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CHAPTER I 

 

INTRODUCTION 

 

I.1 Specific Aims 

The hepatic vessel system is one of the most complex vessel systems in the 

human body. Accurate analysis of the liver vascular system based on volumetric medical 

dataset is becoming more and more important for many medical applications, such as 

quantitative diagnosis, surgical planning and monitoring of the progression of tumors or 

vascular diseases.  

Vessel segmentation is a pivotal step for morphology and topology analysis of the 

vascular systems. The goal of this work is to develop robust and accurate methods for the 

separation and segmentation of hepatic vessel systems. 

 

I.2 Background and Significance 

 

I.2.1 Importance of Vessel Segmentation in Liver 

The liver is the largest organ in the human body and weighs approximately 1500 

grams [1]. Although it belongs to the digestive system, the liver also plays an important 

role in the blood circulation. The healthy liver is dark red in color because plenty of 

blood flows through it. The main vessel systems in the liver are: the portal vein, hepatic 

vein, hepatic artery and bile ducts. They function as follows: the portal vein drains blood 

from the digestive system and its associated organ (e.g. spleen, pancreas, and gallbladder) 
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to the liver; after being cleaned by the liver, this blood, together with the de-oxygenated 

blood, flows into the inferior vena cava via the hepatic veins; then the inferior vena cava 

(or IVC) carries the blood and sends it back to the heart to get refreshed. Besides the 

portal vein, the other vascular system that drains blood into the liver is the hepatic artery, 

which conducts oxygenated blood from the heart to the liver and the digestive organs. 

Figure 1 [2] shows the main vessel systems in the human liver. 

 

 

Figure 1. Vessel systems in the liver 

 

Liver cancer is one of the most common carcinomas in the world. Besides being a 

site for primary cancer (cancer that starts in the liver), the liver is also a common site of 

metastases (cancer cells that detach from the primary cancer site and travel to other 

places through lymphatic and/or vascular systems) from a variety of organs such as the 

lungs, breasts, colon, and rectum. This is because the liver receives blood from 

surrounding organs via the portal vein. For example, colorectal cancer is a worldwide 

major health concern. Each year it strikes approximately 850,000 people and accounts for 

Hepatic Artery 

Hepatic Vein 

Portal Vein Bile Duct 



3 

over 500,000 annual deaths [3]. Data shows that up to 70% of patients with colorectal 

cancer eventually develop liver metastases [3]. Surgical resection is now a widely 

accepted treatment for colorectal metastases to the liver (other kind of liver cancer and 

metastasis as well) since the liver has a property of regeneration. Five-year survival rates 

are consistently reported between 20% and 35% for patient whose cancer is confined to 

the liver and is surgically accessible [3]. By contrast, untreated patients with similar 

disease rarely survived for five years. 

Unfortunately, not all patients are resection candidates. Resectability depends 

largely on the number, size, and location of tumors and their relationship to the main 

vascular trees. Tumors located too close to important liver blood vessels may be 

unresectable since certain blood vessels cannot be removed. It must be guaranteed that 

enough liver tissue supplied by all four vessel systems remains after resection. This 

requires accurate knowledge of the morphology and structure of the hepatic vasculature.  

Living-donor liver transplantation (LDLT) is another effective treatment in 

patients with small hepatocellular cancers and other rare tumors. It is a procedure in 

which a piece of the liver is removed from a healthy donor and transplanted into a patient. 

A precise analysis of the hepatic vascular anatomy is absolutely essential to guarantee 

donor safety and to predict the postoperative liver function for the patient.  

Both liver resection and LDLT require careful surgical planning before the 

operation. However, a surgeon cannot obtain enough information about the geometrical 

properties of the vasculature in the liver from just the 2D planar slices in tomographic 

image volumes. It is critical to provide the surgeon with a 3D patient-dependent vessel 

http://www.livercancer.com/treatments/glossary.html#vessel
http://www.livercancer.com/treatments/glossary.html#unresectable
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tree model preoperatively. This requires segmentation of the vessels, which is the 

objective of this work. 

 

I.2.2 Vascular Analysis in Liver 

As with many other medical image processing techniques, signal noise, drift in 

image intensity, and low image contrast make vessel segmentation very difficult. 

Moreover, the inherent geometrical properties of the hepatic vessel trees, such as thin 

branches and very small vessels at the end of the vasculature, make the problem even 

more challenging.  

As discussed in the next sections, coverage of the literature shows that a number 

of methods have been proposed over the years to segment vessels in medical images but 

only a few have been applied to the liver.  

I.2.2.1 General Vessel Segmentation Methods Review 

Vessel segmentation algorithms vary depending on the image modality and the 

application domain. General segmentation methods for vessels or other tubular structures 

for medical images can be classified into several groups, i.e., threshold-based methods 

[4]-[8], region growing methods [9]-[13], tracking-based methods [14]-[18], 

ridge/skeleton-based methods [19]-[21], deformable model based methods [22]-[32], or 

fuzzy connectedness methods [33]. An excellent review of vessel extraction techniques 

can be found in [34] and [35]. 

In general these vessel segmentation methods, although effective for specific 

applications, do not work well for hepatic vasculature segmentation. For instance, the 

model-based quantitation method proposed by Frangi et al. [22] models the vessel 
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segments with a vessel wall surface and a central vessel axis, the latter of which is 

modeled using a B-spline curve and deformed by minimizing an energy function. This 

method, and some other methods [15][21], need selection of two ends points to define a 

geodesic path for initializing the central vessel axis and are suitable for carotid stenosis 

analysis of a suspicious vessel segment, but is not proper for extracting the whole vessel 

tree inside the liver. Besides this method, the methods in [23], [25]-[30], and many others, 

which use level set based approaches or deformable models were proposed for MRA 

(Magnetic Resonance Angiography) or CTA (Computerized Tomography Angiography) 

images. But MRA or CTA images are imaging modalities that are designed to image the 

vessels. The vessel to tissue contrast in these images is thus much higher than it is in the 

CT images routinely used for liver surgery. For the same reasons, vessel tracking 

methods, which can produce good results with MRA/CTA images [16][17], cannot 

produce a continuous and complete hepatic tree in CT images. In [12], Passat et al. used 

anatomical information to assist in cerebral vasculature segmentation. A vascular atlas 

was developed to capture the relative position of blood vessels and non-vascular 

structures of the brain and the head. The atlas was then deformed to the image to be 

segmented and different thresholds were used in sub-regions to segment the vessels. 

Although this method allows one to remove more noise and efficiently detect more small 

vessels, which could not be found with a global threshold, hepatic vessel segmentation 

cannot benefit from such an atlas-based method since the shapes of both the liver 

parenchyma and the vessels are highly variable. More importantly, the morphology and 

branch patterns of the hepatic vasculature are subject to significant variation between 

individuals. Many other algorithms developed for the segmentation of retinal vessels, 
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cerebral arteries, aorta or airways can be found in the literature, to the best of our 

knowledge, none of them has been tested on liver vessels. In fact, most of these 

algorithms are specifically designed for their application.  

I.2.2.2 Hepatic Vessel Segmentation Methods Review 

Because of the characteristics of the hepatic vessels, such as individual 

topological variations, branching pattern complexity, and small size of the vessels at the 

extremity of the tree, general vessel segmentation methods are ineffectual for hepatic 

vasculature segmentation. In this section, we review some methods that have been 

developed specifically for hepatic vessel segmentation. 

Soler et al. [36] estimate the intensity distribution of 3 tissue classes: lesions, 

parenchyma and vessels by fitting 3 Gaussian models to the histogram. The thresholds 

are defined as crossings of the two adjacent Gaussians. Misclassification can be corrected 

by morphological closing, distance analysis, thresholding and topological and 

geometrical constraints.  

Glombitza et al. [37] use a histogram entropy algorithm which yields several 

possible thresholds indicated by peaks in the entropy function; an optimal threshold is 

selected from these peaks using two fuzzy functions, which describe the relation between 

the vessels and liver with regard to their volumes and shapes. In practice, these two 

threshold-based approaches do not delineate the small vessels very well. 

Saitoh et al. [38] propose an optimal thresholding method based on structure 

analysis for hepatic vessel extraction and cancer detection. A temporary threshold is 

selected near the liver entrance to segment the blood vessels, and then an optimal 

threshold is determined by varying the temporary threshold and studying the number of 
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loops produced in the thinned vessels. This method does not distinguish between 

different vessel systems in the liver. Furthermore, it cannot deal with very small vessels 

because the threshold is global, nor can it avoid loops in vessel skeletons completely.  

Inaoka et al. [39] propose a system, which first extracts candidates of hepatic 

vessel segments from each 2D image slice using a directional contrast filter, then 

searches for connecting points according to rules encoding the way vessels extend such 

as the distance between the connecting points and the direction of vessel segments. 

Finally the vessels are traced using pre-defined anatomical knowledge based on a tree 

model; this cuts off all incorrect connections. The first step is tedious and inaccurate. 

Besides that, the results shown in the paper are very preliminary. 

Masutani et al. [40] develop an interactive vessel modeling system for hepatic 

vasculature for MR images. They use generalized cylinders to represent vessels. The 

method consists of two steps, the first of which is to extract vessel section data from each 

slice image using a circle approximation method, an ellipse approximation method, or a 

minimum width estimation method depending on the vessel orientation relative to the 

slice. The second step connects vessel sections data based on geometrical relationships 

between connectable pairs. This method, which has been tested on both phantom and real 

data sets, failed almost half of the time when dealing with small branches connections. 

Besides this deficiency, operators need to manually select a point in every vessel section 

in each slice to start the extraction. This is time consuming and is not feasible for our CT 

data since small vessels are not easily discernible from the background noise.  

Fetita et al. [41] propose an approach for 3D vasculature segmentation in CT 

hepatic venography based on gray-level mathematical morphology and anatomical 



8 

analysis. In this approach, some basic and advanced gray-level morphological operations 

are performed in a multi-resolution scheme to segment the object of interest from a noisy 

environment. Information about anatomical features is incorporated in the scheme to 

detect and insulate the surrounding structures from the vessels. However, separation 

between the arterial and venous systems was not discussed in this paper. 

Shen et al. [42] generate a binary hepatic vessel image by thresholding, then 

extract the skeleton through analysis of the local maximal voxels in the Euclidean 

distance mapping of the object. The method trades redundancy of the skeleton voxels for 

connectedness of the tree by selecting, as the candidate skeleton, voxels of the first three 

largest in local Euclidean distance which are greater than a threshold. However, the 

results of the cast liver images show that the method cannot eliminate either of the two 

effects, skeleton redundancy or disconnection, completely.  

Yang et al. [43] present a modeling method to extract and reconstruct portal veins 

from MR images. Segmentation is achieved by first classifying the voxels into two 

categories (“blood vessels” and “background”) using a Bayesian probability approach 

and the expectation maximization (EM) algorithm, then isolating the portal vein and its 

connected veins using an active surface model implemented by the level set method. This 

modeling method, which was designed to provide geometric boundary conditions for 

computational fluid dynamics (CFD) simulations of the blood flow inside the portal vein, 

can only segment and visualize the main portal vein and its connected veins, and small 

vascular branches segmentation were not discussed. 

Hemler et al. [44] proposed a method of segmenting the major vessels in the liver 

as required for proper radio frequency ablation treatment plan formulation and analysis. 
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The image is filtered with a 2D median filter and a 2D coherence enhancing diffusion 

filter to remove intensity variations and make the areas with a similar intensity values 

more homogeneous. Then a 3D connected component analysis is performed on the 

maximum intensity projection of the image and a morphological closing operation is 

followed to fill small gaps and holes. This method, which probably even needs some 

manual editing, can only segment the very major vessels in the liver that are near the 

tumor treatment areas. It is not suitable for small vessel segmentation.  

