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CHAPTER 1 

 

INTRODUCTION 

Tissue engineering encompasses the study of the life sciences and engineering to discover 

fundamental differences between healthy and diseased tissue and develop new methods and 

materials to treat diseased and deficient tissues/organ systems (1). Tissue engineers aim to induce 

fully functional skin, bone, cartilage, capillary, and periodontal tissues in patients with clinical 

needs due to trauma, cancer, disease, or congenital defects (2). In bone tissue engineering, 

researchers use novel biomaterials, often in combination with cells or signaling growth factors, to 

restore, maintain, or enhance natural bone (3). 

It is estimated that more than 1.5 million bone grafting procedures are performed in the 

United States each year (4).  Bone grafting can be used to treat patients suffering from injuries, 

tumors, infection, and degenerative disease (5). The applications for bone grafts are expansive, 

with the majority of procedures related to spinal fusions (6, 7), orthopaedic defects (8, 9), and  

craniomaxillofacial defects (10). According to the World Health Organization, direct and indirect 

costs associated with musculoskeletal conditions in the United States reached $215 billion in 1995 

(11). As the population ages the number of bone graft operations is anticipated to rise, with an 

expected doubling of patients over 50 experiencing bone disease by 2020 (12, 13). There is 

considerable interest in using tissue engineering approaches to develop new, more economical 

biomaterials for bone grafting and to help standardize the success of such procedures.   

A number of treatment options are available in bone grafting with autograft bone, taken 

from a separate site in the same patient, considered the clinical gold standard. However, autograft 

use is constrained by limited availability in the iliac crest and the potential for chronic pain and 
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donor site morbidity (14). There are a variety of biodegradable, synthetic alternatives to autograft 

that include polymers, ceramics, bioactive glasses, and composites (15). The aim of this 

dissertation is to develop and characterize low viscosity (LV) polyurethane (PUR) biocomposites 

for bone regeneration and to test growth factor release and remodeling characteristics of the LV 

grafts in vitro and in vivo. 

Chapter II examines the previous literature in the field of tissue engineering and bone 

regeneration. The work discussed herein applies materials science and biological fundamentals to 

help solve clinically relevant medical conditions. A thorough review of the currently accepted 

practices and understanding in the field of biomaterials and tissue regeneration is necessary prior 

to discussion of specific research topics.  

Researchers in the field of tissue engineering are currently developing new bone grafts that 

match the chemical, mechanical, and physical properties of natural bone (13). Ceramics are often 

used in bone regeneration due to their osteogenic nature, however they can be brittle and fail 

quickly under tension limiting their direct use (16). Composites of polymers and ceramics are 

frequently studied as these combine the ductile nature but poor strength of polymers with the 

osteogenic but low fracture toughness of ceramics (17).  Chapter III discusses the testing of a 

LV/ceramic biocomposite in a sheep femoral plug model against a clinically available ceramic 

control.  

RhBMP-2 is an osteoinductive growth factor widely used in clinical bone repair (18). 

RhBMP-2 is FDA approved for some craniomaxillofacial and spinal bone treatments when 

delivered via an acellular collagen sponge (ACS). RhBMP-2 must be locally delivered at the 

desired site, and the specific release kinetics affect cellular ingrowth and bone healing (19). To 
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ascertain the effect of growth factor delivery from delivery systems of interest, it is necessary to 

thoroughly characterize the rhBMP-2 release kinetics from biocomposite delivery systems of 

interest (20). Chapter IV describes the release kinetics of rhBMP-2 delivered from an LV graft 

tested both in vivo and in vitro.  

There are a variety of animal models used to test bone grafts. The canine saddle defect 

model is commonly used to test bone grafts intended for craniomaxillofacial applications, as the 

anatomy of the canine mandible is similar to that of humans and healing progression is comparable 

(21). Defect space maintenance poses a problem in the mandible due to the forces applied by soft 

tissue. To maintain the space through healing, most grafts require the use of guided bone 

regeneration (GBR).These techniques use a polymer or metal external fixation device to preserve 

the defect volume (22). However, GBR has been associated with complications including seroma, 

infection, or wound failure (23, 24). Chapter V investigates the use of a compression resistant LV 

graft, which eliminates the need for external fixation, augmented with rhBMP-2 in a canine saddle 

defect model.  

While autograft and allograft remodel in a similar manner to natural bone, the degradation 

properties of many ceramics and bioactive glasses is not fully understood. A number of intrinsic 

and extrinsic factors contribute to remodeling making it more difficult to study in vitro, including 

graft porosity, chemical composition, implantation site, and biological signaling molecules (25, 

26). A number of groups have studied osteoclast resorption using growth factors to drive 

differentiation since the 1990s when the Suda research group determined that receptor activator of 

nuclear factor κβ ligand (RANKL) is responsible for producing active osteoclasts (27). These 

methods, however, rely on expensive growth factors and the harvest of primary cells. Additionally, 

there is no accepted method for the quantification of osteoclast pitting on surfaces. Chapter VI 
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describes the development of an in vitro assay based on established cell lines to quantify osteoclast 

resorption of synthetic matrices using optical profilometry. 

Spinal fusion procedures are widely performed in the United States to treat patients 

suffering from degenerative conditions. Previous research has suggested that hospital stays and 

muscle destruction associated with posteolateral fusions could potentially be decreased with the 

use of minimally invasive surgical (MIS) techniques; however, no clinical studies have compared 

the outcomes of conventional and MIS approaches (28). Additionally, posterolateral spinal fusions 

are challenged by limited bony surfaces and compressive forces of the posterior musculature (29). 

Chapter VII describes an injectable, compression-resistant LV graft that promotes union in a 

single level posterolateral rabbit spinal fusion model.  The LV graft is a potential candidate for use 

with MIS techniques for posterolateral fusion.  

In conclusion, Chapter VIII summarizes the findings presented in this work and lists 

recommendations for future studies. Broadly, the work presented here informs the reader about the 

current treatment options in bone grafting and presents studies demonstrating the potential of 

polyurethane biocomposites in a clinical setting.   
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CHAPTER II 

 

BACKGROUND 

Bone tissue engineering 

Tissue engineering focuses on restoring, maintaining, or enhancing tissues and organs. One 

of the original landmark developments in the field occurred in 1907 with the first established cell 

culture line, from frog ectodermal cells, grown in vitro by Ross Harrison at Johns Hopkins Medical 

School (1). More recently, in 2002 89 firms in 15 countries were engaged in tissue engineering 

research spending $487 million per year (2). While tissue engineering includes research on a 

variety of tissue types, bone engineering in particular involves the use of a biomaterial scaffold 

that supports new bone growth often with the addition of osteoblastic cells that deposit new tissue 

and/or signaling molecules that promote cell recruitment and differentiation (3). 

Under normal conditions bone undergoes a dynamic process of remodeling where bone is 

constantly resorbed by osteoclasts while osteoblasts deposit new tissue. Small defects and fractures 

are also repaired through this process. Spontaneous repair is not possible; however, in cases of 

large critical-size defects or underlying pathological state (disease, infection, etc) (4). Bone defects 

can be challenging for orthopaedic and craniomaxillofacial surgeons, particularly in circumstances 

of fracture non-union or post injury complications (5). The clinical gold standard for many bone 

defects is autograft, harvested from a secondary site in the patient, which has the ideal graft 

properties of osteogenicity (contains cells), osteoinductivity (contains signaling molecules that 

drive cellular differentiation), and osteoconductivity (supports cell attachment and growth) (6). 

However, there is a limited supply of autograft available in the iliac crest and harvest can lead to 

donor site morbidity and chronic pain (7). A number of tissue engineering strategies have been 
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applied to bone regeneration research to develop alternative treatment options to autologous bone 

for bone defects created through injury or disease. The variety of potential biomaterials in tissue 

engineering allows researchers to tailor their approach to the specific clinical need, whether that 

be mechanical integrity, a delivery system for proteins or small molecule drugs, or minimally 

invasive surgical delivery (8). It is desirable that these biomaterials are easy to handle and deliver 

and are biocompatible.  

Autograft alternatives 

Allograft bone, from cadaver tissue, has the same mineral composition as natural bone and 

can serve as an osteoconductive matrix for new bone formation in defects. However, incompatible 

transplanted tissue can elicit an immune response in the patient. Allograft also carries a small but 

finite risk of disease transmission with grafting, although measures are taken to sterilize tissue. 

Additionally, availability can be limited depending on cadaver tissue bank supply (9). Moreover, 

the combination of allograft and growth factors has been shown to lead to transient resorption and 

poor healing (10, 11). Currently studied allograft alternatives include polymers, ceramics, and 

bioactive glasses (12).  

 Natural polymers such as collagen, chitin, alginate, and gelatin are widely used in the field 

of tissue engineering with the advantages of being biodegradable and having a low likelihood of 

toxicity (13). Protein based polymers can mimic many of the physical properties of the 

extracellular matrix allowing cells to migrate and organize similarly to responses in host tissue 

(14). However, natural polymers can be limited in use in bone engineering due to batch to batch 

variability in processing (15) and low mechanical integrity (16). Additionally, the in vivo 

degradation of natural polymers can depend significantly on the types and concentrations of 
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enzymes present at the defect site creating difficulty in measuring or predicting polymer 

degradation (17).  

The key advantages of synthetic polymers are the tunable mechanical properties and 

degradation kinetics based on tailorable chemical composition (18). Commonly studied polymers 

for bone regeneration fall into two main categories: biodegradable and nonbiodegradable. 

Nondegradable polymers are frequently used in bone research due to desirable mechanical 

properties. The most popular nonbiodegrable bone grafts are acrylic based bone cements. Poly 

(methylmethacrylate) (PMMA) is widely used in vertebroplasty to treat compressive fractures or 

fragile vertebrae. PMMA cements have high initial modulus and yield strength and are appropriate 

choices for load bearing defect sites (19). However these cements do not degrade over time, have 

high exothermic reaction conditions that can harm host tissue, and can loosen if not properly fixed 

(20).  

 Popular biodegradable polymers for biomedical applications include poly(esters), 

poly(propylene) fumarate, polyphosphazenes, and polyurethanes (21). All of these have scaffolds 

degrade to noncytotoxic products and support cellular attachment. Poly(esters) of poly(lactic acid) 

(PLA) and poly(glycolic acid) (PGA), as well as co-polymers of the two, were developed as some 

of the first degradable materials for tissue engineering applications and are well defined in terms 

of design and in vivo performance (22); however, PLA and PGA use in bone regeneration has been 

limited by low mechanical strength, small pore size, and hydrophobicity (23). Polyurethanes 

(PUR) have been used as scaffolds for tissue engineering since the 1960s (24). These 

biocompatible materials have non-toxic degradation products that are readily eliminated by the 

body. They have tunable degradation and mechanical properties and can be used for a variety of 

applications, including skin and bone regeneration (25). In addition, PUR foams can be injected 
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and harden in vivo to fill a variety of defect sizes and shapes. The main components of the PUR 

are (1) isocyanate or isocyanate-terminated prepolymer and (2) a polyol component with hydroxyl- 

or amino-functionalization that reacts with isocynate (NCO) groups (21). The combination of the 

two species initiates a gelling reaction that forms a polymer network with urethane linkages. 

Water, present either in the reaction components or at the injection site, can also react with the 

NCO groups to produce carbon dioxide in a blowing reaction. The catalyst choice will specify the 

blowing and gelling reaction rates, so this can be tailored based on the desired properties of the 

final scaffold (26). Catalysts with preferentially higher blowing reaction rates will produce highly 

porous, interconnected scaffolds.   

Another category of bone substitute materials are biocompatible ceramics including 

tricalcium phosphate (TCP) and hydroxyapatite (HA), which is the major inorganic component of 

bone. These ceramics are osteoconductive materials that stimulate bone healing and are widely 

used in bone regeneration. Ceramics have favorable compression strength, resistance to wear, and 

frictional properties (27). Ceramics exist in a variety of forms, including powders, granules, 

cements, and coatings (4). The pitfalls of ceramics include brittleness, difficulty in shaping, and 

slow degradation (of HA), leaving them unsuitable to provide structural support in many bone 

graft applications (28). To create better mechanical properties while preserving the 

osteoconductive nature of ceramics, it is possible to combine synthetic polymers with ceramics for 

bone graft applications (29).  

Bioactive glasses, first invented by Larry Hench in 1969, are degradable glasses comprised of 

Na2O-CaO-SiO2-P2O5 that have been used in place of ceramics for bone regeneration (30). 

Bioglass 45S5, the original formula of the composition 46.1 mol% SiO2, 23.4 mol% Na2O, 26.9 

mol% CaO, and 2.6mol% P2O5 has been used to repair more than a million cases of jaw and 
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orthopaedic defects in patients (31). Bioactive glasses have numerous properties that contribute to 

their success as bone grafts, namely that they aid in osteoblastic differentiation, attachment, and 

proliferation and support osteogenesis and protein activity (32). The high elastic modulus and 

fracture toughness of these glasses makes them appropriate choices for both trabecular and cortical 

bone grafts (12). Degradation and bioactivity can be tailored based on changing chemical 

composition and substituting other biologically beneficial chemicals such as strontium (33) and 

ZnO (34). Like ceramics, bioactive glasses are brittle and hybrids have been developed to introduce 

toughness while still retaining the desirable bioactive properties of the glass (35).  

 Combining inorganic phases, like ceramics and bioactive glasses, with polymers improves 

the mechanical properties of scaffolds and widely expands the potential applications of these 

biomaterials. Combining biodegradable polymers with inorganics offers better control over pore 

structure, easier delivery and moldability, and helps reduce the effect of the poor mechanical 

properties of brittle solid fillers (28). Bioactive glass/polymer scaffolds have also been shown to 

support osteoblast attachment and proliferation in vitro and are good candidates for bone 

regeneration (36). Ceramic/polymer composites have been developed with increased mechanical 

stability and improved material-tissue interaction with promising in vivo test results (37). Some 

previous methods for preparing ceramic/polymer composites use organic solvents, such as solvent 

casting and phase separation, the residues of which have the potential to harm host tissue (38, 39). 

More recently developed PUR biocomposites have overcome some of these limitations as they can 

be prepared by mixing the reactive liquid components of the PUR together with the solid filler 

directly, and the composite sets over a tailorable working time with a scaffold that has tunable 

mechanical and physical properties (40). Polyurethane biocomposites have been successfully used 

to treat a variety of in vivo models with allograft, ceramic, and bioactive glass particles (41, 42). 
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 Bone Morphogenetic Proteins (BMPs) are a class of growth factors derived from bone that 

are implicated in embryogenesis, skeletal formation, hematopoiesis, and neurogenesis (43). The 

activity of BMPs was initially discovered in the 1960s, but these proteins were not isolated until 

the 1980s (44). BMPs are classified as a part of the Tumor Growth Factor-β superfamily (TGF-β), 

and BMP-2 is the only one of the group that has been demonstrated to induce the entire process of 

de novo bone formation (45). Recombinant human BMP-2 (rhBMP-2) aids in cell-cell and cell-

environment signaling and is FDA approved for use in bone repair in orthopaedic applications for 

open tibia fractures and anterior lumbar interbody spinal fusion and craniomaxillofacial 

applications for maxillary sinus augmentation and alveolar ridge augmentation (46). Some 

complications have arisen with rhBMP-2 delivery, primarily with off-label use in the cervical 

spine. High doses of rhBMP-2 have been implicated in longer hospital stays, ectopic bone 

formation, swelling (which can lead to airway blockage), and neurological compression (47).  

To reduce the risk of complications associated with rhBMP-2, it is possible to reduce (1) 

the total delivered dose or (2) the bolus release of growth factor. RhBMP-2 quickly disperses from 

the defect site and is cleared from the body when delivered by an inefficient carrier. When 

delivered in a buffer solution, 95% of BMP-2 is rapidly cleared from the delivery site, while this 

drops to 45-85% when the protein is combined with gelatin or collagen (48). The kinetics of protein 

delivery, which influence cellular differentiation and healing, are dependent on the scaffold 

chemistry, porosity, polymer network, and other characteristics of the delivery system (49, 50). It 

is of great importance to study the rhBMP-2 release for all potential delivery vehicles due to the 

complicated nature of predicting release kinetics with the number of confounding factors. The 

commercially available acellular collagen sponge (ACS) carrier provides a bolus release of 

rhBMP-2 within approximately a week (51), while a PLGA microparticle/calcium phosphate 
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delivery system retains over half of the rhBMP-2 after 4 weeks (52). By using biomaterials to 

sequester the growth factor at the application site, the efficacy of the growth factor is retained. 

Additionally, the therapeutic protein dose can be reduced to limit the side effects associated with 

high doses of rhBMP-2 (53). 

Biomaterial delivery 

 The success or failure of biomaterial delivery can depend on the requirements of the 

anatomical site and the method by which the material is administered to the defect. The delivery 

technique largely depends on the physical characteristics of the composite. Some polymer 

scaffolds are injectable through narrow syringes, which may not be feasible with granular 

ceramics. In minimally invasive procedures, such as spinal vertebroplasty, a reactive paste is 

delivered through a thin needle that flows to fill the defect site and hardens to maintain the space 

(54). Ceramics are often delivered as granules within a defect site (55, 56), combined with a 

rhBMP-2 delivery system as an osteoconductive matrix (57), or used as an autograft extender to 

decrease the necessary volume of harvested autograft (58, 59). Bioactive glass particles have also 

been tested as bone grafts alone (60) or as autograft extenders (61).  

Composite materials of ceramics and polymers have different delivery requirements than 

the individual components. Filter-pressing (liquid phase separation) can occur due to extrusion 

pressure through a syringe with a polymer containing suspended granules of a solid phase when 

the liquid phase flows more quickly than the solid phase. This leads to local changes in mixture 

composition, making it necessary to test the injectability of any biomaterials of interest (62). Filter-

pressing can be minimized with a system containing a high initial viscosity. Injectability is 

maintained with the requirement of a low yield stress to start the flow through the syringe (41). 
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However, the definition of injectability is often poorly defined and varies among studies. 

Clinically, injectability can depend on applied force (whether injection is by hand or with an 

injection gun), ratio of particle and liquid phases, particle size, and solution viscosity (63).  

Biomaterial characterization  

There are a variety of available methods to characterize the physical and chemical 

properties of biomaterial scaffolds used in bone tissue engineering. These techniques can provide 

initial information regarding the mechanical integrity, porosity and pore structure, and reaction 

conditions for a specific material of interest.  

 An ideal bone graft will have similar mechanical properties to the host bone it is expected 

to replace and, if biodegradable, will maintain mechanical integrity throughout the remodeling 

process (64). Compression properties are frequently reported for biomaterials as compression is 

easily tested and demonstrates the similarity to host bone. Human bone mechanical properties can 

vary widely depending on the anatomical site and age and health of patient, with compressive 

strengths of 5-40 MPa and 100-230 MPa for human trabecular and cortical bone respectively. (40) 

Mechanical testing is often based on ASTM standards which aim to create reproducibility in 

testing methods. Compressive modulus can be tested by applying a fixed load on a cylindrical 

sample (with a height twice that of the diameter) at a constant strain rate until sample failure (65). 

Samples can be preloaded with a small amount of stress to account for variability and 

imperfections within samples. From the resulting stress-strain curve, the elastic modulus is defined 

as the slope of the initial linear portion.  

Fatigue testing should be conducted on materials aimed for weight bearing applications as 

these will experience cyclic loading profiles in the body (66). In fatigue testing, samples are 
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subjected to cyclic loads at constant stress or strain at a physiologically relevant frequency (67). 

Testing occurs until either a given number of cycles are reached or sample failure occurs. Resulting 

S:N curves (stress or strain vs cycles to failure) can be constructed from the collected data. Stress 

vs strain curves at various cycles over fatigue life can also be plotted to show the creep fatigue 

over time. Bone is highly elastic in nature and thus can withstand a high number of cycles until 

failure, over 2200 cycles was reported for human cortical bone tested in compression fatigue at 

98MPa (66). Fatigue failure and fatigue crack propagation are two of the main concerns with bone 

cement failure, and common bone cements like PMMA do not fare well under fatigue testing due 

to low ductility. These cements cannot withstand high deformation before fracturing, making them 

less suitable candidates as bone grafts in load bearing sites (68). 

 To promote osteogenesis, scaffold structure and morphology should mimic that of the host 

bone. Trabecular bone is comprised of HA crystals in an organic matrix with 50-90% porosity 

(69). A biomaterial for bone regeneration should be macroporous (pores > 80-100 µm) to facilitate 

cellular infiltration (4). Theoretical porosity can be determined gravimetrically if the density of the 

biomaterial (or the components of a composite) is known. By taking the weight and volume of a 

uniformly shaped scaffold and calculating both the actual and theoretical density, the gravimetric 

porosity is determined as the difference between the two. In addition, scanning electron 

microscopy (SEM) image analysis can provide quantitative and qualitative details regarding pore 

shape, pore size, and total porosity.  

 Biomaterials destined for patient applications should have viscosities and working times 

that are clinically relevant. Viscosity of a graft is important for materials that will be delivered 

through a syringe into the defect site. Additionally, the working time of a graft is important for 

reactive mixtures that must be delivered within a specific time frame. Viscosity of polymer 
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composites is most often measured by rheometry. For reactive mixtures, initial viscosity is 

measured without the additional of catalyst (70) or at a predetermined time after catalyst addition 

(71). Due to the viscoelastic nature of many polymer composites, samples are run using oscillation 

frequency applied over a frequency range with constrained strain (72). The fixed strain is initially 

determined by amplitude sweep to detect the linear viscoelastic region. From the dynamic viscosity 

data, a Cox-Merz transformation can be applied to obtain steady state viscosity as a function of 

shear rate (73). Cure profiles of reactive composites can also be measured by rheometry using an 

oscillatory time sweep at a fixed frequency and strain amplitude (74). The cross-over point of the 

resulting storage modulus (G’) and loss modulus (G’’) denotes the working time of the composite. 

Ideally, the working time is long enough to give surgeons a chance to mix and prepare the materials 

while still setting within a reasonable time after injection.  

Bone remodeling 

Bone constantly goes through a dynamic remodeling process whereby osteoclasts break 

down old bone and osteoblasts rebuild it. Osteoclasts are formed from the fusion of cells of the 

monocyte-macrophage lineage. Resorption of bone proceeds through the formation of resorption 

lacunae on the surface of bone and the acidification of the vacuoles by proton pumps (75, 76). 

There are a significant number of variables that contribute to resorption including protein adhesion, 

integrin binding, and growth factor expression levels (77-79). All of these variables regulate the 

extent to which natural bone or synthetic matrices are resorbed in the body. There is also growing 

evidence that osteoclast-derived factors may influence differentiation or activity of osteoblasts and 

in so doing stimulate bone formation (80).  
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Graft remodeling 

Biomaterial compatibility is understood to solely depend on the graft remaining in a state of 

complete chemical and biological inertness, with no recognition or reaction from the immune 

system (81). While initial graft biocompatibility is necessary to prevent acute immune system 

response and promote graft integration, it is equally important that the decomposition products are 

non-toxic and easily cleared by the body (82). Grafts with high degradation rates or degradation 

byproduct toxicity are more likely to induce immune cell response.  

For biodegradable polymers, compatibility and graft success depends, in part, on the 

kinetics of degradation and the degradation products. Synthetic polymers are often preferred based 

on the uniform and tailorable degradation kinetics which may be dependent on either hydrolytic 

or enzymatic degradation (21). Polymers that degrade hydrolytically contain chemical groups in 

the polymer backbone that are susceptible to cleavage in the presence of water molecules. In the 

specific case of polyurethanes, hydrolytic degradation is associated with cleavage at ester linkages 

producing α-hydroxy acids and carboxylic acid. These degradation products are acidic, creating 

an autocatalytic degradation feedback loop where the highly acidic local environment further 

promotes polymer degradation (83). Polyurethanes can also undergo oxidative degradation, which 

has been shown to significantly increase in vivo degradation, in the presence of reactive oxygen 

species (ROS) secrete by cells (84). In vitro replication of in vivo oxidative degradation has been 

proposed through the use of oxidative media containing CoCl2 in H2O2  in which reactive hydroxyl 

radicals form (85).  

It is generally thought that calcium phosphate degradation is a process based on both 

chemical dissolution under physiological conditions and cell mediated degradation; however, the 
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relative rates of these two processes is not well understood (86). Solubility of calcium phosphates 

depends on both chemical composition and physical properties including crystal size, impurities, 

surface area, and porosity (4). Since osteoclast resorption is partly based on vacuole acidity, the 

rate at which ceramics resorb is dependent on both osteoclast activity and calcium phosphate 

dissolution under highly acidic conditions. However, highly soluble ceramics release many ions 

into the cellular environment which can impede osteoclast activity through a negative feedback 

loop (87). While osteoclasts contribute to the dissolution of ceramics through acidic resorption 

lacunae, they are simultaneously able to phagocytose ceramic crystals (88). The number of factors 

that play a role in ceramic resorption and dissolution complicates the in vitro study of these 

processes. There has been a significant amount of research previously on the in vitro resorption 

potential of ceramics, including TCP and HA, with a variety of conclusions. One method to 

simulate osteoclast resorption in vitro is to test material dissolution at pH=4.5, mimicking the 

acidic conditions in a resorption lacunae (89). This bulk measurement, however, does not account 

for cell-material interaction or presence of signaling molecules, and many research groups have 

moved to using in vitro cell culture assays. One study using primary osteoclasts harvested from 

mice found that resorptions pits on TCP were larger and more defined than on HA, where 

osteoclasts were evident but resorption activity was not (90). Another group showed that active 

osteoclast resorption rather than passive dissolution was the predominant factor in calcium 

phosphate degradation, as measured through Ca2+ release on samples cultured with or without 

active osteoclasts (91). With previous osteoclast studies, there are a variety of cell culture 

techniques and analysis methods.  

Once implanted in a bony site, bioactive glasses quickly bond with host bone through the 

formation of a hydroxyapatite layer following ionic dissolution. These ions are also thought to 
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contribute to the bioactivity of the bioactive glass, where degradation influences cellular signaling 

and differentiation. Previous work has demonstrated that ionic dissolution products from bioactive 

glass promote differentiation of human osteoblasts in vivo (92). The characterization of bioactive 

glass dissolution is complicated by a number of associated factors, including temperature, type of 

media, pH, agitation conditions (93). In vitro studies have been suggested to better replicate in vivo 

conditions, however there is not a wealth of information regarding the resorptive potential of 

bioactive glasses. Some studies have examined the presence of osteoclasts on bone grafts 

implanted in vivo (94, 95). One in vitro study has shown that osteoclasts will differentiate and 

resorb a bioactive glass scaffold (96). Another group showed that strontium substituted bioactive 

glass inhibits osteoclast resorption through ionic dissolution (97). While a majority of previous 

research with bioactive glasses uses 45S5 bioactive glass or glasses of similar composition, in part 

due to commercial availability, more recently new hybrid bioactive glass materials have been 

developed with tailorable degradation and dissolution properties (31). Additional research has 

focused on investigated the effects of bioactive glasses doped with trace amounts of Zn, Sr, Mg, 

and Cu on bioactivity (98).  

