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CHAPTER 1 

 

INTRODUCTION 

 

The underlying theme of this dissertation is the application of 
13

C metabolic flux analysis 

(MFA) to uncover the molecular mechanisms and metabolic phenotypes of disease.  As a major 

tool in the metabolic engineering arsenal, MFA is used to define the intracellular fluxes, or flow 

of material, in biological systems.  Since the metabolic fluxes of a system are ultimately the 

result of genetic alterations, protein signaling, and environmental effects, flux calculations reflect 

functional output of multiple levels of systemic regulation.  With an understanding between 

upstream signaling pathways and metabolic flux, therapeutic targets can be selected to alter the 

course of pathology.  The majority of this dissertation applies 
13

C MFA and traditional 

biochemical techniques to define mechanisms of how elevated lipids promote cellular 

dysfunction in obesity.  Additionally, the metabolic phenotype of a model of pulmonary arterial 

hyptertension driven by mutations in the bone morphogenic protein receptor 2 is characterized 

using 
13

C MFA.   

Obesity is associated with elevated plasma free fatty acids and dysregulated lipid 

trafficking resulting in the ectopic, non-adipose deposition of fat.  In the liver this accumulation 

of lipid results in fatty liver and can progress to the more aggressive non-alcoholic steatohepatitis 

(NASH).  Because the liver is a central regulator of amino acid, lipid, and glucose metabolism, 

these pathologies are associated with impairments in gluconeogenesis, mitochondrial 

anaplerosis, and lipoprotein export.   These disorders are marked by increases in stress signaling 

pathways, oxidative stress, apoptosis, and possibly liver failure but often lack non-invasive 

methods to diagnose the disease.  Collectively, these phenotypes are termed hepatic lipotoxicity.   
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 Traditionally, experimental models in lipoxicity depended on the measurement of 

signaling pathways and lipid concentrations.  Recently in vitro and in vivo studies have 

employed the use of stably labeled isotope tracers to provide dynamic information on the flow of 

material through metabolic pathways, or flux.  Although these studies indicated that elevated 

hepatic lipids and liptoxicity are associated with altered CAC anaplerosis, no biochemical 

mechanism exists connecting lipid accumulation with these metabolic alterations.  Lack of 

unifying mechanism hinders the development of novel therapeutic targets. 

 Pulmonary arterial hypertension was studied in addition to lipotoxicity.  Caused by 

mutations in the bone morphogenic protein receptor, there is currently little understanding how 

alterations in this receptor’s function promote disease.  Therefore a pilot study was performed on 

a model of pulmonary hypertension to define how the mutations reprogram metabolism.  Armed 

with this knowledge, methods to exploit the metabolic phenotype for therapeutic and diagnostic 

purposes can be pursued. 

The use of 
13

C MFA to develop molecular mechanisms of disease in this dissertation is 

divided into the following chapters: 

 

Chapter 2 reviews previous studies detailing the general hepatic phenotype of fatty liver and 

NASH and the experimental models employed in vivo and in vitro.  Also, reviewed is metabolic 

flux analysis (MFA), a novel method employed in the subsequent chapters to calculate how 

fluxes are altered in the context of lipotoxicity and pulmonary hypertension. 

 

Chapter 3 characterizes mitochondrial metabolism and oxidative stress in hepatic cells 

undergoing lipotoxicity in vitro.  Antioxidants and mitochondrial inhibitors were combined with 
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MFA to test the hypothesis that elevated saturated fatty acids disrupt normal mitochondrial 

metabolism leading to oxidative stress and apoptosis.  Through the use of stable isotope tracers, 

it was found that fatty acid oxidation does not fuel these mitochondrial abnormalities.  Instead 

lipotoxicity is characterized by increased glutamine anaplerosis, which fuels enhanced CAC flux.  

However the mechanism by which palmitate initiates mitochondrial dysfunction was still 

unclear.  The main mechanistic findings of Chapter 3 are summarized in Figure 1.1. 

 

 

 

Chapter 4 defines a role for calcium signaling in lipotoxicity.  Elevated saturated fatty acids 

were associated with a redistribution in intracellular calcium from the endoplasmic reticulum to 

the mitochondria.  We hyphothesized this redistribution in intracellular calcium is the unknown 

 
Figure 1.1: Mechanism of lipotoxicity tested and developed in Chapter 3.  In Chapter 3, 

the hypothesis that palmitate induces oxidative stress by altering mitochondrial metabolism 

was tested.  Through the use of antioxidants, mitochondrial inhibitors, 
13

C tracers, and 

mathematical modeling it was found that fatty acid beta-oxidation does not fuel the overactive 

mitochondrial phenotype.  Instead glutamine anaplerosis provided carbon for the enahced 

flux.  Since beta-oxidation does not fuel mitochondrial dysfunction, a putative ‘upstream 

signal’ must exist to connect palmitate overload and oxidative stress. 
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upstream signal linking palmitate overload and the metabolic phenotype defined in Chapter 3.  

13
C MFA studies revealed that chelation of free intracellular calcium attenuated the glutamine 

anaplerosis characteristic of lipotoxicity.  Additionally, other hallmarks of lipotoxicity such as 

oxidative stress and apoptosis were reduced in the presence of the calcium chelator.  This finding 

links endoplasmic reticulum (ER) stress to oxidative stress in lipotoxicity (Figure 1.2).   

 

 

 

Chapter 5 tests the hypothesis that extracellular glutamine combined with lipotoxic 

concentrations of palmitate increases hepatic dysfunction.  Substitution of extracellular 

glutamine with glutamate under lipotoxic conditions resulted in equivalent amounts of cell death 

in hepatic cell lines, indicating these two amino acids were functionally equivalent in promoting 

lipotoixicty.  Pharmacological inhibitors and RNAi mediated knockdown of glutamate 

anaplerosis were applied to dissect whether glutamate dehydrogenase or glumatate oxaloacetate 

 
Figure 1.2:  Summary of calcium-dependent lipotoxicity mechanism tested in Chapter 4.  

In Chapter 4, the hypothesis that intracellular calcium flux stimulates overactive mithondrial 

metabolism in palmitate lipotoxicity was tested.  Chelation of intracellular calcium mitigated 

the palmitate-induced metabolic phenotype and reduced apoptosis and oxidative stress. 
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transaminase (GOT) provided α-ketoglutarate for CAC anaplerosis (Figure 1.3).  It was found 

that mitochondrial glumatate oxaloacetate transaminase (GOT2) activity is the primary pathway 

used for citric acid cycle anaplerosis, and inhibiting this pathway can reduce palmitate 

lipotoxicity.  Additionally the hypothesis that GOT metabolism fuels lipotoxicity in primary 

hepatocytes was tested.  Replacing extracellular glutamine with glutamate, it was found that 

primary hepatocyte lipotoxicity was increased.  This result was exacerbated when the equivalent 

output of GOT metabolism was substitued (α-ketoglutarate and aspartate). 

 

 

 

Chapter 6 examines anaplerosis in the context of BMPR2 mutation driven pulmonary arterial 

hypertension.  
13

C MFA was applied to study how an in vitro model of pulmonary hypertension 

relies upon glutamine anaplerosis to sustain CAC flux. 

 
Figure 1.3: Mechanism of lipotoxicity developed in Chapter 5.  In Chapter 5, the 

hypothesis that extracellular glutamine synergizes with palmitate overload to enhance 

lipotoxicity was tested.  It was found that GOT2 metabolism was the main method of 

anaplerosis in hepatic lipotoxicity. 
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Chapter 7 summarizes the main findings of the dissertation and presents an experimental 

platform for future studies. 
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CHAPTER 2 

 

BACKGROUND AND SIGNIFICANCE 

 

NAFLD and NASH: The hepatic manifestation of the metabolic syndrome   

The host of obesity associated pathologies spanning insulin resistance, cardiac disease, 

hypertension, and dyslipidemia is termed the metabolic syndrome.  The hepatic manifestations of 

metabolic syndrome are fatty liver and non-alcoholic steatohepatitis (NASH).  Both of these 

diseases are characterized by the dysregulated accumulation of hepatic lipids.  Fatty liver is 

present in approximately 30% of the adult American population and is difficult to non-invasively 

detect (1).  Of the population with fatty liver, a small portion of patients with fatty liver will 

progress to NASH, characterized by apoptosis and inflammation (2).  While many different 

facets of the disease such as risk factors of insulin resistance or poor diet or the biomarkers (ER 

stress, plasma aminotransferases) have been studied in detail, the biochemical mechanisms 

which influence the progression and severity from fatty liver to NASH are not well understood.  

Therefore, a critical need exists to define pathological mechanisms to enable development of 

novel pharmacologic or nutritional interventions for persons with NASH (3).   

 

NASH models and the role of fatty acids 

Identifying persons with NASH for experimental studies and clinical trials relies on 

biopsies and plasma samples as markers of disease severity. Using liver biopsies, NASH 

progression is based upon the NAFLD Activity Score (NAS) and fibrosis. NAS was designed by 

the Pathology Committee of the NASH Clinical Research Network (4) as a scoring system of 14 
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histological features, including lobular inflammation, the level of steatosis, and hepatocellular 

ballooning, which is used as a guideline for differentiating severity of NAFLD (NAS ≥5 

diagnosed as “NASH”, ≤3 “Not NASH”).  Plasma indicators of acute liver injury include 

elevated levels of alanine aminotransferase and aspartate aminotransferase. Although these 

enzymes are reliable biomarkers of liver injury, their presence is not specific to NASH.  

Therefore, they remain somewhat equivocal when used as the sole metric for assessing the state 

of NAFLD progression.   

Due to the lack of definitive biomarkers for non-invasive monitoring of NAFLD in 

humans, as well as the limited scope of interventions that can be applied in clinical studies, 

animal models provide an important research tool that enables mechanistic studies of NASH 

development. There are many different diet-induced and genetic models of 

steatosis/steatohepatitis, each having its own advantages, disadvantages, and idiosyncrasies. 

(Larter et. al (5) have provided an excellent review on the various animal models in 

steatohepatitis.) For example, common genetically obese mouse models such as the leptin 

resistant db/db or leptin deficient ob/ob do not spontaneously develop NASH despite pronounced 

hepatic lipid accumulation (6,7).  In order to model NASH in these animals it is necessary to 

provide a seconday ‘hit’ or insult to initiate liver inflammation and fibrosis.  In ob/ob models, it 

is possible to use lipopolysaccharide to initiate acute liver damage (8). Alternatively, it is 

possible to model NASH in db/db mice by feeding a methionine and choline deficient (MCD) 

diet (9). Even wild-type animals fed a MCD diet will rapidly develop hepatic steatosis, 

inflammation, and liver fibrosis (10-12). Additionally, the liver damage in non-genetically obese 

mice occurs independently of insulin resistance, providing a model that is free from the 

confounding effects of dysregulated insulin signaling (13). This model of NAFLD/NASH may 
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prove to be particularly important in light of recent data which indicate a disconnection between 

hepatic lipid accumulation and insulin resistance in studies on hypobetalipoproteinaemic human 

patients (14,15). However, because of obvious differences in etiology between MCD-diet-

induced NASH and human NASH, questions still remain as to whether the MCD mouse model 

provides a relevant in vivo recapitulation of human disease (16).  Instead of the MCD diet, rats 

and mice fed high-fat diets (HFD) may provide a more accurate model of human steatohepatitis 

since these models mimic the overnutrition that is typical of obesity.  In fact, analysis of liver 

tissues from both high-fat fed mice and human NAFLD patients reveal similar trends of lipid 

alterations and histological changes (17). 

As an alternative to human and animal studies, in vitro experiments using hepatic cell 

lines and primary hepatocytes have provided detailed insight into the molecular mechanisms that 

regulate lipotoxicity under conditions that mimic the in vivo disease state. In particular, obesity 

and insulin resistance are associated with elevated plasma levels of free fatty acids and 

triglycerides (TGs) (18).  In vitro experiments in a diverse range of cell types have demonstrated 

that saturated fatty acid (SFA) overexposure promotes the expression of pro-inflammatory 

cytokines, impairs insulin signaling, and stimulates apoptosis characterized by both ER 

impairments and oxidative stress (19-23). In contrast, monounsaturated fatty acids induce 

significant steatotic triglyceride formation but do not initiate apoptosis (18,21). However, an 

accepted mechanism explaining how SFAs trigger apoptotic signaling or promote the 

progression from NAFLD to NASH has yet to be determined conclusively (24).  Several putative 

signaling mechanisms including the accumulation of reactive oxygen species (ROS), 

endoplasmic reticulum (ER) stress, and increased ceramide synthesis have been hypothesized to 

explain how SFAs initiate apoptosis in hepatic cells.  In particular, ceramide signaling has been 
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hypothesized as an initiator of hepatic lipoapoptosis due to the fact that ceramides are 

synthesized de novo from palmitate and serine and have been shown to promote apoptosis in 

myocytes (25). However, studies using both pharmacologic and genetic interventions have 

revealed that SFAs can induce apoptosis independently of ceramide synthesis in a variety of cell 

types including CHO (26,27), breast cancer cells (19), and H4IIEC3 hepatomas (28), suggesting 

that other mechanisms involving ER stress and ROS accumulation may predominate in these 

tissues.   

 

ROS accumulation and oxidative stress 

An elevated level of ROS, or oxidative stress, has been proposed as a possible companion 

to ER stress in promoting NASH development.  Although normally present at low levels, ROS 

accumulate in response to cellular stress, mitochondrial dysfunction, or decreased antioxidant 

defenses.  The electrons lost from Complexes I and III of the electron transport chain combine 

with oxygen to generate ROS, which includes superoxide ions, hydroxyl radicals, and hydrogen 

peroxide (29).  In addition to their role in mediating signaling pathways, some ROS can be  

powerful oxidizing agents and indiscriminately damage many important components of the cell 

including DNA, lipid membranes, and proteins (30).  Evidence for oxidative stress in NASH 

patients and animal models includes the accumulation of oxidized lipids such as malodialdehyde 

(31). NASH-associated oxidative stress has also been attributed to a variety of mechanisms 

including upregulated levels of cytochrome P450 2E1 (32), NADPH oxidase (33), and changes 

in mitochondrial function such as increased beta-oxidation (34-36).   

Although hepatic oxidation of free fatty acids, as measured by positron emission 

tomography, is elevated in obese individuals (37), the role of beta-oxidation in promoting 
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lipotoxic ROS accumulation is unclear.  In vitro studies using H4IIEC3 rat hepatoma cells 

appear to be in disagreement on this point.  One study used etomoxir, a specific inhibitor of the 

rate-limiting enzyme carnitine palmitoyltransferase-1 (38), to prevent the transport of fatty acyl 

CoAs into the mitochondria.   After combined treatment with palmitate and etomoxir, the authors 

measured a decrease in ROS levels in comparison to treatment with palmitate alone (34).  

Conversely, another study also in the same cell line found ROS accumulation to be independent 

of beta-oxidation (39).  While both studies concluded that palmitate exerts toxic effects through 

ROS accumulation, only one indicated that beta-oxidation may be the source of increased ROS 

production.  Alternatively, a recent in vivo study demonstrated that increased beta-oxidation may 

actually protect against NASH by enhancing lipid disposal.  Administering PPAR-α agonists to 

mice on a MCD diet resulted in attenuated scores of liver damage while simultaneously 

increasing peroxisomal beta-oxidation (40).  Recent studies in pancreatic β-cells (41) and breast 

cancer cells (19) agree with these results. Both studies used etomoxir to reduce beta-oxidation.  

Reducing beta-oxidation had no positive effect on palmitate-induced apoptosis and even 

increased cell death in response to excessive SFA treatment (19,41). Taken together, these 

studies indicate that lipids may play a more complex role in promoting hepatic ROS 

accumulation other than simply providing fuel substrates for increased oxidative metabolism. 

This could involve indirect effects to dysregulate normal mitochondrial function. 

 

ER Stress 

The ER is a specialized organelle that is integral in many cellular functions, particularly 

disulfide bond formation, proper protein folding, and synthesis and secretion of several critical 

biomolecules including steroids, cholesterol, and lipids (42). The ER also is the most important 
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regulator of intracellular calcium as a result of its large Ca
2+

 stores and Ca
2+

 ATPases, which are 

necessary for proper functioning of Ca
2+

-dependent chaperones that stabilize protein folding.  

Very small changes in cellular redox state (43) or abnormal accumulation of unfolded proteins 

and/or toxic lipid species (44) can result in activation of compensatory response pathways, which 

comprise the unfolded protein response (UPR) (42,45,46).  In models of lipotoxicity and fatty 

liver, increased lipid membrane saturation is associated with ER stress as marked by the pro-

apoptotic ER stress protein CHOP and loss of ER calcium (47-50).  Knockdown of CHOP did 

not prevent lipotoxicity (48).  Although it appears that CHOP does not contribute significantly to 

lipoxicitiy, the role of depleted ER calcium is unclear.   

 

JNK stress signaling 

Stimulation of the c-Jun N-terminal kinase (JNK) pathways has been hypothesized as a 

concurrent pro-apoptotic mechanism in NASH and lipotoxicity.  JNK stress signaling pathways 

are stimulated by the same factors that have been demonstrated to contribute to NASH, including 

inflammation, oxidative stress, and ER stress.  JNK activation has been observed in NASH 

patients as well as murine models of steatohepatitis (51,52).  Unlike the ER stress produced 

CHOP, pharmacological inhibition of JNK attenuated SFA-dependent apoptosis in both hepatic 

cell lines and primary mouse hepatocytes (53).  Additionally, JNK activation appears to be a 

common component in both ER stress and oxidative stress signaling.  In a model of lipid-induced 

ER stress, JNK activation was observed rapidly after exposure to lysophosphatidylcholine (54).  

At high levels, ROS are known to activate pro-apoptotic pathways through JNK-dependent 

signaling, and studies using in vitro models have confirmed that SFA-induced oxidative stress is 

associated with JNK activation.  Murine models of NASH display increased lipid peroxidation 

products as well as JNK activation (55) and elevated hepatic apoptosis.  It has also been shown 
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that co-treating hepatic cells with antioxidants reduces palmitate-induced JNK phosphorylation 

(34).  These observations demonstrate that JNK signaling is involved in mediating stress 

responses and promoting apoptosis in SFA-treated liver cell models. 

The two liver-specific isoforms of JNK, JNK1 and JNK2, are both associated with 

obesity-related liver injury (56).  In particular, JNK1 activity is associated with elevated 

steatohepatitis and apoptosis (57).  This is due to JNK1’s unique ability to phosphorylate c-Jun, 

which can then be integrated into the activator protein-1 (AP-1) complex, a pro-apoptotic 

transcription factor (58,59).  Knockdown of JNK1 in both murine models and primary 

hepatocytes resulted in reduced markers of steatohepatitis and lipotoxicity (52).  JNK1-null mice 

fed a high-fat diet exhibited less steatosis, liver inflammation, and fewer apoptotic cells in 

comparison to wild-type controls.  This same study found that antisense oligonucleotide 

knockdown of JNK1 in high-fat fed wild-type mice resulted in the attenuation of continued liver 

damage and a reduction in apoptotic cells.  Similarly, it has been shown that palmitate stimulates 

the expression of p53 upregulated modulator of apoptosis through a JNK1-dependent mechanism 

(58).   

While JNK1 activation appears to be directly related to increased apoptosis and liver 

injury, the role of JNK2 is less clear.  One in vitro study using primary hepatocytes isolated from 

JNK2
-/-

 mice demonstrated decreased apoptosis in the presence of saturated fatty acids (53).  In 

this model of lipotoxicity, JNK phosphorylation was associated with elevated Bim-dependent 

Bax activation.  Conversely, a separate study indicated that JNK2 had no effect on apoptosis and 

liver injury, as JNK2
-/-

 mice had similar inflammation grades and increased apoptosis as 

compared to wild-type mice on the same high-fat diet (52).  Bim over expression was also 

associated with JNK2 deficiency with this model, suggesting JNK2 regulates apoptosis possibly 
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through the repression of BIM.  A separate study also found jnk2 -/- mice had no change in 

histology compared to control animals on a MCD diet and no change in serum ALT levels(57).  

These studies demonstrate JNK2 may be involved in lipid toxicity, but seems unlikely to 

contribute NASH.   

 

NASH is associated with dysregulated mitochondrial metabolism and anaplerosis 

Several recent studies highlight a role of accelerated mitochondrial metabolism in 

lipotoxicity and NAFLD.  For example, [U-
13

C3] propionate and D2O isotope tracers were 

administered to patients with high and low levels of intrahepatic triglyceride content to study the 

impact of liver fat levels on in vivo mitochondrial metabolism (60).  Examination of 
13

C 

incorporation patterns in blood glucose revealed that mitochondrial oxidative metabolism was 

approximately 2-fold greater in NAFLD patients.  This significant increase in mitochondrial 

activity in NAFLD patients coincided with elevation of both systemic lipolysis and 

gluconeogenesis by 50% and 30%, respectively.  It was hypothesized that increased 

mitochondrial CAC activity satisfied the energy demand for elevated gluconeogenesis. However, 

the increase in gluconeogenic flux alone is unlikely to account for the almost two-fold increase 

in the rate of mitochondrial metabolism, suggesting that alternative endergonic mechanisms are 

active in the presence of excess lipids.  The investigators proposed that the correlation between 

high levels of intrahepatic triglycerides, FFA delivery to the liver, and elevated CAC fluxes 

could explain the induction of oxidative stress in NAFLD patients.  Similar experiments using 

[U-
13

C3] propionate and D2O isotope tracers performed in mice revealed that animals fed a high 

fat diet had higher rates of CAC flux (61).  After 32 weeks of HFD feeding, mice exhibited 

elevated superoxide dismutase activity.  It was hypothesized that these enzymes were elevated to 
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counteract ROS accumulation due to heightened mitochondrial activity and increased anaplerosis 

from pyruvate carboxylase.  These two in vivo isotope labeling studies reveal that activated 

hepatic mitochondrial metabolism is a common characteristic of NAFLD in both human subjects 

and animal models.  

Alternatively, stable isotope-based metabolic flux analysis (MFA) has been performed to 

study how elevated SFAs impact central metabolism of hepatic cells cultured in vitro (39).  

Detailed flux mapping with [U-
13

C5]glutamine revealed that palmitate treatment strongly 

increased CAC fluxes relative to glycolytic fluxes in H4IIEC3 cells.  Changes in intracellular 

metabolic fluxes coincided with the onset of ROS accumulation and preceded the appearance of 

apoptotic markers such as caspase 3/7 activation and DNA laddering.  Glycolytic fluxes 

including glucose uptake and lactate secretion were significantly inhibited by palmitate, whereas 

CAC and anaplerotic fluxes were significantly upregulated.  The timing of these events suggests 

that palmitate-stimulated metabolic flux alterations were responsible for generating ROS and 

triggering apoptosis.  Interestingly, increased glutamine anaplerosis, rather than fatty acid beta-

oxidation, was reported to fuel the observed increase in CAC.  Additionally, by varying the 

concentration of various amino acids in the cell culture medium it was possible to modify the 

metabolic phenotype of palmitate-treated H4IIEC3 cells.  These alterations were also reflected in 

changes to ROS accumulation and cell viability.  Overall, these studies suggest that 

mitochondrial dysfunction arising from increased FFA availability plays a key role in both in 

vitro and in vivo lipotoxicity mechanisms.  The ability of amino acids to simultaneously 

modulate mitochondrial metabolism and lipotoxic outcomes implies that nutritional interventions 

may provide one possible strategy to control NAFLD progression.  However, the regulatory 
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connections linking FFAs to altered mitochondrial function and fuel source selection are still 

undefined.   

 While these studies support a role for accelerated mitochondrial metabolism in NASH 

and lipotoxicity, other studies provide conflicting evidence.  For example, liver biopsies from 

NASH patients demonstrated decreased activity of the mitochondrial respiratory chain (62).  

Similarly, mitochondria isolated from C57BL/6 mice with HFD induced NASH had decreased 

state 3 respiration compared to control (63).  Ob/ob mice also demonstrated depressed ETC 

activity possibly as a function of increased tyrosine nitration of these key mitochondrial proteins 

(64).  Decreased ATP levels have also been reported in livers isolated from MCD diet fed rats as 

function of impared ETC activity (65).  These conflicting hypotheses on the role of mitochondria 

in NASH models warrant further study with comprehensive, systems biology techniques.  A 

summary of the broad phenotypes of NASH is presented in Figure 2.1.   
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Metabolic Flux and Isotopomer Analysis 

Metabolism is the phenotypic accumulation of gene transcription and protein regulation.  

Traditional biochemical approaches to studying metabolism involved perturbing single, specific 

metabolic pathways using inhibitors or genetic modification, and measuring the altered 

accumulation or production of the pathway metabolites.  However, metabolic pathways are not 

simply defined by one or two reactions and the flux through these pathways does not always 

 
Figure 2.1: General phenotypes associated with NASH and lipotoxicity in vitro and in 

vivo.  Elevations in exogenous plasma FFA cause liver disorders characterized by ER and 

mitochondrial impairments.  Excess saturated fatty acids promote pro-apoptotic phenotypes 

while monounsaturated fatty acids induce protective triglyceride formation.  The pro-

apoptotic arm of lipotoxicity is marked by aberrant saturated phospholipid metabolism which 

induces ER stress marked by the induction of the PERK, ATF-6, and IRE-1 pathways.  CHOP 

expression is common to many lipotoxic models although it has been shown simply be an 

indicator of disorder and not functionally contribute to disease progression.  In addition to ER 

stress, mitochondrial metabolism is overactive in both cell culture models and animal models 

of lipotoxicity.  This overactice metabolic state leads to oxidative stress which can activate 

JNK stress pathways and initiate apoptosis.  In this dissertation a hypothetical mechanistic 

link between saturated fatty acid overload, ER calcium efflux, and oxidative stress is tested. 
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correlate to enzyme expression due to allosteric control and post-translational modification.  

Instead, metabolic pathways are highly connected networks where individual reactions can 

influence the overall metabolic phenotype of the cell.  Therefore, concentrations of individual 

metabolites do not provide the best insight into the overall metabolic phenotype.  To fully 

understand how stimuli, genetic manipulation, or inhibitors truly affect the overall metabolic 

phenotype of the cell, it is necessary to integrate the metabolic network’s response.  This 

approach necessitates accurate calculation of the metabolic network reaction rates, or fluxes.  

Calculating these fluxes provide metabolic “maps” which describe the overall state of 

metabolism.   

13
C metabolic flux analysis (MFA) is the ideal method for calculating intracellular fluxes 

in a metabolic network.  Early approaches in metabolic flux analysis relied solely on the 

stoichiometry of the reaction network constraints to calculate net fluxes.  This approach is most 

successful in determining the flow of material through linear or branched pathways.  However, 

intracellular metabolism is not just a system of linear pathways.  Instead many steps of central 

carbon metabolism include reversible, parallel, and cyclical pathways.  While the balancing of 

cofactors such as ATP and NADH can help resolve some of these pathways using stoichiometric 

analysis, it assumes these constraints are balanced internally which may not hold true for all 

situations (66). 

The addition of stable labeled isotope tracers to the experimental system addresses the 

shortcomings of stoichiometric MFA by providing additional information to constrain reaction 

network models.  In 
13

C MFA, carbon substrates are labeled and fed to cells until metabolic 

steady state is reached (70).  As cells metabolize the 
13

C labeled substrate, the tracer will be 

incorporated into downstream metabolites with specific labeling patterns.  Therefore, the 
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labeling patterns of these 
13

C isotope isomers, or isotopomers, represent the relative contributions 

of different metabolic pathways to the metabolite pool as well as the associated carbon 

transitions.  Isotopomer data is collected by allowing the cell’s to metabolize the tracer until 

isotopic steady state is reached, quenching intracellular metabolism, and extracting the 

intracellular metabolites.   

Isotopomers are primarily analyzed in two ways: nuclear magnetic resonance (NMR) or 

gas chromatography-mass spectrometry (GC-MS).  Unlike NMR analysis, GC-MS analysis of 

13
C labeled metabolites requires a derivatization step to make samples volatile.  NMR provides 

detailed positional analysis, such as which carbon is isotopically labeled and whether adjacent 

carbons are similarly labeled.  GC-MS provides mass isotopomer information, offers greater 

sensitivity, and is more applicable for small quantities.  The mass isotopomer distribution ranges 

from M0 (no 
13

C tracer) to M+n where n is the total number of carbons which can be labeled.  

GC-MS also often provides multiple ion fragments specific to a parent metabolite.  These ion 

fragments may contain all or a subset of the atoms of the parent.  Therefore to identify positional 

labeling, compositional knowledge of these subsets of atoms for each parent ion must be known 

as well as the MID for the fragment.  These fragment ions greatly aid in the calculation of 

intracellular fluxes, particulary when the EMU method is used (described below).  A summary of 

GC-MS mass isotopomer analysis is presented in (Figure 2.2).   
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Steady State 
13

C MFA 

In the following equations for 
13

C MFA, it is assumed that experimental system is at 

metabolic and isotopic steady state.  This assumption designates that production rates are 

balanced with consumption rates and no net material accumulates within the system.  In the 

steady state experiment, the total reactions of the metabolic network and corresponding fluxes 

can be represented as the following mass balance equation on the metabolites: 

      

where   denotes the stoichiometric matrix from the reaction network and   designates the flux 

vector for all reaction fluxes.  In a system with J fluxes and K metabolites, the degrees of 

 
Figure 2.2: Mass isotopomer distribution (MID) provided by GC-MS analysis.  Feeding 

cells 
13

C tracer in culture produces unique 
13

C enrichment patterns in downstream 

metabolites.  These enrichment patterns reflect pathways (marked by arrows in the figure) 

which use the isotope tracer relative to unlabeled carbon sources.  GC-MS allows for the 

measurement of mass isotopomers, that is metabolic fragments which differ in mass due to the 

differeing incorporation of 
13

C.  We denote these as M0, M1, M2, etc. in order of increasing 

mass (up to M4 in the presented figure).   
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freedom, F, is given by J-K.  When F fluxes can be measured, the experimental system is exactly 

determined, and it is possible to solve for the unknown fluxes directly.  However when less than 

F fluxes can be measured, the system is underdetermined.  In this situation, additional constraints 

must be added to the metabolic model to solve for fluxes.  It is in these underdetermined 

situations that 
13

C isotope tracers become critical to solving fluxes within a reaction network.  

