axon was injected with TRITC-dextran and 

labeled with the ShakB antibody (Fig. 22A). Unlike Brp, we find ShakB present in a limited subset of 

projections (Fig. 22A, insets), with many projections either negative or below detection limits (Fig. 22A, 

arrowheads). Quantification shows that both w1118 controls and dfmr1 nulls have ShakB in less than half 

the synaptic projections (Fig. 22B). The dfmr150M animals exhibit projection overgrowth, both for total and 

ShakB+ projections (w1118: total projections/bend 3.0±0.4, ShakB+ projections/bend 1.2±0.2; dfmr150M: 

total/bend 8.3±0.5, p=2.1×10−11, two-tailed unpaired t test, ShakB+ projections/bend 3.0±0.3, p=6.1×10−6, 

two-tailed unpaired t test; Fig. 22B). These results suggest that while axonal projections clearly form 

electrical synapses, this is not a universal mode of connectivity. We also wanted to test whether the 

projections depend on electrical synapses for formation or maintenance. Many vertebrate synapses have  
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Figure 21. The GFI Axonal Projections Contain Chemical Synapse Markers 
A, The Giant Fiber Interneuron (GFI) axonal bend labeled with 91H05-Gal4 driven mCD8::RFP (magenta, column 1) 
with STaR transgenic labeling of Bruchpilot (Brp) in presynaptic active zones (green, column 2). The merge reveals 
axonal projections with the chemical synapse marker (column 3). Genetic control (w1118, top) and dfmr1 null mutant 
(dfmr150M, bottom) are tested at 1 hour, 1 day, and 1 week after eclosion. Insets show magnified Brp-positive 
projections. Scale bars: 10µm (full image) and 2µm (inset). B, Quantification of total (magenta) and Brp-positive 
(green) axonal projections for the above 3 time points. Significance bars represent comparisons between each 
genotype for the two projection quantifications for each time point. Sample sizes: 1 hour: w1118, n=17; dfmr150M, 
n=12; 1 day: w1118, n=12; dfmr150M, n=13; 1 week: w1118, n=8; dfmr150M, n=8.  
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been reported to use gap junctions during synaptogenesis, removing them when synapse formation is 

complete (Niculescu and Lohmann, 2014; Jabeen and Thirumalai, 2018).  

GFI electrical synapses can be eliminated using the shakB2 null mutant, which eliminates coupling 

(Blagburn et al., 1999). We tested this mutant alone and combined with dfmr150M, injecting the GFI with 

gap junction permeable NB (Fig. 22C). Dye injections were performed for 30 seconds, as longer injections 

cause these neurons to rupture (Kennedy and Broadie, 2017). In these experiments, no neurons aside 

from the GFI were labeled, indicating the successful removal of ShakB. Both single and double mutants 

still produce projections (Fig. 22C, left), though shakB2; dfmr150M maintains overgrown projections relative 

to the control (Fig. 22C, right). Quantification shows dfmr150M has a significant increase in projections 

(shakB2: projections/bend 2.7±0.4; shakB2; dfmr150M: projections/bend: 5.2±0.4, p=5.2×10−5, two-tailed 

unpaired t test; Fig. 22D). These results suggest that some dfmr150M projections could be ShakB electrical 

synapse dependent, but not all of them. Taken together, the above findings show that the GFI axonal 

projections contain both chemical and electrical presynaptic markers (Brp and ShakB). The distance that 

these synaptic projections travel away from the GFI axonal bend suggests that they connect with 

postsynaptic partners other than the TTMn, which lays tightly along the main GFI axon (Blagburn et al., 

1999). We therefore next pursued these partners to determine whether they were normal GF circuit 

neurons, or new, inappropriate targets.  

 

GFI Synaptic Projections Target GFC Neurons to Cause Circuit Hyper-Connectivity 

 GF circuit connectivity can be mapped by injecting small tracers that pass through gap junctions 

to label partner neurons (Boerner and Godenschwege, 2011). We took advantage of this property by 

injecting the GFI with NB to test whether any unexpected neurons partner with the dfmr150M projections 

(Huang et al., 1992; Kennedy and Broadie, 2018). The w1118 control and dfmr150M null dye coupling 

patterns, though complex, appeared similar, with no new labeled neurons standing out in the mutant (Fig. 
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Figure 22. The GFI Axonal Projections Contain Electrical Synapse Markers 
A, Giant Fiber Interneuron (GFI) dye injected with TRITC-dextran (magenta, left) and labeled for the ShakB innexin 
(cyan, center) reveals axonal bend projections containing electrical synapses (merge, right) in both w1118 (top) and 
dfmr150M (bottom). Arrowheads indicate ShakB-negative projections, insets show magnified ShakB-positive 
projections. Scale bars: 10µm (full image) and 2µm (inset). B, Quantification of total (magenta) and ShakB-positive 
(cyan) projections for both genotypes. Significance bars represent comparisons between each genotype for the two 
projection quantifications. Sample sizes: w1118, n=28; dfmr150M, n=26. C, GFI dye injected with Neurobiotin (yellow) 
in shakB2 null mutant (left) and shakB2; dfmr150M double mutant (right). Scale bar: 10µm. D, Quantification of 
projections for both genotypes. Sample sizes: shakB2, n=27; shakB2; dfmr150M, n=31. 
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 23A). Moreover, upon close analyses of the dfmr150M projection locations, it appears that they contact 

recently identified neurons within the GF circuit, specifically GFC2 (Fig. 23A, arrow) and GFC3 (Fig. 23A, 

arrowhead; Kennedy and Broadie, 2018). Since transgenic tools are available to study these neurons, we 

tested whether the mutant projections are overgrowing these normal GFI targets. We combined the GFC2 

(73C07-Gal4) and GFC3 (24H07-Gal4) drivers with UAS-mcd8::gfp and crossed these animals with the 

dfmr150M stock, since dfmr150M/+ increases projection number (see Fig. 24 below). We injected the GFI 

with TRITC and found that the GFI projections frequently oppose GFC2 and GFC3 (Fig. 23B, arrows), 

indicating putative connectivity. We next wished to test whether these direct contacts are incidental or 

indicate synaptic pairing.  

To test synaptic connectivity, we repeated the above experiment with labeling for ShakB to 

identify electrical synapses. We find that ShakB is indeed present at the contact intersection of the GFI 

projections and GFC2 and 3 neurons (Fig. 23C, insets). As above, there were frequently cases where ShakB 

labeling is not present in projections contacting a GFC (Fig. 23C, arrowhead). Taken together these findings 

suggest that the synaptic projections characterizing the dfmr150M mutant make redundant connections 

onto known GF circuit neurons. It is unclear if GFC2 and 3 are the only targets of the excess projections, 

or whether other partners remain to be uncovered. It is interesting to note that GFC2 and 3 extensively 

contact the main axon shaft in both controls and dfmr1 nulls and occasionally form synapses there, making 

the projections unnecessary (Kennedy and Broadie, 2018). This suggests either that the mutant condition 

drives the axon to seek out more synapses with its partners than it normally would require, or that 

developmental projections normally pruned away during GF circuit maturation are inappropriately 

stabilized (Fig. 20). However, in the pursuit of this question we uncovered evidence that FMRP loss alone 

may not cause the synaptic projection phenotype, so we pursued a series of control experiments. 
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Figure 23. GFI Axonal Projections Synapse Within the GF Circuit on GFC Neurons 
A, The Giant Fiber Interneuron (GFI) was co-injected with TRITC-dextran (magenta, left) and Neurobiotin (yellow, 
center) to examine downstream neurons (merge, right) in w1118 (top) and dfmr150M (bottom). A presumptive GFC2 
(arrow) and GFC3 (arrowhead) are contacted by GFI projections. Scale bar: 10µm. B, The GFI injected with TRITC-
dextran (magenta) in 73C07-Gal4 driving mCD8::GFP (green) in GFC2 (top) and 24H07-Gal4 driving mCD8::GFP 
(green) in GFC3 (bottom) in the dfmr150M/+ background. Arrows point to overlaps between the GFI and the GFCs. 
Scale bar: 5µm. C, GFI injected with TRITC-dextran (magenta, column 1) with mCD8::GFP (green, column 2) labeling 
GFC2 (73C07-Gal4, top) and GFC3 (24H07-Gal4, bottom) in the dfmr150M/+ background were co-stained for ShakB 
(cyan, column 3) to reveal electrical synapses. All three channels are combined in the merge (column 4). Insets show 
magnified sub-stacks of ShakB-positive projections contacting GFC neurons. The arrowhead shows a ShakB-negative 
GFI-GFC contact. Scale bars: 5µm (full image) and 2µm (inset).  
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Background Mutation(s) in the FXS Disease Model Causes Synaptic Projections 

 To ensure that FMRP loss was responsible for the excess axonal synaptic projections, we 

performed transgenic rescue experiments and tested alternative dfmr1 nulls for the phenotype. For the 

rescue experiment, we used a full length genomic dfmr1 sequence, including its regulatory region, 

inserted on the second chromosome (dfmr1.14; Dockendorff et al., 2002). For alternative nulls, we 

examined the homozygous viable dfmr1B55 allele and the dfmr12 allele over a deficiency (Df(3R)BSC621) 

that completely removes dfmr1 and numerous adjacent genes (Dockendorff et al., 2002; Inoue et al., 

2002; Cook et al., 2012). Both dfmr1B55 and dfmr12 are reported to be complete protein nulls in the brain, 

although dfmr1B55 has been found to express FMRP in the testes (Zhang et al., 2004). We also tested the 

heterozygous dfmr150M condition (dfmr150M/+) to determine whether full protein loss is required for the 

phenotype or if the defect occurs in heterozygotes, as has been reported previously in the Drosophila FXS 

model (Kanellopoulos et al., 2012). Finally, to further test FMRP loss effects on synaptic projection 

overgrowth we took a transgenic RNAi approach using a highly-expressing ubiquitous Gal4 driver to 

express dfmr1 RNAi (UH1-Gal4>dfmr1 RNAi2; Callan et al., 2012). All these studies are summarized in 

Figure 24. 

We first tested rescue animals (dfmr1.14/+; dfmr150M/50M) by injecting the GFI with TRITC-dextran 

to assay projections. The rescue shows partial correction of the dfmr150M null phenotype, with fewer 

projections present (dfmr150M projections/bend 9.5±0.8, Rescue 5.6±0.4; unpaired ANOVA with Tukey 

post-hoc analysis, p=3.2x10-5; Fig. 24A,C). The rescue does not appear complete as more projections are 

seen in the rescue condition than the w1118 background control (w1118 projections/bend 3.9±0.4; Fig. 

