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CHAPTER I

INTRODUCTION

Ever since Leonhard Euler solved the “Seven Bridges of Königsberg” problem in the

early eighteenth century, graph theory has developed into an important tool in the study of

natural sciences, computer science, and other areas of mathematics. Several characteristics

of graphs are related to drawings of those graphs on surfaces. This thesis addresses the

genus problem – one of the central problems in topological graph theory – as well as some

additional embedding problems.

We begin by introducing the required terms and concepts.

I.1 Basic graph theory

A graph G = (V (G), E(G)) consists of a set V (G) of vertices and a set E(G) of 2-element

subsets of V (G) called edges. Thus, our graphs are simple, with no loops or parallel edges.

In this setting, if e = {u, v}, we will simply write e = uv = vu ∈ E(G). If e = uv, then we

say e joins u and v and the vertices u and v are called the ends of e. If v is an end of e, then

we say e is incident with v. For distinct u, v ∈ V (G), we say u and v are adjacent (or u and

v are neighbors), denoted u ∼ v, if uv ∈ E(G). A subset X ⊂ V (G) is called an independent

set if u 6∼ v for all u, v ∈ X. The degree of a vertex v is the number of edges incident with

v; equivalently, the number of neighbors of v. If every vertex in G has degree d, we say G is

d-regular.

For k ≥ 3, a cycle of length k in a graph G is a sequence of distinct vertices (v1v2 · · · vk)

such that vi ∼ vi+1 for i = 1, 2, ..., k − 1 and vk ∼ v1. A cycle that contains every vertex in

G is called a hamilton cycle; if G contains n vertices, then a hamilton cycle is simply a cycle

of length n. A walk of length k in a graph G is an alternating sequence of (not necessarily

distinct) vertices and distinct edges (v1e1v2e2v3...vkekvk+1) such that each edge ei is incident
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Figure I.1: Examples of a join graph and a lexicographic product.

with both vi and vi+1 for i = 1, 2, ..., k. If v1 = vk+1, then the walk is closed. A cycle

is necessarily a closed walk, but the converse does not hold. A closed walk that contains

every edge in G is called an euler circuit, and a graph that contains an euler circuit is called

eulerian.

We will be studying hamilton cycles in some special classes of graphs. The complete

graph Kn is an n-vertex graph such that every vertex is adjacent to every other vertex. For

k ≥ 2, the complete multipartite graph Kn1,n2,...,nk
consists of k independent sets of vertices

X1, X2, ..., Xk such that |Xi| = ni and two vertices u ∈ Xi and v ∈ Xj are adjacent if

and only if i 6= j. If G is a multipartite graph with k = 2, 3 or 4, then G is a complete

bipartite graph, complete tripartite graph or complete quadripartite graph, respectively. The

complement of a graph G, denoted G, is a graph on the same vertex set such that u ∼ v in

G if and only if u 6∼ v in G. The complement of a complete graph Kn is the edgeless graph

Kn.

At times we consider ways of building larger graphs from smaller ones. The join of G and

H, denoted G + H, is the graph with vertex set V (G) ∪ V (H) such that two vertices u and

v are adjacent if and only if uv ∈ E(G)∪E(H) or u ∈ V (G) and v ∈ V (H). In other words,

G + H contains all the original edges of G and H, as well as an edge from every vertex in

G to every vertex in H. The lexicographic product of G and H, denoted G[H], is the graph

with vertex set V (G)×V (H) such that two vertices (u, x) and (v, y) are adjacent if and only

2



if u ∼ v in G or u = v and x ∼ y in H. In other words, G[H] is obtained by replacing each

vertex v in G with a copy Hv of H and placing an edge between every vertex in Hu and Hv

whenever u ∼ v in G. Figure I.1 shows graphs G and H together with their join G + H and

the lexicographic product G[H]. Note that if G = Kn1,n2,...,nk
, then G[Km] = Kmn1,mn2,...,mnk

.

Let G be a graph and let X = {xh | h ∈ H} ⊂ V (G) and Y = {yh | h ∈ H} ⊂ V (G)

be disjoint subsets of V (G) indexed by the group H. We call xh1yh1h2 ∈ E(G) an XY -edge

of slope h2. Unless otherwise noted, we will assume H = Zn and the edge xiyj will be the

XY -edge of slope j − i. For the majority of this thesis, we will focus on complete tripartite

graphs. To that end, let A = {a0, ..., an−1}, B = {b0, ..., bn−1} and C = {c0, ..., cn−1} be the

vertices of Kn,n,n so that A,B and C are the maximal independent sets. A hamilton cycle

of the form (aj0bk0c`0aj1bk1c`1 · · · ajn−1bkn−1c`n−1) is called an ABC cycle.

For further information on graphs, see [3].

I.2 Topological graph theory

I.2.1 Background

Topological graph theory is the study of graphs drawn on surfaces. A surface in this case is

a compact 2-manifold without boundary. There are two families of surfaces: the orientable

surfaces and the nonorientable surfaces. The orientable surface of genus h, denoted Sh, can be

interpreted as a sphere with h handles attached; equivalently, it is a torus with h holes. The

nonorientable surface of genus k, denoted Nk, can be interpreted as a sphere with k crosscaps

attached, where a crosscap is essentially a Möbius strip. The euler characteristic of Sh is

2− 2h, while the euler characteristic of Nk is 2− k; we denote the euler characteristic of an

arbitrary surface Σ by χ(Σ). The orientability characteristic of an orientable or nonorientable

surface is +1 or −1, respectively.

An embedding of a graph G, denoted G ↪→ Σ, consists of an injective map ν : V (G) → Σ

and a continuous injective map εi : [0, 1] → Σ for each edge ei ∈ E(G) satisfying the

following properties: 1) if ei = uv, then {εi(0), εi(1)} = {ν(u), ν(v)}; 2) εi(t) 6∈ ν(V (G))
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for all t ∈ (0, 1); and 3) for i 6= j, εi(s) 6= εj(t) for all s, t ∈ (0, 1). An embedding

of G can be thought of as a drawing of G on the surface Σ such that no edges cross.

Let C =
⋃

ei∈e(G) εi([0, 1]) be the image of all the maps of an embedding; the connected

components of Σ \ C are called faces and denoted F (G). If every face is homeomorphic to

an open disk, then the embedding is an open 2-cell embedding; if the closure of every face is

homeomorphic to a closed disk, then the embedding is a closed 2-cell embedding. The faces

of an embedding satisfies the relation |V (G)|− |E(G)|+ |F (G)| = χ(Σ); this is known as the

Euler formula. In an open 2-cell embedding, a face is usually characterized by the ordering

of vertices as you walk around the boundary of the face; we will simply use “face” to indicate

the boundary walk of a face. For a closed 2-cell embedding, each face is simply a cycle in

the original graph.

A given graph G can often be embedded on many different surfaces; therefore, we usually

desire embeddings with certain properties. The genus of G, denoted g(G), is the minimum

h such that G ↪→ Sh. Likewise the nonorientable genus of G, denoted g̃(G), is the minimum

k such that G ↪→ Nk. The embeddings that achieve these minima – hereafter referred to

simply as genus embeddings – generally have very small faces, such as triangles. There are

related notions of maximum genus and nonorientable maximum genus; the embeddings that

achieve these maxima generally have very large faces, the largest possible of which – when

restricting to closed 2-cell embeddings – is a hamilton cycle. An embedding where every

face is a triangle is called a triangulation or a triangular embedding, while an embedding

where every face is a hamilton cycle is called a hamilton cycle embedding. If the faces of an

embedding can be colored with k colors so that any two faces that share an edge are assigned

different colors, then we say that embedding is face k-colorable. Some of the embeddings we

construct will be face 2-colorable.

Finding these special embeddings for general graphs can be quite difficult. In fact,

Thomassen [50] showed that determining the genus of a general graph is NP-complete. How-

ever, it is possible to determine the genus exactly for certain families of graphs. Ringel used
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some graphs with known genus to solve most cases of the Map Coloring Theorem [41], a

generalization of the Four Color Theorem.

After Ringel and Youngs solved the final case of the Map Coloring Theorem in 1968,

there was little progress made on the graph genus problem for the next three decades. But

with the recent development of new techniques, interest in determining the genus of special

graphs has been renewed. In particular, Ellingham, Stephens and Zha [14] used nonorientable

embeddings of complete bipartite graphs with several large faces to prove that, with a few

small exceptions, g̃(K`,m,n) = g̃(K`,m+n). This essentially means that we can add the required

edges to a genus embedding of K`,m+n to obtain an embedding of K`,m,n without raising the

genus of the surface. In a similar fashion, Ellingham and Stephens [12] used nonorientable

embeddings of complete graphs whose faces were all hamilton cycles to prove that, with a

few small exceptions, g̃(Km + Kn) = g̃(Km,n) when m ≥ n − 1. This again means we can

add the required edges to a genus embedding of Km,n to obtain an embedding of Km + Kn

without raising the genus of the surface. The pursuit of a similar result for the genus of

Km + Kn has proven to be much more challenging [13]; one of the goals of this thesis is to

make progress towards resolution of the orientable case.

Another goal of this research is to find embeddings of certain complete multipartite graphs

that satisfy given properties. In a series of papers, Ringel and Youngs, et al., [37–40, 43–48]

found genus embeddings of Kn and Km,n on both orientable and nonorientable surfaces. In

[42] they also found hamilton cycle embeddings of Kn,n on orientable surfaces. As mentioned

in the previous paragraph, Ellingham, Stephens, and Zha [14] found genus embeddings of

K`,m,n on nonorientable surfaces; this work included hamilton cycle embeddings of Kn,n

on nonorientable surfaces for all n ≥ 4. Moreover, Ellingham and Stephens found genus

embeddings of Km + Kn from hamilton cycle embeddings of Kn on nonorientable surfaces

[12] and on orientable surfaces for certain values of n [13]. In this thesis we extend these

results to include hamilton cycle embeddings of Kn,n,n and genus embeddings of Kt,n,n,n for

t ≥ 2n on both orientable and nonorientable surfaces.

5
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Figure I.2: An embedding of K5 on the projective plane.

For more background on topological graph theory, see [27] or [36].

I.2.2 Combinatorial descriptions of embeddings

It is possible to represent an embedding completely combinatorially. The most common way

to do this for open 2-cell embeddings is by specifying the rotation system, which includes

a cyclic ordering Rv = (e0e1 · · · ek) of the ends of edges incident with each vertex v; the

permutation Rv is called the rotation around v. The faces of the embedding are given by

the collection of all closed walks W = (v0e0v1e1v2...vk−1ek−1v0) satisfying the condition that

Rvi
(ei−1) = ei for every i ∈ Zk. The embedding resulting from a rotation system is always

in an orientable surface.

To extend the definition of rotation systems to get nonorientable embeddings, we consider

embedding schemes. An embedding scheme consists of a rotation system together with a map

λ : E(G) → {−1, +1} that associates to each edge e the edge signature λ(e). For any open

walk W = (v0e0v1e1v2...vk−1ek−1vk), define λ(W ) = λ(e0)λ(e1) · · ·λ(ek−1) to be the net walk

signature. The faces of the resulting embedding are traced out in the following manner.

Choose any edge e0 with ends v0 and v1, and let W0 = (v0e0v1). The next edge is given by

e1 = R
λ(W0)
v1 (e0); assuming the other end of e1 is v2, we set W1 = (v0e0v1e1v2). Now to each

open walk Wj we continue adding the edge ej+1 = R
λ(Wj)
vj+1 (ej) until we encounter the edge

e0 again with a net walk signature of +1. The collection of all closed walks determined by

6



this process correspond to the faces of the resulting embedding. If all of the edge signatures

are +1, then the resulting embedding will be identical to the orientable embedding obtained

from the rotation system alone. The following example gives the embedding scheme for the

embedding K5 ↪→ N1 shown in Figure I.2. The nonorientable surface N1 represented in

Figure I.2 is the projective plane, obtained by identifying the upper dashed curve with the

lower dashed curve such that the arrows point in the same direction.

Example I.2.1.

Rv0 : (e4e5e6e7)

Rv1 : (e0e4e3e8)

Rv2 : (e0e9e1e5)

Rv3 : (e1e8e2e6)

Rv4 : (e2e9e3e7)

λ(e0) = λ(e1) = λ(e2) = λ(e3) = λ(e4) = λ(e5) = λ(e6) = λ(e7) = +1

λ(e8) = λ(e9) = −1

The benefit of using rotation schemes is that you know you have an embedding; the

detriment is that tracing out the faces can be quite difficult. Since we are trying to construct

embeddings with specific facial boundaries, this is a problem. To remedy this, we use an

alternate representation of an embedding. Rather than specifying the cycles that make up

each rotation, we give the cycles that make up the boundary of each face. This obviously

gives us control over the sizes of each face; however, it comes at a cost. While it is known that

a collection of faces that double covers the edges of a graph G can be “sewn” together along

common edges to get a drawing of G, it is possible that this drawing is on a pseudosurface

rather than a surface. This happens if the neighborhood of any vertex in the resulting

topological space is not homeomorphic to a disk. To ensure that we do have an embedding

on a surface, it must be shown that there is a well-defined cyclic rotation around each vertex.

Because all of the graphs we will encounter in this thesis are simple graphs, we will adopt

7



the convention of presenting the rotation Rv around the vertex v as a rotation graph on the

neighbors of v. If a face contains the subsequence (· · · uvw · · · ), then the vertices u and w

are adjacent in Rv, representing the fact that the edges uv and vw occur consecutively in

the rotation around v. Every rotation graph will be 2-regular; a rotation graph is proper

if it consists of a single cycle. A collection of faces determines an embedding of a graph

in a surface if the rotation graph around each vertex is proper. Example I.2.2 provides

the collection of faces that corresponds to the embedding K5 ↪→ N1 shown in Figure I.2.

Following each face is the edge that appears in the rotation graph Rv1 . Considering all these

edges, we conclude that Rv1 is given by the cycle (v2v0v4v3). Note that this is equivalent to

the rotation Rv1 given in Example I.2.1.

Example I.2.2.

F0 : (v0v1v2); v0v2

F1 : (v0v2v3)

F2 : (v0v3v4)

F3 : (v0v4v1); v4v0

F4 : (v1v3v4v2); v2v3

F5 : (v2v4v1v3); v4v3

For further information on representing embeddings combinatorially, the reader is again

referred to [27] or [36].

The benefit of having combinatorial descriptions of embeddings is that it makes it possible

to present purely combinatorial methods of construction. We develop two new methods

for building embeddings of Kn,n,n. In Chapter II, we present a cyclic construction that

generates an entire embedding from two sequences of edge slopes. The facial boundaries in

the resulting embedding are highly structured. While this construction can be used to create

both nonorientable and orientable embeddings, we will focus on the nonorientable case. In

Chapter III, a correspondence between an orientable hamilton cycle embedding of Kn,n,n

with certain properties and two pairs of orthogonal latin squares of order n with certain

8



properties is demonstrated. We further show that an orientable hamilton cycle embedding

of Kn,n,n can be generated from a single pair of orthogonal latin squares provided one of

those squares exhibits an additional property.

I.2.3 Voltage graphs

In addition to creating new methods for constructing embeddings, we will take advantage of

some known techniques. The first of these – the voltage graph – was introduced by Gross in

1974 [25]. We will only need voltage graphs in Chapter III; therefore, we restrict our focus in

this section to voltage graphs that yield orientable embeddings. For information on voltage

graphs yielding nonorientable embeddings, see [27]. Let G ↪→ Σ be an embedding of a graph

G, possibly with loops and parallel edges, in some orientable surface Σ. Assign a direction

to each edge in G, and let α : E(G) → Γ be a function from the edges of G to the group Γ.

The map α is called a voltage assignment, the group Γ is called the voltage group, and the

pair (G ↪→ Σ, α) is called a voltage graph.

From a voltage graph (G ↪→ Σ, α) we obtain an embedding of the derived graph Gα in the

surface Σα as follows. The vertex set of Gα is V (G)×Γ, and the edge set of Gα is E(G)×Γ.

We adopt the notation va and eb for the vertex (v, a) and the edge (e, b), respectively. If

e ∈ E(G) is directed from u to v and α(e) = b, then there is an (undirected) edge ea in

Gα connecting ua and vab for all a ∈ Γ. Each vertex va ∈ Gα, for every a ∈ Γ, inherits

the rotation around v in the original embedding; this produces a rotation system that yields

an embedding in the derived surface Σα. In Figure I.3, the graph G is shown on the left,

embedded in the plane with voltage assignments from Z3, along with the derived graph Gα

on the right, also embedded in the plane.

Using this construction, the resulting surface Σα will always be orientable. We do, how-

ever, want to determine the structure of each face in the embedding Gα ↪→ Σα. To determine

the faces of the derived embedding, one must trace out the faces of the embedded voltage

graph. Let W = eε1
1 eε2

2 · · · eεk
k be the closed walk bounding a face in the embedding G ↪→ Σ,

9
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Figure I.3: Example of a voltage graph and its derived graph.

where εi = +1 if ei is traced in the forward direction and εi = −1 if ei is traced in the

reverse direction. We define the net voltage of W to be |W | = α(e1)
ε1α(e2)

ε2 · · ·α(ek)
εk . We

want to be able to determine whether a closed walk W yields a hamilton cycle in the derived

embedding without actually constructing the embedding. The following theorem aids in this

determination.

Theorem I.2.3 (Gross and Tucker, Theorem 2.1.3 [27]). Let W be a closed walk of

length k bounding a face in the voltage graph (G ↪→ Σ, α), and let the net voltage |W | have

order n in Γ. Then W yields |Γ|
n

faces of size kn in the derived embedding of Gα.

Because we are only considering orientable graphs without edge signatures, we can trace

the faces of the voltage graph without actually considering the embedding. To do so, we

assign a consistent orientation, say clockwise, to each vertex; this induces a cyclic ordering of

the edges, or rotation, around each vertex. Say, for example, that Rv is the rotation around

v. If we enter v on the edge e as we are tracing a facial boundary, then we leave v on the

edge Rv(e). Following this procedure, every closed walk traced out corresponds to a face of

the voltage graph. We consider the voltage graph in Figure I.3 as an example. We use the
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notation e+1 ∈ Rv to indicate the edge is traced in the forward direction as we leave v and

e−1 ∈ Rv to indicate the edge is traced in the reverse direction. This is equivalent to e+1

and e−1 representing the tail and head of e, respectively. The rotation around each vertex

is given below.

Ru : (d+1e+1f−1d−1)

Rv : (e−1f+1).

We now choose any edge, say d, to use as the starting point for our trace. If we follow d

in the forward direction from its tail at u to its head at u, we see that Ru(d
−1) = d+1, so

we have a closed walk, call it W0 = (d+1). Next, we start with d and trace it in the reverse

direction from its head at u to its tail at u. Since Ru(d
+1) = e+1, we next trace e in the

forward direction from its tail at u to its head at v. Since Rv(e
−1) = f+1, we next trace f in

the forward direction from its tail at v to its head at u. Here we find that Ru(f
−1) = d−1, so

our walk is closed, call it W1 = (d−1e+1f+1). Repeating this process with any unused edge as

our starting point, we obtain the closed walk W2 = (e−1f−1). Since each edge has been used

exactly once in both the forward and reverse directions, we have found all possible closed

walks. We compute the net voltage of each closed walk below. Because we are working in

the abelian group Z3, we use addition to represent the group operation.

|W0| = α(d)+1 = 1

|W1| = α(d)−1 + α(e)+1 + α(f)+1 = −1 + 0 + 1 = 0

|W2| = α(e)−1 + α(f)−1 = −0− 1 = 2

Applying Theorem I.2.3, we learn that W0 yields 1 face of size 3, W1 yields 3 faces of size

3, and W2 yields 1 face of size 6. Thus, the derived embedding Gα ↪→ Σα has 6 vertices, 9

edges and 5 faces. Plugging this information into the Euler formula, we learn that χ(Σα) = 0,

confirming what we knew from Figure I.3.

In Chapter III, we will build voltage graphs for hamilton cycle embeddings of Kn,n,n.

The required voltage graph will have vertices a, b and c corresponding to the independent
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sets A,B and C. There will be n edges directed from a to b, with each voltage from an

abelian group of order n being assigned to one of these edges. If α(e) = i, then e represents

all AB-edges of slope i. Similarly, there will be n edges directed from b to c and n edges

from c to a, with each possible slope appearing once in each collection. Since the vertices

and edges of our voltage graph are known ahead of time, all we will need to specify is the

rotation around each vertex. It will suffice, then, to show that all of the faces in the derived

embedding are hamilton cycles.

I.2.4 Surgical techniques

Some of the methods we will employ require performing surgery on some preexisting embed-

dings. One of these methods is quite simple. Let G ↪→ Σ be a hamilton cycle embedding

of G with m hamilton cycle faces. By placing a new vertex in the center of each face and

connecting it by new edges to each vertex on the boundary of that face, we create an em-

bedding Km + G ↪→ Σ. Moreover, since this new embedding is necessarily a triangulation,

we actually have a genus embedding of Km + G. In particular, we can derive triangulations

of K2n,n,n,n from hamilton cycle embeddings of Kn,n,n and triangulations of Kn−1 + Kn from

hamilton cycle embeddings of Kn.

Another, more complex method we will employ is the so-called “diamond sum” construc-

tion. This surgical technique was introduced in dual form by Bouchet [8], reinterpreted by

Magajna, Mohar and Pisanski [32], developed further by Mohar, Parsons, and Pisanski [35],

and generalized by Kawarabayashi, Stephens and Zha [31]. In particular, the diamond sum

construction allows us to combine genus embeddings of Kt1,n,n,n and Kt2,3n to get a genus

embedding of Kt1+t2−2,n,n,n. This is achieved by removing a disk containing a vertex of de-

gree 3n and all of its incident edges from each embedding and identifying the boundaries of

the resulting holes in a suitable fashion. For similar applications of the diamond sum, see

[12–14], and for more information on this technique, see [36, pages 117–118].

In Chapter IV, we extend the doubling construction in [13] to a tripling construction
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for hamilton cycle embeddings of complete graphs. By taking three copies of a hamilton

cycle embedding of Kn, removing a point from each and joining them via a hamilton cycle

embedding of Kn−1,n−1,n−1, we are able to obtain a hamilton cycle embedding of K3n−3.

I.2.5 Bouchet covering triangulations

In a series of papers [2, 7, 9] in the 1970’s and 1980’s, Bouchet – together with Bénard and

Fouquet – developed several methods for lifting triangulations of a graph G to triangulations

of G[Km]. These methods, which Bouchet calls covering triangulations, are especially useful

when G is the complete multipartite graph Kn1,...,nq , because the lexicographic product G[Km]

is the complete multipartite graph Kmn1,...,mnq . Thus, these covering triangulations yield a

product construction for genus embeddings of complete multipartite graphs. There are three

of the methods employed by Bouchet that will be useful in Chapter IV. A brief description

of each follows, along with the relevant result.

The first method is a generative m-valuation [7]. Let τ : G ↪→ Σ be a triangulation

of G, and let T be the collection of triangle faces in τ . A map ϕ : T → Zm is called

an m-valuation of τ . Let V (G[Km]) = V (G) × Zm; for every triangle t = uvw ∈ T ,

set Ct = {(u, i)(v, j)(w, k) | i + j + k = ϕ(t)}. Under certain conditions, the collection of

triangles {Ct | t ∈ T} defines a triangulation of G[Km] in a surface with the same orientability

characteristic as Σ; this is called the expansion of τ . For an eulerian graph, the required

condition is straightforward. For each vertex v ∈ V (G), let (t1t2 · · · t2k) be the permutation of

triangle faces incident with v as they appear in clockwise order around v in the triangulation

G ↪→ Σ. Define

ϕ̇(v) =
2k∑
i=1

(−1)iϕ(ti).

If ϕ̇(v) generates the entire group Zm for every vertex v ∈ V (G), then ϕ is a generative

m-valuation of τ .

