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SUMMARY 

Protein folding is a process of molecular self-assembly during which a disordered polypeptide 

chain collapses to form a compact and well-defined three-dimensional (3D) tertiary structure. A 

grand challenge in biochemistry has been to understand the process by which proteins fold into 

their functional tertiary structure (folding mechanism) and to predict this tertiary structure from 

amino acid sequence (structure prediction), two tasks that are collectively known as “the protein 

folding problem”. Solving this problem is of far-reaching impact as it will not only reveal the 

missing link between sequence and structure but also provide molecular biologists with a 

theoretical framework and practical tools for applications such as drug design and protein 

engineering. Chapter I of this dissertation gives a comprehensive review of the computational 

techniques developed in the past half century or so for studying the protein folding problem.  

Helical membrane proteins (HMPs) play essential roles in various biological processes, 

including signal transduction, ionic and molecular transportation across the membrane, and energy 

generation. It was estimated that HMPs constitute about 20% to 30% of the human genome. 

Frequently, these transmembrane proteins do not function as monomers but undergo concerted 

interactions to form either homo-oligomers or interacting with other transmembrane proteins to 

form hetero-oligomers. Despite their prevalence in the genome, a very small portion of structures 

in the Protein Data Bank are HMPs due to the experimental difficulties in determining structures 

of HMPs and their complexes. Therefore, accurate and efficient computational methods would be 

valuable tools to complement existing experimental techniques. Chapters II, III, and IV describe a 

novel computational approach developed in this work for improving the tertiary structure 

prediction of HMPs and the quaternary structure prediction of HMP complexes. 

In chapter II, the concept of residue weighted contact number (WCN) is introduced and a 

method is developed, using state-of-the-art machine learning techniques, for predicting WCNs 

from amino acid sequence alone. The WCN of an amino acid residue is defined as the number of 

neighboring residues weighted by their proximity to the focal residue. It measures the local packing 

degree of residues within the protein tertiary structure. In helical membrane proteins, every 

transmembrane helix has a characteristic profile of WCNs and this profile is strongly coupled with 

native contacts between helices. This implies that WCNs can be incorporated as restraints in the 

prediction of helix-helix packing. In chapter III, it is demonstrated that residues’ WCNs predicted 
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by the method developed in chapter II are effective restraints for improving the fraction of native 

contacts in predicted tertiary structure models of HMPs. Chapter IV concerns with the 

characterization of interfaces between HMPs and the prediction of quaternary structures of HMP 

complexes via protein-protein docking. First, the physicochemical characteristics and evolutionary 

conservation of interface residues are compared with residues on the rest of the surface, a machine 

learning-based method is then developed for predicting the WCNs of interface and surface 

residues. Finally, it is showed that predicted interface residues and their WCNs can be used to 

derive a powerful score for selecting native-like docking candidates of HMP complexes 

Proteins mutate in response to change in environment or errors in gene replication. A lot of 

diseases are caused by dysfunctional variants of HMPs. Mapping the relationship between variants 

and their functional impact is an essential step toward precision medicine. Ideally, except for 

certain well-established disease-causing cases, variants should be evaluated by physiologically 

relevant experimental functional assays, but experimental characterization remains labor-intensive 

and costly to scale. Variant interpretation is bound to present an increasingly daunting challenge 

in the era of next-generation sequencing. Under such constraints, computational methods, which 

are usually machine learning-based, represent a common predictive approach.  

Dysfunctional variants of the KCNQ1 potassium channel are associated with the congenital 

long QT syndrome. Chapter V describes a machine learning-based, protein-specific method 

developed in this work, that is capable of accurately classifying the functional impact of 

nonsynonymous variants of KCNQ1. This method was trained on a manually curated, functionally 

validated dataset to classify molecular functional impact. It showed superior performance when 

compared with eight previous methods tested in parallel. 

Chapter VI concludes with a summary of the key contributions this work made to the relevant 

fields and some considerations on a few major limitations needed to be addressed in future work. 

It also points out some questions that are of significant interests for future work.  
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I. INTRODUCTION 

This chapter has been published under (Li et al., 2018). 

I-1 The protein folding problem 

Protein folding is a process of molecular self-assembly during which a disordered polypeptide 

chain collapses to form a compact and well-defined three-dimensional (3D) tertiary structure. A 

grand challenge in biochemistry has been to understand the process by which proteins fold into 

their functional tertiary structure (folding mechanism) and to predict this tertiary structure from 

amino acid sequence (structure prediction), two tasks that are collectively known as “the protein 

folding problem” (Chan and Dill, 1993, Dill et al., 2008, Dill and MacCallum, 2012). Solving this 

problem is of far-reaching impact as it will not only reveal the missing link between sequence and 

structure but also provide molecular biologists with a theoretical framework and practical tools for 

applications such as drug design and protein engineering. As a result, an enormous amount of 

effort has been contributed to study the protein folding problem by the scientific community. This 

is  illustrated by Figure I-1, which shows the striking growth in the number of articles published 

each year on this problem since Anfinsen’s “thermodynamic hypothesis” of protein folding, that 

protein native state resides in the global minimum of Gibbs free energy, was formally stated in 

1973 (Anfinsen, 1973). A comprehensive review of the study of this problem is deemed impossible 

for an article of this kind. As many excellent review articles on the theories of protein folding and 

their experimental validation have been published over the years (Dill et al., 1995, Onuchic et al., 

1997, Dobson et al., 1998, Dobson and Karplus, 1999, Radford, 2000, Onuchic and Wolynes, 

2004, Bartlett and Radford, 2009, Bowman et al., 2011, Englander and Mayne, 2014, Wolynes, 

2015), here we focus our discussion on computational methods for studying folding mechanisms 

and predicting tertiary structures. Specifically, we limit our discussion to protein folding 

simulations and de novo protein structure prediction at atomic detail, as methods based on coarse-

grained representation of protein structures were recently comprehensively reviewed (Kmiecik et 

al., 2016). In addition, due to space limitations, we are not able to cover the complete literature of 

this topic, and we apologize to those whose contributions have not received the deserved attention. 

Nevertheless, the two key components of any folding simulation or structure prediction 

methods are efficient sampling of conformational space and accurate evaluation of the energy of 
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sampled conformations. Hence, the main body of this article is devoted to discussing different 

algorithms and their advances toward efficient sampling of conformational space followed by 

approaches and progress toward accurate energy functions. To put the discussion under the 

theoretical framework of protein folding, we first briefly summarize different views on 

mechanisms of protein folding. The interplay between sampling algorithms and energy functions 

is concretely illustrated by discussing some representative methods shown to be relatively 

successful in the Critical Assessment of protein Structure Prediction (CASP) experiment (Moult 

et al., 1995, Tai et al., 2014). Finally, we present a summary on the progress and outline specific 

challenges that future development in the field will likely overcome. 

 

Figure I-1 Growth of the number of articles on the protein folding problem.  

The number of articles published each year (1973-2016) with the phrase “protein structure prediction” or “protein 

folding” in either the title, or abstract, or author keywords. The data were taken from Web of Science. 

I-1.1 Thermodynamics of protein folding 

When a protein folds, it experiences constant counteractions between the effective energy, which 

favors the native state, and the configurational entropy, which favors unfolded states (Karplus, 

2011). The term “effective energy” refers to the free energy of the system (protein plus solvent) 
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which consists of the intramolecular energy of the protein in vacuum plus the solvation free energy 

(the free energy of transfer of the protein from the gas phase to solution). The Gibbs free energy 

of the protein-solvent system is the sum of the effective energy and the configurational entropy 

(Lazaridis and Karplus, 1999, Lazaridis and Karplus, 2000, Lazaridis and Karplus, 2003) (Figure 

I-2). At equilibrium, both folded and unfolded states can be characterized by their Gibbs free 

energy. The difference in Gibbs free energies between the native state and unfolded states is termed 

the free energy of folding.  

∆𝐺𝑓𝑜𝑙𝑑𝑖𝑛𝑔 = ∆𝐻𝑓𝑜𝑙𝑑𝑖𝑛𝑔 − 𝑇∆𝑆𝑓𝑜𝑙𝑑𝑖𝑛𝑔 + ∆∆𝐺𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 I-1 

Both the enthalpic and entropic contributions to ∆𝐺𝑓𝑜𝑙𝑑𝑖𝑛𝑔 mainly arise from intramolecular and 

protein-solvent non-bonded interactions and rearrangement of solvent molecules. As calculating 

the exact Gibbs free energy from first principles is prohibitive (Leach, 2001), a simplified energy 

function is used in practical computer simulations of protein dynamics, folding, and structure 

prediction. Broadly speaking, there are two different types of approaches to a simplified energy 

function. The first is a classical mechanical model that describes the potential energy, which is 

parameterized by analyzing the fundamental forces between particles; the second is a statistical 

model parameterized on data derived from statistical analysis of pair interactions and other 

properties in known protein structures (Lazaridis and Karplus, 2000). In this review, we will use 

the term “energy” frequently when we discuss various implementations of energy functions for 

evaluating the “energy” of sampled conformations, however, the reader is advised to keep in mind 

that such energy approximations are not physically realistic Gibbs free energies. 

Solvation can be accounted for by either immersing the protein into explicit solvent molecules 

or including in the energy function a term that implicitly models solvation free energy. The former 

approach is often adopted in molecular dynamics simulations and is desirable especially in cases 

where the purpose is to study structural details about protein-solvent interaction. Two major 

limitations of this approach are that the computational expense is high, and the effective energy of 

a protein conformation is not known. The latter approach, often referred to as implicit solvation, 

is typically orders of magnitude faster and compatible with more sampling techniques than 

corresponding simulations with explicit solvent (Lazaridis and Karplus, 2003).  
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I-1.2 Simulation of protein folding, and tertiary structure prediction are very different 

subproblems 

While both prediction of protein tertiary structure and simulation of folding require efficient search 

of conformational space and accurate evaluation of the energy of sampled conformations, it needs 

to be emphasized that these two subproblems are rather different, with distinct solutions and 

limitations. Methods for tertiary structure prediction generally create 3D models by assembling 

small structural fragments or motifs, quite often, with physically unrealistic trajectory of 

conformational search and evaluate the energy of sampled conformations using statistical 

potentials. While this approach has worked quite successfully in creating models that are close to 

native structures (Bradley et al., 2005a, Zhang, 2009, Moult et al., 2016), it has very little chance 

of giving insight into the mechanisms of folding. It is doubtless that if one could simulate actual 

folding processes, both subproblems would be solved. However, as will be explained in later 

sections, this is only possible for relatively small proteins using molecular dynamics simulations. 

Thus, methods for simulating folding mechanisms, while often employ physically realistic energy 

functions and can reveal important thermodynamics and kinetics about folding, are generally not 

useful for predicting structures for all but only small proteins.  

I-1.3 Chemical kinetics of protein folding: mechanisms and pathways 

The conformational space accessible to a polypeptide chain is astronomically large; a systematic 

search for the functional structure of a polypeptide chain with 100 residues would take an amount 

of time even longer than the age of the universe. The fact that proteins fold on a biologically 

meaningful timescale, with some attaining their functional structures in just a few microseconds,  

led Levinthal to conclude that there must be well-defined folding mechanisms and pathways to the 

native state (Levinthal, 1968, Levinthal, 1969), so that protein folding is under “kinetic control”. 

A full characterization of the folding process requires elucidation of the mechanisms by which 

transition states and intermediates, if any, are formed and the determination of whether there is a 

single defined pathway or multiple pathways to the native state. 

The “classical view” of protein folding assumes a sequential model and postulates a well-

defined sequence of intermediates which follow one to carry the protein from the unfolded random 

coil to a uniquely folded native state (Levinthal, 1968, Kim and Baldwin, 1982, Kim and Baldwin, 

1990). In the search for such a single mechanism of protein folding, several models have been 
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proposed about how folding gets started and native contacts and structure are subsequently formed 

(Baldwin, 1989, Fersht, 1997, Daggett and Fersht, 2003a, Daggett and Fersht, 2003b). The 

“nucleation” model postulated that a folding-initiating local secondary structure, or nucleus, is 

formed slowly followed by the rapid propagation of native structure in a stepwise manner 

(Wetlaufer, 1973). However, this model was dropped from favor as it predicts the absence of 

folding intermediates. The “framework” model and the related “diffusion-collision” model 

proposed that secondary structures segments are preformed independently of tertiary structure 

before they diffuse and collide to give stable tertiary structure (Kim and Baldwin, 1990, Karplus 

and Weaver, 1994). The “hydrophobic collapse” model hypothesized that folding starts with a 

rapid collapse around hydrophobic residues to the molten globule state (compact denatured state), 

which narrows down the conformational exploration to the native state significantly (Baldwin, 

1989, Ptitsyn, 1996). An essential feature of these latter models is that they predict the presence of 

folding intermediates. However, the fact that some proteins fold by simple two-state kinetics, 

without the accumulation of folding intermediates, and that secondary and tertiary structure form 

simultaneously led to the formulation of the “nucleation-condensation” model (Fersht, 1997, 

Daggett and Fersht, 2003a, Daggett and Fersht, 2003b). This model assumed the concerted 

formation of local and nonlocal structures and was considered a “unifying” mechanism of protein 

folding (Daggett and Fersht, 2003b). It should be notes, however, that the “nucleation-

condensation” model does not preclude the presence of folding intermediates (Daggett and Fersht, 

2003a, Daggett and Fersht, 2003b). 

The observation that molten globules form asynchronously over a range of timescales fostered 

the concept of protein folding funnel (Frauenfelder et al., 1991, Bryngelson et al., 1995, Dill and 

Chan, 1997, Onuchic et al., 1997, Dobson et al., 1998, Brooks et al., 2001, Wolynes, 2015) (Figure 

2). In this “new view”, it is inferred that proteins must fold into their unique native state through 

multiple unpredictable pathways that involve the progressive organization of an ensemble of 

partially folded intermediates on a rugged effective energy hypersurface that resembles a funnel. 

The funnel shape arises from the fact that the number of accessible configurations, which 

determine the configurational entropy, decreases as the energy decreases (Karplus, 2011) . A more 

recent formulation of the mechanism of protein folding is centered around of concept of foldons 

(Englander et al., 2007, Englander and Mayne, 2014). In what’s called the foldon-based 

hypothesis, a protein starts folding by forming an initial seed foldon through unguided search, and 
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it follows a foldon-determined folding pathway as the seed foldon guides subsequent foldons in a 

“folding upon binding” way. While this hypothesis states that proteins fold along a definite path 

after formation of the initial foldon, the foldon formation at the initial stage is assumed to be 

accomplished through a disordered multitrack search (Englander and Mayne, 2014). 

 

Figure I-2 Schematic three-dimensional surface rendering of a hypothetical folding funnel diagram and a 

(Gibbs) free energy landscape to reference state.  

(A) A folding funnel diagram is a pictorial representation of the counteracting nature of the two thermodynamic 

variables, effective energy and configurational entropy, in protein folding and explains how the Levinthal paradox is 

resolved (Karplus, 2011). The effective energy is plotted vertically and the configurational entropy horizontally. The 

funneled shape stems from the fact that the number of accessible configurations, which determines the configurational 

entropy, decreases as the native state of a protein is approached (Karplus, 2011). (B) A free energy landscape maps 

between conformations and free energies. The global minimum on the landscape corresponds to the conformation of 

the native state and local minima correspond to partially unfolded states, which are separated by free energy barriers 

from the native state. Note that real free energy landscapes are high-dimensional and extremely rugged.  
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I-1.4 Prediction of protein folding rates 

Folding rate is an essential parameter for characterizing protein folding kinetics. What factors 

determine whether a protein will be a slow or fast folder? Can we predict folding rates from amino 

acid sequences as well? Theoretical studies have suggested that the size, native topology, and 

stability of a protein influence the rate and mechanisms by which it folds. In searching for a causal 

relationship, a key advance made in 1998 was that in a set of 12 non-homologous single domain 

proteins folding rate shows a significant correlation with a simple measure of topological 

complexity of the native fold, the so-called contact order,  which is defined as the average sequence 

separation between all pairs of native contacts normalized by sequence length (Plaxco et al., 1998). 

In contrast, the correlations between the size or native state stability and folding rate are weak to 

non-existent (Plaxco et al., 1998). Based on this observation, another parameter called long-range 

order, which counts long-range contacts (contacts that are close in space but distant in sequence), 

was proposed and found to be a strong predictor of the folding rates of two-state proteins (Gromiha 

and Selvaraj, 2001). Contact order and long-range order have also been combined to form a 

parameter called total contact distance that has better correlation with folding rates (Zhou and 

Zhou, 2002b). Folding rates were also found to be inversely correlated with a parameter called 

multiple contact index which measures the number of residues with multiple long-range contacts 

(Gromiha, 2009). The correlations between the various topological parameters just discussed and 

folding rates suggest that it is viable to predict folding rates from amino acid sequences because 

native topologies are determined by amino acid sequences (Baker, 2000). In fact, several 

bioinformatics tools have been developed for this purpose (Ivankov and Finkelstein, 2004, 

Gromiha et al., 2006, Ouyang and Liang, 2008, Chou and Shen, 2009, Guo and Rao, 2011), and 

two notable web servers are FOLD-RATE (Gromiha et al., 2006), FoldRate (Chou and Shen, 

2009).  

I-2 Conformational sampling is a bottleneck 

A polypeptide chain with a typical size can adopt an astronomical number of conformations. It is 

agreed that conformational sampling remains to be a bottleneck of de novo structure prediction 

(Jones, 1997a, Baker and Sali, 2001, Bradley et al., 2005b, Zhang, 2008, Kim et al., 2009, 

Maximova et al., 2016). Nevertheless, there has been exciting improvement in sampling 

algorithms based on statistical mechanical principles or guided by experimental or predicted 
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restraints, all of which are further accelerated by improvements in hardware speed and power 

(Maximova et al., 2016). For the convenience of discussion, we divide conformational search 

methods into the following three broad categories: molecular dynamics simulations, Monte Carlo 

simulations, and genetic algorithms. For each category of algorithms, we give a general 

formulation of the algorithm and a summary of the latest studies in which the algorithm was 

applied to study protein folding mechanism or de novo protein structure prediction. 

I-2.1 Unbiased molecular dynamics simulations 

Molecular dynamics (MD) simulation is a widely used computational technique for exploring the 

macroscopic properties of molecular systems through explicit computation of microscopic particle 

motions. MD has had enormously influential applications in biomolecular systems and has been 

heavily used to study motion-related phenomena such as protein folding, conformational 

flexibility, protein structure determination from NMR, ligand-protein interaction, and protein-

membrane interaction (Karplus and Petsko, 1990, van Gunsteren and Berendsen, 1990, Karplus 

and McCammon, 2002, Gumbart et al., 2005, Karplus and Kuriyan, 2005, Lindahl and Sansom, 

2008, Klepeis et al., 2009, Durrant and McCammon, 2011, Periole, 2017). The two essential 

elements of a MD simulation are the interaction potential for the particles and the equations of 

motion governing the dynamics of the particles (Leach, 2001, Rapaport, 2004). Interaction 

potentials will be discussed in the section: Energy functions are evolving objects. Here, we 

describe how MD simulations explore the phase space of a molecular system.  

A typical MD run involves generation of successive microstates of a molecular system by 

solving Newton’s equations of motion for all atoms simultaneously with femtosecond timesteps 

(Eq. I-2). 

𝑚𝑖

𝑑2𝒓𝑖
𝑑𝑡2

= 𝑭𝑖 = −
𝜕𝑈(𝒓1, 𝒓2, … , 𝒓𝑁)

𝜕𝒓𝑖
 I-2 

where 𝒓𝑖 and 𝑈(𝒓1, 𝒓2, … , 𝒓𝑁) denote position vector and potential energy of point mass 𝑖, 

respectively. 𝑭𝑖 denotes the force acted upon point mass 𝑖. The result of the simulation is a 

trajectory of microstates that specify how the system evolves in phase space (Leach, 2001). In 

principle, equilibrium properties can be computed by averaging over the trajectory if it is of 

sufficient length to give a representative ensemble of the microstates of the system. Unfortunately, 
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the usefulness of MD in studying long timescale biological phenomena is often limited due to 

inadequate sampling of all relevant conformational states of a system. Even when the energy 

barriers separating two topologically different low energy regions of the conformational space are 

of order 𝑘𝐵𝑇, traversing them by random thermal fluctuation cannot be achieved within a 

reasonable amount of time.  

A wide range of biologically interesting phenomena occurs over timescales on the order of 

milliseconds, several orders of magnitude beyond the reach of conventional MD simulations. As 

a result, studying processes that involve major conformational changes, such as protein folding, 

activation, and deactivation, by MD simulations has been traditionally challenging (Gruebele, 

2002). The very first protein folding simulation via MD at the microsecond timescale was notably 

made by Duan and Kollman (1998), who simulated the folding process of the villin headpiece (a 

36-mer) in explicit solvent for two months on parallel supercomputers. The simulation showed a 

mechanism for the peptide to reach a marginally stable state with a main chain RMSD of 5.7 Å 

from the native state (Duan and Kollman, 1998). This peptide was later de novo folded by Zagrovic 

and coworkers (2002) to an ensemble of states whose average Cα RMSD is 1.7 Å from the native 

state. The total simulation time was 300 µs or approximately 1000 CPU years with the help of 

worldwide-distributed computers (Zagrovic et al., 2002).  

Substantial progress has been made during the past decade or so to extend the folding times 

accessible by conventional MD simulations through efficient parallelization of MD codes or MD-

specialized hardware (Lane et al., 2013) (Figure I-3). The MD-specialized software package 

Desmond and the massively parallelized machine Anton, both developed recently at D.E. Shaw 

Research, have allowed for conducting millisecond timescale MD simulations of systems with tens 

of thousands of atoms in just a few weeks (Bowers et al., 2006, Shaw et al., 2007, Shaw et al., 

2014). Desmond is a collection of codes that implement novel parallel algorithms and numerical 

techniques to perform high-throughput and accurate MD simulations on conventional 

computational clusters, general-purpose supercomputers, and GPUs (Bowers et al., 2006). Anton 

is built on MD-specific ASICs (application-specific integrated circuits) that interact in a tightly 

coupled manner using a high-speed communication network. Its ability to efficiently perform 

simulations on the timescales over which many physiologically relevant processes take place 

expands the set of problems for which the use of MD is tractable (Shaw et al., 2007, Shaw et al., 
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2014). Armed with this specialized set of software and hardware, researchers at D.E. Shaw 

Research have been able to simulate protein folding from extended random coils (Shaw et al., 

2010, Lindorff-Larsen et al., 2011) and study structural origin of slow diffusion in protein folding 

(Chung et al., 2015), protein-ligand recognition (Dror et al., 2011, Shan et al., 2011), mechanism 

of nucleotide exchange in G proteins (Dror et al., 2015), and mechanisms of kinase activation and 

inhibition (Shan et al., 2014, Ingram et al., 2015) at realistic timescales. The de novo folding 

simulations conducted at D.E. Shaw Research generated computational insights in favor of the 

single-pathway view of protein folding (Figure 2). For example, equilibrium simulations of WW 

domain captured multiple folding and unfolding events that consistently follow a well-defined 

folding pathway (Shaw et al., 2010). However, subsequent folding simulations of 12 fast-folding 

proteins showed that although a majority of them fold along a single dominant route, differing 

“transition state classes” were observed for two proteins (Lindorff-Larsen et al., 2011). 

 

Figure I-3 Folding time scales accessible to MD simulations 
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Folding time scales accessible to MD simulations have increased exponentially since Duan and Kollman used MD 

simulations in explicit solvent to study the process through which the villin headpiece reaches a marginally state (Duan 

and Kollman, 1998). Shown are proteins simulated using unbiased, all-atom MD simulations in empirical force fields 

reported in the literature. Here, an accessible folding time scale is defined as one within which folding events are 

observed in MD simulations of folding from unfolded states. According to this definition, whether the ~10 ms folding 

time of ACBP is already accessible needs to be confirmed by further simulations as no folding events were observed 

in any of the trajectories used to construct a Markov state model of the ACBP folding reaction (Voelz et al., 2012). 

Adapted, with permission, from reference (Lane et al., 2013). See reference (Lane et al., 2013) for reference to each 

folding simulation highlighted in the figure. 

A different approach to overcome the sampling challenge of MD is through statistical analysis 

of multiple independent trajectories or aggregating independent short simulations using Markov 

state models (MSM) to make a complete model of system dynamics (Pande et al., 2010, Prinz et 

al., 2011, Lane et al., 2013). The MSM effectively pieces together this complete model from 

independent trajectories, allowing for prediction of kinetic phenomena on timescales much longer 

than the individual trajectories used to construct the model (Lane et al., 2013). While the MSM-

based “multi-trajectory” approach has some advantages over the reaction coordinate-based single 

trajectory analysis, such as identifying areas of phase space for adaptive sampling (Bowman et al., 

2010, Weber and Pande, 2011), insights gained from MSM analysis does not always agree with 

with the single pathway view of folding. For example, while it was shown via single-trajectory 

analysis that folding of the WW domain follows a definite pathway where the first hairpin folds 

first (Shaw et al., 2010),  a parallel statistically significant pathway where the second hairpin of 

the WW domain folds first was detected using MSM to analyze the same simulation trajectories 

(Lane et al., 2011). Similar analysis conducted on the MD trajectories of 12 small fast-folding 

proteins (Beauchamp et al., 2012), while showed that two-state model is inadequate for the same 

set of systems as described by a previous study (Lindorff-Larsen et al., 2011),  revealed a richer 

picture of populated states for some more complicated systems. 

I-2.2 Enhanced sampling techniques in MD 

The ruggedness of energy landscapes with many local minima separated by high-energy barriers 

makes adequate conformational sampling a challenging task. MD trajectories often do not reach 

all biologically relevant conformations, a problem that can be addressed by employing enhanced 

sampling algorithms (Okamoto, 2004, Bernardi et al., 2015). Two popular enhanced sampling 

techniques in simulations of biological systems are replica exchange molecular dynamics (REMD) 
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and metadynamics (Bernardi et al., 2015). While we focus our discussion on the REMD along 

temperature, which is also known as parallel tempering, several variants of replica exchange 

protocols have also been reported (Fukunishi et al., 2002, Itoh et al., 2011, Wu et al., 2012). 

The replica-exchange method was developed to overcome the multitude of local minima 

separated by high energy barriers (Sugita and Okamoto, 1999). Many molecular simulation 

scenarios require ergodic sampling of energy landscapes that feature many minima, and barriers 

between minima can be difficult to overcome at ambient temperatures over accessible simulation 

timescales. Replica-exchange simulations seek to enhance the sampling in such scenarios by 

running 𝑛 non-interacting copies of the system 𝐶𝑖 (𝑖 = 1,… , 𝑛) in parallel each at a different 

temperature 𝑇𝑖  in the canonical ensemble (Figure I-4). The non-interacting nature of this artificial 

compound system (𝐶1, 𝐶2, … , 𝐶𝑛)  ensures that each state’s weight factor is given by the product 

of Boltzmann factors of each copy. 

𝑤 = exp {−∑𝛽𝑖𝑈𝑖

𝑛

𝑖=1

} I-3 

Compared to a standard Monte Carlo simulation, which affects the conformation of only one copy, 

REMD explores the energy landscape by periodically exchanging the conformations of replicas. 

The probability of transition of a compound system such that the conformations between a pair of 

copies (𝐶𝑖, 𝐶𝑗) are exchanged is 

𝑝 = min(1, 𝑒∆) I-4 

where 

∆= (𝛽𝑗 − 𝛽𝑖)(𝑈𝑗 − 𝑈𝑖) I-5 

In most cases, exchange of the conformations of replicas decreases auto-correlation, thus enabling 

replicas to reach thermal equilibrium faster than without exchange. However, for protein folding 

simulation, a recent study showed that the efficiency of REMD is not much higher than that of 

conventional MD if the folding rate is not very temperature-dependent (Rosta and Hummer, 2009). 

While it is not necessary to restrict the exchange to copies with neighboring temperature (e.g. 𝑗 =

𝑖 + 1), doing so will be optimal, since the transition probability decreases exponentially with the 
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difference in temperature between copies (Hansmann, 1997). It is also worth noting that while 

exchange of conformations between copies must be conducted in a Monte Carlo way, there is no 

restriction on which algorithms are used for updating the conformation of an individual copy 

locally. In fact, several variants of REMD have been developed (Mori et al., 2016). For example, 

a replica-exchange Monte Carlo (REMC) technique was implemented in the threading-based 

structure prediction pipeline QUARK and tested in CASP11 (Zhang et al., 2016). 

Metadynamics is a class of methods that eases sampling by introducing a time-dependent 

biasing potential that acts on a selected number of coarse-grained order parameters, often referred 

to as collective variables (CVs) (Laio and Parrinello, 2002, Piana and Laio, 2007, Barducci et al., 

2011, Valsson et al., 2016). CVs are generally nonlinear functions of the atomic positions of the 

simulated system that should ideally distinguish between all relevant metastable states. Some 

simple but informative CVs used in protein folding simulations are number of Cα contacts, number 

of backbone H-bonds, and helicity of the backbone, and the free energy surface is usually plotted 

as a function of these CVs (Piana and Laio, 2007). The added biasing potential is introduced 

through successive addition of small repulsive Gaussian kernels deposited along the system 

trajectory in CV space (Figure I-4) (Barducci et al., 2011, Valsson et al., 2016). The added 

Gaussian kernel is a function of the current position and the previous position of the system in the 

CV space, and its intended purpose is to discourage the system from revisiting configurations that 

have already been sampled, thus accelerating sampling. The final summation of the deposited 

Gaussian kernels also gives an unbiased estimate of the free energy landscape of the system. In 

contrast to these advantages, it is, however, far from trivial to decide when to stop a simulation 

and find a set of CVs proper for describing the process of interest (Barducci et al., 2011, Valsson 

et al., 2016). 

Both REMD and metadynamics have been used to de novo fold several small peptides and 

proteins. The first example of using REMD to sample a folded structure starting from a completely 

unfolded state is probably the study of Rhee et al. (Rhee and Pande, 2003) where a 23-residue 

BBA5 protein was folded by what’s called multiplexed REMD. Using REMD simulations in 

implicit solvent, Pitera et al. (Pitera and Swope, 2003)  folded  a 20-residue designed Trp-cage 

peptide starting from an extended coil to a state < 1.0 Å Cα RMSD from conformations in the 

NMR ensemble. Recently, Jiang et al. (Jiang and Wu, 2014) folded a diverse set of 14 fast folding 
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proteins from their unfolded states using REMD with a residue-specific force field. A similar study 

by Nguyen et al. (Nguyen et al., 2014) included a larger set of 17 proteins; while they successfully 

folded most proteins, misfolded structures are thermodynamically preferred for 3 proteins. 

 

Figure I-4 A sketch of the process of REMD and that of metadynamics 

REMD: a set of non-interacting replicas (T1 though T4 in this illustration), each runs at a different temperature. Each 

color represents a single replica. As the simulation proceeds, each replica walks up and down in temperature. In an 

efficient REMD, replicas at neighboring temperatures are swapped (shown as double-headed arrows) based on 

Metropolis criterion and all replicas will experience swapping. Metadynamics: this illustrative system has two minima 

A and B (gray curve). The system trapped in B is lifted by progressive deposition of repulsive Gaussian kernels (green 

curve) and the free energy landscape changes accordingly (blue dashed curve). After B is filled up, the system moves 

into A which is filled up similarly. When the simulation completes, the green curve gives a first rough negative 

estimate of the free energy landscape of the system. 
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I-2.3 Monte Carlo simulation 

MD simulation is without a doubt a required technique if one wishes to study folding pathway or 

kinetics computationally. However, for tertiary structure prediction of large proteins whose energy 

landscapes are populated with many local minima separated by high barriers, Monte Carlo (MC) 

simulation can be much more efficient (Figure 5 (A)). It is, in fact, the underlying search engine 

of some of the most successful de novo tertiary structure prediction methods (Simons et al., 1997, 

Bradley et al., 2005a, Xu and Zhang, 2012, Zhang et al., 2016) and our method BCL::Fold 

(Karakas et al., 2012). Unlike MD simulations where successive conformations of the system are 

connected through time, in a MC simulation, each new conformation of the system depends only 

upon its immediate predecessor. The technique of MC simulation was introduced as the first 

computer simulation of a molecular system in 1952 (Metropolis et al., 1953). Nowadays, the term 

“Monte Carlo” is often used to describe a simulation whenever random sampling is performed.  

A MC simulation explores the phase space of a system by randomly perturbing the current 

conformation by actions such as moving a single atom or molecule or adjusting dihedral angles. 

The energy of the new conformation is then evaluated using an energy function. If the new 

conformation is lower in energy than its predecessor, it is accepted as a starting conformation for 

the next iteration. If the energy is higher, the new conformation is accepted with a probability 

based on the famous Metropolis criterion (Metropolis et al., 1953) (Eq. I-4). This is often done by 

comparing the Boltzmann factor of the new conformation to a random number between 0 and 1, 

and the new conformation is accepted if its Boltzmann factor is greater than the random number 

and rejected otherwise. While the essential search algorithm of MC-based structure prediction 

methods is the same, they differ in the starting components for assembling 3D models and in the 

repertoire of MC moves implemented for perturbing the model (Vitalis and Pappu, 2009).   

Primitive MC sampling can be computationally expensive and thus inefficient at finding 

global energy minimum. Typically, these methods are coupled with some optimization technique 

that vastly decreases computational expense by directing the progression of the MC simulation 

toward global energy minimum. One optimization technique is gradient-based sampling, where 

MC iterations are directed down local property gradients, i.e. the potential next state with the 

lowest energy is selected. For instance, gradients can be calculated based on side chain rotameric 

states (Xiangian Hu, 2010) or, in the HP-lattice model (Dill et al., 1995), the movement of a residue 
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in various directions (Hu et al., 2009). However, when the conformational space is continuous 

rather than discrete, gradient descent becomes unfeasible because the energy cannot be calculated 

for every step forward. The most popular optimization approach shown to effectively accelerate 

the convergence of a MC simulation is probably simulated annealing (Kirkpatrick et al., 1983). 

The essential feature of this technique is that it combines MC sampling of conformational space 

at an initially elevated temperature with a proper cooling scheme over the course of the simulation. 

The cooling scheme, if gentle enough, theoretically ensures the system will reach the global 

minimum. In turn, the probability of a higher energy step being accepted decreases over time, and 

models are directed toward the global energy minimum (Tsallis and Stariolo, 1996). Many 

powerful de novo tertiary structure prediction methods integrate this MC simulated annealing 

approach (Kmiecik et al., 2016); we include a detailed discussion on some selected examples of 

such methods (see Examples of methods for de novo tertiary structure prediction).  

I-2.4 Genetic algorithms 

Genetic algorithms (GAs) are an optimization procedure based on the process of evolution that 

occurs in nature. GAs have been used in a variety of applications. Some prominent ones include 

automatic programming, machine learning, and population genetics (Goldberg, 1989). Generally, 

a GA initializes the optimization process by randomly generating an initial population of trial 

solutions each encoded as a string of bits, also called a chromosome (Figure 5(B)). Offspring are 

produced by applying nature-inspired operations, namely mutations and crossovers on bit strings. 