24A,C), although this difference is not significant (unpaired ANOVA with Tukey post-hoc analysis, p=0.1). 

The dfmr150M/+ heterozygotes show an intermediate synaptic projection phenotype, similar to the rescue 

results (w1118 projections/bend 2.8±0.5, dfmr150M/+: 5.7±0.5, dfmr150M/dfmr150M: 8.3±0.7), with significant 

differences in all comparisons (unpaired ANOVA with Tukey post-hoc analysis: w1118 v. dfmr150M/+ 
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p=0.001, dfmr150M/+ vs. dfmr150M p=0.006; w1118 vs. dfmr150M p=2.5x10-8; Fig. 24A,D). Taken together, 

these results supported the conclusion that FMRP loss causes the excess synaptic projections. 

Surprisingly, however, the alternate dfmr1 mutants do not replicate the synaptic projection 

phenotype. The dfmr1B55 mutants appear nearly identical to control animals (w1118 projections/bend 

2.8±0.5 vs. dfmr1B55 3.3±0.6), with no significant difference seen (unpaired ANOVA with Tukey post-hoc 

analysis, p=0.9; Fig. 24A,D). We tested dfmr1B55 by Western blot and confirmed no FMRP is detectably 

expressed in the brain (Fig. 24B). The dfmr12/Df test, carried out separately, shows the same result, with 

no apparent projection increase (w1118 projections/bend 4.3±0.5, dfmr150M 7.9±0.8, dfmr12/Df 3.8±0.5) 

and no significant difference from the control seen (unpaired ANOVA with Tukey post-hoc analysis, p=0.8; 

Fig. 24A,E). Finally, ubiquitous RNAi FMRP knockdown also does not increase GFI synaptic projections 

(UH1-Gal4/+ control projections/bend 4.1±0.4 vs. UH1-Gal4>dfmr1 RNAi2: 3.0±0.4) with no significant 

difference in projection number (two tailed unpaired t test, p=0.05; Fig. 24A,F). Western blot analyses 

show that ubiquitous UH1-Gal4 driven dfmr1 RNAi2 completely eliminates detectable FMRP from the 

brain, in contrast to an alternate knockdown approach of pan-neuronal elav-Gal4 driven dfmr1 RNAi1, 

which shows a weak, residual FMRP signal (Fig. 24B).  

 Taking all of the above results together, we conclude that FMRP loss by itself does not cause the 

excess presynaptic projections on the GFI axonal bend and that a second site mutation(s) in the dfmr150M 

background is required for the circuit connectivity defect. Importantly, the rescue experiment was 

misleading in this case, causing us to draw the incorrect initial conclusion of an FMRP specific requirement. 

The simple interpretation would have been that the rescue reinserted a single wildtype dfmr1 allele into 

a null background to provide partial phenotype restoration. However, considering the alternative dfmr1 

mutant and RNAi results, it may be that a background mutation was lost when dfmr1.14 was combined 

with dfmr150M. We cannot rule out a role for FMRP loss, as it could be acting in concert with the 

background mutation(s) to enhance the synaptic projection phenotype. Interestingly, FXS in humans may  
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Figure 24. GFI Synaptic Projections Caused by dfmr150M Background Mutations 
A, Giant Fiber Interneuron (GFI) dye injected with TRITC-dextran (magenta) in the indicated genotypes; genetic 
background control (w1118), genomic rescue (dfmr1.14/+; dfmr150M), dfmr150M heterozygote (dfmr150M/+), 
homozygous null mutant (dfmr150M), independent dfmr1 null (dfmr1B55) and second independent dfmr1 null over a 
deficiency (dfmr12/Df). FMRP was also removed using RNAi driven by the ubiquitous UH1-Gal4 driver (UH1>dfmr1 
RNAi2). Scale bar: 10µm. B, Western blot of FMRP levels in w1118, dfmr150M/+, dfmr150M and dfmr1B55 (top); and w1118, 
dfmr150M, elav> dfmr1 RNAi1 and UH1> dfmr1 RNAi2 (bottom). FMRP bands are labeled in green and α-Tubulin 
loading controls in magenta. C, Quantification of synaptic projections in w1118 (n=14), dfmr150M (n=13) and dfmr1 
rescue condition (n=14). D, Quantification of projections in w1118 (n=13), dfmr150M/+ (n=13), dfmr150M (n=10) and 
dfmr1B55 (n=12). E, Quantification of the synaptic projections in w1118 (n=9), dfmr150M (n=9) and dfmr12/deficiency 
(n=10). F, Quantification of projections in UH1/+ control (n=17) and UH1>dfmr1 RNAi2 (n=16).  
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be related to such background effects, as severity of the disease symptoms present on a wide spectrum 

(Spencer et al., 2006; Chonchaiya et al., 2009; Cordeiro et al., 2011). We have chosen to identify the 

background mutation(s) as it may shed new light on the molecular players in synapse formation.  

 

Identifying Background Mutation(s) Causing Excess GFI Synaptic Projections  

 As the w1118 background and dfmr150M mutant lines diverged many generations ago and have since 

been subjected to an unknown number of crossing events, we suspected there would be a large number 

of genetic differences between these two lines. We therefore chose to employ Bulk Segregant Analysis 

(BSA) paired with whole genome sequencing (WGS) to identify the dfmr150M background mutation(s). BSA 

has been successfully used to identify de novo mutations from divergent backgrounds in several 

organisms, including yeast, flies, lettuce and apple trees (Michelmore et al., 1991; Lai et al., 2007; 

Ehrenreich et al., 2010; Pool, 2016; Dougherty et al., 2018). We pursued this BSA strategy by inbreeding 

the heterozygous offspring of a cross between w1118 and dfmr150M for 12 generations. We analyzed the 

number of synaptic projections by GFI dye injection in the later generation animals and sorted them into 

pools of low, medium and high phenotypes. A total of 239 animals were analyzed by single neuron dye 

injection, from which 85 were selected for the low pool, 70 for the medium pool and 34 for the high pool. 

The extracted DNA from these pools is currently undergoing WGS to identify enriched regions of the 

genome in the medium and high pools relative to the low pool. Once the mutation(s) has been identified, 

we intend to use lines from Drosophila stock centers to replicate and rescue the projection defects 

identified here. 

 

Discussion 

We began this study by searching for neurons that could be used to probe mechanisms underlying 

FXS excess synapse phenotypes (Comery et al., 1997; Zhang et al., 2001; Bilousova et al., 2009; Cruz-
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Martín et al., 2010; Doll et al., 2017). The GF circuit appeared ideal for this work as it is known to be 

impacted by FMRP loss, is large and easy to visualize, can be imaged and manipulated at single-cell 

resolution, has a complex but well-established set of synaptic connections, and can be 

electrophysiologically and behaviorally assayed (Power, 1948; Tanouye and Wyman, 1980; Allen et al., 

1998; Martinez et al., 2007; Augustin et al., 2011; Boerner and Godenschwege, 2011; von Reyn et al., 

2014; Kennedy and Broadie, 2017, 2018). Unfortunately, while we found an FXS-like phenotype in the GF 

circuit, our work was complicated by a dfmr150M background mutation(s) (Zhang et al., 2001). This is the 

most commonly used allele, due to its complete null phenotype (in contrast to dfmr1B55) and ability to 

produce viable homozygous offspring (in contrast to dfmr12 and dfmr13, Dockendorff et al., 2002; Inoue 

et al., 2002). Interestingly, a second dfmr150M stock our lab maintains does not manifest the synaptic 

phenotype, suggesting the background mutation(s) spontaneously occurred or was brought in through a 

previous outcrossing event. As we had completed a detailed study of the synaptic projection phenotype 

we chose to pursue the mutation(s). Our identification strategy is ongoing, but we expect this work to 

expand our understanding of synapse formation.  

 The GFI synaptic projections assayed here likely arise from the extensive filopodial outgrowths 

observed during synaptogenesis, though disrupted pruning could also play a role (Fig. 20; Gatto and 

Broadie, 2011; O’Connor et al., 2017; Lieberman et al., 2018). In many circuit contexts, excess synaptic 

processes are known to be pruned back to arrive at an optimized number of mature contacts (Schafer and 

Stevens, 2013; Riccomagno and Kolodkin, 2015; Kremer et al., 2017). The synaptic number at the end of 

this maturation phase is regulated by many factors, ranging from prosynaptic glia to Neurotrophins 

(Causing et al., 1997; Ullian et al., 2001; Sugiura and Lin, 2011; He et al., 2018a). Delayed synaptic pruning 

has been well demonstrated in FXS disease models; however, in contrast to the work here corrective 

pruning was shown to occur later in development (Connor et al., 2017). Since Drosophila axons employ 

both en passant synapses and extended terminal projections to contact their postsynaptic targets, an 
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alternative route to the overgrowth phenotype could be the mutation encouraging production of 

projections instead of en passant contacts (Egger et al., 1997; Menon et al., 2013; Doll et al., 2017; 

Takemura et al., 2017). Our synaptic labeling experiments show that the early projections stabilize into 

mature processes containing both the Brp active zone scaffold and the ShakB gap junction innexin (Zhang 

et al., 1999; Wagh et al., 2006). The projections also become thicker than the initial filopodia, and endure 

into adult maturity, showing that they are likely not transitory or immature contacts (Pielage et al., 2005; 

Holtmaat et al., 2009; He and Portera-Cailliau, 2013; Pacheco and Gallo, 2016; Armijo-Weingart and Gallo, 

2017). Brp punctae occur in 90% of projections at 1 hour post-eclosion, and 100% of projections by 1 

week, supporting the idea of maturing synaptic processes. It is worth noting however, that the STaR 

technique used to label Brp depends on a random recombination process that can occur at any time (Chen 

et al., 2014). The 10% of processes that do not contain labeled Brp at 1 hour may be due to a late 

recombination event that did not permit Brp-GFP to reach a high expression level. 

 We were not able to find any new neurons dye-coupled to the GFI caused by the mutant synaptic 

projection overgrowth, indicating no inappropriate synaptic partnerships were made by these 

overelaborated synaptic contacts. It is still possible that such inappropriate synapses exist in the dense 

synaptic region around the GFI axonal bends, but that the connections are too weak to give a robust dye 

signal, or are solely chemically synaptic (Namiki et al., 2018). Two targets of the excess synaptic 

projections were identified as the GFC2 and GFC3 neurons, recently uncovered GF circuit members 

(Kennedy and Broadie, 2018). GFC2 and 3 normally contact the GFI at both the IB and along the bends. It 

is therefore unclear why the mutant synaptic projections would be needed to increase connections to 

these partners, rather than increasing the density of the extant synaptic sites (Fig. 23B).  

