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ABSTRACT  

In the brain, serotonin (5-hydroxtryptamine, 5-HT) is synthesized in the raphe nucleus. 
Raphe serotonergic projections modulate neurotransmissions throughout the brain 
influencing mood and behavior. The serotonin transporter (SERT; SLC6A4) clears 5-HT 
from the synapse for degradation or reuse, thus regulating levels of 5-HT and limiting its 
actions on 5-HT receptors. Dysfunction in 5-HT modulation of neurotransmission is 
associated with mood and developmental disorders including anxiety, depression, and 
autism and there is genetic evidence for increased risk for depression in individuals 
possessing polymorphisms in SLC6A4 as well as genes which interact with SLC6A4. 
ITGB3 encodes integrin β3, a cell adhesion molecule which has been implicated as a 
modulator of serotonergic systems via genetic and functional interactions with SLC6A4, 
as well as in regulation of synaptic plasticity and maturation. In the brain, integrin β3 
couples to integrin αv to form a functional receptor, making integrin αvβ3 an interesting 
target for regulation of neural 5-HT systems. Immunohistochemical experiments 
revealed integrin β3 localization in serotonergic neurons, colocalized with SERT. 
Examination of genetic interactions utilizing an Itgb3-/+ x Slc6a4-/+ mouse model 
revealed reduced SERT expression, and an anxiety- and depression-like phenotype 
compared to wildtype littermates. Further experimentation of the functional interaction 
between integrin αvβ3 and SERT via pharmacological targeting of integrin αvβ3 
revealed integrin αvβ3 regulation of SERT uptake activity. These studies highlight 
integrin β3 as a potential modulator of brain 5-HT systems and subsequently 5-HT 
mediated behavioral phenotypes. 
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CHAPTER I 

 

INTRODUCTION 

 

The serotonin (5-hydroxytryptamine, 5-HT) signaling pathway modulates neurons 

and their function, and dysregulation of the 5-HT system has been implicated in anxiety, 

depression, and autism (Akimova et al, 2009; Arango et al, 2001; Cook et al, 1990; Fink 

and Gothert, 2007; Gadow et al, 2013; Hoehn-Saric et al, 2000; Leventhal et al, 1990). 

5-HT is cleared from the extracellular milieu by the Na+/Cl- dependent 5-HT transporter 

(SERT) encoded by the SLC6A4 gene (Blakely et al, 1991; Ramamoorthy et al, 1993). 

SERT is the principal target of selective 5-HT reuptake inhibitors (SSRIs), a class of 

therapeutics used extensively in the treatment of anxiety, depression, and autism 

(Anderson, 2004; Serretti and Artioli, 2004). It is probable that SSRIs work by 

preventing reuptake of 5-HT thereby prolonging its actions on 5-HT receptors. A 

diagram of the synaptic serotonergic system is depicted in Figure 1. 

In addition to its documented involvement in the treatment of psychiatric 

conditions, polymorphisms in SLC6A4 have been associated with the etiology of 

anxiety, depression and autism (Caspi et al, 2003; Cook et al, 1990; Kaufman, 2005; 

Lesch et al, 1996; Monti, 2011; Roiser et al, 2006). Many of these studies focus on 

persons who have experienced stressful life events and report a gene x environment 

interaction. Also implicated in 5-HT related mental illnesses are genes which may 

interact with SLC6A4 such as ITGB3 (Weiss et al, 2005) which encodes the integrin β3 

subunit.  



2 

 

 

 

 
 
Figure 1. Model of 5-HT synaptic actions (aan het Rot et al, 2009). 5-HT is synthesized in the 
presynaptic neuron where it is packaged into vesicles for release from the presynaptic 
terminal. Once released into the synaptic cleft 5-HT can act upon postsynaptic 5-HT 
receptors (or presynaptic 5-HT autoreceptors), which then initiate intracellular signaling 
cascades. The actions of 5-HT receptors allow 5-HT to regulate feeding behavior, sleep, 
locomotor activity, learning and memory, and mood (Arango et al, 2001; Monti, 2011; Murphy 
et al, 1999). SERT is located perisynaptically where it can transport extracellular 5-HT back 
into the presynaptic neuron for degradation or reuse, thus limiting 5-HT actions. 
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Integrins are heterodimeric, bidirectional allosteric signaling receptors formed of 

an  and  subunit (Hynes, 2002b). The integrin 3 subunit is expressed in both 

platelets and in neurons. In the brain, integrin 3 is enriched at glutamatergic and 

glycinergic synapses where it has been ascribed various roles including the 

developmental regulation of glutamatergic synapses (Chavis and Westbrook, 2001), 

synaptic strength (Cingolani et al, 2008; Pozo et al, 2012) and glycine receptor 

localization (Charrier et al, 2010). Recent genetic analyses have provided evidence that 

ITGB3 may be involved in serotonergic function (Carneiro et al, 2008; Coutinho et al, 

2007; Cross et al, 2008; Napolioni et al, 2011; Weiss et al, 2005; Weiss et al, 2006a; 

Weiss et al, 2006b). Expression levels of ITGB3 and SLC6A4 are correlated in both 

mice and humans (Weiss et al, 2006b) and several independent studies have revealed 

ITGB3 as a quantitative trait locus for whole blood 5-HT levels (Coutinho et al, 2007; 

Napolioni et al, 2011; Weiss et al, 2005; Weiss et al, 2006a). Carneiro, et al previously 

reported that integrin αIIβ3 directly interacts with SERT and activation of integrin αIIβ3 

results in enhanced SERT uptake activity and elevated SERT plasma membrane 

expression in platelets (Carneiro et al, 2008). Thus, integrin β3 has become an 

interesting candidate for regulation of 5-HT systems. 

The focus of this thesis is the genetic and functional interaction between Itgb3 

and Slc6a4. The results provide evidence that a genetic interaction between Itgb3 and 

Slc6a4 modifies, SERT expression, transport activity, and anxiety- and depression-like 

behaviors. Pharmacological analysis revealed that synaptic SERT uptake can be 

modulated by integrin αvβ3 targeted compounds indicating a functional integrin αvβ3 x 

SERT interaction. These data highlight Itgb3 in brain 5-HT system regulation.  
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CHAPTER II 

 

IMMUNOHISTOCHEMICAL ASSESSMENT 

 

Localization of Integrin β3 in Serotonergic Neurons 

5-HT pathways have been well characterized in rodents as they have become a 

model system for studying pharmacotherapies and 5-HT dysregulation. In the brain, 5-

HT is synthesized in the raphe nucleus specifically, the dorsal raphe (DR) which 

contains approximately 50% of the brains serotonergic neurons (Jacobs and Azmitia, 