The addition of 
13

C measurements creates an overdetermined system, often with redundant 

measurements.  In this situation, a least squares approach is taken to calculate intracellular fluxes 

by minimizing the lack of fit between the observed 
13

C metabolite labeling patterns and the 

simulated measurements.  Mass isotopomer distributions are simulated by adding isotopomer 

balances to the metabolic model.   

 

Elementary Metabolite Units 

Previous methods to simulate the MID of a metabolite solved for all possible isotopomers 

(69).  A recently developed approach to simulating the MID for isotopomers is the elementary 

metabolite unite (EMU) method.  The EMU is critical in the 
13

C steady state MFA approach 

taken in this dissertation.  An EMU of a metabolite is simply any subset of the atoms that form 

the structure of the compound (67).  EMU reactions simultaneously improve upon stoichiometric 

MFA by taking into account atom transitions associated with metabolite pathways and the 

subsets of EMU fragments for each metabolite.  This process greatly reduces the number of 

variables necessary to simulate the isotopomer distribution for a given set of fluxes.  For 

example, to simulate the labeling in aspartate in the simple network in Figure 2.3, one needs to 

know the reaction stoichiometry and associated carbon atom transitions as well as the fragments 

that need to be simulated.  Additionally, if we know the source of the labeling (in this model 
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Glu) and dilution (AcCoA) we can develop a minimal number of sub reaction networks to 

simulate the labeling in aspartate.  This process ensures that strictly the minimal number of 

metabolite fragments is simulated to describe the isotopomer of interest. 

 

 

 

 
Reaction 

Number 
Stoichiometry 

Carbon atom 

transition 

1 Glu  αKG abcde  abcde 

2 αKG  Suc + CO2 abcde  bcde + a 

3 Suc  Mal abcd  abcd 

4 Mal  Suc abcd  abcd 

5 Mal  Asp abcd  abcd 

6 AcCoA + Mal  Cit ab + cdef  fedbac 

7 Cit  αKG + CO2 abcdef  abcde + f 

Figure 2.3: Metabolic network used for simple EMU example of CAC anaplerosis.  In 

the above reaction network fully labeled glutamate (Glu) enters the CAC as α-ketoglutarate 

(αKG) is metabolized through succinate (Suc), malate (Mal), and citrate (Cit) with production 

of aspartate (Asp) leaving the cycle.  Additionally, acetyl coenzyme A (AcCoA) can enter the 

cycle to dilute the tracer from glutamate.  The associated carbon transitions for the metabolic 

network are given in the table.  For the purpose of this example, reactions have been 

condensed and atom symmetry has been neglected, although the EMU approach can easily 

handle these situations. 
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In order to convert the metabolic reaction network into EMU notation, mass balances are 

set around the EMUs of the metabolites similar to normal isotopomer/metabolite balancing.  This 

process will give rise to multiple reaction networks balanced around EMUs of equal size (i.e. 

size 1, size 2, … size n).  The example this results in balances around size 1, 2, and 4 networks.  

The multiple decoupled EMU balances are represented by the following equations: 

 

 
Figure 2.4: EMU reaction networks needed to simulate the labeling in aspartate (Asp).  

In this figure, subscripts indicate the metabolite carbons involved in the network.  To simulate 

the labeling in Asp1234 (i.e. all four Asp carbons) from Figure 2.3 using the EMU method, one 

first designates the reactions that are involved in the formation of the metabolite until a 

reaction involving metabolites of a smaller EMU size is involved.  In the Size 4 EMU 

network, the process yields a reaction (v6) which consumes two independent two carbon 

fragments to produce a 4 carbon citrate.  Therefore the next EMU size network is of size 2 

and the Size 3 EMU network is not considered to simulate Asp1234. 
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Where  

 

         
                                           

                                                     
  

                                                         

 

Additionally,     and    are matrices which respectively refer to the unknown and known MIDs 

(experimental GC-MS measurements) of the EMUs of the nth size.  For the example, the known 

MIDs are the network substrates Glu and AcCoA. 

Calculating the final fluxes of the metabolic network involves the minimization between 

simulated MIDs and fluxes versus observed (experimental) MIDs (68) and fluxes: 

 

                        
  

 
              

s.t.        

 

Where the objective function to minimized,  , is the covariance-weighted sum of squared 

residuals (SSR).       denotes the vector of simulated measurements and conversely      is a 

vector of observed labeling and flux measurements.     
 designates the measurement covariance 
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matrix and   is the null space vector of the stoichiometric matrix S.  Levenberg-Marquardt 

nonlinear least-squares solution methods can then be used to minimize the SSR by modulating 

free fluxes (u).  These free fluxes are identified by: 

      

 In summary, EMU decomposition of metabolites in a network model predicts the 

isotopomer MID for a metabolite for a given set of fluxes.  Absolute fluxes are then calculated 

by solving the inverse problem, minimizing the lack of fit between similuated MIDs and 

observed experimental MIDs using an optimization function (Figure 2.5).   

 

 

 

 
Figure 2.5: General protocol for 

13
C MFA.  MFA involves the estimation of intracellular 

fluxes by minimizing the difference between experimental, GC-MS derived MIDs and 

simulated MIDs to characterize the movement of material through metabolic pathways.  This 

requires the development of a reaction network that defines the metabolic reactions and their 

associated carbon transitions to simulate a MID for a set of fluxes.  Experimentally measured 

extracellular fluxes can also be used to constrain the reaction network.  Fluxes are iteratively 

adjusted until convergence is achieved.   
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Conclusion 

Fatty liver and NASH are metabolic disorders which disrupt normal hepatic function and 

lead to liver failure.  
13

C metabolic flux analysis using EMU decomposition is an ideal way to 

calculate fluxes to describe the metabolic phenotype of a cell in response to lipid perturbation.  

In the rest of this disseration, the application of 
13

C MFA (and GC-MS isotope tracer analysis) to 

dissect metabolic pathways associated with a hepatic cell model of lipotoxicity will be discussed 

in more detail.   
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CHAPTER 3 

 

PALMITATE-INDUCED ACTIVATION OF MITOCHONDRIAL METABOLISM 

PROMOTES OXIDATIVE STRESS AND APOPTOSIS IN H4IIEC3 RAT HEPATOCYTES  
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Abstract 

Hepatic lipotoxicity is characterized by reactive oxygen species (ROS) accumulation, 

mitochondrial dysfunction, and excessive apoptosis, but the precise sequence of biochemical 

events leading to oxidative damage and cell death remain unclear. The goal of this study was to 

delineate the role of mitochondrial metabolism in mediating hepatocyte lipotoxicity.  We treated 

H4IIEC3 rat hepatoma cells with free fatty acids in combination with antioxidants and 

mitochondrial inhibitors designed to block key events in the progression toward apoptosis. We 

then applied 
13

C metabolic flux analysis (MFA) to quantify mitochondrial pathway alterations 

associated with these treatments.   Treatment with palmitate alone led to a doubling in oxygen 

uptake rate and in most mitochondrial fluxes. Supplementing culture media with the antioxidant 

N-acetyl-cysteine (NAC) reduced ROS accumulation and caspase activation and partially 

restored cell viability.  However, 
13

C MFA revealed that treatment with NAC did not normalize 

palmitate-induced metabolic alterations, indicating that neither elevated ROS nor downstream 

apoptotic events contributed to mitochondrial activation.  To directly limit mitochondrial 

metabolism, the complex I inhibitor phenformin was added to cells treated with palmitate.  

Phenformin addition eliminated abnormal ROS accumulation, prevented the appearance of 

apoptotic markers, and normalized mitochondrial carbon flow.  Further studies revealed that 
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glutamine provided the primary fuel for elevated mitochondrial metabolism in the presence of 

palmitate, rather than fatty acid beta-oxidation, and that glutamine consumption could be reduced 

through co-treatment with phenformin but not NAC.  Our results indicate that ROS accumulation 

in palmitate-treated H4IIEC3 cells occurs downstream of altered mitochondrial oxidative 

metabolism, which is independent of beta-oxidation and precedes apoptosis initiation. 

 

Introduction 

There are currently two competing views on the role of lipid beta-oxidation in the 

development of non-alcoholic fatty liver disease (NAFLD) (2,3). One view holds that impaired 

or incomplete beta-oxidation leads to hepatic steatosis and accumulation of lipid intermediates 

that inhibit insulin signaling (4,5). The other view holds that increased supply of free fatty acids 

(FFAs) to liver results in excessive beta-oxidation that fuels reactive oxygen species (ROS) 

accumulation and inflammation (6-8). Recently, isotope tracers and nuclear magnetic resonance 

(NMR) were applied to determine in vivo metabolic fluxes in human subjects with either high or 

low intrahepatic triglyceride content (3).  It was found that citric acid cycle (CAC) flux was 

approximately 2-fold greater in NAFLD patients. This increase in mitochondrial activity was 

associated with a 50% higher rate of systemic lipolysis and a 50% higher rate of hepatic 

anaplerotic flux, demonstrating that elevated lipid levels strongly impact mitochondrial function 

in NAFLD patients.  Similar metabolic alterations were measured in high-fat diet (HFD) fed 

mice, which were associated with elevated oxidative stress markers (2). The authors 

hypothesized that citric acid cycle (CAC) activation is required to meet energetic demands in the 

face of reduced respiratory efficiency resulting from mitochondrial oxidative damage. In this 

contribution, we explore an alternative hypothesis, which is the possibility that FFAs can 
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enhance mitochondrial metabolism independently of beta-oxidation through a mechanism that 

precedes the onset of oxidative damage.  

 This study builds upon an extensive literature that uses hepatic cell lines to mimic the 

effects of obesity, NAFLD, and non-alcoholic steatohepatitis (NASH) in culture (9-13).  

Studying the effects of lipid oversupply in cultured cells is useful because it enables complete 

control of the cellular environment to examine basic biochemical mechanisms of hepatic 

lipotoxicity.  In this context, saturated fatty acid (SFA) treatments lead to acute lipotoxicity that 

is associated with increased ROS and endoplasmic reticulum (ER) stress but is independent of 

ceramide synthesis (10,14,15).  Furthermore, the response to SFA treatment is altogether 

different from that of monounsaturated fatty acid (MUFA) treatment, which induces steatotic 

triglyceride formation without initiating ROS accumulation or apoptosis (16). Therefore, 

modulating the FFA composition of the culture medium can be used to achieve varied outcomes 

ranging from progressive lipotoxicity to benign steatosis.  

Prior in vitro experiments have attributed the onset of SFA-induced oxidative stress to 

activation of NADPH oxidases (17) or increased fatty acid beta-oxidation (9). In the 

mitochondria, loss of electrons from complexes I and III of the electron transport chain (ETC) 

can combine with oxygen to generate ROS, which include superoxide ions, hydroxyl radicals, 

and hydrogen peroxide (18).  ROS are powerful oxidizing agents that indiscriminately damage 

many important components of the cell including DNA, lipid membranes, and proteins (19).  At 

high levels, ROS are known to activate pro-apoptotic pathways, thus initiating programmed cell 

death.  ROS accumulation can trigger apoptosis through c-Jun N-terminal kinase (JNK) stress 

signaling pathways (20).  Antioxidant co-treatments have been shown to prevent JNK 

phosphorylation and JNK-mediated insulin resistance in SFA-treated H4IIEC3 cells (9).  Co-
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treatment with a radical scavenger also prevented HepG2 human hepatoma cell death in the 

presence of elevated palmitate (21).  These prior studies indicate that ROS accumulation is 

potentially a committed step in the lipotoxicity mechanism, and that JNK activation may be one 

mechanism by which ROS accumulation initiates apoptosis (9,11).  However, the role of specific 

metabolic pathways in promoting ROS accumulation, as well as the mechanism of their 

dysregulation by palmitate, remains largely undefined.   

Stable isotope-based metabolic flux analysis (MFA) has been previously applied to study 

how elevated SFAs impact central metabolism in hepatic cells (10).  Detailed flux mapping with 

[U-
13

C5]glutamine revealed that palmitate treatment strongly increased CAC fluxes relative to 

glycolytic fluxes in H4IIEC3 cells.  Changes in intracellular metabolic fluxes coincided with the 

onset of ROS accumulation and preceded the appearance of apoptotic markers such as caspase 

3/7 activation and DNA laddering.  The same study showed that oleate co-treatment led to a 

reversal of the palmitate-induced metabolic phenotype and completely rescued H4IIEC3 cells 

from apoptosis, which was likely a result of enhanced partitioning of palmitate into triglyceride 

stores.  Together with the previously described human and mouse data, these studies suggest that 

mitochondrial dysregulation arising from increased FFA availability plays a key role in both in 

vitro and in vivo lipotoxicity mechanisms, but they do not directly assess whether enhanced 

mitochondrial metabolism is a cause or a consequence of other lipotoxic effects such as oxidative 

stress or apoptosis initiation. Furthermore, they do not conclusively define whether FFAs are 

acting primarily as a fuel substrate to activate CAC flux. 

To address these questions, we applied 
13

C MFA in combination with treatments 

designed to alter ROS accumulation and mitochondrial metabolism in H4IIEC3 rat hepatoma 

cells fed lipotoxic concentrations of the SFA palmitate.  These studies revealed that palmitate 



41 
 

increased oxygen consumption and CAC fluxes independently of fatty acid beta-oxidation.  

Glutamine, rather than lipid, was the preferred substrate used to fuel palmitate-induced increases 

in mitochondrial metabolism.  Co-treating cells with the antioxidant N-acetyl cysteine (NAC) 

prevented ROS accumulation and caspase activation in the presence of palmitate but did not 

reverse the palmitate-associated metabolic phenotype.  On the other hand, direct inhibition of 

mitochondrial metabolism with the complex I antagonist phenformin abolished palmitate-

associated flux alterations while reversing other lipotoxicity markers.  The results indicate that 

palmitate-induced dysregulation of mitochondrial oxidative metabolism is the primary cause of 

ROS accumulation and apoptosis in H4IIEC3 cells. Interestingly, these metabolic alterations are 

independent of fatty acid beta-oxidation and precede the onset of oxidative damage or apoptosis 

initiation.   

 

Materials and Methods 

 

Materials-  

Palmitate, oleate, bovine serum albumin, phenformin, N-acetyl cysteine, low glucose 

Dulbecco’s modified Eagle’s medium (DMEM), and etomoxir were purchased from Sigma (St. 

Louis, MO, USA).  AICAR was purchased from Cayman Chemicals (Ann Arbor, MI, USA).  

Propidium iodide (PI) and 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) were 

purchased from Invitrogen (Carlsbad, CA, USA).   

 

Cell culture-  
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The H4IIEC3 rat hepatoma cell line (American Type Culture Collection, Manassas, VA, 

USA) was cultured in low glucose DMEM supplemented with 10% FBS and 1% 

penicillin/streptomycin antibiotic solution.  The glutamine concentration of the culture medium 

was 2 mM.  For fluorescence-based assays, cells were seeded in 96-well plates at 2  10
4
 cells 

per well two days prior to experiments to achieve 80-90% confluency at the time of 

measurement.   

 

Preparation of fatty acid solutions-  

FFA stock solutions were prepared by coupling free fatty acids with bovine serum 

albumin (BSA).  First, palmitate or oleate was dissolved in pure ethanol at a concentration of 1 5 

mM so that the final concentration of ethanol in our FFA stock solutions did not exceed 1.5  by 

volume.  This FFA stock solution was then added to a prewarmed 1   w w  SA solution (3   C) 

to achieve a final FFA concentration of 3 mM, and this solution was allowed to incubate in a 

water bath for an additional 10 minutes.  The final ratio of FFA to BSA was 2:1. All vehicle 

treatments were prepared using stocks of 10% w/w BSA with an equivalent volume of ethanol 

added to match the concentration in FFA stocks.  The final concentration of ethanol in all 

experimental treatments was less than 0.2% by volume. 

 

Detection of ROS-  

The radical-sensitive H2DCFDA dye was used to monitor intracellular ROS production.  

Cells were seeded on 96-well plates at 2  10
4
 cells per well.  After treatment with fatty acids 

and or inhibitors, cells were washed twice with Hank’s  alanced Saline Solution (HBSS) and 

then incubated with 1  μM H2DCFDA for one hour at 37ºC in the dark.  Oxidation of the dye by 
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intracellular ROS generates a fluorescent 2,7-dicholorofluorescein (DCF) signal.  Fluorescence 

was measured using the excitation/emission wavelengths 485/530 nm with a Biotek FL600 

microplate reader.   

 

Viability/Toxicity assays-  

Cell viability was measured using the Promega Cell Titer Blue kit at 24 hours (Fitchburg, 

WI, USA).  Cells were washed twice with HBSS and incubated with dye for 4 hours at 37ºC.  

The kit measures viability by quantifying resazurin reduction, which indicates metabolic 

production of reducing equivalents.  Fluorescence was measured using the excitation/emission 

wavelengths 530/590 nm with a Biotek FL600 microplate reader.  Additionally, we assessed cell 

toxicity using the dead-cell stain propidium iodide (PI).  PI is an intercalating dye that becomes 

highly fluorescent with excitation wavelength of 530 nm and emission wavelength of 645 nm 

when embedded in the exposed double-stranded DNA of dead cells.   

 

Caspase activity-  

The Apo-ONE Homogenous Caspase 3/7 Assay kit was used to measure the activities of 

caspases 3 and 7 as markers of apoptosis. H4IIEC3 hepatoma cells were cultured in 96-well 

plates as described previously.  Cells were then incubated with designated treatments for at least 

6 hours.  The Apo-ONE kit uses a lysis buffer combined with a caspase 3/7 specific substrate.  

This substrate, Z-DEVD-R110, becomes fluorescent once its DEVD peptide is removed by the 

caspases.  Fluorescence is then measured at an excitation wavelength of 485 nm and emission 

wavelength at 530 nm. Caspase 3/7 activation is known to be a reliable indicator of apoptosis 

initiation in palmitate-treated H4IIEC3 cells, as shown in several previous reports using the Apo-
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ONE assay in combination with additional apoptosis markers such as DNA laddering or 

cytochrome C release .     

 

Metabolite extraction and GC-MS analysis of 
13

C labeling-  

The extraction of intracellular metabolites from H4IIEC3 rat hepatomas and GC-MS 

analysis of 
13

C labeling from [U-
13

C5]glutamine or [U-
13

C16]palmitate was performed as 

described previously (10).  Briefly, cell metabolism was quenched by adding 1 mL of pre-cooled 

methanol (-80
o
C) to cultured cells in 10-cm dishes.  A biphasic extraction was used to separate 

polar metabolites into a methanol/water phase and non-polar metabolites into a chloroform 

phase.  Note that this extraction results in mixing of free metabolites from separate subcellular 

compartments. Polar metabolites were converted to their tert-butylsilyl derivatives using 

MBTSTFA + 1  T DMCS (Pierce).  Then, 1 μL of each derivatized sample was injected into 

an Agilent 6890N/5975B GC-MS equipped with a 30m DB-35ms capillary column for analysis 

of isotopic enrichment.   

 

Oxygen consumption-  

Oxygen uptake flux was used as a direct measurement of mitochondrial metabolism.  

These experiments were performed using the Oroboros Oxygraph-2K, which contains two 

chambers with separate oxygen probes to monitor on-line changes in oxygen concentration.  The 

instrument was set to a temperature of 32ºC, and the stirring speed for each chamber was 750 

rpm.  To perform these experiments, H4IIEC3 cells were cultured on 10-cm dishes until 80-90% 

confluent and subsequently incubated with selected combinations of fatty acids and treatments 

for 3 hours.  Cells were then trypsinized, counted, and resuspended in the same culture medium 
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at a concentration of 2 million cells per mL.  Following resuspension, 2 million cells were 

injected into the Oxygraph instrument.   

 

Beta-oxidation measurements-  

Cell cultures fed tritiated fatty acid produce 
3
H2O at a rate proportional to that of 

mitochondrial beta-oxidation. Albumin-bound [9,10-
3
H(N)] palmitic acid  (4 µCi 

3
H/µmol 

palmitate) was added to cells grown to confluency in 6-well dishes at a final concentration of 400 

μM. The final volume of the media solution, including culture medium with glucose and 

glutamine, inhibitors/activators, and palmitate, was calculated to be exactly 2 mL per well. After 

6 hours of incubation, 1.5 mL of media was removed directly from each well and collected in 

individual round-bottom snap-top tubes. Then  5 μL of 6   perchloric acid was added to each 

sample for deproteinization and to remove albumin-bound unoxidized palmitate from the sample 

media. The deproteinization reaction was allowed to continue overnight at 4°C. 

Following deproteinization, samples were centrifuged for 30 min. Then, 1.2 mL of 

sample was collected into a new centrifuge tube and 5 μL of pH indicator dye and 36 μL of 5M 

K2CO3 were added for neutralization. This reaction was allowed to continue overnight at 4°C. 

After neutralization, samples were centrifuged for 30 min. To remove any remaining palmitate, 

0.8 mL of neutralized sample was applied to an individual AG 1-X8 Resin (BioRad, Hercules, 

CA) column, and the column was allowed to empty under gravity flow. Each column was 

flushed twice with 0.6 mL of distilled water. The initial charge (0.8 mL) and all subsequent 

washes (1.2 mL) were collected in a scintillation vial (PerkinElmer, Waltham, MA). 10 mL of 

EcoLite scintillation cocktail fluid (MP Biomedical, Santa Ana, CA) was added to each sample 

vial, shaken vigorously, and read in a scintillation counter. 
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Metabolic flux analysis-  

Feeding cells [U-
13

C5]glutamine isotope tracer results in unique isotopic enrichment 

patterns in downstream metabolites dependent on the intracellular metabolism (23).  It is 

therefore possible to evaluate the intracellular fluxes that give rise to the measured enrichment 

patterns by minimizing the lack of fit between measured and simulated mass isotopomer 

distributions derived from a mathematical model of the metabolic reaction network.  We 

performed 
13

C MFA on H4IIEC3 rat hepatomas under several treatment conditions in the 

presence of glucose using custom Matlab-based software that relies on an elementary metabolite 

unit (EMU) decomposition to efficiently simulate mass isotopomer distributions of intracellular 

metabolites (24,25).  We constructed an isotopomer model to simulate labeling from [U-

13
C5]glutamine into glutamate, pyruvate, lactate, and several CAC intermediates, which was 

qualitatively similar to a previous model developed by Noguchi et al. (10).  The flux parameters 

of the model were iteratively adjusted using a Levenberg-Marquardt algorithm until optimal 

agreement with experimental data was obtained.  Flux estimation was repeated a minimum of 50 

times from random initial values to ensure a global minimum was achieved.  All results were 

subjected to a chi-square statistical test to assess goodness-of-fit (χ =  . 1), and accurate  5  

confidence intervals were computed for all estimated parameters by evaluating the sensitivity of 

the sum-of-squared residuals to parameter variations (26). A detailed description of the reaction 

network and modeling assumptions can be found in the Appendix.   

 

Statistical Analysis-  
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Tests for statistical significance were performed using analysis of variance (Model I 

ANOVA) and Tukey-Kramer methods for multiple comparisons, or Student’s t-test for pair-wise 

comparisons.  Plots indicate +/- one standard error of the mean unless otherwise indicated.   

 

Results 

Palmitate overload promotes ROS accumulation and apoptosis   

In this study, H4IIEC3 cells were incubated with 4   μM palmitate (PA) as a model of 

SFA-induced lipotoxicity, consistent with previous studies (10).  We have chosen to use the 

H4IIEC3 rat hepatoma cell line because it has been used in several hallmark papers on the 

subject of hepatic lipotoxicity and has been shown to accurately recapitulate the response of 

primary hepatocytes to an elevated PA load (9,10,12). A dose of 4   μM PA was selected to 

maintain consistency with these prior studies.  We confirmed this dose by subjecting H4IIEC3 

cells to increasing concentrations of PA and found that 400 μM palmitate provided the maximum 

lipotoxic effect while remaining in a physiologically relevant range (Figure 3A.1). After 6 hours 

of treatment, PA-treated cells exhibited a significant increase in ROS accumulation as measured 

by DCF fluorescence (Figure 3.1A).  Additionally, PA-treated cells were marked by elevated 

caspase 3/7 activity at 12 hours (Figure 3.1B).  After 24 hours of PA treatment, cell viability was 

reduced by approximately two-thirds in comparison to the vehicle-treated (BSA) control group 

(Figure 3.1C).  In contrast, cells treated with the same concentration of oleate (OA) did not 

exhibit markers of oxidative stress or apoptosis (Figure 3.1 A, B, C).   
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Palmitate stimulates mitochondrial oxidative metabolism   

ROS can be produced due to accelerated flux of electrons through the ETC as a result of 

increased mitochondrial activity.  We measured the oxygen consumption of H4IIEC3 cells 

treated with 4   μM PA to determine if ROS accumulation was associated with elevated 

mitochondrial metabolism.  PA-treated cells were characterized by increased oxygen 

 
Figure 3.1:  Palmitate–induced lipotoxicity is characterized by time-dependent 

increases in ROS accumulation, caspase activation, and losses in cell viability.  H4IIEC3 

rat hepatoma cells were incubated with 4   μM palmitate (PA), 4   μM oleate (OA), or 8   

μM  SA  (vehicle) for the indicated time periods.  (A) Normalized ROS accumulation at 6-

hour time point measured by DCF fluorescence.  (B) Caspase 3/7 activity at 12-hour time 

point.  (C) 24-hour cell viability (resazurin reduction) after incubation with indicated 

treatments. Positive control cells (+CTRL) were treated with 70% ethanol for 30 minutes.  

Data represent mean +/- S.E., n=4 for fluorescence assays; *, different from vehicle, p <.05; 

†, different from each other, p < . 5.    
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consumption (Figure 3.2).  Cells treated with 4   μM OA had similar oxygen consumption rates 

as vehicle-treated cells.  This result confirms that the elevated oxidative phenotype is unique to 

cells treated with SFA and that an equal load of MUFA is not sufficient to alter mitochondrial 

function.   

 

 

 

Antioxidants restore viability by reducing palmitate-induced ROS accumulation without altering 

mitochondrial metabolism  

 

Enhanced ROS accumulation has been proposed as playing a causative role in a variety 

of lipotoxic disorders.  To determine if increased ROS levels were directly responsible for 

reducing cell viability in our system, H4IIEC3 cells were co-incubated with 4   μM PA and 5 

mM of the antioxidant N-acetyl cysteine (NAC).  NAC co-treatment reduced ROS at 6 hours 

(Figure 3.3A), prevented markers of apoptosis at 12 hours (Figure 3.3B), and resulted in a 

proportional rescue in cell viability at 24 hours (Figure 3.3C).  The antioxidant vitamin E 

produced similar reductions in lipotoxicity (Figure 3A.2).  The similar effects of both NAC and 

 

Figure 3.2:  Palmitate stimulates oxidative metabolism while oleate does not.  Oxygen 

consumption measurements were performed on cells treated with vehicle, 4   μM palmitate  (PA), 

and 4   μM oleate (OA) for three hours.  Data represent mean + - S.E., n=3; *different from vehicle, 

p < .05.    
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vitamin E, despite different mechanisms of ROS scavenging, suggest that NAC acts primarily 

through its antioxidant function to reduce lipotoxicity.  Interestingly, NAC and PA co-treated 

H4IIEC3 cells had a similar oxygen uptake rate as cells treated with PA alone (Figure 3.3D).  

This result indicates that palmitate-induced activation of mitochondrial metabolism is 

independent of ROS accumulation and apoptosis initiation.  

 

 

 
Figure 3.3: Antioxidant treatment reduces intracellular ROS and partially rescues 

lipotoxic cell death without reversing palmitate-induced activation of oxidative 

metabolism.  The antioxidant N-acetyl cysteine (NAC) was added at a concentration of 5 mM 

to palmitate-treated (PA, 4   μM) or  SA-treated (vehicle, 8   μM) H4IIEC3 cells.  (A) 6-

hour ROS accumulation measured by DCF fluorescence.  (B) Caspase 3/7 activity at 12-hour 

time point.  (C) 24-hour cell viability assessed by resazurin reduction. Positive control cells 

(+CTRL) were treated with 70% ethanol for 30 minutes.  (D) Oxygen uptake measurements 

of NAC- and/or PA-treated cells.  Data represent mean +/- S.E., n=4 for all fluorescent assays, 

n=3 for oxygen uptake measurements; * different from vehicle, p <. 5; † different from each 

other, p <.05.   
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Direct inhibition of mitochondrial oxidative metabolism suppresses palmitate-induced ROS 

generation and apoptosis   

 

In a converse experiment, we sought to test whether a direct inhibitor of mitochondrial 

metabolism could effectively prevent the ability of palmitate to promote ROS accumulation and 

induce apoptosis.  We applied 1   μM phenformin, a mitochondrial complex I antagonist, to 

H4IIEC3 cells both in the presence and absence of PA.  Phenformin reduced PA-induced ROS 

generation at 6 hours (Figure 3.4A), caspase activation at 12 hours (Figure 3.4B), and long-term 

cell toxicity at 24 hours (Figure 3.4C) compared to cells treated with PA alone. (In these 

experiments, we measured PI fluorescence as an indicator of cell toxicity since mitochondrial 

inhibitors such as phenformin could interfere with accurate assessment of cell viability using 

resazurin-based dyes.)  Experiments using the classical complex I inhibitor rotenone produced 

similar reductions in ROS accumulation and apoptosis in the presence of 4   μM PA, thus 

confirming our ability to rescue palmitate-induced apoptosis by inhibiting mitochondrial electron 

transport (Figure 3A.3). To confirm that phenformin suppressed mitochondrial metabolism at the 

administered dose, we measured oxygen uptake by cells co-treated with PA and phenformin 

(Figure 3.4D).  The measurements confirmed that phenformin fully normalized oxygen uptake in 

the presence of palmitate, recapitulating the metabolic phenotype observed in vehicle-treated 

control cells. 
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Palmitate-induced ROS accumulation is independent of beta-oxidation 

There are differing reports on the role of beta-oxidation in promoting in vitro lipotoxicity 

of hepatic cells (9,27).  To determine whether the observed ROS accumulation was due to a 

direct enhancement of beta-oxidation by palmitate addition, H4IIEC3 cells were treated with 400 

μM PA and 25  μM etomoxir.  Etomoxir is a specific inhibitor of the rate-limiting carnitine 

 

Figure 3.4: Phenformin abolishes palmitate-induced ROS generation, mitochondrial 

activation, and apoptosis.  H4IIEC3 cells were co-treated with 1   μM phenformin (PHEN) 

and either 4   μM palmitate (PA) or 8   μM  SA (Vehicle) to examine the role of 

mitochondrial metabolism in ROS accumulation and apoptosis.  (A) ROS levels at 6 hours as 

measured by DCF fluorescence.  (B) Caspase 3/7 activity at 12 hours. (C) Cell toxicity at 24 

hours assessed by PI fluorescence. Positive control cells (+CTRL) were treated with 70% 

ethanol for 30 minutes. (D) Oxygen uptake measurements of PHEN- and/or PA-treated cells. 

