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CHAPTER |

INTRODUCTION

The topic of this dissertation is the developmeftnovel algorithms and
bioinformatics tools for proteomics data analysl$is chapter provides a general
introduction to the field of proteomics and theadahalysis process. The following is not
intended to be a complete coverage of all areggaieomics, but rather to serve as an
overview in order to provide an understanding o thork detailed in the following

chapters.

I.1 Mass Spectrometry-Based Proteomics
1.1.1 Overview

Proteomics as a discipline can be defined as thetifccation and quantification
of the complete set of proteins in a cell or tisatia particular state. Although a number
of alternative proteomics strategies such as prosgray based methods have been
developed, mass spectrometry (MS)-based protedmaigdecome the method of choice
for large-scale studies. The applications of MSeblgsroteomics approaches have proved
to be successful in molecular and cellular biologgearch including post-translational
modification (PTM) identification and protein-prateinteractions (Aebersold & Mann
2003). With recent improvements in instrumentat@o methodology, proteomics has
undergone tremendous advances over the past fevg, yeaabling many powerful

applications such as functional analysis of commeganisms (Schrimpf et al. 2009),



global analysis of PTM (Witze et al. 2007), largale reconstruction of protein
interaction networks (Gstaiger & Aebersold 2009) antroduction of proteomics in

clinical and translational research (Bousquet-Duicet al. 2011).
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Figure 1. The typical MS-based proteomics workflow.

The typical workflow for a bottom-up MS-based prtecs experiment is
illustrated in Figure 1. The first step is to redube complexity of a biological sample by
one or several separation techniques such as SE=RAd two-dimensional (2D) gel
electrophoresis. Large proteins are then digestgebptides using site-specific proteases.
Next, peptide mixtures are separated by liquid ctatmgraphy and ionized in a mass

spectrometer. Precursor ions with particular massairge in/2 values are selected and



collided with nonreactive gas to generate fragmens. The correspondingp/z values
and peak intensities of fragment ions are recoidethndem mass spectra, which are
interpreted to peptides by computational tools.alyn the identified peptides are

assembled into a list of proteins that are mostyilpresent in the sample.

1.1.2 Sample Preparation and Separation

In proteomics studies, complex biological samples tontain a large number of
proteins are often separated to simple mixturesr poi MS analysis. Various separation
techniques can be used for this purpose. A wideBduapproach is to separate protein
mixtures by SDS-PAGE, and then cut the gel to foast for MS analysis. Samples of
high complexity are now often fractionated by 2D-géectrophoresis (Kenrick &
Margolis 1970), which separates proteins basedein tsoelectric points and molecular
weights. Each spot in the gel may represent orseweral purified proteins that can be
further analyzed by MS. Recently a gel-based pegguel isoelectric focusing approach
(Horth et al. 2006) has been shown to provide cemphtary coverage to the
conventional gel-based fractionation method anttiyneggher identification rates (Hubner
et al. 2008).

A gel-free approach known as shotgun proteomicecty analyzes large
mixtures of peptides by coupling the electrosp@yzation (ESI) of mass spectrometer
in-line with a liquid chromatography (LC) systemepfides are separated in the
chromatography system to reduce the complexity. Twapor types of LC systems are
reverse phase high pressure liquid chromatograBRyHPLC) that separates molecules

by hydrophobicity and ion exchange chromatograptat separates molecules by their



charges. High complexity samples can be separatieg the multidimensional protein
identification technology (MudPIT) (Washburn et @aD01), which consists of a two
dimensional chromatography. The first dimensiorussially a strong cation exchange
(SCX) column with high loading capacity. Eluted sd@s are subsequently separated by
a reverse phase chromatography.

An alternative approach is the use of affinity echetography to selectively enrich
certain types of peptides or proteins. Affinity ehmatography is often used to enrich
post-translational modified peptides or proteinsnake them more measurable by mass
spectrometers. For example, the immobilized metalaffinity chromatography (IMAC)
can be used to enrich phosphopeptides (Thingholal. &009), and blended antibody
columns can be used to deplete plasma samplesebefSranalysis (Dayarathna et al.
2008, Pernemalm et al. 2009), which is a very @&ffecway to reduce the sample

dynamic range.

1.1.3 Protein Digestion
Proteins are usually cleaved to peptides by higitifipity proteases prior to MS
analysis. Trypsin is by far the most commonly upestease that cleaves peptides at the
C-terminal side of arginine and lysine. Most progehave tryptic cleavage sites that
produce peptides with proper length for MS analy$ise cleavage generates “tryptic
peptides” if both ends of peptide sequences conftonihe trypsin cleavage rules.
Specific cleavage on only one end of peptide sexpgeproduces “semi-tryptic peptides”.
Sometimes the “missed cleavages” may occur if tegulpeptides contain internal

trypsin cleavage sites.



The trypsin cleavage leaves a basic residue aCttegminus which allows for a
positive charge in acidic solution, producing cleargpeptides for MS analysis.
Alternative site-specific protease such as chynpsiry, GluC, LysC and AspN may also
used in proteomics experiments, mainly for the ease of sequence coverage to

distinguish homologous proteins or map PTM.

l.1.4 Mass Spectrometry Instruments

A mass spectrometer consists of three componentggzation source, a mass
analyzer and a detector. Peptides eluted from @s\istem are transformed to gas phase
charged ions, and then separated by mass analyaidrgespect to theim/z values.
Finally, the detector records the ions passingutinomass analyzers, and reports them as
mass spectra withn/zvalues of detected ions on the horizontal axis thed intensities
on the vertical axis.

The ionization source introduces analytes into ittegrument by transforming
peptides or proteins to charged gaseous ions. Tajornypes of ionization methods in
proteomics studies are matrix-assisted laser desofipnization (MALDI) (Tanaka et al.
1988) and ESI (Fenn et al. 1989). MALDI method cgstallizes analytes with a matrix
and applies UV laser light to vaporize them to gedrions. ESI sprays analytes to small
droplets under high voltage. These droplets arsesyuently vaporized to charged ions.
Typically ions generated from MALDI are singly chad and ESI produces both singly
and multi-charged ions.

The mass analyzer separates the charged ions bas#tkir m/z values. In a

bottom-up LC-MS/MS experiment, tandem mass spe@#&/MS) are achieved by



performing two mass analyses. The first MS analysgsasures then/z values of ions
(precursor ions), and selects ions in a certairgeato undergo fragmentation. The
selection can be controlled by instrument softwAreexclusion list that contains tine/z
values of most recently fragmented precursor ioms be used to reduce sampling
redundancy. The resulting ions (product ions ogrrant ions) are separated in the
second mass analysis to generate tandem massaspectr

Common mass analyzers used in proteomics expesmaeitide quadrupole, ion
trap, time of flight (TOF), Fourier transform ioryaotron resonance (FTICR) and
orbitrap. Each instrument has its strengths andkmesses with respect to the speed,
mass accuracy and resolution. More detailed dismussof these instruments are
available in recent reviews (Yates et al. 2009,Ik&pn 2010).

The ion trap instrument is probably by far the magdely used mass
spectrometer due to its robustness, high sengitwitl relatively low price. However, the
mass accuracy of ion trap is relatively low. In i&idd, there is a trade-off between the
depth of the trapping potential and the width of th/z range. Hence, in order to still
contain the precursor ions, th@zrange has to be compromised. Usually ions bel@wv 1/
of the precursor iom/z will not be scanned in MS/MS, which is known aswlmass
cut-off” of ion trap. For example, a peptide with dmino acids may have a neutral mass
as 1100 Da. Even it is doubly charged, the ionsvbell83m/z may not be acquired. In
contrast, the mass range of immonium ions of aramids is from 30 to 159. Therefore,
immonium ions are often not observed in ion trap.

A recent major breakthrough is the proliferation tbe LTQ-Orbitrap mass

spectrometer (Hu et al. 2005). This hybrid instrameombines the robustness and



sensitivity of ion trap instruments with very higlesolution and mass accuracy
capabilities. It also has a higher dynamic rangentBTICR (Makarov et al. 2006). In
addition, LTQ-Orbitrap instruments can be configlte preserve low mass ions that are
not observed in ion traps (as discussed in nextosgc The fast sequencing speed, high
mass accuracy and high dynamic range make it phatlg suitable for both qualitative
and quantitative analysis of complex peptide mies$uiOlsen et al. 2009).

The mass accuracy and resolution of mass specteosnahve a substantial effect
on the collected spectra. High mass accuracy atsbles accurate determination of
peptide ion charge state, thus greatly benefitsstlissequent data analysis. It has been
observed that data produced from high mass accumaslyuments can be better

interpreted by bioinformatics tools (Zubarev & Maz2®07).

[.1.5 Peptide Fragmentation
Fragmentation Methods
In LC-MS/MS experiments, selected precursor iors faagmented to product
ions before detection. Figure 2 illustrates possiibins fragmented along the peptide
backbone. The ion type depends on where peptidk®@nd which side of the fragment
receives the proton(s). If the charge is retainedhe N—terminal side of the fragmented
peptide, a, b or c ions are created, while x, ¥ mns are generated if the charge is on the

C-terminal side.



Figure 2. Theoretical fragmentation of a peptiddapted from Figure 2 in Wysocki et al.
(2005).

Collision-Induced Dissociation (CID) is currentijhet most commonly used
fragmentation method. Low-energy CID that is oftesed in quadrupoles and ion trap
instruments mainly generates a, b, y ions and thaittral losses of water or ammonia.
CID is a sensitive method and works well for lovaayed peptides (+2 or +3). However,
labile modifications such as phosphorylation angcgsylation often lost during CID. In
addition, it does not fragment long peptides wEliese disadvantages can be solved by
introducing Electron Transfer Dissociation (ETD)o@ et al. 2005). ETD produces
sequence-independent fragmentation and generadesl @ ions. It particularly works
well for long peptides, which can be generated siggiother proteases instead of trypsin.
Although ETD has lower sensitivity than CID, it peeves the labile modifications,
making it a valuable method for phosphorylation ghaosylation studies.

Since CID works better for short peptides while E€krels for long peptides,
these two fragmentation methods therefore compléraanoh other. A “decision-tree”
model (Swaney et al. 2008) has been developeddsesageptide ions on-the-fly and
determine which fragmentation method should beiegpb these ions. This approach

produced almost 40% more peptide identificationagared to CID alone.



Another fragmentation method is the Higher-energlli§ion Dissociation (HCD)
that is available in LTQ-Orbitrap instruments. # particularly useful to pinpoint
modifications such as phosphorylation becausertimeanium ions generated from HCD
fragmentation will be preserved in mass spectrad@kt al. 2007). In addition, other low
mass ions missing in ion trap instruments can ldectid in LTQ-Orbitrap via HCD
fragmentation, producing more abundant peaks irsrapsctra. The high mass accuracy
and abundant ions in the HCD spectra may greatiifittte the downstream peptide
identification (Bereman et al. 2011).

CID fragmentation is well supported by almost atppde identification tools,
while software for the analysis of ETD fragmentatidata is currently less developed,
and not all identification tools are now fully apized to handle ETD data. Recent
efforts have been made to develop new scoring rdstBpecifically for the analysis of
ETD spectra (Sadygov et al. 2009, Sun et al. 20A0study also showed that an
optimized scoring algorithm for ETD data can drao@ly increase spectral

identifications (Baker et al. 2010).

Understanding Fragmentation Pathway
The gas-phase peptide fragmentation process haghbeen fully understood. A
number of studies have been conducted to investigia¢ fragmentation pathway
(Wysocki et al. 2000, Zhang 2004, 2005, Klammerlet2008). The “Mobile Proton
Model” (Wysocki et al. 2000) describes the fragnagioh pathway under low-energy
collision. In an ion trap instrument, for exampteptonated precursor ions are trapped

and undergo precursor ion selection, fragmentaton, fragment ion detection in the



same space. During CID, an ion trap applies a I4icRF voltage to induce peptide
fragmentation. Under this voltage, precursor ioresexcited to a higher internal energy
level by collisions with nonreactive gas, making tbharged proton migrating to
energetically less favored protonation sites, sasipeptide backbone. With a proton at
the carbonyl oxygen of an amide bond, the precedamgonyl can serve as a nucleophile
to attack this carbonyl oxygen, forming an intermaésl ring structure that subsequently
breaks to dissociate the peptide bond (see Figuréhg N-terminal fragment forms a b
ion and C-terminal fragment becomes a y ion. Thukatge directed” fragmentation
occurs simultaneously in many molecules of the spemide, resulting in different b and

y ions that can be detected in MS/MS scan.

Ry

. o)

OH R3 o) R3

o)
NH NH Rs HoN o
HoN NH, OH . + NH
-/
R N

o] R o] Ry L H o)

OH
Ry

Figure 3. Mobile proton model for peptide fragmeiota

While “charge directed” peptide fragmentation isrdieated in CID, peptide may
dissociate in “charge remote” way that does notireqthe migration of a proton to
peptide bond. The “pathways in competition” modehigs & Suhai 2005) explains
several alternative fragmentations. For exampke sttle chains of aspartic acid, glutamic
acid, asparagine, glutamine, histidine, lysine anginine can attack their C-terminal
carbonyls to break the peptide bonds and form byaiotis. Loss of water may occur in

the C-terminal COOH group, N-terminal glutamic acd serine/threonine containing
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peptides. Loss of ammonia may occur from the shi@ns of asparagine, glutamine,
lysine and arginine residues when the side chaiespeotonated. Peptides with labile
PTMs often lose the modification groups because fhocess requires lower energy than
breaking peptide bond. In low-energy CID, moving prbton(s), nucleophilic attack,
breaking and forming chemical bonds are the priecgiemical reactions that produce
fragment ions.

Understanding the rules underlying the gas-phasptiqe dissociation is
important for the development of software toolsrr€nt peptide identification tools often
either implement a simple prediction model or tgtagnore the intensities of product
ions in their scoring schemes. Improving the prgaiic of product ion intensities
increases the discrimination power of scoring systéor peptide identification (Havilio

et al. 2003, Elias et al. 2004, Frank 2009a, b).

|.2 Proteomics Data Analysis
1.2.1 Overview

Automated bioinformatics tools play essential ralegproteomics data analysis
(Domon 2006, Nesvizhskii et al. 2007). Frequentiyndireds of thousands of tandem
mass spectra are generated in a single proteomjsriment. The vast numbers of
spectra place a heavy burden on data analysisiriregjan automated high throughput
way for spectral interpretation.

Figure 4 summarizes the typical proteomics datdyaisaworkflow. It starts with
assigning peptide sequences to experimental spediah can be done with different

strategies discussed in next section. Next, pepdielifications are validated to estimate
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the confidence of the assignments, and high comffictentifications are used to infer
proteins. In many studies such as PTM analysesrmgs searches may be conducted to

interpret spectra that are evaded in the first doofranalysis.

Advanced Searches

{ 2

Identification

N
2N i e

Peptide
Pentide Id ificati ALVQQMEQLR
eptide Identilication ESQLPTVMDFR
VPGLYYFTYHASSR
TMGYQDFADVVCYTQK

Protein
Peptide Validation and IPI:IPI00005721.1
. c IPI:IPI00007240.2
Protein Inference SWISS-PROT:P59665

SWISS-PROT:P05160

Figure 4. The typical MS-based proteomics dataysmatvorkflow.

Bioinformatics tools have been used for MS-basetepmics data analysis since
1990s. During the past few years, many scoringralgns have been developed to take
advantage of improvements in MS instrumentation rlagmentation technologies. A

partial list of these tools is summarized in Tahle
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Reference

Program Web site

Database search tools

Sequest thermo.com

Mascot matrixscience.com

ProteinProspector prospector.ucsf.edu

SpectrumMill www.chem.agilent.com

Phoenyx www.genebio.com/products/phenyx
X!Tandem www.thegpm.org

OMSSA pubchem.ncbi.nlm.nih.gov/omssa
VEMS 3.0 yass.sdu.dk

MyriMatch fenchurch.mc.vanderbilt.edu/software.php
ProteinPilot www.absciex.com

pFind 2.0 pfind.ict.ac.cn

Mass Matrix www.massmatrix.net/mm-cgi/home.py
Andromeda www.biochem.mpg.de/en/rd/maxquant
MassWiz sourceforge.net/projects/masswiz

De novo sequencing tools

(Eng et al. 1994)

(Perkins et al. 1999)
(Clausdr £989)

(Colingal.€2003)
(Craig & Beavis 2004)
(Geer etG042
(Matthiesen et al. 2005)
(Tabb et al. 2007)

(Wang et al. 2007)
(XUFgeitas 2008)
(Cal.e2011)
(Yadal.€1011)

(\Breukelen et al. 2010)

Lutefisk www. hairyfatguy.com/Lutefisk (Johnson &yiiar 2002)

PEAKS www.bioinformaticssolutions.com (Ma et al03)

Sequit www.sequit.org

PepNovo proteomics.ucsd.edu/Software/PepNovo.html  Frank & Pevzner 2005)

pNovo (Chi et al. 2010)

Vonode compbio.ornl.gov/Vonode (Pan et al. 2010)

LysNDeNovo gforge.nbic.nl/projects/lysndenovo

Sequence tagging-based database sear ch tools

Popitam www.expasy.org/tools/popitam (Hernandea.2003)

InsPecT proteomics.ucsd.edu/Software/Inspect.html Tander et al. 2005)

ByOnic www.parc.com/work/focus-area/mass-spectra- (Bern et al. 2007)
analysis

MODi http://modi.uos.ac.kr/modi (Na et al. 2008)

TagRecon fenchurch.mc.vanderbilt.edu/software.php Daséri et al. 2010)

Spectral library search tools

X!Hunter h201.thegpm.org/tandem/thegpm_hunter.html (Craig et al. 2006)

Biblispec proteome.gs.washington.edu/software/bdiplec/ (Frewen et al. 2006)
documentation/index.html

SpectraST www.peptideatlas.org/spectrast (Lam. X0417)

Pepitome fenchurch.mc.vanderbilt.edu/software.php Daséri et al. 2012)

Peptide validation and protein inference tools

PeptideProphet www.proteomecenter.org/software.php (Keller et al. 2002)
ProteinProphet www.proteomecenter.org/software.php (Nesvizhskii et al. 2003)
MS-GF proteomics.ucsd.edu/Software/MSGeneratingFKim et al. 2008)
ction.html
MaxQuant www.biochem.mpg.de/en/rd/maxquant (Cox &l 2008)
IDPicker fenchurch.mc.vanderbilt.edu/software.php Ma et al. 2009)
Scaffold www.proteomesoftware.com (Searle 2010)
MassSieve www.ncbi.nlm.nih.gov/staff/slottad/Mags@i (Slotta et al. 2010)
PeptideClassifier www.mop.unizh.ch/software.html eli@ Ahrens 2010)

Table 1. Bioinformatics tools for MS-based protecsilata analysis.
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1.2.2 Peptide Identification
The first step of data analysis is to assign pepsdquences to experimental
spectra. As shown in Figure 5, the peptide idematifon strategies can be roughly
summarized to four categories: database sedemovosequencing, sequence tagging-

based database search and spectral library search.

i Sequence DB search Sequence
Peptide i database
Theoretical spectrum
00060006000066060 TS11DAQSAPLR
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Figure 5. Four peptide identification strategieslapted from Figure 2 in Nesvizhskii
(2010).

Database Search
The most widely used approach for peptide idemifon is to conduct a database

search using software tools such as Sequest (Eaf) €094), Mascot (Perkins et al.
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1999), X!Tandem (Craig & Beavis 2004), OMSSA (Geeral. 2004) and MyriMatch
(Tabb et al. 2007). Figure 6 illustrates the databaearch strategy for peptide
identification. To interpret spectra, database d&eaools first perform ann-silico
digestion of a protein database to enumerate atidate peptide sequences, where
masses of these peptides are similar to those s¥reéd precursor ions. A theoretical
spectrum constructed for each candidate sequenteeis compared to the observed
spectrum, producing a matching score to describe Wwell a peptide interprets the

spectrum.

a1

Protein sequences

l In silico digest

Candidate peptides
l Fragmentation model
. IP| EIP| TI
Intens1ty ‘
mass/ charge

N

Match scorer

l

Identified peptides

Figure 6. Peptide identification by the databasedestrategy.
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The number of candidate peptides that are comparadspectrum is affected by
database search parameters, particularly preciosanass tolerance, enzyme digestion
constraint and the number of allowed modificatiesvizhskii 2007). Although a large
number of candidate peptides may be compared tpeetrsm, database search tools
usually only export the top few peptides rankedating to search scores. In most cases,
only the top ranked peptide of each spectrum wall donsidered for the subsequent
validation and protein inference.