 Our rescue studies to confirm the FMRP role in synaptic overgrowth provided equivocal results, 

showing this approach alone is not sufficient to correlate a mutation with a phenotype. Without further 

data the rescue would have been interpreted as proof of causation, with FMRP restored to heterozygosity 
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and giving an intermediate phenotype. However, knowing a background mutation is present, the result 

can now be interpreted as the dfmr150M line creating a heterozygous phenotype with a “clean” rescue line 

that lost the mutation. Even with homozygous rescue (i.e. dfmr1.14/dfmr.14; dfmr150M/50M), which 

unfortunately is not possible due to inviability, we would likely have an uninterpretable result, as an 

unintentionally “cleaned up” homozygous rescue would lack the background mutation and provide 

apparent complete rescue. We ruled out FMRP as the sole mutation causing synaptic overgrowth through 

three independent protein removal strategies: an alternative null, a null and deficiency transheterozygote 

and an RNAi knockdown (Fig. 24). It is possible that FMRP loss interacts synergistically with the background 

mutation and is required for the synaptic projection phenotype. If this is the case, we expect our BSA 

results to show enriched dfmr150M mutation counts in medium and high projection pools (Michelmore et 

al., 1991). Unidentified background mutations have been shown to interact with FMRP loss in mice, 

creating learning defects and exacerbating autism-like behaviors (Paradee et al., 1999; Dobkin et al., 2000; 

Spencer et al., 2011). Similarly, FXS patients show a range of symptom severities, believed to depend on 

genetic modifiers (Hessl et al., 2001; Spencer et al., 2011). Thus, identifying interacting mutations here 

may help explain some of the human FXS variability and provide novel therapeutic targets (Maurin et al., 

2014).  

Based on the dfmr150M/+ results, we expect the background mutation operates via incomplete 

dominance, with heterozygous expression leading to an intermediate phenotype (Muller, 1935; Crawford, 

1976). Our experiments with recombined dfmr150M support the conclusion that the background mutation 

is incompletely dominant. In each recombined case, synaptic projection number is lower than the pure 

dfmr150M line (Fig. 19A, 21A, 22C vs. Fig. 19B, 22A, 24A). We suspect recombination events either removed 

the mutation in one of the parental strains or diluted its frequency in the population, creating an 

intermediate phenotype. It is also important to note that multiple background mutations could be causing 

the phenotype, either additively or synergistically (Abrahams and Geschwind, 2008; Pérez-Pérez et al., 



120 
 

2009; Grant, 2012). Potential mutation categories include single-nucleotide polymorphisms (SNPs), copy-

number variants (CNVs) or rearrangements which could affect intergenic regulatory sites, untranslated 

regions (UTRs), splice acceptor/donor sites or coding sequences (Berger et al., 2001; Ng and Henikoff, 

2003; McCarroll and Altshuler, 2007; Adzhubei et al., 2010; Cooper and Shendure, 2011; Ward and Kellis, 

2012). Mutations could also affect non-coding RNAs regulating gene transcription and translation (Fire et 

al., 1998; Mehler and Mattick, 2007; Jeck et al., 2013). Regardless of the genomic change, the mutation 

will ultimately affect protein expression level, trafficking or functionality, which we will target using the 

extensive Drosophila genetic resources (Ng and Henikoff, 2003; Dietzl et al., 2007; East, 2010; McManus 

et al., 2010; Dawson et al., 2017; Li-Kroeger et al., 2018).  

As the increased synaptic projections are apparent early in development, and are matured by 

eclosion, we suspect the mutation is related to synaptic outgrowth, stabilization or pruning, rather than 

activity-dependent refinement (Fields and Itoh, 1996; Wong and Ghosh, 2002). There are many proteins 

that could be responsible for increased synapse stabilization. The most likely categories include: 1) 

cytoskeletal elements responsible for filopodial outgrowth, along with their accessory and regulatory 

proteins (e.g. actin, profilin, Rho/Rac; Bishop and Hall, 2000), 2) cell adhesion molecules responsible for 

synaptic stabilization (e.g. Neuroglian, Neurexin, SynCAM; Biederer et al., 2002; Godenschwege et al., 

2006; Südhof, 2018), 3) extracellular promoters of synaptic stability (e.g. Wnt, Neurotrophins; Rosso and 

Inestrosa, 2013), 4) synaptic pruning/degradation machinery (e.g. Draper, Ced-6; Awasaki et al., 2006), 

and 5) regulatory mechanisms controlling any of the above (e.g. transcription factors, epigenetic 

modifiers; Ayata et al., 2018; Hobert and Kratsios, 2019).  

In conclusion, we report here on a dfmr1 stock containing a background mutation that promotes 

GFI synaptic overgrowth. The excessive axonal presynaptic projections are present during synaptogenesis, 

incorporate both chemical and electrical synapse markers, are present 1 day post-eclosion, and endure to 

maturity (1 week post-eclosion). The projections electrically synapse on the recently identified GFC2/3 
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neurons, causing hyper-connectivity within the GF circuit. The background mutation(s) identity is 

currently being pursued and is expected to reveal a protein(s) involved in regulating synaptic connectivity 

during circuit formation.  
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Chapter V 

 

Conclusions and Future Directions 

 

 The work in this dissertation explores a number of GF circuit properties, from ionic flow in mature 

neurons to synaptogenesis at the early stages of development. While these studies share a focus on the 

same set of neurons, they are quite distinct from each other in subject matter. As such, they each have 

their own set of conclusions and future directions, which will be laid out separately in this chapter. There 

were also several supporting experiments and two uncompleted projects that were not published due to 

time constraints or negative results. This data is included here either with the conclusions of the work it 

was performed for, or in its own section if it was not tied to any published work.  

 

Dye Injection 

 The finding that a single genetic mutation can alter neuronal dye loading properties is surprising 

and appears to have no precedent in the literature. The only field that has considered electrically driven 

ionic movement through biological tissues is trans-dermal electromigration, in which medicine is 

delivered across the skin to the circulatory system (Marro et al., 2001; Pikal, 2001; Kalia et al., 2004). 

However, no molecular level work has been done to explore the cellular properties that enhance or inhibit 

this process. It still remains unclear how FMRP loss leads to increased dye loading, though the published 

research reported here has narrowed down the possibilities. I took two parallel approaches to identify 

the causative mechanisms underlying altered dye loading. First, I considered the known neuronal defects 

caused by FMRP loss. This led to experiments on potassium channels, neuron size, and interneuronal 

connectivity (Comery et al., 1997; Brown et al., 2010; Lee et al., 2011; Kong et al., 2014). Unfortunately, 

none of these properties appears to play a role in the phenotype. The second approach was to identify 
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the physical cause of increased dye signal in the mutant neurons, and thus narrow down the potential 

mechanisms involved in the phenotype. Three broad possibilities were considered: 1) dye leaked out of 

neurons slower in mutants, 2) dye was destroyed or sequestered in controls, or 3) more dye leaves the 

electrode to enter mutant neurons (Fig. 25A-C). My experiments effectively ruled out the first two options, 

as applying more current or rest time after injection, did not alter the signal levels and there did not 

appear to be any differential dye storage in the axons, dendrites or soma. The only remaining option was 

that more dye leaves the electrode to enter mutant neurons than control neurons (Fig. 25C). 

There are a range of physical properties that could alter dye release from the electrode. One 

possibility is that there is simply more room for dye in the dfmr1 null neural circuit than in the control, 

either because of larger neurons or a greater number of connected neurons. Similarly, there may be better 

gap junction conductance between the neurons in dfmr1 mutants, allowing more dye to penetrate deeper 

through the neural circuit during the injection (Fig. 25D). These hypotheses were ruled out in several ways. 

First, no difference in neuron size was observed in dfmr1 mutants compared to controls. Axonal shafts 

had no measurable size differences between the genotypes, nor did the primary dendritic branches. 

Second, removing all gap junctions, leaving only the GFI to be injected did not correct the dfmr1 

phenotype. Removal was accomplished with a mutant that lacks GFI specific isoforms of the ShakB gap 

junction protein. We found that even when NB could not leave the GFI, more still accumulated in the 

dfmr1 mutant than the control. Third removing KAc from the dye solution caused a major increase in dye 

loading. This should not have been possible if the reduced dye loading in controls was caused by some 

intrinsic “dye capacity” that was reached. Since more dye was easily loaded into control neurons when 

KAc was removed we suspected that the rate of entry must be impacted rather than a threshold being 

reached. We chose to explore what factors could limit the dye transfer speed, focusing first on cytosolic 

ion movement as a potential mechanism. 
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Figure 25. Potential Mechanisms of Differential Dye Loading 
Many hypotheses for higher dye loading in mutants (dfmr150M) than controls (w1118) were tested. A. Dye leaks faster 
from controls than mutants. B. The dye is destroyed or sequestered away from the axon in controls. C. More dye 
enters mutants than controls. After A and B were ruled out, a number of hypotheses were tested to explain 
possibility C. These included D. the mutant neurons are larger or better connected to downstream neurons. E. Ion 
channel conductivity is altered in the mutant, with fewer chloride channels as an example here. Lower anion flow 
would favor cation flow, increasing neurobiotin (NB) transfer. F. Average anion size is increased in mutants, favoring 
cation flow out of the electrode. G. Viscosity in mutant neurons is increased through a denser network of inert 
molecules. This would slow ion flow and favor ion exit from the electrode.  
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To discuss this hypothesis, it is necessary to describe the electrochemistry of dye injection. The 

work was conducted using two silver-chloride electrodes, one in the injection electrode and the other in 

the bath. When these electrodes are connected to an electrical source one becomes positively charged 

(cathode) and the other negatively charged (anode). This causes a reduction-oxidation reaction, with the 

silver oxidized at the cathode, allowing it bind negatively charged chloride ions (Cl-), resulting in unpaired 

positively charged sodium (Na+) ions (Ag0
(S) + Cl-1(aq) + Na+1

(aq) -> AgCl(S) + Na+1
(aq) + e-). At the anode, this 

reaction happens in reverse (e- + Na+1
(aq) + Cl-1(aq) + AgCl(S) -> Ag0

(S) + 2Cl-1(aq) + Na+1
(aq)), with the difference 

resolved as the ions migrate through the solution. For NB injection, the cathode was inserted in the GFI 

with the anode in the bath. For LY injection, the polarity of the electrodes was switched, making the GFI 

electrode an anode. Ions carry the charge between the electrodes and any impediment slows the ion flow, 

raising the resistance. Similarly, if ions are larger, and thus less mobile, resistance is also increased. When 

KAc was removed from the injection solution, the increased resistance of the circuit required a higher 

voltage to keep the current constant due to the loss of the small potassium ions. However, without 

potassium ions, NB carried more of the current, thus more moved into the neuron. The positive charge 

generated in the injection electrode is offset either by anions (such as Cl-1) moving into the electrode or 

cations (including NB) moving out. Typically, a mix of the two occurs, but if, for example, anion movement 

toward the electrode were slowed, more cations would leave the electrode to compensate. Based on this 

logic, there were two possibilities for elevated dye loading in dfmr1 null neurons: 1) a specific impediment 

to the ions is present, such as restricted flux across the neuronal membrane’s channels (Fig. 25E), or 2) 

ion speed through the aqueous environment is restricted, because of increased friction (Fig. 25F,G). The 

bulk of my experiments tested the first option, as it was initially deemed more likely and had more ties to 

FMRP loss. However, the data, as described below, seems to better support the second option.  

