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CHAPTER I 

 

INTRODUCTION 

 

Clinical Significance of Depression 

 

The earliest depictions of depression-related disorders arose in Hippocrates, Nature of Man 

(Hippocrates), in which he postulated that the presentation of ‘melancholy’ was due to humoural 

imbalance. Specifically, oversaturation of ‘black bile’ (melaina kholé) produced a state currently 

best described as depression, and whose treatment involved bloodletting in order to restore the 

balance of the humours. Although these treatments have long since been discredited, these early 

classifications of depression were foundational for more progressive analyses and diagnosis of 

depression. Depictions of melancholy began to expand as a defined phenomena of the mind, most 

notably described at length in 1621 by Robert Burton in The Anatomy of Melancholy (Burton). 

Here, we begin to see parallels to modern diagnostic formulations through more deliberate analysis 

of the core states of melancholy and depression.  Depression is now defined and diagnosed upon 

the presentation of multiple symptoms including prolonged depressed mood, suicidal ideation, 

lethargy, anhedonia, and perceptions of low self-worth, as set forth by the Diagnostic and 

Statistical Manual (DSM-V). Depression symptom presentation can vary across different forms of 

depression, of which major depression, atypical depression, melancholic depression are most 

common (Benazzi, 2006).    

These historical observations were common not only due to the budding scientific curiosity 

surrounding depression, but is also due to the high prevalence and persistence of the disorder. 
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Depression is one of the most common psychological disorders and roughly affects at least 7% of 

the US population at any given time (Kessler et al, 2005), and lifetime prevalence estimates range 

from ranges of 1 in 10 (Andrade et al, 2003) to 1 in 5 (Kessler, 2005).  World Health Organization 

estimates conclude that depression is the primary basis of disability (using the Years Lived with 

Disability metric) and among the leading contributor to the global burden of disease (2000).  

Depression is already the second most burdensome disease among 15-44 year olds (measured 

using the Disability Adjusted Life Years metric), and is projected to further increase in burden 

across all age groups. The economic impact of depression is dramatic and has been estimated to 

have reduced economic output in the USA (non-inflation adjusted dollars) by $43.7 billion in 1990 

(Greenberg et al, 1993), $52.9 billion in 2000 (Greenberg et al, 2003), and $210 billion in 2010 

(Greenberg et al, 2015). Additionally, depression and related mood disorders are the predominant 

risk factors for suicide attempts (CDC, WISQARS, 2014). In the United States, the suicide rate for 

adults is 11.3 suicide deaths per 100,000 people with 11 suicide attempts occurring for every 

suicide death (CDC, WISQARS, 2014).   

 

Serotonergic Pathways and Pathophysiology of Depression 

 

Most serotonergic (5-HT) neurotransmission originates in the raphe nuclei, which are 

located in the midbrain.  Raphe neurons project in both an ascending and descending manner, 

projecting to the spinal cord, the forebrain, and to major components of the limbic system (Figure 

1).  These serotonergic neurons project to areas implicated in pain processing, fear, emotion, 

memory formation, and attribution of salience.  Serotonin is synthesized from dietary tryptophan, 

and its delivery into the CNS is the rate limiting step in serotonin synthesis.   
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Figure 1. Location of Serotonergic Raphe Nuclei and Projections 
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Tryptophan is hydroxylated by tryptophan hydroxylase (TPH; TPH2 in the CNS) to form 

5-hydroxytryptophan (5-HTP). 5-HTP is then decarboxylated by aromatic amino acid 

decarboxylase (AADC) to form 5-hydroxytryptamine (5-HT), also known as serotonin. 5-HT is 

then packaged into synaptic vesicles via vesicular monoamine transporter (VMAT; VMAT2 in 

CNS), and this 5-HT is released upon neuronal action potential propagation to the nerve bouton, 

where the synaptic vesicles fuse with the neuronal membrane, releasing the contents into the 

synapse. This 5-HT is then free to bind and activate pre and post-synaptic 5-HT receptors, which 

carry the signal propagation of a synaptic signaling event. The 5-HT neurotransmission is 

primarily terminated by presynaptic serotonin transporters (SERT), which utilize the Na+/Cl- ion 

gradient to transport 5-HT up its concentration barrier in a symporter manner. 5-HT is either then 

recycled, preserving the energy required for synthesis, or metabolized by monoamine oxidase 

(MAO) located upon the surface of mitochondria into 5-hydroxyindoleacetic acid (5-HIAA) 

(Figure 2).  

SERT (SLC6A4) belongs to the SLC6 gene family of Na+/Cl- coupled symporters that 

include the dopamine transporter (DA; DAT) and norepinephrine transporter (NE; NET), as well 

as γ-aminobutyric acid transporter (GABA, GAT1), glycine transporter, creatine transporter, and 

other amino acid transporters (Hahn and Blakely, 2007).  SERT rapidly clears 5-HT from the 

extracellular synaptic cleft following 5-HT synaptic release, resulting in a tightly controlled neural 

signaling event.  The serotonergic system is targeted by multiple drugs of abuse, including 3,4-

methylenedioxymethamphetamine (MDMA; ‘ecstasy’), lysergic acid diethylamide (LSD), 

dimethyltryptamine (DMT), psilocybin, as well as cocaine.   
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Figure 2. Biosynthetic Pathway of Serotonin. Biosynthetic pathway of serotonin (5-HT), and 

metabolism by MAO. The rate limiting step in the production of CNS 5-HT is the dietary delivery 

of tryptophan to the brain. Tryptophan is hydroxylated by TPH, forming 5-HTP, which is then 

decarboxylated by a general AADC enzyme, forming 5-HT. 5-HT is metabolized primarily by 

MAO, located intracellularly on the surface of the mitochondrial membrane, into 5-HIAA 
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While LSD, DMT, and psilocybin act as serotonin receptor agents, MDMA and cocaine 

target SERT. MDMA acts as a substrate for SERT, and like amphetamine for the dopaminergic 

system, acts to disrupt vesicular stores of 5-HT, causing 5-HT to pool in the neuronal bouton and 

allowing non-vesicular release of 5-HT into the synapse via efflux through SERT (Rudnick and 

Wall, 1992). Cocaine, in addition to major activity at DAT and minor activity at NET, acts as a 

transporter blocker, much like SSRIs, and with comparable affinity as other SERT blockers (Uhl 

et al, 2002). While most of the research into the behavioral and biochemical actions of cocaine are 

directed to its major activity at DAT, the activity of cocaine at SERT that could be essential for 

subtle neuromodulatory activity requisite for certain features of the drug, as for example the actions 

of cocaine to disrupt regulation of circadian rhythm (Prosser et al, 2014) as well as contributions 

to cocaine use and addiction (Howell and Cunningham, 2015).   

Disruptions in the serotonergic system, specifically SERT expression, have been observed 

in several psychological disorders noted for anxiety phenotypes, including obsessive compulsive 

disorder, autism, and depression.  Polymorphisms in the SERT promoter region have been 

discovered in human populations, and it has been shown that the short allele of the SERT promoter 

produces reduced transcription efficiency of SERT (Lesch et al, 1996). People who are 

homozygous or heterozygous carriers of the short allele of SERT display more depressive 

symptoms compared to those who were homozygous for the long allele promoter (Caspi et al, 

2003).  It was also shown in the same study that those with two copies of the short allele displayed 

increased sensitivity to life stressors, measured by risk for the development of depression, thus 

showing a gene-by-environment interaction for depression risk factors (Caspi et al, 2003).  As 

noted previously, several findings indicated that serotonergic tone was dramatically reduced in 

depressed individuals.  Pharmacological intervention strategies have shown that drugs that 
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increase serotonergic tone are effective antidepressants.  First generation tricyclic antidepressants 

target both SERT and NET, but had some untoward cardiovascular side effects due the 

enhancement of the noradrenergic (NE) system.  Thus new versions of antidepressants were 

generated and designed to remove the NE component, and thus spawned the second generation of 

antidepressants, the serotonin selective reuptake inhibitors (SSRIs). 

The primary treatment for those afflicted with depression diagnoses are serotonin (5-HT) 

selective reuptake inhibitors (SSRIs) (Blakely et al, 1998). SSRIs act to block the 5-HT transporter 

(SERT; 5-HTT), and by doing so prolongs 5-HT signal duration by inhibiting synaptic 5-HT 

clearance, and it is thought that this 5-HT signal enhancement, over time, produces antidepressant 

effects in the clinic. Patients diagnosed with depression, however, do not uniformly respond to 

SSRIs. In fact, roughly only two thirds of patients respond to the first administered SSRI 

antidepressant (Ananth, 1998; Souery et al, 2006), roughly 20% of afflicted patients are 

completely resistant to all SSRI antidepressant pharmacotherapies (Ananth, 1998; Souery et al, 

2006), and full remission of depression symptoms is not achieved in 50-75% of treated patients 

(Souery et al, 2006). Moreover, even in those patients who do respond to SSRI pharmacotherapy, 

no clinically significant effects occur until after 4-8 weeks of administration (Ananth, 1998; 

Warden et al, 2007). These clinical results raise questions regarding the serotonergic basis of 

depression and the mechanism of SSRI antidepressant efficacy, especially considering the 

mechanisms by which we know SSRIs function acutely are obviously not immediately responsible 

for clinical efficacy, as central nervous system (CNS) SERT inhibition by SSRIs occur in minutes 

whereby clinical efficacy requires weeks of SSRI treatment. Simply, this temporal disconnection 

of pharmacological effects and clinical efficacy illuminates that our understanding of the 

mechanisms of antidepressant suggests that our appreciation for how SSRIs produce 
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antidepressant actions are possibly more complicated than simply SERT antagonism. 

Alternatively, it could also mean that the adaptive changes following repeated SSRI administration 

require lengthy periods of time to produce an antidepressive state, all while being dependent upon 

5-HT signal enhancement. In order to better understand the complex nature of SSRI antidepressant 

efficacy and the 5-HT hypothesis of depression, let us explore how this theory came to be and how 

SSRIs were created to treat major depressive disorder. 

 

Early Treatments of Depression and Emergence of Psychopharmacology 

 

 The treatments that we develop for disorders of the body are largely crafted based upon the 

presentation of the disorder and the nature in which it debilitates the individual. While we can 

bandage bleeding wounds and brace broken legs, how does one remedy disorders of the mind? 

The presentation of depression and other mood disorders are much more gradient than physical 

maladies. There is no normal amount of regular human bleeding; a leg is either broken or it is not. 

Diagnosis of such mood disorders is complicated enough given that it requires an assessment of 

abnormal presentation of semi-regular human conditions. In short, the treatments for disorders of 

the mind cannot be as simple as disorders of the physical form. Unsurprisingly, the early treatment 

options for depression were highly experimental and questionably effective. While the most 

effective treatments stemmed from counseling efforts to find the psychological ‘root causes’ of the 

disorder (Freud, 1953), some aimed to reset the mind through convulsions (Payne and Prudic, 

2009) to a normal state as with electroshock therapy (while successful, its mechanism of action is 

still largely unknown), and others randomly tried a swath of biologically active chemical agents 

including lithium salts (Cade, 1949), barbiturates, amphetamines, and opiates, among other 
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questionably effective agents including lactic acid, succinic dinitrite, and malonic nitrite (López-

Muñoz and Alamo, 2009).  