A critical component in a database search progmrtheé scoring function to
measure the similarity between the experimental thedretical spectra. A number of
scoring schemes have been developed including gaeoficorrelation functions (cross
correlation in Sequest and dot product in X!Tandewn)probability-based models
(Mascot and MyriMatch). Usually database searcHstamplement multiple scoring
functions to evaluate the peptide-spectrum-mat¢R&Ms) in different aspects. These
scores vary from arbitrary values such as XCoequest to statistical measures such as
e-values in X!Tandem. Individual scores or the coration of multiple scores can be
used for the subsequent peptide validation.

Database search parameters have a great impactasohsresults. First, the
precursor mass tolerance determines which peptads be compared to the
experimental spectrum, i.e., only peptides with seaswithin the precursor mass
tolerance will be scored. High mass accuracy ins¢nis allow a very narrow mass
window specified in database search compared toni@ss accuracy data (e.g. 10 ppm
for orbitrap data compared to 3 Da for LTQ). Theads to fewer possible candidate

peptides that are compared to the observed spectihusidramatically reduces searching
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time and decreases the number of false matchesn@eenzyme digestion constraint
also controls the number of candidate peptideset@dmpared. For example, a tryptic
search produces less candidate peptides than amsirenined or semi-tryptic search. As
a result, it usually spends less time than nontitygearches. A tryptic search, however,
eliminates the possibility to identify peptides tthandergo unexpected cleavages.
Meanwhile, other database search parameters suchheasnumber of allowed
modifications, deisotoping setting and the refeeepmtein database can also affect the
search results (Nesvizhskii 2010).

Although database search offers an automated higlrghput approach for
peptide identification, they rely heavily on protedatabases, in which some of the
genome sequences and annotations may not be accltate importantly, mutations
and modified peptides in biological samples arerofgnored by existing database search
methods. In addition, database search is a vemlrtiomsuming process because the large
number of comparisons between observed spectrabemdcandidate peptides. These

issues are addressed by the development of théR&@n&ar tool described in Chapter Ill.

De Novo Sequencing
Unlike database search that requires a referenceeiprdatabase for peptide
identification, de novosequencing infers peptide sequences directly frapermental
spectra. The inferred peptides can be mapped teipsoby downstream tools such as
MS-BLAST (Shevchenko et al. 2001). This is pariely useful when the organisms of
interest have unsequenced or partially sequencaohges. However, since this approach

requires high spectral quality for accurate intetg@tion, and is very computationally
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intensive, it has not yet been used for large-sgal@eomics data analysis. The
ScanRanker tool described in Chapter Il helpdlaviate this problem.

As summarized in Table 1, seveda novosequencing tools have been described.
Early tools such as PepNovo (Frank & Pevzner 2@608) PEAKS (Ma et al. 2003) were
developed for low resolution data under CID fragtagon. Recent efforts have been
made to develop nede novosequencing algorithms for high mass accuracy (@atnk
et al. 2007, Pan et al. 2010) or data collecteceurtCD (Chi et al. 2010) and ETD (van
Breukelen et al. 2010) fragmentation. These rebearalemonstrated thate novo
sequencing can be greatly improved by the use gif mass accuracy instruments and

advanced fragmentation methods.

Sequence Tagging-Based Database Search

Sequence tagging-based database search combeesovo sequencing and
database search strategies. It first infers sheptie sequences (“tags”) from spectra.
These tags are then used to match candidate pepiide database search. A tag
comprises three parts in mass-sequence-mass fdhmanass flanking the N-terminal of
the partial sequence, the partial sequence, andndss flanking the C-terminal of the
partial sequence. A candidate peptide is selectasddre against the spectrum if both the
partial sequence and flanking masses in the obdespectrum match to the peptide.
Compared to traditional database search methodsuiea precursor masses to select
candidate peptides, sequence tagging employs tagthea text-based filter, which
improves specificity and reduces the number of ihatd sequences by a few orders of

magnitude.
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Sequence tagging-based approach is particulartfulute the identification of
mutations or post-translationally modified peptid&ann & Wilm 1994, Nesvizhskii
2010). Bioinformatics tools such as InsPecT (Tamtex. 2005), MODi (Na et al. 2008)
and TagRecon (Dasari et al. 2010) are examplesthptoy sequence tagging to enable
modification searches. These programs treat thes stais between experimental spectra
and candidate peptides as potential modificatiamsl place the mass shifts on amino
acids that best explain the spectra. Bid¢hnovosequencing and sequence tagging-based
database search benefit from the high mass accofacydern mass spectrometers. In
Chapter 1llI, I will discuss the use of sequencegtag approach for spectral quality

assessment.

Spectral Library Search

Spectral library search is a fast and sensitiveaggt for peptide identification
compared to a conventional database search. Ridufermatching observed spectra to
computationally modeled theoretical spectra, MS/M&ns can be interpreted by
matching against a spectral library, which is @édacollection of observed spectra that
are confidently identified in previous experimentioinformatics tools such as
SpectraST (Lam et al. 2007), Bibliospec (Freweralet2006), X!'Hunter (Craig et al.
2006) and Pepitome (Dasari et al. 2012) were deeeldor spectral library searching.
The National Institute of Standards and Technol¢iyyST) made several spectral

libraries publically available for multiple speci@ggtp://peptide.nist.gov

Spectral library search is very computationallyics#iht. The accuracy of this

method is considered to be higher than conventiolashbase search. It is particular
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useful for fast identification of well-studied saleg. For example, bovine serum albumin
(BSA) samples are routinely analyzed for instruragah quality control (QC). Spectral

library search is an ideal method for quick idecdifion of these QC samples. A
disadvantage of spectral library search is thay peptides that are previously identified
can be assigned to newly observed spectra, apeértsrmance is largely affected by the
completeness and accuracy of assembled spectialidib. In addition, a spectral library
constructed for a particular type of mass specttemmay not be applicable to data
collected on other types of instruments due to dtiterent gas-phase fragmentation

principles.

1.2.3 Peptide Validation
Overview
Peptide identification tools evaluate all possitdedidate peptides for each input
spectrum, and usually only the best-scoring sequéncised to interpret the spectrum.
However, not all PSMs are correct assignments.olrtrast, sometimes the majority of
best-scoring peptides assigned by database seamishate incorrect PSMs (Domon 2006,
Nesvizhskii et al. 2007). The reasons for the figglure rate include:

(1) Sequence not in database. Peptides with mutatimhsiaexpected modifications
will not be identified. Their spectra may be assmjnincorrect best-scoring
peptides.

(2) Contaminant spectra. Database search only identifigectra derived from
peptides, while chemical contaminants that areduced to MS analysis during

sample preparation are assigned wrong peptide segsie
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(3) Low quality spectra. Poorly fragmented peptidesermoforoduce low quality
spectra that have either high signal-to-noise (SAtip or less peaks to match
peptide sequences, thus may be assigned incoeptitips in database search.

(4) Insufficient scoring scheme. Database search esgofien apply a simplified
fragmentation model to predict the theoretical sp@a, while in reality peptide
fragmentation depends on many factors such as amb composition and
location, and produces more complicated spectra.

(5) Chimera spectra. Multiple peptides with the sanievalue may be concurrently
isolated at the same time, thus produce a chinfgatsim with fragment ions
from all these peptides. Database search tools asaign one of the correct
peptides or a wrong sequence to a chimera spectrum.

(6) Incorrect precursor charge state or mass. The mecion mass of a spectrum
can be measured inaccurately, and wrong candidgiBdes may be selected to
match the spectrum. Meanwhile, peptide charge state be incorrectly
determined, especially for low resolution instrunsesuch as LTQ.

(7) Inappropriate search parameters. A wide precursassntolerance introduces
more candidate peptides for comparison, thus hpetential to produce more
incorrect PSMs. A narrow precursor mass tolerameethe risk to exclude correct
peptides for comparison. A tryptic search will nigkentify peptides with

unexpected cleavage, resulting in incorrect peptagsigned to these spectra.

Figure 7 illustrates the score distribution of eotrand incorrect PSMs, which may

overlap significantly depending on how well theynche discriminated by database
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search scores. Incorrect PSMs may score highersibraue correct PSMs due to spurious
matches, homologous peptide sequences, or becpeskasfor these correct PSMs are
relatively low quality spectra. It is desired thitabase search programs achieve a high
discrimination between correct and incorrect PSMgpeptide identification. Improving
database search scoring schemes and developingcadivaeptide validation methods
may both reduce the overlap region of correct ammbrrect PSMs, and subsequently
reduce false peptide sequences for protein infetenc

Some correct PSMs may be excluded for subsequahtsa because they fail to
pass the confidence threshold (see Figure 7, re8ibnMeanwhile, some spectra are
assigned incorrect peptides because these peptiedassored better than correct ones due
to many possible reasons described above. Thesesissan be alleviated by the
introduction of the IDBoost tool described in Crept.

Since peptides with unexpected modifications anthtrans will not be identified
in database search, these spectra will generateréaot PSMs. Advanced identification
methods such as sequence tagging-based modificatiarch orde novosequencing
helps to interpret these spectra, while how to fihdse spectra remains an issue. In

Chapter Ill, 1 will demonstrate the use of the SRanker tool to solve this problem.
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Figure 7. Score distribution for correct and ineatrPSMs. Adapted from Figure 1 in
Brosch & Choudhary (2010). Shaded area (a) reptesdinaccepted PSMs (both correct
and incorrect PSMs) above a threshold, and sokg filed area (b) represents incorrect
PSMs passing the threshold that are falsely acdeptetogether with A sum up all
correct PSMs, and A’ represents correct PSMs thiatd pass the threshold. B and B’
sum up all incorrect PSMs, and B represents incofPSMs that are wrongly selected
within a given threshold. The false positive ra#®R), false discovery rate (FDR) and
posterior error probability (PEP) can be calculasdhown in the figure.
Peptide Validation Strategies

Because a large proportion of MS/MS spectra cabeanatched successfully to
peptide sequences, raw identifications must berétt to retain the most accurate PSMs
for protein inference, i.e., a threshold need bterde@ned to generate a list of high
confident identifications. The selected threshdidudd yield a good tradeoff between

sensitivity and error rate. A high score threshelduces the number of false matches but
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also decreases sensitivity, yielding less numberaofect PSMs for protein inference. In
contrast, a low score threshold allows more PSMgsetselected at the cost of a higher
error rate.

Early on proteomics researchers often applieddghoccutoff value of database
search scores to generate a list of confident P$ds.example, use XCorr > 2.5 for
Sequest search and lonScore > 45 for Mascot seBinchapproach, however, has many
disadvantages. First, the score distributions gaadrby a database search tool vary with
respect to the instruments, sample complexitie® daality and the protein database
searched. Therefore, there is no single score hbldscan be applied to all datasets.
Second, even though a single score threshold caappbked to data from different
experiments, the error rates are still remainingnoemvn, making it difficult to compare
data between experiments. Third, applying aah hoc cutoff makes it impossible to
compare search results from different search dlgos and instruments, and often has
poor tradeoff between sensitivity and specificity.

To solve these issues, modern proteomics has meway from thead hocscore
cutoff toward probabilistic approaches. Translating database search scores to statistics
provides interpretable probability scores. Multiglearch scores, database features and
experimental conditions all can be taken into aotaustatistical models.

Several methods have been developed to convettaagbsearch scores of raw
identifications into statistical measures. As shownFigure 7, three commonly used
statistical measures are p-value, false discoagy(FDR) and posterior error probability

(PEP).

24



Database search scores can be converted to p-valuesasure the confidence
for peptides scored to a single spectrum. In otolénterpret a spectrum, database search
engines enumerate all candidate peptides, andafdlbam is scored against the spectrum.
This produces a large number of scores that carséé to estimate the null distribution
for p-value inference. The score of the best matgbeptide is then converted to a p-
value based on the null distribution. Both paramoetistribution (Sadygov & Yates 2003,
Geer et al. 2004) and empirically fitted distrilouti(Fenyd & Beavis 2003) have been
developed to derive p-values. A p-value can bepnéted as the probability to observe a
match with an equal or higher score by random ohamhberefore, the further a score is
away from the center of the null distribution, thigher the statistical significance it
represents.

A disadvantage of the p-value approach is thas affected by the number of
PSMs compared to a spectrum. Large number of casgrer may yield smaller p-values
by random chance alone, which requires a multgdéing correction to adjust p-values.
However, classical methods such as “Bonferroniemtion” were not designed for large
size of datasets, and often lead to overly consgeseesults.

An alternative statistical measure that works well large-scale data is FDR,
which estimates the global error rate for a sé®®Ms. In proteomics, for example, if 100
PSMs were scored above a threshold and 5 of them f@and to be incorrect matches,
then the expected FDR will be 5% for this analy8isommon way to estimate incorrect
matches among a collection of PSMs is to conduethdse searches through the target-
decoy strategy (Elias & Gygi 2007). This approaelarshes MS/MS scans against a

target protein database appended with decoy psteinich can be reversed (Moore et al.
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2002), randomized (Colinge et al. 2003) or shuffidammer & MacCoss 2006)
sequences. It assumes that false identificatioi®Ffdhe same distribution as matches to
decoy sequences. To compute FDR, all PSMs fromtabdse search are ordered by a
matching score or a combination of multiple matghiscores. A g-value is then
calculated for each PSM as the minimal FDR thrablatl which a PSM is accepted.
PSMs passing a FDR threshold are then considerkd wgentifications for protein
inference.

FDR-based peptide validation has become the methaihoice for large-scale
proteomics studies, and many bioinformatics to@sehimplemented this approach. In
my Master’s thesis, | presented IDPicker 2.0 thahlsines multiple search scores and
applies additional filters to improve FDR-based tmhp validation (Ma et al. 2009).
Another tool, Percolator (Kall et al. 2007), em@ay semi-supervised machine leaning
method to discriminate between correct and incoP&Ms based on target-decoy search
results. It was originally designed to work withgBest results and has been recently
adapted to handle Mascot search results (Brosah 2009).

Although g-values are associated with individualM8S FDR is a summary
statistic for the entire collection of PSMs, andesionot measure the confidence of
individual PSMs. When the focus is to evaluate vilial PSMs, PEP, also known as
local FDR, can be estimated to represent the pilityabf a PSM being incorrect. For
example, a PSM with a PEP value of 0.01 means iBet® chance that this PSM is an
incorrect assignment. One way to compute PEP iséoa mixture model-based method
as implemented in PeptideProphet (Keller et al2200he PEP for each individual PSM

can be used to filter low confident identificatiodMdoreover, the PEP and FDR method
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can work together to make more accurate and robstghation (Choi & Nesvizhskii
2008). In this case, the decoy sequences are asstitnate the distribution of incorrect

PSMs, yielding a more accurate mixture model for B&PBulation.

1.2.4 Protein Inference

In most proteomics experiments, the ultimate gdah study is to know what
proteins are present in the analyzed sample. Torexehigh confident peptide sequences
passing the validation step need to be mappedeio tbrresponding proteins, and the
confidence at the level of proteins need to bessessed. This process, however, is not
straightforward and faces many challenges.

First, peptides whose sequences are present in thare one protein may
complicate the protein inference process. In tlase¢ since a single peptide can be
mapped to multiple proteins, it is difficult to kwowhich protein(s) is present in the
analyzed sample. As illustrated in Figure 8, foaraple, protein B and C will be
indistinguishable because they both map to the sanef peptides. The shared peptides
often result from homologous proteins, splicingiaats or redundant entries in the
protein database. This is particularly a seriousbl@m for higher eukaryote organisms
due to the high abundance of shared peptides (Reskii & Aebersold 2005). It is a
general problem for shotgun proteomics experiméetsause the connectivity between
peptides and proteins is lost during sample préjoarand digestion. Separating proteins
in a 2D gel before MS analysis helps to allevidtes tproblem, where additional
information such as the molecular weights and exdt point can be used in

determination of the protein identities (GoOrg et24l04).
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Spectrum Peptide Protein

Peptide Validation

Figure 8. A simplified example of protein inferencgreen and red colors represent
correct and incorrect peptides/proteins, respdgtiveeptide 2 and 3 are shared by the
same set of proteins.

Second, incorrect PSMs may be accepted after gepélidation, yielding wrong
peptides for protein inference (e.g. protein D iguFe 8). This is a more serious problem
when searching spectra against a large proteirbdsg¢a where spurious peptides have a
higher chance to be scored superior to correct.ofieshe same time, many correct
PSMs tend to map to a relatively small number aftgins that are dominant in the
analyzed sample (Nesvizhskii et al. 2003). For gama recent study showed that only
~5% of all collected MS/MS scans lead to the ide@ifon of unique peptides in large-
scale studies (Swaney et al. 2010). As a resulipst every highly scored incorrect PSM
may introduce one additional incorrect protein. iewath a careful control of FDR at the
PSM level, these incorrect PSMs can produce a RigR at the protein level. Requiring

more than one distinct peptide per protein (“twqtpke rule”) helps to remove some
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incorrect proteins, but this will reduce the saugit and excludes the identification of
low abundance proteins supported by a single peptid

A commonly used approach for protein inference andr rate estimation is to
conduct database searches using a target-dectsgstrand then apply various filters to
assemble proteins to a desired protein-level FD&n@on filters include peptide-level
FDR, minimal number of spectra per protein and malinumber of distinct peptides per
protein. In this case, the protein-level FDR carebgmated according to the number of
decoy proteins included in the final list. To asl@ea lower protein-level FDR, one can
either apply a more stringent peptide-level FDRremuire more than one spectrum or
distinct peptides per protein. Both approaches tatve number of incorrect PSMs for
protein inference, and thus reduce the error rate.handle the problem of shared
peptides that may produce many homologous protamisisomers in final list, one can
either report all proteins identified with at leaste distinct peptide, or simply select a
representative protein among homologs (States 2086).

The parsimony principle for protein inference haserb widely accepted in
proteomics community. It is also required by selvgrarnals for publishing proteomics
research results (Carr et al. 2004). The centralcept, as exemplified by several
computational tools (Nesvizhskii et al. 2003, Yatal. 2004, Zhang et al. 2007, Ma et
al. 2009), is to derive a minimal list of protethat can account for all observed peptides.

A disadvantage of the protein-level FDR is thasita global estimation of error
rate for all accepted proteins. The confidence nafividual proteins may be further
estimated based on many metrics such as sequeverage and the number of identified

spectra for corresponding proteins. Statistical efmdhave been developed to compute
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probabilities for individual proteins, which estitaahe likelihood that a protein is a true
identification. For example, ProteinProphet (Nelskai et al. 2003) reads the PSMs and
their posterior probabilities generated from PegRidphet to compute a cumulative
score. That is, the probabilities of all PSMs mapfmea protein are combined together to
yield the probability that the corresponding protesi present in the analyzed sample.

The initial PSM probabilities from PeptidePropheayrbe adjusted to take into
account the number of peptides mapped to the saoteip group (undistinguishable
proteins). The adjustment produces improved propeobabilities that agree with the
actual protein-level FDR. ProteinProphet retainstgins identified by a single peptide if
that peptide is assigned a high posterior prolghiti PeptideProphet. These proteins
could be excluded in FDR-based protein inference tduthe use of “two peptide rule”.
Other statistical methods using hierarchical made(Shen et al. 2008) or incorporating
gene models to protein inference (Gerster et dl0PWere also reported.

Most bioinformatics tools separate peptide valmatnd protein inference to two
steps as described above. A recent research trgatddin inference as a single
optimization problem, and proposed a machine legrrmethod, Barista, to optimize
these two steps in a single analysis (Spivak eR@l1). The essential concept is that
peptide validation and protein inference are coaipex such that one task benefits from
the other during optimization, and thus should k@ated simultaneously. Barista reads
target-decoy search results and develops a modeintaximizes the number of target
proteins. It incorporates a wide variety of eviderc directly control the relevant error
rate, providing 18-34% more protein identificatichan other approaches (Spivak et al.

2011).

30



|.3 Instrumentation Quality Control

No matter how advance the data processing algosittonld be, they all assume
the spectra from mass spectrometers are collectddrstable instrument performance.
Therefore, quality control of instrumentation pemfi@nce is critical for proteomics
studies. Many studies are designed to be comparatimature such as exploring protein
expression differences between tumor and normalds These studies assume the
observed differences come from the proteome diffees of analyzed samples rather
than analytical system variability. Therefore, theass spectrometer needs to be
frequently checked during data collection to enstiadle analytical system performance.
Even with high mass accuracy instruments, achietrnlg high accuracy often requires
fine instrument tuning, room temperature controtl dhe use of internal or external
calibration.

The most commonly used approach is to run simplaptss such as BSA
periodically, and count the number of confidentnittfications to measure instrument
variability. This approach, however, does not réwshether system performance is
optimal or which components cause the large vanatNIST introduced the MSQC
software (Rudnick et al. 2010) to compute diverstrits from experimental LC-MS/MS
data, enabling the QC evaluation of proteomicsrumséntation. In practice, however,
several aspects of the MSQC software prevent gsfarsroutine instrument monitoring.
This problem is further addressed in Chapter IVhwite development of the QuaMeter

tool.
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| .4 Dissertation Outline

The objectives of my work are to develop novel athoms and bioinformatics
tools for MS-based proteomics data analysis. THewiing chapters present three tools
that facilitate proteomics data processing. In edwpter a separate introduction is given
to describe the background of the respective topic.