Pock et al. [45] propose a tubular structure detection filter, which can provide a 

radius estimate based on a multiscale medialness function. Based on the filter output, 

centerlines of the tubes are extracted and the vessel tree is reconstructed. The final 

segmentation step uses the tube representation to initialize and constrain a level set 

method for codimension-two geodesic active contours for tubular structures. As is the 

case for several methods mentioned above, this method cannot deal with vessel branches 

of higher orders, especially those disconnected with the main vessel trunk because of 

noise.  

Of the various image segmentation methods proposed, region growing has been 

one of the most popular. This method segments images by first selecting a starting point 

and then incrementally recruiting pixels to a region based on some criteria.  

Zahlten et al. [46] propose a voxel based region growing algorithm with an 

emphasis on bifurcation detection. Starting from a seed point, the algorithm expands 

stepwise to trace voxels which satisfy a threshold. The propagation of the algorithm 

produces a “wave front” which represents the boundary of the currently segmented object. 

Bifurcations are recognized when one of the connected components of the wave front 
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splits into two or more parts. However, for image data sets with vessel or liver tissue 

intensity variations and noise, it is difficult to achieve an accurate result. 

Dokladal et al. [47] develop an approach to segment the 3D hepatic vessel system 

by voxel growing either in the object or the background, with a grey level threshold as 

the stopping criterion. It differs from other region growing methods in that the growing 

procedure is restricted to simple points to preserve the homotopology by using priority 

FIFO lists. The results show that segmentation by background reconstruction is better 

than segmentation by object construction. But the richness of the vessel structure of both 

results is sensitive to the stopping criterion. 

Selle et al. [48][49] use a threshold-based region-growing method to extract 

vessels in liver. An optimal threshold is automatically selected based on the fact that the 

number of the segmented voxels is linearly increasing as the threshold decreases up to a 

point where there is a sudden change due to the fact that liver tissue is included when the 

threshold is below the optimal value. Then graph theoretical methods are used to 

determine vessel skeletons. Liver segments are then approximated based on the branch 

structures of the portal vein. Finally, vessel visualization is performed by fitting graphics 

primitives along the skeletons. This method involves some manual interaction and is not 

fully automatic.  

Wan et al. [50][51] propose an algorithm called Seeded Region Growing to 

extract and represent vascular trees in rats in micro-CT images. They define a set of 

theoretical criteria for a subclass of region-growing algorithms that are insensitive to the 

selection of the initial seeds. The growing process consists of three steps: segmenting 1D 

regions of each row of the image; merging segmented regions of adjacent rows to obtain 
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region segmentation of each slice; and merging regions of adjacent slices to obtain final 

result of the 3D image. Separation of different vascular systems and the feasibility for 

human hepatic vessels segmentation have not been discussed. 

Beichel et al. [52] develop a method for portal vein segmentation, the idea behind 

which is to first enhance the tubular structure by a Hessian filter. Potential vessels are 

then identified with an iterative region growing method with a successively relaxed 

criterion. Finally, connected components that lie close to the vessels are reconnected to 

the main trunk based on the minimum cost path. In this paper the centerline is extracted 

using a sequential 3D curve thinning algorithm [53] and liver segments are approximated 

using nearest neighbor approximation method. In this method, labeling liver segments 

and separating different vessel systems are done manually.  

Erdt et al. [54] propose a Hessian based hepatic vessel enhancement filter by 

designing a vesselness function which is computed from a pre-defined vessel model to 

avoid parameters adjustment, and an iterative region growing segmentation method with 

an initialized threshold from the response of the vessel model. Results may need to be 

refined by manual interaction. 

Kaftan et al. [55] propose a two stage venous vasculature segmentation method 

for CT liver image. In the first stage, the main vessel branches are delineated using 

globally optimal graph-cuts algorithm, with an initial segmentation which is to determine 

foreground and background seed points. In the second stage, smaller vessels are detected 

by a graph based tracking approach based on multi-scale medialness filter. 

Freiman et al. [56] develop a variational method for liver vessel segmentation and 

visualization. To detect bifurcations and complex vessel structures, it integrates Hessian-
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based geometrical vesselness measurement and vessel surface properties to form an 

energy function which is minimized by solving the Euler-Lagrange equation.  

Yi et al. [57] use a locally adaptive region growing approach to segment vascular 

networks in 3D CTA/MRA head/neck/abdominal images. Region growing is restricted to 

local cubes, and connected component labeling on six faces of the cube is used for 

detection of bifurcation and estimation of the next cube’s position. Tschirren et al. [33] 

adapt fuzzy connectedness with directional affinity and region of interests (ROI) with 

cylindrical shape to segment CT airway images. The orientation of new ROI is 

determined by the skeleton of the current segmentation results. For both methods, locally 

adaptive analysis in the ROI helps identifying small vessels; but the approach that the 

vessel segmentation in the local ROI is repeated throughout the whole image is not 

efficient, especially when such approach is applied to liver, which has complex branching 

patterns.  

To sum up, existing methods for hepatic vessel segmentation have deficiencies in 

one or more of the following areas: small and/or detached vessel delineation, separation 

between different vessel systems, need for tedious manual interaction, disconnectedness 

of the final results, and time efficiency issues. To address such problems, we propose an 

approach for hepatic vasculature segmentation for CT abdominal images. It can 

differentiate the portal vein and the hepatic vein based on image registration and 

histogram analysis, and can identify small vessels, even when pieces are disconnected 

from the main tree, with an iterative region growing and reconnection method. To reduce 

the running time and maintain the accuracy of the segmentation results, we use a 

conventional region growing method for main vessel trunk detection and extract vessel 
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branches with high orders with an adaptive directional region growing method. It also 

guarantees that the final segmentation results are connected components. 

Hepatic vascular segmentation results are usually binary volumetric data sets. 

They often have irregularities, such as cavities, holes or bumps, at vascular surfaces. 

These disturbances without topological meanings are caused by image noise and 

encumber further geometrical and topological analysis which is necessary for liver 

surgical planning. A skeletal tree representation is better for identifying branching 

patterns and determining liver segments supplied by different vascular systems. So 

topological thinning often follows vessel segmentation [36][37][48][52]. Moreover, in 

our approach, as in [33], we use the skeleton to guide the region growing process by 

providing possible directions for vessel extension. 

I.2.2.3 Vessel Separation Methods Review 

The objective of our study is to segment both the portal vein and hepatic vein. 

However, due to the imaging protocol, the portal vein and hepatic vein are enhanced 

simultaneously during the venous phase. So the first step is to separate these two types of 

veins. In the past, only a limited amount of work has been done to address the issue of 

vessel separation. 

Intravascular contrast agent offers a prolonged blood residence time, allowing 

acquisition of the steady state images of the arteries and veins with higher contrast and 

better resolution in contrast-enhanced magnetic resonance angiography (CE-MRA). 

However, an inevitable disadvantage is the simultaneous enhancement of arteries and 

veins, which makes the analysis of either vessel system a difficult task. To solve this 
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problem, separating arteries from veins is essential before any type of vessel analysis can 

be achieved.  

Bemmel et al. [58] introduce a level-set-based method to separate the artery and 

vein in blood pool agent contrast-enhanced MRA. One of the novelties they claim, which 

is to use the central arterial/venous axis as initialization for the level set propagation, is 

also a drawback of the method, because it requires extraction of the central 

arterial/venous axis before the separation and segmentation of the vessels, which involves 

user interaction. Moreover, this method is only feasible for the separation of a small 

number of overlapping arteries and veins, not for the application of a whole vessel tree. 

Niessen et al. [59] improve artery visualization by segmenting the major venous 

structures then suppressing them in maximum intensity projections. Again, this method is 

limited to the case of a small number of the main overlapping veins, which need to be 

selected by the user.  

Lei et al. [60] reported an artery-vein separation method for MRA using the 

concept of fuzzy connectedness. They segment the entire vessel structures from the 

background via absolute fuzzy connectedness first, then separate artery from vein within 

the whole vessel structures by specifying seed voxels for both vessels and via relative 

fuzzy connectedness. 

Sonka et al. [61] propose a separation method based on graph searching which 

consists of the following steps: 1) slightly overgrow a vessel tree using seeded region 

growing; 2) inside the segmented tree, starting from user-defined points, a graph 

searching similar to dynamic programming is performed to find a centerline of the tree; 3) 

a constrained morphologic thickening algorithm is used to grow the artery and vein from 
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the searching result based on vessel labeling propagated to all vessel segments along the 

centerline. 

Bock et al. [62] develop a correlation analysis method to separate the arteries and 

veins in 3D MRA of the lung based on the difference of the arterial and venous vascular 

signals in temporal acquisition. About 7 or 8 MRA data sets are acquired within a single 

breath hold, and the arterial and venous cross-correlation map are computed and analyzed. 

This method is limited by the acquisition.  

Tizon et al. [63] describe an algorithm which uses the gray-sale degree of 

connectedness to split the original volume into different vessel parts. This region growing 

method needs the user to interactively define seed regions in the arterial and venous 

vessels, and it may fail when the contrast between the arterial and venous regions is poor 

or when an arterial stenosis occurs, due to the fact that the connectedness values 

associated with the wrong seeds may be higher at an interested voxel.  

The approaches mentioned above, besides having their own limitations, all focus 

on the separation of artery and vein in contrast enhanced MRA images, which have great 

differences in image contrast and other qualities from our liver CT images used for liver 

surgical planning. So they cannot produce good results for our application. Instead we 

propose a vessel separation method with automatic thresholds selection based on an 

analysis of the 2D intensity histogram. 
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CHAPTER II  

 

IMAGE PREPROCESSING – IMAGE REGISTRATION AND ENHANCEMENT 

 

II.1 Introduction 

 

II.1.1 Image Data 

The image modality that we are interested in is Computerized Tomography (CT). 

One patient study usually includes several data sets that are acquired with different 

imaging parameters. These include the time at which the images are acquired after 

injection of a contrast agent or the slice thickness. 

The abdomen of each patient is CT scanned (Sensation 64, SIEMENS Medical 

System) after injection of a contrast agent. The hepatic vascular systems become visible 

gradually as the contrast agent diffuses inside the vessels. Different vessel systems are 

captured at different time based on the perfusion of the contrast agent. The hepatic 

arteries are the first vessel system that is enhanced with respect to liver tissues, then the 

contrast agent passes through portal veins and finally flows into the inferior vena cava via 

the hepatic veins. There are two imaging phases in our study: the arterial phase, and the 

venous phase. Typically, datasets taken at the arterial phase show the hepatic artery and 

the portal vein more clearly, while those taken at the venous phase show the portal vein 

and the hepatic vein better. The following figure shows an example of CT axial images in 

both phases for the same patient. 
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(a). Axial image of the arterial phase (b). Axial image of the venous phase 

Figure 2. An example of a CT slice of the original image 

 

At each imaging phase, the patient is scanned with two thickness parameters, 

1mm and 5mm. Images with thick slices (5mm) have higher signal to noise ratio but do 

not contain enough information for accurate vessel segmentation. On the contrary, 

images with thin slices (1mm) show more details but the signal to noise ratio is low.  

We have used 5 image datasets in this study. Typical image size and voxel size 

for the 1mm thickness volumes are 512*512*250 and 0.8mm*0.8mm*1mm, respectively, 

and those for the 5mm thickness volumes are 512*512*50 and 0.8mm*0.8mm*5mm. 