Happenstance discoveries were not uncommon in this era of experimentation, though the 

careful observation and analysis of behavioral outcomes is responsible for the extraction of utility 

and development of future treatments.  The field of antidepressant pharmacology stems from many 

sequential chance discoveries. The origins of antidepressant pharmacology can be traced to a 

number of instances, though the importance of early chemistry must not be understated. German 

chemists Hans Meyer and Josef Malley synthesized isonicotinylhydrazide in 1912, mostly for the 

purpose of academic chemical derivatizations of hydrazine hydrate (López-Muñoz and Alamo, 

2009). Isonicotinylhydrazide was largely forgotten until the 1950s when German World War II 

stockpiles of hydrazine (utilized as rocket fuel (Sandler, 1990)) were distributed to scientists and 

industrial research groups at low cost for academic pursuits, when isonicotinylhydrazide was 

resynthesized and discovered later to have anti-tubercular properties in trials in 1951 by Harry 

Yale at Squibb and Herbert Fox at Hoffmann-La Roche (Sneader, 1985), and was later given the 

name Isoniazid (López-Muñoz and Alamo, 2009). Isoniazid spawned chemical derivatives for 

optimal human efficacy against tuberculosis, one of them being iproniazid (Figure 3)Error! 

Reference source not found.. It was this drug that was given to a small tuberculosis patient group 

to test this hypothesis of increased efficacy over isoniazid in New York in 1952. In this study, the 

practitioners observed much more pronounced psychological cognitive effects that they attributed 

to a side effect of the drug (Selikoff et al, 1952). Because of these reports on psychostimulation, 

iproniazid was later directly studied for its mood elevating properties as a direct endpoint of a 

clinical study, and was shown to act as an antidepressant, though this terminology was not utilized 

until later (Ayd, 1957; Crane, 1957).   
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Figure 3. Comparison of the Structures of Isoniazid and Iproniazid. Comparison of the structures 

of isoniazid and its derivative iproniazid. Isoniazid originated as a treatment for tuberculosis. 

Iproniazid was developed as an alternative treatment molecule, but also produced antidepressant-

like effects among tuberculosis patients, an effect that was not observed with isoniazid. It was 

discovered later that iproniazid acted additionally as a monoamine oxidase inhibitor (MAO; 

MAOI). MAO acts to degrade and metabolize 5-HT, and MAOIs prevent this 5-HT metabolism. 

The net effect of MAOIs with respect to 5-HT signaling is to prolong the serotonergic tone 

indirectly by increasing 5-HT levels. This mechanism is proposed for the antidepressant effect of 

MAOIs, and helped the 5-HT hypothesis of antidepressant effects in addition to the 5-HT 

hypothesis of depression. 

  

Isoniazid Iproniazid 



 11 

Iproniazid was then subjected to clinical studies using patients with direct indications of 

depression and mood disorders, and following their successful completion, the drug was no longer 

solely prescribed for tuberculosis and was administered to an upwards of 500,000 people (Sneader, 

1985), indicating the large unmet pharmacological need for antidepressant medications. It was 

discovered that iproniazid coincidentally, but not isoniazid, could inhibit the recently discovered 

monoamine-oxidase (MAO) enzyme (Zeller et al, 1952), whose activity includes the oxidation 

and metabolism of 5-hydroxytryptamine (5-HT; serotonin) into 5-hydroxyindoleacetic acid (5-

HIAA). By inhibiting MAO, iproniazid could slow the metabolism of biogenic amines, including 

5-HT into 5-HIAA and trigger increases in brain levels of 5-HT, though it was unclear at the time 

whether this mechanism was responsible for the mood elevating qualities of iproniazid. 

Concurrently, it was discovered that the antihypertensive drug reserpine could produce depressive-

like symptoms as a side effect, and was also found to reduce 5-HT tissue levels (Pletscher et al, 

1955). Given these findings, effort proceeded in the development of intentionally designed MAO 

inhibitors (MAOIs) as antidepressant drugs (Ban, 2001; Sandler, 1990). These MAOIs found great 

clinical and commercial success, and further developments for lower toxicity (eg. reversible 

inhibitors) and toward pharmacological specificity for MAO-A (responsible for the metabolism of 

serotonin and norepinephrine) vs. MAO-B (largely responsible for metabolism of dopamine and 

trace amines) leading to improved versions of MAOIs for the treatment of depression. MAOIs, 

despite pharmacological advancements, were limited in effective dose range by drug interactions 

and toxicity, and additionally proved not to be the chemical magic bullet for the treatment of 

depression that clinicians had hoped; there were significant populations of people who met clinical 

thresholds for depression diagnoses, but were not successfully treated with MAOIs. Though the 

development of these first generation antidepressants represented a momentous advancement in 
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the field of psychopharmacology, specifically advancing the idea that modulation of brain 

chemistry could alter and alleviate psychological maladies, previously thought to be only remedied 

through intensive psychotherapy. The development of MAOI antidepressants indicated that it was 

possible to treat these disorders through chemical means, though their limited efficacy indicated 

incomplete knowledge of the disorders, but represented the most efficient means of 

pharmacological treatment to date. The early determination of the pharmacological actions 

impacting 5-HT and NE homeostasis would prove useful for future drug development and 

hypotheses related to the origins and optimal treatment of depression.   

Another important trajectory in the development of antidepressant pharmacology stems 

from the early investigations of antihistamines and antipsychotics. Based upon some research 

implying that antihistaminergic drugs could be useful as antipsychotics, researchers at Geigy 

Pharmaceuticals began synthesizing derivatives of iminodibenzyl (a tricyclic ring structure 

originally synthesized for potential use as a dye in textiles) (Schindler and Häfliger, 1954). These 

researchers found that functional consequences of their derivatives were largely due to the 

composition of the lateral chain additions of the molecule. One of these derivatives (G-22150) was 

sent to a local clinician, Ronald Kuhn, for testing in schizophrenic patients, but it was discovered 

to have poor efficacy. Interestingly, Kuhn noted an unexpected elevation of mood in the treated 

individuals (Shorter, 2008), though Geigy decided not to pursue the project. Interest was renewed 

when positive results were announced in 1952 for the efficacy of another molecule, 

chlorpromazine (later to be named thorazine), in the treatment of schizophrenia. In the wake of 

these findings, Geigy sent Ronald Kuhn more chemicals to test in his schizophrenic patient 

population. In 1956 they sent him G-22355, which possesses the same tricyclic ring structure as 

G-22150, but contains the same lateral N,N-dimethylpropanamine chain as chlorpromazine. G-
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22355 unfortunately lacked any appreciable efficacy in schizophrenic patients, though Kuhn noted 

remarkable mood elevating effects in a smaller group of depressed patients (Kuhn, 1957). A larger 

study was performed to confirm Kuhn’s suspicions, and the positive results were presented in 1957 

(Kuhn, 1958). This compound was renamed to imipramine, and represented the first tricyclic 

antidepressant (Figure 4). Much like the discovery of iproniazid and the MAOIs, these results 

were entirely serendipitous.  

 

Biomechanistic Determinations of Antidepressant Efficacy 

 

After the introduction of imipramine and its clinical efficacy were widely observed, many 

other tricyclic derivatives soon followed onto the market to ride the coattails of the advancements 

made by imipramine. The clinical viability of iproniazid and imipramine further developed and 

solidified this novel concept that chemical agents could impact brain function and psychiatric 

disorders, using this new concept of biological psychiatry. This hypothesis triggered curiosities 

into the biochemical mechanisms of actions for these chemicals and how they produced their 

neuropsychiatric effects. Through the development of new imaging-mediated quantification 

techniques via the creation of spectrophotofluorimetry, it was then possible to accurately detect 

levels of monoamines in collected samples, which were suspected to be involved in the actions of 

these antidepressants. Through the use of this technique, it was observed that the previously 

identified phenomenon of reserpine causing depressive-like behaviors in animals correlated with 

the depletion in 5-HT and NE (Brodie et al, 1955; Curzon, 1990). Further studies determined that 

pretreatment of iproniazid alone could block the reserpine-induced reductions in brain serotonin 

as well as the sedative effects of reserpine (Chessin et al, 1957).  
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Figure 4. Structural Comparisons of iminodibenzyl, chlorpromazine, and G-22355. Comparisons 

of the structures of iminodibenzyl, chlorpromazine (better known as the antipsychotic thorazine), 

and G-22355 (better known by its later name imipramine). Iminodibenzyl was derivitized, seeking 

new antipsychotic, hypnotic, or antihistiminergic psychotropic drugs. One of these derivatives was 

crafted intelligently, based upon the southern nitrile tail of chlorpromazine, already known to be 

an effective clinical antipsychotic. The resulting compound G-22355 did not possess any 

antipsychotic effects, though patients treated with the compound displayed antidepressant effects 

after repeated administration. These effects were confirmed later with antidepressant evaluations 

as proper endpoint analyses, and stimulated the development of tricyclic antidepressants (TCAs). 

It was later discovered that TCAs block the reuptake of serotonin and norepinephrine.  

 

Iminodibenzyl 

G-22355 

(Imipramine) 

Chlorpromazine 

(Thorazine) 
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Additionally, iproniazid was shown to be able to increase levels of brain serotonin and 

norepinephrine (Besendorf and Pletscher, 1956). These studies were the first to suggest that certain 

neuropsychiatric disorders could be due to imbalance in brain monoamines, either due to low levels 

of serotonin, or norepinephrine, or both.  

It was at this point that certain advances in the field were made surrounding imipramine 

and the now growing family of other tricyclic antidepressants (TCAs). In a series of studies 

utilizing new radiochemical labelling, Julius Axelrod showed that pretreatment of imipramine and 

other TCA derivatives could block the uptake of [3H]-norepinephrine into nerve endings in 

peripheral tissues (Axelrod et al, 1961) as well as in intact rat brain (Glowinski and Axelrod, 1964). 

These studies supported the hypothesis that norepinephrine was being released and reabsorbed in 

a similar manner that had been observed in the periphery, and additionally, that imipramine and 

these TCAs functioned as reabsorption blockers. Earlier studies had shown that imipramine could 

reverse the pro-depressive effects of reserpine, and that these effects were lost when 

catecholamines (which include dopamine and norepinephrine) were depleted using alpha-

methylparatyrosine (AMPT; a selective antagonist of tyrosine hydroxylase, which is the rate 

limiting enzyme for the biosynthesis of the catecholamines dopamine and norepinephrine), 

indicating that norepinephrine was essential for the behavioral actions of imipramine. Taken 

together, these studies were seminal for the development of the norepinephrine hypothesis of 

depression, pioneered by Joseph Schildkraut, given that promoting norepinephrine signaling could 

produce antidepressant-like effects (Schildkraut, 1965). Clinical depression was posited to be the 

result of norepinephrine deficits, either due to levels of the hormone or another requisite 

component on the signaling cascade (Schildkraut, 1965). This hypothesis inspired such terms as 

‘chemical imbalance’ as a means to describe depression that is still somewhat in use today. 
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In parallel with the norepinephrine-directed line of research, converse efforts were being 

taken to test the other known functions of imipramine and the TCAs, namely their ability to 

modulate the serotonergic system. In parallel work corroborating the potential role of serotonin 

depletion in the pro-depressive behavioral actions of reserpine, studies with MAOIs showed that 

the pre-administration of tryptophan, a biosynthetic precursor to serotonin, could amplify the 

antidepressant-like effects of MAOIs in animals (Coppen et al, 1963). Mimicking the work 

performed upon norepinephrine uptake blockade, Arvid Carlsson showed that imipramine could 

also inhibit the uptake of serotonin into nerve terminals (Carlsson et al, 1968). Importantly, 

Carlsson noted in this study that the celebrated effect of imipramine to block norepinephrine 

uptake was much less potent than imipramine’s ability to inhibit the uptake of serotonin, 

suggesting that imipramine’s actions on serotonin homeostasis might be more significant clinically 

than its actions pertaining to norepinephrine. While these studies were highly important to the field 

from technical standpoints, more work was needed to link how imipramine and the TCAs were 

able to bring about their antidepressant effects, and by which neurotransmitter to perform those 

actions. 