I first applied a potassium channel blocker (4-AP) to determine whether potassium flow affects 

dye loading. The drug reduced dye loading in both genotypes, albeit with maintained higher dye transfer 
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in dfmr1 mutants. This suggested potassium flow plays a role in dye loading. However, follow-up 

experiments with 4-AP applied after the dye injection caused the same result of lowering dye transfer, 

suggesting 4-AP interferes with a separate process. 4-AP contains a primary amine group, the target of 

formaldehyde fixation, which could reduce the amount of NB covalently linked to the tissue (Thavarajah 

et al., 2012). However, attempts to test this hypothesis, such as washing out 4-AP extensively before fixing 

or using longer fix times, were unsuccessful in preventing this effect. The potassium channel blocker TEA 

also reduced dye transfer across genotypes; however, rinsing prior to fixing corrected this effect, and the 

drug showed no overall effect on either genotype. Importantly, TEA does not contain a primary amine and 

it is unclear how it interferes with the dye signal. Together, these studies suggest potassium channels are 

not related to the phenotype, despite extensive interactions with FMRP (Brown et al., 2010; Strumbos et 

al., 2010; Lee et al., 2011). Consistently, both endogenous potassium channels (Shaker cognate w (Shaw), 

and Inwardly rectifying potassium channel 2 (Irk2)) and exogenous cation-permeable ChR also had no 

impact on the dfmr1 phenotype. However, it was not possible to test how effective any of these 

manipulations were on decreasing or increasing potassium flow, thus the channel hypothesis cannot be 

fully ruled out.  

Restricted anion flow across the neuronal membrane could also increase dfmr1 mutant dye 

loading, as it would increase the flow of cations out of the electrode through increased resistance. In 

unpublished experiments, I attempted to modify the flow of the primary neuronal cation, chloride, across 

the plasma membrane through various methods including replacing chloride with larger, less mobile 

anions such as acetate, propionate or iodine, or applying the chloride channel blocker 9-

Anthracenecarboxylic acid (9-AC, Estévez et al., 2003; Ugarte et al., 2005). Replacing chloride with the 

larger acetate ion increased dye loading in both genotypes, suggesting a role for ion mobility. A 

mechanism similar to the removal of KAc may be at play here, where loss of the small chloride anion 

increases average anion size, making it harder for anions to flow and favoring cationic NB leaving the 
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electrode. However, contradicting this, replacing chloride with even larger anions, such as iodine or 

propionate, caused both genotypes to have significantly lower dye transfer. None of these experiments 

corrected the phenotype, with persistent increased dye loading of dfmr1 nulls relative to controls. 

Attempts to block chloride channels using 9-AC, also failed to correct the defect, and were similar to 4-AP 

results with decreased loading. All of these experiments were preliminary and should be revisited to 

confirm the results. As with the potassium channel work, it was not possible to confirm these 

manipulations were having intended effects. There is very little literature suggesting 9-AC works well in 

fly neurons, and nothing to suggest how many chloride channel classes it blocks (Overall and Jaffe, 1985; 

Ugarte et al., 2005). For chloride replacement experiments, significant chloride likely remains in the 

system from the local tissue concentrations, which may be sufficient to maintain normal chloride flow 

across the plasma membrane.  

The above experiments examined specific classes of ion channels, despite the fact that any 

combination of them could be involved in the dfmr1 phenotype. In order to non-specifically test the entire 

membrane for a role in regulating ion flow, I designed two experiments. The first was application of 

Gramicidin, a bacterial pore-forming peptide mix often used as an antibiotic (Andersen et al., 2005). 

Gramicidin opens up pores in membranes allowing free flow of monovalent cationic ions. The intent was 

to create new pores in the GFI membrane and equalize cation flow through the membrane to revert the 

dfmr1 phenotype, bypassing individual studies on sodium or potassium channels. This experiment is 

similar in concept to the ChR experiment, which was included in the published work. Unfortunately, 

Gramicidin was poorly soluble and it was unclear whether it had any effect on the GFI. Similar to 4-AP, 

total dye transfer was reduced by Gramicidin, but the relatively elevated dye iontophoresis phenotype in 

dfmr1 mutants remained intact. The second manipulation was to insert the ground electrode into the GFI 

itself, near the dye injection electrode. This also did not correct the dfmr1 phenotype, despite presumably 

bypassing the membrane completely. This experiment suggests the membrane does not play a role in the 
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dfmr1 defect, and that the source of the dye transfer phenotype is completely cytosolic. Aside from these 

experiments, another complication for the channel hypothesis is that the anionic dye LY, also displays the 

same dfmr1 null phenotype. If anion flow were impaired in dfmr1 nulls, then the LY dye should have 

trouble getting out of the electrode, as the local neuronal anions need to be displaced out of the cell. One 

could make the argument that both anion and cation flow into the cell is reduced in dfmr1 null mutants, 

but this would require two separate channel defects, or one channel responsible for the movement of 

both types of ion, which is not supported by any of the above evidence. 

The experiments listed above ruled out a wide range of physical properties that could be causing 

elevated dye loading in dfmr1 mutants, including neuron size and connectivity. The process of elimination 

therefore suggests that altered ionic mobility is responsible (Fig. 25F, G). As noted, some of the above 

experiments are not wholly conclusive; however, based on the 

accumulated data, I believe the best route to pursue the differential 

dye loading mechanism would be to study whether ion mobility 

though the cytoplasm is responsible. Ion size could be tested by 

preloading large anions such as LY into the GFI, followed by a normal 

NB injection. If the presence of a large anion increases NB loading, this 

would suggest cytosolic ion size impacts dye loading (Fig. 25F). Similar 

experiments could be performed by modifying the amount of ionic 

proteins within the GFI using the Gal4/UAS system. If the hypothesis 

is correct, overexpression of negatively charged cytosolic proteins 

should lead to increases in NB loading. The next step would be to 

identify the large ions that have increased in concentration in the 

dfmr1 nulls. Proteins are the obvious culprit, but it isn’t clear that proteins are generally overexpressed in 

the Drosophila FXS model. It was suggested in my paper that the increased protein levels seen in dfmr1 

 

 
 
Figure 26. Brain Size is Increased in 
dfmr150M Animals 
Quantification of brain size by whole-
brain confocal imaging shows 
dfmr150M causes approximately a 
20% increase in tissue volume.  
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nulls could be the cause of the dye loading phenotype; however, further experiments showed that while 

dfmr1 nulls do indeed have increased protein over controls, their brains are also larger, at about the 

proportion seen for the protein increase: ~20% (Fig. 26). This suggests that protein concentration in 

neurons between the genotypes may be equivalent, but the tissue size is different, indicating increased 

protein concentration is not at fault. Metabolites are another potential source of large ions. Metabolic 

screening has become an advanced field in recent years and these techniques could be used to identify 

differentiated product levels in the neuronal cytosol, which could then be traced back to an FMRP 

pathway (Zampieri et al., 2017). 

Another means of slowing ion movement could be increasing cytosolic viscosity (Fig. 25G). This is 

an attractive solution to the differential dye transfer mechanism as it provides a simple answer to the 

observation that both NB and LY are impacted. Viscosity would be non-specific to ionic charge, and thus 

provides a parsimonious answer to how NB and LY are both impacted. To test for a viscosity role, I injected 

LY into droplets of saline containing increasing concentrations of sucrose, and thus higher viscosities. I 

live-imaged the process and quantified dye loading over one minute. The results show more viscous 

solutions take up more dye, supporting the hypothesis that ion mobility in the receiving solution impacts 

dye loading (Fig. 27). This work could be expanded by performing Fluorescent Recovery After 

Photobleaching (FRAP) experiments, monitoring GFP diffusion in GFI neurons to determine if controls and 

dfmr1 nulls alter protein mobility (Day et al., 2012). Longer recovery times would indicate slowed GFP 

diffusion. Were this the case, it would be necessary to identify the cause for the altered mobility. 

Cytoskeletal and macromolecular structures are known to play roles in cytosol viscosity, and would be 

good targets for the next step in this research (Luby-Phelps, 1999; Yu et al., 2017). Interestingly, links 

between FMRP and the microtubule stabilizing protein MAP1B/Futsch are well established, with FMRP 

loss causing increased MAP1B/Futsch expression (Zhang et al., 2001; Zalfa et al., 2003; Lu et al., 2004). 
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Increased cytosolic viscosity would have serious implications for any cell, as they are highly dependent on 

directed resource transport and diffusion of secondary messengers and metabolites (Periasamy et al.,  

 

 

1992; Verkman, 2002). If these processes are slowed due to increased viscosity in dfmr1 null neurons, 

there would be significant disruptions to their development and function, potentially explaining some FXS 

symptoms. 

 Before leaving this topic, it is worth acknowledging that the dfmr150M line used in this work 

contains background mutations not related to the target gene (dfmr1), as shown in Chapter 4. This raises 

the question of whether the dye injection phenotype was truly caused by FMRP loss in the first place. The 

published evidence, with trans-heterozygous null alleles for dfmr1 and a dfmr1 rescue experiment, 

strongly suggest FMRP is the culprit; however, no experiments were performed where the dfmr150M allele 

was not included. The recombination used to make the rescue line could theoretically have 

unintentionally removed a background mutation. If the dye transfer phenotype turned out to be caused 

by a background mutation, it would still be worthwhile to pursue, as it does seem that an important 

 
 

Figure 27. LY Dye Loading into Sucrose Droplets 
Injected LY signal was measured over time in saline droplets with increasing concentrations of sucrose. The results 
suggest higher viscosity leads to higher dye transfer from the glass electrode into the saline. Each point represents 
the average of at least 9 experiments. 
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neuronal property is being probed by the dye injection protocol. Should alternative alleles fail to replicate 

the results found here, a similar BSA-sequencing approach to that taken in Chapter 4 could be employed 

to identify the causative mutation behind the altered dye loading.  