 

II.1.2 Characteristics of the Image Data 

Thin slice CT images (1mm) have relatively low contrast-to-noise ratio. Figure 

3(a) is an example of a CT slice with a 1mm thickness. Besides the very big vessel 

branch, there are several smaller vessel cross-sections appearing in this slice. The fact 

that the edges between the vessels and liver parenchyma are not very clear and that small 



18 

vessel cross-sections are not easy to distinguish from the noise makes the segmentation of 

these vessels a difficult task. Figure 3(b) is a preliminary segmentation result using just a 

threshold, which gives us some idea of the noise level in the dataset. So, pre-processing 

such as image enhancement is an important step in the process.  

 

  

(a). A liver CT slice of thickness 1mm (b). Thresholding result 

Figure 3. A CT slice example and its thresholding result 

 

Anatomically, the portal vein lies parallel to the hepatic artery and the bile ducts. 

It is usually considered as the leading structure for these three vessels and it is based on 

the portal vein that the liver is divided into eight segments that are used for guidance 

during liver surgery. Since the hepatic artery is relatively small and has the same 

orientation as the portal vein, it is neglected in this study. Our ultimate goal is to separate 

and segment the portal vein and the hepatic vein. 

Although the venous phase images are acquired right after the arterial phase, 

motion artifacts do exist between these two imaging phases because of human 
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respirations and patient body movements. Thus the portal vein in the arterial phase image 

and that in the venous phase image are not aligned perfectly. Such displacement is subtle 

but critical for both vessel separation and segmentation. So registration between the two 

image phases is essential.  

 

II.2 Image Registration  

 

II.2.1 Methods 

To register the source image (the arterial phase image) to the target image (the 

venous phase image), a two step approach has been used. First the images are registered 

using a rigid body transformation. This is followed by a non-rigid registration. Both the 

rigid and non-rigid registration algorithms use a normalized mutual information-based 

approach. The rigid transformation is computed on the whole CT image at its original 

size, with an intensity window that covers the intensity range of the image. To reduce 

execution time for the non-rigid registration step, we define a bounding box on both 

images, which contains the whole liver, and eliminates other surrounding structures as 

much as we can. Then we deform the cropped source image to the cropped target image. 

Instead of using the minimum and maximum intensities of the foreground voxels as the 

valid intensity ranges of the source and target images as is done in the rigid case, our non-

rigid registration scheme computes the joint histogram, and thus the normalized mutual 

information, within the estimated range of vessel intensities. This is done because the 

goal of the registration is to align the vascular structures. The liver parenchyma is of less 

importance and is treated as background in this step. Finally we apply a liver mask to 
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remove the remaining structures surrounding the liver. The liver mask is obtained by 

segmenting the liver using a level set-based approach with an accumulative speed 

function proposed by Cao [64]. The liver segmentation is conducted on the target image 

(the venous phase image) and the liver mask is also applied to the non-rigid registered 

arterial phase image.  

The non-rigid registration algorithm we have used is the intensity-based adaptive 

bases algorithm [65]. This approach models the deformation field with compactly 

supported radial basis functions in a multi-scale and multi-resolution way. Resolution 

refers to the image spatial resolution, which varies from coarse to fine. Scale is 

determined by the number and the support region of the basis functions. At a given 

resolution, the algorithm progresses from a larger scale, which uses few basis functions 

with large support, to a smaller scale, which uses more basis functions but their support 

region is reduced. The overall deformation field is modeled as the sum of the 

deformations occurring at each resolution and scale:  

       xvxvxvxv M 21     (1) 

   



N

j

jji xxcxv
1      (2) 

where  xv  is the final deformation field,  xvi , Mi 1  is the intermediate 

deformation field at a certain level i, and M is the total number of levels, which are all the 

combinations of resolution and scale;   is a radial basis function (RBF) centered at 

voxel point Njx j 1,  , Njc j 1,   is the coefficient of the corresponding RBF, and 

N is the total number of RBFs over the image domain. 
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II.2.2 Results and Discussion 

II.2.2.1 Rigid Registration Results 

The arterial phase image is first registered to the venous phase image using a rigid 

transformation. Figure 4 shows the source images (the arterial phase) before and after 

rigid registration overlapped on the target images (the venous phase) in coronal, axial, 

and sagittal views, respectively. The first row shows the original source images 

overlapped on the target images. The second row shows the rigidly registered images 

overlapped on the target images. The red arrows show areas of improved alignment 

between the source and target images. From the results we can see that the rigid 

transformation registers the liver (and the other surrounding structures, of course) and the 

big vessels well. But it is not sufficient for small vessels. We will show later (Figure 5 to 

9) that non-rigid registration is necessary to align small vessels in the two phases. 
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(a). Coronal: before 

registration overlapping 

(b). Axial: before 

registration overlapping 

(c). Sagittal: before 

registration overlapping 

   

(d). Coronal: after 

registration overlapping 

(e). Axial: after registration 

overlapping 

(f). Sagittal: after 

registration overlapping 

Figure 4. Rigid registration results 

 

II.2.2.2 Non-rigid Registration Results 

The non-rigid registration scheme approaches the final deformation field 

iteratively across a number of scales and resolutions. In our experiments, the registration 

starts from an image down-sampled two levels below the full spatial resolution, and a 

total number of 15 scales are unevenly distributed between these 3 resolutions: 4 scales 

for the lowest, 9 scales for the middle, and 2 for the highest resolution. At each scale, 

registration is confined to areas with intensity above 1000, which is roughly the lower 
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bound of the vascular structure. Such intensity restriction not only helps to reduce the 

computation time, but also results in a better alignment between vessels.  

Figure 5 shows a zoomed-in view in a pair of images before and after registration. 

Figure 5(a) is the original arterial phase image; (b) and (c) are the deformed images after 

rigid and non-rigid registrations, respectively; and (d) is the venous phase image, to 

which the arterial phase image is registered. The green curves are the manually drawn 

centerlines of the vessel in the venous phase image. For comparison, they are also shown 

on the other images. 
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(a). The arterial phase image (source 

image) 

(b). The arterial phase image after rigid 

registration 

  

(c). The arterial phase image after non-rigid 

registration 

(d). The venous phase image (target 

image) 

Figure 5. Sagittal images with manually-drawn vessel centerlines 

 

This figure shows that the green curves align very well with the vessels in the 

non-rigidly registered image (Figure 5(c)), but deviate from the vessels in the rigidly 

registered image (Figure 5(b)), and of course, deviate from vessels in the original source 

image (Figure 5(a)), too. Figure 6 and 7 show two other registration examples.  
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(a). The arterial phase image (source 

image) 

(b). The arterial phase image after rigid 

registration 

  

(c). The arterial phase image after non-rigid 

registration 

(d). The venous phase image (target 

image) 

Figure 6. Axial images with manually-drawn vessel centerlines 
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(a). The arterial phase image (source 

image) 

(b). The arterial phase image after rigid 

registration 

  

(c). The arterial phase image after non-rigid 

registration 

(d). The venous phase image (target 

image) 

Figure 7. Axial images with manually-drawn vessel centerlines 

 

Figure 8 shows representative results in 3D. The red vessels in Figure 8(a), (b) 

and (c) are identical. These are sub-trees of the portal vein in the venous phase image. 

The white vessels are the corresponding portal veins in the arterial phase image, and the 

rigidly and non-rigidly registered images, respectively. Results show that rigid 

registration alone cannot match the portal veins in the two imaging phases perfectly. Only 
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after non-rigid registration which is mainly driven by aligning vascular structures, can we 

get satisfactory results. 

 

   

(a). The portal vein in the 

arterial phase image vs. that 

in the venous phase image 

(b). The portal vein in the 

rigidly registered image vs. 

that in the venous phase 

image 

(c). The portal vein in the 

non-rigidly registered 

image vs. that in the 

venous phase image 

Figure 8. 3D registration results 

 

Figure 9 is another example of results shown in 3D. In this example, besides the 

portal vein, the hepatic vein also appears in the venous phase image (also shown in red). 

Figure 9(c) shows that although the target image contains two different vessel systems, 

the non-rigid registration scheme does not produce any mismatches between different 

vessel systems. 
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(a). The portal vein in the 

arterial phase image vs. that 

in the venous phase image 

(b). The portal vein in the 

rigidly registered image vs. 

that in the venous phase 

image 

(c). The portal vein in the 

non-rigidly registered 

image vs. that in the 

venous phase image 

Figure 9. 3D registration results 

 

Figure 10 shows the non-rigid registration results with and without intensity 

restriction. When the default intensity range is used (the minimum and maximum 

intensity of the image), the cost function (the normalized mutual information between the 

source and target images) is computed and maximized over the whole image, which 

includes the liver, the vessels and other surrounding structures. Since the vessels only 

occupy a small portion of the image foreground, the registration matches relatively large 

structures in the images well, but cannot guarantee perfect match between thin vessels 

(Figure 10(a)). When the intensity range only includes the range of intensities for vessels 

structures (1000-1250 in this example), the cost function is optimized within the vessels, 

and vessels are aligned very well (Figure 10(b)). 
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(a). Without intensity restriction (b). With intensity restriction 

between1000 and 1250 

Figure 10. 3D non-rigid registration results 

 

II.3 Hessian Enhancement Filter 

Because the images we work with have low contrast to noise ratio, the first thing 

we do after registration is to denoise the image. Our goal is to preserve and enhance the 

vascular structures while smoothing the liver parenchyma. In [66] a vessel enhancement 

filter is proposed, which is based on the analysis of the second order local structure of an 

image. All three eigenvalues of the Hessian are incorporated into a vesselness measure, 

which offers an intuitive and geometrical interpretation for tubular structure detection. 

This filter is applied at different scale and the width of the vessel is estimated on the basis 

of the scale that maximizes the filter response.  

 

II.3.1 Method Overview of the Hessian Filter 

The idea of using multiscale second order local structure (Hessian) of an image to 

develop a vessel enhancement filter has been proposed first by Frangi et al. [66] and was 
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inspired by the work of Lorenz [67], and Sato [68]. Later this approach has been used and 

extended by numerous authors (see for instance [22]-[24], [29][30] and others). 

This filter is used to determine a probability-like measurement that defines the 

likelihood that a pixel or voxel in an image belongs to a vessel. This can be accomplished 

by eigenanalysis of the Hessian at each point in the image. The eigenvalues of the 

Hessian measure the intensity variation in the direction of their corresponding 

eigenvectors. The direction of the eigenvector associated with the minimum eigenvalue 

indicates the direction of the minimum intensity variation, which is along the vessel. 

Let H  be the Hessian matrix at a given voxel x,  

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where ijI  denotes the second order partial derivatives of the Gaussian filtered image with 

the kernel size  . Let the eigenvalues be i ( 321   ). The following table [66] 

shows various possibilities of the eigenvalues for the detection of different structures. 

 

Table 1. Possible eigenvalues of the Hessian and corresponding patterns. H=high, L=low, 

N=noisy, usually small, +/- indicate the sign of the eigenvalues. 

2D 3D pattern 

1  2  1  2  3   

N N N N N Noisy, no preferred direction 

  L L H- Plate-like structure (bright) 

  L L H+ Plate-like structure (dark) 

L H- L H- H- Tubular structure (bright) 

L H+ L H+ H+ Tubular structure (dark) 

H- H- H- H- H- Blob-like structure (bright) 

H+ H+ H+ H+ H+ Blob-like structure (dark) 

 

The discriminant function, which is called “vesselness”, developed in [66] can be 

expressed as 
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HS 2 . 