1992). Fibers originating from the dorsal raphe nuclei near ubiquitously innervates the 

brain including the cortex and hippocampus (Vertes, 1991). To determine if integrin β3 

was present in serotonergic neurons, immunohistochemistry experiments were 

performed utilizing wildtype (WT) and Itgb3-/- mice. Confocal imaging revealed integrin 

β3 expression in DR neurons (identified by NeuN) in WT (Figure 2B) but not Itgb3-/- 

mice (Figure 2A). Consistent with a recent finding using magnetic resonance imaging in 

mice (Ellegood et al, 2012) preliminary evidence was found for reduced neuron number 

in the DR of Itgb3-/- mice (Figure 2A). Sections probed for integrin β3 and the 5-HT 

synthesizing enzyme tryptophan hydroxylase 2 (TPH2) revealed robust colocalization in 

DR serotonergic neurons (Figure 2C). Integrin β3 x TPH2 colocalization was also found 

in the cortex and hippocampus (Figure 3) areas where the actions of 5-HT are known to 

mediate neuronal function and subsequent behavior (Akimova et al, 2009; Alexandre et 

al, 2006; Andrade, 2011; Schmidt et al, 2012). Last, confirmation of integrin β3 x SERT 

colocalization was found in DR neurons (Figure 4). These preliminary results indicate 
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integrin β3 localization in serotonergic neurons where it can affect 5-HT signaling. 

Furthermore, consistent with previous findings in platelets (Carneiro et al, 2008) the 

integrin β3 x SERT colocalization in the DR may be a direct protein-protein interaction, 

however this theory remains to be evidenced in the DR. 

 

Methods and Materials 

 

Immunohistochemistry 

Mice were perfused with 30 mL of 4% paraformaldehyde (Sigma). Following 

rapid decapitation mouse brains were removed and stored in 30% sucrose for 48 hrs at 

4o C. Brains were then sectioned on a frozen stage microtome (Leica) at 20 μM and 

stored in a cryoprotectant solution containing; 30 mL ethylene glycol, 30 mL H20, 10mL 

PBS, and 30 mL glycerol. Sections collected between ~4 mm and ~5 mm from bregma 

were defined as DR sections. Immunohistochemistry was performed using specific 

antibodies against integrin β3 (1:250, AbCam), SERT (1:2000, Frontier), TPH2 (1:250, 

Millipore), and NeuN (1:250, Millipore). Fluorescent secondary antibodies were applied 

at a 1:500 concentration. Images were captured using an LSM 510 Meta confocal. 
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Figure 2. Confocal image of integrin β3 (green) and NeuN (blue) immunohistochemical 
staining in the dorsal raphe nucleus of A) Itgb3-/- and B) Itgb3+/+ mice. C) 
Immunohistochemical probe for TPH2 (red) indicates integrin β3 localization in 
serotonergic neurons. 

 
Figure 4 A) Colocalization of integrin β3 (green), SERT (red) and NeuN (blue) 
immunohistochemical staining in the DR. B-C) Magnification of the region increases from left 
to right in the panel. 

 
Figure 3. A) Integrin β3 (green) and TPH2 (red) co-localization was 
also found the hippocampus (red box) and cortex (blue box). B) 
Increased magnification of the dentate gyrus. 
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CHAPTER II 

 

GENETIC ASSESSMENT: Itgb3-/+ x Slc6a4-/+ MOUSE MODEL 

 

Mouse Model 

To examine the influence of Itgb3 heterozygosity on SERT expression and 

uptake activity, 5-HT levels, and SERT-related behavioral phenotypes, mice 

heterozygous for Itgb3 (Itgb3-/+ ; I) and heterozygous for Itgb3 and Slc6a4 (Itgb3-/+ x 

Slc6a4-/+; IS) were generated. These mice were bred by crossing C57BL/6 males with a 

silencing mutation in the Itgb3 promoter region, Itgb3-/-, (Hodivala-Dilke et al; McHugh et 

al) with C57BL/6 females in which the Slc6a4 gene contains a silencing mutation in 

exon 14 which encodes the C-terminus, Slc6a4-/- (Zhao et al). Mice derived from this 

crossing were not used for experiments to avoid rearing effects caused by Slc6a4-/- dam 

phenotypes (Holmes et al; Kalueff et al, 2007a). Instead, the IS male offspring were 

paired with wildtype C57BL/6J females producing offspring of four genotypes: wildtype 

(WT), Itgb3-/+ (I), Slc6a4-/+ (S), Itgb3-/+ x Slc6a4-/+ (IS). Littermate males and females 

were utilized for all biochemical, neurochemical and behavioral assays. 

 

Analysis of SERT Expression and Function 

Slc6a4-/+ mice have been previously reported to express ~50% of SERT 

compared to WT (Bengel et al, 1998) and expression of Itgb3 and Slc6a4 are known to 

correlate (Weiss et al, 2006b). To determine effects of Itgb3 x Slc6a4 heterozygosity on 

midbrain 5-HT levels, SERT expression, and SERT transport function, were examined 
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in both tissue and synaptoneurosome preparations. Analysis of tissue levels of 5-HT 

and 5-hydroxyindoleacetic acid (5-HIAA) with were performed with high performance 

liquid chromatography (HPLC). No individual differences were found between 

genotypes, despite a Slc6a4 significant contribution to elevated midbrain 5-HT levels 

(WT: 11.2 + .46 ng/mg, n = 14; I: 10.63 + .36 ng/mg, n = 18; S: 12.03 + .34 ng/mg, n = 

18; IS: 11.49 + .55 ng/mg, n = 13; two-way ANOVA: Slc6a4 p < .05; Figure 5A). No 

significant differences were found in 5-HT turnover as measured by 5-HIAA/5-HT in the 

midbrain (WT: .75 + .06, n = 14; I: .79 + .04, n = 18; S: .68 + .04, n = 18; IS: .73 + .06 

ng/mg, n = 13; Figure 5B), however Slc6a4 significantly contributed to reduced turnover 

in the cortex (WT: .43 + .02, n = 14; I: .45 + .02, n = 18; S: .37 + .01, n = 18; IS: .39 + 

.02, n = 13; two-way ANOVA: Slc6a4 p < .05; Figure 5C), and hippocampus (WT: .61 + 

.06, n = 13; I: .67 + .05, n = 18; S: .54 + .04, n = 18; IS: .52 + .03 ng/mg, n = 12; two-

way ANOVA: Slc6a4 p < .05; Figure 5D). Western blot analysis of midbrain tissue 

revealed reduced expression of SERT in IS mice, (WT: 100 + 0%, n = 7; I: 98.42 + 

14.14%, n = 8; S: 51.9 + 9.33%, n = 7; IS: 34.81 + 7.98%, n = 6; Kruskal-Wallis one-way 

ANOVA: p < .005, Dunn’s post-hoc WT vs. IS p < .01, I vs. IS p < .05; Figure 5E). 