Mutations are introduced into strings by flipping one or more bits, whereas crossovers between 

two individuals consist of randomly selecting a crossover site and exchanging the left segment of 

one string with the right segment of the other (Figure 5(B)). The fittest offspring are selected for 

continual refinement via the iteration of multiple generations (Schulze-Kremer, 2000).  

A large number of studies on the use of GAs for de novo protein structure prediction and 

protein folding simulation have been made (Pedersen and Moult, 1996, Cui et al., 1998, Schulze-

Kremer, 2000, Custodio et al., 2004, Unger, 2004, Hoque et al., 2009, Huang et al., 2010, Zhang 

et al., 2010, Custodio et al., 2014, Bošković and Brest, 2016, Rashid et al., 2016) since the 

pioneering work of Dendekar and Argos (Dandekar and Argos, 1992) on de novo folding 

simulation of a model protein of a four β-strand bundle and that of Unger and Moult (Unger and 

Moult, 1993) on searching for global energy minimum on the 2D HP lattice model. The simplest 
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protein representations used in GAs is the 2D HP model developed by Lau and Dill (Lau and Dill, 

1989). In this model, amino acids are of only two types:  hydrophobic (H) or polar (P). The 

sequence is folded on a 2D square lattice on which bonds are orthogonal to each other. Folded 

structures are evaluated by a so-called “hydrophobic potential” where each pair of non-bonded 

direct hydrophobic contact (occupying neighboring non-diagonal lattice vertices) receives -1. 

Using HP lattice models avoids the computational cost needed for all-atom models while still 

capturing the general principles that govern protein folding, and they can be extended to account 

for physicochemical characteristics of individual residues such as size, hydrophobicity, and 

charge. In more detailed models, proteins can be represented as a sequence of pairs of dihedral 

angles that describe the backbone degrees of freedom of each residue. Mutations can be introduced 

simply by changing the dihedral angle of a residue and crossovers by swapping randomly assigned 

sections of two sequences (Schulze-Kremer, 2000, Unger, 2004). 

 

Figure I-5 Monte Carlo simulated annealing and genetic operations in genetic algorithms 

(A) A Monte Carlo simulated annealing procedure allows the system to “freely” navigate on the free energy surface. 

For example, transition from state 4 to 5 would be prohibitive to MD simulations due to the high-energy barrier 

separating them. (B) In genetic algorithms, conformations are encoded as bit strings (or real-valued arrays) called 

chromosomes. A mutation operation flips the bit value at a randomly selected site, whereas a crossover operation takes 

a pair of chromosomes and exchanges parts of chromosomes split at a randomly selected crossover site.  

I-3 Energy functions are evolving objects 

An essential part of almost all successful protein folding simulations or protein tertiary structure 

predictions is an energy function that is a good approximation to the energy landscape of real 

proteins. Energy functions can be roughly divided into two classes: physics-based force fields and 
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knowledge-based potentials (Lazaridis and Karplus, 2000). Historically, physics-based forces 

fields are coupled with MD or MC simulations to study protein dynamics or calculate free energies 

(Wang et al., 2001, Ponder and Case, 2003, Mackerell, 2004, Lopes et al., 2015), whereas 

knowledge-based potentials are mostly used for fold recognition or tertiary structure prediction 

(Sippl, 1995, Godzik, 1996, Skolnick, 2006). Before we give a detailed account on them, we 

remind the reader that both of these two types of energy functions are evolving objects. To improve 

accuracy, further parameter optimization for physics-based force fields is required and statistics 

need to be rederived for knowledge-based potentials when energy function deficiencies are 

identified or data sets of better qualities become available. 

I-3.1 Physics-based force fields 

Physics-based force fields are classical mechanical models that approximate the potential energy 

of chemical systems. Force field models ignore the electronic motions in a system and only 

consider interactions among nuclei. Compared to ab initio quantum mechanical methods, force 

fields are much more computationally efficient while giving an acceptable level of accuracy. A 

force field has a functional form and a (usually very large) set of associated parameters that, taken 

together, model bonded and non-bonded interactions in a system. The functional form of a force 

field is often a compromise between accuracy and computational efficiency and depends on the 

level of resolution (all-atom or coarse-grained), chemical nature (inorganic, small organic, or 

biomolecular), and target properties of the systems to be modeled. Nevertheless, most force fields 

have five components (Eq. I-6). The first three of them, so-called bond stretching, angle bending, 

and torsion, model bonded interactions. The last two components describe electrostatic and van 

der Waals non-bonded interactions (Leach, 2001). 

𝑈(𝒓𝑁) = ∑
𝑘𝑏
2
(𝑙 − 𝑙0)

2

bonds

+ ∑
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2
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2 + ∑
𝑘𝜑

2
[1 + cos(𝑛𝜑 − 𝛾)]

torsionsangles

+ ∑
𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑟𝑖𝑗
electrostatics

+ ∑ 4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

]

VDW
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The form of this energy function may look simple, but we must keep in mind that the set of 

parameters associated with it is very large. For example, the term that models bond stretching (a 

harmonic potential) has a different force constant 𝑘𝑏 and an equilibrium bond length 𝑙0 for each 

bond type. These parameters must be determined by fitting the force field to a given set of data 

obtained from experiments or quantum mechanical calculations. Depending on the size of the data 

set, parameter optimization may be conducted in a number of ways: trial and error, least-squares 

fitting (Lifson and Warshel, 1968), or, recently, machine-learning algorithms (Behler, 2016). 

Well-known examples of force fields intended for modeling proteins include CHARMM 

(Gelin and Karplus, 1979, Brooks et al., 1983, MacKerell et al., 1998, Mackerell et al., 2004, 

Brooks et al., 2009, Best et al., 2012), AMBER (Weiner and Kollman, 1981, Weiner et al., 1984, 

Li and Bruschweiler, 2010, Lindorff-Larsen et al., 2010), OPLS (Jorgensen and Tirado-Rives, 

1988, Robertson et al., 2015), GROMOS (Van Gunsteren and Berendsen, 1987, van Gunsteren et 

al., 1998), MARTINI (Marrink et al., 2007, Monticelli et al., 2008). These force fields were 

previously compared in-depth (Ponder and Case, 2003), we note here that while the functional 

forms of these force fields invariably contain the five terms of Eq. I-6, some of them or their 

different versions may differ in specifics in the treatment of non-bonded interactions and the levels 

of resolution covered. For example, although more recent versions of the CHARMM and AMBER 

force fields do not model hydrogen-bonding energetics explicitly, originally CHARMM and 

AMBER force fields both incorporated a 12-10 Lennard-Jones potential to model hydrogen-

bonding (Gelin and Karplus, 1979, Weiner et al., 1984). The need for more efficient evaluation of 

non-bonded interactions arises when the number of interaction sites is large. One straightforward 

way to improve efficiency is to absorb aliphatic hydrogens into the carbon atom to which they are 

bonded to form ‘united atoms’ as was done in the united-atom version of the CHARMM and OPLS 

force fields, or to use a coarse-graining approach where a group of heavy atoms are combined to 

form a representative virtual interaction site. The MARTINI force field aims at providing a simple 

model that is computationally fast and easy to use, and it adopted a ‘four-to-one’ coarse-graining 

scheme, meaning that on average four heavy atoms are represented by one interaction site (Marrink 

et al., 2007, Monticelli et al., 2008, Marrink and Tieleman, 2013). Although all-atom simulations 

are often more desirable, if special care is taken during calibration of the building blocks and 

parameterization, a level of accuracy comparable to all-atom simulations may be possible in 

reproducing some thermodynamic properties with reduced representations while achieving 
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considerable computational savings (Baron et al., 2006a, Baron et al., 2006b, Baron et al., 2007, 

Marrink et al., 2007, Monticelli et al., 2008, Marrink and Tieleman, 2013). Coarse-grained protein 

models and their applications was recently reviewed in detail (Kmiecik et al., 2016). 

Physics-based force fields are traditionally coupled with MD in simulating protein dynamics 

and folding (McCammon et al., 1977). There have been a plethora of such studies where the utility 

of force fields for protein tertiary structure prediction or the accuracy of reproducing experimental 

data were reported (Duan and Kollman, 1998, Zagrovic et al., 2002, Pande et al., 2003, Summa 

and Levitt, 2007, Lindorff-Larsen et al., 2011, Patapati and Glykos, 2011, Lindorff-Larsen et al., 

2012, Huang and MacKerell, 2013, Piana et al., 2013). However, no agreement has been reached 

regarding whether force fields are sufficiently robust for these applications (Lee et al., 2009, Piana 

et al., 2014). Early analysis concluded that MD simulations under physics-based force fields are 

not particularly successful in structure prediction (Lee et al., 2009). However, for small, fast 

folding proteins that are also very stable, evidence has been accumulating that demonstrates that 

physics-based force fields are sufficiently accurate for predicting native-state structures and 

folding rates (Shaw et al., 2010, Lindorff-Larsen et al., 2011, Piana et al., 2012, Piana et al., 2013, 

Piana et al., 2014, Chung et al., 2015). In particular, it was pointed out the prediction of tertiary 

structures, folding rates, and melting temperatures appears to be more robust than the prediction 

of the enthalpy and heat capacity of folding or that of the radii of gyration of unfolded states (Piana 

et al., 2014). It needs to be pointed out, however, that whether these force fields hold accurate for 

simulating larger proteins remains to be studied. 

I-3.2 Knowledge-based potentials 

Unlike physics-based force fields, which model interactions found in the most basic molecular 

systems using fundamental laws of physics explicitly and separately, knowledge-based potentials 

(KBPs) are energy functions derived from statistical analyses of known protein structures and the 

application of the inverse Boltzmann relation to the probability distribution of geometries (Wodak, 

Sippl, 1993, Sippl, 1995). The physical meaning of KBPs has been under vigorous debate since 

their introduction (Finkelstein et al., 1995, Thomas and Dill, 1996, Ben-Naim, 1997, Moult, 1997, 

Shortle, 2003, Hamelryck et al., 2010), although justifications of KBPs as “potentials of mean 

force” have been provided by analogy to the reversible work theorem in statistical thermodynamics 

(Sippl et al., 1996) or on the basis of probabilistic arguments (Simons et al., 1997, Hamelryck et 
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al., 2010). Nevertheless, KBPs are widely used and surprisingly effective in scenarios including 

but not limited to protein structure prediction (Simons et al., 1997, Lu and Skolnick, 2001, Shen 

and Sali, 2006, Xu and Zhang, 2012), refinement of NMR structures (Kuszewski et al., 1996, Yang 

et al., 2012), fold recognition (Kocher et al., 1994, Majek and Elber, 2009),  protein-ligand or 

protein-protein interactions (Gohlke et al., 2000, Zhang et al., 2005, Huang and Zou, 2006a, Huang 

and Zou, 2006b), and protein design (Poole and Ranganathan, 2006). Thus, in this article, we 

summarize the formalism of KBPs, specific implementations of different types of potentials, and 

their applications instead of concerning about the physical interpretation of KBPs. 

A KBP energy function is a linear combination of individual potentials with each capturing a 

specific type of interaction. The most common formulation of such energy functions is: 

𝐸(𝐶|𝑆) =∑𝑤𝑖𝑗 (−𝑘𝑇 ln
𝑝(𝑐𝑗|𝑠𝑖)

𝑝(𝑐𝑗)
) 

𝑖𝑗

 I-7 

where 𝐸(𝐶|𝑆) is the energy of conformation 𝐶 given that the underlying amino acid sequence is 

𝑆. 𝑝(𝑐𝑗|𝑠𝑖) is the probability that a given sequence 𝑠𝑖 adopts conformation 𝑐𝑗, whereas 𝑝(𝑐𝑗) is an 

unconditional probability that any sequence fragment adopts conformation 𝑐𝑗. 
𝑝(𝑐𝑗|𝑠𝑖)

𝑝(𝑐𝑗)
 can be 

thought of as an “equilibrium constant” of a hypothetical chemical reaction: 

𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, 𝑢𝑛𝑖𝑞𝑢𝑒 𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 → 𝑢𝑛𝑖𝑞𝑢𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, 𝑢𝑛𝑖𝑞𝑢𝑒 𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 

(Shortle, 2003). In addition to the above inverse Boltzmann formulation, other formulations of 

individual KBP terms have also been widely used. For example, the KBP under the modeling 

package Rosetta was formulated based on the Bayes’ theorem (Simons et al., 1997). This approach 

was also adopted by Woetzel et al. recently to derive the KBP for a SSE-based protein structure 

prediction algorithm (Karakas et al., 2012, Woetzel et al., 2012, Weiner et al., 2013, Fischer et al., 

2016). In their Discrete Optimized Protein Energy, or DOPE, Shen and Sali computed the negative 

logarithm of the joint probability density function of a given protein (Shen and Sali, 2006).  

The types of individual potentials incorporated into a KBP energy function are essentially 

only limited by the type of statistical relations that can be practically extracted from known protein 

structures. Depending on its intended purpose, a KBP may include individual potentials that fall 

into one or several categories. We elaborate three such potentials in the following and refer the 
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reader to references (Simons et al., 1997, Woetzel et al., 2012, Xu and Zhang, 2012) for examples 

of other potentials.  

1) pairwise distance-dependent potential that approximates residue contact energies (Wodak, 

Sippl, 1990, Sippl, 1993, Sippl, 1995). Such contact potentials are based on native inter-residue 

contacts which play a key role in determining folding kinetics and native state stability (Gromiha 

and Selvaraj, 2004). The concept of pairwise distance-dependent potentials was first introduced in 

the pioneering work of Tanaka and Scheraga (Tanaka and Scheraga, 1976), who related residue 

contact frequencies to the free energies of formation of corresponding interactions using the simple 

relationship between free energy and equilibrium constant. Their work was followed by that of 

Miyazawa and Jernigan (Miyazawa and Jernigan, 1985, Miyazawa and Jernigan, 1996), who 

formalized the theory of residue contact potentials using quasi-chemical approximation. However, 

these early implementations of contact potentials are not, in fact, distance-dependent, except that 

a single cutoff distance was used to define residue contact. A real pairwise distance-dependent 

potential was first introduced by Sipp (Sippl, 1990), and this was followed by an explosion of 

different statistical potentials (Hendlich et al., 1990, Kocher et al., 1994, Park and Levitt, 1996, 

Bahar and Jernigan, 1997, Melo and Feytmans, 1997, Park et al., 1997, Reva et al., 1997, Rooman 

and Gilis, 1998, Samudrala and Moult, 1998, Betancourt and Thirumalai, 1999, Lu and Skolnick, 

2001, Zhou and Zhou, 2002a, Fang and Shortle, 2005, Qiu and Elber, 2005, Summa et al., 2005, 

Dehouck et al., 2006, Shen and Sali, 2006, Woetzel et al., 2012). Such pair potentials are usually 

formulated at residue level, where inter-residue distances are measured between Cβ atoms or 

sidechain centroids in reduced representation of amino acid residues to promote computational 

efficiency. However, atomic-level formulation usually gives better discriminatory power albeit at 

the cost of more computational resource (Sippl, 1996, Sippl et al., 1996, Melo and Feytmans, 1997, 

Samudrala and Moult, 1998, Lu and Skolnick, 2001, Shen and Sali, 2006). 

2) solvent accessibility-based environment potentials that represent the interactions of individual 

residues with their local environment (Bowie et al., 1991, Kocher et al., 1994, DeLuca et al., 2011, 

Xu and Zhang, 2012). Residue environment potentials are often included to account for solvation 

effects. Precise calculation of solvent accessibility requires full atomic structure and is time-

consuming. In tertiary structure prediction scenarios where reduced representations of residues are 

used, good approximations to solvent accessibility, such as residue contact numbers, provide 
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significant computational savings (Durham et al., 2009, Woetzel et al., 2012, Fischer et al., 2015, 

Li et al., 2016). It should be noted that in addition to transforming solvent accessibility statistics 

to energy-like potentials using the inverse Boltzmann relation, they have also been incorporated 

into KBP energy functions as a penalty term to disfavor models where residue-specific solvent 

accessibilities disagree with expected solvent accessibilities (Xu and Zhang, 2012, Li et al., 

2017a). 

3) potentials of torsion angles that evaluate backbone ϕ, ψ torsion angles and/or the preference of 

side-chain rotamers (Kocher et al., 1994, Kuszewski et al., 1996, Betancourt and Skolnick, 2004, 

Fang and Shortle, 2005, Amir et al., 2008, Yang et al., 2012, Kim et al., 2013).  It is well known 

that only certain combinations of ϕ, ψ torsion angles are populated in proteins (Ramakrishnan and 

Ramachandran, 1965) and significant correlations exist between side-chain torsion angle 

probabilities and backbone ϕ, ψ angles (Dunbrack and Karplus, 1993). Including such potentials 

has been shown to enable the energy function to exclude conformations that have unlikely 

combinations of torsion angles. In a study by Kocher et al. (Kocher et al., 1994) where several 

types of potentials were tested to recognize protein native folds, potentials representing backbone 

torsion angle preferences recognized as many as 68 protein chains out of a total of 74. This result 

was striking given the fact that  backbone torsion potentials consider solely local interactions along 

the chain and are well known to be incapable of determining the full 3D fold (Kocher et al., 1994). 

Potentials of torsion angles have also been used to refine structures generated from NMR data 

(Kuszewski et al., 1996, Yang et al., 2012). Kuszewski et al. (Kuszewski et al., 1996) incorporated 

a database-derived torsion angle potential into the target function for NMR structure refinement, 

resulting in a significant improvement in various quantitative measures of quality (Ramachandran 

plot, side-chain torsion angles, and overall packing. In a similar way, Yang et al. (Yang et al., 

2012) constructed a database of 2405 refined NMR structures. 

I-4 Improving sampling and scoring with restraints 

Due to their intrinsic inaccuracies, a common issue with energy functions is that incorrect 

conformations may be scored comparably to (or even better than) the native state (Skolnick, 2006), 

lending the energy function inability to recognize the native state (Figure 6(A)). This issue be 

remedied by incorporating sparse experimental data as restraints, which offers some structural 
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information that by itself is insufficient to completely determine the protein’s structure (Figure I-6 

(B), (C)). 

 

Figure I-6 Cooperative effects of energy functions and sparse restraints on a hypothetical protein 

(A) the energy function has two comparable minima, lending itself the inability to tell decoy D1 from the native state 

N; (B) a scenario where decoy D1 violates some restraints and is thus penalized by the restraint score. However, as 

sparse restraints by themselves are insufficient to completely determine the protein’s structure, there exists decoys, 

such as D2, that satisfy the restraints as well as the native state N does; (C) Adding a restraint score to the energy 

function results in what’s called a pseudo-energy function which, in an ideal scenario, would be able to tell decoys 

apart from the native state; (D) the real free energy surface of the protein. 

I-4.1 Sparse experimental data as restraints 

Restraints from sparse experimental data drastically decrease the conformational space that needs 

to be sampled to only those structures consistent with the data. Many software suites implement 

algorithms to couple their de novo prediction methods with limited experimental data, including 
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those from nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), cross 

linking mass spectrometry (XL-MS), and electron microscopy (EM). 

NMR rivals X-ray crystallography as a technique by which an entire protein structure can be 

unambiguously determined. Solution-state NMR can determine the structure of relatively small 

proteins (< ~ 20 kDa), but intensive experimental techniques and analysis of NMR spectra are 

required to determine a high-quality structure of a protein. Each residue typically requires upwards 

of 15 constraints. Oftentimes, NMR spectroscopy can provide some degree of low-resolution 

information about the global conformation of a protein, even for larger proteins (Venters et al., 

1995, Battiste and Wagner, 2000). These sparse restraints, including chemical shifts (CSs), 

Nuclear Overhauser Enhancements (NOEs), and residual dipolar couplings (RDCs), do not 

provide enough information to fully determine the structure of a protein, but they can be used in 

conjunction with computational protein structure prediction software. CSs provide information 

about the protein backbone conformation, while NOEs and RDCs give information about the 

global fold of the protein. De novo protein structure prediction software can take advantage of just 

CSs (Latek et al., 2007), CSs and NOEs (Bowers, 2000), or all three types of restraints (Weiner et 

al., 2014).  

Site-directed spin labeling (SDSL) and EPR can be used to glean information about proteins 

of nearly any size in their native environments. In addition, only a small amount of sample is 

required for structural interrogation by EPR. The accessibility and mobility of the spin labels can 

be used to determine the exposure and topology of SSEs (Farahbakhsh et al., 1992, Altenbach et 

al., 2005). Distances between spin labels can be detected up to 60 Å, and can give insight into the 

overall fold of the protein as well as different conformational states (Rabenstein and Shin, 1995, 

Borbat et al., 2002). However, it is not feasible to use EPR to determine the full structure of a 

protein. EPR is experimentally intensive, as it requires the introduction of unpaired electrons at 

selected sites within proteins. This is usually done by cysteine substitution mutagenesis followed 

by modification of the sulfhydryl group with a nitroxide reagent. However, nonsense suppressor 

methodology, solid-phase peptide synthesis, or “click-chemistry” have also been used (Klare and 

Steinhoff, 2009). This technique will only give a small part of structural information about the 

protein, so these sparse EPR data can be used in conjunction with computational protein structure 

prediction methods (Alexander et al., 2008, Hirst et al., 2011, Fischer et al., 2015). The selection 
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of sites to spin label is integral to the efficacy of structure determination by EPR (Alexander et al., 

2008).  

Similarly, XL-MS experiments can be used to determine inter-atomic distances that serve as 

experimental restraints. XL-MS can be used with proteins in their native states, and it has proven 

to be compatible with relatively large proteins, flexible proteins, and membrane proteins (Kalkhof 

et al., 2005, Jacobsen et al., 2006, Lasker et al., 2012). In addition, the samples used can be 

heterogeneous and dynamic, as the output of XL-MS experiments is an average. The basis of XL-

MS is the ability of two functional groups of a protein to form covalent bonds if they are within a 

certain distance of one another. These cross links can occur both inter- and intramolecularly. The 

proteins are then enzymatically digested, and MS is used to identify these cross links and surface 

labels (Young et al., 2000, Back et al., 2003, Sinz, 2003). 

EM provides data similar in format to that of X-ray crystallography, that is, a density map of 

a protein or complex. The data are thus less sparse than many of the aforementioned experimental 

techniques, but EM has historically provided lower-resolution density maps, from which an atomic 

structure cannot be gleaned. However, even low-resolution EM density maps are integral for 

identifying the overall organization of large molecular complexes. In recent years, EM 

technologies have progressed such that density maps with resolutions in the range of 4 – 8 Å can 

regularly be attained, at which level SSEs can be visualized and even some side chain character 

can be visualized (Bihnstein, 2015). Many computational modeling methods have been developed 

that work with EM density maps (Lindert et al., 2009b), either in fitting previously solved 

structures into density maps, determining the topology and location of SSEs (Jiang et al., 2001, 

Abeysinghe et al., 2008), performing comparative modeling, and de novo protein structure 

prediction (Lindert et al., 2009a, Lindert et al., 2009b, Woetzel et al., 2011, Lindert et al., 2012a, 

Lindert et al., 2012b). 

Most de novo protein structure prediction algorithms require the use of a segmented density 

map, which can be accomplished with the use of various segmentation algorithms (Baker et al., 

2006, Pintilie et al., 2010, Burger V, 2011). Then, SSEs can be extracted from the density map 

either manually or with the use of algorithms that automate the selection of helices and/or sheets 

from a segmented density map (Jiang et al., 2001, Kong and Ma, 2003, Kong et al., 2004, Baker 

et al., 2007). Next, de novo modeling algorithms can use these data with the density map and 
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primary sequence of the protein in order to create a full structural model either via optimization 

(Chen et al., 2016) or using Monte Carlo methods (Lindert et al., 2009a, Lindert et al., 2012a, 

Wang et al., 2015). 

I-4.2 Predicted contacts as restraints 

If no experimental restraints are available for the protein, secondary and tertiary structural 

restraints can be predicted from an amino acid sequence based on existing structures. Secondary 

structures can be predicted using machine learning methods. Artificial neural networks (ANNs) 

can be used to predict secondary structures from position-specific scoring matrices (Jones, 1999, 

Yan et al., 2013), reduced amino acid representation (Leman et al., 2013), or multiple sequence 

alignments (MSAs) (Rost and Sander, 1993, Rost et al., 1993). Methods have also been developed 

specifically to predict membrane protein topology from amino acid sequence using ANNs 

(Viklund et al., 2008, Viklund and Elofsson, 2008, Leman et al., 2013), support vector machines 

(SVMs) (Nugent and Jones, 2009), or Hidden Markov Models (HMMs) (Krogh et al., 2001, 

Kahsay et al., 2005).  

It is a long-standing observation that 3D protein folds can be predicted from sufficient 

information regarding the protein’s inter-residue contacts (Göbel et al., 1994, Olmea and Valencia, 

1997, de Juan et al., 2013); the addition of even relatively sparse information about tertiary 

contacts into an algorithm’s scoring function can help improve protein models (Kim et al., 2014). 

Recently, the incorporation of long range contact predictions has resulted in some of the the most 

effective de novo protein structure prediction algorithms (Monastyrskyy et al., 2015, Moult et al., 

2016). Several algorithms have been devised to predict these contacts using the principle of 

correlated mutations (de Juan et al., 2013). In general, amino acid contacts that stabilize the protein 

fold are assumed to evolve complementarily – if one residue of a contact is mutated, the other will 

likely also mutate to a reasonable interaction partner.  

In order to identify pairs of correlated mutations, amino acid pairs can be scored based on 

their physicochemical similarity using the McLachlan matrix (McLachlan, 1971), which is based 

on the frequencies of observed mutations in homologous proteins. Correlated mutations can also 

be scored by mutual information between MSAs based on the equation 
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𝐼 =  ∑𝑓(𝑎𝑖𝑏𝑗) log
𝑓(𝑎𝑖𝑏𝑗)

𝑓(𝑎𝑖)𝑓(𝑏𝑗)𝑎𝑏

 I-8 

The above equation indicates that the mutual information between two protein sites i and j is 

computed by summing over amino acid pairs ab for every amino acid type a and b, where 𝑓(𝑎𝑖𝑏𝑗) 

is the observed relative frequency of ab at columns ij and 𝑓(𝑎𝑖) is the observed relative frequency 

of amino acid type a at position i. The identification of these correlated mutations is used in many 

methods of multiple sequence alignment (Göbel et al., 1994, Neher, 1994, Pollock and Taylor, 

1997, Ashkenazy and Kliger, 2010, Hopf et al., 2014), from which tertiary contact predictions can 

be extrapolated. 

In recent years, numerous algorithms have come out that account for covariance caused by 

indirect inter-residue coupling effects, which has led to improvement in prediction of correlated 

mutations (Burger and van Nimwegen, 2010, Marks et al., 2011, Morcos et al., 2011, Jones et al., 

2012, Marks et al., 2012, Kamisetty et al., 2013, Skwark et al., 2013, Ekeberg et al., 2014, Hopf 

et al., 2014, Kaján et al., 2014, Michel et al., 2014, Ovchinnikov et al., 2014, Skwark et al., 2014, 

Jones et al., 2015). These methods were developed to resolve the issue that two residues aligned 

in multiple sequence alignments may exhibit statistical dependencies even though they are distant 

in physical space, which usually arises from chains of interacting pairs of residues. Also, 

information regarding the conservation of certain residues regardless of their tertiary contacts must 

be considered for correlated mutations to properly represent actual 3D contacts. Many methods 

have been devised that decouple direct from indirect residue coevolution, primarily based on 

statistical methods. Covariation-based contact prediction has also proven successful as a scoring 

metric for de novo folding (Morcos et al., 2011, Kamisetty et al., 2013).  

Machine learning methods, including ANNs (Fariselli and Casadio, 1999, Fariselli et al., 

2001, Shackelford and Karplus, 2007, Tegge et al., 2009, Xue et al., 2009), genetic algorithms 

(MacCallum, 2004, Chen and Li, 2010), random forests (Li et al., 2011), HMMs (Bjorkholm et 

al., 2009, Lippi and Frasconi, 2009), and SVMs (Cheng and Baldi, 2007, Wu and Zhang, 2008), 

have also arisen as successful methods to predict 3D contacts. These methods use various features 

to predict contact maps. Some of the most successful of these machine learning methods for contact 

prediction are hybrid methods that predict contacts based on both physicochemical features and 



41 

  

evolutionary features, using MSAs as part of their training data sets (Wallner and Elofsson, 2006, 

Stout et al., 2008, Ma et al., 2013, Kosciolek and Jones, 2015). 

I-5 Examples of methods for de novo tertiary structure prediction 

Protein structure prediction methods can be broadly grouped into template-based modeling, where 

construction of target models involves threading the target sequence through the structure of 

homologous proteins (templates), and de novo structure prediction, where target models are 

constructed from sequence alone, without relying on similarity at fold level between the target 

sequence and any of the known structures (Baker and Sali, 2001, Bonneau and Baker, 2001, Hardin 

et al., 2002, Lee et al., 2009). Template-based modeling is based on the premise that tertiary 

structures of proteins in the same family are more conserved than their primary sequences (Chothia 

and Lesk, 1986, Fiser et al., 2002, Illergard et al., 2009). While it can produce accurate models for 

target sequences if templates with sequence identity > 25% are used (Cavasotto and Phatak, 2009) 

and can be practically useful (Xiong et al., 2011, Zhan et al., 2011, Li et al., 2012), it is 

nevertheless purely mechanical in that it does not provide a general understanding of the role of 

particular interactions in maintaining the stability of protein structure (Baker and Sali, 2001, 

Cavasotto and Phatak, 2009). Thus, one could not gain insights into the physicochemical principles 

underlying protein folding (Pillardy et al., 2001, Lee et al., 2009). On the contrary, de novo 

methods sample and energy-evaluate the folded conformations as thoroughly as computational 

resource permits, and they assume the native conformation is the one with the lowest energy. 

Logically, two of the most crucial factors that dictate whether a de novo tertiary structure prediction 

method will be successful are its coverage of the conformational space and how accurate its energy 

function is. In this section, we discuss in detail some selected examples of de novo tertiary structure 

prediction methods and highlight some successful cases from the history of CASP (Figure I-7). 

Note that this selected set of methods is by no means exhaustive. The interested reader is referred 

to proceedings of CASP experiments (http://predictioncenter.org/index.cgi?page=proceedings), which 

cover a wider spectrum of methods and in more detail. 

http://predictioncenter.org/index.cgi?page=proceedings
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Figure I-7 Highlights of de novo structure prediction in CASP experiments 

Predicted structure models (rainbow) are superimposed with the crystal structures (gray). (A) Rosetta-predicted 

structure model superimposed with a crystal structure (PDB code: 1whz) of CASP6 target T0281, hypothetical protein 

from Thermus thermophilus Hb8. This model is astonishingly close to the crystal structure, with a Cα-RMSD of 1.6 

Å. (B) I-TASSER-predicted structure model superimposed with a crystal structure (PDB code: 4dkc) for the CASP10 

ROLL target R0007, interleukin-34 protein from Homo sapiens. (C) Superposition of a QUARK-predicted structure 

model with a crystal structure (PDB code: 5tf3) of the CASP11 target T0837, hypothetical protein YPO2654 from 

Yersinia pestis. This model has a Cα-RMSD of 2.9 Å from the crystal structure. (D) Superposition of a BCL::Fold-

predicted structure model with a solution NMR structure (PDB code: 2mq8) of CASP11 target T0769, a de novo 

designed protein LFR11 with ferredoxin fold. While this target is in the category template-based modeling, BCL::Fold 

assembled models for it without relying on any homologous templates. 
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I-5.1 FRAGFOLD 

FRAGFOLD was developed based on the rationale that proteins tend to have common structural 

motifs at the super-secondary structural level (Jones, 1997b, Jones, 2001, Jones and McGuffin, 

2003). In FRAGFOLD, 3D models are built by assembling super-secondary structural fragments 

from a library of highly resolved protein structures with MC simulated annealing and evaluated 

with a knowledge-based energy function. FRAGFOLD was initially tested in CASP2 (Jones, 

1997b), and later in CASP4 (Jones, 2001) and CASP5 (Jones and McGuffin, 2003). Its success in 

predicting the fold of NK-Lysin marked the first correct de novo blind prediction of a protein’s 

fold (Jones, 1997b). 

The super-secondary structural fragments considered by FRAGFOLD include α-hairpin, α-

corner, β-hairpin, β-corner, β-α-β unit, and split β-α-β unit. Favorable super-secondary structural 

fragments are selected based on the quality of threading. Threads that contradict the reliable 

regions of predicted secondary structure by PSIPRED (Jones, 1999) are skipped. In addition to 

this sequence-specific fragment list, a general fragment list that consists of all tripeptide, 

tetrapeptide, and pentapeptide fragments is also constructed from a library of highly resolved 

protein structures. The knowledge-based energy function in FRAGFOLD initially consists of a set 

of pairwise potentials, a solvation potential, a term for penalizing non-compact folds, a term for 

penalizing steric clashes, and a term that accounts for hydrogen-bonding (Jones, 1997b). This 

energy function was recently complemented with predicted contacts as restraints (Kosciolek and 

Jones, 2014). Kosciolek and coworkers (Kosciolek and Jones, 2014) found that combining 

statistical potentials with contacts predicted by PSICOV(Jones et al., 2012) is significantly better 

than either statistical potentials or predicted contacts alone. 

I-5.2 Rosetta 

The Rosetta algorithm for de novo protein structure prediction employs MC simulated annealing 

to assemble protein-like 3D models from fragments of unrelated protein structures with similar 

local sequences using an energy function based on Bayes’ theorem (Simons et al., 1997, Rohl et 

al., 2004). The algorithm is based on the experimental observation that local sequence preferences 

bias, but do not uniquely determine, the local structure of a protein (Rohl et al., 2004). Rosetta has 

turned out to be one of the most successful methods indicated by results from CASP experiments 
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(Bradley et al., 2003, Bradley et al., 2005a, Jauch et al., 2007) and several other studies (Bradley 

et al., 2005b, Ovchinnikov et al., 2017) (see Figure I-7(A) for an example). 

Model construction in Rosetta is performed via a sequence of fundamental conformation 

modification operations termed “fragment insertion”. For each fragment insertion, a sequence 

segment of three or nine residues is selected, and the torsion angles of these residues are replaced 

with the torsion angles of a homologous fragment selected from a ranked list of fragments of 

known structure (Simons et al., 1997). Fragment insertions that decrease the energy of the resulting 

conformation are accepted and those that increase the energy are accepted according to the 

Metropolis criterion (Metropolis et al., 1953).  Derivation of the Rosetta energy function was based 

on a Bayesian separation of the total energy into components that describe the likelihood of a 

particular structure, independent of sequence, and those that describe the fitness of the sequence 

given a particular structure (Simons et al., 1997). 