Theorem I.2.4 (Bouchet, Theorem 1 [7]). Let τ : G ↪→ Σ be a triangulation of an

13
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Figure I.4: Select neighborhoods from triangulation τ .

eulerian graph G, and let ϕ be a generative m-valuation of τ for some integer m ≥ 2.

Then the expansion of τ is a triangulation of G[Km] in a surface with the same orientability

characteristic as Σ.

Thus, it suffices to show that the triangulations we want to expand admit a generative

m-valuation. For complete multipartite graphs, this is addressed in another theorem of

Bouchet.

Theorem I.2.5 (Bouchet, Theorem 4 [7]). Let G be an eulerian complete multipartite

graph. If there exists a triangulation τ : G ↪→ Σ, then there exists a triangulation of G[Km]

in a surface with the same orientability characteristic as Σ.

We are now able to prove the following result.

Corollary I.2.6. If there exists a nonorientable triangulation of K2n,n,n,n with n even, then

there exists a nonorientable triangulation of K2mn,mn,mn,mn for every integer m ≥ 1.

Proof. Every vertex in K2n,n,n,n has even degree, thus it is an eulerian graph. The result

follows from Theorem I.2.5.

While we omit the proofs of Theorems I.2.4 and I.2.5, we provide the following example

for clarification.

Example I.2.7. Figure I.4 shows the neighborhoods of the D vertices for a nonorientable

triangulation τ : K4,2,2,2 ↪→ N4, where A = {a0, a1}, B = {b0, b1}, C = {c0, c1} and D =
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Figure I.5: Select neighborhoods from expansion of τ .

{d0, d1, d2, d3} are the sets of the partition. The value ϕ(t) is displayed in each triangle t;

each vertex is contained in an odd number of triangles t with ϕ(t) = 1. Thus, ϕ̇(v) = 1

for every v, and ϕ is a generative 2-valuation. The neighborhoods for the two vertices that

result from d0 in the expansion of τ are shown in Figure I.5.

The second method is similar to generative m-valuations, except that instead of requiring

triangles to satisfy a condition based on ϕ, triangles must satisfy a condition that comes from

a nowhere-zero p-flow on the dual of the original triangulation (p is prime). Using induction

and Seymour’s proof that every graph G without an isthmus admits a nowhere-zero 6-flow

[49], Bouchet proved the following theorem.

Theorem I.2.8 (Bouchet, Corollary, p. 234 [9] ). If there exists a triangulation G ↪→ Σ

and m is an integer such that 2, 3, 5 - m, then there exists a triangulation of G[Km] in a

surface with the same orientability characteristic as Σ.

Remark I.2.9. If Tutte’s conjecture that every isthmus-free graph admits a nowhere-zero

5-flow is proven to be true, then we could remove the requirement that 5 - m from the

statement of Theorem I.2.8.
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This leads directly to the following corollary.

Corollary I.2.10. If there exists a nonorientable triangulation of K2n,n,n,n, then there exists

a nonorientable triangulation of K2mn,mn,mn,mn for every integer m ≥ 1 such that 2, 3, 5 - m.

The last method that we will utilize is based on the existence of a well-separating cycle

in G. We will leave the details to Bénard, Bouchet and Fouquet [2], but we present the

following theorem.

Theorem I.2.11 (Bénard, Bouchet and Fouquet, Corollary 4.3 [2]). Let G be a 4-

colorable graph different from K4, and let m = 3p for some integer p ≥ 1. If there exists a

triangulation G ↪→ Σ, then there exists a triangulation of G[Km] in a surface with the same

orientability characteristic as Σ.

We can now obtain the final result we need from Bouchet’s covering triangulations.

Corollary I.2.12. If there exists a nonorientable triangulation of K2n,n,n,n, then for every

integer p ≥ 0 there exists a nonorientable triangulation of K2mn,mn,mn,mn, where m = 3p.

Proof. Providing each independent set with a different color, it is easy to see that K2n,n,n,n

is 4-colorable. The result follows from Theorem I.2.11.

I.3 Latin squares

I.3.1 Definitions

Our terminology agrees with that set forth by Wanless in [51, 52]. A latin square of order n

is an n×n matrix on some n-set E such that every row and every column contain exactly one

copy of each element of E. Assume the rows and columns of L are labeled using the n-sets R

and C, respectively; if the entry in row r ∈ R and column c ∈ C contains the entry e ∈ E, we

say that L contains the ordered triple (r, c, e), or Lrc = e. A latin square is thus equivalent

to a set of ordered triples. Unless otherwise noted, we will assume R = C = E = Zn. Two

latin squares L1 and L2 on the sets E1 and E2, respectively, are called orthogonal, denoted
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L1 ⊥ L2, if the ordered pairs obtained by overlapping the two squares cover every element

of E1 × E2 exactly once. If L1 ⊥ L2 for some L2, we say L1 has an orthogonal mate.

Example I.3.1. A and B are orthogonal latin squares of order 3, as evidenced by the over-

lapping entries shown in the matrix C. The center entry of A would be denoted (1, 1, 2).

A =




0 1 2

1 2 0

2 0 1




, B =




0 1 2

2 0 1

1 2 0




, C =




(0, 0) (1, 1) (2, 2)

(1, 2) (2, 0) (0, 1)

(2, 1) (0, 2) (1, 0)




Given an n × n latin square L, a transversal is a set of n ordered triples {(ri, ci, ei) ∈
L | i ∈ Zn} such that {r0, ..., rn−1} = {c0, ..., cn−1} = {e0, ..., en−1} = Zn. In other words, a

transversal is a collection of cells from L such that every row, column, and entry is covered

exactly once. In Example I.3.1, note that the 0 entries in B correspond to a transversal in

A; likewise for the 1 and 2 entries. It is well known that a matrix has an orthogonal mate if

and only if it can be decomposed into disjoint transversals.

Theorem I.3.2. A latin square L has an orthogonal mate if and only if L can be decomposed

into disjoint transversals.

For this thesis, we will utilize a generalization of a transversal known as a k-plex. If L is

a latin square of order n, a k-plex is a set of kn ordered triples {(ri, ci, ei) ∈ L | i ∈ Zkn} such

that the collections {r0, ..., rkn−1}, {c0, ..., ckn−1} and {e0, ..., ekn−1} each cover Zn k times.

In other words, a k-plex is a collection of cells from L such that every row, column, and

entry is covered exactly k times. Thus, a transversal is a 1-plex, and an example of a 2-plex

is given in Example I.3.3.

Example I.3.3. The starred entries in L form a 2-plex.
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L =




0 ∗ 1 ∗ 2 3 4 5

1 2 ∗ 3 ∗ 4 5 0

2 3 4 ∗ 5 ∗ 0 1

3 4 5 0 ∗ 1 ∗ 2

4 5 0 1 2 ∗ 3 ∗

5 ∗ 0 1 2 3 4 ∗




If L can be decomposed into disjoint parts K1, K2, ..., Kd, where each Ki is an ki-plex,

then we call this a (k1, k2, ..., kd)-partition of L. If all the parts have the same size k, then

we simply call this a k-partition. A decomposition into transversals is a 1-partition; thus,

we get the following result.

Theorem I.3.4. A latin square L has an orthogonal mate if and only if there exists a

1-partition of L.

While transversals can be difficult or impossible to locate in latin squares, k-plexes are

generally much easier to find. In fact, it is conjectured that every latin square contains the

maximum number of disjoint 2-plexes.

Conjecture I.3.5 (Wanless, Conjectures 2 and 3 [51]). If L is a latin square of even

order, then L admits a 2-partition. If L is a latin square of odd order, then L admits a

(2, 2, ..., 2, 1)-partition.

A latin square of order nm is said to be of m-step type if it can be divided into m ×m

latin subsquares Aij as follows




A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

. . .
...

An1 An2 · · · Ann
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where Aij and Ai′j′ contain the same entries if and only if i + j ≡ i′ + j′ (mod n). These

squares were first presented by Euler [16]; it was later shown that in certain cases m-step

type latin squares are resistant to transversals.

Theorem I.3.6 (Maillet [33]). Suppose that m is odd and n is even. If L is a m-step type

latin square of order nm, then L contains no transversals.

This result was later extended to include any odd k-plex.

Theorem I.3.7 (Wanless, Theorem 6 [51]). Suppose that m and k are odd and n is

even. If L is a m-step type latin square of order nm, then L contains no k-plexes.

For more information and results concerning transversals and k-plexes in latin squares,

see [51, 52].

For this thesis, we will use a slight generalization of Euler’s m-step type latin square. Let

L be a latin square of order n; a latin square of order nm is said to be a m-step type latin

square based on L if it can be divided into m×m latin subsquares Aij as follows




A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

. . .
...

An1 An2 · · · Ann




where Aij and Ai′j′ contain the same entries if and only if Lij = Li′j′ . Thus, Euler’s m-step

type latin square is simply a m-step type latin square based on L = Zn, where we write

L = Zn throughout this paper to denote that L is the latin square formed by the addition

table for Zn.

In Chapter III, we will construct m-step type latin squares based on a latin square L that

actually admit a 1-partition. One idea that will aid in the construction of such squares is

that of a turn-square. A turn-square is a latin square obtained by starting with the Cayley

table of a group and “turning” some number of order 2 latin subsquares. This is equivalent
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to permuting the rows of the order 2 subsquares. In the example below, the starred entries

in L are “turned” to form the turn-square Lt.

Example I.3.8.

L =




0 1 2 3 4 5

1 2 ∗ 3 4 5 ∗ 0

2 3 4 5 0 1

3 4 5 0 1 2

4 5 ∗ 0 1 2 ∗ 3

5 0 1 2 3 4




, Lt =




0 1 2 3 4 5

1 5 ∗ 3 4 2 ∗ 0

2 3 4 5 0 1

3 4 5 0 1 2

4 2 ∗ 0 1 5 ∗ 3

5 0 1 2 3 4




We generalize this concept to include more than just Cayley tables and allow turns on

larger subsquares. An m-turn-square is a latin square obtained by taking a given latin

square and permuting the rows of some latin subsquares of order m. If K is a m-turn-square

obtained from a m-step type latin square based on L, we call K a turned m-step type latin

square based on L. The latin square Lt given in Example I.3.9 is a turned 4-step type latin

square based on Z2 that is obtained from L by permuting the rows of A00 and A11 down three

rows, permuting the rows of A10 down two rows, and leaving the rows of A01 unchanged.

Example I.3.9.

L =




0 2 4 6 1 3 5 7

2 4 6 0 3 5 7 1

4 6 0 2 5 7 1 3

6 0 2 4 7 1 3 5

1 3 5 7 0 2 4 6

3 5 7 1 2 4 6 0

5 7 1 3 4 6 0 2

7 1 3 5 6 0 2 4




, Lt =




2 4 6 0 1 3 5 7

4 6 0 2 3 5 7 1

6 0 2 4 5 7 1 3

0 2 4 6 7 1 3 5

5 7 1 3 2 4 6 0

7 1 3 5 4 6 0 2

1 3 5 7 6 0 2 4

3 5 7 1 0 2 4 6
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In Chapter III, we will also need a property of latin squares that describes the relative

position of consecutive entries. Let L be a latin square of order n. For each i ∈ Zn, we

form the graph Gi with n vertices c0, ..., cn−1 corresponding to the columns of L and an

edge for each row between the columns that contain i and i + 1. In other words, cj ∼ cj′

if and only if (r, cj, i), (r, cj′ , i + 1) ∈ L for some r. Since each column contains both i and

i + 1 exactly once, Gi is 2-regular; if Gi is a single cycle of length n for all i ∈ Zn, then

we say L is consecutively entry hamiltonian, or ce-hamiltonian for short. An example of a

ce-hamiltonian latin square is Zn for every n ≥ 2.

I.3.2 Biembeddings of latin squares

A Steiner triple system of order n, denoted STS(n), is a pair (V,B), where V is a set of n

elements and B is a set of 3-element subsets of V called blocks such that every distinct pair

of elements in V is contained in exactly one block. If every distinct pair of elements of V

is instead contained in exactly two blocks, then (V,B) is a twofold triple system, denoted

TTS(n). A transversal design of order n and block size 3, denoted TD(3, n), is a triple

(V,G,B), where V is a set of 3n elements, G is a partition of V into 3 subsets of size n called

groups, and B is again a set of blocks of size 3 such that every distinct pair of elements is

contained in exactly one group or one block (but not both). A latin square of order n is

equivalent to a TD(3, n), where the rows, columns and entries form the 3 groups and each

cell corresponds to a block. A parallel class in a STS(n), TTS(n) or TD(3, n) is a subset

of B that covers every element of V exactly once. For a TD(3, n), this corresponds to a

transversal in the associated latin square.

The connection between combinatorial designs and graph embeddings has been known

for over a century. In [29], Heffter observed that a triangular embedding of Kn gives rise to a

TTS(n). Later, Alpert proved that twofold triple systems are in one-to-one correspondence

with triangulations of complete graphs (possibly in pseudosurfaces). Given a triangulation

of Kn, the faces correspond to the blocks of a TTS(n); moreover, if the triangulation is
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face 2-colorable, each color class corresponds to an STS(n). Conversely, we can construct

face 2-colorable triangulations of Kn from pairs of STS(n); under certain conditions, this

triangulation will be in a surface. This is called a biembedding of STS(n), and has been

used, for example, to develop recursive constructions for triangulations of complete graphs

[21]. We note that biembeddings of STS(n) can be in either a nonorientable or an orientable

surface.

In a similar fashion, a face 2-colorable triangulation of Kn,n,n yields a pair of latin squares,

and this process can be reversed. If the pair of latin squares satisfies certain conditions, the

resulting triangulation will be in a surface; this is known as a biembedding of latin squares.

Contrary to its STS counterpart, these biembeddings are always in orientable surfaces; in

fact, they comprise all orientable triangulations of Kn,n,n.

Theorem I.3.10 (Grannell, Griggs and Knor, Proposition 1 [18]). Let τ : Kn,n,n ↪→ Σ

be a triangulation of Kn,n,n in some surface Σ. The following are equivalent.

(1) Σ is orientable.

(2) τ is face 2-colorable.

(3) τ is a biembedding of latin squares.

Our goal is to establish conditions on latin squares that ensure those squares are biem-

beddable. To describe one such condition, we need the following definition from [17].

Definition I.3.11. Suppose that L = (Li,j) is a latin square of order n. If the permutation

given by 


Li,0 Li,1 · · · Li,n−1

Li+1,0 Li+1,1 · · · Li+1,n−1




is a single cycle of length n for all i ∈ Zn, then we say L is consecutively row hamiltonian,

or cr-hamiltonian for short.

The usefulness of this property is shown in the following result.
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Theorem I.3.12 (Grannell and Griggs, Lemma 2.1 [17]). If L is cr-hamiltonian, then

there exists a biembedding of L with a copy of itself.

Grannell and Griggs used this construction, along with some surgical techniques, to create

large families of nonisomorphic triangulations of complete tripartite graphs, such as in the

following theorem.

Theorem I.3.13 (Grannell and Griggs, Corollary 2.1.1 [17]). For n = 3(2s) and

s sufficiently large, there are at least n
n2

288 nonisomorphic face 2-colorable triangulations of

Kn,n,n, each of which has a monochromatic parallel class.

Using this result on triangulations of complete tripartite graphs and additional surgical

techniques, Grannell and Griggs were also able to obtain large families of nonisomorphic

triangulations of complete graphs.

Theorem I.3.14 (Grannell and Griggs, Corollary 3.1.2 [17]). Suppose there is a face

2-colorable triangulation of Kq,q,q with a monochromatic parallel class. Suppose further that

n = 2sq(m− 1) + 1, where m ≡ 3 or 7 (mod 12) and m ≥ 7, and set a = m−3
192q2(m−1)

. Then,

as s →∞, there are at least nn2(a−o(1)) nonisomorphic face 2-colorable triangulations of Kn

in a nonorientable surface.

Similar results for different families of n were obtained by Grannell and Knor in [24]. In

Chapter V, we show that ce-hamiltonian latin squares are conjugate to cr-hamiltonian latin

squares. A latin square L is conjugate to L′ if L′ can be obtained from L by permuting the

roles of the rows, columns and entries.

I.4 Statement of Main Results

The main results of this paper fall into two categories: hamilton cycle embeddings and

minimum genus embeddings. The following result addresses nonorientable hamilton cycle

embeddings of complete tripartite graphs and is proved in Chapters II and IV using a cyclic

construction and some Bouchet covering triangulations.
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Theorem I.4.1. There exists a nonorientable hamilton cycle embedding of Kn,n,n for all

n ≥ 2.

The orientable counterpart to this result is proved in Chapter III using latin squares and

voltage graphs.

Theorem I.4.2. There exists an orientable hamilton cycle embedding of Kn,n,n for all n ≥ 1,

n 6= 2. Moreover, at least one face in this embedding is bounded by an ABC cycle.

Using these hamilton cycle embeddings, we are able to construct minimum genus embed-

dings of some large families of graphs. The following results are proved in Chapter IV. We

first address the orientable genus of joins of edgeless graphs with complete graphs.

Theorem I.4.3. If n = 3q
(
2p + 1

2

)
+ 3

2
for some p ≥ 3 and q ≥ 0, then g(Km + Kn) =

g(Km,n) =
⌈

(m−2)(n−2)
4

⌉
for all m ≥ n− 1.

Because Km,n ⊆ Km + G ⊆ Km + Kn for any n-vertex simple graph G, Theorem I.4.3 can

easily be extended to the following result.

Corollary I.4.4. Let n = 3q
(
2p + 1

2

)
+ 3

2
for some p ≥ 3 and q ≥ 0. If G is any n-vertex

simple graph, then g(Km + G) = g(Km,n) =
⌈

(m−2)(n−2)
4

⌉
for all m ≥ n− 1.

In fact, we can obtain even stronger results by using both the doubling and tripling con-

structions provided in Section IV.1. This process is discussed further in Section V.1.

The remaining theorems below address the genus of some quadripartite graphs. The first

theorem and corollary cover the nonorientable case.

Theorem I.4.5. For all n ≥ 1, g̃(K2n,n,n,n) = g̃(K2n,3n) = (n− 1)(3n− 2).

Using the diamond sum, we can extend Theorem I.4.5 to include complete quadripartite

graphs where the largest independent set has size greater than 2n.

Corollary I.4.6. For all n ≥ 1 and all t ≥ 2n, g̃(Kt,n,n,n) = g̃(Kt,3n) =
⌈

(t−2)(3n−2)
2

⌉
.
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This nonorientable genus result can be extended to an even larger family by using a “sand-

wiching” effect as we did to obtain Corollary I.4.4; this is covered in Remark IV.2.2.

We obtain orientable genus results for some quadripartite graphs as well; however, there

is a special case when n = 2.

Theorem I.4.7. For all n 6= 2, g(K2n,n,n,n) = g(K2n,3n) =
⌈

(n−1)(3n−2)
2

⌉
.

As before, this is extended using the diamond sum construction.

Corollary I.4.8. For all n ≥ 1 and all t ≥ 2n, except (n, t) = (2, 4), g(Kt,n,n,n) = g(Kt,3n) =
⌈

(t−2)(3n−2)
4

⌉
. Also, g(K4,2,2,2) = 3.

Remark IV.3.2 explains how this can be extended even further by using a “sandwiching”

effect.
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CHAPTER II

NONORIENTABLE HAMILTON CYCLE EMBEDDINGS

The work in this chapter appears in [11].

II.1 Slope sequence construction

In this section we describe the general construction on which the proofs in Section II.3 are

based. Some preliminary definitions are required. Let S = ((s0, t0), (s1, t1), ..., (sn−1, tn−1)).

If sj 6= tj for all j ∈ Zn and the collection {s0, ..., sn−1, t0, ..., tn−1} covers every element of Zn

twice, we say S is a slope sequence (because sj and tj will specify the slope `−k of each edge

bkc` in the cycles Xi and Yi below). Form the graph GS with vertices {v0, v1, ..., vn−1} and

m edges joining distinct vertices vj1 and vj2 , where m = |{sj1 , tj1} ∩ {sj2 , tj2}|. We call GS

the induced pair graph for the slope sequence S. This graph is 2-regular, so GS decomposes

into a union of cycles. As Theorem II.1.1 shows, it will be desirable to have induced pair

graphs that consist of a single cycle.

Theorem II.1.1. Suppose S = ((s0, t0), (s1, t1), ..., (sn−1, tn−1)) is a slope sequence such that

the following hold:

(1) {j + sj | j ∈ Zn} = {j + tj | j ∈ Zn} = Zn;

(2) tj − sj is relatively prime to n for all j ∈ Zn;

(3) the induced pair graph GS consists of a single cycle of length n.

Then the collection of cycles X = {Xi | i ∈ Zn} and Y = {Yi | i ∈ Zn}, given by

Xi : (a0bici+s0a1bi+1ci+1+s1 · · · ajbi+jci+j+sj
· · · an−1bi+n−1ci+n−1+sn−1),

Yi : (a0bici+t0a1bi+1ci+1+t1 · · · ajbi+jci+j+tj · · · an−1bi+n−1ci+n−1+tn−1),

26



form a hamilton cycle embedding of Kn,n,n with all faces bounded by ABC cycles.

Proof. First, we must show that Xi and Yi are indeed hamilton cycles. It is clear that every

A and B vertex appears in every Xi and Yi. Since j + sj covers Zn, it follows that i + j + sj

also covers Zn, so every C vertex appears in Xi. The same argument with j + tj shows that

every C vertex also appears in Yi. By construction, these cycles are all ABC cycles.

Next, we show that these hamilton cycles form a double cover of Kn,n,n. The cycles Xk−j

and Yk−j both cover the edge ajbk for all j, k ∈ Zn. Similarly the cycles X`−(j−1)−sj−1
and

Y`−(j−1)−tj−1
both cover the edge c`aj for all j, ` ∈ Zn. Finally, consider an edge bkc`. We

know from S being a slope sequence that there exist j′ and j′′ such that one of the following

holds: (1) sj′ = tj′′ = ` − k, (2) sj′ = sj′′ = ` − k, or (3) tj′ = tj′′ = ` − k. These cases

correspond to the following: (1) the cycles Xk−j′ and Yk−j′′ both cover the edge bkc`, (2) the

cycles Xk−j′ and Xk−j′′ both cover the edge bkc`, or (3) the cycles Yk−j′ and Yk−j′′ both cover

the edge bkc`. This holds for all k, ` ∈ Zn; therefore, X ∪ Y forms a double cover of Kn,n,n.

To show that these hamilton cycles can be sewn together along common edges to yield

an embedding of Kn,n,n, it remains to prove that the rotation graph around each vertex is a

single cycle of length 2n. Since this collection consists of all ABC faces, we know that the

rotation graph around a vertex aj ∈ A will alternate between B and C vertices. If all of the

C vertices appear in the same component of Raj
, then all of the B vertices must be in the

same component as well. Thus, it will suffice to prove that the C vertices are contained in

the same cycle in the rotation graph around every A vertex. Similarly, it will suffice to prove

that the A vertices are contained in the same cycle in the rotation graph around every B

and C vertex.

Consider the vertex aj. We know the cycle X`−(j−1)−sj−1
contains the sequence

(· · · c`ajb`+1−sj−1
· · · )
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and the cycle Y`−(j−1)−sj−1
contains the sequence

(· · · c`−sj−1+tj−1
ajb`+1−sj−1

· · · ).

Thus, the vertex c`−sj−1+tj−1
follows the vertex c` in the rotation graph around aj. Continuing

this argument, we find the C vertices form the cyclic sequence

(ckck+(tj−1−sj−1)ck+2(tj−1−sj−1) · · · ck+(n−1)(tj−1−sj−1))

in the rotation graph around aj. Since tj−1−sj−1 is relatively prime to n, this includes every

C vertex.

Consider the vertex bk. We know the cycle Xk−j contains the sequence

(· · · ajbkck+sj
· · · ).