Data represent mean +/- S.E., n=4 for all fluorescent assays, n=3 for oxygen uptake 

measurements; * different from vehicle, p <. 5; † different from each other, p <. 5.   
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palmitoyltransferase 1 (CPT-1) enzyme that is required to transport long-chain fatty acids across 

the mitochondrial membrane (28). First, we confirmed that adding etomoxir to [9,10-

3
H(N)]palmitate-treated cells significantly attenuated beta-oxidation by measuring a decrease in 

3
H2O production (Figure 3.5A).  To further confirm that etomoxir was effective at the selected 

concentration, we used AICAR to induce beta-oxidation in the presence of exogenous palmitate 

(29).The effects of AICAR on beta-oxidation were completely reversed by addition of 25  μM 

etomoxir, confirming that this dose was effective at blocking CPT-1 in H4IIEC3 cells. Next, we 

observed that co-treatment with PA and etomoxir resulted in no significant change in ROS 

production in comparison to treatment with PA alone despite the observed reduction in beta-

oxidation (Figure 3.5B). Blocking beta-oxidation with etomoxir also did not prevent the 

appearance of markers of apoptosis (Figure 3.5C, D).  
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 To directly assess the contribution of palmitate toward supplying carbon for CAC 

intermediates, we treated H4IIEC3 rat hepatomas with [U-
13

C16]palmitate.  Intracellular, non-

protein-bound metabolites were extracted, derivatized, and analyzed by GC-MS to quantify 
13

C-

enrichment.  If carbon from 
13

C-labeled PA was fully oxidized in the CAC, it would enter the 

cycle initially as a fully labeled (M+2) acetyl-CoA.  This acetyl-CoA would then give rise to 

M+2 labeled CAC intermediates such as citrate and malate.  Therefore, we analyzed ion 

 
Figure 3.5: Beta-oxidation does not fuel palmitate-induced ROS accumulation.  The 

CPT-1 inhibitor etomoxir (Eto) was added at a concentration of 25  μM to palmitate-treated 

(PA, 4   μM) or  SA-treated (vehicle, 8   μM) H4IIEC3 cells. (A)  eta-oxidation of [9,10-
3
H(N)] palmitate assessed by 

3
H2O production. 5   μM AICAR was used as a positive 

control.  (B) ROS levels at 6 hours measured by DCF fluorescence. (C) Caspase activity of 

cells treated with palmitate and etomoxir at 12 hours. (D)  Cell toxicity at 24 hours assessed 

by PI fluorescence. Data represent mean +/- S.E., n=4 for fluorescence assays,* different from 

palmitate in (A), vehicle in (B, C, D), p <.05. 
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fragments of citrate and malate for enrichment of M+2 mass isotopomers (Figure 3.6A).  

However, we found little to no incorporation of 
13

C, suggesting that a negligible flux of palmitate 

carbon was directed into the CAC for complete oxidation.  

 



56 
 

 

 

 

 
Figure 3.6: Isotopic enrichment of mitochondrial metabolites.  Mass isotopomer 

distributions were corrected for natural isotope abundance using the method of Fernandez et 

al. (1).  (A) M+2 mass isotopomer abundance resulting from incorporation of 
13

C into malate 

and citrate following 6 hours of incubation with 4   μM [U-
13

C16]palmitate.  Fully oxidized 

palmitate gives rise to M+2 mass isotopomers as illustrated in the accompanying diagram. (B) 

Atom percent enrichment (APE) of cells incubated with [U-
13

C5]glutamine in combination 

with palmitate and phenformin or NAC co-treatments.  APE was calculated using the formula 

0

100%
N

i

Mi i
APE

N


  , where N is the number of carbon atoms in the metabolite and Mi is 

the fractional abundance of the ith mass isotopomer.  The diagram illustrates the patterns of 

isotope incorporation derived from labeled glutamine after one turn of the CAC.  Data 

represent mean +/- S.E., n=3; * different from vehicle, p <.05.  
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Metabolic flux analysis identifies glutamine as a major fuel substrate for palmitate-induced 

mitochondrial activation  

 

To identify sources of carbon flux into the CAC, we performed further isotope labeling 

studies by total replacement of medium glutamine with [U-
13

C5]glutamine.  The average 
13

C-

enrichment of a given metabolite therefore reflects the overall contribution of glutamine carbon 

to the metabolite pool relative to other unlabeled carbon sources (e.g., glucose or FFA).  GC-MS 

analysis of 
13

C incorporation revealed that malate extracted from PA-treated cells approached 

60% enrichment compared to approximately 30% enrichment in vehicle-treated cells (Figure 

3.6B).  The addition of phenformin to PA-treated cells normalized the isotopic enrichment of 

malate to the level of control cells.  On the other hand, NAC co-supplementation had only a 

minor effect on malate enrichment.  Analysis of isotopic enrichment of glutamate revealed 

similar enrichment trends.  Taken together, these data demonstrate that palmitate treatment is 

characterized by elevated glutamine consumption and increased entry of glutamine carbon into 

the CAC relative to other carbon sources. Similar to the oxygen uptake measurements reported in 

Figure 3.3D and Figure 3.4D, phenformin co-treatment was able to reverse PA-induced 

alterations to glutamine metabolism while NAC co-treatment was not.   

Next, we applied 
13

C MFA to simultaneously calculate 12 mitochondrial fluxes and their 

associated 95% confidence intervals by combining mass spectrometric measurements of 
13

C 

labeling with the previously measured oxygen consumption rates (Figure 3.7A).  H4IIEC3 cells 

treated with PA alone exhibited higher glutamine consumption, higher malic enzyme flux, and 

higher citrate synthase flux relative to vehicle-treated cells.  Phenformin co-treatment effectively 

reduced most mitochondrial fluxes, including glutamine uptake and ETC activity.  Cells co-

treated with NAC and PA exhibited no reduction in mitochondrial metabolic fluxes, suggesting 

that the palmitate-induced metabolic alterations were not a consequence of elevated ROS and 
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apoptosis initiation but instead were the result of upstream events in the lipotoxicity cascade that 

enhanced mitochondrial metabolic pathways.   

 

 

 

Based on our 
13

C MFA calculations, we determined the difference between glycolytic 

pyruvate production and lactate excretion (Figure 3.7 ).  We designate this difference as ‘net 

glycolysis’, since it represents the net amount of glycolytic carbon that enters the CAC for 

oxidation.  If this value is positive, there is net contribution of glucose carbon to the 

mitochondrial metabolic pool.  If negative, non-glucose carbon derived from the CAC is 

contributing to lactate production.  For vehicle-treated cells, the net glycolytic rate was positive 

since more glucose carbon entered the pyruvate node than was excreted as lactate.  Cells treated 

with PA, however, were characterized by a negative net glycolytic rate since glutamine entry to 

the CAC was elevated relative to glucose.  Supplementing PA-treated cells with phenformin, but 

 
Figure 3.7: 

13
C flux analysis of mitochondrial metabolism.  Fluxes were calculated as 

described in the Methods section and further detailed in the Supplementary Materials.  (A) 

Major CAC and anaplerotic fluxes of cells treated with BSA (Vehicle) or palmitate (PA) with 

and without NAC or phenformin (PHEN) co-treatments. Abbreviations: ADH, alpha-

ketoglutarate dehydrogenase; CS, citrate synthase; GLN, glutamine uptake; ME, malic 

enzyme; PC, pyruvate carboxylase.  ( ) ‘Net glycolysis’ rate defined as the difference 

between glycolytic pyruvate production and lactate excretion. Error bars indicate 95% 

confidence intervals; * different from vehicle, p <.05.   
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not NAC, effectively reversed this phenotype.  Complete flux maps of all four treatments are 

shown in Figure 3.8.   

 

 

 
Figure 3.8: Comparison of H4IIEC3 flux maps under various treatments examined in 

this study.  Arrows are weighted according to flux values shown (pmol/million cells/s). (A) 

Vehicle-treated cells, (B) palmitate (PA) treated cells, (C) palmitate and phenformin (PA + 

PHEN) co-treated cells, (D) palmitate and NAC (PA + NAC) co-treated cells. Abbreviations: 

AcCoA, acetyl-CoA; AKG, alpha-ketoglutarate; Cit, citrate; Fum, fumarate; Glc, glucose; 

Glu, glutamate; Gln, glutamine; Lac, lactate; Mal, malate; Net Glyc, net glycolysis; Pyr, 

pyruvate; Suc, succinate. 
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Discussion 

Understanding the molecular factors that control hepatic lipotoxicity is a critical step 

toward developing improved strategies to prevent and treat NAFLD and NASH. A reported 

feature of palmitate-induced lipotoxicity is increased oxidative stress due to intracellular ROS 

accumulation, which precedes the onset of apoptosis as indicated by DNA laddering, induction 

of caspases 3 and 7, and cytochrome C release (10,12,15,22,30).  However, the role of ROS in 

stimulating lipoapoptosis appears to be cell-type dependent.  For example, ROS accumulation is 

a critical event leading to apoptosis of palmitate-treated CHO cells (31), while palmitate-treated 

neonatal cardiomyocytes undergo apoptosis independently of oxidative stress (32).  In our 

experiments, we measured a burst of ROS at approximately 6 hours following palmitate 

administration, which was 25-50% higher than cells treated with vehicle (BSA) alone. It has 

been shown previously in the H4IIEC3 cell line that similar increases in ROS can activate JNK 

stress pathways, which was sufficient to negatively affect insulin signaling (9). We found that 

NAC co-treatment effectively normalized PA-induced ROS accumulation, significantly reduced 

caspase activation, and improved long-term cell viability, indicating that apoptosis initiation is 

dependent on ROS accumulation in H4IIEC3 cells. 

Healthy cells continually produce ROS during mitochondrial oxidative phosphorylation 

and rely on their enzymatic machinery to manage ROS levels, thereby preventing toxic side 

effects.  Elevated ROS can therefore occur due to either increased oxidative metabolism or 

deficient antioxidant defenses.  To quantify rates of mitochondrial metabolism in palmitate-

treated H4IIEC3 cells, we applied 
13

C MFA based on [U-
13

C5]glutamine tracing combined with 

measurements of oxygen consumption flux.  Since mitochondria require oxygen to carry out 
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oxidative phosphorylation, increased oxygen consumption is a direct measure of increased 

mitochondrial metabolism.  Palmitate-treated cells exhibited a 2-fold increase in oxygen 

consumption rate and in most mitochondrial fluxes prior to ROS accumulation. However, NAC 

co-treatment did not affect palmitate-induced metabolic alterations, indicating that neither 

elevated ROS nor downstream apoptotic events contributed to mitochondrial activation. Instead, 

elevated mitochondrial metabolism appears to be an inherent consequence of palmitate overload 

that is independent of subsequent ROS accumulation and apoptosis initiation.  

Next, we sought to determine whether accelerated mitochondrial metabolism is required 

for palmitate-induced ROS accumulation and apoptosis, or whether these events are primarily 

attributable to other causes such as failure of antioxidant defenses or activation of NADPH 

oxidases.  To address this question, we employed the complex I antagonist phenformin to 

directly inhibit mitochondrial metabolism.  Phenformin is a lipophilic derivative of the type-2 

diabetes drug metformin, which shares the same mechanism of action (33,34).  Phenformin co-

treatment reduced both ROS accumulation and oxygen uptake in PA-treated H4IIEC3 cells and 

normalized mitochondrial metabolic fluxes to levels characteristic of vehicle-treated cells.  

Similar to NAC treatment, this reduction in mitochondria-derived ROS coincided with increased 

cell viability and decreased caspase activation.  Therefore, elevated mitochondrial metabolism is 

required for ROS accumulation and caspase activation in our model of palmitate lipotoxicity. 

Increased fatty acid beta-oxidation has been proposed as the primary fuel source 

responsible for lipotoxic ROS generation both in vivo (2,3) and in the H4IIEC3 cell line (9).  In 

our experiments with the same cell line, however, adding the CPT-1 inhibitor etomoxir to 

palmitate-treated H4IIEC3 cells had no effect on ROS accumulation or cell viability.  These 

results reveal a novel facet of lipotoxicity in our system: mitochondria-derived ROS 
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accumulation is independent of fatty acid beta-oxidation.  We found little isotopic enrichment of 

CAC intermediates when H4IIEC3 cells were fed [U-
13

C16]palmitate, indicating that exogenous 

fatty acid was not being fully oxidized to CO2. To further investigate the fuel source driving 

palmitate-induced mitochondrial activation, we relied on 
13

C MFA to map the flow of carbon 

entering the CAC from the major non-lipid substrates glucose and glutamine. We found that 

glutamine provided the primary fuel for elevated mitochondrial metabolism in the presence of 

palmitate, rather than fatty acid beta-oxidation, and that glutamine consumption could be reduced 

through co-treatment with phenformin but not NAC. These results demonstrate that ROS 

accumulation is a direct consequence of mitochondrial activation and can be reversed by 

inhibiting oxidative phosphorylation, which concomitantly suppresses entry of glutamine carbon 

into the CAC. 

Our 
13

C MFA results match well with previous in vivo 
2
H/

13
C NMR studies of NAFLD 

patients (3) and HFD fed mice (2), both of which reported an approximate 2-fold increase in 

CAC flux. This was associated with increased oxidative damage in livers of HFD fed mice (2). 

The authors hypothesized that increased beta-oxidation was fueling the observed enhancement in 

CAC flux. However, our in vitro observations supply an alternative hypothesis, which is that 

oxidation of non-lipid substrates can also contribute substantially to elevated CAC flux in 

hepatic lipotoxicity. It should be noted, however, that the in vivo flux studies were performed 

under fasting (i.e., gluconeogenic) conditions, whereas the conditions of our study were 

representative of a fed (i.e., glycolytic) state. Therefore, it is difficult to make direct quantitative 

comparisons between our data and those obtained from the prior in vivo studies.  

Our findings suggest several intriguing questions for further study into the causes and 

consequences of mitochondrial dysregulation under conditions of FFA lipotoxicity. First, if the 
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exogenous palmitate load does not directly fuel elevated CAC flux, what other effects of 

palmitate overexposure might lead to activation of mitochondrial oxidative metabolism?  One 

possible hypothesis is that disruption of normal lipid metabolic pathways may lead to (i) 

production of lipid-derived signaling molecules or (ii) alteration of intracellular membrane 

homeostasis that subsequently activates mitochondrial metabolism. This may also involve 

activation of signaling proteins such as peroxisome proliferator-activated receptors (PPARs) that 

respond directly to lipid intermediates and can regulate expression of mitochondrial proteins. 

Although our study provides a detailed picture of metabolic flux rewiring in response to FFA 

treatments, it does not address the upstream cell signaling and transcriptional regulatory 

mechanisms that may play a role in mediating the observed metabolic alterations. Second, can 

direct inhibition of glutamine anaplerosis reverse the lipotoxic metabolic phenotype or will 

hepatic cells shift to other available carbon sources to maintain elevated CAC flux?  Further 

investigation of both the upstream and downstream molecular events that control palmitate-

induced mitochondrial activation in hepatic cells is clearly an important next step.  

 In summary, we have applied oxygen uptake measurements and 
13

C MFA to elucidate a 

critical role for mitochondrial dysregulation in mediating palmitate lipotoxicity of H4IIEC3 cells.  

We report that a) palmitate-induced metabolic dysregulation is independent of oxidative damage 

and apoptosis initiation, b) apoptosis is dependent on palmitate-induced metabolic alterations 

leading to elevated ROS accumulation, and c) glutamine, not fatty acid beta-oxidation, provides 

the carbon fuel for enhanced CAC flux in response to a palmitate load.  Our model also 

highlights important differences between the protective effects of phenformin and NAC, both of 

which have direct in vivo relevance.  Studies using non-diabetic methionine- and choline-

deficient mouse models of NASH demonstrate that metformin has the potential to reduce 
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inflammation after induction of liver injury (35).  Additionally, NAC supplementation of  HFD 

fed Sprague-Dawley rats successfully prevented the appearance of many markers of elevated 

oxidative stress such as peroxidized lipid species (36).  However, this study reported that NAC 

did not reverse potential upstream activators of liver dysfunction such as steatosis and only 

partially restored glutathione levels.  Clinically, the use of antioxidants as a treatment for NASH 

has met with varying degrees of success.  For example, the antioxidant vitamin E has been 

explored as a potential therapy for persons with NASH.  Treatment with vitamin E resulted in 

reduced liver injury in adults assessed by a reduction in serum alanine and aspartate 

aminotransferase levels but did not improve fibrosis (37).  Interestingly, vitamin E trials in 

children with NASH report no improvements in alanine aminotransferase levels as a primary 

marker of disease but had improved NASH scores (38).  These prior in vivo studies highlight 

how antioxidants can treat some but not all symptoms of NASH, suggesting they do not fully 

restore normal redox homeostasis or block other upstream or parallel disease pathways.  

Improved understanding of the molecular determinants of lipotoxicity is therefore likely to 

suggest novel nutritional and/or pharmacologic interventions to combat the effects of NAFLD 

and to prevent its progression toward NASH. 
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Appendix 

 

 
 

 

 
Figure 3A.1:  Increasing concentrations of palmitate increases cell death in H4IIEC3 

hepatic cells.  H4IIEC3 rat hepatic cells were treated with the indicated concentrations of 

palmitate for 24 hours and cell toxicity was measured by PI fluorescence.  4   μM palmitate 

doubled PI fluorescence after 24 hours.  Data represent mean +/- S.E., n=8 for fluorescence 

assays; *, different from vehicle, p <.05. 
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Figure 3A.2:  Vitamin E antioxidant supplement prevents lipotoxic cell death.  (A) The 

antioxidant Vitamin E (Vit E, 1 mM) to palmitate-treated  (PA, 4   μM) or  SA-treated  

(vehicle, 8   μM) H4IIEC3 cells and (A) Caspase 3   activity was measured after 12 hours. 

(B) 24-hour cell toxicity was measured by propidium iodide.  Vitamin E co-treatment 

significantly blunts these markers of lipotoxicity. Data represent mean +/- S.E., n=8 for the 

toxicity assay; * different from vehicle, p <.05.   
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Figure 3A.3:  Rotenone addition to palmitate-treated cells reduces cell death.  H4IIEC3 

cells were co-treated with 1   nM rotenone (ROT) and either 4   μM palmitate (PA) or 800 

μM  SA  (vehicle) to examine the role of mitochondrial metabolism in ROS accumulation 

and apoptosis.  Toxicity 24-hours post-treatment was assessed using propidium iodide.  Data 

represent mean +/- S.E., n=4 for the toxicity assay; * different from vehicle, p <.05. 
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Metabolic Flux Analysis (MFA) reaction network and modeling assumptions 

In order to calculate intracellular fluxes we used the reaction network listed in Table A1.  Our 

assumptions were as follows: 

1) Removal of metabolites for biomass synthesis was negligible due to slow growth of cells. 

2) The measured labeling was at isotopic steady state.   

3) Labeled CO2 produced by CAC cycle fluxes was not reincorporated.   

4) To constrain the model using oxygen consumption flux, only NADH-producing reactions 

associated with the CAC cycle were considered.  This approach constrains mitochondrial 

ETC activity to CAC cycle fluxes.   

5) ATP citrate lyase activity was assumed to be negligible since the cells were in the 

presence of excess lipid and cell growth was assumed to be negligible.   

6) Major routes of carbon entry were glucose and glutamine. Major routes of carbon exit 

were complete oxidation to CO2 and lactate excretion.     

7) Lastly, we have included a G dilution parameter to account for lack of isotopic steady 

state in the aspartate pool. The G parameter represents the fraction of the aspartate pool 

that had been synthesized in the presence of the tracer (39).   

 

Our model uses oxygen uptake measurements in combination with [U-
13

C5]glutamine isotope 

labeling measurements to estimate CAC cycle fluxes.  Using oxygen consumption to constrain 

CAC cycle flux is advantageous because it provides a direct measure of oxidative metabolism.  

MFA methods that rely solely on carbon balancing to estimate CAC cycle flux are susceptible to 

errors if reactions are left out of the model (40,41).  Detailed MFA results can be found in 

Figures A3-6 and Tables A3-6 along with the best-fit sum-of-squared residuals (SSR) and the 
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degrees of freedom (DOF), which characterize the goodness-of-fit for each experiment. 

Exchange fluxes are defined as      
       

     
     

          
, where      is a reference (citrate 

synthase) flux value (42).    
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Table 3A.1: Reactions and atom transitions for metabolic flux analysis of H4IIEC3 rat 

hepatomas. List of metabolite abbreviations can be found below. Dot suffixes denote specific 

sub-pools of metabolite: .x, extracellular; .t, tracer; .d, dilution.   

Pyruvate Metabolism Reaction Name 

Glucose (abcdef)  Pyr (abc) + Pyr (fed) PK 

Pyr (abc)  Lac (abc) LDH 

Pyr (abc) + CO2 (d)  Mal (abcd) PC 

Mal (abcd)  Pyr (abc) + CO2 (d) ME 

Pyr (abc)  AcCoA (bc) + CO2 (a) + NADH PDH 

CAC Cycle Metabolism  

AcCoA (ab) + Mal (cdef)  Cit (fedbac) + NADH CS 

Cit (abcdef)  Akg (abcde) + CO2 (f) + NADH IDH 

Akg (abcde)  Suc (½ abcd + ½ dcba) + CO2 (a) 

+ NADH 

ADH 

Suc (½ abcd + ½ dcba)  Fum (½ abcd + ½ dcba) SDH 

Fum (½ abcd + ½ dcba)  Mal (abcd) FDH 

Glutamine anaplerosis  

Gln.x (abcde)  Gln (abcde) Gln uptake 

Gln (abcde)  Glu (abcde) GLN 

Glu (abcde)  Akg (abcde) GDH 

Net Glycolysis  

Difference between PK and LDH  

Oxygen Consumption  

2
.
NADH + O2  Sink  

Dilution   

Asp.d (abcd)  Asp (abcd) Asp G parameter 

    

List of abbreviations 
AcCoA, acetyl-CoA; Akg, alpha-ketoglutarate; Ala, alanine; Asp, aspartate; Cit, citrate; 

Fum, fumarate; Gln, glutamine; Glu, glutamate; Lac, lactate; Mal, malate; Pyr, pyruvate; Suc, 

succinate; ADH, alpha-ketoglutarate dehydrogenase; CS, citrate synthase, FDH, fumarate 

dehydrogenase; GDH, glutamate dehydrogenase;  GLN, glutaminase;IDH, isocitrate 

dehydrogenase; LDH, lactate dehydrogenase; ME, malic enzyme; PC, pyruvate carboxylase; 

PDH, pyruvate dehydrogenase; PK, pyruvate kinase; SDH, succinate dehydrogenase.  
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Table 3A.2: Measured GC-MS ions used for flux analysis.  Standard error (SEM) is 

representative of the error between biological replicates (n=3). 
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Table 3A.3 Calculated absolute flux parameters and 95% confidence intervals for 

untreated cells. Net flux units are pmol/million cells/s. Exchange fluxes and dilution parameters 

are scaled from 0 to 100%. SSR = 62.0 (32 DOF). 

 

Parameter Value 95% Confidence Interval 

Net Flux    

PK 32.2 [23.4, 41.7] 

PDH 14.5 [10.6, 18.2] 

CS 14.5 [10.6, 18.2] 

IDH 14.5 [10.6, 18.2] 

GLN 10.4 [7.6, 13.2] 

GDH 10.4 [7.6, 13.2] 

ADH 24.9 [18.3, 31.4] 

SDH 24.9 [18.3, 31.4] 

FDH 24.9 [18.3, 31.4] 

ME 38.9 [28.1, 50.3] 

PC 28.5 [20.4, 37.5] 

LDH 60.3 [43.6, 78.5] 

O2 Consumption 34.1 [25.1, 43.0] 

Net Glycolysis     

PK  LDH 4.0 [2.9, 5.7] 

Exchange Flux    

IDH 0 [0, 100] 

SDH 20 [0, 100] 

FDH 100 [60.1, 100] 

GDH 100 [92.5, 100] 

Dilution    

Asp G Parameter 85.5 [84.4, 86.6] 
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Figure 3A.4:  Simulated and measured mass isotopomer distributions for vehicle-treated cells.  

Simulated distributions are shown for the best-fit flux estimates.  Data are corrected for natural 

isotope abundance.   
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Table 3A.4: Calculated absolute flux parameters and 95% confidence intervals for 

palmitate treated cells. Net flux units are pmol/million cells/s. Exchange fluxes and dilution 

parameters are scaled from 0 to 100%. SSR = 40 (35 DOF). 

Parameter Value 95% Confidence Interval 

Net Flux    

PK 64.5 [52.9. 78.8] 

PDH 26.6 [22.5, 30.7] 

CS 26.6 [22.5, 30.7] 

IDH 26.6 [22.5, 30.7] 

GLN 36.3 [30.1, 43] 

GDH 36.3 [30.1, 43] 

ADH 62.9 [53.2, 72.8] 

SDH 62.9 [53.2, 72.8] 

FDH 62.9 [53.2, 72.8] 

ME 61.9 [50.9, 74.5] 

PC 25.7 [20.3, 32.1] 

LDH 139.6 [112.4, 171.4] 

O2 Consumption 71.3 [60.6, 82.1] 

Net Glycolysis    

PK  LDH -9.6 [-14.6, -5.6] 

Exchange Flux    

IDH 8.9 [0, 100] 

SDH 70.3 [0, 100] 

FDH 100 [0, 100] 

GDH 94.7 [87.2, 100] 

Dilution    

Asp G Parameter 78.5 [77.7, 79.0] 
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Figure 3A.5:  Simulated and measured mass isotopomer distributions for palmitate-treated cells.  

Simulated distributions are shown for the best-fit flux estimates.  Data are corrected for natural 

isotope abundance.   
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Table 3A.5: Calculated absolute flux parameters and 95% confidence intervals for 

palmitate and phenformin co-treated cells. Net flux units are pmol/million cells/s. Exchange 

fluxes and dilution parameters are scaled from 0 to 100%. SSR = 68.4 (35 DOF). 
 

 

Parameter Value 95% Confidence Interval 

Net Flux    

PK 40.8 [30.3, 51.6] 

PDH 14.2 [10.8, 17.5] 

CS 14.2 [10.8, 17.5] 

IDH 14.2 [10.8, 17.5] 

GLN 11.5 [8.6, 14.2] 

GDH 11.5 [8.6, 14.2] 

ADH 25.6 [19.5, 31.6] 

SDH 25.6 [19.5, 31.6] 

FDH 25.6 [19.5, 31.6] 

ME 39.1 [29.1, 49.1] 

PC 27.6 [20.3, 35.1] 

LDH 79.0 [58.2, 100.1] 

O2 Consumption 34.0 [26.0, 42.0] 

Net Glycolysis    

PK  LDH 2.7 [1.9,  4.5] 

Exchange Flux    

IDH 31.1 [0, 100] 

SDH 1.8 [0, 100] 

FDH 100 [66.3, 100] 

GDH 100 [92.1, 100] 

Dilution    

Asp G Parameter 86.4 [85.4, 87.3] 
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Figure 3.A6:  Simulated and measured mass isotopomer distributions for palmitate and 

phenformin co-treated cells.  Simulated distributions are shown for the best-fit flux estimates.  

Data are corrected for natural isotope abundance. 
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Table 3A.6: Calculated absolute flux parameters and 95% confidence intervals for 

palmitate and N-acetyl cysteine co-treated cells. Net flux units are pmol/million cells/s. 

Exchange fluxes and dilution parameters are scaled from 0 to 100%. SSR = 63.5 (34 DOF). 