In Chapter I, | present the IDBoost tool to rescoerect spectral identifications
and correct database search errors through spetistéring. In Chapter I, |1 describe
the ScanRanker tool that evaluates the qualityaefiém mass spectra via the sequence
tagging approach. In Chapter IV, | present the Qei@ktool for MS instrumentation
quality control. Each tool is evaluated with a e&yiof datasets and their applications are

demonstrated.
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CHAPTER Il

IDBOOST: VALIDATION AND RESCUE OF TANDEM MASS SPECHAL

IDENTIFICATIONS VIA SPECTRAL CLUSTERING

[1.1 Introduction

Despite recent improvements in analytical methadsally only a small fraction
of spectra can be identified in a typical shotguatgomics experiment, implying the
need for advanced methods to improve identificatate. This may be caused by many
factors such as unexpected modifications, incoraptebtein databases or low spectral
guality. However, many spectra assigned correctigeep may fail to pass the FDR
threshold (see Figure 7). For example, given afsgpectra assigned to the same peptide,
it is common that only spectra assigned high datalsaarch scores are identified, while
the others that fail to pass the threshold areadirl. These discarded spectra may be
correct identifications because the matched peptsdaedentified by other spectra.
Rescuing these spectral identifications providesemnoformation for subsequent data
analysis such as manual validation of phosphopeptathd spectral count-based protein
guantification.

In addition to the low identification rate, two kig of errors are often included in
database search results. First, wrong peptidesgpasiously score higher than correct
sequences. This introduces false proteins and esdtiee spectral count of correctly
identified proteins, leading to inaccurate estimadi in spectral count-based protein

guantification. Second, if multiple modificatiortes are present in a peptide, one with a
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misplaced modification site may score better thacoaect one due to low spectral
guality or insufficiency of scoring algorithms. Thenbiguous modification locations are
detrimental to experiments to localize modificaipauch as phosphorylation studies. For
both kinds of errors, the correct sequences frefyuestore very similarly to the
erroneous top-ranked matches. Since many datalsehsengines generate several
PSMs per spectrum, it is very likely that the cotreequences are stored in the search
output, but are invisible in subsequent analystahbse they are not top-ranked hits. They
can, however, be rescued by examining search seaunli re-ranking PSMs for each
spectrum.

Several efforts have been made to correct theseseffor example, Percolator
provided a re-ranking function to correct spuria@mdom matches via a machine
learning approach for Sequest or Mascot, decidihghvPSM was ranked highest for a
spectrum by search scores and peptide propertissord (Beausoleil et al. 2006)
presented a probability-based score to correct pdtayglation site localization, but it
required the presence of site-determining ionsuskek to specific site locations. These
methods correct errors based on search results &itimer a single file or a single
spectrum. In fact, shotgun proteomics experimerg#ien designed to include multiple
replicate LC-MS/MS runs, and many identified pepsicare associated with more than
one spectrum. For example, in a recent study on®p ©5 all collected MS/MS scans
lead to the identification of unique peptides (Sesant al. 2010).

Here | seek to correct these errors in a singldyaisaby incorporating search
results across multiple runs. | hypothesized tipgicsa derived from the same peptide

should share high similarity in fragment ion patterGiven a set of similar spectra, a
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secondary PSM (ranked below the first positionaf@pectrum) may represent the correct
interpretation if similar spectra also are matchied this peptide. Likewise, the
modification site localization errors may be coteec by taking into account site
assignments of similar spectra. This approach esscorrect secondary PSMs based on
existing search results with no requirement foming additional database searches. For
the best applicability, the approach must functatn a variety of search engines and use
more informative tandem mass spectra to guidepreéation of poorer quality scans.

In this work, | seek to rescue spectra that ar@aeupd by other confident PSMs
passing the FDR threshold. However, simply addihgpeectra assigned to these peptides
back to the analysis is not appropriate, becaus® s them may be unreliable spurious
matches. In addition, if multiple PSMs per spectrane considered, more than one
peptide could be identified and it is not clear ethiPSM should be rescued. Here |
present IDBoost, a software tool to rescue spedritifications and correct database
search errors via spectral clustering. | demorestita use of IDBoost in phosphorylation
studies to rescue phosphopeptide identificatiorts tarresolve phosphosite localization
ambiguity. | show that IDBoost helps recognize eléintially expressed proteins in
comparative analysis. | also evaluate IDBoost usingariety of datasets representing

various instrument platforms and sample complexitie

1.2 Algorithm
[1.2.1 Overview
The goal of this work is to rescue PSMs and toemirdatabase search errors by

incorporating identification evidence from similgectra. In brief, IDBoost first groups
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similar spectra into clusters and then examinepaitks of spectrum-peptide matches in a
cluster. A PSM will be rescued if a similar spentrmnatched to the same peptide is a
valid identification. Multiple PSMs per spectrumge the top 5 ranked PSMs for a
spectrum, can be included in this process, enabl@ganking of PSMs to correct
spurious matches or modification localization esroDnly one PSM per spectrum is
allowed to be rescued. A “Bayesian average” ratmgthod prioritizes peptides for
rescue. IDBoost is written in C#/.NET and implensgehin IDPicker (Zhang et al. 2007,

Ma et al. 2009), which is available for downloadnfr http://fenchurch.mc.vanderbilt.edu.

I1.2.2 Spectral Clustering

Tandem mass spectra are clustered based on tHargyrtietween each pair of
spectra. Rather than process all spectra, onlytrsperatching to a confidently identified
peptide within the top N ranked PSMs are selected dlustering (N is a user
configurable parameter). Next, selected spectrasared by their precurson/z values
and are compared for similarity to any others witaiuser-specifiech/z tolerance. The
similarity between each pair is computed by a néimed dot product, which has
previously been found to work well for spectralstkring (Tabb et al. 2003, 2005, Beer
et al. 2004, Frank et al. 2008). To reduce thecefdé low intensity peaks, only the top
100 most intense peaks of each spectrum are rdt&mesimilarity comparison. Peak
intensities are square rooted to emphasize smadleks (Tabb et al. 2003). A single-
linkage clustering approach (Beer et al. 2004, ranal. 2008) is applied to group
spectra. i.e., if spectrum A is similar to B, anasBimilar to C, then all three spectra will

form one cluster. The default similarity thresh@dd0.6, and is user configurable. The
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method is similar to the Pep-Miner algorithm (Beeial. 2004), which has been proved

to be an effective clustering approach in priorkv@eer et al. 2004, Frank et al. 2008).

[1.2.3 Rescue of Spectral Identifications

Once similar spectra are grouped together, an otiftlel PSM may be rescued
by taking identification evidence from other spaadtito account. As illustrated in Figure
9, for example, all spectra in a cluster are finstpped to peptides in a bipartite graph.
Multiple PSMs per spectrum can be included to endlbé rescue of secondary PSMs.
Next, a “Bayesian average” rating method (describetbw) is applied to prioritize
peptide sequences that will be processed. Thisiecassary step because only one PSM
per spectrum is allowed to be rescued, while ometspm may be mapped to multiple
peptides (the top N peptides assigned to this spadt Peptides sharing the same
sequence but different PTM locations are treatedisasct peptides.

To rescue unidentified PSMs, IDBoost sifts throypgioritized peptides and their
linked spectra. An unidentified PSM will be rescuked similar spectrum matched to the
same peptide is a valid identification. A rescupdcsrum then will be excluded from
further analysis to ensure only one PSM per spectascued. In Figure 9C, for example,
the best scored Pep2 linked to three spectra. Shcd®SM of Scan4-Pep?2 is a valid
identification, both Scan2 and Scan5 will be resiciNext, Scan3 will be rescued to Pepl
because the same peptide is supported by an i@ensphbectrum (Scanl). However, since
only one PSM per spectrum is allowed to be resc8edn2 will not be assigned to Pepl
because it has already been processed and resciap®. Since no spectra linked to

Pep3 are identified, all PSMs mapped to Pep3 reonaiouched.
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A: Map spectra and peptides in a cluster

Scanl
Scan2 Pepl
Scan3
Scan4 i Pep2
Scan5

—

Scanb Pep3

Scan7

B: Prioritize peptides by Bayesian average scores

(1) (2) (3)

Scan2 Scanl
Scan4 ;;} Pep2  Scan2 S;} Pepl Scané :;> Pep3

Scan5 Scan3 Scan7

C: Rescue PSMs linked to an identified peptide

(1) (2) (3)

Scan2 Scanl
Scan4 ;;} Pep2  Scan2 E;> Pepl Scané :;> Pep3
Scan7

Scan5 Scan3

Figure 9. A diagram of rescuing unidentified sp&actr a cluster. (A) A bipartite graph
shows the PSM mapping between seven spectra aeel peptides in a spectral cluster.
Each link represents a peptide-spectrum match skaplicity, all spectra are linked to
only one peptide except Scan2, which is mappeddtb Bepl and Pep2, representing a
case that multiple PSMs can be included in theuiagcprocess. Highlighted Scanl and
Scan4 represent valid identifications that pasg@shold of confidence. (B) All peptides
are scored and prioritized by the “Bayesian aveérageéng method. In this example,
Pep2 receives the best Bayesian average scoré&epglis the lowest rated peptide. (C)
IDBoost sifts through prioritized peptides and rescunidentified spectra.

Including multiple PSMs per spectrum in the resgymnocess enables the rescue
of secondary peptide identifications, but this datinally increases the number of PSMs
to be processed. Many of these PSMs are assigneddtabase search scores and are not

likely to be confident identifications. To reduceopessing time, IDBoost provides a
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configurable filter to exclude PSMs of low scorar Fexample, throughout this study,
PSMs with MyriMatch MVH scores lower than 10 wereleded.

It should be noted that IDBoost only increases spkmentifications mapping to
currently identified peptides, while peptide andtpm identifications remain unchanged
unless a spectral count-based filter is appliegrnotein inference. IDBoost does not
remove originally identified PSMs. If a PSM is reed for an identified spectrum, both
the original PSM and the rescued PSM will be presknimplying that the rescued
peptide is better supported by a cluster of spetiaa the original identification. The
IDPicker tool in which IDBoost is implemented prdes a graphical user interface (GUI)
to present both rescued and originally identifi€slVR. It also displays database search
scores and offers a spectrum viewer to visualizatipe-spectrum matches, enabling
manual validation of ambiguous identifications iultiple peptides are assigned to a

single spectrum.

[1.2.4 Bayesian Average Score

As illustrated in Figure 9B, all peptides in a ¢krsare prioritized for rescue by
“Bayesian average” scores. “Bayesian average’reting method to calculate the mean
of a set of data that is consistent with Bayesbthm. Given a set of options rated by a
number of voters, instead of simply calculating thesrage rating of an option, the
“Bayesian average” method incorporates the numberotes into the calculation,
generating a weighted average score. As a resptiprs with more votes receive
Bayesian average scores closer to their unweigiiétmetic average. In contrast, when

there are few votes, the rating of an option wil & weighted average (a Bayesian
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average score) that is closer to the average ratingll options. In this study, each
peptide is an option, and spectra in a clustervaters. The database search scores of
PSMs represent ratings between spectra and peplides’Bayesian average” score of a
peptide is computed to be:

Com+>" x
n+C

X =

where x is a database search score assigned tpdpigle, n is the number of spectra
mapped to this peptide, m is the mean of databesels scores taken over all PSMs in
this cluster. C is a weighting constant that shdngdh large number and is proportional to
the size of the dataset. Here | use the maximalbeurof spectra assigned to a peptide in
this cluster, i.e., the maximal votes of an opiiothe dataset, multiplied by 10 to keep it
a large number. The Bayesian average reflects lapiides are scored in database search
in relation to each other. A peptide identified &yrelatively large number of spectra
receives a Bayesian average score close to itsighied average. In converse, the
Bayesian average score for peptides with a relgtismall number of spectra tends to
gravitate towards the average rating of all PSMs.

To prioritize peptides in a cluster, the Bayesigarage scores are normalized to
percentiles. For example, a Bayesian average stdd&®9 means this peptide is scored
better than 99% of other peptides in a clustethdf same set of spectra is searched by
multiple database search engines, the Bayesiam@escores are computed separately
for each analysis, and then summed together to pepkides. In this case, peptides
shared by multiple search engines are more belie\aid will receive higher Bayesian
average scores. IDBoost exports a tab-delimitetfilexto report rescued PSMs and their
Bayesian average scores.
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During the method development, | also considera@rsé other voting methods
such as “Borda count” and “Condorcet method”. lided to choose the Bayesian
average rating because it allows weighting voterd s success has been proved in

many user reviewing systems.

I1.3 Data Sour ces
Several datasets were used to demonstrate thty atiliDBoost (see Table 2).
Binary spectral data present in the raw files wasaverted to mzML (Deutsch 2008)
format using MSConvert tool of the ProteoWizard ¢Ker et al. 2008) library. The
MyriMatch tool searched each file against a protiatabase that contained sequences in
both forward and reverse orientations for estinmatb protein identification error rates.
Search results were processed by IDPicker for geptalidation and protein assembly.
Throughout this study, IDPicker was configured &ie PSM score thresholds to yield

a 5% FDR. Detailed configurations of MyriMatch ddPicker are given in Appendix A.

“Synthetic Orbi” Dataset
This dataset was previously used to test a phoyglation site localization
algorithm and the experimental description was ighbd (Savitski et al. 2011). In brief,
180 peptides with positional phosphosite isomersevgynthesized and pooled to five
mixtures, such that no phosphorylation site isonvegse present in any one mixture.
Mixtures were analyzed on a Thermo Fisher LTQ-Q@abithybrid mass spectrometer in

which peptides were fragmented by CID.
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# of files Average # of

Dataset (sample x rep) MS/MS scans Databases used for search
Rescue of Phosphopeptide Spectra

Synthetic Orbi 5x1 1598 IPLHUMAN.v3.79

pTyr LTQ 1x3 18550 IP.LHUMAN.v3.79

Rescue of Spectrain Comparative Analysis

Yeast LTQ 1x3 26151 SGD.orf_trans_all+UPS1
Yeast UPS1LTQ 5x3 26148 SGD.orf_trans_all+UPS1
Rescue of Spectrain aVariety of Data

UPS1LTQ 3x3 24937 SGD.orf_trans_all+UPS1
UPSL1 Orbi 3x3 10935 SGD.orf_trans_all+UPS1
Yeast LTQ 3x3 24948 SGD.orf_trans_all+UPS1
Yeast Orbi 3x3 12464 SGD.orf_trans_all+UPS1
Yeast MudPIT

LCQ 19x 6 2961 SGD.orf_trans_all

Table 2. Experimental datasets for the evaluatidDBoost.

“oTyr LTQ" Dataset

A human epithelial carcinoma cell line (A431) (ATC®lanassas, VA) was
cultured in 150 mm culture dishes in improved MBRV{trogen-GIBCO, Auckland, NZ)
supplemented with 10% fetal bovine serum (Atladdjecals, Fort Collins, CO) at 37°C
in 5% CQ. A431 cells were grown to ~60-70% confluency ptiortreatment. Cells
were serum-starved (18 hrs), followed by treatmsith 30 nmol epidermal growth
factor (EGF)( Cell Signaling Technology, DanversAMfor 30 min. Cells were
harvested on ice with Mg and Cl-free PBS suppldgetmvith a phosphatase inhibitor
cocktail (1 mM sodium fluoride, 10 mM-glycerophosphate, 1 mM sodium molybdate,
and 1 mM activated sodium orthovanadate — indididianponents purchased from
Sigma (St. Louis, MO)), pelleted by centrifugat@n~250 x g, flash-frozen and stored at

-80°C.
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The phosphotyrosine enriched dataset was generdbgd enriching
phosphotyrosine peptides from tryptic digests diflgsates as previously decribed (Rush
et al. 2005) except that cells were lysed in 5@#0) acetonitrile and 50mM ammonium
bicarbonate prior to in-solution trypsin (Promelygadison, WI) digestion and samples
were pY enriched using 4G10 antibody (Milliporell&ica, MA). LC-MS/MS and MS3
analyses were performed on a Thermo Fisher LTQ s/d®an Jose, CA) mass
spectrometer equipped with an Eksigent Nano-1D PIB&EC and AS-1 autosampler
(Dublin, CA). Peptides were separated on a @00 x 11 cm fused silica capillary
column (Polymicro Technologies, LLC., Phoenix, Aaf)d 100 um x 6 cm fused silica
capillary precolumn packed with Bn, 300 A Jupiter C18 (Phenomenex, Torrance, CA).
Liquid chromatography was performed using a 95 gredient at a flow rate of either
400 or 600 nL min—1 using a gradient mixture oR@.Qv/v) formic acid in water (solvent
A) and 0.1% (v/v) formic acid in acetonitrile (selvt B). Briefly, a 15 min wash period
(100% solvent A) was performed followed by a grati® 98% A at 15 min (1.2 pl min-
1) and eluent was diverted to waste prior to theyaical column using a vented column
set up similar to that previously described (Lidkli et al. 2002). Following removal of
residual salts, the flow was redirected to flowotlgh the analytical column and solvent
B increased to 75% over 35 minutes and up to 908biminutes. The column was re-
equlibrated to 98% solvent A for 10 minutes aftacrerun. MS/MS peptide spectra were
acquired using data-dependent scanning in whichidh#S spectrum was followed by
5 MS/MS spectra. A data-dependent scan for theraleldss of phosphoric acid or

phosphate resulted in acquisition of an MS/MS/M$efneutral loss ion.
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“Yeast LTQ”, “Yeast Orbi”, “UPS1 LTQ”, “UPS1 Orbi”and “Yeast_ UPS1 LTQ”
Datasets
These datasets are publically available for dowhlsam Proteome Commons

website (https://www.proteomecommons.org) and ttgeemental details are available
in the original publication (Paulovich et al. 2010yeast lysate was reduced by
dithiothreitol (DTT), alkylated by iodoacetamidedadigested by trypsin. Both yeast and
UPS1 (Sigma UPS1, Sigma-Aldrich, St. Louis, MO) evanalyzed on LTQ and LTQ-
Orbitrap instruments. The “Yeast_ UPS1” data reprissa mixture of yeast and spiked
UPS1 in five different concentrations: 0.24, 0.85A4, 6.7 and 20 fmqll. This sample

was analyzed on a LTQ instrument.

“Yeast MudPIT LCQ” Dataset
This dataset was published by Arnett et al. andekgerimental details were
described in the original publication (Arnett et 2008). In brief, Weil lab at Vanderbilt
University collected spectra from 19 MudPIT expernts to study yeast Motlp protein-
protein interactions, in which immunopurification$ Motlp-interacting proteins were
performed using multiple antibodies. Each pull-domas subjected to MudPIT analysis

with six fractions and analyzed on a Thermo LCQ@X® Plus mass spectrometer.

I1.4 Results and Discussion
To establish the effectiveness of IDBoost, | fesaluated the method using two
phosphorylation datasets. | show that by encompgssarch results from similar spectra,

IDBoost achieved high accuracy in rescuing corr@entifications. Next, | demonstrate
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the use of IDBoost to enhance the recognition &edntially expressed proteins in
comparative analysis. | then demonstrate IDBoosfopeance in a variety of datasets.
These tests established IDBoost as an effectiveralmgst method to rescue confident

spectral identifications.

I1.4.1 Rescue of Phosphopeptide Spectra to Resttesphosite Localization Ambiguity

Once similar spectra are clustered together, theuneg process starts from the
peptide assigned the best Bayesian average saomnstre that the correct peptides are
rescued, “Bayesian average” method should be absedre true peptides more highly
than random matches. This is a less serious probledatabase searches to produce
inventories, because a set of spectra in a clofiien maps to a single peptide. However,
this becomes more complicated in phosphopeptideclses, in which spectra may be
identified to the same peptide sequence with differphosphorylation sites, i.e.,
phosphosite isomers. In database search, phosphesmers often score very similarly
even though true peptides generally receive bsteres than false isomers. | expect the
“Bayesian average” method in IDBoost to rate a praptide sequence more highly than
one with misplaced modification site. Incorporatisgarch results from similar spectra
could thus reduce phosphosite localization ambyguit

To evaluate the effectiveness of the “Bayesian apyet method, | used a
synthetic phosphopeptide dataset in which peptatpiences and phosphorylation sites
are known (Savitski et al. 2011). All spectra weearched using MyriMatch against an

IPI human protein database and post-processed PizkBr.
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| first examined all spectra that were assignedakneequences and correct PTM
locations within their top 5 PSMs. Among all fivaw files, 1678 of 7802 spectra were
assigned to the correct synthetic sequences, vamlg 945 of them were confident
identifications that passed the 5% FDR thresholifierArunning IDBoost, this number
increased to 1348, augmenting sensitivity from 5&%680%. Next, | evaluated the
accuracy of rescued PSMs. A total of 1148 spe®4é& (matched to synthetic sequences)
were confidently identified in the original analysiand 586 additional PSMs were
rescued. As shown in Figure 10A, 69% of rescuecdtspavere correctly assigned to
synthetic peptides with known PTM locations. OnBs 2vere false rescues that were
originally assigned to the correct sequences, lert tescued to different ones. A close
look at these false rescues revealed that theyealt phosphorylation site isomers. The
remaining 29% of rescued PSMs were associatedpefiides that were not included in
synthetic mixtures and thus are labeled “Unknown.”