𝑃(𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒|𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒) =
𝑃(𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒|𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒)𝑃(𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒)

𝑃(𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒)
 I-9 

The original Rosetta energy function is coarse-grained: terms corresponding to solvation and 

electrostatic effects are based on observed residue distributions derived from known protein 

structure databases, and hydrogen bonding is not explicitly described. However, preferences of β-

strand pairing geometries and β-sheet patterns are included. Steric clashes are penalized, while van 

der Waals interactions are not explicitly modeled. A more physically realistic, atomic-level energy 

function was developed later for applications requiring more detailed structurally information. In 

this “fine-grained” version of the energy function, van der Waals interactions are modeled with a 

6-12 Lennard-Jones potential. Solvation effects are included, using the Lazaridis-Karplus model 

(Lazaridis and Karplus, 1999), and hydrogen-bonding is explicitly accounted for using a secondary 

structure- and orientation-dependent potential derived from high-resolution protein structures 

(Kortemme et al., 2003). Energetics of local interactions are described using an amino acid- and 

secondary structure-dependent potential for backbone torsion angles. The reader is referred to 

reference (Rohl et al., 2004) for a more mathematically detailed description of the Rosetta energy 

function. 
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I-5.3 I-TASSER 

Recent CASP experiments have shown significant advantages of integrating various techniques 

such as threading, de novo modeling and atomic-level structure refinement approaches into a single 

pipeline of tertiary structure prediction (Battey et al., 2007, Jauch et al., 2007, Zhang, 2009, Kinch 

et al., 2011, Tai et al., 2014, Kinch et al., 2016). The I-TASSER method,(Wu et al., 2007, Roy et 

al., 2010, Yang et al., 2015) which implements TASSER (Zhang and Skolnick, 2004)  in an 

iterative mode, is one example of the composite approaches. I-TASSER has been particularly 

successful as shown by recent CASP experiments (Zhang, 2009, Roy et al., 2010, Yang et al., 

2015, Zhang et al., 2016) (see Figure I-7(B) for an example). 

I-TASSER uses a sophisticated threading scheme, which compares the target sequence with 

template structures using profile-profile alignment, for selection of the most probable structure 

fragments. Aligned regions of the target sequence are modeled by connecting template fragments 

through a random walk of Cα–Cα bond vectors of variable lengths. Unaligned regions are 

simulated on a cubic lattice system for computational efficiency. Initial full-length coarse-grained 

models are refined via REMC simulation where two kinds of moves are implemented: off-lattice 

rigid fragment translations and rotations of the aligned regions and on-lattice 2–6 bond movements 

and multi-bond sequence shifts of unaligned regions (Zhang and Skolnick, 2004). The models of 

the first-round TASSER simulation are clustered and the cluster centroids are submitted to a 

second-round TASSER simulation to remove physically unrealistic interactions. Finally, backbone 

atoms and sidechain rotamers are added to the model with the lowest energy from the second round 

(Wu et al., 2007). The energy function of I-TASSER includes the original TASSER knowledge-

based potential and a new burial potential based on neural network-predicted accessible surface 

area (ASA) (Wu et al., 2007). The original TASSER potential consists of long-range pair 

interactions of sidechain centers of mass, local Cα correlations, hydrogen-bond, hydrophobic 

burial interactions, propensities for predicted secondary structures, protein specific pair potentials 

of sidechain centers of mass, and tertiary contact restraints extracted from the threading templates 

(Zhang et al., 2003).  

I-5.4 QUARK 

QUARK is an algorithm for de novo protein structure prediction using REMC simulations guided 

by a consensus knowledge-based energy function. In contrast with Rosetta and I-TASSER that 



46 

  

assemble fragments of fixed sizes, QUARK assembles 3D models from small structure fragments 

of multiple sizes from 1 to 20 residues. To increase the structural flexibility and the efficiency of 

conformational search, QUARK also implements a set of MC moves consisting of free-chain 

constructions and fragment substitutions between decoy and fragment structures (Xu and Zhang, 

2012). The QUARK algorithm has been shown to be highly successful in recent CASP 

experiments (Xu and Zhang, 2012, Zhang et al., 2016) (see Figure I-7(C) for an example). 

QUARK generates structure fragments for target sequences by threading sequence segments 

through a library of non-homologous experimental structures. Multiple features such as solvent 

accessibility, real-value ϕ and ψ angles, and secondary structure types as predicted from back-

propagation neural networks are used to improve generation of structure fragments. Optimization 

of 3D models is performed via REMC simulations that start with initial models assembled by 

chaining randomly selected fragments with varied sizes. Conformational sampling of each replica 

is done through residue-level, segment-level, and topology-level movements. After each running 

cycle, the conformations between every two adjacent replicas are exchanged according to the 

Metropolis criterion (Metropolis et al., 1953). Protein structure models built by QUARK are 

evaluated by a composite knowledge-based energy function consisting of atomic-level pair 

potentials, hydrogen-bonding potential, SSE packing potentials, heuristic terms that account for 

excluded volumes, solvent accessibility, and radius of gyration (Xu and Zhang, 2012). 

I-5.5 BCL::Fold 

The BCL::Fold algorithm developed in our group seeks to overcome the limitations of protein size 

and fold complexity by assembling idealized SSEs (secondary structure elements) into 3D models. 

This algorithm was developed under the framework model of protein folding. As discussed 

previously, while the framework model is not always true, it is straightforward to implement. In 

addition, as shown by our benchmark study (Karakas et al., 2012, Weiner et al., 2013), BCL::Fold 

facilitates the sampling of non-local contacts. Thus, BCL::Fold may be a promising tool for 

structure prediction of proteins with high contact order (Plaxco et al., 1998, Baker, 2000, Bonneau 

et al., 2002). It’s also worth mentioning, that in contrast to the other four methods, which heavily 

reply on the availability of homologous template structural fragments (short or long), BCL::Fold 

is “truly” de novo in the sense that no template structure is needed at any stage of the algorithm. 

While BCL::Fold was not ranked among the most successful methods, we would still like to 
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highlight the CASP11 target T0769. While this protein is in the category of template-based 

modeling, meaning that a suitable template can be identified that covers all or nearly all of the 

target, BCL::Fold predicted a model with  a Cα-RMSD of 1.8 Å to the released solution NMR 

structure without relying on any homologous templates (Fischer et al., 2016) (Figure I-7(D)). 

In BCL::Fold, the necessary complexity reduction of the conformational space is achieved by 

assembling SSEs from a predetermined pool of SSEs using MC simulated annealing and omitting 

more flexible loop regions. A high-quality pool of SSEs can be readily created using machine 

learning-based secondary structure prediction methods such as PSIPRED (Jones, 1999). 

BCL::Fold implements a comprehensive list of SSE-based MC moves, which are categorized into 

six main categories: adding SSEs, removing SSEs, swapping SSEs, single SSE moves, SSE-pair 

moves, and moving domains consisting of multiple SSEs (Karakas et al., 2012). Models generated 

by BCL::Fold are evaluated by a knowledge-based consensus energy function called BCL::Score 

(Woetzel et al., 2012), which consists of potentials of residue pair interaction, residue 

environment, SSE packing, β-strand pairing, loop length, radius of gyration, contact order, 

secondary structure prediction agreement. Separate penalizing energy terms were also included to 

exclude conformations with clashes between amino acids or SSEs and loops that cannot be closed 

(Woetzel et al., 2012). BCL::Score can also be complemented with experimental or predicted 

restraints to improve selection of native-like models (Weiner et al., 2014, Fischer et al., 2015, Li 

et al., 2017a). 

I-6 Outlook 

In the past decade, we’ve seen hardware and algorithmic advances that enabled researchers to 

perform millisecond timescale simulations of protein folding, and we’ve also seen development of 

methodologies that predicted tertiary structure with better accuracy for proteins with larger size. 

Despite these achievements, there is still a long list of challenges on the way toward a solution to 

the protein folding problem. 

On the folding mechanism side, even though long simulations have been available, 

unambiguous scientific results learned from such simulations have thus far been modest (Lane et 

al., 2013). First, it is still being debated whether proteins fold via a single definite pathway or 

multiple parallel pathways. Although both views have received support from simulations and 

experiments (Englander and Mayne, 2014, Wolynes, 2015), additional simulations with more 
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robust trajectory analysis and experimental validation are required to disambiguate conflicting 

results. Second, realistic folding simulations have thus far been limited to small proteins (< 100 

residues), it is questionable whether folding mechanisms revealed by these simulations are 

generalizable to larger proteins. Thus, simulating the folding of larger proteins will likely be a 

major trend for the next decade. Finally, as far as we are aware, a theory that is quantitative and 

makes specific prediction about how a protein would fold isn’t yet available. The somewhat 

loosely defined models of hierarchical (framework) folding, nucleation-condensation, and foldons 

are difficult to validate or invalidate either by experiments or simulations. Nevertheless, closer 

interaction between simulations and experiments such that simulations be tested by experiments 

and in turn aid in the interpretation of experimental results and guide the design of future 

experiments will have greater impact on the field. 

On the structure prediction side, larger proteins, especially those with multi-domains, stay a 

significant challenge to de novo structure prediction methodologies. These proteins are often 

characterized by their high contact order and long folding time (Plaxco et al., 1998, Paci et al., 

2005). Conformational sampling of these proteins is usually inefficient and is complicated not only 

by protein size, but also by the considerable number of non-local contacts, which are formed by 

residues far apart in sequence but usually critical for structural stability (Moult, 2005, Kim et al., 

2009). Consequently, tools for de novo structure prediction are not likely to become practically 

useful for structure prediction for any but very small, sometimes medium-sized proteins (Jones, 

1997a, Baker and Sali, 2001). Other challenging targets, especially for methods whose energy 

functions heavily rely on statistics extracted from known structures, may also include proteins with 

rare and unusual folds (Kinch et al., 2016). Accurate prediction of tertiary structure for these 

challenging targets certainly requires the joined forces of high-performance hardware, efficient 

algorithms for conformational sampling, accurate energy functions, and, last but not least, valuable 

experimental restraints.  
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II. ACCURATE PREDICTION OF CONTACT NUMBERS FOR MULTI-SPANNING 

HELICAL MEMBRANE PROTEINS 

This chapter has been published under (Li et al., 2016). 

II-1 Introduction 

Helical membrane proteins (HMPs) play essential roles in various biological processes, including 

signal transduction, ionic and molecular transportation across the membrane, and energy 

generation. Due to their pharmacological relevance, about 50% of drugs on the market target 

HMPs (Overington et al., 2006). It was estimated that HMPs constitute about 20% to 30% of the 

human genome (Krogh et al., 2001). In spite of their prevalence in the genome, a very small portion 

of structures in the Protein Databank is HMPs due to the experimental difficulties in determining 

structures of HMPs. Therefore, accurate and efficient computational methods would be valuable 

tools to complement existing experimental techniques. One of the challenges in computational 

prediction of three-dimensional (3D) structure of HMPs is to predict helix-helix packing in which 

a transmembrane helix (TMH) either faces the lipids or is buried in the protein core. Knowing a 

priori whether an amino acid residue is exposed to the membrane lipid or buried inside the protein 

core provides valuable restraint information that can be incorporated to reduce the sampling space 

of helix-helix packing. As an intermediate step to the prediction of 3D structure of HMPs, it is 

worthwhile to develop reliable methods for predicting residue exposure. 

Solvent accessibility is the most commonly used structural feature for characterizing the 

exposure environment of a residue (Lee and Richards, 1971). However, the applicability of solvent 

accessibility in helix-helix packing, or de novo 3D structure prediction, where an astronomical 

conformational space needs to be sampled is limited. Accurate computation of solvent accessibility 

needs full-atom representation of amino acid side chains. Therefore, it is computationally 

demanding. Residue weighted contact number (WCN), defined as the number of contacting 

residues of the residue of interest is another structural feature that reflects the exposure of a residue 

(Dill, 1999, Echave et al., 2016). Computation of WCN does not require a full-atom representation 

of amino acid side chains and is numerically fast. Thus, WCN is more suitable for being 

incorporated into 3D structure prediction either in the form of restraints or knowledge-based 

potential. In addition, as WCN is negatively correlated with solvent accessibility (Durham et al., 

2009), it may as well be useful for addressing a spectrum of biological problems in which solvent 
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accessibility has been applied, such as epitope mapping (Haste Andersen et al., 2006), hot spots 

detection (Martins et al., 2014, Munteanu et al., 2015), understanding of protein-protein 

interactions (Jones and Thornton, 1997b, Jones and Thornton, 1997a, Marsh and Teichmann, 

2011), model quality assessment (Phatak et al., 2011), and modeling of amino acid residue side-

chain conformation (Eyal et al., 2004). 

Traditionally, prediction of WCN is treated as a two-state (higher or lower than the average 

WCN) or three-state (much higher, much lower, or close to average WCN) classification problem 

(Fariselli and Casadio, 2000, Pollastri et al., 2001, Pollastri et al., 2002). However, the 

applicability of classification approach is limited as it is difficult to use discrete exposure status 

for scoring in 3D structure prediction. Furthermore, subdividing residues into different states 

requires an arbitrary selection of a specific WCN as a cutoff. Therefore, real-value predictions 

should be preferred (Ahmad et al., 2003). The problem of predicting WCNs for soluble proteins 

has been studied for more than a decade and promising results have been achieved (Kinjo et al., 

2005, Yuan, 2005). Even though a few attempts have been made to predict the burial status or real-

value solvent accessibility of TMH residues (Beuming and Weinstein, 2004, Yuan et al., 2006, 

Park et al., 2007, Illergard et al., 2010), given the fact that 3D structures of HMPs have long been 

desirably pursued, it is remarkable to notice that no work has been reported on predicting WCNs 

for HMPs.  

Here, we present a dropout neural network-based method, termed TMH-Expo, for predicting 

WCNs for HMPs. We first curated a large non-redundant data set of HMPs with known structure 

based on which experimental WCNs were computed. Thereafter, we examined a set of feature 

vectors containing local sequence or evolutionary information for WCN prediction. Subsequently, 

a detailed analysis of the performance of TMH-Expo was conducted. Finally, we showed that 

predicted WCN reveals exposure patterns of TMHs and discussed the application of predicted 

WCN to 3D structure prediction and protein-protein docking. 

II-2 Methods  

II-2.1 Generation of data set 

The data set of HMPs with known structures used in the current study was retrieved from the OPM 

(Orientation of Proteins in the Membrane) database (Lomize et al., 2006). Peripheral HMPs and 

peptides were removed to obtain a set of "true" HMPs. A further refinement was carried out by 
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removing thylakoid HMPs as they have extreme topological complexity (Dekker and Boekema, 

2005). The protein culling server PISCES (Wang and Dunbrack, 2003) was used to obtain a list of 

HMP chains that have a sequence length between 40 and 10000 residues, and pair-wise sequence 

identity of 25% or less. Non-X-ray structures, Cα-only structures, as well as X-ray structures with 

a resolution of > 3.0 Å or an R-factor > 0.3 were excluded. This culminated the final data set that 

consisted of 90 chains from 71 proteins from 33 OPM superfamilies for training the TMH-Expo. 

The complete list of protein chains used in this study can be found in Table A-1 in the 

APPENDICES. The transmembrane region for each protein chain was provided by OPM. The 

membrane normal aligns with the z-axis and the membrane center is positioned at z = 0. Secondary 

structure was assigned to each chain from the consensus identification of DSSP (Kabsch and 

Sander, 1983), Stride (Heinig and Frishman, 2004), and PALSSE (Majumdar et al., 2005). A 

residue is considered as a TMH residue if it sits inside the membrane and the residue is part of a 

helical conformation.  

II-2.2 Computation of WCN 

The WCN of a residue 𝑖 was originally defined as the number of Cα atoms of other residues within 

the sphere of radius 𝑑 centered at the Cα atom of residue 𝑖 (Nishikawa and Ooi, 1986). While this 

definition is straightforward, it has the disadvantage that each residue within the sphere is assigned 

an equal contribution to the total WCN. This is physically unrealistic because both van der Waals 

and electrostatic interactions are distance-dependent. To achieve a more physical approximation, 

we used a refined algorithm developed for WCN computation (Durham et al., 2009). This 

algorithm is similar to that of Kinjo et al. (Kinjo et al., 2005) where Cβ atoms are used instead of 

the Cα atom and the boundary of the sphere is smoothened. Contribution to the total WCN is 

assigned to each residue inside the sphere in a distance-dependent way such that short-range 

contacting residues have higher contribution than long-range contacting ones (Kinjo et al., 2005). 

Residues whose Cβ atom is within 4.0 Å to the Cβ atom of the residue of interest are assigned a 

weight of 1.0; those with a distance longer than 11.4 Å are assigned a weight of 0. Any residue in 

between is assigned a weight between 0.0 and 1.0 according to a smooth transition function. This 

scheme can be summarized into the following function: 
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𝑤𝑖𝑗 =
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 II-1 

where wij is the contribution made by residue j to the total WCN of residue i, dij is the distance 

between the Cβ atoms of residue i and residue j, l is the lower bound of dij within which wij = 1.0, 

and u is the upper bound of dij beyond which wij = 0. For glycine, Hα2 is used in place of Cβ atom. 

The lower and upper bound are optimized values such that the correlation between WCN and the 

solvent accessible surface area (SASA) is maximized. Only residues separated by more than three 

residues along the sequence are considered in the calculation to reduce the bias due to sequence 

proximity. The total contact number of residue i was computed by summing up wij over the entire 

protein: 

𝑊𝐶𝑁𝑖 = ∑ 𝑤𝑖𝑗

𝑛

𝑗∈|𝑗−𝑖|>3

 II-2 

where n is the length of the protein chain for computing monomeric WCN or the total number of 

residues in the protein for computing oligomeric WCN. All non-protein molecules were removed 

before computing WCNs. Non-protein molecules such as coenzymes, ligands, and internal waters 

play important roles for the function of membrane proteins. However, the biochemical identity of 

the interface between these molecules and membrane proteins requires detailed analysis and is 

beyond the scope of this study.  

II-2.3 Computation of relative solvent accessibility 

The relative solvent accessibility (RSA) of a residue was computed as the ratio between the 

absolute solvent accessibility (ASA) observed in the native structure and that in an extended 

tripeptide conformation (A-X-A). The ASA values were computed based on the oligomeric states 

provided by OPM using DSSP with a probe radius of 1.4 Å (Kabsch and Sander, 1983) as with 

previous studies (Pollastri et al., 2002, Ahmad et al., 2003, Chang et al., 2008, Petersen et al., 

2009). No further exploration on probe sizes was conducted because it has been shown that probe 

size has little or no effect on the performance of RSA predictors (Illergard et al., 2010). The ASA 
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value of each amino acid type in an extended tripeptide conformation was adopted from a similar 

study (Ahmad et al., 2003).  

II-2.4 Computation of feature vectors 

The multiple sequence alignment (MSA) for each protein sequence in the data set was obtained by 

searching the UniRef50 (Suzek et al., 2007) non-redundant sequence database with PSI-BLAST 

for five iterations (Altschul et al., 1997). The E-value inclusion threshold was set to 0.01. Floating 

point-valued position-specific scoring matrix (PSSM, see Figure A-1 in APPENDICES for an 

example of PSSM) were generated from PSI-BLAST checkpoint files using the source code 

(chkparse.c) adapted from PSIPRED (McGuffin et al., 2000). Floating point-valued PSSM was 

preferred over integer-valued PSSM as the former provides higher precision. PSSM is an L × 20 

matrix where L denotes sequence length. For each sequence position i, there are 20 entries, each 

corresponding to the score of one of the 20 naturally occurring amino acid. The BLAST probability 

profile (BPP) for amino acid j at sequence position i was computed by transforming each PSSM 

entry mij using the following equation: 

𝑝𝑖𝑗 = 
10 

𝑚𝑖𝑗

10

∑ 10 
𝑚𝑖𝑗

1020
𝑗

 II-3 

where j runs from 1 to 20. The variance-based conservation index (CI) 𝐶𝐼𝑖 is one of the commonly 

used conservation indices and is defined by the following formula: 

𝐶𝐼𝑖 = √∑(𝑝𝑖𝑗 − 𝑝𝑗)2
20

𝑗

 II-4 

where the summation is carried out over 20 amino acids, 𝑝𝑖𝑗 is the BLAST probability of amino 

acid 𝑗 at position 𝑖 such that ∑ 𝑝𝑖𝑗 = 120
𝑗 , and 𝑝𝑗 is the average BLAST probability of amino acid 

𝑗 and is defined as 
1

𝐿
∑ 𝑝𝑖𝑗
𝐿
𝑖 . The amino acid type at each sequence position is encoded by a vector 

with 20 binary entries (or 20 bits). When considering a window size of w centered at the residue 

whose WCN is to be predicted, the feature vector computed based on PSSM, BPP, or local 
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sequence composition (LSC) has a total of w × 20 components. Whereas the feature vector 

computed based on CI has a total of w × 1 components. 

II-2.5 Training of dropout neural networks with back-propagation of errors 

The support vector machine (SVM) algorithm has been applied to various bioinformatics tasks, 

especially solvent accessibility and WCN prediction (Yuan, 2005, Yuan et al., 2006, Park et al., 

2007, Illergard et al., 2010).  It has the benefit of being less prone to overfitting than neural 

networks. Indeed, our preliminary test showed that neural networks trained without dropout 

(learning rate η = 0.1, momentum factor α = 0.1, number of hidden layer neurons = 64, and number 

of epochs = 500) had a MAE (mean absolute error, see Eq. II-9 for its definition) of 2.70, whereas 

an optimized SVM (radial basis function kernel, γ = 0.025, cost = 0.1) had a MAE of 1.76. 

However, neural networks trained with dropout (learning rate η = 0.1, momentum factor α = 0.1, 

number of hidden layer neurons = 64, number of epochs = 500, dropout rate in input layer = 0.05, 

and dropout rate in output layer = 0.5) had a MAE of 1.69. As dropout neural networks had a 

smaller MAE, we thus chose dropout neural networks as the learning algorithm in the current 

study. 

The dropout neural networks trained in this study were fully connected three-layer feed-forward 

networks with a sigmoid activation function (Figure II-1(A)). The input layer contained one unit 

for each component in the feature vector. Inputs to the network are either local sequence 

information or evolutionary information derived from PSI-BLAST computed MSAs. The window 

size used for computing feature vectors was set to 15, an optimal value for WCN prediction found 

in our preliminary testing. The output layer was composed of a single node for residue-specific 

WCN or RSA. The hidden layer was composed of 64 neurons. A random of 5% of units in the 

input layer and 50% of neurons in the hidden layer were dropped during each presentation of each 

training case. The networks were trained with resilient back-propagation of errors (Rumelhart et 

al., 1986) with the learning rate η being set to 0.1 and momentum factor α set to 0.1. Weights were 

updated after presentation of each residue to the network. A maximum of 2000 epochs were 

applied.  
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Figure II-1 Training of dropout neural networks with five-fold cross-validation 

(A) Neural network architectures before and after applying dropout (neurons randomly dropped out are crossed); (B) 

five-fold cross-validation training protocol (T: training set, V: validation set).  

II-2.6 Jackknife cross-validation 

A relatively low sequence identity (25%) was used in the current study; however, such low 

sequence identity alone might not be sufficient to exclude homology among protein chains. In fact, 

substantial remote homology could still exist at this level placing HMPs in the same structural 

superfamily (Jaakkola et al., 1999). Such remote homology between proteins in the training set 

and proteins in the validation set for testing the model can lead to an over-optimistic estimate of 

the performance for new folds. As a way of preventing such over-optimism, the data set was 

partitioned such that each OPM superfamily forms its own subset that contains all its members and 

no members from other OPM superfamilies. Cross-validation of the networks was done in a 

jackknife manner with respect to OPM superfamily. Of the 33 OPM superfamilies, one single 

OPM superfamily was withheld as the validation set for evaluating the neural networks, and a five-

fold cross-validation protocol adopted for our transmembrane span and secondary structure 
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prediction algorithm (Leman et al., 2013) was carried out on the remaining 32 superfamilies 

(Figure II-1(B)). This process was then repeated 33 times, with each of the 33 OPM superfamilies 

used exactly once as the validation set. Predictions for the 33 validation sets were combined to 

give the final estimate of the performance of the neural networks. 

II-2.7 Performance measures 

A set of performance measures were adopted to evaluate the performance of the neural networks. 

The primary measure was the Pearson correlation coefficient (PCC) between experimental and 

predicted WCNs and RSA. For a set of n data points (𝑥𝑖 , 𝑦𝑖), the PCC was computed as follows: 

𝑃𝐶𝐶 =  
𝑛 ∑𝑥𝑖𝑦𝑖 − ∑ 𝑥𝑖 ∑𝑦𝑖

√𝑛∑𝑥𝑖
2 − (∑𝑥𝑖)2  √𝑛 ∑𝑦𝑖

2 − (∑𝑦𝑖)2
 

II-5 

For comparing our results to that from previous studies, we incorporated the following measures 

that are commonly used to evaluate classifiers: 

𝑀𝐶𝐶 =  
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)
 II-6 

𝐹𝑃𝑅 = 
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 II-7 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 II-8 

where MCC is the Matthews correlation coefficient (Matthews, 1975), FPR is the false positive 

rate, TP is the number of correctly predicted buried residues, TN is the number of correctly 

predicted exposed residues, FP is the number of incorrectly predicted buried residues, and FN is 

the number of incorrectly predicted exposed residues. The real value WCN and RSA were 

transformed to binary states using the median as a cutoff such that the data set is equally 

partitioned. The mean absolute error (MAE) which is defined as the per-residue absolute difference 

between experimental and predicted WCN and RSA was used to evaluate prediction errors: 
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𝐴𝐸 = 
∑ |𝑣𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 − 𝑣𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|

𝑛
 II-9 

where 𝑣 is either RSA or WCN, n is the total number of residues to be predicted. The summation 

is carried out over all predicted residues. 

II-3 Results and Discussion 

II-3.1 Statistics of the data set 

The repository of HMPs with known structures has expanded tremendously in recent years. It was 

reported that the latest number of unique membrane protein structures deposited in the Protein 

Databank is 535 (http://blanco.biomol.uci.edu/mpstruc/) compared to ~150 back in 2005 (White, 

2004). Curation of a dataset that is representative of the population is an essential step in producing 

a model with high predictive accuracy. We compared the data set used to train TMH-Expo to those 

used in two related works namely ASAPmem (Yuan et al., 2006) and MPRAP (Illergard et al., 

2010). In terms of the size of data sets, the TMH-Expo data set consists of 71 HMPs (90 unique 

chains), significantly larger than the ASAPmem data set (also known as the Beuming-Weinstein or 

BW data set (Beuming and Weinstein, 2004)) which has 28 HMPs (59 unique chains). The 

MPRAP data set has 52 HMPs (80 unique chains). Interestingly, PISCES returned only 34 HMPs 

(60 unique chains) from the MPRAP data set using the same criteria applied to cull the TMH-Expo 

data set.  

Table II-1 lists the frequency, mean WCN, as well as standard deviation of WCN for each 

amino acid residue type. Similar to observations made by Ulmschneider and coworkers 

(Ulmschneider and Sansom, 2001), residues with nonpolar side chain such as Ala, Phe, Ile, Leu, 

and Val are dominantly abundant. In addition, except in the case of Ala, their mean WCNs are not 

significantly higher than that of other amino acid residues. In fact, the mean WCNs for Phe, Ile, 

Leu, and Val are among the lowest, an expected observation given the fact that the membrane 

provides an environment that is more hydrophobic than the protein interior. On the other end, the 

mean WCNs for Ala, Cys, Gly, and Ser are among the highest, suggesting that on average helices 

enriched with these residues are more densely packed. In fact, Ala, Gly, and Ser are known to form 

the sequence motifs of the type AxxxA, GxxxG, and SxxxS that are believed to promote close 

helical packing (Russ and Engelman, 2000). 

http://blanco.biomol.uci.edu/mpstruc/
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Table II-1 Summary of the TMH-Expo data set 

Amino Acid Residue Frequency Mean WCN 
Standard Deviation 

of WCN 

A 1282 12.09 3.12 

C 131 12.46 2.72 

D 93 11.34 2.62 

E 151 11.10 2.51 

F 953 10.58 2.67 

G 1008 12.76 3.15 

H 134 11.31 2.36 

I 1242 10.46 2.68 

K 156 9.22 2.53 

L 1938 10.59 2.63 

M 437 11.65 2.54 

N 204 11.84 2.88 

P 329 10.79 3.23 

Q 161 11.02 2.69 

R 184 9.94 2.57 

S 598 12.20 2.80 

T 604 11.83 2.85 

V 1256 10.91 2.88 

W 323 10.08 2.62 

Y 381 11.02 2.61 

 

II-3.2 Relevance of input features 

The performance of a data-trained machine learning method depends crucially on the judicious 

choice of the feature vector. For solvent accessibility prediction, feature vectors containing 

primary sequence information or evolutionary information have been tested (Ahmad et al., 2003, 

Yuan, 2005, Park et al., 2007, Chang et al., 2008). Four feature vectors: CI, LSC, BPP, and PSSM 

were investigated in this study. CI, BPP, and PSSM can be considered as evolutionary information-

containing feature vectors as they are derived based on MSA, whereas LSC contains purely 

primary sequence information. We initially examined the correlation coefficient of all features 

computed considering a window size of 41 (residues from i – 20 to i + 20, where i is the position 

of the residue of interest, inclusive) with WCNs. This resulted in 41×1, 41×20, 41×20, and 41×20 

entries for feature vector of CI, LSC, BPP, and PSSM respectively (Figure A-1 in APPENDICES). 

Figure II-2 plots the correlation coefficients of entries in each feature vector with WCNs. For 
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sequence-based prediction, it is well known that the use of evolutionary information derived from 

MSA improves prediction performance. In fact, on average CI, BPP, and PSSM show stronger 

correlation with WCNs than local sequence composition does (compare Figure II-2(A), 2(C), 2(D) 

with 2(B)). It is also interesting to note that PSSM generally has more strongly correlated entries 

than either of the other two evolutionary information-containing feature vectors does (compare 

Figure II-2(D) with 2(A) and 2(C)).  

 

Figure II-2 Correlation of features with WCNs 

(A) Correlation of entries in CI feature vector with WCNs; (B) Correlation of entries in LSC feature vector with 

WCNs; (C) Correlation of entries in BPP feature vector with WCNs; (D) Correlation of entries in PSSM feature vector 

with WCNs. Each entry in the feature vector is assigned a feature index sequentially such that it starts with 0 for the 

leftmost residue and ends with 40 (CI) or 820 (other feature vectors) for the rightmost residue (double-headed arrow 

bar). The red arrow from the arrow bar points to the central residue.  
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II-3.3 Choosing the optimal window size 

One further observation made from Figure II-2 is that features computed from neighboring 

residues are substantially correlated with the WCN of the central residue and the correlation is 

dependent on sequence separation. Correlation coefficient decays gradually from very strong at 

the central residue to very weak at a separation of 15 or more residues. This suggests that there 

should be an optimal window size such that the signal-to-noise ratio is maximized. For solvent 

accessibility or WCN prediction, window sizes of 7 (Ahmad et al., 2003), 9 (Illergard et al., 2010), 

11 (Ma and Wang, 2015), 15 (Yuan, 2005, Park et al., 2007), 17 (Lai et al., 2013), and 21 (Kinjo 

et al., 2005) have been used in previous studies. These window sizes are either arbitrarily chosen 

or obtained by optimization over a relatively short range. We tested a wide spectrum of window 

sizes ranging from 1 to 41 with a step size of 2. The input feature vector was the PSSM and the 

architecture of the networks was kept the same across all window sizes. 

 

Figure II-3 Effect of window size on the performance of the neural networks 

(A) Final MAE on validation sets averaged over cross-validated neural networks; (B) MAEs averaged over cross-

validated neural networks as the neural networks were being iteratively trained.  

Figure II-3(A) shows the effect of windows sizes on the performance of the neural networks. 

As window size increases from 1 to 9, the MAE decreases drastically from above 2.0 to below 1.8, 

a trend similar to the observation made by Park et al. (Park et al., 2007). As the window size 

increases from 9 to 15, the MAE follows a decreasing trend that is slight but noticeable. The MAE 

rises gradually as the window size is further extended to beyond 21. Interestingly, the MAEs for 
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window sizes from 15 to 21 remain essentially identical. It was previously proposed that the 

identities of the residues lying just above (i + 4) and below (i – 4) the target residue on the same 

helix face are most indicative of the burial status of the central residue (Park et al., 2007). However, 

our observation suggests that including up to 7 neighboring residues on either side of the central 

residue consistently improves the performance of the neural network. The fact that the MAE 

reaches its lowest value when the window size is 15 is especially intriguing given that heptad 

repeat is one of the signature patterns in helix-helix interactions (Walters and DeGrado, 2006). In 

fact, Adamian et al. developed a highly accurate method for predicting helix-lipid interfaces using 

heptad motifs as a structural template to assign helical faces of each helical residue (Adamian and 

Liang, 2006). However, whether the optimal window size arises from heptad repeat needs further 

investigation. 

II-3.4 Dropout prevents overfitting and improves performance 

Neuronal dropout is a technique developed for addressing the overfitting problem in neural 

networks where a large number of parameters are optimized. The key idea is to randomly drop 

neurons along with their connections from the neural network for each presentation of each training 

case (Figure II-1(A)) (Srivastava et al., 2014). With this training feature, smaller networks are 

sampled from an exponential number of networks. Dropout also prevents hidden neurons from co-

adapting too much, forcing each hidden neuron to build a relatively independent mapping from 

feature space onto output space. At test time, a single network without dropout whose weights are 

multiplied by the probability applied to drop neurons is used (Srivastava et al., 2014). It has been 

demonstrated that dropout reduces overfitting and improves performance of neural networks on 

classification tasks in speech recognition and handwritten digit classification (Krizhevsky et al., 

2012, Deng et al., 2013, Srivastava et al., 2014).  

In order to confirm that dropout reduces overfitting and improves the performance of neural 

networks for WCN prediction, we compared performances of networks trained with and without 

dropout. As shown in Figure II-4, compared to the performance of networks trained with dropout, 

the performance of networks trained without dropout is drastically worse. The MAE for networks 

trained with dropout converges to a value below 1.8 after ~500 epochs of training, whereas the 

MAE for networks trained without dropout reaches its lowest value at slightly above 1.8 after only 

a few epochs of training before it increases almost logarithmically. This observation mirrors the 
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result obtained from applying dropout to speech and image recognition (Srivastava et al., 2014), 

confirming that overfitting of the networks for WCN prediction was prevented and performance 

was improved by using dropout.  

 

Figure II-4 MAE on validation sets for neural networks trained with or without dropout as learning progresses 

II-3.5 Performances of the networks on polytopic HMPs 

In light of the investigation on the effects of window sizes, we first examined the performance of 

the networks for polytopic HMPs using each of the feature vectors separately considering a 

window size of 15. The performance measures of the networks were averaged over the validation 

sets. Table 2 summarizes our findings. When using CI as the feature vector, only a moderate PCC 

of 0.23 was achieved. Switching from CI to LSC increased the performance from PCC = 0.30 to 

PCC = 0.41. Consistent with the previous conclusion that entries in PSSM generally show stronger 

correlation with WCNs, the networks achieved a significantly higher PCC (0.69) with PSSM. It is 

interesting to note that BP gave worse performance (PCC = 0.65) than PSSM despite the fact that 

it is derived from PSSM. The result of MAE mirrors the observation made on PCC with lower 

MAE corresponding to higher PCC. 