 

Parameter Value 95% Confidence Interval 

Net Flux    

PK 99.4 [73.9, 126.5] 

PDH 25.3 [19.0, 31.6] 

CS 25.3 [19.0, 31.6] 

IDH 25.3 [19.0, 31.6] 

GLN 38.8 [29.0, 48.6] 

GDH 38.8 [29.0, 48.6] 

ADH 64.1 [48.2, 80.0] 

SDH 64.1 [48.2, 80.0] 

FDH 64.1 [48.2, 80.0] 

ME 84.6 [63.3, 106.3] 

PC 45.8 [34.1, 57.9] 

LDH 212.3 [157.8, 270.2] 

O2 Consumption 70.0 [52.7, 87.4] 

Net Glycolysis    

PK  LDH -13.4 [-17.7 -9.7] 

Exchange Flux    

IDH 4.6 [0, 100] 

SDH 18.3 [0, 100] 

FDH 91.1 [0, 100] 

GDH 100 [96.5, 100] 

Dilution    

Asp G Parameter 79.8 [78.3, 79.9] 

    

    

 

  



79 
 

 
Figure 3A.7:  Simulated and measured mass isotopomer distributions for palmitate and N-acetyl 

cysteine co-treated cells.  Simulated distributions are shown for the best-fit flux estimates.  Data 

are corrected for natural isotope abundance.  
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CHAPTER 4 

 

ER CALCIUM RELEASE PROMOTES MITOCHONDRIAL DYSFUNCTION AND 

HEPATIC CELL LIPOTOXICITY IN RESPONSE TO PALMITATE OVERLOAD 

 

 

 

Abstract 

Elevations in palmitate induce hepatic cell dysfunction characterized by enhanced 

apoptosis, depleted ER calcium stores, oxidative stress, and altered citric acid cycle (CAC) 

metabolism; however, the mechanism of how this occurs is not well understood.  We 

hypothesize that elevated saturated fatty acids such as palmitate disrupt intracellular calcium 

homeostasis resulting in a net flux of calcium from the ER to mitochondria, which activates 

aberrant oxidative metabolism and oxidative stress.  We treated primary hepatocytes and 

H4IIEC3 cells with fatty acids and calcium chelators to identify the roles of intracellular calcium 

flux in lipotoxicity.  We then applied 
13

C metabolic flux analysis (MFA) to determine the impact 

of calcium in promoting palmitate-stimulated mitochondrial alterations.  We found that elevated 

palmitate enhanced oxygen consumption and glutamate anaplerosis in hepatic cells.  Co-

treatment with the calcium-specific chelator BAPTA resulted in a suppression of ROS 

accumulation, apoptosis markers, and oxygen consumption.  Additionally, 
13

C MFA revealed 

that BAPTA co-treated cells had reduced CAC fluxes compared to cells treated with palmitate 

alone.  Our results suggest that SFA-induced lipoapoptosis in hepatic cells is dependent on 

calcium-stimulated mitochondrial activation and ROS accumulation.   
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Introduction 

The obese and steatotic liver is marked by elevated fatty acids, ER stress, and metabolic 

alterations that give rise to hepatocyte dysfunction (1-5).  Non-alcoholic fatty liver disease 

(NAFLD) is a chronic condition resulting from excess lipid accumulation, which affects up to 

30% of the U.S. population and is the leading cause of referrals to hepatology clinics (1,6).  

Although simple steatosis does not always lead to complications, around 10% of NAFLD 

patients are at increased risk of developing more serious liver injuries such as nonalcoholic 

steatohepatitis  (NASH) and hepatocellular carcinoma (8).  Free fatty acid (FFA) levels are 

present in higher concentrations in the plasma of these individuals, suggesting that in vivo 

alterations in FFA metabolism are linked to corresponding changes in disease severity (9,10).   

Systematic hepatic dysfunction induced by obesity ranges from oxidative stress, 

dysresgulated metabolism, ER stress, and abnormally elevated apoptosis (11).  In vitro 

experiments have demonstrated that saturated fatty acids (SFAs), but not monounsaturated fatty 

acids (MUFAs), are potent inducers of ER stress, reactive oxygen species (ROS) accumulation, 

and apoptosis in hepatic cells (5,12-17).  However, a mechanistic explanation for the differing 

lipotoxic effects of SFAs and MUFAs is currently lacking. It has been shown that markers of ER 

stress such as CHOP/GADD135 formation and depletion of ER calcium stores appear soon after 

cells are treated with long-chain SFAs, but not MUFAs (18).  ER calcium is depleted shortly 

after SFA exposure, suggesting a mechanism of SFA toxicity that involves rapid disruption of 

ER homeostasis (19-21).  The exact role of this calcium efflux in mediating lipotoxicity is 

unknown, although intracellular calcium levels impact many critical aspects of cell function.  

Calcium is integral in two important aspects of cell biology: oxidative metabolism and apoptosis.  

Calcium ions act as essential cofactors by activating enzymes involved in the citric acid cycle 
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(CAC), particularly dehydrogenases and transporters involved in the malate-aspartate redox 

shuttle (22-25).  Calcium fluxes also initiate mitochondrial apoptotic pathways.  Pro- and anti- 

apoptotic proteins of the Bax, Bcl, and Bim families have been shown to regulate the net 

movement of calcium into and out of the mitochondria (26-28).    

Altered energy metabolism is an additional characteristic of both human and mouse fatty 

livers that has been observed in both in vitro and in vivo studies of lipotoxicity.  In vivo flux 

analysis using 
2
H/

13
C NMR reported a ~2-fold increase in CAC flux in NAFLD patients 

compared to patients with normal intrahepatic triglyceride content (29).  Complementary studies 

performed in high-fat diet (HFD) fed mice revealed similar increases in CAC activity that were 

associated with elevated markers of oxidative stress (30). The authors hypothesized that CAC 

activation was required to meet energetic demands in the face of reduced respiratory efficiency 

resulting from mitochondrial oxidative damage.  However, prior in vitro studies of hepatic cells 

using 
13

C metabolic flux analysis (MFA) have shown that FFAs can enhance mitochondrial 

metabolism independently of beta-oxidation through a mechanism that precedes the onset of 

oxidative damage (12,31).  These studies revealed that palmitate drastically enhanced CAC 

fluxes relative to glycolytic fluxes in H4IIEC3 cells within 6h of treatment, but this increase in 

mitochondrial metabolism was largely fueled by increased glutamine oxidation by palmitate-

treated cells. Consistent with the in vivo mouse studies, these changes in CAC fluxes coincided 

with enhanced ROS accumulation, suggesting that altered mitochondrial metabolism may be the 

cause, rather than a consequence, of enhanced oxidative stress observed in obesity and NAFLD.  

To confirm this, we performed experiments using antioxidants and mitochondrial inhibitors to 

demonstrate that these mitochondrial alterations were both critical for cellular dysfunction and 

did not require prior ROS accumulation (31).  Although these in vivo and in vitro studies present 
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a consistent picture of the metabolic response to hepatic FFA overload, they do not explain the 

mechanism by which mitochondrial metabolism is activated by palmitate treatment.   

Because of the rapid appearance of ER stress markers in response to palmitate treatment, 

we hypothesized that disruption of ER homeostasis may be the initial insult that is responsible 

for subsequent changes in mitochondrial function.  We hypothesized that elevated levels of the 

SFA palmitate would compromise the ability of the ER to maintain calcium stores, resulting in 

net efflux of ER calcium that would enhance CAC flux, stimulate oxidative metabolism and 

ROS production, and ultimately lead to cellular dysfunction and apoptosis.  To test this, we 

treated primary rat hepatocytes and immortalized H4IIEC3 hepatic cells with lipotoxic doses of 

palmitate, either with or without the intracellular calcium chelator BAPTA-AM.  Palmitate-

treated cells exhibited decreased ER calcium, elevated mitochondrial calcium, reduced 

mitochondrial potential, and enhanced oxygen consumption, all of which preceded the onset of 

apoptotic cell death.   BAPTA co-treatment abrogated these lipotoxic phenotypes.  Further 
13

C 

MFA experiments revealed that palmitate-treated cells exhibited enhanced CAC flux and 

increased mitochondrial glutamine metabolism that were associated with ROS accumulation.  

BAPTA co-treatment also suppressed glutamine-dependent CAC activation and reduced 

oxidative stress.  These results offer a mechanistic explanation for the close association between 

ER stress and ROS accumulation reported in prior lipotoxicity studies, in which calcium serves 

as a major linchpin connecting changes in ER homeostasis to the onset of mitochondrial 

dysfunction.   
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Materials and Methods  

 

Materials- 

The fluorescent dyes 2',  ’-dichlorodihydrofluorescein diacetate (H2DCFDA), propidium 

iodide (PI), Fura-2 AM, and JC-1 were purchased from Invitrogen (Carlsbad, CA, USA).  The 

calcium-specific chelator BAPTA-AM was also obtained from Invitrogen.  The fatty acids 

palmitate and oleate, bovine serum albumin ( SA), and low glucose Dulbecco’s modified 

Eagle’s medium (DMEM) were purchased from Sigma Aldrich (St. Louis, MO, USA).  Primary 

hepatocytes were cultured on plates coated with Collagen I (Rat Tail) from BD Biosciences (San 

Jose, CA).   

 

Primary rat hepatocyte isolation-  

Primary hepatocytes were isolated from male Sprague-Dawley rats as described 

previously (32).  The portal vein and inferior vena cava of anesthetized animals were cannulated 

and perfused with 37C oxygenated perfusion media, pH 7.4, containing 118 mM NaCl, 5.9 mM 

KCl, 1.2 mM MgSO4, 1.2 mM NaH2PO4, 25 mM NaHCO3, 0.2 mM EGTA and 5 mM glucose.  

After 15 minutes, the liver was excised from the animal and perfused with liver digest medium 

(Invitrogen, Grand Island NY).  Then the cells were dispersed, washed four times, and suspended 

in attachment media, which consisted of 20 mM glucose DMEM supplemented with 30 mg/L 

proline, 100 mg/L ornithine, 0.544 mg/L ZnCl2, 0.75 mg/L ZnSO4 7H2O, 0.2 mg/L CuSO4 

5H2O, 0.25 mg/L MnSO4, 2 g/L bovine serum albumin (Sigma), 5 nM insulin, 100 nM 

dexamethasone, 100,000 U penicillin, 100,000 U streptomycin, and 2 mM glutamine.  After four 

hours of incubation in the attachment media, the primary hepatocytes were switched to a 
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maintenance media identical to the attachment media except it had a concentration of 1 nM 

(instead of 5 nM) insulin.   

 

H4IIEC3 cell culture-  

The H4IIEC3 rat hepatoma cell line was purchased from ATCC (American Type Culture 

Collection, Manassas, VA, USA).  The cells were cultured in 5 mM glucose DMEM 

supplemented with 2 mM glutamine, 10% FBS, and 1% penicillin/streptomycin antibiotic 

solution.   

 

Fatty acid preparation-  

FFA stock solutions were prepared by coupling free fatty acids with BSA.  First, 

palmitate or oleate was dissolved in pure ethanol at a concentration of 195 mM so that the final 

concentration of ethanol in our FFA stock solutions did not exceed 1.5  by volume.  This 

solution was then added to a prewarmed 1   w w  SA solution (3   C) to achieve a final FFA 

concentration of 3 mM, and this solution was allowed to incubate in a water bath for an 

additional 10 minutes.  The final ratio of FFA to BSA was 2:1. All vehicle treatments were 

prepared using stocks of 10% w/w BSA with an equivalent volume of ethanol added to match the 

concentration in FFA stocks.  The final concentration of ethanol in all experimental treatments 

was less than 0.2% by volume. 

 

ROS accumulation-  

Levels of intracellular ROS were assessed using the radical-sensitive dye H2DCFDA, 

which is oxidized to the fluorescent 2, 7-dicholorofluorescein (DCF) upon exposure to ROS.  
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Following treatment with indicated reagents, the cells were washed with Hank’s  alanced Saline 

Solution (H SS) twice.  Dye was added at a concentration of 1  μM H2DCFDA and incubated 

for one hour at 37ºC in darkness.  Fluorescence was measured using the excitation/emission 

wavelengths 485/530 nm with a Biotek FL600 microplate reader.   

 

Toxicity assays-  

Propidium iodide (PI), an intercalating dye, was used to measure cell death induced by 

elevated fatty acids using excitation and emission wavelengths of 530 nm and 645 nm.  

Fluorescence was measured using the Biotek FL600 microplate reader.   

 

Apoptosis measurements-  

To monitor cellular apoptosis as a function of caspase 3 and 7 activities, we utilized the 

commercial Apo-ONE Homogenous Caspase 3/7 Assay kit that combines a lysis buffer with Z-

DEVD-R110, a caspase-3/7 specific substrate.  Upon exposure to active caspases, the DEVD 

peptide is cleaved and the molecule becomes fluorescent (ex/em, 485/530 nm).   

 

Oxygen consumption flux-  

To determine overall mitochondrial activity, we measured the direct oxygen uptake flux 

of cells treated with fatty acids, vehicle, or inhibitors using the Oroboros Oxygraph-2K.  This 

instrument uses two separate chambers with individual oxygen probes to detect real-time 

changes in media oxygen concentration at a constant temperature of 32ºC and stirring speed of 

750 rpm.  Briefly, H4IIEC3 hepatic cells were cultured on 10-cm dishes until 90% confluent.  

Cells were then treated with designated fatty acids or inhibitors for 3 hours, trypsinized, counted, 
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and then re-suspended in the same media for uptake measurements.  Two million cells were 

placed in the Oroboros chamber to measure oxygen consumption.   

 

Mitochondrial potential-  

JC-1 is a dye which exists in a monomeric form in non-polarized mitochondria and 

fluoresces in the green (em: 530) spectrum when excited at 485 nm.   The dye accumulates in the 

mitochondria based upon the potential.  This accumulation is accompanied by formation of dye 

aggregates shifting the fluorescence to the red (em: 590 nm) spectrum when excited at 485 nm.  

Therefore red/green ratio indicates alterations in the mitochondrial potential between different 

cells and treatments.   

 

ER calcium release assays-  

To measure ER calcium levels, H4IIEC3 cells were loaded with the ratiometric, cytosolic 

calcium dye Fura-2 AM following a method developed for pancreatic islets (33).  Cells were 

cultured at 5  ,    cells per dish on Mattek imaging dishes, loaded with 3 μM Fura-2 for 30 

minutes, washed three times, and then perfused with imaging buffer containing 119 mM NaCl, 

25 mM HEPES, 4.7 mM KCl, 2.5 mM CaCl2.[(H2O)6], 1.2 mM MgSO4, 1.2 mM KH2PO4.  

Fura-2 fluorescence imaging was performed using a Nikon TE2000-U microscope at excitations 

of 34  and 38  nm every 5 seconds.  Once a baseline was established, 1 μM thapsigargin was 

perfused across the dish to prevent ER calcium reuptake, and fluorescence was measured every 5 

seconds.  The data shown are expressed in normalized fluorescence units with excitation at 

340/380 nm for 5 individual plates with 30-50 cells analyzed per plate.   
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Mitochondrial calcium-  

The mitochondrial calcium indicator Rhod-2, AM (Invitrogen) was used to assess 

mitochondrial calcium in H4IIEC3 cells.  Cells were pre-treated with indicated treatments and 

then loaded with 1  μM Rhod-2.  Cells were loaded with the dye for one hour, washed three 

times, and given fresh DMEM.  Fluorescence was measured at ex/em of 552/581 using a Biotek 

Synergy plate reader. 

 

Polar metabolite extraction and GC-MS analysis of 
13

C enrichment-  

Intracellular metabolites from H4IIEC3 rat hepatomas were extracted as previously 

described (12).  To quench cell metabolism, 1 mL of -80
o
C methanol was added to cells cultured 

on 10-cm dishes.  Cells were scraped and placed into a separate tube containing water and 

chloroform, centrifuged, and the polar phase was collected and dried for GC-MS analysis.  The 

tert-butylsilyl derivatives of the polar metabolites were generated by incubating with MBTSTFA 

+ 1% TBDMCS (Pierce).  
13

C isotopic enrichment of the derivatized sample was analyzed using 

an Agilent 6890N/5975B GC-MS equipped with a 30m DB-35ms capillary column.   

 

Metabolic flux analysis-  

13
C MFA was performed using the INCA software package (34) and a previously 

developed model of hepatic metabolism comprising glycolysis, CAC, and anaplerotic pathways 

(31).   Our experiments involved replacing the unlabeled glutamine in normal DMEM with a [U-

13
C5]glutamine isotope tracer.  When consumed by cells in culture, this tracer gives rise to 

unique 
13

C enrichment patterns in downstream metabolites that depend on the atom 

rearrangements that occur within intervening metabolic pathways.  These enrichment patterns 
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provide quantitative information on the relative fluxes through intracellular metabolic pathways.  

By minimizing the lack-of-fit between experimentally measured mass isotopomer abundances 

and computationally simulated mass isotopomer distributions, the INCA program can be used to 

calculate metabolic flux maps associated with each of our chosen treatments (35,36).  Fluxes 

were estimated a minimum of 50 times starting from random initial values to identify a global 

best-fit solution.  Once this solution was achieved, a chi-square test was used to assess the 

goodness-of-fit.  Additionally, 95% confidence intervals were calculated for all estimated 

parameters by assessing the sensitivity of the sum-of-squared residuals to parameter variations 

(37).  Comprehensive 
13

C MFA results and a detailed description of our network model are 

available in the Appendix. 

 

Statistical Analysis-  

Analysis of variance (Model I ANOVA) and Tukey-Kramer methods for multiple 

comparisons, along with Student’s t-test for pair-wise comparisons, were utilized to determine 

statistical significance amongst the experimental data.  Results are presented as +/- one standard 

error of the mean (SEM) unless otherwise indicated.   

 

Results 

 

Elevated concentrations of palmitate, but not oleate, induce cell death marked by loss of 

mitochondrial potential and apoptosis in hepatic cells  

 

Primary rat hepatocytes treated with elevated concentrations of the SFA palmitate exhibit 

cell death in a dose-dependent manner as indicated by increasing PI fluorescence (Figures 1A).  

Elevated doses of the MUFA oleate had no effect on cell viability in primary hepatocytes.  Based 
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on these results and previously published studies, we chose 4   μM palmitate as the lipotoxic 

concentration used in all further experiments (12). Similar to primary rat hepatocytes, H4IIEC3 

rat hepatoma cells also exhibited increased cell death after 24 hours of palmitate treatment 

(Figure 4.1A).  Additionally, primary hepatocyte and H4IIEC3 cells exhibited elevated caspase 

activity following 12 hours of palmitate treatment, while oleate did not induce markers of 

apoptosis (Figure 4.1B).  While both primary hepatocytes and H4IIEC3 cells exhibited 

significantly increased apoptosis in response to elevated palmitate, the effects were both more 

rapid and more pronounced in H4IIEC3 cells.   

 To determine if palmitate lipotoxicity was associated with loss of mitochondrial potential, 

primary rat hepatocytes and H4IIEC3 cells were incubated with FFA treatments for 6 hours 

followed by staining with the mitochondrial potential dye JC-1.  Both primary hepatocytes and 

H4IIEC3 cells exhibited decreased mitochondrial potential after 6 hours of palmitate treatment 

(Figure 4.1C).  While elevated palmitate decreased the mitochondrial potential of both cell types, 

the effect was more significant in hepatoma cells.  Taken together, we posit that H4IIEC3 cells 

provide a representative model of hepatocyte response to FFA overload in the context of NAFLD 

and NASH, because they recapitulate all of the qualitative features of lipotoxicity observed in 

primary rat hepatoctyes while exhibiting enhanced sensitivity to acute palmitate treatments.  
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Palmitate lipotoxicity is marked by a redistribution of intracellular calcium 

Previous studies have observed reduced ER calcium stores and increased markers of ER 

stress following palmitate treatment in primary rat hepatocytes and CHO cells (38,39).  To test if 

our lipotoxicity model exhibits the same decrease in ER luminal calcium, we assessed the 

 
Figure 4.1:  Elevated doses of palmitate, but not oleate, induce lipotoxicity in primary 

rat hepatocytes and H4IIEC3 hepatic cells.  Cells were incubated with increasing doses of 

palmitate (PA) or oleate (OA), followed by measurements of cell death and mitochondrial 

potential.  (A)  Cell death measured by PI fluorescence for primary hepatocytes and H4IIEC3 

cells treated with increasing doses of palmitate or oleate for 24 hours.  (B)  12-hour caspase 

activity measured for primary hepatocytes and H4IIEC3 hepatic cells treated with 4   μM 

palmitate.  (C)  JC-1 fluorescence for primary hepatocytes and H4IIEC3 hepatic cells treated 

with vehicle ( SA) or 4   μM palmitate (PA) for 6 hours.  JC-1 fluorescence is depicted as 

the ratio between red and green fluorescent signals.  Data represent mean +/- S.E., n=8; *, 

different from vehicle, p <.05.  All fatty acid treatments are normalized to equal volume 

vehicle (BSA) controls.   
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relative levels of ER calcium in H4IIEC3 cells treated with 4   μM palmitate for 6 hours.  

Compared to vehicle treatment, cells treated with palmitate exhibited a smaller fold change in 

Fura-2 fluorescence following thapsigargin treatment, indicating depleted ER calcium stores 

(Figure 4.2A). Additionally, we calculated the area under the curve (AUC) from the point of 

initial thapsigargin treatment to the peak of Fura-2 fluorescence to estimate the relative 

difference in total ER calcium release between vehicle- and palmitate-treated H4IIEC3 cells 

(Figure 4.2 ).  H4IIEC3 cells treated with 4   μM palmitate had a decreased AUC, confirming 

that total luminal calcium was diminished by palmitate treatment.  Next, we sought to determine 

if decreased ER calcium was associated with increased mitochondrial calcium.  After 6 hours of 

treatment with 4   μM palmitate, H4IIEC3 cells were incubated with the mitochondrial calcium 

indicator Rhod-2 AM.  Palmitate-treated cells exhibited an approximate 50% increase in Rhod-2 

fluorescence, indicating elevated mitochondrial calcium levels (Figure 4.2C).   
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ER calcium release promotes ROS overproduction, enhanced oxygen consumption, and 

apoptosis in response to a palmitate load  

 

To test whether these other lipotoxic phenotypes were dependent on the observed ER-to-

mitochondrial calcium translocation, the cell-permeable calcium chelator BAPTA-AM was 

administered to H4IIEC3 cells in both the presence and absence of palmitate treatments.  

Primary hepatocytes and H4IIEC3 hepatic cells co-treated with 4  μM  APTA and 4   μM 

 
Figure 4.2:  Lipotoxic palmitate redistributes intracellular calcium.  (A) To assess ER 

calcium, H4IIEC3 hepatic cells pre-treated with vehicle ( SA) or 4   μM palmitate (PA) for 

6 hours were then perfused with thapsigargin (1 μM) while changes in cystolic Fura-2 

fluorescence were recorded.  (B) Calculated area under curve (AUC) to peak fluorescence 

was used to quantify relative calcium load released by ER.  (C)  Relative mitochondrial 

calcium levels assessed by Rhod-2 fluorescence for H4IIEC3 hepatic cells treated with 

vehicle ( SA) or 4   μM palmitate (PA) for 6 hours.  Data represent mean + - S.E., n=5 

plates with 25-30 cells per plate for thapsigargin assays, n=6 for Rhod-2 measurements; * 

different from vehicle, p <.05. 
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palmitate exhibited decreased apoptotic markers relative to cells treated with palmitate alone 

(Figure 4.3A). The ability of BAPTA to reduce lipotoxic cell death was in agreement with 

previous reports (38).While palmitate treatment was characterized by ROS accumulation, 

reduction in mitochondrial potential, and enhanced oxygen uptake by H4IIEC3 cells, BAPTA 

co-treatment suppressed all of these palmitate-induced metabolic phenotypes (Figure 4.3B, C, 

D).  To confirm that BAPTA was rescuing cells by chelating intracellular calcium, cells were 

also treated with the calcium chelator EGTA.  Similar reductions in lipotoxicity as assessed by PI 

fluorescence were observed in cells co-treated with palmitate and EGTA (data not shown).   
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13
C flux analysis demonstrates that chelation of intracellular calcium reverses metabolic 

alterations associated with lipotoxicity   

 

Hepatic cells treated with palmitate exhibit an altered metabolic phenotype marked by 

elevated CAC flux, enhanced glutamine metabolism, and increased oxygen consumption (31).  

 
Figure 4.3:  Co-treatment with the intracellular calcium chelator BAPTA-AM reduces 

the lipotoxic effects of palmitate.  Hepatic cells were treated with either vehicle (BSA) or 

4   μM palmitate (PA) in the presence or absence of 4  μM  APTA to examine the role of 

redistributed calcium stores on apoptosis, ROS accumulation, and mitochondrial metabolism.  

(A) Caspase 3/7 activity was measured at 12 hours to assess the effect of BAPTA treatment 

on apoptosis in both primary hepatocytes and H4IIEC3 cells. (B) ROS levels at 6 hours were 

measured by DCF fluorescence in H4IIEC3 cells.  (C) Mitochondrial membrane potential at 6 

hours was assessed by JC-1 fluorescence in H4IIEC3 cells.  (D) Oxygen uptake 

measurements of BAPTA- and/or PA-treated H4IIEC3 cells.  Data represent mean +/- S.E., 

n=4 for DCF, n=3 for oxygen uptake measurements, n=8 for JC-1, caspase activity, and 

toxicity assays; * different from vehicle, p <. 5; † different from each other, p <. 5.   
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Prior work in our lab has shown that these changes are the primary cause of subsequent ROS 

accumulation and apoptosis in H4IIEC3 cells, and are not simply byproducts of the apoptosis 

cascade (31).  To examine how BAPTA affects intracellular metabolism, we performed 

experiments by replacing unlabeled glutamine in DMEM with the stable isotope tracer [U-

13
C5]glutamine.  First, we examined the 

13
C atom percent enrichment (APE) of several 

intermediate metabolites.  The APE values indicate the fractional contribution of exogenous 

glutamine to the biosynthesis of these intermediates, relative to other unlabeled sources of carbon 

(e.g., glucose).  GC-MS analysis of intracellular malate and glutamate extracted from palmitate-

treated H4IIEC3 cells revealed that their APEs approached 60% and 75%, respectively, 

compared to 30% and 55% for vehicle-treated cells (Figure 4.4).  BAPTA co-treatment reduced 

the isotopic enrichment of these metabolites back to vehicle-treated levels.  These results 

demonstrate that (a) palmitate lipotoxicity is characterized by increased glutamine conversion to 

glutamate and subsequent entry of glutamate carbon to the CAC, relative to unlabeled carbon 

sources and (b) stimulation of this anaplerotic pathway is calcium-dependent. 
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By combining 
13

C mass isotopomer measurements of malate, lactate, glutamate, and 

aspartate fragment ions derived from GC-MS with measured rates of oxygen consumption, we 

applied 
13

C MFA to calculate 12 metabolic fluxes (Figure 4.5) and their associated 95% 

confidence intervals for vehicle-treated, palmitate-treated, and palmitate + BAPTA co-treated 

H4IIEC3 cells.  Hepatic cells fed 4   μM palmitate were characterized by higher rates of 

glutamine uptake (Figure 4.6A), alpha-ketoglutarate dehydrogenase flux (Figure 4.6C), citrate 

synthase flux (Figure 4.6D), and malic enzyme flux (Figure 4.6E) in comparison to vehicle-

treated control cells.  BAPTA co-treatment led to reductions in the estimated alpha-ketoglutarate, 

malic enzyme, and glutaminase fluxes. On the other hand, similar measurements of pyruvate 

 
Figure 4.4:  Isotopic enrichment of mitochondrial metabolites. H4IICE3 hepatic cells 

were incubated with [U-
13

C5]glutamine and treated with vehicle (BSA), palmitate (PA), or PA 

+ BAPTA for 6 hours.  Intracellular metabolism was then quenched and metabolites were 

analyzed using GC-MS.  The resulting mass isotopomer distributions were corrected for 

natural isotope abundance using the method of Fernandez et al. (7).  The atom percent 

enrichment (APE) of cells was calculated using the formula
0

100%
N

i

Mi i
APE

N


  , where N 

is the number of carbon atoms in the metabolite and Mi is the fractional abundance of the ith 

mass isotopomer.  APE represents the fractional incorporation of 
13

C from the labeled isotope 

tracer (i.e., glutamine) to the measured metabolite fragment ion.  The fragment ion Mal 419 

contains all four malate carbons.  The fragment ion Glu 432 contains all five glutamate 

carbons. Data represent mean +/- S.E., n=3; * different from vehicle, p <.05. 
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carboxylase (Figure 4.6F) flux across all treatments suggest that this mode of anaplerosis was not 

sensitive to palmitate or BAPTA exposure.  Rather, the increases in CAC flux and its 

suppression by BAPTA appear to be glutamine-dependent.   

Our experiments were performed under physiological glucose concentrations and in the 

absence of glucagon or other hormones that stimulate gluconeogenesis. Therefore, cells 

exhibited glycolytic metabolism with net conversion of glucose to pyruvate. The 
13

C MFA 

calculations allowed us to determine the difference between pyruvate production by glycolysis 

and its consumption to form lactate, which we denote as ‘net glycolysis’ (Figure 4.6B).  We 

found that palmitate-treated H4IIEC3 cells were characterized by a negative net glycolytic rate, 

indicating that excess anaplerotic carbon was exported from the CAC and was excreted as 

lactate. On the other hand, BAPTA supplementation reverted palmitate-treated cells back to a 

positive net glycolytic phenotype, similar to that exhibited by vehicle-treated cells, thus 

demonstrating a suppression of palmitate-induced glutamate anaplerosis by BAPTA.    
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Figure 4.5:  Metabolic network used for 

13
C MFA.  Presented is the network model used 

for MFA.  Oxygen consumption was also included in calculations. 
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Figure 4.6:  

13
C flux analysis of mitochondrial metabolism.  We performed 

13
C MFA as 

detailed in the Methods and the Appendix. Intracellular CAC and anaplerotic fluxes were 

calculated for H4IIEC3 cells treated with vehicle (BSA), palmitate (PA), or PA + BAPTA.    

Calculated fluxes for (A) glutamine uptake, ( ) ‘Net glycolysis’ defined as the difference 

between lactate secretion and glycolytic pyruvate production, (C) alpha-ketoglutarate 

dehydrogenase, (D) citrate synthase, (E) malic enzyme, and (F) pyruvate carboxylase.  

Abbreviations: ADH, alpha-ketoglutarate dehydrogenase; CS, citrate synthase; GLN, 

glutamine uptake; ME, malic enzyme; PC, pyruvate carboxylase.  Error bars indicate 95% 

confidence intervals; * different from vehicle, p <.05.  
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Discussion 

 Oxidative stress, ER stress, and elevated CAC flux in the liver are characteristics of 

obesity, NAFLD/NASH, and hepatic lipotoxicity (3,4,12,18,40).  In the current study, we 

demonstrate that lipotoxic concentrations of the SFA palmitate are associated with the net 

redistribution of intracellular calcium from the ER to the mitochondria.  Our results demonstrate 

that blocking this calcium translocation can reverse several markers of lipotoxicity in primary rat 

hepatocytes and H4IIEC3 cells.  Experiments co-treating hepatic cells with palmitate plus the 

calcium chelator BAPTA were able to partially rescue cell death while reducing ROS 

accumulation and caspase activation.  Furthermore, our novel 
13

C MFA studies revealed that 

BAPTA prevented the acceleration of CAC metabolism and glutamate anaplerosis associated 

with palmitate treatment.  Our results suggest that altered ER calcium homeostasis provides a 

critical link between ER stress, ROS accumulation, and altered metabolic phenotypes that 

contribute to palmitate lipotoxicity.   