Next, synaptic SERT expression and function were analyzed in 

synaptoneurosome preparations which contain isolated pre- and post-synaptic 

components and attachments (Phillips et al, 2001). Again Western blot analysis 

revealed reduced SERT expression in midbrain samples (WT: 100 + 0%, n = 9; I: 89.88 

+ 19.4%, n = 12; S: 66.26 + 18.4%, n = 10; IS: 33.68 + 9.79%, n = 8; Kruskal-Wallis 

one-way ANOVA: p < .05, Dunn’s post-hoc WT vs. IS p < .05; Figure 6A), and a 

significant contribution of Slc6a4 to reduced [3H] citalopram binding in midbrain 
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synaptoneurosomes (WT: 143.8 + 14.46 fmols/min/mg, n = 12; I: 115.6 + 19.47 

fmols/min/mg, n = 12; S: 98.26 + 13.06 fmols/min/mg, n = 12; IS: 97.18 + 8.43 

fmols/min/mg, n = 12; two-way ANOVA: Slc6a4 p <.05; Figure 6B). To determine if 

reductions in SERT midbrain expression affected 5-HT uptake, synaptoneurosomes 

were exposed to increasing concentrations of [3H] 5-HT. Although I mice displayed 

significant reductions in midbrain Vmax compared to WT, IS mice exhibited normal 5-HT 

uptake (WT: 144.4 + 4.58 fmols/min/mg, n = 4; I: 91.19 + 3.33 fmols/min/mg, n = 4; S: 

142.1 + 5.3 fmols/min/mg, n = 4; IS: 156.7 + 8.45 fmols/min/mg, n = 4; one-way 

ANOVA: p < .0001; Bonferroni post-hoc WT vs. I p < .001, S vs. I p < .001. IS vs. I p < 

.0001; Figure 6B). No significant differences were detected in [3H] citalopram binding in 

synaptoneurosomes in the cortex (WT: 94.73 + 9.28 fmols/min/mg, n = 12; I: 75.13 + 

13.57 fmols/min/mg, n = 12; S: 107.4 + 12.47 fmols/min/mg, n = 12; IS: 91.69 + 15.74 

fmols/min/mg, n = 12; Figure 6C) although similar Vmax reductions were found in I mice 

compared to WT, S, and IS mice (WT: 84.37 + 5.79 fmols/min/mg, n = 4; I: 53 + 2 

fmols/min/mg, n = 4; S: 73.76 + 3.1 fmols/min/mg, n = 4; IS: 73.76 + 3.02 fmols/min/mg, 

n = 4; one-way ANOVA: p < .0001; Bonferroni post-hoc WT vs. I p < .001, S vs. I p < 

.05, IS vs. I p < .05; Figure 6C). In the hippocampus, again no significant differences 

were found in [3H] citalopram binding (WT: 222 + 25.54 fmols/min/mg, n = 12; I: 233.6 + 

20.7 fmols/min/mg, n = 12; S: 208.5 + 16.19 fmols/min/mg, n = 12; IS: 231.2 + 28.19 

fmols/min/mg, n = 12; Figure 6D), despite significant Vmax reductions in I mice compared 

to WT (WT: 160 + 12 fmols/min/mg, n = 4; I: 119.1 + 4.55 fmols/min/mg, n = 4; S: 150 + 

4.99 fmols/min/mg, n = 4; IS: 148.5 + 3.5 fmols/min/mg, n = 4; one-way ANOVA: p < 

.01; Bonferroni post-hoc WT vs. I p < .01; Figure 6D).  
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Figure 5. Slc6a4 contributes to brain 5-HT neurochemical measures. (A) HPLC analysis of 
midbrain tissue 5-HT revealed a significant contribution from Slc6a4 to elevated 5-HT levels (two-
way ANOVA main effect for Slc6a4: F(1,59) = 4.04, p < .05, n = 13-18) although no significant 

differences were found between genotypes (one-way ANOVA, p = .09). (B) Two- way ANOVA 

analysis also revealed Slc6a4 significant contributions to 5-HIAA/5-HT in (C) cortex (main effect 
for Slc6a4: F(1,58) = 6.28, p < .05, n = 13-18) and (D) hippocampus (main effect for Slc6a4: 
F(1,58) = 5.05, p < .05, n = 12-18) however Bonferroni post-hoc test could not detect individual 
genotype differences in either region. (E) Western blot analysis of midbrain tissue reveals 
significant reductions in IS mice compared to WT and I mice (Kruskal-Wallis one-way ANOVA, p 
< .005; Dunn’s post-hoc analysis revealed significant differences between IS mice and both WT 
(p < .01), and I (p < .05) mice n=6-7). All error bars = SEM, significance indicators as follows: * 
compared to WT, ^ compared to I.  



11 

 

Although IS mice displayed normal 5-HT uptake kinetics, I mice exhibited 

significant reductions in Vmax. The molecular alterations required for IS mice to exhibit 

normal 5-HT uptake may have be due to effects on the serotonergic system which may 

have gone undetected in the analysis. Previous reports of Slc6a4 double heterozygous 

or double knockout mouse models report only deficits due to the gene x gene 

interactions (Hagino et al, 2011; Page et al, 2009; Ren-Patterson et al, 2005), although 

gender differences in BDNF x SERT double knockout phenotypes have been reported 

(Ren-Patterson et al, 2006). The finding of rescued 5-HT uptake in IS mice may indicate 

a genetic compensation that is protective against Itgb3 heterozygosity and is engaged 

in the context of concurrent Itgb3 and Slc6a4 heterozygosity.  

In regards to brain 5-HT levels, HPLC tissue analysis of 5-HT levels may be 

insensitive to differences in extracellular and intracellular 5-HT. The zero-net flux 

method has been evidenced to be more sensitive than dialysate measurements and has 

routinely reported elevated extracellular 5-HT levels in mice with reduced SERT 

expression (Guiard et al, 2008; Mathews et al, 2004). It is likely that use of this method 

can find significant increases in extracellular 5-HT in S and IS mice compared to WT. 

