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CHAPTER I 

 

INTRODUCTION 

 

The topic of this dissertation is the development of novel algorithms and 

bioinformatics tools for proteomics data analysis. This chapter provides a general 

introduction to the field of proteomics and the data analysis process. The following is not 

intended to be a complete coverage of all areas of proteomics, but rather to serve as an 

overview in order to provide an understanding of the work detailed in the following 

chapters. 

 

I.1 Mass Spectrometry-Based Proteomics 

I.1.1 Overview 

Proteomics as a discipline can be defined as the identification and quantification 

of the complete set of proteins in a cell or tissue at a particular state. Although a number 

of alternative proteomics strategies such as protein array based methods have been 

developed, mass spectrometry (MS)-based proteomics has become the method of choice 

for large-scale studies. The applications of MS-based proteomics approaches have proved 

to be successful in molecular and cellular biology research including post-translational 

modification (PTM) identification and protein-protein interactions (Aebersold & Mann 

2003). With recent improvements in instrumentation and methodology, proteomics has 

undergone tremendous advances over the past few years, enabling many powerful 

applications such as functional analysis of complex organisms (Schrimpf et al. 2009), 
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global analysis of PTM (Witze et al. 2007), large-scale reconstruction of protein 

interaction networks (Gstaiger & Aebersold 2009) and introduction of proteomics in 

clinical and translational research (Bousquet-Dubouch et al. 2011). 

 

Peptide Mixture Liquid Chromatography Electrospray Ionization Mass Spectrometry

Isolate Ions of Peptide Collide Ions to Dissociate Collect Fragments in Tandem MS

Protein Mixture Protein DigestionBiological Sample Sample Fractionation

SDS-PAGE
2D-gel 
electrophoresis

Tandem Mass Spectra Peptide Identifications Confident Peptide List Assembled Protein List

 

Figure 1. The typical MS-based proteomics workflow.  
 

The typical workflow for a bottom-up MS-based proteomics experiment is 

illustrated in Figure 1. The first step is to reduce the complexity of a biological sample by 

one or several separation techniques such as SDS-PAGE and two-dimensional (2D) gel 

electrophoresis. Large proteins are then digested to peptides using site-specific proteases. 

Next, peptide mixtures are separated by liquid chromatography and ionized in a mass 

spectrometer. Precursor ions with particular mass-to-charge (m/z) values are selected and 
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collided with nonreactive gas to generate fragment ions. The corresponding m/z values 

and peak intensities of fragment ions are recorded in tandem mass spectra, which are 

interpreted to peptides by computational tools. Finally, the identified peptides are 

assembled into a list of proteins that are most likely present in the sample. 

 

I.1.2 Sample Preparation and Separation 

In proteomics studies, complex biological samples that contain a large number of 

proteins are often separated to simple mixtures prior to MS analysis. Various separation 

techniques can be used for this purpose. A widely used approach is to separate protein 

mixtures by SDS-PAGE, and then cut the gel to fractions for MS analysis. Samples of 

high complexity are now often fractionated by 2D-gel electrophoresis (Kenrick & 

Margolis 1970), which separates proteins based on their isoelectric points and molecular 

weights. Each spot in the gel may represent one or several purified proteins that can be 

further analyzed by MS. Recently a gel-based peptide-level isoelectric focusing approach 

(Hörth et al. 2006) has been shown to provide complementary coverage to the 

conventional gel-based fractionation method and yield higher identification rates (Hubner 

et al. 2008).  

A gel-free approach known as shotgun proteomics directly analyzes large 

mixtures of peptides by coupling the electrospray ionization (ESI) of mass spectrometer 

in-line with a liquid chromatography (LC) system. Peptides are separated in the 

chromatography system to reduce the complexity. Two major types of LC systems are 

reverse phase high pressure liquid chromatography (RP-HPLC) that separates molecules 

by hydrophobicity and ion exchange chromatography that separates molecules by their 
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charges. High complexity samples can be separated using the multidimensional protein 

identification technology (MudPIT) (Washburn et al. 2001), which consists of a two 

dimensional chromatography. The first dimension is usually a strong cation exchange 

(SCX) column with high loading capacity. Eluted samples are subsequently separated by 

a reverse phase chromatography.  

An alternative approach is the use of affinity chromatography to selectively enrich 

certain types of peptides or proteins. Affinity chromatography is often used to enrich 

post-translational modified peptides or proteins to make them more measurable by mass 

spectrometers. For example, the immobilized metal ion affinity chromatography (IMAC) 

can be used to enrich phosphopeptides (Thingholm et al. 2009), and  blended antibody 

columns can be used to deplete plasma samples before MS analysis (Dayarathna et al. 

2008, Pernemalm et al. 2009), which is a very effective way to reduce the sample 

dynamic range. 

 

I.1.3 Protein Digestion 

Proteins are usually cleaved to peptides by high specificity proteases prior to MS 

analysis. Trypsin is by far the most commonly used protease that cleaves peptides at the 

C-terminal side of arginine and lysine. Most proteins have tryptic cleavage sites that 

produce peptides with proper length for MS analysis. The cleavage generates “tryptic 

peptides” if both ends of peptide sequences conform to the trypsin cleavage rules. 

Specific cleavage on only one end of peptide sequences produces “semi-tryptic peptides”. 

Sometimes the “missed cleavages” may occur if resulting peptides contain internal 

trypsin cleavage sites.  
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The trypsin cleavage leaves a basic residue at the C-terminus which allows for a 

positive charge in acidic solution, producing charged peptides for MS analysis. 

Alternative site-specific protease such as chymotrypsin, GluC, LysC and AspN may also 

used in proteomics experiments, mainly for the increase of sequence coverage to 

distinguish homologous proteins or map PTM.  

 

I.1.4 Mass Spectrometry Instruments 

A mass spectrometer consists of three components: an ionization source, a mass 

analyzer and a detector. Peptides eluted from the LC system are transformed to gas phase 

charged ions, and then separated by mass analyzers with respect to their m/z values. 

Finally, the detector records the ions passing through mass analyzers, and reports them as 

mass spectra with m/z values of detected ions on the horizontal axis and their intensities 

on the vertical axis. 

The ionization source introduces analytes into the instrument by transforming 

peptides or proteins to charged gaseous ions. Two major types of ionization methods in 

proteomics studies are matrix-assisted laser desorption/ionization (MALDI) (Tanaka et al. 

1988) and ESI (Fenn et al. 1989). MALDI method co-crystallizes analytes with a matrix 

and applies UV laser light to vaporize them to charged ions. ESI sprays analytes to small 

droplets under high voltage. These droplets are subsequently vaporized to charged ions. 

Typically ions generated from MALDI are singly charged and ESI produces both singly 

and multi-charged ions.  

The mass analyzer separates the charged ions based on their m/z values. In a 

bottom-up LC-MS/MS experiment, tandem mass spectra (MS/MS) are achieved by 
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performing two mass analyses. The first MS analysis measures the m/z values of ions 

(precursor ions), and selects ions in a certain range to undergo fragmentation. The 

selection can be controlled by instrument software. An exclusion list that contains the m/z 

values of most recently fragmented precursor ions can be used to reduce sampling 

redundancy. The resulting ions (product ions or fragment ions) are separated in the 

second mass analysis to generate tandem mass spectra.   

Common mass analyzers used in proteomics experiments include quadrupole, ion 

trap, time of flight (TOF), Fourier transform ion cyclotron resonance (FTICR) and 

orbitrap. Each instrument has its strengths and weaknesses with respect to the speed, 

mass accuracy and resolution. More detailed discussions of these instruments are 

available in recent reviews (Yates et al. 2009, Chalkley 2010). 

The ion trap instrument is probably by far the most widely used mass 

spectrometer due to its robustness, high sensitivity and relatively low price. However, the 

mass accuracy of ion trap is relatively low. In addition, there is a trade-off between the 

depth of the trapping potential and the width of the m/z range. Hence, in order to still 

contain the precursor ions, the m/z range has to be compromised. Usually ions below 1/3 

of the precursor ion m/z will not be scanned in MS/MS, which is known as “low mass 

cut-off” of ion trap. For example, a peptide with 10 amino acids may have a neutral mass 

as 1100 Da. Even it is doubly charged, the ions below 183 m/z may not be acquired. In 

contrast, the mass range of immonium ions of amino acids is from 30 to 159. Therefore, 

immonium ions are often not observed in ion trap. 

A recent major breakthrough is the proliferation of the LTQ-Orbitrap mass 

spectrometer (Hu et al. 2005). This hybrid instrument combines the robustness and 
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sensitivity of ion trap instruments with very high resolution and mass accuracy 

capabilities. It also has a higher dynamic range than FTICR (Makarov et al. 2006). In 

addition, LTQ-Orbitrap instruments can be configured to preserve low mass ions that are 

not observed in ion traps (as discussed in next section). The fast sequencing speed, high 

mass accuracy and high dynamic range make it particularly suitable for both qualitative 

and quantitative analysis of complex peptide mixtures (Olsen et al. 2009).  

The mass accuracy and resolution of mass spectrometers have a substantial effect 

on the collected spectra. High mass accuracy also enables accurate determination of 

peptide ion charge state, thus greatly benefits the subsequent data analysis. It has been 

observed that data produced from high mass accuracy instruments can be better 

interpreted by bioinformatics tools (Zubarev & Mann 2007).  

 

I.1.5 Peptide Fragmentation 

Fragmentation Methods 

In LC-MS/MS experiments, selected precursor ions are fragmented to product 

ions before detection. Figure 2 illustrates possible ions fragmented along the peptide 

backbone. The ion type depends on where peptide breaks and which side of the fragment 

receives the proton(s). If the charge is retained on the N–terminal side of the fragmented 

peptide, a, b or c ions are created, while x, y or z ions are generated if the charge is on the 

C-terminal side.  
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Figure 2. Theoretical fragmentation of a peptide. Adapted from Figure 2 in Wysocki et al. 
(2005). 
 

Collision-Induced Dissociation (CID) is currently the most commonly used 

fragmentation method. Low-energy CID that is often used in quadrupoles and ion trap 

instruments mainly generates a, b, y ions and their neutral losses of water or ammonia. 

CID is a sensitive method and works well for low charged peptides (+2 or +3). However, 

labile modifications such as phosphorylation and glycosylation often lost during CID. In 

addition, it does not fragment long peptides well. These disadvantages can be solved by 

introducing Electron Transfer Dissociation (ETD) (Coon et al. 2005). ETD produces 

sequence-independent fragmentation and generates c and z ions. It particularly works 

well for long peptides, which can be generated by using other proteases instead of trypsin. 

Although ETD has lower sensitivity than CID, it preserves the labile modifications, 

making it a valuable method for phosphorylation and glycosylation studies.  

Since CID works better for short peptides while ETD excels for long peptides, 

these two fragmentation methods therefore complement each other. A “decision-tree” 

model (Swaney et al. 2008) has been developed to assess peptide ions on-the-fly and 

determine which fragmentation method should be applied to these ions. This approach 

produced almost 40% more peptide identifications compared to CID alone.  
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Another fragmentation method is the Higher-energy Collision Dissociation (HCD) 

that is available in LTQ-Orbitrap instruments. It is particularly useful to pinpoint 

modifications such as phosphorylation because the immonium ions generated from HCD 

fragmentation will be preserved in mass spectra (Olsen et al. 2007). In addition, other low 

mass ions missing in ion trap instruments can be detected in LTQ-Orbitrap via HCD 

fragmentation, producing more abundant peaks in mass spectra. The high mass accuracy 

and abundant ions in the HCD spectra may greatly facilitate the downstream peptide 

identification (Bereman et al. 2011). 

CID fragmentation is well supported by almost all peptide identification tools, 

while software for the analysis of ETD fragmentation data is currently less developed, 

and not all identification tools are now fully optimized to handle ETD data. Recent 

efforts have been made to develop new scoring methods specifically for the analysis of 

ETD spectra (Sadygov et al. 2009, Sun et al. 2010). A study also showed that an 

optimized scoring algorithm for ETD data can dramatically increase spectral 

identifications (Baker et al. 2010). 

 

Understanding Fragmentation Pathway 

The gas-phase peptide fragmentation process has not yet been fully understood. A 

number of studies have been conducted to investigate the fragmentation pathway 

(Wysocki et al. 2000, Zhang 2004, 2005, Klammer et al. 2008). The “Mobile Proton 

Model” (Wysocki et al. 2000) describes the fragmentation pathway under low-energy 

collision. In an ion trap instrument, for example, protonated precursor ions are trapped 

and undergo precursor ion selection, fragmentation, and fragment ion detection in the 
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same space. During CID, an ion trap applies a “tickle” RF voltage to induce peptide 

fragmentation. Under this voltage, precursor ions are excited to a higher internal energy 

level by collisions with nonreactive gas, making the charged proton migrating to 

energetically less favored protonation sites, such as peptide backbone. With a proton at 

the carbonyl oxygen of an amide bond, the preceding carbonyl can serve as a nucleophile 

to attack this carbonyl oxygen, forming an intermediate ring structure that subsequently 

breaks to dissociate the peptide bond (see Figure 3). The N-terminal fragment forms a b 

ion and C-terminal fragment becomes a y ion. This “charge directed” fragmentation 

occurs simultaneously in many molecules of the same peptide, resulting in different b and 

y ions that can be detected in MS/MS scan. 
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Figure 3. Mobile proton model for peptide fragmentation. 

 

While “charge directed” peptide fragmentation is dominated in CID, peptide may 

dissociate in “charge remote” way that does not require the migration of a proton to 

peptide bond. The “pathways in competition” model (Paizs & Suhai 2005) explains 

several alternative fragmentations. For example, the side chains of aspartic acid, glutamic 

acid, asparagine, glutamine, histidine, lysine and arginine can attack their C-terminal 

carbonyls to break the peptide bonds and form b and y ions. Loss of water may occur in 

the C-terminal COOH group, N-terminal glutamic acid or serine/threonine containing 
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peptides. Loss of ammonia may occur from the side chains of asparagine, glutamine, 

lysine and arginine residues when the side chains are protonated. Peptides with labile 

PTMs often lose the modification groups because this process requires lower energy than 

breaking peptide bond. In low-energy CID, moving of proton(s), nucleophilic attack, 

breaking and forming chemical bonds are the principle chemical reactions that produce 

fragment ions. 

 Understanding the rules underlying the gas-phase peptide dissociation is 

important for the development of software tools. Current peptide identification tools often 

either implement a simple prediction model or totally ignore the intensities of product 

ions in their scoring schemes. Improving the prediction of product ion intensities 

increases the discrimination power of scoring systems for peptide identification (Havilio 

et al. 2003, Elias et al. 2004, Frank 2009a, b). 

 

I.2 Proteomics Data Analysis  

I.2.1 Overview 

Automated bioinformatics tools play essential roles in proteomics data analysis 

(Domon 2006, Nesvizhskii et al. 2007). Frequently hundreds of thousands of tandem 

mass spectra are generated in a single proteomics experiment. The vast numbers of 

spectra place a heavy burden on data analysis, requiring an automated high throughput 

way for spectral interpretation.  

Figure 4 summarizes the typical proteomics data analysis workflow. It starts with 

assigning peptide sequences to experimental spectra, which can be done with different 

strategies discussed in next section. Next, peptide identifications are validated to estimate 
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the confidence of the assignments, and high confident identifications are used to infer 

proteins. In many studies such as PTM analyses, advances searches may be conducted to 

interpret spectra that are evaded in the first round of analysis.  

 

Identification

Peptide
ALVQQMEQLR

ESQLPTVMDFR

VPGLYYFTYHASSR

TMGYQDFADVVCYTQK

Protein

IPI:IPI00005721.1

IPI:IPI00007240.2

SWISS-PROT:P59665

SWISS-PROT:P05160

Peptide Identification

Peptide Validation and 

Protein Inference

Advanced Searches

 

Figure 4. The typical MS-based proteomics data analysis workflow. 
 

 Bioinformatics tools have been used for MS-based proteomics data analysis since 

1990s. During the past few years, many scoring algorithms have been developed to take 

advantage of improvements in MS instrumentation and fragmentation technologies. A 

partial list of these tools is summarized in Table 1. 
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Program Web site Reference 

Database search tools 
Sequest thermo.com (Eng et al. 1994) 
Mascot matrixscience.com (Perkins et al. 1999) 
ProteinProspector prospector.ucsf.edu (Clauser et al. 1999) 
SpectrumMill www.chem.agilent.com  
Phoenyx www.genebio.com/products/phenyx (Colinge et al. 2003) 
X!Tandem www.thegpm.org (Craig & Beavis 2004) 
OMSSA pubchem.ncbi.nlm.nih.gov/omssa (Geer et al. 2004) 
VEMS 3.0 yass.sdu.dk (Matthiesen et al. 2005) 
MyriMatch fenchurch.mc.vanderbilt.edu/software.php (Tabb et al. 2007) 
ProteinPilot www.absciex.com  
pFind 2.0 pfind.ict.ac.cn (Wang et al. 2007) 
Mass Matrix www.massmatrix.net/mm-cgi/home.py (Xu & Freitas 2008) 
Andromeda www.biochem.mpg.de/en/rd/maxquant (Cox et al. 2011) 
MassWiz sourceforge.net/projects/masswiz (Yadav et al. 2011) 
   
De novo sequencing tools 
Lutefisk www.hairyfatguy.com/Lutefisk (Johnson & Taylor 2002) 
PEAKS www.bioinformaticssolutions.com (Ma et al. 2003) 
Sequit www.sequit.org  
PepNovo proteomics.ucsd.edu/Software/PepNovo.html (Frank & Pevzner 2005) 
pNovo  (Chi et al. 2010) 
Vonode compbio.ornl.gov/Vonode (Pan et al. 2010) 
LysNDeNovo gforge.nbic.nl/projects/lysndenovo (van Breukelen et al. 2010) 
   
Sequence tagging-based database search tools 
Popitam www.expasy.org/tools/popitam (Hernandez et al. 2003) 
InsPecT proteomics.ucsd.edu/Software/Inspect.html (Tanner et al. 2005) 
ByOnic www.parc.com/work/focus-area/mass-spectra-

analysis 
(Bern et al. 2007) 

MODi http://modi.uos.ac.kr/modi (Na et al. 2008) 
TagRecon fenchurch.mc.vanderbilt.edu/software.php (Dasari et al. 2010) 
   
Spectral library search tools 
X!Hunter h201.thegpm.org/tandem/thegpm_hunter.html (Craig et al. 2006) 
Biblispec proteome.gs.washington.edu/software/bibliospec/

documentation/index.html 
(Frewen et al. 2006) 

SpectraST www.peptideatlas.org/spectrast (Lam et al. 2007) 
Pepitome fenchurch.mc.vanderbilt.edu/software.php (Dasari et al. 2012) 
   
Peptide validation and protein inference tools 
PeptideProphet www.proteomecenter.org/software.php (Keller et al. 2002) 
ProteinProphet www.proteomecenter.org/software.php (Nesvizhskii et al. 2003) 
MS-GF proteomics.ucsd.edu/Software/MSGeneratingFun

ction.html 
(Kim et al. 2008) 

MaxQuant www.biochem.mpg.de/en/rd/maxquant (Cox & Mann 2008) 
IDPicker fenchurch.mc.vanderbilt.edu/software.php (Ma et al. 2009) 
Scaffold www.proteomesoftware.com (Searle 2010) 
MassSieve www.ncbi.nlm.nih.gov/staff/slottad/MassSieve (Slotta et al. 2010) 
PeptideClassifier www.mop.unizh.ch/software.html (Qeli & Ahrens 2010) 
 

Table 1. Bioinformatics tools for MS-based proteomics data analysis.  
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I.2.2 Peptide Identification 

The first step of data analysis is to assign peptide sequences to experimental 

spectra. As shown in Figure 5, the peptide identification strategies can be roughly 

summarized to four categories: database search, de novo sequencing, sequence tagging-

based database search and spectral library search.  

 

 

Figure 5. Four peptide identification strategies. Adapted from Figure 2 in Nesvizhskii 
(2010). 

 

Database Search 

The most widely used approach for peptide identification is to conduct a database 

search using software tools such as Sequest (Eng et al. 1994), Mascot (Perkins et al. 
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1999), X!Tandem (Craig & Beavis 2004), OMSSA (Geer et al. 2004) and MyriMatch 

(Tabb et al. 2007). Figure 6 illustrates the database search strategy for peptide 

identification. To interpret spectra, database search tools first perform an in-silico 

digestion of a protein database to enumerate all candidate peptide sequences, where 

masses of these peptides are similar to those of observed precursor ions. A theoretical 

spectrum constructed for each candidate sequence is then compared to the observed 

spectrum, producing a matching score to describe how well a peptide interprets the 

spectrum.  

  

Protein sequences

Candidate peptides

In silico digest

Match scorer

Identified peptides

Fragmentation model

Peptides

E P TP

mass/charge

Intensity

 

 
Figure 6. Peptide identification by the database search strategy.  
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The number of candidate peptides that are compared to a spectrum is affected by 

database search parameters, particularly precursor ion mass tolerance, enzyme digestion 

constraint and the number of allowed modifications (Nesvizhskii 2007). Although a large 

number of candidate peptides may be compared to a spectrum, database search tools 

usually only export the top few peptides ranked according to search scores. In most cases, 

only the top ranked peptide of each spectrum will be considered for the subsequent 

validation and protein inference. 