Traditionally, prediction of WCN is treated as a classification problem in which a residue is 

categorized as either exposed or buried. It is also interesting to see the performance of the current 

method regarding classification of residue burial status. For computing accuracy and MCC for 

polytopic HMPs, the median WCN 11.44 in the subset of polytopic HMPs was used as the cutoff. 

The cutoff was set in this way so that the data set is class-balanced (the number of exposed residues 

equals that of buried residues) and the accuracy of a classifier that assigns all residues to one 

particular class is at most 50%. As shown in Table II-2, both accuracy and MCC follow the trend 



63 

  

found in the previous section in the sense that PSSM gives the highest accuracy (75.8%) and MCC 

(0.52) whereas CI gives the lowest. The final networks were trained with dropout, using PSSM 

with a window size of 15 as input feature vector. All results and discussions in the rest of the paper 

refer to the final networks. 

Table II-2 Summary of performance measures for WCN prediction 

Feature Vector Size 
MAE PCC Accuracy (%) MCC 

P* B* P B P B P B 

CI 15 × 1 2.33 2.63 0.23 0.33 58.4 50.1 0.18 0.00 

LSC 15 × 20 2.18 2.79 0.41 0.15 63.9 50.1 0.28 0.00 

BPP 15 × 20 1.79 2.62 0.65 0.28 73.1 51.5 0.47 0.05 

PSSM 15 × 20 1.68 2.51 0.69 0.38 75.8 54.2 0.52 0.13 

* P: polytopic, B: bitopic 

II-3.6 WCNs for bitopic HMPs are difficult to predict 

By comparing the performance of the networks on polytopic HMPs to that on bitopic HMPs, we 

observed that the performance on bitopic HMPs are substantially worse (Table II-2 and Figure A-

2 in APPENDICES). The MAE on bitopic HMPs is considerable higher than that on polytopic 

HMPs (2.51 versus 1.68). The PCC, accuracy, and MCC (using a cutoff of 8.50, which is the 

median WCN for bitopic HMPs) on bitopic HMPs are significantly lower than those on polytopic 

HMPs. In fact, 11 out of 12 protein chains with MAE greater than 2.5 are bitopic (Table A-2 in 

APPENDICES). The reason why WCNs for bitopic HMPs are more difficult to predict is still 

unclear. One potential explanation could be that the distribution of WCNs for bitopic HPMs is 

significantly different from that for polytopic HMPs (Figure II-5). Using relative conservation 

analysis, Zviling et al. recently proposed that bitopic HPMs have various interaction modes 

(Zviling et al., 2007). If this is the case, the interaction modes for bitopic HMPs observed in the 

data set might only represent one of multiple possible modes (e.g. the buried face of the helix of a 

bitopic HMP in one complex might be instead the exposed face when being part of another 

complex).  Therefore, WCNs for bitopic HMPs computed based on complex structures observed 

in the current data set might be biased.  
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Figure II-5 Distribution of WCNs of bitopic and polytopic HMPs  

II-3.7 WCNs for highly exposed or buried TMHs are difficult to predict 

One reason why the distribution of WCNs for bitopic HMPs is drastically different from that for 

polytopic HMPs is that most bitopic HMPs are docked to the surface of large HMP complexes, 

leading to fewer interacting TMHs then a TMH at the center of a large HMP. In fact, out of the 20 

bitopic HMPs in the data set, 17 are localized on the surface of a HMP complex. The fact that the 

WCN for bitopic HMPs are difficult to predict poses an interesting question: is it a general feature 

that WCNs for TMHs with fewer interacting TMHs are difficult to predict? In order to answer this 

question, we computed the MAE for each TMH. We also binned TMHs into groups according 

their average WCN, assuming that average WCN is a scaled indicator of the number of interacting 

TMHs. Figure 6 shows that TMHs with very few interacting partners have an increased group-

averaged MAE. Interestingly, Figure II-6 also shows that completely buried TMHs have the 

highest group-averaged MAE.  
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Figure II-6 Group-averaged MAEs for TMHs grouped according to their average WCNs 

The x-axis denotes average WCN of a TMH group. For instance, 10 means the group of TMHs that have average 

WCN between 9 and 10. 

II-3.8 WCNs of extremely exposed or buried residues are difficult to predict 

In addition to the overall performance, the distribution of MAE was analyzed. The positive 

skewness of the unimodal density curve for the distribution MAE (Figure II-7(A)) indicates that 

the model was able to accurately predict WCN for most residues. In fact, 53.5% residues were 

predicted with an absolute error of less than 1.5, 66.6% residues were predicted with an absolute 

error of less than 2. Knowing whether the performance of the networks differs for different ranges 

of WCN is helpful as it indicates how reliable the result is when interpreting a prediction. We 

grouped residues using the same grouping scheme applied in the previous section and computed 

the group-averaged MAEs. Similar to the situation with TMHs, Figure II-7(B) shows that MAE is 

higher toward either end of the residue groups than in the middle. This relationship implies that 

WCNs for residues in the most buried groups (highest WCN) or the most exposed groups (lowest 

WCN) are the most difficult to predict. 
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Figure II-7 Group-averaged MAEs for residues grouped according to their WCNs 

The x-axis denotes the WCN of a residue group. For instance, 10 means the group of residues that have WCN between 

9 and 10. 

II-3.9 Amino acid bias in prediction error 

In order to examine whether there are amino acid types for which the WCN is more difficult to 

predict, we computed the amino acid residue-specific MAEs. Figure II-8(A) shows the MAE for 

each amino acid type. In general, amino acids with charged side chains (Lys, Glu, His, Asp and 

Arg) have lower MAEs than those with uncharged side chains. This is likely because of the fact 

that these charged residues are functionally important and are often employed by membrane 

proteins to bind ligands (Illergard et al., 2011), thus having similar buried states. In fact, the 

standard deviations of WCNs of these charged residues are among the lowest (Table II-1 and ref. 

(Adamian and Liang, 2001)). The MAEs for Pro, Ala, and Gly are among the highest and are 

significantly higher than those of the other residues. Prolines introduces kinks or π-bulges to TMHs 

(Senes et al., 2004). Alanines and glycines form the sequence motifs of the type AxxxA, GxxxG 

that are believed to promote close helical packing (Russ and Engelman, 2000). These residues 

have a highly variable exposure environment as indicated by the high standard deviations of the 

WCNs (Table II-1 and ref. (Adamian and Liang, 2001)). The correlation between MAEs and the 

standard deviation of WCNs of amino acid types is 0.84 (Figure II-8b), suggesting that increased 

variability of exposure is an important determining factor for reduced prediction quality. 
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Figure II-8 Amino acid type-specific MAEs and the dependence of MAE on standard deviation of WCNs 

(A) amino acid type-specific MAEs; (B) dependence of MAE on standard deviation of WCNs. 

II-3.10 Predicted WCNs reveal exposure pattern 

An important application of WCN predictors is that they can be incorporated into scoring functions 

for evaluating de novo predicted or homology-modeled 3D protein structures. However, the 

possibility of this application depends on the fact that predicted WCNs accurately reflect the 

exposure pattern of a protein. For illustrative purposes, we mapped the experimental and predicted 

WCNs onto the native structure for two protein chains (3tlwA, 4buoA). 3tlwA is one of the five 

subunits of the GLIC homopentameric ligand-gated ion channel (Tiefenbrunn et al., 2011) and is 

among the cases for which the networks achieved the lowest MAE and highest PCC (Figure 

II-9(A)). 4buoA is a structure of the thermostable agonist-bound G-protein-coupled receptor 

neurotensin receptor 1 (Egloff et al., 2014) for which the networks also achieved good prediction 

(Figure II-9(D)). Comparing Figure II-9(B) with (C) and (E) with (F) shows that WCNs predicted 

by the networks correctly reflect exposure patterns for membrane-facing as well as buried TMHs. 

The two-phases of membrane-facing TMHs are differentiated by the alternating nature of predicted 

WCNs. Thus, predicted contacts can be used to eliminate incorrectly predicted 3D structure models 

where buried TMHs are placed facing the membrane or vice versa. 
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Figure II-9 Predicted WCNs reveal exposure pattern of TMHs  

(A) correlation between experimental and predicted WCNs for 3tlwA; (B) mapping of experimental WCNs onto the 

crystal structure of 3tlwA; (C) mapping of predicted WCN to the crystal structure of 3tlwA; (D) correlation between 

experimental and predicted WCNs for 4buoA; (E) mapping of experimental WCNs onto the crystal structure of 

4buoA; (F) mapping of predicted WCN to the crystal structure of 4buoA. Color scheme: as WCN increases, color 

changes gradually from blue to red. Only TMHs are shown. 

II-3.11 Predicting membrane protein-membrane protein interface 

Oligomerization is an essential mechanism by which many membrane proteins function (Kawano 

et al., 2013).  In fact, 49 out of 71 HMPs in the TMH-Expo data set are oligomers. Interaction 

between membrane protein and membrane protein is a research area that has gained increasing 

attention from the biochemical community (Miller et al., 2005, Babu et al., 2012). Given a 

monomer HMP with known structure, it desires to identify interface-forming residues with a 

reasonable accuracy. As experimental WCNs were calculated from structures where all 

transmembrane subunits are included, we hypothesized that predicted WCNs be generally higher 

for interface residues than for non-interface lipid-exposed residues. If our hypothesis proved 

correct, then interface-forming TMHs can be identified. For evaluating the performance of TMH-

Expo on identifying interface residues, we defined a residue as an interface residue if 𝑊𝐶𝑁𝑜 −

𝑊𝐶𝑁𝑚 ≥ 1, where 𝑊𝐶𝑁𝑜 is the WCN in oligomeric state and 𝑊𝐶𝑁𝑚 is that in monomeric state. 
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A residue is predicted as interface residue if 𝑊𝐶𝑁𝑝 −𝑊𝐶𝑁𝑚 ≥ 1, where 𝑊𝐶𝑁𝑝 is the predicted 

WCN. The cutoff value 1 was chosen to reduce the chance of including residues on the protein 

core-buried face of a TMH as interface residues. 16.3% residues in the data set satisfied this 

definition. For classifying interface residues (Table A-3 in APPENDICES), TMH-Expo achieved 

an overall accuracy of 68.6%, and a sensitivity of 76.8%, significantly better than the performance 

reported in a similar study (Illergard et al., 2010). One should be aware of the high FPR of TMH-

Expo (33.0%), a complication that could be accounted for by the fact that the oligomeric state of 

many HMPs is not unambiguously defined (Duarte et al., 2013). 

As an example of predicting membrane protein-membrane protein interface residues, we 

investigated the performance of TMH-Expo for the subunit (4al0A) of the homotrimeric 

microsomal prostaglandin E2 synthase (Sjogren et al., 2013). 4al0A has a similar FPR (32.1%) to 

the overall FPR of TMH-Expo. As shown in Table II-3, out of the 85 TMH residues, 66 were 

correctly classified, giving an overall accuracy of 77.7%. Among these 32 interface residues, 30 

were identified, giving a sensitivity of 93.8 %. To visualize the prediction, we highlighted interface 

residues identified with experimental WCNs (Figure II-10(A)) and those identified with predicted 

WCNs (Figure II-10(B)) on the native structure. Despite the high FPR, most false positives can be 

reasonably eliminated if we only consider residues on the exposed face of a TMH. 

Table II-3 Performance of interface residue identification of TMH-Expo on 4al0A 

  Predicted 

  Interface Non-interface Total 

Experimental 

Interface 30 2 32 

Non-interface 17 36 53 

Total 47 38 85 
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Figure II-10 Predicted WCNs reveal interface-forming residues of 4al0A 

(A) Mapping of interface residues (colored in red) identified with experimental WCNs onto the crystal structure of 

4al0A; (B) mapping of predicted interface residues (colored in red) onto the crystal structure of 4al0A. 

II-3.12 Comparison with other WCN predictors 

To the best of our knowledge, TMH-Expo is the first attempt that has been made to predict WCNs 

for membrane proteins. Therefore, a direct comparison of TMH-Expo with any of the other 

existing methods is not possible. To give an approximate sense of the performance of TMH-Expo, 

we compared TMH-Expo with two notable WCN predictors developed for soluble proteins. Using 

linear regression analysis, Kinjo et al. developed a real-valued WCN predictor with a PCC of 0.63 

(Kinjo et al., 2005), outperformed by TMH-Expo. Yuan developed a support vector regression-

based predictor with a PCC of 0.70 (Yuan, 2005), slightly better than TMH-Expo. However, it 

should be noted that the performance of Yuan’s method might be favorably biased since the data 

set was not split in a way such that proteins in the same superfamily stay within the same subset. 

In addition, the structural repository of soluble proteins is significantly bigger than that of HMPs, 

making the training set for soluble proteins more informative.  

We also trained neural network models for RSA prediction using PSSM as feature vector and 

the same training parameters as with training networks for WCN prediction. For RSA prediction, 

TMH-Expo achieved a PCC of 0.58 for polytopic HMPs. Since both accuracy and MCC are 

dependent on the cutoff value applied, it is rather arbitrary to make comparisons based on these 

two performance measures. We therefore approximately (since the data set employed in different 

study varies) compared our method to predictors for which PCC was reported. Yuan et al. 

developed a support vector regression-based predictor termed ASAPmem with a PCC of 0.66 for 
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TM helical residues (Yuan et al., 2006). A random forest-based method recently reported by Wang 

et al. achieved a PCC of 0.68 (Wang et al., 2012).  Although these two methods reportedly have 

better performance than TMH-Expo on RSA prediction, it should be pointed out that the cross-

validation scheme employed in these studies might favorably biased the performance. In fact, using 

the same cross-validation scheme, Illergård et al. trained a RSA predictor MPRAP which achieved 

the same PCC as TMH-Expo (Illergard et al., 2010). 

II-4 Limitations and future directions 

In the current implementation of the algorithm, total WCN is computed by summing over 

contributions made by residues inside a sphere centered at the Cβ atom of the residue of interest. 

The contribution is assigned to each residue in a distance-dependent way such that close neighbors 

have an increased weight when compared to distant neighbors. This approach mirrors the distance-

dependence of van der Waals and electrostatic interactions and is superior to the use of a single 

cut-off distance. Shortcomings of the current implementation include that the spatial distribution 

of neighboring residues is not taken into account (Durham et al., 2009). 

Another limitation comes from the coarse-grained Cβ representation of the side chains in 

which size and bulkiness of side chains is ignored. While representing side chain atoms as a single 

‘superatom’ improves computational efficiency and is necessary in early stages of de novo 3D 

structure prediction, it could result in loss of important structural information and lead to biased 

estimate of WCNs. For instance, residues with a bulky side chain have longer Cβ-Cβ distances than 

small residues. Thus, the average WCNs for bulky residues might be underestimated (Gimpelev 

et al., 2004). When the information about the spatial distribution of neighboring residues is needed, 

a computationally slightly more demanding quantity called “neighbor vector” could be employed 

(Durham et al., 2009). The neighbor vector is a vector associated with each residue whose direction 

and magnitude not only depend on the number of neighboring residues but also on the spatial 

distribution.  

Similar to predicted lipid exposure, which has been leveraged to improve the inference of the 

rotational angles of TMHs (Lai et al., 2013), we expect that accurately predicted WCNs would 

also improve the accuracy of predicted TMH-TMH packing interactions. 
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II-5 Conclusion 

We have developed a dropout neural network-based WCN and RSA predictor TMH-Expo for 

HMPs. TMH-Expo is the first work that reports WCN prediction for HMPs. Trained on an 

expanded non-redundant data set of HMPs with five-fold cross-validation, TMH-Expo achieved 

an unprecedented PCC of 0.69 between experimental and predicted WCNs. We have also shown 

that the training was benefitted from using neuronal dropout. With neuronal dropout, overfitting 

was significantly reduced, and the performance was improved. Detailed examination of MAEs and 

PCCs indicated that it is generally easy to predict WCNs for polytopic HMPs than for bitopic 

HMPs. Mapping of predicted WCNs onto structure demonstrated that WCNs predicted by TMH-

Expo reflect exposure patterns of TMHs and reveal interface-forming TMHs. This reinforces the 

idea of incorporating predicted WCNs for predicting helix-helix packing and protein-protein 

docking. De novo protein folding and protein-protein docking studies leveraging WCNs predicted 

by TMH-Expo are currently ongoing.  

II-6 Supporting Information 

HMP chains included in the TMH-Expo data set, an illustration of feature vectors, summary of 12 

poorly predicted protein chains, distribution of prediction quality for of bitopic and polytopic 

HMPs, performance of TMH-Expo on identifying interface residues. This material is available in 

APPENDICES. 

II-7 Notes 

TMH-expo has been integrated into the Biochemical Library (BCL) software suite that is being 

actively developed. It is also available via a webserver at 

http://www.meilerlab.org/index.php/servers. The BCL software suite is available at 

http://www.meilerlab.org/bclcommons under academic and business site licenses. The BCL source 

code is published under the BCL license and is available at http://www.meilerlab.org/bclcommons. 

II-8 Abbreviations 

HMP, helical membrane protein; TMH, transmembrane helix; BCL, biochemical library; PSSM, 

position-specific scoring matrix; PCC, Pearson’s correlation coefficient; MCC, Matthew’s 

correlation coefficient; MAE, mean absolute error; MSA, multiple sequence alignment; RSA, 

relative solvent accessibility; ASA, absolute solvent accessibility.  

http://www.meilerlab.org/bclcommons
http://www.meilerlab.org/bclcommons
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III. IMPROVING PREDICTION OF HELIX‒HELIX PACKING IN MEMBRANE 

PROTEINS USING PREDICTED CONTACT NUMBERS AS RESTRAINTS 

This chapter has been published in (Li et al., 2017a). 

III-1 Introduction 

Helical membrane proteins (HMPs) are essential components of a living cell. They play crucial 

roles in orchestrating the interactions of the cell with its environment; for example, by mediating 

cellular signaling, regulating ion gradients, and facilitating the transfer of molecules across the cell 

membrane. It was estimated that 20‒30% of genes in most genomes encode HMPs (Krogh et al., 

2001). About 50% of therapeutics on the market target HMPs (Overington et al., 2006). The 

availability of a three-dimensional (3D) structure of a HMP not only improves our understanding 

of how the protein works at the atomic level (Li et al., 2012) but also facilitates the development 

of new therapeutics (Xiong et al., 2011, Zhan et al., 2011, Li et al., 2014). Despite great progress 

in experimental techniques for determining HMP structures, only ~2 % structures in the protein 

databank are HMPs (Weiner et al., 2013), highlighting the fact that HMP structure characterization 

is still a challenge. Further, experimental data for HMPs are often of limited resolution, requiring 

computational methods to elucidate atomic-level details. Similarly, not all biologically relevant 

conformations of HMPs – which tend to be very flexible – can be studied experimentally. 

Likewise, accurate computational methods for HMP structure prediction are a complement to 

existing experimental techniques to enable HMP structure determination from limited 

experimental data (Weiner et al., 2014, Fischer et al., 2015). 

A commonly used computational approach for predicting protein tertiary structure is 

comparative modeling. However, a sequence identity of at least 25% between target and template 

proteins is recommended to give reliable models (Cavasotto and Phatak, 2009). Because the fold 

of most HMPs are unknown and it was estimated that comparative modeling covers at most 10% 

of HMPs (Hopf et al., 2012), a few de novo methods have been developed, such as Rosetta-

Membrane (Yarov-Yarovoy et al., 2006) and BCL::MP-Fold (Weiner et al., 2013). Rosetta-

Membrane assembles models helix-by-helix starting from a helix near the middle of the protein 

(Yarov-Yarovoy et al., 2006). For HMPs with ~150 residues or less, Rosetta-Membrane achieved 

RMSD100 (root-mean-square distance normalized to a sequence of 100 residues) values of < 4 Å 

to experimental structures. However, the prediction accuracy with respect to helix rotation around 
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the main axis was either not evaluated or very poor (Weiner et al., 2013). BCL::MP‒Fold uses 

secondary structure element (SSE) pools and inserts helices across the membrane to build complete 

models. It achieved RMSD100 values to the experimental structure in the range of 3 to 8 Å for 

most benchmark HMPs (Weiner et al., 2013). For models assembled by BCL::MP-Fold, even 

though TMHs are predicted to span the membrane with the correct topology, ~40% were reported 

to contain helices with incorrect rotation (Weiner et al., 2013). For example, contact-forming, 

buried residues are sometimes rotated toward the membrane. For HMP models to be useful in 

applications such as structure-based drug design, accurate modeling of helix rotation is essential. 

One approach to improving the accuracy of de novo tertiary structure prediction is to 

incorporate restraints (Barth et al., 2009). These restraints may be experimental, such as NMR 

chemical shifts (Weiner et al., 2014) and electron-paramagnetic resonance (EPR) accessibilities 

(Fischer et al., 2015), or computational, such as predicted residue‒residue contacts (Barth et al., 

2009, Marks et al., 2011, Hopf et al., 2012, Nugent and Jones, 2012, Kosciolek and Jones, 2014). 

For example, Fischer et al. recently showed that using either experimental or simulated EPR 

accessibility increases the likelihood of sampling native-like HMP folds and improves the 

accuracy of predicting helix rotations (Fischer et al., 2015). Residue‒residue contacts derived from 

experiments or accurate computational predictions also provide substantial guiding information 

for sampling. For instance, Evfold_membrane developed by Hopf et al. enables de novo prediction 

of tertiary structures of 25 HMPs by incorporating amino acid covariation extracted from 

evolutionary sequence record (Hopf et al., 2012). 

Residue weighted contact number (WCN) is a real-valued quantity that measures the degree 

of local packing of a residue within the protein tertiary structure. The WCN of a given residue was 

originally computed by applying a clear distance cutoff and considering indiscriminately residues 

within the cutoff (Nishikawa and Ooi, 1980, Nishikawa and Ooi, 1986). Later improvements 

incorporated various distance-dependent weighting schemes to account for the distance-dependent 

nature of residue–residue interactions (Kinjo et al., 2005, Lin et al., 2008, Durham et al., 2009). 

WCNs have been used to derive protein dynamic properties such as B-factor profile (Lin et al., 

2008). Studies have also shown that WCN is the main structural determinant of site-specific 

substitution rates of proteins (Echave et al., 2016). Although it has been suggested that WCNs 
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could help in tertiary structure prediction, to our knowledge, no studies on tertiary structure 

prediction have explicitly incorporated WCNs. 

The WCNs of interfacial TMHs (peripheral TMHs of a helical bundle) follow a signature 

periodic trend (Figure III-1(A)). Importantly, the WCN signature of a TMH is tightly coupled to 

its rotation: even a small perturbation of the helix rotation will disrupt the WCN signature (Figure 

III-1(B)). Hence, the WCN signature of a TMH should give a strong constraint over its rotation. 

However, experimental WCNs are not available until the tertiary structure of the protein is 

determined. Very recently, we developed a dropout neural network-based method, BCL::TMH-

Expo, specifically for predicting WCNs for HMPs (Li et al., 2016). WCNs predicted by 

BCL::TMH-Expo correlate well with WCNs computed from experimental structures and mirror 

exposure patterns of TMHs (Li et al., 2016). In this study, WCNs predicted by BCL::TMH-Expo 

were incorporated into the empirical scoring function of BCL::MP-Fold in the form of restraints 

to improve prediction of helix‒helix packing. We tested this method on a set of 15 benchmark 

HMPs that span a wide range of fold complexity. 

 

Figure III-1 An example of WCN signature of a TMH and its tight coupling to the rotation about the helix 

normal 

(A) The native WCN signature of the first transmembrane helix of the bacteriorhodopsin (PDB 

ID: 1m0l); (B) The root-mean-square error of the WCN signature of the helix to that of the native 

signature after each rotation. 
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III-2 Materials and Methods 

III-2.1 Benchmark set 

A set of 15 multi-spanning HMP subunits were carefully selected to assess whether using WCN 

restraints can improve the prediction of helix‒helix packing. This set consists of HMP subunits 

that are both structurally and functionally diverse (Table III-1). Pairwise sequence identity is 30% 

or less. Sequence length ranges from 156 to 467 residues. The number of TMHs ranges from 4 to 

10. As a measure of the size of transmembrane domains, the number of TMH residues were also 

computed for each target. None of these HMPs was used in the training set of BCL::TMH-Expo 

or had a sequence identity of more than 30% to any of the HMPs in the training set of BCL::TMH-

Expo. This benchmark set contains diverse folds ranging from simplistic four-helix bundles and 

7-TM receptors, up to proteins with 10 TMHs or helices in reentrant regions.  Six of these HMPs 

are homo-oligomers. Due to the complexity of folding oligomers, we limited the scope of the 

present investigation to consider only a single subunit of each oligomer. 

Table III-1 Summary of the benchmark set 

PDB 

ID 

Structure 

Method 
Resolution Length TMH 

TMH 

Residue 
PCC MAE Oligomeric State 

1OED EM 4.0 227 4 104 0.35 2.23 Homopentamer 

1OKC X-ray 2.2 292 6 214 0.39 2.37 Monomer 

1PV6 X-ray 3.5 189 6 163 0.62 1.66 Monomer 

1PY6 X-ray 1.8 249 7 177 0.72 1.29 Monomer 

1U19 X-ray 2.2 348 7 173 0.58 1.63 Monomer 

2BL2 X-ray 2.1 156 4 119 0.65 2.42 Homo 10-mer 

2K73 NMR NA 164 4 99 0.45 1.78 Monomer 

2O9G X-ray 1.9 234 6 166 0.69 1.74 Homotetramer 

2Y01 X-ray 2.6 315 7 185 0.76 1.45 Monomer 

3M71 X-ray 1.2 314 10 242 0.85 1.33 Homotrimer 

3QAP X-ray 1.9 239 7 168 0.69 1.35 Monomer 

3UG9 X-ray 2.3 333 7 194 0.45 1.75 Homodimer 

3UON X-ray 3.0 467 7 183 0.66 1.60 Monomer 

4A2N X-ray 3.4 194 5 123 0.58 1.67 Monomer 

4O6Y X-ray 1.7 230 6 156 0.58 1.55 Homodimer 

Mean   265 6.6 164 0.60 1.72  

PCC: Pearson correlation coefficient; MAE: mean absolute error; EM:  electron microscopy; X-ray: x-ray diffraction; 

NMR: nuclear magnetic resonance; NA: not applicable 
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III-2.2 Computation of experimental and predicted WCNs 

The details of the algorithm for computing WCNs from experimental strictures can be found in 

two previous studies (Durham et al., 2009, Li et al., 2016). Briefly, the experimental WCN of 

residue i was computed as a weighted sum of contacts contributed by residues over the entire 

protein: 

𝑊𝐶𝑁i = ∑ 𝑤ij

n

j∈|j−i|>3

 III-1 

where wij is the contribution made by residue j and is assigned in a distance-dependent manner 

such that short-range contacting residues have higher contribution than long-range contacting 

ones. Residues whose Cβ atom is within 4.0 Å to the Cβ atom of the residue of interest are assigned 

a contribution of 1.0; those with a distance longer than 11.4 Å are assigned a contribution of 0. 

Any residue 4-11.4 Å is assigned a contribution between 0.0 and 1.0 according to a smooth 

transition function (see Eq. II-1) (Durham et al., 2009). Only residues separated by more than three 

residues along the sequence were considered in the calculation to reduce the bias due to sequence 

proximity and local secondary structure. Experimental WCNs were calculated based on structures 

retrieved from the OPM (Orientations of Proteins in Membranes) database (Lomize et al., 2006). 

Although a relatively low sequence identity (30%) was maintained while compiling a list of 

benchmark protein chains to reduce the homology between the modeling benchmark set and the 

training set for BCL::TMH-Expo, such level of sequence identity alone may not be sufficient to 

exclude homology among protein chains. In fact, substantial remote homology could still exist at 

this level placing HMPs in the same structural superfamily (Jaakkola et al., 1999). Such remote 

homology between proteins in the training set and proteins in the modeling benchmark set can lead 

to an optimistic estimate of the performance for new folds. As a way of preventing such optimism, 

the original training set for BCL::TMH-Expo was partitioned such that each SCOP superfamily 

(Murzin et al., 1995) forms its own subset that contains all its members and no members from 

other SCOP superfamilies. Predicted WCN of each residue of a modeling benchmark protein was 

then obtained through a specific variant of the neural network-based WCN predictor BCL::TMH-

Expo. This variant was trained using all remaining proteins after excluding the subset of proteins 

that share the same SCOP superfamily as the modeling benchmark protein from the original 
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training set of BCL::TMH-Expo. For example, for predicting the WCNs for 3UON, all proteins 

that are in the same SCOP superfamily as 3UON were removed from the original training proteins 

of BCL::TMH-Expo and a neural network was trained using the remaining proteins. The WCNs 

were then predicted using this retrained neural network. This strategy was applied to each protein 

in the modeling benchmark set. Note that BCL::TMH-Expo method is a dropout neural network-

based algorithm that predicts WCNs for HMPs. It uses the position-specific scoring matrix (PSSM) 

(Gribskov et al., 1987) derived from multiple sequence alignment (MSA) by PSI-BLAST 

(Altschul et al., 1997) as predictive features and outputs residue-specific WCN. The MSA for each 

protein chain in the benchmark set was obtained by searching the UniRef50 (Suzek et al., 2007) 

non-redundant sequence database with PSI-BLAST for five iterations (Altschul et al., 1997). The 

E-value inclusion threshold was set to 10-2. Floating point-valued PSSM was generated from PSI-

BLAST checkpoint files using the source code (chkparse.c) adapted from PSIPRED (McGuffin et 

al., 2000). Predicted WCN was obtained by feeding the floating point-valued PSSM to 

BCL::TMH-Expo.  

III-2.3 Incorporating WCNs as restraints in de novo structure prediction 

The de novo membrane protein structure prediction algorithm BCL::MP-Fold (Weiner et al., 2013) 

developed by adapting the original algorithm BCL::Fold (Karakas et al., 2012) for membrane 

proteins was used to assemble 3D models. BCL::MP-Fold assembles 3D models by drawing 

TMHs from a pool of predicted TMHs. TMH pools were created from predictions made by the 

combined membrane association and secondary structure predictor BCL::MASP (Jeffrey L 

Mendenhall and Meiler, 2014). A Monte Carlo minimizer with Metropolis criterion (Metropolis 

et al., 1953) was used to sample models with low energy. To use WCNs to guide sampling of 

helix-helix packing, a WCN-based penalty score was added to the knowledge-based scoring 

function of BCL::MP-Fold: 

𝑆𝑐𝑜𝑟𝑒 =∑𝑤𝑖 × 𝑆𝑖
𝑖

+ 𝑤𝑝 × 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 III-2 

where 𝑆𝑖 represents each of the individual knowledge-based potentials previously derived and 𝑤𝑖 

is the associated weight. These potentials have been detailed in prior studies (Woetzel et al., 2012, 

Weiner et al., 2013). The restraint scoring term was defined using the following formula: 
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𝑒𝑛𝑎𝑙𝑡𝑦 = √
1

𝑛
∑𝛿𝑖

2

𝑛

𝑖=1

 III-3 

where n is the number of residues in the assembled structural model, δ is the difference between 

the WCN used as restraint and the WCN calculated from the assembled structural model. 𝑤𝑝 is the 

corresponding weight of the penalty. An optimal balance between the knowledge-based potentials 

and the penalty score is critical for correcting helix rotation while sampling native-like folds. If 

the weight for the restraint penalty is too low, its capacity of correcting helix rotation is reduced, 

if the weight is too high, it dominants other scoring terms. An empirical approach, in which a range 

of 𝑤𝑝 values were systematically tested in preliminary sampling, was used to determine a near-

optimal weight.  Finally, five thousand models were assembled for each target in the benchmark 

set. The procedure for generating 3D models is summarized in Figure III-2. 

 

Figure III-2 Protocol for assembling 3D models. BCL::MP-Fold predicts the tertiary structure of a HMP by 

assembling predicted TMHs in the 3D space 

In the first step, the TMHs are predicted using the neural network-based membrane association and secondary structure 

prediction algorithm BCL::MASP. Predicted TMHs are assembled into a 3D model, and perturbed using a Monte 

Carlo sampling algorithm. The energy of the model after each perturbation is evaluated by knowledge-based potentials 

and agreement to WCN restraints. The perturbation is subjected to the Metropolis criterion and is either accepted or 

rejected depending on the difference between the energies before and after the perturbation. This process is repeated 
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for a specific number of iterations or until the maximum number of 2000 iterations without energy improvement is 

reached. 

III-2.4 Metrics for measuring of model quality 

Root-mean-square distance (RMSD) gives a useful impression of the similarity between two 

structures if there is only a slight difference between their conformations. Unfortunately, a small 

perturbation in just one part of the protein (for instance, off position of a short loop) can lead to a 

large RMSD and it would seem that one structure substantially differs from the other. In order to 

address this issue, several quality measures have been introduced among which RMSD100 

(Carugo and Pongor, 2001) is commonly used. RMSD100 is a normalized, sequence length-

independent version of RMSD calculated using: 

𝑅𝑀𝑆𝐷100 =
𝑅𝑀𝑆𝐷

1 + ln√
𝑛
100

 
III-4 

where n is the number of residues superimposed. Using RMSD100 as an indicator of structural 

variability reduces the influence of the intuition that larger proteins are more likely to differ from 

one another (Carugo and Pongor, 2001). In this study, RMSD100 was computed over the Cα atoms 

of all TMH residues. 

A metric called contact recovery (CR), defined as the percentage of native contacts recovered 

in the assembled 3D model, was used to measure the accuracy of helix rotations in our previous 

study (Weiner et al., 2013). However, the previous definition does not account for false positive 

contacts (FPC), which may be prevalent in 3D models assembled in a globular shape when the real 

shape of the protein is extended or rod-like and it has helices or strands that are somewhat 

“detached” from its main domain. In such cases, these “detached” secondary structure fragments 

could potentially be packed against the main domain of the protein by the folding algorithm, and 

thus, making a substantial fraction of FPCs.  Thus, we redefined CR as the F1-score. Being the 

harmonic mean of precision and recall, the F1-score accounts for FPCs by weighting precision and 

recall equally: 
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𝑜𝑛𝑡𝑎𝑐𝑡 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 =
2 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 III-5 

where 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃𝐶

𝑇𝑃𝐶 + 𝐹𝑃𝐶
 III-6 

and 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃𝐶

𝑇𝑃𝐶 + 𝐹𝑁𝐶
 III-7 

TPC (true positive contacts) denotes the number of contacts observed in the experimental structure 

that are correctly predicted in the assembled model and FNC (false negative contacts) is the 

number of contacts in the experimental structure that are missed in the assembled model. Two 

residues are considered in contact if they are separated along the sequence by at least 12 residues 

and the distance between their Cβ atoms is within 8 Å. CR reaches its best value at 100% and worst 

at 0%.  