Perturbed ER homeostasis is one hypothesized initiator of cellular lipotoxicity (1).  

Features of ER impairment in these models include activation of the unfolded protein response 

(UPR) and decreased ER calcium stores.  However, the role of these ER stress markers in 

mediating other aspects of lipotoxicity has been unclear.  For example, CHOP is a pro-apoptotic 

protein that is expressed during prolonged periods of UPR.  While CHOP is upregulated in 

response to lipotoxic loads of palmitate, siRNA silencing of CHOP does not prevent apoptosis in 

H4IIEC3 cells (18).  Additionally, primary hepatocytes from Chop -/- mice exhibited no 

resistance to elevated palmitate concentrations in vitro.  These results confirm that palmitate 

alters ER function, but do not fully define how ER stress contributes to apoptosis and 

mitochondrial dysfunction in palmitate-treated hepatic cells.  Therefore, CHOP expression is 
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effectively a marker of lipotoxicity but is not required for apoptosis.  Although the literature 

implies that alternate products of ER stress signaling may mediate lipotoxicity, these 

intermediates have not been previously identified.   

Like CHOP expression, ER calcium homeostasis is perturbed in obesity and lipotoxic 

conditions in both hepatic and non-hepatic cells (1,20,38).  Our use of calcium chelators 

demonstrates that calcium signaling is critical for palmitate-induced apoptosis, in agreement with 

previous reports (38).  However, these previous studies did not provide a possible mechanism for 

how ER calcium release can stimulate apoptosis or promote other markers of lipotoxicity such as 

oxidative stress or mitochondrial dysfunction.  While calcium is a known contributor to the 

intrinsic apoptotic pathway (26), our experiments demonstrate a unique, direct connection 

between ER stress and metabolic derangements associated with palmitate lipotoxicity.  Our prior 

work has shown that these metabolic alterations persist even when ROS accumulation and 

apoptosis are inhibited by antioxidant co-treatments (31), thus implying that they are not simply 

a byproduct of apoptotic signaling but instead function to promote lipotoxicity. In the current 

study, we were able to prevent palmitate-induced activation of CAC flux by quenching cytosolic 

calcium levels with BAPTA co-treatment.  Consistent with our prior studies, this normalization 

of mitochondrial fluxes was associated with reductions in ROS accumulation and caspase 

activity.  Our data therefore demonstrates that alterations in ER calcium storage and trafficking 

may be an initiating event that causally precedes several downstream aspects of hepatocyte 

lipotoxicity.   

Normally, ER calcium is maintained by sarcoendoplasmic reticulum calcium ATPase 

(SERCA), which functions to pump calcium into the ER lumen from the cytosol.  The activity of 

the SERCA pump is known to be impaired in the obese liver (1) and cholesterol-loaded 
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macrophages (41).  Under normal physiological conditions, the ER membrane is highly fluid due 

to a low ratio of free cholesterol to phospholipids.  Increasing the saturation of ER membranes or 

perturbing the phosphatidylcholine/phosphatidylethanolamine (PC/PE) ratio has been shown to 

effectively limit the ability of the SERCA pump to buffer cytosolic calcium.  In fact, 

overexpressing SERCA in vivo is enough to reduce liver ER stress in obese mice, demonstrating 

that SERCA function is critical to the activation of ER stress in obesity (1).  We hypothesize that 

saturated fatty acids may be preferentially incorporated into the ER phospholipid membrane and 

thereby disrupt SERCA function by increasing the membrane saturation.  This may, in turn, lead 

to a net efflux of ER calcium that subsequently translocates to the mitochondria. As shown by 

the present study, this ER-to-mitochondrial calcium flux is responsible for promoting several 

downstream markers of palmitate lipotoxicity, including ROS accumulation, elevated CAC flux, 

glutamate anaplerosis, and caspase activation (Figure 4.7). 
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Although it has been shown that low doses of palmitate (1   μM) impair ER calcium 

through a possible ROS dependent mechanism (42), our previous studies demonstrated that the 

addition of antioxidants do not affect palmitate-induced metabolic dysfunction (31).  Combined 

with our current study, our antioxidant experiments indicate that transient increases in cytosolic 

calcium stimulate mitochondrial ROS accumulation.  Transient increases in cytosolic calcium 

due to ER release can directly impact mitochondrial metabolism through two mechanisms, both 

of which may explain the observed increases in glutamine and O2 consumption by palmitate-

treated cells.  After uptake through the mitochondrial calcium uniporter, calcium can directly 

affect the enzymatic activities of pyruvate dehydrogenase (PDH), isocitrate dehydrogenase 

(IDH), and alpha-ketoglutarate dehydrogenase (ADH).  In the case of ADH, calcium increases 

 
Figure 4.7:  Hypothetical mechanism of palmitate lipotoxicity.  Our results demonstrate 

that lipotoxic concentrations of the saturated fatty acid palmitate alter ER calcium stores and 

induce mitochondrial dysfunction characterized by elevated glutamine consumption, CAC 

flux, oxygen consumption, and ROS accumulation.  We propose that calcium efflux from ER 

directly stimulates these altered mitochondrial phenotypes leading to apoptosis.  Co-treating 

hepatic cells with the calcium chelator BAPTA both suppresses PA-induced apoptosis and the 

associated metabolic disorders, supporting our hypothesis.   
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the enzyme’s affinity for its substrate alpha-ketoglutarate (aKG), thus driving the reaction in the 

forward direction.  Activation of ADH may therefore deplete mitochondrial aKG levels and 

promote increased anaplerosis from glutamate.  Our measurement of increased mitochondrial 

calcium in palmitate-treated H4IIEC3 cells supports this potential mechanism.   

Alternatively, calcium can amplify O2 consumption without being taken up by the 

uniporter.  Gellerich et al. (24) inhibited mitochondrial calcium uptake in isolated mitochondria 

and still observed changes in mitochondrial oxygen consumption that were sensitive to 

extramitochondrial calcium levels.  Interestingly, this phenotype is also associated with increased 

glutamate metabolism.  Calcium can alter the malate-aspartate shuttle by enhancing the activity 

of the glutamate/aspartate antiporter encoded by SLC25A13 and SLC25A12.  These are given the 

common names of citrin (for liver) and aralar (for most other cells).  The malate-aspartate shuttle 

functions to transport reducing equivalents (e.g., derived from cytosolic NADH) into the 

mitochondria.  It has been shown that the respiration rate of isolated brain mitochondria can be 

affected solely by calcium and glutamate levels.  Elevated cytosolic levels of calcium could 

therefore impact mitochondrial metabolic activity by enhancing the capacity of the malate-

aspartate shuttle to transport reducing equivalents into the mitochondria, which could result in 

increased O2 consumption.   

Our 
13

C MFA studies revealed that calcium directly stimulates metabolic alterations, in 

particular to CAC and associated anaplerotic pathways, in the context of palmitate lipotoxicity.  

The results indicate that lipotoxic treatments were marked by enhanced oxidative metabolism, 

which could be abrogated by BAPTA co-treatment.  This reduction in CAC flux was dependent 

on the potential ability of BAPTA to modify glutamate anaplerosis as revealed by the reduction 

in the 
13

C enrichment of intracellular glutamate and malate of cells fed [U-
13

C5]glutamine.  
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Similarly, Noguchi et al. (12) found that glutamate supplementation enhanced palmitate-induced 

ROS accumulation and apoptosis in palmitate-treated H4IIEC3 cells, and that its effect was 

strongest of all single amino acids tested. Combined with our current observation that BAPTA 

co-treatment suppresses glutamine conversion to glutamate and the subsequent entry of 

glutamate carbon into the CAC, this finding suggests that upregulation of calcium-stimulated 

glutamine metabolism is a critical arm of hepatic lipotoxicity.   

Understanding the potential downstream effects of ER stress activation in the context of 

obesity is important to design potential therapies to prevent the progression of NAFLD toward 

NASH and other severe liver disorders.  Because of the rapid appearance of ER stress markers in 

response to palmitate treatment, we hypothesized that disruption of ER homeostasis may be the 

initial insult that is responsible for subsequent changes in mitochondrial function.  Our 

experiments outline a novel role for intracellular calcium transport in mediating hepatocyte 

lipotoxicity.  Our cell imaging and 
13

C MFA results demonstrate that net efflux of ER calcium 

activates mitochondrial metabolism, thus complementing the findings of Wei et al. (38) that 

show ER stress playing a central role in palmitate lipotoxicity. For the first time, we show that 

BAPTA improves hepatic cell viability and reduces caspase activation through the suppression 

of mitochondrial metabolism and ROS accumulation in the context of a lipotoxic fatty acid load.  

Specifically, BAPTA co-treatment blunted both ROS accumulation and caspase activation at 6- 

and 12-hour time points.  Our unique 
13

C MFA approach demonstrates that BAPTA suppresses 

these lipotoxic phenotypes by preventing palmitate-stimulated mitochondrial dysfunction 

involving enhanced glutamine-fueled CAC flux.  Clearly, BAPTA co-treatment is capable of 

significantly changing and delaying the normal sequence of events in the mechanism of 

palmitate lipotoxicity.  Our data provides a novel mechanism connecting elevated palmitate, ER 
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calcium stores, and dysregulated mitochondrial metabolism implicating a role for impaired 

SERCA function and calcium signaling in lipotoxic oxidative stress.   

 

Appendix 

 

Metabolic Flux Analysis (MFA) reaction network and modeling assumptions 

To calculate the intracellular fluxes in the reaction network listed in Table A1 using the 

metabolites in Table A2, we made the following assumptions: 

1) All measurements were performed at isotopic steady state. 

2) Labeled CO2 produced in the CAC was not reincorporated into central metabolism. 

3) Metabolite usage for biomass synthesis was minor due to the short experimental time and 

slow growth of the cells. 

4) Due to excess lipid and minimal cell growth, ATP citrate lyase activity was assumed to 

be negligible. 

5) Beta-oxidation of palmitate was not considered due to our previous finding that beta-

oxidation does not supply significant carbon during lipotoxicity (43).  Therefore, carbon 

can enter the system as glucose or glutamine and leave as lactate or CO2.  

6) The oxygen consumption flux was assumed to satisfy the requirements for re-oxidizing 

NADH produced in both the CAC and glycolysis, in order to maintain redox balance.  

Our model cannot discriminate between NADH- and NADPH-dependent isoforms of 

IDH or malic enzyme.  Therefore, we have modeled these enzymatic reactions as NADH-

dependent due to the presence of mitochondrial transhydrogenase that can interconvert 

NADPH and NADH. This assumption will produce the most conservative estimates for 

flux differences between the tested treatments. 
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7) To account for incomplete isotopic steady state in the measured aspartate pool, we have 

included a G parameter. This value represents the fraction of the total aspartate pool that 

was synthesized in the presence of the isotopic tracer (44).   

To estimate CAC flux, our metabolic model combines [U-
13

C5]glutamine isotope labeling with 

oxygen consumption.  This enables quantification of absolute carbon fluxes in addition to 

relative flux ratios, and avoids potential errors associated with models that rely solely on carbon 

balancing to calculate CAC flux (45,46).  Detailed flux results are provided in Figures A1-3 

along with Tables A3-5.  We report both the degrees of freedom (DOF) and the best-fit sum-of-

squared residuals (SSR), which together indicate the goodness-of-fit for each experiment. We 

define exchange fluxes as      
       

     
     

          
, where      is the citrate synthase flux 

value (47). 
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Table 4A.1: Reactions and atom transitions for metabolic flux analysis of H4IIEC3 rat 

hepatomas.  Dot suffixes denote specific sub-pools of metabolite: .x, extracellular; .t, tracer; .d, 

dilution.   

 

Pyruvate Metabolism Reaction Name 

½ Glucose (abcdef)  ½ Pyr (cba) + ½ Pyr (def) + 

NADH 

PK 

Pyr (abc) + NADH  Lac (abc)  LDH 

Pyr (abc) + CO2 (d)  Mal (abcd) PC 

Mal (abcd)  Pyr (abc) + CO2 (d) + NADH ME 

Pyr (abc)  AcCoA (bc) + CO2 (a) + NADH PDH 

CAC Metabolism  

AcCoA (ab) + Mal (cdef)  Cit (fedbac) + NADH CS 

Cit (abcdef)  Akg (abcde) + CO2 (f) + NADH IDH 

Akg (abcde)  Suc (½ bcde + ½ edcb) + CO2 (a) 

+ NADH 

ADH 

Suc (½ abcd + ½ dcba)  Fum (½ abcd + ½ dcba) + FADH2 SDH 

Fum (½ abcd + ½ dcba)  Mal (abcd) FUS 

Glutamine anaplerosis  

Gln (abcde)  Glu (abcde) GLS 

Glu (abcde)  Akg (abcde) GDH 

Net Glycolysis  

Difference between PK and LDH 

Oxygen Consumption  

2
 
NADH + O2  2 H2O  

2
 
FADH2 + O2  2 H2O  

Dilution   

Asp.d (abcd)  Asp (abcd) Asp G parameter 
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Table 4A.2: GC-MS ions used for metabolic flux analysis.  The reported standard error (SEM) 

is representative of the calculated error amongst n=3 biological replicates.   
 

Metabolite Mass Composition Carbons 

SEM (mol%) 

Veh PA 
PA+ 

BAPTA 

Gln 431 C19H43O3N2Si3 1 2 3 4 5 0.7 0.5 0.5 

Glu 432 C19H42O4NSi3 1 2 3 4 5 0.57 1.0 0.68 

Glu 330 C16H36O2NSi2  2 3 4 5 0.77 1.0 0.5 

Mal 419 C18H39O5Si3 1 2 3 4  1.67 0.88 0.7 

Asp 390 C17H40O3NSi3  2 3 4  1.5 1.3 0.88 

Asp 418 C18H40O4NSi3 1 2 3 4  0.86 0.9 0.82 

Lac 233 C10H25O2Si2  2 3   0.65 0.5 0.5 

Lac 261 C11H25O3Si2 1 2 3   0.6 0.64 0.5 
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Table 4A.3: Calculated absolute flux parameters and 95% confidence intervals for vehicle 

cells. Net flux units are pmol/million cells/s. Exchange fluxes and dilution parameters are scaled 

from 0 to 100%. SSR = 46.9 (32 DOF). 
 

 

Parameter Valu

e 

95% Confidence Interval 

Net Flux    

PK 32.3 [23.4, 42.0] 

PDH 7.0 [5.2, 8.9] 

CS 7.0 [5.2, 8.9] 

IDH 7.0 [5.2, 8.9] 

GLS 5.1 [3.8, 6.5] 

GDH 5.1 [3.8, 6.5] 

ADH 12.1 [8.9, 15.4] 

SDH 12.1 [8.9, 15.4] 

FUS 12.1 [8.9, 15.4] 

ME 21.3 [15.3, 28.2] 

PC 15.9 [11.5, 21.0] 

LDH 30.4 [22.0, 39.7] 

O2 Consumption 34.1 [25.2, 43.0] 

Net Glycolysis     

PK  LDH 1.9 [1.3, 2.9] 

Exchange Flux    

IDH 0.9 [0, 100] 

SDH 0.0 [0, 100] 

FUS 100 [4.2, 100] 

GDH 100 [11.5, 100] 

Dilution    

Asp G Parameter 80.8 [72.8, 89.4] 
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Figure 4A.1:  Measured and simulated mass isotopomer distributions for vehicle-treated 

hepatic cells.  Mass isotopomer distributions are corrected for natural isotope abundance.  

Simulated distributions are the result of best-fit flux estimates. 
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Table 4A.4: Calculated absolute flux parameters and 95% confidence intervals for 

palmitate-treated cells. Net flux units are pmol/million cells/s. Exchange fluxes and dilution 

parameters are scaled from 0 to 100%. SSR = 42.6 (35 DOF). 
 

Parameter Value 95% Confidence Interval 

Net Flux    

PK 71.7 [59.3. 85.4] 

PDH 14.7 [12.4, 17.0] 

CS 14.7 [12.4, 17.0] 

IDH 14.7 [12.4, 17.0] 

GLS 20.0 [16.8, 23.4] 

GDH 20.0 [16.8, 23.4] 

ADH 34.7 [29.5, 40.0] 

SDH 34.7 [29.5, 40.0] 

FUS 34.7 [29.5, 40.0] 

ME 34.5 [28.8, 40.8] 

PC 14.5 [11.7, 17.6] 

LDH 77.1 [63.3, 92.6] 

O2 Consumption 71.3 [60.6, 82.1] 

Net Glycolysis    

PK  LDH -5.4 [-7.7, -3.4] 

Exchange Flux    

IDH 0.1 [0, 100] 

SDH 0 [0, 100] 

FUS 100 [0, 100] 

GDH 100 [8.2, 100] 

Dilution    

Asp G Parameter 97.7 [93.9, 100] 
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Figure 4A.2:  Measured and simulated mass isotopomer distributions for palmitate-

treated hepatic cells.  Mass isotopomer distributions are corrected for natural isotope 

abundance.  Simulated distributions are the result of best-fit flux estimates. 
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Table 4A.5: Calculated absolute flux parameters and 95% confidence intervals for cells 

treated with both palmitate and BAPTA. Net flux units are pmol/million cells/s. Exchange 

fluxes and dilution parameters are scaled from 0 to 100%. SSR = 62.0 (32 DOF). 
 

 

Parameter Value 95% Confidence Interval 

Net Flux    

PK 43.6 [31.9, 56.6] 

PDH 12.1 [9.1, 15.2] 

CS 12.1 [9.1, 15.2] 

IDH 12.1 [9.1, 15.2] 

GLS 6.1 [4.5, 7.7] 

GDH 6.1 [4.5, 7.7] 

ADH 18.2 [13.6, 22.8] 

SDH 18.2 [13.6, 22.8] 

FUS 18.2 [13.6, 22.8] 

ME 17.8 [13.1, 22.9] 

PC 11.7 [8.6, 15.3] 

LDH 37.6 [27.1, 49.8] 

O2 Consumption 48.3 [36.2, 60.4] 

Net Glycolysis     

PK  LDH 6.0 [4.4, 7.8] 

Exchange Flux    

IDH 0.3 [0, 100] 

SDH 20 [0, 100] 

FUS 50 [0, 100] 

GDH 100 [92.5, 100] 

Dilution    

Asp G Parameter 70.6 [65.6, 75.6] 
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Figure 4A.3:  Measured and simulated mass isotopomer distributions for palmitate and 

BAPTA co-treated hepatic cells.  Mass isotopomer distributions are corrected for natural 

isotope abundance.  Simulated distributions are the result of best-fit flux estimates. 
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CHAPTER 5 

 

GLUTAMATE OXALOACETATE TRANSAMINASE ACTIVITY PROMOTES HEPATIC 

CELL LIPOTOXICITY THROUGH ENHANCED CAC ANAPLEROSIS 

 

 

 

Abstract 

 

Hepatic lipotoxicity is characterized by enhanced mitochondrial anaplerosis which 

predisposes the cell to oxidative stress and apoptosis.  Previously, we have shown that calcium 

regulates the anaplerotic state of hepatic mitochondria treated with elevated palmitate.  We 

hypothesized elevated calcium increased α-ketoglutarate dehydrogenase oxidation of α-

ketoglutarate necessitating increased CAC anaplerosis.  To test this hypothesis, hepatic cells 

were treated with lipotoxic palmitate in the absence or presence of glutamine, glutamate, and α-

ketoglutarate.  It was found that co-incubating primary hepatocytes and α-ketoglutarate resulted 

in increased cell death compared to cells treated without α-ketoglutarate.  To dissect the 

metabolic pathway producing this α-ketoglutarate, we treated H4IIEC3 cells with siRNA for 

glutamate dehydrogenase, cytosolic glutamate oxaloacetate transaminase (GOT1), or 

mitochondrial glutamate oxaloacetate transaminase (GOT2).  Knockdown of GOT2 greatly 

reduced the lipotoxic effects of elevated palmitate while knockdown of Glud1 had no effect.  

Additionally co-treating H4IIEC3 hepatic cells with palmitate and the pan-transaminase inhibitor 

AOA confirmed these results by reducing lipotoxicity and lipotoxic mitochondrial alterations 

characterized by increased oxygen consumption and anaplerosis.  Taken together, these results 

demonstrate that lipotoxicity disrupts the anaplerotic state of mitochondria, causing a shift to 

aberrant transaminase metabolism which fuels CAC dysregulation. 
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Introduction 

The liver is a central metabolic hub of the body, regulating glucose, lipid, and amino acid 

metabolism.  As such, many hepatic pathologies are associated with altered metabolic capacity.  

In particular, NAFLD and NASH, as the hepatic manifestations of the metabolic syndrome, are 

associated with insulin resistance and altered mitochondrial capacity including impaired fatty 

acid oxidation and increased anaplerosis (1-5).  While plasma free fatty acid concentrations are 

often elevated in these pathologies (6,7), the biochemical mediators and metabolic pathways 

linking elevated plasma fatty acid concentrations to mitochondrial metabolic dysfunction are 

currently unclear.  In addition to alterations of plasma free fatty acid profiles, clinical and animal 

models of NASH and fatty liver have demonstrated significant alterations in plasma amino acid 

levels suggesting systemic dysregulation of amino acid metabolism (8-10).   

Altered plasma glutamine and glutamate levels have recently been identified as markers 

in patients with the metabolic syndrome and NASH (8,11).  In particular, decreases in the ratio 

between glutamine and glutamate are associated with enhanced systemic glucose intolerance as 

glutamate can potentiate the formation of alanine, and therefore gluconeogenesis.  Additionally, 

abnormal glutamatyl-dipeptide synthesis has been associated with many liver diseases including 

NASH and hepatocellular carcinoma (12).  This was attributed to inefficient synthesis of 

glutathione to combat oxidative stress associated with liver disease.  Conversely, it has been 

recently hypothesized that the NAFLD biomarkers glutamate pyruvate transaminase (GPT, or 

alanine aminotransferase) and glutamate oxaloacetate transaminase (GOT, or aspartate 

aminotransferase) may participate in a more causative mechanism of disease progression (13).   

Consistent with the hypothesis that alterations in glutamate metabolism could potentiate 

disease, in vitro models of lipotoxicity have shown that hepatic cells treated with an overload of 



133 
 

the saturated fatty acid palmitate are characterized by altered mitochondrial metabolism which 

favors glutamate anaplerosis and enhanced oxidative flux (14).  Additionally, replacing 

extracellular glutamine with alternative amino acids revealed that glutamate had the greatest 

effect in promoting oxidative stress and losses in cell viability characteristic of palmitate 

lipotoxicity (14).  This finding agrees with several in vivo studies which show that elevations in 

intrahepatic lipids are associated with elevations in mitochondrial anaplerosis and CAC 

oxidation (15).  The addition of exogenous antioxidants to in vitro hepatic cells did not reverse 

these metabolic abnormalities, indicating that anaplerotic flux of glutamine/glutamate carbon 

entering the CAC was not simply a response to combat lipotoxic ROS accumulation (16).   

We have previously demonstrated that addition of the calcium chelator BAPTA to 

hepatic cells treated with elevated levels of palmitate are characterized by attenuations in CAC 

anaplerosis and oxidative stress (Chapter 4).  This indicated that alterations in intracellular 

calcium predispose the mitochondria to an enhanced anaplerotic phenotype that contributes to 

lipotoxicity.  Calcium is a known regulator of α-ketoglutarate dehydrogenase (ADH) as well as 

the glutamate aspartate uniporter citrin, the action of which can lead to increased oxidation of α-

ketoglutarate (22, 23).  Therefore, we hypothesized that glutamine and glutamate anaplerosis is 

upregulated in response to palmitate treatment in order to maintain CAC α-ketoglutarate levels.  

As such, the deregulation of carbon entry to the CAC at the α-ketoglutarate node represents one 

potential mechanism by which intracellular calcium can impact the rate of lipotoxicity.  
 

To test the hypothesis that CAC anaplerosis controls the rate of palmitate lipotoxicity in 

hepatic cells, we altered extracellular media concentrations of glutamine, glutamate, and α-

ketoglutarate to determine if the presence of these anaplerotic substrates predisposed hepatic 

cells to enhanced apoptosis in the presence of lipotoxic concentrations of palmitate. Additionally, 
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we employed pharmacologic and siRNA-mediated knockdown of glutamate dehydrogenase 

(Glud1) and the glutamate oxaloacetate (GOT) pathways of CAC anaplerosis (Figure 5.1).  We 

found that attenuation of GOT activity, but not Glud1, significantly decreased hepatic 

lipoapoptosis in H4IIEC3 cells.  Pharmacologic inhibition of transaminase metabolism using the 

pan transaminase inhibitor amino oxyacetic acid (AOA) reduced the enhanced oxygen 

consumption flux we had previously observed as a characteristic of palmitate lipotoxicity.  
 

Similarly, 
13

C MFA revealed that AOA reduced absolute glutamine anaplerosis and CAC flux 

compared to hepatic cells treated with palmitate alone.  Taken together, these results indicate that 

upstream events in hepatic lipotoxicity (i.e., abnormal ER calcium release) predispose the 

mitochondria to utilize extracellular glutamate carbon to replenish CAC intermediates.  

Uninhibited, this mechanism leads to the characteristic metabolic dysfunction and oxidative 

stress associated with hepatic lipotoxicity (16).   
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Methods 

 

Materials-  

Dulbecco’s modified Eagle’s medium (DMEM), amino oxyacetic acid (AOA), dimethyl 

alpha-ketoglutarate, aspartic acid, glutamic acid, bovine serum albumin (BSA), palmitate, and 

oleate were purchased from Sigma (St. Louis, MO, USA).  The dead-cell stain propidium iodide 

(PI) was obtained from Invitrogen (Carlsbad, CA, USA).   

 

H4IIEC3 hepatic cell culture-  

 
Figure 5.1:  Enzymatic pathways by which glutamate can provide α-ketoglutarate for 

CAC anaplerosis.  Extracellular glutamine is metabolized in the mitochondria to glutamate 

(Glu) by glutaminase.  Glutamate can be metabolized through glutamate dehydrogenase 

(Glud1) or glutamate oxaloacetate transaminase 2 (GOT2) to α-ketoglutarate (αKG).  

Similarly cytosolic, glutamate oxaloacetate transaminase 1 (GOT1) produces αKG from Glu 

which must then be transported (through a malate/ αKG antiporter) across the mitochondrial 

membrane to enter CAC metabolism.  The GOT pathways additionally consume oxaloacetate 

(OAA) and produce aspartate (ASP).   
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The H4IIEC3 rat hepatoma cell line was used as a model of in vitro hepatic lipotoxicity 

(American Type Culture Collection, Manassas, VA, USA).  Cells were cultured in low glucose 

DMEM (1g/L) with 10% FBS and 1% penicillin/streptomycin antibiotic solution with a basal 2 

mM glutamine concentration.  For measurements of toxicity and apoptosis, cells were plated at a 

density of 2  10
4
 cells per well in a 96-well plate and allowed to grow for two days (until 

confluent) prior to the experiment.  

 

Primary rat hepatocyte isolation and culture-  

Primary hepatocytes from male Sprague-Dawley rats were isolated following a 

previously reported method (17).  Briefly, the portal vein and inferior vena cava of anesthetized 

animals were cannulated and perfused with 37C oxygenated perfusion media, pH 7.4, 

containing 118 mM NaCl, 5.9 mM KCl, 1.2 mM MgSO4, 1.2 mM NaH2PO4, 25 mM NaHCO3, 

0.2 mM EGTA and 5 mM glucose.  After approximately 15 minutes, the liver was excised from 

the animal and perfused with liver digest medium (Invitrogen, Grand Island NY).  Once 

digested, the liver cells were dispersed in attachment medium (described below) and rinsed four 

times.  Then, cells were plated in attachment medium, consisting of 20 mM glucose DMEM with 

30 mg/L proline, 100 mg/L ornithine, 0.544 mg/L ZnCl2, 0.75 mg/L ZnSO4 7H2O, 0.2 mg/L 

CuSO4 5H2O, 0.25 mg/L MnSO4, 2 g/L bovine serum albumin (Sigma), 5 nM insulin, 100 nM 

dexamethasone, 100,000 U penicillin, 100,000 U streptomycin, and 2 mM glutamine.  Four 

hours after cells were plated, the attachment medium was removed and replaced with an identical 

maintenance medium, except the insulin concentration was reduced to 1 nM. 

 

Preparation of fatty acid solutions-  



137 
 

Free fatty acid (FFA) stock solutions were made by dissolving FFA in bovine serum 

albumin (BSA).  A 195 mM stock of palmitate in pure ethanol was added to a 37°C 10% w/w 

BSA solution to a final concentration of 3 mM.  This solution was kept warm until palmitate was 

fully dissolved and then stored at 4°C.  This method yielded a final ratio of palmitate to BSA of 

2:1. 

 

Toxicity assays-  

Losses in cell viability in response to FFA treatments were assessed using the dead-cell 

stain propidium iodide (PI).  The intercalating dye becomes highly fluorescent when bound to 

exposed double-stranded DNA of dead cells.  Fluorescence was assessed using excitation 

wavelength of 530 nm and emission wavelength of 645 nm with a BioTek Cytation 3 plate 

reader.  

 

Caspase activity-  

Caspase 3 and 7 activity was measured as a marker of apoptosis using the Apo-ONE 

Homogenous Caspase 3/7 Assay kit.  This kit lyses the cells with the caspase 3/7 specific 

substrate Z-DEVD-R110, which becomes fluorescent once caspases remove the DEVD peptide.  

We measured fluorescence at an excitation wavelength of 485 nm and emission wavelength at 

530 nm.  

 

Oxygen consumption-  

The Oroboros Oxygraph-2K was used to measure oxygen consumption flux as a direct 

measurement of mitochondrial metabolism.  The Oxygraph-2k has two chambers with separate 
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oxygen probes to allow analysis of oxygen consumption of cells in suspension.  The instrument 

was set to a temperature of 37°C, and the stirring speed for each chamber was 500 rpm.  To 

perform these experiments, H4IIEC3 cells were cultured on 6-cm dishes until 80-90% confluent 

and subsequently incubated with selected combinations of fatty acids and treatments for 6 hours.  