A critical component in a database search program is the scoring function to 

measure the similarity between the experimental and theoretical spectra. A number of 

scoring schemes have been developed including the use of correlation functions (cross 

correlation in Sequest and dot product in X!Tandem) or probability-based models 

(Mascot and MyriMatch). Usually database search tools implement multiple scoring 

functions to evaluate the peptide-spectrum-matches (PSMs) in different aspects. These 

scores vary from arbitrary values such as XCorr in Sequest to statistical measures such as 

e-values in X!Tandem. Individual scores or the combination of multiple scores can be 

used for the subsequent peptide validation. 

Database search parameters have a great impact on search results. First, the 

precursor mass tolerance determines which peptides will be compared to the 

experimental spectrum, i.e., only peptides with masses within the precursor mass 

tolerance will be scored. High mass accuracy instruments allow a very narrow mass 

window specified in database search compared to low mass accuracy data (e.g. 10 ppm 

for orbitrap data compared to 3 Da for LTQ). This leads to fewer possible candidate 

peptides that are compared to the observed spectrum, thus dramatically reduces searching 
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time and decreases the number of false matches. Second, enzyme digestion constraint 

also controls the number of candidate peptides to be compared. For example, a tryptic 

search produces less candidate peptides than an unconstrained or semi-tryptic search. As 

a result, it usually spends less time than non-tryptic searches. A tryptic search, however, 

eliminates the possibility to identify peptides that undergo unexpected cleavages. 

Meanwhile, other database search parameters such as the number of allowed 

modifications, deisotoping setting and the reference protein database can also affect the 

search results (Nesvizhskii 2010). 

Although database search offers an automated high-throughput approach for 

peptide identification, they rely heavily on protein databases, in which some of the 

genome sequences and annotations may not be accurate. More importantly, mutations 

and modified peptides in biological samples are often ignored by existing database search 

methods. In addition, database search is a very time-consuming process because the large 

number of comparisons between observed spectra and their candidate peptides. These 

issues are addressed by the development of the ScanRanker tool described in Chapter III. 

 

De Novo Sequencing 

Unlike database search that requires a reference protein database for peptide 

identification, de novo sequencing infers peptide sequences directly from experimental 

spectra. The inferred peptides can be mapped to proteins by downstream tools such as 

MS-BLAST (Shevchenko et al. 2001). This is particularly useful when the organisms of 

interest have unsequenced or partially sequenced genomes. However, since this approach 

requires high spectral quality for accurate interpretation, and is very computationally 
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intensive, it has not yet been used for large-scale proteomics data analysis. The 

ScanRanker tool described in Chapter III helps to alleviate this problem. 

As summarized in Table 1, several de novo sequencing tools have been described. 

Early tools such as PepNovo (Frank & Pevzner 2005) and PEAKS (Ma et al. 2003) were 

developed for low resolution data under CID fragmentation. Recent efforts have been 

made to develop new de novo sequencing algorithms for high mass accuracy data (Frank 

et al. 2007, Pan et al. 2010) or data collected under HCD (Chi et al. 2010) and ETD (van 

Breukelen et al. 2010) fragmentation. These researches demonstrated that de novo 

sequencing can be greatly improved by the use of high mass accuracy instruments and 

advanced fragmentation methods. 

 

Sequence Tagging-Based Database Search 

Sequence tagging-based database search combines de novo sequencing and 

database search strategies. It first infers short peptide sequences (“tags”) from spectra. 

These tags are then used to match candidate peptides via database search. A tag 

comprises three parts in mass-sequence-mass format: the mass flanking the N-terminal of 

the partial sequence, the partial sequence, and the mass flanking the C-terminal of the 

partial sequence. A candidate peptide is selected to score against the spectrum if both the 

partial sequence and flanking masses in the observed spectrum match to the peptide. 

Compared to traditional database search methods that use precursor masses to select 

candidate peptides, sequence tagging employs tags as the text-based filter, which 

improves specificity and reduces the number of candidate sequences by a few orders of 

magnitude.  
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Sequence tagging-based approach is particularly useful for the identification of 

mutations or post-translationally modified peptides (Mann & Wilm 1994, Nesvizhskii 

2010). Bioinformatics tools such as InsPecT (Tanner et al. 2005), MODi (Na et al. 2008) 

and TagRecon (Dasari et al. 2010) are examples that employ sequence tagging to enable 

modification searches. These programs treat the mass shifts between experimental spectra 

and candidate peptides as potential modifications, and place the mass shifts on amino 

acids that best explain the spectra. Both de novo sequencing and sequence tagging-based 

database search benefit from the high mass accuracy of modern mass spectrometers. In 

Chapter III, I will discuss the use of sequence-tagging approach for spectral quality 

assessment. 

 

Spectral Library Search 

Spectral library search is a fast and sensitive approach for peptide identification 

compared to a conventional database search. Rather than matching observed spectra to 

computationally modeled theoretical spectra, MS/MS scans can be interpreted by 

matching against a spectral library, which is a large collection of observed spectra that 

are confidently identified in previous experiments. Bioinformatics tools such as 

SpectraST (Lam et al. 2007), Bibliospec (Frewen et al. 2006), X!Hunter (Craig et al. 

2006) and Pepitome (Dasari et al. 2012) were developed for spectral library searching. 

The National Institute of Standards and Technology (NIST) made several spectral 

libraries publically available for multiple species (http://peptide.nist.gov).  

Spectral library search is very computationally efficient. The accuracy of this 

method is considered to be higher than conventional database search. It is particular 
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useful for fast identification of well-studied samples. For example, bovine serum albumin 

(BSA) samples are routinely analyzed for instrumentation quality control (QC). Spectral 

library search is an ideal method for quick identification of these QC samples. A 

disadvantage of spectral library search is that only peptides that are previously identified 

can be assigned to newly observed spectra, and its performance is largely affected by the 

completeness and accuracy of assembled spectral libraries. In addition, a spectral library 

constructed for a particular type of mass spectrometer may not be applicable to data 

collected on other types of instruments due to the different gas-phase fragmentation 

principles. 

 

I.2.3 Peptide Validation 

Overview 

 Peptide identification tools evaluate all possible candidate peptides for each input 

spectrum, and usually only the best-scoring sequence is used to interpret the spectrum. 

However, not all PSMs are correct assignments. In contrast, sometimes the majority of 

best-scoring peptides assigned by database search tools are incorrect PSMs (Domon 2006, 

Nesvizhskii et al. 2007). The reasons for the high failure rate include: 

(1) Sequence not in database. Peptides with mutations and unexpected modifications 

will not be identified. Their spectra may be assigned incorrect best-scoring 

peptides. 

(2) Contaminant spectra. Database search only identifies spectra derived from 

peptides, while chemical contaminants that are introduced to MS analysis during 

sample preparation are assigned wrong peptide sequences. 
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(3) Low quality spectra. Poorly fragmented peptides often produce low quality 

spectra that have either high signal-to-noise (S/N) ratio or less peaks to match 

peptide sequences, thus may be assigned incorrect peptides in database search. 

(4) Insufficient scoring scheme. Database search engines often apply a simplified 

fragmentation model to predict the theoretical spectrum, while in reality peptide 

fragmentation depends on many factors such as amino acid composition and 

location, and produces more complicated spectra.  

(5) Chimera spectra. Multiple peptides with the same m/z value may be concurrently 

isolated at the same time, thus produce a chimera spectrum with fragment ions 

from all these peptides. Database search tools may assign one of the correct 

peptides or a wrong sequence to a chimera spectrum. 

(6) Incorrect precursor charge state or mass. The precursor ion mass of a spectrum 

can be measured inaccurately, and wrong candidate peptides may be selected to 

match the spectrum. Meanwhile, peptide charge state can be incorrectly 

determined, especially for low resolution instruments such as LTQ. 

(7) Inappropriate search parameters. A wide precursor mass tolerance introduces 

more candidate peptides for comparison, thus has a potential to produce more 

incorrect PSMs. A narrow precursor mass tolerance has the risk to exclude correct 

peptides for comparison. A tryptic search will not identify peptides with 

unexpected cleavage, resulting in incorrect peptides assigned to these spectra. 

 

Figure 7 illustrates the score distribution of correct and incorrect PSMs, which may 

overlap significantly depending on how well they can be discriminated by database 
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search scores. Incorrect PSMs may score higher than some correct PSMs due to spurious 

matches, homologous peptide sequences, or because spectra for these correct PSMs are 

relatively low quality spectra. It is desired that database search programs achieve a high 

discrimination between correct and incorrect PSMs in peptide identification. Improving 

database search scoring schemes and developing advanced peptide validation methods 

may both reduce the overlap region of correct and incorrect PSMs, and subsequently 

reduce false peptide sequences for protein inference. 

Some correct PSMs may be excluded for subsequent analysis because they fail to 

pass the confidence threshold (see Figure 7, region A’). Meanwhile, some spectra are 

assigned incorrect peptides because these peptides are scored better than correct ones due 

to many possible reasons described above. These issues can be alleviated by the 

introduction of the IDBoost tool described in Chapter II.   

Since peptides with unexpected modifications and mutations will not be identified 

in database search, these spectra will generate incorrect PSMs. Advanced identification 

methods such as sequence tagging-based modification search or de novo sequencing 

helps to interpret these spectra, while how to find these spectra remains an issue. In 

Chapter III, I will demonstrate the use of the ScanRanker tool to solve this problem. 
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Figure 7. Score distribution for correct and incorrect PSMs. Adapted from Figure 1 in 
Brosch & Choudhary (2010). Shaded area (a) represents all accepted PSMs (both correct 
and incorrect PSMs) above a threshold, and solid grey filled area (b) represents incorrect 
PSMs passing the threshold that are falsely accepted. A’ together with A sum up all 
correct PSMs, and A’ represents correct PSMs that fail to pass the threshold. B and B’ 
sum up all incorrect PSMs, and B represents incorrect PSMs that are wrongly selected 
within a given threshold. The false positive rate (FPR), false discovery rate (FDR) and 
posterior error probability (PEP) can be calculated as shown in the figure. 
  

Peptide Validation Strategies 

Because a large proportion of MS/MS spectra cannot be matched successfully to 

peptide sequences, raw identifications must be filtered to retain the most accurate PSMs 

for protein inference, i.e., a threshold need be determined to generate a list of high 

confident identifications. The selected threshold should yield a good tradeoff between 

sensitivity and error rate. A high score threshold reduces the number of false matches but 

Threshold 

A’ 
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also decreases sensitivity, yielding less number of correct PSMs for protein inference. In 

contrast, a low score threshold allows more PSMs to be selected at the cost of a higher 

error rate. 

Early on proteomics researchers often applied an ad hoc cutoff value of database 

search scores to generate a list of confident PSMs. For example, use XCorr > 2.5 for 

Sequest search and IonScore > 45 for Mascot search. This approach, however, has many 

disadvantages. First, the score distributions generated by a database search tool vary with 

respect to the instruments, sample complexities, data quality and the protein database 

searched. Therefore, there is no single score threshold can be applied to all datasets. 

Second, even though a single score threshold can be applied to data from different 

experiments, the error rates are still remaining unknown, making it difficult to compare 

data between experiments. Third, applying an ad hoc cutoff makes it impossible to 

compare search results from different search algorithms and instruments, and often has 

poor tradeoff between sensitivity and specificity.  

To solve these issues, modern proteomics has moved away from the ad hoc score 

cutoff toward probabilistic approaches. Translating the database search scores to statistics 

provides interpretable probability scores. Multiple search scores, database features and 

experimental conditions all can be taken into account in statistical models. 

Several methods have been developed to convert arbitrary search scores of raw 

identifications into statistical measures. As shown in Figure 7, three commonly used 

statistical measures are p-value, false discovery rate (FDR) and posterior error probability 

(PEP).  
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Database search scores can be converted to p-values to measure the confidence 

for peptides scored to a single spectrum. In order to interpret a spectrum, database search 

engines enumerate all candidate peptides, and each of them is scored against the spectrum. 

This produces a large number of scores that can be used to estimate the null distribution 

for p-value inference. The score of the best matched peptide is then converted to a p-

value based on the null distribution. Both parametric distribution (Sadygov & Yates 2003, 

Geer et al. 2004) and empirically fitted distribution (Fenyö & Beavis 2003) have been 

developed to derive p-values. A p-value can be interpreted as the probability to observe a 

match with an equal or higher score by random chance. Therefore, the further a score is 

away from the center of the null distribution, the higher the statistical significance it 

represents.  

A disadvantage of the p-value approach is that it is affected by the number of 

PSMs compared to a spectrum. Large number of comparisons may yield smaller p-values 

by random chance alone, which requires a multiple testing correction to adjust p-values. 

However, classical methods such as “Bonferroni correction” were not designed for large 

size of datasets, and often lead to overly conservative results.  

An alternative statistical measure that works well for large-scale data is FDR, 

which estimates the global error rate for a set of PSMs. In proteomics, for example, if 100 

PSMs were scored above a threshold and 5 of them were found to be incorrect matches, 

then the expected FDR will be 5% for this analysis. A common way to estimate incorrect 

matches among a collection of PSMs is to conduct database searches through the target-

decoy strategy (Elias & Gygi 2007). This approach searches MS/MS scans against a 

target protein database appended with decoy proteins, which can be reversed (Moore et al. 



26 
 

2002), randomized (Colinge et al. 2003) or shuffled (Klammer & MacCoss 2006) 

sequences. It assumes that false identifications follow the same distribution as matches to 

decoy sequences. To compute FDR, all PSMs from a database search are ordered by a 

matching score or a combination of multiple matching scores. A q-value is then 

calculated for each PSM as the minimal FDR threshold at which a PSM is accepted. 

PSMs passing a FDR threshold are then considered valid identifications for protein 

inference.  

FDR-based peptide validation has become the method of choice for large-scale 

proteomics studies, and many bioinformatics tools have implemented this approach. In 

my Master’s thesis, I presented IDPicker 2.0 that combines multiple search scores and 

applies additional filters to improve FDR-based peptide validation (Ma et al. 2009). 

Another tool, Percolator (Käll et al. 2007), employs a semi-supervised machine leaning 

method to discriminate between correct and incorrect PSMs based on target-decoy search 

results. It was originally designed to work with Sequest results and has been recently 

adapted to handle Mascot search results (Brosch et al. 2009). 

Although q-values are associated with individual PSMs, FDR is a summary 

statistic for the entire collection of PSMs, and does not measure the confidence of 

individual PSMs. When the focus is to evaluate individual PSMs, PEP, also known as 

local FDR, can be estimated to represent the probability of a PSM being incorrect. For 

example, a PSM with a PEP value of 0.01 means there is 1% chance that this PSM is an 

incorrect assignment. One way to compute PEP is to use a mixture model-based method 

as implemented in PeptideProphet (Keller et al. 2002). The PEP for each individual PSM 

can be used to filter low confident identifications. Moreover, the PEP and FDR method 
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can work together to make more accurate and robust estimation (Choi & Nesvizhskii 

2008). In this case, the decoy sequences are used to estimate the distribution of incorrect 

PSMs, yielding a more accurate mixture model for PEP calculation. 

 

I.2.4 Protein Inference 

In most proteomics experiments, the ultimate goal of a study is to know what 

proteins are present in the analyzed sample. Therefore, high confident peptide sequences 

passing the validation step need to be mapped to their corresponding proteins, and the 

confidence at the level of proteins need to be re-assessed. This process, however, is not 

straightforward and faces many challenges.  

First, peptides whose sequences are present in more than one protein may 

complicate the protein inference process. In this case, since a single peptide can be 

mapped to multiple proteins, it is difficult to know which protein(s) is present in the 

analyzed sample. As illustrated in Figure 8, for example, protein B and C will be 

indistinguishable because they both map to the same set of peptides. The shared peptides 

often result from homologous proteins, splicing variants or redundant entries in the 

protein database. This is particularly a serious problem for higher eukaryote organisms 

due to the high abundance of shared peptides (Nesvizhskii & Aebersold 2005). It is a 

general problem for shotgun proteomics experiments because the connectivity between 

peptides and proteins is lost during sample preparation and digestion. Separating proteins 

in a 2D gel before MS analysis helps to alleviate this problem, where additional 

information such as the molecular weights and isoelectric point can be used in 

determination of the protein identities (Görg et al. 2004).  
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Figure 8. A simplified example of protein inference. Green and red colors represent 
correct and incorrect peptides/proteins, respectively. Peptide 2 and 3 are shared by the 
same set of proteins. 
 

Second, incorrect PSMs may be accepted after peptide validation, yielding wrong 

peptides for protein inference (e.g. protein D in Figure 8). This is a more serious problem 

when searching spectra against a large protein database, where spurious peptides have a 

higher chance to be scored superior to correct ones. At the same time, many correct 

PSMs tend to map to a relatively small number of proteins that are dominant in the 

analyzed sample (Nesvizhskii et al. 2003). For example, a recent study showed that only 

~5% of all collected MS/MS scans lead to the identification of unique peptides in large-

scale studies (Swaney et al. 2010). As a result, almost every highly scored incorrect PSM 

may introduce one additional incorrect protein. Even with a careful control of FDR at the 

PSM level, these incorrect PSMs can produce a high FDR at the protein level. Requiring 

more than one distinct peptide per protein (“two peptide rule”) helps to remove some 
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incorrect proteins, but this will reduce the sensitivity and excludes the identification of 

low abundance proteins supported by a single peptide. 

A commonly used approach for protein inference and error rate estimation is to 

conduct database searches using a target-decoy strategy, and then apply various filters to 

assemble proteins to a desired protein-level FDR. Common filters include peptide-level 

FDR, minimal number of spectra per protein and minimal number of distinct peptides per 

protein. In this case, the protein-level FDR can be estimated according to the number of 

decoy proteins included in the final list. To achieve a lower protein-level FDR, one can 

either apply a more stringent peptide-level FDR, or require more than one spectrum or 

distinct peptides per protein. Both approaches lower the number of incorrect PSMs for 

protein inference, and thus reduce the error rate. To handle the problem of shared 

peptides that may produce many homologous proteins and isomers in final list, one can 

either report all proteins identified with at least one distinct peptide, or simply select a 

representative protein among homologs (States et al. 2006).  

The parsimony principle for protein inference has been widely accepted in 

proteomics community. It is also required by several journals for publishing proteomics 

research results (Carr et al. 2004). The central concept, as exemplified by several 

computational tools (Nesvizhskii et al. 2003, Yang et al. 2004, Zhang et al. 2007, Ma et 

al. 2009), is to derive a minimal list of proteins that can account for all observed peptides.  

A disadvantage of the protein-level FDR is that it is a global estimation of error 

rate for all accepted proteins. The confidence of individual proteins may be further 

estimated based on many metrics such as sequence coverage and the number of identified 

spectra for corresponding proteins. Statistical models have been developed to compute 
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probabilities for individual proteins, which estimate the likelihood that a protein is a true 

identification. For example, ProteinProphet (Nesvizhskii et al. 2003) reads the PSMs and 

their posterior probabilities generated from PeptideProphet to compute a cumulative 

score. That is, the probabilities of all PSMs mapped to a protein are combined together to 

yield the probability that the corresponding protein is present in the analyzed sample.  

The initial PSM probabilities from PeptideProphet may be adjusted to take into 

account the number of peptides mapped to the same protein group (undistinguishable 

proteins). The adjustment produces improved protein probabilities that agree with the 

actual protein-level FDR. ProteinProphet retains proteins identified by a single peptide if 

that peptide is assigned a high posterior probability in PeptideProphet. These proteins 

could be excluded in FDR-based protein inference due to the use of “two peptide rule”. 

Other statistical methods using hierarchical modeling (Shen et al. 2008) or incorporating 

gene models to protein inference (Gerster et al. 2010) were also reported.  

Most bioinformatics tools separate peptide validation and protein inference to two 

steps as described above. A recent research treated protein inference as a single 

optimization problem, and proposed a machine learning method, Barista, to optimize 

these two steps in a single analysis (Spivak et al. 2011). The essential concept is that 

peptide validation and protein inference are cooperative such that one task benefits from 

the other during optimization, and thus should be exploited simultaneously. Barista reads 

target-decoy search results and develops a model that maximizes the number of target 

proteins. It incorporates a wide variety of evidence to directly control the relevant error 

rate, providing 18-34% more protein identifications than other approaches (Spivak et al. 

2011). 
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I.3 Instrumentation Quality Control 

No matter how advance the data processing algorithms could be, they all assume 

the spectra from mass spectrometers are collected under stable instrument performance. 

Therefore, quality control of instrumentation performance is critical for proteomics 

studies. Many studies are designed to be comparative in nature such as exploring protein 

expression differences between tumor and normal tissues. These studies assume the 

observed differences come from the proteome differences of analyzed samples rather 

than analytical system variability. Therefore, the mass spectrometer needs to be 

frequently checked during data collection to ensure stable analytical system performance. 

Even with high mass accuracy instruments, achieving truly high accuracy often requires 

fine instrument tuning, room temperature control and the use of internal or external 

calibration. 