Animal models 

Bone grafting procedures are inherently complex processes, making it difficult to study 

differences in success rates of biomaterials and tissue engineered scaffolds clinically. Confounding 

factors can include patient variables (smoking and drinking rates, age, general health), bone graft 

type and source, and surgical technique (99). Additionally, newly developed materials are required 

to undergo rigorous testing both in vitro and in vivo to determine biocompatibility, mechanical 

integrity, degradation profiles, and efficacy (100). For these reasons, animal models are necessary 

to safely and effectively decipher how different factors contribute to surgical success or failure. 
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 In tissue engineering, proper animal models aid in the comparison of materials across 

different studies and across different laboratories. Additionally, in vivo models can provide more 

understanding of cellular activity and tissue response to implanted biomaterials. The 

microenvironment in a surgical site is comprised of a multitude of cell types with a variety of 

physical and chemical signaling modalities and in vitro assays are often limited to one or a few 

cell types (100). Desirable characteristics for animal models include physiological and 

pathological similarities to the human condition being studied and a short time frame for healing 

response (101). Ethically, choosing an animal model and species must include considerations for 

cost to acquire and house subjects, tolerance to captivity, acceptability to the general public, and 

availability. Institutional Animal Care and Use Committees (IACUCs) are in place at research 

institutions to consider and approve the requirement for animal species and model. 

Rats and mice are frequently used as proof-of-concept animal models due to lower cost 

and faster experimental time points (102). The rat calvaria model is a popular choice to test 

biomaterials anticipated for craniomaxillofacial applications. This defect is an orthotopic model 

with minimized contact between host bone and the implanted biomaterial, proving to be a 

strenuous test for bone bridging and healing (103). The rat femur segmental defect is another 

established model in orthopaedic research, which replicates some of the conditions of healing in 

human segmental defects (104). These models have a reproducible, defined geometry making it 

easier to analyze by histology and microcomputed tomography (µCT). However, the small size of 

many mouse and rat defects can pose a challenge for delivery of biomaterials. Additionally, rodent 

models are less important as a product moves along the pipeline toward clinical use. Defects in 

rodent models are too small to test clinical size defects, which are often 6-10mm in thickness, and 
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the diffusion distances and cellular ingrowth rates in rodents do not match those seen in human 

defects (101).  

Rabbit models are used in over one third of musculoskeletal animal studies due to size, 

ease of handling, and quick maturation. Rabbit bones differ in both size and shape as compared to 

human bones, and force loading is dissimilar due to the quadrupedal stance and high degree of 

knee flexion (102). Like rodent models, rabbit bones experience faster remodeling and skeletal 

dynamics than humans, making it difficult to extrapolate healing rates (100). Rabbit models are 

frequently used to screen and test biomaterials prior to experiments in larger preclinical models. 

For biomaterials intended for craniomaxillofacial applications, it has been suggested to move from 

rat to rabbit calvarial models before moving into canine and nonhuman primate mandibles (105). 

A common starting model for spine research is a single level bilateral spinal fusion in rabbits, first 

developed by Boden and colleagues in the 90s (99). Additionally, there are a number of established 

orthopaedic models for defect creation in the femur and tibia of rabbits (106).  

Canine models are frequently used in bone grafting experimentation due to their suitable 

size and similarity in bone structure to humans; however, their use is limited due to ethical 

considerations related to use of the species and growing concerns from the general population 

(102). From 1970 to 2001, 9% of orthopaedic and trauma research used canine models (107). 

Canine bone size and shape can vary based on age and breed of the animal, but there are 

commercially available surgical tools specific for the dogs making defect creation and grafting 

easier and more replicable. Similar to rabbits, the quadrupedal stance of the dog can influence graft 

placement and healing when compared to humans. In regards to bone structure, canine bone has a 

higher mineral density than human bone and can withstand higher compressive strain prior to 

failure (100). Canine models are particularly common in dental research as the canine mandible is 
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similar to that of humans, and the required critical-size defect has been extensively studied (108). 

There are also a number of accepted osteotomy (106) and spinal fusion (101) models in canines.  

Skeletally mature sheep and goats have similar body mass and long bone dimensions to 

adult humans, and sheep and goat models are commonly used in orthopaedic bone research. Bone 

composition and turnover rate is similar between human and sheep bone; however, mature sheep 

bone has higher trabecular density and bone strength than that of adult humans (109). Sheep 

models are frequently chosen for bone grafting research due to similar rates of cellular infiltration 

and bony ingrowth in porous implants in sheep and humans (100). Additionally, sheep models 

may be more desirable than canine models due to ethical considerations of research on perceived 

companion animals. Sheep models are primarily used to study fractures, bone lengthening, 

osteoporosis, and osteoarthritis (107).    

Porcine models are used in a variety of bone regeneration experiments; however, the large 

size of commercial pigs often precludes their use. The development of miniature pigs and 

micropigs alleviated some of the concerns with the species, but these smaller animals are still 

considered difficult to handle and expensive to house. Pigs are chosen to study bone necrosis, 

cartilage and bone fracture, and bony ingrowth of graft and dental implants (100). The pig 

mandible is the most similar to the human mandible, in regards to gross anatomy and physiology, 

of any of the previously discussed species (101). The eruption of teeth and size of dentition of the 

miniature pig is comparable to that of humans, and these pigs experience periodontal disease 

(gingivitis) in a progression that closely resembles the diseased state of humans (110). 

Additionally, the requirement for a critical-size defect in the minipig mandible has been 

established, making it an acceptable model for craniomaxillofacial research (111).  
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Non-human primates are considered the most appropriate species for bone research, but 

there are significant implications regarding their cost, potential zoonotic disease transmission, and 

handling difficulties (100). In bone tissue engineering research non-human primate models are 

often chosen after extensive study of bone repair and remodeling has already been conducted in 

other animals. There are a number of craniomaxillofacial models in non-human primates including 

periodontal disease bone regeneration (112), calvarial defects (113), dental implants (114), and 

mandibular ridge augmentation (115). In particular, non-human primate models are important to 

test drug dosing levels prior to clinical testing, as therapeutic doses differ between species (116). 

Orthopaedic models in non-human primates include osteotomy (117), spinal fusion (118), and 

segmental defects (119). 

With all of the available animal models for testing biomaterials destined for clinical 

applications, it is important that researchers take into account the longevity of the study, cost, 

animal housing, and ethical considerations when choosing an appropriate species and defect site.  

Analysis of in vivo studies 

Once a satisfactory model has been chosen and the experiment conducted, it is equally 

important to use one or more suitable evaluation techniques to analyze the success or failure of the 

study. There are a variety of both in vivo and ex vivo techniques to evaluate cellular infiltration, 

new bone growth, and scaffold/biomaterial degradation. These techniques include radiography, 

computed tomography (CT) and micro CT (µCT), and histology. A combination of one or more 

of these methods, both qualitative and quantitative, can help to fully elucidate the outcome of a 

study.  
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Radiography is an imaging technique that uses x-rays to view anatomical sites of interest. 

Radiographs are non-destructive, can be taken without the need to harvest tissue, and can be used 

to monitor bone growth throughout a study; however, these are low resolution, two-dimensional 

(2D) representations of 3D structures and do not provide a significant amount of information 

regarding tissue structure (120). Additionally, when ceramics are used alone or as composites in 

bone grafting, it is impossible to determine new bone formation due to the highly radiopaque nature 

of ceramics overshadowing the bony ingrowth (121).  

CT and µCT are non-destructive analysis techniques that allow for qualitative and 

quantitative evaluation of biomaterials and in vivo response. CT scans are used clinically to detect 

anatomic structures in multiple dimensions, which isn’t possible with conventional radiographic 

techniques (122). CT scans can be used to create personalized knee and hip implants, giving more 

control on customizing the articulating component and the bone-implant interface (123). These 

custom implants lead to lower risk of complications such as implant loosening and surgical 

intervention; however, the technique is more expensive than conventional implants. In animal 

research, CT analysis has been used to accurately depict the size and quality of created defects 

(124). With the development of higher resolution micro-CT (µCT), conventional CT analysis is 

no longer a commonly used method in bone tissue research.  

 µCT scanning of bone, developed in the 1980s, has a much higher resolution than tradition 

CT imaging and can give a full three dimensional (3D) depiction of the architecture of bone with 

the ability to view and quantify individual trabeculae (125). For animal studies µCT imaging is 

particularly helpful in assessing the 3D growth of new bone and analyzing spatial and temporal 

changes in bone quantity and quality (126). One of the most frequently measured parameters with 

µCT is the volume of ossified tissue within a region of interest, referred to as bone volume/total 
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volume (BV/TV). While µCT provides information about the quantity of bone, it also provides 

information pertaining to the quality of mineralized tissue. At a minimum to describe the trabecular 

architecture of bone, researchers should report the trabecular number (Tb.N), trabecular thickness 

(Tb.Th), and trabecular separation (Tb.Sp) of a volume of interest (127). One of the limitations of 

µCT analysis is the difficulty in separating residual scaffold or inorganic phases from newly 

ossified tissue (128). Ossified tissue is normally separated from soft tissue by thresholding 3D 

reconstructions based on density of the phases following calibration to known densities. This 

technique does not frequently work when separating bioactive glasses or ceramics from bone due 

to overlapping mineral densities in the phases. While it does have some drawbacks, µCT analysis 

is widely used in the field of bone engineering to accurately depict and measure quantity and 

quality of new bone within a region of interest.  

Histological analysis involves 2D sections taken from fixed and prepared tissue sections of 

interest which can be stained in a number of ways to visualize cell species, bone, fibrous tissue, 

marrow, and soft tissue (120). For bone engineering, commonly utilized stains include 

Hematoxylin and Eosin, Masson-Goldner trichrome, Movat’s pentachrome, Alcian blue, and 

Sanderson’s rapid bone. Each stain provides different information regarding tissue formation and 

cellular populations within a sample of interest, and a thorough description of the stains and their 

outcomes is available (129). Once appropriated stained, the researcher can distinguish ossified 

tissue from soft tissue and residual biomaterial. Staining can also show inflammatory response 

(and cell populations), bone deposition, biomaterial degradation, resorption by macrophages and 

osteoclasts, and extracellular matrix formation. Histomorphometry is the quantification of 

histological images in regards to bone area, tissue area, and residual biomaterial within a specified 

region of interest by identifying and measuring these phases. The use of standardized 
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histomorphometry procedures minimizes bias that can be introduced with qualitative evaluation 

of histology sections and can aid in the evaluation of experimental success. Additionally, 

histomorphometry can help increase reproducibility inter-study and intra-study.  

By using some or all of the analysis techniques of radiography, µCT, histology, and 

histomorphometry, researchers can evaluation outcomes of in vivo experiments. These methods 

have standardized guidelines from the literature that can help to minimize differences in studies 

arising from bone harvesting techniques, available instrumentation, researcher aptitude, processing 

techniques, and a number of other factors. 
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CHAPTER III 

 

REMODELING OF INJECTABLE, LOW-VISCOSITY POLYMER/CERAMIC BONE 

GRAFTS IN A SHEEP FEMORAL DEFECT MODEL 

Introduction 

Common treatment options for grafting metaphyseal bone defects include allogeneic bone 

and synthetic bone void fillers.  Tissue engineering research has investigated alternatives to 

allograft that meet the performance requirements for bone void fillers (BVFs): osteoconductivity, 

controlled degradation to non-toxic degradation byproducts, suitable handling properties, and 

porosity (1-3). Ceramics are used to treat bone defects due to their osteoconductivity and/or 

bioactivity.  Synthetic hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) have been 

commercially available since the 1980s and are widely used in dental and orthopaedic applications 

(4). Ceramic/polymer composites combine the osteoconductivity of ceramics with the ductility of 

polymers, resulting in a graft that meets many of the targeted properties for a BVF (5, 6). 

Additionally, the relative degradation rates of the ceramic and polymer phases can be tuned 

balance the rates of cellular infiltration, new bone formation, and graft resorption (7). However, 

the relative contributions of the polymer and ceramic degradation kinetics to bone healing are not 

well understood (5, 8).  

Biodegradable polyurethane (PUR) composites have been tested in a variety of bone 

grafting applications (9-11). Lysine-derived PUR composites have non-cytotoxic degradation 

products, generate minimal inflammatory response, and promote cellular infiltration and new bone 

formation in rats (12, 13), rabbits (14, 15), and canines (16). These composites can be injected in 

situ to fill a wide variety of bone defect shapes and sizes and set within clinically relevant time 
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frames (17). Allograft/PUR composites remodel by creeping substitution, characterized by 

osteoclast-mediated resorption of allograft particles and consequent deposition of mineralized 

matrix by osteoblasts (14, 18).  Thus, remodeling progresses from the host bone-graft interface 

toward the interior of the defect over time.  Allograft particles are resorbed within 6 – 12 weeks in 

vivo (15), while ceramics such as -TCP and HA can persist for much longer (19, 20).  Bone 

healing is optimized when remodeling is balanced (i.e., the rate of degradation of the graft matches 

that of new bone deposition (18)).  Since lysine-derived polyurethanes undergo cell-mediated 

degradation, a more persistent ceramic phase may be more desirable for balanced remodeling of 

bone defects.   

In this study, we investigated the remodeling of low viscosity (LV) PUR composites in a 

sheep femoral condyle plug defect model.  Two types of LV composites were investigated: (1) 

LV/ceramic and (2) LV/allograft.  The ceramic particles comprised Mastergraft® (85% β-TCP, 

15% HA) Mini-Granules (Medtronic), an FDA-approved bone void filler that supports balanced 

remodeling and supports new bone formation in preclinical models of bone regeneration (21, 22).  

The loading of ceramic (CM) or allograft (A) particles in the LV composites was 45 wt%, which 

was the highest concentration that could be added to maintain flowability.  A ceramic control group 

received only ceramic particles.  After injection, LV composites expanded to yield foams with 

~50% porosity, resulting in dilution of the CM or A particles in the final graft to ~25 wt% (~15 

vol%).  LV/A composites remodeled to form new bone in a rabbit femoral condyle plug defect 

model (14, 15, 23), but their ability to promote new bone formation in a larger and more stringent 

model in sheep has not been assessed.  Since Mastergraft® ceramic particles remodel more slowly 

than allograft bone, we hypothesized that LV/CM composites would better support new bone 

formation and remodeling at later time points in a large animal preclinical model of bone 
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regeneration compared to LV/A composites.  We further hypothesized that healing of LV/CM 

composites, which have the advantageous handling properties of injectability and flowability, 

would heal comparably to the CM control, which was evaluated for up to 2 years to study its long-

term degradation properties. 

 

Experimental 

Materials. Lysine triisocyanate (LTI)-polyethylene glycol (PEG) prepolymer (LTI-PEG, 

21.7% NCO) was purchased from Ricerca Biosciences LLC (Painesville, OH). Glycerol, stannous 

octoate, and ε-caprolactone were purchased from Sigma-Aldrich (St. Louis, MO). Glycolide and 

DL-lactide were supplied by Polysciences (Warrington, PA). Triethylene diamine (TEDA) and 

dipropylene glycol (DPG) were purchased from Sigma Aldrich and mixed to obtain a 10% (w/w) 

solution of TEDA in dry DPG. MASTERGRAFT® Mini Granules (ceramic, CM) and sheep 

allograft bone particles (100-500 µm) were received from Medtronic, Inc. (Minneapolis, MN).  To 

prepare oxidative degradation media, CoCl2 and 30 wt% H2O2 were purchased from Sigma-

Aldrich (St Louis, MO) and Fisher Scientific (Pittsburgh, PA), respectively. 

Synthesis of polyester triol. The polyester triol was synthesized as previously described 

(24, 25).  Briefly, a glycerol starter was mixed with ε-caprolactone, glycolide, and DL-lactide 

monomers under dry argon at 140 °C for 40 h.  Afterwards, the polyester triol was cooled, washed 

with hexane, and dried under vacuum at 80 °C. The backbone of the polyester comprised 70% ε-

caprolactone, 20% glycolide, and 10% DL-lactide, and the molecular weight was 450 g mol-1. 

Fabrication of Low-viscosity (LV) Bone Grafts. Sheep allograft (A) particles were 

lyophilized prior to use to remove excess water. The components of the LV grafts were mixed in 

a two-step method. In the first step, the polyester triol, particles (either 45 wt% CM or 45 wt% A), 
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and TEDA (1.1 pphp) were added to a 10-mL cup and mixed by hand for 30 s. The LTI-PEG 

prepolymer was added to the cup and mixed by hand for 60 s. The index (ratio of 

isocyanate:hydroxyl equivalents x 100) was 115. For material characterization, the reactive 

mixture was mixed with 3 pphp of DI water (to simulate in vivo curing in the presence of moisture), 

loaded into a straight bore syringe, and injected into a 6-mm vial. These samples were allowed to 

cure for 24 h prior to cutting.   

Composite Characterization. LV/A and LV/CM composites were cut into sections, 

mounted onto a scanning electron microscopy (SEM) pin stub mount, and sputter-coated for 40 s 

using a Cressington Q108 sputter coater, which deposited gold at a 30 mA current. A Hitachi S-

4200 SEM was used to acquire images at a voltage of 1 kV.  

Cylindrical samples (6 mm x 12 mm) were prepared with porosities of approximately 50% 

(measured gravimetrically) to represent in vivo foaming conditions. Samples were submerged in 

PBS at 37°C for 24 h prior to mechanical testing. Compression testing was performed using an 

MTS 898 Bionix system (Eden Prairie, MN) with a 1-kN load cell. The samples were preloaded 

to 3 N and compressed at a constant rate of 25 mm/min. The initial cross-sectional area of the 

cylinders was used to calculate compressive stress. The compressive modulus was calculated as 

the slope of the initial linear portion of the stress-strain curve. Porosity and compression data are 

presented as mean ± standard deviation of triplicate samples.   

Polymer Degradation. PUR scaffolds without ceramic or allograft were prepared following 

the above mixing method. Triplicate samples (~50 mg) were cut from the foams and incubated at 

37°C in either oxidative media or PBS. The PBS simulates the conditions for hydrolytic 

degradation. The oxidative media comprised 0.1 M CoCl2 in 2 wt% H2O2 (2%OM) or 20 wt% 

H2O2 (20%OM), which recapitulates the in vivo microenvironment between adherent macrophages 



39 
 

and the surface of the biomaterial (26, 27). The oxidative media was replaced every 3-4 days. At 

desired time points, samples were removed, rinsed 2x with DI water, incubated in DI water at 37°C 

for 1 h, rinsed 2x with DI water, and dried under vacuum at 40°C overnight prior to weighing.  

Sheep Femoral Plug Study. Eighteen skeletally mature, non-pregnant female sheep (54 – 

88 kg) were used in this study. All surgical and care procedures were carried out at IBEX 

Preclinical Research Inc. (Logan, UT) under aseptic conditions according to the approved IACUC 

protocol. Treatment groups are listed in Table 3.1. The individual components of the LV grafts 

were gamma-irradiated using a dose of 25 kGY. A semicircular incision was created in the 

periosteum and the periosteal flap was removed. Bilateral defects measuring 11 x 18 mm were 

drilled through a Kirschner wire guide and reamer in the distal aspect of the lateral femoral condyle 

of each sheep. Defects were filled with LV grafts, injected via a straight bore syringe, or CM 

control (C) grafts. The control group consisted of CM granules alone (approximately 2 cc).  The 

defects receiving LV composites were filled approximately 40% to account for composite foaming 

and expansion in situ. Specimens were harvested at 4 months, 12 months, 15 months, or 2 years. 

One sheep from the 12-month group was sacrificed early due to complications not associated with 

the grafts (these data were not included in the analysis). 

 

Table 3.1. Treatment groups evaluated in the sheep femoral plug defect 

 
*One sheep from the 12-15 month group was sacrificed early due to complications not associated 

with the grafts. 

 

Treatment Group Particles

Particle diameter 

(µm) % Matrix

n                   

16 weeks

n                          

12-15 months

n                  

24 months

C Mastergraft 500-1500 100 4 3* 4

LV/CM Mastergraft 500-1500 45 4 7 1

LV/A Allograft 100-500 45 4 6 2
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Micro-computed tomography (μCT) analysis. A μCT50 (SCANO Medical, Basserdorf 

Switzerland) was used to acquire scans of the extracted mandibles in formalin at 70 kVp energy, 

200 μA source current, 1000 projections per rotation, 800 ms integration time, and an isotropic 

voxel size of 24.2 μm. Axial images were reconstituted using manufacturer provided software. 

Attenuation values were converted to tissue mineral density (TMD) through calibration with 

hydroxyapatite (HA) phantoms with densities of 0 to 780 mg HA cm-3 (calibrations checked 

weekly). Using the cortical borders of the defect for alignment, the reconstructed image stack was 

oriented with the depth of the defect parallel to the z-axis. Radial analysis of morphometric 

parameters was conducted from the core of the implant to the interface with host bone. Four 

concentric annular volumes of interest with thickness of 1.83 mm and a length of 14 mm (from the 

outer cortical surface of the femur) were defined for each sample. The three inner cylindrical 

sections covered the defect volume, while the outer region provided information about the 

interface with host bone.  Ossified tissue was segmented from soft tissue using the lower and upper 

thresholds of 240 mg HAcm-3 and 1000 mg HAcm-3 respectively, with a Gaussian noise filter 

settings of sigma 0.7 and support 2. Morphometric parameters within the annular regions were 

calculated, grouped by treatment and time point, and plotted versus the mean radial distance (Rm) 

from the core of the defect (Rm=(Ro+Ri)/2, where Ro and Ri correspond to the outer and inner 

radius of each region, respectively) (15, 18). Bone volume/total volume (BV/TV), trabecular 

number (Tb.N), trabecular thickness (Tb.Th), and trabecular separation (Tb.Sp) within the regions 

of interest were computed using SCANCO’s Medical microCT systems software as described 

previously (15, 18). A host bone control was run using the same parameters and analyzed for 

comparison to the graft groups (28).  Additional scans were run on LV/A and LV/CM composites 
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(prepared as above) and packed ceramic particles (to replicate group C) to provide initial 

morphometric parameter values for all test groups. 

Histology. After fixation in formalin the defects were cut approximately in half with one 

side dehydrated in a graded series of ethanol and embedded in methyl methacrylate. One pair of 

longitudinal ground sections were taken from approximately the center of each sample. One 

section was stained with Stevenel’s blue/van Gieson and the other was stained with hematoxylin 

and eosin. Sections were qualitatively evaluated for residual implant material, new bone formation, 

and cellular response at high and low magnifications. 

Histomorphometry. For quantitative analysis, Stevenel’s blue/van Gieson stained sections 

were imaged at 2x and 20x   magnification with an Olympus camera (DP71) using an Olympus 

BX60 microscope. Residual matrix particles (A or CM), residual PUR, and newly formed bone 

were quantified for each sample (two data points per slide) in an area of interest (6 mm x 14.6 mm) 

in the center of each defect using color analysis on Metamorph software (Version 7.0.1, Waltham, 

MA). The area of interest was divided into 6 regions measuring 1.83 mm wide and corresponding 

to the volumes of interest measured by µCT as described previously (28).  

Statistical analysis. Porosity, modulus, and yield strength statistics were tested via a 

Student’s t-test between the LV/CM and LV/A groups.  A two-way ANOVA was run in GraphPad 

on µCT radial analysis and histomorphometry data at 4 months to identify statistically significant 

differences between groups as a function of radial distance and particle composition (allograft or 

ceramic).  Statistical significance was considered for p < 0.05.  
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Results 

Composite characterization. Physical and mechanical properties of LV grafts are 

summarized in Table 3.2. Initial porosities were similar for LV/A (52.6%) and LV/CM composites 

(53.2%). Representative SEM images (Figure 3.1) illustrate the interconnected pore structure and 

high porosity of the composites. The compressive modulus and yield strength (Table 3.2) were 

significantly higher for LV/A compared to LV/CM.  

 

Table 3.2. Physical and mechanical properties of LV composites. 

 

aSignificantly higher at p < 0.05 

 

 
Figure 3.1. SEM images of composite grafts (A) LV/CM and (B) LV/A. Black arrows point to 

matrix particles present within the composites. The scale bar represents 600 µm. (C) In vitro 

degradation of PUR scaffolds under hydrolytic, 2% oxidative media, and 20% oxidative media 

conditions. 

Treatment Group Porosity (%)

Bulk Modulus 

(MPa)

Yield Strength 

(MPa)

LV/CM 52.4 ± 0.3 1.45 ± 0.29 0.320 ± 0.047

LV/A 48.0 ± 3.0 2.80 ± 0.18 a 0.455 ± 0.050 a
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Polymer Degradation. In vitro hydrolytic and oxidative degradation (in 2% H2O2 or 20% 

H2O2) of the polyurethane component is displayed in Figure 3.1.  Samples degraded within 7 weeks 

in 20%OM, losing 22% of sample mass within the first 4 weeks. As expected, samples in 2%OM 

degraded more slowly than those in 20% OM (29% mass loss after 16 weeks). Polymer degradation 

was the slowest under hydrolytic conditions with samples only losing 15% mass after 16 weeks.  

Preclinical study. Defects were created bilaterally in the femoral condoyle of the sheep 

(Figure 3.2A). For the LV graft delivery, the composites were mixed and loaded into a straight-

bore syringe.  The syringe was inserted into the defect site (Figure 3.2B) to deliver the grafts 

(Figure 3.2C).  Following the foaming reaction of the PUR, the graft material expanded outside of 

the limits of the defect (Figure 3.2D).  The excess graft was removed to leave the scaffold flush 

with the host bone (Figure 3.2E). For the control defects, CM particles were delivered via a straight 

bore syringe (Figure 3.2F) and packed into the defect.  

 

 
Figure 3.2. Surgical photographs of (A) defect creation, (B) injection of LV/CM graft, (C) 

LV/CM graft immediately following delivery, (D) LV/CM graft following foaming reaction, (E) 

LV/CM graft once trimmed to match the host bone, and (F) delivery of CM control group. 
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CT morphometric analysis. Figure 3.3 displays μCT images of the best and worst 

performing samples in each treatment group at the different time points.  Defects treated with the 

CM control showed residual ceramic particles, visible as bright white particles in the images, at 4 

months.  The amount of residual ceramic decreased at the 1- and 2-year time points as the 

composites remodeled. All defects showed bridging of the defect with new cortex by 12 months 

with minimal depression (Figure 3.4).  LV/CM-treated defects exhibited a similar pattern of 

remodeling compared to the ceramic control.  However, healing was more variable, with some 

groups showing evidence of voids or depression of the cortex, which was predominantly apparent 

at 12-15 months (Figure 3.5).  LV/A composites resorbed faster than the ceramic groups, as 

evidenced by less residual allograft at 4 and 12 – 15 months.  Healing of the LV/A composites was 

also variable (Figure 3.6); some defects had completely bridged with new bone at 12 – 15 months, 

while others revealed evidence of voids and depression of the cortex.   