 
Methods and Materials 

 

HPLC Assessment of Brain Amine Levels 

Mice were euthanized by rapid decapitation. The midbrain was dissected by 

making a coronal cut straight down through the brain just anterior to the superior 

colliculus (approximate bregma, −3.28). The cerebellum was removed and a second 

coronal cut was made just posterior to the inferior colliculus (approximate bregma,   
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Figure 6. Despite reduced SERT Expression, IS mice have normal 5-HT uptake (A) Western blot analysis 
of midbrain synaptoneurosomes reveals synapse specific reductions in SERT expression in IS mice 
compared to WT (Kruskal-Wallis one-way ANOVA, p < .05, n = 8-12; Dunn’s post-hoc analysis revealed 
significant differences between IS mice and WT, p < .05). (B) [3H] citalopram binding reveals Slc6a4 
dependent reductions in SERT expression in midbrain synaptoneurosomes (two-way ANOVA main effect 
for Slc6a4: F(1,44) = 4.92, p < .05, n = 12), however post-hoc analysis could not reveal individual genotype 
differences, saturation analysis revealed normal uptake in IS mice despite significant reductions uptake 
capacity in I mice (two-way ANOVA main effect for genotype: F(3,162) = 13.46, p < .0001, and 5-HT 
concentration F(5,162) = 41.45, p < .0001, n = 4), and Vmax measure shows I mice have significantly less 
uptake capacity than WT (p < .001), S (p < .001), and IS mice (p < .0001) due to a significant Itgb3 x 
Slc6a4 interaction (two-way ANOVA main effect for genotype: F(1, 8) = 8.73, p < .05, n = 4).Similar 
experiments were performed in on cortex and hippocampus synaptoneurosomes. (C) Analysis of cortical 
synaptoneurosomes revealed no significant differences in  [3H] citalopram binding (p = .38), however 
saturation analysis again revealed normal uptake in IS mice despite significant reductions uptake capacity 
in I mice (two-way ANOVA main effect for genotype: F(3, 119) = 5.79, p = .0001, and 5-HT concentration 
F(5,119) = 59.41, p < .0001, n = 4), and Vmax measure shows I mice have significantly less uptake capacity 
than WT (p < .005), S (p < .05), and IS mice (p < .05). (D) The hippocampus also displayed no significant 
differences in  [3H] citalopram binding (p = .24), however saturation analysis again revealed normal uptake 
in IS mice despite significant reductions uptake capacity in I mice (two-way ANOVA main effect for 
genotype: F(3, 168) = 3.66, p < .05, and 5-HT concentration F(5,168) = 75.52, p < .0001, n = 4), and Vmax 
measure shows I mice have significantly less uptake capacity than WT mice (p < .01). All error bars = SEM, 
significance indicators as follows: * compared to WT, # compared to S, and $ compared to IS. 
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−5.80). 5-HT, dopamine, and norepinephrine levels in tissue extracts were determined 

by HPLC by using an Antec Decade II electrochemical detector (oxidation, 0.5) 

operated at 33 °C in the Vanderbilt Center for Molecular Neuroscience Neurochemistry 

Core. Twenty microliter samples of the supernatant from trichloroacetic acid tissue 

extracts were injected via a Water 717+ autosampler onto a Phenomenex Nucleosil 

C18HPLC column (5u, 100A; 150 × 4.60 mm). Amines were eluted with a mobile phase 

consisting of 89.5% 0.1 M trichloroacetic acid, 10−2 M sodium acetate, 10−4 M EDTA, 

and 10.5% methanol (pH 3.8). Solvent was delivered at 0.6 ml/min by using a Waters 

515 HPLC pump. 

 

Synaptoneurosome Preparation 

Synaptoneurosomes were obtained as previously described (Veenstra-

VanderWeele et al, 2012). Briefly, mice were rapidly decapitated and brain regions were 

dissected and stored at 4 °C. Samples were homogenized in 10 mL of .32 M sucrose 

and centrifuged to isolate synaptoneurosomes.  

 

Western Blotting 

Midbrain synaptoneurosomes or trichloroacetic acid pellets retrieved from HPLC 

were resuspended in 1% sodium dodecyl sulfate in phosphate buffered saline pH 7.4 

and protein was measured by bicinchoninic acid kit (BCA Protein Assay Kit, Pierce 

Chemical Company, Rockford, IL). Concentrations of 20-50 μg of protein were loaded 

onto 17-well Pierce Protein Gels (Thermo Scientific). Gel electrophoresis was 

performed at 100 v for 3 hours then proteins were transferred overnight at 4 °C onto 
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PVDF membranes (Immoblin). After transfer membranes were blocked with 5% milk in 

1x tris-buffered saline pH 7.4 and incubated with antibodies at 1:250 or 1:1000 dilutions 

overnight at 4 °C. Secondary antibodies were added at 1:2500 dilution and proteins 

detected with chemiluminescence. Multiple exposures were taken to address linearity of 

the data. Films were scanned and proteins quantified by densitometry using Image J. 

Samples that showed significant background or degradation were excluded from 

analysis.  Antibodies included: mouse anti- GAPDH (Ambion), mouse anti-syntaxin 

(Millipore); and guinea pig anti-serotonin transporter (Frontier Science Co., LTD). 

 

[3H] Citalopram Binding 

Each tube contained 100 μg of midbrain synaptoneurosomes 50 μl binding 

buffer, 50 μl of 1 mM 5-HT or 250 μM fluoxetine, and 50 μl of 5 nM [3H] citalopram. 

Tubes were incubated on ice for 20 min then harvested via Brandel onto GF/B 

Whatman filters. Filters were dissolved overnight in scintillation fluid then radioactivity 

was quantified in a Packard counter by QuantaSmart 4.0 software. 

 

[3H] 5-HT Saturation Assays 

Each tube contained 100 μl of midbrain synaptoneurosomes (at 1 μg/μl) and 50 

μl assay buffer (containing 100 μM ascorbic acid and 100 μM paraglycine in KRH 

buffer). Parallel tubes were incubated with 10 μM citalopram to determine SERT specific 

uptake. Tubes were incubated for 10 min at 37 °C then 50 μl of vehicle, 500 nM, 1 mM, 

1.5 mM or 2 mM of [3H] 5-HT were added to duplicate tubes. Samples were incubated 

for 10 min at 37° C then harvested via Brandel onto GF/B Whatman filters. Filters were 
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dissolved overnight in scintillation fluid then radioactivity was quantified in a Packard 

counter by QuantaSmart 4.0 software. 

 

Autism-like Phenotype Analysis 

Itgb3 has been implicated in whole blood 5-HT levels (Weiss et al, 2004), and 

elevated whole blood 5-HT is a known biomarker of autism (Cook and Leventhal, 1996). 