Since S double covers Zn, there exists j′ such that either (1) sj′ = sj or (2) tj′ = sj. In either

case we know the vertex vj arising from the pair (sj, tj) is adjacent in the slope graph GS to

the vertex vj′ arising from the pair (sj′ , tj′). Since GS is a single cycle of length n, we write

GS = (vjvδ(j)vδ2(j) · · · vδn−1(j)),

where δ(j) = j′. In case (1), the cycle Xk−j′ contains the sequence

(· · · aj′bkck+sj′ · · · ).

Likewise in case (2), the cycle Yk−j′ contains the sequence

(· · · aj′bkck+tj′ · · · ).
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Since either (1) k + sj′ = k + sj or (2) k + tj′ = k + sj, we have that aj′ = aδ(j) follows aj in

the rotation graph around bk. Repeating this argument, we see that the A vertices form the

cyclic sequence

(ajaδ(j)aδ2(j) · · · aδn−1(j))

in the rotation graph around bk, which includes every A vertex. An analogous argument

shows that the A vertices form the cyclic sequence

(aj+1aδ(j)+1aδ2(j)+1 · · · aδn−1(j)+1)

lying in a single component in the rotation graph around c`.

II.2 Special case constructions

We begin by presenting the required nonorientable hamilton cycle embeddings of Kn,n,n when

n ∈ {3, 5, 7, 11, 13}.
By checking all possible cases, we know there does not exist a slope sequence construction

for a nonorientable embedding of K3,3,3. The desired embedding is given by the following

facial boundaries:

(a0b0c0a1b1c1a2b2c2), (a0b0c1a1b1c2a2b2c0),

(a0b1c1a1b2c2a2b0c0), (a0b2c0a2b1c2a1b0c1),

(a0b2c1a2b1c0a1b0c2), (a0b1c0a2b0c2a1b2c1).

For n ∈ {5, 7, 11, 13}, Table II.1 provides a slope sequence that yields a nonorientable

hamilton cycle embedding of Kn,n,n. To show that these embeddings are indeed nonori-

entable, in the same way as in the proof of Lemma II.3.1, consider the following sequences

of faces and edges, where F e F ′ implies F and F ′ share the edge e:
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n = 5 : X2 a0b2 Y2 b3c1 Y1 c4a4 X2;

n = 7 : X0 b0c1 X4 a0b4 Y4 c3a5 X0;

n = 11 : X0 a0b0 Y0 c8a6 X9 b0c1 X0;

n = 13 : X0 a0b0 Y0 c8a5 X11 b0c1 X0.

n j 0 1 2 3 4 5 6 7 8 9 10 11 12

5
sj 1 4 1 4 0
tj 2 3 3 0 2

tj − sj 1 4 2 1 2

7
sj 1 6 4 1 6 0 3
tj 2 4 5 0 2 3 5

tj − sj 1 5 1 6 3 3 2

11
sj 1 10 1 10 4 5 3 0 7 8 6
tj 2 9 9 4 5 3 0 7 8 6 2

tj − sj 1 10 8 5 1 9 8 7 1 9 7

13
sj 1 12 1 12 6 4 0 5 3 9 7 10 8
tj 2 11 11 6 4 0 5 3 9 7 10 8 2

tj − sj 1 12 10 7 11 9 5 11 6 11 3 11 7

Table II.1: Slope sequences for n ∈ {5, 7, 11, 13}.

II.3 Applications of slope sequence construction

Lemma II.3.1. There exists a nonorientable hamilton cycle embedding of Kn,n,n with all

faces bounded by ABC cycles for all n ≡ 1 (mod 4) such that n ≥ 5 and 3, 7 - n.

Proof. Table II.1 in Section II.2 gives the necessary slope sequences for n = 5 and 13. It is

a straightforward exercise to show that these sequences meet all the required conditions of

Theorem II.1.1, and that the resulting embeddings are nonorientable.

Table II.2 gives the necessary slope sequences for n = 4r + 1, r ≥ 4. It is easy to see

that the collection {s0, ..., sn−1, t0, ..., tn−1} double covers Zn. The slope graph GS consists
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j sj tj tj − sj j sj tj tj − sj

0 1 2 1 2r + 3 −2r + 2 −2r −2
1 −1 −2 −1 2r + 4 −2r 2r − 5 −6
2 1 −2 −3 2r + 5 2r − 5 2r − 7 −2
3 −1 2r 2r + 1 2r + 6 2r − 7 2r − 9 −2

4 2r 2r − 2 −2
...

...
...

...
5 2r − 2 2r − 4 −2 3r 5 3 −2
...

...
...

... 3r + 1 3 −2r + 3 2r + 1
r + 1 6 4 −2 3r + 2 −2r + 3 −2r + 1 −2
r + 2 4 0 −4 3r + 3 −2r + 1 −3 2r − 4
r + 3 0 2r − 1 2r − 1 3r + 4 −3 −5 −2
r + 4 2r − 1 2r − 3 −2 3r + 5 −5 −7 −2

r + 5 2r − 3 −4 2r
...

...
...

...
r + 6 −4 −6 −2 4r − 2 −2r + 9 −2r + 7 −2
r + 7 −6 −8 −2 4r − 1 −2r + 7 −2r + 5 −2

...
...

...
... 4r −2r + 5 2 2r − 3

Table II.2: Slope sequence for n = 4r + 1, r ≥ 4.

of edges vjvj+1 for all 3 ≤ j ≤ n − 1, along with the edges v0v2, v2v1, and v1v3. This is a

cycle of length n, as seen in Figure II.1. Let D = {tj − sj | j ∈ Zn}. From the table we see

that

D = {−6,−4,−3,−2,−1, 1, 2r − 4, 2r − 3, 2r − 1, 2r, 2r + 1}
=

{−6,−4,−3,−2,−1, 1, n−9
2

, n−7
2

, n−3
2

, n−1
2

, n+1
2

}
.

Since 2, 3, 7 - n, we know n is relatively prime to every element of D. The last condition

we must prove is that {j + sj | j ∈ Zn} = {j + tj | j ∈ Zn} = Zn. Note that for every j

we have sj = k ⇔ sj+k = −k and tj = k ⇔ tj+k = −k. Let i ∈ Zn, and set k = si and

j = i+k. It follows that j + sj = i+k + si+k = i+k−k = i. Since i was arbitrary, we know

{j + sj | j ∈ Zn} = Zn. The same argument shows that {j + tj | j ∈ Zn} = Zn. Applying

Theorem II.1.1 yields a hamilton cycle embedding of Kn,n,n. To determine the orientability
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Figure II.1: The slope graph GS for the slope sequences given in Tables II.2 and II.3.

of this embedding, consider the following three cycles:

X1 : (a0b1c2a1b2c1a2b3c4 · · · ),
Y0 : (a0b0c2a1b1cn−1a2b2c0 · · · ),
Y1 : (a0b1c3a1b2c0a2b3c1 · · · ).

Assume this embedding admits an orientation, with X1 oriented forwards. Note that Y0

and X1 share the edge c2a1 and Y1 and X1 share the edge a0b1, so both Y0 and Y1 must be

oriented backwards. However, Y0 and Y1 share the edge b2c0, so they must have different

orientations. This is a contradiction, so this embedding is nonorientable.

Lemma II.3.2. There exists a nonorientable hamilton cycle embedding of Kn,n,n with all

faces bounded by ABC cycles for all n ≡ 3 (mod 4) such that 3, 7 - n.

Proof. Table II.1 in Section II.2 gives the necessary slope sequence for n = 11. It is a

straightforward exercise to show that this sequence meets all the required conditions of

Theorem II.1.1, and that the resulting embedding is nonorientable.

Table II.3 gives the necessary slope sequences for n = 4r+3, r ≥ 3. It is again easy to see

that the collection {s0, ..., sn−1, t0, ..., tn−1} double covers Zn. The slope graph GS (Figure

II.1) is identical to the slope graph constructed for the slope sequence in Table II.2. Let D

32



j sj tj tj − sj j sj tj tj − sj

0 1 2 1 2r + 4 −2r + 1 −2r − 1 −2
1 −1 −2 −1 2r + 5 −2r − 1 2r − 4 −6
2 1 −2 −3 2r + 6 2r − 4 2r − 6 −2
3 −1 2r + 1 2r + 2 2r + 7 2r − 6 2r − 8 −2

4 2r + 1 2r − 1 −2
...

...
...

...
5 2r − 1 2r − 3 −2 3r + 1 6 4 −2
...

...
...

... 3r + 2 4 −2r + 2 2r + 1
r + 1 7 5 −2 3r + 3 −2r + 2 −2r −2
r + 2 5 3 −2 3r + 4 −2r 0 2r
r + 3 3 2r 2r − 3 3r + 5 0 −4 −4
r + 4 2r 2r − 2 −2 3r + 6 −4 −6 −2
r + 5 2r − 2 −3 2r + 2 3r + 7 −6 −8 −2

r + 6 −3 −5 −2
...

...
...

...
r + 7 −5 −7 −2 n− 2 −2r + 6 −2r + 4 −2

...
...

...
... n− 1 −2r + 4 2 2r − 2

Table II.3: Slope sequence for n = 4r + 3, r ≥ 4.

again be the set of differences; from the table we see that

D = {−6,−4,−3,−2,−1, 1, 2r − 3, 2r − 2, 2r, 2r + 1, 2r + 2}
=

{−6,−4,−3,−2,−1, 1, n−9
2

, n−7
2

, n−3
2

, n−1
2

, n+1
2

}
.

This is the same D as in the proof of Lemma II.3.1, so again we know n is relatively prime

to every element of D. We also have sj = k ⇔ sj+k = −k and tj = k ⇔ tj+k = −k as in

the proof of Lemma II.3.1, which implies that {j + sj | j ∈ Zn} = {j + tj | j ∈ Zn} = Zn.

Applying Theorem II.1.1 yields a hamilton cycle embedding of Kn,n,n. Because s0, s1, s2, t0, t1,

and t2 are the same in Tables II.2 and II.3, analyzing X1, Y0 and Y1 in the same way as in

the proof of Lemma II.3.1 shows that this embedding is nonorientable.

j 0 1 2 3 4 · · · n− 3 n− 2 n− 1
sj 1 1 3 3 5 · · · n− 3 n− 1 n− 1
tj 0 2 2 4 4 · · · n− 2 n− 2 0

tj − sj −1 1 −1 1 −1 · · · 1 −1 1

Table II.4: Slope sequence for n = 4r + 2, r ≥ 0.
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Lemma II.3.3. There exists a nonorientable hamilton cycle embedding of Kn,n,n with all

faces bounded by ABC cycles for all n ≡ 2 (mod 4).

Proof. Table II.4 gives the necessary slope sequences for n ≡ 2 (mod 4). Since tj − sj =

(−1)j+1, we know tj−sj is relatively prime to n for all j ∈ Zn. Since GS consists of the edges

vjvj+1 for all j ∈ Zn, it is clearly a single cycle of length n. Finally, note that j+sj = 2j+1 if

j is even and j+sj = 2j if j is odd. Since n ≡ 2 (mod 4), this implies {j+sj | j ∈ Zn, j even}
covers all the odd values of Zn and {j + sj | j ∈ Zn, j odd} covers all the even values of Zn.

Thus, {j + sj | j ∈ Zn} = Zn. Using the fact that j + tj = 2j if j is even and j + tj = 2j + 1

if j is odd, we derive that {j + tj | j ∈ Zn} = Zn as well. Applying Theorem II.1.1 provides

a hamilton cycle embedding of Kn,n,n. To determine the orientability of this embedding,

consider the following three cycles:

X0 : (a0b0c1a1b1c2a2b2c5 · · · ),
Y0 : (a0b0c0a1b1c3a2b2c4 · · · ),
Y1 : (a0b1c1a1b2c4a2b3c5 · · · ).

Assume this embedding admits an orientation, with X0 oriented forwards. Note that Y0

and X0 share the edge a0b0 and Y1 and X0 share the edge c1a1, so both Y0 and Y1 must be

oriented backwards. However, Y0 and Y1 share the edge b2c4, so they must have different

orientations. This is a contradiction, so this embedding is nonorientable. (This argument

works even in the case n = 2, reducing subscripts modulo 2.)

II.4 Nonorientable results

To complete the proof of Theorem I.4.1, we need to use the connection between these em-

beddings and triangulations of K2n,n,n,n. To these triangulations we must apply some of the

covering triangulations developed in Section I.2.5. While the details of this procedure are

saved for Chapter IV, the result is restated here for completeness.
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Theorem I.4.1. There exists a nonorientable hamilton cycle embedding of Kn,n,n for all

n ≥ 2.
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CHAPTER III

ORIENTABLE HAMILTON CYCLE EMBEDDINGS

III.1 Preliminaries

We will use induced pair graphs again in this chapter, albeit in a different context. To

facilitate the application of Corollary III.2.3, we present a collection of pairs for which the

induced pair graph is a hamilton cycle. To show this, we present an ordering of the pairs

such that vi is adjacent to both vi−1 and vi+1 for all i ∈ Zn. We will denote by gcd(m, n) the

greatest common divisor of integers m and n; as usual, we say m and n are relatively prime

if gcd(m,n) = 1.

Lemma III.1.1. Let p be an integer relatively prime to n, and define the collection of pairs

P = {(j, j + p)|j ∈ Zn}. Then the induced pair graph GP is a hamilton cycle.

Proof. Noting that P = {(0, p), (p, 2p), (2p, 3p), ..., ((n − 2)p, (n − 1)p), ((n − 1)p, 0)} it is

readily seen that GP is a hamilton cycle.

The addition table for the group Zn will be a key ingredient in all of the constructions

presented in this chapter. In particular, the following property will be useful.

Lemma III.1.2. If n is odd, then Zn admits a 1-partition. If n is even, then Zn admits a

2-partition.

Proof. For all j ∈ Zn let Tj = {(i, i + j, 2i + j) | i ∈ Zn}. Tj clearly covers every row and

column of Zn exactly once. If n is odd, the set of entries {2i + j | i ∈ Zn} = Zn as well, so

Tj is a transversal. Moreover, Tj and Tk are clearly disjoint for any j 6= k. The collection

T = {Tk | k ∈ Zn} provides the desired 1-partition.

If n is even, then for j = 0, 2, ..., n− 2 let Sj = Tj ∪Tj+1. Sj clearly covers every row and

column of Zn exactly twice. The set of entries covered by Tj is given by {2i + j | i ∈ Zn};
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since j and n are even this set covers every even element of Zn exactly twice. Similarly, the

set of entries covered by Tj+1 is given by {2i+ j +1 | i ∈ Zn}; since j +1 is odd and n is even

this set covers every odd element of Zn exactly twice. It follows that Sj is a 2-plex. Moreover,

Sj and Sk are clearly disjoint for any j 6= k. The collection S = {Sj | j = 0, 2, ..., n − 2}
provides the desired 2-partition.

We will refer to an orientable face 2-colorable hamilton cycle embedding as an O2HC-

embedding.

III.2 O2HC-embeddings from Latin squares

Lemma III.2.1. Let Z be the collection of facial walks obtained from a hamilton cycle

embedding of Kn,n,n such that Z consists of all ABC faces. The following conditions are

equivalent:

(1) There exist collections X ,Y ⊂ Z such that X ∪ Y = Z, X ∩ Y = ∅, and every edge of

G appears in a face from both X and Y.

(2) The embedding is orientable.

(3) The embedding is face 2-colorable.

Proof. (1)⇒(2) Since every edge appears once in a X face and once in a Y face, the faces

admit a proper orientation (e.g. orient the X faces forwards as written in ABC order, and

orient the Y faces backwards as written in ABC order).

(2)⇒(1) Let X be the faces oriented forwards as written in ABC order and Y be the

faces oriented backwards as written in ABC order. If any distinct faces X1, X2 ∈ X share

an edge, then they cannot both be oriented forwards. Thus, no two X faces share an edge,

so each edge is appears in at most one face from X . An analogous argument shows that each

edge appears in at most one face from Y , and the result follows.

The equivalence (1)⇔(3) is straightforward, so the proof is complete.

37



Assume we have an O2HC-embedding of Kn,n,n that consists of all ABC faces. Further-

more, assume that the A vertices appear in the same fixed order in each cycle. Partition

the cycles into X and Y as in Lemma III.2.1, and let X = {X0, X1, ..., Xn−1}. We can form

a latin square LX of order n by taking each subsequence (· · · ajbkc` · · · ) ∈ Xi and letting `

be the entry in row j of column k. Following this process, it is readily seen that the entries

arising from Xi form a transversal for all 0 ≤ i ≤ n − 1. Thus, LX admits a 1-partition,

which is equivalent to LX having an orthogonal mate. Following a similar procedure, we can

form a latin square LY that corresponds to the cycles in Y .

Consider the following O2HC-embedding of K5,5,5:

X0 : (a0b0c0a1b1c2a2b2c4a3b3c1a4b4c3)

X1 : (a0b1c1a1b2c3a2b3c0a3b4c2a4b0c4)

X2 : (a0b2c2a1b3c4a2b4c1a3b0c3a4b1c0)

X3 : (a0b3c3a1b4c0a2b0c2a3b1c4a4b2c1)

X4 : (a0b4c4a1b0c1a2b1c3a3b2c0a4b3c2)

Y0 : (a0b0c1a1b1c3a2b2c0a3b3c2a4b4c4)

Y1 : (a0b1c2a1b2c4a2b3c1a3b4c3a4b0c0)

Y2 : (a0b2c3a1b3c0a2b4c2a3b0c4a4b1c1)

Y3 : (a0b3c4a1b4c1a2b0c3a3b1c0a4b2c2)

Y4 : (a0b4c0a1b0c2a2b1c4a3b2c1a4b3c3)

From this we obtain the following latin squares, where L′X and L′Y provide the transver-

sals.
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LX =




0 1 2 3 4

1 2 3 4 0

2 3 4 0 1

3 4 0 1 2

4 0 1 2 3




, L′X =




0 1 2 3 4

4 0 1 2 3

3 4 0 1 2

2 3 4 0 1

1 2 3 4 0




LY =




1 2 3 4 0

2 3 4 0 1

3 4 0 1 2

4 0 1 2 3

0 1 2 3 4




, L′Y =




0 1 2 3 4

4 0 1 2 3

3 4 0 1 2

2 3 4 0 1

1 2 3 4 0




Since we can form two latin squares of order n from an O2HC-embedding of Kn,n,n with

certain properties, it is natural to determine the conditions under which a pair of order

n latin squares give rise to an O2HC-embedding of Kn,n,n. To that end, we present the

following theorem. The following notation is used, where T is a transversal of a latin square

L.

E(L, r, c) = entry in L that appears in row r of column c;

C(L, r, e) = column in L that contains entry e in row r;

E(T, r) = entry in T that appears in row r;

C(T, r) = column in T that contains entry in row r.

In other words, (r, c, E(L, r, c)), (r, C(L, r, e), e) ∈ L and (r, C(T, r), E(T, r)) ∈ T .

Theorem III.2.2. Let LX and LY be latin squares of order n that each admit a 1-partition.

For each j, label the transversals Sj
0, S

j
1, ..., S

j
n−1 in order as they appear in row j of LX .

In other words, Sj
k is the transversal in LX that contains the entry in row j of column k.

Similarly, label the transversals T j
0 , T j

1 , ..., T j
n−1 in order as they appear in row j of LY . Thus,

T j
k is the transversal in LY that contains the entry in row j of column k. Define the following

collections of pairs:

39



(1) P j
A = {(E(Sj

k, j − 1), E(T j
k , j − 1))|k ∈ Zn} for all j ∈ Zn;

(2) P k
B = {(E(LX , j, k), E(LY , j, k))|j ∈ Zn} for all k ∈ Zn;

(3) P `
C = {(C(LX , j, `), C(LY , j, `))|j ∈ Zn} for all ` ∈ Zn.

If the induced pair graphs GP j
A
, GP k

B
, and GP `

C
form hamilton cycles for all j, k, ` ∈ Zn,

then there exists an O2HC-embedding of Kn,n,n.

Proof. Form the following cycles:

Xi : (a0bC(S0
i ,0)cE(S0

i ,0) · · · ajbC(S0
i ,j)cE(S0

i ,j) · · · an−1bC(S0
i ,n−1)cE(S0

i ,n−1));

Yi : (a0bC(T 0
i ,0)cE(T 0

i ,0) · · · ajbC(T 0
i ,j)cE(T 0

i ,j) · · · an−1bC(T 0
i ,n−1)cE(T 0

i ,n−1)).

Note that each Xi corresponds to the transversal S0
i . If the entry (j, k, `) appears in

S0
i , then the cycle Xi contains the sequence ajbkc`. Moreover, these sequences of length 3

are assembled row by row so that the A vertices appear in increasing order. In a similar

fashion, each Yi corresponds to the transversal T 0
i . We will prove that the collections X =

{X0, X1, ..., Xn−1} and Y = {Y0, Y1, ..., Yn−1} together form an O2HC-embedding of Kn,n,n.

It is not hard to show from the properties of latin squares that every AB edge and every

BC edge is covered once by a cycle from X and once by a cycle from Y . The fact that the A

vertices appear in the same fixed order in each cycle implies that every CA edge is covered

once by a cycle from X and once by a cycle from Y as well. To prove that this double cycle

cover is in fact an O2HC-embedding, it remains to show that the rotation around each vertex

is a single cycle of length 2n.

Consider first the vertex aj. For every k ∈ Zn, there exist i1 and i2 such that k =

C(S0
i1
, j) = C(T 0

i2
, j). The cycle Xi1 contains the sequence cE(S0

i1
,j−1)ajbk. But we also know

that E(S0
i1
, j − 1) is the entry in row j − 1 of the transversal that contains the entry in

column k of row j; in other words, E(S0
i1
, j − 1) = E(Sj

k, j − 1). Similarly, Yi2 contains the

sequence cE(T 0
i2

,j−1)ajbk = cE(T j
k ,j−1)ajbk. Thus, for each k, the rotation around aj contains

the sequence cE(Sj
k,j−1)bkcE(T j

k ,j−1). To determine the complete rotation around aj we need
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to determine how the endpoints of these sequences match up. But the subscripts on these

endpoints are exactly the pairs in P j
A, which we know match up to form a hamilton cycle for

every j. Thus the rotation around aj is a single cycle of length 2n for every j.

Next, consider the vertex bk. For every j ∈ Zn, we know the sequence ajbkcE(LX ,j,k)

appears in some cycle of X . Similarly, the sequence ajbkcE(LY ,j,k) appears in some cycle of

Y . Thus, for each j, the rotation around bk contains the sequence cE(LX ,j,k)ajcE(LY ,j,k). To

determine the complete rotation around bk, we again need to determine how the endpoints

of these sequences match up. But the subscripts on these endpoints are exactly the pairs

in P k
B, which we know match up to form a hamilton cycle for every k. Thus the rotation

around bk is a single cycle of length 2n for every k.

Finally, consider the vertex c`. For every j ∈ Zn, we know the sequence ajbC(LX ,j,`)c`aj+1

appears in some cycle of X . Similarly, the sequence ajbC(LY ,j,`)c`aj+1 appears in some cycle

of Y . Thus, for each j, the rotation around c` contains the sequence bC(LX ,j,`)aj+1bC(LY ,j,`).

Just like the two preceding paragraphs, this corresponds exactly to the pairs in P `
C , so the

rotation around c` is a single cycle of length 2n for every `.

We have shown that the rotation around every vertex is indeed a single cycle of length

2n. Combining this with Lemma III.2.1 proves that X ∪ Y forms an O2HC-embedding of

Kn,n,n.

While the preceding construction is powerful, it can be quite difficult to find two latin

squares that meet the required conditions. To simplify this matter, the following corollary

describes a situation when it is sufficient to find a single latin square with certain properties.

Corollary III.2.3. Let L be a latin square of order n that admits a 1-partition. Let p be an

integer relatively prime to n, and define the collection of pairs

P` = {(C(L, j, `), C(L, j, `− p))|j ∈ Zn} for all ` ∈ Zn.
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If the induced pair graph GP`
is a hamilton cycle for all ` ∈ Zn, then there exists an

O2HC-embedding of Kn,n,n.