The serotonin hypothesis of depression (and conversely the proposed mechanism for 

imipramine and TCA efficacy) began taking shape from these findings. They were also supported 

by various observations linking reduced concentrations of serotonin and its metabolite 5-HIAA in 

post-mortem brain samples of completed suicide victims (Shaw et al, 1967), as well as 

demonstrations of reduced cerebrospinal fluid levels of 5-HIAA in living depressed patients 

(Ashcroft et al, 1966). Moreover, there were mild clinical antidepressant effects of serotonin 

precursors tryptophan and 5-hydroxytryptophan (Coppen, 1967). Given these findings, a research 

team was assembled by Eli Lilly to embark on the development of new antidepressants targeting 
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the inhibition of serotonin reuptake pumps. These serotonin reuptake pumps were only known to 

exist through their function by this point and were not yet available in isolated nor concentrated 

preparations. A crucial development on this front was the invention of a technique by Victor 

Whittaker for the purpose of isolating and studying nerve terminals for the study of synapse-

enriched cellular components (Whittaker et al, 1964). Whittaker developed a technique by which 

these neurons would be mechanically ruptured at the point of disrupted cell membranes, and these 

budded nerve terminals would preferentially close back upon themselves encapsulating a 

functional nerve terminal. Through buffer optimization and centrifugal separation, Whittaker 

could isolate these nerve terminals, termed ‘synaptosomes’ (Whittaker et al, 1964).  

At this point, it was known that these serotonin reuptake pumps likely resided and were 

enriched in nerve terminals. Soloman Snyder adapted the synaptosomal technique to concentrate 

monoamine containing synaptosomes from the rest of the homogenized brain material for the 

purpose of studying synaptic reuptake pumps (Gfeller et al, 1971; Kuhar et al, 1970). Using these 

synaptosomes, Snyder and colleagues were able to determine with high resolution the kinetics of 

specific serotonin uptake through these reuptake pumps for the first time (Wong et al, 1973). Using 

the synaptosome preparation, Lilly’s team embarked on a directed high-throughput path towards 

rationally designing a serotonin reuptake blocker, leading to the development of the first serotonin 

selective reuptake inhibitor (SSRI), later to be known as fluoxetine (Prozac) (Wong et al, 1974).    

 

The Serotonin Transporter (SERT) and SSRIs 

 

 It is important to note that these discoveries and creation of the first specific serotonin 

reuptake inhibitor occurred only using nerve terminal concentrated populations and without the 
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aid purified transporter proteins or cloned transporter cDNAs. Through analyses of serotonin 

uptake kinetics (Wong et al, 1973) and pharmacological inhibition of serotonin uptake (Carlsson 

et al, 1968; Wong et al, 1974), it was likely that there was only a single specific serotonin transport 

pump responsible for the uptake of serotonin, though there was evidence for separate low affinity 

uptake mechanisms apart from this serotonin transporter (Shaskan and Snyder, 1970).  

 Researchers began to investigate the regional composition of this purported serotonin 

transporter and the serotonin pathway, by which SSRIs produce their behavioral effects. Initial 

early investigative efforts were built upon through technological advancements whereby studies 

could utilize autoradiographic and electron microscopic imaging to investigate where 

intraventricularly injected [3H]5-HT could be actively absorbed in the intact rodent brain 

(Aghajanian and Bloom, 1967), notably indicating the localization of the serotonergic neurons 

(here also showing that different types of neurons absorb serotonin or norepinephrine, 

respectively), and that serotonin [and norepinephrine] are predominantly absorbed into nerve 

terminals. Though it was known in some capacity that certain brain regions were more enriched 

with serotonin, this study confirmed those finding by finding high rates of [exogenous] serotonin 

absorption in the midbrain (Aghajanian and Bloom, 1967). Another study found high rates of 

serotonin absorption in rat brain slices containing hypothalamus, striatum, and cerebral cortex, as 

well as demonstrating a sodium dependent uptake process for both norepinephrine and serotonin 

uptake (Shaskan and Snyder, 1970). Other studies that utilized [3H]imipramine binding to localize 

fluoxetine competition sensitive serotonin transporter sites corroborated these findings, especially 

when known serotonin stores were localized to nerve terminals, by indicating high imipramine 

binding at midbrain, cortex, striatum, hypothalamus, and hippocampus, among others, as well as 
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corroborating low presence of serotonin in the cerebellum (Fuxe et al, 1983; Palkovits et al, 1981; 

Raisman et al, 1980). 

 Initial attempts to visualize the location of serotonin in the brain were aided by the creation 

of the histofluorescence technique, pioneered by Falck and Hillarp allowed for the fluorescent 

detection of endogenous monoamines in brain tissue (Carlsson et al, 1961; Falck et al, 1982; Falck 

and Torp, 1961). These approaches were adapted for the detection of serotonin, though this 

technique was plagued with limited fluorescent detection time (Sladek et al, 1974; Smialowska, 

1975; Stefano and Aiello, 1975). Another approach was taken to identify the location of 

serotonergic neurons via creation of antibodies against serotonin (Steinbusch et al, 1978). 

Immunohistochemistry approaches improved over earlier attempts to localize serotonergic 

neurons by targeting biosynthetic enzymes that synthesize serotonin (eg. tryptophan hydroxylase). 

In this effort, Steinbusch and colleagues created an antibody to serotonin using bovine serum 

albumin (BSA) linked to serotonin, injected into rabbits for polyclonal antibody creation, isolated 

the antibodies against serotonin (via affinity chromatography and saturation of antibodies against 

BSA with BSA), and applied that diluted antibody (recognizing serotonin) to rodent brain sections. 

Binding of the antibody to formaldehyde immobilized serotonin was detected with fluorescently 

labeled sheep anti-rabbit antibody [for photodetection methods], and revealed serotonin specific 

labeling and positive affirmation that the location of serotonin containing neurons and projections, 

including axons in the caudate nucleus (of the striatum), the dorsal horn of the spinal cord, and the 

raphe magnus nucleus (Steinbusch et al, 1978). Using this technique, Steinbusch further examined 

in fine detail the regional distribution of serotonin containing neurons and projections throughout 

the rodent brain (Steinbusch, 1981). 
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 While these studies were helpful to determine the likely site of action of SSRIs and the 

neurological subset of cells that they seemed to be acting upon, they did not solidly conclude the 

existence of the purported serotonin transporter, the site that was proposed that these TCA and 

SSRI antidepressants were acting. The discovery and identification of this protein gene product 

would further aid drug development for future antidepressants as well as highlight a new target for 

the study of the manifestations of depression and mood disorders. This opportunity was greatly 

advanced by the cloning of cDNAs encoding the norepinephrine transporter (NET) (Pacholczyk 

et al, 1991) and the γ-aminobutyric acid transporter (GABA; GAT1) (Guastella et al, 1990). The 

effort to clone the serotonin transporter was initiated using polymerase chain reaction (PCR) 

primers targeted to conserved regions of NET and GAT1, yielding a range of PCR products, among 

them partial clones of unknown genes that were sequenced and found to be have significant 

conservation of amino acid sequence conservation to NET (Blakely et al, 1991). One of these 

cDNA clones, rMB6-25, was produced in radiolabeled form to visualize the distribution of the 

complementary mRNA via in situ hybridization in rodent brain slices. Intense labeling was 

identified in the dorsal raphe, which had been known to contain highly enriched in serotonin and 

serotonin containing cell bodies (Steinbusch et al, 1978). A separate sequence of rMB6-25 was 

used to screened a rat cDNA library (from brainstem) using plaque hybridization. A positively 

identified plaque (BS4E-10) was isolated, and the phage insert cloned into a vector for mammalian 

cell expression. This vector was then transfected into HeLa cells, and these cells displayed 

saturable, Na+ dependent 5-HT uptake, as well as sensitivity to all major reuptake inhibitors, with 

known SSRIs (Blakely et al, 1991). The rMB6-25 identified cDNA was designated as the rat 

serotonin transporter (rSERT). 
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 When the primary sequences of the cloned transporters were compared, rSERT, hNET, and 

rGAT1 were found to share highly conserved regions, particularly those suggested to encode 

transmembrane alpha-helices. Additionally, some commonalities displayed among rSERT and 

hNET shared sequences are not present in rGAT1, which could be due to relative similarities of 

their substrate, as well as their shared interactions with TCAs (Blakely et al, 1991). The proposed 

structure of rSERT contains 12 transmembrane domains, cytoplasmic N- and C-termini (with a 

predicted phosphorylation site on the N-terminal tail, distal from the membrane), and a large 

extracellular loop 2 (with multiple predicted glycosylation sites). Other studies validated this 

model were purely using biochemical methods to validate SERT topography, until a three 

dimensional crystal structure was elucidated for the bacterial leucine transporter (LeuT), a genetic 

member of the solute carrier family (SLC), of which SERT and NET are members (Yamashita et 

al, 2005). The LeuT structure provided critical clues for the tertiary structure for these SLC 

transporters, with respect to transmembrane domain arrangement as well as the critical orientation 

and amino acid residues necessary for substrate recognition. Given familial level sequence 

homology between LeuT and hSERT, the three dimensional crystal structure of LeuT was used to 

design a predicted three dimensional model for SERT. Specifically, the electron space map the 

comprises the LeuT structure was used as a shell by which the linear sequence of SERT was 

inserted into the model, and given the known structure of LeuT and the presence of its domains in 

the structure, a homology based three dimensional structure for SERT was established (Jørgensen 

et al, 2007; Kaufmann et al, 2009; Ravna et al, 2006; Tavoulari et al, 2009). Based upon this 

predictive mapping and in vitro data confirmation, it was determined that Ile172 and Tyr95 were 

integral for the high affinity binding of SSRIs at SERT, among other structural discoveries (Henry 

et al, 2006; Kaufmann et al, 2009; Ravna et al, 2006; Tavoulari et al, 2009).  
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The Serotonin Hypothesis of Depression 

 

The link between 5-HT and depression had been initially postulated based upon the 

antidepressant efficacy of enhancing serotonergic signaling via serotonin reuptake inhibitors 

(TCAs and SSRIs). As such, researchers began to investigate the converse argument, namely 

whether clinical depression correlated with the presentation of lowered basal serotonin, ie. whether 

depression was due to a chemical imbalance and deficits in serotonin. These clues led investigators 

to examine whether depressed individuals display any aberrations in 5-HT homeostasis. 

The first observations were directed towards patients with the most severe forms of 

depression.  Researchers examined the brain concentrations of 5-HT in suicide victims and control 

samples; multiple research groups found significant reductions in brain 5-HT in the suicide victims 

compared to the control samples (Lloyd et al, 1974; Pare et al, 1969; Shaw et al, 1967).  Further 

investigations found that cerebrospinal fluid (CSF) levels of 5-hydroxyindoleacetic acid (5-HIAA; 

the primary metabolite of 5-HT) were inversely correlated with the severity of depression in a 

living sample, and overall levels of CSF 5-HIAA in depressed individuals were lower than a 

control sample (Asberg et al, 1976).  Moreover, among those in the study that had attempted 

suicide, CSF 5-HIAA levels were inversely correlated with the severity of the violent nature of the 

suicide attempt (Asberg et al, 1976).  Further analyses discovered links to depression and the 

expression of the serotonin transporter (SERT), which is a key component in the termination of 5-

HT signaling in the brain.   