The quantities aR , bR , and S are designed to punish cross-sectional asymmetry, 

blobness and low energy, respectively. The vesselness measure is analyzed at different 

scales. The maximum of the filter response is achieved at a scale that approximately 

matches the size of the vessel to detect. 

 

II.3.2 Feasibility of the Hessian filter 

The multiscale vessel enhancement filter works well for angiography images with 

bright vessels in a relatively homogeneous dark background, such as MRA. In our 

application, we have observed that the artifacts resulting from the fact that the liver has 

been segmented and is surrounded by zero intensity values are so significant that they 

obscure the response from vessels within the parenchyma. From Figure 11 one can 

clearly see that the vesselness is very high around the liver border and much lower inside 

the liver.  
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Figure 11. High vesselness results on liver boundary because of non-zero gradient 

 

A simple way to alleviate this issue is to normalize the image first before Hessian 

filtering [52]. Here, the following transformation is applied to the image so that the 

intensity range of the image is mapped onto the [0, 1] interval[52]: 
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There are two parameters lowg  and highg  used in this intensity remapping function. 

They are roughly the lower and upper bounds of the intensity values of the portal and 

hepatic veins in the abdominal CT images. Usually, the parameter highg
 
can be selected 

only once for images with similar intensity range. In our experience, the value of lowg  

needs to be adjusted for every volume, which is a major issue when trying to automate 

the process. To address this problem, we have developed an automatic method to 

estimate the best parameter value, which is described in Section II.3.3. The intensity 
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normalization reduces the big intensity difference between the liver tissue and the 

background, which, in turn, reduces the response of the vesselness filter around the 

borders of the liver. Figure 12(a) below shows the response of the hessian filter after 

normalization. For this data set, 1140lowg , and 1250highg . Compared to the result 

without normalization (Figure 11), one can see that the vessels inside the liver are 

enhanced without producing much interference on the boundary. Figure 12(b) is the 

segmented vascular tree using just a threshold after Hessian enhancement. Although a lot 

of disconnected pieces are visible, this result is much clearer than the results obtained 

without the Hessian filter, which are shown in Figure 3(b). 

 

  

(a). Hessian response after normalization (b). Thresholding result 

Figure 12. A slice of the Hessian enhanced image and its thresholding result 
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II.3.3 Automatic Selection of the Parameter lowg  Used for Intensity Normalization 

The automatic selection of lowg  is based on the analysis of the cumulative 

probability function of the Hessian enhanced image and its derivative. To find the 

optimal lowg  that produces the best enhancement, we apply the Hessian filter to the 

original image with several lowg  values in a fixed range. In our experiments we have used 

11 values between 1100 and 1200. For each of the Hessian enhanced images obtained 

with these values, we plot the cumulative intensity distributions as shown in Figure 13(a). 

All these curves have the same general shape: a sharp rise followed by a long plateau. 

The sharp rise corresponds to un-enhanced voxels (mainly liver parenchyma), the 

plateaus to voxels that have been enhanced by the filter. These include vessel voxels, 

border voxels, and spurious noisy voxels. We detect the plateaus by first computing the 

derivative of the cumulative density functions as shown in Figure 13(b). For each curve, 

we then select the beginning of the plateau as the intensity value at which the derivative 

is below a fixed threshold 0G  and we call this intensity value iT . Here we have chosen 

005.00 G . Finally, we define the parameter iN  (percentage of high intensity voxels in 

the volume) for each lowg , 

oxe i
i

numnber of v ls with I T
N

number of liver voxels




    (5)
 

Figure 14(a) shows the value of iN  plotted versus lowg . We have observed that 

the optimal value of lowg  is the value at which this curve has the largest negative slope, 

which makes intuitive sense. Indeed, with a small value for lowg  a lot of liver parenchyma 

voxels are left in the image after normalization, so many border voxels are included in the 
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Hessian enhanced image. As lowg  increases, liver tissue is gradually removed and fewer 

border voxels are included. When lowg  reaches the range of values at which parenchyma 

and thus border voxels are eliminated, the count of high intensity voxels decreases 

rapidly. When all border voxels have disappeared, a further increase in the value of lowg  

only eliminates vessel voxels. Because there are fewer vessel voxels than liver voxels, the 

rate of change in the number of high intensity voxels decreases. To localize the optimal 

lowg , we thus fit a sixth order polynomial to the iN ’s. We then compute its derivative and 

find its minimum. The derivative of the curve shown in Figure 14(a) is shown in Figure 

14(b). The value at which the derivative is minimum is 1180, which is the optimal lowg  

value for this volume. Figure 15 shows enhanced images obtained with various values for 

lowg  ranging from 1150 to 1200. This figure shows that the results obtained with the 

optimal value lowg  preserves all the details of the vessel trees while eliminating undesired 

border voxels. 
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(a). The cumulative probability functions 

for 11 lowg  

(b). The derivative of the cumulative 

probability functions 

Figure 13. The cumulative probability functions and their derivatives 

 

  

(a). iN  vs. lowg  (b). The derivative of iN  vs. lowg  

Figure 14. The plot of iN  vs. lowg  and its derivative 
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(a). lowg  = 1150  (b). lowg  = 1160 (c). lowg  = 1170 

   

(d). lowg  = 1180 (e). lowg  = 1190 (f). lowg  = 1200 

Figure 15. Comparison of the enhanced vessels with different lowg  values 

 

Computing Hessian enhancement at multiple scales is essential as a preprocessing 

step before vessel segmentation, since small scale improves the contrast for small vessels, 

while large scale highlights vessels with large radius. However, to obtain the optimal lowg  

value for each data volume, we need to apply the filter several times, and multiple scale 

computing is time-consuming. To reduce the computation time required to obtain the 

optimal lowg , the Hessian filter can be applied to the image with a single medium scale. 

We use a scale = 3 voxels for all 5 data sets and the resulting optimal lowg  are the same as 

those obtained with multiple scales enhancement. The automatic method we have 
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developed for the selection of lowg  led to satisfactory results for all the volumes included 

in our study. 

 

II.3.4 Parameters Selection for the Vesselness Equation 

There are 3 parameters  ,   and  that need to be set in the vesselness equation, 

which for convenience, is rewriten below: 
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The ratio aR distinguishes plate-like and tubular structures with a value close to 0 

for the former and close to 1 for the latter. The ratio bR  accounts for blob-like structures. 

It tends to 1 for a blob-like structure but tends to 0 for the other two types of structures. 

The 3 parameters  ,   and   control the sensitivity of the tubular detection filter by 

assigning different weights to aR , bR , and S.  
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Figure 16. aY  vs. aR  plot 

 

Figure 16 shows the relationship between aR  and 







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2

2

2
exp1



a
a
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Y  as   

changes from 0 to 1. When   is selected small, for example, 1.0 , aY  is very large 

(close to 1) and does not change much as aR  changes from 0.3 to 1, which means there is 

no big difference in the vesselness value between plate-like structures ( aR  tends to 0.3) 

and tubular structures ( aR  tends to 1). As a consequence, with low values of   the filter 

will not discriminate between plate-like and tubular structures. This can be seen 

experimentally. With low values of   there are too many plate-like structures left in the 

filtered image. Figure 16 above shows that   should be at least equal or greater than 0.3 

to maximize the discrimination power of the filter between plate-like and tubular 
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structures. If   is chosen too high, e.g. 7.0 , vessels will become disconnected 

because at their junctions they look more like plates than tubes.  

The relationship between bR  and 














2

2

2
exp



b
b

R
Y  as   changes from 0 to 1 is 

similar to what is shown in Figure 16. Small   values cause bY  to decreases to 0 rapidly 

and it is not easy to distinguish the two cases, 0bR  and 1bR . The best approach is 

to choose a value for   so that when bR  changes from 0 to 1, bY  varies between 0 and 1 

gradually, so bY , and thus the total filter response  , can be used to distinguish between 

large bR  (blob-like structures) and small bR  (the other two cases). So, as is the case for 

 ,   should be at least equal or greater than 0.3. Experimental results show consistently 

more noise and short disconnected lines for 1.0  than for greater   values. Better 

results are obtained with larger   values. 

The parameter   is set as a certain percentage of the maximum intensity value of 

the image. Low   produces too much noise and makes the small vessels disappear. To 

sum up, through analysis and experiments, we have set the parameter values to 

max*5.0,7.0,3.0 I 
.
 These values produced good results for all our data sets.  
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CHAPTER III  

 

HEPATIC VESSEL SEPARATION 

 

Due to the scanning protocol used to generate the images used in this work, both 

the arterial and the venous phase images contain the portal vein, and the venous phase 

images also contain the hepatic vein. These two types of veins are connected to each 

other at a number of points due to the resolution of the images. It is thus very difficult to 

extract them separately. To obtain accurate segmentation of both veins, the first step is to 

separate these two vascular systems. Because of the characteristic of the two imaging 

phases, one simple way to separate the two trees could be to subtract the portal vein of 

the arterial phase from the venous phase, which could result in an image that contains 

only the hepatic vein. Such a method is intuitive and fast, but lacks accuracy and 

robustness. It may lead to disconnected pieces of the hepatic vein and unwanted noise in 

the resulting image. We have developed an alternative method for separation, which is 

based on 2D histogram analysis. We got this idea by noticing that the portal vein and the 

hepatic vein pixels form two separable clusters in the 2D intensity histogram, which can 

be used for classification of the different vessel pixels. In later subsections of this chapter, 

we will describe both separation methods (ie., separation obtained via subtraction and 

separation obtained with the new method we have developed) in more details and then 

compare their results. 
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III.1 Vessel Separation by Subtraction 

After registration and Hessian enhancement, the portal vein in an arterial phase 

image is aligned with the portal vein in the corresponding venous phase image, which 

also contains the hepatic vein. In principle, subtracting the portal vein from the venous 

phase image could result in an image that contains the hepatic vein only. But, simple 

subtraction of the gray level images does not work very well because of contrast 

differences between the two phases. Rather, we first binarize the arterial phase image and 

then subtract it from the venous phase image. To do this a threshold T_PV needs to be 

applied to the Hessian enhanced arterial phase image to identify candidate portal vein 

voxels. Then these portal vein pixels are removed from the Hessian enhanced venous 

phase image. With another threshold T_HV applied to this image, hepatic vein voxels are 

labelled. We have observed two important things when experimenting with real images. 

First, the final results are very sensitive to the selection of the two intensity thresholds 

and their values depend on the images. Second, even if the thresholds are selected 

manually to lead to the best possible results, a simple subtraction of the binarized images 

does not lead to optimal results. 

The figures below show venous phase images before and after vessel separation 

using vessel subtraction. The image before separation contains the portal vein and the 

hepatic vein. After processing, the venous phase image includes the hepatic vein only.  
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(a). Venous phase image before separation (b). Venous phase image after separation 

Figure 17. Venous phase image before and after separation 

 

As shown in this example, simple subtraction between the two image phases leads 

to disconnected vessel branches and spurious noise pixels. To both address the intensity 

threshold selection problem and improve on vessel separation once the thresholds are 

selected, we have developed a method, which is based on characteristics of the 2D 

intensity histogram computed with the registered arterial and venous phase images.  