Proof. Let LX = L and let LY = L + p be the latin square obtained by adding p to every

entry in L (and reducing modulo n). Since the transversals in L are maintained by adding

p to each entry, LX and LY both admit a 1-partition. We will show that these two latin

squares meet the conditions of Theorem III.2.2.

Since the transversals in LY are simply the transversals in LX with p added to each entry,

we have that

P j
A = {(E(Sj

k, j − 1), E(T j
k , j − 1))|k ∈ Zn}

= {(E(Sj
k, j − 1), E(Sj

k, j − 1) + p)|k ∈ Zn}
= {(r, r + p)|r ∈ Zn}

for all j ∈ Zn. By Lemma III.1.1 the induced graph for these pairs is a hamilton cycle.

It is also clear that E(LY , j, k) = E(LX , j, k) + p, so

P k
B = {(E(LX , j, k), E(LY , j, k))|j ∈ Zn} = {(r, r + p)|r ∈ Zn}

for all k ∈ Zn. Again by Lemma III.1.1 the induced graph for these pairs is a hamilton cycle.

Finally, we have that C(LX , j, `) = C(L, j, `) and C(LY , j, `) = C(L, j, `− p). Thus,

P `
C = {(C(LX , j, `), C(LY , j, `))|j ∈ Zn} = {(C(L, j, `), C(L, j, `− p))|j ∈ Zn} = P`.

By assumption, we know the induced graph for these pairs forms a hamilton cycle. By

Theorem III.2.2, we have an O2HC-embedding of Kn,n,n.

If a Latin square satisfies the conditions of Corollary III.2.3 for some p, then an appropri-

ate permutation of the entries leads to a latin square that satisfies the conditions of Corollary

III.2.3 for p = 1. The induced pair graph condition for p = 1 is simply a restatement of the

definition of a ce-hamiltonian latin square.

42



The following construction for odd n is straightforward and illustrates the usefulness of

Corollary III.2.3.

Theorem III.2.4. If n is odd, then there exists an O2HC-embedding of Kn,n,n obtained from

a latin square.

Proof. Consider the square given by Zn; we know Zn has a 1-partition by Lemma III.1.2. It

remains to show that the induced pair graph GP`
is a hamilton cycle for all ` ∈ Zn. We have

that

P` = {(C(L, j, `), C(L, j, `− 1))|j ∈ Zn} = {(`− j, `− j − 1)|j ∈ Zn} = {(r, r − 1)|r ∈ Zn}.

By Lemma III.1.1, GP`
is a hamilton cycle. Thus, Zn is ce-hamiltonian, and by Corollary

III.2.3 there exists the desired embedding of Kn,n,n.

It is worth noting that we can also obtain orientable hamilton cycle embeddings from

slope sequences. In fact, the slope sequence in the following theorem yields an embedding

identical to the one obtained from the latin square in Theorem III.2.4.

Theorem III.2.5. If n is odd, then there exists an O2HC-embedding of Kn,n,n obtained from

a slope sequence.

Proof. It is a straightforward exercise to show that S = {(j, j + 1) | j ∈ Zn} satisfies the

conditions of Theorem II.1.1. Moreover, since the first and second coordinates each cover

Zn once, it follows that the collections X and Y cover each edge of Kn,n,n exactly once. By

Lemma III.2.1, the resulting hamilton cycle embedding of Kn,n,n is orientable.

III.3 Step product construction

The construction of the required latin squares when n is even is considerably more compli-

cated. In fact, Euler famously conjectured that for n ≡ 2 (mod 4), no latin square of order n

had a 1-partition [16]. Although Euler was wrong, it took nearly two centuries to construct a
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counterexample of order 4k + 2 for all k ≥ 2 [5, 6]. We now seek to impose further structure

on these squares. To accomplish this goal, we introduce a new construction called a step

product construction. If L and M are latin squares of order n and m, respectively, then the

step product of L and M will be a turned m-step type latin square based on L.

Let L be a latin square of order n with entries from Zn. For an integer x ∈ Zn, denote by

x ◦L the Latin square obtained by cyclically shifting the rows of L down x rows. Moreover,

for an integer a and an integer b ∈ {0, 1, ..., a − 1}, let aL + b be the latin square obtained

by multiplying every entry in L by a and then adding b to every resulting product, where

the arithmetic is done in Znm, not Zn.

Example III.3.1. Let

L =




0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0




.

Then

1 ◦ L =




3 2 1 0

0 1 2 3

1 0 3 2

2 3 0 1




and 5L + 2 =




2 7 12 17

7 2 17 12

12 17 2 7

17 12 7 2




.

Let L and M be latin squares of order n and m, respectively, with rows, columns, and

entries indexed by Zn and Zm, respectively. Let X = (xi,j) be an n× n matrix with entries

from Zm. Define the step product L¡X M to be the turned m-step type latin square of order

nm given by
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x0,0 ◦ (nM + L0,0) x0,1 ◦ (nM + L0,1) · · · x0,n−1 ◦ (nM + L0,n−1)

x1,0 ◦ (nM + L1,0) x1,1 ◦ (nM + L1,1) · · · x1,n−1 ◦ (nM + L1,n−1)

...

xn−1,0 ◦ (nM + Ln−1,0) xn−1,1 ◦ (nM + Ln−1,1) · · · xn−1,n−1 ◦ (nM + Ln−1,n−1)




.

To help clarify this construction, we present a couple of examples.

Example III.3.2. Let L = Z2 and M = Z3, where we recall that this means L and M are

the addition tables of the groups Z2 and Z3, respectively, and let X be the matrix of all 0’s.

Then

L ¡X M =




0 2 4 1 3 5

2 4 0 3 5 1

4 0 2 5 1 3

1 3 5 0 2 4

3 5 1 2 4 0

5 1 3 4 0 2




.

Example III.3.3. Let L = Z3, M = Z5, and

X =




3 1 4

0 0 2

4 1 4




.
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Then

L ¡X M =




6 9 12 0 3 13 1 4 7 10 5 8 11 14 2

9 12 0 3 6 1 4 7 10 13 8 11 14 2 5

12 0 3 6 9 4 7 10 13 1 11 14 2 5 8

0 3 6 9 12 7 10 13 1 4 14 2 5 8 11

3 6 9 12 0 10 13 1 4 7 2 5 8 11 14

1 4 7 10 13 2 5 8 11 14 9 12 0 3 6

4 7 10 13 1 5 8 11 14 2 12 0 3 6 9

7 10 13 1 4 8 11 14 2 5 0 3 6 9 12

10 13 1 4 7 11 14 2 5 8 3 6 9 12 0

13 1 4 7 ∗ 10 14 2 5 8 11 6 9 12 0 3

5 8 11 14 2 12 0 3 6 9 4 7 10 13 1

8 11 14 2 5 0 3 6 9 12 7 10 13 1 4

11 14 2 5 8 3 6 9 12 0 10 13 1 4 7

14 2 5 8 11 6 9 12 0 3 13 1 4 7 10

2 5 8 11 14 9 12 0 3 6 1 4 7 10 13




.

Remark III.3.4. We use the set Zn × Zm to label the rows and columns of a step product

square, while the entries are from Znm. For example, the starred entry in Example III.3.3

corresponds to the ordered triple ((1, 4), (0, 3), 7).

Now that we have our construction, we need to use it to create O2HC-embeddings of

complete tripartite graphs. By Corollary III.2.3, we simply need to find ce-hamiltonian latin

squares that have a 1-partition. In Section III.4 we develop conditions for the step product

of two latin squares to be ce-hamiltonian. In Section III.5 we determine when these squares

have a 1-partition. Finally, the step product construction is used to construct embeddings

in Sections III.6 and III.7.
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III.4 Ce-hamiltonicity of step product squares

Requiring that L and M are ce-hamiltonian is not sufficient to ensure that the step product

L ¡X M is ce-hamiltonian. The permutations of rows given by the entries in X affect the

requisite induced pair graphs. Thus, to obtain a step product square that is ce-hamiltonian,

we need to have some conditions on X. Let X(k) be the set of cells that contain the entry

k in L. In other words, X(k) = {(i, j) | Lij = k}. Moreover, set σk =
∑

(i,j)∈X(k)

xij for all

k ∈ Zn, where the addition is done in Zm. We call the vector ν(X,L) = (σ0, σ1, ..., σn−1) the

representative vector for X over L.

Remark III.4.1. Let L be a latin square of order n and let X be an n×n matrix with entries

from Zm. We can permute the rows and columns of L without affecting ν(X,L) if we apply

the same permutation of the rows and columns to X. Namely, if λr and λc are permutations

of Zn applied to the rows and columns, respectively, of L and X, then

λrλc(L) ¡λrλc(X) Zm = (λr, 1m)(λc, 1m)(L ¡X Zm)

where 1m is the identity permutation on Zm, and

ν(λrλc(X), λrλc(L)) = ν(X, L).

Here and later in this chapter we will need the following observation about the square

x ◦ Zn.

Observation III.4.2. If M = Zm = {(r, c, r + c) | r, c ∈ Zm}, then x ◦M = {(r, c, r + c−
x) | r, c ∈ Zm}.

We now prove sufficient conditions on X for the product L ¡X Zm to be ce-hamiltonian.

Theorem III.4.3. Let L be a ce-hamiltonian latin square of order n, let X be an n × n

matrix with entries from Zm, and let ν(X, L) = (σ0, ..., σn−1) be the representative vector for
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X over L. Suppose that the following conditions hold:

(1) σk − σk+1 is relatively prime to m for all 0 ≤ k ≤ n− 2;

(2) σn−1 − σ0 − n is relatively prime to m.

Then the latin square L ¡X Zm is ce-hamiltonian.

Proof. Let K = L ¡X Zm. Define

P`+1 = {(C(K, (i, j), ` + 1), C(K, (i, j), `))|(i, j) ∈ Zn × Zm} for all ` ∈ Znm

as in Corollary III.2.3. We need to show that the induced pair graph GP`+1
is a hamilton

cycle for all ` ∈ Znm.

Write ` = an + b, where 0 ≤ a ≤ m − 1 and 0 ≤ b ≤ n − 1; we know every occurrence

of ` ∈ K corresponds to the entries a ∈ Zm and b ∈ L. By Remark III.4.1, permuting the

rows and columns of L and X simultaneously does not affect ν(X,L). It also does not affect

ce-hamiltonicity of the resulting step product square K. Thus, since L is ce-hamiltonian,

we can permute the rows and columns of L and X simultaneously to obtain the following

representation of L:

L =




b b + 1

b b + 1

. . .
. . .

b + 1 b




.

For each (i, j) ∈ X(b), write αi = xij. Similarly for each (i, j) ∈ X(b + 1), write βi = xij.
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We have the following representation for L:




α0 ◦ (nZm + b) β0 ◦ (nZm + b + 1)

α1 ◦ (nZm + b) β1 ◦ (nZm + b + 1)

. . .
. . .

βn−1 ◦ (nZm + b + 1) αn−1 ◦ (nZm + b)




.

We note here that x ◦ (aM + b) = a(x ◦M) + b for any latin square M and any integers a

and b, and we will use the latter representation in the following arguments.

Assume first that ` 6≡ −1 (mod n); we know that every occurrence of `+1 in L corresponds

to the entries a ∈ Zm and b+1 ∈ L. Assume that for some (i, j) we have C(K, (i, j), `+1) =

(y, z). Then the entry a appears in row j and column z of the square βi◦Zm; from Observation

III.4.2 we know a = j + z − βi. We want to determine a column γ such that a appears in

row j and column γ of square αi ◦ Zm. We know that a = j + γ − αi = j + z − βi, which

implies that γ = z + αi − βi. From this we learn that C(K, (i, j), `) = (y − 1, z + αi − βi).

Thus, all of the pairs in P`+1 have the form ((y, z), (y− 1, z + αi− βi)). From this it is clear

that we can partition P`+1 into subsets of the form

P (y) = {((y, z), (y − 1, z + αi0 − βi0)),

((y − 1, z + αi0 − βi0), (y − 2, z + αi0 + αi1 − βi0 − βi1)), ...,

((y + 1, z +
∑n−2

j=0 αij −
∑n−2

j=0 βij), (y, z +
∑n−1

j=0 αij −
∑n−1

j=0 βij))}

for all y ∈ Zn. Using our representation of L described earlier, we know b + 1 occurs in the

row above b in each column of L, so we must have ij+1 = ij − 1 and {i0, i1, ..., in−1} = Zn;

therefore,
∑n−1

j=0 αij = σb and
∑n−1

j=0 βij = σb+1. Since σb − σb+1 is relatively prime to m, we

know z + σb − σb+1 6= z, so each P (y) induces a path on n edges. Moreover, the fact that

σb−σb+1 is relatively prime to m implies that the endpoints of these paths match up to form

a single cycle of length nm.

If ` ≡ −1 (mod n), then ` = an + (n − 1) and ` + 1 = (a + 1)n, so we have b = n − 1
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and b + 1 = 0. Let αi = xij for all (i, j) ∈ X(n − 1) and let βi = xij for all (i, j) ∈ X(0).

Assume that for some (i, j) we have C(K, (i, j), ` + 1) = (y, z). Then the entry a + 1

appears in row j and column z of the square βi ◦Zm; again from Observation III.4.2 we know

a + 1 = j + z − βi. We want to determine a column γ such that a appears in row j and

column γ of square αi ◦ Zm. We know that a = j + γ − αi = j + z − βi − 1, which implies

that γ = z + αi − βi − 1. From this we learn that C(K, (i, j), `) = (y − 1, z + αi − βi − 1).

Thus, all of the pairs in P`+1 have the form ((y, z), (y − 1, z + αi − βi − 1)). From this it is

clear that we can partition P`+1 into subsets of the form

P (y) = {((y, z), (y − 1, z + αi0 − βi0 − 1)),

((y − 1, z + αi0 − βi0 − 1), (y − 2, z + αi0 + αi1 − βi0 − βi1 − 2)), ...,

((y + 1, z +
∑n−2

j=0 αij −
∑n−2

j=0 βij − (n− 1)), (y, z +
∑n−1

j=0 αij −
∑n−1

j=0 βij − n))}

for all y ∈ Zn. From our representation of L described earlier, it is again clear that ij+1 =

ij−1, so we must have {i0, i1, ..., in−1} = Zn; therefore,
∑n−1

j=0 αij = σn−1 and
∑n−1

j=0 βij = σ0.

Since σn−1 − σ0 − n is relatively prime to m, we know z + σn−1 − σ0 − n 6= z, so each P (y)

induces a path on n edges. Moreover, the fact that σn−1 − σ0 − n is relatively prime to m

implies that the endpoints of these paths match up to form a single cycle of length nm.

Since GP`+1
is a hamilton cycle for all ` ∈ Znm, the step product square K is ce-

hamiltonian.

III.5 Decomposing step product squares into transversals

We want to present conditions for lifting k-plexes in L and Zm to transversals in L ¡X Zm.

Before we proceed, a deeper exploration of the step product construction is required.

Observation III.5.1. Let (r1, c1, e1) ∈ L and (r2, c2, e2) ∈ Zm; furthermore, let xr1,c1 ∈ X

be the entry found in row r1 and column c1 of the matrix X. Utilizing Observation III.4.2,

the step product square K = L ¡X Zm has the following form, where here and elsewhere
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in this chapter we write [f(x)]m to denote that the expression f(x) is evaluated in Zm and

assume all other arithmetic for K is done in Znm.




(c1,c2)

. . .
... . .

.

(r1,r2) . . . n[e2 − xr1,c1 ]m + e1 . . .

. .
. ...

. . .




,

where we note that e2 = r2 + c2. Thus, each pair of triples (r1, c1, e1) ∈ L and (r2, c2, e2) ∈
M defines a unique triple ((r1, r2), (c1, c2), n[e2 − xr1,c1 ]m + e1) ∈ L. We use this to de-

fine a binary operation ¡X on entries of L and M such that (r1, c1, e1) ¡X (r2, c2, e2) =

((r1, r2), (c1, c2), n[e2 − xr1,c1 ]m + e1). Furthermore, for any subset of ordered triples T1 ⊆ L

and T2 ⊆ M , we define T1 ¡X T2 = {(r1, c1, e1) ¡X (r2, c2, e2) | (ri, ci, ei) ∈ Ti, i = 1, 2}. We

extend this definition to include (r1, c1, e1) ¡X T2 and T1 ¡X (r2, c2, e2) in the obvious way.

Observation III.5.2. For every entry ((r1, r2), (c1, c2), e) ∈ L ¡X M , there exist unique

(r1, c1, e1) ∈ L and (r2, c2, e2) ∈ Zm such that (r1, c1, e1) ¡X (r2, c2, e2) = ((r1, r2), (c1, c2), e).

Thus, if S ∩ S ′ = ∅ or T ∩ T ′ = ∅, then (S ¡X T ) ∩ (S ′ ¡X T ′) = ∅.

The following lemma explains how transversals in L and Zm are lifted to transversals in

L ¡X Zm.

Lemma III.5.3. Let L be a latin square of order n, and let S be a transversal in L. Fur-

thermore, let T be a transversal in Zm. For any n×n matrix X on Zm, the collection S¡X T

forms a transversal in K = L ¡X Zm.
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Proof. Let (r1, r2) ∈ Zn×Zm be any row in K. Since S is a transversal in L, there is a unique

triple (r1, c1, e1) ∈ S covering the row r1. Since T is a transversal in Zm, there is a unique

triple (r2, c2, e2) ∈ T covering the row r2. The element (r1, c1, e1) ¡X (r2, c2, e2) ∈ S ¡X T

covers the row (r1, r2).

Let (c1, c2) ∈ Zn×Zm be any column in K. Since S is a transversal in L, there is a unique

triple (r1, c1, e1) ∈ S covering the column c1. Since T is a transversal in Zm, there is a unique

triple (r2, c2, e2) ∈ T covering the column c2. The element (r1, c1, e1)¡X (r2, c2, e2) ∈ S ¡X T

covers the column (c1, c2).

Let e ∈ Zn × Zm be any entry in K. Define e1 and e2 to be the unique integers such

that e = e2n + e1, with 0 ≤ e2 ≤ m − 1 and 0 ≤ e1 ≤ n − 1. Since S is a transversal

in L, there is a unique triple (r1, c1, e1) ∈ S covering the entry e1. Let xr1,c1 ∈ X be

the entry found in row r1 and column c1 of the matrix X; since T is a transversal in Zm,

there is a unique triple (r2, c2, [e2 + x]m) ∈ T covering the entry [e2 + x]m. The element

(r1, c1, e1) ¡X (r2, c2, [e2 + x]m) ∈ S ¡X T covers the entry e.

We have shown that every row, column, and entry in K is covered at least once by S¡X T .

Since |S ¡X T | = nm, it must be true that every row, column, and entry in K is covered

exactly once by S ¡X T ; therefore, S ¡X T is a transversal in K.

While the preceding lemma shows how to lift transversals in L to transversals in L¡XZm

for any matrix X, the following results prove only that there exists a matrix X that allows

m-plexes in L to be lifted to transversals in L ¡X Zm.

Before we state and prove this lemma, however, some additional ideas are needed. Given

an m-plex S in L, let π and τ be maps from all row and column pairs in S to the group Zm;

with a slight abuse of notation, we write π, τ : S → Zm. For convenience we will use π + g

to denote the map given by (r, c) 7→ [π(r, c) + g]m; similar conventions will be used for τ . If

we also have an n× n matrix X with entries from Zm, then we define
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T (S, π, τ,X) = {(r, c, e) ¡X (π(r, c), τ(r, c), [π(r, c) + τ(r, c)]m) | (r, c, e) ∈ S}
= {((r, π(r, c)), (c, τ(r, c)), n[π(r, c) + τ(r, c)− xr,c]m + e | (r, c, e) ∈ S}
⊂ S ¡X Zm.

Lemma III.5.4. Let L be a latin square of order n, and let S be an m-plex in L. Suppose

there exist functions π, τ : S → Zm and an n× n matrix X with entries from Zm such that:

(1) for every fixed row r of L, Ψ(π, r) = {π(r, c) | (r, c, e) ∈ S} = Zm;

(2) for every fixed column c of L, Ψ(τ, c) = {τ(r, c) | (r, c, e) ∈ S} = Zm;

(3) for every fixed entry e of L, Ψ(π, τ, e) = {[π(r, c)+ τ(r, c)−xr,c]m | (r, c, e) ∈ S} = Zm.

Then T = T (S, π, τ,X) is a transversal in K = L ¡X Zm.

Proof. For each row r of L, condition (1) implies that the set {(r, π(r, c)) | (r, c, e) ∈ S}
covers every row of K with first coordinate r exactly once; since this holds for all r, T covers

every row of K exactly once. An analogous argument based on condition (2) implies that T

covers every column of K exactly once. Finally, for each entry e of L, condition (3) implies

that the set {n[π(r, c) + τ(r, c) − xr,c]m + e | (r, c, e) ∈ S} covers every entry of K that is

congruent to e modulo n exactly once; since this holds for all e, T covers every entry of K

exactly once. Thus, T is a set of triples that covers every row, column and entry of K exactly

once; we simply need to show all of these triples are actually in K. Note that the triples in

T are of the form described in Observation III.5.1, so T is indeed a transversal in K.

Corollary III.5.5. Let L be a latin square of order n, and let S be an m-plex in L. Suppose

the conditions of Lemma III.5.4 hold for some functions π and τ and some matrix X. Then

there exists a family of m2 disjoint transversals in K = L ¡X Zm covering all of S ¡X Zm.

Proof. Define Tg,h = T (S, π + g, τ + h,X) and set T = {Tg,h | (g, h) ∈ Zm × Zm}. Assume

(g, h) 6= (g′, h′); without loss of generality we can assume g 6= g′. Since π + g differs from
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π + g′ on all of S, it is clear that Tg,h and Tg′,h′ are disjoint. It remains to show that Tg,h is

a transversal for any (g, h) ∈ Zm × Zm. By Lemma III.5.4, it will suffice to show that π + g

and τ + h satisfy conditions (1), (2) and (3). We obtain the sets Ψ(π + g, r), Ψ(τ + h, c) and

Ψ(π + g, τ +h, e) by adding the fixed amounts g, h and g +h to the sets Ψ(π, r), Ψ(τ, c) and

Ψ(π, τ, e), respectively, and reducing modulo m. It is clear that these three sets also cover

the entire group Zm, so each Tg,h is a transversal. Thus, the collection T forms a collection

of m2 disjoint transversals contained in S ¡X Zm; since T and S ¡X Zm both cover nm3

entries, we must have that T covers all of S ¡X Zm.

We now want to show that for any π and τ satisfying conditions (1) and (2) of the

previous lemma, we can always find a matrix X such that condition (3) is satisfied as well.

Lemma III.5.6. Let L be a latin square of order n, and let S be an m-plex in L. Suppose

there exist functions π, τ : S → Zm such that:

(1) for every row r of S, Ψ(π, r) = {π(r, c) | (r, c, e) ∈ S} = Zm;

(2) for every column c of S, Ψ(τ, c) = {τ(r, c) | (r, c, e) ∈ S} = Zm.

Then we can assign values to the cells in an n× n matrix X that correspond to S such that

for every entry e of S, Ψ(π, τ, e) = {[π(r, c) + τ(r, c)− xr,c]m | (r, c, e) ∈ S} = Zm.

Proof. Since any distinct (r, c, e), (r′, c′, e′) ∈ S must satisfy (r, c) 6= (r′, c′), we can define

xr,c independently for each (r, c, e) ∈ S such that Ψ(π, τ, e) = Zm for every entry e of S.

If π is simply the projection of each pair (r, c) ∈ S to its order by column amongst all

pairs in row r of S, then we say π is the canonical row projection. Similarly, if τ is simply

the projection of each pair (r, c) ∈ S to its order by row amongst all pairs in column c of S,

then we say τ is the canonical column projection. If π or τ is the projection of each pair to

its reverse order by row or column, then we say π or τ is the reverse canonical row projection

or reverse canonical column projection, respectively.
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Remark III.5.7. The canonical projections and reverse canonical projections both satisfy the

conditions of Lemma III.5.6.