HPLC analysis of whole blood 5-HT revealed no significant difference in IS mice 

compared to WT, however there was a Slc6a4 significant contribution to reduced blood 

5-HT (WT: 3597 + 246.7 ng/mg, n = 9; I: 3698 + 428.8 ng/mg, n = 8; S: 2675 + 354 

ng/mg, n = 7; IS: 3097 + 269.2 ng/mg, n = 9; two-way ANOVA: Slc6a4 p < .05; Figure 

7A). Repetitive and stereotypic behaviors are core symptoms of autism disorder and 

were examined in the marble burying and open field assays. No significant differences 

were found between genotypes in number of marbles buried (WT: 3.39 + 1, n = 13; I: 

2.6 + 1.02, n = 14; S: 4.14 + .84, n = 14; IS: 2.43 + 2.93, n = 14; one-way ANOVA: p = 

.57; Figure 7B). Although Slc6a4 significantly contributed to reduced stereotypic counts 

in the open field chamber, no genotype differences were found (WT: 5135 + 243.2, n = 

20; I: 4947 + 268.4, n = 24; S: 4437 + 258.8, n = 22; IS: 4404 + 276.4, n = 17; two-way 

ANOVA: Slc6a4 p < .05; Figure 7C). During a 10 min 3 chamber test of social behavior, 

Itgb3-/- mice displayed reduced interest in social interaction (Carter et al, 2011) another 

common symptom of autism disorder. WT and IS mice assayed in the same paradigm 

displayed a significant preference for the social stimulus (p < .001) while there were no 

significant differences between genotypes (WT: 200.83 s, + 22.36, n =12; IS: 184.77 s, 

+ 28.86, n =13; two-way ANOVA: stimulus p < .005; Figure 7D). In the novel interaction 
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condition, a significant preference was found for the novel mouse compared to the 

familiar mouse (p < .05), however no significant differences were found between 

genotypes (WT: 200.83 s, + 22.36, n =12; IS: 184.77 s, + 28.86, n =13; two-way 

ANOVA: stimulus p < .005; Figure 7E). No significant difference was found in entries 

into the left or right chamber (Figure 7F) indicating a side preference did not skew the 

data. The normal whole blood 5-HT levels, and stereotypic and social behavior, 

suggests that IS mice are not an autistic mouse model. 

 

 
Figure 7. IS mice exhibit normal whole blood 5-HT, stereotypic, and social behaviors (A) Whole blood 
5-HT in IS mice is normal compared to WT despite significant contribution from Slc6a4 to reduced 5-
HT (two-way ANOVA main effect for Slc6a4: F(1,27) = 6.38, p < .05, n = 7-9). (B) IS mice do not 
exhibit increases in marble burying behavior (one-way ANOVA, p = .57, n = 13-14). (C) IS mice do 
not exhibit increases in stereotypic behaviors during a 30 min OF (one-way ANOVA, p = .14, n = 18-
24). (D) IS mice show no deficit in social preference (two-way repeated measures ANOVA: main 
effect for stimulus F(1, 23) = 31.5, p < .0001 Bonferroni post-hoc analysis revealed a significant 
preference for the social stimulus in WT (p < .01,  n = 12) and IS (p < .005, n = 13) mice. (E) IS mice 
did not display significant differences in the amount of time spent with a novel mouse compared to a 
familiar mouse in (two-way repeated measures ANOVA: main effect for novelty F(1,23) = 6.4, p < 
.05).  Analysis of side preference revealed the random counterbalanced stimulus presentation was 
effective as mice did not exhibit preference for entering either side, unpaired t-test, t (.041, 98), p = 
.98, n = 13-14. All error bars = SEM.  
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Methods and Materials 

 

Open field  

After at least 1 hr acclimation under red light, mice were placed in light- and air 

controlled open field activity chambers (Med Associates, 27.9 x 27.9 x 20.5 cm) for 30 

min. Locomotor patterns were reported by 16 photocells in each horizontal direction. 

Data was extrapolated using the Activity Monitor software (Med Associates). The inner 

zone was defined as greater than 2 cm from the chamber wall.  

 

Marble burying 

Each mouse was placed in a novel cage with a 5 cm deep layer of bedding and 

allowed 30 min to acclimate. After 30 min the mice were removed from the cage. 20 

clean, transparent glass marbles (1.5 cm diameter) were placed on top of bedding in 

five rows of four marbles each, equally spaced apart. The mouse was then replaced in 

the cage for 20 min. After 20 min the mouse was removed from the cage and the 

number of marbles buried (at least 2/3 covered in bedding) was recorded. 

 

3-chamber social interaction test 

Social behavior was evaluated in a three chamber polycarbonate apparatus with 

4−inch sliding gates separating the 7 × 9−inch chambers. After at least 1 hr acclimation 

under red light, the subject mouse was initially allowed to explore all three chambers for 

10 min to acclimate to the apparatus. A stimulus mouse (social stimulus) was then 

introduced inside an inverted wire pencil cup (Spectrum Diversified Designs) in one side 
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of the chamber with a clean empty pencil cup (inanimate stimulus) introduced in the 

opposite side chamber. The stimulus mouse was an adult male WT mouse, previously 

habituated to the pencil cup. Videos were scored by trained observers blinded to 

genotype. 

 
Anxiety- and Depression-like Phenotype Analysis  

To determine contributions of Itgb3 heterozygosity to SERT-mediated anxiety- 

and depression-like phenotypes, further behavioral tests were analyzed. In a 30 minute 

open field test, Slc6a4 heterozygosity significantly contributed to reduced locomotor 

activity (WT: 3427 + 295.8 cm, n = 20; I: 3334 + 245.5 cm, n = 24; S: 2622 + 214.5 cm, 

n = 22; IS: 2744 + 317.2 cm, n = 17; two-way ANOVA: Slc6a4 p = .01; Figure 8A), 

however post-hoc analysis did not detect individual genotype differences. Further 

analysis revealed vertical exploratory behavior was significantly reduced in IS mice 

(WT: 156.1 + 19.16, n = 20; I: 135 + 19.48, n = 24; S: 126 + 25.38, n = 22; IS: 76 + 9.55, 

n = 17; Kruskal-Wallis one-way ANOVA: p < .05; Dunn’s post-hoc WT vs. IS p < .05; 

Figure 8B) specifically in the inner zone of the chamber (WT: 22.49 + 2.94, n = 20; I: 

15.99 + 2.36, n = 24; S: 22.8 + 3.9, n = 22; IS: 7.3 + 1.21, n = 17; Kruskal-Wallis one-

way ANOVA: p < .005; Dunn’s post-hoc WT vs. IS p < .01, S vs. IS p < .05; Figure 8C). 

Additionally, IS mice spent significantly less time in the inner zone than WT mice (WT: 

20.5 + 2.59%, n = 20; I: 18.11 + 2.4%, n = 24; S: 14.04 + 2.5%, n = 22; IS: 10.45 + 

1.82%, n = 17; one-way ANOVA: p < .05; Bonferroni post-hoc WT vs. IS p < .05; Figure 

8D). During a 5 min elevated zero maze assay no individual genotype differences were 

found however there was a significant contribution from Slc6a4 heterozygosity to  

reduced percent time in the open arm (WT: 47.41 + 2.43%, n = 20; I: 47.08 + 2.65%, n 
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= 21; S: 41.4 + 2.28%, n = 23; IS: 43.5 + 2.26%, n = 20; one-way ANOVA: p = .05; 

Figure 8F). Results from these exploratory and anxiety measures are consistent with 

previous reports of Slc6a4 heterozygosity effects on exploratory and anxiety-like 

behaviors (Holmes et al, 2003; Kalueff et al, 2007a; Kalueff et al, 2007b).  