 

III.2 Vessel Separation by Histogram Analysis 

In the following subsections, phrases such as the arterial/venous phase image and 

the portal/hepatic vein, will appear frequently. For simplicity and convenience, we use 

the abbreviations instead of the full names. That is, we use AP/VP for the arterial/venous 

phase image and PV/HV for the portal/hepatic vein. 
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III.2.1 Method Overview 

The arterial phase (AP) images contain the portal veins (PV), and the venous 

phase (VP) images contain both the portal veins and the hepatic veins (HV). Figure 18 is 

an example of the 2D histogram of the AP and VP images (intensities from the AP are 

plotted along the horizontal axis and those from the VP on the vertical axis), where one 

cannot even tell vascular structures from liver parenchyma, due to the fact that the 

volume of the vessels is very small compared to the whole liver volume. 

 

 

          

Figure 18. An example of the 2D histogram of the AP and VP images 

 

Clearly, not enough information can be obtained from the 2D histogram of the AP 

and VP images for vessel separation. However, when we restrict the 2D histogram to the 

AP 

VP 
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pixels of the two vessels, the PV and HV, obtained using the separation method described 

in Section III.1, things are different. 

In III.1, the PV mask is obtained from the Hessian enhanced AP image with a 

threshold T_PV. Then these PV pixels are removed from the Hessian enhanced VP image, 

and an image, which contains mostly the HV, is produced. With another threshold T_HV, 

the HV mask is computed. 2D histograms for PV and HV voxels can thus be generated, 

and they are shown in Figure 19.  

 

                             

 

   

 

        

 

(a). The PV histogram (b). The HV histogram (c). The PV+HV histogram 

Figure 19. An example of the 2D PV and HV histograms 

 

These figures show that segmented PV pixels have high intensities in both phases, 

so the PV pixels are mainly located in the top right of the histogram; segmented HV 

pixels have high intensities in the VP image but low intensities in the AP, so the HV pixel 

cluster mainly located in the top left of the histogram. In practice, after normalization and 

summation, these two pixel clusters overlap with each other to a certain degree because 

of imaging limitations and non-perfect registration, but they still appear separable (Figure 

VP 

AP 

VP 

AP 

VP 

AP 
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19.). As will be discussed later a statistical classifier is used to separate the two clusters to 

segment the vessels and results will show that this produces better results than simple 

subtraction. But parameter estimation for this classifier requires knowing a priori which 

pixel belongs to which class, i.e., vessel segmentation. To address this issue, we initiate 

the process by selecting the thresholds T_PV and T_HV (the exact procedure used to do 

this will be detailed in Section III.2.2) and we use these thresholds to generate the initial 

PV and HV masks. These masks are used to estimate the initial classifier parameters. 

Once the classifier is estimated, it is used to separate the entire image into two classes 

(i.e., PV or HV) and pixels in each of these classes with a high value in the corresponding 

Hessian image are labeled as either PV pixels or HV pixels. Using these pixels, the 

classifier’s parameters are re-estimated and the process is repeated until convergence. In 

our experience, this approach works well if good values for the two initial thresholds can 

be found. In Section III.2.2 we describe a method we have developed to automate the 

estimation of these parameters. Figure 20 illustrates the complete procedure we have 

developed. 
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Figure 20. Flowchart of the process of separation by histogram analysis 
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To classify the pixels into two classes, we have used a standard Bayesian 

classifier. The shape of the 2D histograms both for the PV and HV pixels suggests that 

the distributions can be approximated by Gaussians, which we have used. Figure 21 

shows the 2D histograms (top panels) for the PV pixels, the HV pixels, and both classes. 

The bottom panels show the isocontours for the estimated Gaussian distributions.  

 

       

 

   

 

   

 

(a). The PV histogram (b). The HV histogram (c). The PV+HV histogram 

   

 

   

 

   

 

(d). Gaussian fitting of the 

PV histogram 

(e). Gaussian fitting of the 

HV histogram 

(f). Gaussian fitting of the 

PV+HV histogram 

Figure 21. Comparison of PV, HV histograms with their Gaussian fittings  

 

A 2D Gaussian probability density function is written as: 
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where x  is a 2-component column vector,   is the 2-component mean vector,   is the 

2-by-2 covariance matrix, and   and 
1  are its determinant and inverse, respectively. 

And  Tx   denotes the transpose of  x . 

According to Bayes decision theory, the minimum-error-rate classification can be 

achieved using the discriminant function 
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A pixel is assigned to class 1c  if   0xg , otherwise it is assigned to class 2c . 

 icP  is the prior probability of each class, and  icxp |  is the conditional probability. 

Assuming equal prior probabilities and normal density function, that is, 

   
2

1
21  cPcP  and    iii Ncxp ,~|  , after simplification, the discriminant 

function can be rewritten as: 
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  (8) 

As discussed above, all pixels in both AP and VP images are classified into either 

the PV or the HV class, depending on the value of the discriminant function, and the 

process iterates until the number of pixels in each class does not change.  
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III.2.2 Automatic Threshold Selection 

As stated in the previous section, our algorithm requires two thresholds: T_PV 

and T_HV. In this section, we discuss how to select these two parameters automatically. 

First, we observe that when these two thresholds are changed, a different numbers of 

vessel pixels are recruited into the masks of the PV and HV, in the first and subsequent 

iterations, which affect the separation results.   

Figure 22 shows the 2D histograms and the separation results obtained with three 

pairs of thresholds. In each case, the thresholds were chosen manually and vessel 

separation was achieved using the classification method described in the previous section. 

The threshold pair resulting in the 2D histogram shown in Figure 22 (a) results in the best 

vessel separation. The threshold pair resulting in the 2D histogram shown in Figure 22 (b) 

leads to results in which HV voxels are missed (green circles). Figure 22 (c) is another 

example of suboptimal thresholds. The separation results shown in Figure 22 (f) are 

almost useless because they contain a lot of PV voxels. Visual inspection of many 2D 

histograms obtained with various threshold pairs suggest that the shape of the 2D 

histogram correlates with separation results. As a rule, better separation results are 

obtained when the histograms for both classes are spread and when they are maximized 

in size. 
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(a). Optimal thresholds  (b). Sub-optimal thresholds  (c). Sub-optimal thresholds 

   

(d). Separated HV from (a) (e). Separated HV from (b) (f). Separated HV from (c) 

Figure 22. Various separation results from different thresholds 

 

Visual observation of these histograms also permits us to derive certain rules. 

When T_PV increases and T_HV is fixed, the number of PV pixels decreases, so the PV 

pixel cluster gets smaller and the center of gravity of the cluster moves higher (Figure 23). 

The HV pixels do not change much with lower T_PV values, but the cluster gets more 

spread as PV pixels get recruited (Figure 24). This can be explained as follows: when 

T_PV is set high, more pixels, including suspicious PV pixels, remain in the HV mask 

after the subtraction of the PV pixels. On the other hand, if we fix T_PV while increasing 
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AP 

http://www.grc.nasa.gov/WWW/K-12/airplane/cg.html
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T_HV, the PV pixel cluster does not change (Figure 25), but the HV pixel cluster 

becomes smaller and its center of gravity moves higher (Figure 26). The following 

figures show the shape of the histograms as one of the thresholds is changed. 

 

          

T_PV = 10 T_PV = 20 T_PV = 40 T_PV = 60 T_PV = 100 

Figure 23. The PV histogram, as T_PV changes while T_HV is fixed (T_HV=10)  

 

     

T_PV = 10 T_PV = 20 T_PV = 40 T_PV = 60 T_PV = 100 

Figure 24. The HV histogram, as T_PV changes while T_HV is fixed (T_HV=10) 
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T_HV=10 T_HV=20 T_HV=40 T_HV=60 T_HV=100 

Figure 25. The PV histogram, as T_HV changes while T_PV is fixed (T_PV=30) 

 

     

T_HV=10 T_HV=20 T_HV=40 T_HV=60 T_HV=100 

Figure 26. The HV histogram, as T_HV changes while T_PV is fixed (T_PV=30) 

 

In our experience when both PV and HV histogram sizes are maximized and 

evenly distributed, optimal separation is achieved (Figure 22). Finding optimal thresholds 

thus become a matter of finding a quantity that characterizes the size and shape of the 

histograms.  

Shannon entropy is widely used in information theory. It is a measure of the 

uncertainty associated with a random variable, whose probabilities are given by  sp : 
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   
s

spspH log     (9) 

The entropy is maximum when all the outcomes are equiprobable, i.e., when the 

probability distribution is uniform. The entropy is minimum when the distribution is an 

impulse. The spread of the joint histogram is thus related to the joint entropy: the more 

the joint histogram is spread, the higher the entropy. Following our observations, we need 

to find the thresholds T_PV and T_HV that maximize the joint entropy: 
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where j  and k  are intensities from the AP and VP images. To obtain the joint 

probability distribution function (PDF) we normalize the joint histogram: 
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But using the joint entropy alone is not enough to find the optimal threshold for 

the HV histogram. This is so because as T_PV increases, PV pixels appear in the HV 

histogram. This causes the HV histogram to disperse and the entropy to increase (Figure 

24). This needs to be prevented. Looking at Figure 22, we notice that a proper threshold 

produces a Gaussian-shaped histogram, with a long axis and a short axis orthogonal to 

each other; when PV pixels start appearing in the HV histogram, the length of the short 

axis, as well as the ratio between the short and long axis increases. The two eigenvectors 

of the covariance matrix are the two principal components of the 2D histogram. The 

eigenvalues give the variance of the histogram along the two principal component 

directions. So the ratio between the two eigenvalues captures the shape of the histogram. 



55 

The smaller the ratio is, the more elongated the shape of the histogram is, and the better 

the final separation is.  

We thus combine the entropy measurement and the ratio of the eigenvalues to 

automatically select the thresholds that maximize M (this is done separately for the HV 

and PV histograms).  

eeEigenvaluL

valueSmallEigen
EntropyM

arg
     (12) 

As we vary both the T_PV and T_HV thresholds, the measurement M is 

computed for each combination of the two thresholds. Table 2 and 3 show the value of 

the measurement M for the PV and HV histogram, respectively, as T_PV and T_HV 

change from 10 to 100. Because the PV histogram depends only on T_PV and does not 

change when  T_HV is changed, the value of M for the PV varies only along the column 

(as shown in the green box in Table 2) and does not change along the rows of Table 2. 