Finally, we put the previous lemmas together to get a decomposition theorem.

Theorem III.5.8. Let n and m be integers with m odd, and let L be a latin square of order

n that admits an (m,m, ...,m, 1, 1, ...1)-partition. Then there exists an n × n matrix X on

Zm such that K = L ¡X Zm admits a 1-partition.

Proof. Because m is odd, we know Zm has a 1-partition by Lemma III.1.2. Assume L can be

decomposed into p transversals and q labeled m-plexes, all of which are mutually disjoint. By

counting the number of entries covered by each transversal or m-plex, we know p + qm = n.

By Lemma III.5.3, each of the p transversals in L combines with each of the m transversals in

Zm to yield a transversal in K for any matrix X, providing pm total disjoint transversals in

K. For each m-plex S, let π and τ be any maps that satisfy the conditions of Lemma III.5.6.

By that result, we can assign values to the cells in an n × n matrix X that correspond to

each m-plex S such that the conditions of Corollary III.5.5 are satisfied. Thus, each of the q

m-plexes in L yields m2 disjoint transversals in K, providing qm2 total disjoint transversals

in K. Because all of the underlying transversals and m-plexes in L are mutually disjoint, we

know from Observation III.5.2 that the pm+qm2 transversals in K are all mutually disjoint.

Moreover, pm + qm2 = (p + qm)m = nm, so we have the desired 1-partition of K.

We can relax the restriction that m is odd if L has a complete decomposition into m-

plexes.

Lemma III.5.9. Let L be a latin square of order m that admits an m-partition. Then there

exists an n× n matrix X on Zm such that K = L ¡X Zm admits a 1-partition.

Proof. For each m-plex S, let π and τ be any maps that satisfy the conditions of Lemma

III.5.6. By that result and Corollary III.5.5, there exists an n× n matrix X such that each

of the n
m

m-plexes in L yields m2 disjoint transversals in K, providing nm total disjoint

transversals in K.
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III.6 Construction for n ≡ 2 (mod 4)

Our goal is to build ce-hamiltonian latin squares that admit a 1-partition. In Section III.5,

we proved the existence of a matrix X so that for an appropriate choice of L and M the

step product L ¡X M has a 1-partition. Moreover, we showed in Section III.4 that if X

satisfies certain properties, this step product square will be ce-hamiltonian. In this section,

we determine some squares L and M for which the X from Theorem III.5.8 can be modified

to also meet the conditions of Theorem III.4.3. The result will be a family of latin squares

that correspond to O2HC-embeddings of complete tripartite graphs.

The first step will be defining appropriate latin squares to use as L and M in the step

product. For the case when n ≡ 2 (mod 4), we are going to find a matrix X so that

K2p = Zp ¡X Z2 has the desired properties of L, and M will be Zq for some odd q. In

particular, we want K2p to be ce-hamiltonian and to have a (q, q, 1, 1, ..., 1)-partition for any

fixed odd q, 3 ≤ q ≤ p.

Lemma III.6.1. Let p and q be odd integers with q prime and p ≥ q ≥ 3. There exists a p×p

matrix X on Z2 such that K2p = Zp ¡X Z2 is ce-hamiltonian and admits a (q, q, 1, 1, ..., 1)-

partition.

Proof. Let X initially be the p × p matrix of all 0’s; we will modify X to get appropriate

values. Since the union of two disjoint transversals is a 2-plex, Lemma III.1.2 implies that we

can find 1
2
(p−q) disjoint 2-plexes in Zp; call them S0, ..., S p−q

2
−1. Using the canonical row and

column projections together with Lemma III.5.6 and Corollary III.5.5, we can assign values

to X so that the collection S = {S0 ¡X Z2, ..., S p−q
2
−1 ¡X Z2} can be partitioned into 2(p− q)

disjoint transversals. Note that we only assigned values to the cells in X corresponding to

the cells of Zp covered by the Si’s.

The previous paragraph required combining p− q disjoint transversals in Zp to get 1
2
(p−

q) disjoint 2-plexes. Thus, there are q disjoint transversals in Zp remaining; call them

T0, ..., Tq−1. We need to assign values to X so the collection {T0 ¡X Z2, ..., Tq−1 ¡X Z2} can
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be partitioned into 2 disjoint q-plexes. For all (r, c, e) ∈ T0, we keep xr,c = 0 and form the

collection

W1 = {(r, c, e) ¡X (0, 0, 0), (r, c, e) ¡X (0, 1, 1), (r, c, e) ¡X (1, 0, 1) | (r, c, e) ∈ T0}
= {((r, 0), (c, 0), e), ((r, 0), (c, 1), p + e), ((r, 1), (c, 0), p + e) | (r, c, e) ∈ T0}.

Note that W1 covers every row of the form (r, 0) twice and every row of the form (r, 1) once,

every column of the form (c, 0) twice and every column of the form (c, 1) once, and every

entry of the form e once and every entry of the form p + e twice, where r, c, e ∈ Zp. For all

(r, c, e) ∈ T1 we set xr,c = 1 and form the collection

W2 = {(r, c, e) ¡X (1, 1, 0) | (r, c, e) ∈ T1}
= {((r, 1), (c, 1), p + e) | (r, c, e) ∈ T1}.

Note that W2 covers every row of the form (r, 1) once, every column of the form (c, 1) once,

and every entry of the form p + e once, where r, c, e ∈ Zp. The collection W1 ∪W2 covers

every row and column of K2p exactly twice, covers every entry of the form e once, and covers

every entry of the form p + e three times, where e ∈ Zp.

Thus far, we have assigned values to all entries xr,c ∈ X except if (r, c, e) ∈ Ti for some

i = 2, 3, ..., q − 1. Let ν(X,L) = (σ0, σ1, ..., σp−1) be the representative vector for X over L

as defined in Section III.4. Enumerate T2 = {(r0, c0, 0), (r1, c1, 1), ..., (rp−1, cp−1, p− 1)}. We

will assign values to xri,ci
for all i ∈ Zp such that ν(X,L) satisfies the conditions of Theorem

III.4.3. Since every xri,ci
and σi is simply 0 or 1, we assign values to xri,ci

such that σi = 1 if

i is even, and σi = 0 otherwise. Thus, for all i = 0, 1, ..., p−2 we have σi−σi+1 ≡ 1 (mod 2),

and σp−1 − σ0 − p = 1− 1− p ≡ 1 (mod 2) as well, so the conditions of Theorem III.4.3 are

satisfied. It remains to show that we can find the partition into 2 disjoint q-plexes without

changing any more entries in X.

Let E0 = {(0, 0, 0), (1, 1, 0)} ⊂ Z2 and E1 = {(0, 1, 1), (1, 0, 1)} ⊂ Z2. Form the collection

W3 = {(r, c, e) ¡X Exr,c | (r, c, e) ∈ T2}; W3 can take two forms depending on the value of
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xr,c. If xr,c = 0, then

W3 = {((r, 0), (c, 0), e), ((r, 1), (c, 1), e) | (r, c, e) ∈ T2};

if xr,c = 1, then

W3 = {((r, 0), (c, 1), e), ((r, 1), (c, 0), e) | (r, c, e) ∈ T2}.

Note that in either case W3 covers every row and column in K2p exactly once; moreover, W3

covers every entry p[xr,c−xr,c]2 +e = e exactly twice, where e ∈ Zp. Therefore, the collection

W1 ∪W2 ∪W3 forms a 3-plex. We now have q − 3 remaining unused transversals, which are

T3, ..., Tq−1. Recalling that xr,c = 0 for any (r, c, e) ∈ Ti with i = 3, ..., q − 1, let

Weven = {Ti ¡X E0 | i even}
= {((r, 0), (c, 0), e), ((r, 1), (c, 1), e) | (r, c, e) ∈ Ti, i even}

and

Wodd = {Ti ¡X E1 | i odd}
= {((r, 0), (c, 1), p + e), ((r, 1), (c, 0), p + e) | (r, c, e) ∈ Ti, i odd}.

Note that Weven covers every row and column of K2p exactly 1
2
(q − 3) times. Additionally,

Weven covers every entry e exactly q − 3 times, where e ∈ Zp. Similarly, Wodd covers every

row and column of K2p exactly 1
2
(q − 3) times. Additionally, Wodd covers every entry p + e

exactly q − 3 times. Thus, Weven ∪ Wodd forms a (q − 3)-plex, and the collection W =

W1∪W2∪W3∪Weven∪Wodd forms a q-plex. Let V = K2p \ (S ∪W); since S and W together

cover every row, column, and entry of K2p exactly 2(p− q) + q = 2p− q times, V must cover

every row, column, and entry of K2p exactly 2p− (2p− q) = q times. Therefore, V is also a

q-plex, and we have our desired partition of K2p into 2(p− q) transversals and 2 q-plexes, all

of which are mutually disjoint. As mentioned before, the matrix X we constructed satisfies

the conditions of Theorem III.4.3, so K2p is also ce-hamiltonian.
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We want to use K2p as the first ingredient of a step product construction with Zq; to

differentiate from the matrix X used to form K2p, we will form the product K2p ¡Y Zq. We

need to show that the matrix Y that we obtain from Theorem III.5.8 can be modified to

satisfy the conditions of Theorem III.4.3 without destroying the partition into transversals.

To do so, we will apply Theorem III.5.8 to K2p and Zq with one q-plex labeled with the

canonical projections and the other q-plex labeled with the reverse canonical projections.

This will yield a matrix Y such that K2p ¡Y Zq has a 1-partition. We will then alter π and

τ for each q-plex and show that making appropriate changes in Y yields a matrix such that

K2p ¡Y Zq still admits a 1-partition, but is ce-hamiltonian as well.

Before we accomplish this goal, it will now be helpful to identify some properties of

the q-plexes created in Lemma III.6.1. According to the construction described by the

collections W1 and W2, 3 of the 4 entries of K2p obtained from (r, c, e) ¡X Z2 are in W ,

where (r, c, e) ∈ T0. Similarly, 1 of the 4 entries of K2p obtained from (r, c, e) ¡X Z2 is in W ,

where (r, c, e) ∈ T1. We assume for the sake of presentation that T0 and T1 are found along

the first two diagonals of Zp. We then have the following representation for K2p, where the

superscript denotes whether each entry is in the q-plex W or V :




0W pW p + 1V 1V

pW 0V 1V P + 1W

2W p + 2W p + 3V 3V

p + 2W 2V 3V p + 3W

. . .
. . .

2p− 1V p− 1V p− 2W 2p− 2W

p− 1V 2p− 1W 2p− 2W p− 2V




.

Assume that W is labeled with the canonical projections π and τ . The triple (r, c, e) ∈ T0

gives rise to the triples ((r, 0), (c, 0), e), ((r, 0), (c, 1), p+ e), ((r, 1), (c, 0), p+ e) ∈ W . Assume
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π and τ take the following values:

π((r, 0), (c, 0)) = ρ1

π((r, 0), (c, 1)) = ρ2

π((r, 1), (c, 0)) = ρ3

τ((r, 0), (c, 0)) = γ1

τ((r, 0), (c, 1)) = γ2

τ((r, 1), (c, 0)) = γ3

.

From the way π and τ are defined, we know ρ2 = ρ1 + 1 and γ3 = γ1 + 1. We want

to switch the values of π and τ for these triples while preserving condition (3) of Lemma

III.5.4. To do so, we will simultaneously need to change the matrix Y . First, consider the

elements A1 = [ρ1 + γ1 − x(r,0),(c,0)]q and A2 = [ρ2 + γ2 − x(r,0),(c,1)]q. If we switch ρ1 and ρ2,

then to ensure A1 and A2 cover the same elements of Zq, we also need to increase x(r,0),(c,0)

by one and decrease x(r,0),(c,1) by one. This increases σe by one while decreasing σp+e by one.

Such a switch is called a W-row switch on e. Now consider A3 = [ρ3 + γ3− x(r,1),(c,0)]q. If we

switch γ1 and γ3, then to ensure A1 and A3 cover the same elements of Zq, we also need to

increase x(r,0),(c,0) by one and decrease x(r,1),(c,0) by one. This again increases σe by one while

decreasing σp+e by one. Such a switch is called a W-column switch on e.

Given any e ∈ Zp, we can perform just a W-row switch on e or we can independently

perform both a W-row switch and a W-column switch on e. Thus, we can increase σe by

either one or two, respectively, while decreasing σp+e by that same amount. We want to

define similar switches for the triples in V that are obtained from T1; however, if we want the

switches to affect σe and σp+e in the same way, we need to assume that V is initially labeled

with the reverse canonical projections. It is not hard to show that V-row and V-column

switches on e also increase σe by one or two while decreasing σp+e by that same amount.

Thus, we can increase σe by up to four while decreasing σp+e by that same amount without

affecting the transversals that W and V yield through Corollary III.5.5.
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The following lemma supplies a special case in the proof of Theorem III.6.3 below, while

also providing an example of both Lemma III.6.1 and switches.

Lemma III.6.2. There exists a ce-hamiltonian latin square of order 18 that admits a 1-

partition.

Proof. A matrix X ′ guaranteed by Lemma III.6.1 so that K6 = Z3 ¡X′ Z2 is ce-hamiltonian

and can be partitioned into 2 disjoint 3-plexes is shown below, along with K6. The starred

entries in K6 provide the 3-plex W , while the unstarred entries provide the other 3-plex V .

X ′ =




0 1 0

1 0 1

1 0 0




, K6 =




0 ∗ 3 ∗ 4 1 2 ∗ 5

3 ∗ 0 1 4 ∗ 5 2 ∗

4 1 ∗ 2 ∗ 5 ∗ 3 0

1 ∗ 4 5 ∗ 2 0 3 ∗

5 2 0 ∗ 3 1 ∗ 4 ∗

2 5 ∗ 3 0 ∗ 4 ∗ 1




.

Let πW and τW be the canonical projections for W , and let πV and τV be the reverse

canonical projections for V ; a matrix X guaranteed by Theorem III.5.8 so that K6 ¡X Z3

has a 1-partition is shown below.

X =




0 0 2 0 0 0

2 2 0 0 1 2

0 0 0 0 0 0

0 0 0 2 0 0

0 0 0 0 2 1

0 1 0 2 2 2




At this point, we have ν(X,L) = (1, 1, 1, 2, 2, 2). This does not satisfy the conditions of

Theorem III.4.3, so we perform the following W-row switch on 1. The superscript on an

entry (r, c, e) ∈ K6 below is given by πW(r, c), τW(r, c); the resulting changes in X are also
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shown, denoted by ∗.

K6 :




0 3 4 1 2 5

3 0 1 4 5 2

4 1 2 5 3 0

1 4 5 2 0 3

5 2 0 3 1 1 ,1 4 2 ,2

2 5 3 0 4 1




=⇒




0 3 4 1 2 5

3 0 1 4 5 2

4 1 2 5 3 0

1 4 5 2 0 3

5 2 0 3 1 2 ,1 4 1 ,2

2 5 3 0 4 1




,

X :




0 0 2 0 0 0

2 2 0 0 1 2

0 0 0 0 0 0

0 0 0 2 0 0

0 0 0 0 2 ∗ 1 ∗

0 1 0 2 2 2




=⇒




0 0 2 0 0 0

2 2 0 0 1 2

0 0 0 0 0 0

0 0 0 2 0 0

0 0 0 0 0 ∗ 0 ∗

0 1 0 2 2 2




.

These switches increased σ1 by one while decreasing σ4 by one; we now have ν(X,L) =

(1, 2, 1, 2, 1, 2). This satisfies the conditions of Theorem III.4.3, so the square K6 ¡X Z3 is

ce-hamiltonian and has a 1-partition.

We are now ready to provide the main construction for most values of n such that n ≡ 2

(mod 4). The remaining cases of this residual class are covered in Section III.8.

Theorem III.6.3. Let p and q be odd integers with q prime and p ≥ q ≥ 3. There exists

a 2p × 2p matrix X such that K2p ¡X Zq is a ce-hamiltonian latin square that admits a

1-partition.

Proof. Lemma III.6.1 gives us a partition of K2p into 2(p − q) transversals and 2 q-plexes

W and V ; we can assume W is labeled with the canonical projections and V is labeled with

the inverse of the canonical projections. By Theorem III.5.8, there exists a 2p × 2p matrix
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X such that K2p ¡X Zq has a 1-partition. We need to show that this X can be altered to

meet the conditions of Theorem III.4.3.

If p > q, then K2p contains at least one transversal, call it T . Since q is prime, gcd(y, q) =

1 for all 0 6= y ∈ Zq. Moreover, since q ≥ 3, there exists some δ ∈ Zq such that 1 − δ and

δ−1−2p are both nonzero. Since Lemma III.5.3 works for any X, and Theorem III.5.8 allows

arbitrary values in entries of X corresponding to transversals in K2p, we can assign arbitrary

values to xr,c when (r, c, e) ∈ T . Enumerate T = {(r0, c0, 0), ..., (r2p−1, c2p−1, 2p − 1)}; just

as in the proof of Lemma III.6.1, both xri,ci
and σi are integers modulo q, so we simply

assign values to xri,ci
so that σi = 1 if i is even, σi = 0 if i = 1, 3, ..., 2p− 3, and σ2p−1 = δ.

Thus, for i = 0, 2, ..., 2p − 4 we have σi − σi+1 ≡ 1 (mod q), for i = 1, 3, ..., 2p − 3 we have

σi − σi+1 ≡ −1 (mod q), σ2p−2 − σ2p−1 = 1 − δ, and σ2p−1 − σ0 − 2p = δ − 1 − 2p. Since

−1, 1, 1− δ and δ− 1− 2p are all relatively prime to q, the conditions of Theorem III.4.3 are

satisfied.

Now assume p = q ≥ 5, and for e = 1, ..., p− 2 define the following expressions, where all

arithmetic is done modulo q:

ε1(e) = σe−1 − σe

ε2(e) = σe − σe+1

ε3(e) = σp+e−1 − σp+e

ε4(e) = σp+e − σp+e+1

.

If e = 0, then simply replace ε1(e) with σ2p−1 − σ0 − 2p, while if e = p − 1, then simply

replace ε4(e) with σ2p−1 − σ0 − 2p.

Set z1 = −ε1(e), z2 = ε2(e), z3 = ε3(3) and z4 = −ε4(e). Let I(e) = {i | εi(e) 6= 0; if

|I(e)| = 4 then εi(e) is relatively prime to q for all i. If |I(e)| < 4, then let ZI(e) = {zi | i ∈
I(e)}; there must exist some number s ∈ {1, 2, 3, 4}\ZI(e). By definition of ZI(e), it must be

true that ε1(e)+ s, ε2(e)− s, ε3(e)− s, and ε4(e)+ s are all nonzero, and therefore relatively

prime to q. Now, we simply perform enough switches so that σe is increased by s and σp+e
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is decreased by s. Since switching on e in this way will never make any εi(e
′) = 0 for any

other e′ ∈ Zp, we can repeat this process for all e ∈ Zp until ν(X,L) satisfies the conditions

of Theorem III.4.3.

The final case p = q = 3 is covered by Lemma III.6.2.

III.7 Construction for n ≡ 0 (mod 4)

In the case when n ≡ 0 (mod 4), we will use L = Zn
2

and M = Z2. Before we provide the

general constructions, we modify the switching procedure described for K2p to work on the

square Zn
2
. In the 2-partition guaranteed by Lemma III.1.2, every row r of each 2-plex S

contains the entries (r, c, e) and (r, c + 1, e + 1), where e = r + c is even. Let π be defined

so that π(r, c) = 0 and π(r, c + 1) = 1 for each row r; this is equivalent to the canonical

row projection except when c = n
2
− 1. We again want to switch the values of π for these

triples without changing the entries they yield in S ¡X Z2. As before, this switch results in

increasing xr,c by one and decreasing xr,c+1 by one; in Z2 this is equivalent to flipping the

values σe and σe+1 from 0 to 1 or from 1 to 0. This will similarly be called a S-row switch on

e. In an analogous fashion, we note that every column of S contains the entries (r, c, e− 1)

and (r + 1, c, e), where again e = r + c + 1 is even. Let τ be defined so that τ(r, c) = 0

and τ(r + 1, c) = 1 for each column c; this is equivalent to the canonical column projection

except when r = n
2
− 1. By switching the τ values of these triples, we flip the values σe−1

and σe in Z2; this is a S-column switch on e. By performing both a S-row switch on e and a

S-column switch on e, we leave the value of σe unchanged while flipping both σe−1 and σe+1

in Z2. The following lemma will be needed.

Lemma III.7.1. Let p be even, and let S be a 2-plex in Zp. If π, τ and X satisfy the

conditions of Lemma III.5.4, then the set {xr,c | (r, c, e) ∈ S, xr,c = 1} contains an even

number of elements.

Proof. For each entry e ∈ Zp, let (r1, c1, e), (r2, c2, e) ∈ S be the two triples of S containing
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e; condition (3) of Lemma III.5.4 implies that we must have

{π(r1, c1) + τ(r1, c1)− xr1,c1 , π(r2, c2) + τ(r2, c2)− xr2,c2} = {0, 1}.

Thus, since p is even,
∑

(r,c,e)∈S

(π(r, c) + τ(r, c)− xr,c) = 0,

where the addition is taken in Z2. Again since p is even,

∑

(r,c,e)∈S

π(r, c) =
∑

(r,c,e)∈S

τ(r, c) = 0

in Z2, so we must have
∑

(r,c,e)∈S

xr,c = 0

as well. It follows that the set {xr,c | (r, c, e) ∈ S, xr,c = 1} has even order.

We are now ready to prove the main construction for n ≡ 0 (mod 8).

Theorem III.7.2. Let n ≡ 0 (mod 8). There exists an n
2
× n

2
matrix X such that Zn

2
¡X Z2

is a ce-hamiltonian latin square that admits a 1-partition.

Proof. Set b = n
4
; note that b is even. By Lemma III.1.2 there exists a 2-partition S of

Z2b. For each 2-plex we use π and τ as defined at the beginning of this section; by Lemma

III.5.9 there exists a 2b × 2b matrix X such that Z2b ¡X Z2 has a 1-partition. We need to

show that this X can be modified to meet the conditions of Theorem III.4.3. According to

Lemma III.7.1, each 2-plex S ∈ S has an even number of corresponding 1’s in X. Thus, if

ν(X,Z2b) = (σ0, σ1, ..., σ2b−1), then

2b−1∑
i=0

σi =
∑

xr,c∈X

xr,c =
∑
S∈S


 ∑

(r,c,e)∈S

xr,c


 = 0,

and the representative vector ν(X,Z2b) has an even number of 1’s. Let v(i) be the vector of
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length 2b with 1’s in position i and i+1 and 0’s everywhere else; the set {v(i) | 0 ≤ i ≤ 2b−2}
forms a basis over Z2 for all length 2b vectors with an even number of 1’s. Furthermore, any

S-row or S-column switch on e will simply add v(e) or v(e − 1), respectively, to ν(X,Z2b).

Since b is even, the vector (0, 1, 0, 1, ..., 0, 1) contains an even number of 1’s; we now perform

the required S-row and S-column switches to ensure that ν(X,Z2b) = (0, 1, 0, 1, ..., 0, 1). It

is now clear that ν(X,Z2b) meets the conditions of Theorem III.4.3.

When n ≡ 4 (mod 8), we require a special construction. Again set b = n
4
, where b is now

odd, and let X be the 2b× 2b matrix with x2b−1,c = 1 for all even c, and xr,c = 0 otherwise.

We form the square Jn = Z2b ¡X Z2 and show that it has the required properties.

Theorem III.7.3. Let n ≡ 4 (mod 8) with n ≥ 12. The latin square Jn is ce-hamiltonian

and admits a 1-partition.

Proof. It is readily seen that ν(X,Z2b) = (0, 1, 0, 1, ..., 0, 1); thus, Jn is ce-hamiltonian by

Theorem III.4.3. It remains to show that Jn admits a 1-partition.