A sub-pie-chart in Figure 10A shows the proportidriop-ranked and secondary
PSMs that were correctly rescued. 54% of rescuddsP8ere correct top-ranked hits
that failed to pass the FDR threshold. 10% coryeotlscued PSMs were originally
assigned wrong peptide sequences and 5% were egdsigrphosphosite isomers. The
result shows that both secondary phosphosite isoaradt spurious random matches can

be corrected through the rescuing process.
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Synthetic Orbi
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WrongPep Mislocation
10% 5%

(B)

pTyr LTQ
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Figure 10. Analysis of rescued PSMs in phosphaprastudies. In each panel, the left
pie chart shows the accuracy of rescued PSMs andight sub-pie-chart represents a
more detailed examination of correctly rescued PSM9 Rescued PSMs from a
synthetic phosphopeptide dataset. (2) Rescued H&ivts a phosphotyrosine enriched
dataset. The result shows that IDBoost is ableetognize correct phosphosite isomers

for rescue.

This test established the “Bayesian average” meth®dan effective way to

prioritize peptides in a cluster. Among 1678 spetiiat were assigned correct sequences
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within their top 5 PSMs, 70% contained phosphogtaners, implying that a large
number of spectra were mapped to multiple closetresd isomers during the rescuing
process. The result indicates that the “Bayesianaae” method is able to score correct
sequences better than their phosphosite isomem=lieg rescue of these correct
sequences rather than their isomers. Moreoverrahglt can be applied to resolve the
ambiguous phosphosite localization. If a phospkosibmer is rescued, it implies that
this phosphorylation site is better supported ttienoriginal assignment by a cluster of
similar spectra. In addition, this test illustratbat IDBoost is effective, even in datasets
that contain a single analysis of each sample dmerevthe MS/MS analyses employed
dynamic exclusion to reduce repeated sampling df paptide.

It should be noted that in complex biological sa@spa single peptide may be
singly phosphorylated at multiple locations, imultiple positions all may be correct
identifications. If similar spectra are produced thgse isomers, the one with stronger
identification evidence (better database searchliescor more votes) may be scored
superior to the correct position, thus rescuinglsef positioning. Most likely this happens
with phosphopeptides that produce similar fragmens. In this case, IDBoost provides
alternative interpretations for further manual dation.

Next, | tested IDBoost performance using a realleivbrological sample. The Jim
Ayers Institute at Vanderbilt University collectedree technical replicate runs of a
human epithelial carcinoma cell lysate after ennighphosphotyrosine peptides with
4G10 antibodies. The samples were analyzed on ambthé&isher LTQ Velos mass
spectrometer. After MyriMatch and IDPicker analys3827 spectra were confidently

identified, counting all spectra without regardpteosphorylation status. In this test, 1050
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PSMs were added via IDBoost. The number of speatigned to phosphotyrosine
peptides before and after running IDBoost was 186d 2512, respectively (a 28%
increase).

To estimate the accuracy of rescued PSMs, | coreside PSM as being rescued
properly if its peptide contained a phosphotyrosiredification. In converse, PSMs that
contained phosphotyrosine in original assignmehtg, which were rescued to non-
phosphotyrosine peptides were treated as falseessés shown in Figure 10B, 80% of
rescued PSMs were proper rescues and 2% were Téleeother 18% of PSMs that did
not fall into these two categories were labeled Kilswn.” A close examination of the
proper rescues showed 46% of rescued PSMs wereanded. 17% of spectra were
rescued to secondary PSMs that were phosphositeersoof top-ranked peptides. 17%
of spectra were assigned different peptide seqseimcé¢he original analysis and were
rescued to phosphotyrosine peptides. The resultates that a large number of spectra
assigned to phosphotyrosine peptides can be rescledaddition, ambiguous
phosphosites can be further evaluated in the corigxa cluster of similar spectra.
Bayesian average scores assigned to phosphositensamply which phosphosite is

better supported by these spectra than the other.

I1.4.2 Rescue of Spectra in Comparative Analysis
In spectral count-based comparative analysis, réifitgally expressed proteins are
determined by comparing the number of spectra gbdefor these proteins between
pairs of cohorts. Generally, a larger average cdlifférence yields a more significant

result in statistical testing. To test if IDBooselps to enhance spectral count
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differentiation, | used a standardized dataset ftoenNational Cancer Institute Clinical
Proteomic Technologies Assessment for Cancer (CHT3@dy 6 (Paulovich et al.
2010), in which a mixture of 48 human proteins (SagUPS1, Sigma-Aldrich, St. Louis,
MO) was spiked into the yeast reference proteont#farent concentrations: A: 0.24, B:
0.67, C: 2.54, D: 6.7, E: 20 fmpl/and no spikes. After MyriMatch database searife, f
IDPicker analyses were performed to compare prsteatween each concentration group
and yeast sample that has no spikes (i.e., grows.A/east, group B vs. yeast etc.). |
calculated the spectral count difference for eaaigmn between yeast sample and the
sample spiked with human proteins. The averageréifices for 48 spiked proteins and
background proteins were compared before and rfteting IDBoost. In the presence of
high concentrations of spiked proteins, the avemdifferences for those proteins were
much larger than for background proteins (see Eidur, groups D and E), while the
differences became less distinguishable for sampitts low concentration spikes (see
Figure 11, groups A and B). For all groups, IDBoestlarged the spectral count
differences for spiked proteins, with marginal effeon background proteins. Since these
differences are the fundamental evidence for mdatisical tests to determine
differentially expressed proteins, running IDBoasiproves sensitivity in differential

proteomics by allowing the spiked proteins to bedveecognized.
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Figure 11. Impact of IDBoost on recognition of dintially expressed proteins in
comparative analysis. 48 human proteins were spikéd a yeast proteome with
decreased concentrations from group E to A. Thetsgdecount differences between two
samples, yeast and yeast with spikes, were cadclifatr each protein. Here | examine
the average number of differences for two groupgroteins, 48 spiked proteins (SK)
and the background yeast proteins (BG). The numifegentified proteins are enclosed
in parentheses. In all tests, IDBoost enhances dpectral count differences of
differentially expressed proteins (spiked proteingjomparative analysis.

This method is particularly valuable for samplegshwiow concentration of
differentially expressed proteins. In Figure 11, éxample, fewer spiked proteins were
identified as their concentrations decreased. Tigh boncentration samples E and D
may benefit less from IDBoost due to the fact tthet spectral count differences for
spiked proteins were already much larger than lbrackgl proteins. However, the
comparative analysis may be improved by the usiDBbost for sample C and B in
which the differences of spiked proteins were clwséhose of background proteins. In
these cases, by increasing the spectral countrelifes for spiked proteins, IDBoost

allows the spiked proteins being selected moreidenfly in statistical analysis. Sample

A was intentionally spiked with too low a concetiba for most differences to be
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observed. Only 2 of 48 spiked proteins were idesttifand no differences were found

between experiments.

I1.4.3 Rescue of Spectra in a Variety of Datasets

| first tested IDBoost performance using two sampi&tures collected for
CPTAC Study 6 (Paulovich et al. 2010). The SigmeéSWURample (Sigma-Aldrich, St.
Louis, MO) is a defined mixture that contains 48mlam proteins in equimolar
concentrations. The yeast sample is a protein @xibh Saccharomyces cerevisjae
representing a highly complex biological proteoBeth samples were prepared by the
NIST and shipped to the CPTAC sites. | selectee files for each sample (triplicates
from three instruments) collected from two instrumnglatforms: a high resolution
Thermo Fisher LTQ-Orbitrap and a lower resolutiom (L linear ion trap mass
spectrometer. All spectra were searched using Mstdkl and post-processed by
IDPicker. For each sample, | ran IDBoost againgtegiall nine files collected from an
instrument type or within the three files collecteaim a particular instrument.

Figure 12 shows the number of spectral identifaregi before and after running
IDBoost, along with the percent of gained spectnaeach analysis. This figure
demonstrated IDBoost performance in a variety oinga complexities and
instrumentation. First, simple mixtures (UPS1) Bemaore from the rescue process than
do complex samples (yeast). The percent of gaipedtsa varied from 17% to 52% for
the UPS1 sample, and these gains were always hipher for yeast (below 15%).
Second, data from low resolution instruments tengain more identifications than those

from high resolution instruments. In both UPS1 aedst samples, the proportions of
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rescued spectra were higher in LTQ data than thos$arbitrap runs, probably because
the high resolution data yielding more confidens i MyriMatch search, leaving fewer
spectra for rescue. Third, IDBoost shows enhan@tbpnance for datasets with more
replicates, even when they come from differentruraents. Processing all files together
yielded more rescued spectra than processing aatthiment set separately.

In terms of running time, IDBoost spent around hue to process each set of
triplicates from an individual instrument for UP8ata and 2 minutes for yeast data on a
Dell Optiplex 745 computer with an Intel Core 2 D&a#00 processor and 3 GB of RAM.
When processing all nine files together, IDBoogg® minutes on UPS1 LTQ data and
2 minutes on UPS1 Orbi data. It took about 8 mimuteprocess all nine files for yeast
LTQ and Orbi data.

| also tested IDBoost on a large-scale study uMagPIT technology (Arnett et
al. 2008). 63195 of 337602 spectra were identifigdyriMatch and IDPicker analysis.
After running IDBoost, the spectral identificatioimcreased 26% to 79709. IDBoost

spent 24 minutes to process all 116 files conjgintl
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Figure 12. IDBoost performance in a variety of data. UPS1 (A) and yeast (B) samples,
each with three technical replicates, were analyrethree individual instruments in two
instrument platforms. Search results from eithaheastrument (3 files) or all 9 files
from an instrument platform were processed usingd@st. The number of spectra
before and after running IDBoost is presented. phaportion of gained spectra is
reported for each analysis.

I1.5 Conclusion
| presented a method to rescue spectral identdicatand correct database search

errors through spectral clustering. | demonstrateduse of IDBoost in phosphorylation
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studies and comparative analysis. | tested thectefemess of IDBoost in a variety of
datasets. Experiments with many replicates anddoguracy data tend to benefit most
from the use of IDBoost. IDBoost provides an easg fast way to expand confident
spectral identifications based on existing analysith no requirement of additional
identification steps. Its use is not limited to tparar search engines or post-processing
tools and thus it can be integrated into establigh®teomics data analysis workflows.
The IDPicker GUI in which IDBoost is embedded eeabVisualization and manual
validation of rescued identifications.

To cluster similar spectra, IDBoost computes a piatduct for each pair of
spectra. This method has been proved to be eféestivnost cases but is highly affected
by major peaks. In the future, more robust methsdsh as the scoring system in
Pepitome can be implemented to replace the dotuptodor spectra similarity

comparison.

55



CHAPTER IlI

SCANRANKER: QUALITY ASSESSMENT OF TANDEM MASS SPE®RA VIA

SEQUENCE TAGGING

[11.1 Introduction

A large number of high quality spectra remain untded after database search
due to modifications, incompleteness of proteiradases, constrained search parameters
and the deficiencies of the scoring methods inlzieda search tools. These spectra often
represent meaningful biological information and gvetentially identifiable with
alternative approaches such as blind modificatearch andle novosequencing (Ning et
al. 2010). An automated spectral quality assessnmuit helps to ameliorate these
problems. It can be used to find unidentified heglality spectra for subsequent analysis
and helps to select high quality spectrademovasequencing.

Mass spectrometry has become a method of choichamacterize cross-linked
proteins (Leitner et al. 2010). The identificatioh cross-linked peptides, however, is
quite a daunting job due to the overwhelming numbkmpossible matches and the
difficulty of interpreting spectra from cross-linke peptides. Although several
bioinformatics tools have been developed to religheses difficulties, manual
confirmation of cross-linked peptides is generahgcessary. A spectral quality
assessment tool could facilitate this process lmyviging a ranked list of spectra for

manual interpretation.
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The spectral quality score can also be used irptheess of peptide assignment
validation. In database search, software toolsllysaasign different scores to measure
the match between spectrum and peptide (e.g., Xftam Sequest and lonScore from
Mascot), which are subsequently used in statiséinalysis to estimate FDR. The spectral
quality score could become an additional scorehia process, because high quality
spectra are more likely to produce confident pepiikntifications.

The scoring methods in sequence tagging algoritarasapplicable for quality
assessment of tandem mass spectra. A high qupkttrsm of a peptide is expected to
contain a series of consecutive fragment ions spmeding to peptide bond breakages
(Tabb et al. 2006). These fragments provide a Hasipartial sequence inference that
result in multiple tags with good scores. Conversélno sequence tags can be inferred
from a spectrum, it is unlikely that the spectrunti wroduce a high score in database
search. Sequence tagging is a robust approachpémtral quality assessment because
even modified or mutated peptides can produce comise fragment ions. Recently, we
developed a novel sequence tagging algorithm, Dagc(Tabb et al. 2008), which
demonstrated superior accuracy in comparison tstiagi sequence tagging tools. In this
work, | explore the use of DirecTag along with othmetrics for spectral quality
assessment.

Several spectral quality assessment tools have deesloped in recent years.
Pioneering work by Bern et al. (2004) predictedcta quality based on a set of
handcrafted features Other studies by Xu et &0%2 as well as by Salmi et al. (2006)
reported a quadratic discriminant function andredoen forest classifier to separate good

and bad spectra, respectively. Na & Paek (2006pqeed a cumulative intensity
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normalization method for quality assessment, whiikka et al. (2006) tested several
machine learning classifiers in data from threéedéint mass spectrometers, recognizing
that the performance of classifiers is greatly @#d by the type of instrument. More
recently, Nesvizhskii et al. (2006) developed Qual8, which produces accurate results
to find unassigned good spectra after databaselsdarthese prior studies, the proposed
methods were usually evaluated based on their qpeafoce in removing low quality
spectra and recovering unassigned high qualitytspela fact, quality assessment tools
are useful for a wide variety of applications thate not previously been demonstrated.
These tools may help to prioritize spectra @& novosequencing and cross-linking
analysis, which are usually very time-consumingcpseses relying heavily on manual
inspection. Besides, since high quality spectra racge likely to produce confident
identifications in database search, the qualityesswent tools can also be used for
quality control of datasets in large-scale protenstudies.

In this work, | present ScanRanker, a new softwacd that evaluates spectral
guality via sequence tagging. | evaluate ScanRankerg a variety of datasets from
multiple instrument platforms with different samptemplexities. | demonstrate that
ScanRanker can be used both to recognize hightgsalkctra that fail identification and
to remove low quality spectra prior to databasectedn addition, | demonstrate several
applications of spectral quality score that areengiiored in existing publications. | show
that ScanRanker scores can be used to predicictiigess of identifiable spectra among
LC-MS/MS runs in an experiment. | demonstrate tee af ScanRanker scores in the
process of peptide assignment validation. | alsmatestrate that ScanRanker helps to

select high quality spectra fde novosequencing and cross-linking analysis.
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[11.2 Algorithm
[11.2.1 Overview

ScanRanker makes use of the DirecTag algorithrmfier isequence tags from
tandem mass spectra. It then computes a qualitg $oo each spectrum on the basis of
three tag-based scoring metrics: “BestTagScore®tstBagTIC” and “TagMzRange”.
ScanRanker accepts spectra in mzML, mzXML and M@& férmats via use of the
ProteoWizard library. Several proprietary formassich as Thermo RAW files and
Bruker YEP files, can also be directly processeth wb required installation of vendor-
supplied software libraries (a detailed list of gogped formats is available at
http://proteowizard.sourceforge.net/docs.html). rfiR@nker can be executed in both
Microsoft Windows and Linux systems, though natsepport for vendor formats
requires use of Windows. A GUI was created in CETNor Windows users. A helper
program, lonMatcher, was also developed to visaa$zanRanker results and enable
interactive manual inspection of peptide-spectruratames. The source code and
executable versions of ScanRanker are availabhe fibp://fenchurch.mc.vanderbilt.edu.

The screenshot of the ScanRanker GUI is showngarEi13. The ScanRanker
GUI contains three major parts: "Spectral Qualigsdssment”, "Spectral Removal" and
"Spectral Recovery". The "Spectral Quality Assegsthieature controls parameters for
running sequence tagging by DirecTag. It writes auhetrics file, which can be used
later for "Spectral Removal" and “Spectral RecovVelfythe charge state of a spectrum is
not determined (for example, LTQ data), a specuality score will be assessed for each

charge state, and the highest quality score witkeb@ned.

59



@ ScanRanker

Input Directary: | | [ Browse ]
Input File Fiters: | | [ ListFiles |
Output Directary: | [ Browse ]
Spectral Quality Aszessment Spectral Removal
Sequence Tagging Configuration Quality Metrics File Suffis |-ScanHankerMetrics |
Precursar mdz Taolerance: Retain Top % High Quality Spectra in Output File
Fragment m/z Tolerance: HPRIAD I me hut
Dutput File Hame Suffie: | -TopB0PercHightluals pec
Sequence Tag Length: | |
Spectral Recoverny
i - |CH7.0215
Static Mods: [Quality Metrics File Suffis |-ScanHankerMetrics |
Murnber of Charge States: pepsEbLs Directony: | | [ Browse ]
UseMass: @ Awerage O Mono Database File: | | [ Browse ]
[ Use Charge State from M5 tax FDR: S Decoy Prefie: |rew_
[] Use Multigle Pracessors Databasze Search Score Weights: Dptimize: Score Weights
I ‘wite Out Tags ||'ﬂ‘~‘|'11 mzFidelity 1 weorr 1 v | Mormalize Search Scores
Output File Mame Suffis; |-Labeled |
| Bl e e A s Wiite Dut The Top % Unidentified High Quality S pectra
Quality Metrics File Suffiv. |-ScanBankertetrics in |szL o | Farmat
Help Analyze Result ’ Fun ] [ Cancel

Figure 13. A screenshot of ScanRanker GUI.

The “Spectral Removal” feature generates a subkétigh quality spectra in
mzML, mzXML, MGF or MS2 format, which can be usext fnore intensive searches.
The "Spectral Recovery" feature makes use of "idp@d" module in IDPicker software
to determine which spectra are identified. BasedhendpQonvert result, it adds a label

(1 or 0) to each spectrum in a metrics file to tate whether the spectrum is identified
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by IDPicker. The corresponding peptides and prstehidentified spectra will also be
included in the metrics file. ScanRanker generatadentified high quality spectra for
further analysis such @& novosequencing and cross-linking analysis.

The screenshot of the lonMatcher GUI is shown guFe 14. lonMatcher reads a
spectrum file and a metrics file to allow manuapection of spectral quality. More
importantly, it enables interactive validation afpgpide-spectrum matches. If a metrics
file is generated by “Spectral Recovery”, the ided peptide sequence will be
displayed in a data table. Clicking a row in thieleéabrings up four panels: annotation
panel, fragmentation panel, spectrum panel @gmchovosequencing panel. The peptide
sequence in annotation panel can be modified ictigedy to exam the match between a
modified sequence and the spectrum. Cross-cowelattores are reported for each
sequence. The fragmentation panel dispraysvalues of selected fragment ion series in
which matched ions are bold highlighted. The spmetpanel shows matched ions and
fragmentation ladders.

If no peptide was assigned to a spectrum in dagabsearch, potential
interpretations of the spectrum can be inferredgi§lepNovo, a state-of-the-ae¢ novo
sequencing tool developed at University of CalifaynSan Diego (UCSD). Inferred
peptide sequences can be copied to annotation fianelanual validation. It should be
noted that PepNovo program is not included in tt@n&anker package. To enable diee
novo sequencing function, please download PepNovo at
http://proteomics.ucsd.edu/index.html and copyfiek to the \ScanRanker-installation-
directory\PepNovo folder. Copyright and Licenseomfation of PepNovo are available

in UCSD website.
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Figure 14. A screenshot of lonMatcher GUI.

[11.2.2 BestTagScore Subscore
DirecTag evaluates sequence tags on the basisa&fipensity,m/zfidelity and
complementarity. Each tag is assigned a p-valuegoesent the probability that a better
score would have resulted by chance. Here | madeite score of the top ranked tag
as the “BestTagScore” subscore for spectral quabsessment. Spectra that are capable

of generating high quality tags are more likelyoeogood spectra.