SERT is also present in the gut and platelets, and is involved in non-psychological 

processes of gut motility and platelet aggregation, respectively (Mawe and Hoffman, 2013).  These 

other sites of SERT expression can be useful for relatively non-invasive biomarker screens directed 
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at SERT related disorders.  This approach was taken to examine SERT expression levels in 

untreated depressed individuals (Briley et al, 1980).  Blood was collected from the untreated 

depressed sample along with untreated non-depressed age matched individuals, and SERT 

expression was measured using [3H]-imipramine binding.  It was found that the depressed sample 

had significantly lower maximal [3H]-imipramine binding than the control sample, meaning that 

SERT expression on platelets was lower in the depressed sample than the non-depressed control 

sample (Briley et al, 1980).  Several studies have replicated this finding, and it was presumed that 

similar mechanisms could be involved that control SERT expression in the brain as are in platelets, 

implicating the potential for using platelet SERT expression as a biomarker approach for the 

diagnosis of depression (Owens and Nemeroff, 1994).  Other approaches seemed to support the 

assertion that platelet SERT expression was not only decreased in depressed individuals, but could 

be predictive of brain SERT expression.  Post mortem analyses were able to confirm these 

suspicions, and showed that SERT expression was significantly reduced in depressed individuals 

compared to a control sample, using [3H]-cyanoimipramine audioradiographic imaging techniques 

(Arango et al, 1995; Mann et al, 2000; Owens and Nemeroff, 1994).  More advanced techniques 

utilizing positron emission temography in addition to radiolabeled SERT ligands found similar 

reductions in SERT expression in living untreated depressed individuals compared to untreated 

non-depressed control samples (Malison et al, 1998; Willeit et al, 2000).  Additionally, it was 

found that dietary restriction of tryptophan (a 5-HT precursor) could trigger a relapse of depression 

in an at-risk patient sample (Bremner J et al, 1997; Delgado et al, 1990; Smith et al, 1997). Patients 

that had been successfully treated with SSRIs were given diets that were devoid of tryptophan, an 

obligate necessary dietary amino acid that is synthesized into serotonin. These patients rapidly 

relapsed into a depressive-like state. These findings sculpted the hypothesis that depression either 
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coincided with—or is caused by—disruptions in serotonergic tone.  Pharmacological approaches 

would then aim to restore serotonergic tone for the treatment of depression; the most direct 

mechanism for accomplishing this seemed to be for targeted inhibition of SERT.  

 

Serotonergic Mechanisms Contributing to SSRI Antidepressant Efficacy 

 

Much of the initial work on the evaluation of antidepressant drug action began with the 

examination of serotonergic neuronal morphology and the macronetwork of serotonergic fiber 

innervations. Following the discovery of SERT and the regional distribution of serotonergic 

neurons and fiber projections, attention was turned to the identification of important biological 

responses and requirements involved in the antidepressant response.  Serotonergic raphe neurons 

mediate their own firing rate via autoreceptors, due in part to the somatodendritic serotonin 1A (5-

HT1A) autoreceptor (Hjorth et al, 2000).  5-HT1A receptors are 7-transmembrane G-protein coupled 

receptors (GPCRs) that couple to Gαi/o, which are inhibitory in nature, by preventing neuronal 

firing and 5-HT vesicle mediated release (Barnes and Sharp, 1999).  These autoreceptors 

counteract the actions of SSRIs by inhibiting raphe firing rates after activation by 5-HT; when 

SSRIs mediate the elevation of extracellular levels of 5-HT, this in turn mediates the increased 

activation of these inhibitory autoreceptors, thus offsetting the actions of SSRIs (Blier, 2003).  

Much attention has been given to this issue, as well as the adaptations in these systems that occur 

alongside behavioral/clinical efficacy.  It has been observed that 5-HT1A receptors are eventually 

desensitized over the course of a few weeks, which could explain the delayed efficacy of SSRIs 

(Blier, 2003; Blier et al, 1987; Hensler, 2002; Le Poul et al, 1995).  Interestingly, 5-HT1A receptor 

desensitization was not the result of decreased surface expression of 5-HT1A receptor, but rather 
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due to a decreased coupling efficiency, measured by 5-HT1A receptor-stimulated [35S]GTPγS 

binding (Hensler, 2002).  The hypothesis that 5-HT1A receptor desensitization is required for the 

efficacy of SSRIs was further tested after the creation of the 5-HT1A receptor knockout mouse.  

These mice displayed reduced basal immobility in the tail-suspension test (TST) compared to WT 

controls, and displayed no further decrease in immobility after fluoxetine or paroxetine treatment 

at doses that produced effects in WT mice (Mayorga et al, 2001).  These data show that mice 

lacking 5-HT1A receptors may display a basal ‘antidepressive’ phenotype, but also suggest that 5-

HT1A receptors may be necessary for the acute effects of SSRIs (Mayorga et al, 2001).  5-HT1A 

receptor KO mice are also unresponsive to chronic SSRI administration in the novelty-suppressed 

feeding paradigm (Santarelli et al, 2003).  The 5-HT1A receptor KO mouse globally eliminates 5-

HT1A receptors, which includes not only autoreceptors but postsynaptic receptors as well, so the 

behavioral effects of 5-HT1A receptor KO mice cannot be solely attributed to the lack of raphe 

neuronal autoinhibition.  These data illustrate one potential explanation of delayed SSRI efficacy, 

and overall, indicate the importance of 5-HT1A receptors on the behavioral efficacy of SSRIs. 

Another important observation provides further clues to the nature of neurological 

aberrations that are a result of—or caused by—depression.  It was reported that hippocampal 

volume was significantly decreased in subjects diagnosed for major depressive disorder (MDD) 

compared to age- and sex-matched healthy controls, using magnetic resonance imaging (MRI) and 

subsequent image size analysis (MacMaster and Kusumakar, 2004).  Many research groups had 

already observed that rodents display adult neurogenesis in various regions of the brain, including 

the hippocampus (Gage et al, 1998), though it was thought to be a rodent-selective feature. 

Though, in other animal studies, researchers found that extended stress paradigms led to decreases 

in hippocampal volume, and could be reversed via antidepressant treatment, displaying parallels 
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to the human findings (Czéh et al, 2001; Murray et al, 2008).  This line of research is largely 

influenced by a seminal study that showed that human hippocampal neurogenesis can occur into 

and through adulthood (Eriksson et al, 1998).  Further studies have shown that antidepressant 

treatment stimulates the production of hippocampal neural progenitor cells, measured in post-

mortem brain tissue of depressed individuals compared to both untreated depressed subjects and 

non-depressed untreated subjects (Boldrini et al, 2009).  These results highlight interesting effects 

of chronic antidepressant administration, but they cannot indicate that hippocampal neurogenesis 

is required for antidepressant efficacy.  In order to test for efficacy, studies were performed that 

both chronically dosed SSRIs and blocked hippocampal neurogenesis.  When hippocampal 

neurogenesis was prevented via focal X-ray irradiation of hippocampal progenitor cells, the 

behavioral efficacy of chronic SSRI was blocked in the NSF assay (Santarelli et al, 2003).  In this 

same study, the researchers also tested 5-HT1A receptor KO mice—which are unresponsive 

behaviorally to chronic SSRI administration—and those mice did not exhibit the same increase in 

hippocampal neurogenesis as do WT mice under the same chronic SSRI administration paradigm 

(Santarelli et al, 2003).  These data suggest that the 5-HT1A receptor may be necessary for the 

SSRI mediated stimulation of hippocampal neurogenesis, as well as behavioral efficacy.  

Hippocampal neurogenesis may be required for SSRI behavioral efficacy, but do not seem to be 

required for the efficacy of tricyclic antidepressants, CRF-R antagonists, nor vasopressin 

antagonists (Santarelli et al, 2003; Surget et al, 2008).  Altogether these findings provide the 

strongest evidence for a requirement of hippocampal neurogenesis for SSRI antidepressant 

behavioral efficacy, that SSRI action is mediated via 5-HT signaling, and can support the delay in 

SSRI clinical efficacy as arising from delayed neurogenic processes that occur on the same 

timescale as behavioral/clinical efficacy (van Praag et al, 2002). 
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It has also been shown that several antidepressant strategies ranging from exercise, 

pharmacological intervention, and electroshock therapy enhance hippocampal neurogenesis in the 

critical SGZ of the hippocampus (Malberg et al, 2000; van Praag et al, 1999; Scott et al, 2000), 

and do so through enhancement of division of neural progenitor cells (Encinas et al, 2006). 

Electroshock therapy and antidepressant treatments also potentiate the expression of brain-derived 

neurotrophic factor (BDNF) mRNA and protein in rat hippocampus (Altar et al, 2003; Russo-

Neustadt et al, 2000).  Peripheral administration of BDNF has also been shown to produce 

antidepressant effects in the novelty suppressed feeding assay (NSF), the forced swim task (FST), 

unpredictable chronic mild stress (UCMS), and in the elevated plus maze (EPM) (Schmidt and 

Duman, 2010).  The BDNF receptor trkB neurotrophin receptor has been shown to be rapidly 

activated after acute administration of SSRI and seems to be required for behavioral efficacy 

(Saarelainen et al, 2003).  These effects do not seem to be simply due to increasing cell number; 

chronic stress paradigms, like those used to induce a ‘depressed’ state in animals, show that while 

there is a decrease in hippocampal volume, the effect is not due to reduction in hippocampal cell 

number (Lucassen et al, 2001; Müller et al, 2001).  Comparable findings showed that stress induces 

dendritic remodeling of CA3 pyramidal neurons, reduces the number of synapses on those neurons, 

and impairs neurogenesis in the dentate gyrus (Fuchs et al, 2006).  Other studies have suggested 

similar mechanisms for their findings, namely that neurogenesis and dendritic spine growth could 

be involved in SSRI response (Costa e Silva, 2004; D’Sa and Duman, 2002).  These findings 

strongly suggest a neurotrophic effect of SSRI efficacy (Castrén, 2004).  Although the evidence is 

strong that hippocampal neurogenesis is required for SSRI antidepressant efficacy, further studies 

need to be performed to establish the pathway leading from increased 5-HT signaling to 

hippocampal neurogenesis. 
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Serotonergic Evidence of SSRI Efficacy by Direct Receptor Analysis 

 

 As noted above, mechanistic determination for the molecular actions of SERT antagonist 

based antidepressant began long prior to the molecular cloning of SERT. Through the analyses 

that drugs or treatments that reduced 5-HT tone could produce depressive-like effects and drugs 

and treatments that enhanced 5-HT tone could produce antidepressive-like effects helped solidify 

the role of 5-HT system disruption in depression pathology. Due to the serendipitous discovery of 

reuptake based antidepressants, primarily considering the serotonergic system and SERT, 

serotonin specific reuptake inhibitors (SSRIs) are the most general and means of ubiquitous 

enhancement of serotonergic signaling. This strategy, however, does not provide much direction 

to the specificity of the effects, and by which 5-HT receptor—or receptors—is the antidepressant 

effect of serotonergic signal enhancement enacted. It may be of great scientific interest to 

investigate which receptors, or set of receptors, is responsible for the antidepressant effect of 

SSRIs, as this determination could allow for more targeted approaches in the future that could 

bypass the delay in antidepressant clinical efficacy and/or improve the side effect profile of future 

antidepressant drugs. 