For a 2-plex S in Z2b and any maps π and τ , we say (r, c, e) ∈ S has a uniform label

if π(r, c) = τ(r, c); otherwise we say (r, c, e) ∈ S has a mixed label. Let S be the following

2-plex in Z2b, where the superscript on each entry (r, c, e) defines π(r, c), τ(r, c).

S =




00,0 11,1

30,0 (b + 2)1,0

. . .
. . .

(2b− 1)0,0 (b− 2)1,0

b0,1 (b + 1)1,0

(b + 3)0,1 21,1

. . .
. . .

(b− 1)0,1 (2b− 2)1,1




Set Tg,h = T (S, π + g, τ + h, X); we will show that the conditions of Lemma III.5.4 are
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met. It is readily seen from their definition that π takes both values 0 and 1 in every row

of S and τ takes both values 0 and 1 in every column of S, so conditions (1) and (2) are

met for any g, h ∈ Z2. Finally, xr,c = 0 for all (r, c, e) ∈ S, and each entry in S has one

uniform label and one mixed label, so Ψ(π + g, τ + h, e) = {0, 1} for each entry e ∈ S, and

condition (3) is met for any g, h ∈ Z2 as well. By Lemma III.5.4, T0,0 is a transversal in

Jn. As in the proof of Corollary III.5.5, T0,1 is also a transversal in Jn. Additionally, let

S + y be the 2-plex with the same labels as S that is obtained by shifting the cells of S y

columns to the right, and let Tg,h + y = T (S + y, π + g, τ + h,X). If y is even, then the

entries in row 2b − 1 of S + y are all even, so the corresponding entries in X are 0 and

it is readily seen that T0,0 + y and T0,1 + y are also transversals. We claim the collection

S = {T0,0, T0,0 +2, .., T0,0 +(2b−2), T0,1, T0,1 +2, ..., T0,1 +(2b−2)} forms 2b mutually disjoint

transversals in Jn. Indeed, the 2-plexes S + y and S + z are disjoint unless z = y + b − 1

(or y = z + b − 1). In that case, the 2-plexes S + y and S + (y + b − 1) overlap in every

row except row 0 and b. However, for every overlapped entry, the transversals T0,0 + y and

T0,1 + y use the entries in row 0 of the corresponding subsquare Z2, while the transversals

T0,0 +(y+b−1) and T0,1 +(y+b−1) use the entries in row 1 of the corresponding subsquare

Z2. Thus, the members of S are mutually disjoint, and |S| = 2b.

We now present a similar 2-plex that we can use to cover the remaining entries in Z2b.

Let S ′ be the following 2-plex, with superscripts again defining π, τ .
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S′ =




10,0 21,1

40,0 (b + 3)1,0

. . .
. . .

(2b− 2)0,0 (b− 3)1,0

(b− 1)1,0 00,0

(b + 1)0,1 (b + 2)1,0

(b + 4)0,1 31,1

. . .
. . .

(b− 2)0,1 (2b− 3)1,1

(2b− 1)0,1 b1,1




Note that b has two uniform labels and 2b − 1 has two mixed labels; these correspond

to nonzero entries in the last row of X. Every other entry has both a uniform and a

mixed label, and the corresponding entries in X are 0. Lemma III.5.4 again implies that

T ′ = T (S ′, π, τ,X) is a transversal. By defining S ′ + y and T ′
g,h + y in a manner similar to

S + y and Tg,h + y in the previous paragraph and using an analogous argument, we learn

that S = {T ′
0,0, T

′
0,0 + 2, .., T ′

0,0 + (2b− 2), T ′
0,1, T

′
0,1 + 2, ..., T ′

0,1 + (2b− 2)} forms 2b mutually

disjoint transversals in Jn.

It remains to show that the transversals in S are disjoint from the transversals in S ′. For

even y and z, it is clear that each 2-plex S + y is disjoint from each 2-plex S ′ + z in every

row except row 0 or b, because S + y and S ′ + z use columns of different parity in all rows

except 0 and b. But for any even overlapped entry in row 0, T0,0 + y and T0,1 + y use the

entries found in row 0 of the corresponding subsquare Z2, while T ′
0,0 + z and T ′

0,1 + z use

the entries found in row 1 of the corresponding subsquare Z2. In a similar fashion for any

odd overlapped entry in row 0, T0,0 + y and T0,1 + y use the entries found in row 1 of the

corresponding subsquare Z2, while T ′
0,0 + z and T ′

0,1 + z use the entries found in row 0 of the

corresponding subsquare Z2. It is similarly shown that T0,0 + y, T0,1 + y, T ′
0,0 + z and T ′

0,1 + z

are disjoint in row b. The collection S ∪ S ′ contains 4b = n mutually disjoint transversals
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and is the desired 1-partition of Jn.

An example of the process used to find the 1-partition of J12 guaranteed by Theorem

III.7.3 can be found in Appendix A.

III.8 Voltage graph constructions

The latin square constructions presented in this chapter yield hamilton cycle embeddings of

Kn,n,n for all n 6= 2p, where p = 1 or p is prime. A simple exhaustive search shows that

every hamilton cycle embedding of K2,2,2 must be nonorientable; in this section we present

a voltage graph construction that covers all the remaining open cases.

As mentioned in Section I.2.3, the voltage group will be an abelian group of order n,

and all edges are assumed to be directed from a to b, from b to c, and from c to a. We will

use ia, ib and ic to denote the edge with voltage i from a to b, from b to c and from c to a,

respectively. Additionally, we will use e to denote that e is traced in the reverse direction.

We do this to keep track of the directions in which each edge is traced, which will allow us to

verify that the embeddings we construct are orientable. The following lemma will simplify

the proofs in this section.

Lemma III.8.1. Let W1 = (ia jb kc) and W2 = (pc qb ra) be closed walks in a voltage graph

for Kn,n,n with voltage group Zn. If gcd(i + j + k, n) = 1 (resp. gcd(−p − q − r, n) = 1),

then W1 (resp. W2) yields a single hamilton cycle face in the derived embedding.

Proof. Theorem I.2.3 implies that both W1 and W2 yield a single face of length 3n in the

derived embedding. We must show that these faces are actually hamilton cycles. The

resulting faces are shown below. For convenience, we set β = i + j + k and γ = p + q + r.

W1 : (a0 bi ci+j aβ bi+β ci+j+β a2β bi+2β ci+j+2β · · · a(n−1)β bi+(n−1)β ci+j+(n−1)β)

W2 : (a0 c−p b−p−q a−γ c−p−γ b−p−q−γ a−2γ c−p−2γ b−p−q−2γ · · · a−(n−1)γ c−p−(n−1)γ b−p−q−(n−1)γ)

Because β and γ are both of order n in Zn, these are hamilton cycles.
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We begin by presenting some special case constructions for p = 2 and p = 3.

Lemma III.8.2. For p = 2 or 3, there exists a voltage graph such that the derived embedding

is an orientable hamilton cycle embedding of K2p,2p,2p.

Proof. For p = 2, consider the voltage graph with the following rotation system.

Ra : (0a 1a 2a 3a 0c 3c 2c 1c)

Rb : (0a 0b 3a 2b 2a 1b 1a 3b)

Rc : (0c 0b 1c 1b 2c 3b 3c 2b)

A trace of the faces in this voltage graph yields the closed walks and net voltages below.

W0 : (0a 0b 1c); |W0| = 1

W1 : (1a 3b 3c 2c 3b 0a); |W1| = 2

W2 : (2a 1b 2c 1c 1b 1a); |W2| = 2

W3 : (3a 2b 0c 3c 2b 2a); |W3| = 2

W4 : (0c 0b 3a); |W4| = 1

We know W0 and W4 each yield a hamilton cycle face from Lemma III.8.1. From Theorem

I.2.3 we know Wi yields 2 faces of length 12 for i = 1, 2, 3. To prove they are indeed

hamilton cycles, it will suffice to show that one of the faces obtained from each closed walk

is a hamilton cycle. This is accomplished below.

W1 : (a0 b1 c0 a3 c1 b2 a2 b3 c2 a1 c3 b0)

W2 : (a0 b2 c3 a1 c0 b3 a2 b0 c1 a3 c2 b1)

W3 : (a0 b3 c1 a1 c2 b0 a2 b1 c3 a3 c0 b2)

Thus, the embedding derived from this voltage graph is an orientable hamilton cycle embed-

ding of K4,4,4.
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For p = 3, consider the voltage graph with the following rotation scheme.

Ra : (0a 1c 1a 2c 2a 5c 4c 4a 0c 3a 3c 5a)

Rb : (0a 2b 1a 3b 4a 5b 3a 4b 2a 1b 5a 0b)

Rc : (0b 5c 1b 2c 4b 0c 3b 3c 5b 4c 2b 1c)

A trace of the faces in this voltage graph yields the closed walks and net voltages below.

W0 : (0a 2b 1c 1a 3b 3c 5a 0b 5c 4c 2b 1a 2c 4b 2a 5c 1b 5a); |W0| = 0

W1 : (2a 1b 2c); |W1| = 5

W2 : (3a 4b 0c); |W2| = 1

W3 : (4a 5b 4c); |W3| = 1

W4 : (0c 3b 4a); |W4| = 5

W5 : (1c 0b 0a); |W5| = 5

W6 : (3c 5b 3a); |W6| = 1

From Lemma III.8.1, Wi yields a single hamilton cycle face for i = 1, 2, ..., 6. From Theorem

I.2.3 we know W0 yields 6 faces of length 18. To prove that they are indeed hamilton cycles,

it will suffice to show that one of the faces obtained from this closed walk is a hamilton cycle.

This is accomplished below.

W0 : (a0 b0 c2 a3 b4 c1 a4 b3 c3 a2 c4 b2 a1 c5 b1 a5 c0 b5)

Thus, the embedding derived from this voltage graph is an orientable hamilton cycle embed-

ding of K6,6,6

We are now going to give a general construction for n = 2p, where p ≥ 5 is prime. This

voltage graph will be constructed in several steps. To start out, we will present the closed

walks we want to be facial boundaries in our voltage graph. Then, we will show that these

walks yield hamilton cycles in the derived embedding. Finally, we will verify our voltage
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graph is well-defined by showing that the rotation graph around every vertex is proper. The

voltage group we will be using for these graphs is Zp × Z2; this group is isomorphic to Z2p

but is preferred for notational convenience. For the remainder of this section, we simply

write x for (x, 0) and x′ for (x, 1).

Definition III.8.3. Let p ≥ 5 be prime, and define the sequences ωi = ia (i+3)b (p−2i−2)c

and θi = (p− 2i)c (i− 1)b ia. Define Ω to be the following closed walk.

Ω : (1′a (p− 1)′b 0′c 0′a 3b (p− 2)c ω1 ω2 · · · ωp−3 ωp−2

(p− 1)′c 2′b (p− 3)′a θ1 θ2 · · · θp−3 θp−2 2c (p− 2)b (p− 1)′a)

Lemma III.8.4. For all prime p ≥ 5, Ω yields 2p hamilton cycle faces in the derived

embedding of K2p,2p,2p.

Proof. It will suffice to show that one of the resulting faces in the derived embedding is a

hamilton cycle. Starting with the vertex a0, we obtain the following facial boundary in the

embedding of K2p,2p,2p.

(a0 b1′ c0 a0′ b0 c3 a1 b2 c6 a2 b4 c9 a3 b6 c12 · · ·
a(p−4) b(p−8) c(p−9) a(p−3) b(p−6) c(p−6) a(p−2) b(p−4) c(p−3)

a(p−1) c0′ b(p−2) a1′ c3′ b3′ a2′ c6′ b5′ a3′ c9′ b7′ · · ·
a(p−3)′ c(p−9)′ b(p−5)′ a(p−2)′ c(p−6)′ b(p−3)′ a(p−1)′ c(p−3)′ b(p−1)′)

For the sake of clarity, we list the vertices below by the order in which they appear within

each independent set. Note that the net voltages of ωi and θi are both 1, the net voltages

of the sequences (i + 3)b (p− 2i− 2)c (i + 1)a and ia (p− 2i− 2)c ib are both 2, and the net

voltages of the sequences (p− 2i− 2)c (i + 1)a (i + 4)b and (i− 1)b ia (p− 2i− 2)c are both
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3. This is evident in the following sequences.

A : (a0 a0′ a1 a2 · · · a(p−2) a(p−1) a1′ a2′ · · · a(p−2)′ a(p−1)′)

B : (b1′ b0 b2 b4 · · · b(p−4) b(p−2) b3′ b5′ · · · b(p−3)′ b(p−1)′)

C : (c0 c3 c6 c9 · · · c(p−6) c(p−3) c0′ c3′ · · · c(p−6)′c(p−3)′)

This cycle is clearly a hamilton cycle. Since Ω was a walk of length 6p, it must be true that

|Ω| = 0. From Theorem I.2.3, we know Ω yields 2p faces of length 6p, each of which must

be a hamilton cycle.

The closed walk Ω provides half of our desired voltage graph. Before we build the

remaining half, we want to construct the partial rotations at each vertex in the voltage

graph as determined by Ω. In the observation that follows, we use the notation [a b c · · · d]

to denote a path in the corresponding rotation (i.e. a is not adjacent to d in the rotation

graph).

Lemma III.8.5. The partial rotations determined by Ω consist of the following paths with

the given endpoints. Each path is labeled for reference later in this section.

a : PA
1 = [(p− 3)′a · · · 1′a]

PA
3 = [(p− 1)′a 1′a]

PA
5 = [0′c 0′a]

b : PB
1 = [2b · · · (p− 1)b]

PB
3 = [2′b (p− 3)′a]

PB
5 = [0′a · · · (p− 1)′a]

PB
7 = [1′a (p− 1)′b]

c : PC
1 = [(p− 1)b · · · 2b]

PC
3 = [(p− 1)′c 2′b]

PC
5 = [(p− 1)′b 0′c]
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Proof. Let Ω1 = (ω0 ω1 · · ·ωp−1) and Ω2 = (θ0 θ1 · · · θp−1). The rotation around a determined

by the closed walks Ω1 and Ω2 is given by

Q1 = (0a (p− 2)c 1a (p− 4)c 2a (p− 6)c · · · (p− 2)a 2c (p− 1)a0c).

To construct Ω from Ω1 and Ω2, we must first remove the subsequence ωp−1 ω0 from Ω1 and

the subsequence θp−1 θ0 from Ω2. By doing so, we lose the subsequence (p − 2)a 2c (p −
1)a 0c 0a (p− 2)c 1a from Q1, which results in a partial rotation around a given by

Q2 = [1a (p− 4)c 2a (p− 6)c · · · (p− 2)a].

Finally, we add the sequences θp−2 2c (p− 2)b (p− 1)′a 1′a (p − 1)′b 0′c 0′a 3b (p − 2)c ω1 and

ωp−2 (p− 1)′c 2′b (p− 3)′a θ1, which induce the following partial rotations around a.

PA
1 = [(p− 3)′a (p− 2)c 1a] Q2 [(p− 2)a 2c (p− 1)′c]

PA
3 = [(p− 1)′a 1′a]

PA
5 = [0′c 0′a]

For the partial rotation around b determined by Ω, we again consider first the rotation

around b determined by Ω1 and Ω2, which is given by

R1 = (0a 3b 4a 7b 8a 11b · · · (p− 8)a (p− 5)b (p− 4)a (p− 1)b).

Removing ωp−1 ω0 and θp−1 θ0 results in a loss of the subsequences (p − 1)b 0a 3b and

(p − 2)b (p − 1)a 2b from R1; this splits R1 into the two partial rotations R2 and R3 shown

below.

R2 = [3b 4a 7b 8a 11b · · · (p− 2)b]

R3 = [2b · · · (p− 8)a (p− 5)b (p− 4)a (p− 1)b]

Finally, we add in the remaining pieces of Ω to obtain the following partial rotations around
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b.

PB
1 = R3

PB
3 = [2′b (p− 3)′a]

PB
5 = [0′a 3b] R2 [(p− 2)b (p− 1)′a]

PB
7 = [1′a (p− 1)′b]

Using a similar process on c, we get an initial rotation from Ω1 and Ω2 given by

S1 = (0c (p− 1)b 6c (p− 4)b 12c (p− 7)b · · · (p− 12)c 5b (p− 6)c 2b).

Removing ωp−1 ω0 and θp−1 θ0 results in a loss of the subsequences 2b 0c (p− 1)b, 3b (p− 2)c

and 2c (p − 2)b from S1; this splits S1 into three partial rotations. Note, however, that the

subsequences 3b (p − 2)c and 2c (p − 2)b are included in the remaining pieces of Ω, so the

removal of the subsequence 2b 0c (p− 1)b yields a partial rotation around c given by

S2 = [(p− 1)b 6c (p− 4)b 12c (p− 7)b · · · (p− 12)c 5b (p− 6)c 2b].

Adding in the unused subsequences from Ω results in the following partial rotations around

c.

PC
1 = S2

PC
3 = [(p− 1)′c 2′b]

PC
5 = [(p− 1)′b 0′c]

We now progress to the 3-cycles that will complete our voltage graph. Because we want

to use each edge once as e and once as e, we present p 3-cycles of the form (ia jb kc) and

p 3-cycles of the form (ic jb ka). Cycles of the first form are presented in Table III.1, while

cycles of the second form are presented in Table III.2. In both tables, we let h = p−1
2

.

Before the main theorem is proved, we again make an observation about the partial

rotations determined by the ∆i’s and Λi’s.
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Cycle (ia jb kc) i j k Net Voltage
∆0 0 2′ 0 2′

∆1 3′ 1′ (p− 3)′ 1′
...

...
...

...
...

∆` (2` + 1)′ (2`− 1)′ (p− 2`− 1)′ (2`− 1)′
...

...
...

...
...

∆h−1 (p− 2)′ (p− 4)′ 2′ (p− 4)′

∆h p− 1 2 3′ 4′

∆h+1 2′ 4′ (p− 2)′ 4′
...

...
...

...
...

∆` (2` + 1)′ (2` + 3)′ (p− 2`− 1)′ (2` + 3)′
...

...
...

...
...

∆p−3 (p− 5)′ (p− 3)′ 5′ (p− 3)′

∆p−2 (p− 3)′ (p− 2)′ 1′ (p− 4)′

∆p−1 (p− 1)′ 0′ (p− 1)′ (p− 2)′

Table III.1: Required 3-cycles of the form ∆ = (ia jb kc), where h = p−1
2

.

Cycle (ic jb ka) i j k Net Voltage
Λ0 0 (p− 1)′ p− 1 2′

Λ1 1′ (p− 3)′ 0′ 2′

Λ2 3′ (p− 5)′ (p− 5)′ 7′
...

...
...

...
...

Λ` (2`− 1)′ (p− 2`− 1)′ (p− 2`− 1)′ (2` + 3)′
...

...
...

...
...

Λh−2 (p− 6)′ 4′ 4′ (p− 2)′

Λh−1 (p− 4)′ (p− 4)′ 2′ 6′

Λh (p− 2)′ (p− 6)′ (p− 2)′ 10′

Λh+1 0′ p− 1 0 1′

Λh+2 2′ (p− 8)′ (p− 4)′ 10′
...

...
...

...
...

Λ` (2`− 1)′ (p− 2`− 5)′ (p− 2`− 1)′ (2` + 7)′
...

...
...

...
...

Λp−3 (p− 7)′ 1′ 5′ 1′

Λp−2 (p− 5)′ (p− 2)′ 3′ 4′

Λp−1 (p− 3)′ 0′ 1′ 2′

Table III.2: Required 3-cycles of the form Λ = (ic jb ka), where h = p−1
2

.
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Lemma III.8.6. Let p ≥ 11. The partial rotations determined by the ∆i’s and Λj’s consist

of the following paths with the given endpoints. Each path is again labeled for future reference.

a : PA
2 = [(p− 1)′c (p− 1)′a]

PA
4 = [1′a · · · 0′c]

PA
6 = [0′a 1′c (p− 3)′a]

b : PB
2 = [(p− 1)b 0a 2′b]

PB
4 = [(p− 3)′a · · · 0′a]

PB
6 = [(p− 1)′a 0′b 1′a]

PB
8 = [(p− 1)′b (p− 1)a 2b]

c : PC
2 = [2b · · · (p− 1)′c]

PC
4 = [2′b 0c (p− 1)′b]

PC
6 = [0′c (p− 1)b]

Proof. For the rotation around a, observe that the families {∆` | 1 ≤ ` ≤ h − 1} and

{Λ` | h + 2 ≤ ` ≤ p− 3} yield the partial rotations

Q1 = [(p− 5)′c 5′a (p− 7)′c 7′a (p− 9)′c 9′a · · · 4′c (p− 4)′a 2′c (p− 2)′a]

Q2 = [(p− 3)′c 3′a]

and the families {∆` | h+1 ≤ ` ≤ p−3} and {Λ` | 2 ≤ ` ≤ h−2} yield the partial rotations

Q3 = [(p− 4)′c 4′a (p− 6)′c 6′a (p− 8)′c 8′a · · · (p− 7)′a 5′c (p− 5)′a 3′c]

Q4 = [(p− 2)′c 2′a].

By considering the remaining 3-cycles – namely ∆0, ∆h, ∆p−2, ∆p−1, Λ0, Λ1, Λh−1, Λh,

Λh+1, Λp−2 and Λp−1, where h = p−1
2

– we learn that the partial rotations around a are the
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following.

PA
2 = [(p− 1)′c (p− 1)′a]

PA
4 = [1′a (p− 3)′c] Q2 [3′a (p− 5)′c] Q1 [(p− 2)′a (p− 2)′c] Q4 [2′a (p− 4)′c] Q3 [3′c (p− 1)a 0c 0a 0′c]

PA
6 = [0′a 1′c (p− 3)′a]

For the rotation around b, observe that the families {∆` | 1 ≤ ` ≤ h−1} and {Λ` | h+2 ≤
` ≤ p− 3} yield the partial rotations

R1 = [3′a 1′b 5′a 3′b 7′a 5′b · · · (p− 6)′a (p− 8)′b (p− 4)′a (p− 6)′b]

R2 = [(p− 2)′a (p− 4)′b]

and the families {∆` | h + 1 ≤ ` ≤ p− 3} and {Λ` | 2 ≤ ` ≤ h− 2} yield the partial rotation

R3 = [2′a 4′b 4′a 6′b 6′a 8′b · · · (p− 7)′a (p− 5)′b (p− 5)′a (p− 3)′b].

By considering the remaining ∆ and Λ cycles, we learn that the partial rotations around b

are the following.

PB
2 = [(p− 1)b 0a 2′b]

PB
4 = [(p− 3)′a (p− 2)′b 3′a] R1 [(p− 6)′b (p− 2)′a] R2 [(p− 4)′b 2′a] R3 (p− 3)′b0

′
a]

PB
6 = [(p− 1)′a 0′b 1′a]

PB
8 = [(p− 1)′b (p− 1)a 2b]

For the rotation around c, we consider two cases. If p ≡ 1 (mod 4), then h is even.

Observe that the families {∆` | 1 ≤ ` ≤ h− 1} and {Λ` | h+2 ≤ ` ≤ p− 3} yield the partial

rotations

S1 = [(p− 4)′b 2′c (p− 8)′b 6′c (p− 12)′b 10′c · · · 5′b (p− 7)′c 1′b (p− 3)′c]

S2 = [(p− 6)′b 4′c (p− 10)′b 8′c (p− 14)′b 12′c · · · 7′b (p− 9)′c 3′b (p− 5)′c]
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and the families {∆` | h+1 ≤ ` ≤ p−3} and {Λ` | 2 ≤ ` ≤ h−2} yield the partial rotations

S3 = [(p− 3)′b 5′c (p− 7)′b 9′c (p− 11)′b 13′c · · · 10′b (p− 8)′c 6′b (p− 4)′c]

S4 = [3′c (p− 5)′b 7′c (p− 9)′b 11′c (p− 13)′b · · · 8′b (p− 6)′c 4′b (p− 2)′c].