 

Circuit Mapping the Giant Fiber System 

Studying the dye injection pattern of the GF circuit revealed an extensively dye-coupled neuron 

network. The GF circuit is likely reflective of most circuits in complex brains, where high degrees of 

interconnectivity permit communication with, and modification of, neighboring circuits (Arber, 2012; 

White et al., 2017; Kodama et al., 2018). The goal of my study was to identify single-neuron drivers for the 

newly identified members of the GF circuit, which could then be used for future research on electrical 

synapse formation and function. I was able to identify Gal4 drivers for four new neuron clusters within 

the GF circuit, creating a new toolkit (Kennedy and Broadie, 2018). In this section, I describe the remaining 

work in characterizing these neurons, and suggest questions they can be used to answer.  

While the GFC neuron clusters are well defined in my work, the individual neuron structure is not 

yet resolved. GFC1 appears to have a simple morphology with defined axonal and dendritic regions, while 

GFC2 is more convoluted with apparently combined pre- and postsynaptic compartments. GFC3/4 seem 

more straightforward, though they both have a number of intertwining neurons that made it difficult to 

determine whether all neurons in the clusters share the same synaptic connections. GFC4 requires more 

defined drivers to better image and manipulate these neurons, which may be available already in the 

existing spGal4 driver collections. The best available strategy to image individual neurons within GFC 

clusters is MultiColor FlpOut (MCFO; Nern et al., 2015). MCFO is a gene cassette with a UAS sequence 

upstream of two Flippase (Flp) Recombination Targets (FRT) sites that flank a stop codon, and a 

downstream fluorophore sequence. Low Flp expression randomly causes the FRT sites and the stop codon 

to be removed, allowing fluorophore expression in subsets of Gal4 containing neurons. By combining the 
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GFC1-4 drivers with the MCFO cassette, single neurons within GFC clusters will be labeled, allowing their 

structure to be independently visualized.  

Characterizing the individual neurons in the GFC clusters would give more information on the 

nervous system regions each neuron projects to, and thus suggest potential synaptic targets. However, in 

order to identify the actual targets of these neurons, other connectivity tracing tools are also required. 

The recently released trans-Tango transgenic system would be ideal for this purpose (Talay et al., 2017). 

Trans-Tango uses several genetic elements to trigger expression of a fluorophore in cells downstream of 

a neuron of interest. A presynaptic protein localizes a transgenic ligand to the membrane, which, when in 

contact with a postsynaptic receptor, initiates RFP production in the downstream neuron (Talay et al., 

2017). Revealing the structure of the GFC neurons’ downstream targets would permit their identification 

in the same manner as was used for the GFC neurons themselves (Kennedy and Broadie, 2018). While this 

tool has performed well in others’ hands, my attempts to use trans-Tango in the GF circuit have not been 

successful. Expression of the presynaptic component in the GFI and the postsynaptic components pan-

neuronally did not reveal any of the known GFI targets, instead labeling numerous uncharacterized 

neurons. It is unclear why the tool was ineffective. One possibility is the protein used to presynaptically 

localize the tool, Nrx, does not normally exist in the GFI, and cannot be properly trafficked. Another 

possibility is that the pan-neuronal driver used does not express well in the GFI targets. While this seems 

unlikely, it has been reported that the pan-neuronal nSyb-Gal4 driver does not express in the GFI, 

suggesting GF neurons may differ from other neurons in some ways (Namiki et al., 2018). Regardless, this 

tool may still be effective in some of the GFC neurons and could help complete the GF circuit map and 

identify the role of the GFCs in the circuit by finding their targets.  

The GFC target neurons likely control some aspect of Drosophila behavior and the next step after 

identifying these neurons is the identification of the muscles they control. One approach is to activate GFC 

neurons and assay behavioral outputs. My preliminary efforts at GFC stimulation via multiple ChR forms 
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were unsuccessful in eliciting behavior, suggesting these neurons may not have strong control over muscle 

movement, or require specific stimulation paradigms or coincident activation. A first approach to 

exploring the function of these neurons could be to stimulate them before, during or after GFI stimulation 

to test for a modified escape response. For example, one could activate GFC neurons prior to the GFI to 

see if this alters the strength of the jump response. Another approach would be to image GFC neuron 

responses via GCaMP calcium reporters while triggering the GFI with electrical or ChR stimulation to 

determine how these neurons respond to GF circuit activity (Nagel et al., 2003; Akerboom et al., 2012). 

Taking the response pattern and replicating it with direct GFC ChR stimulation could trigger their 

behavioral output. Alternatively, GFC neurons could be killed using UAS-hid apoptosis, and the GFI could 

be triggered to test if any aspects of the behavior are diminished or enhanced (Kennedy and Broadie, 

2018). Another approach to characterizing GFC roles would be to identify their neurotransmitters. The 

primary excitatory neurotransmitter in Drosophila CNS is acetylcholine (ACh), in contrast to glutamate in 

vertebrates (Yasuyama and Salvaterra, 1999; Liu and Wilson, 2013). If these neurons use ACh they may 

function as excitatory interneurons, while glutamate would suggest they act as motor neurons. GABA 

would suggest roles in silencing other neurons, and modulatory neurotransmitters such as dopamine, 

would imply functions that adjust responsiveness in their targets (Kim et al., 2017). Staining the brains for 

the enzymatic producers of these neurotransmitters and examining the GFC somas could quickly reveal 

which neurotransmitters are expressed.  

These newly identified neurons could also be used to study GF circuit development. Circuit 

stabilization is believed to be mediated trans-synaptically, with synaptic activity maintaining neuronal 

connections (Luo and O’Leary, 2005; Pielage et al., 2008). Curiously, my work showed loss of only 1 out of 

the 6 GFI targets was sufficient for a GFI to retract and presumably die. Loss of the GFI often caused the 

GCI to be lost or disconnected as well, despite numerous known GCI partners (Mu et al., 2014). This is in 

contrast to NMJ retraction studies where the neuron only has one target and it is reasonable to expect 
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retraction when that target is lost (Valakh et al., 2012). It was not confirmed that GFI or GFC were killed, 

only that they lost dye coupling (Phelan et al., 2008). Future experiments using GFI/GCI GFP expression 

could test for neuronal survival. Regardless, this work suggests a single neuronal partner can control GFI 

fate, or that all members of a circuit must be present for a central neuron to maintain itself. Follow up 

experiments could test how the GFI responds to the loss of GFC2-4, the TTMn and the PSI. It would also 

be appropriate to determine when the GFI retracts. If this occurred during development it would suggest 

an anchoring mechanism was at play, while adulthood retraction could suggest an activity-based 

mechanism. An RNAi screen could come from this work, with candidate genes knocked down in GFC1 or 

the GFI to determine the proteins used in neuronal maintenance and identify new players in this process. 

I also found that the GFI can compensate for a lost partner by contralateral extension of an axonal bend 

but there is little research on the molecules involved in such compensation (Neuhaus-Follini and Bashaw, 

2015). A complementary candidate screen could be designed to identify the molecular players in this 

compensation process.  

Another interesting use of these neurons would be a proteomic screen for molecules used in 

target recognition during circuit formation. Now that six separate GFI targets are known, it may be 

possible to isolate the proteins used for partner recognition. One way to go about this would be to label 

the GFI and a specific partner with red and green fluorophore, respectively, and then track when these 

two neurons first contact. At this timepoint, synaptosomes could be isolated and FACs sorted for particles 

containing both fluorophores. The synaptosomes should contain both pre- and postsynaptic membranes 

as they generally adhere during the extraction (Luquet et al., 2017). The synaptosomes could then be 

analyzed via mass-spectrometry to identify the proteins contained in their membranes at this time point 

(Schreiner et al., 2017). By repeating this process with each of the six GFI partners, a comparative 

approach could be taken to identify the code used for each targeting event. If differences are seen, 

fluorescently tagged versions of the proteins could be introduced into the GFI to determine whether these 
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proteins indeed localize specifically to one partner’s synaptic zone. For example, if the GFI used different 

target recognition proteins for the PSI and TTMn, one would expect those proteins to localize specifically 

to the IB or GFI bend during target recognition, respectively. Using these neurons for comparative 

research on neural circuit development and function should prove fruitful in determining the range of 

molecules different neurons use to accomplish different tasks. 

 

Identification of Background Mutations in the dfmr150M Line 

Genetic background is notoriously difficult to control, even in inbred lab strains, which can lead 

to a misinterpretation of research findings (Bailey, 1982; Gerlai, 1996). In Drosophila, lines are usually 

recombined and rebalanced many times throughout experimental work, bringing in new SNPs, deletions 

and rearrangements (Platts et al., 2009). While most background changes have no impact on the 

phenotype under study, it is critical to employ the proper controls and ensure this is the case. This means 

using multiple mutant alleles, verifying results with alternate knockdown methods (such as RNAi), and 

performing genetic rescue experiments (Chandler et al., 2013). Constant outcrossing with a control line 

can remove most background mutations but this is extremely time consuming and usually impractical, 

especially when working with many different genetic tools as is common in Drosophila. Another pernicious 

possibility is that the phenotype under study comes from the control line rather than the mutant. Using 

multiple alleles for the mutant will not be able to identify this problem, as they will incorrectly reinforce 

that a mutant phenotype exists. This problem requires using alternate control lines (such as Oregon-R or 

Canton-S as alternatives for w1118) or wild-caught strains (Spencer et al., 2003; Yuan et al., 2006). These 

strategies should be implemented early to ensure a study is not following non-specific mutations and 

wasting valuable time and resources.  