As SERT deficiency is also implicated in depression-like behaviors (Ansorge et 

al, 2008; Lira et al, 2003; Zhao et al, 2006), behavioral tests of SERT related 

depression-like behaviors were performed (Bodnoff et al, 1988; Lucki et al, 2001). 

During a six minute forced swim test (FST), significant differences were found in 

immobility time during the first 2 min of the test (WT: 52.83 + 7.81 s, n = 14; I: 36.33 + 

4.53 s, n = 15; S: 46.57 + 10.4 s, n = 21; IS: 82.59 + 13.68 s, n = 16; Kruskal-Wallis 

one-way ANOVA: p < .05; Figure 8G), however post-hoc tests did not detect genotype 

differences. IS mice also exhibited significantly increased immobility during the last 4 

min of the FST (WT: 85.18 + 9.18 s, n = 27; I: 119.6 + 9.76 s, n = 27; S: 138 + 11.24 s, 

n = 21; IS: 143.3 + 11.35 s, n = 22; one-way ANOVA: p < .001; Bonferroni post-hoc WT 

vs. IS p < .005, WT vs. S p < .01; Figure 8H). As a further indicator to SERT regulation 

of these behaviors, correlation analysis revealed a significant correlation between SERT 

expression and immobility time in minute 4 of the FST (r = -.52, p < .005; Figure 8I).  
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Figure 8. IS mice exhibit a hypoexploratory, anxiety-, and depression-like phenotype. (A) 
Slc6a4 significantly contributes to a hypolocomotor phenotype in the open field test (two-way 
ANOVA main effect for Slc6a4: F(1, 79) = 6.8, p=.01, n =17-24. IS mice show reduced 
vertical exploration behavior in the open field apparatus (Kruskal-Wallis one-way ANOVA; p 
< .05, n = 17-24; Dunn’s post-hoc analysis reveals a significant reduction in IS mice 
compared to WT, p < .05) and, (C) in the center zone (Kruskal-Wallis one-way ANOVA, p 
<.05, n = 16-23; Dunn’s post-hoc analysis reveals a significant reduction in IS mice 
compared to WT mice, p < .05, I mice, p < .05, and S mice p < .05). (D) IS mice spend 
significantly less time in the center zone of the OF (two-way ANOVA main effect for Slc6a4: 
F(1, 79) = 8.4, p <.005, n = 17-24; Bonferroni post-hoc analysis reveals a significant 
difference in IS mice compared to WT, p < .05). (E) Although no significant differences were 
found in total distance traveled in the EZM (one-way ANOVA; p = .91, n = 20-23), (F) Scl6a4 
significantly contributed to time spent in the open arm of the maze (two-way ANOVA main 
effect for Slc6a4: F(1, 80) = 39.5, p =.05, n = 20-23). (G) A significant difference was 
detected in immobility time during the first two minutes of the FST (Kruskal-Wallis one-way 
ANOVA p < .05, n = 14-21), however post-hoc analysis did not reveal individual genotype 
differences. (H) During the last four min of the FST Slc6a4 heterozygosity contributed to 
greater immobility time (two-way ANOVA main effect for Slc6a4: F(1, 93)  = 13.65, p = .004; 
main effect for Itgb3: F(1, 93)  = 3.67, p = .058; WT, n = 27; I, n = 27; S, n = 22; IS, n = 16; 
Bonferroni post-hoc reveals a significant difference in both IS and S mice compared to WT 
(p < .005 and p < .01 respectively). (I) Correlation analysis revealed a significant correlation 
between tissue SERT expression and time immobile in minute 4 of the FST (Pearson r(25) = 
-.57, p < .005). All error bars = SEM. Significance indicators as follows: * compared to WT, # 
compared to I. 
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Methods and Materials 

 

Elevated Zero Maze 

The apparatus is 40 cm x 50 cm, and has four equidistance 5 cm wide arms. The 

two closed arms face opposite each other and have 15 cm walls. Each mouse was 

placed gently into the open arm of the maze and allowed to explore freely for 5 min. 

Mouse behavior was video-tracked and analyzed via ANY-maze software (Stoelting). 

 

Forced Swim Test 

The Porsolt forced swim test was used to measure depression-related behaviors 

(Cryan et al, 2005; Porsolt et al, 1977). Experimentation and analysis was conducted 

with the experimenter blinded to animal genotypes. The testing apparatus consisted of a 

clear Plexiglas cylinder with water approximately 20 cm deep and 23 C. After at least 1 

hr acclimation under red light, mice were tested for 6 min. After 6 min, the number of 

fecal boli produced during the test was counted and the animals were removed and 

placed in clean, heated cages for 15 min to recover. All tests were recorded by video 

camera and scored by an observer blinded to the genotypes. Following each test, the 

testing cylinders were drained, cleaned, and refilled with clean water. Immobility was 

defined as minimal movement necessary for the animal to keep its head above water. 

Immobile behavior was recorded in one-minute bins. The primary dependent variable 

was immobility time in the last 4 min of the test, which has been shown to be sensitive 

to anti-depressant effects. Additional dependent variables included latency to first 

immobile period and immobility time in the first 2 min.  
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CHAPTER IV 

 

PHARMACOLOGICAL ASSESSMENT: INTEGRIN αvβ3 X SERT FUNCTIONAL 

INTERACTION 

 

Integrin αvβ3 Regulation of SERT Uptake Activity 

Integrin antagonists have traditionally utilized the high affinity Arginine-Glycine-

Aspartic acid (RGD) binding domain (Hynes, 1992), and integrin effects on synaptic 

functions in response to cyclo-RGD (cRGD) peptide mimetics have been reported 

(Watson et al, 2007). RGD ligands are known to regulate the integrin II3 x SERT 

interaction in platelets (Carneiro et al, 2008). Based on these findings, integrin v3 

targeted cRGD analogs IDT 494 and IDT 500 were synthesized to explore integrin v3 

x SERT functional interactions. Carneiro, et al., demonstrated that activation of platelet 

integrin II3 significantly increases SERT [3H] 5-HT uptake (Carneiro et al, 2008). 