Morphometric parameters evaluated by CT were plotted as a function of the mean radial 

distance from the core of the defect to monitor remodeling (Figure 3.7).  At 4 months, BV/TV 

(which includes both new bone and residual ceramic or allograft particles) was highest in the center 

of the defect and decreased radially outward toward the host bone interface for the control group. 

LV composites showed the opposite trend, with the highest BV/TV near the host bone interface 

due to their lower mineral content compared to the control. Within the defect area, BV/TV for the 

LV/A and LV/CM groups were significantly different from the control.  Similar trends were seen 

with Tb.N and Tb.Th parameters. For Tb.Sp, all groups had values close to that of the host bone.  

Radial trends were also evident at 12-15 months, as remodeling was not complete at this time. 
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Figure 3.3. 2D µCT images of sheep femoral plug defects showing the best and worst performing 

grafts in each group. The scale bar represents 5 mm.   
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Figure 3.4. 2D µCT images (scale bar represents 5 mm) and Stevenson’s blue/van Gieson stained 

histological sections (1x) for all samples in group C at 4 month, 12 month, and 2 year time 

points. 
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Figure 3.5. 2D µCT images (scale bar represents 5 mm) and Stevenson’s blue/van Gieson stained 

histological sections (1x) for all samples in group LV/CM at 4 month, 12 month, and 15 month 

time points. 
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Figure 3.6. 2D µCT images (scale bar represents 5 mm) for all samples in group LV/A at 4 

month, 12 month, and 15 month time points. Stevenson’s blue/van Gieson stained histological 

sections (1x) of samples at 4 months. 
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Figure 3.7. Quantitative analysis of morphometric parameters by μCT at each time point.  

 

 

BV/TV for the control group decreased from 4 months to 1 year as the ceramic particles 

resorbed. Over the same time period, LV/CM treated samples showed increased BV/TV, 

particularly toward the center of the defect due to continuing new bone formation. BV/TV for 

LV/A remained largely unchanged, with some samples experiencing high degrees of remodeling 

and some showing little new bone. Tb.N values trended toward the value of host bone for all groups 

at 12-15 months. Tb.Th. at 12-15 months was largely independent of radial position as the defects 

had more interconnected bone rather than individual matrix particles. By 2 years, the 
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morphometric parameters for the control group did not show as large a dependence on radial 

position, with values comparable to the 12-15 month time point, suggesting that remodeling was 

primarily complete.  

Histology.  Low-magnification images of histological sections of the best and worst 

performing samples (Figure 3.8) show extensive new bone formation in the CM control samples 

at 4 months with residual CM particles embedded in the new bone. LV/CM composites had large 

amounts of remaining matrix and PUR, particularly in the core of the defect. In LV/A samples, 

allograft particles are visible throughout the defect, with those close to the periphery of the graft 

undergoing active remodeling and those in the interior surrounded by residual polymer.  At 12-15 

months, both LV/CM and control groups showed CM particle remodeling and new bone 

throughout the defect.  

High-magnification images of histological sections (Figure 3.9) reveal active remodeling 

of the grafts at 4 months, as evidenced by the presence of bone lining cells and osteoid. Remodeling 

of CM was visible at 4 months with degraded CM present within multinucleated osteoclast-like 

cells (OCL - double arrows) present in both the control and LV/CM groups. The majority of the 

new bone nucleated from the ceramic phase; however, some appositional new bone growth was 

observed on the residual PUR in the LV/CM samples. Lamellar bone formation (black arrows) 

was ongoing in LV/A grafts near the periphery of the defect.  At 12 months, residual CM particles 

were still evident within the defects in the LV/CM and control groups, with ongoing CM 

remodeling by OCL, but the majority of the particles were fully or partially incorporated into new 

bone. Similar to the 12 month samples, residual CM was still evident at 2 years in the control 

group, with the particles fully incorporated into new bone. Based on low counts of macrophages 

and giant cells, the LV grafts appear to be well tolerated. 
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Figure 3.8. Low magnification histological analysis of new bone formation and residual matrix 

showing the best and worst performing samples in each group. Black/gray represents residual 

CM matrix, pink represents new bone or residual allograft, and dark blue points to remaining 

PUR.  
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Figure 3.9. High magnification histological analysis of new bone formation and residual matrix. 

Pink/red represents new bone or residual allograft, cells are in blue, and residual CM stains 

black/gray. Non-mineralized fibrous tissue appears green. Residual PUR stains dark purple.  

Single arrows point to ongoing lamellar bone formation. Double arrows represent multinucleated 

osteoclast like cells (OCLs) incorporating CM matter. 

 

Histomorphometry. At four months, the histomorphometry data are consistent with the 

radial µCT analysis (Figure 3.10). While the new bone formed in the ceramic control group was 

not dependent on radial position, the area% residual ceramic particles decreased with increasing 

radial distance from the center of the defect. LV composites remodeled from the host bone 

interface radially inward, with the highest amount of new bone near the host bone interface for the 

LV/CM and LV/A groups. The new bone present in the control defects was not statistically 

different from LV/CM or LV/A at any of the regions. The amount of residual ceramic was highest 

at the center of the defect and decreased radially outward for the LV/CM composites. The 

remaining allograft in the LV/A composites did not show a radial trend, with 12-15% of allograft 
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remaining in the defect at all of the radial positions, suggesting that the allograft was not yet 

remodeling as the theoretical volume of the filler was initially ~15%.  Residual PUR present within 

LV/CM and LV/A groups presented a trend of slower remodeling in the core of the defect. At 12 

-15 months, new bone and remaining CM matrix were not dependent on radial position for either 

the control or LV/CM groups and results were similar between groups. Ceramic particles were still 

present at the later time point (less than 10%), but were more significantly remodeled than at 4 

months.  
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Figure 3.10. Histomorphometric analysis of new bone formation, residual matrix, and remaining 

PUR in LV composites and CM control. 
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Discussion 

While ceramics are often used in bone void filler applications due to their osteoconductivity 

and biocompatibility, they typically cannot be administered by minimally invasive surgical 

techniques and have brittle mechanical properties.  In this study, we designed low-viscosity (LV), 

injectable, compression-resistant ceramic/polymer composites and evaluated their remodeling 

potential in an ovine femoral condyle plug defect model.  The ceramic component (CM) was 

MasterGraft™ (Medtronic, Memphis, TN), an FDA-approved bone void filler comprising 85% -

tricalcium phosphate (-TCP) and 15% hydroxyapatite (HA).  The polymer component was a 

poly(ester urethane) previously shown to support cellular infiltration, new bone formation, and 

degradation to non-cytotoxic breakdown products (14, 17, 29).  The study was designed to answer 

two questions: (1) Do LV/CM composites heal similarly to the ceramic control? (2) What is the 

long-term fate of the ceramic particles?  New bone formation and graft resorption were assessed 

at 4 months, 12 – 15 months, and 2 years.  Appositional new bone growth was observed on the 

surface of the ceramic particles for both the control and LV/CM groups.  While the mechanism of 

healing was similar for the control and LV/CM groups, the control group showed more 

reproducible healing at later (1 – 2 years) time points.  LV grafts with allograft or ceramic showed 

more variable healing, most likely due to the low volume fraction of ceramic or allograft particles 

within the composites.  In the control group, the ceramic particles were almost completely resorbed 

at 2 years.  

The porosity of the LV/A and LV/CM composites was ~50%, which is comparable to the 

porosity of LV/A composites reported previously (14, 15, 17) that support cellular infiltration and 

new bone formation in a rabbit femoral plug defect model (30). The modulus and yield strength 

were higher for LV/A than LV/CM, which may be due to the smaller size of the allograft particles 
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(100 – 500 µm) compared to the CM granules (500 – 1500 µm).  Smaller particles have previously 

been shown to lead to decreased pore size and increased yield strength of LV/A composites (15).  

Lysine-derived polyurethane scaffolds undergo both hydrolytic and oxidative degradation 

in vivo (29).  In buffer, the polymer component showed ~20% mass loss at 4 months.  However, 

under oxidative conditions that simulate the adherent macrophage-biomaterial pocket (20% H2O2 

+ 0.1 M CoCl2 (31)), the polymer degraded significantly faster (~75% mass loss at 7 weeks), which 

is consistent with previous studies on lysine-derived polyurethanes (29)  Considering that new 

bone grows on both the ceramic and polymer phases, these observations may explain the less 

predictable healing observed at time points > 4 months.  At these later time points, substantial 

polymer degradation is anticipated in the interior of the defect due to hydrolysis.  Infiltration of 

cells into these interior regions is conjectured to accelerate resorption of the partially degraded 

polymer, resulting in insufficient surface area for new bone to form (18). 

Lysine-derived polyurethane/allograft composites remodel and support new bone 

formation in metaphyseal bone defects in rats (12) and rabbits (15, 18).  However, in the sheep 

defects evaluated in the present study, LV/A composites showed variable healing.  Voids were 

observed in some of the LV/A-treated defects, as evidenced by µCT and histological sections.  

Allograft composites remodel by creeping substitution, in which the allograft particles are resorbed 

by osteoclasts followed by deposition of new bone by osteoblasts (14).  Under conditions where 

the rate of polymer degradation exceeds that of new bone formation, resorption gaps can form due 

to insufficient surface area on which new bone can grow (18).  These findings suggest that the 

imbalance between the rates of allograft resorption, polymer resorption, and new bone formation 

in LV/A composites may not affect healing of bone defects in smaller (rabbit) defects but may 

result in unpredictable healing in larger (sheep) defects.  
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The quantitative radial µCT and histomorphometric analysis support the notion that the 

ceramic control showed the most predictable healing.  At 4 months, BV/TV (Figure 5) and area% 

new bone (Figure 7) were higher in the interior of the ceramic control group than in the LV grafts. 

For the ceramic control and LV/CM groups, new bone formed primarily on the surface of the 

ceramic particles.  Consequently, the mechanism of healing was similar for the ceramic control 

and LV/CM groups, but the ceramic control group showed more new bone formation due in part 

to the higher initial concentration of ceramic particles.   

While new bone formation progressed toward the interior of the ceramic control and 

LV/CM defects at 12 – 15 months, the area% new bone was more variable for LV/CM as evidenced 

by the larger error bars (Figure 7). The variability in healing at 12 – 15 months is further evidenced 

by images of µCT (Figure 3) and histological (Figure 5) sections, which show the differences in 

healing between the best and worst samples in each group.  Histomorphometric measurements 

(Figure 7) show that the residual ceramic in the interior region of LV/CM grafts was 31.3 area%, 

which is higher than the calculated volume-averaged ceramic content of the composite (~15 vol%).  

This observation suggests that the ceramic particles were non-uniformly distributed in the defect 

and concentrated in the interior region as a result of the foaming reaction, which could have 

contributed to the more variable healing in the LV/CM group.  The increased variability in healing 

of LV/CM composites from 4 to 12 months points to the importance of long-term time points for 

evaluating resorbable polymer/ceramic composites.  Preclinical studies should be conducted with 

sufficient time points to fully characterize the resorption of the graft so that the mechanism of 

remodeling can be appropriately assessed and understood. 

The Mastergraft® Mini-Granules evaluated in this study have been shown to support new 

bone formation in preclinical models of bone regeneration (21, 22).  However, the long-term fate 
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of this FDA-approved ceramic bone void filler has not been previously reported.  New bone 

formation and ceramic resorption increased from 4 to 12 – 15 months (Figure 7).  Similarly, the 

morphometric parameter Tb.N decreased with time and decreasing radial position (Figure 4) as 

the individual particles became incorporated into the new bone structure and the number of isolated 

ceramic granules decreased (15).  However, the changes in these parameters from 12 – 15 months 

to 2 years were more modest (Figure 7).  These observations suggest that remodeling was 

predominantly complete within the first year.  In vivo resorption of β-TCP has been reported to be 

80% complete at 6.5 months and 97% complete within 1.6 years (32).  Considering the initial 

composition of the ceramic (85% β-TCP and 15% HA), the residual material at 2 years (~5 area%) 

may primarily comprise the more slowly degrading HA component. 

 

Conclusions 

In this study, the healing of low-viscosity, injectable ceramic and allograft composites was 

compared the ceramic clinical control in a large animal preclinical model of bone regeneration.  At 

early time points (4 months), LV/CM composites healed similarly to the ceramic clinical control, 

while LV/A components showed more variable healing due to osteoclast-mediated of the allograft 

particles.  At longer time points (12 – 15 months), healing of LV/CM composites was more 

variable due to the non-homogeneous distribution and lower concentration of the ceramic particles 

compared to the ceramic clinical control.  Resorption of the ceramic particles was almost complete 

at 2 years.  This study highlights the importance of optimizing the loading and distribution of 

ceramic particles in polymer/ceramic composites to maximize bone healing. 
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CHAPTER IV 

 

IN VIVO rhBMP-2 RELEASE KINETICS FROM INJECTABLE DEGRADABLE 

POLYURETHANE COMPOSITE BONE GRAFTS 

Introduction 

Treatment of non-unions and large bony defects often comprises autologous or allogeneic 

bone grafts (1). However, these approaches are limited by the availability of autograft and patient 

morbidity associated with harvesting (2). Tissue engineering approaches that incorporate growth 

factors or other signaling molecules are effective at regenerating new tissue such as bone. In 

treating bony defects, growth factors can be combined with delivery systems to regulate 

osteogenesis and bone tissue regeneration (3). Ideally, a growth factor delivery system will fulfill 

the targeted requirements for bone grafts, which include osteoconductivity, osteoinductivity, 

degradation to non-toxic byproducts, appropriate mechanical strength, and porosity (4,5).  

Biodegradable lysine-derived polyurethane scaffolds have been extensively investigated 

for bone tissue engineering applications (6,7). These non-immunogenetic materials breakdown by 

hydrolytic and cell-mediated oxidative degradation to non-toxic decomposition products (8,9). 

When tested in femoral plug defects in rabbits, the polyurethane scaffolds supported cellular 

infiltration and new bone formation (10). Considering the high ductility but low mechanical 

strength of polymers, they are often blended with ceramics to improve their mechanical properties 

and osteoconductivity (11). Additionally, polymer/ceramic composites have been utilized as 

delivery systems for growth factors in bone repair (12,13).  

Osteoinductive growth factors delivered locally help regulate the complex process of bone 

repair and restoration. Recombinant human bone morphogenetic protein-2 (rhBMP-2), the most 
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extensively investigated growth factor for bone regeneration, enhances new bone formation by 

stimulating recruitment of osteoprogenitor cells and osteoblast differentiation (14). A variety of 

rhBMP-2 delivery vehicles have been studied in preclinical models of bone regeneration, including 

calcium phosphates (15), hydrogels (16,17), collagen scaffolds (18), and poly(lactic-co-glycolic 

acid) (19). RhBMP-2 delivered via an absorbable collagen sponge (ACS) (INFUSE® bone graft, 

Medtronic) is FDA-approved for the treatment of posterior-lateral spinal fusions, fractures of the 

tibial mid-diaphysis, and lateral ridge augmentation and sinus lift procedures. A high initial burst 

release of rhBMP-2 is observed when delivered with the ACS carrier. Recent studies have shown 

that an initial burst followed by sustained release of the growth factor contributed to more new 

bone (20,21). Furthermore, rhBMP-2 release and new bone formation is highly dependent on the 

nature of the carrier, which demonstrates the importance of measuring in vivo release kinetics for 

delivery systems of interest (21).  

High porosity and increased pore size of bone grafts enhance mass transfer of oxygen and 

nutrients, thereby increasing osteoblast proliferation and survival in 3D scaffolds (22). 

Additionally, highly interconnected scaffolds lead to more bone growth within shorter periods of 

time (23). Porosity can be especially important in a scaffold containing a slowly degrading phase, 

such as ceramic particles. One approach to increase porosity and interconnectivity of scaffolds is 

to include a porogen that rapidly dissolves to form pores. With the incorporation of a growth factor, 

a more highly interconnected and porous scaffold would be expected to release the growth factor 

more rapidly.  

Measurement of rhBMP-2 release kinetics in vitro entails a simple ELISA analysis 

following an elution study. In contrast, in vivo release kinetics are more challenging to measure, 

requiring the use of 125I radiolabeled protein (24,25) or fluorescent tagging with non-invasive 
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imaging (26,27). In the present study, we measured the release of rhBMP-2 from injectable, cell-

degradable polyurethane composites in vitro and in a rabbit femoral plug defect model over 8 

weeks. While previous studies have reported diffusion-controlled release of rhBMP-2 from 

polyurethane scaffolds in vitro (20,28), we hypothesized that under in vivo conditions, the release 

kinetics are controlled by both diffusion and degradation of the scaffold, which degrades in 

response to reactive oxygen species (ROS) secreted by infiltrating cells (8). New bone formation 

measured for polyurethane composites incorporating a sucrose porogen or ceramic microparticles 

was compared to a control comprising rhBMP-2 delivered from the ACS carrier. While composites 

containing a porogen have greater porosity and interconnectivity, we hypothesized that composites 

incorporating ceramic microparticles would enhance new bone formation and healing due to their 

increased osteoconductivity.  

 

Experimental 

Materials. Lysine triisocyanate-polyethylene glycol (PEG, 200 g mol-1) prepolymer (LTI-

PEG, 21.7% NCO) was obtained from Ricerca Biosciences LLC (Painesville, OH). Glycerol, 

stannous octoate, and ε-caprolactone were purchased from Sigma-Aldrich (St. Louis, MO). 

Glycolide and DL-lactide were supplied by Polysciences (Warrington, PA). Triethylene diamine 

(TEDA) and dipropylene glycol (DPG) were purchased from Sigma Aldrich and mixed to obtain 

a 10% (w/w) solution of TEDA in dry DPG. MASTERGRAFT® Mini Granules and absorbable 

collagen sponges (ACS) were received from Medtronic Spinal and Biologics (Memphis, TN). 

Na125I was purchased from PerkinElmer (Waltham, MA). Ultrapure sucrose was purchased from 

Spectrum Chemicals & Laboratory Products (Brunswick, NJ). Recombinant human bone 

morphogenetic protein-2 (rhBMP-2) was purchased from R&D systems (Minneapolis, MN). For 
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oxidative media, CoCl2 was bought from Sigma-Aldrich (St Louis, MO) and 30 wt% H2O2 from 

Fisher Scientific (Pittsburgh, PA). 

Synthesis of polyester triol. The polyester triol was synthesized as previously described 

(29,30). Briefly, glycerol was mixed with ε-caprolactone, glycolide, and DL-lactide monomers 

under argon at 140 °C for 40 hrs. The polyester triol was then cooled, washed with hexane, and 

dried under vacuum at 80 °C. The backbone of the polyester triol consisted of 70% ε-caprolactone, 

20% glycolide, and 10% DL-lactide, with a molecular weight of 450 g mol-1. 

rhBMP-2 radiolabeling. To determine in vivo release kinetics, a fraction of the rhBMP-2 

was radiolabeled as described previously (24). 100 µl of a 1.43 CM/ml rhBMP-2 solution, 20 µl 

of a 0.1 M NaOH solution and 2mCi of Na125I were combined in a pre-coated iodination tube 

(Pierce, Rockford, IL). After incubation at room temperature for 15 min, the solution was dialyzed 

(10kDa molecular weight cutoff (MWCO) Slide-A-Lyzer®, Pierce) for 24 hr with three times 

media change against an aqueous rhBMP-2 buffer containing 5mM glutamic acid, 2.5 wt% 

glycine, 0.5 wt% sucrose, and 0.01 wt% Tween 80 (pH 4.5). The labeled rhBMP-2 was mixed 

with unlabeled rhBMP-2 to obtain a hot:cold ratio of 1:8. The solution was aliquoted and 

lyophilized in appropriate doses.  

Fabrication of composites. Ultrapure sucrose was ground and sieved to 100-500 μm. Low-

viscosity (LV), injectable polyurethane composites were prepared by mixing the components using 

a two-step method. In the first step, polyester triol, matrix particles (sucrose (S) or Mastergraft 

(ceramic - CM)), and TEDA (1.2 pphp) were added to a 10-mL cup and mixed by hand for 30 s. 

CM (85% β-tricalcium phosphate/15% hydroxyapatite) ceramic granules resorb at a rate designed 

to match that of new bone formation and is cleared by the United States Food and Drug 

Administration (FDA) for sale as a bone void filler. The LTI-PEG and lyophilized rhBMP-2 were 
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added to the cup and mixed by hand for 60 s. The index (ratio of isocyanate:hydroxyl equivalents 

x 100) was 115. The composites contained either 45 wt% CM (LV/CM) or 40 wt% S (LV/S). For 

in vivo grafting, a rhBMP-2 dose of 100 µg/mL (defect volume) was tested. For material 

characterization, the reactive mixture was mixed with 3 pphp of DI water (to simulate the fluid of 

in vivo conditions), loaded into a straight bore syringe, and injected into a 6mm vial for further 

analysis.  

Material Characterization. LV/S samples were immersed in PBS at 37°C for 7 days, with 

PBS changes every 2 days, to leach the sucrose from the scaffold. Afterwards, LV/S was washed 

3 times with DI H2O and dried in a vacuum oven at 40°C overnight. LV/S, LV/CM, and leached 

LV/S samples were cut into thin sections, mounted onto a scanning electron microscopy (SEM) 

pin stub mount, and sputter-coated for 45 s using a Cressington Q108 sputter coater, which 

deposited gold at a 30 mA current. A Hitachi S-4200 SEM was used to acquire images at a voltage 

of 1kV.  

Oxidative degradation of lysine-derived polyurethane scaffolds. Polyurethane foams 

without sucrose or ceramic particles were fabricated as described above. Triplicate samples (~50 

CM) were cut from the foams and incubated at 37°C in oxidative media containing 0.1M CoCl2 

in 20 wt% H2O2. This oxidative media simulates the privileged microenvironment between 

adherent macrophages and the biomaterial surface (31,32). The media was replaced every 2-3 days 

to preserve the oxidative power of the solution. At desired time points samples were removed from 

media, washed 3x with DI water, and dried under vacuum at 40°C overnight prior to weighing. 

Data were plotted as the remaining mass percent over time when normalized to initial weight.  

Mechanical Testing. Cylindrical samples with 6 mm diameter and lengths of approximately 

12 mm were prepared with porosities of approximately 50% (measured gravimetrically). Samples 
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were submerged in phosphate-buffered saline for 24 h prior to mechanical testing. Compression 

testing was performed using an MTS 898 Bionix system (Eden Prairie, MN) with a 1-kN load cell. 

Samples were preloaded to 1 N (LV/S) or 3 N (LV/CM) and compressed at a constant rate of 25 

mm/min. The original cross sectional area of the cylinders was used to calculate compressive 

stress. Compressive modulus was calculated as the slope of the initial linear portion of the stress-

strain curve. The LV/S composites could not be compressed to failure due to their high elasticity, 

and therefore compressive stress was reported at 20% strain as a measure of compressive strength.  

Porosity and compression data were presented as mean ± standard deviation of triplicate samples. 

Statistics were tested by an unpaired Student’s t-test and significance measured at p < 0.05.  

 

Table 4.1. In vivo study design for rhBMP-2 release experiment in rabbits 

 
 

Animal Study. Six male New Zealand white rabbits weighing 3.1-3.6 kg were used in this 

study. All surgical and care procedures were carried out under aseptic conditions according to the 

approved IACUC protocol. The study design is listed in Table 4.1. The individual components of 

the LV grafts were gamma-irradiated using a dose of 25 kGY. Bilateral critical-sized defects of 5 

mm by 6-8 mm in depth were drilled in the lateral femoral condoyles of each rabbit. Defects were 

treated with LV/CM, LV/S, or ACS (n=4) augmented with rhBMP-2. The ACS carrier was chosen 

as the clinical control due to its widespread use in bone repair and FDA approval.  For the LV 

grafts, the reactive paste was injected into the defect site and allowed to cure for 10 min prior to 

soft tissue closure. For the ACS carrier, the lyophilized growth factor was reconstituted in sterile 

Treatment Group Filler

rhBMP-2 (µg/cm3 

defect volume)

n               

8 weeks

ACS N/A 100 4

LV/CM mastergraft 100 4

LV/S sucrose 100 4
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water and injected onto the collagen sponge. The sponge was allowed to adsorb the rhBMP-2 

solution for at least 15 min prior to implantation. A dose of 100 μg/ml rhBMP-2 (based on defect 

volume) was investigated, considering a previous study reporting that a dose of 80 μg/ml rhBMP-

2 with LV grafts was shown to enhance bone formation and bridging in rabbit calvarial defects 

(7). The rabbits were euthanized after eight weeks. The femurs were extracted and fixed in 10% 

formalin for two weeks prior to processing for histology.  

In vitro and in vivo release kinetics. For in vitro release measurements, three replicate 

rhBMP-2-loaded porous scaffolds (~ 50 CM) were placed in a closed vial containing 1 mL of 

release media (α-MEM with 1% BSA) in an incubator at 37°C. The composites contained 100 µg 

rhBMP-2/mL scaffold to mimic the in vivo study. BSA was included to minimize adsorption of 

rhBMP-2 to the sample vial (28). Media was collected and replaced every day to minimize 

degradation of the rhBMP-2. The media samples were pooled as indicated on the release plot and 

concentration was measured for triplicate samples using a Human BMP-2 Quantikine ELISA kit 

(R&D systems). The release plot was generated from a logarithm curve fit of the raw data. In vivo 

retention of rhBMP-2 was measured using a scintillation probe collimated with a hollow tube 

wrapped in leaded tape (Model 44-3 scintillator, Ludlum Measurement Inc., Sweetwater, TX) and 

connected to a digital scaler (Model 2241-3 scaler, Ludlum Measurements Inc.). The rabbits were 

restrained and radioactive counts were obtained over 1 min intervals, repeated twice at each time 

point. The 125I counts were normalized to time 0 measurements and corrected for radioactive 

decay.  

Release Kinetics Analysis. Cumulative release curves were fit to the semi-empirical 

Weibull-model, Equation 4.1 (33,34): 
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(4.1) 

where Mt = the cumulative amount of rhBMP-2 released at time t, = the cumulative 

amount of rhBMP-2 released at infinite time (assumed equivalent to the amount of rhBMP-2 added 

to the graft), and a and b are constants. Values of b < 0.75 suggest a Fickian diffusion release 

mechanism, while b > 0.75 suggests a combined release mechanism (33,34). 