We thus select the optimal T_PV by maximizing M, as shown in the red ellipse. Then we 

fix T_PV at this optimal value (T_PV=40 in this example, as shown in the red frame in 

Table 3). Table 3 shows the effect of varying T_HV for fixed values of T_PV. The 

optimal value for T_HV is chosen as the value that maximizes M for the HV histogram 

with the previously selected optimal T_PV value. (T_HV=20 in this example, shown in 

the blue ellipse). With the selected T_PV and T_HV, we follow the separation steps 

described in III.2.1.  
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Table 2. Measurement M of the PV histogram 

PV T_HV=10 T_HV=20 T_HV=30 T_HV=40 T_HV=50 T_HV=60 T_HV=70 T_HV=80 T_HV=90 T_HV=100 

T_PV=10 3.81580 3.81580 3.81580 3.81580 3.81580 3.81580 3.81580 3.81580 3.81580 3.81580 

T_PV=20 3.82388 3.82388 3.82388 3.82388 3.82388 3.82388 3.82388 3.82388 3.82388 3.82388 
T_PV=30 3.82543 3.82543 3.82543 3.82543 3.82543 3.82543 3.82543 3.82543 3.82543 3.82543 

T_PV=40 3.82672 3.82672 3.82672 3.82672 3.82672 3.82672 3.82672 3.82672 3.82672 3.82672 

T_PV=50 3.82341 3.82341 3.82341 3.82341 3.82341 3.82341 3.82341 3.82341 3.82341 3.82341 

T_PV=60 3.81482 3.81482 3.81482 3.81482 3.81482 3.81482 3.81482 3.81482 3.81482 3.81482 

T_PV=70 3.80524 3.80524 3.80524 3.80524 3.80524 3.80524 3.80524 3.80524 3.80524 3.80524 

T_PV=80 3.79427 3.79427 3.79427 3.79427 3.79427 3.79427 3.79427 3.79427 3.79427 3.79427 

T_PV=90 3.78002 3.78002 3.78002 3.78002 3.78002 3.78002 3.78002 3.78002 3.78002 3.78002 

T_PV=100 3.76582 3.76582 3.76582 3.76582 3.76582 3.76582 3.76582 3.76582 3.76582 3.76582 

 

Table 3. Measurement M of the HV histogram 

HV T_HV=10 T_HV=20 T_HV=30 T_HV=40 T_HV=50 T_HV=60 T_HV=70 T_HV=80 T_HV=90 T_HV=100 

T_PV=10 3.66740       3.60694       3.53859       3.46128       3.40380       3.34079       3.27625       3.21657       3.14214       3.07956 

T_PV=20 3.69198       3.64052       3.58037       3.49618       3.46360       3.40997       3.34900       3.28711       3.23619       3.18108 
T_PV=30 3.62382       3.62513       3.56085       3.52623       3.46646       3.40835       3.35140       3.31959       3.28775       3.24001 

T_PV=40 3.64553       3.66730       3.57481       3.51408       3.44556       3.44843       3.38364       3.32484       3.31679       3.26475 

T_PV=50 3.64823       3.55224       3.60732       3.52045       3.45246       3.40459       3.34431       3.36530       3.30730       3.24954 

T_PV=60 3.66341       3.55243       3.46307       3.55591       3.49776       3.43006       3.38419       3.31850       3.27824       3.30353 

T_PV=70 3.61417       3.55840       3.46779       3.36489       3.50513       3.44337       3.39405       3.33958       3.29499       3.23485 

T_PV=80 3.61657       3.56149       3.46673       3.36787       3.50932       3.44556       3.39446       3.33828       3.30075       3.23333 

T_PV=90 3.61773       3.56610       3.46864       3.37535       3.27717       3.27717       3.40589       3.34488       3.30583       3.24770 

T_PV=100 3.61696       3.56559       3.46770       3.36955       3.27020       3.46878       3.41271       3.35044       3.30654       3.24643 
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III.3 Results and Discussion 

Before examining the final separation results, the change in the shape of the PV 

and HV histograms as the classification algorithm iterates are shown in Figure 27. This 

figure illustrates the histograms of the PV (column (c)), HV (column (b)) and their sum 

(column (a)) from the beginning to after the 3
rd

 iteration (from the 1
st
 to 4

th
 row) and after 

convergence (the 5
th

 row), respectively. From column (b) we can see that although the 

thresholds are selected optimally, the HV histogram before the 1
st
 iteration is far from 

perfect. It spreads to the right and contains a lot of PV voxels. This is reduced through the 

iterations and the HV and PV clusters are well separated when convergence is reached.  

 

                  

                  

(a) The PV+HV histogram (b) The HV histogram (c) The PV histogram 

Figure 27. Histogram changes at different iterations 
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(a) The PV+HV histogram (b) The HV histogram (c) The PV histogram 

Figure 27-- cont. Histogram changes at different iterations 

 

Figure 28 shows the separated HV at different iterations in the same volume used 

to generate Figure 27. Results after the 1
st
 iteration (Figure 28 (a)) contains a lot of PV 
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voxels, as shown by the red circle. This is consistent with the histogram shown in the 2
nd

 

row of Figure 27 (b), where the HV histogram tends to spread to its right side. The 

number of PV voxels is reduced in the HV result after the 3
rd

 iteration (Figure 28 (b)), as 

its corresponding histogram contains less PV voxels (the 4
th
 row of Figure 27 (b)). Figure 

28 (c) shows the final HV after the iterative process converges, where most of the 

spurious PV voxels are removed. 

 

   

(a) The separated HV after 

the 1
st
 iteration 

(b) The separated HV after 

the 3
rd

 iteration 

(c) The separated HV after 

convergence 

Figure 28 Separation results at different iterations 

 

Figure 29 shows results obtained on two other data sets. The first column (Figure 

29 (a)) shows the sum of the two initial PV and HV histograms. They overlap with each 

other, but one can visually draw a curve that could separate the two clusters. The second 

and third column (Figure 29 (b) and (c)) are the separated HV and PV histogram, 

respectively. The fourth column (Figure 29 (d)) shows the sum of the two separated 

histograms. This panel shows that the separation curve obtained with our method 

corresponds to the curve one could draw visually on the left panels to separate the two 

classes. 
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(a). The PV+HV 

histogram before 

separation 

(b). The HV 

histogram after 

separation 

(c). The PV 

histogram after 

separation 

(d). The PV+HV 

histogram after 

separation 

Figure 29. Histogram analysis before and after separation 

 

Figure 30 compares the HV separation results obtained by histogram analysis 

after Hessian enhancement, with those obtained with simple subtraction. The green 

circles points to regions of difference between the two results. The first column of Figure 

30 shows results obtained with simple subtraction, which show a number of disconnected 

vessels. The second column shows separation results obtained with the iterative 

histogram classification, which fills in the disconnection and leads to more complete 

hepatic vessels. The third column shows both trees overlapped with each other, for better 

visual inspection and comparison. The red pixels in the third column represent those 
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pixels that are classified as HV using our improved approach but are missing if just a 

simple subtraction is used. 

 

   

   

   

(a). Separated HV by 

subtraction 

(b). Separated HV by 

histogram analysis 

(c). Overlapping of (a) and 

(b) 

Figure 30. Comparison of separated HV with Hessian enhancement by subtraction and 

histogram analysis 
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CHAPTER IV  

 

HEPATIC VESSEL SEGMENTATION 

 

IV.1 Introduction 

In Chapter 3, we have discussed how to separate the portal vein and the hepatic 

vein in the venous phase image. This results in two images volumes (the separated PV 

and HV images), each of which contains only one vessel tree. In this chapter, we will 

discuss how the vessel trees can be segmented from these images.  

Before segmentation, a median filter is applied to the hessian enhanced images. 

Median filters reduce speckle noise while preserving the edges in the original image. The 

Hessian filter we use to pre-process the images enhances tubular structures and weakens 

plate and blob like objects, but it cannot eliminate other artifacts, such as salt and pepper 

noise. Filtering the Hessian-filtered images reduces these artifacts and facilitates further 

processing.  

The segmentation of the vessel tree in the separated images is a three-step 

iterative process. It involves a traditional region growing method, an adaptive directional 

region growing method, and a reconnection step. The traditional region growing 

procedure starts with an initial seed and a threshold. The algorithm is then applied to the 

entire image. The segmentation result is rough and higher order vessel branches may not 

be captured due to noise. But the main branches of the hepatic vasculature are well 

segmented and can be used as guidance for subsequent processing steps. The first of 
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these is skeletonization, which is used to extract the centerline of the detected vessels and 

to prepare for the next step: adaptive directional region growing. 

In the proposed algorithm, a second region growing algorithm is used, which is 

confined to a local area, defined as a cylindrical region of interest (ROI) aligned with the 

detected vessel branches. The iterative procedure starts with initial seeds (which are the 

end points of the vessel skeleton detected in the previous step) and is limited to ROIs 

with predicted orientation. Segmentation is applied repeatedly to the local ROIs, whose 

information is stored in a queue, until no new voxel can be added to the segmentation 

results. The cylindrical ROI adapts its size, position and orientation to the predicted 

properties of the vessel branches to be segmented based on the segmentation result of its 

parent ROI. This idea is based on ideas introduced in [33] and [57]. But in those two 

papers the methods are applied to MRA head/neck and CT airway images. Here we have 

adapted the method to make it applicable to our CT hepatic images. 

The third step is reconnection, which completes the vessel systems by re-attaching 

disconnected pieces that have not been included in the tree in the first two steps. It is a 

simpler version of the method used in [52]. Step 2 and step 3 are iteratively repeated until 

no more new vessel branch is found. 

The following flow diagram (Figure 31) shows the overall scheme we use in our 

segmentation method. 
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Figure 31. Flow chart of the proposed segmentation method 
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IV.2 Method  

 

IV.2.1 Step 1: Traditional Region Growing Method 

IV.2.1.1 Region Growing Method 

The seed for this region growing method can be selected either manually or 

automatically, both of which approach are simple and easy to implement. Manual 

selection can be done by clicking on a point that belongs to the vessel using a mouse. 

Automatic selection can be implemented by thresholding the image with a much higher 

threshold than the one that is used to segment the vessels and then choose, as seed, the 

largest connected component in the binary image.  

An example of traditional region growing result is shown below. 

 

 

Figure 32. Segmentation result from traditional region growing method 
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IV.2.1.2 Skeletonization 

As seen in Figure 32, the result obtained with a traditional region growing method 

is coarse. The main vessels are detected but a number of high order branches are missing 

and the surface of the vessels is bumpy. Such irregularities affect the results obtained 

with the skeletonization algorithm (cavities may lead to circles in the skeleton and 

convexities to spurious branches). This problem can be partly solved by applying 

morphological closing (a dilation followed by erosion with a certain structure element). 

The closing procedure before skeletonization fills small gaps and holes. Spurious 

branches caused by bumps on vessel surfaces can be removed by a pruning process after 

the skeletonization. 

To perform skeletonization, which is the second step in our algorithm, we adopt 

the flux driven automatic centerline extraction algorithm proposed in [69] and [70]. In 

classical mechanics, the average outward flux of a vector field through the boundary of a 

region is negative if the region is shrinking under the Hamiltonian flow. In the limit, the 

average outward flux is close to zero if the region shrinks to a non-medial point, and 

results in large negative value if the region shrinks to a medial point. Based on this 

knowledge, a homotopology preserving thinning process is developed. This method 

removes simple points in descending order of the average outward flux of the gradient 

vector field (distance map) without altering the object’s topology. When the average 

outward flux of a point is below a threshold, that point is removed only if it is not an end 

point. In this way, points on the border of the object are removed first, and points inside 

the object can only be removed when they become border points. The object is thinned 
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gradually, and finally the centerline is obtained. Pruning is performed to eliminate 

suspicious branches. 

The average outward flux of the gradient vector field of the Euclidean distance 

function measures the likelihood of a voxel to belong to the centerline of an object. The 

more negative the value is, the more likely it is a skeletal point; the closer to zero the 

value is, the less probable it is that the point is on the centerline. Numerically, the average 

outward flux at voxel x is expressed as follows: 

   



n

i

ii xDN
n

xAOF
1

^

,
1
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where ix  is an n-neighbor (n= 8 in 2D and n=26 in 3D) of x, iN
^

 is the outward normal 

of the unit circle in 2D and sphere in 3D centered at x, and  ixD  is the gradient vector 

field of the distance transform of the object. 

This thinning process has two parameters: the average outward flux threshold 

below which the end points are being kept in the skeleton instead of being removed, and 

the length threshold for pruning spurious branches. In our implementation, the flux 

threshold has been selected as a value such that 70% of the average outward flux is less 

than it. A branch is regarded as a spurious branch if the skeleton length is less than 3 

pixels. This method works properly on our data set as shown in the figure below.  
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Figure 33. Skeleton of the traditional region growing result 

 

IV.2.1.3 Skeleton Analysis and ROI Queue Establishment 

The resulting skeleton is a 26-connected 3D curve in a cubic lattice which is no 

more than one voxel thick except possibly at branch points. Each point on this curve can 

be labeled by examining its 26-neighborhood and three types of points can be identified 

(Figure 34): (1) end points have only one neighbor, (2) curve points have exactly two 

neighbors and (3) branch points have at least 3 neighbors. 