[11.2.3 BestTagTIC Subscore
To infer sequence tags, DirecTag constructs a grapmprising nodes

representing peaks and edges representing pawesa&t that are separated by amino acid
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masses. DirecTag seeks out consecutive edgessigrdgph to enumerate sequence tags.
For example, a set of four connected nodes in taphgmay constitute a tag of three
amino acids. Each node in a spectrum graph is tedavith a peak intensity value. The
“BestTagTIC” subscore sums up peak intensitiesheftbp ranked tag. A high quality
spectrum is expected to have a higher “BestTagFBl@iscore than low quality ones in a

dataset. Spectra that are higher in intensity aneeriikely to produce tags of high TIC.

l1l.2.4 TagMzRange Subscore

Each inferred tag corresponds directly to a sesfdsagments in a tandem mass
spectrum. Therh/zrange” of a tag is thm/zdistance that extends from the first peak to
the last peak of the tag. By examining all enuneetdags, the “TagMzRange” subscore
describes the widest range mfz values for a spectrum that is spanned by tags.aFor
spectrum generating many tags, the “TagMzRanges&uk is equal to thm/z range
between the lowesh/z peak and the highesi/z peak across all enumerated tags minus
anym/zareas that are not spanned by tags. If tags cgererated from a wida/zrange
in a spectrum, it is more likely that this spectrwifi be identifiable by computational

tools.

[11.2.5 Spectral Quality Score
Three subscores are subjected to logarithmic toamsition and normalized
before generating a final quality score. The noimasibn of each subscore is performed
by subtracting the mean of subscores in that datasd then divided by the interquartile

range of these subscores. Spectra with no infeéagsl or the best scored tags exceeded
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the threshold specified in configuration file, ulbpd0-20% of spectra in a dataset, are
considered as low quality spectra and are excludethe calculation of mean and
interquartile range. ScanRanker computes the agevdghree normalized subscores as
the final quality score. Multiple LC-MS/MS runs,cduas MudPIT or gel band runs, can
be optionally grouped together as a single experimé&r which the mean and
interquartile range of subscores across all datagditbe used for normalization.

During developing the scoring method, | also attesdpo use logistic regression
and support vector machine based models to gengualéy scores. These models can
handle a large number of variables, so other ategbsuch as the number of peaks in a
spectrum, total ion intensity and the ratio of sgy@and weak peaks in a spectrum can be
incorporated into the scoring system. However,unfib the proposed method with three
variables can achieve almost the same performasceussng more variables in
sophisticated models. Therefore, only three mastroninating features were retained

for quality assessment here.

[11.3 Data Sources
The evaluation of the ScanRanker algorithm emplas@ceral datasets collected
from different instrument platforms (see Table)e configurations of ScanRanker and
other software tools are given in Appendix A. lostent raw files were converted to
mzXML format using the MSConvert tool of the Proféaard library. DTA format files
required for Sequest search were extracted frommt€ML files using mzxml2search
program of Trans-Proteomic Pipeline (Institute gét®ms Biology, Seattle, WA) (Keller

et al. 2005). In database search, common contamprateins were added to protein
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databases, and reversed versions of all sequereresappended as decoy sequences for
FDR estimation. The database search results wexegsed by IDPicker software for
peptide validation and protein assembly. Throughioiststudy, IDPicker was configured
to derive score thresholds to yield a 2% FDR. Plegtipassing these thresholds were
considered as legitimate identifications. Speatrawhich these peptides were assigned
were considered as “identified spectra”. The dasasee available for download from
Vanderbilt  University Mass Spectrometry Research nt@&s web site

(http://'www.mc.vanderbilt.edu/msrc/bioinformaticatd.php).

“DLD1 LTQ” Dataset

This dataset was previously used to test IDPickéimare and the experimental
description was published by Ma et al. (2009). TheD1 LTQ” dataset consisted of
four RPLC runs of human colon adenocarcinoma ¢Ell<D-1 cell line) analyzed on a
Thermo Fisher LTQ linear ion trap mass spectrom@an Jose, CA). The files averaged
12,913 MS/MS scans. Spectra were identified aganstPl human database (v3.56)
using database search engines MyriMatch. SequesiX&andem search results were
converted to pepXML format using out2xml and tandeml programs in the Trans-
Proteomic Pipeline, respectively. Raw peptide idieations were processed by the
IDPicker software for protein assembly. Spectraewelassified into two categories,
“identified spectra” and “unidentified spectra”, are the identified set pooled data from

all three database searches.
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# of (Average) # of
Dataset name files MS/MS scans Identification methods Databases usesefarch

Removal of Low Quality Spectra
MyriMatch, Sequest,

DLD1LTQ 4 12913 X!Tandem IPI.LHUMAN.v3.56
MyriMatch, Sequest,
Mouse HCT 4 5408 X!Tandem IPI.LMOUSE.v3.62
MyriMatch, Sequest,
Yeast Velos 5 38466 X!Tandem SGD.orf_trans_all.20090303
Recovery of Unidentified High Quality Spectra
Sequest/MyriMatch,
DLD1LTQ 1 12820 X!Tandem IPI.LHUMAN.v3.56
MyriMatch,
Serum Orbi 1 6697 tryptic/semi-tryptic IPI.LHUMAN.v3.56
Histone Orbi 1 9170 MyriMatch/TagRecon  IPI.LHUMAN.G3
Prediction of Richness of | dentifiable Spectra
MudPIT Orbi 10 9828 MyriMatch IPI.LHUMAN.v3.56
IEF Orbi 10 10897 MyriMatch IP.LHUMAN.v3.56
GelBand
LTQ 10 9520 MyriMatch IPLHUMAN.v3.47

Use of Quality Score in Peptide Validation
Mascot, Sequest,

DLD1LTQ 4 12913 X!Tandem IPI.LHUMAN.v3.56

Selection of Spectra for De Novo Sequencing

Yeast Velos 1 38560 PepNovo, MyriMatch ~ SGD.orf_¢raail.20090303
Tardigrade SwissProt. DROME.ANOGA.C
QSTAR 1 837 PepNovo, MyriMatch AEEL.rel56.8

Hadrosaur

Orbi 1 14217 PepNovo, MyriMatch ~ AnoCarl.0

Use of ScanRanker in Cross-linking Analysis

Crosslink

Orbi 1 1161 Protein Prospector SwissProt.ECOLI. 2310

Table 3. Experimental datasets for the evaluatiddcanRanker.

“Serum Orbi” Dataset
This dataset was previously used to test IDPickéimare and the experimental
description was published by Ma et al. (2009). T&erum Orbi” data represented an
RPLC analysis of depleted human serum sample inLBQ-Orbitrap hybrid mass
spectrometer (Thermo, Scan Jose, CA) at Vandeadbilersity Medical Center. Spectra

were identified against an IPI Human database @6)3uSing MyriMatch in either tryptic
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or semi-tryptic search mode. Search results wayeggsed by IDPicker and spectra were
separated to three categories: “spectra identifi¢dyptic search”, “new identifications in

semi-tryptic search” and “unidentified spectra”.

“Histone Orbi” Dataset
This dataset was published by Loecken et al. (2a8@Jone H2b and H3 adducts
was analyzed using an LTQ-Orbitrap mass spectram8feectra were searched using
MyriMatch against an IPI human database (v3.68)@mndessed by IDPicker for peptide
validation and protein assembly. The identifiedtgnts were pulled to construct a subset

protein database for bind modification search bgRecon.

“MudPIT Orbi” Dataset
This dataset was published by Slebos et al. (2008yptic peptides from 50 pg
proteins (adenocarcinoma) were loaded to a SCXnuoltollowed by a reverse phase
LC-MS/MS analyses. Spectra from 10 fractions inNh&PIT experiment were searched

using MyriMatch against an IPI Human database @)3ahd processed by IDPicker.

“IEF Orbi” Dataset
This dataset was published by Slebos et al. (200§ptic peptides from 50 ug
proteins (adenocarcinoma) were separated by idoeléacusing, followed by a reverse
phase LC-MS/MS analyses. Spectra from 10 fractimngshe IEF experiment were
searched using MyriMatch against an IPI Human detab(v3.56) and processed by

IDPicker.
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“GelBand LTQ” Dataset

This dataset was published by Burgess et al. (2088yum samples were
collected from patients without evidence of maligeya Alpha 2 macroglobulin-
containing protein complexes were immunoprecipitatand separated by molecular
weight in 10% SDS-PAGE. Each lane was sliced ifitaelgions and subjected to in-gel
digestion. Peptides from each gel region of eadlemiawere subjected to a 95 minute
RPLC separation. As peptides eluted in nanosphayions were directed to the inlet of a
Thermo LTQ tandem mass spectrometer. Spectra wareted using MyriMatch against

an IP1 Human database (v3.47) and processed bgkeri

“Tardigrade QSTAR” Dataset

Hypsibius dujardinj a species of Tardigrades (commonly known as wadars')
were grown in glass Petri dishes feeding on alg@eoteins from 600 organisms were
collected and solubilized in LDS buffer (1M DTT)ilked, sonicated and then separated
by 1D SDS-PAGE. Contiguous gel bands were excidegmsted (trypsin), and samples
were analyzed by reverse-phase nano-HPLC-ESI-MSIsii®y an Eksigent nano-LC 2D
HPLC system (Eksigent, Dublin, CA) which was dihgatonnected to a quadrupole
time-of-flight (QqTOF) QSTAR Elite mass spectrome(®IDS SCIEX, Concorde,
CAN). Briefly, peptide mixtures were loaded ontogaard column (C18 Acclaim
PepMap100, 300 pm I.D. x 5 mm, 5 um particle site@) A pore size, Dionex,
Sunnyvale, CA) and washed with the loading sol\{@rit % formic acid, flow rate: 20
pL/min) for 5 min. Subsequently, samples were fiemsd onto the analytical C18-

nanocapillary HPLC column (C18 Acclaim PepMap1000 3im I.D. x 15 cm, 3 um
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particle size, 100 A pore size, Dionex, Sunnyv@ld) and eluted at a flow rate of 300
nL/min using the following gradient: 2-40% solve®itin A (from 0-35 min), 40-80%
solvent B in A (from 35-45 min) and at 80% solvéhin A (from 45-55 min), with a
total runtime of 85 min (including mobile phase #iuation). Solvents were prepared as
follows, mobile phase A: 2% acetonitrile / 98% o01% formic acid (v/v) in water, and
mobile phase B: 98% acetonitrile / 2% of 0.1% farmacid (v/v) in water. Mass spectra
(ESI-MS) and tandem mass spectra (ESI-MS/MS) wecerded in positive-ion mode
with a resolution of 12000-15000 full-width half-mimmum. For collision induced
dissociation tandem mass spectrometry (CID-MS/MIS3, mass window for precursor
ion selection of the quadrupole mass analyzer watst 1m/z The precursor ions were
fragmented in a collision cell using nitrogen as tollision gas. Advanced information
dependent acquisition (IDA) was used for MS/MS edibn, including QSTAR Elite
(Analyst QS 2.0) specific features, such as “Sr@attision” and “Smart Exit” (fragment
intensity multiplier set to 4.0 and maximum accuation time at 2.5 sec) to obtain
MS/MS spectra for the three most abundant parem following each survey scan.
Dynamic exclusion features were based on value Mmiaand were set to exclusion
mass width 50 mDa and exclusion duration of 120. &oce complete genomic
sequences for tardigrade are not yet availableatched the dataset using MyriMatch
against a database consisting of proteins fromette®onomically related species with
complete proteomegrosophila melanogastefDROME), Anopheles gambia@African
malaria mosquito, ANOGA) an@aenorhabditis eleganfCAEEL), downloaded from

Swiss-Prot (release 56.8). Reversed sequencesesé tbroteins were appended to the
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database as decoys. Spectra were separately pdcéss PepNovo forde novo

sequencing and ScanRanker for spectral qualitysassnt.

“Hadrosaur Orbi” Dataset
This “Hadrosaur Orbi” dataset represented an RRUCof protein extracts from
an 80-million-year-old Campanian hadrosa®rachylophosaurus canadensisn a
Thermo Fisher LTQ Orbitrap XL mass spectrometer liphbd by Asara et al.
(Schweitzer et al. 2009). The mzData file was doaded from PRIDE

(http://www.ebi.ac.uk/pride/accession number 9285) and was converted to mzXML

format using a predecessor of the MSConvert tawhfthe ProteoWizard library, which
was subsequently processed by PepNovo and ScanR&mextra were searched using
MyriMatch against a lizardAnolis carolinensis database, AnoCarl.0, produced by the

Broad Institute at MIT and Harvardhttp://www.broadinstitute.org/models/anple

Common contaminant proteins were added to supplethese sequences, and reversed

versions of all sequences were appended to conpleteASTA.

“Crosslink Orbi” Dataset
This dataset was provided by Robert Chalkley atvensity of California, San
Francisco and published by Trnka, M. J. et al. Kar& Burlingame 2010). Purified
GroEL and GroES proteins were cross-linked by 1f@qahyl-5-ethynylbenzene (DEB).
The sample was analyzed on an ESI LTQ-OrbitrapXthvein ETD module installed
(Thermo Scientific). Cross-linked spectra were tdeu using Protein Prospector and

were manually confirmed by Trnka et al. The datas&$ also searched using Protein
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Prospector against SwissPritcoli database to identify spectra of non-crosslinked
peptides. The search were performed with both pamet product mass tolerance of 20
ppm. Carbamidomethylcysteine was searched as a firedification. Methionine
oxidation, protein N-terminal acetylation and pdptN-terminal glutamine cyclization to

pyroglutamate were specified as variable modifarati

“Mouse HCT” Dataset

This dataset was generated from a whole mouse fiv@ein extract obtained
from adult CD1 mice in Vanderbilt University Maspegtrometry Research Center.
Proteins were reduced with DTE and alkylated wathoiacetamide prior to digestion with
sequencing grade Trypsin. Four replicate LC-MS/i&s were performed on a Bruker
Esquire HCT ultra ion trap (Bruker Daltonics, Bila, MA). The scan sequence
consisted of 1 precursor ion scam/Z = 375-1200) in standard enhanced and five
subsequent tandem MS scangZ= 100-2800) in ultra scan mode. Scan averaging wa
set to 2 and ICC was 200,000. Singly charged pegtwere excluded from tandem MS
and dynamic exclusion was activated for 1 minutierafwo successful tandem MS
experiments for a peptide. LC-MS/MS was carried oo an Agilent 1100 HPLC
modified with a flow splitter and a FAMOS autosaempWith a 2 pl sample loop. The
column was a 12.5 cm, singly-vented, 360/75 um ODPicoFrit emitter from New
Objective attached to a 3 cm precolumn. Both cokinvare packed in house with 5 um
Monitor C18 particles. Each injection consisted6dd ng of mouse liver digest. The
mobile phases were water and acetonitrile with?@.formic acid as an additive. Peptides

eluted during the 60 minute gradient from 2 % to%s@cetonitrile. Instrument raw data
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were converted to mzXML format using the Bruker @assXport tool. The files
averaged 5048 MS/MS scans. Spectra were searclaedst@n IPI mouse database
(v3.62) by MyriMatch, Sequest and X!Tandem and essed as described in the “DLD1

LTQ” dataset.

“Yeast Velos” Dataset

This dataset was generated utilizing the CPTAC YYBasformance Standard that
was digested with trypsin in Rapigest (Pauloviclale010). Two microliter portions of
peptide mixture were analyzed using a Velos iop treass spectrometer (Thermo, San
Jose, CA) equipped with an Eksigent 1D Plus Nanpu@p and Eksigent NanoLC-AS1
autosampler (Eksigent, Dublin, CA). Peptides wealagphase extracted using an in-line
column (100pm x 6 cm) packed with Jupiter C18resin i, 300 A, Phenomenex,
Torrence, CA) and separated on a capillary tip (100 x 11 cm, Polymicro
Technologies, Phoenix, AZ) packed with the C18mestollowing the injection, peptides
were solid-phase extracted by washing with 0.1%(fabile phase A) for 15 min at a
flow rate of 1.5uL/min. Mobile phase B consisted of acetonitrileC]) with 0.1% FA.
Peptides were separated using a gradient of 2—-43G®&6 B20 min at a flow rate of 700
nL/min, followed by a rapid increase of B from 4@9%9 in 25 min, and held at 90% B
for 9 min before returning to initial conditions D880% A. Survey scans were collected in
the ion trap a mass range of 400-200(2 Following each survey scan, the five most
intense ions were selected for MS/MS fragmentatiothe ion trap using the dynamic
exclusion feature (exclusion mass width omf&and +2m/z exclusion duration of 60 s,

and repeat count of 1). Centroided MS/MS scans aeqgiired on the Velos using an
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isolation width of 2m/z an activation time of 30 ms, an activatiqrof 0.250 and a
normalized collision energy of 30 using 1 microsgath a max ion time of 100 ms for
each MS/MS scan and 1 microscan with a max ion oim& ms for each full MS scan
and a minimum signal of 1000. The mass spectramets tuned prior to analysis using
the synthetic peptide TpepK (AVAGKAGAR), and then¢uparameters were as follows:
spray voltage of 1.5 kV, a capillary temperatur@@d °C and an S-lens RF level of 59%.
The MS/MS spectra were collected using data-dep#rstanning in which one full MS
spectrum was followed by four MS-MS spectra. MS/Bl&ctra were recorded using
dynamic exclusion of previously analyzed precurdors60 s with a repeat count of 1
and a repeat duration of 1. A total of five repiecd C-MS/MS experiments were
performed and 192,330 MS/MS spectra were collecBbctra were searched using
MyriMatch, Sequest and X!Tandem against tBaccharomycesGenome Database

orf_trans_all.fasta file downloaded in March of 2Gfhd processed by IDPicker.

[11.4 Results and Discussion
To establish the effectiveness of ScanRanker inlityuastimation, | first
evaluated its three metrics for discrimination.ekféstablishing its scoring discrimination,
| tested its real-world performance for recognitisinunidentified high quality spectra
and prediction of richness of identifiable spectralso demonstrated its applications in
peptide validationde novosequencing and cross-linking analysis. These testblish
ScanRanker as a robust and effective algorithnmspactral quality assessment of data

from various instruments in a wide variety of apations.
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[11.4.1 Subscore Evaluation
ScanRanker evaluates spectral quality based ontTBgScore”, “BestTagTIC”
and “TagMzRange” subscores. To test the effectisemd subscores, the “DLD1 LTQ”
(Ma et al. 2009) dataset was searched by MyriMaBbguest and X!Tandem to
maximize the peptide identifications. The discriating power of each subscore is
illustrated via receiver operating characterisROC) curves in Figure 15. Each subscore
may be used to discriminate spectral quality betwdentified and unidentified spectra.
By combining the three subscores, however, Scanfaadhieves better discrimination
than by using any single subscore alone. Resutraa after testing any combination

of two subscores were exceeded by combining aktsubscores (data not shown).

True positive rate

: —— Combined,AUC=0.956

g -- BestTagScore,AUC=0.925
A BT BestTagTIC,AUC=0.922
-=-=  TagMzRange,AUC=0.912

T T I
0.0 0.2 0.4 0.6 0.8 1.0

0.2
|

0.0

False positive rate

Figure 15. Combining three subscores improves igwichinating power of ScanRanker.
Tests on the “DLD1 LTQ” dataset revealed differeligcrimination in ScanRanker’s
subscores. The ROC curves display true positive(eak.a. sensitivity) and false positive
rate (a.k.a. 1-specificity) of ScanRanker’'s subss@and the combined score. The AUC
values show that combining three subscores yiedd®bdiscrimination than using any
single subscore.
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| tested both mean and median for subscore norat@izduring the development
of ScanRanker algorithm, and they worked equallyl Wwecause of small differences
between these values. For example, the averagaahffe between mean and median of
‘DLD1 LTQ” dataset (4 replicates) are 1%, 6% and & “BestTagScore”,
“BestTagTIC” and “TagMzRange” subscores, respebtivd chose the mean of
subscores for normalization because it is less resipe to compute than the median.
More importantly, if ScanRanker scores need to djested across multiple files, the
mean of subscores across these files can be ezddulated based on the sum of
subscores and the total count of spectra.

ScanRanker computes the quality score by averabneg normalized subscores.
If the subscores differed considerably in theircdminating powers, simply averaging
the subscores would reduce the discriminating pawe&canRanker overall. To test the
discrimination difference between optimized scoreights and equal weights, each
subscore was assigned a weight from 0 to 1 withrzdements, and the summation of
weighted subscores was used to calculate the ar@dar ROC curve (AUC). The best
possible weighting yielded an AUC less than 1% éarghan the equal weight approach.