Similarly, in WT midbrain synaptoneurosomes [3H] 5-HT uptake assays revealed effects 

on SERT uptake activity in response to integrin v3 targeted compounds. Specifically, 

at concentrations of 1-100 nm IDT 494 increased SERT uptake (p < .05, n = 4; Figure 

9B), while .1 nM IDT 500 decreased SERT uptake (p < .05, n = 3; Figure 9C), indicating 

that integrin v3 can differentially modulate synaptic SERTs. Also assayed were other 

compounds which contain RGD sites or otherwise bind to integrin v3. 10 nM RGD 

significantly increased SERT uptake (p < .05, n = 4; Figure 9A). Resveratrol is a natural 

polyphenol found in grapes and other fruits. It has come under investigation as an anti-

cancer agent and has been found to act through its RGD sequence binding integrin 
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v3 (Hsieh et al, 2011; Lin et al, 2006). At concentrations of 50-100 μm resveratrol 

significantly reduced SERT uptake (p < .005, n = 3; Figure 9D). Echistatin is a naturally 

occurring disintegrin which also contains the high affinity RGD sequence (Kumar et al, 

1997). Echistatin had no effect on SERT uptake at comparable concentrations (p = .71, 

n = 3; Figure 9E). Lastly, MnCl2, which is known to bind to metal ion-dependent 

adhesion sites as opposed to the RGD binding-site (Hynes, 2002a), also had no effect 

on SERT uptake (p = .75, n = 4; Figure 9F). 

  

 
Figure 9. Pharmacological targeting of the integrin v3 RGD binding site regulates SERT 
uptake activity. A) 10 nM cRGD significantly increased uptake (p < .01). B) IDT 494 
significantly increased uptake at concentrations of 1-100 nM (p < .05). C) IDT 500 decreased 
uptake at .1 nM (p < .05). D) Resveratrol reduced uptake at concentrations of 50-100 μM (p < 
.05), p < .01, respectively). (E) Echistatin had no effect of SERT uptake at comparable 

concentrations. (F) MnCl2 which binds to an alternate site in integrin v3 also had no effect 
on uptake activity. Repeated measures ANOVA with Dunnett’s post-hoc analysis, n = 3-6 for 
each experiment. All error bars = SEM. 
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As IDT 500 and resveratrol both exhibited SSRI-like effects on SERT uptake, 

they were further probed to determine if they were specific for integrin v3. Since 

integrin 3 only forms dimers with integrin v and IIb (Hynes, 2002a), and integrin IIb 

is not expressed in brain (Wu and Reddy, 2012), Itgb3-/- mice experiments allowed for 

determination of specificity for integrin v3 as opposed to the multitude of integrin - 

and - subunit combinations that form RGD receptors and are expressed in the brain 

(Wu et al, 2012). [3H] 5-HT uptake assays in Itgb3-/- mice proved specificity of IDT 500 

for integrin v3 uptake (p < .005, n = 5; Figure 10a), since the compound had no effect 

on [3H] 5-HT uptake in Itgb3-/- midbrain synaptoneurosomes (p = .94). Resveratrol 

proved to be non-specific for integrin v3 as it significantly reduced uptake in both WT 

and Itgb3-/- synaptoneurosomes (p < .005, n = 5; and p < .05, n = 4; respectively; Figure 

10B). 

        A                                                                                B       

 
 
Figure 10. A) IDT 500 reduces uptake in WT [t (4.96, 8), p < .005, n = 5], and has no effect on 
uptake in Itgb3-/- [t (.07, 8), p = .95, n = 5] midbrain synaptoneurosomes. B) Resveratrol 
significantly reduces 5-HT uptake in both WT [t (4.37, 6), p < .005, n = 4] and Itgb3-/-

 [t (2.64, 6), 
p < .05, n = 4] midbrain synaptoneurosomes. Two-tailed unpaired t-tests. All error bars = SEM. 
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 Results from these experiments suggests that RGD targeting of integrin v3 can 

regulate midbrain SERT uptake activity leading to the working model in Figure 11. 

 

  

 
Figure 11. Working model of IDT 494 and IDT 500 regulation of SERT activity via integrin 

v3. IDT 494 may regulate SERT uptake activity via increasing SERT expression at the 
plasma membrane, or increasing SERT catalytic activity, while IDT 500 may regulate SERT 
uptake by decreasing SERT expression or decreasing SERT catalytic activity.  
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Methods and Materials 

 

[3H] 5-HT uptake assays 

Midbrain synaptoneurosomes were obtained and normalized to a concentration 

of 1 μg/ μl. 100 μl of synaptoneurosomes were then incubated for 10 min at 37o C in test 

tubes containing 100 μl of assay buffer, and 50 μl of drug. Next, samples were 

incubated with [3H] 5-HT for 10 min at 37o C.  An identical set of tubes contained 50 μl of 

10 nM citalopram to define SERT specific uptake. Next samples were harvested via 

Brandel onto GF/B Whatman filters. Filters were dissolved overnight in scintillation fluid 

then radioactivity was quantified in a Packard counter by QuantaSmart 4.0 software. 

Echistatin, resveratrol, and cRGD were purchased from Tocris Biosciences. IDT 494 

and IDT 500 were synthesized at Vanderbilt University by Ian Tomlinson, Ph.D. 

 
 

Analysis of Kinase Activity 

Since integrins are enzymatically inactive, they must rely on adaptor molecules to 

confer signaling and regulate cell functions. Integrin II3 signaling through p38 MAPK 

is a known regulator of SERT plasma membrane expression and catalytic activity in 

platelets (Carneiro et al, 2008). Recently, the tyrosine kinase Src was found to regulate 

synaptosome plasma membrane expression and uptake activity of SERT via 

phosphorylation of Tyr47 and Tyr 142 (Annamalai et al, 2012). Src is known to directly 

associate with the c-terminus of integrin 3 (Arias-Salgado et al, 2003), and activation of 

integrin v3 by RGD peptides leads to Src phosphorylation and activation (Alghisi et 

al, 2009).  
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To determine if kinase signaling mediated the integrin v3 x SERT uptake 

effect, midbrain synaptoneurosomes were incubated in vehicle, 10 nM cRGD, 10 nM 

IDT 494, 100 μM resveratrol, or 1 mM MnCl2. Synaptoneurosomes were then probed for 

kinase activity via Western blot. No significant differences were found for any of the 

tested RGD compounds in Src activity, however 1 mM MnCl2 significantly reduced Src 

activity (p < .05, n = 7; Figure 11A). None of the tested compounds significantly affected 

ERK activity (p = .3, n = 7; Figure 11B).  