 Following sufficient SSRI induced SERT blockade, 5-HT levels elevate in the synapse and 

activate pre- and post-synaptic serotonin receptors.  There are 7 main types of 5-HT receptors, of 

which there exist subfamilies within some types, totaling over 20 different kinds of 5-HT receptors 

in the mammalian system, not including RNA edited 5-HT receptors (Fitzgerald et al, 1999). All 

but one of these are 7-transmembrane G-protein coupled receptors (GPCRs), the exception being 

the 5-HT3 receptor, which is a ligand gated ion channel (Table 1).  
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 The 5-HT1A receptor has received much attention with respect to the actions of SSRIs as it 

is the main autoreceptor for serotonergic neurons, regulating the firing rate of 5-HT neurons by 

negative feedback (Barnes and Sharp, 1999). 5-HT1A receptors are coupled to Gαi, which inhibits 

the activity of adenylate cyclase, thus acting as a negative regulator of synaptic firing and signal 

propagation via cAMP and PKA pathways. The delay in SSRI clinical efficacy is thought to be 

due to the counterproductive initial diminishing of serotonergic firing rate, as SSRI mediated 

SERT blockade and enhancement of post-synaptic 5-HT receptor signaling will activate 5-HT1A 

autoreceptors and suppress the firing rate of serotonergic neurons, diminishing overall serotonergic 

signaling tone (Le Poul et al, 1995). Chronic and clinical SSRI efficacy is thought to be the result 

of, in part, 5-HT1A desensitization, allowing these medications to potentiate 5-HT signaling 

following a recovery of normal firing rates. In support of this idea, recovery from 5-HT1A receptor 

desensitization follows the timecourse of chronic SSRI efficacy (Le Poul et al, 1995). 5-HT1A 

receptors also exist postsynaptically, where they act in regulatory manners on non-serotonergic 

neurons, and this may be involved with the SSRI response. 5-HT1A receptor global knockout mice 

are behaviorally insensitive chronically to SSRIs and additionally do not display increased 

proliferation of hippocampal stem cells, a trait that is required for chronic SSRI behavioral efficacy 

(Santarelli et al, 2003). When targeted specifically with direct agonism at 5-HT1A, WT animals 

display an antidepressive-like effect in the forced swim test (FST) (Detke et al, 1995; López-

Rubalcava and Lucki, 2000; Robinson et al, 1990).  
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Table 1. Highlighted Major 5-HT Receptors. Table displays their major subtypes and Gα 

couplings, if applicable, and the functional result of their activation. 
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Though, when a 5-HT1A receptor antagonist was added to the SSRI fluoxetine, the decrease 

in immobility is enhanced in the FST (Detke et al, 1995). These findings suggest a complicated 

role of 5-HT1A receptors in the antidepressant like effects of SSRIs, though this could be a result 

of various 5-HT1A selective ligands having preference for pre- versus post-synaptic 5-HT1A 

receptors with unknown mechanism (Lladó-Pelfort et al, 2010), which could explain the 

differential effects of these different ligands in various assays. Though different experiments yield 

conflicting results regarding the utility of 5-HT1A in antidepressant efficacy and in the 

antidepressant activity of SSRIs, these data show the important role of the receptor in the ability 

to regulate antidepressant-like effects in vivo.  

 Another important receptor in the actions of SSRI actions is the 5-HT2C receptor. The 5-

HT2C receptor is a GPCR coupled to the Gαq G-protein, which, upon 5-HT2C receptor activation, 

activates PLC which cleaves PIP2 to IP3 (which stimulates the release of intracellular Ca2+ stores) 

and DAG (which activates PKC along with increased Ca2+ levels). 5-HT2C receptor agonists, like 

SSRIs, induce significant decreases in immobility time in the FST (Cryan and Lucki, 2000). 

Importantly, 5-HT2C receptor antagonists pretreatment blocked the immobility inducing effects of 

fluoxetine (Cryan and Lucki, 2000). Additionally, 5-HT2 receptors are implicated for the 

regulatory role in hippocampal neurogenesis (Klempin et al, 2010). These studies show that 5-

HT2C signaling is critical for early phase SSRI antidepressant-like effects, and suggest that specific 

5-HT2C receptor agonists might serve as effective antidepressants on their own. 5-HT2C could serve 

as a viable pharmacological target for future antidepressants, though it has largely been avoided 

due to the high homology to the 5-HT2 receptor subtypes, specifically 5-HT2A, which often has 

oppositional effects (Bressa et al, 1987), as well as the potential for untoward clinical effects due 
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to a role of 5-HT2A/2C in the hallucinatory effects brought about by LSD, psilocybin, and DMT 

(Baumeister et al, 2014; Cussac et al, 2008). 

 Other studies have highlighted the role of 5-HT1B in the actions of SSRIs. 5-HT1B, like 5-

HT1A, is a Gαi coupled GPCR. 5-HT1B specific agonists have been shown to possess 

antidepressant-like effects in the FST (Tatarczyńska et al, 2005), and antagonists of 5-HT1B 

receptor, block the SSRI induced decrease in immobility in the FST (Chenu et al, 2008).  

5-HT4 receptor agonism is also capable of producing antidepressant-like effects (Lucas et 

al, 2010). 5-HT4 is a Gαs coupled GPCR, that when activated, stimulates the activity of adenylate 

cyclase, which elevates levels of cAMP, activating PKA pathways and promoting signal 

propagation. Additionally, targeting other 5-HT receptors have been shown to be capable of 

producing antidepressant-like effects. Of note, antidepressant-like effects can be generated via 

antagonism of 5-HT2A (Patel et al, 2004), 5-HT3 (Ramamoorthy et al, 2008), and 5-HT7 

(Wesołowska et al, 2006) receptors.  

These data reinforce the importance of serotonergic signaling in both antidepressant-like 

effects alone in addition to their role in SSRI produced antidepressant-like effects. These effects 

provide evidence that SSRIs mediate their effects through 5-HT receptors, albeit globally. Due to 

the antidepressant-like effects that are generated via blockade of 5-HT2A, 5-HT3, and 5-HT7 

receptors, engagement of these targets via global enhancement in serotonergic signaling via SSRI 

treatment may actually be deleterious to the desired antidepressant effect. In fact, agonists of 5-

HT3 receptor block the effect of SSRIs in the FST (Nakagawa et al, 1998). Future antidepressant 

drug development may aim to selectively target the desired 5-HT receptors and either avoid or 

antagonize these pro-depressive receptors for a better range of efficacy. In this aim, a newly 

approved antidepressant, vortioxetine, possesses activity at SERT (blocker), 5-HT1A (agonist), 5-
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HT1B (partial agonist), 5-HT3 (antagonist), and 5-HT7 (antagonist), all in the aim of attaining faster 

clinical efficacy (Guilloux et al, 2013; Mørk et al, 2012). Vortioxetine is discussed in detail in 

Chapter 5, though this novel approach represents an approach to update serotonin based 

antidepressants using modern research directives catering to the multifaceted roles of serotonin in 

the brain.   

 

SERT-Independent Targets of SSRIs 

 

 SSRIs, despite the eponymous claim to specificity, are sufficiently promiscuous in their 

off-target actions to warrant evaluation of other targets besides SERT (Bianchi, 2008; Owens et 

al, 1997).  The prevailing thought deemed these off-target binding events are suggested to 

contribute towards SSRI side-effect profiles.  At face value, this seems appropriate, but it is 

important to consider first how drug selectivity screens are generally performed.  Most screens are 

limited to a select panel of targets due to cost limitations, and binding events with a kD higher than 

1 μM are generally discarded (Bianchi, 2008).  This practice is problematic when it comes to SSRIs 

in particular, because upon normal dosing paradigms, central nervous system (CNS) 

concentrations of SSRIs are estimated to range from 1-10 μM (Karson et al, 1993).  Taking into 

consideration this expanded window of potentially relevant binding events, many more targets 

should be considered as relevant to antidepressant mechanisms.  SSRIs and their metabolites bind 

to—and modulate—a sizable number of non-trivial targets at physiologically relevant 

concentrations, which could be contributing to efficacy (Bianchi, 2008; Owens et al, 1997).  These 

targets include multiple voltage gated ion channels, activation of GABA-A receptors, inhibition of 
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nicotinic acetylcholine receptors (nAChR), and activity at various serotonin receptors (Bianchi, 

2008; Owens et al, 1997; Zhang et al, 2010).   

One prominent example of the potential contribution towards efficacy is the inhibition of 

TREK-1 channel, which is a widely expressed potassium channel.  These channels contribute to 

the leak current, are regulatable, and are heavily expressed in areas relevant to antidepressant 

mechanisms, including hippocampus, cortex, striatum, amygdala, and hypothalamus (Heurteaux 

et al, 2006).  It has been found that fluoxetine (and its metabolite norfluoxetine), sertraline, and 

paroxetine all inhibit the TREK-1 channel and have IC50’s well within the predicted brain 

concentration for SSRIs (Bianchi, 2008).  TREK-1 KO mice display a basal antidepressive 

phenotype, and appear behaviorally insensitive to SSRIs (Heurteaux et al, 2006).  Interestingly, 

these mice still exhibited an enhancement in hippocampal neurogenesis, and displayed even 

stronger SSRI potentiated hippocampal neurogenesis than WT control mice (Heurteaux et al, 

2006).   

It has also been shown that certain SSRIs can activate σ-1 receptors, and that directed 

activation of the σ-1 receptor is sufficient for antidepressant-like actions, with effects blocked by 

specific σ-1 receptor antagonists, and are absent in σ-1 receptor KO mice (Villard et al, 2011; 

Wang et al, 2007).  Furthermore, σ-1 receptor activation can potentiate NGF driven neurite 

outgrowth, effects that are prevented with specific σ-1 receptor antagonists (Nishimura et al, 

2008).  On this note, the SSRI citalopram induces neurite outgrowth in embryonic thalamic 

explants, effects due to its activation of the σ-1 receptor (Bonnin et al, 2012). The growth 

promoting effects of citalopram can be blocked by a σ-1 receptor antagonist, and are retained in a 

citalopram insensitive mouse line (SERT Met172) (Bonnin et al, 2012). 
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The SSRI sertraline has been shown to be biologically active in yeast, despite the fact that 

yeast do not express any version of SERT (Rainey et al, 2010). Furthermore that sertraline was 

able to inhibit PLA1, PLC, and PLD while stimulating PLA2 in vitro (Rainey et al, 2010).  PLA2 

has been implicated in the antidepressant effects of maprotiline (a norepinephrine reuptake 

inhibitor; NRI) (Lee et al, 2011), and PLCβ & PLCγ inhibition produces an antidepressant effect 

in the forced swim task (FST) (Galeotti and Ghelardini, 2011).  Sertraline has also been shown to 

activate the glucocorticoid receptor and lead to hippocampal neurogenesis, and that this effect 

could be blocked with a glucocorticoid receptor antagonist (Anacker et al, 2011).    