The most commonly used approach is to run simple samples such as BSA 

periodically, and count the number of confident identifications to measure instrument 

variability. This approach, however, does not reveal whether system performance is 

optimal or which components cause the large variation. NIST introduced the MSQC 

software (Rudnick et al. 2010) to compute diverse metrics from experimental LC-MS/MS 

data, enabling the QC evaluation of proteomics instrumentation. In practice, however, 

several aspects of the MSQC software prevent its use for routine instrument monitoring. 

This problem is further addressed in Chapter IV with the development of the QuaMeter 

tool. 
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I.4 Dissertation Outline 

The objectives of my work are to develop novel algorithms and bioinformatics 

tools for MS-based proteomics data analysis. The following chapters present three tools 

that facilitate proteomics data processing. In each chapter a separate introduction is given 

to describe the background of the respective topic. 

In Chapter II, I present the IDBoost tool to rescue correct spectral identifications 

and correct database search errors through spectral clustering. In Chapter III, I describe 

the ScanRanker tool that evaluates the quality of tandem mass spectra via the sequence 

tagging approach. In Chapter IV, I present the QuaMeter tool for MS instrumentation 

quality control. Each tool is evaluated with a variety of datasets and their applications are 

demonstrated. 
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CHAPTER II 

 

IDBOOST: VALIDATION AND RESCUE OF TANDEM MASS SPECTRAL 

IDENTIFICATIONS VIA SPECTRAL CLUSTERING 

 

II.1 Introduction 

Despite recent improvements in analytical methods, usually only a small fraction 

of spectra can be identified in a typical shotgun proteomics experiment, implying the 

need for advanced methods to improve identification rate. This may be caused by many 

factors such as unexpected modifications, incomplete protein databases or low spectral 

quality. However, many spectra assigned correct peptides may fail to pass the FDR 

threshold (see Figure 7). For example, given a set of spectra assigned to the same peptide, 

it is common that only spectra assigned high database search scores are identified, while 

the others that fail to pass the threshold are discarded. These discarded spectra may be 

correct identifications because the matched peptide is identified by other spectra. 

Rescuing these spectral identifications provides more information for subsequent data 

analysis such as manual validation of phosphopeptides and spectral count-based protein 

quantification.  

In addition to the low identification rate, two kinds of errors are often included in 

database search results. First, wrong peptides may spuriously score higher than correct 

sequences. This introduces false proteins and reduces the spectral count of correctly 

identified proteins, leading to inaccurate estimations in spectral count-based protein 

quantification. Second, if multiple modification sites are present in a peptide, one with a 
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misplaced modification site may score better than a correct one due to low spectral 

quality or insufficiency of scoring algorithms. The ambiguous modification locations are 

detrimental to experiments to localize modifications, such as phosphorylation studies. For 

both kinds of errors, the correct sequences frequently score very similarly to the 

erroneous top-ranked matches. Since many database search engines generate several 

PSMs per spectrum, it is very likely that the correct sequences are stored in the search 

output, but are invisible in subsequent analysis because they are not top-ranked hits. They 

can, however, be rescued by examining search results and re-ranking PSMs for each 

spectrum. 

Several efforts have been made to correct these errors. For example, Percolator 

provided a re-ranking function to correct spurious random matches via a machine 

learning approach for Sequest or Mascot, deciding which PSM was ranked highest for a 

spectrum by search scores and peptide properties. Ascore (Beausoleil et al. 2006) 

presented a probability-based score to correct phosphorylation site localization, but it 

required the presence of site-determining ions exclusive to specific site locations. These 

methods correct errors based on search results from either a single file or a single 

spectrum. In fact, shotgun proteomics experiments are often designed to include multiple 

replicate LC-MS/MS runs, and many identified peptides are associated with more than 

one spectrum. For example, in a recent study only ~5% of all collected MS/MS scans 

lead to the identification of unique peptides (Swaney et al. 2010). 

Here I seek to correct these errors in a single analysis by incorporating search 

results across multiple runs. I hypothesized that spectra derived from the same peptide 

should share high similarity in fragment ion patterns. Given a set of similar spectra, a 
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secondary PSM (ranked below the first position for a spectrum) may represent the correct 

interpretation if similar spectra also are matched to this peptide. Likewise, the 

modification site localization errors may be corrected by taking into account site 

assignments of similar spectra. This approach rescues correct secondary PSMs based on 

existing search results with no requirement for running additional database searches. For 

the best applicability, the approach must function with a variety of search engines and use 

more informative tandem mass spectra to guide interpretation of poorer quality scans.  

In this work, I seek to rescue spectra that are supported by other confident PSMs 

passing the FDR threshold. However, simply adding all spectra assigned to these peptides 

back to the analysis is not appropriate, because some of them may be unreliable spurious 

matches. In addition, if multiple PSMs per spectrum are considered, more than one 

peptide could be identified and it is not clear which PSM should be rescued. Here I 

present IDBoost, a software tool to rescue spectral identifications and correct database 

search errors via spectral clustering. I demonstrate the use of IDBoost in phosphorylation 

studies to rescue phosphopeptide identifications and to resolve phosphosite localization 

ambiguity. I show that IDBoost helps recognize differentially expressed proteins in 

comparative analysis. I also evaluate IDBoost using a variety of datasets representing 

various instrument platforms and sample complexities. 

 

II.2 Algorithm 

II.2.1 Overview 

The goal of this work is to rescue PSMs and to correct database search errors by 

incorporating identification evidence from similar spectra. In brief, IDBoost first groups 
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similar spectra into clusters and then examines all pairs of spectrum-peptide matches in a 

cluster. A PSM will be rescued if a similar spectrum matched to the same peptide is a 

valid identification. Multiple PSMs per spectrum, e.g., the top 5 ranked PSMs for a 

spectrum, can be included in this process, enabling re-ranking of PSMs to correct 

spurious matches or modification localization errors. Only one PSM per spectrum is 

allowed to be rescued. A “Bayesian average” rating method prioritizes peptides for 

rescue. IDBoost is written in C#/.NET and implemented in IDPicker (Zhang et al. 2007, 

Ma et al. 2009), which is available for download from http://fenchurch.mc.vanderbilt.edu. 

 

II.2.2 Spectral Clustering 

Tandem mass spectra are clustered based on the similarity between each pair of 

spectra. Rather than process all spectra, only spectra matching to a confidently identified 

peptide within the top N ranked PSMs are selected for clustering (N is a user 

configurable parameter). Next, selected spectra are sorted by their precursor m/z values 

and are compared for similarity to any others within a user-specified m/z tolerance. The 

similarity between each pair is computed by a normalized dot product, which has 

previously been found to work well for spectral clustering (Tabb et al. 2003, 2005, Beer 

et al. 2004, Frank et al. 2008). To reduce the effect of low intensity peaks, only the top 

100 most intense peaks of each spectrum are retained for similarity comparison. Peak 

intensities are square rooted to emphasize smaller peaks (Tabb et al. 2003).  A single-

linkage clustering approach (Beer et al. 2004, Frank et al. 2008) is applied to group 

spectra. i.e., if spectrum A is similar to B, and B is similar to C, then all three spectra will 

form one cluster. The default similarity threshold is 0.6, and is user configurable. The 
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method is similar to the Pep-Miner algorithm (Beer et al. 2004), which has been proved 

to be an effective clustering approach in prior work (Beer et al. 2004, Frank et al. 2008). 

 

II.2.3 Rescue of Spectral Identifications 

Once similar spectra are grouped together, an unidentified PSM may be rescued 

by taking identification evidence from other spectra into account. As illustrated in Figure 

9, for example, all spectra in a cluster are first mapped to peptides in a bipartite graph. 

Multiple PSMs per spectrum can be included to enable the rescue of secondary PSMs. 

Next, a “Bayesian average” rating method (described below) is applied to prioritize 

peptide sequences that will be processed. This is a necessary step because only one PSM 

per spectrum is allowed to be rescued, while one spectrum may be mapped to multiple 

peptides (the top N peptides assigned to this spectrum). Peptides sharing the same 

sequence but different PTM locations are treated as distinct peptides.  

To rescue unidentified PSMs, IDBoost sifts through prioritized peptides and their 

linked spectra. An unidentified PSM will be rescued if a similar spectrum matched to the 

same peptide is a valid identification. A rescued spectrum then will be excluded from 

further analysis to ensure only one PSM per spectrum rescued. In Figure 9C, for example, 

the best scored Pep2 linked to three spectra. Since the PSM of Scan4-Pep2 is a valid 

identification, both Scan2 and Scan5 will be rescued. Next, Scan3 will be rescued to Pep1 

because the same peptide is supported by an identified spectrum (Scan1). However, since 

only one PSM per spectrum is allowed to be rescued, Scan2 will not be assigned to Pep1 

because it has already been processed and rescued to Pep2. Since no spectra linked to 

Pep3 are identified, all PSMs mapped to Pep3 remain untouched. 
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A: Map spectra and peptides in a cluster

B: Prioritize peptides by Bayesian average scores 
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Figure 9. A diagram of rescuing unidentified spectra in a cluster. (A) A bipartite graph 
shows the PSM mapping between seven spectra and three peptides in a spectral cluster. 
Each link represents a peptide-spectrum match. For simplicity, all spectra are linked to 
only one peptide except Scan2, which is mapped to both Pep1 and Pep2, representing a 
case that multiple PSMs can be included in the rescuing process. Highlighted Scan1 and 
Scan4 represent valid identifications that pass a threshold of confidence. (B) All peptides 
are scored and prioritized by the “Bayesian average” rating method. In this example, 
Pep2 receives the best Bayesian average score, and Pep3 is the lowest rated peptide. (C) 
IDBoost sifts through prioritized peptides and rescues unidentified spectra.  

 

Including multiple PSMs per spectrum in the rescuing process enables the rescue 

of secondary peptide identifications, but this dramatically increases the number of PSMs 

to be processed. Many of these PSMs are assigned low database search scores and are not 

likely to be confident identifications. To reduce processing time, IDBoost provides a 
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configurable filter to exclude PSMs of low score. For example, throughout this study, 

PSMs with MyriMatch MVH scores lower than 10 were excluded.  

It should be noted that IDBoost only increases spectral identifications mapping to 

currently identified peptides, while peptide and protein identifications remain unchanged 

unless a spectral count-based filter is applied in protein inference. IDBoost does not 

remove originally identified PSMs. If a PSM is rescued for an identified spectrum, both 

the original PSM and the rescued PSM will be presented, implying that the rescued 

peptide is better supported by a cluster of spectra than the original identification. The 

IDPicker tool in which IDBoost is implemented provides a graphical user interface (GUI) 

to present both rescued and originally identified PSMs. It also displays database search 

scores and offers a spectrum viewer to visualize peptide-spectrum matches, enabling 

manual validation of ambiguous identifications if multiple peptides are assigned to a 

single spectrum. 

 

II.2.4 Bayesian Average Score 

As illustrated in Figure 9B, all peptides in a cluster are prioritized for rescue by 

“Bayesian average” scores. “Bayesian average” is a rating method to calculate the mean 

of a set of data that is consistent with Bayes’ theorem. Given a set of options rated by a 

number of voters, instead of simply calculating the average rating of an option, the 

“Bayesian average” method incorporates the number of votes into the calculation, 

generating a weighted average score. As a result, options with more votes receive 

Bayesian average scores closer to their unweighted arithmetic average. In contrast, when 

there are few votes, the rating of an option will be a weighted average (a Bayesian 
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average score) that is closer to the average rating of all options. In this study, each 

peptide is an option, and spectra in a cluster are voters. The database search scores of 

PSMs represent ratings between spectra and peptides. The “Bayesian average” score of a 

peptide is computed to be: 

Cn

xmC
x

n

i i

+
+∗

= ∑ =1  

where x is a database search score assigned to this peptide, n is the number of spectra 

mapped to this peptide, m is the mean of database search scores taken over all PSMs in 

this cluster. C is a weighting constant that should be a large number and is proportional to 

the size of the dataset. Here I use the maximal number of spectra assigned to a peptide in 

this cluster, i.e., the maximal votes of an option in the dataset, multiplied by 10 to keep it 

a large number. The Bayesian average reflects how peptides are scored in database search 

in relation to each other. A peptide identified by a relatively large number of spectra 

receives a Bayesian average score close to its unweighted average. In converse, the 

Bayesian average score for peptides with a relatively small number of spectra tends to 

gravitate towards the average rating of all PSMs.  

To prioritize peptides in a cluster, the Bayesian average scores are normalized to 

percentiles. For example, a Bayesian average score of 0.99 means this peptide is scored 

better than 99% of other peptides in a cluster. If the same set of spectra is searched by 

multiple database search engines, the Bayesian average scores are computed separately 

for each analysis, and then summed together to rank peptides. In this case, peptides 

shared by multiple search engines are more believable and will receive higher Bayesian 

average scores. IDBoost exports a tab-delimited text file to report rescued PSMs and their 

Bayesian average scores. 
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During the method development, I also considered several other voting methods 

such as “Borda count” and “Condorcet method”. I decided to choose the Bayesian 

average rating because it allows weighting voters and its success has been proved in 

many user reviewing systems.  

 

II.3 Data Sources 

Several datasets were used to demonstrate the utility of IDBoost (see Table 2). 

Binary spectral data present in the raw files were converted to mzML (Deutsch 2008) 

format using MSConvert tool of the ProteoWizard (Kessner et al. 2008) library. The 

MyriMatch tool searched each file against a protein database that contained sequences in 

both forward and reverse orientations for estimation of protein identification error rates. 

Search results were processed by IDPicker for peptide validation and protein assembly. 

Throughout this study, IDPicker was configured to derive PSM score thresholds to yield 

a 5% FDR. Detailed configurations of MyriMatch and IDPicker are given in Appendix A. 

 

“Synthetic Orbi” Dataset 

This dataset was previously used to test a phosphorylation site localization 

algorithm and the experimental description was published (Savitski et al. 2011). In brief, 

180 peptides with positional phosphosite isomers were synthesized and pooled to five 

mixtures, such that no phosphorylation site isomers were present in any one mixture. 

Mixtures were analyzed on a Thermo Fisher LTQ-Orbitrap hybrid mass spectrometer in 

which peptides were fragmented by CID. 
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Dataset  
# of files  

(sample x rep) 
Average # of 
MS/MS scans Databases used for search 

Rescue of Phosphopeptide Spectra 
Synthetic Orbi  5 x 1 1598 IPI.HUMAN.v3.79   
pTyr LTQ 1 x 3 18550 IPI.HUMAN.v3.79 
Rescue of Spectra in Comparative Analysis 
Yeast LTQ 1 x 3 26151 SGD.orf_trans_all+UPS1 
Yeast_UPS1 LTQ 5 x 3 26148 SGD.orf_trans_all+UPS1 
Rescue of Spectra in a Variety of Data 
UPS1 LTQ 3 x 3 24937 SGD.orf_trans_all+UPS1 
UPS1 Orbi 3 x 3 10935 SGD.orf_trans_all+UPS1 
Yeast LTQ 3 x 3 24948 SGD.orf_trans_all+UPS1 
Yeast Orbi 3 x 3 12464 SGD.orf_trans_all+UPS1 
Yeast MudPIT 
LCQ 19 x 6 2961 SGD.orf_trans_all 

 
Table 2. Experimental datasets for the evaluation of IDBoost.  

 

“pTyr LTQ” Dataset 

A human epithelial carcinoma cell line (A431) (ATCC, Manassas, VA) was 

cultured in 150 mm culture dishes in improved MEM (Invitrogen-GIBCO, Auckland, NZ) 

supplemented with 10% fetal bovine serum (Atlas Biologicals, Fort Collins, CO) at 37°C 

in 5% CO2.  A431 cells were grown to ~60-70% confluency prior to treatment. Cells 

were serum-starved (18 hrs), followed by treatment with 30 nmol epidermal growth 

factor (EGF)( Cell Signaling Technology, Danvers, MA) for 30 min. Cells were 

harvested on ice with Mg and Cl-free PBS  supplemented with a phosphatase inhibitor 

cocktail (1 mM sodium fluoride, 10 mM β-glycerophosphate, 1 mM sodium molybdate, 

and 1 mM activated sodium orthovanadate – individual components purchased from 

Sigma (St. Louis, MO)), pelleted by centrifugation at ~250 x g, flash-frozen and stored at 

-80°C. 
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The phosphotyrosine enriched dataset was generated by enriching 

phosphotyrosine peptides from tryptic digests of cell lysates as previously decribed (Rush 

et al. 2005) except that cells were lysed in 50:50 (v/v) acetonitrile and 50mM ammonium 

bicarbonate prior to in-solution trypsin (Promega, Madison, WI) digestion and samples 

were pY enriched using 4G10 antibody (Millipore, Billerica, MA). LC-MS/MS and MS3 

analyses were performed on a Thermo Fisher LTQ Velos (San Jose, CA) mass 

spectrometer equipped with an Eksigent Nano-1D Plus HPLC and AS-1 autosampler 

(Dublin, CA).  Peptides were separated on a 100 µm × 11 cm fused silica capillary 

column (Polymicro Technologies, LLC., Phoenix, AZ) and 100 µm x 6 cm fused silica 

capillary precolumn packed with 5 µm, 300 Å Jupiter C18 (Phenomenex, Torrance, CA). 

Liquid chromatography was performed using a 95 min gradient at a flow rate of either 

400 or 600 nL min−1 using a gradient mixture of 0.1% (v/v) formic acid in water (solvent 

A) and 0.1% (v/v) formic acid in acetonitrile (solvent B).  Briefly, a 15 min wash period 

(100% solvent A) was performed followed by a gradient to 98% A at 15 min (1.2 µl min-

1) and eluent was diverted to waste prior to the analytical column using a vented column 

set up similar to that previously described (Licklider et al. 2002).  Following removal of 

residual salts, the flow was redirected to flow through the analytical column and solvent 

B increased to 75% over 35 minutes and up to 90% in 65 minutes.  The column was re-

equlibrated to 98% solvent A for 10 minutes after each run. MS/MS peptide spectra were 

acquired using data-dependent scanning in which one full MS spectrum was followed by 

5 MS/MS spectra. A data-dependent scan for the neutral loss of phosphoric acid or 

phosphate resulted in acquisition of an MS/MS/MS of the neutral loss ion.  
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“Yeast LTQ”, “Yeast Orbi”, “UPS1 LTQ”, “UPS1 Orbi” and “Yeast_UPS1 LTQ” 

Datasets 

These datasets are publically available for download from Proteome Commons 

website (https://www.proteomecommons.org) and the experimental details are available 

in the original publication (Paulovich et al. 2010). Yeast lysate was reduced by 

dithiothreitol (DTT), alkylated by iodoacetamide and digested by trypsin. Both yeast and 

UPS1 (Sigma UPS1, Sigma-Aldrich, St. Louis, MO) were analyzed on LTQ and LTQ-

Orbitrap instruments. The “Yeast_UPS1” data represents a mixture of yeast and spiked 

UPS1 in five different concentrations: 0.24, 0.67, 2.54, 6.7 and 20 fmol/µl. This sample 

was analyzed on a LTQ instrument. 

 

“Yeast MudPIT LCQ” Dataset 

This dataset was published by Arnett et al. and the experimental details were 

described in the original publication (Arnett et al. 2008). In brief, Weil lab at Vanderbilt 

University collected spectra from 19 MudPIT experiments to study yeast Mot1p protein-

protein interactions, in which immunopurifications of Mot1p-interacting proteins were 

performed using multiple antibodies. Each pull-down was subjected to MudPIT analysis 

with six fractions and analyzed on a Thermo LCQ Deca XP Plus mass spectrometer. 

 

II.4 Results and Discussion 

To establish the effectiveness of IDBoost, I first evaluated the method using two 

phosphorylation datasets. I show that by encompassing search results from similar spectra, 

IDBoost achieved high accuracy in rescuing correct identifications. Next, I demonstrate 
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the use of IDBoost to enhance the recognition of differentially expressed proteins in 

comparative analysis. I then demonstrate IDBoost performance in a variety of datasets. 

These tests established IDBoost as an effective and robust method to rescue confident 

spectral identifications. 

 

II.4.1 Rescue of Phosphopeptide Spectra to Resolve Phosphosite Localization Ambiguity 

Once similar spectra are clustered together, the rescuing process starts from the 

peptide assigned the best Bayesian average score. To ensure that the correct peptides are 

rescued, “Bayesian average” method should be able to score true peptides more highly 

than random matches. This is a less serious problem in database searches to produce 

inventories, because a set of spectra in a cluster often maps to a single peptide. However, 

this becomes more complicated in phosphopeptide searches, in which spectra may be 

identified to the same peptide sequence with different phosphorylation sites, i.e., 

phosphosite isomers. In database search, phosphosite isomers often score very similarly 

even though true peptides generally receive better scores than false isomers. I expect the 

“Bayesian average” method in IDBoost to rate a true peptide sequence more highly than 

one with misplaced modification site. Incorporating search results from similar spectra 

could thus reduce phosphosite localization ambiguity.  