In my study on GF circuit synaptogenesis, late implementation of these controls caused a 

significant delay in work and many incorrect assumptions that changed the course of my research. It is 
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worth noting that the mutation I identified appeared to be present in only one of the dfmr150M lines our 

lab maintains. Unfortunately, I did not have a chance to test the dfmr150M line that is stored in the 

Drosophila Bloomington stock center, so I cannot be sure whether this mutation is being used by the 

greater FXS community or arose through an event in our lab. It is important to make this distinction so 

researchers can decide whether they should reevaluate some of the dfmr1 phenotypes they have 

characterized (Pan et al., 2004; Tessier and Broadie, 2008; Yao et al., 2011; Liu et al., 2012; Coyne et al., 

2015; Doll and Broadie, 2015; Novak et al., 2015). Regardless of whether this particular mutation is in 

other stocks, my work shows that it is possible for non-specific mutations to crop up unexpectedly in any 

Drosophila line and confound results. In this unfortunate circumstance, it may still be worth pursuing the 

unknown mutation causing the interesting phenotype. Sequencing has become cheap enough that most 

labs can afford to pursue the BSA-WGS approach taken in Chapter 4 (Shendure et al., 2017). Phenotypes 

that are correlated with novel genes and mutations can be cross referenced with large patient databases, 

such as BioVU, to help identify new links to genetic disorders (Roden et al., 2008). In some instances, there 

may even be benefits to the original field of study. As noted earlier, FXS may be exacerbated by 

background mutations that have not been identified yet. If some of the phenotypic variability in FXS 

models comes from background mutations that interact with FMRP, it should be possible to identify those 

genes, and potentially target them pharmacologically in FXS patients to correct aspects of the disorder.  

Unfortunately, the identity and properties of the dfmr150M background mutation(s) was not 

determined in time to include in this dissertation. If the mutation can be successfully identified by BSA-

WGS there are a number of follow-up experiments that will be informative. This research focused solely 

on synaptic outgrowths from the GFI axon bends; however, there did seem to be excessive growth at the 

IB as well. While this wasn’t subjected to any formal analysis, due to the complexity of these outgrowths, 

the IB region would be worth examining if this project is continued. Synaptic overgrowth in a second GFI 

region would mean this phenotype is not specific to one set of synapses but affects multiple presynaptic 
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regions. From here, the extent of this phenotype throughout the nervous system should be evaluated. Is 

this a GFI-specific effect or is it universal that alterations to the protein cause hyper-connectivity? 

Interestingly, early in my graduate work I studied the GFI dendrites extensively for synaptic overgrowth 

and found evidence that dfmr150M caused overgrowth there as well (Fig. 28). This suggests other synaptic 

partners are also subject to the mutation’s effects. The dendritic arbor is much more complex and variable 

than the axonal bends however, and I pursued the axon phenotype due to simpler quantification.  

Many other experiments remain for the characterization of these background mutations. The 

upcoming work involves confirming that this protein is the true cause of the synaptic overgrowth 

phenotype. This will involve studying the identified mutation in isolation to confirm the phenotype. Ideally 

such mutations already exist in the Drosophila stock centers, but new lines may have to be generated 

through CRISPR if not (Port et al., 2014). A rescue experiment is also required to attempt to correct the 

phenotype in dfmr50M by expressing a functional version of the protein at appropriate levels. There also 

remains the possibility that the phenotype arises from multiple mutations working additively or 

synergistically (Pérez-Pérez et al., 2009). If 

this is the case, each of the mutations will 

have to be tested on their own and in 

combination to study how they interact. 

The mechanisms underlying these proteins’ 

abilities to modify the localization of 

synaptic connections also requires a much 

deeper level of study. The localization of 

this protein throughout development 

should be tracked using CRISPR inserted 

fluorophore tags (Baena-Lopez et al., 2013). 

 

 
 
Figure 28. dfmr150M Causes Overgrowth in Dendrites 
GFP was expressed in the GFI dendrites via the 91H05-Gal4 driver. 
Quantification of processes extending from the main branches 
showed a significant increase in the mutant over the control. 
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Further characterization could come from domain manipulation experiments, wherein versions of the 

protein with various regions removed are reintroduced into the mutant background to determine which 

segments are important for the protein’s function (Kudumala et al., 2013). This approach could answer 

whether the mutation is causing inappropriate interactions through extracellular domains or altered 

signaling through intercellular domains.  

 

Further Experiments Not Included in Publications 

Two additional projects were undertaken during my dissertation work, which were not completed 

due to problems of feasibility, lack of time, or discouraging results. I will use this section to detail those 

experiments in the hopes that they may provide a starting point for others interested in similar work. 

 

Western Blot Screen for FMRP Targets 

One of my most ambitious projects was an attempt to use a Western blot (WB) screen to identify 

which proteins are misregulated in the FXS disease model. I began by cross-referencing a list of ~900 

presumptive FMRP targets generated from a mouse high-throughput sequencing of RNA isolated by 

crosslinking immunoprecipitation (HITS-CLIP) experiment with lists of ASD and intellectual disability risk 

genes (Darnell et al., 2011; De Rubeis et al., 2014; Iossifov et al., 2014). I determined the Drosophila 

homologs for the overlapping genes and attempted to collect all available antibodies for these proteins 

that had been generated in laboratories around the world. There were 205 genes of interest, of which 

170 had Drosophila homologs. Of these, I was able to obtain 46 antibodies (Table 4). In addition, I included 

another 36 neuronal antibodies already available in our lab (Table 5). The proteins on this second list were 

either FMRP targets, but not on the ASD/intellectual disability lists, or were tested to try and identify 

developmental pathways that are disrupted by FMRP loss. I worked with a laboratory technician, Ryan 

Moore, to compare the protein levels in controls and dfmr150M animals to identify highly misregulated 
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targets. Protein changes were tested in the head at three different time points: the early (tan) pupae stage 

(25-60 hours pupation), the late (dark) pupae stage (60-90 hours pupation) and adult. The goal was to 

identify proteins transiently misregulated in development as well as adult stages (Tessier and Broadie, 

2012). 

 

a-Spec Ato Cher Dlg Foxo Jim MMP1 Nr2 Rhea Scar Stau Timp 

Arm Bap Cora Fas Gro Ken MMP2 Nrg Rho1 Shot Syn Toy 

Atf-2 Cf2 Cut Fas2 Hts Lilli Nr1 Pum Scar Stan Tgo Zif  

 
Table 5. Alternative Neuronal Targets Tested in FMRP Western Blot Screen 
These targets were selected due to their importance in neuronal development and function as well as the 
accessibility of the antibodies. Some of these proteins are FMRP targets but were not identified in ASD/intellectual 
disability gene lists. The remaining targets were expected to help identify the pathways disrupted by FMRP loss. 
 

 

This project unfortunately suffered several setbacks and did not result in high quality targets. One 

major shortcoming of this work was difficulties with protein extraction. Many WB protein extraction 

protocols exist, but they are typically specific to the species, tissue and protein of interest, requiring 

optimization for each new experiment. For example, membrane proteins are notoriously difficult to 

extract and maintain in solution and typically require different extraction protocols from cytosolic proteins 

(MacPhee, 2010). Unfortunately, during a screen, fully accommodating such specific requirements is not 

possible, and a generic protocol must be applied due to time limitations. The extraction method used for 

this screen, an LDS buffer combined with mechanical grinding, was chosen because it provided a relatively 

A CaMKII Dcr-2 Her Kug Nej Nlg3 Nrv2 Pink1 RhoGEF2 Spg Trio 

Als2 Csw Galphao Ih Lap Nf1 Nlg4 Nrv3 PlexA RyR Sti X11L 

Ank2 Cv-c Gek Itp-r83a Lar Nlg1 Nmdar2 Nrx-1 PlexB Sbf Syt7   

Calx Dcr-1 Gig Kis Ndae1 Nlg2 Nrv1 Pat Pten Sick Tor   

 
Table 4. Known FMRP Targets for Western Blot Screen 
These targets were selected from a cross-referenced list between human FMRP targets and known autism/ 
intellectual disability associated genes. This final list of Drosophila homologs contains those targets for which an 
antibody was available. 
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swift protocol with some ability to extract and stabilize membrane proteins. While this method showed 

strong yield during preparation for this project, I did not explore how reliable the extraction process was 

before beginning the screen. During follow up work on favorable targets, I used more rigorous controls 

and found that the technique had been giving highly variable extraction efficiencies, even for cytosolic 

proteins. This unexpected source of variability made it impossible to trust the data from the screen as 

differences in protein levels could either be due to differences in FMRP regulation or inefficient 

extractions. I designed a more effective extraction protocol for later work, testing multiple extraction 

buffers and cell disruption methods to maximize reproducibility. Interestingly, even using the best 

protocol I could design based on the literature and available equipment (RIPA buffer and ultrasonic 

sonicator), I still found replicates could be twice the value of other samples in the set. Such results suggest 

that WB variability is too large to detect moderate protein changes and may only be appropriate for 

quantifying much larger shifts. 

There were other protocol issues in this work that should have been worked out prior to 

implementation. Protein quantification was performed by radiometric quantitation of fluorescent signal 

(measuring the net fluorescent signal coming from each band). This signal is linear over certain ranges but 

becomes non-linear at low or high levels of protein. It is important to ensure that signal is within the linear 

range when performing quantification experiments to ensure measurements are correct (e.g. a doubling 

of loaded protein should cause a doubling of signal). This requires performing a calibration curve with 

each antibody to determine the appropriate analysis range. Again, this would have been too much work 

for all of the antibodies in this screen, but a rough approximation of proper loading levels could have been 

performed for high and low level targets in order to avoid the extreme regions of signal loss. An issue at 

the intersection of extraction efficiency and linear range is loading controls. The loading control is a 

protein in the sample which is not expected to be affected by the treatment, typically a housekeeping 

gene. Measuring the level of this protein can indicate whether the extraction efficiency and total protein 
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loaded onto a gel is equivalent between conditions. If not, the samples can be corrected against the 

loading control to make them comparable. Alpha-tubulin is a commonly chosen loading control, especially 

in FXS models as it is believed not to be regulated by FMRP (Zhang et al., 2001). However, alpha-tubulin 

is a highly abundant protein and is typically saturated at the loading levels required for most other 

proteins. Using a protein with saturated signal to correct the loading of other proteins is ineffective, as 

altered levels of extraction or loading will not be faithfully reported by the control. I believe use of tubulin 

here to normalize signal masked the variable protein extraction efficiencies and was not appropriate for 

this work. Tests should have been done to determine if tubulin was in the linear range, and if not, a 

separate, less abundant loading control should have been chosen. The difficulty with this is the long reach 

of FMRP’s regulation. Few proteins have been proven not to be affected by FMRP loss, so finding an 

appropriate loading control requires a significant investment of work. For later WBs, I switched to total 

protein quantification assays, namely the Bicinchoninic Acid (BCA) assay, to confirm the same amount of 

protein was extracted between experiments (Walker, 1996). I also began using reversible general protein 

staining assays, such as MemCode, to measure total protein loaded onto the gel, avoiding the 

complications of a single loading control (Antharavally et al., 2004). However, neither of these techniques 

can correct for incomplete liberation, solubilization or depolymerization that can lead to individual 

proteins not fully extracting into the buffer. 