Cells were then trypsinized, counted, and resuspended in the same culture medium and injected 

into the Oxygraph instrument.   

 

Knockdown of Glud1, GOT1, and GOT2-  

Small interfering RNA (siRNA) for Glud1, GOT1, and GOT2 were purchased from 

Integrated DNA Technologies.  Cells were treated with a 25 nmoles of selected siRNA 

complexed to RNAiMAX (Invitrogen) in antibiotic free DMEM.  After 24 hours, complex 

containing media was replaced with antibiotic free DMEM.  Following another 24 hours, 

experiments were performed.  Knockdown efficiency and selection of siRNA targeting 

sequences are shown in Figure 5.A1.   

 

Polar metabolite extraction and GC-MS analysis of 
13

C enrichment-  

Intracellular metabolites from H4IIEC3 rat hepatomas were extracted as previously 

described (14).  Briefly, intracellular metabolism was quenched with 1 mL of -80
o
C methanol 

and cells were scraped into a mixture of 1:1:1 chloroform, methanol, and water.  After drying the 

aqueous phase, samples were derivatized with MBTSTFA + 1% TBDMCS (Pierce).  GC-MS 
13

C 

isotopic enrichment was then analyzed with an Agilent 6890N/5975B GC-MS equipped with a 

30m DB-35ms capillary column.   
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Metabolic flux analysis-  

13
C MFA was performed using the INCA software package (18) and initiated with a 

previously developed model of hepatic metabolism comprising glycolysis, CAC, and anaplerotic 

pathways (16).  This previous model was updated to include the PEPCK mediated conversion of 

OAA to PEP due to significant labeling found in PEP.  Fluxes were estimated a minimum of 50 

times starting from random initial values to identify a global best-fit solution.  Once this solution 

was achieved, a chi-square test was used to assess the goodness-of-fit.  Additionally, 95% 

confidence intervals were calculated for all estimated parameters by assessing the sensitivity of 

the sum-of-squared residuals to parameter variations (19).  Comprehensive 
13

C MFA results and 

a detailed description of our network model are available in the Appendix. 

 

Statistical Analysis-  

Tests for statistical significance were performed using analysis of variance (Model I 

ANOVA) and Tukey-Kramer methods for multiple comparisons, or Student’s t-test for pair-wise 

comparisons.  Plots indicate +/- one standard error of the mean unless otherwise indicated.   

 

Results 

 

Extracellular glutamine enhances palmitate lipotoxicity in hepatic cells in vitro   

We have previously shown that glutamine anaplerosis is increased independently of 

caspase 3/7 activity in palmitate-treated H4IIEC3 cells (16).  However, it is unclear whether 

altered glutamine metabolism would be observed in isolated primary hepatocytes. Furthermore, 

the effects of glutamine removal or replacement have not been systematically assessed.  To test 
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this, H4IIEC3 hepatic cells or primary hepatocytes were treated with 4   μM palmitate in the 

presence or absence of 2 mM glutamine.  Removal of extracellular glutamine attenuated the 

lipotoxic cell death associated with 4   μM palmitate treatment by similar amounts in both 

primary hepatocytes and H4IIEC3 cells (Figure 5.2A).  Additionally, this reduction in 24-hour 

toxicity in H4IIEC3 cells (experiment not performed in primary cells) was associated with a 

reduction in markers of apoptosis at 12 hours (Figure 5.2B).   

 

 

 

The metabolic products of glutamine and glutamate anaplerosis promote lipotoxic cell death   

Glutamine can be metabolized via conversion to glutamate and then to the CAC 

intermediate α-ketoglutarate (αKG).  If glutamine fuels lipotoxicity by providing substrates for 

mitochondrial anaplerosis, its direct downstream metabolites should also stimulate hepatic cell 

death in response to elevated doses of palmitate.  To test this hypothesis, primary hepatocytes 

and H4IIEC3 hepatic cells were treated with 4   μM palmitate and incubated with 2 mM 

 
Figure 5.2:  Removal of extracellular glutamine attenuates lipotoxicity.  Primary 

hepatocytes and H4IIEC3 hepatic cells were treated with a lipotoxic concentration of 

palmitate (4   μM) either in the presence (2 mM) or absence of glutamine.  (A) 24-hour cell 

toxicity assessed by PI fluorescence.  (B)  Caspase activity in H4IIEC3 hepatic cells after 12 

hours of palmitate treatment.  Data represent mean +/- S.E., n=4; *different from vehicle, p < 

 . 5, † different from treatments in same cell line, p<  . 5. 
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glutamine, 2 mM glutamate, or 2 mM α-ketoglutarate (as dimethyl αKG) for 24 hours.  H4IIEC3 

cells exhibited identical toxicity responses to all media combinations, indicating that these 

metabolites act as interchangeable fuels for promoting the mitochondrial lipotoxic phenotype 

(Figure 5.3A).  Interestingly, primary hepatocytes exhibited increased lipotoxic cell death when 

extracellular glutamine was replaced with glutamate or α-ketoglutarate.  This increase in cell 

death suggests that primary hepatocytes have increased sensitivity to downstream glutamine-

derived anaplerotic substrates than to glutamine itself. This could be due to reduced glutaminase 

activity in primary hepatocytes, which is needed to convert glutamine to glutamate.  Glutaminase 

is located in a very narrow region of the liver.  Our primary hepatocyte isolation method 

homogenizes the entire liver, producing a mixed population of hepatocytes.  This could explain 

why glutamate is more synergistic than glutamine in primary hepatocytes (20,21). 

Glutamate can produce α-ketoglutarate through direct deamination by glutamate 

dehydrogenase (Glud1) or through transamination to produce a non-essential amino acid such as 

alanine or aspartate.  Of particular interest is the glutamate oxaloacetate transaminase (GOT) 

family of enzymes, since they play a key role in the malate aspartate shuttle, a critical redox 

shuttle whose activity can be influenced by alterations in intracellular calcium (22,23).  GOT 

catalyzes the conversion of glutamate to α-ketoglutarate via the transamination of aspartate and 

oxaloacetate.  Since we have previously observed calcium-dependent anaplerosis in palmitate-

treated hepatic cells (Chapter 4), we hypothesized that GOT metabolism could be the primary 

route of anaplerosis that is upregulated in response to palmitate treatment.  To test this 

hypothesis, hepatic cells were treated with 400 μM palmitate and provided either extracellular 

glutamine or a combination of α-ketoglutarate and aspartate.  Both primary hepatocytes and 
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H4IIEC3 cells exhibited enhanced lipotoxic cell death when given the mixture of GOT products 

rather than glutamine alone (Figure 5.3B).   

 

 

 

The GOT family of enzymes promotes anaplerosis and lipotoxicity in H4IIEC3 hepatic cells   

The observation that products of GOT metabolism enhanced lipotoxicity in both 

H4IIEC3 and primary hepatocytes suggests that GOT enzymes play an important role in 

providing anaplerotic substrates to fuel CAC activation in response to palmitate treatments.  

Thus, we utilized siRNA to selectively modulate glutamate dehydrogenase or GOT metabolic 

activities in order to assess these alternative pathways of glutamate anaplerosis.  First, we 

knocked down mRNA expression of glutamate dehydrogenase using siRNA specific for Glud1.  

 
Figure 5.3:  Effects of replacing medium glutamine with downstream products of 

glutamine metabolism. (A) Primary hepatocytes or H4IIEC3 hepatic cells were treated with 

4   μM palmitate for 24 hours in the presence of 2 mM glutamine (Gln), glutamate (Glu), or 

α-ketoglutarate (αKG). Cell death was assessed by PI fluorescence. (B) Relative cell death for 

primary hepatocytes and H4IIEC3 hepatic cells treated with palmitate in the presence of 2 

mM glutamine or a mixture of 1 mM α-ketoglutarate and 1 mM aspartate (αKG/Asp). In both 

panels, PI fluorescence of palmitate-treated cells is normalized to the response exhibited by 

vehicle-treated cells (8   μM  SA) provided the same extracellular concentrations of 

metabolites.  Vehicle presented in both cases is for hepatic cells treated with glutamine and 

vehicle.  Other conditions represent a fold change over similar controls.  Data represent mean 

+/- S.E., n=4; *different from vehicle, p < .05. 
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Knockdown of Glud1 had no effect on palmitate-induced apoptosis, indicating that Glud1 is not 

a primary metabolic pathway that potentiates lipotoxicity in H4IIEC3 cells (Figure 5.4A).  Next, 

we used siRNA for both the cytosolic and mitochondrial isoforms of GOT, GOT1 and GOT2, 

respectively.  Compared to H4IIEC3 cells treated with a control siRNA (NC1), GOT1 siRNA 

significantly attenuated caspase activity by approximately 25% after 12 hours of palmitate 

treatment (Figure 5.4B).  Interestingly, GOT2 knockdown attenuated palmitate-induced 

apoptosis more effectively than GOT1 knockdown (Figure 5.4C).  To further confirm these 

results, we treated H4IIEC3 hepatic cells with the pan-transaminase inhibitor, amino oxyacetic 

acid (AOA).  Co-treatment of H4IIEC3 cells with both 4   μM palmitate and 5   μM AOA 

resulted in a 50% reduction in palmitate-induced cell death, which was similar to but slightly 

more effective than GOT2 knockdown (Figure 5.4D).   
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AOA co-treatment attenuates palmitate-induced oxygen consumption.   

Lipotoxic concentrations of palmitate induce metabolic dysfunction characterized by 

elevated anaplerosis and oxygen consumption flux in H4IIEC3 hepatic cells (16).  To test 

whether the lipotoxicity rescue exhibited by GOT inhibition was associated with an overall 

decrease in mitochondrial metabolic activity, we measured the oxygen consumption flux of 

 
Figure 5.4:  GOT metabolism promotes glutamine-dependent palmitate lipotoxicity.  

Palmitate-treated H4IIEC3 cells were treated with control siRNA (NC1) or siRNA specific 

for (A) Glud1, (B) GOT1, or (C) GOT2 and assayed for markers of apoptosis after 12 hours.  

(D) H4IIEC3 cells were treated with 4   μM palmitate in combination with 5   μM of the 

transaminase inhibitor AOA and compared to palmitate treated GOT2 knockdown cells. Cell 

toxicity was assessed after 24 hours of treatment. All palmitate-treated conditions are 

normalized to vehicle-treated cells under the same siRNA conditions.  Data represents the 

mean +/- S.E., n=4; *different from vehicle, p < . 5, †different from each other, p < . 5, ** 

different from PA, p < .05 
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H4IIEC3 cells treated with 4   μM palmitate or a combination of 4   μM palmitate and 5   μM 

AOA.  Hepatic cells treated with palmitate exhibited a doubling in oxygen consumption flux 

compared to vehicle-treated cells.  However, co-treatment with AOA attenuated palmitate-

induced oxygen consumption by approximately 30% (Figure 5.5).   

 

 

  

AOA transaminase inhibition reduces the magnitude of lipotoxic metabolic deregulation, but 

does not reduce the relative CAC/PK flux   

 

To examine how AOA-inhibition of transaminase activities confers resistance to 

palmitate treatments in H4IIEC3 cells, we performed 
13

C MFA by complete replacement of 

medium glutamine with the stable isotope tracer [U-
13

C5]glutamine.  We then extracted free 

intracellular metabolites and analyzed their isotopic enrichment using GC-MS followed by 

correction of the mass isotopomer distributions for natural isotope abundance using the method 

of Fernandez et al. (24).  Previously, we have observed that palmitate-treated cells incorporate 

 
Figure 5.5:  AOA reduces palmitate-induced activation of oxidative metabolism.  The 

oxygen consumption rates of H4IIEC3 cells treated with vehicle (800 μM  SA), 4   μM 

palmitate (PA), or a combination of 4   μM palmitate and 5   μM AOA (PA+AOA) were 

measured after 6 hours of treatment.  Data represent mean +/- S.E., n=3; *different from 

vehicle, p < . 5, †different from each other, p < . 5. 
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more [U-
13

C5]glutamine-derived carbon into CAC  intermediates (e.g., malate) relative to 

vehicle-treated cells, as quantified by their atom percent enrichment (16).  The atom percent 

enrichment (APE) of a metabolite is a measure of its fractional synthesis from the isotopic tracer 

(i.e., glutamine) versus unlabeled carbon sources (e.g., glucose).  Confirming the reported effect 

of AOA to inhibit transaminase activities, AOA co-treated cells exhibited less isotopic 

enrichment in the aspartate pool, indicating that GOT activity was effectively blocked (Figure 

5.6A).  Additionally, compared to palmitate-treated cells, the malate enrichment was 

significantly lower in cells treated with AOA.  Despite these differences, the isotopic enrichment 

of the glutamate pool was only modestly decreased, suggesting that glutamate synthesis from 

extracellular glutamine was largely unaffected by AOA co-treatment.  Interestingly, co-treating 

cells with AOA and palmitate increased the APE of both lactate and phosphoenolpyruvate (PEP) 

compared to cells treated with palmitate alone (Figure 5.6B). This indicates a re-routing of 

cataplerotic flux leaving the CAC via PEP carboxykinase (PEPCK).   
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Next, we performed 
13

C metabolic flux analysis by developing a metabolic model 

consisting of key glycolytic and CAC fluxes and constrained by mass balances on all network 

metabolites, mass isotopomer balances on all relevant elementary metabolite units (EMUs), and 

redox balances on NADH and FADH2. Fluxes were estimated by least-squares regression of six 

mass isotopomer measurements in combination with the measured oxygen uptake rates shown in 

Figure 5.5 and Figure 5.6.  We calculated 14 absolute metabolic fluxes for H4IIEC3 cells treated 

with vehicle, palmitate, or a combined dose of palmitate and AOA.  AOA and palmitate co-

treated hepatic cells were characterized by reductions in glutaminase (GLS) and α-ketoglutarate 

dehydrogenase (ADH) fluxes, although they were still elevated in comparison to vehicle-treated 

 
Figure 5.6:  Isotopic enrichment of intracellular metabolites indicates flux re-routing in 

response to AOA treatment.  Unlabeled medium glutamine was replaced with [U-
13

C5]glutamine and used to culture H4IIEC3 cells with vehicle (8   μM  SA), 4   μM 

palmitate (PA), or a combination of 4   μM palmitate and 5   μM AOA (PA + AOA) added.  

After extraction and GC-MS analysis of intracellular metabolites, we calculated the atom 

percent enrichment (APE) of selected metabolites using the formula
0

100%
N

i

Mi i
APE

N


  , 

where N is the number of carbon atoms in the metabolite and Mi is the fractional abundance 

of the ith mass isotopomer of the metabolite.  The fragment ions analyzed for APE were Glu 

432, Mal 419, Asp 418, PEP 453, and Lac 261.  These ions contain all carbons of the 

associated parent metabolites (i.e., 5 for glutamate, 4 for malate and aspartate, and 3 for PEP 

and lactate).  Data represent mean +/- S.E., n=3; * different from vehicle, p <. 5, †different 

from each other, p < .05. 
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cells (Figure 5.7A).  However, no difference was observed in the citrate synthase flux of cells 

treated with palmitate alone versus cells co-treated with palmitate and AOA.   

Normalizing the intracellular fluxes relative to pyruvate kinase (PK, Figure 5.7B) 

demonstrates that the mitochondrial alterations associated with lipotoxicity are associated with 

enhanced glutamine anaplerosis and a decrease in pyruvate carboxylase (PC)-dependent CAC 

anaplerosis (Figure 5.7C).  Interestingly, although AOA co-treatment reduced the absolute 

calculated, normalization to PK flux reveals that the relative mitochondrial metabolism is still 

upregulated as marked by increases in the relative GLS/PK, CS/PK, and ADH/PK fluxes 

compared to both vehicle- and palmitate-treated hepatic cells.  That is, in the inhibition of the 

transaminase pathways using AOA, palmitate-treated cells still prefer to metabolize glutamine 

for anaplerosis instead of glucose.   

Net glutamate anaplerotic flux into the CAC must balance the net cataplerotic flux 

leaving the cycle (20).  In our previous MFA models, glutamine carbon entering the CAC as α-

ketoglutarate could leave the CAC through either malic enzyme or CO2.  Here, our updated 

model includes the PEPCK reaction, which produces PEP and CO2 from oxaloacetate.  Both 

vehicle-treated and palmitate-treated cells were marked by similar absolute PEPCK fluxes, 

indicating that this pathway is not the preferred route of cataplerosis in the H4IIEC3 model of 

lipotoxicity.  Instead, flux through malic enzyme was the main mode of cataplerosis.  On the 

other hand, AOA co-treatment was marked by a significant increase in PEPCK flux relative to 

cells treated with palmitate alone.  This is likely required to balance the anaplerotic flux from 

glutamine in response to the observed reduction in malic enzyme flux. Although the absolute rate 

of glutamine entry was reduced by AOA treatment, the reduction in malic enzyme flux was even 
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more dramatic, which apparently precipitates activation of PEPCK in order to maintain carbon 

balance at the malate and oxaloacetate nodes (Figure 5.8). 

 

 

 

 

 
Figure 5.7:  

13
C MFA reveals that AOA treatment reduces mitochondrial fluxes and re-

routes malic enzyme flux in the presence of palmitate.  (A) Absolute intracellular CAC 

fluxes were calculated as detailed in the Methods section and Appendix for H4IIEC3 cells 

under the following conditions: vehicle, 4   μM palmitate (PA), or 4   μM palmitate and 5   

μM AOA (PA + AOA).  (B) Absolute PK flux.  (C) Calculated fluxes relative to pyruvate 

kinase flux (PK) demonstrate that AOA co-treatment is associated with enhanced glutamate 

anaplerosis, despite a reduction in absolute mitochondrial fluxes.  Units are pmol/s/million 

cells.  Error bars indicate 95% confidence intervals; * different from vehicle, p <.05, † 

different from each other, p <.05. 
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Discussion 

Hepatic lipotoxicity in H4IIEC3 cells is characterized by enhanced CAC anaplerosis 

fueled by glutamate derived from extracellular glutamine (14,16).  However, it is unclear 

whether this glutamine anaplerosis is mediated solely by the glutamate dehydrogenase or 

glutamate transaminase enzymes, and whether inhibition of these glutamine-dependent 

anaplerotic pathways would fully suppress the lipotoxic phenotype.  In the current study, we 

 
Figure 5.8:  Metabolic pathways and putative mechanisms explored in this study.  

Mechanisms of αKG anaplerosis were inhibited using siRNA and the pharmacological 

inhibitor AOA.  GOT2 metabolism potentiated lipoapoptosis more than other anaplerotic 

mechanisms.  Additionally, simultaneous inhibition of GOT1/GOT2 suppressed lipotoxic 

dysregulations of mitochondrial metabolism.  Combined with Chapter 4, these results suggest 

a role for the calcium stimulated glutamate/aspartate antiporter citrin, which is known to 

potentiate mitochondrial metabolism of glutamate. 
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altered media glutamine concentrations to define a mechanism by which extracellular glutamine 

controls the rate of palmitate-induced apoptosis in both primary hepatocytes and H4IIEC3 

hepatic cells.  Replacing the extracellular glutamine with its downstream metabolic products 

(e.g., glutamate, α-ketoglutarate, etc.) revealed that glutamine exerts its pro-apoptotic effects by 

enhancing mitochondrial anaplerosis and not simply by the accumulation of other metabolic 

byproducts.  Inhibition of glutamate conversion to α-ketoglutarate using siRNA specific for 

Glud1, GOT1, or GOT2 indicated that glutamine enhances palmitate lipotoxicity through GOT 

activity, primarily through GOT2.  Pharmacological transaminase inhibition using AOA 

confirmed these results.  Despite a partial rescue in lipotoxic cell death, [U-
13

C5]glutamine tracer 

studies demonstrated that AOA co-treatment merely attenuates the overall metabolic 

dysregulation in lipotoxicity but does not fully restore CAC associated fluxes to basal levels.  

Overall, these results demonstrate a novel role for GOT enzymes in palmitate lipotoxicity, which 

depends on their ability to provide substrates for CAC anaplerosis.   

Alterations in amino acid metabolism have been linked to obesity, NAFLD, and NASH 

(8,10).  In particular, elevated plasma glutamate/glutamine levels have been reported as a 

potential risk factor for NAFLD.  Additionally, in the methionine-choline deficient (MCD) diet-

induced murine NASH model, increases in plasma glutamate and glutamine were paralleled by 

increases in liver concentrations of these amino acids (8).  The authors attributed these elevations 

to inhibited liver gluconeogenesis and CAC flux in MCD-fed mice.  In contrast, a different study 

demonstrated that mice fed a high-fat diet developed fatty liver and insulin resistance 

characterized by a high CAC flux (4).  Our models of lipotoxicity in the H4IIEC3 hepatic cell 

line and primary hepatocytes exhibit similarities with these two in vivo studies.  First, palmitate 

overload induces mitochondrial dysfunction characterized by elevated CAC flux.  Second, the 
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presence of elevated glutamine or downstream glutamine metabolites (e.g., glutamate, α-

ketoglutarate, or α-ketoglutarate combined with aspartate) synergizes with palmitate to enhance 

lipotoxicity.   

It was important to first confirm that glutamine anaplerosis was occurring in primary 

hepatocytes due to differing reports on the role of glutaminase in primary hepatocytes versus 

immortalized cell lines (such as the H4IIEC3 hepatic cell line used in our prior studies).  In vivo, 

glutaminase is not expressed equally across the liver (25).  Therefore, while specific regions of 

the liver are known to catabolize glutamine in the post-absorptive state, not all cells obtained in 

our primary hepatocyte isolations would be expected to exhibit identical avidity for glutamine.  

Despite this, removal of medium glutamine from both H4IIEC3 hepatic cells and primary 

hepatocytes attenuated palmitate-induced cell death to similar extents, suggesting a common 

ability of glutamine to stimulate lipotoxicity in both cell types.   

Unlike glutamine, glutamate metabolism is not restricted to a small subpopulation of liver 

cells.  Rather, it is involved as a critical intermediate in the metabolism of several different 

amino acids.  It is also an important anaplerotic substrate due to its ease of conversion to the 

CAC intermediate α-ketoglutarate by glutamate dehydrogenase (GDH) and glutamate 

oxaloacetate transaminase (GOT).  In studies with primary hepatocytes, substituting glutamate 

for glutamine resulted in an increase in lipotoxic cell death, likely due to higher affinity for 

glutamate by primary cells.  On the other hand, H4IIEC3 cells exhibited equivalent cell death in 

response to palmitate with either glutamine or glutamate added.  Cell immortalization is typically 

associated with increases in glutamine metabolism and could explain why glutamine and 

glutamate exert similar effects to promote lipotoxicity in the H4IIEC3 cell line (21,26).   
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 Anaplerosis of α-ketoglutarate into the CAC can occur through Glud1, cytosolic GOT1, 

and mitochondrial GOT2.  To further examine the differences between Glud1 and GOT 

isoforms, hepatic cells were treated with a combination of α-ketoglutarate and aspartate in the 

absence of glutamine to mimic the downstream metabolic products of the GOT enzymatic 

reaction.  The combined dose of extracellular α-ketoglutarate and aspartate supplied to palmitate-

treated cells was more toxic than glutamine alone, indicating that transaminase metabolism is 

potentially the primary metabolic route by which extracellular glutamine enhances lipotoxicity.  

We then applied siRNA for Glud1, GOT1, or GOT2 to specifically inhibit these enzymes in the 

H4IIEC3 cell line.  Although our hepatic cell model expresses all of these enzymes, only 

knockdown of GOT1 or GOT2 attenuated palmitate-dependent apoptosis.  The inability of Glud1 

to reduce the toxic effects of palmitate indicates that glutamate dehydrogenase does not play a 

significant role in glutamate anaplerosis of H4IIEC3 hepatic cells under these conditions. 

Both cytosolic GOT1 and mitochondrial GOT2 are reversible reactions which convert an 

amino acid (glutamate or aspartate) to an α-ketoacid (α-ketoglutarate or oxaloacetate).  

Additionally both are involved in the malate-aspartate shuttle, which functions to transport 

cytosolic reducing equivalents (NADH) to the mitochondria to be used for oxidative 

phosphorylation.  In principle, upregulated GOT activity can therefore account for the increased 

oxygen consumption exhibited by palmitate-treated hepatic cells by providing more α-

ketoglutarate for CAC oxidative metabolism and by shuttling more reducing equivalents into the 

mitochondria via the malate-aspartate shuttle.  However, this implies a synergy between both 

GOT1 and GOT2 that we do not observe in our experiments.  While knockdown of either GOT1 

or GOT2 is associated with attenuations in hepatic lipotoxicity, GOT2 had a greater effect to 

reduce markers of apoptosis.  This suggests that palmitate overload is able to mechanistically 
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disrupt GOT2 metabolism prior to GOT1 metabolism.  An alternative would be that cytosolic 

enzymes could compensate for GOT1 that GOT2 inhibition. 

In addition to siRNA-mediated knockdowns, we co-treated hepatic cells with the 

transaminase inhibitor AOA in the presence of a lipotoxic palmitate load.  AOA co-treatment 

attenuated lipotoxicity to a similar extent as GOT2 knockdown in H4IIEC3 cells.  
13

C MFA 

studies demonstrated that AOA significantly decreased glutamine anaplerosis, oxygen 

consumption, and ADH flux, all of which are characteristic of palmitate overload in hepatic 

cells.  Despite the attenuation in mitochondrial fluxes, cells co-treated with AOA and palmitate 

were still marked by higher relative fluxes (normalized to PK flux) of glutamine anaplerosis, CS 

flux, and ADH flux in comparison to vehicle-treated cells.  This failure to normalize relative 

glutamine anaplerotic fluxes suggests that an alternate upstream mechanism predisposes the 

hepatic cells to a glutamine/glutamate avid state in response to palmitate treatment. 

Previously, we demonstrated a novel role for intracellular calcium to promote lipotoxicity 

by inducing metabolic dysfunction and oxidative stress (Chapter 4).  In that study, co-treating 

hepatic cells with palmitate and the intracellular calcium chelator BAPTA decreased 

mitochondrial metabolism characterized by lower oxygen consumption flux and less glutamine 

uptake compared to cells treated with palmitate alone.  Additionally, the Asp G-parameter 

calculated for cells treated with BAPTA and palmitate was lower than the G-parameter for cells 

treated with palmitate alone (Chapter 4 Appendix).  These results pointed to a novel, putative 

role for the glutamate-aspartate antiporter citrin in lipotoxicity (Figure 5.8).  The activity of this 

antiporter is enhanced by elevations in cytosolic calcium, which may increase glutamate entry 

into the mitochondria in exchange for aspartate (23).  Hypothetically, the net result of citrin 

activation in the context of palmitate lipotoxicity would be an enhancement in oxygen 



155 
 

consumption and glutamate anaplerosis due to GOT2 metabolism.  Combined with the 

observation that the pan-transaminase inhibitor AOA reduced lipotoxic oxygen consumption, 

aspartate formation, and overall CAC flux, it appears that palmitate overload primarily exerts its 

lipotoxic effects through a synergism between calcium signaling and GOT2-dependent 

anaplerosis. 

 

Appendix 

 

RT-PCR confirms knockdown efficiency of siRNA techniques   

To choose siRNA targeting sequences, hepatic cells were treated with at least two 

different siRNA for each metabolic enzyme targeting different sequences.   
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Figure 5.A1:  Knockdown efficiency of siRNA targeting sequences on target RNA levels.  

RT-PCR was used to confirm knockdown efficiency of different targeting siRNA on the 

targeted RNA.  Specifically Glud1.1, GOT1.1, and GOT2.1 targeting sequences were selected 

for all experiments presented in the main text due to their ability to significantly reduce the 

relative expression of the targeted sequence in comparison to a scrambled control siRNA.  

Glud1.2 and GOT1.2 were ineffective at reducing the expression level of their target mRNA.   
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Metabolic Flux Analysis (MFA) reaction network and modeling assumptions 

The following assumptions were used to estimate intracellular fluxes for the reaction network in 

Table 5A1 using isotope labeling data for the metabolites in Table 5A2: 

1) All measurements were performed at isotopic steady state. 

2) Labeled CO2 produced by CAC oxidation was not reincorporated into central 

metabolism. 

3) Metabolite usage for biomass synthesis was negligible.   

4) Similarly, due the presence of excess exogenous palmitate and low cell growth, ATP 

citrate lyase activity was assumed to be negligible. 

5) We previously found beta-oxidation of palmitate does not contribute significant amount 

of carbon to the CAC (27).  Therefore, only carbon entering the CAC derived from 

glucose or glutamine was considered.   

6) The oxygen consumption flux was assumed to satisfy the requirements for re-oxidizing 

NADH produced in both the CAC and glycolysis, in order to maintain redox balance.  

Our model cannot discriminate between NADH- and NADPH-dependent isoforms of 

IDH or malic enzyme.  Therefore, we have modeled these enzymatic reactions as NADH-

dependent due to the presence of mitochondrial transhydrogenase that can interconvert 

NADPH and NADH. This assumption will produce the most conservative estimates for 

flux differences between the tested treatments. 

7) To account for incomplete isotopic steady state in the measured aspartate pool, we have 

included a G parameter. This value represents the fraction of the total aspartate pool that 

was synthesized in the presence of the isotopic tracer (28).   
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8) Malate and oxaloacetate are assumed to be in complete equilibrium.  Since nearly 

identical enrichment of both malate and aspartate were observed. 

9) PEP labeling was added to the model to account for possible PEPCK activity.   

Our metabolic model uses 
13

C enrichment of CAC related metabolites derived from [U-

13
C5]glutamine.  When combined with whole cell oxygen consumption, quantification of 

absolute carbon fluxes is possible.  This method produces conservative estimates of intracellular 

fluxes and minimizes potential errors associated with models that use only carbon balancing to 

calculate CAC flux (29,30).  Figures 5A2-4 along and Tables 5A3-5 detail modeling results.  We 

report both the degrees of freedom (DOF) and the best-fit sum-of-squared residuals (SSR), which 

together indicate the goodness-of-fit for each experiment. We define exchange fluxes as 

     
       

     
     

          
, where      is the citrate synthase flux value (31). 
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Table 5A.1: Reactions and atom transitions for metabolic flux analysis of H4IIEC3 rat 

hepatomas.  Dot suffixes denote specific sub-pools of metabolite: .x, extracellular; .t, tracer; .d, 

dilution.   