By considering the remaining ∆ and Λ cycles, we learn that the partial rotations around c

are the following.

PC
2 = [2b 3′c] S4 [(p− 2)′c (p− 6)′b] S2 [(p− 5)′c (p− 2)′b 1′c (p− 3)′b] S3

[(p− 4)′c (p− 4)′b] S1 [(p− 3)′c 0′b (p− 1)′c]

PC
4 = [2′b 0c (p− 1)′b]

PC
6 = [0′c (p− 1)b]

On the other hand, if p ≡ 3 (mod 4), then h is odd. Observe that the families {∆` | 1 ≤
` ≤ h− 1} and {Λ` | h + 2 ≤ ` ≤ p− 3} yield the partial rotations

S1 = [(p− 4)′b 2′c (p− 8)′b 6′c (p− 12)′b 10′c · · · 7′b (p− 9)′c 3′b (p− 5)′c]

S2 = [(p− 6)′b 4′c (p− 10)′b 8′c (p− 14)′b 12′c · · · 5′b (p− 7)′c 1′b (p− 3)′c]

and the families {∆` | h+1 ≤ ` ≤ p−3} and {Λ` | 2 ≤ ` ≤ h−2} yield the partial rotations

S3 = [(p− 3)′b 5′c (p− 7)′b 9′c (p− 11)′b 13′c · · · 8′b (p− 6)′c 4′b (p− 2)′c]

S4 = [3′c (p− 5)′b 7′c (p− 9)′b 11′c (p− 13)′b · · · 10′b (p− 8)′c 6′b (p− 4)′c].

By considering the remaining ∆ and Λ cycles, we learn that the partial rotations around c

are the following.

PC
2 = [2b 3′c] S4 [(p− 4)′c (p− 4)′b] S1 [(p− 5)′c (p− 2)′b 1′c (p− 3)′b] S3

[(p− 2)′c (p− 6)′b] S2 [(p− 3)′c 0′b (p− 1)′c]

PC
4 = [2′b 0c (p− 1)′b]

PC
6 = [0′c (p− 1)b]
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By concatenating the paths representing the partial rotations given by Lemmas III.8.5

and III.8.6, we get the following cycles which, as we will see later, represent the complete

rotation graphs around the vertices a, b and c.

Lemma III.8.7. Let p ≥ 5 be prime. The following are cycles of length 4p.

Ra : (PA
1 PA

2 PA
3 PA

4 PA
5 PA

6 )

Rb : (PB
1 PB

2 PB
3 PB

4 PB
5 PB

6 PB
7 PB

8 )

Rc : (PC
1 PC

2 PC
3 PC

4 PC
5 PC

6 )

Proof. By concatenating the corresponding paths, it is clear that Ra is a closed walk. More-

over, each of the 2p edges from a to b and each of the 2p edges from c to a appears either

exactly once in the interior of one of the partial rotation paths, or appears as the endpoint

of two different partial rotation paths. Therefore each edge appears exactly once in Ra, so

Ra is a cycle of length 4p. Similar arguments apply for both Rb and Rc.

We are now able to construct hamilton cycle embeddings of Kn,n,n whenever n = 2p for

a prime p.

Theorem III.8.8. Let p ≥ 11 be prime. The embedding given by the faces Ω, ∆0, ..., ∆p−1,

Λ0, ..., Λp−1 is an orientable voltage graph embedding whose derived embedding is an orientable

hamilton cycle embedding of K2p,2p,2p.

Proof. From the way the faces Ω, ∆0, ..., ∆p−1, Λ0, ..., Λp−1 were constructed, we know each

edge is used once as e and once as e; thus, the embedding given by these faces is orientable.

Moreover, the rotation graphs that we obtain from these faces are given by Lemma III.8.7.

Since Ra, Rb and Rc consist of a single cycle, our voltage graph is embedded in some orientable

surface. It follows that the derived embedding is an orientable embedding of K2p,2p,2p; thus, it

remains to show that the boundary of every face is a hamilton cycle. From Lemma III.8.4 we
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Cycle (ia jb kc) i j k Net Voltage Cycle (ic jb ka) i j k Net Voltage

p = 5

∆0 0 2′ 0 2′ Λ0 0 4′ 4 3′

∆1 3′ 1′ 2′ 1′ Λ1 1′ 1′ 0′ 2′

∆2 4 2 3′ 4′ Λ2 3′ 3′ 3′ 4′

∆3 2′ 3′ 1′ 1′ Λ3 0′ 4 0 4′

∆4 4′ 0′ 4′ 3′ Λ4 2′ 0′ 1′ 3′

p = 7

∆0 0 2′ 0 2′ Λ0 0 6′ 6 5′

∆1 3′ 1′ 4′ 1′ Λ1 1′ 4′ 0′ 5′

∆2 5′ 3′ 2′ 3′ Λ2 3′ 3′ 2′ 1′

∆3 6 2 3′ 4′ Λ3 5′ 1′ 5′ 4′

∆4 2′ 4′ 5′ 4′ Λ4 0′ 6 0 6′

∆5 4′ 5′ 1′ 3′ Λ5 2′ 5′ 3′ 3′

∆6 6′ 0′ 6′ 5′ Λ6 4′ 0′ 1′ 5′

Table III.3: Required 3-cycles for p = 5 and 7.

know Ω yields 2p hamilton cycles in the derived embedding. To show that all of the 3-cycles

yield hamilton cycles, we use the isomorphism from Zp×Z2 to Z2p induced by mapping the

generator 1′ to 1. Under this mapping, Lemma III.8.1 implies that it suffices to show |∆i|
and |Λi| are of order 2p in the group Zp ×Z2. This is true as long as |∆i| = x′ and |Λi| = y′

for some x, y ∈ Zp \ {0}. From Tables III.1 and III.2 this condition is satisfied, so all of the

3-cycles yield hamilton cycles as well. Thus, the derived embedding from the voltage graph

given by Ω, ∆0, ..., ∆p−1, Λ0, ..., Λp−1 is a hamilton cycle embedding of K2p,2p,2p.

The following lemma covers the remaining cases p = 5 and p = 7.

Lemma III.8.9. For p = 5 or 7, there exists a voltage graph such that the derived embedding

is an orientable hamilton cycle embedding of K2p,2p,2p.

Proof. The construction uses Ω together with the 3-cycles shown in Table III.3. The resulting

rotations for p = 5 are

a : (0a 0′c 0′a 1′c 2′a 3c 1a 1c 2a 4c 3a 2c 4′c 4′a 1′a 2′c 3′a 3′c 4a 0c)

b : (0b 1a 4b 0a 2′b 2′a 3′b 3′a 1′b 0′a 3b 4′a 0′b 1′a 4′b 4a 2b 3a 1b 2a)

c : (0c 4′b 0′c 4b 1c 1b 2c 3b 3c 0b 4c 2b 3′c 3′b 1′c 1′b 2′c 0′b 4′c 2′b)
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and for p = 7 are

a : (0a 0′c 0′a 1′c 4′a 5c 1a 3c 2a 1c 3a 6c 4a 4c 5a 2c 6′c 6′a 1′a 4′c 3′a 2′c 5′a 5′c 2′a 3′c 6a 0c)

b : (0b 1a 4b 5a 1b 2a 5b 6′a 0′b 1′a 6′b 6a 2b 3a 6b 0a 2′b 4′a 5′b 3′a 1′b 5′a 3′b 2′a 4′b 0′a 3b 4a)

c : (0c 6′b 0′c 6b 6c 3b 5c 0b 4c 4b 3c 1b 2c 5b 1c 2b 3′c 3′b 2′c 5′b 1′c 4′b 5′c 1′b 4′c 0′b 6′c 2′b).

III.9 Orientable results

Combining the latin square construction with the voltage graph construction, we can prove

Theorem I.4.2, which we restate.

Theorem I.4.2. There exists an orientable hamilton cycle embedding of Kn,n,n for all n ≥ 1,

n 6= 2. Moreover, at least one face in this embedding is bounded by an ABC cycle.

Proof. If n is odd, then the desired embedding is given by Theorem III.2.4. If n ≡ 0 or 4

(mod 8) with n ≥ 8, apply Theorem III.7.2 or III.7.3, respectively, to get a ce-hamiltonian

latin square that has a 1-partition. The desired embedding follows from Corollary III.2.3. If

n = 2m for some nonprime odd m, m > 1, then we can write n = 2pq, where p and q are

odd, q is prime, and p ≥ q ≥ 3. Apply Theorem III.6.3 to get a ce-hamiltonian latin square

that has a 1-partition. Again, the desired embedding follows from Corollary III.2.3. If n = 4

or 6, then the desired embedding is given by Lemma III.8.2. If n = 10 or 14, the desired

embedding is given by Lemma III.8.9. Finally, if n = 2p for a prime p ≥ 11, the desired

embedding is given by Theorem III.8.8.
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CHAPTER IV

APPLICATIONS TO GENUS CALCULATIONS

IV.1 Genus of some joins of edgeless graphs with complete graphs

This section is an extension of the work of Ellingham and Stephens in [13]. We start by

presenting two useful lemmas, which are Lemma 4.1 and Lemma 2.2, respectively, in [13].

We note here that Lemma IV.1.2 was proved using the diamond sum technique described

briefly in Section I.2.4.

Lemma IV.1.1. Let G be an m-regular simple graph on n vertices, with m ≥ 2. The

following are equivalent.

(1) G has an orientable hamilton cycle embedding.

(2) Km + G has an orientable triangulation.

(3) g(Km + G) = g(Km,n) and 4 | (m− 2)(n− 2).

Lemma IV.1.2. Let n ≥ 1 and m ≥ n − 1 be integers. If g(Km + Kn) = g(Km,n) and

4 | (m− 2)(n− 2), then g(Km′ + Kn) = g(Km′,n) for all m′ ≥ m.

Using the first lemma, we can determine the genus of Kn−1+Kn from orientable hamilton

cycle embeddings of Kn. Using the second lemma, we can extend this result to Km + Kn

for all m ≥ n− 1. To that end, we present a recursive construction for orientable hamilton

cycle embeddings of complete graphs. Our construction is a slight extension of the following

result.

Theorem IV.1.3 (Ellingham and Stephens, Theorem 4.3 [13]). Suppose n ≡ 2 (mod

4) and n ≥ 6. If Kn has an orientable hamilton cycle embedding, then K2n−2 also has an

orientable hamilton cycle embedding.
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Figure IV.1: Rotations and faces for hamilton cycle embedding of Kn.

Instead of a recursive construction that roughly doubles the number of vertices, we will

take an existing orientable hamilton cycle embedding of Kn and produce an orientable hamil-

ton cycle embedding of K3n−3.

Theorem IV.1.4. Suppose n ≥ 4 and Kn has an orientable hamilton cycle embedding. Then

K3n−3 also has an orientable hamilton cycle embedding.

Proof. Suppose Kn has an orientable hamilton cycle embedding, and provide each vertex

with a clockwise rotation. This induces a counterclockwise direction on the boundary of

each face.

Take one copy of the embedding, which we will denote by Ga, and label any vertex a∞.

Label the remaining vertices a0, a1, ..., an−2 in clockwise order as they appear in the rotation

around a∞. For each i ∈ Zn−1, let Ai denote the face that follows the path aia∞ai+1 as it

passes through a∞. Let G′
a = Ga − a∞ be the graph on vertex set Va = {ai | i ∈ Zn−1}

obtained by removing a∞ and all of its incident edges from Ga. Each face Ai now corresponds

to a directed path from ai+1 to ai in G′
a. This rotation scheme and the resulting paths can

be seen in Figure IV.1. We take another copy of the embedding of Kn and construct the

graph G′
b on vertex set Vb = {bi | i ∈ Zn−1} in an identical manner, replacing each ai and

Ai with bi and Bi, respectively. We take a third copy of the embedding of Kn and construct

the graph G′
c on vertex set Vc = {ci | i ∈ Zn−1} in a similar manner, only the vertices

are labeled c0, cn−2, cn−3, ..., c2, c1 in clockwise order as they appear in the rotation around
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c∞. The resulting C ′
i is now a directed path from ci to ci+1. This rotation scheme and the

resulting paths can also be seen in Figure IV.1.

Let F∞ be the directed cycle (cn−2bn−2an−2cn−3bn−3an−3 · · · c1b1a1c0b0a0), and let F∞ be

the underlying undirected cycle. For each i ∈ Zn−1, let Fi be the directed cycle A′
i ∪B′

i−1 ∪
C ′

i−1∪{aibi, bi−1ci−1, ciai+1}. These new directed edges aibi, bi−1ci−1 and ciai+1 are the reverse

of edges in F∞. Therefore, the collection F = {Fi | i ∈ Zn−1}∪{F∞} covers every edge of the

graph H1 = G′
a ∪G′

b ∪G′
c ∪F∞ (on vertex set Va ∪ Vb ∪ Vc) once in each direction. It is clear

from construction that every face is actually a hamilton cycle in H1; we claim the collection

F determines an orientable hamilton cycle embedding of H1. To do so, it suffices to show

that the rotation around each vertex is a single cycle. We will prove this for an arbitrary

vertex ai. Assume the rotation around ai in Ga is given by the cycle (a∞aπ(1)aπ(2) · · · aπ(n−2)).

This rotation stays the same except for the subsequence (· · · aπ(n−2)a∞aπ(1) · · · ). Instead of

the paths aπ(n−2)aia∞ and a∞aiaπ(1) appearing in the cycles Ai and Ai−1, respectively, we

have the paths aπ(n−2)aibi in Fi, biaici−1 in F∞, and ci−1aiaπ(1) in Fi−1. Thus, the rotation

around ai in H1 is given by (bici−1aπ(1)aπ(2) · · · aπ(n−2)), which is a single cycle. An analogous

argument works for the rotations around bi and ci, so our claim is correct.

By Theorem I.4.2, there exists a hamilton cycle embedding of H2 = Kn−1,n−1,n−1 with at

least one ABC face, call it D. We can label the vertices of H2 so that D is the reverse of

F∞; this forces Va, Vb, and Vc to be the tripartition of H2.

Delete the interior of the face F∞ in H1 to get an embedding with boundary curve F∞.

Also delete the interior of the face D in H2 to get another embedding with boundary curve

F∞. The two embeddings share no edges except those in F∞, so we can glue them together

by identifying their boundary curves. The result is an orientable embedding of H1∪H2 such

that every face is a hamilton cycle on Va∪Vb∪Vc. Since Ga, Gb and Gc are complete graphs

on Va, Vb and Vc, respectively, and H2 is the complete tripartite graph with independent sets

Va, Vb and Vc, H1 ∪H2 is simply the complete graph on vertex set Va ∪ Vb ∪ Vc. Therefore,

we have an orientable hamilton cycle embedding of K3n−3.
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We apply Theorem IV.1.4 to a family of embeddings obtained in [13]. The following

result is actually a restatement of Theorem 4.4 in that paper.

Theorem IV.1.5 (Ellingham and Stephens [13]). If n = 2p + 2 for some p ≥ 3, then

there exists an orientable hamilton cycle embedding of Kn.

The following theorem presents the first infinite family of values of n congruent to 3

modulo 4 for which the genus of Km + Kn is known for all m ≥ n − 1. Recall that the

condition m ≥ n− 1 allows us to view the embedding of Km + Kn as an embedding of Km,n

with some edges added to form a complete graph on the partite set of size n.

Theorem IV.1.6. If n = 3(2p + 1) for some p ≥ 3, then g(Km + Kn) = g(Km,n) =
⌈

(m−2)(n−2)
4

⌉
for all m ≥ n− 1.

Proof. We apply Theorem IV.1.4 to an orientable hamilton cycle embedding of K2p+2 guar-

anteed by Theorem IV.1.5 to obtain an orientable hamilton cycle embedding of Kn. Applying

Lemmas IV.1.1 and IV.1.2 yields the desired result.

One advantage of the tripling construction given by Theorem IV.1.4 over the doubling

construction in [13] is that it can be applied to hamilton cycle embeddings of Kn for both

n ≡ 2 (mod 4) and n ≡ 3 (mod 4). By a repeated application of this construction to the

hamilton cycle embeddings obtained in Theorem IV.1.6, we obtain Theorem I.4.3, which

holds for an infinite family that includes values in both modulo classes.

Theorem I.4.3. If n = 3q
(
2p + 1

2

)
+ 3

2
for some p ≥ 3 and q ≥ 0, then g(Km + Kn) =

g(Km,n) =
⌈

(m−2)(n−2)
4

⌉
for all m ≥ n− 1.

Proof. If q = 0, then this is equivalent to Theorem IV.1.5. Now for q ≥ 1 and a fixed p, take

the orientable hamilton cycle embedding of K3(2p+1) found in the proof of Theorem IV.1.6.

The result is obtained by induction on q using Theorem IV.1.4 together with Lemmas IV.1.1

and IV.1.2.

As mentioned in Section I.4, this easily extends to the following result.
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Corollary I.4.4. Let n = 3q
(
2p + 1

2

)
+ 3

2
for some p ≥ 3 and q ≥ 0. If G is any n-vertex

simple graph, then g(Km + G) = g(Km,n) =
⌈

(m−2)(n−2)
4

⌉
for all m ≥ n− 1.

We can further extend these results using the following lemma of [13].

Lemma IV.1.7. If g(Km+Kn) = g(Km,n) for all m ≥ n−1, then g(Km′+Kn−1) = Km′,n−1

for all m′ ≥ n.

Corollary IV.1.8. Let n = 3q
(
2p + 1

2

)
+ 1

2
for some p ≥ 3 and q ≥ 0. If G is any n-vertex

simple graph, then g(Km + G) = g(Km,n) =
⌈

(m−2)(n−2)
4

⌉
for all m ≥ n + 1.

All of the results in Theorems IV.1.5, IV.1.6 and I.4.3 and Corollaries I.4.4 and IV.1.8 were

obtained by repeated applications of the doubling and tripling constructions to an orientable

hamilton cycle embedding of K10,10,10. Finding more embeddings to serve as starting points

would greatly increase the usefulness of these recursive constructions.

IV.2 Nonorientable genus of some complete quadripartite graphs

Here we develop the connection between hamilton cycle embeddings of Kn,n,n and triangu-

lations of K2n,n,n,n and utilize the covering triangulations from Section I.2.5. The following

result is the nonorientable counterpart to Lemma 4.1 in [13].

Lemma IV.2.1. The following are equivalent.

(1) There exists a nonorientable hamilton cycle embedding of G with p faces.

(2) There exists a nonorientable triangulation of Kp + G.

Moreover, if either (1) or (2) holds, then G is p-regular.

Lemma IV.2.1 leads to a proof of Theorem I.4.5, which we restate; here we use the

convention that the nonorientable genus of a planar graph is zero.

Theorem I.4.5. For all n ≥ 1, g̃(K2n,n,n,n) = g̃(K2n,3n) = (n− 1)(3n− 2).
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Proof. K2,1,1,1 is planar, so we will assume n ≥ 2. We know from [39] that g̃(K2n,3n) =

(n − 1)(3n − 2). Since K2n,3n ⊂ K2n,n,n,n, we have g̃(K2n,n,n,n) ≥ (n − 1)(3n − 2). From

Euler’s formula, an embedding that achieves this genus must be a triangulation, so it will

suffice to find a nonorientable triangulation of K2n,n,n,n.

If n is odd, write n = 3p7qm, where 3, 7 - m. If m 6= 1, then Lemmas II.3.1 and

II.3.2 imply the existence of a nonorientable hamilton cycle embedding of Km,m,m. Lemma

IV.2.1 yields a triangulation of K2m,m,m,m. Applying Corollary I.2.12 provides a triangulation

of K2(3pm),3pm,3pm,3pm, and applying Corollary I.2.10 gives us the desired triangulation of

K2n,n,n,n. If m = 1, then we use a nonorientable hamilton cycle embedding of either K3,3,3 or

K7,7,7 from Section II.2 as our starting point before applying Lemma IV.2.1 and the results

of Section I.2.5.

If n is even, write n = 2p2m, where m is odd. By Lemma II.3.3 there exists a nonori-

entable hamilton cycle embedding of K2m,2m,2m. Lemma IV.2.1 yields a triangulation of

K4m,2m,2m,2m, and applying Corollary I.2.6 gives us the desired triangulation of K2n,n,n,n.

This completes the proof.

The construction of the necessary triangulations for n ≥ 2 in the proof of Theorem

I.4.5 completes the proof of Theorem I.4.1. Unfortunately, the hamilton cycle faces in the

embeddings of Kn,n,n obtained from Bouchet’s covering triangulations of K2n,n,n,n are not,

in general, ABC cycles.

The following extension of Theorem I.4.5 is the application of the diamond sum technique

alluded to in Section I.2.4.

Corollary I.4.6. For all n ≥ 1 and all t ≥ 2n, g̃(Kt,n,n,n) = g̃(Kt,3n) =
⌈

(t−2)(3n−2)
2

⌉
.

Proof. We know that Kt,3n ⊆ Kt,n,n,n, and from [39] we know g̃(Kt,3n) =
⌈

(t−2)(3n−2)
2

⌉
,

so g̃(Kt,n,n,n) ≥
⌈

(t−2)(3n−2)
2

⌉
. We now apply the diamond sum construction to nonori-

entable minimum genus embeddings of K2n,n,n,n and Kt−2n+2,3n. By Theorem I.4.5 we know

g̃(K2n,n,n,n) = (n−1)(3n−2), and again by [39] we know g̃(Kt−2n+2,3n) =
⌈

(t−2n)(3n−2)
2

⌉
. Via
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the diamond sum construction, we learn that g̃(Kt,n,n,n) ≤ (n− 1)(3n− 2)+
⌈

(t−2n)(3n−2)
2

⌉
=

⌈
(t−2)(3n−2)

2

⌉
, and the result follows.

Remark IV.2.2. Corollary I.4.6 implies that for any graph G satisfying K3n ⊆ G ⊆ Kn,n,n

and for all t ≥ 2n, the nonorientable genus of Kt + G is the same as the nonorientable genus

of Kt,3n. In other words, g̃(Kt + G) =
⌈

(t−2)(3n−2)
2

⌉
. Moreover, in the special case t = 2n, we

also get g̃(G + H) = (n − 1)(3n − 2) for graphs G and H satisfying K3n ⊆ G ⊆ K2n,n and

K2n ⊆ H ⊆ Kn,n.

IV.3 Orientable genus of some complete quadripartite graphs

We again use the connection between hamilton cycle embeddings of Kn,n,n and triangulations

of K2n,n,n,n to determine the orientable genus of some quadripartite graphs. The following

result is a slight restatement of Lemma 4.1 in [13].

Lemma IV.3.1. The following are equivalent.

(1) There exists an orientable hamilton cycle embedding of G with p faces.

(2) There exists an orientable triangulation of Kp + G.

Moreover, if either (1) or (2) holds, then G is p-regular.

Lemma IV.3.1 leads to a proof of Theorem I.4.7, which we restate.

Theorem I.4.7. For all n 6= 2, g(K2n,n,n,n) = g(K2n,3n) =
⌈

(n−1)(3n−2)
2

⌉
.

Proof. We know from [38] that g(K2n,3n) =
⌈

(n−1)(3n−2)
2

⌉
. Since K2n,3n ⊂ K2n,n,n,n, we have

g(K2n,n,n,n) ≥
⌈

(n−1)(3n−2)
2

⌉
. From Euler’s formula, an embedding that achieves this genus

must be a triangulation, so it will suffice to find an orientable triangulation of K2n,n,n,n. By

Theorem I.4.2 there exists an orientable hamilton cycle embedding of Kn,n,n, and the desired

triangulation follows from Lemma IV.3.1.
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Figure IV.2: Voltage graphs for embeddings Ψ1 and Ψ3.

We would like to extend this theorem using the diamond sum in a manner similar to

our extension of Theorem I.4.5 in the previous section. Before we can do that, however,

we must address the case when n = 2. Because there is no orientable hamilton cycle

embedding of K2,2,2, no triangulation of K4,2,2,2 exists either; thus, contrary to expectations,

g(K4,2,2,2) >
⌈

(2−1)(6−2)
2

⌉
= 2. To perform the diamond sum operation, we need to show that

g(K5,2,2,2) =
⌈

(5−2)(6−2)
4

⌉
= 3.