To evaluate the effectiveness of the “Bayesian average” method, I used a 

synthetic phosphopeptide dataset in which peptide sequences and phosphorylation sites 

are known (Savitski et al. 2011). All spectra were searched using MyriMatch against an 

IPI human protein database and post-processed by IDPicker.  
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I first examined all spectra that were assigned known sequences and correct PTM 

locations within their top 5 PSMs. Among all five raw files, 1678 of 7802 spectra were 

assigned to the correct synthetic sequences, while only 945 of them were confident 

identifications that passed the 5% FDR threshold. After running IDBoost, this number 

increased to 1348, augmenting sensitivity from 56% to 80%. Next, I evaluated the 

accuracy of rescued PSMs. A total of 1148 spectra (945 matched to synthetic sequences) 

were confidently identified in the original analysis, and 586 additional PSMs were 

rescued. As shown in Figure 10A, 69% of rescued spectra were correctly assigned to 

synthetic peptides with known PTM locations. Only 2% were false rescues that were 

originally assigned to the correct sequences, but then rescued to different ones. A close 

look at these false rescues revealed that they all were phosphorylation site isomers. The 

remaining 29% of rescued PSMs were associated with peptides that were not included in 

synthetic mixtures and thus are labeled “Unknown.”  

A sub-pie-chart in Figure 10A shows the proportion of top-ranked and secondary 

PSMs that were correctly rescued. 54% of rescued PSMs were correct top-ranked hits 

that failed to pass the FDR threshold. 10% correctly rescued PSMs were originally 

assigned wrong peptide sequences and 5% were assigned to phosphosite isomers. The 

result shows that both secondary phosphosite isomers and spurious random matches can 

be corrected through the rescuing process. 
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Figure 10. Analysis of rescued PSMs in phosphorylation studies. In each panel, the left 
pie chart shows the accuracy of rescued PSMs and the right sub-pie-chart represents a 
more detailed examination of correctly rescued PSMs. (A) Rescued PSMs from a 
synthetic phosphopeptide dataset. (2) Rescued PSMs from a phosphotyrosine enriched 
dataset. The result shows that IDBoost is able to recognize correct phosphosite isomers 
for rescue. 
 

  
This test established the “Bayesian average” method as an effective way to 

prioritize peptides in a cluster. Among 1678 spectra that were assigned correct sequences 
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within their top 5 PSMs, 70% contained phosphosite isomers, implying that a large 

number of spectra were mapped to multiple closely scored isomers during the rescuing 

process. The result indicates that the “Bayesian average” method is able to score correct 

sequences better than their phosphosite isomers, enabling rescue of these correct 

sequences rather than their isomers. Moreover, the result can be applied to resolve the 

ambiguous phosphosite localization. If a phosphosite isomer is rescued, it implies that 

this phosphorylation site is better supported than the original assignment by a cluster of 

similar spectra. In addition, this test illustrated that IDBoost is effective, even in datasets 

that contain a single analysis of each sample and where the MS/MS analyses employed 

dynamic exclusion to reduce repeated sampling of each peptide. 

It should be noted that in complex biological samples a single peptide may be 

singly phosphorylated at multiple locations, i.e., multiple positions all may be correct 

identifications. If similar spectra are produced by these isomers, the one with stronger 

identification evidence (better database search scores or more votes) may be scored 

superior to the correct position, thus rescuing a false positioning. Most likely this happens 

with phosphopeptides that produce similar fragment ions. In this case, IDBoost provides 

alternative interpretations for further manual validation. 

Next, I tested IDBoost performance using a real-world biological sample. The Jim 

Ayers Institute at Vanderbilt University collected three technical replicate runs of a 

human epithelial carcinoma cell lysate after enriching phosphotyrosine peptides with 

4G10 antibodies. The samples were analyzed on a Thermo Fisher LTQ Velos mass 

spectrometer. After MyriMatch and IDPicker analysis, 3327 spectra were confidently 

identified, counting all spectra without regard to phosphorylation status.  In this test, 1050 
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PSMs were added via IDBoost. The number of spectra assigned to phosphotyrosine 

peptides before and after running IDBoost was 1967 and 2512, respectively (a 28% 

increase).  

To estimate the accuracy of rescued PSMs, I considered a PSM as being rescued 

properly if its peptide contained a phosphotyrosine modification. In converse, PSMs that 

contained phosphotyrosine in original assignments, but which were rescued to non-

phosphotyrosine peptides were treated as false rescues. As shown in Figure 10B, 80% of 

rescued PSMs were proper rescues and 2% were false. The other 18% of PSMs that did 

not fall into these two categories were labeled “Unknown.” A close examination of the 

proper rescues showed 46% of rescued PSMs were top-ranked. 17% of spectra were 

rescued to secondary PSMs that were phosphosite isomers of top-ranked peptides. 17% 

of spectra were assigned different peptide sequences in the original analysis and were 

rescued to phosphotyrosine peptides. The result indicates that a large number of spectra 

assigned to phosphotyrosine peptides can be rescued. In addition, ambiguous 

phosphosites can be further evaluated in the context of a cluster of similar spectra. 

Bayesian average scores assigned to phosphosite isomers imply which phosphosite is 

better supported by these spectra than the other.  

 

II.4.2 Rescue of Spectra in Comparative Analysis 

In spectral count-based comparative analysis, differentially expressed proteins are 

determined by comparing the number of spectra observed for these proteins between 

pairs of cohorts. Generally, a larger average count difference yields a more significant 

result in statistical testing. To test if IDBoost helps to enhance spectral count 
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differentiation, I used a standardized dataset from the National Cancer Institute Clinical 

Proteomic Technologies Assessment for Cancer (CPTAC) Study 6 (Paulovich et al. 

2010), in which a mixture of 48 human proteins (Sigma UPS1, Sigma-Aldrich, St. Louis, 

MO) was spiked into the yeast reference proteome at different concentrations: A: 0.24, B: 

0.67, C: 2.54, D: 6.7, E: 20 fmol/µl and no spikes. After MyriMatch database search, five 

IDPicker analyses were performed to compare proteins between each concentration group 

and yeast sample that has no spikes (i.e., group A vs. yeast, group B vs. yeast etc.). I 

calculated the spectral count difference for each protein between yeast sample and the 

sample spiked with human proteins. The average differences for 48 spiked proteins and 

background proteins were compared before and after running IDBoost. In the presence of 

high concentrations of spiked proteins, the average differences for those proteins were 

much larger than for background proteins (see Figure 11, groups D and E), while the 

differences became less distinguishable for samples with low concentration spikes (see 

Figure 11, groups A and B). For all groups, IDBoost enlarged the spectral count 

differences for spiked proteins, with marginal effects on background proteins. Since these 

differences are the fundamental evidence for most statistical tests to determine 

differentially expressed proteins, running IDBoost improves sensitivity in differential 

proteomics by allowing the spiked proteins to be better recognized.  
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Figure 11. Impact of IDBoost on recognition of differentially expressed proteins in 
comparative analysis. 48 human proteins were spiked into a yeast proteome with 
decreased concentrations from group E to A. The spectral count differences between two 
samples, yeast and yeast with spikes, were calculated for each protein. Here I examine 
the average number of differences for two groups of proteins, 48 spiked proteins (SK) 
and the background yeast proteins (BG). The numbers of identified proteins are enclosed 
in parentheses. In all tests, IDBoost enhances the spectral count differences of 
differentially expressed proteins (spiked proteins) in comparative analysis. 

 

This method is particularly valuable for samples with low concentration of 

differentially expressed proteins. In Figure 11, for example, fewer spiked proteins were 

identified as their concentrations decreased. The high concentration samples E and D 

may benefit less from IDBoost due to the fact that the spectral count differences for 

spiked proteins were already much larger than background proteins. However, the 

comparative analysis may be improved by the use of IDBoost for sample C and B in 

which the differences of spiked proteins were close to those of background proteins. In 

these cases, by increasing the spectral count differences for spiked proteins, IDBoost 

allows the spiked proteins being selected more confidently in statistical analysis. Sample 

A was intentionally spiked with too low a concentration for most differences to be 
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observed. Only 2 of 48 spiked proteins were identified, and no differences were found 

between experiments. 

 

II.4.3 Rescue of Spectra in a Variety of Datasets 

I first tested IDBoost performance using two sample mixtures collected for 

CPTAC Study 6 (Paulovich et al. 2010). The Sigma UPS1 sample (Sigma-Aldrich, St. 

Louis, MO) is a defined mixture that contains 48 human proteins in equimolar 

concentrations. The yeast sample is a protein extract of Saccharomyces cerevisiae, 

representing a highly complex biological proteome. Both samples were prepared by the 

NIST and shipped to the CPTAC sites. I selected nine files for each sample (triplicates 

from three instruments) collected from two instrument platforms: a high resolution 

Thermo Fisher LTQ-Orbitrap and a lower resolution LTQ linear ion trap mass 

spectrometer. All spectra were searched using MyriMatch and post-processed by 

IDPicker. For each sample, I ran IDBoost against either all nine files collected from an 

instrument type or within the three files collected from a particular instrument.  

Figure 12 shows the number of spectral identifications before and after running 

IDBoost, along with the percent of gained spectra in each analysis. This figure 

demonstrated IDBoost performance in a variety of sample complexities and 

instrumentation. First, simple mixtures (UPS1) benefit more from the rescue process than 

do complex samples (yeast). The percent of gained spectra varied from 17% to 52% for 

the UPS1 sample, and these gains were always higher than for yeast (below 15%). 

Second, data from low resolution instruments tend to gain more identifications than those 

from high resolution instruments. In both UPS1 and yeast samples, the proportions of 
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rescued spectra were higher in LTQ data than those in Orbitrap runs, probably because 

the high resolution data yielding more confident IDs in MyriMatch search, leaving fewer 

spectra for rescue. Third, IDBoost shows enhanced performance for datasets with more 

replicates, even when they come from different instruments. Processing all files together 

yielded more rescued spectra than processing each instrument set separately.  

In terms of running time, IDBoost spent around 1 minute to process each set of 

triplicates from an individual instrument for UPS1 data and 2 minutes for yeast data on a 

Dell Optiplex 745 computer with an Intel Core 2 Duo 6400 processor and 3 GB of RAM. 

When processing all nine files together, IDBoost spent 6 minutes on UPS1 LTQ data and 

2 minutes on UPS1 Orbi data. It took about 8 minutes to process all nine files for yeast 

LTQ and Orbi data. 

I also tested IDBoost on a large-scale study using MudPIT technology (Arnett et 

al. 2008). 63195 of 337602 spectra were identified by MyriMatch and IDPicker analysis. 

After running IDBoost, the spectral identifications increased 26% to 79709. IDBoost 

spent 24 minutes to process all 116 files conjointly. 
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Figure 12. IDBoost performance in a variety of datasets. UPS1 (A) and yeast (B) samples, 
each with three technical replicates, were analyzed on three individual instruments in two 
instrument platforms. Search results from either each instrument (3 files) or all 9 files 
from an instrument platform were processed using IDBoost. The number of spectra 
before and after running IDBoost is presented. The proportion of gained spectra is 
reported for each analysis. 

 

II.5 Conclusion 

I presented a method to rescue spectral identifications and correct database search 

errors through spectral clustering. I demonstrated the use of IDBoost in phosphorylation 
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studies and comparative analysis. I tested the effectiveness of IDBoost in a variety of 

datasets. Experiments with many replicates and low accuracy data tend to benefit most 

from the use of IDBoost. IDBoost provides an easy and fast way to expand confident 

spectral identifications based on existing analysis with no requirement of additional 

identification steps. Its use is not limited to particular search engines or post-processing 

tools and thus it can be integrated into established proteomics data analysis workflows. 

The IDPicker GUI in which IDBoost is embedded enables visualization and manual 

validation of rescued identifications. 

To cluster similar spectra, IDBoost computes a dot product for each pair of 

spectra. This method has been proved to be effective in most cases but is highly affected 

by major peaks. In the future, more robust methods such as the scoring system in 

Pepitome can be implemented to replace the dot product for spectra similarity 

comparison.   

 

 



56 
 

CHAPTER III 

 

SCANRANKER: QUALITY ASSESSMENT OF TANDEM MASS SPECTRA VIA 

SEQUENCE TAGGING  

 

III.1 Introduction 

A large number of high quality spectra remain unidentified after database search 

due to modifications, incompleteness of protein databases, constrained search parameters 

and the deficiencies of the scoring methods in database search tools. These spectra often 

represent meaningful biological information and are potentially identifiable with 

alternative approaches such as blind modification search and de novo sequencing (Ning et 

al. 2010). An automated spectral quality assessment tool helps to ameliorate these 

problems. It can be used to find unidentified high quality spectra for subsequent analysis 

and helps to select high quality spectra for de novo sequencing.  

Mass spectrometry has become a method of choice to characterize cross-linked 

proteins (Leitner et al. 2010). The identification of cross-linked peptides, however, is 

quite a daunting job due to the overwhelming number of possible matches and the 

difficulty of interpreting spectra from cross-linked peptides. Although several 

bioinformatics tools have been developed to relieve theses difficulties, manual 

confirmation of cross-linked peptides is generally necessary. A spectral quality 

assessment tool could facilitate this process by providing a ranked list of spectra for 

manual interpretation.  
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The spectral quality score can also be used in the process of peptide assignment 

validation. In database search, software tools usually assign different scores to measure 

the match between spectrum and peptide (e.g., XCorr from Sequest and IonScore from 

Mascot), which are subsequently used in statistical analysis to estimate FDR. The spectral 

quality score could become an additional score in this process, because high quality 

spectra are more likely to produce confident peptide identifications.  

The scoring methods in sequence tagging algorithms are applicable for quality 

assessment of tandem mass spectra. A high quality spectrum of a peptide is expected to 

contain a series of consecutive fragment ions corresponding to peptide bond breakages 

(Tabb et al. 2006). These fragments provide a basis for partial sequence inference that 

result in multiple tags with good scores. Conversely, if no sequence tags can be inferred 

from a spectrum, it is unlikely that the spectrum will produce a high score in database 

search. Sequence tagging is a robust approach for spectral quality assessment because 

even modified or mutated peptides can produce consecutive fragment ions. Recently, we 

developed a novel sequence tagging algorithm, DirecTag (Tabb et al. 2008), which 

demonstrated superior accuracy in comparison to existing sequence tagging tools. In this 

work, I explore the use of DirecTag along with other metrics for spectral quality 

assessment. 

Several spectral quality assessment tools have been developed in recent years. 

Pioneering work by Bern et al. (2004) predicted spectral quality based on a set of 

handcrafted features  Other studies by Xu et al. (2005) as well as by Salmi et al. (2006) 

reported a quadratic discriminant function and a random forest classifier to separate good 

and bad spectra, respectively. Na & Paek (2006) proposed a cumulative intensity 
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normalization method for quality assessment, while Flikka et al. (2006) tested several 

machine learning classifiers in data from three different mass spectrometers, recognizing 

that the performance of classifiers is greatly affected by the type of instrument. More 

recently, Nesvizhskii et al. (2006) developed QualScore, which produces accurate results 

to find unassigned good spectra after database search. In these prior studies, the proposed 

methods were usually evaluated based on their performance in removing low quality 

spectra and recovering unassigned high quality spectra. In fact, quality assessment tools 

are useful for a wide variety of applications that have not previously been demonstrated. 

These tools may help to prioritize spectra for de novo sequencing and cross-linking 

analysis, which are usually very time-consuming processes relying heavily on manual 

inspection. Besides, since high quality spectra are more likely to produce confident 

identifications in database search, the quality assessment tools can also be used for 

quality control of datasets in large-scale proteomic studies. 

In this work, I present ScanRanker, a new software tool that evaluates spectral 

quality via sequence tagging. I evaluate ScanRanker using a variety of datasets from 

multiple instrument platforms with different sample complexities. I demonstrate that 

ScanRanker can be used both to recognize high quality spectra that fail identification and 

to remove low quality spectra prior to database search. In addition, I demonstrate several 

applications of spectral quality score that are not explored in existing publications. I show 

that ScanRanker scores can be used to predict the richness of identifiable spectra among 

LC-MS/MS runs in an experiment. I demonstrate the use of ScanRanker scores in the 

process of peptide assignment validation. I also demonstrate that ScanRanker helps to 

select high quality spectra for de novo sequencing and cross-linking analysis.  
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III.2 Algorithm 

III.2.1 Overview 

ScanRanker makes use of the DirecTag algorithm to infer sequence tags from 

tandem mass spectra. It then computes a quality score for each spectrum on the basis of 

three tag-based scoring metrics: “BestTagScore”, “BestTagTIC” and “TagMzRange”. 

ScanRanker accepts spectra in mzML, mzXML and MGF file formats via use of the 

ProteoWizard library. Several proprietary formats, such as Thermo RAW files and 

Bruker YEP files, can also be directly processed with no required installation of vendor-

supplied software libraries (a detailed list of supported formats is available at 

http://proteowizard.sourceforge.net/docs.html). ScanRanker can be executed in both 

Microsoft Windows and Linux systems, though native support for vendor formats 

requires use of Windows. A GUI was created in C#/.NET for Windows users. A helper 

program, IonMatcher, was also developed to visualize ScanRanker results and enable 

interactive manual inspection of peptide-spectrum matches. The source code and 

executable versions of ScanRanker are available from http://fenchurch.mc.vanderbilt.edu. 

The screenshot of the ScanRanker GUI is shown in Figure 13. The ScanRanker 

GUI contains three major parts: "Spectral Quality Assessment", "Spectral Removal" and 

"Spectral Recovery". The "Spectral Quality Assessment" feature controls parameters for 

running sequence tagging by DirecTag. It writes out a metrics file, which can be used 

later for "Spectral Removal" and “Spectral Recovery”. If the charge state of a spectrum is 

not determined (for example, LTQ data), a spectral quality score will be assessed for each 

charge state, and the highest quality score will be retained.  
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Figure 13. A screenshot of ScanRanker GUI.  
 
 

The “Spectral Removal” feature generates a subset of high quality spectra in 

mzML, mzXML, MGF or MS2 format, which can be used for more intensive searches. 

The "Spectral Recovery" feature makes use of "idpQonvert" module in IDPicker software 

to determine which spectra are identified. Based on the idpQonvert result, it adds a label 

(1 or 0) to each spectrum in a metrics file to indicate whether the spectrum is identified 
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by IDPicker. The corresponding peptides and proteins of identified spectra will also be 

included in the metrics file. ScanRanker generates unidentified high quality spectra for 

further analysis such as de novo sequencing and cross-linking analysis. 

The screenshot of the IonMatcher GUI is shown in Figure 14. IonMatcher reads a 

spectrum file and a metrics file to allow manual inspection of spectral quality. More 

importantly, it enables interactive validation of peptide-spectrum matches. If a metrics 

file is generated by “Spectral Recovery”, the identified peptide sequence will be 

displayed in a data table. Clicking a row in the table brings up four panels: annotation 

panel, fragmentation panel, spectrum panel and de novo sequencing panel. The peptide 

sequence in annotation panel can be modified interactively to exam the match between a 

modified sequence and the spectrum. Cross-correlation scores are reported for each 

sequence. The fragmentation panel displays m/z values of selected fragment ion series in 

which matched ions are bold highlighted. The spectrum panel shows matched ions and 

fragmentation ladders.  

If no peptide was assigned to a spectrum in database search, potential 

interpretations of the spectrum can be inferred using PepNovo, a state-of-the-art de novo 

sequencing tool developed at University of California, San Diego (UCSD). Inferred 

peptide sequences can be copied to annotation panel for manual validation. It should be 

noted that PepNovo program is not included in the ScanRanker package. To enable the de 

novo sequencing function, please download PepNovo at 

http://proteomics.ucsd.edu/index.html and copy all files to the \ScanRanker-installation-

directory\PepNovo folder. Copyright and License information of PepNovo are available 

in UCSD website. 
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Figure 14. A screenshot of IonMatcher GUI.  
 

III.2.2 BestTagScore Subscore 

DirecTag evaluates sequence tags on the basis of peak intensity, m/z fidelity and 

complementarity. Each tag is assigned a p-value to represent the probability that a better 

score would have resulted by chance. Here I made use of the score of the top ranked tag 

as the “BestTagScore” subscore for spectral quality assessment. Spectra that are capable 

of generating high quality tags are more likely to be good spectra. 

 

III.2.3 BestTagTIC Subscore 

To infer sequence tags, DirecTag constructs a graph comprising nodes 

representing peaks and edges representing pairs of peaks that are separated by amino acid 
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masses. DirecTag seeks out consecutive edges in this graph to enumerate sequence tags. 

For example, a set of four connected nodes in the graph may constitute a tag of three 

amino acids. Each node in a spectrum graph is associated with a peak intensity value. The 

“BestTagTIC” subscore sums up peak intensities of the top ranked tag. A high quality 

spectrum is expected to have a higher “BestTagTIC” subscore than low quality ones in a 

dataset. Spectra that are higher in intensity are more likely to produce tags of high TIC. 