Micro-computed tomography (μCT) analysis. A μCT50 (SCANCO Medical, Basserdorf 

Switzerland) was used to acquire scans of the extracted femurs in formalin at 70 kVp energy, 114 

μA source current, 250 projections per rotation, 400 ms integration time, and an isotropic voxel 

size of 36 μm. Axial images were reconstituted using manufacturer provided software. Attenuation 

values were converted to tissue mineral density (TMD) through calibration with hydroxyapatite 

(HA) phantoms with densities of 0 to 780 CM HA cm-3 (calibrations checked weekly). Using the 

cortical borders of the defect for alignment, the reconstructed image stack was re-oriented so that 

the depth of the defect was parallel to the z-axis. Radial analysis of morphometric parameters was 

conducted from the core of the implant to the interface with host bone. Three concentric annular 

volumes of interest with thickness of 1 mm and a cylindrical core with a diameter of 1mm each 

with the approximate length of 7 mm (from the outer cortical surface of the femur) were defined 

for each sample. The three inner cylindrical sections covered the defect volume, while the outer 

region provided information about the interface with host bone. Ossified tissue was segmented 

from soft tissue using the lower and upper threshold of 289 CM HAcm-3 and 1000 CM HAcm-3 

respectively, with a Gaussian noise filter settings of sigma 0.7 and support 2. Morphometric 

parameters within the annular regions were calculated, grouped by treatment and time point, and 

plotted versus the mean radial distance (Rm) from the core of the defect (Rm=(Ro+Ri)/2, where Ro 
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and Ri correspond to the outer and inner radius of each region, respectively). Bone volume/total 

volume (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), and trabecular 

separation (Tb.Sp) within the regions of interest were computed using SCANCO’s Medical 

microCT systems software as previously described (35).  

Histology. After fixation in formalin, the femurs were dehydrated in a graded series of 

ethanol and embedded in poly(methylmethacrylate). Sections were cut from the resulting blocks 

using an Exakt band saw. The sections were then ground and polished using an Exakt grinding 

system to <100 μm and stained with Sanderson’s rapid bone stain. New bone stained red while 

remaining CM stained black. The polymer was stained dark blue and cells stained light blue.  

 

Results 

Composite characterization. Physical and mechanical properties of LV grafts are 

summarized in Table 4.2. Initial porosities were similar for LV/CM and LV/S groups (~50%) and 

comparable to LV/allograft composites described in a previous study (7). Representative SEM 

images (Figure 4.1) illustrate the pore structure of the composites. The sucrose leaches from the 

LV/S scaffolds within a few days in an aqueous environment, resulting in a porosity of 67% 

(Figure 1C). As expected, the addition of ceramic particles in LV/CM increased the compressive 

modulus compared to LV/S. Additionally, the compressive stress measured at 20% strain for 

LV/CM composites was more than twice that for the LV/S composites.  
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Table 4.2. Physical and mechanical properties of LV grafts tested in the rhBMP-2 release study 

 

 

 

Figure 4.1. SEM images of (A) LV/CM, (B) LV/S before leaching, and (C) LV/S after leaching of 

the sucrose particles where the scale bar represents 600 µm. White arrows point to filler particles 

embedded in polymer. (D) Degradation (mass loss) of PUR foams in oxidative media (0.1M CoCl2 

in 20 wt% H2O2) over time. 

 

 

 

 

Treatment 

Group

Initial 

Porosity (%)

Porosity After 

Leaching (%)

Modulus 

(MPa)

Compressive 

Strength at 20% 

Strain (MPa)

LV/CM 53.2 ± 1.3 N/A 1.45 ± 0.29
a

0.29 ± 0.06
a

LV/S 50.5 ± 2.8 67.1 ± 1.8 0.86 ± 0.13 0.13 ± 0.03
a
 statistically different with p < 0.05
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rhBMP-2 release. To evaluate the in vitro release of rhBMP-2, lyophilized protein was 

incorporated into LV composites or ACS and the release kinetics measured by ELISA (Figure 

4.2A). After one week, all of the growth factor was released from the ACS samples. Conversely, 

the LV grafts showed less than 50% release of rhBMP-2 within this time frame. By four weeks, 

approximately 75% of rhBMP-2 was released from the LV grafts. There was minimal difference 

in release kinetics between LV/CM and LV/S composites, despite the significant difference in 

porosity. 

 
Figure 4.2. Cumulative rhBMP-2 release kinetics from LV and ACS grafts. (A) In vitro release 

measured by ELISA. (B) In vivo release measured by 125I radiolabeling. (C) Fitting of in vitro and 

in vivo release kinetics data to the Weibull model. 

 

 In vivo release of rhBMP-2 was measured in femoral plug defects in rabbits (Figure 4.2B). 

This study provided data for the local release of rhBMP-2 from the defect site, but did not 

investigate the systemic biodistribution of the growth factor. Similar to the in vitro results, the 

release from the ACS samples was complete after the first week. In the LV samples, there was a 
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burst release of 25% growth factor within the first 3 days and 50% within the first week. No growth 

factor was measured within the defect site after 4 weeks. The rhBMP-2 release was slightly faster 

for LV composites in vivo compared to in vitro.  

Cumulative release curves were fit to the semi-empirical Weibull model (Eq 4.1). The 

values of the parameter b measured in vitro for the LV/S and LV/CM were 0.184 and 0.359 

respectively, which are within the range for Fickian diffusion (b < 0.75). In contrast, the values of 

0.848 (LV/S) and 0.765 (LV/CM, Figure 4.2C) determined by fitting the in vivo release kinetics 

to the Weibull model are within the range for a combined (Fickian diffusion and scaffold 

degradation) release mechanism. Fitting the ACS release data yielded b values of 1.37 in vitro, 

corresponding to a complex release mechanism, and 0.848 in vivo, corresponding to a combined 

release mechanism. 

Oxidative degradation of lysine-derived polyurethane scaffolds. The polyurethane foams 

prepared without sucrose or CM microparticles had a porosity of 72.3 ± 2.2 %, which is higher 

than that of samples fabricated with the microparticles. Mass loss was measured at several time 

points for up to 7 weeks (Figure 4.1D), at which time the samples had degraded too extensively to 

weigh the samples. The samples lost 50% of their mass within 6 – 7 weeks, which is consistent 

with a previous sub-cutaneous implantation study (8).  

µCT analysis. Representative μCT images of all three treatment groups are presented in 

Figure 3A-C, where the dotted lines represent the approximate edges of the original defects. 

Defects treated with LV/S did not heal, and minimal new bone was visible in the defect. ACS-

treated defects showed isolated islands of new bone throughout the defect, but the bone structure 

was not a continuous phase as observed in host bone. In the LV/CM group, new bone formation 

was visible interspersed within the residual CM particles (bright white particles) throughout the 



73 
 

volume of the defect. Morphometric parameters evaluated by CT were plotted as a function of 

the mean radial distance from the core of the defect to monitor remodeling (Figure 3D-G). The 

bone volume/total volume (BV/TV) data, which includes both new bone and residual CM, showed 

that the vol% of mineralized graft was highest in the center of the defect for the LV/CM samples. 

For the LV/S and ACS groups, BV/TV was lowest in the center of the defect and increased radially 

outward toward the host bone interface. A similar trend was evident with the trabecular number 

(Tb.N) parameter. ACS-treated defects did not heal as well as expected, most likely due to the 

lower dose of rhBMP-2 (100 µg/mL) compared to the dose recommended for the collagen carrier 

in rabbits (400 µg/mL). The trabecular thickness (Tb.Th) and trabecular spacing (Tb.Sp) 

parameters showed similar results between LV/S and ACS, with LV/CM composites showing the 

highest Tb.Th and lowest Tb.Sp. All groups showed a dependence of morphometric parameters 

based on radial position, as remodeling was not complete by 8 weeks.  

Histology. In all treatment groups, a large number of cells were visible within the defect, 

which suggests that cells had infiltrated the bone grafts by 8 weeks. However, the LV/CM was the 

only one that showed substantial new bone formation. Figure 4 shows representative high-

magnification images of histological sections for the LV/CM group. New bone appears red, 

residual CM particles appear black, and cells are blue. Appositional growth of new bone was 

observed near the surface of the CM particles.  
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Figure 4.3. Analysis of new bone formation in the rabbit release study by μCT. (A-C) 

Representative 2D images of femoral condyle plug defects treated with (A) ACS, (B) LV/CM, and 

(C) LV/S at 8 weeks. The dotted lines indicate the approximate edges of the defect and the scale 

bar represents 5 mm (D-G) Morphometric parameters evaluated by μCT: (D) BV/TV (vol%), (E) 

Tb.N. (mm), (F) Tb.Th. (mm-1), and (G) Tb.Sp. (mm). 

 

 

 
Figure 4.4. Representative images of histological sections of LV/CM. (A) 2X, (B) 10X, and (C) 

20X. Red staining represents new bone, blue represents cells, and remaining polymer and CM 

particles stain black. 
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Discussion 

The ACS carrier provides a bolus release of rhBMP-2 within the first week, which has 

prompted investigations of alternative release systems that provide a more sustained release of 

rhBMP-2 (36). Previous studies have reported that a more sustained release of rhBMP-2 enhances 

new bone formation compared to a bolus release at doses below that recommended for the ACS 

carrier (21,34). However, the release kinetics of rhBMP-2 from lysine-derived polyurethane bone 

grafts, which undergo both hydrolytic and cell-mediated oxidative degradation, have not been 

measured in vivo. In the present study, we measured the release kinetics of rhBMP-2 from two 

injectable, lysine-derived polyurethane scaffolds augmented with either fast-degrading sucrose 

(LV/S) or slow-degrading MASTERGRAFT® (LV/CM) particles to control expansion, porosity, 

and osteoconductivity. Both LV/S and LV/CM showed diffusion- and degradation-controlled 

release of rhBMP-2, in contrast to previous studies reporting diffusion-controlled release in vitro 

(20,28). While LV/S supported a burst and sustained release of rhBMP-2 compared to the burst 

release alone observed for ACS, both of these treatment groups supported minimal new bone 

formation at this lower dose (100 μg/ml rhBMP-2, or 25% of the recommended dose for the ACS 

carrier in rabbits (7)) at 8 weeks due to rapid degradation of the scaffold. In contrast, LV/CM 

treated defects showed a burst and sustained release of rhBMP-2 for 8 weeks and appositional new 

bone growth near the surface of the CM particles. These observations suggest that both an enduring 

matrix as well as sustained release of rhBMP-2 are required to promote bone healing at sub-optimal 

doses of rhBMP-2. 

LV/CM composites were less porous than LV/S composites containing the soluble sucrose 

porogen. The addition of the ceramic matrix to LV/CM significantly increased the Young’s 

modulus of the scaffold compared to LV/S, which is consistent with previous studies investigating 
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polymer-ceramic composites (37). The high porosity of the LV/CM composites dilutes the 

concentration of ceramic particles to an approximate volume of 13 vol%, thus the increase in 

modulus may not be as high as expected considering the modulus of ceramics can reach 100 GPa 

(5). 

In vitro degradation of lysine-derived polyurethane scaffolds was measured under 

oxidative conditions, resulting in complete degradation of the scaffold within 7-8 weeks. In 

contrast, under hydrolytic conditions these scaffolds exhibited much slower degradation, with 

mass loss measured over 25 weeks in vitro (8). Images of tissue sections of LV/CM-treated defects 

(Figure 4) reveal that the majority of the polymer had degraded by 8 weeks, which is in agreement 

with the in vitro oxidative degradation data (Figure 1D). Similarly, LV/S-treated defects showed 

essentially no residual polymer. These observations suggest that the in vitro model of oxidative 

degradation is a more accurate predictor of in vivo degradation of lysine-derived polyurethanes 

than the hydrolytic model. 

The burst release profile observed for the ACS carrier corroborates previous studies 

showing a bolus release mechanism (38,39). The Weibull model fit shows that the release kinetics 

from the ACS carrier correspond to a combined release mechanism in vivo, most likely due to 

simultaneous diffusion and collagen degradation, and a complex release mechanism in vitro. A 

previous study has reported that the collagen sponge is completely degraded within 2 weeks in 

vivo (40). Despite the ~15% higher porosity of the LV/S group compared to LV/CM, both groups 

showed similar rhBMP-2 release kinetics in vitro and in vivo. It is conjectured that the 50% 

porosity of the LV/CM composites created a sufficiently interconnected pore structure such that 

the increased porosity of the LV/S composites did not significantly increase release. A previous 

study on small molecule release from hydrogels also showed no difference in release kinetics with 
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an 11% change in porosity (41). Fickian diffusion was observed to control release of rhBMP-2 

from LV/S and LV/CM composites in vitro, which is consistent with previous studies (28). In 

contrast, in vivo release is controlled by a combined release mechanism. One possibility for this 

difference in release kinetics is the accelerated degradation of the scaffold in vivo due to the 

transient inflammatory response and macrophage-mediated oxidative degradation, which has been 

previously described for lysine-derived polyurethanes (8). The increased degradation may create 

conditions under which in vivo release is controlled by both diffusion and scaffold degradation. 

These findings are consistent with the in vitro (Figure 1D) and in vivo (Figure 4) degradation data, 

which show nearly complete degradation of the lysine-derived polyurethane at 8 weeks.  

Although release kinetics were similar between LV/CM and LV/S groups, the ceramic 

microparticles in the LV/CM composites contributed to more new bone formation at 8 weeks as 

measured by μCT and observed by histology. The LV/CM graft promoted increased new bone 

formation compared to the LV/S and ACS groups. With a substantially lower rhBMP-2 

concentration in the grafts (100 µg/mL) than the recommended dose for the ACS carrier in rabbits 

(400 µg/mL), the extended release of rhBMP-2 from the LV/CM grafts contributed to more new 

bone and better remodeling than that observed the rapid (1 week) release from the ACS carrier. 

These results are similar to previous studies reporting that an initial burst followed by a sustained 

release is optimal for bone remodeling and healing (20,21). Additionally, the osteoconductive and 

slowly resorbing CM particles, even at a relatively low concentration of 13 vol% within the graft, 

provided a surface on which new bone could grow, which was not observed in either the LV/S or 

ACS samples due to the extensive degradation of the polyurethane (LV/S) and collagen (ACS) 

scaffolds.  
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Conclusion 

In this study, we investigated the effects of rhBMP-2 delivery system and matrix content 

of LV composite bone grafts on rhBPM-2 release and new bone formation in a rabbit femoral plug 

model. LV grafts had an initial burst of rhBMP-2 followed by an extended release over a month, 

whereas the ACS control experienced a fast release within the first week. The addition of the 

ceramic matrix in the LV/CM composite led to more new bone and better healing than the LV/S 

or ACS control, as evidenced by radial µCT and histology. This work emphasizes the efficacy of 

a lower dose of rhBMP-2 when released from a polymer-ceramic composite and the importance 

of release mechanism elucidation for growth factor delivery systems of interest. 
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CHAPTER V 

 

EFFECTS OF rhBMP-2 DOSE AND CERAMIC COMPOSITION ON NEW BONE 

FORMATION AND SPACE MAINTENANCE IN A CANINE MANDIBULAR RIDGE 

SADDLE DEFECT MODEL 

 

Introduction 

Treatment of alveolar ridge atrophy and large ridge defects poses significant clinical 

challenges, which are compounded by the need to restore form and function through placement of 

dental implants. Implant surgery requires height and width of the alveolar ridge to support dental 

implants and restore normal dentition. A variety of bone grafts can be used to promote lateral ridge 

augmentation, including allogenic or autogenic bone, recombinant human growth factors, 

osteoconductive scaffolds, and guided bone regeneration (GBR) using degradable or non-

degradable membranes (1). However, these approaches are limited by unpredictable host bone or 

graft resorption, exposure of the bone graft or membrane leading to infection, and the necessity of 

additional surgical sites (2). Thus, there is considerable interest in tissue engineering approaches 

to repair alveolar defects with the long-term goal of producing functional grafts that support 

simultaneous dental implant placement.  

Synthetic substitutes for bone grafting include ceramics and bioactive glasses. Ceramics 

such as tricalcium phosphate (TCP) and hydroxyapatite (HA) have been used extensively in bone 

grafting for a variety of applications (3). Bioactive glasses stimulate bone regeneration due to ion 

dissolution and surface bonding with bone, and the original 45S5 Bioglass® has been used in more 

than a million patients for bone defect repair in craniomaxillofacial (CMF) and orthopedic 

applications (4). Both ceramics and bioactive glasses are often combined with polymers to enhance 
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their mechanical and handling properties (5). Injectable and biodegradable lysine-derived 

polyurethane (PUR) scaffolds have been extensively investigated in bone regeneration 

applications (6, 7). When tested in femoral plug defects in rabbits, PUR/ceramic composites 

supported local, sustained delivery of recombinant human bone morphogenetic protein-2 (rhBMP-

2) leading to cellular infiltration and new bone formation. The mechanical properties of 

PUR/ceramic composites can be tuned by varying the crosslink density of the polymer phase, 

making them suitable even for weight-bearing applications (8, 9). 

Local delivery of synthetic growth factors has been reported to enhance healing of CMF 

bone defects (10). Delivery of rhBMP-2, an osteoinductive factor that stimulates osteoblast 

differentiation and new bone formation, from an absorbable collagen sponge (ACS) is FDA-

approved for localized alveolar ridge augmentation and sinus lift procedures. Previous studies have 

demonstrated the efficacy of rhBMP-2 in preclinical calvarial defect models in rats (11-13) and 

rabbits (7, 14), preclinical lateral ridge augmentation models in dogs and non-human primates (15, 

16), and in alveolar ridge augmentation in humans (17).  

Bone grafting is often combined with GBR to maintain the anatomic contour and height of 

the alveolar ridge height. GBR requires placement of a resorbable or non-resorbable barrier 

membrane around the graft to prevent soft tissue prolapse and stabilize the graft (18-20). However, 

the GBR approach is limited by complications including wound failure, seromas, and infection, as 

well as the potential need for a secondary surgery to remove the membrane (21-23). Due to 

inconsistent outcomes and limitations associated with GBR, it is desirable to find a bone graft that 

does not require the use of membranes to maintain the defect volume during bone remodeling. In 

this study, we investigated injectable low-viscosity (LV) PUR/ceramic composites augmented 

with 100 μg/ml (low) or 400 μg/ml (high) rhBMP-2 as space-maintaining bone grafts in a canine 



84 
 

ridge saddle defect model. LV grafts were injected as a reactive paste that set in 5 – 10 minutes to 

form a solid porous composite with bulk modulus exceeding 1 MPa. We hypothesized that LV 

grafts would enhance new bone formation and maintain space without the use of protective 

membranes, and that a more slowly degrading ceramic matrix would more effectively maintain 

the mandibular ridge height and width.  

 

Experimental 

Materials. Lysine-triisocyanate prepolymer (LTI-PEG, 21.7% NCO) was purchased from 

Ricerca Biosciences LLC (Painesville, OH). Glycerol, stannous octoate, ε-caprolactone, and 

APTES were purchased from Sigma-Aldrich (St. Louis, MO). Glycolide and DL-lactide were 

supplied by Polysciences (Warrington, PA). Triethylene diamine (TEDA) and dipropylene glycol 

(DPG) were purchased from Sigma Aldrich and mixed to obtain a 10% (w/w) solution of TEDA 

in dry DPG. MASTERGRAFT® Mini Granules (ceramic, CM) were received from Medtronic 

Spinal. (Memphis, TN). 45S5 bioactive glass (BG) particles (150 – 212 µm) were purchased from 

Mo-Sci Corporation (Rolla, MO). Recombinant human bone morphogenetic protein-2 (rhBMP-2) 

was received from Medtronic Spinal (Memphis, TN).  

Synthesis of polyester triol. The polyester triol was synthesized as described previously 

(25, 26). Briefly, glycerol was mixed with ε-caprolactone, glycolide, and DL-lactide monomers 

under argon at 140°C for 40 hrs. The resulting polyester triol was cooled, washed with hexane, 

and vacuum-dried at 80°C. The backbone of the polyester consisted of 70% ε-caprolactone, 20% 

glycolide, and 10% DL-lactide, and the molecular weight was 450 g mol-1. 

Surface modification of bioactive glass. The surface of the bioactive glass particles was 

modified as described previously to ensure adequate interfacial bonding and mechanical properties 

(10, 27-29). Briefly, melt-derived 45S5 BG particles were cleaned via sonication in acetone in 
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deionized (DI) water (95 vol%) and subsequently sonicated three times in DI water to rinse the 

particles. Next, particles were silanized via a solution of APTES for 5 h at room temperature, 

rinsed with ethanol, and annealed at 100 °C for 1 h. For surface-initiated ring-opening 

polymerization, a mixture comprising a 1:1000 M ratio of Sn(Oct)2: dried ε-caprolactone and a 

0.83:1 weight ratio of Sil-BG:ε-caprolactone was reacted while stirring at 110 °C. The 

polymerization time of 24 hrs corresponded to a final poly(ε-caprolactone) (PCL) molecular 

weight of 19,225 g mol-1. Finally, non-grafted PCL was extracted with chloroform and particles 

were dried at 40 °C for 24 h. 

Fabrication of low-viscosity (LV) bone grafts. CM granules were ground and sieved to 100-

500 μm. The components of the LV grafts were mixed in a two-step method. In the first step, the 

polyester triol, particles (either 45 wt% CM or 45 wt% BG), and TEDA (1.1 pphp) were added to 

a 10-mL cup and mixed by hand for 30 s. The LTI-PEG and lyophilized rhBMP-2 were added to 

the cup and mixed by hand for 60 s. The index (ratio of isocyanate:hydroxide equivalents x 100) 

was 115. For material characterization, the reactive mixture was mixed with 3 pphp of DI water 

(to simulate in vivo curing in the presence of moisture), loaded into a straight bore syringe, and 

injected into a 6-mm vial. These samples were allowed to cure for 24 h prior to cutting.  

Characterization of physical and mechanical properties. Composite bone grafts were cut 

into sections, mounted onto a scanning electron microscopy (SEM) pin stub mount, and sputter-

coated for 40 s using a Cressington Q108 sputter coater, which deposited gold at a 30 mA current. 

A Hitachi S-4200 SEM was used to acquire images at a voltage of 1kV. Images (n=3 per 

formulation) were analyzed for pore size using ImageJ 1.47p image analysis software. Cylindrical 

samples with 6 mm diameter and lengths of approximately 12 mm were prepared with porosities 

of approximately 50% (measured gravimetrically). Samples were submerged in phosphate-
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buffered saline for 24 h prior to mechanical testing. Compression testing was performed using an 

MTS 898 Bionix system (Eden Prairie, MN) with a 1kN load cell. Samples were preloaded to 3N 

and compressed at a constant rate of 25 mm/min. The original cross sectional area of the cylinders 

was used to calculate compressive stress. The compressive strength was reported at sample failure, 

and the bulk (compressive) modulus was calculated as the slope of the initial linear portion of the 

stress-strain curve. Porosity, pore size, and compression data are presented as mean ± standard 

deviation of triplicate samples.  

 

Table 5.1. Treatment groups evaluated in the canine mandibular ridge saddle defects. 

 

 

Evaluation of LV bone grafts in a canine mandibular ridge saddle defect model. Six 

skeletally mature hounds were used in this study. All surgical and care procedures were carried 

out under aseptic conditions according to the approved IACUC protocol. Treatment groups are 

listed in Table 5.1. The individual components of the LV grafts were gamma-irradiated using a 

dose of 25 kGY. In the first surgery, the dogs underwent bilateral extraction of the four mandibular 

premolars and first molar (Figure 5.1A). After at least a two-month healing period, a second 

surgery was performed to create two saddle defects bilaterally in each mandible (4 defects per dog) 

measuring approximately 7-10 mm mesiodistally, 6-8 mm apico-coronally, and 8-10 mm bucco-

lingually (Figure 5.1B). A soft tissue pocket was created by stitching the gingiva on the mesiodistal 

boundaries of the defect (Figure 5.1C). The LV bone grafts were mixed with rhBMP-2 and injected 

Treatment Group Particles

Particle diameter 

(µm)

rhBMP-2 (µg cm-3 

defect volume)

n                   

16 weeks

LV/BG-L Bioactive glass 150 - 212 100 6

LV/BG-H Bioactive glass 150 - 212 400 6

LV/CM-L Mastergraft 100-500 100 6

LV/CM-H Mastergraft 100 - 500 400 6
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into the soft tissue pocket at the defect site (Figure 5.1D) and allowed to cure for 10 min prior to 

soft tissue closure (Figure 5.1E). Defects were filled with LV/CM or LV/BG at a low (100 µg/ml) 

or a high (400 µg/ml) dose of rhBMP-2 (n=6 per group). The dogs were euthanized after sixteen 

weeks. The mandibles were extracted (Figure 5.1F) and fixed in 10% formalin for two weeks prior 

to processing for histology.  

 

 

Figure 5.1. Surgical photographs of saddle defect creation. (A) Tooth extraction surgery. (B) 

Second surgery to create the saddle defect in the mandibular ridge. (C) Creation of a soft tissue 

pocket around defect site. (D) Injection of LV grafts in the saddle defects. (E) LV graft after the 

polyurethane reaction. (F) Mandibular ridge following canine sacrifice and bone extraction.  
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Analysis of bone morphometry by Micro-Computed Tomography (μCT). A μCT50 

(SCANO Medical, Basserdorf Switzerland) was used to acquire scans of the extracted mandibles 

in formalin at 70 kVp energy, 200 μA source current, 1000 projections per rotation, 800 ms 

integration time, and an isotropic voxel size of 24.2 μm. Axial images were reconstituted using 

manufacturer provided software. Attenuation values were converted to tissue mineral density 

(TMD) through calibration with hydroxyapatite (HA) phantoms with densities of 0 to 780 mg HA 

cm-3 (calibrations checked weekly). Using the coronal boundary of the defect for alignment, the 

reconstructed image stack was re-oriented so that the apico-coronal direction was parallel to the z-

axis. Ridge width in the defect (bucco-lingual direction) was measured at 2 mm intervals up to a 

total distance of 6 mm from the coronal base of the defect. Ridge width within the defect area was 

normalized to host bone ridge width on either side of the defect. Maximum ridge height (apico-

coronal direction) was measured at the mesiodistal center of the defect for each sample. 

Morphometric parameters were measured in a region of interest measuring 10 mm (mesiodistally) 

by 3 mm (bucco-lingually) by 3 mm (apico-coronally). Ossified tissue was segmented from soft 

tissue using the lower and upper threshold of 240 mgHAcm-3 and 1000 mgHAcm-3, respectively, 

with a Gaussian noise filter settings of sigma 0.7 and support 2. Bone volume/total volume 

(BV/TV), trabecular number (TB.N.), trabecular thickness (Tb.Th.), and trabecular separation 

(Tb.Sp.) within the regions of interest were computed using SCANCO’s Medical microCT systems 

software as described previously (30).  

Histology. After fixation in formalin, the explanted mandibles were dehydrated in a graded 

series of ethanol and embedded in poly(methylmethacrylate) (PMMA). Using an Exakt band saw, 

sections were cut from each block in the center of the defect (bucco-lingually) using the µCT 

images as reference. The sections were then ground and polished to <100 μm using an Exakt 
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grinding system and stained with Sanderson’s rapid bone stain. New bone stained red, residual 

CM stained black, and infiltrating cells stained blue. Residual BG particles appeared white and did 

not absorb the stain. Histological sections were used to measure the maximum ridge height within 

the defect area similar to a method previously reported (31) used for the µCT 2D sections. 