 

 

Figure 34. Three types of points in a skeleton 
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Branch point identification from a thinned and complicated tree is not a trivial 

problem because various situations can be encountered and a single criterion cannot 

handle all the cases. One problem is that more than one branch points may form a 

junction, as shown in the Figure 35. In this case, we just choose one of the branch points 

randomly and label it as a branch point. We then find all the other branch points which 

are 26-connected with that final branch point (that is, within a distance of 3 ) and label 

them as curve points. 

 

  
(a). Multiple voxels in skeleton for one 

branch point 

(b). Branch point identification 

Figure 35. One case of branch points in skeleton 

 

IV.2.2 Step 2: Adaptive Directional Region Growing Algorithm 

The adaptive directional region growing algorithm is applied at the end of each 

branch that has already been segmented. This is an iterative process and further growing 

along a given vessel branch depends on the previous vessel segment. We establish a 

queue to store the necessary information for growing and to simplify the iterative process. 

This ROI queue contains seed points and the growing directions, as well as the criteria for 

stopping the growing process. The end points of the skeleton tree are used as seeds for 

curve-point 
final branch-point  3 branch-points 
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adaptive directional region growing and as the starting position for the ROIs. The end 

points together with the corresponding branch points determine the orientation of the ROI 

inside which local segmentation is applied. At each iteration, a set of parameters are 

retrieved from the top of the queue, a new ROI is built based on the set of parameters, 

segmentation is performed within the ROI, and a new set of parameters is pushed into the 

bottom of the queue to be used to segment the child of the current vessel segment, if there 

is any. 

This step is the core of the whole process and it is shown in details in the 

following flow chart: 
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Figure 36. Flow chart of the local region growing segmentation 
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are a better fit for vessel branches than cubes. As a result, the search region is usually 

smaller and contains less noise, which improves the results. The inputs to the function 

used to place a new ROI include four parameters: the starting position, the orientation, 

the length, and width of the ROI. The new ROI starts from the end point of the skeleton 

of the parent branch. The orientation of the new ROI is determined by the direction of its 

parent skeleton, which is defined either by one end point and its nearest branch point or 

by two end points if the parent skeleton has no bifurcations. The ROI length and width 

are currently constant.  

Before placing the new ROI along the predicted direction of the vessel segment, a 

reference cylindrical ROI is built. This ROI has the same starting point, same length and 

width as the predicted one, but the orientation is fixed: it is along the y axis (the positive 

direction). The rotation axis and rotation angle between the reference and final cylindrical 

ROI are calculated and thus the rotation matrix is computed and applied to the reference 

ROI. Thus the final ROI is aligned in the right direction. A local region growing 

procedure is performed inside this ROI. The figure below shows a sketch that describes 

this procedure. 
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Figure 37. Region of interest (ROI) establishment 

 

In this figure, A is the end point of the parent skeleton, vector AB is the 

cylindrical axis of the reference ROI, and vector AC is the axis of the predicted ROI, 

which is on the extended line of the parent skeleton. The rotation axis   and rotation 

angle   about that axis are computed as follows: 
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Once   and   have been determined, the rotation matrix R is calculated as a 
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where the x , y , z  are the three components of  , cos1V , cosC , and 

sinS  [71]. 

Two particular angles should be treated with caution, 0  and 180 , which means 

no rotation at all and a rotation of 180 , respectively. When the angle is very close to 0  

or 180 , the rotation matrix is set to the identity matrix 
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R , respectively, instead of computing the rotation axis to avoid “NaN” 

(Not a number) caused by numerical errors.  

IV.2.2.2 Local Region Growing 

After median filtering, some of the vessel branches appear as several disconnected 

pieces.  Conventional region growing algorithms stop at the disconnected place. If we 

could find those disconnected parts that belong to the same vessel branch (the 

disconnected parts lying on the extended line of the vessel branch) and link them together, 

we then could find more branches than the conventional region growing. To achieve this, 

we detect all regions in the cylindrical regions of interest made of pixels that are within 

an intensity range. We keep the region that is 26-connected with the seed point as well as 

the first and second largest connected components within the ROI. These regions are then 

considered as candidate branch segments and their skeleton is extracted. Next, the angle 

these segments make with the direction of the parent vessel branch is computed and if 

this angle is below 30 , the segment is connected to the parent branch. 
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In our method, an adaptive threshold instead of a fixed one is used to do the 

segmentation. The segmentation result in the current ROI is used to estimate the 

threshold for the segmentation in its child ROI. After local region growing in the current 

ROI, if new vessel voxels have been found, the intensity histogram of the vessel segment 

is computed, then a Gaussian curve is used to fit the histogram and its mean and the 

standard deviation are estimated. The intensity threshold is set as the mean minus one 

standard deviation. For local region growing in ROIs occurring right after the traditional 

region growing (the first iteration), an initial threshold is provided.  

 

IV.2.3 Step 3: Reconnection  

At branch junctions, the response of the Hessian filter is relatively low compared 

to its response at other locations. This is so because the assumption of tubular structure is 

violated. As a result, some branches are isolated from the main trunk. In these cases, the 

disconnected piece cannot be found and linked to the main vessel tree by the adaptive 

directional region growing approach introduced in the previous section; this is so because 

these disconnected segments do not fall in ROIs extending the current vessel tree. A 

reconnection algorithm described below is used to recover some of these segments. 

Our assumption for reconnection is that the break point at which the branch is 

disconnected from the main trunk is very close to the actual branch junction. So a 

reconnection is carried out only if the component has a distance less than a threshold 

T_dist from the main vessel tree. This is implemented as follows: 
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1. Everywhere in the image, select those voxels that have a distance smaller than 

T_dist but greater than 0 from the main trunk and have intensities greater than a 

threshold, T_intensity, as seeds for region growing. 

2. After region growing, connected components with a voxel number greater than a 

count threshold T_num and not contained in vessels that are already segmented 

are regarded as candidate branches. 

3. Local skeletonization is applied to the candidate branches. 

4. A cylindrical searching area with length L1 along the direction of the candidate 

branch, started from the reconnection point (the end point of the local skeleton 

that is the closest to the main vessel skeleton) is defined. Inside the searching area, 

we find a reconnection path which is the shortest between the reconnection point 

and the main vessel skeleton tree (Figure 38). 

 

 

Figure 38. Vessel reconnection in cylindrical searching area 
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The two steps, adaptive directional region growing and reconnection are 

alternated and repeated to complete the vessel tree by adding possible candidate branches 

to the main trunk. This iterative process can be stopped using various criteria. For 

example, the process could stop when no new vessel segment is detected.  

 

IV.3 Results and Discussion 

 

IV.3.1 Different Schemes for Portal Vein Segmentation 

Since both the arterial and the venous phase images contain the portal vein, the 

portal vein could be segmented using either of these images (after separation in the 

venous phase image) or using both. In the following sections we will present results 

obtained with various approaches. In this discussion, we will assume that the arterial 

phase image has been registered non-rigidly to the venous phase image, as discussed 

earlier.  

IV.3.1.1 Portal Vein Segmentation in the Arterial Phase Image 

Because the arterial phase image includes the portal vein only, the most 

straightforward segmentation scheme is to extract the portal vein from this image volume. 

As described in the previous sections, traditional region growing is first applied, followed 

by directional region growing, and reconnection. Results obtained with this approach are 

shown in Figure 39. To permit comparison, the results obtained with our method are 

shown next to the results obtained with a traditional region growing technique. 

Vessels/skeletons shown in purple are obtained with a traditional region growing 
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algorithm, while those shown in red are the additional vessels/skeletons we have detected 

with our method. 

 

  

(a). The segmented portal vein (b). Skeleton of the portal vein 

Figure 39. Portal vein segmentation results from the AP image 

 

The segmentation and skeletonization results for the portal vein shown above, 

illustrate that our method can extract and connect more higher order vessel than a 

standard region growing technique.  

IV.3.1.2 Portal Vein Segmentation in the Separated Venous Phase Image 

As is the case for the arterial phase image, the separated PV image only contains 

the portal vein. The final portal vein segmentation and skeletonization results obtained 

with our method on the separated venous phase image corresponding to the arterial phase 

image used above are shown in Figure 40. Comparing these with the results obtained 

with the traditional region growing method, we can see that the proposed approach 

outperforms its counterpart by finding more small and/or isolated vessel branches. 
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(a). The segmented portal vein (b). Skeleton of the portal vein 

Figure 40. Portal vein segmentation results from the VP image 

 

Figure 41 shows the segmented portal vein and its skeleton obtained from the AP 

image (shown in purple) and the VP image (shown in red) side by side. The yellow 

circles and green circles label the additional vessels/skeletons found in one phase but 

missed in the other. This figure shows that each phase contains some exclusive PV 

information, so the PV segmentation achieved using information from both phases could 

be better than that using just one phase. 
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(a). Vessel segmentation from the AP 

image 

(b). Vessel segmentation from the VP 

image 

  

(c). Vessel skeleton of (a) (d). Vessel skeleton of (b) 

Figure 41. Portal vein segmentation results comparison: segmentation in the AP image 

vs. segmentation in VP images 

 

IV.3.1.3 Portal Vein Segmentation using both the Arterial and the Venous Phase Images 

In this scheme, we first apply the regular region growing algorithm on both the 

arterial and venous phase images separately, which produces two initial trees. These two 

trees are then combined and the skeleton of the combined tree is extracted. This skeleton 
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is used to initialize the subsequent segmentation steps in both the arterial and venous 

phase images, again separately. Next, the final trees obtained in each phase are combined 

to produce the final results. Figure 42 shows the segmented portal vein and its skeleton 

obtained using information from both phase images. Again, our results are better than 

those obtained with a standard region growing method. 

 

  

(a). The segmented portal vein (b). Skeleton of the portal vein 

Figure 42. Portal vein segmentation results obtained with both the AP and VP images 

 

Figure 43 compares the portal vein and its skeleton obtained from the scheme 

described above (shown in red) with those obtained from the AP image alone (shown in 

purple). Figure 44 shows the differences between the results of this scheme (shown in red) 

and those of the segmentation in the separated PV image of the venous phase alone 

(shown in purple). The results obtained with one phase alone and with both phases are 

shown side by side, and the differences are labeled with green circles. These results show 

that the sum of the segmentation results from both image phases are better than those 
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from either phase alone. This is so because the PV information in one phase can 

complement the information provided by the other. 

 

  

(a). Vessel segmentation from the AP 

image 

(b). Sum of the vessel segmentation from 

both AP and VP images 

  

(c). Vessel skeleton of (a) (d). Vessel skeleton of (b) 

Figure 43. Portal vein segmentation results comparison: segmentation in the AP image 

alone vs. sum of the segmentation in the AP and VP images 
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(a). Vessel segmentation from the VP 

image 

(b). Sum of the vessel segmentation from 

both AP and VP images 

  

(c). Vessel skeleton of (a) (d). Vessel skeleton of (b) 

Figure 44. Portal vein segmentation results comparison: segmentation in the VP image 

alone vs. sum of the segmentation in the AP and VP images 
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IV.3.1.4 Portal Vein Segmentation with an Averaged Arterial and Venous Phase Image 

This scheme is similar as the previous one in IV.3.1.2 for the initial vessel 

segmentation and skeleton extraction, except that, instead of performing the segmentation 

and reconnection approach in both phases and then sum the results, it is applied to the 

average of the two phase images. Figure 45 shows the results of this scheme compared 

with those from a regular region growing technique. 