 

III.2.4 TagMzRange Subscore 

Each inferred tag corresponds directly to a series of fragments in a tandem mass 

spectrum. The “m/z range” of a tag is the m/z distance that extends from the first peak to 

the last peak of the tag. By examining all enumerated tags, the “TagMzRange” subscore 

describes the widest range of m/z values for a spectrum that is spanned by tags. For a 

spectrum generating many tags, the “TagMzRange” subscore is equal to the m/z range 

between the lowest m/z peak and the highest m/z peak across all enumerated tags minus 

any m/z areas that are not spanned by tags. If tags can be generated from a wide m/z range 

in a spectrum, it is more likely that this spectrum will be identifiable by computational 

tools. 

 

III.2.5 Spectral Quality Score 

Three subscores are subjected to logarithmic transformation and normalized 

before generating a final quality score. The normalization of each subscore is performed 

by subtracting the mean of subscores in that dataset, and then divided by the interquartile 

range of these subscores. Spectra with no inferred tags or the best scored tags exceeded 
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the threshold specified in configuration file, usually 10-20% of spectra in a dataset, are 

considered as low quality spectra and are excluded in the calculation of mean and 

interquartile range. ScanRanker computes the average of three normalized subscores as 

the final quality score. Multiple LC-MS/MS runs, such as MudPIT or gel band runs, can 

be optionally grouped together as a single experiment, for which the mean and 

interquartile range of subscores across all datasets will be used for normalization. 

During developing the scoring method, I also attempted to use logistic regression 

and support vector machine based models to generate quality scores. These models can 

handle a large number of variables, so other attributes such as the number of peaks in a 

spectrum, total ion intensity and the ratio of strong and weak peaks in a spectrum can be 

incorporated into the scoring system. However, I found the proposed method with three 

variables can achieve almost the same performance as using more variables in 

sophisticated models. Therefore, only three most discriminating features were retained 

for quality assessment here. 

 

III.3 Data Sources 

The evaluation of the ScanRanker algorithm employed several datasets collected 

from different instrument platforms (see Table 3). The configurations of ScanRanker and 

other software tools are given in Appendix A. Instrument raw files were converted to 

mzXML format using the MSConvert tool of the ProteoWizard library. DTA format files 

required for Sequest search were extracted from the mzXML files using mzxml2search 

program of Trans-Proteomic Pipeline (Institute of Systems Biology, Seattle, WA) (Keller 

et al. 2005). In database search, common contaminant proteins were added to protein 
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databases, and reversed versions of all sequences were appended as decoy sequences for 

FDR estimation. The database search results were processed by IDPicker software for 

peptide validation and protein assembly. Throughout this study, IDPicker was configured 

to derive score thresholds to yield a 2% FDR. Peptides passing these thresholds were 

considered as legitimate identifications. Spectra for which these peptides were assigned 

were considered as “identified spectra”. The datasets are available for download from 

Vanderbilt University Mass Spectrometry Research Center’s web site 

(http://www.mc.vanderbilt.edu/msrc/bioinformatics/data.php).  

 

“DLD1 LTQ” Dataset 

This dataset was previously used to test IDPicker software and the experimental 

description was published by Ma et al. (2009). The “DLD1 LTQ” dataset consisted of 

four RPLC runs of human colon adenocarcinoma cells (DLD-1 cell line) analyzed on a 

Thermo Fisher LTQ linear ion trap mass spectrometer (San Jose, CA). The files averaged 

12,913 MS/MS scans. Spectra were identified against an IPI human database (v3.56) 

using database search engines MyriMatch. Sequest and X!Tandem search results were 

converted to pepXML format using out2xml and tandem2xml programs in the Trans-

Proteomic Pipeline, respectively. Raw peptide identifications were processed by the 

IDPicker software for protein assembly. Spectra were classified into two categories, 

“identified spectra” and “unidentified spectra”, where the identified set pooled data from 

all three database searches. 
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Dataset name 
# of 
files 

(Average) # of 
MS/MS scans Identification methods Databases used for search 

Removal of Low Quality Spectra 

DLD1 LTQ 4 12913 
MyriMatch, Sequest, 

X!Tandem IPI.HUMAN.v3.56  

Mouse HCT 4 5408 
MyriMatch, Sequest, 

X!Tandem IPI.MOUSE.v3.62 

Yeast Velos 5 38466 
MyriMatch, Sequest, 

X!Tandem SGD.orf_trans_all.20090303 

Recovery of Unidentified High Quality Spectra 

DLD1 LTQ 1 12820 
Sequest/MyriMatch, 

X!Tandem IPI.HUMAN.v3.56  

Serum Orbi 1 6697 
MyriMatch, 

tryptic/semi-tryptic IPI.HUMAN.v3.56  

Histone Orbi 1 9170 MyriMatch/TagRecon IPI.HUMAN.v3.68 

Prediction of Richness of Identifiable Spectra 

MudPIT Orbi 10 9828 MyriMatch IPI.HUMAN.v3.56  

IEF Orbi 10 10897 MyriMatch IPI.HUMAN.v3.56  
GelBand 
LTQ 10 9520 MyriMatch IPI.HUMAN.v3.47 

Use of Quality Score in Peptide Validation 

DLD1 LTQ 4 12913 
Mascot, Sequest, 

X!Tandem IPI.HUMAN.v3.56  

Selection of Spectra for De Novo Sequencing 

Yeast Velos 1 38560 PepNovo, MyriMatch SGD.orf_trans_all.20090303 
Tardigrade 
QSTAR 1 837 PepNovo, MyriMatch 

SwissProt.DROME.ANOGA.C
AEEL.rel56.8 

Hadrosaur 
Orbi 1 14217 PepNovo, MyriMatch AnoCar1.0 

Use of ScanRanker in Cross-linking Analysis 
Crosslink 
Orbi 1 1161 Protein Prospector SwissProt.ECOLI.20100810 
 

Table 3. Experimental datasets for the evaluation of ScanRanker.  
 

“Serum Orbi” Dataset 

This dataset was previously used to test IDPicker software and the experimental 

description was published by Ma et al. (2009). The “Serum Orbi” data represented an 

RPLC analysis of depleted human serum sample in an LTQ-Orbitrap hybrid mass 

spectrometer (Thermo, Scan Jose, CA) at Vanderbilt University Medical Center. Spectra 

were identified against an IPI Human database (v3.56) using MyriMatch in either tryptic 
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or semi-tryptic search mode. Search results were processed by IDPicker and spectra were 

separated to three categories: “spectra identified in tryptic search”, “new identifications in 

semi-tryptic search” and “unidentified spectra”. 

 

“Histone Orbi” Dataset 

This dataset was published by Loecken et al. (2009). Histone H2b and H3 adducts 

was analyzed using an LTQ-Orbitrap mass spectrometer. Spectra were searched using 

MyriMatch against an IPI human database (v3.68) and processed by IDPicker for peptide 

validation and protein assembly. The identified proteins were pulled to construct a subset 

protein database for bind modification search by TagRecon.  

 

“MudPIT Orbi” Dataset 

This dataset was published by Slebos et al. (2008).  Tryptic peptides from 50 µg 

proteins (adenocarcinoma) were loaded to a SCX column followed by a reverse phase 

LC-MS/MS analyses. Spectra from 10 fractions in the MudPIT experiment were searched 

using MyriMatch against an IPI Human database (v3.56) and processed by IDPicker. 

 

“IEF Orbi” Dataset 

This dataset was published by Slebos et al. (2008). Tryptic peptides from 50 µg 

proteins (adenocarcinoma) were separated by isoelectric focusing, followed by a reverse 

phase LC-MS/MS analyses. Spectra from 10 fractions in the IEF experiment were 

searched using MyriMatch against an IPI Human database (v3.56) and processed by 

IDPicker. 
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“GelBand LTQ” Dataset 

This dataset was published by Burgess et al. (2008). Serum samples were 

collected from patients without evidence of malignancy. Alpha 2 macroglobulin-

containing protein complexes were immunoprecipitated and separated by molecular 

weight in 10% SDS-PAGE. Each lane was sliced into 10 regions and subjected to in-gel 

digestion. Peptides from each gel region of each patient were subjected to a 95 minute 

RPLC separation. As peptides eluted in nanospray, the ions were directed to the inlet of a 

Thermo LTQ tandem mass spectrometer. Spectra were searched using MyriMatch against 

an IPI Human database (v3.47) and processed by IDPicker. 

 

“Tardigrade QSTAR” Dataset 

Hypsibius dujardini, a species of Tardigrades (commonly known as 'water bears') 

were grown in glass Petri dishes feeding on algae.  Proteins from 600 organisms were 

collected and solubilized in LDS buffer (1M DTT), boiled, sonicated and then separated 

by 1D SDS-PAGE. Contiguous gel bands were excised, digested (trypsin), and samples 

were analyzed by reverse-phase nano-HPLC-ESI-MS/MS using an Eksigent nano-LC 2D 

HPLC system (Eksigent, Dublin, CA) which was directly connected to a quadrupole 

time-of-flight (QqTOF) QSTAR Elite mass spectrometer (MDS SCIEX, Concorde, 

CAN). Briefly, peptide mixtures were loaded onto a guard column (C18 Acclaim 

PepMap100, 300 µm I.D. x 5 mm, 5 µm particle size, 100 Å pore size, Dionex, 

Sunnyvale, CA) and washed with the loading solvent (0.1 % formic acid, flow rate: 20 

µL/min) for 5 min. Subsequently, samples were transferred onto the analytical C18-

nanocapillary HPLC column (C18 Acclaim PepMap100, 300 µm I.D. x 15 cm, 3 µm 



69 
 

particle size, 100 Å pore size, Dionex, Sunnyvale, CA) and eluted at a flow rate of 300 

nL/min using the following gradient:  2-40% solvent B in A (from 0-35 min), 40-80% 

solvent B in A (from 35-45 min) and at 80% solvent B in A (from 45-55 min), with a 

total runtime of 85 min (including mobile phase equilibration). Solvents were prepared as 

follows, mobile phase A: 2% acetonitrile / 98% of 0.1% formic acid (v/v) in water, and 

mobile phase B: 98% acetonitrile / 2% of 0.1% formic acid (v/v) in water. Mass spectra 

(ESI-MS) and tandem mass spectra (ESI-MS/MS) were recorded in positive-ion mode 

with a resolution of 12000-15000 full-width half-maximum. For collision induced 

dissociation tandem mass spectrometry (CID-MS/MS), the mass window for precursor 

ion selection of the quadrupole mass analyzer was set to ± 1 m/z. The precursor ions were 

fragmented in a collision cell using nitrogen as the collision gas. Advanced information 

dependent acquisition (IDA) was used for MS/MS collection, including QSTAR Elite 

(Analyst QS 2.0) specific features, such as “Smart Collision” and “Smart Exit” (fragment 

intensity multiplier set to 4.0 and maximum accumulation time at 2.5 sec) to obtain 

MS/MS spectra for the three most abundant parent ions following each survey scan.  

Dynamic exclusion features were based on value M not m/z and were set to exclusion 

mass width 50 mDa and exclusion duration of 120 sec. Since complete genomic 

sequences for tardigrade are not yet available, I searched the dataset using MyriMatch 

against a database consisting of proteins from three taxonomically related species with 

complete proteomes, Drosophila melanogaster (DROME), Anopheles gambiae (African 

malaria mosquito, ANOGA) and Caenorhabditis elegans (CAEEL), downloaded from 

Swiss-Prot (release 56.8). Reversed sequences of these proteins were appended to the 
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database as decoys. Spectra were separately processed by PepNovo for de novo 

sequencing and ScanRanker for spectral quality assessment. 

 

“Hadrosaur Orbi” Dataset 

This “Hadrosaur Orbi” dataset represented an RPLC run of protein extracts from 

an 80-million-year-old Campanian hadrosaur, Brachylophosaurus canadensis, in a 

Thermo Fisher LTQ Orbitrap XL mass spectrometer published by Asara et al. 

(Schweitzer et al. 2009). The mzData file was downloaded from PRIDE 

(http://www.ebi.ac.uk/pride/, accession number 9285) and was converted to mzXML 

format using a predecessor of the MSConvert tool from the ProteoWizard library, which 

was subsequently processed by PepNovo and ScanRanker. Spectra were searched using 

MyriMatch against a lizard (Anolis carolinensis) database, AnoCar1.0, produced by the 

Broad Institute at MIT and Harvard (http://www.broadinstitute.org/models/anole). 

Common contaminant proteins were added to supplement these sequences, and reversed 

versions of all sequences were appended to complete the FASTA. 

 

“Crosslink Orbi” Dataset 

This dataset was provided by Robert Chalkley at University of California, San 

Francisco and published by Trnka, M. J. et al. (Trnka & Burlingame 2010). Purified 

GroEL and GroES proteins were cross-linked by 1,3-diformyl-5-ethynylbenzene (DEB).  

The sample was analyzed on an ESI LTQ-OrbitrapXL with an ETD module installed 

(Thermo Scientific). Cross-linked spectra were identified using Protein Prospector and 

were manually confirmed by Trnka et al. The dataset was also searched using Protein 
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Prospector against SwissProt E.coli database to identify spectra of non-crosslinked 

peptides. The search were performed with both parent and product mass tolerance of 20 

ppm. Carbamidomethylcysteine was searched as a fixed modification. Methionine 

oxidation, protein N-terminal acetylation and peptide N-terminal glutamine cyclization to 

pyroglutamate were specified as variable modification.  

 

“Mouse HCT” Dataset 

This dataset was generated from a whole mouse liver protein extract obtained 

from adult CD1 mice in Vanderbilt University Mass Spectrometry Research Center. 

Proteins were reduced with DTE and alkylated with iodoacetamide prior to digestion with 

sequencing grade Trypsin.  Four replicate LC-MS/MS runs were performed on a Bruker 

Esquire HCT ultra ion trap (Bruker Daltonics, Billerica, MA). The scan sequence 

consisted of 1 precursor ion scan (m/z = 375-1200) in standard enhanced and five 

subsequent tandem MS scans (m/z = 100-2800) in ultra scan mode.  Scan averaging was 

set to 2 and ICC was 200,000. Singly charged peptides were excluded from tandem MS 

and dynamic exclusion was activated for 1 minute after two successful tandem MS 

experiments for a peptide.  LC-MS/MS was carried out on an Agilent 1100 HPLC 

modified with a flow splitter and a FAMOS autosampler with a 2 µl sample loop. The 

column was a 12.5 cm, singly-vented, 360/75 um OD/ID PicoFrit emitter from New 

Objective attached to a 3 cm precolumn. Both columns were packed in house with 5 µm 

Monitor C18 particles. Each injection consisted of 6.5 ng of mouse liver digest. The 

mobile phases were water and acetonitrile with 0.1 % formic acid as an additive. Peptides 

eluted during the 60 minute gradient from 2 % to 50 % acetonitrile. Instrument raw data 
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were converted to mzXML format using the Bruker CompassXport tool. The files 

averaged 5048 MS/MS scans. Spectra were searched against an IPI mouse database 

(v3.62) by MyriMatch, Sequest and X!Tandem and processed as described in the “DLD1 

LTQ” dataset. 

 

“Yeast Velos” Dataset 

This dataset was generated utilizing the CPTAC Yeast Performance Standard that 

was digested with trypsin in Rapigest (Paulovich et al. 2010). Two microliter portions of 

peptide mixture were analyzed using a Velos ion trap mass spectrometer (Thermo, San 

Jose, CA) equipped with an Eksigent 1D Plus NanoLC pump and Eksigent NanoLC-AS1 

autosampler (Eksigent, Dublin, CA). Peptides were solid-phase extracted using an in-line 

column (100 µm × 6 cm) packed with Jupiter C18resin (5 µm, 300 Å, Phenomenex, 

Torrence, CA) and separated on a capillary tip (100 µm × 11 cm, Polymicro 

Technologies, Phoenix, AZ) packed with the C18 resin.  Following the injection, peptides 

were solid-phase extracted by washing with 0.1% FA (mobile phase A) for 15 min at a 

flow rate of 1.5 µL/min.  Mobile phase B consisted of acetonitrile (ACN) with 0.1% FA.  

Peptides were separated using a gradient of 2−40% B for 120 min at a flow rate of 700 

nL/min, followed by a rapid increase of B from 40−90% in 25 min, and held at 90% B 

for 9 min before returning to initial conditions of 100% A. Survey scans were collected in 

the ion trap a mass range of 400−2000 m/z. Following each survey scan, the five most 

intense ions were selected for MS/MS fragmentation in the ion trap using the dynamic 

exclusion feature (exclusion mass width of -1 m/z and +2 m/z, exclusion duration of 60 s, 

and repeat count of 1). Centroided MS/MS scans were acquired on the Velos using an 
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isolation width of 2 m/z, an activation time of 30 ms, an activation q of 0.250 and a 

normalized collision energy of 30 using 1 microscan with a max ion time of 100 ms for 

each MS/MS scan and 1 microscan with a max ion time of 50 ms for each full MS scan 

and a minimum signal of 1000.  The mass spectrometer was tuned prior to analysis using 

the synthetic peptide TpepK (AVAGKAGAR), and the tune parameters were as follows: 

spray voltage of 1.5 kV, a capillary temperature of 200 °C and an S-lens RF level of 59%. 

The MS/MS spectra were collected using data-dependent scanning in which one full MS 

spectrum was followed by four MS-MS spectra. MS/MS spectra were recorded using 

dynamic exclusion of previously analyzed precursors for 60 s with a repeat count of 1 

and a repeat duration of 1. A total of five replicate LC-MS/MS experiments were 

performed and 192,330 MS/MS spectra were collected. Spectra were searched using 

MyriMatch, Sequest and X!Tandem against the Saccharomyces Genome Database 

orf_trans_all.fasta file downloaded in March of 2009 and processed by IDPicker. 

 

III.4 Results and Discussion 

To establish the effectiveness of ScanRanker in quality estimation, I first 

evaluated its three metrics for discrimination. After establishing its scoring discrimination, 

I tested its real-world performance for recognition of unidentified high quality spectra 

and prediction of richness of identifiable spectra. I also demonstrated its applications in 

peptide validation, de novo sequencing and cross-linking analysis. These tests establish 

ScanRanker as a robust and effective algorithm for spectral quality assessment of data 

from various instruments in a wide variety of applications. 
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III.4.1 Subscore Evaluation 

ScanRanker evaluates spectral quality based on “BestTagScore”, “BestTagTIC” 

and “TagMzRange” subscores. To test the effectiveness of subscores, the “DLD1 LTQ” 

(Ma et al. 2009) dataset was searched by MyriMatch, Sequest and X!Tandem to 

maximize the peptide identifications. The discriminating power of each subscore is 

illustrated via receiver operating characteristic (ROC) curves in Figure 15. Each subscore 

may be used to discriminate spectral quality between identified and unidentified spectra. 

By combining the three subscores, however, ScanRanker achieves better discrimination 

than by using any single subscore alone. Results obtained after testing any combination 

of two subscores were exceeded by combining all three subscores (data not shown). 

 

 
Figure 15. Combining three subscores improves the discriminating power of ScanRanker. 
Tests on the “DLD1 LTQ” dataset revealed different discrimination in ScanRanker’s 
subscores. The ROC curves display true positive rate (a.k.a. sensitivity) and false positive 
rate (a.k.a. 1-specificity) of ScanRanker’s subscores and the combined score. The AUC 
values show that combining three subscores yields better discrimination than using any 
single subscore.  
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I tested both mean and median for subscore normalization during the development 

of ScanRanker algorithm, and they worked equally well because of small differences 

between these values. For example, the average difference between mean and median of 

“DLD1 LTQ” dataset (4 replicates) are 1%, 6% and 2% for “BestTagScore”, 

“BestTagTIC” and “TagMzRange” subscores, respectively. I chose the mean of 

subscores for normalization because it is less expensive to compute than the median. 

More importantly, if ScanRanker scores need to be adjusted across multiple files, the 

mean of subscores across these files can be easily calculated based on the sum of 

subscores and the total count of spectra.  

ScanRanker computes the quality score by averaging three normalized subscores. 

If the subscores differed considerably in their discriminating powers, simply averaging 

the subscores would reduce the discriminating power of ScanRanker overall. To test the 

discrimination difference between optimized score weights and equal weights, each 

subscore was assigned a weight from 0 to 1 with 0.1 increments, and the summation of 

weighted subscores was used to calculate the area under ROC curve (AUC). The best 

possible weighting yielded an AUC less than 1% higher than the equal weight approach. 

As a result, I opted to use equal weights for simplicity. 

 

III.4.2 Removal of Low Quality Spectra 

Low quality spectra, particularly from ion trap mass spectrometers, often generate 

a significant amount of computational overhead but contribute little to protein 

identification. Filtering these spectra via ScanRanker prior to search can save time in 

identification. To test ScanRanker’s performance in removing low quality spectra, I 
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analyzed three datasets collected from a Thermo Fisher LTQ, an Esquire HCT ultra and a 

Thermo Fisher LTQ Velos ion trap. MyriMatch searched these data in two ways: (1) 

search all spectra, (2) only search the top 60% of high quality spectra as reported by 

ScanRanker. In all three instruments, more than 94% of the resulting identifications were 

shared between both searches, and more spectra were identified in the second search than 

in the first. In the case of the Esquire HCT, almost 5% of the identifications were 

produced only when the bottom 40% of spectra were pruned away, at the cost of less than 

1% of the identifications (see Figure 16). More identifications were gained by removing 

low quality spectra prior to database search; low quality spectra are more prone to be 

matched to decoy sequences, thus increasing the stringency of the threshold applied to all 

identifications. 