Measurements of the maximum ridge height (highest point within the defect area) were taken using 

Metamorph software (Version 7.0.1, Waltham, MA). Values of maximum ridge height by both 

methods were plotted together for each group.  

Statistical analysis. Differences in porosity, modulus, and yield strength between groups 

were tested for statistical significance by unpaired Student’s t-tests. Maximum ridge height, by 

µCT, was analyzed by one-way ANOVA. Morphometric parameters, including BV/TV, Tb.N., 

Tb.Th, and Tb.Sp, were tested by one-way ANOVA. A two-way ANOVA was run to test 

significance of normalized ridge width data comparing among means of each group at the different 

vertical positions. To compare maximum ridge heights measured from µCT and histological 

sections, a Bland-Altman plot was constructed, in which the average value for each group is plotted 

against the difference between methods. Statistical significance was considered for p < 0.05.  

 

Results 

Composite characterization. Physical and mechanical properties of LV grafts are 

summarized in Table 5.2. Both LV/CM and LV/BG grafts exhibited initial porosities of 48 – 52%, 

which are comparable to values reported previously for allograft bone (32, 33) and ceramic 

composites (8). Representative SEM images (Figure 5.2) show the morphology of the pores in the 

grafts. The ceramic particles are embedded in the polyurethane network for both LV/BG and 

LV/CM composites. The average pore diameter was significantly higher for LV/CM composites 
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(100.1 ± 1.2 µm) compared to LV/BG composites (88.6 ± 2.2 µm). The modulus of LV/CM 

composites (3.1 ± 0.4 MPa) was significantly higher than that of LV/BG composites (1.2 ± 0.1 

MPa, Table 5.2). Additionally, the yield strain at failure was significantly higher for LV/BG 

composites (27.4 ± 5.2 %) when compared to LV/CM composites (16.5 ± 4.2 %). In contrast, there 

were no significant differences in compressive yield strength of LV/CM (0.38 ± 0.05 MPa) and 

LV/BG (0.37 ± 0.03 MPa) composites.  

 

 

Table 5.2. Physical and mechanical properties of LV composites tested in the canine saddle defect. 

 

a statistically different with p < 0.05 

 

 

 

Figure 5.2. SEM images of (A) LV/CM and (B) LV/BG composite bone grafts. White arrows 

point to matrix particles embedded within the PUR scaffold. 

 

Treatment 

Group Porosity (%)

Pore diameter 

(µm)

Bulk Modulus 

(MPa)

Yield Strength 

(MPa)

Yield Strain 

(%)

LV/BG 52.4 ± 0.3 88.6 ± 2.2a 1.2 ± 0.1a 0.37 ± 0.03 27.4 ± 5.2a

LV/CM 48.0 ± 3.0 100.1 ± 1.2 3.1 ± 0.4 0.38 ± 0.05 16.5 ± 4.2
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CT analysis. Representative 2D µCT images of axial and longitudinal cross-sections of 

all treatment groups are presented in Figure 5.3. New bone is visible in the defect site for all 

treatment groups. Defects treated with LV/BG-L and LV/CM-L groups demonstrated less new 

bone and lower ridge heights than the equivalent high dose groups. In the LV/CM samples, residual 

CM particles are dispersed throughout the new bone (bright white particles), whereas residual 

bioactive glass cannot be distinguished from new bone in the LV/BG samples. Ridge width at the 

mesiodistal center of the defect was measured at 2, 4, and 6 mm above the baseline of the defect 

(Figure 5.3C) from 2D sections in the transverse plane (Figure 5.3D). The normalized ridge width 

was calculated by dividing the width measured at the center of the defect (dashed white line in 

Figure 5.3D) by the average width of the host bone in the ridge (solid white lines in Figure 5.3D) 

and plotted versus height above the baseline (Figure 5.4A). For defects treated with the low dose 

of rhBMP-2, normalized ridge width decreased with increasing ridge height. In contrast, defects 

treated with the high dose of rhBMP-2 maintained ridge width comparable to that of the host bone 

with increasing ridge height up to 6 mm above the defect baseline. At 4 mm above the base of the 

defect, the LV/CM-H group showed significantly greater ridge width compared to LV/BG-L. At 

6 mm above the base of the defect, both high-dose treatment groups displayed significantly greater 

normalized ridge widths compared to the low-dose groups. Maximum ridge heights were also 

measured at the mesiodistal center of the defect from axial (coronal plane) sections as illustrated 

in Figure 5.3E. The high dose treatment groups showed significantly higher maximum ridge 

heights compared to the low dose groups (Figure 5.4B). There were no significant differences 

between LV/CM-L and LV/BG-L groups or between LV/CM-H and LV/BG-H groups. 

Morphometric parameters were also analyzed to assess the quality of the new bone within the 
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defect site (Figure 5.4C-F). There were no significant differences in BV/TV, Tb.N., Tb.Th., or 

Tb.Sp. between groups. 

 

 

Figure 5.3. µCT analysis of saddle defects after 16 weeks. (A) Representative 2D images of axial 

(coronal plane) cross-sections. (B) Representative 2D images of longitudinal (sagittal plane) 

cross-sections. (C) Schematic illustrating measurement of ridge width from a 2D longitudinal 

cross-section at 2 mm (solid line) and 4 mm (dotted line) above the base of the defect. (D) 

Schematic illustrating measurement of ridge width from a 2D transverse-plane cross-section. 

Normalized ridge width was calculated as the width measured at the mesiodistal center of the 

defect (dashed white line) divided by the average width of the host bone bone (solid white lines). 

Measurements were taken at heights 2, 4, and 6 mm above the base of the defect (shown in Panel 

C). (E) Representative image depicting measurement of the maximum ridge height in 2D 

longitudinal sections at the mesiodistal center of the defect. The solid line shows the base of the 

defect and the double arrow represents the maximum ridge height. The scale bar denotes 5 mm. 
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Figure 5.4. Quantitative analysis of space maintenance and new bone formation by μCT. (A) 

Normalized ridge width measured at the mesiodistal center of the defect as a function of height 

above the baseline of the defect. The LV/CM-H group was significantly different from LV/BG-L 

at 4 mm above the base of the defect (p < 0.05). The high-dose treatments were significantly 

different from low-dose treatments at 6 mm above the base of the defect (p < 0.0001) (B) 

Maximum ridge height measured at the mesiodistal center of the defect. Significant differences 

between low- and high- dose groups are denoted by (*) p < 0.05 and (***) p < 0.001. No significant 

differences between LV/BG-L and LV/CM-L or between LV/CM-L and LV/CM-H were 

observed. (C-F) Morphometric parameters measured from μCT images: (C) BV/TV, (D) Tb.N., 

(E) Tb.Th, (F) Tb.Sp. No significant differences in morphometric parameters were observed 

between groups. 
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Histology. Figure 5.5 shows representative low- and high-magnification images of 

histological sections for all treatment groups. With Sanderson’s rapid bone stain, new bone 

appears red, cells are blue, and residual CM particles appear black. BG particles do not stain and 

appear white or grey. No residual polymer was observed in any of the sections, suggesting that it 

had completely degraded by 16 weeks. Similar to the µCT images (Figure 5.3), the histological 

sections showed more new bone formation in the high dose groups (Figure 5.5A). Few BG 

particles were observed, suggesting that the BG had been substantially resorbed by 16 months.  

In contrast, residual CM particles were observed within the defect site for the LV/CM groups. 

Appositional new bone growth was observed near the surface of the CM particles, suggesting 

that the matrix functioned as a scaffold for bone formation. Residual ceramic particles were 

embedded in new bone. Osteoid was also observed near the ceramic/bone interface, providing 

evidence of active remodeling. Ridge height in the defect area was measured from histological 

sections and compared to the same data obtained from µCT (Figure 5.5B). The high-dose 

treatment groups exhibited significantly higher ridge heights compared to the low-dose groups 

for both µCT and histomorphometric methods. The Bland-Altman plot, which tests for 

differences between the µCT and histomorphometric measurements as a function of sample 

mean, shows no global differences between approaches within a 95% confidence interval (Figure 

5.5C).
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Figure 5.5. Histological analysis of new bone formation and space maintenance. (A) Low- 

(1.25x, top row) and high- (10x, bottom row) magnification images of histological sections show 

new bone formation (NB, red), infiltrating cells (blue), and osteoid (O) with residual CM (black) 

or BG (clear) particles. No residual polymer was observed. (B) Comparison of ridge height 

measured at the mesiodistal center of the defect from histological sections (black bars) and from 

2D μCT images (grey bars). Significant differences between low- and high- dose groups are 

denoted by (*) p < 0.05 and (***) p < 0.001. (C) Bland-Altman plot shows no significant 

differences between the histological and μCT measurements of ridge height with a 95% 

confidence interval (dotted lines). 
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Discussion 

Ridge augmentation is a significant clinical challenge. Regeneration of alveolar bone is 

often required prior to implant placement in patients facing bone atrophy, tooth loss, or trauma, 

but there is no clinical standard of care for vertical ridge augmentation in patients. Previous studies 

have investigated GBR as a strategy for maintaining the volume of the bone defect and promoting 

new bone formation in vertical ridge augmentation models, but results from these studies have 

proven to be inconsistent and complications have been reported, including wound failure, seroma, 

and graft exposure leading to infection (21-23, 34). In the present study, we hypothesized that 

injectable and settable bone grafts with bulk moduli exceeding that of the soft tissue would 

maintain space and support bone healing without the use of protective membranes. We found that 

LV grafts augmented with 400 μg/ml rhBMP-2 and initial bulk modulus exceeding 1.2 MPa 

maintained the initial width and height of the alveolar ridge, while the anatomic contour was not 

preserved at the low (100 μg/ml) dose.  

In order to design compression-resistant grafts for ridge augmentation, it is important to 

know the critical bulk modulus of the graft required to maintain the anatomic contour of the ridge 

(35, 36). A recent study reported that an ACS carrier coated with poly(D,L-lactic-co-glycolic acid) 

maintained the contour ridge of the ridge and promoted new bone formation at an rhBMP-2 dose 

of 400 μg/ml dose (37). However, the mechanical properties for this scaffold have not been 

reported. In the present study, both LV/BG (1.2 MPa) and LV/CM (3.1 MPa) composites 

maintained both the height and width of the mandibular ridge at the 400 μg/ml dose. The tensile 

and stress relaxation properties of porcine oral soft tissue have been recently characterized (36, 

38). The Young’s modulus of lingual and buccal attached gingiva ranges from 18.8 – 19.8 MPa, 

and the tensile strength ranges from 2.8 – 3.9 MPa (36). These values are approximately one order 
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of magnitude greater than those measured for LV grafts. GBR membranes, including chitosan (13 

– 55 MPa) (39), poly(trimethylene carbonate) (5 – 7 MPa) (40), calcium sulfate/poly(β-amino 

ester) gels (100 – 400 MPa) (41), and starch/poly-ε-caprolactone scaffolds (34 – 45 MPa) (42), 

generally have moduli comparable to or exceeding that of human gingiva. The membranes protect 

the absorbable collagen sponge (ACS), which has a Young’s modulus of <0.1MPa (35, 43), against 

compression by the adjacent tissue (44). Addition of ceramic particles to the ACS carrier 

maintained space and promoted new bone formation in porcine full-thickness mandibular defects 

without the protective titanium crib (44). While the mechanical properties of the ceramic/collagen 

composite were not reported, a recent study has shown that addition of up to 80% hydroxyapatite 

to collagen scaffolds increases the bulk modulus to ~1 MPa (43). These observations point to an 

initial bulk modulus of ~1 MPa as the lower limit for compression-resistant grafts in the 

mandibular ridge.  

The effects of the composition of the ceramic particles on space maintenance and new bone 

formation in the mandibular ridge saddle defect model were also investigated. Two FDA-cleared 

synthetic ceramic bone graft substitutes were tested in this study: MASTERGRAFT® Mini 

Granules (CM) and 45S5 Bioglass® (BG) particles. CM particles were evaluated due to their 

compression-resistant and osteoconductive qualities when combined with the ACS carrier and 

rhBMP-2 in porcine mandibular continuity defects (44) and in posterolateral fusion both in non-

human primates (45) and humans (46) Residual CM particles were present in the defect at 16 

weeks, some of which were in the process of active remodeling with new bone growth appositional 

to the surface. These observations are consistent with a previous study evaluating CM/collagen 

composites augmented with rhBMP-2 in mandibular continuity defects in nonhuman primates 

(44). In this study, a significant amount of residual CM was present at 6 months, most of which 



98 
 

was in the process of active remodeling (44). In contrast, minimal residual BG particles were 

present in the defect at 16 weeks (Figure 5A) due to both the rapid resorption of BG particles by 

osteoclasts (47) and the dissolution products that stimulate osteoprogenitor cells (4). Defects 

treated with LV/CM-H composites showed a modest increase in ridge width at 4 and 6 mm above 

the defect compared to LV/BG-H (Figure 4A). However, no significant differences in ridge height 

measured in the middle of the defect were observed between the two groups (Figure 5B-C). The 

modest differences in ridge width could result from differences in the initial bulk modulus of the 

composites and/or the degradation rate of the ceramic components.  

While the ceramic composition exhibited a modest effect on new bone formation and space 

maintenance, the concentration of rhBMP-2 affected new bone formation in a dose-responsive 

manner. The high dose of rhBMP-2 was selected on the basis that it is at the high end of the 

recommended dose range for dogs (200 – 400 μg/ml) (48). The ridge height at the center of the 

defect was ≥6 mm for the high dose groups compared to ≤4 mm for the low dose groups (Figure 

5B). The Bland-Altman plot shows that the µCT and histological methods for measuring ridge 

height yield results that are statistically the same, which suggests that the µCT method reported in 

this study is an appropriate method for measuring ridge height compared to the more conventional 

histological approach. Furthermore, the ridge width was maintained near the upper surface of the 

defect for the high dose groups while the low dose groups revealed a trend of narrowing ridge 

width (Figure 4A). LV composites exhibit diffusion- and degradation-mediated of rhBMP-2 for 

up to 4 weeks in vivo. Considering previous studies reporting that a sustained release of rhBMP-2 

can promote new bone formation at a sub-optimal dose of rhBMP-2 in femoral segmental defects 

(49, 50), the low dose was anticipated to more effectively heal the ridge defects. Inadequate healing 

of the low-dose treatment groups in the present study could be attributed to the challenges of the 
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mandibular ridge defect model, in which the graft is subject to compressive forces that are greater 

than the forces on the graft in the femoral segmental defect model. While the low-dose treatment 

did not maintain the host ridge height, the quality of the new bone that formed was similar to that 

observed for the high-dose treatment, as evidenced by the fact that no significant differences were 

observed between any of the morphometric parameters (BV/TV, Tb.N, Tb.Sp, or Tb.Th) 

calculated from the µCT data. In previous studies, compression-resistant CM/collagen grafts 

maintained space and supported new bone formation in non-human primate posterolateral fusion 

(51) and mandibular continuity defect (44) models without protective membranes. However, the 

optimal dose for bone healing was 2.0 mg/ml, which was 33% higher than the recommended dose 

for the ACS carrier (1.5 mg/ml). In contrast, the LV/CM and LV/BG carriers supported new bone 

formation at a dose within the recommended range for dogs. Additional testing in a non-human 

primate model of lateral ridge augmentation is required to determine whether adequate space 

maintenance and bone healing can be achieved at a dose lower than that of the compression-

resistant CM/collagen carrier. 

The study was designed to answer the question whether injectable low-viscosity (LV) 

PUR/ceramic composites augmented with rhBMP-2 could maintain the contour of the ridge and 

promote new bone formation in a large animal model of ridge augmentation at a clinically relevant 

time point. Both LV/BG and LV/CM grafts maintained ridge height and width at the high dose of 

rhBMP-2 at 16 weeks. No residual polymer was observed in any of the four treatment groups, 

which is consistent with previous studies reporting that lysine-derived polyurethanes undergo cell-

mediated degradation (52) and almost completely degrade at 12 weeks in rabbit models of bone 

regeneration (7, 31). Images of histological sections (Figure 5B) show appositional new bone 

growth on the surface of the CM particles. Thus, increasing the volume fraction of the ceramic 
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component is anticipated new increase new bone formation, although the resulting composite 

would have limited injectability (31, 53). Assessing outcomes at an intermediate (e.g., 8 week) 

time point could provide additional insight into the spatio-temporal dynamics of bone healing, 

including the relative contributions of the polymer and ceramic degradation rates to new bone 

formation (54). Another limitation of this study is that the LV grafts were not compared to a clinical 

control, such as autograft or ACS. However, to our knowledge, this is the first study to report an 

injectable, settable, and compression-resistant bone graft that maintains the height and width of 

the mandibular ridge in a model in which conventional grafts such as the ACS carrier (55-57) and 

autograft (58) resorb without GBR membranes. In ongoing studies, the injectable LV/CM graft 

without a GBR membrane will be compared to the ACS carrier with the membrane in a preclinical 

model of lateral ridge augmentation to assess its potential as a compression-resistant carrier for 

rhBMP-2. 

 

Conclusion 

Injectable, settable, and compression-resistant LV bone grafts augmented with rhBMP-2 were 

evaluated in a canine mandibular ridge saddle defect model. Composite bone grafts synthesized 

from a lysine-derived polyurethane and ceramic particles exhibited bulk moduli exceeding 1 MPa. 

At the rhBMP-2 dose recommended for the ACS carrier in dogs (400 μg/ml), LV grafts maintained 

the width and height of the host mandibular ridge and supported new bone formation, while at sub-

optimal (100 μg/ml) doses the anatomic contour of the ridge was not maintained. These findings 

suggest that both the initial bulk modulus and also the rhBMP-2 dose regulate healing of 

compression-resistant bone grafts for healing mandibular ridge defects.  
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CHAPTER VI 

 

RELATIVE OSTEOCLASTIC RESORPTION RATES OF CERAMICS AND BIOACTIVE 

GLASS 

 

Introduction 

The term bone graft encompasses a wide variety of materials used in bone regeneration 

applications. Autogenic bone, often considered the clinical gold standard for bone grafting, and 

allogenic bone, from cadaver tissue, remodel by a process of creeping substitution where the old 

bone is remodeled by osteoclasts while new bone is deposited by osteoblasts. However, restrictions 

arise due to limited availability and donor site morbidity with autologous bone and the risk for 

disease transmission associated with allograft bone (1). Due to these constraints, significant 

research has been conducted on synthetic, biodegradable bone graft alternatives. The remodeling 

characteristics of the grafts contribute to cellular infiltration, cellular differentiation, osseous 

deposition, and mechanical integrity (2-4), but the degradation rates are not known for many 

materials. Voids and inconsistent healing can occur if the in vivo graft remodeling does not match 

the rate of new bone deposition (5). One main mechanism of in vivo degradation is resorption by 

osteoclasts. However, the resorption potential of biomaterials is not well understood and there is 

considerable interest in developing an inexpensive, reproducible in vitro assay to test osteoclast 

resorption on matrices of interest.  

Ceramics and bioactive glasses are two classes of biomaterials used widely in bone 

reconstruction (6, 7). β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) are clinically 

relevant, osteogenic ceramics with mineral content similar to that of natural bone. When implanted 

in vivo 45S5 bioactive glass (BG) bonds with host bone and stimulates new bone growth and has 
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been used clinically in over a million patients (6). Remodeling of these bone grafts proceeds 

through two processes: active cellular resorption and bulk or surface chemical degradation (3). 

Graft porosity, surface topography, biological signals, chemical structure, physiochemical 

properties (crystallinity, density), implantation site, and other factors all influence remodeling (8-

11), contributing to the difficulty of studying these materials in vivo and in vitro. Previous studies 

suggest that calcium phosphate remodeling is a predominately cellular process initiated by a 

number of cell types including macrophages, osteoclasts, and monocytes (10, 12). Bioactive 

glasses, on the other hand, are chemically active after surface contact with body fluids, releasing 

numerous ionic species that contribute to both material dissolution and cellular response (6, 13). 

The dissolution rates are specific to the chemical composition of the particular silicate or phosphate 

based system of interest. In general, it has been shown that bioactive glasses remodel more quickly 

than ceramics in vivo (14, 15). 

A number of in vitro osteoclast assays have been previously studied since the first assays 

were developed in the 1980s.  One of the initial techniques involved the use of 1α,25-

dihydroxyvitamin D3 (VD3) to stimulate mouse osteoblastic cells, isolated from calvaria, to induce 

osteoclast differentiation in mouse spleen cells (16) or osteoclast precursor cells from mouse long 

bones (17). Additionally, some groups employed tumor necrosis factors (TNF) –α and –β (18) or 

interleukin 1 (IL-1) (19)  to induce osteoclast resorption in vitro. Later work revealed that the 

signaling molecule receptor activator of nuclear factor-κβ ligand (RANKL) is responsible for 

osteoblast driven osteoclastogenesis, while macrophage-colony stimulating factor (M-CSF) aids 

in osteoclast survival but not active resorption (20). More recently, groups have used M-CSF and 

RANKL in in vitro osteoclast cultures with primary cells (21) or cell lines (22), but the high cost 

of these factors can be prohibitive.   
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 Commonly accepted markers for osteoclasts include multinucleated, tartrate resistant acid 

phosphatase (TRAP) positive cells with actin rings (23). Previously, active resorption has been 

measured by scanning electron microscopy (SEM) (21, 24), podosome belt formation (25), 

transmission electron microscopy (TEM) (26), light microscopy (27), three-dimensional (3D) laser 

color microscopy (24), and optical 3D profilometry (28, 29). But there is no widely accepted, 

standardized procedure for quantifying osteoclast resorption rates on substrates of interest.  

Previous assays using MCSF and RANKL to differentiate osteoclastic precursor cells 

produce viable, active osteoclasts. However, these methods are limited by the cost of the growth 

factors and variability due to animal age and health when harvesting primary cells. It is desirable 

to develop a co-culture technique based on established cell lines that uses a small concentration of 

VD3 to reproducibly drive differentiation and to develop a standardized, quantifiable method to 

analyze relative osteoclast resorption rates. In this study, we investigated a co-culture of pre-

osteoblastic MC3T3 cells and a monocyte cell line RAW 264.7 cells and tested resorption on β-

TCP, HA, BG, and dentin chips (D) using optical profilometry to quantify the relative rates of 3D 

resorption. 

 

Experimental 

Materials.  The murine osteoblast precursor cell line, MC3T3, and the murine macrophage 

cell line, RAW 264.7, were purchased from ATCC (Manassas, VA). Hydroxyapatite (HA) and β-

tricalcium phosphate (TCP) discs, sized to fit a 48 well plate, were purchased from 3D Biotek 

(Hillborough, NJ). 45S5 bioactive glass (BG) rods were obtained from Mo-Sci Corporation (Rolla, 

MO) and cut to ~0.5mm thickness using a IsoMet low speed saw (Buehler). Dentin (D) was 

acquired from the donation of a surrendered elephant tusk from the National Eagle and Wildlife 

Property Repository of the United States Department of the Interior, U.S. Fishes and Wildlife 
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Service. Cells were cultured in αMEM (minimum essential media) from GIBCO (Grand Island, 

NY) supplemented with 10% FBS (Hyclone, Logan, UT) and 1% Penicillin-Streptomycin 

(GIBCO) and the osteogenic factors 10nM dexamethasone, 50 µg/mL ascorbic acid, and 0.1 mM 

β-glycerophosphate. 1α,25 dihydroxyvitamin D3 (VD3) was purchased from Sigma (St. Louis, 

MO).  

Assay Development. MC3T3 cells were plated on a 24 well plate at 1 * 104 cells/well in 1 

mL osteogenic (OG) media supplemented with 10nM VD3. Cells were grown at 37°C for 48hr. 

Media was aspirated and RAW cells were plated at 1 * 104 cells/well in 1 mL OG media 

supplemented with 10nM. Every 1-2 days 0.5mL of OG media was removed and replaced with 

new 0.5mL OG media supplemented with 10nM VD3. Cells were imaged over the course of the 

study to analyze cell morphological changes and growth. 

Sample sterilization and conditioning. BG discs were initially cleaned by sonication for 5 

min in acetone:DI water (5:95 volume ratio). All samples for cell culture were then sonicated for 

7.5 min in DI water (3x). To sterilize, samples were immersed in 70% ethanol for 5 min (2x). After 

which time samples were washed in sterile DI water for 5 min (2x) before being transferred to 

tissue culture plastic plates. Samples were conditioned overnight in complete αMEM prior to cell 

seeding.  

Resorption Testing. Incubation media was removed from wells and materials were allowed 

to dry in a sterile hood for 30min. MC3T3 cells were then plated on matrices of interest at 1 * 104 

cells/100 µL osteogenic (OG) media in each well, following a protocol for osteoblast seeding from 

3D Biotek. Well plates were incubated at 37°C for 30min to allow for cellular attachment. An 

additional 900 µL OG media with 10nM VD3 (for the whole 1 mL) was added to each well and 

cells were grown at 37°C for 48hr. Media was aspirated and RAW cells were plated at 1 *104 
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cells/100 µL OG media. Well plates were incubated at 37°C for 30min to aid in cellular attachment. 

An additional 900 µL OG media with 10nM VD3 was added to each well and cells were grown at 

37°C. After 48 hrs matrix discs were moved to new well plates. Every 1-2 days 0.5mL of OG 

media was removed and replaced with new 0.5mL OG media supplemented with 10nM VD3.  

TRAP staining. At desired time points, samples were removed from cell culture and fixed 

in 10% formalin for 15 min at room temperature. Samples were washed 3x with cold PBS and 

incubated in a 0.2 mg/mL Naphthol AS-BI substrate solution for 30 min at 37°C, after which time 

the substrate solution was removed. Samples were immediately incubated with a color reaction 

solution of pararosaniline dye (25mg/mL) for 10 min at room temperature. Samples were rinsed 

in DI water, counterstained with Harris’s acid hematoxylin stain for 20s, and rinsed in running 

water for 1 min.  

Actin staining. At desired time points, samples were removed from cell culture and fixed 

in 10% formalin for 10 min at room temperature. Samples were washed 2x with PBS and incubated 

with 0.1 % Triton-X in PBS for 5 min to permeabilize cells. Samples were incubated with 

rhodamine phalloidin (5 µL methanol solution in 200 µL PBS) for 45 min at 37°C to stain actin. 

Samples were washed 2x with PBS, counterstained with DAPI (2 µg/mL) for 5 min, and washed 

2x with PBS. 