 

  

(a). The segmented portal vein (b). Skeleton of the portal vein 

Figure 45. Portal vein segmentation in the averaged AP and VP images 

 

In Figure 46, the portal vein and its skeleton obtained with this scheme (shown in 

purple) are compared with the results obtained with the scheme described in IV.3.1.2 

(shown in red). The latter outperforms the former by finding more detailed vessel 

branches, as shown with the green circles. This can be explained as follows: each image 

phase may contain some unique PV information. After averaging, such information could 

be attenuated, or even be lost, so the resulting vessel is less complete than the one 
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obtained by summing the segmentation results obtained with the AP and VP images, 

which preserves the unique PV information in each phase.  

 

  

(a). Vessel segmentation from the averaged 

AP and VP images 

(b). Sum of the vessel segmentation from 

both AP and VP images 

  

(c). Vessel skeleton of (a) (d). Vessel skeleton of (b) 

Figure 46. Portal vein segmentation results comparison: segmentation in the averaged AP 

and VP images vs. sum of the segmentation in the AP and VP images 

 



86 

By comparing the different portal vein segmentation schemes described above, 

we conclude that the one that combines the segmentation results from both the AP and 

PV images performs the best. Figure 47 presents the results obtained with this 

segmentation scheme (shown in red) obtained on the other data sets used in our study. It 

also shows the results obtained with a standard region growing method (shown in purple) 

for comparison. 

 

  

  

(a). Segmented portal vein (b). Skeleton of the portal vein 

Figure 47. Portal vein segmentation and skeletonization results 
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(a). Segmented portal vein (b). Skeleton of the portal vein 

Figure 47 -- cont. Portal vein segmentation and skeletonization results 

 

There are several parameters used in the iterative segmentation approach, some of 

which need to be adjusted because of large differences between data sets. Here is the list 

of the parameters used and how we choose them for our current study: 
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Table 4. Parameters used in the segmentation method 

Parameters Explanations Selecting Rules 

T_rg The intensity 

threshold for 

the standard 

region growing 

method. 

Need adjustment. Set as the lowest intensity that does 

not produce incorrect result based on visual 

inspection. Select a value, run the standard region 

growing algorithm, and check if the resulting vessel 

branches form circles, are connected to spurious 

points, or leak into liver parenchyma. If so, increase 

the value by 5; if not, lower the value by 5; repeat the 

region growing, until a vessel tree without holes or 

spurious branches is found. 

T_rg_initial The initial 

threshold for 

the adaptive 

directional 

region 

growing. 

Need adjustment. Usually a little bit lower than T_rg, 

since the intensities at higher order vessel branches are 

lower than those at the main vessel. Set initially as 

2/3T_rg, then round the value to the nearest number 

which is a multiple of 5. Run the adaptive directional 

region growing segmentation, and check the vessel 

segments that are newly grown. If they contain noise 

or leak into liver parenchyma (usually with irregular 

shape), increase the value by 5 and repeat the 

segmentation, until clear and elongated vessel 

segments are found, if there are any. 

ROI_width The width of 

the region of 

interest for the 

adaptive 

directional 

region 

growing. 

Fixed. ROI_width=10 

ROI_length The length of 

the region of 

interest for the 

adaptive 

directional 

region 

growing. 

Fixed. ROI_length=20 

T_dist Used in the 

reconnection, 

assuming the 

detached 

pieces have a 

distance less 

than T_dist 

from the main 

vessel. 

Need adjustment. Default value is 10. After the 

reconnection step, check the vessel segments that are 

newly attached. If they contain noise or leak into liver 

parenchyma (usually with irregular shape), decrease 

the value by 2, and repeat the segmentation, until clear 

and elongated vessel segments are found, if there are 

any. 
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Table 4 -- cont. Parameters used in the segmentation method 

T_intensity Used in the 

reconnection 

step, assuming 

the detached 

pieces have an 

intensity 

greater than 

T_intensity. 

T_intensity=T_rg. 

T_num Used in the 

reconnection 

step, assuming 

the detached 

pieces have a 

voxel number 

larger than 

T_num. 

Need adjustment. Default value is 50. After the 

reconnection step, compare the result with the Hessian 

enhanced image, if there are lots of small disconnected 

pieces that have not been attached to the main vessel 

tree, lower the value by 10, and repeat the 

reconnection step, until most of the pieces are found. 

L1 The length of 

the cylindrical 

searching area 

in 

reconnection. 

Fixed. L1=30 

 

Table 5 shows the values of the parameters that need to be adjusted, that were 

used to obtain the results shown in Figure 42 and 47. 

 

Table 5. Values of the parameters that need to be adjusted 

Parameters Data set 1 Data set 2 Data set 3 Data set 4 Data set 5 

T_rg 20 60 40 30 50 

T_rg_initial 15 40 30 25 40 

T_dist 10 6 6 6 10 

T_intensity 20 60 40 30 50 

T_num 20 50 50 50 50 

 



90 

IV.3.2 Vessel Segmentation of the Hepatic Vein 

Since the hepatic vein appears only in the venous phase image, segmentation of 

the hepatic vein is more straightforward. The initial vessel and skeleton are extracted 

from the separated HV image of the venous phase, and the following segmentation steps 

are performed in the same image. Figure 48 shows the segmented hepatic veins and their 

skeletons obtained with our approach (shown in red). It also compares them with the 

traditional region growing results (shown in purple). Again, our approach not only can 

find smaller vessel branches, but it also can recover branches detached from the main 

vessel tree. 

 

  

(a). Segmented hepatic vein (b). Skelton of the hepatic vein 

Figure 48. Hepatic vein segmentation and skeletonization results 
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(a). Segmented hepatic vein (b). Skelton of the hepatic vein 

Figure 48 -- cont. Hepatic vein segmentation and skeletonization results 
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(a). Segmented hepatic vein (b). Skelton of the hepatic vein 

Figure 48 -- cont. Hepatic vein segmentation and skeletonization results 
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CHAPTER V  

 

SUMMARY AND CONCLUSIONS 

 

V.1 Summary of the Four Chapters 

This work aims at hepatic vessel segmentation in CT liver images, which is a 

critical processing step for morphology and topology analysis of the vascular systems for 

many medical applications. The main vessel systems in the liver are the portal vein, 

hepatic vein, hepatic artery and bile ducts. The portal vein and hepatic vein are two major 

hepatic vasculatures that play an important role in liver surgical planning, so our ultimate 

goal is to extract these two types of veins. However, the inherent geometrical properties 

of the hepatic vessel trees, the imaging characteristics, and limitations of the CT images 

make the segmentation a challenging task. 

Due to the imaging protocol, the portal vein is shown clearly in the arterial phase 

image, while both the portal vein and hepatic vein are enhanced simultaneously during 

the venous phase. To achieve accurate segmentation of both veins, the first step is to 

separate these two vascular systems. But before separation, some other pre-processing 

steps are also essential. 

In Chapter II, image registration is performed first to remove the subtle 

displacement between the two imaging phases. A rigid transformation, followed by a 

non-rigid registration, is used to align the portal vein in both images. Both the rigid and 

non-rigid registration algorithms use a normalized mutual information-based approach. 

The non-rigid registration algorithm is an intensity-based adaptive bases algorithm which 
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models the deformation field with compactly supported radial basis functions in multiple 

scales and resolutions. To achieve a better alignment between vessels instead of matching 

relatively large structures in the images, we compute the joint histogram, and thus the 

normalized mutual information, within the estimated range of vessel intensities. Such 

intensity restriction on the registration leads to a very good match between thin vessels, 

and reduces computation time as well. 

To denoise the image, more specifically, to preserve and enhance the vascular 

structures while smoothing the liver parenchyma, a Hessian filter is employed in our 

approach. This tubular structure detection filter is applied at different scale and the width 

of the vessel is estimated on the basis of the scale that maximizes the filter response. To 

avoid the border effect of the liver, the image is normalized to the [0, 1] interval first. We 

have developed an automatic method to select the best value for the parameter lowg  of the 

intensity transformation, which is roughly the lower bound of the intensity value for the 

vessels. This selection is based on the analysis of the cumulative probability function of 

the Hessian enhanced image and its derivative. The intensity normalization reduces the 

big intensity difference between the liver tissue and the background, which, in turn, 

reduces the response of the filter around the borders of the liver, thus decreases the 

interference on the boundary. Results show that Hessian filter enhanced the vessels while 

suppressing noise and other non-tubular structures. 

In Chapter III, we proposed a vessel separation method with automatic thresholds 

selection based on the 2D intensity histogram analysis. It involves the selection of the 

two initial thresholds for the two types of veins – the portal vein and the hepatic vein 

voxels – by the entropy and eigen-analysis of the two Gaussian-shaped histograms, and 
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an iterative classifier estimation process, in which a Bayesian classifier is used to separate 

the two histogram clusters to segment the vessels. Results show that this approach can 

separate the portal vein and the hepatic vein in the venous phase image, making the 

following segmentation easier. It fills in the gaps between disconnected vessels and 

produces better results than the method that simply subtracts the portal vein of the arterial 

phase from the venous phase image. 

In Chapter IV, a three-step iterative segmentation method was developed to 

extract the hepatic vessels. It involves a traditional region growing method, an adaptive 

directional region growing method, and a reconnection step. The traditional region 

growing procedure and the global skeletonization create the initial vessel and skeleton 

guidance for the following steps; the adaptive directional region growing algorithm is 

confined to a local region of interest, which adapts its size, position and orientation to the 

predicted properties of the vessel branches; and reconnection completes the vessel 

systems with disconnected pieces that have not been found in the first two steps. Step 2 

and step 3 are iteratively repeated until no more new vessel branch can be found. 

Different schemes for the portal vein segmentation have been suggested and compared. 

Results show that the one combining the portal vein information in the two image phases 

by summation performs the best, since it preserves the exclusive PV information in each 

phase. Results have shown that our method produces more detailed vessel branches and 

recovers more branches than a standard region growing technique method both for the 

portal and hepatic veins.  
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V.2 Future Work 

The approach proposed in Chapter III separates the portal vein and the hepatic 

vein reliably for the datasets which contain one vessel in the arterial phase and two 

vessels in the venous phase. In such datasets, subtraction is used to get the initial PV/HV 

mask. We also have seen some datasets that capture both veins in both phases. To obtain 

satisfactory results for these datasets, it will be necessary to develop techniques other 

than subtraction to acquire the initial PV/HV masks. Once the initial masks are obtained, 

the following separating steps are similar.  

Although the methods described in Chapter II and III are fully automatic, the 

method described in Chapter IV has not reached this point yet. The robustness of the 

method can be improved in several aspects. Firstly, the intensity threshold for the 

segmentation currently needs to be adjusted due to contrast differences between volumes. 

The histogram of the liver has only one peak. One possible way to make the threshold 

selection automatic is to use a weighted histogram algorithm (e.g., voxels with high or 

low edge values contribute differently to the calculation of the histogram) to produce two 

peaks in the intensity histogram, one for the liver parenchyma, and one for the vessels, 

and a valley between them. The intensity value at the valley could be used as a good 

threshold. Or, algorithms could be developed to reduce the contrast difference between 

volumes; this may alleviate the need for threshold adjustment. Secondly, the current 

method has not used any anatomical information on the hepatic vessels. The liver 

vasculature has been well studied and it is possible that a-priori information could be 

used to differentiate spurious vessel branches from real ones. One difficulty, however, is 

the inter-patient variability observed in the vasculature. 
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