 

 

Peptide 

Spectrum 

(A) 

(D) 

(B) 

(E) 

(C) 

(F) 

DLD1 LTQ 

All spectra

  

High quality 

spectra 

Mouse HCT 

All spectra High quality 

spectra 

Yeast Velos 

All spectra High quality 

spectra 

98.1% 1.1% 0.8% 

98.5% 0.9% 0.6% 

94.4% 4.9% 0.7% 

93.1% 5.9% 1.0% 

98.1% 1.2% 0.7% 

97.9% 1.3% 0.8% 

 

 
Figure 16. Removing poor MS/MS scans in ScanRanker does not significantly reduce 
identifications. Panels A-C show the percent overlap of identified spectra when searching 
either all spectra or only high quality spectra. Similar overlaps for identified peptides are 
displayed in Panels D-F.  
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Although I retained the top 60% spectra in our test, it should be noted that there is 

no common threshold that can be applied to all datasets for the selection of high quality 

spectra. The spectral removal will be more beneficial for large-scale proteomics studies 

in which multiple biological and technical replicates are analyzed. I recommend 

determining the percentage of retained spectra by examining the search results of all 

spectra from a single replicate, then applying the threshold to remove low quality spectra 

in other replicates. For example, Figure 17 plots the proportion of retained identified 

spectra in context of spectra sorted by ScanRanker scores. It is obvious that the top 

ranked 60% spectra in all three datasets contain more than 95% of identified spectra. 

Therefore, this threshold could be subsequently used to remove low quality spectra in 

other replicates before the database search. These figures can be easily generated from 

ScanRanker output, which comprises a tab-delimited text file including ranked spectra, 

identification labels and the cumulative sum of identification labels. 

 

 
 

Figure 17. Determine spectral removal threshold from a single replicate.  
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III.4.3 Recovery of Unidentified High Quality Spectra 

Simple database search can sometimes fail to identify many spectra that can be 

identified through additional effort. I employed three publicly available datasets to 

determine if ScanRanker scores were predictive of identifications gained through more 

advanced searching methods. 

In the first test, I evaluated the peptides identified through multiple database 

search algorithms. A single replicate in the “DLD1 LTQ” dataset with 12820 MS/MS 

scans was analyzed using Sequest, yielding 2878 confidently identified spectra. 

Additional searches using MyriMatch and X!Tandem identified 826 new spectra missed 

in the Sequest search. All spectra were sorted by ScanRanker scores from high to low 

quality and were split into deciles. Figure 18A shows the number of initially identified 

spectra, newly identified spectra and unidentified spectra in each decile. As expected, 

identified spectra, either by Sequest or additional searches, were associated with higher 

ScanRanker scores than unidentified spectra. 

The second experiment evaluated the peptides gained through semi-tryptic search. 

For samples dominated by a few major proteins, this strategy improves peptide and 

protein identification. In this study, I searched the “Serum Orbi” (Ma et al. 2009) dataset 

using MyriMatch in either fully tryptic or semi-tryptic search mode. Among 6697 

MS/MS scans in the dataset, 646 spectra were identified in tryptic search, and an 

additional 928 spectra were generated by semi-tryptic search. Figure 18B plots the 

distribution of all spectra, split to deciles by ScanRanker scores. It can be observed that 

the majority of gained spectra by semi-tryptic search were ranked within the top 30% of 

spectra by ScanRanker. 
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Figure 18. Evaluation of ScanRanker to recover unidentified high quality spectra. Three 
datasets were reanalyzed by additional search methods to find high quality spectra that 
were unidentified in initial database searches. Each test represents a typical reason that 
high quality spectra may be left unidentified in an initial search. (A) The “DLD1 LTQ” 
dataset was initially identified by Sequest search. New identifications (IDs) were added 
by MyriMatch and X!Tandem searches. (B) The “Serum Orbi” data was searched by 
MyriMatch in either tryptic or semi-tryptic mode. (C) The “Histone Orbi” data was 
searched by MyriMatch. A subsequent TagRecon search was performed to identify 
spectra of mutated or modified peptides. These graphs plot the distributions of initial 
identifications, new identifications by additional searches and unidentified spectra in 
deciles by ScanRanker scores. In each panel, the left side represents spectra assigned high 
ScanRanker quality scores and the right side is low quality spectra. Newly identified 
spectra tend to associate with better ScanRanker scores in all datasets.  
 

In the third test, I examined the ability of ScanRanker to find spectra that were 

unidentified due to modifications and mutations. The “Histone Orbi” (Loecken et al. 

2009) data with 9170 MS/MS scans was initially searched using MyriMatch, yielding 

641 confidently identified spectra. To find spectra of modified peptides, the dataset was 

searched using TagRecon against a customized database consisting of identified proteins 

and decoy sequences. TagRecon yielded 672 spectra including common modifications 

such as acetylation (117 spectra) and deamidation (159 spectra). Among them, 234 

spectra were missed in MyriMatch search. Figure 18C shows the distribution of spectra 

ordered by ScanRanker scores. As in preceding plots, spectra assigned high ScanRanker 

scores were more likely to be identified through PTM identification software. 
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III.4.4 Comparison of ScanRanker to QualScore 

QualScore is a tool integrated in the Trans-Proteomic Pipeline that is specifically 

designed for recognizing spectra that evade identification. I compared the performance of 

QualScore and ScanRanker on three datasets. To obtain quality scores from QualScore, I 

analyzed the datasets using Sequest and PeptideProphet, and then processed results using 

QualScore under the default configuration. Figure 19 shows the ROC curves of 

ScanRanker and QualScore in three datasets. ScanRanker performed as reliably as 

QualScore in all tests. ScanRanker displayed slightly better performance than QualScore 

in the “Histone Orbi” data, possibly because the existence of modified peptides decreased 

the effectiveness of Sequest/PeptideProphet training, thus diminishing QualScore 

accuracy. Despite this minor difference, both tools are able to recognize unassigned high 

quality spectra. QualScore produces accurate results by training its scoring system for 

each dataset based on Sequest/PeptideProphet results, while ScanRanker evaluates 

spectral quality directly using a sequence tagging approach. Thus, ScanRanker has no 

dependence on the availability of database search results. 

I attempted to include other algorithms in this comparison. Initial tests of 

msmsEval gave promising discrimination for LTQ datasets, but no training model was 

provided to enable its use in other types of instruments. The version of the PARC filter 

(Bern et al. 2004) that I received from the Yates Laboratory omitted scores for removed 

spectra, limiting its scope to filtering spectra prior to database search.  In some other tools, 

the software simply split datasets to “good” and “bad” directories without a report of 

metrics for each spectrum, limiting conclusions about their scoring discrimination.  As a 

result of these setbacks, I limited the comparison to QualScore. 
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Figure 19. Comparison of ScanRanker to QualScore. Spectra in three datasets were 
separately processed by ScanRanker and QualScore to generate quality scores. 
ScanRanker performs as well as QualScore in all datasets but does not require 
Sequest/PeptideProphet analysis for spectral quality assessment. 
 

III.4.5 Prediction of Richness of Identifiable Spectra 

High quality spectra are more likely to be identified in proteomics data analysis. If 

multiple LC-MS/MS runs are included in an experiment, (for example, MudPIT or 1D 

gel experiments,) the number of high quality spectra in each dataset reveals the richness 

of identifiable spectra, providing a preliminary overview for the quality of the LC-

MS/MS experiment. I sought to demonstrate that the ScanRanker scores are predictive of 

relative qualities of LC-MS/MS runs in an experiment. Three published datasets, the 

“MudPIT Orbi” (Slebos et al. 2008), “IEF Orbi” (Slebos et al. 2008) and “GelBand LTQ” 

(Burgess et al. 2008) data, were searched using MyriMatch against an IPI Human 

database. ScanRanker grouped all LC-MS/MS runs in each dataset as a single experiment, 

in which the means and interquartile ranges of subscores across all fractions or gel bands 

were used for normalization to compute the quality scores.  
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Figure 20 shows the scatter plot between the number of identified spectra in each 

LC-MS/MS run and the number of retained spectra with ScanRanker scores above 

different thresholds. Here I used three score thresholds (0, 0.5 and 1). Spectra with score 

0 represent scans of better than 60-70% spectra, and spectra scoring 0.5 and 1 have better 

quality than approximately 85% and 95% of spectra in each experiment, respectively. 

The distributions of quality scores, however, are dataset-dependent. As expected, the 

number of high quality spectra predicted by ScanRanker in each dataset is highly 

correlated to the number of identified spectra. For example, a score threshold at 0.5 

produced the Pearson correlation coefficients of 0.90, 0.90 and 0.95 for “MudPIT Orbi”, 

“IEF Orbi” and “GelBand LTQ” datasets, respectively. Therefore, the relative quality of 

each LC-MS/MS run in an experiment can be estimated by the number of high quality 

spectra determined by ScanRanker. This is potentially useful for large-scale proteomic 

studies, in which ScanRanker can be used as a rapid quality control tool to highlight bad 

LC-MS/MS runs among an experiment. 
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Figure 20. ScanRanker scores predict the richness of identifiable spectra. Each point in 
the figure represents a single LC-MS/MS run and the dotted lines show the least squares 
fit of the data.  Three ScanRanker thresholds were used to count retained spectra.  9 of 10 
LC-MS/MS runs in the MudPIT dataset are plotted because the first fraction of the 
MudPIT experiment generated only 21 spectrum identifications.  Each LC-MS/MS run in 
all three datasets includes about 10000 MS/MS spectra, while the number of identified 
spectra varies dramatically. The number of spectra assigned high ScanRanker scores 
correlate to the number of identified spectra, providing relative quality assessment of LC-
MS/MS runs in an experiment. 

 

III.4.6 Use of Quality Score in Peptide Validation 

In proteomics data analysis, database search engines usually generate one or more 

scores to measure the matches between candidate peptides and experimental spectra. The 

search results are then processed by either statistical methods (e.g., PeptideProphet) or 

FDR-based methods (e.g., IDPicker) for peptide validation. In latter methods, usually 

only scores from database search tools are used to compute FDR. Here I sought to 

combine spectral quality scores and scores produced by database search tools to increase 

confident peptide identifications. I searched the “DLD1 LTQ” data using Mascot, 

Sequest and X!Tandem against an IPI Human database (v3.56). All search results were 

converted to pepXML files using either an in-house Perl script or software tools in the 

Trans Proteomics Pipeline. The spectral quality scores generated by ScanRanker were 

added to pepXML files using a Perl script. IDPicker subsequently read these scores along 
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with search engine scores during peptide validation. The software combined multiple 

scores by optimizing score weights through a Monte Carlo method, generating a single 

score for each peptide-spectrum match. In this test, I configured IDPicker to use either 

the primary scores from a database search tool or these scores plus the spectral quality 

score.  

 

 

 

Figure 21. Adding ScanRanker scores in peptide validation increases the number of 
confident spectrum identifications. “DLD1 LTQ” dataset was separately searched by 
Mascot, Sequest and X!Tandem. ScanRanker scores were added to pepXML files to 
allow score combination in IDPicker.  Mascot scores were combined using either static 
weights as “IonScore-IdentityScore” or optimized weights as “IonScore + ScanRanker”. 
Sequest and X!Tandem results were combined by enabling score weights optimization in 
IDPicker. The Venn diagrams show the percent overlap of identified spectra when using 
either a single score or combination of two scores. The latter method yielded more 
spectrum identifications for all searches.  

 

Figure 21 shows the percent overlap of confident spectrum identifications in both 

settings. Adding spectral quality scores in peptide validation consistently yielded more 

confident spectrum identifications than using a single score. Mascot benefited 

significantly more from score combination than Sequest and X!Tandem. Some spectra 

may be identified only when using the primary score. These spectra, however, are usually 

less confident identifications that are assigned marginal match scores in database search. 

 

Mascot Sequest X!Tandem 

85.7% 10.1% 4.1% 

IonScore 

-IdentityScore

  

IonScore 

+ScanRanker 

95.1% 3.1% 1.6% 

XCorr 

+deltaCN 
XCorr + deltaCN 

+ScanRanker 

 

94.4% 4.4% 1.2% 

Hyperscore Hyperscore 

+ScanRanker 
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III.4.7 Selection of Spectra for De Novo Sequencing 

De novo sequencing is an alternative, database-independent approach for peptide 

identification. However, inferring peptides from spectra is a time-consuming process. In 

this study, for example, PepNovo took about 8 hours to infer sequences of an Orbitrap 

dataset with 14217 MS/MS scans on a Dell Optiplex 745 computer with an Intel Core 2 

Duo 6400 processor and 3 GB of RAM, while ScanRanker only required 3 minutes for 

spectral quality assessment. Therefore, de novo sequencing could benefit from the 

application of spectral quality assessment tools by selecting high quality spectra for de 

novo analysis.  

As a state-of-the-art de novo sequencing tool, PepNovo assigns a score to each 

inferred peptide sequence to evaluate how well it explains the peak pattern in a spectrum. 

The higher a PepNovo score, the better an inferred peptide matches a spectrum. I 

employed three datasets to demonstrate that high ScanRanker scores are predictive of 

high PepNovo scores. The initial comparison of these scores analyzed the “Yeast Velos” 

dataset, in which peptide identification was straightforward. Figure 22A shows the scatter 

plot between the PepNovo score of the top ranked peptide sequence for each spectrum 

and its ScanRanker score. ScanRanker scores are highly correlated to PepNovo scores, 

producing a Pearson correlation coefficient of 0.82. As expected, spectra identified by 

MyriMatch search tend to associate with high ScanRanker and PepNovo scores. 
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Figure 22. ScanRanker scores can be used to predict de novo sequencing success. Spectra 
in three datasets were separately processed by ScanRanker and PepNovo.  Identifications 
were generated by searching the spectra using MyriMatch. For clarity, only 1000 spectra 
were randomly sampled and displayed. When PepNovo reported no peptide for a 
spectrum, it was visualized as matching the minimum score reported by the software for 
that dataset. Panel C highlights five published key spectra from the Asara group 
publication. In all three tests, spectra with high ScanRanker scores tend to be assigned 
high PepNovo scores, implying that ScanRanker can be used to select high quality 
spectra for de novo sequencing. 
 

Next, I evaluated ScanRanker on datasets for which de novo sequencing would be 

necessary. The “Tardigrade QSTAR” dataset is an LC-MS/MS experiment from a 1D gel 

band from a species of microscopic animals for which genome sequence is unavailable. 

MyriMatch attempted to produce identifications in a customized database containing 

proteins of three species that are taxonomically similar to tardigrade (Drosophila 

melanogaster (DROME), Anopheles gambiae (African malaria mosquito, ANOGA) and 

Caenorhabditis elegans (CAEEL)). Only spectra for peptides of highly similar proteins 

would be identified by this approach; only 66 spectra were identified among the 837 

MS/MS scans in the set. Figure 22B superimposes these identifications on the scatter plot 

of PepNovo and ScanRanker scores. PepNovo and ScanRanker both report that many 

spectra were of high quality and yet failed identification. Pearson correlation between the 

two algorithms produced a coefficient of 0.72.  

(A) (B) (C) 



87 
 

Considerable controversy has accompanied the recent publication of proteomics 

data for fossilized specimens (Schweitzer et al. 2009). I sought to characterize the recent 

“Hadrosaur Orbi” dataset to evaluate the inherent identifiability of spectra for these 

spectra. I began with a database search against a lizard (Anolis carolinensis) database, 

AnoCar1.0, produced by the Broad Institute (http://www.broadinstitute.org/models/anole). 

The result included 189 confidently identified tandem mass spectra, but all matched to 

keratin or trypsin sequences (our database did not include the chicken sequences 

employed by the Asara group). I plotted spectra against the corresponding PepNovo and 

ScanRanker scores (see Figure 22C). Five collagen spectra from the original Asara 

publication were assigned high ScanRanker quality scores of 1.13, 0.99, 0.97, 1.01 and 

1.70; I was unable to match the sixth identification to the corresponding MS/MS 

spectrum. The hadrosaur data produced the lowest correlation between PepNovo and 

ScanRanker (0.34), where the best correspondence could be observed in the high scoring 

domains for the two algorithms. It becomes clear that the data of the “Hadrosaur Orbi” 

set were disproportionately likely to produce PepNovo scores below zero, suggesting that 

a large fraction of spectra from this dataset could not support confident sequence 

identifications even if appropriate sequences were available in FASTA. 

 

III.4.8 Use of ScanRanker in Cross-linking Analysis 

Identification of cross-linked peptides by mass spectrometry is a challenging task, 

mainly because of the high complexity and often low signal intensity in these spectra. 

Even with the availability of advanced computational tools, manual interpretation or 

confirmation of cross-linked peptides is generally necessary. Here I sought to 
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demonstrate that ScanRanker helps to prioritize spectra for manual inspection. The 

published “Crosslink Orbi” (Trnka & Burlingame 2010) dataset consists of 1161 MS/MS 

spectra collected on an LTQ-Orbitrap XL with an ETD module installed (Thermo 

Scientific). Spectra in quadruply charged or higher charge states were selected for ETD 

fragmentation to characterize chemically cross-linked GroEL-GroES chaperonin complex. 

Protein Prospector (Chu et al. 2010) identified 55 spectra of cross-linked peptides 

(manually confirmed) and 91 spectra of single peptides. Figure 23 shows the distribution 

of these spectra, split to deciles by ScanRanker scores. The spectra of cross-linked 

peptides were associated with high ScanRanker scores, suggesting that ScanRanker is 

capable of recognizing these spectra, though they are more complicated than spectra of 

single peptides. The results also indicate that ScanRanker performs well for spectra from 

ETD fragmentation.  

Some spectra were assigned high quality scores but remained unidentified. A 

manual inspection of these spectra implies that they are likely produced by peptides 

rather than non-peptide contaminants. These spectra usually contain a large number of 

peaks. For example, the top 10% of spectra by ScanRanker includes 70 unidentified 

spectra. The average number of peaks in these spectra is 228, which is much higher than 

that number of all spectra (91 peaks) in the dataset. 
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Figure 23. ScanRanker helps to prioritize spectra for manual inspection in cross-linking 
analysis. The “Crosslink Orbi” dataset was processed using Protein Prospector to identify 
crosslinked and non-crosslinked spectra. The figure plots the distribution of these spectra 
in deciles by ScanRanker scores. The identified spectra, either crosslinked or non-
crosslinked, were associated with high ScanRanker scores, implying that ScanRanker can 
be used to facilitate cross-linking analysis by ranking spectra for manual inspection. 

 

 
III.5 Conclusion 

I present a method that assesses quality of tandem mass spectra through sequence 

tagging. ScanRanker does not require training for each type of data from different mass 

spectrometers, broadening its use to lab researchers lacking prior experience in statistical 

learning. In this study, I employed a variety of datasets to demonstrate the effectiveness 

of ScanRanker for recovery of unidentified high quality spectra and removal of low 

quality spectra. I showed that ScanRanker can be used to predict the richness of 

identifiable spectra in LC-MS/MS experiments and to improve peptide validation. I also 

demonstrate the application of our method to rank spectra for de novo sequencing and 

Low High 
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cross-linking analysis. The superior performance of ScanRanker established it as a robust 

and reliable spectral quality assessment tool. 

Wrapping ScanRanker to a library function will improve its usability, making it 

easy to be integrated into other software tools. For example, it can be used as a pre-

processor for database search engines to filter out low quality spectra; it can be integrated 

to IDPicker to provide quality scores for spectral identifications and export unidentified 

spectra for subsequent analysis; it can be incorporated into QuaMeter (described in next 

chapter) to replace the identification step and conduct instrument QC based on the 

identifiable spectra rather than identified spectra. 
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CHAPTER IV 

 

QUAMETER: MULTI-VENDOR PERFORMANCE METRICS FOR LC-MS/MS 

PROTEOMICS INSTRUMENTATION  

 

IV.1 Introduction 

Technologies for proteomic identification via LC-MS/MS rely on a complex 

series of experiments: protein denaturation and digestion, LC separation of peptides 

followed by electrospray ionization, tandem mass spectrometry, and proteome 

informatics. Variation in the performance for any of these elements may impact 

proteomic identification.  The publication of LC-MS/MS quality metrics by Paul Rudnick 

at NIST, working in collaboration with the National Cancer Institute (NCI) CPTAC 

network, introduced a set of metrics that span this complex process (Rudnick et al. 2010), 

enabling recognition of components that were operating at variance with their typical 

performance.  The strategy makes use of defined quality control samples that are 

periodically analyzed between experimental samples in a queue for the mass 

spectrometer. 

The previously described 46 metrics embodied in the NIST MSQC software rely 

on a complex set of algorithms. Data from Thermo RAW files are first transcoded to 

mzXML, MS1, and MGF formats for subsequent processing. The MS1 files enable 

peptide precursor ion chromatograms to be assessed in the NIST ProMS software. The 

tandem mass spectra of an LC-MS/MS experiment are identified by either the SpectraST  

spectral library search engine or the OMSSA data-base search algorithm. The MSQC 
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software can then match precursor ion chromatograms with peptide identifications to 

compute its set of metrics and report them to a text file. 