Profilometry. At desired time points, media was removed and sterile DI water was added 

to wells for 24 hrs to loosen cells. Any remaining cells were removed by washing the surface with 

DI water. Samples were dried overnight on a benchtop. Resorption pits were analyzed using a Zeta 

Instruments Zeta-20 True Color 3D Optical Profiler (San Jose, CA). Images were collected using 

a Z-rage of 15-20 µm at 200 steps, resulting in a Z-step size of 0.075 – 0.1 µm. A 20x magnification 

was used to image at least 3 different areas per sample (field of view: 474 x 356 µm2). Zeta feature 
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detection software was used to quantify pits, specified as areas with a specified depth from a 

reference surface on non-resorbed areas. The minimum thresholds for pit detection were 

established as 3 µm for BG, 2 µm for D, and 1.5 µm for TCP and HA.  The % of the surface area 

that was resorbed was reported as well as total resorbed volume per image normalized to the 

analyzed field of view. Roughness of each sample (Ra) was analyzed from feature detection 

software. 

Scanning Electron Microscopy. To further visualize resorption pits on substrates, scanning 

electron microscopy (SEM) images were taken of both initial, unresorbed samples and co-culture 

samples after 25 days. Samples were mounted onto a scanning electron microscopy (SEM) pin 

stub mount and sputter-coated for 40 s using a Cressington Q108 sputter coater, which deposits 

gold at a 30 mA current. A Hitachi S-4200 SEM was used to acquire images at a voltage of 1kV.  

Statistical analysis.  Differences in resorption volumes, resorption area, and roughness 

among samples was analyzed by two-way ANOVA. Statistical significance was considered for p 

< 0.05.  

 

Results 

Assay Development. The MC3T3 and RAW264.7 cell co-culture was tested on tissue 

culture plastic to study the progression of osteoclast development. Bright field image of cells at 5 

and 10 days (Figure 6.1 A,B),  TRAP stained cells at 17 days (Figure 6.1 C)  and Actin stained 

cells at 17 days (Figure 6.1D) show progression of differentiation. The formation of some large 

egg shaped cells, which is indicative of osteoclastic differentiation, are present at 10 days. By 17 

days larger, TRAP+ cells with visible actin ring structure are present, which indicates osteoclast 
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formation. A large number of non-differentiated RAW cells (small circular cells) remain at 17 

days in the co-culture, which are also TRAP+. 

 

 

Figure 6.1. Bright field images of cells in co-culture on tissue culture plastic at (A) 5 days and 

(B) 10 days after the start of the assay. Cells at 17 days were (A) TRAP stained and (B) actin 

stained to show larger, TRAP+ cells and cells with a visible actin ring structure. Images A-C 

were taken at 20x. Image D was taken at 10x.  

 

Co-culture. TRAP positive, multinucleated cells were visible on BG and D samples at 21 

and 25 days in co-culture indicating the presence of osteoclasts on these materials (Figure 6.2).  

Some areas of the D appear to be brighter (black arrows), which may be indicative of resorption 

pits. Due to the thickness of TCP and HA discs, bright field images could not be taken of these 

samples as not enough light could penetrate through the discs for TRAP visualization. This 

precluded the use of TRAP staining on TCP and HA to verify osteoclast presence. Cells on 

matrices of interest were stained after 21 days in co-culture for actin ring presence with 

counterstaining to display the nuclei (Figure 6.3). Multinucleated (3+) cells with visible, thick 
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actin rings were present on all materials indicating the existence of osteoclasts, using an Inverted 

Microscope; however, images could not be acquired due to the high background of the DAPI stain 

and difficulty in focusing on the cells. Osteoclasts were detected with 3-5 nuclei. Confocal 

microscopy was used to get clear, 3D images of all samples, but the lasers available for use with 

confocal could not excite the DAPI stain (Figure 6.3). Large cells with clear actin rings were visible 

on substrates indicating the presence of osteoclasts (white arrows). Fewer osteoclasts were present 

on HA than the other matrices of interest. Multiple cells with 2 nuclei were present and many cells 

looked to be in the process of fusing with conjoining actin rings.  

 

 
Figure 6.2. Bright field images of TRAP stained cells on BG and D. Larger TRAP+ cells are 

present on both substrates by 21 days. Some areas of D (black arrows) appear to be brighter (less 

opaque) which may indicate the presence of resorption pits.  
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Figure 6.3. Confocal images of actin stained cells on substrates after 21 days. White arrows point 

to osteoclasts. The scale bar represents 20 µm.   

 

 

Profilometry. Matrices of interest were analyzed for resorption pits using optical 

profilometry. Representative images of resorption pits are show in Figure 6.4, where the arrows 

point toward the pitted areas. The surface of BG discs was more rough than that of D, HA, or TCP, 

most likely due to the surface change and dissolution of the material.  Resorption pits were visible 

on all materials at all of the time points, though pits on Dentin were the largest. Pits on HA were 

scarce and not homogenously distributed over the surface.  
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Figure 6.4. 3D profilometry images of substrates are 25 days in the osteoclast co-culture assay. 

Black arrows point to resorption pits on the surface. The scale bars represent 20µm.  

 

Quantification of surface pitting was completed using Zeta feature detection software. The 

percent area resorbed on each surface and the resorption volume normalized to surface area were 

calculated (Figure 6.5A). The BG showed the highest resorption percent, however some of this 

may be attributed to the overall roughness of the surface which made it more difficult to selectively 

determine pitted areas. HA experienced the lowest surface resorption at both 21 and 25 days.  

A straight line (Eqn 6.1) was fit to percent resorption data to determine resorption rates of 

each material over time. 

      𝑃𝑟 = 𝑘𝑟𝑡 + 𝑏   (6.1) 

 The fitting parameters are shown in Figure 6.5B, where the slope (kr) represents the 

resorption rate in units of percent surface area per day (% day-1). Dentin had the highest rate of 

resorption at 0.419 % day-1. BG and TCP showed similar values, of 0.260% day-1 and 0.241 % 

day-1 respectively, however the goodness of fit to TCP data was the lowest of any group. HA had 

the lowest resorption rate, at 0.062 % day-1,. The resorption volume normalized to surface area 

(µm3/ µm2) was also calculated with D displaying the highest resorption volume at 25 days (Figure 



115 
 

6.5C). The surface of the BG discs was significantly more rough than D, TCP, or HA at all time 

points (Figure 6.5D). BG roughness increased slightly over time, though this was not significant. 

Roughness of D, TCP, and HA did not change over time. 

 

 
Figure 6.5. Quantitative analysis of profilometry scans to determine (A) percent of total surface 

area resorption, (B) fitting parameters for Eqn 6.1 fit to percent resorption data, (C) normalized 

resorption volume, and (D) roughness of the surface.  

 

 

Scanning Electron Microscopy. SEM images of BG were taken of samples 1) after 

polishing, 2) after 25 days in media, and 3) after 25 days in co-culture (Figure 6.6). Following 

polishing the surface was flat with some minor blemishes. After 25 days in media without cells, 

the BG surface was significantly more rough with some cracks visible at higher magnification. 

After 25 days in co-culture, significant cracking was visible with a large increase in surface 

roughness.  
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Figure 6.6. SEM images of BG (A) polished, before the start of culture (B) immersed in α-MEM 

for 25 days without cells and (C) after 25 days in co-culture.   

 

 

Resorption pits were evident on the BG test disc when compared to the control sample. 

SEM images for TCP, HA, and D were taken after cleaning samples and following 25 days in 

co-culture (Figure 6.7). Ridges were evident on clean dentin samples while no recurrent 

topographical structures were present on the surface of HA or TCP discs. By 25 days, resorption 

pits were visible on all substrates surfaces. The pits on HA ware smaller, shallower, and less 

frequent than on TCP and D.   

 

 
Figure 6.7. SEM images of clean substrates and samples after 25 days in co-culture for HA, TCP, 

and D.  
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Discussion 

In order to design an effective bone graft, it is important to understand the biodegradation 

of the materials. A recent study has suggested that defects heal more reproducibly when bone graft 

degradation rates are similar to that of osseous integration and new bone deposition (5). However, 

there is conflicting information pertaining to the degradation rates, in particular that of osteoclast 

driven resorption, of ceramics and bioactive glasses. Previous studies have used numerous cell 

populations and differentiation methods to study in vitro osteoclast activity on substrates of 

interest, but there is no widely accepted, standardized assay for osteoclast differentiation or 

resorption measurements. In the present study, we developed a quantitative technique to determine 

relative resorption rates on a variety of synthetic materials using optical profilometry to measure 

pitting on substrates exposed to an osteoclast – osteoblast co-culture. As compared to dentin, 

resorption rates were approximately half for TCP and BG while HA resorption was 7 fold lower.  

Osteoclast assays vary widely based on the initial cell source and differentiation methods. 

Some groups use M-CSF and RANKL to drive differentiation of primary monocyte populations, 

with osteoclast presence verified within 5-7 days (25, 30). However, there is often variability in 

these studies due to the source of the animals and the health and age of the mouse at cell harvest. 

Additionally, the cost of the growth factors can be prohibitive. Techniques dating back to the 1980s 

have successfully used 1α,25-dihydroxyvitamin D3 (VD3) to drive differentiation of primary 

monocytes (17). More recently VD3 has been shown to drive differentiation of cells of the 

monocyte lineage (31). In the present study, VD3 is used to drive osteoclast differentiation in a 

co-culture of MC3T3 and RAW264.7 cells. Larger, egg-like cells, suspected to be osteoclast 

precursors, are visible within 2 weeks while osteoclasts are evident within 18 days as determined 

by TRAP staining.  
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While osteoclast formation was established on tissue culture plastic, osteoclastogenesis on 

synthetic substrates was also investigated. It is universally understood that formation of an F-actin 

ring and multinucleation are necessary for active osteoclast resorption. Previous groups have 

differentiated monocytes on ceramics and bioactive glasses with a variety of results. One group 

cultured human leukoma monocytes on HA and TCP discs and found more multinucleated TRAP+ 

cells on HA, with F-actin rings visible after 21 days, and some resorption pits (5 -65 µm in 

diameter) present on both materials (32). Studies of osteoclast activity on BG are scare in the 

literature, but one group has shown that osteoclasts can pit the surface of strontium-substituted 

bioactive glass with ion dissolution occurring over the same time frame, as measured by 

inductively coupled plasma – optical emission spectrometry (22). In the present study, two 

ceramics, β-tricalcium phosphate (TCP) and hydroxyapatite (HA), as well as 45S5 bioactive glass 

(BG) were tested in an osteoclast co-culture assay using dentin (D) chips as a reference material. 

These substrates were chosen based on their significant presence, both clinically and in research, 

in the field of bone engineering. TRAP staining on D and BG at 17 and 21 days revealed the 

presence of osteoclasts (TRAP+, multinucleated cells) on these substrates. However, TRAP 

staining could not be conducted on TCP or HA due to the thickness of the discs. Fluorescence 

labeling of actin along with a nuclear marker indicated the formation of osteoclasts on all substrates 

at by 21 days. Cells were visible with 3-5 nuclei, which is similar to previous studies (33). 

Bone grafts delivered in vivo experience a number of cell types and fluid phases which can 

contribute to graft biodegradation. A main source of degradation is resorption which correlates to 

cellular activity. Once osteoclasts attach to a material substrate, a resorption lacuna is formed on 

the surface into which hydrogen ions are secreted thereby bringing the local pH down to 

approximately 4.5 (34). The acidity of the resorption lacuna creates an environment in which the 
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ceramic is locally degraded. One previous study suggested that macrophages and giant cells are 

responsible for the majority of the degradation in brushite cements (9); however, other studies have 

shown significant osteoclast resorption of ceramics. A study investigating in vitro osteoclast 

resorption on calcium phosphates found osteoclast pitting on some calcium phosphates, but this 

was dependent on chemical composition and crystallinity of the substrates (35). In the present 

study resorption pits were evident on all tested substrates, when viewed by optical profilometry 

and SEM. Surface area and normalized volumetric resorption were measured by profilometry, with 

D experiencing the fastest rate of resorption, as determined by the slope of Eqn 6.1. The volumetric 

resorption of D was also the highest of any group at 25 days, and this was significantly higher than 

day 17 data. This suggests that the pits on D were deeper than on other groups. BG discs had the 

highest percent surface area resorption, but the rates of resorption were similar to that of TCP. 

With the BG discs, it was difficult to separate the effects of surface dissolution from that of 

osteoclast resorption, as both of these mechanisms likely contribute to degradation of the material. 

The BG discs also had the highest surface roughness of any group and this increased slightly over 

time. This also points to surface activity or dissolution playing a role in the remodeling of the 

substrate. Resorption on HA was the lowest of any group, with an approximately 7 fold lower rate 

than on D. The resorption measurements are similar to another study that found osteoclasts will 

resorb TCP but not HA (36). These data corroborate in vivo findings reporting that porous TCP 

ceramics remodel at a similar rate to osseous deposition, whereas HA based ceramics remain for 

a significantly longer timeframe (3).  Additionally, in vivo investigation in a canine dental socket 

revealed more resorption and cellular activity in defects treated with BG as compared to HA (37). 

Finally, LV composites with allograft bone were fully degraded by a year while residual ceramic 
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was visible in defects treated with Mastergraft (85% TCP, 15% HA) at 2 years in a sheep femoral 

plug model (Chapter 3).  

The degradation products of calcium phosphates are used for de novo bone formation, 

unlike other bone graft substitutes (38). Phosphate ions have been shown to affect osteoblast 

apoptosis, osteopontin production, and new bone mineralization (26). Calcium ions aid in the 

regulation of osteoblast proliferation and osteoclast differentiation. However, the release of large 

numbers of calcium ions may interfere with resorption, which is of importance on matrices with 

higher rates of dissolution (36). Osteoclasts are able to sense Ca2+ levels, and high ionic 

concentration of calcium ions leads to decreased TRAP expression and morphological changes in 

osteoclasts due to negative feedback control mechanisms (39). While the increased Ca2+ 

concentration may inactivate osteoclasts, the increased presence of Ca, P, and Si ions may enhance 

osteoblast differentiation and activity (40). Most calcium phosphates exhibit little to no solubility 

in water while all dissolve in acids (11), which is of particular interest in osteoclast resorption 

where the resorption lacunae is an area of locally high acidity. The dissolution and degradation of 

ceramics and bioactive glasses may contribution to the balance of osteoclast and osteoblast activity 

and graft remodeling. The effect of dissolution products of bioactive glasses and ceramics on cell 

signaling pathways related to osteoblast/osteoclast growth and differentiation is an area for 

potential future studies.   

One limitation of this study is the difficulty in seeding the cells directly onto the substrates 

of interest. It has previously been shown that cells do not attach directly onto inorganic substrates, 

rather they bind to the extracellular matrix (ECM) components, such as fibronectin and vitronectin, 

that are absorbed to the surface of biomaterials (25). The cellular attachment and differentiation of 

osteoclasts may be influenced by the binding of proteins, present in high concentrations in the 



121 
 

growth media, to the inorganic matrices and the ECM produced by the differentiated MC3T3s. 

Another limitation of this study is the difficulty in separating the effects of BG dissolution and 

osteoclast resorption.  

The aim of this study was to develop an inexpensive, standardized osteoclast differentiation 

assay to measure relative resorption rates on substrates of interest and test clinically relevant 

ceramics and bioactive glass. This in vitro assay will help to test bone grafts and aid in the 

development of biomaterials that experience balanced remodeling when implanted in vivo. 

Osteoclasts were evident in the MC3T3 and RAW 264.7 co-culture by 3 weeks, with the addition 

of VD3 stimulating the MC3T3s to drive osteoclast differentiation of the monocyte cell line (20). 

Resorption was quantified by optical profilometry on D, TCP, HA, and BG.  The rate of resorption 

on D, the control for native bone, was twice as high as that on TCP and BG and 7 fold higher than 

resorption on HA. In ongoing studies, osteoclast resorption of RAW cells stimulated with (1) 

conditioned media from tumor cell culture or (2) supernatant from bacterial culture is being 

investigated.  

 

Conclusion 

 Resorption by osteoclasts grown from a co-culture of MC3T3 and RAW 264.7 cells was 

evaluated on D, TCP, HA, and BG substrates. The co-culture assay produced multinucleated cells 

with a visible actin ring within 3 weeks on all substrates. Resorption was measured by optical 

profilometry with relative resorption rates determined on ceramics and bioactive glass. When 

compared to D, a control for host bone, rates on TCP and BG were approximately half while HA 

resorption was 7 fold lower. This study presents a new method to differentiate osteoclasts directly 

on matrices of interest and quantify relative resorption rates. The findings suggest osteoclasts are 
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able to pit ceramic and bioactive glass substrates while ceramic composition significantly affects 

resorption rates.   



123 
 

References 

1.  Zimmermann, G., andMoghaddam, A. Allograft bone matrix versus synthetic bone graft 

substitutes. Injury 42, Supplement 2, S16, 2011. 

2.  Yaszemski, M.J., Payne, R.G., Hayes, W.C., Langer, R., andMikos, A.G. Evolution of bone 

transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials 

17, 175, 1996. 

3.  Lichte, P., Pape, H.C., Pufe, T., Kobbe, P., andFischer, H. Scaffolds for bone healing: 

Concepts, materials and evidence. Injury 42, 569, 2011. 

4.  Bose, S., Roy, M., andBandyopadhyay, A. Recent advances in bone tissue engineering 

scaffolds. Trends Biotechnol 30, 546, 2012. 

5.  Dumas, J.E., Prieto, E.M., Zienkiewicz, K.J., Guda, T., Wenke, J.C., Bible, J., Holt, G.E., 

andGuelcher, S.A. Balancing the rates of new bone formation and polymer degradation enhances 

healing of weight-bearing allograft/polyurethane composites in rabbit femoral defects. Tissue 

Eng Part A 20, 115, 2014. 

6.  Jones, J.R. Review of bioactive glass: from Hench to hybrids. Acta Biomater 9, 4457, 2013. 

7.  Hing, K.A., Wilson, L.F., andBuckland, T. Comparative performance of three ceramic bone 

graft substitutes. The Spine Journal 7, 475, 2007. 

8.  Fröhlich, M., Grayson, W.L., Wan, L.Q., Marolt, D., Drobnic, M., andVunjak-Novakovic, G. 

Tissue Engineered Bone Grafts: Biological Requirements, Tissue Culture and Clinical 

Relevance. Current stem cell research & therapy 3, 254, 2008. 

9.  Larsson, S., andHannink, G. Injectable bone-graft substitutes: Current products, their 

characteristics and indications, and new developments. Injury 42, Supplement 2, S30, 2011. 

10.  Lu, J., Descamps, M., Dejou, J., Koubi, G., Hardouin, P., Lemaitre, J., andProust, J.P. The 

biodegradation mechanism of calcium phosphate biomaterials in bone. Journal of biomedical 

materials research 63, 408, 2002. 

11.  Barrère, F., van Blitterswijk, C.A., andde Groot, K. Bone regeneration: molecular and 

cellular interactions with calcium phosphate ceramics. International Journal of Nanomedicine 1, 

317, 2006. 

12.  Detsch, R., Hagmeyer, D., Neumann, M., Schaefer, S., Vortkamp, A., Wuelling, M., Ziegler, 

G., andEpple, M. The resorption of nanocrystalline calcium phosphates by osteoclast-like cells. 

Acta Biomaterialia 6, 3223, 2010. 

13.  Hoppe, A., Güldal, N.S., andBoccaccini, A.R. A review of the biological response to ionic 

dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32, 2757, 2011. 

14.  Oonishi, H., Hench, L.L., Wilson, J., Sugihara, F., Tsuji, E., Matsuura, M., Kin, S., 

Yamamoto, T., andMizokawa, S. Quantitative comparison of bone growth behavior in granules 

of Bioglass®, A-W glass-ceramic, and hydroxyapatite. Journal of Biomedical Materials 

Research 51, 37, 2000. 

15.  Talley, A.D., Kalpakci, K.N., Shimko, D.A., Zienkiewicz, K., Cochran, D., andGuelcher, S. 

Effects of rhBMP-2 Dose and Ceramic Composition on New Bone Formation and Space 

Maintenance in a Canine Mandibular Ridge Saddle Defect Model. Tissue Engineering 2016. 

16.  Takahashi, N., Akatsu, T., Udagawa, N., Sasaki, T., Yamaguchi, A., Moseley, J.M., Martin, 

T.J., andSuda, T. OSTEOBLASTIC CELLS ARE INVOLVED IN OSTEOCLAST 

FORMATION. Endocrinology 123, 2600, 1988. 



124 
 

17.  McSheehy, P.M., andChambers, T.J. 1,25-Dihydroxyvitamin D3 stimulates rat osteoblastic 

cells to release a soluble factor that increases osteoclastic bone resorption. Journal of Clinical 

Investigation 80, 425, 1987. 

18.  Thomson, B.M., Mundy, G.R., andChambers, T.J. Tumor necrosis factors alpha and beta 

induce osteoblastic cells to stimulate osteoclastic bone resorption. The Journal of Immunology 

138, 775, 1987. 

19.  Thomson, B.M., Saklatvala, J., andChambers, T.J. Osteoblasts mediate interleukin 1 

stimulation of bone resorption by rat osteoclasts. The Journal of Experimental Medicine 164, 

104, 1986. 

20.  Udagawa, N., Takahashi, N., Jimi, E., Matsuzaki, K., Tsurukai, T., Itoh, K., Nakagawa, N., 

Yasuda, H., Goto, M., Tsuda, E., Higashio, K., Gillespie, M.T., Martin, T.J., andSuda, T. 

Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast 

differentiation factor/RANKL but not macrophage colony-stimulating factor. Bone 25, 517, 

1999. 

21.  Kirstein, B., Chambers, T.J., andFuller, K. Secretion of tartrate-resistant acid phosphatase by 

osteoclasts correlates with resorptive behavior. J Cell Biochem 98, 1085, 2006. 

22.  Gentleman, E., Fredholm, Y.C., Jell, G., Lotfibakhshaiesh, N., O'Donnell, M.D., Hill, R.G., 

andStevens, M.M. The effects of strontium-substituted bioactive glasses on osteoblasts and 

osteoclasts in vitro. Biomaterials 31, 3949, 2010. 

23.  Botelho, C., Brooks, R., Spence, G., McFarlane, I., Lopes, M., Best, S., Santos, J., Rushton, 

N., andBonfield, W. Differentiation of mononuclear precursors into osteoclasts on the surface of 

Si‐substituted hydroxyapatite. Journal of biomedical Materials research part A 78, 709, 2006. 

24.  Friederichs, R.J., Brooks, R.A., Ueda, M., andBest, S.M. In vitro osteoclast formation and 

resorption of silicon-substituted hydroxyapatite ceramics. J Biomed Mater Res A 2015. 

25.  Fuller, K., Ross, J.L., Szewczyk, K.A., Moss, R., andChambers, T.J. Bone is not essential 

for osteoclast activation. PLoS One 5, e12837, 2010. 

26.  Jensen, S.S., Gruber, R., Buser, D., andBosshardt, D.D. Osteoclast-like cells on 

deproteinized bovine bone mineral and biphasic calcium phosphate: light and transmission 

electron microscopical observations. Clinical Oral Implants Research 26, 859, 2015. 

27.  Wilson, S.R., Peters, C., Saftig, P., andBromme, D. Cathepsin K activity-dependent 

regulation of osteoclast actin ring formation and bone resorption. J Biol Chem 284, 2584, 2009. 

28.  Pascaretti-Grizon, F., Mabilleau, G., Basle, M.F., andChappard, D. Measurement by vertical 

scanning profilometry of resorption volume and lacunae depth caused by osteoclasts on dentine 

slices. Journal of Microscopy 241, 147, 2011. 

29.  Pavlos, N.J., Cheng, T.S., Qin, A., Ng, P.Y., Feng, H.-T., Ang, E.S., Carrello, A., Sung, C.-

H., Jahn, R., andZheng, M.-H. Tctex-1, a novel interaction partner of Rab3D, is required for 

osteoclastic bone resorption. Molecular and cellular biology 31, 1551, 2011. 

30.  Jensen, E.D., Pham, L., Billington, C.J., Jr., Espe, K., Carlson, A.E., Westendorf, J.J., 

Petryk, A., Gopalakrishnan, R., andMansky, K. Bone morphogenic protein 2 directly enhances 

differentiation of murine osteoclast precursors. J Cell Biochem 109, 672, 2010. 

31.  Kogawa, M., Anderson, P.H., Findlay, D.M., Morris, H.A., andAtkins, G.J. The metabolism 

of 25-(OH)vitamin D3 by osteoclasts and their precursors regulates the differentiation of 

osteoclasts. The Journal of Steroid Biochemistry and Molecular Biology 121, 277, 2010. 

32.  Detsch, R., Mayr, H., andZiegler, G. Formation of osteoclast-like cells on HA and TCP 

ceramics. Acta Biomaterialia 4, 139, 2008. 



125 
 

33.  Pham, L., Kaiser, B., Romsa, A., Schwarz, T., Gopalakrishnan, R., Jensen, E.D., 

andMansky, K.C. HDAC3 and HDAC7 have opposite effects on osteoclast differentiation. 

Journal of Biological Chemistry 286, 12056, 2011. 

34.  Bohner, M., Galea, L., andDoebelin, N. Calcium phosphate bone graft substitutes: Failures 

and hopes. Journal of the European Ceramic Society 32, 2663, 2012. 

35.  Winkler, T., Hoenig, E., Gildenhaar, R., Berger, G., Fritsch, D., Janssen, R., Morlock, M.M., 

andSchilling, A.F. Volumetric analysis of osteoclastic bioresorption of calcium phosphate 

ceramics with different solubilities. Acta Biomaterialia 6, 4127, 2010. 

36.  Yamada, S., Heymann, D., Bouler, J.M., andDaculsi, G. Osteoclastic resorption of calcium 

phosphate ceramics with different hydroxyapatite/β-tricalcium phosphate ratios. Biomaterials 18, 

1037, 1997. 

37.  Santos, F.A., Pochapski, M.T., Martins, M.C., Zenóbio, E.G., Spolidoro, L.C., 

andMarcantonio Jr, E. Comparison of Biomaterial Implants in the Dental Socket: Histological 

Analysis in Dogs. Clinical Implant Dentistry and Related Research 12, 18, 2010. 

38.  Bohner, M. Resorbable biomaterials as bone graft substitutes. Materials Today 13, 24, 2010. 

39.  Zaidi, M., Adebanjo, O.A., Moonga, B.S., Sun, L., andHuang, C.L.H. Emerging Insights 

into the Role of Calcium Ions in Osteoclast Regulation. Journal of Bone and Mineral Research 

14, 669, 1999. 

40.  Chen, Q.Z., Efthymiou, A., Salih, V., andBoccaccini, A.R. Bioglass®-derived glass–ceramic 

scaffolds: Study of cell proliferation and scaffold degradation in vitro. Journal of Biomedical 

Materials Research Part A 84A, 1049, 2008. 

 

 

  



126 
 

CHAPTER VII 

 

INJECTABLE, SETTABLE POLYURETHANE BIOCOMPOSITES DELIVERING rhBMP-2 

FOR POSTEROLATERAL SPINAL FUSION IN RABBITS. 