Another issue I routinely encountered was the non-specificity of published antibodies. Many of 

the antibodies I received had not been rigorously tested to confirm the labeled bands were indeed due to 

the protein of interest rather than an off-target protein. Often, they had been designed for tissues other 

than the brain meaning neural isoforms and non-specific targets had not been studied or reported. It was 

frequently unclear whether bands outside of predicted sizes were alternate isoforms, functionally 

modified proteins or non-specific targets (Brion et al., 1991). There were often very dim bands at the 
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expected size and very bright bands at unexpected sizes, making it unclear whether we had successfully 

extracted the target or were even quantifying the correct protein.  

Finally, after this work was complete, I discovered the dfmr150M brain is larger than the w1118 

control, a complicating factor for the WB screen results (Fig. 26). Since I was looking for major shifts in 

target abundance, I had instituted a 25% cutoff for follow-up experiments, making the brain size less of 

an issue. This effect could still act additively to make a change in protein level look higher than it truly is 

and bring it above the threshold, or mask a drop in protein. The change in brain size deserves a deeper 

investigation as it is unclear where the extra volume comes from. Increases in overall cell number or size 

should be easy to correct for; however, if the increase is due to subpopulations of cells, such as glia or 

dopaminergic neurons or retention of metabolites or water, this could make the data more difficult to 

appropriately normalize.  

Despite all of these limitations, several highly altered proteins were identified by this WB screen, 

although most came from off-target bands. The strongest 

changes were all off-target proteins seen in antibodies 

against Corkscrew (Csw), Gigas (Gig), Phosphatase and 

Tensin Homolog (Pten) and Bagpipe (Bap). Csw showed 

two off-target bands at 250kDa and 160kDa, which were, 

respectively, 125% and 309% of control on average. Csw 

also had two bands at predicted sizes that showed 

significant elevation of protein levels (Flybase). The 100kDa 

band was approximately 183% of control, while the 75kDa 

band was 157% of control (Fig. 29). The on-target Csw 

result was an exciting finding since gain of function (GOF) 

mutations in the human Csw homolog (PTPN11) result in 

 

 
 
Figure 29. Csw Western Blot 
The blot demonstrates two off target bands at 
250 and 160 kDa, as well as two bands that 
match predicted protein sizes of ~100 and 
~75kDa. Signal is increased for all four proteins in 
the dfmr150M line. Each lane contains two brains. 
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Noonan syndrome, a heritable condition with some similarities to the FXS disease state, including reports 

of ASD and mild to occasionally severe intellectual and learning deficits (Ghaziuddin et al., 1994; Lee et 

al., 2005; Sinkey and Odibo, 2017). Unfortunately, rigorous testing of the FMRP-Csw association using 

improved extraction and quantification methods at multiple timepoints eventually showed the increase 

in Csw protein was due to extraction variability and the enlarged dfmr150M brain (this was not the case for 

the off-target bands which still showed significant increases). While there may be overlapping and 

interacting pathways between Csw and FMRP that are responsible for the similar natures of Noonan 

syndrome and FXS, I felt the evidence for a direct FMRP-Csw interaction was too slim to pursue. I initially 

hoped to follow up on the off-target bands of Csw, Gig, Pten and Bap, but the only way to do so was 

through proteomic mass-spectroscopy methods. This would have required a significant resource 

investment and large amounts of the antibodies to immunoprecipitate the unknown targets, which we 

lacked. While these targets remain of great interest, some hesitation in pursuing them exists due to the 

finding that the dfmr150M allele, with which this work was performed, has background mutations. 

Alternate null alleles must be tested before these targets are pursued further.  

Though there were a number of qualms about these data, the overall results suggested most 

presumptive FMRP targets are not significantly disrupted in the FXS disease model, consistent with 

published FMRP proteomic work (Table 6; Zhang et al., 2004, 2005; Monzo et al., 2010). This indicates 

that protein misregulation is on a small scale (50% or less), which is perhaps not a surprising result from 

the loss of one translational regulator. However, this interpretation must be viewed with some skepticism 

based on the issues with sample preparation and analysis noted above. There were several cases where 

proteins showed large changes in expression and low variability (Table 6). These were reanalyzed, but 

only the targets mentioned above were consistent in altered expression. Unfortunately, the overall results 

of these experiment were too variable to pursue or publish, and this large body of work was therefore 

abandoned.  
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Protein 
Size 

(Kda) 
Tan Pupae 

Rel Std 
Dev 

Dark Pupae 
Rel Std 

Dev 
Adult 

Rel Std 
Dev 

A 150 105% 9% 104% 27% 104% 3% 

a-Spec 278 95% 7% 104% 25% 89% 12% 

Als2 166 120% 88% 104% 18% 103% 18% 

Ank2 450 117% 69% 93% 22% 116% 25% 

Arm 110 138% 4% 94% 15% 77% 19% 

Atf-2 50 83% 12% 146% 14% 121% 3% 

Ato 34 99% 21% 127% 13% 125% 23% 

Bap 42 102% 13% 113% 21% 119% 16% 

Calx 110 152% 34% 165% 69% 108% 87% 

Cf2 70 89% 12% 103% 35% 152% 7% 

  60 107% 8% 93% 78% 111% 6% 

Cher 240 114% 26% 138% 30% 107% 37% 

Cora 200 111% 12% 124% 13% 121% 19% 

Csw 100 126% 11% 102% 23% 183% 3% 

  74 33% 11% 126% 13% 157% 12% 

Cut 250 176% 13% 97% 18% 104% 14% 

Cv-c 150 155% 2% 134% 5% 117% 2% 

Dcr-1 250 97% 5% 76% 26% 92% 14% 

Dcr-2 198 183% 58% 91% 27% 165% 47% 

Dlg 140 71% 6% 97% 20% 101% 54% 

  130 92% 6% 108% 12% 109% 2% 

  120 x x 152% 1% 131% 14% 

  110 91% 0% 114% 9% 82% 30% 

Fas 57 105% 3% 111% 2% 125% 0% 

Fas2 90 112% 32% 102% 27% 97% 24% 

Galphao 38 84% 34% 131% 35% 118% 17% 

Gek 188 86% 31% 101% 17% 100% 18% 

Gro 80 119% 31% 126% 16% 66% 10% 

Her 34 x x 83% 44% 102% 37% 

  57 97% 131% 120% 11% 111% 125% 

  57 123% 11% 144% 6% 113% 1% 

  57 86% 12% 118% 39% 127% 2% 

  60 x x 30% 60% 68% 36% 

  57 120% 4% 265% 37% 145% 2% 

  60 x x 131% 17% 101% 0% 

Itp-r38a 318 100% 13% 165% 42% 98% 31% 

  85 116% 25% 78% 20% 143% 10% 

Kug 500 23% 141% 106% 11% 123% 24% 

Lilli 250 73% 2% 114% 7% 77% 20% 

MMP1  250 179% 15% 125% 12% 98% 9% 

 50 152% 26% 129% 18% 172% 44% 

Ndae1 105 94% 3% 112% 14% 134% 3% 
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Nej 341 113% 25% 66% 28% 69% 2% 

Nf1 350 120% 27% 140% 45% 77% 76% 

Nlg1 50-125 283% 45% 440% 70% 176% 7% 

  150 125% 7% 103% 12% 141% 7% 

Nlg2 136 67% 8% 111% 89% 216% 47% 

Nmdar1 112 120% 29% 149% 1% 183% 28% 

Nmdar1 130 x x 113% 20% 149% 9% 

  130 135% 42% 100% 25% 151% 34% 

  130 x x 105% 5% 96% 10% 

Nrg 190 105% 10% 71% 44% 97% 63% 

Nrx-1 150 85% 30% 78% 3% 124% 18% 

Pat 225 101% 15% 117% 24% 101% 34% 

PlexA 225 102% 30% 111% 1% 88% 51% 

PlexB 150 103% 28% 114% 36% 135% 27% 

Pum 200 94% 10% 141% 19% 55% 39% 

Rho1 21 182% 36% 119% 8% 111% 19% 

Scar 85 101% 5% 113% 12% 157% 14% 

Shot 600 148% 3% 113% 24% 101% 12% 

Spg 200 118% 3% 100% 4% 129% 11% 

Stan 200 130% 31% 86% 17% 72% 8% 

Sti 230 105% 27% 132% 21% 117% 13% 

Syn 150 125% 55% 79% 16% 104% 31% 

  70 218% 67% 118% 7% 116% 58% 

Syt7 75 114% 16% 155% 14% 101% 6% 

Tgo 72 152% 31% 124% 25% 115% 26% 

Timp 28 76% 0% 135% 17% 121% 2% 

Tor 281 104% 13% 105% 18% 106% 12% 

Trio 257 68% 54% 63% 24% 95% 55% 

  110 89% 103% 80% 13% 107% 29% 

  70 70% 1% 89% 6% 115% 23% 

X11L 120 106% 10% 113% 4% 102% 2% 

 
Heat map for degree of change      

> 200% 150% - 200% 125% - 150% 100% - 125% 
100% 
- 80% 80% - 66% 66% - 50% < 50% 

Heat map for degree of RSD    

0% - 15% 15% - 25% > 25%      
 
Table 6. Initial Results of FMRP Target Western Blot Screen. 
This table represents the percent increase seen dfmr150M animals relative to w1118 controls for each protein listed. 
The first column gives the protein’s name and the second gives the predicted size(s) of that protein, according to 
Flybase.org. Sizes or proteins not shown here did not produce a band on the blots. Sizes listed more than once are 
due to a second antibody being tested. Three timepoints were analyzed: light pupae, dark pupae and adult. An 
“x” indicates no band was seen at that timepoint. The percent increase or decrease is color coded based on the 
heat map at the bottom of the table to indicate the degree of change in the mutant relative to the control. Next 
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to the percent change is the relative standard deviation (RSD), which represents the standard deviation normalized 
to the degree of expression change. Higher RSDs indicate more variable data. These values are also color coded 
based on a heatmap at the bottom of the table. This table was generated by Ryan Moore and modified by Tyler 
Kennedy. 

 

Neuron-Specific Protein Labeling 

 Another project I undertook during my research was the generation of tools to label proteins of 

interest at endogenous expression levels in subsets of neurons. Such tools are necessary for examining 

how neural proteins change expression over time or are altered in mutants. The current approaches for 

studying such questions have shortcomings that limit their applicability in some circumstances. 

Immunohistochemistry (IHC) staining with synaptic antibodies can be ineffective in the CNS due to the 

density of neurons or synaptic connections. The extensive signal often makes it impossible to tell if a 

protein is localized to a target neuron or its neighbor. Similarly, fluorophore tagged versions of 

endogenous proteins made by homologous recombination techniques such as CRISPR, often lead to a 

signal that is too dense to interpret. Examples such as ShakB labeling in the GFI are rare exceptions (Fig. 