Let Ψ1 : K3,3 ↪→ S1 be the embedding of K3,3 with three hamilton cycle faces C0, C1 and

C2 that is derived from the voltage graph G1 with voltage group Z3 that is shown in Figure

IV.2. By placing a new vertex ci in the center of each hamilton cycle face Ci and placing

an edge between ci and each vertex in Ci in the natural way, for i ∈ {0, 1, 2}, we obtain a

triangulation Ψ2 : K3,3,3 ↪→ S1. We can assume without loss of generality that the rotation

graph around a0 is given by the cycle (b0c0b1c1b2c2).

Now let Ψ3 : K4,4 ↪→ S2 be the embedding of K4,4 with two hamilton cycle faces F ′
0

and F ′
1 (derived from F0 and F1 in Figure IV.2, respectively) and four 4-cycle faces that is

derived from the voltage graph G2 with voltage group Z4 that is shown in Figure IV.2. By

placing a new vertex fi in the center of each hamilton cycle face F ′
i and placing an edge

between fi and each vertex in F ′
i in the natural way, for i ∈ {0, 1}, we obtain an embedding

Ψ4 : K4,4,2 ↪→ S2. The rotation graph around d0 is given by the cycle (e0f0e1e3f1e2).

We now form the diamond sum of Ψ2 and Ψ4 by removing the vertex a0 and its neigh-
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Figure IV.3: Graph K that arises from diamond sum operation.

borhood from Ψ2, removing the vertex d0 and its neighborhood from Ψ4, and identifying

the vertices around the boundaries of the holes as shown in Figure IV.3. Doing so yields

an embedding K5 + H ↪→ S3, where V (K5) = {a1, a2, d1, d2, d3} and H is the graph shown

in Figure IV.3. Note that H ∼= K2,2,1,1; thus, we have an embedding of K5,2,2,1,1 in the ori-

entable surface S3. Since K5,6 ⊂ K5,2,2,2 ⊂ K5,2,2,1,1, we know 3 = g(K5,6) ≤ g(K5,2,2,2) ≤ 3,

as required.

We are now able to extend Theorem I.4.7 using the application of the diamond sum

technique alluded to in Section I.2.4.

Corollary I.4.8. For all n ≥ 1 and all t ≥ 2n, except (n, t) = (2, 4), g(Kt,n,n,n) = g(Kt,3n) =
⌈

(t−2)(3n−2)
4

⌉
. Also, g(K4,2,2,2) = 3.

Proof. We know that Kt,3n ⊆ Kt,n,n,n, and from [38] we know g(Kt,3n) =
⌈

(t−2)(3n−2)
4

⌉
,

so g(Kt,n,n,n) ≥
⌈

(t−2)(3n−2)
4

⌉
. If n 6= 2, we apply the diamond sum construction to ori-

entable minimum genus embeddings of K2n,n,n,n and Kt−2n+2,3n. By Theorem I.4.7 we know

g(K2n,n,n,n) =
⌈

(n−1)(3n−2)
2

⌉
, and again by [38] we know g(Kt−2n+2,3n) =

⌈
(t−2n)(3n−2)

4

⌉
. Via

the diamond sum construction, we learn that g(Kt,n,n,n) ≤
⌈

(n−1)(3n−2)
2

⌉
+

⌈
(t−2n)(3n−2)

4

⌉
=

⌈
(t−2)(3n−2)

4

⌉
, and the result follows. If n = 2, we apply the diamond sum construction

to orientable minimum genus embeddings of K5,2,2,2 and Kt−3,6. As mentioned before,

g(K4,2,2,2) > 2; because K4,2,2,2 ⊂ K5,2,2,2, we know g(K4,2,2,2) ≤ g(K5,2,2,2) = 3 as well,

so g(K4,2,2,2) = 3.
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Remark IV.3.2. Corollary I.4.8 implies that for all n ≥ 1 and all t ≥ 2n, except (n, t) = (2, 4),

and for any graph G satisfying K3n ⊆ G ⊆ Kn,n,n, the genus of Kt + G is the same as the

genus of Kt,3n. In other words, g(Kt + G) =
⌈

(t−2)(3n−2)
4

⌉
. If n = 2 and K6 ⊆ G ⊆ K2,2,2,

then g(K4 + G) ∈ {2, 3}. Moreover, in the special case t = 2n and n 6= 2, we also get

g(G + H) =
⌈

(n−1)(3n−2)
2

⌉
for graphs G and H satisfying K3n ⊆ G ⊆ K2n,n and K2n ⊆ H ⊆

Kn,n.
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CHAPTER V

FUTURE RESEARCH

The topics in this thesis open the door to several future research endeavors. While

progress was made on some difficult genus problems, there are still open cases to consider.

Several of the concepts for latin squares introduced in this paper can be used to generalize

some known results. Moreover, the constructions presented in these pages are often very

flexible and could potentially be applied to solve other problems.

V.1 Genus of join graphs

The genus of the join graph Km + G, where |V (G)| = n and m ≥ n − 1, has only been

determined for a few infinite, yet sparse, families of n. If n ≡ 2 or 3 (mod 4), then this

problem is equivalent to constructing orientable hamilton cycle embeddings of the complete

graph Kn. The tripling construction given in Chapter IV can be applied to any hamilton

cycle embedding of Kn. If we were to find more families of embeddings to serve as building

blocks, this would greatly enhance the power of this construction. Of the 12 residual classes

that need to be resolved modulo 24, the doubling and tripling constructions imply only 6 of

these are needed, as shown in the following result.

Proposition V.1.1. Suppose there exists an orientable hamilton cycle embedding of K15

and of Kn for all n ≥ 11 such that n ≡ 7, 11, 14, 19, 22 or 23 (mod 24). Then there exists an

orientable hamilton cycle embedding of Kn for all n ≡ 2 or 3 (mod 4), n 6∈ {2, 6, 7}.

Proof. There is trivially no such embedding when n = 2, and Jungerman [30] showed that

there are no orientable hamilton cycle embeddings of K6 or K7. We show how to cover the

remaining residual classes, proceeding by induction on n. The graph K3 has an obvious

hamilton cycle embedding in the sphere, and we know such an embedding exists for K10

from Theorem IV.1.5, so the proposition holds for n ≤ 10.
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Assume the proposition holds for all n′ < n, where n ≡ 2 or 3 (mod 4) and n ≥ 11.

If n ≡ 7, 11, 14, 19, 22 or 23 (mod 24), then an orientable hamilton cycle embedding of Kn

exists by assumption. If n ≡ 2, 3, 6, 10, 15 or 18 (mod 24), then either n ≡ 2 (mod 8), or

n ≡ 3 or 6 (mod 12).

Suppose first that n ≡ 2 (mod 8), so n ≥ 18. Then n = 8p + 2 = 2(4p + 2) − 2, where

4p + 2 ≥ 10. By induction K4p+2 has the required embedding, so by Theorem IV.1.3 Kn has

the required embedding as well.

Suppose now that n ≡ 3 (mod 12). The required embedding exists for n = 15 by

assumption, so we may suppose that n ≥ 27. Then n = 12p + 3 = 3(4p + 2) − 3, where

4p + 2 ≥ 10. By induction K4p+2 has the required embedding, so by Theorem IV.1.4 Kn has

the required embedding as well.

Finally, suppose that n ≡ 6 (mod 12). Since n = 18 is covered by the case of n ≡ 2 (mod

8), we may assume that n ≥ 30. Then n = 12p + 6 = 3(4p + 3) − 3, where 4p + 3 ≥ 11.

By induction K4p+3 has the required embedding, so by Theorem IV.1.4 Kn has the required

embedding as well, and the proof is complete.

Therefore, we will seek alternative methods for building orientable hamilton cycle em-

beddings of complete graphs for the values specified in Proposition V.1.1. Along with new

construction methods, a better understanding of applications of the doubling and tripling

construction is desired. From any value n for which an orientable hamilton cycle embedding

of Kn is known to exist, we can construct an infinite set of values T (n) such that an orientable

hamilton cycle embedding of Km exists for all m ∈ T (n). The set is constructed recursively

as follows: for any value m ∈ T (n), if m ≡ 2 (mod 4), then 2m − 2 and 3m − 3 are also in

T (n) by virtue of the doubling construction given in [13] and the tripling construction given

by Theorem IV.1.4, respectively; if m ≡ 3 (mod 4), then only 3m− 3 is also in T (n). A tree

depicting several values in T (10) and how they were obtained is shown in Figure V.1. An

edge labeled by d represents a link formed by virtue of the doubling construction, while an

edge labeled t represents a link formed by virtue of the tripling construction.
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Figure V.1: A tree showing m ∈ T (10) with m ≤ 500.

We want to determine how many of the possible values m for which an orientable hamilton

cycle embedding of Km could possibly exist that are covered by a given T (n). Let X ⊂ Z,

and define the nth partial density of X to be

PD(X, n) =
|{x ∈ X | x ≤ n}|

n

and the density of X to be

ρ(X) = lim
n→∞

PD(X,n).

From Figure V.1 we learn that

PD(T (10), 100) = 8
100

= 0.080

PD(T (10), 200) = 12
200

= 0.060

PD(T (10), 300) = 16
300

≈ 0.053

PD(T (10), 400) = 18
400

= 0.045

PD(T (10), 500) = 20
500

= 0.040.
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We would like to find an n such that ρ(T (n)) > 0 for any n, but evidence suggests this is

not possible.

Conjecture V.1.2. ρ(T (n)) = 0 for every integer n.

If Conjecture V.1.2 is true, then we would like to find a set N of zero density such that

ρ

( ⋃
n∈N

T (n)

)
> 0.

V.2 Properties of latin squares

With the generalization of Euler’s q-step type latin square that was given in Section I.3, we

would like to determine conditions on L such that generalizations of Theorem I.3.6 or I.3.7

hold true for a q-step type latin square based on L. In particular neither theorem is true for

all L, because the square K6 ¡ Z3 constructed in Lemma III.6.2 has m = 3 and n = 6 yet

has a 1-partition.

While we were able to obtain orientable hamilton cycle embeddings of Kn,n,n for all

possible values of n, some of these were obtained using voltage graph constructions. For the

case n = 10, the following ce-hamiltonian latin square with a 1-partition yields an O2HC-

embedding of K10,10,10.

Example V.2.1. The following latin square L, found by a computer search on data collected

by McKay [34] and manipulated using the sum composition method of Hedayat and Seiden

[28], meets the conditions of Corollary III.2.3 with p = 1 and provides an orientable hamilton
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cycle embedding of K10,10,10; L′ provides the 1-partition.

L =




4 2 7 5 3 6 9 0 8 1

3 4 6 0 8 9 7 1 2 5

6 9 4 2 1 7 3 5 0 8

9 8 2 3 7 1 4 6 5 0

1 7 0 4 9 5 2 8 6 3

8 5 9 7 4 0 1 2 3 6

7 6 8 9 5 4 0 3 1 2

2 3 1 6 0 8 5 4 7 9

0 1 5 8 2 3 6 7 9 4

5 0 3 1 6 2 8 9 4 7




, L′ =




0 1 2 3 4 5 6 7 8 9

5 6 1 4 0 3 8 2 9 7

4 8 9 5 1 7 2 6 0 3

7 5 6 1 9 4 3 0 2 8

8 0 5 7 2 1 4 9 3 6

1 4 0 6 8 9 5 3 7 2

3 7 4 9 5 2 1 8 6 0

2 9 7 8 3 6 0 1 4 5

6 3 8 2 7 0 9 5 1 4

9 2 3 0 6 8 7 4 5 1




.

We believe that such a latin square exists for all n = 2p, where p ≥ 5 is prime, and

we plan to conduct a further analysis of the sum composition method to see if it can be

extended to all such values.

Conjecture V.2.2. If n = 2p for a prime p ≥ 5, then there exists a ce-hamiltonian latin

square of order n with a 1-partition.

V.3 Enumeration results

A promising research direction offered by the results of this thesis is the enumeration of some

special structures. In particular, the following property of ce-hamiltonian latin squares could

prove to be very useful.

Proposition V.3.1. If L is ce-hamiltonian, then L is conjugate to a square Lc that is

cr-hamiltonian.
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Proof. If L is ce-hamiltonian, then the induced pair graph GP for

P` = {(C(L, j, `), C(L, j, `− 1))|j ∈ Zn} for all ` ∈ Zn

is a hamilton cycle. Put another way, the permutation given by

π` =




C(L, 0, `) C(L, 1, `) · · · C(L, n− 1, `)

C(L, 0, `− 1) C(L, 1, `− 1) · · · C(L, n− 1, `− 1)




consists of a single cycle of length n for each ` ∈ Zn. We form the conjugate square Lc by

permuting the roles of the rows, columns and entries in L. Specifically, we map the row i in

L to the column i in Lc, the column j in L to the entry j in Lc, and the entry k in L to the

row k in Lc. Applying this map, we obtain

Lc =




C(L, 0, 0) C(L, 1, 0) · · · C(L, n− 1, 0)

C(L, 0, 1) C(L, 1, 1) · · · C(L, n− 1, 1)

...
...

. . .
...

C(L, 0, n− 1) C(L, 1, n− 1) · · · C(L, n− 1, n− 1)




.

It is clear that any two consecutive rows i and i + 1 yield the permutation π−1
i+1, which is a

single cycle of length n. Thus, the square Lc is cr-hamiltonian.

Theorem I.3.12 tells us that any cr-hamiltonian square has a biembedding with a copy of

itself. Since the flexibility of the latin square construction in Chapter III allows us to build

many ce-hamiltonian latin squares (thus, cr-hamiltonian latin squares), we may obtain many

nonisomorphic triangulations of complete tripartite graphs. Using this connection, we might

be able to extend the results of Grannell, Griggs and Knor [17, 24] concerning lower bounds

on the number of nonisomorphic orientable triangulations of Kn,n,n and Kn. Moreover, the

step product construction may also allow for the creation of many nonisomorphic pairs of

orthogonal latin squares, which would improve the known lower bound on the number of
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such squares of each order. Enumeration attempts could also be made in the nonorientable

case using the slope sequence construction.
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APPENDIX A

EXAMPLE OF THEOREM III.7.3

In this appendix, we construct the latin square J12 and show how we obtain the 1-

partition guaranteed by Theorem III.7.3. We will address each 2-plex in Z6 and the resulting

transversals in J12 separately. Recall that X is the 6 × 6 matrix of all 0’s except that the

final row is given by

1 0 1 0 1 0,

and J12 is the step product

J12 = Z6 ¡X Z2 =




0 6 1 7 2 8 3 9 4 10 5 11

6 0 7 1 8 2 9 3 10 4 11 5

1 7 2 8 3 9 4 10 5 11 0 6

7 1 8 2 9 3 10 4 11 5 6 0

2 8 3 9 4 10 5 11 0 6 1 7

8 2 9 3 10 4 11 5 6 0 7 1

3 9 4 10 5 11 0 6 1 7 2 8

9 3 10 4 11 5 6 0 7 1 8 2

4 10 5 11 0 6 1 7 2 8 3 9

10 4 11 5 6 0 7 1 8 2 9 3

11 5 0 6 7 1 2 8 9 3 4 10

5 11 6 0 1 7 8 2 3 9 10 4




.
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We start with the 2-plex S labeled with π, τ as shown below:

S =




0 0 ,0 1 1 ,1 2 3 4 5

1 2 3 0 ,0 4 5 1 ,0 0

2 3 4 5 0 ,0 0 1 1 ,0

3 0 ,1 4 1 ,0 5 0 1 2

4 5 0 0 ,1 1 2 1 ,1 3

5 0 1 2 0 ,1 3 4 1 ,1




,

which yields the underlined transversal T0,0 in J12 marked by the superscript a below:

J12 =




0a

1a

3a

11a

5a

7a

9a

10a

6a

2a

8a

4a




.

We now give the underlined transversal T0,1 in J12 marked by the superscript b below;

note that all of the entries are obtained by shifting the a transversal across the row of its
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corresponding size-2 subsquare:

J12 =




0a 6b

7b 1a

3a 9b

11a 5b

5a 11b

7a 1b

3b 9a

10a 4b

0b 6a

8b 2a

2b 8a

10b 4a




.

The next 2-plex to consider is S + 2; the unlabeled version is shown below:

S + 2 =




0 1 2 ∗ 3 ∗ 4 5

1 ∗ 2 3 4 5 ∗ 0

2 3 ∗ 4 5 0 1 ∗

3 4 5 ∗ 0 ∗ 1 2

4 ∗ 5 0 1 2 ∗ 3

5 0 ∗ 1 2 3 4 ∗




.

The 2-plex S+2 together with π and τ yields the underlined transversals T0,0 +2 and T0,1 +2

shown below in J12 marked by the superscripts c and d, respectively. Note that c and d are
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obtained by shifting the transversals a and b, respectively, four cells to the right:

J12 =




0a 6b 2c 8d

7b 1a 9d 3c

3a 9b 5c 11d

7c 1d 11a 5b

5a 11b 1c 7d

9c 3d 7a 1b

3b 9a 5d 11c

10a 4b 6c 0d

0b 6a 2d 8c

10d 4c 8b 2a

2b 8a 4d 10c

6d 0c 10b 4a




.

The final shift of S to consider is S + 4; the unlabeled version is shown below:

S + 4 =




0 1 2 3 4 ∗ 5 ∗

1 ∗ 2 3 ∗ 4 5 0

2 3 ∗ 4 5 ∗ 0 1

3 4 5 0 1 ∗ 2 ∗

4 ∗ 5 0 ∗ 1 2 3

5 0 ∗ 1 2 ∗ 3 4




.

The 2-plex S+4 together with π and τ yields the underlined transversals T0,0 +4 and T0,1 +4

shown below in J12 marked by the superscripts e and f , respectively. Note that e and f are
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again obtained by shifting the transversals c and d, respectively, four cells to the right:

J12 =




0a 6b 2c 8d 4e 10f

7b 1a 9d 3c 11f 5e

1e 7f 3a 9b 5c 11d

7c 1d 9e 3f 11a 5b

3e 9f 5a 11b 1c 7d

9c 3d 11e 5f 7a 1b

3b 9a 5d 11c 1f 7e

10a 4b 6c 0d 8e 2f

4f 10e 0b 6a 2d 8c

10d 4c 6f 0e 8b 2a

0f 6e 2b 8a 4d 10c

6d 0c 8f 2e 10b 4a




.

So far we have found 6 transversals in J12; the remaining transversals come from shifts

of S ′. The 2-plex S ′ labeled with π, τ is shown below:

T =




0 1 0 ,0 2 1 ,1 3 4 5

1 2 3 4 0 ,0 5 0 1 ,0

2 1 ,0 3 4 5 0 0 ,0 1

3 4 0 ,1 5 1 ,0 0 1 2

4 5 0 1 0 ,1 2 3 1 ,1

5 0 ,1 0 1 2 3 1 ,1 4




,
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which yields the underlined transversal T ′
0,0 in J12 marked by the superscript g below:

J12 =




0a 6b 1g 2c 8d 4e 10f

7b 1a 2g 9d 3c 11f 5e

1e 7f 3a 9b 4g 5c 11d

7c 1d 9e 3f 11a 5b 6g

3e 9f 5a 11b 0g 1c 7d

8g 9c 3d 11e 5f 7a 1b

3b 9a 10g 5d 11c 1f 7e

10a 4b 11g 6c 0d 8e 2f

4f 10e 0b 6a 7g 2d 8c

10d 4c 6f 0e 8b 2a 3g

5g 0f 6e 2b 8a 4d 10c

6d 0c 8f 2e 9g 10b 4a




.

We now give the underlined transversal T ′
0,1 in J12 marked by the superscript h below;

note that all of the entries are obtained by shifting the g transversal across the row of its
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corresponding size-2 subsquare:

J12 =




0a 6b 1g 7h 2c 8d 4e 10f

7b 1a 8h 2g 9d 3c 11f 5e

1e 7f 3a 9b 4g 10h 5c 11d

7c 1d 9e 3f 11a 5b 6g 0h

3e 9f 5a 11b 0g 6h 1c 7d

8g 2h 9c 3d 11e 5f 7a 1b

3b 9a 4h 10g 5d 11c 1f 7e

10a 4b 11g 5h 6c 0d 8e 2f

4f 10e 0b 6a 1h 7g 2d 8c

10d 4c 6f 0e 8b 2a 9h 3g

11h 5g 0f 6e 2b 8a 4d 10c

6d 0c 8f 2e 3h 9g 10b 4a




.

The next 2-plex to consider is T + 2; the unlabeled version is shown below:

T + 2 =




0 1 2 3 ∗ 4 ∗ 5

1 2 ∗ 3 4 5 0 ∗

2 ∗ 3 4 ∗ 5 0 1

3 4 5 0 ∗ 1 ∗ 2

4 5 ∗ 0 1 2 3 ∗

5 ∗ 0 1 ∗ 2 3 4




.

The 2-plex T +2 together with π and τ yields the underlined transversals T ′
0,0 +2 and T ′

0,1 +2

shown below in J12 marked by the superscripts i and j, respectively. Note that i and j are
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obtained by shifting the transversals g and h, respectively, four cells to the right:

J12 =




0a 6b 1g 7h 2c 8d 3i 9j 4e 10f

7b 1a 8h 2g 9d 3c 10j 4i 11f 5e

1e 7f 3a 9b 4g 10h 5c 11d 0i 6j

7c 1d 8i 2j 9e 3f 11a 5b 6g 0h

2i 8j 3e 9f 5a 11b 0g 6h 1c 7d

8g 2h 9c 3d 10i 4j 11e 5f 7a 1b

3b 9a 4h 10g 5d 11c 0j 6i 1f 7e

10a 4b 11g 5h 6c 0d 7i 1j 8e 2f

4f 10e 0b 6a 1h 7g 2d 8c 3j 9i

10d 4c 11j 5i 6f 0e 8b 2a 9h 3g

11h 5g 0f 6e 7j 1i 2b 8a 4d 10c

5j 11i 6d 0c 8f 2e 3h 9g 10b 4a




.

The final 2-plex to consider is T + 4; the unlabeled version is shown below:

T + 4 =




0 ∗ 1 2 3 4 5 ∗

1 2 ∗ 3 4 ∗ 5 0

2 3 4 ∗ 5 0 ∗ 1

3 ∗ 4 5 0 1 2 ∗

4 5 ∗ 0 1 ∗ 2 3

5 0 1 ∗ 2 3 ∗ 4




.

The 2-plex T + 4 together with π and τ yields the final two underlined transversals T ′
0,0 + 4

and T ′
0,1 + 4 shown below in J12 marked by the superscripts k and `, respectively. Note that

k and ` are again obtained by shifting the transversals i and j, respectively, four cells to the
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right. The complete decomposition of J12 is given below:

J12 =




0a 6b 1g 7h 2c 8d 3i 9j 4e 10f 5k 11`

6` 0k 7b 1a 8h 2g 9d 3c 10j 4i 11f 5e

1e 7f 2k 8` 3a 9b 4g 10h 5c 11d 0i 6j

7c 1d 8i 2j 9e 3f 10k 4` 11a 5b 6g 0h

2i 8j 3e 9f 4k 10` 5a 11b 0g 6h 1c 7d

8g 2h 9c 3d 10i 4j 11e 5f 6k 0` 7a 1b

3b 9a 4h 10g 5d 11c 0j 6i 1f 7e 2` 8k

9k 3` 10a 4b 11g 5h 6c 0d 7i 1j 8e 2f

4f 10e 5` 11k 0b 6a 1h 7g 2d 8c 3j 9i

10d 4c 11j 5i 6f 0e 7` 1k 8b 2a 9h 3g

11h 5g 0f 6e 7j 1i 2b 8a 9` 3k 4d 10c

5j 11i 6d 0c 1` 7k 8f 2e 3h 9g 10b 4a




.
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