 

Pyruvate Metabolism Reaction Name 

½ Glucose (abcdef)  ½ PEP (cba) + ½ PEP (def) + 

NADH 

Glucose Uptake 

PEP (abc)  Pyr (abc)  PK 

Pyr (abc) + CO2 (d)  Mal (abcd) PC 

Mal (abcd)  Pyr (abc) + CO2 (d) + NADH ME 

Pyr (abc)  AcCoA (bc) + CO2 (a) + NADH PDH 

Pyr (abc) + NADH  Lac (abc)  LDH 

Mal (abcd)  PEP (abc) + NADH + CO2 (d) PEPCK 

CAC Metabolism  

AcCoA (ab) + Mal (cdef)  Cit (fedbac) + NADH CS 

Cit (abcdef)  Akg (abcde) + CO2 (f) + NADH IDH 

Akg (abcde)  Suc (½ bcde + ½ edcb) + CO2 (a) 

+ NADH 

ADH 

Suc (½ abcd + ½ dcba)  Fum (½ abcd + ½ dcba) + FADH2 SDH 

Fum (½ abcd + ½ dcba)  Mal (abcd) FUS 

Glutamine anaplerosis  

Gln (abcde)  Glu (abcde) GLS 

Glu (abcde)  Akg (abcde) GDH 

Oxygen Consumption  

2
 
NADH + O2  2 H2O  

2
 
FADH2 + O2  2 H2O  

Dilution   

Asp.d (abcd)  Asp (abcd) Asp G parameter 
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Table 5A.2: GC-MS ions used for metabolic flux analysis.  The reported standard error (SEM) 

is representative of the calculated error amongst n=3 biological replicates.   
 

Metabolite Mass Composition Carbons 
SEM (mol%) 

Veh PA PA+ AOA 

Gln 431 C19H43O3N2Si3 1 2 3 4 5 0.7 0.5 1.6 

Glu 432 C19H42O4NSi3 1 2 3 4 5 0.57 1.0 1.7 

Glu 330 C16H36O2NSi2  2 3 4 5 0.77 1.0 2.0 

Mal 419 C18H39O5Si3 1 2 3 4  1.67 0.88 1.2 

Asp 390 C17H40O3NSi3  2 3 4  1.5 1.3 1.2 

Asp 418 C18H40O4NSi3 1 2 3 4  0.86 0.9 1.1 

Lac 233 C10H25O2Si2  2 3   0.65 0.5 1.8 

Lac 261 C11H25O3Si2 1 2 3   0.6 0.64 1.9 

PEP 453 C14H38O6Si3P 1 2 3   0.7 0.5 1.0 
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Table 5A.3: Calculated absolute flux parameters and 95% confidence intervals for vehicle 

cells. Net flux units are pmol/million cells/s. Exchange fluxes and dilution parameters are scaled 

from 0 to 100%. SSR = 47.1 (36 DOF). 

 

Parameter Value 95% Confidence Interval 

Net Flux    

Glucose Uptake 32.9 [23.9, 42.8] 

PK 34.9 [25.1, 45.8] 

PDH 7.2 [5.3, 9.1] 

CS 7.2 [5.3, 9.1] 

IDH 7.2 [5.3, 9.1] 

GLS 5.2 [3.8, 6.6] 

GDH 5.2 [3.8, 6.6] 

ADH 12.5 [9.2, 15.8] 

SDH 12.5 [9.2, 15.8] 

FUS 12.5 [9.2, 15.8] 

ME 17.7 [12.5, 23.6] 

PC 14.4 [10.4 18.7] 

LDH 30.9 [22.4, 40.4] 

PEPCK 1.9 [0.0 5.0] 

O2 Consumption 34.1 [25.2, 43.1] 

Exchange Flux    

IDH 0.2 [0, 100] 

SDH 0.0 [0, 100] 

FUS 100 [2.5, 100] 

GDH 100 [12.0, 100] 

Dilution    

Asp G Parameter 76.8 [69.7, 84.2] 
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Figure 5A 2.  Simulated and measured mass isotopomer distributions for vehicle treated 

H4IIEC3 hepatic cells.  Simulated distributions are shown for best-fit flux estimates.  Data are 

corrected for natural abundance. 
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Table 5A.4: Calculated absolute flux parameters and 95% confidence intervals for 

palmitate-treated cells. Net flux units are pmol/million cells/s. Exchange fluxes and dilution 

parameters are scaled from 0 to 100%. SSR = 46.0 (39 DOF). 

 

Parameter Value 95% Confidence Interval 

Net Flux    

Glucose Uptake 71.7 [59.3, 85.3] 

PK 74.3 [61.4, 88.5] 

PDH 14.7 [12.4, 17.0] 

CS 14.7 [12.4, 17.0] 

IDH 14.7 [12.4, 17.0] 

GLS 20.0 [16.8, 23.4] 

GDH 20.0 [16.8, 23.4] 

ADH 34.7 [29.5, 40] 

SDH 34.7 [29.5, 40] 

FUS 34.7 [29.5, 40] 

ME 31.9 [26.4, 37.8] 

PC 14.4 [11.7 17.6] 

LDH 77.0 [63.2, 92.4] 

PEPCK 2.6 [1.1 4.2] 

O2 Consumption 71.3 [60.6, 80.2] 

Exchange Flux    

IDH 0.1 [0, 100] 

SDH 0 [0, 100] 

FUS 100 [0, 100] 

GDH 21.9 [8.1, 100] 

Dilution    

Asp G Parameter 97.7 [93.9, 100] 
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22

 
Figure 5A.3:  Simulated and measured mass isotopomer distributions for palmitate- 

treated H4IIEC3 hepatic cells.  Simulated distributions are shown for best-fit flux estimates.  

Data are corrected for natural abundance. 
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Table 5A.5: Calculated absolute flux parameters and 95% confidence intervals for 

palmitate and AOA co-treated cells. Net flux units are pmol/million cells/s. Exchange fluxes 

and dilution parameters are scaled from 0 to 100%. SSR = 19.0 (37 DOF). 

 

Parameter Value 95% Confidence Interval 

Net Flux    

Glucose Uptake 23.5 [18.5, 31.2] 

PK 30.3 [23.2, 40.4] 

PDH 12.0 [10.7, 13.2]] 

CS 12.0 [10.7, 13.2]] 

IDH 12.0 [10.7, 13.2]] 

GLS 9.7 [8.2, 11.4] 

GDH 9.7 [8.2, 11.4] 

ADH 21.6 [19.8, 23.5] 

SDH 21.6 [19.8, 23.5] 

FUS 21.6 [19.8, 23.5] 

ME 12.8 [8.3, 17.8] 

PC 9.9 [7.0 13.5] 

LDH 21.2 [14.6, 30.1] 

PEPCK 6.7 [4.4 10.0] 

O2 Consumption 50.5 [46.6, 54.3 

Exchange Flux    

IDH 0.4 [0, 100] 

SDH 0.0 [0, 100] 

FUS 100 [0, 100] 

GDH 3.4 [1.6, 15.5] 

Dilution    

Asp G Parameter 24.7 [20.1, 29.2] 
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Figure 5A 4: Simulated and measured mass isotopomer distributions for AOA and palmitate 

co-treated H4IIEC3 hepatic cells.  Simulated distributions are shown for best-fit flux estimates.  

Data are corrected for natural abundance. Lac233 could not be reliable measured in these cells. 
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CHAPTER 6 

 

13
C METABOLIC FLUX ANALYSIS OF AN IN VITRO BMPR2 MUTATION DRIVEN 

MODEL OF PULMONARY ARTERIAL HYPERTENSION REVEALS AN INCREASE IN 

ANAPLEROTIC GLUTAMINE DEMAND 

 

 

 

Introduction 

Heritable pulmonary arterial hypertension (PAH) is caused by mutations in the bone 

morphogenic protein receptor 2 (BMPR2) (1,2).  BMPR2 mutations are associated with systemic 

metabolic alterations which could represent future targets for therapies or diagnostics.  In vivo, 

the metabolic signature of PAH includes increased glucose intolerance, insulin resistance, and 

alterations in oxidative phosphorylation as well as activation of hypoxia inducible factor 1 alpha 

(3,4).  A recent in vitro metabolomic study investigated the effects of expressing two mutant 

forms of BMPR2 in human pulmonary vascular endothelial cells (hPMVEC) and found that 

mutations in BMPR2 are associated with altered glycolysis and CAC metabolism as 

characterized by metabolite levels and enzyme expression (5).  For example, it was concluded 

that glycolysis was upregulated in BMPR2 mutants since levels of the glycolytic metabolites 

starting with glucose and glucose 6-phosphate down through 2-phosphoglycerate were elevated. 

Interestingly, although many glycolytic enzymes were overexpressed compared to native 

expressing (wild-type) BMPR2 controls, two of the three regulatory enzymes of glycolysis 

showed decreased expression.  Specifically, hexokinase and phosphofructokinase expression was 

lower in BMPR2 mutants while pyruvate kinase was overexpressed.  While this thorough study 

concluded these alterations in the levels of glycolysis indicated increased glycolytic metabolism, 

it is possible that increased levels of glycolytic metabolites could indicate a bottleneck in 
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glycolytic metabolism.  While glycolytic intermediates were present in elevated levels, BMPR2 

mutants were characterized by elevated levels of the CAC metabolite citrate but decreased levels 

of the downstream metabolites succinate, fumarate, and malate suggesting CAC impairments.  

Additionally, intracellular levels of glutamine and glutamate were decreased indicating a role for 

increased glutamine anaplerosis in BMPR2 mutants to maintain CAC intermediates.   

Clearly, BMPR2 mutations are associated with broad metabolic mutations.  To further 

define how mutant BMPR2 reprogram central metabolism, for the first time we have applied 

stable isotope tracer 
13

C metabolic flux analysis (MFA) to quantify how BMPR2 mutations alter 

intracellular metabolic flux.  
13

C MFA is an integrated approach to studying the movement or 

flux of the metabolome through biochemical pathways.  This approach integrates extracellular 

uptake and secretion rates with 
13

C enrichment patterns in downstream metabolites to generate a 

comprehensive map of the carbon flow though a metabolic network.  We hypothesized that using 

13
C MFA would reveal increased glycolysis in BMPR2 mutants and decreased CAC flux 

compared to Native expressing (wild type) BMPR2 counterparts.  Additionally, we hypothesized 

glutamine uptake would be a key metabolic feature of BMPR2 mutations as it would provide 

carbon material for CAC metabolism.   

 

Methods 

 

In vitro models of BMPR2 driven PAH-  

Murine pulmonary microvascular endothelial cells (mPMVEC) were engineered to 

express either a native (wild-type) BMPR2 or a mutant BMPR2 (R899x) identified in patients 

with heritable PAH.  The murine PMVECs are on the Immortomouse background.  Cells were 
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initially grown at 33  C in Lonza EBM-2 media supplemented with the EGM-2 MV SingleQuot 

kit (5% FBS, hydrocortisone, rhFGF-B, VEGF, R3 IGF-1, ascorbate, rhEGF, GA-1000) and with 

100 u/mL murine interferon-gamma.  Prior to any experiments, cells were transitioned to 3   C 

and the media was replaced with the above formulation minus interferon-gamma but with 300 

ng/mL doxycycline added to activate the BMPR2 transgene.   

 

Extracellular metabolite analysis-  

Cell culture media was sampled at indicated 2, 6, and 24 hours after fresh media was 

added to plates.  We used the YSI 2300 Stat Glucose and Lactate Analyzer (Yellow Springs, 

OH) to determine the concentration of lactate and glucose at each time point.  Similarly, amino 

acids were analyzed using high performance liquid chromatography (HPLC).  Prior to HPLC 

analysis, excess media protein (from cells or serum) was removed using a cold acetone 

precipitation and norvaline was added as an internal standard.  Samples were then injected onto a 

Zorbax Eclipse Plus C18 column (Agilent) using a two phase chromatography method as 

previously described (6).     

 

Metabolite extraction and GC-MS analysis of 
13

C labeling-  

To analyze how BMPR2 mutations affected intracellular glutamine metabolism, BMPR2 

mutant and native expressing mPMVEC were cultured in media containing 2 mM [U-

13
C5]glutamine in place of unlabeled glutamine.  To analyze the incorporation of labeled 

glutamine into downstream metabolic products, the intracellular metabolites were extracted from 

cells quenched with 1 mL of pre-cooled methanol (-80
o
C).  Polar and nonpolar metabolites were 

separated using a biphasic extraction composed of 2 mL methanol, 2 mL water, and 2 mL 
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chloroform.  After drying the aqueous phase, the polar metabolites were derivatized using 

MBTSTFA + 1  T DMCS (Pierce). Lastly, 1 μL of each derivatized sample was injected onto 

30m DB-35ms capillary column in an Agilent 6890N/5975B GC-MS.   

 

Metabolic flux analysis-  

Replacing unlabeled glutamine with the [U-
13

C5]glutamine stable isotope tracer resulsted 

in isotopic enrichment patterns in downstream metabolites dependent on glutamine metabolism.  

When combined with a metabolic network model and measured extracellular fluxes, it is possible 

to estimate the intracellular fluxes which would give rise to the observed enrichment patterns by 

performing a least squares regression to minimize the lack of fit between the measured and 

simulated isotopomer distributions.  Therefore we developed a reaction network model of 

BMPR2 mutant and native mPMVEC metabolism using the metabolic flux analysis software 

INCA (7).  This software utilizes the elementary metabolite unit (EMU) decomposition to 

efficiently simulate mass isotopomer distributions dependent on the fluxes and isotope tracer 

applied (8,9). 

The metabolic model for native expressing mPMVEC cells consisted on intracellular 

labeling data from lactate, alanine, glutamate, citrate, malate, and aspartate.  We applied 

extracellular uptake rates for glucose and glutamine as well as the production rates for alanine 

and lactate to constrain the network.  The model for mutant BMRP2 in mPMVEC used these 

same parameters.  However, when trying to fit for mutant BMPR2 mPMVEC metabolism, we 

could not reconcile differences between glutamine uptake and CAC labeling.  This indicated 

glutamine was being used for more than just CAC anaplerosis.  Glutamate secretion fluxes were 

added to the model in addition to an anabolic ‘sink’ to account for this difference.   
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Flux parameters for both models were adjusted iteratively using a Levenberg-Marquardt 

algorithm.  This was repeated until an optimal agreement between simulated and observed 

measurements was found.  This process was initiated with random values and repeated at least 50 

times to ensure minimum global fits were achieved.  In addition to calculating the magnitude of 

the fluxes, we assessed goodness-of-fit by subjecting calculations to a chi-square statistical test 

(χ =  . 1).   5  confidence intervals were calculated for each flux by evaluating the sensitivity 

of the sum-of-squared residuals to parameter variations (10).  Further modeling details can be 

found in the Appendix.     

 

Results and Discussion 

 

BMPR2 Mutations in an in vitro model of murine pulmonary hypertension are associated with 

altered extracellular flux.   

 

To determine if BMPR mutations are associated with altered extracellular metabolic flux, 

media samples were taken across 24 hours for both murine derived native and BMPR2 mutants 

in vitro.  We found that mutant and native expressing BMPR2 cells were characterized by similar 

rates of glucose uptake but the lactate secretion flux was elevated the native expressing 

cells(Figure 6.1A).  Glutamine uptake was greater in BMPR2 mutant expressing cells.  

Additionally, we found that R899x mutant BMPR2 mPMVEC produced both alanine and 

glutamate at significant rates compared to their native counterpart (Figure 6.1B).  Broadly, the 

differences in these extracellular fluxes indicate mutations in BMPR2 reprogram mPMVEC 

metabolism. 
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13
C tracer analysis reveals BMPR2 mutations are associated with altered glutamine anaplerosis   

Since we observed BMPR2 mutation-dependent increases in extracellular amino acid 

flux, we hypothesized that intracellular amino acid metabolism was greatly altered.  It has been 

shown before that BMPR2 mutations can drive alterations in CAC anaplerosis (5).   In particular, 

it was observed that CD hPMVEC BMPR2 mutants were deficient in intracellular aspartate, 

glutamate, and glutamine compared to native expressing controls.  To test the hypothesis that 

BMPR2 mutants require excess glutamine to meet anaplerotic needs, R899x BMPR2 mPMVEC 

mutants were cultured in the presence of 2 mM of the stable isotope tracer [U-
13

C5]glutamine.  

After extraction of intracellular metabolites, their isotopic enrichment was analyzed by GC-MS.  

Next we corrected the measured mass isotopomer distributions for the natural isotope abundance 

 
Figure 6.1:  Non-glucose extracellular fluxes are dramatically altered in R899x BMPR2 

mutant mPMVEC.  The extracellular media of mPMVEC expressing native or R899x 

mutant BMPR2 in culture were sampled over 24 hours.  Using the measured metabolites from 

each timepoint and endpoint protein concentrations, we calculated extracellular uptake and 

secretion fluxes.  (A)  Glycolytic fluxes calculated for both cell types.  Glucose uptake was 

nearly identical between both cell types while cells expressing native BMPR2 had increased 

lactate secretion.  (B) Extracellular glutamine uptake, glutamate secretion and alanine 

secretion were much higher for BMPR2 mutant expressing mPMVEC demonstrating a role 

for altered amino acid metabolism in these cells.  Data represent mean +/- S.E., n=3; * 

different from vehicle, p <.05. 
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by applying the method of Fernandez et al. (11) and calculated the atom percent isotopic 

enrichment of the following metabolites: lactate, alanine, glutamate, aspartate, malate, and 

citrate.  The atom percent enrichment of a metabolite pool represents the amount of that 

metabolite was synthesized from the isotope tracer (i.e. [U-
13

C5]glutamine) vs. unlabeled sources 

(i.e. glucose).   

 

 

 

We found that the intracellular lactate pool had only approximately 2% enrichment from 

labeled glutamine in both the wild type BMPR2 mPMVEC and the R899x mutants.  

 

 

 

Figure 6.2:  Isotopic enrichment of glycolytic and CAC metabolites.  [U-
13

C5]glutamine 

was fed to mPMVEC expressing either native or R899x mutant BMPR2.  We then analyzed 

the isotopic enrichment of downstream metabolites using GC-MS and calculated the atom 

percent enrichment.  (A)  Atom percent enrichment of lactate and alanine. (B) Atom percent 

enrichment of citrate, malate, and glutamate.  
13

C atom percent enrichment of intracellular 

metabolites except for lactate was significantly higher in mutants than native controls.  Data 

represent mean +/- S.E., n=3 for R899x mutant derived metabolites, n=2 for native samples; * 

different from vehicle, p <.05. 
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Interestingly, the labeling of the 2 carbon fragment of alanine 232 from R899x mutants was 

approximately 10 fold higher than wild type cells (  

 

Figure 6.2A).  Next we analyzed the isotopic enrichment of CAC intermediates citrate and 

malate as well as glutamate (as a surrogate for alpha-ketoglutarate).  Although this data does not 

inform us about altered pool sizes, the enrichment in malate, citrate, and glutamate pools from 

BMPR2 mutant mPMVECs indicated these cells rely on extracellular glutamine to synthesize 

these CAC intermediates (  

 

Figure 6.2B).  Together, these measurements demonstrate that the R899x BMPR2 mutant is 

associated with increased glutamine CAC anaplerosis.   

 

 
13

C metabolic flux analysis reveals BMPR2 mutations drive increased glutamine CAC 

metabolism relative to glucose uptake 

 

The observation of increased isotope enrichment of CAC intermediates in BMPR2 

mutants led us to hypothesize that BMPR2 mutants rely on a shift to glutamine anaplerosis to 

maintain intracellular substrate levels for growth and proliferation.  To test this hypothesis, we 

performed metabolic flux analysis (MFA) to calculate intracellular fluxes associated with 

glutamine anaplerosis, CAC metabolism, and pyruvate metabolism along with their 95% 

confidence intervals.  We found that most CAC fluxes were qualitatively elevated in BMPR2 

mutant mPMVEC, but statistical significance could not be attained due to high error in input (i.e. 

extracellular flux) measurements which drive errors in the model (Figure 6.3).  However, we 
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calculated significantly elevated flux through glutamate dehydrogenase in BMPR2 mutants, 

which is an intermediate step in the conversion of glutamine to CAC α-ketoglutarate.   

 

 

  

Our metabolic model demonstrates that enhanced glutamine uptake in BMPR2 mutants is 

likely due to enhanced CAC demand for anaplerosis.  In building the metabolic network, we 

were unable to initially fit the CAC demand for glutamine (constrained by isotope labeling) to 

the measured extracellular glutamine flux since there was excess glutamine entering the cell.  To 

match the incoming glutamine, we added an ‘anabolic’ pool to the reaction network which 

allows glutamine carbon to enter non-measured anabolic pathways.  These pathways could 

include glutathione synthesis to combat oxidative stress associated with BMPR2 mutants.  It is 

important to note this step was not required in the modeling of metabolism of the mPMVEC 

 
Figure 6.3:  

13
C flux analysis of CAC metabolism.  We calculated intracellular fluxes 

associated with CAC anaplerosis and cataplerosis in both native and mutant BMPR2 mPVEC.  

Qualitatively, R899x mutant BMPR2 was associated with elevated CAC flux fueled by GDH 

derived alpha-ketoglutarate.  Abbreviations: ADH, alpha-ketoglutarate dehydrogenase; CS, 

citrate synthase; GDH, glutamate dehydrogeanse; ME, malic enzyme; PC, pyruvate 

carboxylase; PDH, pyruvate dehydrogenase.  Error bars indicate 95% confidence intervals; * 

different from vehicle, p <.05.  
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expressing native  MPR2 demonstrating that the  MPR2 mutation shifts the cell’s metabolism 

to need glutamine for multiple reactions, not solely CAC anaplerosis.   

 

Study limitations 

In this study, extracellular fluxes were normalized to protein concentration taken at one 

time point.  BMPR2 mutants are known to have altered growth rates Therefore, future 

experiments will be performed to determine explicit growth rates for native and BMPR2 mutant 

endothelial cells grown under the conditions performed in this study.  This information will 

allow for the calculation of more accurate fluxes relative to cell or protein number compared to 

the current method used.   

 BMPR2 mutants were cultured in the presence of [U-
13

C5]glutamine to characterize 

altered glutamine anaplerosis in PAH models.  Besides glutamine anaplerosis, both glycolysis 

and the pentose phosphate pathway have been shown to be drastically altered by BMPR2 

mutations.  To further characterize these metabolic pathways in the context of BMPR2 mutation 

driven PAH, alternate stable isotope tracers must be used.   

 

Conclusions 

 

In these preliminary MFA experiments, we have found that the R899x BMPR2 mutant in 

mPMVEC is characterized by elevated glutamine uptake that is used to a) fuel CAC flux, and b) 

provide substrates for non-measured processes, potentially N-acetylaspartylglutamate (5) or  

glutathione.  Future experiments will focus on minimizing error in the extracellular flux, which 

will allow for better determination of intracellular fluxes.  Finally the calculation of growth rates 
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of BMPR2 mutants will further highlight how BMPR2 mutations reprogram the metabolic 

phenotype of the cell.   
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Appendix 6A 

 

Table 6A.1: Reactions and atom transitions for metabolic flux analysis of mPMVEC 

expressing native or R899x mutant BMPR2. List of metabolite abbreviations can be found 

below. Dot suffixes denote specific sub-pools of metabolite: .x, extracellular; .t, tracer; .d, 

dilution.   

 

Pyruvate Metabolism Reaction Name 

Glucose (abcdef)  PEP (cba) + PEP (def) Glc Uptake 

PEP (abc)  Pyr (abc) PK 

Pyr (abc)  Lac (abc) LDH 

Pyr (abc) + CO2 (d)  Mal (abcd) PC 

Mal (abcd)  Pyr (abc) + CO2 (d) ME 

Pyr (abc)  AcCoA (bc) + CO2 (a) +  PDH 

Pyr (abc)  Ala (abc) GPT 

CAC Metabolism  

AcCoA (ab) + Mal (cdef)  Cit (fedbac)  CS 

Cit (abcdef)  Akg (abcde) + CO2 (f)  IDH 

Akg (abcde)  Suc (bcde) + CO2 (a)  ADH 

Suc (½ abcd + ½ dcba)  Fum (½ abcd + ½ dcba) SDH 

Fum (½ abcd + ½ dcba)  Mal (abcd) FDH 

Glutamine anaplerosis  

Gln.x (abcde)  Gln (abcde) Gln uptake 

Gln (abcde)  Glu (abcde) GLN 

Gln (abcde)  Anabolism Anaplerosis 

Glu (abcde)  Akg (abcde) GDH 

Glu (abcde)  Glu.x (abcde) Glu secretion 

Dilution   

Asp.d (abcd)  Asp (abcd) Asp G parameter 
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Table 6A.2 Measured Extracellular fluxes and GC-MS ions used for metabolic flux 

analysis.  The reported standard error (SEM) of the GC-MS  is representative of the calculated 

error amongst the listed n biological replicates.   

Measured Net Fluxes 

Metabolite Flux 

Glucose Glucose  PEP + PEP 

Lactate Lac  Lac.x 

Glutamine Gln.x  Gln 

Glutamate Glu  Glu.x 

Alanine Ala  Ala.x 

 

Measured GC-MS Ions 

Metabolite Mass Composition Carbons 
SEM (mol%) 

Native R899x 

Glu 432 C19H42O4NSi3 1 2 3 4 5  0.7 0.7 

Glu 330 C16H36O2NSi2  2 3 4 5  0.7 0.7 

Mal 419 C18H39O5Si3 1 2 3 4   0.9 2.1 

Asp 390 C17H40O3NSi3  2 3 4   0.94 0.85 

Asp 418 C18H40O4NSi3 1 2 3 4   0.53 1.2 

Lac 233 C10H25O2Si2  2 3    0.51 1.1 

Lac 261 C11H25O3Si2 1 2 3    0.5 0.5 

Ala 232 C10H26ONSi2  2 3    0.5 0.88 
Cit 459 C20H39O6Si3 1 2 3 4 5 6 0.97 6 
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Table 6A.3:  Calculated fluxes for Native BMPR2 expressing mPMVEC.   

 

Parameter Value 95% Confidence Interval 

Net Flux    

Glucose Uptake 96.1 [48.7, 143.5] 

Lactate Secretion 225 [180.9, 269.9] 

Glutamine Uptake 53.1 [28.6, 77.6] 

Glutamate 

Secretion 
Not detectable via HPLC analysis 

Alanine Secretion 9.8 [7.8, 11.8] 

PDH 28.9 [13.7, 48.5] 

CS 28.9 [13.7, 48.5] 

IDH 28.9 [13.7, 48.5] 

GLS 10.2 [4.7, 18.2] 

GDH 10.2 [4.7, 18.2] 

ADH 39.1 [18.4, 66.2] 

SDH 39.1 [18.4, 66.2] 

FUS 39.1 [18.4, 66.2] 

ME 23.1 [10.6, 40.1] 

PC 12.8 [5.8, 22.7] 

GPT 9.8 [7.8, 11.8] 

Anabolic flux    

‘Gln anabolic’ 42.9 [17.4, 68.2] 

Exchange Flux    

IDH 0.1 [0.0, 0.3] 

SDH 0.0 [0.0, 100] 

FUS 0.0 [0.0, 100] 

GPT 100 [0.0, 100] 

GDH 100 [8.1, 100] 

Dilution    

Asp G Parameter 100 [96.6, 100] 
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Table 6A.4: Calculated fluxes for R899x BMPR2 mutant expressing mPMVEC cells. 

 

Parameter Value 95% Confidence Interval 

Net Flux    

Glucose Uptake 92.2 [69.5, 115] 

Lactate Secretion 131 [105.1, 158.5] 

Glutamine Uptake 107 [78.9, 135.0] 

Glutamate 

Secretion 
7.8 [4.6, 10.9] 

Alanine Secretion 29.4 [22.5, 36.3] 

PDH 48.5 [37.0, 62.6] 

CS 48.5 [37.0, 62.6] 

IDH 48.5 [37.0, 62.6] 

GLS 45.8 [34.5, 58.7] 

GDH 38.0 [27.1, 50.6] 

ADH 86.9 [64.8, 112.1] 

SDH 86.9 [64.8, 112.1] 

FUS 86.9 [64.8, 112.1] 

ME 47.3 [34.5, 61.8] 

PC 9.3 [0, 16.5] 

GPT 29.4 [22.5, 36.3] 

Anabolic flux    

‘Gln anabolic’ 61.2 [30.6, 91.5] 

Exchange Flux    

IDH 0.0 [0.0, 0.5] 

SDH 100 [0.0, 100] 

FUS 100 [0.0, 100] 

GPT 43.4 [0.0, 100] 

GDH 32.3 [11.3, 100] 

Dilution    

Asp G Parameter 97.4 [90.8, 100] 
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CHAPTER 7 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

  

Conclusions 

13
C metabolic flux analysis (MFA) is invaluable technique to develop an understanding 

of how alterations in the complex regulatory network of biological systems (i.e. genetic 

mutations, protein-protein interactions, environmental effects) affect the ultimate metabolic 

phenotype of the cell.  When combined with traditional biochemical techniques of protein 

expression, pharmacological inhibition of signaling pathways, and RNAi interference, integrated 

molecular mechanisms of pathology can be developed.  Armed with the molecular mechanisms 

of disease it is therefore possible to identify novel targets for therapies and diagnostics to alter 

pathology.   

Saturated fatty acid overload disrupts normal hepatic cell function as characterized by 

dysregulated CAC anaplerosis, depleted ER calcium, oxidative stress, and apoptosis.   The 

mechanism by which these alterations occur has not been well characterized.  This dissertation 

examined the role of aberrant CAC anaplerosis pertaining to in vitro models of hepatic 

lipotoxicity.  Elevated levels of saturated fatty acids redistribute intracellular calcium from the 

ER to the mitochondria.  This rise in mitochondrial calcium correlates with a rise in CAC flux 

and oxidative stress.  In particular, α-ketoglutarate, glutamate, and glutamine act as substrates for 

lipotoxic dysregulation of CAC anaplerosis. 