7; Phelan et al., 1996). One common solution to this problem is expression of a tagged version of a protein 

of interest expressed via the Gal4/UAS system (Zhang et al., 2002; Christiansen et al., 2011). While this 

avoids competing signal from nearby neurons, protein properties can be misrepresented if the Gal4 driver 

causes higher than endogenous levels of protein expression. Common issues are mis-localization, 

aggregation and inappropriate protein-protein interactions (Christiansen et al., 2011; Chen et al., 2014). 

A recent solution to this limitation was provided with the STaR technique, wherein the genetic sequence 

for a protein of interest is followed by a stop codon which is followed by a fluorophore sequence (Fig. 21; 

Chen et al., 2014). The stop codon is flanked by FRT sites, which can be removed by Flp through 

recombination (Chen et al., 2014). Thus, in neurons where Flp is expressed via Gal4/UAS, there is read-

through to the GFP and a tagged version of the protein is produced from its endogenous promoter. This 

technique was used in Chapter 4. While this system is an extremely effective solution to the labeling 
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problem, two problems arose during my 

use of this approach. First, the 

recombination is a random process, and it 

is impossible to know when it happens. If 

one is trying to quantify the number of 

synapses in a neuron with STaR, there may 

be more variability than is tolerable due to 

the marker turning on at different times 

during development in animals from the 

same experiment. Second, once 

recombination has happened it is 

irreversible. If the Gal4 line used in an 

experiment turns on briefly in development and alters a progenitor cell, all of the offspring of that cell will 

have a labeled version of the protein, even if the Gal4 line is no longer active. This can cause excessive 

labeling in promiscuous Gal4 lines. This can be corrected for by using spGal4 lines to reduce the 

unintentional signal, but this solution has not been perfect in my hands either (Pfeiffer et al., 2010).  

 I therefore attempted to create two tools to solve these problems: Gal4 Limited Enchainment 

Activated Marker (GLEAM) and an RNA-editing technique based on the ER unfolded protein response 

(UPR). GLEAM takes advantage of a split fluorophore, Venus (a GFP variant) in this case, which can form a 

complete, functional protein if the two pieces encounter each other. The goal of this project was to tag 

an endogenous protein with the small half of Venus, using the lines from the Minos Mediated Integration 

Cassette (MiMIC) transgenic library, and express the large half of Venus cell-specifically using the 

Gal4/UAS system (Hudry et al., 2011; Venken et al., 2011; Li-Kroeger et al., 2018). The MiMIC library 

contains thousands of Drosophila lines, which have had a cassette randomly inserted into the genome, 

 
 
Figure 30. The GLEAM Technique for Cell-Specific Labeling of 
Endogenously Expressed Proteins 
The GLEAM technique uses a split Venus protein, fusing the 
smaller, N-terminal half (NVenus) to the protein of interest, and 
expressing the larger C-terminal half (CVenus) cell-specifically with 
the Gal4/UAS system. The protein is only able to recombine and 
fluoresce when both halves are present, leading to fully functional 
Venus proteins only in Gal4 containing cells. 
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often in introns. The cassette can easily be swapped out for any other cassette via plasmid injection and 

directed recombination (Rong and Golic, 2000). If the insertion is intronic, splice acceptors and donors can 

flank the cassette to ensure it is transcribed with the protein of interest. Thus, any gene that has an 

available MiMIC line can be quickly made to include the small Venus fragment (Venken et al., 2011). In 

the converted animals, all cells that normally express the protein of interest will produce the tagged form, 

while only those with Gal4 expression will contain the large half of Venus, and create a fluorescently 

labeled protein (Fig. 30).  

I attempted create this system using the presynaptic markers Synaptotagmin (Syt) and Bruchpilot 

(Brp; Perin et al., 1991; Wagh et al., 2006). The construct was not successfully inserted into Brp, but did 

lead to a tagged version of Syt, which I verified via PCR. However, after extensive testing of this line, I was 

unable to show a successful example of a fluorescent Syt::Venus protein. I believe this is likely due to the 

endogenous expression of Syt::Venus not creating very much overall fluorescent signal. Alongside the 

poor signal, the GFI bend, where I imaged these proteins, is very deep in the VNC tissue, likely obstructing 

much of the fluorescence. Unfortunately, I was not able to identify an antibody that could specifically 

recognize the recombined Venus to compensate for the issue of low expression. A published example of 

such an antibody did not work in my hands (Macpherson et al., 2015). Another issue is that the small 

Venus fragment was inserted into an intron, rather than the terminal end of the protein. This location 

may have buried the fragment within the protein, preventing it from encountering the cytosolic Venus 

half. In the meantime, another laboratory has been able to demonstrate that this technique works. Their 

tool, termed Native And Tissue specific Fluorescence (NATF), is reported to be an excellent marker for 

endogenous, cell-specific protein labeling (He et al., 2018b). This method used seven repeats of a short 

GFP fragment attached to the terminal end of the protein of interest, thus bolstering the signal and 

accessibility of the fragment.  
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 My second cell-specific 

protein labeling technique 

was designed to manipulate 

the RNA of proteins of 

interest and avoid the 

difficulties of split GFP, such 

as lack of antibodies and dim 

signal. This approach took 

advantage of a set of 

proteins and RNAs involved 

in the metazoan UPR 

pathway, namely IRE, RtcB 

and XBP1. Normally in the 

ER, the IRE protein is kept in a monomeric state through attachment to HSPA5/BiP. When HSPA5/BiP 

detects a high accumulation of misfolded proteins, it releases from IRE, which then dimerizes. The 

dimerized form of IRE auto-phosphorylates and becomes catalytically active. IRE then excises 26 

nucleotides from XBP1 mRNA. RtcB is required during this process to ligate the RNA back together 

(Kosmaczewski et al., 2014). This modified XBP1 mRNA can then be translated into a transcription factor 

that upregulates UPR genes to correct folding errors in the ER (Calfon et al., 2002). An approach coopting 

this pathway to monitor ER stress via GFP in the mouse has been published, and I built upon these findings 

for my project (Iwawaki et al., 2004). Due to the novelty of this approach in Drosophila, I attempted to 

optimize this technique in Drosophila S2 cell culture (Fig. 31, Moraes et al., 2012). I used human versions 

of the proteins to avoid interfering with the endogenous Drosophila UPR, and only expressed the catalytic 

domain of IRE which should be able to dimerize and auto-phosphorylate without any outside signals 

 
 
Figure 31. RNA Editing Mechanism to Cell-Specifically Label Proteins 
In order to cell-specifically label a protein of interest (POI), the end of that protein’s 
sequence would be modified to include a stop codon (red) in the middle of the XBP 
stem-loop target region, followed by the sequence for a tag, such as GFP (Green). 
Without any editing, the cell will produce the POI with a small extra domain on the 
end. When IRE and RtcB are cell-specifically expressed, the stem-loop is edited out, 
removing the stop codon and allowing readthrough to the GFP sequence. 
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(Welihinda and Kaufmant, 1996). I was able to generate plasmids that expressed each component of 

interest in the S2 cells as well as a membrane protein, mCD8, with a stop codon flanked by the XBP1 edit 

sequences and a GFP transcript at the C terminus. Despite repeated attempts and optimizations of the 

XBP1 editing sequence, the expression of all of these pieces together in a S2 cell never led to the 

production of a GFP tagged version of mCD8. Expression of each protein was confirmed by antibody 

labeling, so It was not clear why the editing process did not proceed. Future work might require RT-PCR 

amplification of the target sequences to see how far along the enzymes were proceeding, so that the 

problematic step can be identified. While this tool has promise, the reactions involved are complicated 

and may not be robust enough to function in all circumstances. As an alternative to this approach, a recent 

report showed CRISPR machinery can be harnessed to an ADAR2 protein capable of swapping adenosine 

for inosine on RNA molecules (Cox et al., 2017). This CRISPR RNA editing system could provide a more 

straightforward method to edit transcripts. For example, a gene of interest could be modified to have a 

GFP sequence after a UAG stop codon. The CRISPR system could be expressed in the cells of interest with 

a targeting RNA aimed at the stop codon. This would result in A-to-I conversion, which is read by the 

ribosome as a G. Thus, the UAG stop codon becomes UGG (tryptophan), allowing the ribosome to read 

through to the GFP sequence. This would be a very powerful method, as the process would not affect the 

genome, thus circumventing several of the STaR drawbacks. This approach also opens up a greater range 

of labeling options than the GLEAM/NATF technique as any fluorophore or epitope tag, such as FLAG or 

V5 could be used, making multicolor and pulldown experiments feasible (Fan et al., 2008).  

 

Conclusion 

 Overall, the GF circuit has proved a reliable model for studying neuron development and function. 

This is perhaps the only currently studied circuit in Drosophila where multiple connected neurons can be 

imaged in series and parallel at single-neuron resolution. Analysis at the cellular and molecular level is 
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made easy by the large size of these neurons (Power, 1948; Bacon and Strausfeld, 1986). Gal4 drivers and 

the similarly designed LexA drivers are available for multiple members of the circuit allowing different 

UAS/LexAop transgenics to be expressed in connected neurons (Pfeiffer et al., 2010; Tirian and Dickson, 

2017). While not reported here, I performed electrophysiology recordings from the two muscles the GF 

circuit terminates on, the TTM and the DLM. The process is fairly simple, making activity recordings an 

accessible parameter of study (Gu and O’Dowd, 2007). Interestingly, the synapses leading to the TTM are 

all mixed electrical and ACh chemical synapses, with the exception of the NMJ, which is glutamatergic. In 

contrast, the DLM pathway has one synapse (PSI-DLMn) which is solely cholinergic. By measuring these 

two outputs separately, the impact of mutations on electrical or cholinergic synapses can be functionally 

evaluated (Mejia et al., 2013). Jump reflex assays were not pursued in this work, but they can be rapidly 

assayed with simple equipment, meaning these neurons can be studied from the molecular to the 

behavioral level (Martinez et al., 2007; de Vries and Clandinin, 2013; von Reyn et al., 2014). While it is 

unclear what the motor outputs of the GFCs are, once they have been identified, another behavioral assay 

may become linked to this circuit. There has even been some work suggesting activity dependent 

modulation of the GF circuit occurs, indicating habituation and potentiation can be studied in this 

collection of neurons (Engel and Wu, 1996; Engel et al., 2000). The expansive protocols and tools available 

for the GF circuit, make this an ideal model for studying how the brain assembles and operates in 

Drosophila. 
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