As a result, | opted to use equal weights for sioigl

[11.4.2 Removal of Low Quality Spectra
Low quality spectra, particularly from ion trap reagpectrometers, often generate
a significant amount of computational overhead mointribute little to protein
identification. Filtering these spectra via Scanlanprior to search can save time in

identification. To test ScanRanker's performanceremoving low quality spectra, |

75



analyzed three datasets collected from a ThermweFisTQ, an Esquire HCT ultra and a
Thermo Fisher LTQ Velos ion trap. MyriMatch seamthteese data in two ways: (1)
search all spectra, (2) only search the top 60%igih quality spectra as reported by
ScanRanker. In all three instruments, more than 8#%e resulting identifications were
shared between both searches, and more spectradestified in the second search than
in the first. In the case of the Esquire HCT, almb%o of the identifications were
produced only when the bottom 40% of spectra wenagqa away, at the cost of less than
1% of the identifications (see Figure 16). Moreniifecations were gained by removing
low quality spectra prior to database search; laality spectra are more prone to be

matched to decoy sequences, thus increasing thgesicy of the threshold applied to all

identifications.
DLD1LTQ Mouse HCT Yeast Velos
All spectra  High quality All spectra  High quality All spectra High quality
spectra spectra spectra

(A) (€)
Spectrum ( 0.8% ( 98.1% 94.4% ) 4.9% 98.1%
(D) (E) (F)
0.6% ( 98.5% ) 0.9% 0.8% ( 97.9%

Figure 16. Removing poor MS/MS scans in ScanRadkess not significantly reduce

identifications. Panels A-C show the percent oyedhaidentified spectra when searching
either all spectra or only high quality spectranfar overlaps for identified peptides are
displayed in Panels D-F.

Peptide
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Although I retained the top 60% spectra in our, teésthould be noted that there is
no common threshold that can be applied to allsddsafor the selection of high quality
spectra. The spectral removal will be more berafifor large-scale proteomics studies
in which multiple biological and technical replieat are analyzed. | recommend
determining the percentage of retained spectraxaynaing the search results of all
spectra from a single replicate, then applyingthiteshold to remove low quality spectra
in other replicates. For example, Figure 17 pldois proportion of retained identified
spectra in context of spectra sorted by ScanRas&eres. It is obvious that the top
ranked 60% spectra in all three datasets contaire tian 95% of identified spectra.
Therefore, this threshold could be subsequentlyl useremove low quality spectra in
other replicates before the database search. Tilgeses can be easily generated from
ScanRanker output, which comprises a tab-delimi¢ad file including ranked spectra,

identification labels and the cumulative sum ofitifecation labels.

DLD1LTQ Mouse HCT Yeast Velos
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Figure 17. Determine spectral removal thresholchfeosingle replicate.
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[11.4.3 Recovery of Unidentified High Quality Speat

Simple database search can sometimes fail to fgdemtny spectra that can be
identified through additional effort. | employedrdélk publicly available datasets to
determine if ScanRanker scores were predictivadeftifications gained through more
advanced searching methods.

In the first test, | evaluated the peptides idédifthrough multiple database
search algorithms. A single replicate in the “DLDTIQ” dataset with 12820 MS/MS
scans was analyzed using Sequest, yielding 2878ideotly identified spectra.
Additional searches using MyriMatch and X!Tanderantffied 826 new spectra missed
in the Sequest search. All spectra were sorteddayBanker scores from high to low
quality and were split into deciles. Figure 18A wlathe number of initially identified
spectra, newly identified spectra and unidentifsgectra in each decile. As expected,
identified spectra, either by Sequest or additiaerches, were associated with higher
ScanRanker scores than unidentified spectra.

The second experiment evaluated the peptides géinedgh semi-tryptic search.
For samples dominated by a few major proteins, #fiategy improves peptide and
protein identification. In this study, | searchée t'Serum Orbi” (Ma et al. 2009) dataset
using MyriMatch in either fully tryptic or semi-fpyic search mode. Among 6697
MS/MS scans in the dataset, 646 spectra were fahtin tryptic search, and an
additional 928 spectra were generated by semiitrygpgarch. Figure 18B plots the
distribution of all spectra, split to deciles byaB&anker scores. It can be observed that
the majority of gained spectra by semi-tryptic sharvere ranked within the top 30% of

spectra by ScanRanker.
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Figure 18. Evaluation of ScanRanker to recover emtified high quality spectra. Three
datasets were reanalyzed by additional search mettwofind high quality spectra that
were unidentified in initial database searches.hBast represents a typical reason that
high quality spectra may be left unidentified iniaitial search. (A) The “DLD1 LTQ"
dataset was initially identified by Sequest seaMéw identifications (IDs) were added
by MyriMatch and X!Tandem searches. (B) The “SerOmbi” data was searched by
MyriMatch in either tryptic or semi-tryptic modeC) The “Histone Orbi” data was
searched by MyriMatch. A subsequent TagRecon seaah performed to identify
spectra of mutated or modified peptides. These hgrgpot the distributions of initial
identifications, new identifications by additionakarches and unidentified spectra in
deciles by ScanRanker scores. In each panel, fir@de represents spectra assigned high
ScanRanker quality scores and the right side is dowality spectra. Newly identified
spectra tend to associate with better ScanRankeesm all datasets.

In the third test, | examined the ability of Scanker to find spectra that were
unidentified due to modifications and mutations.eTHlistone Orbi” (Loecken et al.
2009) data with 9170 MS/MS scans was initially skad using MyriMatch, yielding
641 confidently identified spectra. To find speatfamodified peptides, the dataset was
searched using TagRecon against a customized databasisting of identified proteins
and decoy sequences. TagRecon yielded 672 specitading common modifications
such as acetylation (117 spectra) and deamidatid® Epectra). Among them, 234
spectra were missed in MyriMatch search. Figure $BGws the distribution of spectra

ordered by ScanRanker scores. As in preceding,@pesctra assigned high ScanRanker

scores were more likely to be identified throughvPidientification software.
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[11.4.4 Comparison of ScanRanker to QualScore

QualScore is a tool integrated in the Trans-Protedtipeline that is specifically
designed for recognizing spectra that evade ideatibn. | compared the performance of
QualScore and ScanRanker on three datasets. Tio gjotaity scores from QualScore, |
analyzed the datasets using Sequest and Peptidefrapd then processed results using
QualScore under the default configuration. Figu@ shows the ROC curves of
ScanRanker and QualScore in three datasets. SceeRperformed as reliably as
QualScore in all tests. ScanRanker displayed ${idigtter performance than QualScore
in the “Histone Orbi” data, possibly because thistexce of modified peptides decreased
the effectiveness of Sequest/PeptideProphet tgginthus diminishing QualScore
accuracy. Despite this minor difference, both tauks able to recognize unassigned high
quality spectra. QualScore produces accurate sebylttraining its scoring system for
each dataset based on Sequest/PeptideProphetsresthile ScanRanker evaluates
spectral quality directly using a sequence taggpgroach. Thus, ScanRanker has no
dependence on the availability of database seastlits.

| attempted to include other algorithms in this gamson. Initial tests of
msmsEval gave promising discrimination for LTQ dats, but no training model was
provided to enable its use in other types of imarnts. The version of the PARC filter
(Bern et al. 2004) that | received from the Yatebdratory omitted scores for removed
spectra, limiting its scope to filtering spectréopto database search. In some other tools,
the software simply split datasets to “good” an@dbdirectories without a report of
metrics for each spectrum, limiting conclusionshbeir scoring discrimination. As a

result of these setbacks, | limited the comparisoQualScore.
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Figure 19. Comparison of ScanRanker to QualScopect&a in three datasets were
separately processed by ScanRanker and QualScorgenerate quality scores.
ScanRanker performs as well as QualScore in alasets but does not require
Sequest/PeptideProphet analysis for spectral gugessment.

[11.4.5 Prediction of Richness of Identifiable Spac

High quality spectra are more likely to be ideetifiin proteomics data analysis. If
multiple LC-MS/MS runs are included in an experimgfor example, MudPIT or 1D
gel experiments,) the number of high quality speatreach dataset reveals the richness
of identifiable spectra, providing a preliminary esview for the quality of the LC-
MS/MS experiment. | sought to demonstrate thatSb@nRanker scores are predictive of
relative qualities of LC-MS/MS runs in an experimhemhree published datasets, the
“MudPIT Orbi” (Slebos et al. 2008), “IEF Orbi” (Sdes et al. 2008) and “GelBand LTQ”
(Burgess et al. 2008) data, were searched usingMAtch against an IPI Human
database. ScanRanker grouped all LC-MS/MS runacdh dataset as a single experiment,
in which the means and interquartile ranges of @uies across all fractions or gel bands

were used for normalization to compute the qualityres.
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Figure 20 shows the scatter plot between the numiielentified spectra in each
LC-MS/MS run and the number of retained spectrah wBcanRanker scores above
different thresholds. Here | used three score bules (0, 0.5 and 1). Spectra with score
0 represent scans of better than 60-70% spectias@actra scoring 0.5 and 1 have better
quality than approximately 85% and 95% of speatraach experiment, respectively.
The distributions of quality scores, however, aestadet-dependent. As expected, the
number of high quality spectra predicted by Scaki@ann each dataset is highly
correlated to the number of identified spectra. Ewample, a score threshold at 0.5
produced the Pearson correlation coefficients 89,00.90 and 0.95 for “MudPIT Orbi”,
“IEF Orbi” and “GelBand LTQ” datasets, respectiveliherefore, the relative quality of
each LC-MS/MS run in an experiment can be estimaiethe number of high quality
spectra determined by ScanRanker. This is potgntigleful for large-scale proteomic
studies, in which ScanRanker can be used as a gapidy control tool to highlight bad

LC-MS/MS runs among an experiment.
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Figure 20. ScanRanker scores predict the richnegtentifiable spectra. Each point in
the figure represents a single LC-MS/MS run anddbiged lines show the least squares
fit of the data. Three ScanRanker thresholds weegl to count retained spectra. 9 of 10
LC-MS/MS runs in the MudPIT dataset are plotteddouse the first fraction of the
MudPIT experiment generated only 21 spectrum ifieations. Each LC-MS/MS run in
all three datasets includes about 10000 MS/MS smeathile the number of identified
spectra varies dramatically. The number of speassigned high ScanRanker scores
correlate to the number of identified spectra, phng relative quality assessment of LC-
MS/MS runs in an experiment.
[11.4.6 Use of Quality Score in Peptide Validation

In proteomics data analysis, database search engsually generate one or more
scores to measure the matches between candiddtdgsepnd experimental spectra. The
search results are then processed by either statistethods (e.g., PeptideProphet) or
FDR-based methods (e.g., IDPicker) for peptidedeion. In latter methods, usually
only scores from database search tools are usewrtgpute FDR. Here | sought to
combine spectral quality scores and scores prodogeathtabase search tools to increase
confident peptide identifications. | searched tHeLD1l LTQ” data using Mascot,
Sequest and X!Tandem against an IPI Human datglw@sg6). All search results were
converted to pepXML files using either an in-hodsa| script or software tools in the

Trans Proteomics Pipeline. The spectral qualityexaenerated by ScanRanker were

added to pepXML files using a Perl script. IDPickabsequently read these scores along
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with search engine scores during peptide validatidme software combined multiple
scores by optimizing score weights through a Md#elo method, generating a single
score for each peptide-spectrum match. In this tesbnfigured IDPicker to use either

the primary scores from a database search todiesetscores plus the spectral quality

score.
Mascot Sequest X!Tandem
lonScore lonScore XCorr XCorr + deltaCN  Hyperscore Hyperscore
-IdentityScore  +ScanRanker +deltaCN +ScanRanker +ScanRanker

85.7% - .4% 4.4%

Figure 21. Adding ScanRanker scores in peptidedaabn increases the number of
confident spectrum identifications. “DLD1 LTQ” datt was separately searched by
Mascot, Sequest and X!Tandem. ScanRanker scores adeted to pepXML files to
allow score combination in IDPicker. Mascot sconege combined using either static
weights as “lonScore-IdentityScore” or optimizedigids as “lonScore + ScanRanker”.
Sequest and X!Tandem results were combined by iigastore weights optimization in
IDPicker. The Venn diagrams show the percent opesfadentified spectra when using
either a single score or combination of two scoidse latter method yielded more
spectrum identifications for all searches.

Figure 21 shows the percent overlap of confideetspm identifications in both
settings. Adding spectral quality scores in pepurdédation consistently yielded more
confident spectrum identifications than using agkan score. Mascot benefited
significantly more from score combination than Sexjuand X!Tandem. Some spectra

may be identified only when using the primary scdileese spectra, however, are usually

less confident identifications that are assignedgmal match scores in database search.
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[11.4.7 Selection of Spectra f@e NovoSequencing

De novosequencing is an alternative, database-indepermrgbgmbach for peptide
identification. However, inferring peptides fromesgra is a time-consuming process. In
this study, for example, PepNovo took about 8 hdarsfer sequences of an Orbitrap
dataset with 14217 MS/MS scans on a Dell Optipléx Gomputer with an Intel Core 2
Duo 6400 processor and 3 GB of RAM, while ScanRamkdy required 3 minutes for
spectral quality assessment. Therefade, novo sequencing could benefit from the
application of spectral quality assessment toolsdlgcting high quality spectra fde
novoanalysis.

As a state-of-the-ade novosequencing tool, PepNovo assigns a score to each
inferred peptide sequence to evaluate how wekptans the peak pattern in a spectrum.
The higher a PepNovo score, the better an infepeptide matches a spectrum. |
employed three datasets to demonstrate that highR&mker scores are predictive of
high PepNovo scores. The initial comparison of ¢h&sores analyzed the “Yeast Velos”
dataset, in which peptide identification was stnéigrward. Figure 22A shows the scatter
plot between the PepNovo score of the top rankediges sequence for each spectrum
and its ScanRanker score. ScanRanker scores drly kigrelated to PepNovo scores,
producing a Pearson correlation coefficient of 0.82 expected, spectra identified by

MyriMatch search tend to associate with high Scanki@aand PepNovo scores.
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Figure 22. ScanRanker scores can be used to poedicdvosequencing success. Spectra
in three datasets were separately processed byrR8oker and PepNovo. Identifications
were generated by searching the spectra using MyaM For clarity, only 1000 spectra
were randomly sampled and displayed. When PepNepmrted no peptide for a
spectrum, it was visualized as matching the mininaoaore reported by the software for
that dataset. Panel C highlights five published lepectra from the Asara group
publication. In all three tests, spectra with higbanRanker scores tend to be assigned
high PepNovo scores, implying that ScanRanker carnuged to select high quality
spectra fode novosequencing.

Next, | evaluated ScanRanker on datasets for wdtéchovosequencing would be
necessary. The “Tardigrade QSTAR” dataset is arMSIMS experiment from a 1D gel
band from a species of microscopic animals for Wwigenome sequence is unavailable.
MyriMatch attempted to produce identifications incastomized database containing
proteins of three species that are taxonomicallyilar to tardigrade rosophila
melanogaste(DROME), Anopheles gambiagAfrican malaria mosquito, ANOGA) and
Caenorhabditis elegan@CAEEL)). Only spectra for peptides of highly siamiproteins
would be identified by this approach; only 66 speatere identified among the 837
MS/MS scans in the set. Figure 22B superimposesetiientifications on the scatter plot
of PepNovo and ScanRanker scores. PepNovo and SckeRboth report that many
spectra were of high quality and yet failed idecdifion. Pearson correlation between the

two algorithms produced a coefficient of 0.72.
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Considerable controversy has accompanied the rgudstication of proteomics
data for fossilized specimens (Schweitzer et 809201 sought to characterize the recent
“Hadrosaur Orbi” dataset to evaluate the inhereemniifiability of spectra for these
spectra. | began with a database search againgard [Anolis carolinensis database,
AnoCarl.0, produced by the Broad Institute (htiypMiv.broadinstitute.org/models/anole).
The result included 189 confidently identified tand mass spectra, but all matched to
keratin or trypsin sequences (our database did imdude the chicken sequences
employed by the Asara group). | plotted spectrarsgdhe corresponding PepNovo and
ScanRanker scores (see Figure 22C). Five collagestrss from the original Asara
publication were assigned high ScanRanker quatityes of 1.13, 0.99, 0.97, 1.01 and
1.70; | was unable to match the sixth identificatito the corresponding MS/MS
spectrum. The hadrosaur data produced the lowestlaton between PepNovo and
ScanRanker (0.34), where the best correspondente lbe observed in the high scoring
domains for the two algorithms. It becomes cleat the data of the “Hadrosaur Orbi”
set were disproportionately likely to produce PepiNecores below zero, suggesting that
a large fraction of spectra from this dataset coontd support confident sequence

identifications even if appropriate sequences vaweslable in FASTA.

[11.4.8 Use of ScanRanker in Cross-linking Analysis
Identification of cross-linked peptides by masscsmemetry is a challenging task,
mainly because of the high complexity and often kgnal intensity in these spectra.
Even with the availability of advanced computatiot@ols, manual interpretation or

confirmation of cross-linked peptides is generaltgcessary. Here | sought to
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demonstrate that ScanRanker helps to prioritizectsppefor manual inspection. The
published “Crosslink Orbi” (Trnka & Burlingame 201@ataset consists of 1161 MS/MS
spectra collected on an LTQ-Orbitrap XL with an ETbodule installed (Thermo
Scientific). Spectra in quadruply charged or higblearge states were selected for ETD
fragmentation to characterize chemically crossdthkroEL-GroES chaperonin complex.
Protein Prospector (Chu et al. 2010) identified $gfectra of cross-linked peptides
(manually confirmed) and 91 spectra of single pkgsti Figure 23 shows the distribution
of these spectra, split to deciles by ScanRankeresc The spectra of cross-linked
peptides were associated with high ScanRanker scetggesting that ScanRanker is
capable of recognizing these spectra, though theyrere complicated than spectra of
single peptides. The results also indicate thanhBeaker performs well for spectra from
ETD fragmentation.

Some spectra were assigned high quality scoregdméined unidentified. A
manual inspection of these spectra implies thay e likely produced by peptides
rather than non-peptide contaminants. These spastrally contain a large number of
peaks. For example, the top 10% of spectra by Smake#® includes 70 unidentified
spectra. The average number of peaks in theserape@28, which is much higher than

that number of all spectra (91 peaks) in the datase
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Figure 23. ScanRanker helps to prioritize spearanfanual inspection in cross-linking
analysis. The “Crosslink Orbi” dataset was processeng Protein Prospector to identify
crosslinked and non-crosslinked spectra. The figlwes the distribution of these spectra
in deciles by ScanRanker scores. The identifiedctspe either crosslinked or non-

crosslinked, were associated with high ScanRardaes, implying that ScanRanker can
be used to facilitate cross-linking analysis bykiag spectra for manual inspection.

[11.5 Conclusion

| present a method that assesses quality of tamdass spectra through sequence
tagging. ScanRanker does not require training &mheype of data from different mass
spectrometers, broadening its use to lab researtheking prior experience in statistical
learning. In this study, | employed a variety ofadets to demonstrate the effectiveness
of ScanRanker for recovery of unidentified high lgyaspectra and removal of low
quality spectra. | showed that ScanRanker can lesl us predict the richness of
identifiable spectra in LC-MS/MS experiments andniprove peptide validation. | also

demonstrate the application of our method to rgmécsa forde novosequencing and
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cross-linking analysis. The superior performanc&adnRanker established it as a robust
and reliable spectral quality assessment tool.

Wrapping ScanRanker to a library function will impe its usability, making it
easy to be integrated into other software tools. é&d@ample, it can be used as a pre-
processor for database search engines to filteloauguality spectra; it can be integrated
to IDPicker to provide quality scores for specid@ntifications and export unidentified
spectra for subsequent analysis; it can be incatpdrinto QuaMeter (described in next
chapter) to replace the identification step anddoeh instrument QC based on the

identifiable spectra rather than identified spectra
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CHAPTER IV

QUAMETER: MULTI-VENDOR PERFORMANCE METRICS FOR LC-8/MS

PROTEOMICS INSTRUMENTATION

V.1 Introduction

Technologies for proteomic identification via LC-KMS rely on a complex
series of experiments: protein denaturation anagdign, LC separation of peptides
followed by electrospray ionization, tandem massecgpmetry, and proteome
informatics. Variation in the performance for any these elements may impact
proteomic identification. The publication of LC-M&S quality metrics by Paul Rudnick
at NIST, working in collaboration with the Nation@lancer Institute (NCI) CPTAC
network, introduced a set of metrics that spandbiaplex process (Rudnick et al. 2010),
enabling recognition of components that were opegaat variance with their typical
performance. The strategy makes use of defineditguaontrol samples that are
periodically analyzed between experimental samplesa queue for the mass
spectrometer.