In practice, several aspects of the MSQC software prevent its use for routine 

instrument monitoring. Its reliance on a modified ReAdW tool for reading raw data limits 

its application to instruments from Thermo Fisher. The coordination among different 

software packages may lead to mis-association of peptide identifications and tandem 

mass spectra when alternative file formats or high scan rate instrumentation are employed.  

Adapting the pipeline for site-specific workflows (such as a different peptide 

identification engine) is a non-trivial task. 

In this work, I present the QuaMeter tool that has the same capabilities as MSQC 

with several important additions. QuaMeter can read files from most mass spectrometry 

vendors via ProteoWizard and does not lose time trancoding to other formats. The 

software accepts identification data from IDPicker, so any identification database search 

engine that produces pepXML or mzIdentML can be used. I demonstrate the use of 

QuaMeter for data collected from instrument of three different vendors. I examine the 

impact of identifications tools on computed metrics. The improvements in QuaMeter 

make it a robust and flexible quality metric assessor with open source.  

 

IV.2 Overview 

To compute QC metrics for a LC-MS/MS experiment, QuaMeter requires two 

input files: an instrument spectral file and an identification search engine results file. As 

shown in Figure 24, ProteoWizard is central to data management for the software 

pipeline.  Its support for native file formats from multiple instrument vendors means that 
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transcoding data to an open format is unnecessary (although support for non-Microsoft 

Windows systems would require this step).  ProteoWizard presents spectra in an mzML 

data model to all of the pictured tools, using uniform “nativeID” labels to relate 

identifications to source scans.  Its incorporation of a chromatogram extractor from 

Crawdad (Finney et al. 2008) supports the full-width-at-half-maximum computations 

needed for the quality metrics.   

 

  

 
Figure 24. Workflow diagram for QuaMeter operation. 
 

The peptide identification tools such as MyriMatch (database search), TagRecon 

(sequence tag-based database search), and Pepitome (spectral library search) all 

incorporate ProteoWizard for both data import and identification export via pepXML and 

mzIdentML formats.  Here I emphasize Pepitome since spectral library search is 

particularly appropriate for repeat identification of QC standard samples.  Raw 

identifications from this step are filtered within the IDPicker protein assembler, and 

filtered identifications are processed by QuaMeter to compute QC metrics. For each LC-

MS/MS run, QuaMeter exports metrics to a table in text format.  
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IV.3 Data Sources 

I tested QuaMeter on several datasets spanning six instruments from three 

different vendors (see Table 4). These datasets were accumulated via QC experiments in 

three laboratories to monitor instrumentation performance.. 

 

Dataset  Sample 
# of 
files 

Average # of 
MS/MS scans Databases used for search 

LTQ-XL BSA 280 11917 RefSeq.BOVINE  
LTQ-Orbitrap BSA 53 3417 RefSeq.BOVINE 
LTQ-Velos Yeast 5 38466 SGD.orf_trans_all 
HCT Ultra BSA 24 3467 RefSeq.BOVINE 
QSTAR Elite Beta-gal 23 451 UniProt.ECOLI 
TripleTOF 5600 Beta-gal 60 1973 UniProt.ECOLI 

 
Table 4. Experimental datasets for the evaluation of QuaMeter.  
 

All datasets were searched using MyriMatch or Pepitome, and search results were 

processed by IDPicker software for peptide validation and protein assembly. Throughout 

this study, IDPicker was configured to derive score thresholds to yield a 5% FDR. 

Filtered identifications and spectral files were processed by QuaMeter to compute QC 

metrics. To compare metrics generated by QuaMeter and MSQC, scripts in Awk were 

created to make IDPicker identifications accessible to MSQC so that both algorithms 

could work from a common set of identifications. Data processing details and software 

parameters are available in Appendix A. 

 

Thermo Fisher LTQ-XL Dataset 

This data constitutes of 280 routine BSA runs at the Jim Ayers Institute for 

Precancer Detection and Diagnosis at Vanderbilt University. The dataset was previously 
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used to test the Pepitome software and the experimental description is published by 

Dasari et al. (Dasari et al. 2012). The files average 11917 MS/MS scans each. All files 

were searched using MyriMatch against a RefSeq BOVINE database or using Pepitome o 

match the NIST BSA spectral library (http://peptide.nist.gov). 

 

Thermo Fisher LTQ-Orbitrap Dataset 

This dataset was also collected at the Jim Ayers Institute for Precancer Detection 

and Diagnosis at Vanderbilt University. Experimental settings were exactly the same as 

above except 10x BSA peptide mixtures were used instead of 1x BSA. All samples were 

analyzed on a Thermo Fisher LTQ-Orbitrap mass spectrometer. A total of 53 files were 

used in this manuscript. Spectra were searched using MyriMatch against a RefSeq 

BOVINE database. The files average 3417 MS/MS scans. 

 

Thermo Fisher LTQ-Velos Dataset 

This is the same dataset as described above for testing the ScanRanker software. 

Five technical replicates were collected for a yeast lysate on a Thermo Fisher LTQ-Velos 

instrument. The files average 38466 MS/MS scans each. Spectra were identified using 

MyriMatch against a yeast database (http://www.yeastgenome.org) downloaded on 

March 2009. All files were also searched by Pepitome against the NIST yeast spectral 

library (http://peptide.nist.gov).   
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Bruker Daltonics HCT Ultra Dataset 

Stock BSA solution prepared in 100mM ammonium bicarbonate buffer was 

digested overnight with sequencing grade Trypsin (Promega) at enzyme-to-substrate ratio 

of 1:50 at 37°C. LC-MS/MS analysis was carried out on an Eksigent 1D-nanopump 

coupling to a Bruker HCT Ultra iontrap mass spectrometer. The mobile phases were 

water and acetonitrile with 0.1% formic acid as an additive. 2uL of working BSA 

solution of 100fmol/uL was load by a FAMOS autosampler with a 10uL sample loop 

onto a 3cm, 360/100 OD/ID trap column of 5um Jupiter C18 particles with loading 

aqueous buffer of 0.1% formic acid at flow rate of 1uL/min and separated on a 15cm 

360/75um OD/ID PicoFrit emitter column from New Objective packed with 3um Jupiter 

C18 particles. Both columns were in house packed. Tryptic peptides eluted during a 

gradient from 2% to 50% acetonitrile at flow rate of 250nL/min. Different LC-gradients 

were applied throughout the data collection. LC-MS/MS data was acquired in positive 

ionization mode with scan segments of 1 precursor ion scan (m/z=375-2000) in standard 

enhanced and 3 subsequent tandem MS scans of three most abundant ions in ultra scan 

mode. Scan average was set to 2 and ion charge control (ICC) was 200,000. Singly 

charge ions were excluded from tandem MS and a 1 minute dynamic exclusion was 

activated for each peptide after two MS tandem acquisitions.  

Instrument raw files were converted to mzML format by the MSConvert tool in 

ProteoWizard. Since Bruker data extraction library does not write precursor spectrum 

reference information in mzML files, which is required for running QuaMeter, a Perl 

script is created to add precursor spectrum references to MS/MS scans. The latest 

previous MS1 scan is assumed as the precursor of neighboring MS/MS scans. 24 files 
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were collected with averagely 3467 MS/MS scan each.  All spectra were searched using 

MyriMatch against a RefSeq BOVINE protein database and identifications were filtered 

by IDPicker.  

 

AB SCIEX QSTAR Elite Dataset 

Predigested, tryptic beta-galactosidase solutions (E. coli) were obtained from AB 

SCIEX and used as quality control samples. Samples were analyzed by reverse-phase 

nano-HPLC-ESI-MS/MS using an Eksigent nano-LC 2D HPLC system (Eksigent, Dublin, 

CA) which was directly connected to a quadrupole time-of-flight (QqTOF) QSTAR Elite 

mass spectrometer (AB SCIEX, Concord, CAN).  Briefly, peptide mixtures were loaded 

from the autosampler (using partial loop fill methods) onto a guard column (C18 Acclaim 

PepMap100, 300 µm I.D. x 5 mm, 5 µm particle size, 100 Å pore size, Dionex, 

Sunnyvale, CA) and washed with the loading solvent (0.1 % formic acid, flow rate: 20 

µL/min) for 5 min. Subsequently, samples were transferred onto the analytical C18-

nanocapillary HPLC column (C18 Acclaim PepMap100, 75 µm I.D. x 15 cm, 3 µm 

particle size, 100 Å pore size, Dionex, Sunnyvale, CA) and eluted at a flow rate of 300 

nL/min using the following gradient:  2-30% solvent B in A (from 0-15 min), 30-80% 

solvent B in A (from 15-17 min) and at 80% solvent B in A (from 17-20 min), with a 

total runtime of 52 min (including mobile phase equilibration). Solvents were prepared as 

described below for the TripleTOF 5600. Mass spectra (ESI-MS) and tandem mass 

spectra (ESI-MS/MS) were recorded in positive-ion mode with a resolution of 12,000-

15,000 full-width half-maximum. For collision induced dissociation tandem mass 

spectrometry (CID-MS/MS), the mass window for precursor ion selection of the 
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quadrupole mass analyzer was set to ± 1 m/z.  The precursor ions were fragmented in a 

collision cell using nitrogen as the collision gas. Advanced information dependent 

acquisition (IDA) was used for MS/MS collection, including QSTAR Elite (Analyst QS 

2.0) specific features, such as “Smart Collision” and “Smart Exit” (fragment intensity 

multiplier set to 2.0 and maximum accumulation time at 2.5 sec) to obtain MS/MS 

spectra for up to seven most abundant precursor ions following each survey scan.  

Dynamic exclusion features were based on value M not m/z and were set to exclusion 

mass width 50 mDa and exclusion duration of 60 sec. All 23 files were searched using 

MyriMatch against a UniProt E.coli database and identifications passing 5% FDR in 

IDPicker analysis were confident IDs. 

 

AB SCIEX TripleTOF 5600 Dataset 

Predigested, tryptic beta-galactosidase solutions (E. coli) were obtained from AB 

SCIEX and used as quality control samples. Samples were analyzed by reverse-phase 

HPLC-ESI-MS/MS using an Eksigent Ultra Plus nano-LC 2D HPLC system (Dublin, CA) 

which was directly connected to a new generation quadrupole time-of-flight (QqTOF) 

TripleTOF 5600 mass spectrometer (AB SCIEX, Concord, CAN) in direct injection 

mode.  The autosampler was operated in full injection mode overfilling a 1 µl loop with 3 

µl analyte for optimal sample delivery reproducibility. Briefly, after injection, peptide 

mixtures were transferred onto the analytical C18-nanocapillary HPLC column (C18 

Acclaim PepMap100, 75 µm I.D. x 15 cm, 3 µm particle size, 100 Å pore size, Dionex, 

Sunnyvale, CA) and eluted at a flow rate of 300 nL/min using the following gradient: at 

5% solvent B in A (from 0-13 min), 5-35% solvent B in A (from 13-29 min), 35-80% 
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solvent B in A (from 29-31 min) and at 80% solvent B in A (from 31-37 min), with a 

total runtime of 58 min including mobile phase equilibration.  Solvents were prepared as 

follows, mobile phase A: 2% acetonitrile/98% of 0.1% formic acid (v/v) in water, and 

mobile phase B: 98% acetonitrile/2% of 0.1% formic acid (v/v) in water.  Mass spectra 

and tandem mass spectra were recorded in positive-ion and “high-sensitivity” mode, with 

a resolution of ~35,000 full-width half-maximum in MS1 mode and ~15,000 in MS/MS 

mode.  The nanospray needle voltage was 2,400 V in HPLC-MS mode.  After acquisition 

of ~ 5 to 6 samples, TOF MS spectra and TOF MS/MS spectra were automatically 

calibrated during dynamic LC-MS & MS/MS autocalibration acquisitions injecting 25 

fmol beta-galactosidase. For collision induced dissociation tandem mass spectrometry 

(CID-MS/MS), the mass window for precursor ion selection of the quadrupole mass 

analyzer was set to ± 1 m/z. The precursor ions were fragmented in a collision cell using 

nitrogen as the collision gas. Advanced information dependent acquisition (IDA) was 

used for MS/MS collection on the TripleTOF 5600 (Analyst TF 1.5) to obtain MS/MS 

spectra for the 20 most abundant precursor ions following each survey MS1 scan 

(allowing for 50 msec acquisition time per each MS/MS). Dynamic exclusion features 

were based on value M not m/z and were set to an exclusion mass width of 50 mDa and 

an exclusion duration of 15 sec. All 60 files were searched using MyriMatch against a 

UniProt E.coli database and processed by IDPicker.  
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IV.4 Results and Discussion 

IV.4.1 Differences between QuaMeter and MSQC 

Validating QuaMeter performance began with a comparison of the values 

computed by MSQC and QuaMeter. I modified MSQC to accept the same identified 

peptides from IDPicker as did QuaMeter. BSA QC runs collected on a Thermo Fisher 

LTQ-XL mass spectrometer were identified by Pepitome using the NIST ion trap spectral 

library (http://peptide.nist.gov), and IDPicker filtered the results to a 5% FDR. Scripts 

converted the filtered identifications for MSQC handling. 

Figure 25 illustrates the correspondence between QuaMeter and MSQC outputs 

for a set of representative metrics. Median precursor m/z error for +2 peptides (MS1-5A 

in NIST nomenclature) is shown in the top-left panel as a representative of metrics with 

very good agreement between both implementations. Most metrics representing peptide 

identifications (such as P-2A, P-2B, P-2C and P-3) yielded similar results. 

The key C-2A metric was a note of discord between QuaMeter and MSQC. This 

metric, describing the duration of time in which the middle 50% of peptides are identified, 

disagreed even when QuaMeter attempted to emulate MSQC behavior closely (top-right 

panel in Figure 25). Inspection of the code revealed that MSQC vacillates in whether or 

not modifications or precursor charge differentiate identifications. Because C-2A plays a 

role in the computation of many other metrics, the QuaMeter implementation was 

changed to a “distinct modified peptide” rule (under which either a sequence difference 

or a modification change resulted in the identification counting as a new peptide). Since 

distinct modified forms for a peptide sequence may chromatographically elute differently, 

this change leads to a more representative metric. 
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Figure 25. QuaMeter generates similar metrics as MSQC except several chromatographic 
metrics due to the use of distinct chromatogram extraction tools. Metrics were generated 
from BSA QC experiments collected on a Thermo Fisher LTQ-XL mass spectrometer. 
 

Because MSQC and QuaMeter extract chromatographic data by distinct tools, 

differences in peak intensity and width are unsurprising. Metric DS-3B evaluates the 

maximum intensity versus the intensity at the time when MS/MS was triggered for the 

50% of peptides with the least intense trigger intensities (see bottom-left panel in Figure 

25). The MSQC software estimated far lower peak intensity maxima than expected from 

manual inspection, resulting in little correlation for this metric. This effect propagated 

through metrics describing the chromatographic process as well as dynamic sampling.  

Metric C-3A (lower-right panel in Figure 25) reports the median peak width (FWHM) for 

identified peptides. QuaMeter, via Crawdad, generally reports lower peak widths than 

QuaMeter 

M
SQ

C
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does the MSQC code. It should be noted that this comparison was performed using an 

early version of MSQC that uses a modified ReAdW tool for chromatogram extraction. 

This strategy has been deprecated in updated MSQC in favor of the ProMS tool that may 

produce more reliable chromatographic data (P. Rudnick, personal communications). I 

was unable to acquire a recent build of ProMS for comparative testing. 

 

* * * *

High 

abundance 

peptide

Low 

abundance 

peptide

AB SCIEX

QSTAR Elite

Bruker Daltonics

HCT Ultra

Thermo Fisher

LTQ-XL

 

 
Figure 26. QuaMeter generates reliable chromatographic data in instruments from 
multiple vendors via the Crawdad function in ProteoWizard. Red lines represent 
experimentally measured intensities in MS and blue lines are extracted ion 
chromatograms generated by Crawdad. Asterisks for the low abundance peptides signify 
the acquisition times for identified MS/MS scans. 
 

Because the Crawdad function has been implemented in the ProteoWizard library, 

QuaMeter can extract chromatographic data from all major vendor formats. QuaMeter 

provides an option to export chromatographic data in mz5 format (Wilhelm et al. 2012) 

which can be visualized by the SeeMS tool in ProteoWizard. Figure 26 illustrates the 

extracted ion chromatograms (XIC) of experimentally measured intensities and modeled 

peaks generated by Crawdad. XIC of representative peptides from three instrument 
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platforms were displayed. For high abundance peptides that were identified with many 

MS/MS scans, Crawdad produced well-fitted chromatograms that match experimental 

data (top panels in Figure 26). In addition, Crawdad also showed excellent performance 

for low abundance peptides with noisy experimental XIC or interfering peaks (bottom 

panels in Figure 26). QuaMeter chromatogram extraction is improved by using the 

precursor mass calculated from identified peptides and by noting the retention times of 

identified MS/MS scans. 

 

IV.4.2 Multi-vendor Performance 

To test QuaMeter’s compatibility with instruments from multiple vendors, I 

employed several datasets collected from Thermo Fisher LTQ-XL, LTQ-Orbitrap, LTQ-

Velos, Bruker Daltonics HCT Ultra, AB SCIEX QSTAR Elite and AB SCIEX TripleTOF 

5600 mass spectrometers. Instrument raw files from Thermo and Bruker were converted 

to mzML format using the MSConvert tool in ProteoWizard. AB SCIEX data were 

converted to mzML files using the AB SCIEX MS Converter (version 1.2). All data were 

searched by MyriMatch and search results were processed by IDPicker. Filtered 

identifications were then processed by QuaMeter to compute QC metrics.  

Rather than evaluate instrumentation performance solely based on the number of 

identifications, QuaMeter provides six categories of QC metrics that monitor 

chromatographic performance, electrospray source stability, MS1 and MS2 signals, 

dynamic sampling of ions and peptide identification. For example, Figure 27 illustrates a 

set of selected metrics describing the chromatographic process for five instruments.  
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Figure 27. QuaMeter computes QC metrics for multiple instrument platforms. Standard 
samples such as BSA or beta-galactosidase were analyzed for routine instrument 
evaluation. C-2A: time period over which middle 50% of peptides were identified. C-4A, 
C-4B, C-4C: median peak width for identified peptides in first, last and median RT decile. 
 

These plots reflect experimental settings and reveal instrument performance 

variability. First, the C-2A metric, the duration of time in which the middle 50% of 

peptides are identified, is very small for the AB SCIEX TripleTOF 5600 and QSTAR 

Elite dataset, implying that peptides were eluted in a short time period. This is because a 

very short LC gradient was applied for peptide separation in these experiments. Second, 

the variation of C-2A metric is relatively large for the Bruker Daltonics HCT Ultra data. 
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This is because different BSA samples for this instrument were separated by different 

HPLC columns and gradients. Likewise, large variations were also observed for other QC 

metrics computed for this dataset such as the number of identifications (data not shown). 

Third, peak widths of identified peptides were not evenly distributed across retention 

time in all tests. The C-4A, C-4B and C-4C metrics report median peak width for 

identified peptides in the early, late and middle retention time, respectively. It can be 

observed that peak width for all instruments varies with retention time. These plots 

demonstrate the cross-instrument capabilities of ProteoWizard and QuaMeter.  

QuaMeter metrics can be used to spot abnormal instrument performance. For 

example, early analysis of TripleTOF 5600 data recognized six files as outliers compared 

to other QC experiments.  As shown in Figure 28, very low numbers of identifications 

were generated from these six files (top-left panel), and a close examination of QuaMeter 

metrics showed that they associated with high precursor mass accuracy errors (bottom-

left panel). The instrument log revealed that these files had a mass accuracy shift due to 

temperature variation (caused by air handler failure within the laboratory). Recalibrating 

these files yielded narrow precursor errors and comparable number of identifications as 

other experiments (right panels in Figure 28). 
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Figure 28. QuaMeter metrics help to spot abnormal instrument performance. Metrics 
computed from TripleTOF data were plotted by date. Six files were recognized as outliers 
in early analysis that had very low number of identifications (blue box in top-left P-2A 
metric) and high precursor mass accuracy errors (blue box in bottom-left MS1-5A metric; 
one point missing for 111104 because zero identification passed 5% FDR threshold from 
this file). Recalibrating these files yielded narrow precursor errors (bottom-right panel) 
and comparable number of identifications as other experiments (top-right panel). 
 

IV.4.3 Impact of identification tools 

Because QuaMeter relies on identified peptides to compute QC metrics, different 

tools for identification may yield different QuaMeter metrics. To evaluate this impact in 

generating QC metrics, I employed a yeast lysate dataset with five technical replicates 

analyzed on a Thermo Fisher LTQ-Velos mass spectrometer. The files average 38466 

MS/MS scans each. This test demonstrates that QuaMeter works well not only for simple 

samples such as BSA and beta-galactosidase but also for complex mixtures. Spectra were 

identified either through database search by MyriMatch or through spectral library search 

by Pepitome. Both identification tools exported search results in pepXML format for 
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processing by IDPicker for peptide validation and protein assembly. Filtered 

identifications were then read by QuaMeter for QC evaluation. Because it accepts filtered 

identifications from IDPicker, any workflow in which identification tools produce search 

results in pepXML or mzIdentML format can also support QC. 