SSRIs also have activity directly at 5-HT receptors (Owens et al, 1997; Zhang et al, 2010), 

which, when these 5-HT receptors are stimulated directly, can produce antidepressant-like effects 

on their own. If SSRIs can produce antidepressant effects directly through their actions at 5-HT 

receptors, then SERT might not be required for their activity. Additionally, certain SSRIs have 

activity at alpha-1 and alpha-2 receptors (Owens et al, 1997). These receptors are norepinephrine 

receptors, and though not the focus of this document, norepinephrine signal enhancement is 

sufficient to produce antidepressant effects (Lee et al, 2011; Santarelli et al, 2003; Sulser, 1984), 

like serotonin, though serotonin has garnered the majority of the research focus due to the 

biological links to the chemical and the clinical presentation of depression.  

Certain SSRIs display high affinity for muscarinic acetylcholine receptors (mAChR) 

(Owens et al, 1997; Snyder and Yamamura, 1977) as well as the nicotinic acetylcholine receptor 

(nAChR) (García-Colunga et al, 1997). Nicotinic acetylcholine receptors have been proposed to 

be a new target for antidepressant development, as their targeting can produce antidepressant-like 

behavioral effects (Shytle et al, 2002). Scopolamine, a muscarinic receptor agonist, has also been 
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demonstrated to have antidepressant activity, particularly for the rapid treatment of depression 

(Drevets et al, 2013).  

As noted above, there is significant crossover of antidepressant effects from multiple 

monoaminergic systems. Selective norepinephrine reuptake inhibitors (eg. desipramine) and 

agents that target dopamine receptors (eg. pramipexole) exist as clinically viable antidepressants 

in their own right, as well as the importance of the mesolimbic dopaminergic system in depression 

pathophysiology (Nestler and Carlezon, 2006). On this note, it is important to illuminate that these 

monoaminergic reuptake proteins have significant substrate affinity crossover, leading to 

situations whereby SERT can feasibly uptake dopamine, where it can be packaged alongside 5-

HT in vesicles (Larsen et al, 2011), as well as the potential for 5-HT uptake via dopamine and/or 

norepinephrine transporter (DAT; NET) (Daws, 2009). The SSRI fluoxetine, at the high doses 

required for clinical efficacy, can also induce elevations in norepinephrine and dopamine levels 

(Koch et al, 2002). The SSRIs paroxetine, sertraline, and fluoxetine all possess moderate affinity 

for NET and DAT, indicating a potential role for non-SERT effects of their actions supporting 

antidepressant mechanisms (Owens et al, 2001).   

These findings described above raise an interesting possibility, namely that these off-target 

effects of SSRIs may contribute to, or drive antidepressant efficacy of SSRIs.  It is not known how 

important these effects are to the overall efficacy of SSRIs, since it has been impossible to separate 

the 5-HT based mechanisms of SSRIs from these off-target effects. Alternatively, these non-SERT 

actions of SSRIs could be contributing to the extent or magnitude of effects driven by SERT 

antagonism.  
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The SERT Met172 Mouse Model for Measuring 5-HT Dependence  

 

 In order to distinguish off-target effects from 5-HT dependent effects, initial attempts 

utilized mice possessing a genetic deletion of the serotonin transporter gene (SERT KO).  Although 

a seemingly appealing strategy, these animals display major compensatory alterations that limit 

their utility as an animal model (Baganz et al, 2008; Kalueff et al, 2010; Murphy and Lesch, 2008).  

These SERT KO animals display a dramatic reduction in brain in 5-HT levels (Bengel et al, 1998), 

5-HT neurons (Lira et al, 2003), expression of various 5-HT receptors (Cour et al, 2001; Fabre et 

al, 2000; Li et al, 2000; Rioux et al, 1999), and changes dorsal raphe firing rate (Lira et al, 2003).  

These changes also impact basal behavior; SERT KO mice display spontaneous ‘depressed’ 

phenotypes in various behavioral assays (Lira et al, 2003), including an unusual basal ‘learned 

helplessness’ phenotype whereby SERT KO mice require no training to produce escape failures in 

the shuttlebox assay, whereas WT mice do require training (Caldarone et al, 2000; Vaugeois et al, 

1996).  These aberrations in normal neurobiology and behavior make it extremely difficult to link 

the subtle effects of SSRIs and extrapolate to the context of normal physiology of serotonin 

neurons and their synapses. 

 Our lab realized that to pursue the separation of 5-HT and off-target effects of SERT 

blockers, including SSRIs, a mouse model was needed that could reduce SSRI interactions at 

SERT without any disruptions of normal physiology or the serotonergic network.  Such a model 

essentially required disruption of SERT binding for SERT targeted drugs, but not for 5-HT.  It has 

been observed that human and Drosophila melanogaster SERT (hSERT and dSERT, respectively) 

display markedly different sensitivities to most SSRIs while having similar 5-HT transport 

abilities.  Through a careful set of mutagenesis experiments, our lab discovered that the species 
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dependence of SSRI sensitivity could be attributed to variation at a single amino acid residue in 

the inner pore structure of the transporter proximal to the predicted 5-HT binding site (I172 in 

human and mouse, M167 in fly) (Henry et al, 2006) (Figure 5) (Figure 6).  Mutating I172 in 

hSERT and mSERT to Met172 could recapitulate the dramatic reduction in inhibition efficacy for 

many SERT antagonists as is seen in dSERT, without affecting 5-HT transport (Henry et al, 2006). 

Interestingly, paroxetine displays highly potent inhibition of dSERT as well as hSERT and 

mSERT, and is unaffected by the I172M substitution (Henry et al, 2006). Additionally, mutating 

dSERT to the respective mammalian amino acid (M167I) produces a gain in SSRI potency (Henry 

et al, 2006). With this knowledge, our lab then created a mouse with the I172M substitution in 

SERT (Thompson et al, 2011).  These mice displayed normal growth, normal SERT expression, 

and no overt morphological differences or basal phenotype (Thompson et al, 2011).  The mice also 

displayed normal 5-HT uptake, 5-HT clearance rate, and 5-HT induced reductions in raphe firing 

rates (Thompson et al, 2011).  As expected, ex vivo synaptosomal analyses revealed that this 

mutation rendered dramatic reductions in inhibition efficacy of [3H]5-HT uptake for many SERT 

blockers (Thompson et al, 2011).  Consequently, these SERT Met172 mice do not exhibit normal 

increases in extracellular 5-HT after citalopram or fluoxetine administration (20 mg/kg, i.p.) as 

measured by in vivo microdialysis, displayed no reduction in dorsal raphe firing rate after 

administration of 1 μM citalopram in ex vivo slice recordings, and displayed no alterations in 5-

HT clearance rate after administration of citalopram and fluoxetine (Thompson et al, 2011).  Next, 

our lab assayed for behavioral sensitivity to SSRIs in the forced swim task (FST) and the tail 

suspension test (TST), which have predictive validity for monoaminergic antidepressants and are 

sensitive to acute antidepressant administration (Lucki et al, 1994).  The results of these studies 

were not completely clear.   
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Figure 5. Sequence Alignment of SERT Protein. Linear sequence alignment of various SERT 

proteins across phylogeny, highlighting transmembrane 3 domain of SERT. Membrane primary 

structure displays high sequence conservation across this transmembrane region. Highlighted is a 

prominent example of a sequence variant seen in drosophila at position 172. The drosophila SERT, 

while displaying capable uptake of 5-HT, it displays disrupted affinity for many SERT blockers. 

This lowered affinity can be attributed to this single amino acid substitution Ile172Met. 

  

Modified from: Henry, L. K. et al. J. Biol. Chem. 2006;281:2012-2023 
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Figure 6. Structure of SERT with I172M Substitution. A. 2D Structure of SERT, Based upon 

LeuT Structure. Two dimensional homology model mapping of SERT, based upon the LeuT 

crystal structure. These data align with previous predictions made upon the cloning of the rodent 

SERT, that the protein contains 12 transmembrane domains. Highlighted is the position of amino 

acid 172, and the position of the Ile172Met substitution, derived from the dSERT studies. When 

this flattened model is remapped onto three dimensional space, Ile172 is positioned directly 

adjacent to the predicted ligand (both SSRI and 5-HT) binding site (“L” triangle, above), and 

required for high affinity binding of SERT blockers at SERT. The drosophila SERT, where our 

model intellectually originated, while displaying capable uptake of 5-HT, it displays disrupted 

affinity for many SERT blockers. This lowered affinity can be attributed to this single amino acid 

substitution Ile172Met. B. 3D homology model of hSERT with computational binding of s-

citalopram. The I172M substitution perturbs structural binding potential for s-citalopram in 

hSERT, predicted to reduce affinity for the drug for SERT Met172 
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Whereas the SERT Met172 mice displayed a lower change in immobility in the TST 

compared to WT animals following treatment with the SSRIs citalopram and fluoxetine, these 

results did not attain significance (Thompson et al, 2011).  Furthermore, when tested in the FST, 

WT animals responded with significant increases in immobility following treatment with SSRIs, 

but the SERT Met172 mice were insensitive to SSRI treatment of citalopram and fluoxetine, but 

remained sensitive to paroxetine (Thompson et al, 2011).  We suspected that the behavioral assays 

were hampered by to the genetic background of the mouse.  The original SERT Met172 line was 

generated using 129S6 derived embryonic stem cells (ES cells).  It has been reported that mice 

with a 129 genetic background have poor response to SSRIs compared to other mouse and rat 

models, and that a C57BL/6 background would be more suitable for behavioral assays of this 

nature (Crowley et al, 2005; Gingrich and Hen, 2000; Jacobson and Cryan, 2007; Lucki et al, 

2001). 

 

Rationale for Thesis Studies 

 

 Although there is much support for a 5-HT link to depression and the actions of SSRIs, 

there are reasons to be cautious as to our attribution of drug actions in vivo as solely linked to 

alterations in 5-HT signaling. Most troubling is the well-known issue that SSRIs are not 

immediately efficacious, even though these drugs block SERT within minutes. This observation 

indicates that time-dependent plasticities such as changes in membrane excitability, synaptic 

morphology and/or stem cell production are needed to achieve therapeutic benefit, though it is not 

clear whether these changes all derive from SERT-dependent drug targeting.   In this regard, many 

proteins encoded in the human genome do not have assays that can be used to define, holistically, 
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the nature of drug specificity.  Even within the “druggable genome” SSRIs have been found to 

interact with a sizable number of non-trivial targets at physiologically relevant concentrations.  

These targets, when manipulated specifically, can induce some of the biochemical and behavioral 

effects of both acute and chronic SSRI administration, raising the question as to whether all of the 

effects of SSRIs are 5-HT mediated. In order to separate the 5-HT/SERT-dependent effects of 

SSRIs from their non-5-HT/SERT/independent effects, I utilize a novel transgenic mouse strain 

developed by the Blakely lab wherein a point mutation has been introduced in Slc6a4 to convert 

an Ile at amino acid 172 to Met (Ile172Met; I172M), a substitution that confers insensitivity to 

many SERT blocking drugs both in vitro and in vivo.  Critically, the I172M transgenic model 

displays normal levels of SERT protein and 5-HT clearance, eliminating concerns of compensatory 

changes in 5-HT homeostasis and signaling physiology that attend many other transgenic models. 