 

Introduction 

From 1998 to 2008 the number of spinal fusion hospital discharges in the United States 

jumped from 64.5 per 100,000 adults to 135.5 (1). Spinal fusion surgeries are most often performed 

to treat degenerative conditions like disc degeneration, spinal stenosis, and degenerative 

spondylolisthesis, with complications reported in approximately 4% of cases (2). The gold 

standard treatment consists of autograft bone that is osteoconductive, osteogenic, and 

osteoinductive, but autograft requires a secondary for harvest and it cannot be delivered using 

minimally invasive surgical (MIS) techniques.  While MIS posterolateral fusion (PLF) surgeries 

could potentially decrease muscle destruction and length of hospital stays, there are no studies 

comparing the outcomes of MIS and conventional approaches (3). Thus, there is considerable 

interest in the development of new materials that can be delivered by MIS techniques while also 

withstanding the compressive forces of the posterior musculature and contributing to fusion (4).  

Previously studied tissue engineering approaches for spinal fusion include ceramics, 

polymers, demineralized bone, osteoinductive growth factors, stem cells, and gene therapy, but 

persuasive evidence for clinical use has not provided for many of these treatment options (5). 

Ceramics such as hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) are often studied for 

bone grafting applications, including spinal fusions, as they are osteogenic, strong, and resorbable 

(4, 6, 7). Polyurethanes (PUR) are a biodegradable, biocompatible class of polymers frequently 
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studied for bone grafting applications (8, 9). PUR biocomposites are injectable and can fill a 

variety of defect sizes and shapes within clinically relevant working times of 5-10 min (10). PUR 

biocomposites with allograft, ceramic, or bioglass filler have been successfully tested in a number 

of animal models including rabbit femoral plug defects (11, 12), canine mandibular defects (13), 

and sheep femoral condyle defects (14). 

The osteoinductive growth factor recombinant human bone morphogenetic protein-2 

(rhBMP-2) has previously been shown to enhance fusion in the lumbar spine while reducing 

surgery time, blood loss, and hospital stays (15, 16). Clinical use of rhBMP-2 in spinal fusions 

began in 2002, with almost one third of spinal fusion procedures involving rhBMP-2 by 2006 (17).  

A non-human primate spinal fusion study indicated that the acelluar collagen sponge (ACS) carrier 

of rhBMP-2 leads to insufficient fusion due to the compressive forces of the musculature (4).  

RhBMP-2 is FDA approved for delivery via an ACS delivered within a metallic tapered spinal 

fusion cage (LT-CAGE™, Medtronic). RhBMP-2 delivered via a LV graft decreases bolus growth 

factor release when compared to a clinical control, an acellular collagen sponge (Chapter 4) which 

may enhance healing and reduce side effects associated with rhBMP-2 delivery. Additionally, LV 

grafts augmented with a clinically relevant dose of rhBMP-2 maintain the height and width of the 

host ridge and promote healing without the need for external fixation in canine ridge defects (18).  

Due to the limited treatment options available for MIS techniques for spinal fusion 

procedures, there is a clinical need for new bone graft substitutes. In this study, we investigated 

injectable LV/ceramic (CM) and LV/BG composites augmented with 430 μg/ml rhBMP-2 as 

injectable, settable bone grafts for spinal fusion in a single level rabbit posterolateral lumbar spine 

model. The LV grafts set in approximately 10 minutes after injection into the fusion site and have 

mechanical integrity such that additional fusion cages are unnecessary. We hypothesized that LV 
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grafts would support fusion and new bone formation, and the effect would be enhanced with the 

presence of the longer lasting ceramic.  

 

Experimental 

Materials. Lysine-triisocyanate prepolymer (LTI-PEG, 21.7% NCO) was purchased from 

Ricerca Biosciences LLC (Painesville, OH). Glycerol, stannous octoate, ε-caprolactone, and 

APTES were purchased from Sigma-Aldrich (St. Louis, MO). Glycolide and DL-lactide were 

supplied by Polysciences (Warrington, PA). Triethylene diamine (TEDA) and dipropylene glycol 

(DPG) were purchased from Sigma Aldrich and mixed to obtain a 10% (w/w) solution of TEDA 

in dry DPG. MASTERGRAFT® Mini Granules (ceramic, CM) were received from Medtronic 

Spinal and Biologics (Memphis, TN) and ground and sieved to 100 – 500 µm. 45S5 bioactive glass 

(BG) particles (150 – 212 µm) were purchased from Mo-Sci Corporation (Rolla, MO). 

Recombinant human bone morphogenetic protein-2 (rhBMP-2, INFUSE® kit) was received from 

Medtronic Spinal and Biologics (Memphis, TN).  

Synthesis of polyester triol. The polyester triol was synthesized as described previously 

(19, 20). Briefly, glycerol was mixed with ε-caprolactone, glycolide, and DL-lactide monomers 

under argon at 140°C for 40 hrs. The subsequent polyester triol was cooled, washed 3x with 

hexane, and dried in a vacuum oven at 80°C for 48 hrs. The backbone of the polyester was 

comprised of 70% ε-caprolactone, 20% glycolide, and 10% DL-lactide, with a molecular weight 

of 450 g mol-1. 

Surface modification of bioactive glass. The surface of the bioactive glass particles was 

modified as described previously (21-23). Briefly, 45S5 BG particles were cleaned via sonication 

in a mixture of acetone in deionized (DI) water (95 vol%) and rinsed three times in DI water by 

sonication. Next, particles were silanized in a solution of APTES for 5 h at room temperature, 
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rinsed with ethanol, and annealed at 100 °C for 1 h. For the surface-initiated ring-opening 

polymerization, a mixture of 1:1000 M Sn(Oct)2: dried ε-caprolactone and a 0.83:1 weight ratio 

of Sil-BG:ε-caprolactone was reacted while stirring at 110 °C. The polymerization time of 24 hrs 

corresponded to a final poly(ε-caprolactone) (PCL) molecular weight of 19,225 g mol-1. Non-

grafted, excess PCL was extracted with chloroform and particles were dried at 40 °C for 24 h. 

Fabrication of low-viscosity (LV) bone grafts. The components of the LV grafts were 

mixed in a two-step method. In the first step, the polyester triol, matrix particles (either 45 wt% 

CM or 45 wt% BG), and TEDA (1.1 pphp) were added to a 10-mL cup and mixed by hand for 30 

s. The LTI-PEG and lyophilized rhBMP-2 were added to the cup and mixed by hand for 60 s. The 

index (ratio of isocyanate:hydroxide equivalents x 100) was set at 115. For material 

characterization, the reactive mixture was mixed with 3 pphp of DI water (to simulate in vivo 

curing in the presence of moisture at the defect site), loaded into a straight bore syringe, and 

injected into a 6-mm vial. These samples were allowed to cure for 24 h prior to cutting.  

Rheological analysis. To test the viscosity of the initial composites, triplicate samples were 

prepared without catalyst to prevent curing. The prepolymer, polyol, and solid filler were mixed 

by hand for 60 s and poured between 40-mm cross-hatched parallel plates on a TA Instruments 

AR2000ex rheometer (New Castle, DE). The plates were compressed to a gap of 1000 µm and 

subjected to a dynamic frequency sweep (0.5 to 100 rad sec-1) at 25C with controlled strain 

amplitude of 0.02%. A Cox-Merz transformation was applied to the collected dynamic data to 

obtain the steady state viscosity (η, Pa*s) as a function of shear rate (γ, s-1).  

The curing profile of the LV composites was also determined using a rheometer. For these 

composites the polyol, catalyst, and filler were mixed by hand initially for 30 s. The prepolymer 

was added and the samples were mixed by hand for 60 s. Reactive samples were loaded onto 25-
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mm disposable aluminum plates and compressed to a gap of 1000 µm. An oscillatory time sweep 

was run on triplicate samples with a frequency of 1 Hz and a controlled amplitude of 1% strain. 

The storage (G’) and loss (G’’) moduli were collected over time. The working time was defined 

as the cross-over point of G’ and G’’. The tack-free time (TFT) of LV/BG and LV/CM composites 

was measured by hand. Reactive samples were mixed as described above, loaded into a straight 

bore syringe, and injected into 6mm vials for cure. The time after mixing at which the composite 

no longer adhered to an external object was defined as the TFT. Triplicate samples were run for 

each group and statistical difference was measured by a t-test.   

Evaluation of LV bone grafts in a rabbit spinal fusion model. Six skeletally mature rabbits 

were used in this study. All surgical and care procedures were carried out under aseptic conditions 

according to the approved IACUC protocol. Treatment groups are listed in Table 7.1. The 

individual components of the LV grafts were gamma-irradiated at a dose of 25 kGY prior to 

surgery to ensure sterility. The bilateral, single level spinal fusion model in rabbits has been 

previously established (24). The soft tissue and longissimus muscle were retracted to expose the 

medial aspect of the transverse processes. The fusion site was decorticated with a motorized burr. 

The polyurethane components were mixed along with the lyophilized growth factor, packed into 

a syringe, and injected onto the site over the intertransverse ligament with the graft spanning the 

L5 and L6 transverse processes. The fusion sites were filled with LV/CM or LV/BG at a dose of 

430 µg/ml rhBMP-2 (n=3 animals per group, bilateral sites). The injected composite foamed to a 

final volume of ~ 3 cc per fusion site after the reaction was complete. Computed tomography (CT) 

scans were run at 0, 4, and 8 weeks. The rabbits were euthanized after 8 weeks and evaluated with 

radiographs. Success of the spinal fusion was determined by manual palpation by experience 

surgeons. Motion of the L5-L6 segment was determined by gentle flexation of the fusion site. A 
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successful union was specified as cases where no movement at the intervertebral disc was present.  

The spines were extracted, fixed in 10% formalin, and cut in half along a sagittal plane (along the 

spinal column) to separate the left and right side fusion bodies so that µCT scans could be run. The 

bones were fixed for 2 weeks prior to processing for histology. 

 

Table 7.1. Rabbit spinal fusion in vivo study design and LV composite physical characteristics 

 

 

Micro-Computed Tomography (μCT) Analysis. A μCT50 (SCANO Medical, Basserdorf 

Switzerland) was used to acquire scans of the extracted spines in formalin at 70 kVp energy, 200 

μA source current, 1000 projections per rotation, 800 ms integration time, and an isotropic voxel 

size of 24.2 μm. Axial images were reconstituted using manufacturer provided software. 

Attenuation values were converted to tissue mineral density (TMD) through calibration with 

hydroxyapatite (HA) phantoms with densities of 0 to 780 mg HA cm-3 (calibrations checked 

weekly).  

Histology. After fixation in formalin, the explanted spines were dehydrated in a graded 

series of ethanol and embedded in poly(methylmethacrylate) (PMMA). Using an Exakt band saw, 

transverse sections were cut from each block in the midline of the fusion (halfway between L5 and 

L6) using the µCT images as reference. The sections were then ground and polished to <100 μm 

using an Exakt grinding system and stained with Sanderson’s rapid bone stain. New bone stained 

red, residual CM stained black, and infiltrating cells stained blue. Remaining BG particles 

appeared white and did not absorb the stain. Histological sections were used to visualize the 

Treatment Group Particles

Particle diameter 

(µm) % Matrix

Viscosity at 5s-1 

(Pa*s) TFT (min)

Working time 

(min)

n                   

8 weeks

LV/CM Mastergraft 100-500 45 N/A 9.59 ± 0.47 N/A 3

LV/BG Bioglass 150-212 45 65.73 ± 4.17 10.32 ± 0.78 11.52 ± 0.34 3
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amount of new bone formed in the fusion body and the residual CM and BG particles in the graft 

site. 

 

Results 

Rheological analysis. LV/BG samples were testing with and without catalyst to examine 

cure profiles and initial flow characteristics of the composites. It was not possible to test LV/MG 

composites due to the large size of the particles (100-500 µm) and granularity of the mixture. 

Figure 7.1 shows representative curves for the initial viscosity and cure profile of the LV/BG graft. 

As expected, LV/BG composites exhibited shear thinning properties over the tested shear rates. 

The viscosity of the initial LV/BG composite was 65.73 ± 4.17 Pa*s (evaluated at 5 s-1). The 

working time of the composites was determined as the cross-over point of the storage and loss 

moduli. The working times and TFT associated with the cure profile of LV/BG and LV/CM are 

listed in Table 7.1.  The TFT for LV/CM was lower than that of LV/BG, but not significantly. The 

working time for the LV/BG composites was approximately a minute longer than the TFT due to 

the difference in the methods used to determine the two properties.  

 

Figure 7.1. Rheological analysis of LV/BG composites. (A) Representative graph of initial flow 

characteristics and (B) cure profile of reactive composite (2.5 min after the start of mixing).  
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Assessment of Fusion. Success of the spinal fusion is shown in Figure 7.2. A complete 

union was apparent in all samples as determined by manual palpation of the fusion body after the 

samples were explanted.  

Figure 7.2. Success of fusion union as determined by manual palpation of explanted samples. 

 

 

CT analysis. CT scans of all animals were run at 0, 4, and 8 weeks after the delivery of the 

bone graft (Figure 7.3). All samples showed a significant increase of bone over the 8 weeks of the 

study, although the 3D rendering of the fusion site is limited by the low resolution (500 µm) of the 

CT scans. Due to the foaming reaction of the material the grafts expanded outside of the fusion 

delivery site. The expansion is visible on the 3D CT renderings of the grafts at 4 and 8 weeks 

where the grafts appear to have expanded outward from the boundary of the transverse processes. 

By 8 weeks, some voids are visible in the CT scans. The new bone could not be differentiated from 

the CM or BG particles by CT analysis, since the scans recognized all radiopaque mineralized 

tissue or graft particles.  
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Figure 7.3. 3D Renderings of CT scans taken at 0, 4, and 8 weeks after the delivery of the bone 

graft to the fusion site for all LV/BG and LV/CM composites. 

 

Radiographs. The Fusion sites were evaluated by radiography at 8 weeks (Figure 7.4). 

Bright white particles, residual CM, are visible within the animals treated with the LV/CM 

composites. The expansion of the graft outside the fusion site is also evident, particularly for the 

LV/CM composites. The new bone could not be differentiated from the BG or CM particles by 

radiography. There was large variability among samples for the size and position of the grafts 

within the fusion site.  
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Figure 7.4. Radiographs of rabbit spinal fusion sites at 8 weeks for all LV./BG and LV/CM 

samples.  

 

 

Micro-Computed Tomography (μCT) Analysis. Images of µCT scans all of the left fusion 

bodies are shown in Figure 7.5. Images of the sagittal (top row), coronal (middle row) and 

transverse (bottom row) show the presence of ossified tissue and residual solid matrix particles. A 

significant amount of residual CM is evident (bright white particles) within animals treated with 

LV/CM composites. Some new bone is visible, particularly around the boundary of the composites 

close to the spinal column. The interior of the grafts looks to be comprised mainly of islands of 

residual matrix particles without connectivity that would suggest new bone formation. The fusion 

bone is most easily seen in the coronal sections (white arrows), where the transverse spinal 

processes (SP) look to be connected by a bridge of new bone.  
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Figure 7.5. µCT images of all of the left fusion bodies for LV/CM and LV/BG composites in the 

sagittal (top), coronal (middle) and transverse (bottom) planes. Transverse spinal processes (SP) 

and the fusion bone between the processes (white arrows) are denoted in coronal sections. The 

scale bar represents 5 mm.  

 

 

Histology. Representative low magnification histology images of sections cut in the 

transverse plane (Figure 7.6) show new bone formation (white arrows) which is part of the fusion 

volume between the two transverse processes. Cellular infiltration (blue) is visible throughout 

the graft. Large CM particles are still visible within the LV/CM groups while it is difficult to 

detect BG particles at the low magnification. The interior of the grafts is infiltrated by cells, but 

no new bone is present. Some fibrous tissue (green) is present in the interior of the defect in the 

LV/BG composites. No residual polymer was visible in any of the defects. The LV/CM samples 

appeared to have a defined border around the graft, with some new bone visible surrounding the 

injection volume. The LV/BG samples had less of a defined graft boundary and seemed to have a 

smaller graft volume that LV/CM samples.  
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Figure 7.6. Low magnification images of transverse histology sections for LV/CM and LV/BG 

composites. The white arrows point to the new bone formed as part of the fusion body between 

the two transverse processes. Cells are stained blue, residual MG is black, bone is red, and BG is 

transparent/white. Fibrous tissue stains green.  

 

 

  

High magnification images of histological sections are shown in Figure 7.7. Some CM 

particles are visibly incorporated into new bone at both 10x and 20x magnification. The new 

bone appears to be growing off of the ceramic surface. Some BG particles are adjacent to new 

deposition (10x), while some are surrounded by cells and soft tissue (20x) in the interior of the 

defect.  
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Figure 7.7. High magnification images of transverse histology sections for LV/CM and LV/BG 

composites at 10x and 20x. Cells are stained blue, residual MG is black, bone is red, and BG is 

transparent/white. Fibrous tissue stains green. 

 

 

Discussion 

Surgeons have been using autograft in posterolateral spinal fusions since 1911 due to the 

osteogenicity, osteoconductivity, and osteoinductivity of autologous bone (26). MIS posterolateral 

spinal fusions are postulated to decrease complications and length of hospital stays; however, 

autograft cannot be delivered using MIS techniques (3). We have previously described 

polyurethane biocomposites for bone regeneration in a variety of animal models (27-29). These 

composites can be injected in a defect and harden within 5- 10 minutes (12). Additionally, low 

viscosity (LV) grafts with a modulus of 1 MPa and higher supported space maintenance and 

prevented soft tissue prolapse in a canine mandibular ridge model (13). The aim of the present 

study was to investigate the effects of ceramic loading on union in a rabbit spinal fusion model 

using an injectable, settable LV graft.  
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The working time and TFT measured by rheometry and manual analysis of the setting 

composites showed that the biocomposite hardens within a clinically relevant working time of 

approximately 10 min, which corresponds with previous measurements of polyurethane reaction 

kinetics (10). The setting times of the LV grafts are within the ranges of  clinically available bone 

cements that have mixing times of 2-3 minutes and setting times of 5-8 minutes (30). The viscosity 

of 65.7 Pa*s measured for the initial (non-cure) LV/BG is consistent with data obtained for 

LV/allograft composites (11). Poly(methyl methacrylate) is commonly used in the spine for 

vertebroplasty to alleviate pain and strengthen vertebrae, although the efficacy of this technique 

has been questioned (31). The initial viscosity of the polyurethane biocomposite is lower than that 

of PMMA cements, which have viscosities in the range of 100-150 Pa*s (32).  

The commercially available acellular collagen sponge (ACS) rhBMP-2 delivery system is 

ineffective in promoting sufficient spinal fusion, even at clinically relevant rhBMP-2 doses, due 

to soft tissue compression of the collagen (33). A previous study using 430 µg/mL rhBMP-2 

delivered via ACS with a ceramic bulking agent resulted in successful fusion in a rabbit arthrodesis 

model, as determined by manual palpation and radiography (34). Additionally, patients treated 

with ACS and a compression resistant matrix exhibit better fusion at 1 year as compared to patients 

treated with autograft (4). However, the ACS/ceramic grafts are not injectable and could not be 

combined with MIS techniques. In this study, LV biocomposites with 430 µg/mL rhBMP-2 

supported spinal fusion in a rabbit posterolateral spinal fusion model at 8 weeks, as measured by 

palpation. Additionally, images of µCT scans shown new bone forming in the fusion site between 

the transverse processes. These grafts were injected into the fusion site and supported new bone 

formation while providing mechanical stability to resist compression by the musculature. This has 

been shown previously in a canine mandibular ridge defect where LV grafts delivering a clinically 
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relevant dose of rhBMP-2 (400 µg/mL) supported new bone formation and preserved the height 

and width of the mandibular ridge (13). The mandibular ridge defects were surrounded on 3 sides 

by bony walls, while the posterolateral spine fusion model is a more challenging space to grow 

bone due to limited bony surface area.  

By 8 weeks, some of the CT scans showed visible voids within the graft site. Additionally, 

the histology sections showed the interior of the graft area was devoid of cellular infiltration and 

new bone deposition. No significant differences were seen in grafts treated with CM as compared 

to those treated with BG. Residual polymer was not observed in any of the animals at 8 weeks. 

Previous studies have shown degradation of lysine-derived polyurethane is dependent in part on 

cell-mediated processes (35) and is completely degraded by 4 months in canine mandibular ridge 

defect (13). A study testing LV/allograft and LV/CM in a sheep femoral plug defect showed that 

healing was variable with LV grafts, likely due to the low volume percent of osteoconductive 

matrix within the defect space, and large voids were present in the graft space that did not 

experience significant new bone formation (Chapter 3). In the current study, residual CM particles 

(15% β-tricalcium phosphate (TCP) and 85% hydroxyapatite (HA)) were visible within the graft 

while BG particles were significantly degraded. This is in agreement with a previous study that 

showed faster remodeling of BG than hydroxyapatite (HA) in vivo (36). In a canine mandibular 

ridge defect, BG particles were primarily degraded by 4 months while MG particles remained  

(13). In vitro osteoclasts assays have shown that resorption rates are similar between TCP and BG 

while HA resorption is four-fold slower (Chapter 6).  

This study was designed to answer the question of whether injectable low-viscosity (LV) 

PUR/ceramic and PUR/bioglass composites augmented with rhBMP-2 could promote fusion in a 

single level rabbit posterolateral spinal fusion model. Successful union was achieved with both 
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LV/CM and LV/BG composites. One limitation of this study was the small sample size (n=3 per 

group). While there was significant cellular infiltration into the graft, new bone growth was limited 

to a small volume in close proximity to the spinal column.  Additionally, the graft expanded outside 

of the fusion site due to the high foaming reaction associated with the reactive polyurethane. In a 

current study, polyurethane biocomposites are being studied as autograft extenders for rabbit spinal 

fusion. Using a catalyst with a high gel to blow ratio, non-foaming polyurethanes are being tested 

with and without ceramic in combination with autograft bone. The low expansion of the autograft 

extender is anticipated to lead to graft containment within the desired fusion site. Decreasing the 

expansion associated with the polyurethane reaction is expected to enhance new bone growth and 

fusion.  Another limitation of this study is that the LV grafts were not compared to a clinical control, 

such as autograft. However, to our knowledge, this is the first study to describe an injectable, 

compression-resistant graft for posterolateral spinal fusion.  

 

Conclusion 

In this study, we investigated LV composites with ceramic or bioglass incorporating 430 

µg/mL rhBMP-2 as injectable bone grafts in a single level rabbit posterolateral spinal fusion 

model. Successful union was achieved in animals treated with both LV/CM and LV/BG 

composites, as evidenced by manual palpation and µCT and histology images. LV grafts had the 

necessary mechanical integrity to support fusion even in the presence of the mechanical forces of 

the skeletal musculature. This study highlights the potential of LV composites with rhBMP-2 as 

injectable bone grafts for MIS posterolateral spinal fusion surgeries. 
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CHAPTER VIII 

 

SUMMARY AND FUTURE DIRECTIONS 

  The work presented in this dissertation describes the use of polyurethane (PUR) 

composites, in particular those that have low viscosity (LV) and are injectable, as bone void fillers 

and growth factor carriers and discusses the remodeling characteristics of the different phases of 

the composites both in vitro and in vivo. As a result of the tailorability of the platform, these LV 

grafts can be used in a wide variety of clinical applications ranging from craniomaxillofacial 

reconstruction to orthopaedic injuries and spinal fusions.  

In Chapter III we tested ceramic particles and LV grafts, aimed as bone void fillers, in an 

in vivo model over 2 years. LV/Mastergraft (ceramic – CM), LV/Allograft (A), and a ceramic 

control group (C) were implanted into femoral plug defects in sheep. We were able to study long 

term healing and bone regeneration with the ceramic granules alone, group C, and as part of a 

composite, group LV/CM. From this study we learned that a larger volume fraction of ceramic 

filler leads to more new bone and better, more reproducible healing.  With the LV composites, 

there was inconsistent healing and voids present in some samples. To our knowledge this is the 

first study to look at the long term fate of the ceramic Mastergraft in vivo, where the majority of 

the ceramic was degraded by 2 years. While the optimal degradation profile of bone grafts has 

been debated, many researchers agree that bone grafts should degrade at a similar rate to new bone 

formation (1, 2). In this study, we show that healing is not impaired with a longer lasting ceramic 

phase.  

The release kinetics of rhBMP-2 from LV grafts is described in Chapter IV. While growth 

factor delivered from the FDA approved acellular collagen sponge (ACS) exhibits a bolus release, 
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the release is significantly extended when delivered with the LV grafts. When incorporated into 

the PUR network, there is an initial burst release of growth factor within a few days followed by a 

slower, extended release over approximately a month. This corresponds well with previous 

research that has shown that this pattern of release, with a small bolus followed by extended 

delivery, is desirable in bone regeneration (3, 4). We also established that the in vivo release is 

controlled by a combined mechanism, most likely due to Fickian diffusion and polymer 

degradation, while in vitro release of the growth factor is singularly controlled by Fickian 

diffusion. This points to the faster polymer degradation in vivo, which is postulated to be due to 

oxidative degradation through the release of reactive oxygen species (ROS) by infiltrating cells 

(5), than what can be expected due to hydrolytic degradation alone.  

Once the release of growth factor from the LV grafts had been established, LV grafts with 

rhBMP-2 were tested in a canine saddle defect model (Chapter V). The defect site was 

successfully healed with LV composites containing either bioactive glass (BG) or ceramic matrix 

particles (CM) at a dose of 400 µg/mL rhBMP-2, which is the recommended dose with the collagen 

sponge delivery system in the canine. These grafts had a bulk modulus over 1 MPa and were able 

to maintain the host ridge height and width throughout the healing process, while ridge 

maintenance was not achieved with LV/BG or LV/CM grafts at a low dose of 100 µg/mL. The 

success of the grafts in this model illustrates the use of the injectable, LV grafts as delivery systems 

for rhBMP-2 for craniomaxillofacial applications without the need for additional external fixation 

such as that which would be required for a graft unable to prevent soft tissue prolapse (6, 7).  

Through in vivo studies, we were able to get a general idea of cellular infiltration, graft 

degradation, and new bone deposition by histology and histomorphometry. However, these 

methods do not provide details regarding the fundamental mechanisms of graft biodegradation. 
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Chapter VI covers an osteoblast- osteoclast co-culture assay that was developed to test in vitro 

resorption of ceramics and bioactive glasses. Osteoclasts developed on bioglass, ceramics, and 

dentin (positive control for host bone) within 21 days. Quantitative analysis of resorption rates 

demonstrated the highest resorption on dentin, approximately half the rate on bioglass and 

tricalcium phosphate, and an order of magnitude lower rate on hydroxyapatite. Previous literature 

related to bioactive glass and ceramic resorption is inconsistent in both methodology and results. 