 In Chapter 3, the hypothesis that fatty acid oxidation does not drive mitochondrial 

derived oxidative stress was tested.  Using 
13

C MFA, glutamine was demonstrated to provide 

carbon for CAC metabolism in the context of lipotoxicity instead of using acetyl-CoA derived 
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from fatty acid oxidation.  Isolating mitochondrial function using a complex I inhibitor reduced 

lipotoxicity and oxidative stress while simultaneously attenuating metabolic flux.  However, 

reducing oxidative stress with antioxidants prevented lipid-induced cell death without reversing 

the lipotoxic mitochondrial phenotype.  These results defined a role for abnormal anaplerosis in 

lipotoxicity, which occurs independently of fatty acid oxidation.  Therefore, therapies aimed to 

reduce anaplerosis may alter the course of lipotoxicity.  Additionally, antioxidant therapy may 

attenuate the downstream markers or disease (oxidative stress) but may not alter the upstream 

signals which precipitate the pathology. 

 The possible role of intracellular calcium was explored in Chapter 4 since it would 

represent a functional pro-apoptotic link between the ER and oxidative stress hallmarks of 

lipotoxicity.  Chelation of intracellular calcium in palmitate treated hepatic cells reduced 

glutamine anaplerosis, which in turn attenuated oxidative stress and lipoapoptosis.  This finding 

is significant because it links ER stress to dysregulated mitochondrial function in hepatic 

lipotoxicity.  Therefore therapies which aim to reduce ER stress could delay mitochondrial 

dysfunction by increasing ER capacity for calcium. 

Since calcium can stimulate CAC metabolism by activating α-ketoglutarate 

dehydrogenase, it was hypothesized that aberrant anaplerosis which occurs in lipotoxicity is to 

re-supply α-ketoglutarate to the CAC.  In Chapter 5, this hypothesis was tested by replacing the 

extracellular culture media glutamine with glutamate or α-ketoglutarate and by removing these 

substrates altogether.  Removing glutamine from culture media attenuated lipotoxicity 

presumably by reducing the amount of anaplerotic substrate available to fuel the aberrant 

calcium stimulated metabolism.  Targeted and pharmacologic inhibition of the glutamate 

oxaloacetate pathways revealed that these pathways provided the α-ketoglutarate to fuel lipotoxic 
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anaplerosis.  These results are particularly interesting because in humans obesity is associated 

not just with increased fat uptake, but also net uptake of all macromolecules (carbohydrates and 

protein).  From a nutritional standpoint, these results indicate that the net uptake of non-lipid 

substrate can greatly alter disease progression.  Together Chapters 3,4, and 5 have characterized 

the metabolic determinants of hepatic lipotoxicity (Figure 7.1).   

 

 

 

 Lastly, Chapter 6 examined anaplerosis by applying 
13

C MFA to an in vitro model of 

BMPR2 mutation-driven pulmonary arterial hypertension.  BMPR2 mutants have an increased 

dependence on glutamine to maintain the level of CAC intermediates.  It was previously 

hypothesized that the decreased levels of CAC intermediates would result in decreased CAC flux 

in BMPR2 mutants.  However, it was found that BMPR2 mutants relied on glutamine 

 
Figure 7.1  Metabolic determinants of hepatic lipotoxicity.  Elevated saturated fatty acids 

(palmitate) induce oxidative stress-dependent apoptosis.  Increased mitochondrial calium 

enhances anaplerosis and metabolic flux through CAC pathways primarily relying on 

glutamine carbon.  Based on this mechanism, therapies can delay lipotoxicity at several 

nodes.  In particular, therapies which target the ER are most attractice since they would target 

the most upstream node in the disease mechanism. 
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anaplerosis to maintain a similar or higher CAC flux compared to the native BMPR2 expressing 

cells.  Understanding how BMPR2 mutations reprogram metabolism will assist in both in the 

diagnosis of disease as well as development of novel treatments.   

 

Suggestions for Future Work 

 The majority of the work in this dissertation tested hypotheses in immortalized hepatic 

cells in vitro using 
13

C MFA.  Although several key experiments were repeated in isolated 

primary hepatocytes, future work should aim to translate the experiments and hypotheses 

generated by this dissertation to in vivo models of NASH.   

 Prior to in vivo flux studies, optimal tracers will need to be selected.  In Chapter 5, 

primary hepatocytes were labeled using [U-
13

C5]glutamine.  Although our in vitro experiments 

with isolated primary hepatocytes metabolize this tracer, it is possible that alternative tracers may 

be more ideal for future studies.  One limitation to using [U-
13

C5]glutamine to study hepatocyte 

metabolism is that liver glutaminase, which catalyzes the conversion of glutamine to glutamate, 

is not expressed equally across the liver.  Unlike glutaminase, hepatocytes express glutamate 

dehydrogenase and glutamate dependent transaminases fairly equally across the liver (1,2).  

Additionally in Chapter 5, it was observed that lipotoxicity was enhanced when hepatocytes were 

cultured in glutamate instead of glutamine.  Therefore, both future in vitro and in vivo 

experiments should consider using a [U-
13

C5]glutamate in addition to the [U-
13

C5]glutamine 

tracer, although costs may limit [U-
13

C5]glutamine in vivo.  An alternative to 

glutamine/glutamate tracers is [U-
13

C3] propionate, a tracer traditionally used to estimate hepatic 

gluconeogenesis relative to CAC flux in vivo (3).  These methods currently in development in the 

Young Lab.   
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 There are many diet induced and genetically altered animal models of fatty liver and 

NASH (see Chapter 2).  However, several of the mechanisms proposed in this dissertation may 

be difficult to directly test in vivo.  For example, blocking mitochondrial calcium uptake in vivo 

could have numerous, deleterious side effects.  Alternatively, overexpression of sarco-

endoplasmic reticulum calcium ATPase 2b (SERCA2b) in the livers of NASH or fatty liver 

animals could be utilized to test the hypothesis that elevated hepatic lipid results in decreased ER 

calcium stores and net mitochondrial calcium uptake.  The function of this protein in vivo is to 

facilitate ER calcium reuptake, which in turn reduces ER stress.  Additionally, obesity is 

associated with decreased ER calcium due to SERCA inhibition (4).  Interestingly, SERCA2b 

overexpression can restore glucose tolerance suggesting an overarching mechanism connecting 

obesity and glucose intolerance with calcium maintenance.  Additionally, in control animals, 

SERCA2b overexpression had no effect on metabolic markers.  Based on the mechanisms 

explored in this dissertation, lipid-altered calcium flux could stimulate CAC anaplerosis which 

could account for the mitochondrial alterations reported in humans and mice with elevated intra-

hepatic lipids (5,6).  When combined with the proper cocktail of isotope tracers, a very similar 

mechanism tested in this dissertation could be tested in vivo.  Broadly, as a powerful tool of 

metabolic engineering, 
13

C MFA can assist in translational research by developing molecular 

mechanisms of disease which provide unique therapeutic targets to test in vivo.   
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APPENDIX OF DETAILED PROTOCOLS 
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Cell Titer Blue Viability Assay 

 

Purpose: 

 

To measure the viable population of H4IIEC3 cells in response to various treatments in 

96 well plates.   

 This protocol is specific for adherent cells. 

 

Mechanism: 

 

The active reagent in the Cell Titer Blue Cell Viability Kit is the nonfluorescent resazurin 

which is reduced to fluorescent resorfin when in the presence of NAD(P)H.  Live cells 

continuously recycle NAD(P)H through metabolic activity making resazurin a useful dye 

for measuring viability.  This is most useful at long time points where the metabolism of 

all viable populations (regardless of treatment) is approximately equal.  Increased dye 

fluorescence is therefore a function of population viability.  However, if inhibitors are 

used which decrease the metabolic activity without killing the cell population (i.e. 

Complex I inhibitors), population viability will be underestimated. 

 

Materials: 

 

 Cell Titer Blue Concentrated stock (Promega Catalog No. G8081) 

 HBSS buffer 

 Low glucose DMEM (Media w/out phenol red) 

 96 well plate- opaque, clear bottom. 

 Plate reader 

 

Prior to experiment: 

 

 48 hrs before assay, seed 2x10^4 cells per well in a 96 well plate (black, clear bottom) 

 

Procedure: 

 

 30 minutes prior to adding Cell Titer Blue dye- add Hydrogen Peroxide controls.  

Normally we use .5-1 mM concentration (final).   

 Remove media from cells.   

 Wash 2x with HBSS. 

 Add 100 uL of Low glucose DMEM (or other media) that does not contain phenol red.  

This will react with the dye and result in measurement errors.   

 Add 20 uL of Cell Titer Blue Reagent. 

 Incubate for a minimum of 4 hours.  

 Read fluorescent signal at an ex/em of 560/590.  If reader can shake plate, do so for ~5 

seconds prior to fluorescent measurement. 
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Propidium Iodide Toxicity Assay 

 

Purpose: 

 

To measure the nonviable population of cells in response to various treatments in 96 well 

plates. 

This protocol is specific for adherent cells. 

 

Mechanism: 

 

Propidium iodide (PI) is an intercalating dye and will only bind to double stranded DNA 

longer than 4-5 base pairs.  Since PI cannot cross the cell membrane, it is useful when 

trying to discriminate dead from live cells in a population.   

 

Materials: 

 

 Propidium Iodide powder stock (Invitrogen Catalog No. P1304MP) 

 HBSS buffer 

 Low glucose DMEM (Media w/out phenol red) 

 96 well plate- opaque, clear bottom.  

 

Prior to experiment: 

 

 48 hrs before assay, seed 2x10^4 cells per well in a 96 well plate (black, clear bottom) 

 

Procedure: 

 

 Dye preparation- dissolve PI in HBSS to make a stock solution of 1 mg/mL (1.5 mM) 

 1 hour prior to adding PI dye- add 70% ethanol solution to appropriate wells for a 

positive control.   

 Remove media from cells.   

 Do not wash, doing so could wash out dead cells 

 Add 100 uL of Low glucose DMEM (or other media) that does not contain phenol red.  

This will react with the dye and result in measurement errors.   

 Make stock of 5 uM PI by adding 33.3 uL of PI stock to 10 mL of DMEM 

 Incubate for a minimum of 1 hr.  Remove dye and replace with phenol red free media. 

 Measure fluorescence 

o Ex 535, Em 617  

o For FL 600 use ex: 530, em: 645, bottom read, sensitivity: 100 
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Apo-ONE Caspase 3/7 Reagent Apoptosis Detection 

 

Purpose: 

 

To measure apoptosis in H4IIEC3 cells by detecting the activities of caspase-3 and -7.   

 This protocol is specific for adherent cells. 

 

Mechanism 

 

The Apo-ONE kit is used to measure apoptosis in cells by measuring caspase activity.  

The kit contains a lysis buffer which permeabilizes the cell population to facilitate dye 

introduction to caspases 3/7.  When the nonfluorescent dye comes in contact with the 

caspases, quenching groups are removed from the dye and return it to its fluorescent 

rhodamine state.  T 

 

Materials: 

 

 Apo-ONE Caspase 3/7 Kit (Promega Catalog No. G7791) 

 96 well plate (opaque, clear bottom) 

 Low Glucose DMEM 

 Staurosporine can be used as a positive control. 

 

Prior to experiment: 

 

 48 hrs before assay, seed 2x10^4 cells per well in a 96 well plate (black, clear bottom) 

 

Procedure: 

 

 Dye preparation- add 100 uL Substrate into 9900 uL Buffer provided in the kit- good for 

24-48 hrs.  Additionally, smaller volumes of the reactive mixture can be made at a time if 

the substrate and buffer ratio is kept constant. 

 Remove media from cells.   

 Wash 2x with HBSS carefully to not dislodge dying cells.   

 Add 100 uL of Low glucose DMEM (or other media) that does not contain phenol red.  

This will react with the dye and result in measurement errors.   

 Add 100 uL of Apo ONE stock. 

 Incubate for a minimum of 1 hour.  

 Wavelengths- excitation 499, emission 521 

o For FL-600 plate reader 

o Use 485 filter for excitation and 5 

o Bottom Read 

o Set Sensitivity to 125, if “overflow” is returned by the instrument, reduce 

sensitivity and retake measurement.   
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Reactive Oxygen Species (ROS) Assay 

 

Purpose: 

 

To measure the levels of reactive oxygen species (ROS) in H4IIEC3 cells using H2DCFA 

in 96 well plates.   

 This protocol is specific for adherent cells. 

 

Mechanism: 

 

Non-fluorescent H2DCFA is converted to fluorescent DCF in the presence of intracellular 

ROS species (most sensitive to H2O2). 

 

Materials: 

 

 H2DCFA (Invitrogen Catalog No. D-399) 

 DMSO 

 HBSS buffer 

 96 well plate- opaque, clear bottom. 

 

Prior to experiment: 

 

 48 hrs before assay, seed 2x10^4 cells per well in a 96 well plate (black, clear bottom) 

 

Procedure: 

 

 30 minutes prior to adding H2DCFA dye- add Hydrogen Peroxide controls.  Normally 

we use .5-1 mM concentration (final).   

 To make H2DCFA stock solution- dissolve H2DCFA powder in DMSO to make 10 mM 

solution. 

 Dilute H2DCFA in HBSS to make 10 uM working solution.  H2DCFA is light sensitive 

and the tube should be wrapped in tin foil to prevent any degradation due to light.   

 Vortex for 30 seconds. 

 Remove media from cells.   

 Wash 2x with HBSS. 

 Add 100 uL of H2DCFA mixture to cells. 

 Incubate for 30-45 minutes.  

 To measure ROS- H2DCFA fluorescence, set excitation wavelength to 485 nm and 

emission wavelength to 530 nm.  Set sensitivity of reader to 150.  – specific FL-600 plate 

reader 
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Rhod-2 Calcium Indicator  

 

Purpose: 

 

To measure the relative level of calcium in the mitochondria of H4IIEC3 rat hepatomas. 

This protocol is specific for adherent cells. 

 

Mechanism: 

 

Potential driven uptake allows for selective staining of mitochondria with Rhod-2.  

Increases in calcium increase emitted fluorescent signal.   

 

Materials: 

 

 Rhod-2 fluorescent dye in 50 ug aliquots (Invitrogen catalogue R1245MP) 

 DMSO 

 Media 

 96 well plate- opaque, clear bottom.  

 

Prior to experiment: 

 

 48 hrs before assay, seed 2x10^4 cells per well in a 96 well plate (black, clear bottom) 

 

Procedure: 

 

 Add 8.9 uL DMSO to vial to make 5 mM stock 

 Final treatment concentration is 10 uM for 1 hr 

 Make secondary stock of 110 uM  depending on how many wells we will treat  

o Final volume per well  is 220 uL.  Add 20 uL of secondary stock per well 

 Incubate for 1 hour. 

 Remove media from cells.   

 Rinse cells 3 times with PBS 

 Measure fluorescence- Must use core plate reader or DRTC reader- use monochromator  

o Ex 552, Em 581 

 Ionomycin can be used as a positive control 
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JC-1 Analysis of Mitochondrial Potential 

 

Purpose: 

 

 To identify mitochondrial impairments as a function of mitochondrial potential.   

 This protocol is specific for adherent cells 

 

Mechanism: 

 

The JC-1 dye accumulates in mitochondria in monomeric (green) form.  The increase in 

mitochondrial potential causes the dye to form aggregates characterized by a shift from 

green to red fluorescence.  Therefore a ratio of red to green fluorescent emissions (using 

the same excitation) indicates the relative mitochondrial potential.  

 

Materials: 

 

 JC-1 Dye (Invitrogen T-3168) 

 96 well plate, black, clear bottom 

 Plate reader 

 Ethanol 

 Media 

 

Prior to experiment: 

 

 48 hrs before assay, seed 2x10^4 cells per well in a 96 well plate (black, clear bottom) 

 Stock solution is 5 mg in 1 mL of ethanol ( 5mg/mL concentration) 

 

Dye loading:  

  

 Treatment final concentration is 10 ug/mL 

 Make secondary stock concentration of 110 ug/mL 

 Calculate total volume needed.  For a 96 well plate you will need 1950 uL – 2000 uL. 

 For 2000 uL add 44 uL of 5 mg/mL stock to 1956 uL DMEM in a small tube.   

 VORTEX VIGOROUSLY.  JC-1 is tough to dissolve.  Pre-warm media ahead of time. 

 Add 20 uL of 110 ug/ml of secondary stock directly on top of 200 uL media with 

treatments. 

 Incubate for 1 hour 

 Rinse 3 times with PBS 

 Add 100 uL DMEM back to wells 

 Excite dye at 485 nm and measure fluorescence at 530 nm (green) and 590 nm (red) 

 

Data Analysis: 

 

 Ratio Red/Green signals, increase in this ratio indicates higher relative mitochondrial 

potential.  
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Protocol for siRNA transfection of attached cells 

 

Purpose: 

 

 Silence native gene expression using siRNA. 

 

Mechanism: 

 

Antisense RNA is added to cells using transfection reagent (lipofectamine).  After a 

series of processing steps inside the cell (Dicer/RISC complex), a strand of the added 

RNAi can then bind native RNA and reduce native gene expression. 

 

Materials: 

 

 Transfection reagent (RNAiMAX) 

 Antisense RNA (i.e. IDT Trifecta kit) 

 Opti-MEM 

 Antibiotic free media with serum and glutamine 

 Cells in culture 

 

Prior to transfection: 

 

Seed cells at approximately 250,000 cells/mL in a 6 well plate, 1.25 million cells per 96 

well plate 24 hours before transfection.  Make sure media is antibiotic free but contains 

regular amounts of serum and glutamine. 

 

Transfection (makes 2 mL aliquots per antisense RNA): 

 

 Dilute concentrated siRNA stocks to a concentration of 2 μM with DNA-, RNA-, and 

nuclease-free water. 

 Couple siRNA and Lipofectamine by preparing two vials.  In the first vial add 25 μL of 2 

μM siRNA to 125 μL Opti-MEM.  In the second vial add 12 μL RNAiMAX to 138 μL 

Opti-MEM.   

 Let each vial sit at room temperature for 5 minutes. 

 Add contents of each vial together (3   μL total) and allow to complex for 2  minutes at 

room temperature. 

 Add 3   μL of complexed siRNA to 1.  mL of antibiotic free media (normally use 

DMEM for H4IIEC3 experiments) 

 Add 2 mL per well for 6 well plate.  Add 2  μL per well for  6 well plate. 

 Incubate for 24 hours 

 Remove siRNA media and replace with fresh, anti-biotic free media with serum and 

glutamine. 

 Incubate an additional 24 hours prior to experiments. 

 Perform experiments or extract RNA using Qiagen RNeasy kit to assess knockdown 

efficiency. 
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 Extraction of RNA using Qiagen RNeasy (follow manufacturer’s protocol) provides 

RNA of a known concentration.  From the RNA, one can synthesize cDNA by using the 

iScript cDNA synthesis kit (Bio-Rad 170-8891).  Quantitative polymer chain reaction 

(qPCR) can then be performed using the iQ SYBR Green Super kit (Bio-Rad 170-8882) 

with primers for target of choice.  
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Whole cell oxygen uptake measurements 

 

Purpose: 

 

 Assess mitochondrial activity as a function of whole cell oxygen uptake. 

 

Mechanism: 

 

Media oxygen is consumed as a cells oxygen to water as part of electron transport chain 

activity.  We measure media oxygen depletion as a function of the number of cells and 

treatments. 

 

Materials: 

 

 Oxygraph 2K 

 Fresh media 

 

Prior to performing oxygen uptake measurement: 

 

Seed cells at desired density along with any treatments designed to alter mitochondrial 

metabolic capacity. 

 

Oxygraph 2K Protocol: 

 

General Operation of Oroboros Oxygraph 2K 

 First, turn on instrument. The switch is on the back.   

 Open instrument software- DatLab 

 A window will pop up asking you to set temperature.  Click Connect to Oxygraph 

 Set name or initials after experiment name -> save 

 Instrument will likely have ethanol in it from previous user.  Remove and rinse ethanol 

using the aspirator set up near instrument.  The ‘On’ button is on the face of the aspirator.  

Add H2O to rinse. Do this 3x making sure stir bars are on (should be set to 750 rpm).  

Keys F11 and F12 should toggle stir bars in chamber A, B respectively.    

 Don’t Forget to Rinse Stoppers.  These are used to seal cells in the chamber to perform 

uptake measurements.  Residual ethanol can result in extra noise in the data. 

 At least an hour before you are ready to make uptake measurements, close chambers with 

stoppers.  Use plastic tool to close the chamber just enough so there is oxygen in the 

chamber.  This allows you to stabilize the probe in gas phase. 

 Set up oxygen, let oxygen level stabilize, flux should approach zero 

 Once the oxygen level stabilizes and the flux is stabilized at zero, you are ready to begin 

your experiments. 

 Remove stoppers, remove 1 mL of media, replace with 1 mL of media with cells (make 

sure you know the concentration of the cells). 

 Place stoppers back and allow flux to stabilize again.   

 Click F4 to set a note on the graph that you have placed the cells in the chambers.   

 Change Layout to flux per volume corrected on ‘plots’ tab 
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 Hit F7 to stop recording 

 Click save file and disconnect 

 Press shift to select regions to use for calculations 

 Click number of region that I highlighted to name 

 Click marks/stats to get data 

 

Cell Culture Prep for Oxygraph Experiments 

 Culture cells on 10 cm dish (can also use 3 or 6 cm dish).   

 If effects of treatments are to be studied, treat cells for designated amount of time. 

 Remove media- Save for later! 

 Wash 2x with PBS 

 Trypsinize with 1 mL of Tryple.   

 Once trypsinized, resuspend cells in old culture media that you removed in previous step.   

 Count cells.  Spin down and remove media so final concentration of cells is 2 million per 

mL 

 Add 1 mL of this cell solution to Oxygraph.   
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Measurement of cytoplasmic calcium as a function of ER calcium release 

 

Purpose: 

 

Assess impairments in ER calcium capacity indirectly using the cytoplasmic calcium 

indicator Fura-2.   

 

Mechanism:  

 

ER calcium reuptake will be inhibited using the SERCA inhibitor thapsigargin.  This 

causes a rise in cytoplasmic calcium which can be measured using the ratiometric dye 

Fura-2.  Using a perfusion setup, thapsigargin can be added to the plates in a controlled 

manner.   

 

Materials: 

 

 Fura-2, AM (Invitrogen No. F1201) in 1 mM stock dissolved in DMSO 

 Mattek 3 cm dish with glass coverslip center 

 Thapsigargin (Invitrogen T-7458) 

 PBS 

 

Prior to assay: 

 

24 hours prior to experiment, seed cells at 500,000 cells per plate.  It is important to 

ensure the cells are not too dense during the assay.  Total dish volume should be 1.5 mL 

 

Protocol:  This experiment is performed in the David Jacobson Lab. 

 

 Load cells with 3 μM Fura for 3  minutes at 37 °C.  Dye concentration and loading time 

should be optimized. 

 Rinse cells three times with PBS 

 Replace media with solution containing (compound, mM): NaCl, 119; CaCl2·[(H2O)6], 

2.5; KCl, 4.7; Hepes, 10; MgS04, 1.2; KH2PO4, 1.2; glucose, 2.   With a final pH of 7.35.  

 Place cell dish on imaging platform.  Focus microscope on cells as perfusion buffer 

(above) flows across cells continuosly at 2 mL/min.   

 Using the controlling software, select individual cells as regions of interest to monitor 

fluorescence over time.   

 Program a continuous assay using the Nikon TE2000-U microscope to perform 

excitations of 340 and 380 nm every 5 seconds. 

 When a stable baseline is attained after approximately 5 minutes, add thapsigargin to 

stimulate net ER calcium release.  This involves switching the perfusion line to use a 

stock of 1 μM thapsigargin. 

 Record response curve. 

 Export data to excel sheet. 
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Data Processing 

 

 Exporting experimental data to an excel sheet will yield the change in the fluorescence 

ratio per cell with respect to time. 

 Each cell response should be normalized to a point designated   .  This is normally the 

point where thapsigargin increases in fluorescence begin.  The normalization occurs 

using the equation: 

 

               

 Where R is the normalized response,      is the time dependent fluorescent signal, and 

    is the normalization fluorescence. 

 

 

 Using this for each cell response, one can calculate the average relative ER calcium load 

in response to thapsigargin inhibition or ER reuptake.  Treatments designed to inhibit ER 

calcium stores will result in less dynamic ER calcium release curves (longer time to peak, 

lower area under the curve, etc.) compared to healthy cells. 

 

Protocol adapted from: 

 

Jacobson, D.A., Weber, C.R., Bao, S., Turk, J., and Philipson, L.H. (2007). Modulation of the 

pancreatic islet beta-cell-delayed rectifier potassium channel Kv2.1 by the polyunsaturated fatty 

acid arachidonate. J Biol Chem 282, 7442-7449. 

 

" Fluorescence imaging was performed using a Nikon Eclipse TE2000-U microscope 

equipped with an epifluorescent illuminator (Sutter instruments, Novato, CA), a 

CoolSNAP HQ2 camera (Photometrics, Tucson, AZ) and Nikon Elements software 

(Nikon, Japan). The [Ca
2+

]i ratios of emitted fluorescence intensities at excitation 

wavelengths of 340 and 380 nm (F340/F380) were determined every 5 s with 

background subtraction. Cells were perifused at 37 °C at a flow of 2 mL/min; the 

solutions utilized during the experiments are the loading solution with various glucose 

concentrations and VU0071063 as indicated. " 
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Extraction of intracellular metabolites 
 

Purpose: 

 

This protocol describes the extraction of intracellular metabolites from cultured animal 

cells. This is a biphasic extraction protocol, with non-polar metabolites partitioning into a 

chloroform phase and polar metabolites partitioning into a methanol/water phase. 

 

Required Materials and Equipment: 

 

 Cells plated on a 100 mm dish 

 Ice cold water 

 Methanol pre-cooled to -80ºC and stored on dry ice (2 mL) 

 Chloroform pre-cooled to -20ºC (4 mL) 

 Cell scraper 

 15 mL centrifuge tube 

 Internal standard norvaline (8 mM stock) 

 Benchtop centrifuge (Forma 5678 with model 815 fixed angle rotor) 

 Eppendorf tubes 

 Evaporator  

 Vortexer with attachment to hold 15 mL tubes, placed inside -20ºC freezer 

 

Protocol per dish: 

 

 Add 2 mL pre-cooled chloroform to 15 mL centrifuge tube 

 Add 2  mL of ice-cold water to same centrifuge tube 

 Remove media from culture dish, save for further analysis 

 Wash cells twice with ice-cold PBS 

 Add 1 mL pre-cooled methanol to dish 

 Add 12.5 uL of 8 mM Norvaline internal standard 

 Place dish in dry ice container for 1 min 

 Scrape cells into 15 mL centrifuge tube using cell scraper 

 Add 1 mL pre-cooled methanol to dish  

 Remove remaining cells from dish into the same 15 mL tube 

 Vortex tube for 30 min at -20ºC  

 Centrifuge at 3,000 rpm (~1,000g) for 20 min at 0ºC 

 Collect aqueous (upper) phase in two 2 mL Eppendorf tubes (label the tubes!) 

 Collect organic (lower) phase in two 2 mL Eppendorf tubes (label the tubes!) 

 Evaporate all extracts to dryness using air dryer at room temperature 

 Store samples at -80ºC 
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MOX-TBDMS derivatization of metabolite extracts 
 

Purpose 

 

This protocol describes the preparation of intracellular metabolites for subsequent GC-

MS analysis. 

 

Mechanism 

 

Dried metabolites from extraction protocol are made volatile by the addition of functional 

groups to allow for the analysis by GC-MS. 

 

Required Materials and Equipment 

 

 MOX reagent (Pierce Biotechnology, product# 45950) 

 TBDMS: MTBSTFA + 10% TBDMCS, 1 mL ampules (Pierce Biotechnology, Catalog 

No. 48927) 

 2 mL amber glass injection vial 

 150 uL insert for injection vial 

 Evaporator (Pierce Reacti-Vap) 

 Sonicator 

 Heating block 

 

Sample preparation prior to derivitization 

 

Dry frozen sample under air flow at room temperature (approximately 60 min) 

 

MOX derivatization protocol 

 

 Dissolve dried sample in 50 uL MOX reagent 

 Place in sonication bath for 30 min. at room temperature 

 Incubate for 90 min. at 40ºC on a heating block 

 

TBDMS derivatization protocol 

 

 Add 70 uL of MTBSTFA +1 % TBDMCS 

 Incubate for 30 min. at 70 degC on a heating block 

 Remove from heating block and incubate overnight at room temperature 

 

Preparation for GC/MS: 

 

 Centrifuge for 5 min at 14,000 rpm to remove solid debris 

 Transfer liquid to injection vial containing a 150 uL microvolume insert  
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GC-MS Protocol for analysis of amino acids and free organic acids 

 

Purpose: 

 

Separate organic and amino acids to analysis isotopic enrichment using GC-MS, injection 

volume and purge flow should be optimized depending sample concentration 

 

Materials 

 

 GC-MS 

 HP-5MS column  

 Prepared samples in amber vial with insert 

 

Injection Protocol 

 

 Syringe Size-10 µL 

 Injection Volume-1 µL 

 Injection Repetitions-1 

 Solvent A Washes (PreInj)-3 

 Solvent A Washes (PostInj)-3 

 Solvent A Volume-8 µL 

 Solvent B Washes (PreInj)-1 

 Solvent B Washes (PostInj)-1 

 Solvent B Volume-8 µL 

 Sample Washes-1 

 Sample Wash Volume -2 µL 

 Sample Pumps-4 

 

Where Solvent A and B are both methanol. 

 

Oven Temperature Program 

 

 Begin at 80 °C for 5 min 

 Then 20 °C/min to 140 °C for 0 min 

 Then 4 °C/min to 234 °C for 5 min 

 Then 20 °C/min to 315 °C for 5 min 

 Total Run Time                          45.55 min 

 

 

 