Using the SERT Met172 model backcrossed to the C57Bl/6 background, I sought to establish 

whether SERT blockade in vivo is required for both acute and chronic SSRI-modulated behavior 

and biochemistry. These efforts provide the most definitive analysis to date of the relationship of 

5-HT signaling to SSRI action in vivo. To achieve these goals, I pursued the following Specific 

Aims: 

 

Ascertain the Biochemical Inconsequentiality of Backcrossing the SERT Met172 Mouse onto the 

C57Bl/6 Genetic Background: 

 Due to the necessity to backcross the SERT Met172 mouse model onto a more suitable 

genetic background for further behavioral assessment, I first test to ensure that the act of 

backcrossing the SERT Met172 model from the 129S6/S4 hybrid background onto the C57Bl/6 
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genetic background has not somehow negatively impacted aspects that would impede my efforts 

in planned further studies, such as differential gene regulation impacting SERT Met172 

expression. I test whether backcrossing has impacted SERT protein expression, SERT protein 

uptake function, biogenic amine concentrations, and lastly whether the backcrossing has impacted 

our expected shifts in pharmacology for fluoxetine and citalopram, and preservation of sensitivity 

to paroxetine. 

 

Determine Whether Acute Behavioral Sensitivity to SSRIs Requires SERT Blockade: 

Using adult, male SERT Met172 mice congenic on a C57BL/6J background, I examine the 

actions of SSRIs that either are or are not influenced by the I172M substitution using behavioral 

assays known to be sensitive to acute SSRI treatment.  These assays are known to possess 

predictive validity for antidepressants utilized in the clinic, and have been well characterized by 

antidepressant researchers for acute antidepressant drug sensitivity. It is with these assays that 

many off-target/non-SERT targets of SSRIs have been tested and claim non-SERT antidepressant 

effects of SSRIs, rendering them most suitable to test the requirement of SERT for the acute 

antidepressant-like actions of SSRIs 

 

Determine Whether Chronic Behavioral and Biochemical Sensitivity to SSRIs Requires SERT 

Antagonism: 

 As with the studies testing whether acute behavioral sensitivity to SSRIs require SERT 

antagonism, I examine the SSRI sensitivity of SERT Met172 mice following chronic 
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administration of SSRIs in a model that is sensitive to chronic—but not acute—administration of 

SSRI. The assays chosen, novelty induced hypophagia and hippocampal neurogenesis, are thought 

to probe different facets of SSRI efficacy, and through their use, I will seek to establish the SERT-

dependence of SSRI actions acutely and chronically. I will also investigate biochemical processes 

that are required for behavioral efficacy in this chronic behavioral antidepressant sensitivity model. 

Increased hippocampal stem cell proliferation and/or survival have been proposed to be critical for 

the actions of antidepressants in some, but not all, behavioral changes arising from chronic SSRI 

administration. In this Aim, I will employ BrdU-based methods to determine whether changes in 

stem cell generation and/or survival following SSRI administration require SERT blockade. 

 

Evaluate the Requirement of SERT Antagonism for the Novel Multimodal Antidepressant 

Vortioxetine: 

 Utilizing the above assays, I test whether the removal of SERT antagonism from the 

pharmacological profile of vortioxetine, through the use of the SERT Met172 mouse model, would 

result in preserved antidepressant-like activity in assays that are sensitive to acute and chronic 

antidepressant administration. Such findings, regardless of outcome, would illuminate the 

necessity of SERT for future serotonergic antidepressants. 
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CHAPTER II 

 

BIOCHEMICAL CHARACTERIZATION OF SERT MET172 

 

Note: The work presented in this chapter was published as: Nackenoff AG, Moussa-Tooks AB, 

McMeekin AM, Veenstra-VanderWeele J, Blakely RD (2015). Essential Contributions of 

Serotonin Transporter Inhibition to the Acute and Chronic Actions of Fluoxetine and Citalopram 

in the SERT Met172 Mouse. Neuropsychopharmacology  

 

Introduction 

 

The initial studies on the SERT Met172 animals were performed upon a mouse line of the 

genetic background of 129 lineage. From in vitro and in vivo studies, these prior studies were able 

to demonstrate and recapitulate prior hypotheses that the SERT I172M substitution yields a SERT 

completely able to be expressed, trafficked to the plasma membrane, and to uptake 5-HT with 

normal kinetics while rendering SERT Met172 incapable of being high affinity interactions with 

most SERT antagonists. The initial mouse line onto which the SERT Met172 substitution was 

introduced via knock-in techniques, however, was observed to exhibit low spontaneous activity in 

many behavioral tasks, low basal anxiety, and poor behavioral sensitivity to neuropsychiatric drugs 

(Jacobson and Cryan, 2007), which limits their utility in studies that rely upon behavioral screening 

endpoints to evaluate the specificity of SSRI action. It was for this reason that we sought to 

improve upon previous studies (Thompson et al, 2011), which required further manipulations in 

order to assess our hypothesis regarding the ablation of SSRI behavioral sensitivity rendered by 

the SERT Met172 substitution. It was therefore necessary to mobilize this genetic substitution onto 

a genetic background that would be more conducive to baseline anxiogenic behavior and 
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behavioral drug sensitivity studies. In these aims, we backcrossed the original 192S6/S4 line onto 

the C57Bl/6 genetic background, as described in detail below.  

 The backcross, simply put, aims to preserve the SERT gene locus from the engineered 129 

mouse line, but replace the rest of the genome with C57Bl/6 derived DNA. The theory here is that 

any and all genes that would render the 129 mouse useless in behavioral tests are replaced by the 

C57Bl/6 versions of these genes. A major consideration, however, is that we cannot know all the 

interplay of physically interacting and regulatory proteins and kinases that interact with SERT that 

would also be altered in this process. In other systems, notably 7-transmembrane G-protein 

coupled receptors (GPCRs), there are proteins that regulate the pharmacological sensitivity to 

endogenous and exogenous ligands (eg: Han et al, 2010), which, if their expression or function 

were altered through protein expression level or through phylogenetic sequence differences, would 

alter the perception of GPCR pharmacology between mouse strains, though we would potentially 

be blind to the mechanism. SERT is also known to be regulated by a number of kinases, and the 

magnitude of SERT regulation may differ across different mouse strains (Carneiro et al, 2009; 

Veenstra-VanderWeele et al, 2012; Ye and Blakely, 2011). We must therefore consider that 

backcrossing the SERT Met172 mice onto the C57Bl/6 genetic background could have unintended 

consequences pertaining towards SERT Met172 sensitivity to SSRIs or to its affinity and 

trafficking potential for 5-HT. Failure to do so could confound future conclusions pertaining to the 

I172M substitution were the backcrossing onto the C57Bl/6 genetic background be to blame.  

Therefore, following the successful backcrossing of both the wildtype SERT Ile172 and 

knock-in SERT Met172 allele onto the C57Bl/6 background, I tested important facets of ex vivo 

SERT function to confirm the biochemical findings performed previously. Based upon these 

results, I tested—and expected to find—that the backcrossing onto the C57Bl/6 background did 
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not alter total SERT protein expression, biogenic amine homeostasis, SERT specific 5-HT uptake. 

Importantly, this backcrossing did not impact the reduced affinity for the SSRIs fluoxetine and 

citalopram, while maintaining equipotent inhibition of the SSRI paroxetine. 

 

Materials 

 

Animals 

SERT Met172 knock-in mice on a 129S6/S4 background were created as described 

previously (Thompson et al, 2011). To move to a background more conducive for the study of 

SSRI sensitivity (Crowley et al, 2005; Gingrich and Hen, 2000; Jacobson and Cryan, 2007; Lucki 

et al, 2001), we backcrossed animals until the SERT Met172 allele was >99% congenic onto a 

C57BL/6J background using a single nucleotide polymorphism-based speed congenic approach 

(Jackson Labs, Bar Harbor, Maine, USA). Because the SERT gene (Slc6a4) in the 129S6 

embryonic stem cells used to generate the SERT Met172 knock-in line harbors a functional, two 

amino acid difference with the C57BL/6J SERT (129: E39R152 haplotype; C57: G39K152 haplotype; 

Carneiro et al, 2009), it was also necessary to establish a second backcrossed line where the 

wildtype 129S6 Slc6a4 gene was expressed on a C57BL/6J background, also established as >99% 

congenic. A cross of the latter line with the C57BL6/J SERT Met172 mice yields mice 

heterozygous for either SERT Ile172 or SERT Met172 (SERTI172/Met172) with both Slc6a4 alleles 

sharing the E39R152 haplotype. These heterozygous mice were the parental animals for the 

homozygous SERT Ile172 (wildtype; WT) and SERT Met172 mice used in our studies. Initial 

characterizations of SERT levels, activity, and monoamine homeostasis were performed upon 

homozygous mice generated from heterozygous breedings. Because SERT levels, 5-HT clearance, 
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raphe 5-HT neuron firing rates, growth rates, and basal TST and FST behaviors were found to be 

equivalent in heterozygous bred SERT Ile172 and Met172 animals on both the 129S6/S4 

(Thompson et al, 2011) and C57BL/6J backgrounds (these studies), we performed chronic drug 

treatment studies using WT and SERT Met172 mice generated from homozygous breedings. All 

animal studies were performed in accordance with protocols approved by the Vanderbilt 

University Animal Care and Use Committee. 

 

Drugs 

All general biochemical reagents were obtained from Sigma-Aldrich (St. Louis, MO, USA) 

unless otherwise noted, and were of the highest grade available. Fluoxetine HCl, citalopram HBr, 

and paroxetine HCl were acquired from TCI Chemicals (Portland, OR, USA). For ex vivo analyses, 

all drugs were prepared as 10mM stock solutions in 100% DMSO. Final DMSO concentrations 

for SSRI studies were under 1%. All control conditions contained the highest level of DMSO that 

would be presented by the most concentrated SSRI solution. Prior to i.p. injections and subsequent 

acute behavioral studies, drugs were prepared fresh in 0.9% sterile saline and filtered for sterility 

(Nalgene syringe filter, 0.2 µm, 195-2520, ThermoFisher Scientific; Waltham, MA, USA).  

 

SERT Western Blotting Analysis 

 

Method 

Following sacrifice by rapid decapitation, brain tissue from 8 week old male mice from 

midbrain, hippocampus, and frontal cortex (without olfactory bulb) was dissected and subjected 

to western blotting analysis for SERT protein. Samples were resolved on 10% gels by SDS-PAGE, 
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gels were transferred overnight to PVDF membrane (Immobilon, IPVH00010, Millipore) and then 

SERT was probed using guinea pig anti-SERT primary antibody (Frontier, 5HTT-GP-Af1400, 

1:1000; Japan; 24 hrs at 4°C) and rabbit anti-guinea pig (1:10000; A-5545, Sigma; 1 hr at room 

temperature) as secondary antibody. Bands were detected by enhanced chemiluminescence 

(Clarity™ ECL substrate, Bio-Rad, Hercules, CA, USA). Membranes were stripped and loading 

was normalized after probing for mouse anti-β-actin (Sigma-Aldrich, A5441, 1:10,000; 1 hr at 

room temperature) and goat anti-mouse secondary antibody (1:10000; 115-035-062, Jackson 

ImmunoResearch, West Grove, PA, USA; 1 hr at room temperature). Blots were imaged and band 

density was quantified using ImageJ (http://imagej.nih.gov/ij/). For accurate comparisons, WT and 

SERT Met172 samples were intercalated, and only samples from one brain region were contained 

on each blot. Values at each brain region were compared using Students t test, with alpha 

stringency set at P = 0.05. 