III-2.5 Computation of enrichment  

The enrichment was used to measure how capable a scoring function is to select the most accurate 

models from a pool of models. To calculate enrichment, models of a given set S are sorted by their 

CR values. The top 10% of the models with the highest CR values are put into the set T (true) and 

the rest of the models are put into the set F (false). The models in S are then sorted by their 

evaluated score. The top 10% of models with the lowest score are put into the set P (positive) and 

the rest are put into the set N (negative). The intersection of sets T and P are models that are 

correctly identified by the scoring function and referred to as TP (true positives). The intersection 

of sets F and P are models that are incorrectly identified by the scoring function and are referred 

to as FP (false positives). The enrichment value is then computed using the following formula:  

𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
/

𝑃

𝑃 + 𝑁
 III-8 
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Intuitively, 
𝑃

𝑃+𝑁
 represents that probability of obtaining a native-like model when choosing a model 

from S at random, whereas 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 represents the probability of obtaining a native-like model when 

choosing from a set of models below an energy cutoff. By our experimental design, 
𝑃

𝑃+𝑁
 has a 

constant value of 0.1, and therefore, the maximum enrichment value that can be achieved is 10.  

III-3 Results and Discussion 

III-3.1 Predicting WCNs for HMPs in the benchmark set 

Table III-1 shows the Pearson correlation coefficient (PCC) between experimental and predicted 

WCNs as well as the mean absolute error (MAE) of predicted WCNs for each target in the 

modeling benchmark set. The average PCC and the average MAE over the modeling benchmark 

set were 0.60 and 1.72 respectively. Notably, the WCNs for three proteins, namely 1PY6, 2Y01, 

and 3M71, were predicted with a PCC > 0.70. Whereas, for 1OED, 1OKC, 3UG9, and 4A2N, the 

PCCs were below 0.50. Factors affecting the accuracy of WCN prediction include oligomeric state,  

whether the protein chain is bitopic, and other factors that had been discussed previously in detail 

(Li et al., 2016). To illustrate the agreement between experimental and predicted WCNs and 

visualize the predictions, the experimental and predicted WCNs of 1PY6 were plotted and mapped 

onto its experimental structure. As shown in Figure III-3(A), the predicted WCNs of 1PY6 are in 

close agreement with experimental WCNs, particularly in transmembrane regions (vertical gray 

bars). As expected, predicted WCNs generally distinguish between the exposed and buried faces 

of helices (Figure III-3(B) and (C)). We, therefore, reasoned that the native rotation of helices can 

be confined by forcing them to satisfy predicted WCN, thus improving the prediction of helix‒

helix packing.  
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Figure III-3 Agreement between experimental and predicted WCNs of 1PY6  

(A) Experimental and predicted WCNs plotted against residues sequence positions, (B) Experimental WCNs mapped 

onto structure; (C) Predicted WCNs mapped onto structure. Color scheme in (B) and (C): as WCN increases, color 

changes gradually from blue to red. Only TMHs are shown. 

III-3.2 Incorporation of WCNs significantly improved CR 

The following three CR-based parameters were compared among the three simulation groups (E: 

with experimental WCNs, P: with predicted WCNs, N: without WCNs):  

βCR: the highest CR achieved, 

μCR: the average of the 10 highest CR values, 

π20: the percentage of models with a CR greater than 20%,  

βCR and μCR measure how accurate the best-assembled models can be, whereas π20 measures how 

often an accurate model can be sampled.  

As summarized in Table III-2, model quality is generally improved using WCNs as restraints. 

Specifically, μCR is improved for all targets when models were assembled using predicted WCNs 

as restraints, and π20 is improved for all but two targets (1OKC and 2O9G). βCR is improved for 

all targets except 4O6Y and by an average amount of 8.07% and μCR is improved by an average 

amount of 8.04% compared to folding without WCN restraints. A substantial increase in μCR 

(>5%) is seen for 10 of the 15 targets, with 4 of the targets (1PY6, 2K73, 3QAP, and 4A2N) 
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showing over 10% of improvement. By using WCN restraints, not only the best models are more 

accurate, but the probability that accurate models are sampled is also increased. For example, 

comparison of π20 among groups shows that π20 is increased by 6.75% on average when folded 

with predicted WCNs compared to folded without WCNs. It is worth noting that for 3 targets 

(2Y01, 3M71, and 3UON), models with CR greater than 20% were not sampled (π20 = 0) without 

WCN restraints but sampled with noticeable frequency with predicted WCNs as restraints. 

Experimental WCNs further improve CR, for example, βCR is improved by an average amount of 

17.78% when using experimental WCNs as restraints. In summary, both experimental and 

predicted WCNs enable strongly significant improvements in CR of folded protein models (p < 

0.01, paired t-test). 

Table III-2 Summary of contact recovery 

 βCR (%) μCR (%) 
Relative Improvement in 

μCR (%) 
π20 (%) 

Target E P N E P N 
µ𝑪𝑹(𝑷) − µ𝑪𝑹(𝑵)

µ𝑪𝑹(𝑵)
× 𝟏𝟎𝟎 E P N 

1OED 73.10 38.02 28.93 70.59 32.88 23.47 40.09 51.77 5.17 0.33 

1OKC 18.34 10.78 9.96 14.81 9.14 8.17 11.87 0.00 0.00 0.00 

1PV6 31.55 30.02 21.90 26.93 23.09 17.06 35.35 1.37 0.35 0.03 

1PY6 54.65 41.86 22.31 44.45 35.56 20.08 77.09 13.01 10.31 0.11 

1U19 30.28 25.31 20.46 26.98 23.59 16.57 42.37 2.43 1.87 0.04 

2BL2 68.40 59.29 54.50 66.78 55.22 49.63 11.26 76.26 50.98 29.80 

2K73 59.49 49.33 30.70 57.04 44.13 27.82 58.63 72.04 33.58 1.45 

2O9G 14.65 14.15 11.67 11.47 11.92 10.76 10.78 0.00 0.00 0.00 

2Y01 36.15 21.97 19.42 30.60 20.70 17.30 19.65 1.94 0.19 0.00 

3M71 23.46 23.58 17.14 21.77 20.35 14.42 41.12 0.54 0.20 0.00 

3QAP 48.24 43.64 26.16 39.67 39.48 22.24 77.52 15.63 10.86 0.32 

3UG9 38.38 35.90 24.16 35.98 30.08 20.66 45.60 14.71 6.77 0.14 

3UON 32.37 21.81 19.16 25.93 20.02 16.01 25.05 1.11 0.09 0.00 

4A2N 49.64 42.45 27.24 41.56 38.93 24.65 57.93 11.49 11.26 0.48 

4O6Y 57.08 31.92 35.29 46.25 29.25 24.94 17.28 8.09 2.84 0.47 

Mean 42.39 32.67 24.60 37.39 28.96 20.92 38.11 18.03 8.96 2.21 

E: contact numbers computed using experimental structure; P: contact numbers predicted by neural network; N: no 

contact numbers; μCR improved by 5% or more (bold) and less than 5% (italic) when folded with predicted WCNs. 
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III-3.3 Accurate prediction of WCNs is not sufficient for improving prediction of TMH 

potations 

Though a consistent improvement in CR is observed (Table III-2) when folded with predicted 

WCNs as restraints, the improvement is not as substantial as with experimental WCNs. In fact, the 

higher the PCC of WCN prediction is, the closer the μCR obtained with predicted WCNs (µ𝐶𝑅(𝑃)) 

is to that obtained with experimental WCNs (µ𝐶𝑅(𝐸)). This relationship is illustrated by a scatter 

plot (Figure III-4(A)) of the PCCs of WCN prediction and the values of 
µ𝐶𝑅(𝐸)−µ𝐶𝑅(𝑃)

µ𝐶𝑅(𝐸)
, which 

measures the relative difference between µ𝐶𝑅(𝐸) and µ𝐶𝑅(𝑃). And the correlation shows that there 

is still the need to improve the accuracy of WCN prediction if one is to make the best of using 

WCNs as restraints. 

 

Figure III-4 Improvement in CR is determined by multiple factors 

(A) Negative correlation between PCCs of WCN prediction and relative differences between µ𝐶𝑅(𝐸) and µ𝐶𝑅(𝑃).  µ𝐶𝑅(𝑃) 

values obtained with better WCN predictions is closer to µ𝐶𝑅(𝐸)than those obtained with poorer WCN predictions. (B) 

µCR is negatively correlated with number of TMH residues. Orange dots indicate µCR(N)values and blue dots indicate 

µCR(E)values. 

Intuitively, one might also expect that more accurate prediction of WCNs leads to larger 

relative improvements in CR relative to folding without WCNs. However, the correlation between 

PCCs and the values of 
µ𝐶𝑅(𝑃)−µ𝐶𝑅(𝑁)

µ𝐶𝑅(𝑁)
, which measures the relative improvement in µ𝐶𝑅(𝑃) compared 

to µ𝐶𝑅(𝑁), is only very weak (0.28). For instance, µ𝐶𝑅(𝑃) is improved by 58.63% relative to µ𝐶𝑅(𝑁) 

for 2K73 although the accuracy of WCN prediction for it is low (PCC: 0.45). Whereas for 2BL2 
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and 2O9G for which WCN predictions are comparably accurate (PCCs are 0.65 and 0.69 

respectively), µ𝐶𝑅(𝑃) is improved by only 11.26% and 10.78% relative to µ𝐶𝑅(𝑁) respectively. This 

suggests that other factors besides accurate WCN prediction affect improvement in CR.  

One intuitive factor is the size of proteins. In fact, as the size of transmembrane domain 

(measured by the number of TMH residues) increases it becomes more difficult to predict the 

correct rotation of helices. To illustrate this, the values of µCR(E) and µCR(N) are plotted against 

number of TMH residues. As shown in Figure III-4(B), μCR is negatively correlated with number 

of TMH residues (R = -0.78 for µCR(E) and -0.65 for µ𝐶𝑅(𝑁)). In addition to this negative 

correlation, improvement in µCR also becomes less substantial as transmembrane domain becomes 

larger. This is reflected on the fact that the gap between the two fitted lines shrinks as TMH 

residues increases. It is also worth noting that µ𝐶𝑅(𝑁) is below 20% for 7 out of 11 targets with 

more than 150 TMH residues, whereas µ𝐶𝑅(𝐸) is above 20% for all but two targets (1OKC and 

2OG9).  

Another factor is that some proteins might just represent easy cases whereas others difficult 

cases for the BCL::MP-Fold algorithm no matter whether WCN restraints are incorporated or not. 

For easy cases, on the one hand, BCL::MP-Fold samples models with high CR even without WCN 

restraints and for them it is difficult to improve substantially upon such a high CR with the current 

level of accuracy of WCN prediction. For example, the membrane rotor of the V-type ATPase 

2BL2 whose subunit adopts a four-helical bundle fold (Murata et al., 2005) can be considered an 

easy case for BCL::MP-Fold. As mentioned previously, its µ𝐶𝑅(𝑁) is as high as 49.63% even 

without WCN restraints and the relative improvement in CR in terms of µCR is a comparably low 

value of 11.26%. For difficult cases on, the other hand, BCL::MP-Fold is not able to sample models 

with comparably high CR even experimental WCN restraints partially due these proteins’ intrinsic 

topological complexity. In this modeling benchmark set, 1OKC and 2O9G represent such cases as 

all TMHs of 1OKC are kinked and 2O9G has two helices located in reentrant regions (Pebay-

Peyroula et al., 2003, Savage and Stroud, 2007). 

III-3.4 RMSD100 is improved by using WCNs as restraints 

While the primary motivation to introduce WCNs as restraints was to improve prediction of helix 

rotation, an improvement in RMSD100 was also expected after helix rotations are improved. To 
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verify this, we compared the following parameters among the three simulation groups (E: with 

experimental WCN, P: with predicted WCN, N: without WCN):  

βRMSD100: the lowest RMSD100 achieved, 

μRMSD100: the average of the 10 lowest RMSD100 values, 

π5: the percentage of models with an RMSD100 value lower than 5 Å. 

When using experimental WCNs as restraints, βRMSD100 was decreased for all targets and μRMSD100 

was decreased for all but 2O9G (Table III-3). As discussed in the previous section, the subunit of 

the tetrameric aquaporin 2O9G is a special case in that it has two reentrant helices sitting on top 

of each other (Savage and Stroud, 2007). When using predicted WCNs as restraints, a decrease in 

βRMSD100 is seen for 13 targets and a decrease in μRMSD100 is seen for 12 cases. In terms of μRMSD100, 

a decrease of 0.5 Å or more is achieved for 4 targets and the most substantial improvement is a 

0.79 Å decrease for 4A2N. Use of predicted WCNs yields smaller, albeit still statistically 

significant (p < 0.05, paired t-test), improvements to μRMSD100. It is also interesting to note that 

models with RMSD100 within 5 Å to experimental structures were assembled with noticeable 

frequencies for three targets (1PV6, 1U19, and 3UON) when using predicted WCNs as restraints, 

whereas no such models were assembled without WCNs as restraints. 

Table III-3 Summary of RMSD100 

 βRMSD100 (Å) μRMSD100 (Å) π5 (%) 

Target E P N E P N E P N 
1OED 1.88 3.69 3.70 2.08 3.85 3.89 13.47 3.80 4.28 

1OKC 10.93 11.73 11.75 11.85 12.25 12.05 0 0 0 

1PV6 4.34 4.14 5.09 4.92 4.72 5.49 0.16 0.16 0 

1PY6 3.13 3.40 4.20 3.99 4.38 4.70 0.63 0.35 0.22 

1U19 3.83 4.44 5.10 5.17 5.42 5.80 0.07 0.04 0 

2BL2 2.14 2.36 2.77 2.25 2.84 2.86 11.99 8.14 13.67 

2K73 3.01 3.59 3.82 3.06 3.72 4.03 32.44 10.76 7.07 

2O9G 10.42 12.21 11.41 12.60 12.72 12.41 0 0 0 

2Y01 4.94 5.06 5.26 5.21 5.46 5.76 0.04 0 0 

3M71 5.63 5.75 5.94 6.05 6.26 6.36 0 0 0 

3QAP 3.33 3.89 4.26 4.25 4.50 4.65 0.56 0.39 0.3 

3UG9 3.36 3.24 4.57 3.76 4.19 4.83 1.54 0.77 0.28 

3UON 3.70 4.94 5.30 5.17 5.30 5.81 0.13 0.02 0 

4A2N 3.51 3.56 4.30 3.94 3.79 4.58 1.28 1.53 0.55 

4O6Y 2.71 4.21 3.59 3.36 4.90 4.04 1.04 0.07 0.45 

Mean 4.46 5.08 5.40 5.18 5.62 5.82 4.22 1.74 1.79 

E: contact numbers computed using experimental structure; P: contact numbers predicted by neural network; N: no 

contact numbers; μRMSD100 improved by 0.5 Å or more (bold), 0.0‒0.5 Å (italic), and no improvement (normal) when 

folded with predicted CNs. 
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III-3.5 Helix rotation accuracy is improved by using predicted WCN as restraints 

To visualize the refinement of helix rotation in models with good accuracy at the fold level, 

experimental WCNs were mapped onto the experimental structure and 3D models with the lowest 

RMSD100 values. Helices with incorrect rotation would have buried residues exposed and 

exposed residues buried, thus by coloring buried and exposed residues differentially, incorrectly 

rotated helices in models can be readily identified. 1PY6 was selected, in part because its fold was 

generally predicted correctly even without the WCN restraints. The CR values of the 1PY6 models 

with the lowest RMSD100 values are 41.86% and 7.29%, respectively when folded with predicted 

WCNs and without WCNs. Without WCN restraints, the buried face of TMH4 and that of TMH6 

were modeled to be exposed. This can be readily seen by comparing the rotation of their buried 

face with that in the experimental structure (Figure III-5(A) and (C)). The incorrect rotation of 

these two helices disrupted many native contacts between the buried residues of TMH4 and TMH6 

(exemplified by red spheres), and likewise, leading to a significantly lower CR. With WCN 

restraints, the rotations of TMH4 and TMH6 were consistent with the experimental structure 

(Figure III-5(B)).  

 

Figure III-5 Experimental CNs mapped onto experimental structures and folded models 

(A) experimental structure; (B) model with lowest RMSD100 folded with predicted WCNs as restraints; (C) model 

with lowest RMSD100 folded without WCN restraints. Color scheme: gradient from blue – fully exposed, red – fully 

buried. Only TMHs are shown for clarity. Spheres stand for Cα atoms of buried residues of helices 4 and 6 in the 

experimental structure.  

III-3.6 Increased ability of the scoring function at selecting accurate models 

When folded without WCN restraints, the average enrichment value over the benchmark set was 

1.12. Using predicted WCNs as restraints, enrichment was increased for 14 targets and the average 
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enrichment was improved to 1.64 (Table III-4). Paired t-test showed that enrichment is improved 

with statistical significance when folding with predicted WCNs (p < 0.01). Indeed, enrichment 

exceeded 1.50 when folding with predicted WCNs for 8 targets, vs. only 3 targets when folding 

without WCN restraints. Enrichment was improved even further by using experimental WCNs as 

restraints. For example, the average enrichment was increased to 1.92 and 13 targets had 

enrichment greater than or equal to 1.50. Due to the intrinsic inaccuracy of the scoring function in 

the approximation to the potential energy surface, it should be admitted that these relatively low 

enrichment values are indicative of a difficulty in selecting the most accurate models of the 

BCL::MP-Fold algorithm (Fischer et al., 2016).  Nevertheless, the statistically significant 

improvement in enrichment indicates that WCN restraints provide the scoring function with 

critical information about residue burial, often corresponding to mis-rotated helices. 

Table III-4 Enrichment achieved with and without WCN restraints 

  Enrichment  

Target E P N 

1OED 2.79 1.76 0.88 

1OKC 0.51 0.97 0.71 

1PV6 1.60 1.27 0.98 

1PY6 1.95 1.97 1.16 

1U19 1.61 1.29 1.05 

2BL2 2.22 2.19 0.43 

2K73 2.40 2.43 1.36 

2O9G 2.22 1.05 1.08 

2Y01 1.50 1.48 1.10 

3M71 2.17 1.69 1.45 

3QAP 2.20 1.75 1.60 

3UG9 2.57 1.67 1.25 

3UON 1.43 1.41 0.86 

4A2N 1.61 1.89 0.80 

4O6Y 1.97 1.80 2.14 

Mean 1.92 1.64 1.12 

E: contact numbers computed using experimental structure; P: contact numbers predicted by neural network; N: no 

contact numbers. 

III-4 Limitations and Future Directions 

Incorporating the burial status of residues has been shown to improve de novo structure prediction 

for soluble proteins (Simons et al., 1997, Durham et al., 2009, Karakas et al., 2012). It is thought 



90 

  

that the benefit of incorporating burial status in de novo structure prediction is even larger for 

HMPs (Adamian and Liang, 2006, Park et al., 2007) because distinguishing buried from exposed 

residues in the apolar membrane environment is more challenging for non-specific scoring 

functions. Our results indicate that explicit incorporation of WCN restraints into the BCL::MP-

Fold algorithm significantly improves the prediction of TMH rotations and increases the accuracy 

of helix–helix packing.  

Our results also show that using experimental WCNs as restrainted results in significantly 

more improvement in modeling performance than using predicted WCNs. This suggests that the 

performance of the WCN predictor BCL::TMH-Expo is an important factor in the BCL::MP-Fold 

algorithm for HMPs, especially for simple folds such as 1OED. Although using predicted WCNs 

improved modeling outcomes for most targets, we found that accurate prediction of WCNs does 

not guarantee a substantial improvement in CR or RMSD100 for every target. For example, only 

marginal improvement in CR was seen for 2O9G (Table III-2) even though its WCNs were 

predicted with high PCC (Table III-1) and using predicted WCNs did not improve RMSD100 for 

1OKC or 2O9G (Table III-3). 

1OKC and 2O9G represent intrinsically difficult targets for BCL::MP-Fold and probably for 

other methods too. The mitochondrial ADP/ATP carrier (1OKC) has its three odd-numbered 

TMHs kinked substantially by the presence of prolines (Pebay-Peyroula et al., 2003), whereas the 

aquaporin (2O9G) contains two reentrant regions (Savage and Stroud, 2007). Tertiary structure 

prediction for them was either not benchmarked by methods such as Rosetta-Membrane (Yarov-

Yarovoy et al., 2006) or Evfold_membrane (Hopf et al., 2012), or proved to be poor with 

BCL::MP-Fold.  BCL::MP-Fold was not able to sample models remotely similar to their 

experimental structure. The best RMSD100 values for both are > 10 Å (Table III-3). BCL::MP-

Fold does not typically accurately represent bent helices. It starts with an idealized, perfectly 

straight, pool of TMHs. While there are bending moves during the Monte Carlo sampling that bend 

the TMHs, the current algorithm does not adequately capture the kinks and bends that are 

commonly seen in native TMHs. This limitation can be overcome with increased probabilities for 

the bending Monte Carlo moves or more sophisticated bending moves that perturb several 𝜙/𝜓 

angles simultaneously by fitting to observed TMH fragments. 
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III-5 Conclusions 

WCN is a key property of amino acid residues that indicate their local packing density.  We have 

demonstrated that explicitly incorporating WCNs as restraints into the membrane protein structure 

prediction algorithm, BCL::MP-Fold, significantly improved prediction of helix‒helix packing. 

Specifically, WCN restraints helped sample more accurate helix rotation and fold, and improved 

the ability of the scoring function to select native-like models. The relative improvement from 

using WCN restraints was often greatest for proteins with relatively simple folds, though 

improvements in contact recovery were observed across all proteins in the benchmark set when 

using predicted WCNs. More accurate contact number predictors and structure sampling 

algorithms that can sample the correct fold of large proteins will be critical to future development 

of de novo tertiary structure prediction for HMPs. 

III-6 Software Availability 

BCL::MP-Fold has been integrated into the Biochemical Library (BCL) software suite that is being 

actively developed. It is available at http://www.meilerlab.org/bclcommons under academic and 

business site licenses. The BCL source code is published under the BCL license and is available 

at http://www.meilerlab.org/bclcommons. Contact numbers can be readily predicted for novel 

HMPs using BCL::TMH-Expo via its webserver: http://www.meilerlab.org/servers/tmh_expo.  

http://www.meilerlab.org/bclcommons
http://www.meilerlab.org/bclcommons
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IV. INTERFACES ACROSS ALPHA-HELICAL TRANSMEMBRANE PROTEINS: 

CHARACTERIZATION, PREDICTION, AND IMPACT FOR DOCKING 

This chapter will be submitted for publication under the same title. 

IV-1 Introduction 

Alpha-helical transmembrane proteins play essential roles in signal transduction, substance 

transport, and energy circulation among other critical cellular processes. It was estimated that 

about one quarter of the human genome encode alpha-helical transmembrane proteins (Fagerberg 

et al., 2010). Frequently, these transmembrane proteins do not function as monomers but undergo 

concerted interactions to form either homo-oligomers or interacting with other transmembrane 

proteins to form hetero-oligomers (Miller et al., 2005, Daley, 2008, Babu et al., 2012). 

Proteins can either form stable, obligate oligomers via permanent protein-protein interactions 

(PPIs) or non-obligate oligomers via transient PPIs. In an obligate PPI, the protomers are not found 

as stable structures on their own in vivo. Such oligomers are generally also functionally obligate. 

In contrast, protomers in transient interactions can exist independently and oligomers of this kind 

are usually involved in processes such as cellular signaling and receptor-ligand binding (Nooren 

and Thornton, 2003a). The properties of protein-protein interfaces between globular proteins have 

been extensively characterized in terms of size, amino acid composition, physicochemical texture, 

conservation, as well as coevolution of residue pairs between the interacting proteins. These 

properties usually differ for those oligomers that are transient versus those that are obligate 

(Perkins et al., 2010). In general, interfaces of transiently interacting proteins are smaller in size 

than obligate interfaces and have amino acid compositions that are usually not drastically different 

from the rest of the protein surface (Jones and Thornton, 1996, Jones and Thornton, 1997a, Jones 

and Thornton, 1997b, Lo Conte et al., 1999, Nooren and Thornton, 2003b, Ansari and Helms, 

2005, Dey et al., 2010). It was also found that the interface is usually more conserved than the rest 

of the protein surface (Caffrey et al., 2004, Mintseris and Weng, 2005, Yan et al., 2008), although 

residues in the interfaces of obligate PPIs tend to be more conserved and exhibit much stronger 

coevolution with their interacting partners than those in the interfaces of transient PPIs (Mintseris 

and Weng, 2005).  
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These observations have been essential to our understanding of the biochemistry and 

biophysics of PPIs between globular proteins. In contrast, little is known about the characteristics 

of the interfaces between alpha-helical transmembrane proteins. Here, we analyzed a non-

redundant set of alpha-helical transmembrane protein oligomers whose structures have been 

experimentally determined to a high resolution in order to answer the following open and 

intriguing questions about membrane protein interfaces: 1) is membrane-protein interface 

physicochemically distinguishable from the rest of the protein surface? 2) are residues in the 

interfaces more conserved than the rest of the protein surface? 3) are there detectable 

coevolutionary signals across the interface? and 4) how do the interfaces in obligate oligomers 

differ from those in transient ones? 

We found that in alpha-helical transmembrane protein oligomers, while the aqueous part of 

the interface exhibits similar characteristics to interfaces between globular proteins, the 

intramembranous part of the interface is not significantly different from the rest of the surface in 

terms of amino acid composition or hydrophobicity. However, on average, the interface is 

significantly more conserved than the rest of the surface both in the aqueous and intramembranous 

parts, and residue pairs that are in physical contact in the interface of homo-oligomers correlate 

more strongly than pairs not in contact. Based on our findings, we also developed a neural network-

based method that predicts weighted contact numbers (WCNs) of surface residues from 

evolutionary information. We showed that interface residues can be accurately identified based on 

their predicted WCNs. Inspired by our previous study in which residue WCNs were effectively 

used as restraints to improve de novo tertiary structure prediction for alpha-helical membrane 

proteins (Li et al., 2017a), we implemented an algorithm which leverages the high discriminatory 

power of a WCN-based penalty score for accurate docking of membrane proteins. 

IV-2 Materials and Methods 

IV-2.1 Data set 

A set of multi-spanning alpha-helical transmembrane proteins whose structures have been 

determined to a resolution of 2.5 Å or better and an R-free value of 0.3 or better was extracted 

from the OPM (orientations of proteins in membranes) database (Lomize et al., 2006). The data 

set was further refined by using the PISCES server (Wang and Dunbrack, 2003) to reduce 

redundancy such that pairwise sequence identity between protein chains is no more than 25%. 
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Proteins whose structures were not determined by X-ray crystallography were excluded from 

consideration. Classification of an oligomer as obligate or transient was carried out by inspection 

of the experimental structure. Assignment of oligomeric state was based on evidence found in the 

relevant literature. In summary, the data set consists of 36 obligate and 8 transient oligomers (Table 

A-4 in APPENDICES). In terms of oligomeric states, the dataset consists of 16 homodimers, 12 

homotrimers, 4 homotetramers, 2 homopentamers, 2 homodecamers, 1 heterodimer, 4 

heterotrimers, 2 heterotetramers, and 1 heteropentamer (the chimera channelrhodopsin 3ug9A was 

removed). 

IV-2.2 Defining interface residues 

Relative solvent accessibility of each residue was calculated with NACCESS (Hubbard and 

Thornton, 1993). A residue was categorized as core residue if it had < 5% relative solvent 

accessibility and as surface residue otherwise. Interface residues were defined as those surface 

residues that lost > 5% relative solvent accessibility upon oligomerization.  

IV-2.3 Site-specific rate of evolution 

Site-specific rate of evolution was estimated using the Rate4Site method (Pupko et al., 2002). The 

multiple sequence alignment (MSA) of homologs to each monomer was obtained by running 

HHblits against the Uniprot20 sequence database (Remmert et al., 2012) with minimum coverage 

of query sequence (sequence of the monomer) set to 75%, maximum sequence identity to query 

sequence set to 90%, maximum pairwise sequence identity set to 90%, and E-value cutoff for 

inclusion in result alignment set to 0.00001.  

IV-2.4 Mutual information 

We model a sequence position as a discrete random variable 𝑋, which takes on one of an alphabet 

of 20 possible letters 𝐴𝑋 = (𝐴, 𝐶, 𝐷,⋯ ,𝑊, 𝑌) with probabilities (𝑝𝐴, 𝑝𝐶 , 𝑝𝐷 ,⋯ , 𝑝𝑊, 𝑝𝑌), with 

𝑃(𝑋 = 𝑥) = 𝑝𝑥, 𝑝𝑥 ≥ 0 𝑎𝑛𝑑 ∑ 𝑝𝑥 = 1𝑥∈𝐴𝑋 . The alphabet 𝐴𝑋 contains one letter for each amino 

acid. Alignment gap was not considered because it introduces spuriously high conservation for 

alignment columns containing a high percentage of gaps. 𝑝𝑥 is estimated by the relative frequency 
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𝑓𝑥 of amino acid residue 𝑥 at the column of a MSA. 𝑓𝑥 is adjusted by a pseudocount parameter  

λ =  1, 

𝑓𝑥 =
1

20𝜆 +𝑀
[𝜆 +∑𝛿(𝑥, 𝑋𝑖)

𝑀

𝑖=1

] IV-1 

Given two MSA columns 𝑋 and 𝑌, the mutual information 𝐼(𝑋, 𝑌) between them is defined as 

𝐼(𝑋, 𝑌) =∑∑𝑝𝑖𝑗(𝑥𝑖, 𝑦𝑗)

20

𝑗=1

20

𝑖=1

𝑙𝑜𝑔
𝑝𝑖𝑗(𝑥𝑖 , 𝑦𝑗)

𝑝𝑖(𝑥𝑖)𝑝𝑗(𝑦𝑗)
 IV-2 

𝐼(𝑋, 𝑌) is a general measure of association between two random variables 𝑋 and 𝑌 (two alignment 

columns in a MSA), it equals zero if and only if 𝑋 and 𝑌 are independent, and it is positive 

otherwise. Intuitively, 𝐼(𝑋, 𝑌) can be thought of as the average reduction in uncertainty about 𝑋 

that results from knowing the value of 𝑌, and vice versa. 

To correct for bias in 𝐼(𝑋, 𝑌) that may arise from phylogeny (Wollenberg and Atchley, 2000), 

entropy of the MSA columns (Fodor and Aldrich, 2004), or background noise (Dunn et al., 2008), 

and test for significance, we implemented a permutation test in which, for each pair of columns, 

one column was selected and permuted 200 times. This procedure was described in (Cline et al., 

2002) in detail. Briefly, a mutual information was calculated for the pair after each permutation. If 

the number of permutations for which the mutual information is greater than that of the original 

column pair is ≥ 2 (1% of the total number of permutations), we reject the hypothesis that the 

column pair is correlated, and its mutual information is set to 0. Otherwise, the bias-corrected 

mutual information for the pair was computed by subtracting the average mutual information of 

the 200 permutations from that of the original column pair. 

IV-2.5 Training a neural network for predicting WCN 

We trained a neural network for predicting residue WCN from amino acid sequence. The target 

WCNs used in the training were computed from the structure of oligomers in the data set, using 

the algorithm previously described (Li et al., 2016). Each residue was numerically characterized 

by rate of evolution of the sequence site and entries in a window of size 15 from the position-
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specific scoring matrix (PSSM) computed from a MSA of homologs of the protein family as 

previously described (Li et al., 2017b). The output layer of the neural network consists of a single 

node for the residue-specific WCN. The hidden layer consists of 64 neurons. 5% of units in the 

input layer and 50% of neurons in the hidden layer were randomly silenced during each 

presentation of each training case. Connection weights were iteratively tuned with resilient back-

propagation of errors with the learning rate η set to 0.1 and momentum factor α set to 0.1. The 

accuracy of WCN prediction was assessed by the Pearson correlation coefficient and the mean 

absolute error between predicted WCNs and target WCNs computed from the structure of 

oligomers. 

IV-2.6 Predicting interface residues 

Note that the WCN of a residue may be different depending on whether it is computed based on 

the structure of the protomer or the oligomer. To make the distinction straightforward, we refer to 

WCNs computed from protomers as protomeric WCNs and those computed from oligomers as 

oligomeric WCNs. For predicting interface residues, it is reasonable to assume that an 

experimental structure of the protomer is available, and as such, protomeric WCNs can be easily 

computed from the protomer structure. A surface residue is predicted to be an interface residue if 

its predicted oligomeric WCN is larger than its experimental protomeric WCN, which is computed 

based on the protomer structure, by at least a tunable threshold. 

The performance of the neural network on predicting interface residues was assessed by the 

area under than Receiver Operating Characteristic (ROC) curve, or AUC (Hanley and Mcneil, 

1982). The AUC was estimated through cross-validation where the data set was partitioned into 

subsets such that proteins from the same SCOP superfamily (Murzin et al., 1995) were placed in 

the same subset. Each subset was used exactly once as the testing set for evaluating the 

performance of the neural network trained on the remaining of the data set. Effectively, a value of 

AUC was computed from each testing subset. The final estimate of the AUC was computed as the 

mean of all the AUCs. 

IV-2.7 Membrane protein docking 

One of the factors that makes modeling membrane protein complexes a more tractable problem 

than modeling soluble protein complexes is that the membrane imposes a smaller conformational 
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space that needs to be searched through. We designed an algorithm called BCL::MP-Dock for 

predicting structure of membrane protein oligomers given the individual tertiary structures of their 

subunits. The input structures to BCL:: MP-Dock are a structure of the “receptor” and a structure 

of the “ligand”, both oriented in the membrane where the z-axis is aligned with the membrane 

normal using the PPM server (Lomize et al., 2012) separately. Generation of docking candidates 

begins with a random rotation of the ligand about the z-axis and translation of the ligand on the 

membrane to create a glancing contact with the receptor. The ligand is then randomly moved with 

respect to the receptor using Monte Carlo search {Karakas, 2012 #708}. Translation along the z-

axis is limited to no more than 5.4 Å and the step size of tilt angle from the z-axis is limited to no 

more than 0.05 radians. The baseline scoring function of BCL::MP-Dock consists of a clashing 

term against residue clashes, a residue pair contact potential term for interface interaction, and a 

radius of gyration term that favors dense packing between the two docking partners. BCL::MP-

Dock was designed to be able to use various experimental and computational information about 

the interaction between docking partners. In the current study, we tested the idea of using predicted 

interface residues and their predicted WCNs as restraints for scoring docking solutions on a set of 

16 alpha-helical transmembrane protein oligomers ( 

Table IV-1). 