 
Figure 12. Western blot analysis of midbrain synaptoneurosomes did not reveal changes in 
kinase activity in response to RGD compounds. However, Src activity was significantly 
reduced by MnCl2 (Repeated measures one-way ANOVA, Dunnett’s post-hoc analysis, p < 
.05, n = 7). (B) ERK activity was not significantly altered by any of the compounds (Repeated 
measures one-way ANOVA, p = .30, n = 7). All error bars = SEM. 
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It is possible that kinase signaling is not responsible for integrin v3 mediated 

changes in SERT activity. The cytoplasmic tail of integrin 3 is known to regulate 

expression and function of GluA2 AMPA (Pozo et al, 2012) and VEGF type 2 (West et 

al, 2012) receptors via direct interactions with their cytoplasmic tails. Binding of integrin 

v3 specific compounds could result in conformation changes in the integrin 3 

cytoplasmic tail which can then directly regulate SERT.  

 

Methods and Materials 

 

Microcentrifuge tubes contained 50 μl of vehicle/drug and to 450 μl of midbrain 

synaptoneurosomes (at 1 μg/μl). Samples were incubated for 20 minutes at 37o C. 

Samples were re-pelleted by centrifugation. The supernatant was removed and the 

pellet was resuspended in 100µl of 1x-Tris (pH-7.4), 1% SDS, and 25µl lammeli buffer 

(containing β-mercaptoethanol). Western blotting was performed as previously 

described in chapter III. Primary antibodies included: Total and phosphorylated Src (Cell 

Signaling, 1:1000), and total and phosphorylated ERK (Cell Signaling, 1:1000). Protein 

expression was quantified as described in chapter III.  
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CHAPTER V 

 

SYNOPSIS AND CONCLUSION 

 

 Immunohistochemistry experiments provided preliminary evidence for integrin β3 

localization in serotonergic neurons (Figure 2C & 3), in close proximity to SERT (Figure 

4). Additionally, it appeared that knockout of Itgb3 led to a reduction in the number of 

neurons in the DR, consistent with recent imaging results (Ellegood et al, 2012). The 

presence of integrin β3 in DR serotonergic neurons, previous evidence of a functional 

integrin αIIbβ3 x SERT interaction in platelet function (Carneiro et al, 2008), a genetic 

interaction in human and mouse brain (Weiss et al, 2006b), and an Itgb3 x Slc6a4 

contribution to increased autism risk (Ma et al, 2010; Napolioni et al, 2011; Weiss et al, 

2006a) provided the evidence needed to further investigate the integrin αvβ3 x SERT 

interaction in brain. 

Despite previous reports implicating ITGB3 in whole blood 5-HT levels (Weiss et 

al, 2005; Weiss et al, 2004) and autism risk (Ma et al, 2010; Napolioni et al, 2011; 

Weiss et al, 2006a), and Itgb3-/- mice exhibiting reduced social preference (Carter et al, 

2011), experiments reported here did not reveal Itgb3 heterozygosity influences on 

whole blood (Figure 7A) or midbrain tissue 5-HT levels (Figure 5A). Neither did Itgb3 

heterozygosity influence stereotypic and repetitive, or social behavior (Figure 7B-D). In 

humans, the gain-of function Leu33Pro ITGB3 polymorphism is associated with whole 

blood levels (Weiss et al, 2004), while the Leu33 allele is associated with autism risk 

(Weiss et al, 2006a). Additionally, there is confusion regarding involvement of SLC6A4 
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polymorphisms in autism risk. Polymorphisms in the extensively studied SLC6A4 

promoter region (5-HTTLPR) have implicated increased risk for autism for both the s 

allele (Cook et al, 1997), associated with reduced transporter expression and function 

(Lesch et al, 1996), and the nominal l allele (Klauck et al, 1997). There is also evidence 

that each 5-HTTLPR polymorphism is linked to a particular symptomology of the 

disorder (Brune et al, 2006). Recently, the gain-of-function Gly56Ala polymorphism has 

been shown to cause hyperserotonemia, social impairments, and increased repetitive 

behavior in a transgenic mouse model (Veenstra-VanderWeele et al, 2012), while Pten-

/+ x Slc6a4-/+ mice exhibit reductions in social behavior (Page et al, 2009). These mixed 

result suggest that it is likely that no autism-like phenotypes were detected in the IS 

mouse model because different combinations of genetic and molecular interactions 

result in different phenotypes.  

 Additional results from the IS mouse model experiments indicate that while Itgb3 

heterozygosity can significantly reduce 5-HT uptake (Figure 6B-D), and exaggerate 

biochemical and behavioral phenotypes such as reduced Slc6a4 expression (Figure 5E 

and Figure 6A), reduced exploratory behavior (Figure 8B-C), increased anxiety-like 

behavior (Figure 8D), and increased depression-like behavior (Figure 8G-H), the 

phenotypes are largely driven by Slc6a4 heterozygosity. Taken together with IS mice 

being the sole genotype to have significant reductions in midbrain tissue and midbrain 

synaptoneurosome SERT expression, it is likely that dose-dependent reductions in 

SERT expression underlie these behavioral phenotypes, with IS mice demonstrating 

phenotype characteristics between S and Slc6a4-/- mice (Holmes et al, 2002; Kalueff et 

al, 2007b; Lira et al, 2003). Thus it would appear that integrin β3 acts on the 
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serotonergic system either directly through SERT or in a similar fashion as SERT to 

modulate brain function and subsequent behavioral phenotypes.  

 The pharmacological assessment provided preliminary insight into how integrin 

αvβ3 can modulate the serotonergic system since targeting of integrin αvβ3 could 

increase or decrease SERT-mediated 5-HT uptake (Figure 9A-D). That integrin αvβ3 

targeting compounds differentially regulate SERT uptake suggests that in vivo 5-HT 

actions can be enhanced or limited via endogenous integrin αvβ3 ligands. Furthermore, 

these experiments provide evidence for integrin αvβ3 as a potential therapeutic target 

for serotonergic systems in human brain, and highlight 5-HT phenotypes such as 

anxiety and depression, as possible side effects for persons prescribed integrin αvβ3 

targeted therapeutics. The exact mechanism underlying the integrin αvβ3 X SERT 

interaction remained elusive as experiments into the prime candidate (kinase signaling) 

did not yield results (Figure 12). However, it is possible that Western blot is not a 

sensitive enough technique to detect kinase activity alterations in as complex a system 

as the brain, where multitudes of kinase signaling pathways are regulating numerous 

synaptic functions.  

These findings highlight integrin β3 as a modulator of brain serotonergic systems. 

It remains to be elucidated if this occurs through a direct interaction or integrin β3 kinase 

signaling. The results suggest that persons possessing polymorphisms which result in 

an Itgb3-/+ x Slc6a4-/+ genotype and persons prescribed integrin αvβ3 compounds may 

be at increased risk for developing 5-HT related disorders, such as anxiety. Further 

experimentation is required to confirm these findings, determine the mechanism of 

action, and provide insight into in vivo relevance of the integrin αvβ3 x SERT interaction.  

C 
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