Figure 29 plots a set of selected QuaMeter metrics, one from each of the six 

categories, computed based on MyriMatch and Pepitome identifications. Some metrics 

shifted when the source of identifications changed. For example, the spectral library 

search by Pepitome identified around 15% more spectra than using MyriMatch (see P-2A 

in Figure 29). However, changing identification tools does not lead to substantial changes 

for most metrics. In addition, although identification tools produced different QC metrics, 

the variation for the five replicates from MyriMatch search resembled that seen from 

Pepitome. Therefore, it is very likely that the identification tool has limited effect in 

accessing analytical system performance and technical variability. Given the fact that a 

spectral library search is usually much faster than a typical database search, Pepitome, 

coupled with QuaMeter, provides a practical solution for routine identification and 

analysis of standard QC samples.  
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Figure 29. Distinct identification tools produce different QC metrics with similar 
variation. Five technical replicates of yeast lysate samples were analyzed on a Thermo 
Fisher LTQ-Velos mass spectrometer. Spectra were identified by MyriMatch (MM) and 
Pepitome (PP) separately. Identifications from each search engine were used to compute 
QC metrics. P-2A: Number of MS2 spectra identifying tryptic peptide ions; C-2A: Time 
period over which middle 50% of peptides were identified; DS-2B: Number of MS2 
scans taken over C-2A. IS-3B: Number of 3+ peptides over 2+ peptides; MS1-5A: 
Median real value of precursor errors; MS2-3: Median number of peaks in MS2 scans. 
 

IV.5 Conclusion 

I presented an open-source tool that computes objective metrics for the evaluation 

of shotgun proteomics instrumentation performance. QuaMeter advances the previous 

MSQC tool by supporting most mass spectrometer vendors via the use of the 

ProteoWizard library. The ability to work with IDPicker identification data allows it to be 

incorporated to any identification workflow that produces pepXML or mzIdentML files. 

The improvements in QuaMeter make it a reliable and flexible tool for shotgun 

proteomics QC analysis.   
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Although QuaMeter supports native file formats from multiple instrument 

vendors, many time native files are converted to open formats in data analysis pipeline. 

QuaMeter requires the same spectral file that the database search engine was fed with. In 

additional, drawing conclusions from QuaMeter output is less well-established now. 

Another ongoing project is developing a statistical method based on QuaMeter metrics to 

enable on-the-fly instrument QC. A subset of key metrics need be determined to evaluate 

the analytical systems in routine practice.  

Future directions for QuaMeter include a number of goals.  First, recording 

metrics for experiments to a database rather than a collection of text files will greatly 

improve the production utility of the software.  Second, incorporating assessments of 

MS/MS quality by ScanRanker would be much faster and more adaptable than 

incorporating peptide identifications. Optimizing the strategies by which metric values 

can be evaluated to diagnose sources of instrument variability will be essential.  As these 

techniques mature, QC metrics promise to automate recognition of instrument 

inconsistency before critical samples are wasted.   
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CHAPTER V 

 

DISCUSSION 

 

V.1 Summary of Results 

The work in this dissertation described three new software tools for shotgun 

proteomics data analysis (see Figure 30). The QuaMeter tool focuses on instrumentation 

quality control to assure that data fed into analysis pipeline are collected under stable 

instrument performance. The IDBoost tool focuses on rescuing spectral identifications 

after initial data analysis. Spectra that are not identified after IDBoost can be further 

recovered by the ScanRanker tool for advanced searches. Each tool was developed to 

solve one aspect of problems, but together they work coordinately to provide an 

improved shotgun proteomics data analysis pipeline. 

The IDBoost tool provides a simple and efficient way to rescue spectral 

identifications from current analysis. It incorporates identification evidence of similar 

spectra and applies a rating method to determine the majority vote of these spectra. 

Spectra that were discarded in original analysis due to the failure of passing confidence 

threshold can be rescued in subsequent data analysis. Meanwhile, IDBoost corrects 

database search errors by taking into account search results from a cluster of similar 

spectra. In this dissertation, I demonstrated its applications in phosphorylation studies and 

spectral count based comparative analysis. IDBoost helps to solve phosphorylation site 

ambiguity and improves spectral count based quantification. In addition, IDBoost was 
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implemented in IDPicker, which provides a graphical user interface for interactive 

validation of rescued identifications.  
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Figure 30. A summary of three bioinformatics tools in proteomics data analysis workflow. 
 

IDBoost expands spectral identifications based on existing analysis. This is one of 

its advantages because it does not require additional identification steps. However, this 

also limits its usage because no new peptides will be added to the analysis. In practice, 

IDBoost should be used as a quick tool to rescue identifications after IDPicker analysis. 

To find more peptides, a subset of unidentified spectra can be exported by ScanRanker 

for subsequent advanced searches. 

The ScanRanker tool is a tandem mass spectral quality assessor that recognizes 

the potentially identifiable MS/MS scans. The core of ScanRanker is the DirecTag 

sequence tagging program. ScanRanker evaluates the quality of tandem mass spectra by 
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examining how well sequence tags can be inferred from each spectrum. It can be used to 

recognize unidentified high quality spectra after IDPicker and IDBoost analysis. In this 

dissertation, I demonstrated the use of ScanRanker to select spectra for de novo 

sequencing and cross-linking analysis. This tool can also be used to predict the richness 

of identifiable spectra among multiple LC-MS/MS runs in an experiment. ScanRanker is 

particularly useful for analyzing samples lacking accurate genome annotations. To 

improve its usability, I made a GUI to run ScanRanker and also a program to view the 

results. The IonMatcher viewer allows interactive validation of peptide-spectrum-

matches and offers an interface for de novo sequencing of unidentified spectra. 

The QuaMeter tool is another quality assessor but focuses on the evaluation of 

analytical systems rather than tandem mass spectra. The goal of this project is to provide 

a quality control tool that can be used in many labs for routine instrument monitoring. 

QuaMeter supports most mass spectrometry vendors via ProteoWizard and does not 

require transcoding instrument raw files to other format, making it a fast and easy-to-use 

QC assessor. Because it works with IDPicker identifications, QuaMeter is flexible to be 

integrated into any existing workflow that generates pepXML or mzIdentML. In this 

dissertation, I demonstrated the use of QuaMeter for data collected from different 

vendors. 

 

V.2 Future Direction 

V.2.1 Peptide Identification 

A critical component in proteome informatics is the scoring system that interprets 

observed spectra to peptide sequences. New technologies emerged in the past few years 
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have greatly increased the quality of proteomics data, while the informatics tools is 

slowly catching up. For example, ETD and CID are complementary fragmentation 

methods to cover both long and short peptides. Peptide ions can now be selectively 

fragmented on either ETD or CID mode (Swaney et al. 2008). However, it is challenging 

to combine the information obtained by ETD and CID in a single search. Because they 

generate totally different fragment ions, different scoring schemes need to be developed 

to process ETD and CID data separately. Even the same scoring method can be adapted 

to work for both fragmentation methods, the score distribution may differ substantially, 

making it difficult to combine the search results.  

Current scoring systems usually only consider major fragment ions such as b and 

y ions for CID fragmentation. Adding other abundant ions in scoring schemes may 

improve the discrimination power between correct and incorrect assignments. For 

example, LTQ-Orbitrap data under HCD fragmentation retains low mass and immonium 

ions, which can be considered in scoring methods to improve peptide identification. 

Understanding gas-phase fragmentation chemistry is very important for the 

development of scoring schemes. Unfortunately, current fragmentation model in most 

database search tools predict theoretical spectra far away from the experimental data. The 

massive amount of MS/MS data being confidently interpreted and deposited to public 

repositories helps the development of sophisticate fragmentation models to predict 

accurate fragment ions and their intensities.  
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V.2.2 PTM Identification and Validation 

 Identification of PTM is still a challenging issue even with the recent 

improvements in MS instrumentation and enrichment methods. For example, one 

problem to identify phosphopeptides is that a large number of phosphopeptides 

undergoes beta-elimination reaction (loss of phosphate group) rather than backbone 

fragmentation under CID. This reduces fragment ion signals in MS/MS spectra, making it 

difficult to identify these peptides. As a result, complementary techniques such as ETD or 

MS/MS/MS spectrum may be required for data acquisition. In recent years, experimental 

platforms have been greatly improved for PTM analysis, while no substantial progress 

has been made in computational tools. Advanced algorithms that take advantage of the 

state-of-art technologies are desirable for accurate and large-scale PTM analysis. 

 PTM validation is also a difficult problem. Conventional validation methods may 

not be appropriate for PTM validation because the assumptions for these methods are 

likely to be violated. For example, the target-decoy based FDR approach assumes a one-

to-one correspondence between incorrect target hits and decoy hits, while there is a much 

lower prior likelihood of observing a modified peptide compared to a non-modified 

peptide. As a result, the error rate estimated for the analysis may not be accurate. Future 

developments on advanced methods for PTM validation are necessary. 

  

V.2.3 Next Generation Sequencing and Proteomics 

Interpretation of proteomics data relies heavily on the protein databases, which 

are usually translated from genome DNA sequences. Over the past few years, there have 

been remarkable advances in DNA sequencing technologies with the rapid evolution of 
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next-generation sequencing (NGS).  The advent of NGS has significantly increased the 

throughput and reduced sequencing cost by orders of magnitude, making it a cost-

effective option to obtain global genomic information of the same biological system that 

is targeted for proteomics experiments.  

The availability of complete genomics sequences from a species or individual 

facilitates MS-based protein identifications. The DNA sequences from the same system 

can be translated to proteins, resulting in a more accurate protein database for proteomics 

data analysis. An alternative way is to obtain the transcriptome (RNA-Seq) data, which 

may be a better representation for proteins with mutations or splice variants. With the 

cost reduction of NGS in the next few years, it is possible to routinely sequence critical 

samples and use customized protein databases for proteomics data analysis.  

 

V.2.4 Integration of Omics Data 

Proteomics alone may not be sufficient to characterize the complexity of 

biological systems. Recent advances in various omics technologies enable the detection 

of various biological molecules in a high-throughput manner. Combining different omics 

results obtained from the same biological system will substantially increase the 

understanding of complex biological process. Such a success has been demonstrated in 

the field of microbiology (Zhang et al. 2010), plant systems biology (Fukushima et al. 

2009) and mouse organ protein profiling (Kislinger et al. 2006).  

The Cancer Genome Altas (TCGA) initiative has a rich collection of human 

cancer genome data. Recently the NCI CPTAC consortium partnered with TCGA to 

integrate proteomics and genomics data for cancer research. The same tumor specimens 
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studied by the TCGA network will be analyzed by the CPTAC network, generating a pair 

of proteomic and genomic data for each sample. These different types of systematic 

measurements offer insights in how specific gene alterations affect proteins in individual 

tumors. Computational tools to integrate different omics data will play a critical role in 

these studies.  

  

V.2.5 Targeted Proteomics 

While whole proteome analyses have considerable appeal in systems biology, it 

has some practical limits such as relatively low dynamic range. Targeted proteomics, 

especially multiple reaction monitoring (MRM), are emerging to be a promising approach 

that provides greater dynamic range and higher confidence in identifications, which is 

particularly useful for biomarker verification. MRM methods are under active 

development in recent year, requiring the continuous development of bioinformatics tools. 

Algorithms for peptide and transition selection may benefit from mining the vast amount 

of identifications in the spectral libraries. Methods to detect quantification errors and 

estimate the experiment error rate are also desirable. 
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APPENDIX A 

 

SOFTWARE CONFIGURATIONS 

 

MyriMatch Configurations 
 
Thermo Fisher LTQ-XL and LTQ-Velos, Bruker Daltonics HCT Ultra data: 
 
PrecursorMzTolerance= 1.25 
PrecursorMzToleranceUnits = daltons 
FragmentMzTolerance = 0.5 
FragmentMzToleranceUnits = daltons 
AdjustPrecursorMass    = false  
NumSearchBestAdjustments = 3 
DuplicateSpectra = true 
UseChargeStateFromMS = false 
NumChargeStates = 3 
UseSmartPlusThreeModel = false 
TicCutoffPercentage    = 0.95 
CleavageRules =  "trypsin" 
NumMaxMissedCleavages =  2 
NumMinTerminiCleavages =  2 
UseAvgMassOfSequences = true 
MinCandidateLength =  5 
DynamicMods = "M ^ 15.9949 (Q * -17.026" (add [STY] $ 79.9663 for phosphopeptide 
search) 
MaxDynamicMods = 2 
StaticMods = "C 57.0215" 
ComputeXCorr = true 
 
Thermo Fisher LTQ-Orbitrap data: 
 
PrecursorMzTolerance= 10 
PrecursorMzToleranceUnits = ppm 
FragmentMzTolerance = 0.5 
FragmentMzToleranceUnits = daltons 
AdjustPrecursorMass    = true  
MinPrecursorAdjustment = -1.008665  
MaxPrecursorAdjustment = 1.008665  
PrecursorAdjustmentStep = 1.008665  
NumSearchBestAdjustments = 3 
DuplicateSpectra = true 
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UseChargeStateFromMS = true 
NumChargeStates = 4 
UseSmartPlusThreeModel = false 
TicCutoffPercentage    = 0.95 
CleavageRules =  "trypsin" 
NumMaxMissedCleavages =  2 
NumMinTerminiCleavages =  2 
UseAvgMassOfSequences = false 
MinCandidateLength =  5 
DynamicMods = "M ^ 15.9949 (Q * -17.026" (add [STY] $ 79.9663 for phosphopeptide 
search) 
MaxDynamicMods = 2 
StaticMods = "C 57.0215" 
ComputeXCorr = true  
 
AB SCIEX data: 
 
PrecursorMzToleranceRule = “mono” 
AvgPrecursorMzTolerance = 1.5 m/z 
MonoPrecursorMzTolerance = 100 ppm for QSTAR Elite and 50 ppm for TripleTOF 
MonoisotopeAdjustmentSet = [-1,2] 
FragmentMzTolerance = 0.4 m/z for QSTAR Elite and 0.05 m/z for TripleTOF 
StaticMods = "C 57.0215" 
DynamicMods = "M ^ 15.9949 (Q * -17.026" 
MinTerminiCleavages = 1 
CleavageRules = "Trypsin/P" 
MaxMissedCleavages = 2 
MaxDynamicMods = 2 
DecoyPrefix = "rev_" 
NumChargeStates = 3 
OutputFormat= "pepXML" 
SpectrumListFilters = "peakPicking false 2-" 
TicCutoffPercentage = 0.98 
FragmentationAutoRule =  true 
MaxResultRank = 5 
MinPeptideMass = 0 Da 
MaxPeptideMass = 10000 Da 
MinPeptideLength = 5 
MaxPeptideLength = 75 
UseSmartPlusThreeModel = false 
ProteinSampleSize = 100 
ComputeXCorr = true 
UseMultipleProcessors = true 
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Sequest Configurations 
 
“DLD1 LTQ”, “Mouse HCT” and “Yeast Velos” datasets configurations for ScanRanker 
evaluation: 
 
peptide_mass_tolerance = 2.5 
create_output_files = 1 
ion_series = 0 1 1 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 
fragment_ion_tolerance = 0.0  
num_output_lines = 5 
num_description_lines = 5 
num_results = 500 
show_fragment_ions = 0 
print_duplicate_references = 1 
enzyme_number = 0 
diff_search_options = 15.9949 M 
term_diff_search_options = 0.000 0.000 
max_num_differential_AA_per_mod = 3 
nucleotide_reading_frame = 0 
mass_type_parent = 0 
mass_type_fragment = 1 
remove_precursor_peak = 0 
ion_cutoff_percentage = 0.0 
protein_mass_filter = 0 0 
max_num_internal_cleavage_sites = 2 
match_peak_count = 0 
match_peak_allowed_error = 1 
match_peak_tolerance = 1.0 
add_C_Cysteine = 57.0215 
 

X!Tandem Configurations 
 
“DLD1 LTQ”, “Mouse HCT” and “Yeast Velos” datasets configurations for ScanRanker 
evaluation: 
 
protein, cleavage semi =  yes 
spectrum, search engine = tandem 
spectrum, minimum cosine theta = 0.3 
output, maximum valid expectation value = 1 
residue, modification mass = 57.0215@C 
residue, potential modification mass = 15.9949@M 
protein, cleavage site = [RK]|{P} 
spectrum, use contrast angle = no 
list path, default parameters = iontrap.xml 
output, xsl path = tandem-style.xsl 
refine = no 
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output, results = all 
 

PepNovo Configurations 
 
model = CID_IT_TRYP 
fragment_tolerance = 0.4 for LTQ-Velos and LTQ-Orbitrap, 0.15 for QSTAR 
pm_tolerance = 2.5 for LTQ-Velos, 0.02 for LTQ-Orbitrap, 0.04 for QSTAR 
no_quality_filter = true 
num_solutions =  10  
PTMs = C+57:M+16  
use_spectrum_charge = false for LTQ-Velos, true for LTQ-Orbitrap and QSTAR 
use_spectrum_mz = false for LTQ-Velos, true for LTQ-Orbitrap and QSTAR 

 
TagRecon Configurations 

 
“Histone Orbi” dataset configurations for ScanRanker evaluation: 
 
PrecursorMzTolerance= 0.01 
FragmentMzTolerance = 0.5 
NTerminusMzTolerance =  0.5 
CTerminusMzTolerance =  0.5 
AdjustPrecursorMass =  false 
MaxPrecursorAdjustment =  1.008665 
MinPrecursorAdjustment =  -1.008665 
PrecursorAdjustmentStep =  1.008665 
NumSearchBestAdjustments = 3 
DuplicateSpectra = true 
UseChargeStateFromMS = true 
NumChargeStates = 3 
UseSmartPlusThreeModel = true 
TicCutoffPercentage = 0.98 
CleavageRules =  "trypsin" 
NumMaxMissedCleavages = 2  
NumMinTerminiCleavages =  1 
UseAvgMassOfSequences = false 
StaticMods = "" 
DynamicMods = "M ^ 15.9949 (Q * -17.026 ( $ 42.015 C @ 57.021 [NQ] % 0.98" 
MaxDynamicMods = 3 
ExplainUnknownMassShiftsAs = "blindptms" 
BlosumThreshold = -4 
UseNETAdjustment = true 
ComputeXCorr = true 
MinCandidateLength =  5 
MaxResults = 5 
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Pepitome Configurations 
 
PrecursorMzToleranceRule = "avg" 
MonoPrecursorMzTolerance = "10 ppm" 
AvgPrecursorMzTolerance = "1.5 mz" 
FragmentMzTolerance = "0.5 mz" 
SpectrumListFilters = "peakPicking true 2-;chargeStatePredictor false 3 2 0.9" 
RecalculateLibPepMasses = false 
CleanLibSpectra = true 
LibTicCuttoffPercentage = 0.98f 
LibMaxPeakCount = 100 
MonoisotopeAdjustmentSet = "0" 
TicCutoffPercentage = 0.98 
MaxPeakCount = 150 
CleavageRules =  "trypsin" 
MaxMissedCleavages =  2 
MinTerminiCleavages =  1 
MinPeptideLength =  5 
DynamicMods = "C % 57.021" 
MaxDynamicMods = 3 
StaticMods = "" 
MaxResultRank = 2 
FASTARefreshResults = false 
 

ScanRanker Configurations 
 
PrecursorMzTolerance = 1.25 for LTQ, 0.1 for LTQ-Orbitrap, 0.25 for QSTAR 
FragmentMzTolerance = 0.5 for LTQ, 0.1 for LTQ-Orbitrap, 0.25 for QSTAR 
IsotopeMzTolerance = 0.25 for LTQ and LTQ-Orbitrap, 0.125 for QSTAR 
StaticMods = C 57.0215 
NumChargeStates = 3 
UseAvgMassOfSequences = 1 for LTQ, 0 for LTQ-Orbitrap and QSTAR 
UseChargeStateFromMS = 0 for LTQ, 1 for LTQ-Orbitrap and QSTAR 
UseMultipleProcessors = 0 
WriteOutTags = 0 
 

IDPicker Configurations 
 
Maximum FDR = 0.05 
Minimum distinct peptides = 2 (1 for synthetic peptide data) 
Minimum additional peptides = 1 
Minimum spectra per protein = 2 (1 for synthetic peptide data) 
 

QuaMeter Configurations 
 
RawDataPath = ../mzMLs/  # where to find the raw files for each idpDB 
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RawDataFormat = mzML     # the file extension to expect for the raw files; e.g. mzML, 
mzXML, raw 
Instrument = LTQ                  # if set to LTQ, average masses are used, else monoisotopic 
masses 
ScoreCutoff = 0.05                # IDPicker FDR cutoff 
ChromatogramMzLoIrOffset = 1.0mz   # the loIr bound of the window for building 
chromatograms; can be in m/z or ppm 
ChromatogramMzUpperOffset = 1.0mz   # the upper bound of the window for building 
chromatograms; can be in m/z or ppm 
ChromatogramOutput = false          # if true, creates an mz5 file with the chromatograms 
(best vieId with SeeMS) 
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