IV-2.8 Computation of enrichment  

The enrichment was used to measure how capable a scoring function is to select the most accurate 

docking solutions from a pool of solutions. To calculate enrichment, a given set S of docking 

solutions are sorted by their RMSD100 values. The top 10% of the solutions with the highest 

RMSD100 values are put into the set T (true) and the rest of the solutions are put into the set F 

(false). The solutions in S are then sorted by their evaluated score. The top 10% of solutions with 

the lowest score are put into the set P (positive) and the rest are put into the set N (negative). The 

intersection of sets T and P are solutions that are correctly identified by the scoring function and 

referred to as TP (true positives). The intersection of sets F and P are solutions that are incorrectly 

identified by the scoring function and are referred to as FP (false positives). The enrichment value 

is then computed using the following formula: 
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𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
/

𝑃

𝑃 + 𝑁
 IV-3 

Intuitively, 
𝑃

𝑃+𝑁
 represents that probability of obtaining a native-like model when choosing a model 

from S at random, whereas 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 represents the probability of obtaining a native-like model when 

choosing from a set of models below an energy cutoff. By our experimental design, 
𝑃

𝑃+𝑁
 has a 

constant value of 0.1, and therefore, the maximum enrichment value that can be achieved is 10. 

Table IV-1 Summary of the benchmark set of transmembrane protein complexes 

Protein ID Resolution (Å) Oligomeric state Obligate Protein name TMH 

1q16_CF 1.9 Homodimer No Nitrate reductase A 5 

2a65_AB 1.7 Homodimer Yes LEUTAA 12 

2bs2_CF 1.8 Homodimer No Quinol fumarate reductase 5 

2nq2_AB 2.4 Homodimer Yes Putative metal-chelate type ABC transporter 10 

2vpz_CG 2.4 Homodimer No Polysulfide reductase from Thermus thermophilus 8 

2z73_AB 2.5 Homodimer No Squid rhodopsin 7 

3odu_AB 2.5 Homodimer No CXCR4 chemokine receptor 7 

3puw_FG 2.3 Heterodimer Yes MBP-Maltose transporter transmembrane subunits 8 

4a01_AB 2.4 Homodimer Yes H1-Translocating Pyrophosphatase 16 

4jkv_AB 2.5 Homodimer No Human smoothened receptor 7 

4mrs_AB 2.4 Homodimer Yes Bacterial Atm1-family ABC transporter 6 

4o6m_AB 1.9 Homodimer Yes CDP-alcohol phosphotransferase 6 

4o6y_AB 1.7 Homodimer Yes Cytochrome b561 6 

4qnd_AB 1.7 Homodimer Yes Bacterial homologue of SWEET transporters 3 

4rng_AC 2.4 Homodimer Yes 
Bacterial homologue of SWEET transporters (sequence 

identity with 4qnd_AB < 25%) 
3 

4u9n_AB 2.2 Homodimer Yes Mg(2+) channel MgtE 5 

Protein IDs are formatted as four-letter PDB ID followed by the chain IDs of the two subunits comprising 

the oligomer 

IV-3 Results 

Each protomer is divided into three disjoint regions: protein core, interface, and non-interface 

surface with no overlapping residues. And each region is further divided into two parts: aqueous 

part and intramembranous part based on the atomic coordinates and membrane thickness of each 

oligomer provided by OPM. 
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IV-3.1 Amino acid composition and interface propensities 

Figure IV-1(A) compares the residue compositions of protein cores, interfaces, and non-interface 

surfaces in the aqueoust part and Figure IV-1(B) compares those in the membrane. The 

comparisons show that in the aqueous part, protein cores have the highest frequencies of 

hydrophobic residues (e.g. Cys, Phe, Ile, Leu, Met, and Val), whereas surfaces have the highest 

frequencies of hydrophilic residues (e.g. Asp, Glu, His, Lys, Asn, Pro, Ser, and Trp), similar to the 

amino acid compositions of solube protein complexes (Yan et al., 2008). In the membrane, it is 

expected that hydrophobic residues will prefer to locate on non-interface surfaces over interfaces 

and protein cores due to the hydrophobic nature of lipid tails. However, this is only partially true 

according to the statistics from our dataset. Figure IV-1(B) shows that non-interface surfaces have 

the highest frequencies of some hydrophilic residues (e.g. Ile, Leu, Val) as well as some 

hydropholic residues (e.g. His, Lys, Arg, and Trp), whereas some hydrophilic residues have the 

highest frequencies in protein cores (e.g. Glu, Asn, Pro, Gln, Ser, and Thr). It is also intertesing 

that Gly and Ala, which have the lowest volume, have the highest frequencies in protein cores both 

in the aqueous part and in the membrane. This is likely because Gly and Ala, which usually occur 

in GxxxG and AxxxA type  of motifs, may facilitate more efficient helix packing (Senes et al., 

2000, Senes et al., 2004). 

For the purpose of predicting interface residues, it is worth looking into whether amino acid 

type distribution in the interface differs from that on the rest of the surface, and estimating the 

interface propensity of each amino acid type. In fact, the amino acid type distribution in the 

interface is significantly different from that on the rest of the surface for both the aqueous part 

(𝑝 = 1.7 × 10−11, 𝜒2 test) and the intramembranous part (𝑝 = 0.011, 𝜒2 test). Figure IV-2 shows 

the interface prosensity of each residue type. In the aqueous part, residue types that prefer interface 

over the rest of the surface are Phe, Ile, Leu, Met, Val, and Tyr. In the membrane, residue types 

that prefer interface over the rest of the surface are Ala, Asp, Met, Asn, Pro, Gln, Thr, and Tyr. 



100 

  

 

Figure IV-1 Amino acid composition of the core, interface, and the rest of the surface  

(A) Amino acid composition in the aqueous part; (B) amino acid composition in the intramembranous part. 

 

Figure IV-2 Interface versus surface propensity in the aqueous part and the intramembranous part for each 

amino acid type 
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The interface propensity of an amino acid type A, 𝐼𝑃𝐴 , was calculated according to 𝐼𝑃𝐴 = −log
𝑓𝐴,𝑖

𝑓𝐴,𝑠
⁄ , where 𝑓𝐴,𝑖 is 

its fraction in the interface and 𝑓𝐴,𝑠 is its fraction on the surface as a whole. A negative propensity value indicates the 

amino acid prefers interface. 

IV-3.2 Hydrophobicity 

Since transmembrane proteins experience two drastically different environments (lipid bilayer and 

aqueous) at the same time, we analyzed the effect of these two environments on the hydrophobicity 

of the interface, noninterface surface region, and the protein core separately. In the aqueous part, 

the interface is significantly more hydrophobic than noninterface surface region, and the protein 

core is significantly more hydrophobic than the interface (Figure IV-3(A)), consistent with the 

observation made on soluble proteins (Bordner and Abagyan, 2005). In the lipid bilayer, the 

protein core is significantly less hydrophobic than the noninterface surface region (𝑝 = 0.0001, 

paired t-test) (Figure IV-3(B)), due to the nonpolar nature of lipid tails. The protein core is also 

less hydrophobic than the interface, although the evidence for this is weaker (𝑝 = 0.011, paired t-

test). To our surprise, no significant difference in average hydrophobicity is found between the 

interface and the rest of the surface (𝑝 = 0.16, paired t-test). It is likely that this is partially because 

protomers of transient membrane protein complexes, when they are not part of a complex, need 

their interface hydrophobic enough to make favorable contact with lipid tails. In fact, in obligate 

complexes the interface is less hydrophobic than the rest of the surface, although it is only 

marginally significant (𝑝 = 0.048, paired t-test) (Figure IV-3(C)). 

 

Figure IV-3 Distribution of average hydrophobicity of core, interface, and noninterface surface of alpha-helical 

transmembrane proteins 
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(A) Distribution of average hydrophobicity in the aqueous part; (B) distribution of average hydrophobicity in the 

intramembranous part; (C) distribution of average hydrophobicity for obligate oligomers. 

IV-3.3 The interface is more conserved than the rest of the surface in obligate oligomers 

The selective pressure is higher on the interface than on the rest of the surface because proteins 

interact by making specific contacts in the interface whereas, the interaction with lipid tails or 

solvent is usually nonspecific. Thus, it is expected that the interface is more conserved than the 

rest of the surface. To confirm this, we computed the average rate of evolution of the interface and 

that of the rest of the surface for each oligomer in the data set. A lower average rate of evolution 

indicates a stronger conservation. While the average rate of evolution of the interface is 

significantly lower than that of the rest of the surface in both the aqueous region (𝑝 = 0.00033, 

paired t-test) (Figure IV-4(A)) and the intramembranous region (𝑝 = 0.00056, paired t-test) 

(Figure IV-4(D)) overall, it is of more interest to look into the difference between obligate and 

transient oligomers. Our analysis shows that, in obligate oligomers, the interface is significantly 

more conserved than the rest of the surface in both the aqueous region (𝑝 = 4.7 × 10−5, paired t-

test) (Figure IV-4(B)) and the intramembranous region (𝑝 = 6.3 × 10−5, paired t-test) (Figure 

IV-4(E)). In contrast, in transient oligomers, the interface is not seen to be conserved compared to 

the rest of the surface in neither region (Figure IV-4(C) and (F)). This confirms that, in general, 

the selection pressure on obligate complexes is stronger than on transient complexes (Nooren and 

Thornton, 2003a, Mintseris and Weng, 2005).  

We also investigated whether interface residues in the lipid bilayer are more conserved than 

interface residues in the aqueous part. On average, the average rate of evolution of interface 

residues in the lipid bilayer is significantly lower than that of interface residues in the aqueous part 

(𝑝 = 0.0046, paired t-test). However, it is worth noting that for many interfaces (12 out of 44 

cases in our data set), the average rate of evolution is lower in the aqueous part than that in the 

membrane. This suggests that, for some membrane proteins, the extramembrane domain may be 

critical to protein-protein interactions. 
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Figure IV-4 Distribution of average rate of evolution of core, interface, and noninterface surface of alpha-

helical transmembrane proteins 

Distribution of average rate of evolution for the aqueous region taking (A) obligate and transient oligomers together, 

(B) obligate oligomers only, (C) transient oligomers only; and for the intramembranous region taking (D) obligate and 

transient oligomers together, (E) obligate oligomers only, (F) transient oligomers only. 

IV-3.4 Contacting interface residue pairs show stronger correlation than non-contacting 

pairs 

Previously studies have shown that, in globular proteins, correlated positions have a tendency to 

be spatially closer in the inter-domain interface (Pazos et al., 1997). However, it is not clear 

whether residue pairs in the interface of membrane protein complexes are correlated. Figure IV-5 

compares the distribution of mutual information between pairs of residues in contact with that of 

the mutual information between pairs of residues not in contact. Note that a residue i in one subunit 

forming the interface is considered in physical contact with a residue j in the other subunit if the 
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separation between any heavy atom of i and j is ≤ 4.0 Å. A clear shift of residue pairs that are in 

contact toward higher mutual information is observed (𝑝 < 10−8, Mann-Whitney test). This shift 

suggests that, in the interface of membrane protein complexes, residue pairs that are in physical 

contact tend to correlate stronger than those that are not in contact, and that, while a small number 

of important contacting pairs have high levels of mutual information, there are many more pairs 

with lower levels of mutual information that may also contribute to the stabilization of membrane 

protein complex.  

 

 

Figure IV-5. Bar diagrams comparing the distribution of the mutual information between pairs of residues in 

contact with that of the mutual information between pairs of residues not in contact 

IV-3.5 Predicting interface residues in the membrane 

We evaluate the performance of the trained neural networks in distinguishing residues in the 

interface from those on the rest of the surface, because the assumption in the current study is that 

an experimental structure for the protomer is available and it is straightforward to tell which 
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residues are buried by computing residue relative solvent accessible surface areas. A score for a 

residue to be in the interface is computed by subtracting its protomeric WCN from its predicted 

WCN, this score is termed ΔWCN. It is considered that the higher the score the more that the residue 

is buried in the interface.  

Figure IV-6(A) shows the ROC curve plotted using cross-validated predictions from a neural 

network trained to distinguish interface residues from residues on the rest of the surface for both 

the aqueous part and the intramembranous part. The area under this curve (AUC) is 0.72. Because 

the environment of the aqueous part differs drastically from the membrane, we expect that a neural 

network trained specifically using intramembranous residues will perform better than one trained 

using an agglomerated dataset of aqueous and intramembranous residues. Figure IV-6(B) shows 

the ROC curve plotted using cross-validated predictions from a neural network trained to 

distinguish interface residues from residues on the rest of the surface for the intramembranous part. 

In fact, the AUC is 0.75, higher than the neural network trained using an agglomerated dataset. 

This AUC value is also comparable to a previous random forest-based protein-protein binding sites 

predictor for membrane proteins (Bordner, 2009).  

 

Figure IV-6 Receiver-operating characteristic (ROC) curves 

(A) The ROC curve for the neural network-based interface residue classification model trained using interface and 

surface residues in both the aqueous and the intramembranous regions. The area under this curve is 0.72. (B) The 

ROC curve for the neural network-based interface residue classification model trained using interface and surface 

residues in the intramembranous region only. The area under this curve is 0.75. Both curves are colorized according 
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to classification thresholds and the scale on the right vertical axis indicates the mapping between colors and 

classification thresholds ΔWCN. 

IV-3.6 Docking membrane proteins using predicted WCNs as restraints 

The BCL::MP-Dock algorithm was evaluated on a set consisting of 1 heterodimer and 15 

homodimer structures. The results for global searches from fully randomized starting positions are 

detailed in Table IV-2. Of the 15 homodimer cases, BCL::MP-Dock is able to reconstruct the 

structure of the complex for 14 cases where the best RMSD100 of the docked ligand subunit to its 

native structure is less than 2.5 Å (2.5 Å is the threshold of resolution used in creating the dataset). 

The two cases where the best RMSD100 of the docked ligand is greater than 2.5 Å are the bacterial 

Atm1-family ABC transporter (PDB ID: 4mrs_AB) and the heterodimeric transmembrane 

subunits of the maltose ABC transporter (PDB ID: 3puw_FG). To confirm the effectiveness of the 

sampling scheme of BCL::MP-Dock, we also computed the means of RMSD100 of the docked 

ligand of the top 1% models ranked by RMSD100. Again, except for 3puw_FG and 4mrs_AB, the 

mean RMSD100 is either less than or only slightly greater than 3.0 Å.  

Given that BCL::MP-Dock is able to sample the native structure of most complexes in the 

testing set, the next question one would then ask is: how effective is the scoring function at 

identifying the docked ligands that are top-ranked by RMSD100? To answer this question, we 

computed the means of RMSD100 of the docked ligand of the 1% models ranked by the baseline 

scoring function. Comparing to the means of RMSD100 of the top 1% models ranked by 

RMSD100, it can be seen that the baseline scoring function is remotely effective in only two cases 

(2a65_AB, 2vpz_CG, and 4a01_AB). The effectiveness of a scoring function can also be evaluated 

by computing its enrichment (see Computation of enrichment). As shown in Table IV-2, while the 

enrichment of the baseline scoring function is greater than 1.0 for 11 cases, it is greater than 2.0 

for only 5 cases. These results indicate that the baseline scoring function is not able to identify 

docked ligands that are top-ranked by RMSD100 in most cases.  

Inspired by our previous study which demonstrates that residue weighted contact numbers 

(WCN) can be effectively used as restraints to improve de novo tertiary structure prediction for 

alpha-helical membrane proteins (Li et al., 2017a), we hypothesized that a scoring term that 

assigns a penalty to a docked models according the magnitude of the deviation the WCN of 

interface residues from ANN-predicted WCN will be highly effective: 
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𝑒𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑠𝑐𝑜𝑟𝑒 =
√

1

𝑛
∑ (𝑊𝐶𝑁𝑖 −𝑊𝐶𝑁𝑖

𝑝)2
𝑛

𝑖 ∈ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 
𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒
 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠

 
IV-4 

where 𝑊𝐶𝑁𝑖 is the WCN of interface residue 𝑖 computed based on the docked model, 𝑊𝐶𝑁𝑖
𝑝
 is 

the WCN of interface residue 𝑖 predicted by the neural network. We tested three ΔWCN (ANN-

predicted oligomeric WCN – true protomeric WCN) thresholds, namely ΔWCN = 1, 2, or 3 (τ1, τ2, 

and τ3 in Table IV-2), for classifying interface residues. The predicted WCNs of the resulting 

interfaces residues of each docking partners were used as restraints. Note that, to avoid potential 

overestimation of the effectiveness of this approach, the WCNs used as restraints in docking the 

partners of each testing complex are predicted by a neural network trained with a dataset containing 

no members from the SCOP superfamily of the testing complex.  

As shown in Table IV-2, with classification thresholds τ1, τ2, and τ3, the enrichment of the 

WCN-based penalty score is improved in 13, 11, and 11 cases, respectively, compared to the 

enrichment of the baseline scoring function. More importantly, the number of cases where the 

enrichment is greater than 2.0 is increased to 10, 10, and 8, respectively. The cases where the 

enrichment of the penalty score is worse than that of the baseline scoring function or less than 2.0 

is likely due to poor classification of interface residues or poor accuracy of WCN prediction. For 

example, when using classification threshold τ1, the cases where the enrichment of the penalty 

score is less than 2.0 has an average TPR, PPV, and MAE of 0.71, 0.20, and 2.09, whereas the 

those for cases where the enrichment is greater than 2.0 are 0.80, 0.44, and 1.75, respectively. 

Similar results can be obtained with other two classification thresholds. To demonstrate the 

effectiveness of the penalty score, we plot the funnel-shaped score v.s. rmsd relationship and 

compare the best docked model in the 1% models ranked by this score to the native complex 

structure for cases where using classification threshold τ1 achieved an enrichment > 2.0 (Figure 

IV-7). 
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Table IV-2 Summary of the global docking of transmembrane proteins using predicted interface residue WCN as restraints 

Oligomer 

ID 

No. of 

predicted 

interface 

residues 

TPR PPV MAE Best RMSD100 (Å) 

Mean RMSD100 of top 1% 

models ranked by 

RMSD100 (Å) 

Mean RMSD100 of top 1% 

models ranked by score (Å) 
Enrichment 

τ1 τ 2 τ 3 τ1 τ 2 τ 3 τ1 τ 2 τ 3 τ1 τ 2 τ 3 β τ1 τ 2 τ 3 β τ1 τ 2 τ 3 β τ1 τ 2 τ 3 β τ1 τ 2 τ 3 

1q16_CF 46 19 4 0.67 0.33 0.00 0.17 0.21 0.00 2.09 2.59 3.71 1.1 1.1 0.6 0.8 2.2 2.1 2.0 2.3 27.5 25.7 30.7 34.8 0.6 0.0 0.1 0.2 

2a65_AB 65 27 12 0.64 0.57 0.43 0.14 0.30 0.50 1.74 2.26 2.41 0.7 0.8 0.9 0.5 1.4 1.4 1.5 1.4 5.3 5.9 4.8 4.3 3.0 3.1 3.7 3.6 

2bs2_CF 54 26 8 0.67 0.33 0.00 0.22 0.23 0.00 1.81 2.43 3.47 1.2 1.3 1.4 1.4 2.9 2.9 3.4 3.3 28.0 33.3 37.9 43.0 0.6 0.6 0.4 0.0 

2nq2_AB 81 48 30 0.92 0.80 0.76 0.28 0.42 0.63 1.89 2.25 2.21 0.7 1.1 1.1 0.9 2.9 2.2 2.1 1.8 40.0 5.1 4.6 4.1 0.4 6.6 7.0 6.8 

2vpz_CG 52 27 14 0.61 0.39 0.17 0.21 0.26 0.21 2.18 2.85 3.47 0.7 0.9 0.9 0.8 2.0 1.9 1.8 1.8 10.5 24.2 29.0 38.7 2.8 0.8 1.0 0.2 

2z73_AB 66 36 12 0.69 0.38 0.15 0.14 0.14 0.17 2.16 2.70 3.16 1.9 2.6 1.8 1.5 4.2 4.2 4.1 4.2 26.1 28.7 30.3 18.4 0.7 0.8 0.5 1.0 

3odu_AB 81 57 24 0.86 0.57 0.14 0.07 0.07 0.04 2.50 2.95 3.88 0.9 1.2 0.9 1.7 3.5 4.1 4.4 4.9 35.2 30.0 33.1 35.2 1.1 1.3 0.9 1.2 

3puw_FG 123 93 61 0.93 0.81 0.64 0.45 0.52 0.62 1.99 2.26 2.44 3.2 1.0 4.6 4.7 6.9 7.4 7.2 7.6 25.7 13.4 10.9 14.0 1.8 3.5 3.9 4.0 

4a01_AB 50 25 14 0.72 0.58 0.39 0.52 0.84 1.00 1.46 1.68 1.34 0.6 0.7 1.4 1.2 2.4 2.6 2.7 2.4 5.4 4.3 4.0 3.8 4.1 8.0 7.0 6.3 

4jkv_AB 58 30 15 0.70 0.39 0.22 0.28 0.30 0.33 2.14 2.79 3.26 0.9 0.5 1.0 1.2 2.4 2.1 2.4 2.5 19.8 8.0 15.9 18.6 2.2 4.4 2.5 0.6 

4mrs_AB 55 29 11 0.75 0.54 0.21 0.38 0.52 0.55 1.77 2.05 2.12 2.9 9.5 1.1 9.1 16.4 15.8 16.2 16.3 29.1 26.5 26.0 24.0 0.5 1.0 0.9 1.4 

4o6m_AB 24 9 4 0.55 0.23 0.09 0.50 0.56 0.50 1.46 2.16 2.59 0.6 0.9 1.1 1.1 2.3 2.2 2.2 2.3 12.4 3.4 7.5 14.1 2.1 4.8 3.8 1.2 

4o6y_AB 56 30 14 0.95 0.67 0.48 0.36 0.47 0.71 1.77 2.21 2.30 1.1 0.8 0.7 0.7 2.0 1.8 2.0 2.0 21.4 5.6 7.1 5.9 1.6 5.6 5.4 6.2 

4qnd_AB 30 21 17 0.81 0.65 0.58 0.70 0.81 0.88 1.70 1.93 1.88 1.7 0.9 1.5 1.3 3.0 2.9 3.1 3.0 12.7 5.3 7.0 5.8 1.8 4.6 4.6 4.2 

4rng_AC 53 42 23 0.87 0.83 0.70 0.49 0.60 0.91 1.49 1.62 1.42 1.0 1.2 1.5 0.6 3.0 2.9 3.1 2.6 21.8 4.1 4.4 3.5 1.5 7.6 7.2 5.3 

4u9n_AB 72 55 36 0.90 0.80 0.60 0.63 0.73 0.83 1.86 2.00 2.27 0.7 1.2 1.2 1.9 3.1 2.8 3.1 3.0 17.3 4.9 5.8 5.7 1.4 6.2 5.4 4.6 

Note: TPR stands for true positive rate; PPV stands for positive predictive value; and MAE stands for mean absolute error; τ1 indicates predicting residues whose 

ΔWCN is greater than 1.0 to be in the interface; τ2 indicates for predicting residues whose ΔWCN is greater than 2.0 to be in the interface; and τ3 indicates for predicting 

residues whose ΔWCN is greater than 3.0 to be in the interface; β indicates docking using the baseline scoring function, which consists of a clashing term against 

residue clashes in docking candidates, a residue pair contact potential term for interface interaction, and a radius of gyration term that favors dense packing between 

the two docking partners.
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2a65_AB (1.6 Å) 

  
2nq2_AB (1.3 Å) 

  
3puw_FG (1.0 Å) 

  
4a01_AB (0.7 Å) 
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4jkv_AB (2.1 Å) 

  
4o6m_AB (0.9 Å) 

  
4o6y_AB (0.8 Å) 

  
4qnd_AB (0.9 Å) 
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4rng_AC (1.2 Å) 

  
4u9n_AB (1.2 Å) 

  

Figure IV-7 Examples of oligomers for which WCNs helped identify the correct docking solutions  

Plots on WCN restraint score v.s. RMSD100 relationship, and comparison of the best docked model in the 1% models 

ranked by WCN restraint score to the native oligomer structure (pale green: native receptor subunit, pale blue: native 

ligand subunit, light orange: docked ligand subunit) for cases where the enrichment of the WCN restraint score is 

higher than 2 using ΔWCN = 1 as the threshold for classifying interface residue. The values in parentheses are the 

RMSD100 of the models shown. 

IV-4 Discussion 

While the properties of interfaces in both transient and obligate oligomers of globular proteins 

have been well characterized, little is known about the characteristics of interfaces in oligomers of 

transmembrane proteins. In the current work, we compiled a nonredundant dataset of oligomers of 

alpha-helical membrane proteins whose structure have been determined to high resolution and 

studied the properties of the interfaces in terms of hydrophobicity, amino acid composition, 

interface propensity of amino acids, evolutionary conservation, and correlation of amino acid pairs 

in the interface. We found that the aqueous part of the interface in oligomers of alpha-helical 

membrane proteins has similar properties to the interface in oligomers of globular proteins (Jones 
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and Thornton, 1997a, Nooren and Thornton, 2003b, Bordner and Abagyan, 2005, Yan et al., 2008, 

Acuner Ozbabacan et al., 2011). Within the membrane, while the average hydrophobicity of the 

interface was not found to be statistically different from that of the rest of the surface, the interface 

is significantly more conserved than the rest of the surface. We also observed that contacting 

residue pairs across the interface tend to correlate more strongly than non-contacting residue pairs.  

Based on the observation that the interface is significantly more conserved than the rest of the 

surface in the membrane, we adapted our previously developed neural network-based method (Li 

et al., 2016) for distinguishing interface residues from residues on the rest of the surface. This 

classification was based on the weighted contact numbers of surface residues predicted by the 

neural network. While the performance of this method is comparable to the Random Forest-based 

binary classifier developed by Bordner (Bordner, 2009), its strength lies in the fact that it also 

predicts residues’ real-valued weighted contact number. Residues’ WCN not only is an effective 

restraint for improving the fraction of native contacts in predicted structural models for de novo 

prediction of tertiary structures of alpha-helical membrane proteins (Li et al., 2017a), as we have 

shown in the current study, it can also be a powerful score for selecting native-like docking 

candidates of membrane protein complexes. 

The sampling problem in docking transmembrane proteins is inherently more tractable than 

that in docking globular proteins. This is mainly because the membrane imposes a strong constraint 

on the rotational degree of freedom with respect to the membrane normal and the translational 

degree of freedom along the membrane normal. Despite this simplification in sampling, docking 

transmembrane proteins is still a challenging problem in terms of scoring, particularly for docking 

algorithms where the scoring function primarily concerns about physicochemical 

complementarity. Another complication is that scoring functions replying on shape 

complementarity would not perform well neither because of the typical cylindrical shape of alpha-

helical membrane proteins. In contrast, using restraints derived from evolutionary analysis may 

represent an effective approach to narrowing down the set of viable docking candidates. In fact, 

the effectiveness of using predicted coevolving residue pairs to single out the right docking 

solution has been demonstrated in docking globular proteins (Pazos et al., 1997, Madaoui and 

Guerois, 2008, Weigt et al., 2009, Ovchinnikov et al., 2014, Ovchinnikov et al., 2015, Uguzzoni 
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et al., 2017) and some isolated cases of transmembrane proteins (Ovchinnikov et al., 2014, 

Ovchinnikov et al., 2015).  

While coevolutionary analysis has the benefit of pinpointing specific interacting residue pairs, 

it requires construction of paired MSA of interacting partners, and computationally, this problem 

becomes difficult by itself due to the existence of paralogs (Burger and van Nimwegen, 2008, 

Bitbol et al., 2016, Gueudre et al., 2016). We have taken a different approach where the first step 

is to predict WCNs of surface residues from sequence and to identify potential interface residues 

in each interaction partner using a neural network trained to map from evolutionary information 

to residue WCN. The second step is to use the identified interface residues as “sticky” points and 

their predicted WCNs as restraints for ranking docking solutions. This approach is computationally 

more efficient and more tractable as it eliminates the necessity of creating pairedMSAs. We have 

also demonstrated the effectiveness of this approach using a benchmark set of 16 alpha-helical 

transmembrane protein oligomers. 

We also note that the effectiveness of our approach depends on the accuracy of the prediction 

of WCNs and the identification of interface residues, although it is robust to the extent that the 

enrichment of the WCN restraint score will be greater than 1.0 when either the PPV of classifying 

interface residues is above 0.25 or the MAE of WCN prediction is below 2.0 (Table IV-2). 

However, when the PPV drops below 0.25 and the MAE goes above 2.0, the WCN score starts to 

act against identifying correct docking solutions. This issue stands out especially in some transient 

oligomers where structural or functional constraint on the interface may be too weak to leave 

detectable evolutionary information on interface residues or incidental oligomers where the 

interface is neither structurally nor functionally relevant (Nooren and Thornton, 2003a). 

Nevertheless, the current study provides essential statistics about some properties of the interface 

in alpha-helical transmembrane protein oligomers and also presents a relatively effective and 

robust approach for docking transmembrane proteins. The statistics may give insights into the 

development of methods that are more accurate in predicting interface residues and the docking 

approach may be a valuable tool for constructing structural models for transmembrane protein 

oligomers.   
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V. PREDICTING THE FUNCTIONAL IMPACT OF KCNQ1 VARIANTS OF UNKNOWN 

SIGNIFICANCE 

This chapter has been published under (Li et al., 2017b). 

V-1 Introduction 

Congenital long QT syndrome (LQTS) is a heart rhythm disorder that affects ~ 1 in 2,500 births 

(Schwartz et al., 2009). It predisposes children and young adults to a type of ventricular 

tachycardia (torsades de pointes) and sudden cardiac death (Goldenberg and Moss, 2008). LQTS 

is associated with pathogenic variants in several genes that lead to dysfunctional cardiac ion 

channels. Among the 16 known LQTS-associated genes, KCNQ1 variants account for ~ 30-35% 

of all LQTS cases. KCNQ1 encodes the α-subunit of the voltage-gated K+ channel KCNQ1 (also 

known as KV7.1) that regulates the slow delayed rectifier current (IKs), a major driver of cardiac 

repolarization (Barhanin et al., 1996). Loss of KCNQ1 function leads to diminished or 

dysfunctional IKs, impaired myocardial repolarization and LQTS (Schwartz et al., 2013). 

An emerging standard-of-care for LQTS employs clinical genetic testing to identify LQTS-

associated variants (Schwartz et al., 2013). Established genotype-phenotype relations should be 

factored into the assessment of the risk of sudden cardiac death and the selection of appropriate 

therapeutic interventions (Giudicessi and Ackerman, 2013). However, variants of unknown 

significance (VUS) for which there is inadequate evidence to classify as being pathogenic are 

common findings (Ackerman, 2015). This issue is further confounded by the presence of 

background genetic “noise” (the frequency of genetic variations of a particular gene in a healthy 

population) and variants with incomplete penetrance (MacArthur and Tyler-Smith, 2010, 

Giudicessi and Ackerman, 2013, Ackerman, 2015). Variant interpretation is bound to present an 

increasingly daunting challenge in the era of next-generation sequencing (MacArthur and Tyler-

Smith, 2010, Cooper and Shendure, 2011, Katsanis and Katsanis, 2013). 

Ideally, except for certain well-established disease-causing variants, positive LQTS genetic 

testing results should be evaluated by physiologically relevant experimental functional assays, but 

experimental characterization remains labor-intensive and costly to scale (Bhuiyan, 2012, Katsanis 

and Katsanis, 2013). Under such constraints, computational methods, which are usually machine 

learning-based, represent a common predictive approach (Ng and Henikoff, 2006, Cooper and 
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Shendure, 2011, Richards et al., 2015). However, hardly any computational methods are 

sufficiently accurate for clinical use related to channelopathies or other genetic disorders 

(Tchernitchko et al., 2004, Ohanian et al., 2012). Most existing computational methods have been 

trained on datasets pulled from online databases that have not been subjected to rigorous functional 

validation (Richards et al., 2015). These datasets may be significantly contaminated with 

erroneous annotations and thereby provide machine-learning algorithms with misleading 

information (Care et al., 2007, Richards et al., 2015). Further, a potentially even more crucial issue 

is that current methods intermingle two related but separate questions: whether a given variant 

causes functional impact at the molecular level and, if so, whether that functional effect will be 

manifested at the organismal level. Making such distinctions is important when delivering 

predictions because dysfunction at molecular level does not necessarily equate to organismal 

deleteriousness (MacArthur and Tyler-Smith, 2010, Cooper and Shendure, 2011). 

In this study, we sought to develop a protein-specific algorithm capable of accurately 

predicting functional consequences of KCNQ1 variants. We first curated a set of functionally 

validated KCNQ1 variants. We then trained a neural network-based, KCNQ1-specific 

genotype−channel function relationship predictor Q1VarPred. In contrast to genome-wide 

methods, whose performances have suffered from dataset contamination and heterogeneity and do 

not differentiate between functional impact and organismal deleteriousness when delivering 

predictions, Q1VarPred was trained on the functionally validated dataset to predict molecular 

functional impact. 

V-2 Materials and Methods 

V-2.1 Dataset and criteria for annotating functional impact 

KCNQ1 variants and their associated electrophysiological (EP) effects in the dataset for this study 

were collected from the literature (Table A-5 in APPENDICES). We only considered data from 

experiments where the auxiliary subunit KCNE1 was also expressed. Each variant was annotated 

in terms of functional impact based on two experimental parameters (peak current relative to the 

wild-type and change in voltage of half-maximal activation V½). Specifically, a variant was 

defined as “Normal” if 1) 75% ≤ 𝑝𝑒𝑎𝑘 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ≤ 125% and 2) there was ≤10 mV 

depolarization or hyperpolarization shift in V½. “Mild Loss of Function” was defined as 1) 25% <

𝑝𝑒𝑎𝑘 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 < 75% or 2) 10-20 mV depolarization shift in V½. “Severe Loss of Function” was 
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defined as 1) 𝑝𝑒𝑎𝑘 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 < 25% or 2) >20 mV depolarization shift in V½. “Severe Gain of 

Function” was defined as 1) >150% peak current or 2) 120 to 150 % peak current and >15 mV 

hyperpolarization shift in V½. Clinical classification (case variant versus control) of each variant 

was sourced from previous large-scale clinical studies (Kapa et al., 2009, Giudicessi et al., 2012), 

or EP studies that reported such information. Case variants were identified in patient cohort 

whereas control variants were found in healthy cohort. In addition, in accordance to the recent 

ACMG/AMP standards and guidelines for the interpretation of sequence variants (Richards et al., 

2015), variants with a minor allele frequency of > 1 / 2500 (LQTS prevalence) in the general 

population were removed. For training the binary classification model Q1VarPred, loss-of-

function and gain-of-function variants were grouped together as dysfunctional and a mild loss-of-

function variant was either labeled as dysfunctional if its peak current was < 50%, or normal 

otherwise. The common variant G643S was classified as having normal function (Modell and 

Lehmann, 2006). 