The previously described 46 metrics embodied inNH&T MSQC software rely
on a complex set of algorithms. Data from ThermoVRAles are first transcoded to
mzXML, MS1, and MGF formats for subsequent progegssiThe MS1 files enable
peptide precursor ion chromatograms to be assess@ NIST ProMS software. The
tandem mass spectra of an LC-MS/MS experimentdanatified by either the SpectraST

spectral library search engine or the OMSSA datelsearch algorithm. The MSQC
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software can then match precursor ion chromatograitis peptide identifications to
compute its set of metrics and report them to aftkx

In practice, several aspects of the MSQC softwaevgnt its use for routine
instrument monitoring. Its reliance on a modifiee W tool for reading raw data limits
its application to instruments from Thermo Fish&he coordination among different
software packages may lead to mis-association pfigee identifications and tandem
mass spectra when alternative file formats or Biggn rate instrumentation are employed.
Adapting the pipeline for site-specific workflowssuch as a different peptide
identification engine) is a non-trivial task.

In this work, | present the QuaMeter tool that tiees same capabilities as MSQC
with several important additions. QuaMeter can ridad from most mass spectrometry
vendors via ProteoWizard and does not lose timectding to other formats. The
software accepts identification data from IDPicksy,any identification database search
engine that produces pepXML or mzldentML can bedudedemonstrate the use of
QuaMeter for data collected from instrument of ¢hhfferent vendors. | examine the
impact of identifications tools on computed metriche improvements in QuaMeter

make it a robust and flexible quality metric aseesdth open source.

V.2 Overview
To compute QC metrics for a LC-MS/MS experiment,adeter requires two
input files: an instrument spectral file and annidfecation search engine results file. As
shown in Figure 24, ProteoWizard is central to datanagement for the software

pipeline. Its support for native file formats framultiple instrument vendors means that
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transcoding data to an open format is unnecessdtho(gh support for non-Microsoft
Windows systems would require this step). Protexa\i presents spectra in an mzML
data model to all of the pictured tools, using ami “nativelD” labels to relate

identifications to source scans. Its incorporatmna chromatogram extractor from
Crawdad (Finney et al. 2008) supports the full-tvdt-half-maximum computations

needed for the quality metrics.

AB Sciex

extracted ion
chromatograms

Pepitome / filtered IDs
IDPicker

Agilent

Bruker

ProteoWizard

Thermo

Waters

Figure 24. Workflow diagram for QuaMeter operation.

The peptide identification tools such as MyriMa{database search), TagRecon
(sequence tag-based database search), and Pep{spwetral library search) all
incorporate ProteoWizard for both data import atehtification export via pepXML and
mzldentML formats. Here | emphasize Pepitome sispectral library search is
particularly appropriate for repeat identificatioof QC standard samples. Raw
identifications from this step are filtered withthe IDPicker protein assembler, and
filtered identifications are processed by QuaMétecompute QC metrics. For each LC-

MS/MS run, QuaMeter exports metrics to a tablesit format.
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I'V.3 Data Sour ces
| tested QuaMeter on several datasets spanninginstkuments from three
different vendors (see Table 4). These datasets aemumulated via QC experiments in

three laboratories to monitor instrumentation penfance..

#of  Average # of

Dataset Sample files MS/MS scans Databases used for search
LTQ-XL BSA 280 11917 RefSeq.BOVINE
LTQ-Orbitrap BSA 53 3417 RefSeq.BOVINE
LTQ-Velos Yeast 5 38466 SGD.orf_trans_all

HCT Ultra BSA 24 3467 RefSeq.BOVINE

QSTAR Elite Beta-gal 23 451 UniProt.ECOLI

TripleTOF 5600 Beta-gal 60 1973 UniProt.ECOLI

Table 4. Experimental datasets for the evaluatidQuaMeter.

All datasets were searched using MyriMatch or Pepd, and search results were
processed by IDPicker software for peptide valmatind protein assembly. Throughout
this study, IDPicker was configured to derive sctmeesholds to yield a 5% FDR.
Filtered identifications and spectral files wer®gessed by QuaMeter to compute QC
metrics. To compare metrics generated by QuaMetdrMSQC, scripts in Awk were
created to make IDPicker identifications accesstbleMSQC so that both algorithms
could work from a common set of identifications.t®@rocessing details and software

parameters are available in Appendix A.

Thermo Fisher LTQ-XL Dataset
This data constitutes of 280 routine BSA runs & #m Ayers Institute for

Precancer Detection and Diagnosis at Vanderbilivémsity. The dataset was previously
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used to test the Pepitome software and the expetainéescription is published by
Dasari et al. (Dasari et al. 2012). The files agera1917 MS/MS scans each. All files
were searched using MyriMatch against a RefSeq B{atabase or using Pepitome o

match the NIST BSA spectral librarigt{p://peptide.nist.ggv

Thermo Fisher LTQ-Orbitrap Dataset
This dataset was also collected at the Jim Ayesstirte for Precancer Detection
and Diagnosis at Vanderbilt University. Experimérsigttings were exactly the same as
above except 10x BSA peptide mixtures were useeansof 1x BSA. All samples were
analyzed on a Thermo Fisher LTQ-Orbitrap mass speeter. A total of 53 files were
used in this manuscript. Spectra were searchedy ugigwiMatch against a RefSeq

BOVINE database. The files average 3417 MS/MS scans

Thermo Fisher LTQ-Velos Dataset
This is the same dataset as described above torgebe ScanRanker software.
Five technical replicates were collected for a y&asmte on a Thermo Fisher LTQ-Velos
instrument. The files average 38466 MS/MS scan®.e8pectra were identified using

MyriMatch against a yeast databadgeattyd://www.yeastgenome.grgdownloaded on

March 2009. All files were also searched by Pepéamgainst the NIST yeast spectral

library (http://peptide.nist.gov).
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Bruker Daltonics HCT Ultra Dataset

Stock BSA solution prepared in 100mM ammonium loaate buffer was
digested overnight with sequencing grade Trypsiorffega) at enzyme-to-substrate ratio
of 1:50 at 37°C. LC-MS/MS analysis was carried oat an Eksigent 1D-nanopump
coupling to a Bruker HCT Ultra iontrap mass speauiter. The mobile phases were
water and acetonitrile with 0.1% formic acid as adhditive. 2uL of working BSA
solution of 100fmol/uL was load by a FAMOS autoséeanwith a 10uL sample loop
onto a 3cm, 360/100 OD/ID trap column of 5um Jup®48 particles with loading
aqueous buffer of 0.1% formic acid at flow ratelofL/min and separated on a 15cm
360/75um OD/ID PicoFrit emitter column from New @tfive packed with 3um Jupiter
C18 particles. Both columns were in house packegptic peptides eluted during a
gradient from 2% to 50% acetonitrile at flow rafe260nL/min. Different LC-gradients
were applied throughout the data collection. LC-MS/data was acquired in positive
ionization mode with scan segments of 1 precumorscan ifi/z=375-2000) in standard
enhanced and 3 subsequent tandem MS scans ofntimsteabundant ions in ultra scan
mode. Scan average was set to 2 and ion chargeocg¢l€C) was 200,000. Singly
charge ions were excluded from tandem MS and aruteidynamic exclusion was
activated for each peptide after two MS tandem &dans.

Instrument raw files were converted to mzML forrbgtthe MSConvert tool in
ProteoWizard. Since Bruker data extraction librdoes not write precursor spectrum
reference information in mzML files, which is reged for running QuaMeter, a Perl
script is created to add precursor spectrum refeerio MS/MS scans. The latest

previous MS1 scan is assumed as the precursorigtibeing MS/MS scans. 24 files
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were collected with averagely 3467 MS/MS scan eaklh.spectra were searched using
MyriMatch against a RefSeq BOVINE protein databasd identifications were filtered

by IDPicker.

AB SCIEX QSTAR Elite Dataset
Predigested, tryptic beta-galactosidase soluti@énsdli were obtained from AB

SCIEX and used as quality control samples. Samplae analyzed by reverse-phase
nano-HPLC-ESI-MS/MS using an Eksigent nano-LC 20.BRystem (Eksigent, Dublin,
CA) which was directly connected to a quadrupateetiof-flight (QqTOF) QSTAR Elite
mass spectrometer (AB SCIEX, Concord, CAN). Byiefleptide mixtures were loaded
from the autosampler (using partial loop fill medsponto a guard column (C18 Acclaim
PepMap100, 300 pm I.D. x 5 mm, 5 um particle site@) A pore size, Dionex,
Sunnyvale, CA) and washed with the loading sol\{@rit % formic acid, flow rate: 20
pL/min) for 5 min. Subsequently, samples were fiemsd onto the analytical C18-
nanocapillary HPLC column (C18 Acclaim PepMapl1086, (#m I.D. x 15 cm, 3 um
particle size, 100 A pore size, Dionex, Sunnyv@ld) and eluted at a flow rate of 300
nL/min using the following gradient: 2-30% solvadtin A (from 0-15 min), 30-80%
solvent B in A (from 15-17 min) and at 80% solvé&hin A (from 17-20 min), with a
total runtime of 52 min (including mobile phase #iuation). Solvents were prepared as
described below for the TripleTOF 5600. Mass spec¢ESI-MS) and tandem mass
spectra (ESI-MS/MS) were recorded in positive-ioada with a resolution of 12,000-
15,000 full-width half-maximum. For collision inded dissociation tandem mass

spectrometry (CID-MS/MS), the mass window for pmsown ion selection of the
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guadrupole mass analyzer was set tord/2 The precursor ions were fragmented in a
collision cell using nitrogen as the collision gasdvanced information dependent
acquisition (IDA) was used for MS/MS collectioncinding QSTAR Elite (Analyst QS
2.0) specific features, such as “Smart Collisiond &Smart Exit” (fragment intensity
multiplier set to 2.0 and maximum accumulation tiete2.5 sec) to obtain MS/MS
spectra for up to seven most abundant precursa following each survey scan.
Dynamic exclusion features were based on value Mmiaand were set to exclusion
mass width 50 mDa and exclusion duration of 60 8#ic23 files were searched using
MyriMatch against a UniProE.coli database and identifications passing 5% FDR in

IDPicker analysis were confident IDs.

AB SCIEX TripleTOF 5600 Dataset

Predigested, tryptic beta-galactosidase soluti@énsdli were obtained from AB
SCIEX and used as quality control samples. Samplae analyzed by reverse-phase
HPLC-ESI-MS/MS using an Eksigent Ultra Plus nano2IC HPLC system (Dublin, CA)
which was directly connected to a new generatioadqupole time-of-flight (QqTOF)
TripleTOF 5600 mass spectrometer (AB SCIEX, Concd&dN) in direct injection
mode. The autosampler was operated in full ipecthode overfilling a 1 pl loop with 3
pl analyte for optimal sample delivery reprodudiiil Briefly, after injection, peptide
mixtures were transferred onto the analytical CaBeatapillary HPLC column (C18
Acclaim PepMap100, 75 um I.D. x 15 cm, 3 pm paetiize, 100 A pore size, Dionex,
Sunnyvale, CA) and eluted at a flow rate of 300mm/ using the following gradient: at

5% solvent B in A (from 0-13 min), 5-35% solventiBA (from 13-29 min), 35-80%
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solvent B in A (from 29-31 min) and at 80% solvéhin A (from 31-37 min), with a
total runtime of 58 min including mobile phase ditpuation. Solvents were prepared as
follows, mobile phase A: 2% acetonitrile/98% of %.Xormic acid (v/v) in water, and
mobile phase B: 98% acetonitrile/2% of 0.1% forraad (v/v) in water. Mass spectra
and tandem mass spectra were recorded in postivand “high-sensitivity” mode, with
a resolution of ~35,000 full-width half-maximum in94 mode and ~15,000 in MS/MS
mode. The nanospray needle voltage was 2,400HPInC-MS mode. After acquisition
of ~ 5 to 6 samples, TOF MS spectra and TOF MS/Mé&ctsp were automatically
calibrated during dynamic LC-MS & MS/MS autocalittoa acquisitions injecting 25
fmol beta-galactosidase. For collision induced atgstion tandem mass spectrometry
(CID-MS/MS), the mass window for precursor ion sétn of the quadrupole mass
analyzer was set to £rh/z The precursor ions were fragmented in a collisielh using
nitrogen as the collision gas. Advanced informatt@pendent acquisition (IDA) was
used for MS/MS collection on the TripleTOF 5600 &yst TF 1.5) to obtain MS/MS
spectra for the 20 most abundant precursor ion®wolg each survey MS1 scan
(allowing for 50 msec acquisition time per each MS). Dynamic exclusion features
were based on value M not/zand were set to an exclusion mass width of 50 ruizh
an exclusion duration of 15 sec. All 60 files weearched using MyriMatch against a

UniProtE.coli database and processed by IDPicker.
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V.4 Results and Discussion
IV.4.1 Differences between QuaMeter and MSQC

Validating QuaMeter performance began with a comspar of the values
computed by MSQC and QuaMeter. | modified MSQC ¢oeat the same identified
peptides from IDPicker as did QuaMeter. BSA QC raaBected on a Thermo Fisher
LTQ-XL mass spectrometer were identified by Pep#aming the NIST ion trap spectral
library (http://peptide.nist.gov), and IDPickertéited the results to a 5% FDR. Scripts
converted the filtered identifications for MSQC dang.

Figure 25 illustrates the correspondence betweemMe@ter and MSQC outputs
for a set of representative metrics. Median premurgz error for +2 peptides (MS1-5A
in NIST nomenclature) is shown in the top-left daae a representative of metrics with
very good agreement between both implementatiorost vhetrics representing peptide
identifications (such as P-2A, P-2B, P-2C and Ri&lded similar results.

The key C-2A metric was a note of discord betweealeter and MSQC. This
metric, describing the duration of time in whicle timiddle 50% of peptides are identified,
disagreed even when QuaMeter attempted to emul&@®1behavior closely (top-right
panel in Figure 25). Inspection of the code revitéiat MSQC vacillates in whether or
not modifications or precursor charge differentiakentifications. Because C-2A plays a
role in the computation of many other metrics, QaaMeter implementation was
changed to a “distinct modified peptide” rule (unedich either a sequence difference
or a modification change resulted in the identifma counting as a new peptide). Since
distinct modified forms for a peptide sequence mlapmatographically elute differently,

this change leads to a more representative metric.
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Figure 25. QuaMeter generates similar metrics aQM$xcept several chromatographic
metrics due to the use of distinct chromatogramaekbn tools. Metrics were generated
from BSA QC experiments collected on a Thermo Fig&-XL mass spectrometer.
Because MSQC and QuaMeter extract chromatograpdti@ Iy distinct tools,

differences in peak intensity and width are unganmpy. Metric DS-3B evaluates the
maximum intensity versus the intensity at the twieen MS/MS was triggered for the
50% of peptides with the least intense triggerrisiies (see bottom-left panel in Figure
25). The MSQC software estimated far lower pea&nsity maxima than expected from
manual inspection, resulting in little correlatiéor this metric. This effect propagated
through metrics describing the chromatographic ggecas well as dynamic sampling.

Metric C-3A (lower-right panel in Figure 25) reppthe median peak width (FWHM) for

identified peptides. QuaMeter, via Crawdad, gemhenaports lower peak widths than
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does the MSQC code. It should be noted that thmspesison was performed using an
early version of MSQC that uses a modified ReAdW for chromatogram extraction.
This strategy has been deprecated in updated M8Q@&vor of the ProMS tool that may
produce more reliable chromatographic data (P. Rudipersonal communications). |

was unable to acquire a recent build of ProMS &ongarative testing.

Thermo Fisher  Bruker Daltonics AB SCIEX
LTQ-XL HCT Ultra QSTAR Elite

High
abundance
peptide ‘ / ‘
Low
abundance
* } } * *‘ . * #

peptide

Figure 26. QuaMeter generates reliable chromatdgeagata in instruments from
multiple vendors via the Crawdad function in Prétépard. Red lines represent
experimentally measured intensities in MS and bliuges are extracted ion
chromatograms generated by Crawdad. Asteriskshotdw abundance peptides signify
the acquisition times for identified MS/MS scans.

Because the Crawdad function has been implementtxiProteoWizard library,
QuaMeter can extract chromatographic data frommajor vendor formats. QuaMeter
provides an option to export chromatographic datenz5 format (Wilhelm et al. 2012)
which can be visualized by the SeeMS tool in Prteard. Figure 26 illustrates the

extracted ion chromatograms (XIC) of experimentatigasured intensities and modeled

peaks generated by Crawdad. XIC of representatetiges from three instrument
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platforms were displayed. For high abundance pegtitiat were identified with many
MS/MS scans, Crawdad produced well-fitted chromatog that match experimental
data (top panels in Figure 26). In addition, Crasvdiso showed excellent performance
for low abundance peptides with noisy experimei& or interfering peaks (bottom
panels in Figure 26). QuaMeter chromatogram extmacts improved by using the
precursor mass calculated from identified peptiaied by noting the retention times of

identified MS/MS scans.

IV.4.2 Multi-vendor Performance

To test QuaMeter’'s compatibility with instrumentoorh multiple vendors, |
employed several datasets collected from ThermioeFIsTQ-XL, LTQ-Orbitrap, LTQ-
Velos, Bruker Daltonics HCT Ultra, AB SCIEX QSTARite and AB SCIEX TripleTOF
5600 mass spectrometers. Instrument raw files fibl@rmo and Bruker were converted
to mzML format using the MSConvert tool in Prote@afd. AB SCIEX data were
converted to mzML files using the AB SCIEX MS Cortee (version 1.2). All data were
searched by MyriMatch and search results were psack by IDPicker. Filtered
identifications were then processed by QuaMeteotapute QC metrics.

Rather than evaluate instrumentation performantaysbased on the number of
identifications, QuaMeter provides six categorief QC metrics that monitor
chromatographic performance, electrospray soureeilgy, MS1 and MS2 signals,
dynamic sampling of ions and peptide identificatibor example, Figure 27 illustrates a

set of selected metrics describing the chromatdgcgpocess for five instruments.
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Figure 27. QuaMeter computes QC metrics for mudtiplstrument platforms. Standard
samples such as BSA or beta-galactosidase werg/zadalfor routine instrument
evaluation. C-2A: time period over which middle 5@¥peptides were identified. C-4A,
C-4B, C-4C: median peak width for identified pepsdn first, last and median RT decile.
These plots reflect experimental settings and tewgstrument performance
variability. First, the C-2A metric, the duratiori tme in which the middle 50% of
peptides are identified, is very small for the ABIEX TripleTOF 5600 and QSTAR
Elite dataset, implying that peptides were eluted short time period. This is because a
very short LC gradient was applied for peptide sapan in these experiments. Second,

the variation of C-2A metric is relatively largerfine Bruker Daltonics HCT Ultra data.
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This is because different BSA samples for thisrumaent were separated by different
HPLC columns and gradients. Likewise, large vaviagiwere also observed for other QC
metrics computed for this dataset such as the nuoflidentifications (data not shown).
Third, peak widths of identified peptides were moenly distributed across retention
time in all tests. The C-4A, C-4B and C-4C metrieport median peak width for
identified peptides in the early, late and midddention time, respectively. It can be
observed that peak width for all instruments vamath retention time. These plots
demonstrate the cross-instrument capabilities ofe@Wizard and QuaMeter.

QuaMeter metrics can be used to spot abnormalumsint performance. For
example, early analysis of TripleTOF 5600 data geced six files as outliers compared
to other QC experiments. As shown in Figure 28y Jew numbers of identifications
were generated from these six files (top-left pgpreeid a close examination of QuaMeter
metrics showed that they associated with high psecumass accuracy errors (bottom-
left panel). The instrument log revealed that thidee had a mass accuracy shift due to
temperature variation (caused by air handler failithin the laboratory). Recalibrating
these files yielded narrow precursor errors andpaoable number of identifications as

other experiments (right panels in Figure 28).
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P-2A: Number of MS2 spectraidentifying tryptic peptide ions P-2A: Number of MS2 spectraidentifying tryptic peptide ions
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Figure 28. QuaMeter metrics help to spot abnormatrument performance. Metrics
computed from TripleTOF data were plotted by d&ig.files were recognized as outliers
in early analysis that had very low number of ides#tions (blue box in top-left P-2A
metric) and high precursor mass accuracy erroue (bbx in bottom-left MS1-5A metric;
one point missing for 111104 because zero ideatiio passed 5% FDR threshold from
this file). Recalibrating these files yielded navrprecursor errors (bottom-right panel)
and comparable number of identifications as otkpeements (top-right panel).
IV.4.3 Impact of identification tools

Because QuaMeter relies on identified peptidesotopute QC metrics, different
tools for identification may vyield different QuaMetmetrics. To evaluate this impact in
generating QC metrics, | employed a yeast lysatasda with five technical replicates
analyzed on a Thermo Fisher LTQ-Velos mass speetiennThe files average 38466
MS/MS scans each. This test demonstrates that QeaMerks well not only for simple
samples such as BSA and beta-galactosidase bubalsomplex mixtures. Spectra were

identified either through database search by MytdWlar through spectral library search

by Pepitome. Both identification tools exportedreharesults in pepXML format for
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processing by IDPicker for peptide validation andotgin assembly. Filtered
identifications were then read by QuaMeter for Q@leation. Because it accepts filtered
identifications from IDPicker, any workflow in whddentification tools produce search
results in pepXML or mzldentML format can also sapgQC.