This study provides a new approach to standardize the study of in vivo resorption and calculate 

relative resorption rates on substrates of interest.   

As an additional in vivo experiment, we tested injectable LV/BG and LV/CM grafts with 

430 µg/mL rhBMP-2 in a single level posterolateral spinal fusion model in rabbits, as explained 

in Chapter VII. Fusion after 8 weeks was evident for all samples, as determined by manual 

palpation. Qualitatively, new bone was apparent for all samples at 4 and 8 weeks. This study was 

limited by high graft expansion due to the foaming of the PUR reaction with the high blowing 

power of the triethylene diamine catalyst. The expansion caused (1) the dilution of the 

osteoconductive ceramic and glass particles and (2) the enlargement of the graft from the specified 

defect area. The results were very promising even with these complications. To our knowledge 

this is one of the first injectable, compression resistant grafts that has been shown to be successful 

in a spinal fusion model and could support minimally invasive surgical techniques.  

 

Proposed Future Work 

Canine lateral ridge study 
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 Along with the in vivo experiments described in this dissertation, we also have preliminary 

data from a study testing the effects of rhBMP-2 dose delivered from LV/CM composites against 

a clinical control, an acellular collagen sponge (ACS) with titanium mesh, in a canine lateral ridge 

augmentation model. While the ACS carrier is FDA approved for rhBMP-2 delivery, it does not 

have the necessary mechanical stability to be used independently in a site that will experiences 

compressive forces from soft tissue or musculature. The study design for the lateral ridge study is 

shown in Table 8.1. The lateral ridge augmentation model is less stringent than the saddle defect, 

but it is a more widely accepted model in the literature for medical devices intended for 

craniomaxillofacial applications (8, 9).  

 

Table 8.1. In vivo study design for rhBMP-2 dose response from LV/CM grafts in a canine lateral 

ridge augmentation model against an acellular collagen sponge (ACS) control 

 
 

 The lateral ridge defect is a rigid preclinical model that requires two surgeries. In the first 

surgery there was bilateral extraction of the four mandibular premolars and a portion of the buccal 

plate was removed to simulate dental loss in humans resulting from chronic disease. In the second 

surgery, the previously created bone defects were accessed and debrided at which point (1) the 

LV/CM grafts were injected into the defects with the appropriate dose of rhBMP-2 (Figure 8.1) or 

(2) the rhBMP-2 was resuspended in sterile water and injected onto the ACS while the ACS was 

placed in the defect and covered with the titanium mesh to maintain the space surrounding the 

graft (Figure 8.1). The bones were harvested after 16 weeks with analysis by µCT and histology. 

Treatment Group Particles

rhBMP-2 dose 

(μg/mL)

n                   

16 weeks

ACS N/A 400 6

LV/CM Mastergraft 0 6

LV/CM-L Mastergraft 200 6

LV/CM-H Mastergraft 400 6
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Figure 8.1. Surgical images of the exposed canine lateral ridge defects grafted with the acellular 

collagen sponge (ACS)/titanium mesh system and the LV/CM graft 

 

 Preliminary µCT images (Figure 8.2) of harvested bones show more new bone formation 

in defects treated with LV/CM grafts containing high doses of rhBMP-2 than those with a low 

dose. The ridge width was maintained with the ACS/titanium mesh system, although ectopic bone 

formation was seen in some samples (bone growing outside of the titanium mesh).  

 
Figure 8.2. µCT images of harvested bones treated with LV grafts containing low or high doses of 

rhBMP-2 or the ACS/titanium mesh system.  

 

 Preliminary histology images (Figure 8.3) of harvested bones show new bone formation in 

defects treated with LV/CM-H and the ACS groups. New bone (red) was visible throughout the 

defect with residual CM (black) particles visible incorporated into the new bone. Fibrous tissue 
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stained a greenish-brown color. The ridge width was seemingly maintained by both LV/CM-H and 

the ACS groups, with ectopic bone formation evident outside of the titanium mesh.  

 
Figure 8.3. Low magnification histology images of harvested bones treated with LV/CM-H or 

ACS groups. Bone is stained in red, residual ceramic is black, and fibrous tissue is greenish brown.  

 

Additional studies 

   Through numerous in vivo experiments, we revealed that LV grafts were potential 

candidates for both craniomaxillofacial and orthopaedic bone defects. With the current LV graft 

system there are difficulties in handling and delivering the composite due to the expansion of graft 

during the PUR reaction. It can be difficult to determine the appropriate graft volume to deliver to 

a defect site as the graft foams to nearly twice the initial volume. Additionally, it can be challenging 

to predict the degree of foaming due to variability in environmental conditions, such as humidity, 

and water present in the defect site. Currently, a new PUR platform is being tested that does not 

expand once delivered. The platform consists of a novel nanohydroxyapatite- lysine triisocyanate 

(nHA-LTI) hybrid prepolymer that is combined with polycaprolactone (PCL) (300 g/mol) in the 

presence of Iron (III) acetylacetonate, a catalyst with high gel:blow activity. The hybrid 
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prepolymer/PCL scaffold can be further mixed with BG or CM particles to increase 

osteoconductivity of the graft. The nHA-LTI/PCL graft can be molded, like putty, or injected 

through a straight bore syringe with working times similar to those of the LV grafts. These 

handling properties are desirable for a number of applications, and the novel platform has 

implications in both orthopaedic and craniomaxillofacial grafting.  Additionally, the inclusion of 

nanoparticles of HA better mimics the composition and morphology of host tissue. Bone is 

comprised of nanometer size inorganic components (mainly HA) within an organic matrix (mainly 

collagen), where the nanosized inorganic is believed to play a factor in the mechanical properties 

of bone as well as the bioactivity (10, 11).  

The novel nHA-LTI platform is currently being tested in a rat calvarial defect as a rhBMP-

2 delivery system. A previously study testing low-expansion LV/CM or LV/S grafts in a rat 

calvarial defect showed limited cell infiltration, graft degradation, and new bone formation at 4 

weeks even with the addition of 40 (low) or 200 (high) µg/mL rhBMP-2 (Figure 8.4). In these 

images, residual MG shows up black, PUR is dark blue or purple, and new bone is red. Some bone 

grew around the outside of the scaffolds; however, the composites were primarily walled off. We 

believe the success of this study was limited in part due to low porosity of the LV/MG graft (~20%) 

and the lack of an osteoconductive scaffold within the LV/S graft. In the currently proposed study, 

the nHA-LTI prepolymer will be mixed with a fast degrading polyester triol comprised of 60% 

caprolactone, 30% glycolide, and 10% lactide (900 g/mol) containing an osteoconductive ceramic 

matrix and a porogen (either bioactive glass particles or sucrose). With the low porosity of the 

low-expansion system, the porogen phase will act as a pathway for cellular infiltration and prevent 

the graft from being walled off with limited cell and bone infiltration.  
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Figure 8.4. Low magnification histological analysis of a rat calvarial study testing LV/CM and 

LV/S composites with 40 µg/mL rhBMP-2 (low) or 200 µg/mL rhBMP-2 (high) grafts in a critical-

size rat calvarial defect at 4 weeks. Residual ceramic is black, new bone is red, and residual PUR 

stains dark blue or purple.  

 

Autografts are commonly used to obtain arthrodesis in spinal fusion procedures, but this is 

limited by autograph availability and cannot be combined with minimally invasive surgical (MIS) 

techniques (12). Autograft extenders have been used previously to dilute and conserve autograft 

while maintaining the osteoconductivity or osteoinductivity of the scaffold. Allogenic 

demineralized bone matrix (DBM) has osteoinductive properties and has been extensively studied 

in the spine as an autograft extender (13, 14); however, DBM has difficult handling properties and 

cannot be delivered with MIS techniques. The newly developed nHA-LTI/PCL technology is a 

potential candidate for use as a compression-resistant autograft extender. These are injectable, 

settable grafts with the necessary mechanical properties to resist the mechanical forces from the 

posterior musculature and can be delivered using MIS techniques while conserving autograft. A 

recent pilot study was conducted with nHA-LTI/PCL scaffolds containing autograft, Mastergraft, 
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or a mix of the two in a rabbit posterolateral spinal fusion model. There was good contact of the 

graft with the host bone interface, limited expansion, and new bone formation evident after 8 

weeks.   

 With the aforementioned reproducible, low cost osteoclast co-culture assay (Chapter VI) 

the applications of this technique and analysis method (3D profilometry) abound. While 

osteoclastogenesis is driven by stimulated osteoblasts in the developed co-culture assay, there are 

other conditions where osteoclast differentiation can occur. Currently our group is testing 

osteoclastogenesis from (1) bacterial supernatant and (2) conditioned media from tumor cell 

culture.  

Previously, infection has been linked to osteoclast formation and bone loss in patients 

through proinflammatory cytokines released during chronic periodontal disease (15). Another 

group has shown that bacterial lipopolysaccharide, a component of the cell wall in Gram-negative 

bacteria, stimulates osteoclast formation from RAW 264.7 cells (16). These findings have 

implications with excessive bone resorption seen in patients with chronic inflammatory diseases 

like periodontitis, osteomyelitis, and arthritis (17). Currently our group is planning to study the 

effects of bacterial supernatant from cultured Staphylocuccus aureus bacteria on osteoclast 

differentiation of RAW 264.7 cells and osteoclast mediated resorption of dentin and synthetic 

substrates. This research will be conducted on cells cultured on both 2D substrates as well as 3D 

scaffolds in static culture. 3D in vitro systems better mimic the complexity of the host bone 

environment (porosity, pore size, mechanical properties) and aid in understanding cellular 

interactions with host tissue (18). Future tests will also be run in a bioreactor to mimic the fluid 

flow and cell diffusion present in natural bone.  
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Numerous studies have linked osteoclast formation and activity with tumor burden in 

patients suffering from bone metastatic cancer. Certain cancers are more likely than others to 

metastasize to bone, including breast and prostate. A number of signaling molecules have been 

implicated in osteoclastogenesis, including parathyroid-horome-related peptide (PTHrP) which is 

released by tumor cells in the bone microenvironment (19). PTHrP and other factors induce 

osteoclast formation and bone destruction which can significantly decrease quality of life in 

patients. One current focus of research in our group is testing conditioned media from tumor cells 

(breast cancer line) on osteoclast formation and resorption of substrates in 2D and 3D systems, 

both in static culture and in a bioreactor. This study will provide fundamental details regarding 

osteoclast activity under a variety of conditions, with the aim to replicate the true 

microenvironment of host tissue as closely as possible.  

  



155 
 

References 

1.  Hannink, G., andArts, J.J.C. Bioresorbability, porosity and mechanical strength of bone 

substitutes: What is optimal for bone regeneration? Injury 42, Supplement 2, S22, 2011. 

2.  Calori, G.M., Mazza, E., Colombo, M., andRipamonti, C. The use of bone-graft substitutes in 

large bone defects: any specific needs? Injury 42 Suppl 2, S56, 2011. 

3.  Brown, K.V., Li, B., Guda, T., Perrien, D.S., Guelcher, S.A., andWenke, J.C. Improving bone 

formation in a rat femur segmental defect by controlling bone morphogenetic protein-2 release. 

Tissue Eng Part A 17, 1735, 2011. 

4.  Boerckel, J.D., Kolambkar, Y.M., Dupont, K.M., Uhrig, B.A., Phelps, E.A., Stevens, H.Y., 

Garcia, A.J., andGuldberg, R.E. Effects of protein dose and delivery system on BMP-mediated 

bone regeneration. Biomaterials 32, 5241, 2011. 

5.  Hafeman, A.E., Zienkiewicz, K.J., Zachman, A.L., Sung, H.J., Nanney, L.B., Davidson, J.M., 

andGuelcher, S.A. Characterization of the degradation mechanisms of lysine-derived aliphatic 

poly(ester urethane) scaffolds. Biomaterials 32, 419, 2011. 

6.  Iglhaut, G., Schwarz, F., Grundel, M., Mihatovic, I., Becker, J., andSchliephake, H. Shell 

technique using a rigid resorbable barrier system for localized alveolar ridge augmentation. Clin 

Oral Implants Res 25, e149, 2014. 

7.  Jovanovic, S.A., Hunt, D.R., Bernard, G.W., Spiekermann, H., Wozney, J.M., andWikesjö, 

U.M. Bone reconstruction following implantation of rhBMP‐2 and guided bone regeneration in 

canine alveolar ridge defects. Clinical oral implants research 18, 224, 2007. 

8.  Von Arx, T., Schenk, R.K., Buser, D., Cochran, D.L., andHermann, J.S. Lateral ridge 

augmentation using different bone fillers and barrier membrane application. Clinical Oral 

Implants Research 12, 260, 2001. 

9.  Araujo, M., Sonohara, M., Hayacibara, R., Cardaropoli, G., andLindhe, J. Lateral ridge 

augmentation by the use of grafts comprised of autologous bone or a biomaterial. An experiment 

in the dog. Journal of clinical periodontology 29, 1122, 2002. 

10.  Wei, G., andMa, P.X. Structure and properties of nano-hydroxyapatite/polymer composite 

scaffolds for bone tissue engineering. Biomaterials 25, 4749, 2004. 

11.  Wang, H., Li, Y., Zuo, Y., Li, J., Ma, S., andCheng, L. Biocompatibility and osteogenesis of 

biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. 

Biomaterials 28, 3338, 2007. 

12.  Skovrlj, B., Gilligan, J., Cutler, H.S., andQureshi, S.A. Minimally invasive procedures on 

the lumbar spine. World Journal of Clinical Cases : WJCC 3, 1, 2015. 

13.  Cammisa Jr, F.P., Lowery, G., Garfin, S.R., Geisler, F.H., Klara, P.M., McGuire, R.A., 

Sassard, W.R., Stubbs, H., andBlock, J.E. Two-year fusion rate equivalency between Grafton® 

DBM gel and autograft in posterolateral spine fusion: a prospective controlled trial employing a 

side-by-side Comparison in the Same Patient. Spine 29, 660, 2004. 

14.  Morone, M.A., andBoden, S.D. Experimental posterolateral lumbar spinal fusion with a 

demineralized bone matrix gel. Spine 23, 159, 1998. 

15.  Ukai, T., Yumoto, H., Gibson, F.C., andGenco, C.A. Macrophage-elicited 

osteoclastogenesis in response to bacterial stimulation requires Toll-like receptor 2-dependent 

tumor necrosis factor-alpha production. Infection and immunity 76, 812, 2008. 

16.  Islam, S., Hassan, F., Tumurkhuu, G., Dagvadorj, J., Koide, N., Naiki, Y., Mori, I., Yoshida, 

T., andYokochi, T. Bacterial lipopolysaccharide induces osteoclast formation in RAW 264.7 

macrophage cells. Biochemical and Biophysical Research Communications 360, 346, 2007. 



156 
 

17.  Nair, S.P., Meghji, S., Wilson, M., Reddi, K., White, P., andHenderson, B. Bacterially 

induced bone destruction: mechanisms and misconceptions. Infection and immunity 64, 2371, 

1996. 

18.  Guo, R., Lu, S., Page, J.M., Merkel, A.R., Basu, S., Sterling, J.A., andGuelcher, S.A. 

Fabrication of 3D Scaffolds with Precisely Controlled Substrate Modulus and Pore Size by 

Templated-Fused Deposition Modeling to Direct Osteogenic Differentiation. Advanced 

Healthcare Materials 4, 1826, 2015. 

19.  Mundy, G.R. Metastasis: Metastasis to bone: causes, consequences and therapeutic 

opportunities. Nat Rev Cancer 2, 584, 2002. 

 

 

 

  



157 
 

APPENDIX A 

 

EXPERIMENTAL PROTOCOLS 
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This method for washing polyol is adapted from the method used by Ricerca.  

 

Before starting: Read and understand the MSDS of the reagents listed below 

 Personal Protective and Safety Equipment required:  

o Disposable nitrile gloves 

o Heavy duty gloves 

o Hot gloves 

o Hood 

o Appropriate attire according to the Chemical Hygiene Plan (shoes, labcoat, 

goggles, etc.) 

 

Equipment/Materials Reagents 

(2) 600mL beaker 

Stir plate/stir bar 

Syringes 

100mL graduated cylinder 

Parafilm 

N-heptane 

Ethyl acetate 

Dichloromethane (DCM) 

Base bath 

Acetone 

Celite 521- Acros Organics  

 

 

WASH PROCEDURE 

 

1. After making polyol, pour the polyol into a clean, dry 600mL beaker and allow polyol to 

cool to room temperature 

2. Place a stir bar into the beaker and set on stir plate 

3. Set the stir plate to stir at a media speed. 

4. If the polyol is too viscous for stirring, introduce a few mL of DCM into the beaker. 

Continue until the polyol stirs easily. 

5. Add 75mL of n-heptane to the beaker and cover with parafilm. Stir for 60min 

6. Turn off the stir plate and allow the polyol and solvent to sit, covered, for 10min 

7. Decant heptane 

8. Repeat steps 4-7  3 more times, for a total of 4 n-heptane washes 

9. Add 250mL of ethyl acetate to the polyol and turn on the stir plate. Cover the polyol and 

allow to stir for ≥16hrs 

10. Measure out 16g of the celite and place into a Buchner funnel fitted with filter paper. 

Compress the celite with a ceramic pestle to create an even, thin layer of celite 
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Polyol wash with heptane and ethyl acetate (cont.) 
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11. Setup the filter flask with the Buchner funnel and vacuum pump 

12. While the vacuum pump is on, pour the polyol/ethyl acetate mixture into the Buchner 

funnel, in batches, and allow it to filter through the celite 

13. Once all the polyol has been filtered through the celite, wash the celite with an additional 

50mL of ethyl acetate 

14. Pour all of the polyol/ethyl acetate into a clean, dry 600mL beaker. Place in the vacuum 

oven for 48hrs at 80°C 

15. Once dry, pour the polyol into an amber vial and degass with argon 

Clean-up:  

1. Collect all sharps and dispose in the sharps waste container (red box) 

2. Collect all liquid waste and dispose in the appropriate liquid waste container 

(halogenated) 

3. Collect all solid waste and dispose in the solid waste container 

4. Clean glassware: 

a. Wash with soap and water 

b. If it is necessary, rinse with acetone and introduce into the base bath for 24 hrs. 

Rinse with a lot of cold running water after removing from the base bath. 

c. Rinse with acetone and dry in the oven 
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Equipment/Materials 

ImageJ: Free software available online at http://rsbweb.nih.gov/ij/. 

 

 

PROCEDURE 

1. Open ImageJ software and open the SEM image (tiff) that you want to analyze by clicking  

File->Open finding desired image.  

2. To Scale the Image: click on the straight line drawing tool in the drawing menu

 

Draw a straight line over the scale bar in the image 

 

In the menu tabs, click Analyze -> Set Scale.  

The ‘distance in pixels’ is the length of the line you drew. Set the ‘known distance’ to the length 

of your scale bar (in this case 750) and change ‘unit of length’ to the desired unit (in this case 

um). It should look like this: 

 

http://rsbweb.nih.gov/ij/


 

Guelcher Lab     
Measuring pore size in ImageJ (cont.) 

 

161 

Click ‘OK’ and the scale will be saved. You can write down the distance and pixels for future 

images with the same scale bar.  

3. To find image area: click Analyze -> Tools -> ROI manager. Check the ‘Show All’ box at the 

bottom and uncheck the ‘Edit Mode’ Box 

 

Click on the rectangle drawing icon on the drawing toolbox 

 

Select the image and draw a rectangle  that encompasses the entire region of interest. Note: if the 

region of interest does not take up the entire image area, you can use the freehand drawing tool 

(to the left of the line tool) to select area.  

 

This isn’t the entire image, but it gives an idea of what the rectangle should look like. To add this 

to the ROI manager, click the letter ‘t’ on your keyboard or the ‘Add [t]’ button on the right side 

of the ROI manager. It should then look like this: 
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4. To select pores: click on the draw freehand tool (to the left of the straight line drawing tool). 

Select the image and draw around a pore of interest. If the pores are circular, you can use the 

oval drawing tool. Hit the letter ‘t’ on your keyboard to add each selection to the ROI manager. 

Each time you draw a new pore, the previous selection will turn teal. The current pore will show 

up yellow. Note: if the software won’t let you draw any more shapes, check and uncheck the 

‘Edit mode’ box on the ROI manager and continue drawing. 

5. To measure all areas: after all pores have been selected, click the ‘Measure’ tab on the right side 

of the ROI manager. This will give you a table of all the areas you selected.  

 

You can copy and paste this into an Excel document. You will most likely be using the area 

values (which will be in whatever units you scaled with). You can obtain porosity by summing 

the areas of each individual pore relative to the area of the region of interest (rectangle 

encompassing the whole area). 



 

Guelcher Lab     
Sheep femoral plug histomorphometry 

 

163 
 

 

Equipment/Materials 

Metamorph Software 

Adobe Photoshop Software 

 

IMAGING SLIDES  

1. Open Infinity Analyze and turn on the microscope 

2. Check to make sure the microscope lens is the 2x lens (silver) 

3. Place the slide of interest in the slide holder on the microscope.  

4. Use the preset settings of ‘Anne BVF’ 

5. Adjust the coarse and fine focus to get a good image. Adjust the light as necessary 

6. Use the ‘capture’ button to take the first image at the very edge of the defect  

7. Continue taking overlapping images so that you can create a full replica of the defect site (and 

surrounding tissue) 

8. Save all images as JPEG files  in ‘Desktop  -> Anne -> Lillian -> Sheep Histomorphometry -> 

‘Sample ID’ in numerical order 

 

COMBINING IMAGES 

1. Open Adobe Photoshop and click ‘Create’  

2. Go to File -> New -> Blank File 

3. Fill in the opening screen with the following information. Use the sample ID in the ‘name’ 

section 
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4. Go to File -> Open and select all of the images you took in Step 1. These will show up in the bin 

at the bottom of the screen.  

5. Double click on Image 1 to select it.  

6. Select the image using Ctrl + A and copy with Ctrl + C  

7. Return to blank file and paste the image. Decrease the size of the image to W: 50% and H: 50%. 

Click the green check to select this size 

8. Repeat (5-7) for image 2. Once resized right click image and select ‘bring to front’.  

9. Line up image 2 to overlap with image 1. (as shown below) 

 

10. Repeat for all 12 images (4 across defect, 3 down) 



 

Guelcher Lab     
Sheep femoral plug histomorphometry (cont.) 

 

165 

 

11. As a final step, open image ‘2x scale’ and copy, paste, and resize this into the main image. This 

will allow us to scale the image later.  
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12. Save image with File -> Save As  

Save as a photoshop format 1st, so that we can go back and edit if necessary. 

Save as a JPEG file with the name ‘Sample Id compilation’ 
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THRESHOLDING ALLOGRAFT 

Step 1: Open slide of interest in Photoshop  

 

1. Go to File -> Save as, Save as a new file so that you still have the original  

2. Go to View -> Zoom In, until you can easily see the defect.  

3. Go to Select -> All Layers.  

4. Go to Layer -> Merge Layers  

5. Select the paint brush icon (green circle) 
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a. Set the size (pink arrow) to no more than 20 pixels (or smaller, if needed, so that the allograft 

can be easily selected) 

b. Make the sure the mode (yellow arrow) is set to normal 

c. Select the color (blue circle) to one that is easily differentiated from the other colors in the 

image. This will make thresholding easier. I selected a bright yellow.  

6. Color over the regions that are allograft. You can zoom in further if necessary. It is better to select as 

allograft if you are unsure.  Here is a subsection of an image as an example. The allograft will most 

likely be a slightly lighter color and the edges will be more visible. If you need to, you can use the slides 

(on a higher magnification) to get a better look at the sample 



 

Guelcher Lab     
Sheep femoral plug histomorphometry (cont.) 

 

169 

 

7. Once you have selected all of the allograft and saved the image, you can use the normal thresholding 

technique to determine the new bone/old bone in the image by thresholding for the yellow (allograft) or 

the pink/purple (new bone).  
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QUANTITATIVE ANALYSIS 

Histomorphometry Protocol for Quantiative Analysis of femoral plug sections – AT 

Step 1: Open Metamorph Software and the image of interest 

1. Set zoom to 45% and calibrate image  

a. Measure -> Calibrate Distances 

 

b. Click on sheep histo (45%) and hit apply. This calibrates the image.  

2. Draw a line 3mm from the cortex. Draw a rectangular box 6mm wide by 10.66mm tall. This 

box will be at the edge of the line 
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3. Within the main rectangle, draw 8 smaller rectangles measuring 6mm wide by 1.33 mm. 

These represent the concentric regions of interest 
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4. Measure -> Set Color Threshold to analyze regions of interest for MG, PUR, and new bone. 

Load Range ‘sheep histo_bone’ to start. Change hue, saturation, and intensity to select only 

bone (purple). The selected thresholds will show up yellow 
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5. Go to Measure -> Region Measurements. Click ‘Open Log’, opens up a new Excel doc. Once 

open, click ‘Log Data’ to send thresholded data to Excel. Copy and paste this data into 

another Excel doc to collect it all in one place 

6. Use the thresholds Sheep Histo MG and Sheep histo PUR to do the same analysis for those.  
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Adapted from Margarita Prieto-Ballangee dissertation and papers 

 

Equipment/Materials 

MC3T3 cells 

RAW 264.7 cells 

24 well plates 

Osteogenic differentiation media (Complete α-MEM plus 10nM dexamethasone, 50µM ascorbic 

acid, 0.1mM β-glycerophosphate) (OB Diff Media) 

1,25-Dihydroxyvitamin D (Vitamin D3) 

Matrices of interest (dentin chips, HA discs, TCP discs, BG discs) 

 

MATERIAL PREPARATION 

1. Sonicate matrices of interest for 7.5min in DI H2O (x3) 

2. Sterilize in 70% Ethanol for 5min (x2) 

3. Wash in sterile H2O for 5min (2x) 

4. Wash in OB Diff media for 5min 

5. Condition overnight in OB Diff Media 

 

CELL SEEDING 

6. Aspirate off media and allow matrices of interest to dry in hood for 30min 

7. Plate MC3T3 cells on matrices of interest at 1 x 104 cells/well in 100µL OB Diff Media. Place well 

plates in the incubator for 30 min to allow cells to attach. 

8.  Add 900 µ OB Diff media with VD3 (10nM) slowly to avoid disrupting cells (total 1mL media per 

well).  

9. After 48 hrs, aspirate media and plate RAW cells at 1 x 104 cells/well in 100µL OB Diff Media. 

Place well plates in the incubator for 30 min to allow cells to attach. 

10. Add 900 µ OB Diff media with VD3 (10nM) slowly to avoid disrupting cells (total 1mL media per 

well).  

11. After 48 hrs, move the matrices of interest to a new well plate. 

12. Every 1-2 days remove half the media in the well and replace with fresh differentiation media plus 

10nM VD3.  
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13. By 14 days, you should see larger, multinucleated cells.  

14. If desired, test for TRAP and counterstain with a nuclear dye  

 