V-2.2 Neural network architecture and training 

The neural network in the present study was a fully connected three-layer feed-forward network 

with a sigmoid transfer function. The input layer consists of two nodes, one for each predictive 

feature. The output layer consists of a single neuron, which outputs a numerical prediction of the 

functional impact of a given variant on the scale of 0 to 1 with 1 being complete dysfunction. A 

hidden layer with 3 neurons was chosen considering the fact that the “dropout” technique 

(Srivastava et al., 2014) was adopted to prevent the neural network from overfitting, a phenomenon 

in which the learned model is excessively complex (e.g. too many model parameters relative to 

the number of observations for training) and is poorly generalizable.  However, we also tested 

hidden layers with up to 8 neurons, the results of which showed that the size of the hidden layer 

did not affect the performance of the neural network in a significant way (Table A-6 in 

APPENDICES). The neural network was trained on numeric encoding of variant functional labels 

(1 for complete dysfunction 0 for normal), with back-propagation of errors. The learning rate was 

set to 0.05 and momentum was set to 0.8. Weights were updated after each presentation of a variant 

to the network and a constant weight decay of 0.02 was applied to reduce model flexibility. 
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V-2.3 Predictive features 

We used two features to characterize an amino acid substitution, namely rate of evolution, which 

quantifies the conservation of the sequence position where the substitution has occurred, and 

position-specific scoring matrix (PSSM)-based perturbation, which measures the radicalness of 

the substitution itself. These two features were chosen, before the dataset was inspected, based on 

the rationale that a very conserved position may tolerate less radical substitutions while a variable 

position may not tolerate more radical substitutions, as—for example—observed in a systematic 

mutation study of  bacteriophage T4 lysozyme (Rennell et al., 1991). We confirmed that these 

features are critical among a limited number of features tested (Table A-7 in APPENDICES). 

Details on how these two features were computed can be found in Computation of predictive 

features in APPENDICES. 

V-2.4 Performance metrics 

The performance of the learned neural network model and other evaluated methods were 

quantified using the following metrics: true positive rate (TPR), true negative rate (TNR), positive 

predictive value (PPV), negative predictive value (NPV), accuracy, Matthew’s correlation 

coefficient (MCC),(Matthews, 1975) and area under the receiver operating characteristic (ROC) 

curve (AUC). Note that the first six metrics can be computed only after all variants are classified 

at a specific threshold. Using the notation of true positives (TP), true negatives (TN), false positives 

(FP), and false negatives (FN), these metrics are defined as: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 V-1 

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 V-2 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 V-3 

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 V-4 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 V-5 

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑁 + 𝐹𝑁)(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)
 V-6 

respectively. A TP is a dysfunctional variant classified as dysfunctional and TN is a normal variant 

classified as normal. MCC measures the correlation between predicted and observed binary 

classifications, with a value between -1 and 1. A MCC of 1 means perfect classification, a value 

of 0 means no better than random classification, and -1 indicates a completely reversed 

classification. As MCC is unaffected by class size, it is a particularly useful measure of 

classification quality when the two classes are of very different sizes.(Matthews, 1975) 

Computation of all performance metrics was accomplished using the ROCR package (Sing et al., 

2005) implemented in the R programming environment (R Development Core Team, 2015).  

V-2.5 Estimating generalization ability 

The generalization ability of a learned model is defined as its performance in predicting new 

variants that are not used for training. A model with higher generalization ability is favored over 

ones with lower generalization ability. A common practice to estimate a model’s generalization 

ability is through a procedure called “𝑘-fold cross validation” where the dataset is randomly 

divided into 𝑘 equally-sized mutually exclusive subsets.  The model is trained on 𝑘 − 1 subsets 

(collectively known as the training set) and its generalization ability is estimated on the remaining 

one subset (test set). Specifically, after the model is trained, a threshold is determined which 

maximizes the MCC on the training set, the same threshold is then used for computing the 

performance metrics on the test set. This process is repeated 𝑘 times each using a different one of 

the 𝑘 subsets as the test set and the remaining 𝑘 − 1 subsets as the training set. Every time a model 

is trained, its performance metrics are computed on the test set. In a  𝑘-fold cross-validation, the 

generalization ability is estimated as the average of performance metrics over 𝑘 test sets. Because 

the number of ways a dataset can be split into 𝑘 subsets is enormous, it is desirable to repeat the 

random splitting 𝑝 times to reduce artifacts. In the current study, we chose 𝑘 = 3 and 𝑝 = 200, 

similar to a previous study (Smith et al., 2014). The splitting was stratified such that the class 

proportions of the training set and the test set are as close to that of the whole dataset as possible. 
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To ensure the consistency of comparison, the performance metrics of all evaluated methods were 

estimated using the exact same data. This means that every time the dataset was randomly split 

into 3 subsets, these subsets were used for calculating the performance metrics of all methods. The 

variability in performance metrics associated with random splitting of dataset is presented in Table 

A-8 in APPENDICES. 

V-3 Results 

V-3.1 Functional studies do not always agree with clinical testing 

We compiled a total of 107 functionally characterized KCNQ1 variants (Table A-5 in 

APPENDICES). Two important observations were made on this dataset. First, not all case variants 

(variants identified in LQTS patient cohort, a total of 99 in our dataset) are severely dysfunctional. 

Per our scheme of functional annotation (see Dataset and criteria for annotating functional impact), 

6 out of 99 case variants are functionally normal and 8 out of 99 cause only mild loss of function. 

Interestingly, these two fractions roughly agree with the previous estimate that ~10% case variants 

may be false positives (Kapa et al., 2009). On the other hand, a few variants identified in presumed 

healthy controls are severely dysfunctional (for example, V110I and A300T). A300T, which 

occurs within the pore helix of the channel was shown to cause a massive reduction of IKs and 

hyperpolarization of the voltage of half-activation of the channel both with and without the 

presence of the wild-type subunit (Bianchi et al., 2000). The V110I variant showed significant 

reduction in IKs and depolarization of voltage of half-maximal activation when expressed in the 

absence of the wild-type subunit (Cordeiro et al., 2010). This analysis reinforces the argument that 

translating protein dysfunction at the molecular level to clinical manifestation and also attributing 

clinical manifestation to protein dysfunction both need to be carried out with caution (Giudicessi 

and Ackerman, 2013).  

V-3.2 Position-specific rate of evolution reflects functionally-critical subdomains 

The importance of a sequence site for protein structure or function can often be inferred from its 

conservation over evolution. We computed the position-specific rate of evolution for the entire 

sequence as well as the mean rate of evolution for each of the 24 subdomains of KCNQ1 (see 

Computation of predictive features in APPENDICES). A lower rate of evolution indicates higher 

conservation. 
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Overall, the N-terminal domain (NTD) and C-terminal domain (CTD) are generally less 

conserved than subdomains within the channel domain (CD), as shown in Figure V-1. The average 

rates of evolution for the NTD and CTD are 3.2 and 2.5, respectively, whereas the average rate of 

evolution in the CD is 1.0. Within the CD, six subdomains have a mean rate of evolution below 

1.0 (S4, S4-S5, S5, pore-helix, pore-loop, and S6). As expected, the pore-helix (residues 299-312) 

and pore-loop (residues 313-322) of the channel are the most conserved subdomains, with mean 

rates of evolution of only 0.38 and 0.41, respectively. This correlates with the critical role played 

by these components in achieving high ion selectivity for K+ over Na+ ions (Doyle et al., 1998). 

The S4 segment of the CD, which harbors basic residues for sensing and responding to changes in 

membrane potential (Choe, 2002), has a mean rate of evolution of 0.61.  The S4-S5 linker, which 

is believed to be responsible for transferring the conformational changes in the voltage sensor 

domain to the pore (Labro et al., 2011) and serve as binding sites for phosphatidylinositol-4,5-

bisphosphate (PIP2) to modulate the deactivation rate of the channel (Taylor and Sanders, 2016), 

has a mean rate of evolution of 0.92. The S2-S3 linker, proposed in a recent study to also bind 

PIP2 (Chen et al., 2015), is only moderately conserved. Interestingly, although most subdomains 

of the CD exhibit a low mean rate of evolution, two subdomains namely the S1-S2 linker and the 

S5-Pore linker, show substantially higher mean rates of evolution (2.5 and 1.9, respectively) than 

the rest of the CD.  

As the CTD has been shown to have four helices designated A-D (Wiener et al., 2008), we 

computed the mean rate of evolution of each of these helices and their linkers to see if any of these 

subdomains are conserved. Our analysis shows that only helices A, B, and C have a mean rate of 

evolution < 1.0, whereas the mean rate of evolution of helix D is substantially higher (1.9). This 

observation agrees with the functional role of helices A and B in binding calmodulin (CaM) and 

the critical role of helix C in tetramerization of the intracellular C-terminal domain (Wiener et al., 

2008, Sachyani et al., 2014). The juxtramembrane subdomain S6-A, with a mean rate of evolution 

of 0.88, as well as the B-C linker, considered extremely conserved according to its mean rate of 

evolution (0.24), have yet to be shown to play any particular functional role. 
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Figure V-1 Analysis on the evolutionary variability of the KCNQ1 sequence 

(A) Position-specific rate of evolution. Shaded arrow bars on the top indicate the sequence range of NTD, CD, and 

CTD respectively.  The small red bar on the horizontal axis highlights the “selectivity filter” TIGYG. Closed circles 

represent dysfunctional variants and open circles represent normal variants. (B) mean rates of evolution for structurally 

distinct subdomains of NTD, CD, and CTD. Note that the trafficking determinant motif (TDM), which resides within 

the NTD, is singled out for its distinct functional role.  Error bars indicate the 95% confidence intervals (under Student-

t distribution) for the mean rate of evolution.  

V-3.3 Dysfunctional variants are enriched in selected subdomains 

Results from a recent study suggested that the probability of pathogenicity of a KCNQ1 variant 

depends in part on the topological location of the variant (Giudicessi et al., 2012). However, in the 

previous study the protein was only divided into three topological domains namely NTD, CD, and 

CTD. We mapped all variants in our dataset onto the curve of position-specific rates of evolution 

(Figure V-1(A)). We observed that dysfunctional variants preferentially occur at positions with 

low rate of evolution, especially within a selected set of subdomains. 



122 

  

In fact, 95.7% (90 / 94) dysfunctional variants occur at positions where the rate of evolution 

is under 2. In contrast, 61.5% (8 / 13) of normal variants occur at positions with rates of evolution 

above 2. The five normal variants that occur at positions with a rate of evolution under 2 are: 

Q147R, G179S, T391I, R533W, and G643S. Interestingly, Q147R, G179S, T391I, and G643S are 

chemically conserved, as judged by their Grantham distances:(Grantham, 1974) QR (68), GS 

(56), TI (89). Nevertheless, this clear segregation of the functional impact of variants with 

respect to position-specific rate of evolution indicates that the rate of evolution of a sequence site 

pre-selected as one of the predictive features is indeed a strong predictor on whether variants 

occurring at the site will be dysfunctional or not. 

In addition, we also computed the enrichment of dysfunctional variants for each subdomain, 

to confirm that such variants are indeed localized within a selected set of subdomains (Calculation 

of enrichment of dysfunctional variants and Table A-9 in APPENDICES). An enrichment of > 1.0 

indicates that the corresponding subdomain has higher than random chance of harboring 

dysfunctional variants. As shown in Figure V-2, subdomains with higher than random chance for 

dysfunctional variants are: S0, S2-S3 linker, S3, S4, S4-S5, S5, pore-helix, pore-loop, S6, S6-A, 

B-C, and C. In particular, S0, S3, S4-S5 linker, S5, pore-loop, and S6-A each have an enrichment 

≥ 3. As discussed in the previous section, these subdomains are highly conserved. 

 

Figure V-2 Bar graph of subdomain-specific enrichment of dysfunctional variants 
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This bar graph plots subdomain-specific enrichment of dysfunctional variants, showing that dysfunctional variants are 

enriched in a selected set of subdomains (S0, S3, S4-S5, S5, pore-helix, pore-loop, S6-A, see Table S5 for the residue 

ranges these subdomains correspond to). One needs to keep in mind that due to the sparsity of functionally 

characterized variants, the estimates of enrichments are likely to be biased. 

V-3.4 Q1VarPred: a KCNQ1-specific predictor 

A schematic representation of the architecture of Q1VarPred is shown in Figure V-3(A). Figure 

V-3(B) shows a visualization of the Q1VarPred model of the relationship between predictive 

features (rate of evolution and PSSM-based perturbation) and the prediction about functional 

impact (impact score 0 – most likely normal, 1 – most likely dysfunctional). The contour surface 

indicates that the impact score has a sharper dependence on the rate of evolution than it does on 

PSSM-based perturbation. In particular, variants at conserved positions (rate of evolution close to 

0) are very likely to be dysfunctional (impact score > 0.5) even if the perturbation is very small. 

An example of such variants is the dysfunctional V307L whose impact was predicted to be 0.68. 

The estimated rate of evolution of this position is 0.52, whereas the perturbation introduced by 

substituting Val for Leu at this position is considerably small (3.7).  Similarly, variants at 

evolutionarily tolerated positions (rate of evolution > 3.0 for example) tend to be normal even if 

the perturbation is very large (for example, R583H). However, the impact score does rise along 

with increasing magnitude of perturbation, which is particularly important for predicting the 

impact at positions exhibiting intermediate rates of evolution. 

 

Figure V-3 The neural network architecture and a visualization of Q1VarPred 
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(A) A schematic representation of the architecture of Q1VarPred. The input layer is composed of two predictive 

features: rate of evolution (ER) and perturbation derived from PSSM (PP). The hidden layer has three neurons and the 

output layer has one neuron that computes the final predicted functional impact. (B) A visualization of the Q1VarPred-

mapped mathematical relationship between predictive features (rate of evolution and perturbation) and functional 

impact. The vertical axis is functional impact on the scale of 0 to 1 with 1 being complete dysfunction. 

V-3.5 Comparing Q1VarPred with other methods 

We employed a procedure called “repeated cross-validation” (Smith et al., 2014) to estimate 

the generalization ability of Q1VarPred and other methods (see Estimating generalization ability). 

Seven commonly used genome-wide methods: PhD-SNP, Polyphen-2, PredictSNP, PROVEAN, 

SIFT, SNAP, and SNPs&GO and one potassium channel-specific method called KvSNP were 

examined (Methods and Table S6 in Data Supplement). Table V-1 shows that all performance 

metrics rank Q1VarPred the best, except for NPV and TPR. In general, AUC and MCC are 

considered the most robust metrics for evaluating classifiers. AUC is independent of user-chosen 

and therefore possibly biased thresholds. MCC has the advantage to consider all four numbers (TP, 

TN, FP, FN) and provides a much more balanced evaluation than TPR or TNR individually (Baldi 

et al., 2000). In terms of AUC, Q1VarPred > PROVEAN > PhD-SNP > SNPs&GO > SIFT > 

KvSNP > PredictSNP > PolyPhen-2 > SNAP. This is similar to the findings of Leong et al. (Leong 

et al., 2015) except that PolyPhen-2 was shown to rank between PROVEAN and SNP&GO, and 

PhD-SNP and KvSNP were not evaluated in Leong et al. Methods that perform better than 

Q1VarPred in TPR, do so at a cost of a very low TNR, i.e. the threshold is chosen to minimize the 

loss of true positives at the cost of predicting many false positives. In some disease conditions, a 

high fraction of false positives might be acceptable. However, in LQTS and related 

channelopathies, the cost of false positives is as drastic as that of false negatives (Ackerman, 2015). 

It is also worth noting that while KvSNP is gene-specific, our evaluation shows that its 

performance is worse than most genome-wide methods on this dataset. The primary cause of the 

inflation in KvSNP’s claimed performance is probably its convolution of dataset preparation and 

feature selection, where 85.5% of “neutral variants” were generated from variable sequence 

positions and later several sequence conservation-based features were selected as predictive 

features (Stead et al., 2011). 
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Table V-1 Comparison of Q1VarPred with other methods 

Method Mean performance metric 

AUC MCC PPV NPV Accuracy TPR+TNR TPR TNR 

Q1VarPred 0.884 0.581 0.968 0.537 0.881 1.680 0.895 0.785 

KvSNP 0.662 0.313 0.922 0.344 0.832 1.255 0.887 0.438 

PhD-SNP 0.727 0.386 0.941 0.390 0.820 1.453 0.850 0.603 

PolyPhen-2 0.636 0.340 0.912 0.547 0.866 1.272 0.939 0.333 

PredictSNP 0.652 0.355 0.918 0.459 0.850 1.303 0.912 0.391 

PROVEAN 0.770 0.510 0.949 0.537 0.869 1.536 0.902 0.634 

SIFT 0.680 0.360 0.927 0.503 0.861 1.364 0.921 0.443 

SNAP 0.542 0.101 0.895 0.158 0.771 1.085 0.844 0.241 

SNPs&GO 0.697 0.307 0.939 0.296 0.767 1.384 0.792 0.592 

 

V-4 Discussion 

V-4.1 From functional impact to clinical disease diagnosis 

The goal of our study was to create a highly tailored computational method to predict functional 

impact. However, translating evidence on functional impact to clinical disease diagnosis is far 

from trivial. First, every computational method has a certain degree of accuracy and reliability, 

and those of genome-wide methods are particularly limited. In fact, this is one of the primary 

motivations of the present study. Second, variants that are dysfunctional at the molecular level 

may not have clinical manifestation. For example, the A300T variant, which was confirmed 

experimentally to be severely dysfunctional (Bianchi et al., 2000), was later identified in a cohort 

considered to be clinically normal.(Kapa et al., 2009) Such dysfunctional variants may have been 

rescued by compensating genetic variations. Third, trying to predict the clinical outcome without 

considering the mode of inheritance of LQTS may be problematic. The mode of inheritance is a 

key factor when determining the clinical relevance of a genotype for LQTS. For example, four 

variants in our dataset (R231H, W305S, A525T, and R594Q) were functionally normal when 

expressed in combination with the wild-type channel but were severely dysfunctional in the 

absence of the wild-type. W305S was identified in members of two consanguineous families with 

the recessive JLN syndrome (Neyroud et al., 1998)  and A525T was suspected to cause the 

recessive form of RW syndrome (Larsen et al., 1999). Moreover, a functionally normal variant 

may have compound genetic variations within the same gene or other genes that may obviate or, 

alternatively, contribute to the clinical phenotype (Westenskow et al., 2004). In light of these 
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considerations, Q1VarPred was intended for judicious use by researchers or clinicians in 

conjunction with complementary clinical and genetic evidence to assess the disease susceptibility 

caused by KCNQ1 variants. 

V-4.2 Unexpected conserved subdomains in the C-terminal domain 

Figure V-4 shows the topological distributions of position-specific rate of evolution and 

subdomain-specific enrichment of dysfunctional variants. In our analysis of the rate of evolution 

in the CTD, we found a few topological subdomains with conserved mean rate of evolution (Figure 

V-1(B)), predicting important functional or structural roles. Two subdomains, the S6-A linker and 

the B-C linker, were shown to have a surprisingly low mean rate of evolution (0.88 and 0.24, 

respectively). While S6-A has an estimated enrichment of dysfunctional variants of 3.0, that of the 

B-C linker is unexpectedly low (1.0) (Figure V-2 and Table A-9 in APPENDICES). The low 

enrichment of the B-C linker is likely biased because of the sparsity of functionally validated 

variants (e.g. only three functionally validated variants are located in the B-C linker). In fact, 

another six variants (Table A-11 in APPENDICES) found in this subdomain have been deposited 

in ClinVar (Landrum et al., 2014). However, they were not included into our dataset as we were 

not able to find literature describing their functional validation. The enrichment of the B-C linker 

is likely to increase when larger datasets of functionally validated variants become available for 

estimating enrichments. More importantly, there seems to be a lack of study documenting the 

functional roles the S6-A linker and the B-C linker. Nevertheless, based on their low rate of 

evolution, we alert investigators about the potential high functional impact of variants found in 

these two subdomains. 
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Figure V-4 A “global” view of the topological distribution of rate of evolution and enrichment of dysfunctional 

variants 

V-4.3 The machine learning model 

Ideally, a machine learning algorithm should produce a learned model that is accurate at predicting 

new observations and, at the same time, simple enough to allow straightforward interpretation. In 

general, linear models are easier to interpret, while nonlinear models are more powerful in cases 

where classes are not linearly separable. We chose a neural network, which generally is considered 

to be a nonlinear model, for the present study to leverage our extensive experience with neural 

networks and an established library for feature engineering and model building (Butkiewicz et al., 

2013, Leman et al., 2013, Li et al., 2016, Mendenhall and Meiler, 2016, Li et al., 2017a). 

Admittedly, a logistic regression model performed only slightly worse (AUC = 0.855) and a linear 

discriminant classifier performed comparably (AUC = 0.870). However, given the complexity in 

the mechanisms behind KCNQ1 dysfunction, we expect that the “true” decision boundary between 

normal and dysfunctional variants is complex. As additional experimental data become available, 
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the advantage of neural networks for prediction over linear models is likely to become more 

substantial. 

V-4.4 Factors contributing to the improved performance of Q1VarPred 

Q1VarPred offers improved overall performance in predicting functional impact of variants on a 

KCNQ1-specific basis compared to the other evaluated tools (Table V-1). Although most tools 

allow for predictions for a wide range of proteins, the fact that each method applies a single 

threshold to classify variants on all proteins may be partially responsible for their weaker overall 

performance on KCNQ1 variants. Additionally, recent work has shown that contemporary variant–

phenotype and variant–stability prediction algorithms are substantially worse at predicting 

outcomes for membrane proteins, such as KCNQ1, than for water soluble proteins (Kroncke et al., 

2016).  

The observed higher performance of Q1VarPred may also be attributed to better predictive 

features. Many methods use MSA-derived position-specific conservation scores as predictive 

feature, presumably based on the assumptions that the functional importance of a given position 

dictates how conserved this position is and, conversely, that the degree of conservation indicates 

the functional importance of this position. While this latter assumption is often valid, position-

specific conservation scores computed directly from MSA without considering the evolutionary 

history of the aligned protein family may be biased because of unevenly sampled sequence space. 

Numerous position-specific quantitative conservation scores have been proposed over the years 

(Valdar, 2002) and all evaluated methods except the meta-predictor PredictSNP use as position-

specific conservation measures of some sort derived from MSA as predictive features. However, 

none of these methods consider the topology and branch lengths of phylogenetic trees as the 

method used in the current study does (Methods in Data Supplement). Thus, these conservation 

measures may lead to less accurate estimations of rate of evolution. 

The other predictive feature used in Q1VarPred is the perturbation derived in the context of a 

PSSM. This feature measures how much less likely it is for the variant to occur at a sequence 

position relative to the wild-type. The higher the perturbation the less likely for the variant to 

replace the wild type residue at a specific position. While the position-specific rate of evolution 

presumably is a strong predictor of functional impact, it only indicates how likely it is that the 

wild-type amino acid at this sequence position changes. It does not, however, tell how likely it is 
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that the wild-type amino acid is changed to one particular amino acid type over the others. In other 

words, the perturbation adds additional information by complementing position-specific rates of 

evolution with what the actual variants are. 

V-5 Limitations and future direction 

The primary limitation of the current study is the size of the dataset. Although a substantial amount 

of effort was spent by many labs to experimentally characterize the 107 variants treated in this 

study, the dataset used in this study is still very small, relative to that used to train other 

contemporary variant-effect predictors. As a result, we were limited from selecting a set of most 

relevant features in a systematic, algorithmic manner. Thus, it is very likely that we missed some 

very informative sequence-based features. When larger datasets become available, Q1VarPred can 

be re-trained and new predictive features can be tested. In addition, our estimation of enrichment 

of dysfunctional variants for each subdomain is also likely to be biased due to this data sparsity. 

Even though the enrichment values correlate well with average rates of evolution and our analysis 

shows that functionally important subdomains tend to be more enriched with dysfunctional 

variants, there is currently not enough data available to demonstrate that such relationship for 

KCNQ1 is statistically significant.  

Recent investigations into machine learning have shown that training neural networks on 

multiple traits/outcomes per training example can improve performance (Qi et al., 2012, Heffernan 

et al., 2015). Specifically, the advantages of simultaneously training a neural network to predict 

multiple outcome variables (disease severity, electrophysiological parameters, etc.) may enable a 

more accurate prediction of phenotype traits as well. Previous work aimed at predicting secondary 

structure and membrane burial for residues has suggested that neural networks trained to predict 

multiple outcomes are particularly beneficial when the dataset size is especially small (Leman et 

al., 2013). This suggests that such neural networks may be particularly suitable to leverage the 

diverse experimental parameters available for LQTS variants and phenotypes. 

The method developed in this study is modular in the sense that one possible future direction 

is to combine this method with other predictors—such as estimation of the impact of genetic 

variations on protein stability, to come up with predictions that are both more reliable and that also 

suggest mechanisms underlying variation-induced gain or loss of function. 
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V-6 Data and Software Availability 

The curated data set is included in APPENDICES and designated as Table . The dataset for training 

Q1VarPred is provided as a spreadsheet in Supplemental Materials. Q1VarPred was developed 

under the framework of the Biochemical Library (available at 

http://www.meilerlab.org/bclcommons) and is made publicly available as a web server at 

http://meilerlab.org/q1varpred. 
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VI. CONCLUSIONS AND FUTURE DIRECTIONS 

VI-1 Contributions 

De novo tertiary structure prediction for proteins is still an unsolved problem. This is partially 

because the size of the conformational space of proteins is intrinsically large and functions 

approximating the free energy landscape of the conformational space of large biomolecules is far 

from sufficiently accurate. An approach developed by my colleagues to improving the efficiency 

of sampling and the power of scoring is to assemble secondary structure elements predicted by 

machine learning-based methods into 3D models (see I-5.5 BCL::Fold) and further using sparse 

experimental data as restraints to reduce conformational space and improve the likelihood of 

identifying native-like models by the energy function  (see I-4 Improving sampling and scoring 

with restraints).  

In the first part of this work (chapters II, III, and IV), a novel approach was developed where 

machine learning models were trained to predict structural properties of amino acid residues from 

sequence, which were in turn encoded as restraints into the energy function to improve tertiary and 

quaternary structure prediction for transmembrane proteins and their complexes. Specifically, in 

chapter II a neural network method was trained with the “dropout” regularization technique to 

predict WCNs for HMPs. This method is named TMH-Expo, and to the best of our knowledge, it 

is the first published method for predicting WCNs for HMPs. Trained on an expanded non-

redundant data set of HMPs with the “jackknife” cross-validation technique, TMH-Expo achieved 

an unprecedented Pearson correlation coefficient of 0.69 between experimental and predicted 

WCNs. A web server at http://meilerlab.org/servers/tmh_expo was also set up for public access to 

TMH-Expo. In chapter III, WCNs predicted by TMH-Expo were explicitly incorporated as 

restraints into the membrane protein structure prediction algorithm, BCL::MP-Fold, and were 

tested whether they will help tertiary structure prediction for HMPs. It was demonstrated that WCN 

restraints helped sample more accurate helix rotation angles (e.g. increased fraction of native 

contacts) and fold and improved the ability of the scoring function to select native-like models. In 

chapter IV, a novel algorithm for docking HMPs, named BCL::MP-Dock, was described and 

benchmarked. It was shown that for all of the 15 test homodimers, BCL::MP-Dock is able to 

reconstruct a model of the complex in which the RMSD100 of the docked ligand subunit to its 

native structure is less than 3.0 Å. It was also shown that the ability of BCL::MP-Dock to identify 

http://meilerlab.org/servers/tmh_expo
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native-like models can be substantially improved if the algorithm is supplied with predicted 

interface residues and their predicted WCNs as restraints 

In the second part (chapter V), a detailed quantitative analysis on the sequence conservation 

patterns of subdomains of KCNQ1 and the distribution of pathogenic variants was conducted based 

on a “high-quality” set of 107 functionally characterized KCNQ1 variants curated from the 

literature. It was found that conserved subdomains generally are critical for channel function and 

are enriched with dysfunctional variants. Using this experimentally validated dataset, a neural 

network, designated Q1VarPred, was trained specifically for predicting the functional impact of 

KCNQ1 variants of unknown significance. The estimated predictive performance of Q1VarPred 

in terms of Matthew’s correlation coefficient and area under the receiver operating characteristic 

curve were 0.581 and 0.884, respectively, superior to the performance of eight previous methods 

tested in parallel. Q1VarPred was made publicly available as a web server at 

http://meilerlab.org/q1varpred. Although a plethora of tools are available for making pathogenicity 

predictions over a genome-wide scale, previous tools fail to perform in a robust manner when 

applied to KCNQ1. The contrasting and favorable results for Q1VarPred suggests a promising 

approach, where a machine learning algorithm is tailored to a specific protein target and trained 

with a functionally validated dataset to calibrate informatics tools. 

The success of the novel approach developed in the first part of this work calls for some 

reflection. First, why can WCNs be accurately predicted from sequence? WCN is a structural 

feature that indicates how densely packed a residue is within the context of protein tertiary 

structure. In light of the fact that protein interior (densely packed region) is generally more 

conserved than the surface (loosely packed region) and the evidence that WCN is the main 

determinant of site-specific rate of evolution (Echave et al., 2016), accurate prediction of WCNs 

from multiple alignment of protein family sequences is expected. Second, why does incorporating 

WCNs predicted from sequence as restraints give better sampling and scoring than a knowledge-

based potential derived from a database of structures did? Statistics have shown that in membrane 

proteins, most amino acid types, hydrophobic ones in particular, have a wide range of preferred 

WCNs, say from 4 to 12 (Weiner et al., 2013). Thus, a knowledge-based potential would score 

equally favorably no matter whether these amino acids are buried or exposed while in really in 

some positions these amino acids are buried and in others exposed. Using WCNs predicted from 

http://meilerlab.org/q1varpred
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sequence as restraints solves this problem by explicitly teaching the algorithm the expected WCN 

at each position. Even for positions of the same amino acid type, the expected WCNs predicted 

from sequence by a machine-learning method may differ considerably depending on how 

structurally constrained these positions are.  

VI-2 Limitations and future directions 

BCL::Fold (and BCL::MP-Fold as well) assembles secondary structure elements (SSEs), namely 

α-helices and β-strands, which are geometrically pure. Individual residues are represented by their 

backbone and Cβ atoms only (Hα2 for glycine), but side-chains are not explicitly modeled. This 

representation scheme was employed in part to make room for computational speed. However, it 

has some major limitations. First, under this representation scheme all residues are essentially 

identical from a physicochemical point of view, the algorithm relies solely on the associated 

knowledge-based potential function, which by itself has limited accuracy (Thomas and Dill, 1996). 

Second, it may result in physically unrealistic models. For example, two residues not clashing as 

judged according to the separation between their Cβ atoms may have substantial clashes if their 

side-chains were present. Third, representing SSEs in a geometrically pure fashion without a 

compensating efficient scheme for sampling the backbone flexibility within individual SSEs 

produces unreasonably “rigid” structural models. To address these limitations would require 

modifications to the current representation scheme. For example, it would be physically more 

sensible to reduce the side-chain to a pseudo-atom whose location is taken as the average location 

of the side-chain atoms than simply to the Cβ atom. Such a representation together with a 

knowledge-based potential derived from updated statistics based on side-chain centroids should 

partially resolve the first two limitations. To resolve the inefficiency of sampling backbone 

flexibility, one potential approach to test is to use ensembles of probable conformations extracted 

from protein structure database for individual SSEs as starting pools for the algorithm to sample 

from. 

In training TMH-expo for WCN prediction, it was found that while in most cases high WCN 

is correlated with high sequence site conservation, this is not generally true (unpublished result, 

APPENDICES Figure A-3). This observation may partially explain why in some cases, especially 

where site conservation is not a strong predictor of WCN, our method TMH-Expo failed to give 

reasonably accurate prediction (say PCC > 0.5 and MAE < 2.0) of WCNs. The ultimate root cause 
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why WCNs may not be strongly correlated with site conservation is itself an interesting topic to 

study. One potential explanation could be that some proteins may be under positive selection where 

site variability is required to explore amino acid substitutions that produce variants with higher 

fitness. Another possibility is that there may only be a specific subset of residues whose WCNs 

are strongly correlated with their site conservation and only this specific subset of residues is truly 

essential for maintaining the protein’s structural integrity. There may exist a substantial fraction 

of residues that are not structural constrained even though their apparent WCNs as calculated from 

available experimental structures are high. Another critical aspect of protein tertiary structure is 

that proteins are dynamic entities, they often undergo substantial conformational change when they 

are performing their biological function. In light of this conformational flexibility, each residue 

should have a range of allowed WCNs, meaning that the WCN of each residue is less likely to be 

a fixed number. 

In developing the neural network-based method for predicting interface residues and their 

WCNs, it was hypothesized that interface residues are either functionally or structurally more 

constrained (e.g. lower rate of evolution) than residues on the rest of the surface. The higher degree 

of conservation of interface residues would allow them to be identified and their WCNs to be 

accurately predicted. Surprisingly, the interface is significantly more conserved than the rest of the 

surface in only 26 out of 44 cases from the data set (APPENDICES Figure A-4). There are 4 cases 

where the average rate of evolution of the interface is higher than that of the rest of the surface, 

indicating that these interfaces might not be the most biologically relevant and there may be other 

patches on the surface that are structurally or functionally more important. In the remaining 14 

cases, the distribution of rate of evolution of interface residues is not easily distinguishable from 

that of residues on the rest of the surface. It is still an open question as to what this observation 

implies. 

Interpretation of the functional impact of amino acid substitutions in proteins is still a 

challenging problem. In the second half of this work, a neural network named Q1VarPred was 

trained to classify the functional impact (normal versus dysfunctional) of variants of unknown 

significance of the KCNQ1 potassium channel. While this method demonstrated superior 

performance on KCNQ1 when compared with eight other methods, it’s applicability may be 

limited due to its nature of being a classifier. Ideally, one would not only like to have a 
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computational method that does perfect classification, but also produces prediction values 

correlated with phenotype severity and gives testable hypotheses about the potential mechanisms 

by which a dysfunctional variant affect the protein. In the future, it is desirable to have updated 

versions of Q1VarPred that are able to make real-valued prediction of how the physiological 

parameters change upon amino acid substitution and enable an interpretation of such changes at 

the structural level. 
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APPENDICES 

Accurate prediction of contact numbers for multi-spanning helical membrane proteins  

 

Figure A-1 Illustration of feature vectors 

PSSM, BPP, or LSC is an l × 20 matrix where l denotes the length a protein sequence. For each sequence position i, 

there are 20 entries with each corresponding to the score (PSSM) or probability (BPP) of one of the 20 naturally 

occurring amino acid to occur at position i. In the case of LSC, each position is encoded by a vector of 20 binary 

entries (bits). When considering w nearest residues on either side of the residue whose contact number is to be 

predicted (central residue), the feature vector computed based on PSSM, BPP, or LSC has a total of w × 20 entries. 

Whereas the feature vector computed based on CI has a total of w × 1 entries. Shown in this figure is an original 

integer-valued PSSM obtained from PSI-BLAST search (Altschul et al., 1997). 
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Figure A-2 Distributions of MAE and PCC for bipotic and polytopic HPMs 

(a) Distribution of MAE; (b) Distribution of PCC. 