Figure 29 plots a set of selected QuaMeter metnog, from each of the six
categories, computed based on MyriMatch and Pepitmantifications. Some metrics
shifted when the source of identifications changeéodr example, the spectral library
search by Pepitome identified around 15% more spdican using MyriMatch (see P-2A
in Figure 29). However, changing identification ®does not lead to substantial changes
for most metrics. In addition, although identificet tools produced different QC metrics,
the variation for the five replicates from MyriMatsearch resembled that seen from
Pepitome. Therefore, it is very likely that the ntécation tool has limited effect in
accessing analytical system performance and teghwariability. Given the fact that a
spectral library search is usually much faster thaypical database search, Pepitome,
coupled with QuaMeter, provides a practical sohlti@r routine identification and

analysis of standard QC samples.
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Figure 29. Distinct identification tools produceffdient QC metrics with similar
variation. Five technical replicates of yeast Ilgsaamples were analyzed on a Thermo
Fisher LTQ-Velos mass spectrometer. Spectra waenatifced by MyriMatch (MM) and
Pepitome (PP) separately. Identifications from esedrch engine were used to compute
QC metrics. P-2A: Number of MS2 spectra identifytngptic peptide ions; C-2A: Time
period over which middle 50% of peptides were ideat; DS-2B: Number of MS2
scans taken over C-2A. IS-3B: Number of 3+ peptidesr 2+ peptides; MS1-5A:
Median real value of precursor errors; MS2-3: Madiamber of peaks in MS2 scans.
V.5 Conclusion

| presented an open-source tool that computes tolgametrics for the evaluation
of shotgun proteomics instrumentation performar@eaMeter advances the previous
MSQC tool by supporting most mass spectrometer sendrzia the use of the
ProteoWizard library. The ability to work with IDéker identification data allows it to be
incorporated to any identification workflow thatogluces pepXML or mzldentML files.

The improvements in QuaMeter make it a reliable dledible tool for shotgun

proteomics QC analysis.
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Although QuaMeter supports native file formats framultiple instrument
vendors, many time native files are converted tenoformats in data analysis pipeline.
QuaMeter requires the same spectral file that Hialdhse search engine was fed with. In
additional, drawing conclusions from QuaMeter outitmiless well-established now.
Another ongoing project is developing a statistro@thod based on QuaMeter metrics to
enable on-the-fly instrument QC. A subset of keyriog need be determined to evaluate
the analytical systems in routine practice.

Future directions for QuaMeter include a numbergogils. First, recording
metrics for experiments to a database rather thaallaction of text files will greatly
improve the production utility of the software. c¢®ad, incorporating assessments of
MS/MS quality by ScanRanker would be much fasted anore adaptable than
incorporating peptide identifications. Optimiziniget strategies by which metric values
can be evaluated to diagnose sources of instruvagiability will be essential. As these
technigues mature, QC metrics promise to automaeognition of instrument

inconsistency before critical samples are wasted.
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CHAPTER V

DISCUSSION

V.1 Summary of Results

The work in this dissertation described three n@fiware tools for shotgun
proteomics data analysis (see Figure 30). The QtexMeol focuses on instrumentation
quality control to assure that data fed into analyspeline are collected under stable
instrument performance. The IDBoost tool focusesr@stuing spectral identifications
after initial data analysis. Spectra that are nl@ntified after IDBoost can be further
recovered by the ScanRanker tool for advanced Isesrd&ach tool was developed to
solve one aspect of problems, but together theykwamordinately to provide an
improved shotgun proteomics data analysis pipeline.

The IDBoost tool provides a simple and efficientywt rescue spectral
identifications from current analysis. It incorpta® identification evidence of similar
spectra and applies a rating method to determirenthjority vote of these spectra.
Spectra that were discarded in original analysis wuthe failure of passing confidence
threshold can be rescued in subsequent data aaMsianwhile, IDBoost corrects
database search errors by taking into account lseasults from a cluster of similar
spectra. In this dissertation, | demonstratedptsdieations in phosphorylation studies and
spectral count based comparative analysis. IDBbekis to solve phosphorylation site

ambiguity and improves spectral count based queatidn. In addition, IDBoost was
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implemented in IDPicker, which provides a graphicsler interface for interactive

validation of rescued identifications.

QuaMeter

Advanced Searches

N

i

Peptide
Database search ALVQQMEQLR
ESQLPTVMDFR
VPGLYYFTYHASSR
TMGYQDFADWCYTQK
Peptide validation and Protein
. .r IPI:IPI00005721.1
proteln 1nference IPI:IPI00007240.2
SWISS-PROT:P59665
IDBoost SWISS-PROT:P05160

Figure 30. A summary of three bioinformatics toolgroteomics data analysis workflow.

IDBoost expands spectral identifications based»stiag analysis. This is one of
its advantages because it does not require additidentification steps. However, this
also limits its usage because no new peptidesbeiladded to the analysis. In practice,
IDBoost should be used as a quick tool to rescaatifications after IDPicker analysis.
To find more peptides, a subset of unidentifiedctjpecan be exported by ScanRanker
for subsequent advanced searches.

The ScanRanker tool is a tandem mass spectraltyj@sessor that recognizes
the potentially identifiable MS/MS scans. The care ScanRanker is the DirecTag

sequence tagging program. ScanRanker evaluateputtiedy of tandem mass spectra by
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examining how well sequence tags can be infermeah feach spectrum. It can be used to
recognize unidentified high quality spectra aftePicker and IDBoost analysis. In this
dissertation, | demonstrated the use of ScanRahkeselect spectra fode novo
sequencing and cross-linking analysis. This toal &lso be used to predict the richness
of identifiable spectra among multiple LC-MS/MS suin an experiment. ScanRanker is
particularly useful for analyzing samples lackingc@ate genome annotations. To
improve its usability, | made a GUI to run ScanRaménd also a program to view the
results. The lonMatcher viewer allows interactivalidation of peptide-spectrum-
matches and offers an interface d@ novasequencing of unidentified spectra.

The QuaMeter tool is another quality assessor dbaides on the evaluation of
analytical systems rather than tandem mass spédteagoal of this project is to provide
a quality control tool that can be used in manysl&tr routine instrument monitoring.
QuaMeter supports most mass spectrometry vendardPrateoWizard and does not
require transcoding instrument raw files to otlenfat, making it a fast and easy-to-use
QC assessor. Because it works with IDPicker ideatibns, QuaMeter is flexible to be
integrated into any existing workflow that genesafgepXML or mzldentML. In this
dissertation, | demonstrated the use of QuaMeterdfta collected from different

vendors.

V.2 Future Direction
V.2.1 Peptide Identification
A critical component in proteome informatics is g@ring system that interprets

observed spectra to peptide sequences. New teghe®lemerged in the past few years
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have greatly increased the quality of proteomicta,devhile the informatics tools is
slowly catching up. For example, ETD and CID aremptementary fragmentation
methods to cover both long and short peptides.idepbns can now be selectively
fragmented on either ETD or CID mode (Swaney e2@0D8). However, it is challenging
to combine the information obtained by ETD and @iDa single search. Because they
generate totally different fragment ions, differeobring schemes need to be developed
to process ETD and CID data separately. Even thee sgoring method can be adapted
to work for both fragmentation methods, the scastribution may differ substantially,
making it difficult to combine the search results.

Current scoring systems usually only consider miiggment ions such as b and
y ions for CID fragmentation. Adding other abundams in scoring schemes may
improve the discrimination power between correctl ancorrect assignments. For
example, LTQ-Orbitrap data under HCD fragmentatietains low mass and immonium
ions, which can be considered in scoring methodspwove peptide identification.

Understanding gas-phase fragmentation chemistryely important for the
development of scoring schemes. Unfortunately, esurfragmentation model in most
database search tools predict theoretical spestraday from the experimental data. The
massive amount of MS/MS data being confidently rpmteted and deposited to public
repositories helps the development of sophistidedsgmentation models to predict

accurate fragment ions and their intensities.
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V.2.2 PTM ldentification and Validation

Identification of PTM is still a challenging issueven with the recent
improvements in MS instrumentation and enrichmergthmds. For example, one
problem to identify phosphopeptides is that a lamgenber of phosphopeptides
undergoes beta-elimination reaction (loss of phatplgroup) rather than backbone
fragmentation under CID. This reduces fragmentsignals in MS/MS spectra, making it
difficult to identify these peptides. As a resgibmplementary techniques such as ETD or
MS/MS/MS spectrum may be required for data acdarsitin recent years, experimental
platforms have been greatly improved for PTM analywhile no substantial progress
has been made in computational tools. Advanceditiiges that take advantage of the
state-of-art technologies are desirable for aceumatl large-scale PTM analysis.

PTM validation is also a difficult problem. Convemal validation methods may
not be appropriate for PTM validation because thgumptions for these methods are
likely to be violated. For example, the target-debased FDR approach assumes a one-
to-one correspondence between incorrect targeahdsdecoy hits, while there is a much
lower prior likelihood of observing a modified p&jg compared to a non-modified
peptide. As a result, the error rate estimatedHeranalysis may not be accurate. Future

developments on advanced methods for PTM validattemecessary.

V.2.3 Next Generation Sequencing and Proteomics
Interpretation of proteomics data relies heavilytba protein databases, which
are usually translated from genome DNA sequencesr (e past few years, there have

been remarkable advances in DNA sequencing tecbieslavith the rapid evolution of
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next-generation sequencing (NGS). The advent oEN@s significantly increased the
throughput and reduced sequencing cost by ordemnagnitude, making it a cost-

effective option to obtain global genomic infornoatiof the same biological system that
is targeted for proteomics experiments.

The availability of complete genomics sequencesfi species or individual
facilitates MS-based protein identifications. ThBIAD sequences from the same system
can be translated to proteins, resulting in a nagirate protein database for proteomics
data analysis. An alternative way is to obtain tamscriptome (RNA-Seq) data, which
may be a better representation for proteins withatimns or splice variants. With the
cost reduction of NGS in the next few years, ipassible to routinely sequence critical

samples and use customized protein databasesoft@oprics data analysis.

V.2.4 Integration of Omics Data

Proteomics alone may not be sufficient to charamstethe complexity of
biological systems. Recent advances in various ®it@chnologies enable the detection
of various biological molecules in a high-throughmanner. Combining different omics
results obtained from the same biological systenl wiibstantially increase the
understanding of complex biological process. Suduecess has been demonstrated in
the field of microbiology (Zhang et al. 2010), plaaystems biology (Fukushima et al.
2009) and mouse organ protein profiling (Kislingeal. 2006).

The Cancer Genome Altas (TCGA) initiative has & raollection of human
cancer genome data. Recently the NCI CPTAC consorpartnered with TCGA to

integrate proteomics and genomics data for caressrarch. The same tumor specimens
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studied by the TCGA network will be analyzed by @TAC network, generating a pair
of proteomic and genomic data for each sample. &ltkerent types of systematic
measurements offer insights in how specific geterations affect proteins in individual
tumors. Computational tools to integrate differentics data will play a critical role in

these studies.

V.2.5 Targeted Proteomics

While whole proteome analyses have considerableapp systems biology, it
has some practical limits such as relatively lowalypic range. Targeted proteomics,
especially multiple reaction monitoring (MRM), amerging to be a promising approach
that provides greater dynamic range and higheridgente in identifications, which is
particularly useful for biomarker verification. MRMmethods are under active
development in recent year, requiring the contisudevelopment of bioinformatics tools.
Algorithms for peptide and transition selection ntenefit from mining the vast amount
of identifications in the spectral libraries. Metlsoto detect quantification errors and

estimate the experiment error rate are also ddsirab
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APPENDIX A

SOFTWARE CONFIGURATIONS

MyriMatch Configurations
Thermo Fisher LTQ-XL and LTQ-Velos, Bruker DaltosielCT Ultra data:

PrecursorMzTolerance= 1.25
PrecursorMzToleranceUnits = daltons
FragmentMzTolerance = 0.5
FragmentMzToleranceUnits = daltons
AdjustPrecursorMass = false
NumSearchBestAdjustments = 3
DuplicateSpectra = true
UseChargeStateFromMS = false
NumChargeStates = 3
UseSmartPlusThreeModel = false
TicCutoffPercentage = 0.95
CleavageRules = "trypsin”
NumMaxMissedCleavages = 2
NumMinTerminiCleavages = 2
UseAvgMassOfSequences = true
MinCandidateLength = 5
DynamicMods = "M * 15.9949 (Q * -17.026" (add [ST$]79.9663 for phosphopeptide
search)

MaxDynamicMods = 2

StaticMods ="C 57.0215"
ComputeXCorr = true

Thermo Fisher LTQ-Orbitrap data:

PrecursorMzTolerance= 10
PrecursorMzToleranceUnits = ppm
FragmentMzTolerance = 0.5
FragmentMzToleranceUnits = daltons
AdjustPrecursorMass = true
MinPrecursorAdjustment = -1.008665
MaxPrecursorAdjustment = 1.008665
PrecursorAdjustmentStep = 1.008665
NumSearchBestAdjustments = 3
DuplicateSpectra = true
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UseChargeStateFromMS = true
NumChargeStates = 4
UseSmartPlusThreeModel = false
TicCutoffPercentage = 0.95
CleavageRules = "trypsin"
NumMaxMissedCleavages = 2
NumMinTerminiCleavages = 2
UseAvgMassOfSequences = false
MinCandidateLength = 5
DynamicMods ="M ~ 15.9949 (Q * -17.026" (add [ST¥]79.9663 for phosphopeptide
search)

MaxDynamicMods = 2

StaticMods = "C 57.0215"
ComputeXCorr = true

AB SCIEX data:

PrecursorMzToleranceRule = “mono”
AvgPrecursorMzTolerance = 1rb/z
MonoPrecursorMzTolerance = 100 ppm for QSTAR Editel 50 ppm for TripleTOF
MonoisotopeAdjustmentSet = [-1,2]
FragmentMzTolerance = Om/zfor QSTAR Elite and 0.0&/zfor TripleTOF
StaticMods = "C 57.0215"

DynamicMods ="M ”~ 15.9949 (Q * -17.026"
MinTerminiCleavages = 1

CleavageRules = "Trypsin/P"
MaxMissedCleavages = 2
MaxDynamicMods = 2

DecoyPrefix = "rev_"

NumChargeStates = 3

OutputFormat= "pepXML"
SpectrumListFilters = "peakPicking false 2-"
TicCutoffPercentage = 0.98
FragmentationAutoRule = true
MaxResultRank = 5

MinPeptideMass = 0 Da

MaxPeptideMass = 10000 Da
MinPeptideLength =5

MaxPeptideLength = 75
UseSmartPlusThreeModel = false
ProteinSampleSize = 100

ComputeXCorr = true
UseMultipleProcessors = true
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Sequest Configurations

“‘DLD1 LTQ”, “Mouse HCT” and “Yeast Velos” datasetenfigurations for ScanRanker
evaluation:

peptide_mass_tolerance = 2.5
create_output_files =1
ion_series=0110.01.00.00.00.00.00.0100
fragment_ion_tolerance = 0.0
num_output_lines =5
num_description_lines =5

num_results = 500
show_fragment_ions =0
print_duplicate_references =1
enzyme_number =0
diff_search_options = 15.9949 M
term_diff_search_options = 0.000 0.000
max_num_differential AA_per_mod = 3
nucleotide_reading_frame =0
mass_type parent =0

mass_type fragment =1
remove_precursor_peak =0
ion_cutoff_percentage = 0.0
protein_mass_filter=00
max_num_internal_cleavage_sites = 2
match_peak count =0

match_peak allowed error =1
match_peak_tolerance = 1.0
add_C_Cysteine =57.0215

X!Tandem Configurations

“‘DLD1 LTQ”, “Mouse HCT” and “Yeast Velos” datasetenfigurations for ScanRanker
evaluation:

protein, cleavage semi = yes

spectrum, search engine = tandem
spectrum, minimum cosine theta = 0.3
output, maximum valid expectation value = 1
residue, modification mass = 57.0215@C
residue, potential modification mass = 15.9949@M
protein, cleavage site = [RK]|{P}

spectrum, use contrast angle = no

list path, default parameters = iontrap.xml
output, xsl path = tandem-style.xsl

refine = no
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output, results = all
PepNovo Configurations

model = CID_IT_TRYP

fragment_tolerance = 0.4 for LTQ-Velos and LTQ-@dp, 0.15 for QSTAR
pm_tolerance = 2.5 for LTQ-Velos, 0.02 for LTQ-Qrap, 0.04 for QSTAR
no_quality filter = true

num_solutions = 10

PTMs = C+57:M+16

use_spectrum_charge = false for LTQ-Velos, trud_fid@-Orbitrap and QSTAR
use_spectrum_mz = false for LTQ-Velos, true for LDgbitrap and QSTAR

TagRecon Configurations
“Histone Orbi” dataset configurations for ScanRargealuation:

PrecursorMzTolerance= 0.01
FragmentMzTolerance = 0.5
NTerminusMzTolerance = 0.5
CTerminusMzTolerance = 0.5
AdjustPrecursorMass = false
MaxPrecursorAdjustment = 1.008665
MinPrecursorAdjustment = -1.008665
PrecursorAdjustmentStep = 1.008665
NumSearchBestAdjustments = 3
DuplicateSpectra = true
UseChargeStateFromMS = true
NumChargeStates = 3
UseSmartPlusThreeModel = true
TicCutoffPercentage = 0.98
CleavageRules = "trypsin”
NumMaxMissedCleavages = 2
NumMinTerminiCleavages = 1
UseAvgMassOfSequences = false
StaticMods =™

DynamicMods ="M ~ 15.9949 (Q *-17.026 ( $ 42.005® 57.021 [NQ] % 0.98"
MaxDynamicMods = 3
ExplainUnknownMassShiftsAs = "blindptms"
BlosumThreshold = -4
UseNETAdjustment = true
ComputeXCorr = true
MinCandidateLength = 5

MaxResults = 5
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Pepitome Configurations

PrecursorMzToleranceRule = "avg"
MonoPrecursorMzTolerance = "10 ppm"
AvgPrecursorMzTolerance = "1.5 mz"
FragmentMzTolerance = "0.5 mz"
SpectrumListFilters = "peakPicking true 2-;charge&®redictor false 3 2 0.9"
RecalculateLibPepMasses = false
CleanLibSpectra = true
LibTicCuttoffPercentage = 0.98f
LibMaxPeakCount = 100
MonoisotopeAdjustmentSet = "0"
TicCutoffPercentage = 0.98
MaxPeakCount = 150
CleavageRules = "trypsin"
MaxMissedCleavages = 2
MinTerminiCleavages = 1
MinPeptideLength = 5
DynamicMods ="C % 57.021"
MaxDynamicMods = 3

StaticMods = ""

MaxResultRank = 2
FASTARefreshResults = false

ScanRanker Configurations

PrecursorMzTolerance = 1.25 for LTQ, 0.1 for LTQbinap, 0.25 for QSTAR
FragmentMzTolerance = 0.5 for LTQ, 0.1 for LTQ-Qréap, 0.25 for QSTAR
IsotopeMzTolerance = 0.25 for LTQ and LTQ-Orbitr@d,25 for QSTAR
StaticMods = C 57.0215

NumChargeStates = 3

UseAvgMassOfSequences = 1 for LTQ, 0 for LTQ-Odptand QSTAR
UseChargeStateFromMS = 0 for LTQ, 1 for LTQ-Orlpteand QSTAR
UseMultipleProcessors = 0

WriteOutTags =0

IDPicker Configurations
Maximum FDR = 0.05
Minimum distinct peptides = 2 (1 for synthetic pdptdata)
Minimum additional peptides = 1
Minimum spectra per protein = 2 (1 for synthetipige data)

QuaMeter Configurations

RawDataPath = ../mzMLs/ # where to find the rdesfifor each idpDB
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RawDataFormat = mzML  # the file extension tpext for the raw files; e.g. mzML,
mzXML, raw

Instrument = LTQ # if set to LT@yerage masses are used, else monoisotopic
masses
ScoreCutoff = 0.05 # IDPicker FDRafti

ChromatogramMzLolrOffset = 1.0mz # the lolr bowfdhe window for building
chromatograms; can bemvzor ppm

ChromatogramMzUpperOffset = 1.0mz # the uppendaf the window for building
chromatograms; can bemvzor ppm

ChromatogramOutput = false # if true, tesan mz5 file with the chromatograms
(best vield with SeeMS)
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