 

 

 

 

 

 

 

 

 

 

 

 



138 

  

Table A-1 HMP chains in the TMH-Expo data set 

1kqgB 3ar4A 3tuiA 

1kqgC 3ayfA 3tx3A 

1m57D 3b9zA 3w4tA 

1orsC 3cn5A 3wguB 

1qlbC 3cx5C 3ze3D 

1u7cA 3cx5D 4a01A 

2fyuK 3cx5E 4al0A 

2h88C 3cx5H 4bbjA 

2h88D 3cx5I 4buoA 

2nq2A 3d31C 4bwzA 

2q72A 3detA 4cadC 

2vpyC 3egwC 4dveA 

2wdqC 3gi8C 4dx5A 

2wdqD 3ob6A 4ezcA 

2wjnH 3oufA 4g7vS 

2wjnM 3p4pC 4gc0A 

2wswA 3p4pD 4gycB 

2xq2A 3qe7A 4huqS 

2zxeG 3rfrA 4huqT 

2zy9A 3rfrB 4hyjA 

3ag3A 3rfrC 4jrzA 

3ag3B 3rlbA 4k1cA 

3ag3C 3rlfF 4kppA 

3ag3D 3rvyA 4kt0F 

3ag3G 3s3wA 4ky0A 

3ag3I 3s8gA 4kytB 

3ag3J 3s8gB 4lp8A 

3ag3K 3tdsA 4n6hA 

3ag3L 3tijA 4n7wA 

3ag3M 3tlwA 4njpA 
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Table A-2 Summary of 12 poorly predicted protein chains 

Protein Chain MAE PCC Bitopic 

4kytB 2.52 0.35 Bitopic 

3ag3G 2.59 0.28 Bitopic 

3cx5E 2.69 0.30 Bitopic 

4gycB 2.82 0.14 Polytopic 

3ag3M 2.85 0.41 Bitopic 

4kt0F 3.11 0.56 Bitopic 

2zxeG 3.29 0.61 Bitopic 

3cx5I 3.72 0.74 Bitopic 

3ag3K 3.91 0.45 Bitopic 

3ag3I 4.02 0.36 Bitopic 

2fyuK 4.10 0.63 Bitopic 

1m57D 4.41 -0.21 Bitopic 

 

Table A-3 Performance of TMH-Expo on Identifying Interface Residues 

  Predicted 

  Interface Non-interface Total 

Experimental 

Interface 1444 437 1881 

Non-interface 3191 6493 9684 

Total 4635 6930 11565 
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Interfaces across alpha-helical transmembrane proteins: characterization, prediction, and 

impact for docking 

Table A-4 Alpha-helical transmembrane protein chains that form the oligomers in the data set  

Protein chain Resolution (Å) Oligomeric state Obligate 

1m56A 2.3 ht4 1 

1m56C 2.3 ht4 1 

1q16C 1.9 hm2 0 

1u7gA 1.4 hm3 1 

1yq3C 2.2 ht4 0 

1yq3D 2.2 ht4 0 

2a65A 1.7 hm2 1 

2bl2A 2.1 hm10 1 

2bs2C 1.8 hm2 0 

2j8cM 1.9 ht3 1 

2nq2A 2.4 hm2 1 

2qtsA 1.9 hm3 1 

2uuhA 2.2 hm3 1 

2vpzC 2.4 hm2 0 

2w2eA 1.2 hm4 1 

2wswA 2.3 hm3 1 

2yevC 2.4 ht3 1 

2z73A 2.5 hm2 0 

2zxeA 2.4 ht3 1 

3b9yA 1.9 hm3 1 

3c02A 2.1 hm4 1 

3cx5C 1.9 ht5 1 

3k3fA 2.3 hm3 1 

3klyA 2.1 hm5 1 

3m73A 1.2 hm3 1 

3oduA 2.5 hm2 0 

3oufA 1.6 hm4 1 

3puwF 2.3 ht2 1 

3s8gA 1.8 ht3 1 

3spcA 2.5 hm4 1 

3tijA 2.4 hm3 1 

4a01A 2.4 hm2 1 

4bpmA 2.1 hm3 1 

4d2eA 2.3 hm3 1 

4dx5A 1.9 hm3 1 

4f4sA 1.9 hm10 1 

4jkvA 2.5 hm2 0 

4mrsA 2.4 hm2 1 

4o6mA 1.9 hm2 1 

4o6yA 1.7 hm2 1 

4qndA 1.7 hm2 1 

4rngC 2.4 hm2 1 

4u9nA 2.2 hm2 1 

4wd8A 2.3 hm5 1 

hm2: homodimer, hm3: homotrimer, hm4: homotetramer, hm5: homopentamer, hm10: homodecamer, ht2: 

heterodimer, ht3: heterotrimer, ht4: heterotetramer, ht5: heteropentamer; Obligate: 1 (yes), 0 (no). 
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Figure A-3 Illustration of the weak and strong correlation between site variability and WCN 
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Figure A-4 Distribution of site-specific rate of evolution of interface residues and non-interface surface residues 

Hypotheses were tested using the Mann-Whitney test. The null hypothesis 𝐻0 was that the mean rate of evolution of 

interface residues is not lower than that of the non-interface residues. 

Predicting the functional impact of KCNQ1 variants of unknown significance  

Computation of predictive features 

Position-specific rate of evolution was estimated using the Rate4Site method (Pupko et al., 2002). 

While rates of evolution are commonly measured as the number of substitutions per sequence 

position per year (Lanfear et al., 2014), it should be noted that the rate estimated by Rate4Site is 

relative to the average evolutionary rate across all positions and hence is unitless. The input 

multiple sequence alignment (MSA) of KCNQ1 homologs to Rate4Site was obtained by running 

HHblits against the Uniprot20 sequence database (Remmert et al., 2012), with minimum coverage 

of master sequence (KCNQ1 wild-type sequence) set to 25%, minimum sequence identity to 

master sequence set to 15%, maximum pairwise sequence identity set to 90%, and E-value cutoff 
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for inclusion in result alignment set to 0.001. The total number of aligned sequences was limited 

to 300 as our testing showed that Rate4Site suffered from underflow problems when larger 

numbers of sequences were used.  

For characterizing the severity of amino acid substitutions at a position, it is important to 

conduct the assessment in the context of MSA where the perturbation resulting from amino acid 

substitution can be quantified from the perspective of protein evolution. We derived this 

perturbation from the position-specific scoring matrix (PSSM, Figure S1) obtained by searching 

the NCBI non-redundant sequence database (Pruitt et al., 2007) with PSI-BLAST (Altschul et al., 

1997) for four iterations. The E-value inclusion threshold was set to 0.00001. For a protein of 

length 𝐿, a PSSM is a 𝐿 × 20 matrix containing log ratios of the estimated frequency of each of 

the 20 amino acids to occur at each position relative to the expected frequency of the wild-type 

amino acid in a random sequence. If 𝑃𝐴 is the probability for amino acid A to occupy a position 

and  𝑃𝐴
0 is its background probability, then the PSSM entry for A at this position equals 𝜆 ln

𝑃𝐴

𝑃𝐴
0, 

where 𝜆 is a scaling factor built in PSI-BLAST.(Altschul et al., 1997) One might recognize that 

this formula resembles the equation for calculating Gibbs free energy change for a chemical 

reaction (∆𝐺 = −𝑅𝑇 ln𝐾). Similar in spirit to free energy perturbation, we define the perturbation 

introduced by amino acid substitution from A to B in the context of MSA as: 𝜆 (ln
𝑃𝐴

𝑃𝐴
0 − ln

𝑃𝐵

𝑃𝐵
0). 

Intuitively, the more substantial the perturbation the less likely it is for a variation to occur without 

a functional or structural impact. 

Tested genome-wide tools 

Seven genome-wide prediction tools: PhD-SNP (Capriotti et al., 2006), PolyPhen-2 (Adzhubei et 

al., 2010), PredictSNP (Bendl et al., 2014), PROVEAN (Choi et al., 2012), SIFT (Ng and 

Henikoff, 2001), SNAP (Bromberg and Rost, 2007), and SNPs&GO (Calabrese et al., 2009) and 

a potassium channel-specific method KvSNP (Stead et al., 2011) were tested for their ability to 

predict functionality of KCNQ1 variants. PhD-SNP, PolyPhen-2, PredictSNP, SIFT, and SNAP 

were recently shown to have an overall Matthew's correlation coefficient (MCC) > 0.35 and an 

overall area under the receiver-operating characteristics curve (AUC) > 0.70 on a fully independent 

test set consisting of variants from multiple genes (Bendl et al., 2014). PROVEAN and SNPs&GO 

were shown to have high accuracy to classify LQTS gene variants. These selected tools differ in 
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the machine learning algorithms with which they were trained and in the required input features. 

A summary of these tools is presented in Table A-10. 

Calculation of enrichment of dysfunctional variants 

Based on a homology model of the homotetrameric transmembrane channel domain (Smith et al., 

2007), and a structural study of the C-terminal domain of KCNQ1 (Wiener et al., 2008), we 

mapped the sequence of KCNQ1 into 24 topologically distinct regions and assigned each variant 

to the region within which it is located (Table A-9). The enrichment of dysfunctional variants for 

a region is computed as the ratio of observed number of dysfunctional variants (𝑂𝑣) to the number 

of dysfunctional variants that would otherwise be observed if each sequence position were equally 

likely to raise dysfunctional variants, denoted as 𝐸𝑣. 𝐸𝑣 can be easily obtained with  

𝐸𝑣 =
𝐿𝑠
𝐿𝑝
× 𝑁𝑣 

where  𝐿𝑠 and 𝐿𝑝 are the length of the segment and the protein, respectively, and  𝑁𝑣 is the total 

number of dysfunctional variants in the data set. 

Table A-5 Functionally characterized KCNQ1 variants curated from the literature. 
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(mV) 

Activation 

τ ratio 

Deactivation 

τ ratio 

Surfa

ce 

Annota

tion 
Label 

Referen

ce 

46 A T Case 
100

% 
0 0.6   Normal Normal 

(Yang et 

al., 

2009) 

110 V I 
Cont

rol 
40% 30   

Norm

al 

Severe 

LOF 

Dysfunct

ional 

(Cordeir

o et al., 

2010) 

111 Y C Case 0%    
Abse

nt 

Severe 

LOF 

Dysfunct

ional 

(Dahime

ne et al., 

2006) 

114 L P Case 0%    
Abse

nt 

Severe 

LOF 

Dysfunct

ional 

(Dahime

ne et al., 

2006) 

117 P L Case 0%    
Impai

red 

Severe 

LOF 

Dysfunct

ional 

(Dahime

ne et al., 

2006) 

140 S G Case 
150

% 
    

Severe 

GOF 

Dysfunct

ional 

(Campb

ell et al., 

2013) 

141 V M Case 
300

% 
0    

Severe 

GOF 

Dysfunct

ional 

(Hong et 

al., 

2005) 
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147 Q R Case 60% 0    
Mild 

LOF 
Normal 

(Lundby 

et al., 

2007) 

168 G R Case 5%     
Severe 

LOF 

Dysfunct

ional 

(Westen

skow et 

al., 

2004) 

174 R C Case 47% 17 1   
Mild 

LOF 

Dysfunct

ional 

(Matavel 

et al., 

2010) 

178 A T Case 41% 45 1.68 0.86 
Impai

red 

Severe 

LOF 

Dysfunct

ional 

(Harmer 

et al., 

2014) 

179 G S 
Cont

rol 
54% -12    

Mild 

LOF 
Normal 

(Westen

skow et 

al., 

2004) 

190 R Q Case 0%     
Severe 

LOF 

Dysfunct

ional 

(Chouab

e et al., 

2000) 

191 L P Case 22% 0   
Impai

red 

Severe 

LOF 

Dysfunct

ional 

(Pan et 

al., 

2009) 

193 F L Case 80% 0 1.83   
Severe 

LOF 

Dysfunct

ional 

(Yamag

uchi et 

al., 

2003) 

202 D E Case 11% 54.6 1 0.33  
Severe 

LOF 

Dysfunct

ional 

(Eldstro

m et al., 

2010) 

202 D H Case 41% 16.6 0.83 0.26 
Norm

al 

Severe 

LOF 

Dysfunct

ional 

(Eldstro

m et al., 

2010) 

202 D N Case 20% 23.8 0.55 0.09 
Norm

al 

Severe 

LOF 

Dysfunct

ional 

(Eldstro

m et al., 

2010) 

204 I F Case 23% 53.3 7.25 0.43 
Norm

al 

Severe 

LOF 

Dysfunct

ional 

(Eldstro

m et al., 

2010) 

204 I M Case 34% 36.1 1.16 0.65 
Norm

al 

Severe 

LOF 

Dysfunct

ional 

(Eldstro

m et al., 

2010) 

204 I N Case  32.9 2.47 0.7  
Severe 

LOF 

Dysfunct

ional 

(Eldstro

m et al., 

2010) 

205 V M Case 36% 20 1.48 0.42  
Severe 

LOF 

Dysfunct

ional 

(Eldstro

m et al., 

2015) 

207 V M 
Cont

rol 
93% 7.1 1.4 1.2  Normal Normal 

(Eldstro

m et al., 

2010) 
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209 S F Case 35% -48.7    
Severe 

LOF 

Dysfunct

ional 

(Eldstro

m et al., 

2010) 

209 S P Case 
200

% 
-42.4  5.7  

Severe 

GOF 

Dysfunct

ional 

(Das et 

al., 

2009) 

215 V M Case 41% 20.2    
Severe 

LOF 

Dysfunct

ional 

(Eldstro

m et al., 

2010) 

225 S L Case 10% 11   
Norm

al 

Severe 

LOF 

Dysfunct

ional 

(Bianchi 

et al., 

2000) 

231 R C Case 5%     
Severe 

LOF 

Dysfunct

ional 

(Itoh et 

al., 

2009) 

231 R H Case 15% 40    
Severe 

LOF 

Dysfunct

ional 

(Itoh et 

al., 

2009) 

235 I N Case 10%     
Severe 

LOF 

Dysfunct

ional 

(Bartos 

et al., 

2014) 

236 L R Case 0% 54   
Impai

red 

Severe 

LOF 

Dysfunct

ional 

(Steffens

en et al., 

2015) 

243 R C Case 12% 67 1   
Severe 

LOF 

Dysfunct

ional 

(Matavel 

et al., 

2010) 

243 R H Case 13%    
Norm

al 

Severe 

LOF 

Dysfunct

ional 

(Huang 

et al., 

2001) 

248 W R Case 0%     
Severe 

LOF 

Dysfunct

ional 

(Franque

za et al., 

1999) 

251 L P Case 0%    
Norm

al 

Severe 

LOF 

Dysfunct

ional 

(Desche

nes et 

al., 

2003) 

254 V M Case 7% 41.5    
Severe 

LOF 

Dysfunct

ional 

(Wedeki

nd et al., 

2004) 

258 H R Case 5% -44 0.5 2.5 
Impai

red 

Severe 

LOF 

Dysfunct

ional 

(Labro et 

al., 

2010) 

259 R C Case 30% 10    
Severe 

LOF 

Dysfunct

ional 

(Kubota 

et al., 

2000) 

259 R H Case 
200

% 
1  1.7 

Norm

al 

Severe 

GOF 

Dysfunct

ional 

(Wu et 

al., 

2015) 

261 E D Case 9%     
Severe 

LOF 

Dysfunct

ional 

(Huang 

et al., 

2001) 
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261 E K Case 5%     
Severe 

LOF 

Dysfunct

ional 

(Franque

za et al., 

1999) 

265 T I Case 
100

% 
8 2   

Severe 

LOF 

Dysfunct

ional 

(Yang et 

al., 

2009) 

269 G D Case 0%     
Severe 

LOF 

Dysfunct

ional 

(Chouab

e et al., 

1997) 

269 G S Case 15% 70.7 1 0.4 
Impai

red 

Severe 

LOF 

Dysfunct

ional 

(Wu et 

al., 

2014) 

272 G V Case 34% 10    
Severe 

LOF 

Dysfunct

ional 

(Oka et 

al., 

2010) 

275 F S Case 34% 27 1.5 2 
Impai

red 

Severe 

LOF 

Dysfunct

ional 

(Li et al., 

2009b) 

277 S L Case 0% -8.7    
Severe 

LOF 

Dysfunct

ional 

(Aidery 

et al., 

2011) 

279 F I Case 
150

% 
-25 0.42 1 

Norm

al 

Severe 

GOF 

Dysfunct

ional 

(Moreno 

et al., 

2015) 

281 Y C Case 0%    
Norm

al 

Severe 

LOF 

Dysfunct

ional 

(Bianchi 

et al., 

2000) 

283 A T Case 20% 9    
Severe 

LOF 

Dysfunct

ional 

(Crotti et 

al., 

2013) 

296 F S Case 12% -10    
Severe 

LOF 

Dysfunct

ional 

(Yang et 

al., 

2009) 

300 A T 
Cont

rol 
15% -19   

Norm

al 

Severe 

LOF 

Dysfunct

ional 

(Bianchi 

et al., 

2000) 

302 A V Case 5%     
Severe 

LOF 

Dysfunct

ional 

(Yang et 

al., 

2009) 

305 W S Case 0%     
Severe 

LOF 

Dysfunct

ional 

(Chouab

e et al., 

1997) 

307 V L Case 
130

% 
-18 0.52   

Severe 

GOF 

Dysfunct

ional 

(Bellocq 

et al., 

2004) 

310 V I Case 0% 60    
Severe 

LOF 

Dysfunct

ional 

(Westen

skow et 

al., 

2004) 

313 I K Case 0%     
Severe 

LOF 

Dysfunct

ional 

(Ikrar et 

al., 

2009) 
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314 G S Case 12%     
Severe 

LOF 

Dysfunct

ional 

(Li et al., 

2009a) 

315 Y C Case 0%    
Norm

al 

Severe 

LOF 

Dysfunct

ional 

(Bianchi 

et al., 

2000) 

315 Y S Case 0%     
Severe 

LOF 

Dysfunct

ional 

(Chouab

e et al., 

1997) 

316 G E Case 18% 0    
Severe 

LOF 

Dysfunct

ional 

(Yang et 

al., 

2009) 

320 P A Case 0%     
Severe 

LOF 

Dysfunct

ional 

(Thomas 

et al., 

2010) 

320 P H Case 0%     
Severe 

LOF 

Dysfunct

ional 

(Thomas 

et al., 

2010) 

322 T A Case 0%    
Impai

red 

Severe 

LOF 

Dysfunct

ional 

(Burgess 

et al., 

2012) 

322 T M Case 0%    
Impai

red 

Severe 

LOF 

Dysfunct

ional 

(Burgess 

et al., 

2012) 

325 G R Case 0%     
Severe 

LOF 

Dysfunct

ional 

(Aidery 

et al., 

2012) 

338 S F Case 5% 12   
Norm

al 

Severe 

LOF 

Dysfunct

ional 

(Hoosie

n et al., 

2013) 

339 F S Case 4% 1   
Norm

al 

Severe 

LOF 

Dysfunct

ional 

(Hoosie

n et al., 

2013) 

341 A V Case 6% 60 5.59 0.29 
Norm

al 

Severe 

LOF 

Dysfunct

ional 

(Heijma

n et al., 

2012) 

342 L F Case 0%     
Severe 

LOF 

Dysfunct

ional 

(Chouab

e et al., 

1997) 

343 P S Case 0%     
Severe 

LOF 

Dysfunct

ional 

(Zehelei

n et al., 

2004) 

344 A V Case 
100

% 
40    

Severe 

LOF 

Dysfunct

ional 

(Siebran

ds et al., 

2006) 

357 Q R Case 27% 20 3 1 
Impai

red 

Severe 

LOF 

Dysfunct

ional 

(Boulet 

et al., 

2006) 

360 R G Case 20%     
Severe 

LOF 

Dysfunct

ional 

(Yang et 

al., 

2009) 
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366 R P Case 0% 24.1    
Severe 

LOF 

Dysfunct

ional 

(Shamga

r et al., 

2006) 

366 R Q Case 22% 29 1   
Severe 

LOF 

Dysfunct

ional 

(Matavel 

et al., 

2010) 

366 R W Case 30% 39.2   
Impai

red 

Severe 

LOF 

Dysfunct

ional 

(Shamga

r et al., 

2006) 

371 A T Case 0% 21.9    
Severe 

LOF 

Dysfunct

ional 

(Shamga

r et al., 

2006) 

373 S P Case 5% 37.9   
Impai

red 

Severe 

LOF 

Dysfunct

ional 

(Shamga

r et al., 

2006) 

379 W R Case 0%    
Impai

red 

Severe 

LOF 

Dysfunct

ional 

(Steffens

en et al., 

2015) 

380 R S Case 33% 0   
Norm

al 

Mild 

LOF 

Dysfunct

ional 

(Li et al., 

2013) 

391 T I Case 85% 0    Normal Normal 

(Westen

skow et 

al., 

2004) 

392 W R Case 0% 28.3    
Severe 

LOF 

Dysfunct

ional 

(Shamga

r et al., 

2006) 

393 K M Case 33% 0   
Norm

al 

Mild 

LOF 

Dysfunct

ional 

(Li et al., 

2013) 

393 K N 
Cont

rol 

100

% 
13.3    Normal Normal 

(Shamga

r et al., 

2006) 

397 R Q 
Cont

rol 
90% 0   

Impai

red 
Normal Normal 

(Xiong 

et al., 

2015) 

397 R W 
Cont

rol 
40% 0 1 1 

Norm

al 

Mild 

LOF 

Dysfunct

ional 

(Li et al., 

2013) 

417 V M Case 
100

% 
0 1   Normal Normal 

(Wedeki

nd et al., 

2004) 

448 P R 
Cont

rol 

120

% 
0    Normal Normal 

(Westen

skow et 

al., 

2004) 

455 H Y Case 43% 0 0.6   
Mild 

LOF 

Dysfunct

ional 

(Yang et 

al., 

2009) 

520 M R Case 0%    
Abse

nt 

Severe 

LOF 

Dysfunct

ional 

(Schmitt 

et al., 

2007) 
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522 Y S Case 10% 7   
Impai

red 

Severe 

LOF 

Dysfunct

ional 

(Steffens

en et al., 

2015) 

525 A T Case 36% 22 1.34 1.08 
Impai

red 

Severe 

LOF 

Dysfunct

ional 

(Harmer 

et al., 

2014) 

533 R W Case 72% 13.9 1   Normal Normal 

(Chouab

e et al., 

2000) 

539 R W Case 17% 33.9 1 0.41  
Severe 

LOF 

Dysfunct

ional 

(Chouab

e et al., 

2000) 

546 S L Case 25% 50.7 1.3 0.81 
Norm

al  

Severe 

LOF 

Dysfunct

ional 

(Dvir et 

al., 

2014) 

555 R C Case 25% 60    
Severe 

LOF 

Dysfunct

ional 

(Chouab

e et al., 

1997) 

555 R H Case 12% 50 1.1 0.72 
Norm

al 

Severe 

LOF 

Dysfunct

ional 

(Aromol

aran et 

al., 

2014) 

557 K E Case 0%    
Norm

al 

Severe 

LOF 

Dysfunct

ional 

(Spatjen

s et al., 

2014) 

562 R M Case 43% 43.3 1.55 1.07 
Norm

al  

Severe 

LOF 

Dysfunct

ional 

(Dvir et 

al., 

2014) 

583 R H Case 
100

% 
0    Normal Normal 

(Detta, 

2010) 

589 G D Case 15% 33   
Impai

red 

Severe 

LOF 

Dysfunct

ional 

(Piippo 

et al., 

2001) 

590 A T Case 45% 10   
Norm

al 

Mild 

LOF 

Dysfunct

ional 

(Kinoshi

ta et al., 

2014) 

594 R Q Case 5% 60    
Severe 

LOF 

Dysfunct

ional 

(Westen

skow et 

al., 

2004) 

611 D Y Case 
100

% 
0    Normal Normal 

(Yamag

uchi et 

al., 

2005) 

619 L M Case 1%    
Norm

al 

Severe 

LOF 

Dysfunct

ional 

(Aromol

aran et 

al., 

2014) 

643 G S 
Cont

rol 
35% 1.1 1 0.72  

Mild 

LOF 
Normal 

(Kubota 

et al., 

2001) 

Table A-6 Performance of the neural network model with varied sizes of hidden layer. 
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# hidden neurons MCC AUC 

1 0.568 0.882 

2 0.567 0.881 

3 0.572 0.884 

4 0.562 0.883 

5 0.581 0.881 

6 0.584 0.886 

7 0.581 0.885 

8 0.559 0.880 

Table A-7 Information gain of a set of tested predictive features. 

Feature Information gain Threshold maximizes information gain 

Rate of evolution 0.22 1.46 

PSSM perturbation 0.18 5.89 

Change in hydrophobicity 0.035 0.01 

Predicted residue packing density 

(Li et al., 2016) 
0.024 11.96 

Grantham score (Grantham, 1974) 0.020 103 

Change in charge 0.018 NA 

Change in SASA* 0.017 29.91 

*SASA: solvent accessible surface area 

Table A-8 Summary of the median and interquartile interval [Q1, Q3] of each performance metric. 

Method 
Medians and [Q1, Q3] intervals of performance metrics 

AUC MCC PPV NPV Accuracy TPR TNR 

Q1VarPred 
0.884 [0.876, 

0.890] 
0.584 [0.560, 

0.608] 
0.967 [0.966, 

0.968] 
0.533 [0.502, 

0.565] 
0.889 [0.871, 

0.890] 
0.905 [0.885, 

0.906] 
0.783 [0.767, 

0.783] 

KvSNP 
0.669 [0.577, 

0.753] 

0.306 [0.213, 

0.462] 

0.926 [0.900, 

0.938] 

0.333 [0.250, 

0.429] 

0.829 [0.800, 

0.865] 

0.903 [0.839, 

0.935] 

0.500 [0.250, 

0.600] 

PhD-SNP 
0.726 [0.653, 

0.794] 

0.369 [0.293, 

0.494] 

0.935 [0.913, 

0.963] 

0.364 [0.273, 

0.500] 

0.829 [0.771, 

0.865] 

0.871 [0.774, 

0.935] 

0.600 [0.500, 

0.750] 

PolyPhen-2 
0.625 [0.593, 

0.718] 
0.372 [0.298, 

0.477] 
0.912 [0.899, 

0.935] 
0.500 [0.333, 

0.667] 
0.886 [0.857, 

0.914] 
0.968 [0.935, 

1.000] 
0.250 [0.250, 

0.500] 

PredictSNP 
0.653 [0.593, 

0.718] 

0.306 [0.211, 

0.470] 

0.912 [0.906, 

0.936] 

0.500 [0.333, 

0.600] 

0.865 [0.838, 

0.892] 

0.935 [0.903, 

0.968] 

0.400 [0.250, 

0.500] 

PROVEAN 
0.788 [0.722, 

0.810] 

0.556 [0.468, 

0.576] 

0.956 [0.938, 

0.957] 

0.557 [0.500, 

0.593] 

0.896 [0.880, 

0.899] 

0.926 [0.925, 

0.936] 

0.683 [0.579, 

0.700] 

SIFT 
0.684 [0.593, 

0.786] 
0.435 [0.313, 

0.532] 
0.926 [0.900, 

0.962] 
0.500 [0.333, 

0.600] 
0.865 [0.838, 

0.886] 
0.935 [0.875, 

0.969] 
0.500 [0.250, 

0.750] 

SNAP 
0.512 [0.484, 

0.605] 

0.170 [0.089, 

0.255] 

0.886 [0.875, 

0.909] 

0.167 [0.000, 

0.222] 

0.800 [0.714, 

0.865] 

0.875 [0.750, 

0.969] 

0.200 [0.000, 

0.400] 

SNPs&GO 
0.706 [0.638, 

0.762] 

0.326 [0.232, 

0.405] 

0.933 [0.920, 

0.960] 

0.286 [0.250, 

0.333] 

0.771 [0.730, 

0.829] 

0.806 [0.742, 

0.871] 

0.600 [0.500, 

0.750] 

Table A-9 Topological subdomains of KCNQ1 and the enrichment of dysfunctional variants within each region. 

Subdomain Range Length Observed number of variants Expected number of variants Enrichment 

NTD 1-110+118-121 114 1 16 0.1 

S0 111-117 7 3 1 3.0 

S1 122-146 25 2 3 0.7 

S1-S2 147-153 7 0 1 0.0 
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S2 154-177 24 2 3 0.7 

S2-S3 178-197 20 4 3 1.3 

S3 198-215 18 10 3 3.3 

S3-S4 216-222 7 0 1 0.0 

S4 223-241 19 5 3 1.7 

S4-S5 242-259 18 8 3 2.7 

S5 260-284 25 11 3 3.7 

S5-pore 285-298 14 1 2 0.5 

pore-helix 299-312 14 5 2 2.5 

pore-loop 313-322 10 9 1 9.0 

S6 323-360 38 9 5 1.8 

S6-A 361-369 9 3 1 3.0 

A 370-389 20 4 3 1.3 

A-B 390-506 117 4 16 0.3 

B 507-532 26 3 4 0.8 

B-C 533-547 15 2 2 1.0 

C 548-562 15 4 2 2.0 

C-D 563-587 25 0 3 0.0 

D 588-622 35 4 5 0.8 

D-end 623-676 54 0 8 0.0 

NTD: N-terminal domain 

Table A-10 Summary of methods evaluated in this study. 

Tool Algorithm Link Reference 

KvSNP Fast random forest 
http://www.bioinformatics.leeds.ac.uk/KvDB/KvSNP.html (Stead et al., 

2011) 

PhD-SNP 
Support vector 

machine 

http://snps.biofold.org/phd-snp/phd-snp.html (Capriotti et 

al., 2006) 

PolyPhen-2 
Naïve Bayes 

classification 

http://genetics.bwh.harvard.edu/pph2/bgi.shtml (Adzhubei 

et al., 2010) 

PredictSNP Metaserver 
http://loschmidt.chemi.muni.cz/predictsnp1/ (Bendl et 

al., 2014) 

PROVEAN 
Sequence 

conservation 

http://provean.jcvi.org/seq_submit.php (Choi et al., 

2012) 

SIFT 
Sequence 

conservation 

http://siftdna.org/www/SIFT_pid_subst_all_submit.html (Ng and 

Henikoff, 

2001) 

SNAP Neural networks 

https://rostlab.org/services/snap2web/ (Bromberg 

and Rost, 

2007) 

SNPs&GO 
Support vector 

machine 

http://snps.biofold.org/snps-and-go/snps-and-go.html (Calabrese 

et al., 2009) 

Table A-11 Six other variants in the B-C linker deposited in the ClinVar database as of June 2017. 

Variant Clinical significance Review status 

R539Q Uncertain significance Criteria provided, single submitter 

V541I Uncertain significance Criteria provided, multiple 

submitters, no conflicts 

E543K Not provided No assertion provided 
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Q544L Uncertain significance Criteria provided, single submitter 

S546L Pathogenic/likely pathogenic, not 

provided 

Criteria provided, multiple 

submitters, no conflicts 

Q547R Not provided No assertion provided 

 

 

Figure A-5 An illustration of position-specific scoring matrix (PSSM) 

For a protein of length 𝐿, a PSSM is a 𝐿 × 20 matrix containing log ratios of the estimated frequency of each of the 

20 amino acids to occur at each position relative to the expected frequency of the wild-type amino acid in a random 

sequence. If 𝑃𝐴 is the probability for amino acid A to occupy a position and  𝑃𝐴
0 is its background probability, then the 

PSSM entry for A at this position equals 𝜆 ln
𝑃𝐴

𝑃𝐴
0, where 𝜆 is a scaling factor built in PSI-BLAST (Altschul et al., 1997). 

A structural model for the glutamate A2 (GluA2) receptor and its cornichon 3 (CNIH3) 

auxiliary subunit 

The AMPA (GluA1-GluA4) receptors are a subfamily of ionotropic glutamate receptors that 

mediate fast excitation within and between brain regions. The mammalian cornichon family was 

recently discovered to be cognate binders of AMPA receptors (Schwenk et al., 2009). The family 

member CNIH3 was shown to slow down the deactivation and desensitization of activated GluA2 

receptor (Schwenk et al., 2009). However, how this regulation occurs at the atomic level is not 

clear for two primary reasons. First, a model of the structure of CNIH3 is unavailable. Second, 

crystalizing the GluA2/CNIH3 complex is a formidable experimental endeavor. Here, we present 

structural models for CNIH3 and GluA2/CNIH3 complex, predicted by using the BCL::MP-Fold 
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de novo structure prediction algorithm (Weiner et al., 2013) and the ROSETTA protein-protein 

docking method (Gray et al., 2003). 

Tertiary structure models of CNIH3 were created using the BCL::MP–Fold protocol ( see III-2.3 

Incorporating WCNs as restraints in de novo structure prediction for details). 5000 models were 

constructed. The models were clustered and the top 50 models were submitted to side-chain and 

loop modeling using the ROSETTA de novo protein structure prediction algorithm (Simons et al., 

1997). The final models were selected according to ROSETTA full-atom score. The final selected 

model of CNIH3 was docked to a crystal structure of GluA2 using the ROSETTA protein-protein 

docking method (Gray et al., 2003). 5000 docking solutions were created and then clustered. 

Candidate models were selected from the cluster centers of the top-ranked clusters. 

 

Figure A-6 One of the top-ranked de novo model for CNIH3 

TM: transmembrane, ECL: extracellular loop, ICL: intracellular loop. 

One of the top-scoring models is shown in Figure . In this model, CNIH3 adopts an antiparallel 

three-helical bundle fold with a counterclockwise arrangement when viewed from outside of the 

plasma membrane. The extracellular loop adopts a 16-residue long amphipathic helix that might 

be involved in binding to GluA2. This model is consistent with predictions on the topology of 

CNIH3 (Roth et al., 1995, Diaz, 2010). As a preliminary investigation, we also docked this model 

to a crystal structure of a homotetrameric GluA2 (Sobolevsky et al., 2009). Shown in Figure  is 

one of the models of GluA2/CNIH3 complex with the lowest interface energy. The ROSETTA 

interface energy measures the strength of binding between docking partners, the lower the energy 

the stronger the binding. This model suggests three interaction clusters: salt-bridges between 

Arg51, Arg55, and Arg59 in the ECL of CNIH3 and Glu678, Pro679 in the ligand-binding domain of 

GluA2; cation–pi interaction between Tyr72 at the extracellular tip of TM2 of CNIH-3 and Lys505, 
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Lys695, and Lys697 in the ligand-binding domain of GluA2; hydrophobic packing between Val95 

Leu98, Phe99 at the intracellular tip of TM2 of CNIH3 and Val538, Phe541, and Leu542 at the 

intracellular tip of TM1 of GluA2. The salt-bridge interaction and hydrophobic packing are 

consistent with findings from peptide-array studies (Shanks et al., 2014). The cation–pi interaction 

needs further experimental verification. 

 

Figure A-7 One of the top-ranked models of GluA2/CNIH-3 complex predicted by protein-protein docking 

This model suggests three interaction clusters two of which are consistent with peptide-array studies (see text for 

details). 
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