 

Results 

We sought to confirm that the SERT Met172 mutation did not alter SERT protein 

expression when expressed on a C57BL/6J background. Indeed, quantitative western blot analysis 

of SERT protein expression revealed no differences in frontal cortex, hippocampal, or midbrain 

SERT protein levels between WT and SERT Met172 mice (Figure 7).  These data indicate a lack 

of consequential effects of the SERT Met172 mutant on basal SERT expression, aligning with 

prior studies (Henry et al, 2006; Thompson et al, 2011). Additionally, this confirms that there are 

no consequences from the act of backcrossing the SERT Met172 locus onto the C57Bl/6 genetic 

background with respect to the ability to express the SERT protein.  
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Figure 7. SERT Protein Expression in SERT Met172. The SERT Met172 mutant imposes altered 

pharmacological sensitivity with normal SERT expression and function. SERT protein expression 

was measured via Western blotting (left), and normalized to β-actin levels (right). SERT 

expression did not differ between WT and Met172 mice (two-tailed Student t test, P >0.05; n=5 

per genotype and condition).  
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While we kept a close tab via PCR and strainotyping with respect to the coding sequence 

of SERT during the speed congenic approach to the backcrossing, there was still a possibility that 

regulatory elements and SERT gene promotor regions could be disrupted, for example, creating a 

situation where C57Bl/6 gene promotors would be less able to express SERT Met172 protein. 

These data indicate that our backcrossing efforts did not disrupt the ability of our hybrid mice to 

express either WT or SERT Met172. 

 

Brain Monoamine Steady State Composition 

 

Method 

Male mice (8 weeks old) were sacrificed by rapid decapitation and brain regions of frontal 

cortex, hippocampus, and midbrain were dissected on ice and then rapidly frozen in test tubes on 

ethanol/dry ice and stored at -80 °C until extraction for assessment of monoamine 

neurotransmitters and metabolites. Monoamine levels were determined by HPLC/EC methods as 

described previously (Thompson et al, 2011) in the Vanderbilt Brain Institute Neurochemistry 

Core. Briefly, tissue samples were subjected to organic extraction in order to solubilize whole 

tissue neurotransmitters and their metabolites. The aqueous fraction containing these monoamines 

are forced through a chromatographic column via high pressure injection. This column separates 

the various monoamines via size and polarity and exit the column at different times. At this point, 

sample fractions are exposed to an electrochemical detector, and given a certain voltage oxidizes 

the substances in the sample based upon their redox potential. Sample oxidation generates a small 

electrical current, that, when compared to known concentrations of monoamines, can allow back 

calculation to determine exact concentration of the monoamine in the sample. Metabolite levels 
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were normalized to tissue extract protein concentration (Pierce BCA, #23225; ThermoFisher 

Scientific). Values at each brain region were compared using Students t test, with Bonferroni 

repeated measure correction, with alpha stringency set at P = 0.05. 

 

Results 

After organic extraction of neurotranmitters and their metabolites and subsequent 

chromatographic separation and electrochemical detection, we could determine that monoamine 

neurotransmitter and metabolite levels did not differ between genotypes across all brain regions 

(Table 2). 

 

Saturation Uptake Kinetic Analysis of SERT 

 

Method 

Following sacrifice via rapid decapitation, the whole brains of 8-12 week old male mice 

were dissected on ice and used for synaptosomal preparations as described previously (Thompson 

et al, 2011). Briefly, midbrain sections were mechanically homogenized in 0.32M sucrose in 5mM 

HEPES buffer. This homogenate was subjected to a low gravity centrifugation (10 min, 4°C at 

1,000x g) in order to remove large cellular components (eg. mitochronria, nuclei, and large 

membranes) from the reconstituted nerve terminals, classified as ‘snaptosomes’. The supernatant 

after this first spin contains the synaptosomes. The synaptosomes are then pelleted via a high 

gravity centrifugation (15 min, 4°C at 10,000x g).  
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Table 2. Biogenic Amines in SERT Met172. Values presented as mean ± SEM (ng/mg protein). 

Tissue levels were determined by HPLC-EC analyses as noted in Methods. Tissue levels of 5-HT, 

5-HIAA, DA, DOPAC, and NE did not differ between WT and Met172 mice (n= 4 per condition, 

two-tailed Student’s t test). 
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The pellet was resuspended in KRH buffer containing glucose (for synaptosomal viability 

throughout the preparation and assay), pargyline (MAOI, prevents enzymatic metabolism of 5-

HT), and ascorbic acid (preservative, prevents spontaneous oxidation of 5-HT). Equal volumes of 

synaptosomes were then incubated at 37°C for 5 minutes with serial dilutions of 5-HT stock 

containing 10% [3H]5-HT (PerkinElmer, NET498001MC, Waltham, MA, USA). At each 

concentration of 5-HT, parallel samples were incubated in the presence of 1μM paroxetine (an 

SSRI), defining non-specific uptake (any residual radioactivity in these samples would be due to 

non-SERT uptake, passive diffusion, or indicate washing stringency), which was subtracted from 

total counts to yield specific uptake. 5-HT uptake into synaptosomes was terminated via addition 

of ice cold PBS buffer, and vacuum filtration through 0.3% polyethyleneimine treated glass fiber 

filters (GF/B, Whatman, Pittsburgh, PA, USA). Synaptosomes were assessed for protein 

concentration for normalization of 5-HT levels across experiments (Pierce BCA; ThermoFisher). 

Data were fit to rectangular hyperbolic Michaelis-Mentin Kinetic regression curve fits (Graphpad 

Prism 6.0). Kinetic parameters (Km and Vmax) were compared using Students t test, with alpha 

stringency set at P = 0.05. 

 

Results 

 Raw values of radioactive uptake were converted into moles, via corrections for 

scintillation counting efficiency (using known concentrations of radioactivity), non-specific 

uptake, and the total time allotted in the uptake experiment. These data were fit to the amount of 

5-HT added to the tubes, and fit to a Michaelis-Menten rectangular hyperbola to determine the 

kinetic parameters Km and Vmax (Graphpad Prism). We found no genotype effects on ex vivo 5-HT 
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transport kinetics in whole brain synaptosomes, neither in 5-HT Km or 5-HT transport Vmax (P 

>0.05) (Figure 8). 

 

Synaptosomal Competition Uptake Analysis 

 

Method 

Following sacrifice via rapid decapitation, the midbrains of 8-12 week old male mice were 

dissected on ice and used for synaptosomal preparations as described above, and previously 

(Thompson et al, 2011). For competition uptake assays, equal volumes of synaptosomes were 

incubated with 20 nM [3H]5-HT (PerkinElmer) and varying concentrations of inhibitors and 

incubated at 37°C for 10 minutes, followed by vacuum filtration and scintillation spectroscopy 

methodology as described above. Data were fit to single site competition regression curve fit 

(Graphpad Prism 6.0).  

 

Results 

After confirming normal SERT expression and activity, we sought to verify whether the 

C57BL/6J backcrossed SERT Met172 allele maintained its reduced sensitivity to specific SERT 

antagonists (Henry et al, 2006; Thompson et al, 2011). To accomplish this, we performed 

competitive [3H]5-HT uptake using midbrain derived synaptosomes of WT and SERT Met172 

mice (Figure 9). These studies revealed the expected reductions in potency for fluoxetine (~20 

fold) and citalopram (~500 fold) at SERT Met172.  
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Figure 8. Saturation Uptake Kinetics. The SERT Met172 mutant imposes altered pharmacological 

sensitivity with normal SERT expression and function. Saturation uptake kinetics in WT and 

SERT Met172 whole brain synaptosomes. WT and Met172 do not differ in 5-HT transport activity 

(WT: Km 73.04±15.66 nM; Vmax 1.18±0.07 pmol/min-mg protein; Met172: Km 102.0±24.61 nM; 

Vmax 1.22±0.09 pmol/min-mg protein: two-tailed unpaired Student t test, P > 0.05, n = 

6/condition).  
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Figure 9. Synaptosomal Competition of 5-HT Uptake. The SERT Met172 mutant imposes altered 

pharmacological sensitivity with normal SERT expression and function. Competition 5-HT uptake 

analysis. Fluoxetine (WT KI=8.54 ± 0.02 x 10-8 M, SERT Met172 KI=9.03 ± 0.03 x 10-7 M), 

citalopram (WT KI=2.07 ± 0.05 x 10-8 M, SERT Met172 KI=7.91 ± 0.05 x 10-6 M), and paroxetine 

(WT KI=2.00 ± 0.03 x 10-9 M, SERT Met172 KI=1.80 ± 0.04 10-9 M) were assessed for their ability 

to compete with [3H]5-HT uptake. (n = 4/condition). 
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In contrast, paroxetine was unaffected by the Met172 variant, as demonstrated by its 

equivalent potency of 5-HT uptake inhibition in WT, consistent with predictions from transfected 

cell studies (Henry et al, 2006) and prior synaptosomal studies (Thompson et al, 2011). These data 

indicate that the backcrossing onto the C57Bl/6 did not impact the pharmacological sensitivity of 

the SERT Met172 variant, and additionally that the magnitude of these disrupted sensitivities were 

preserved from in vitro studies as well as the previously assessed 129S6/S4 mouse line containing 

the SERT Met172 variant. These data indicate that our attempts to dose animals within this ‘dose 

window’, where a dose of SSRI could fully inhibit WT SERT yet render no functional antagonism 

on SERT Met172, will be fruitful after these backcrossing efforts. 

As an aside, many people have taken interest in the findings that the pharmacological 

inhibition of paroxetine at SERT is unaffected by the I172M substitution. Of those, most have 

some training in structural biology, and take these findings as evidence that paroxetine is an 

allosteric inhibitor of SERT via allosteric binding at the purported S2 SERT binding site (Plenge 

et al, 2012; Plenge and Mellerup, 1985). In our own studies and collaborative efforts, we have 

observed through computational SERT homology model docking studies that paroxetine does bind 

at the ‘orthosteric’ 5-HT binding site, where most other SERT blockers are computationally 

predicted to bind (Kaufmann et al, 2009). Moreover, these structures confirm that the stabilized 

SERT structure bound to paroxetine does not present Ile172 towards the binding pocket in a way 

that one would predict perturbed paroxetine binding in the presence of the substituted Met172. 

Based upon these data of the unaltered pharmacological sensitivity in synaptosomes, we can only 

say that high affinity binding of paroxetine to SERT does not require Ile172. Though our data does 

not rule out the possibility of S2 binding site activity of paroxetine, together with the homology 

model docking studies, I do not feel compelled to assert that paroxetine engages the S2 site to 
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achieve SERT antagonism. Such S2 activity would require perfect and indistinguishable 

competitive binding for 5-HT, all while remaining completely allosteric of the orthosteric S1 5-

HT binding site; I do not feel convinced of that possibility.  

 

Conclusions 

 

 The backcrossing the SERT Met172 mouse onto the C57Bl/6 was necessary for further 

experimentation regarding the acute and chronic SSRI sensitivity studies, though it was necessary 

to first ensure that the act of backcrossing did not unexpectedly augment any of our foundational 

assumptions regarding the impacted sensitivity of SERT Met172 to SSRI inhibition with 

maintained efficacy with respect to 5-HT transport capability. To test this, we chose to validate 

core facets of these assumptions, namely ensuring that the I172M substitution did not alter the 

expression of SERT protein, biogenic amine homeostasis, SERT specific 5-HT uptake kinetics, or 

the predicted altered pharmacology for SSRIs. I was able to validate that these foundational 

assumptions were not altered following the backcrossing onto the C57Bl/6 genetic background. 

While we expected these findings, it was necessary to confirm before moving forward onto more 

complicated queries pertaining to SSRI antidepressant efficacy and the role of SERT antagonism 

for their actions.  

 The importance of these findings is multifaceted. Firstly, should we see any differences in 

SSRI behavioral sensitivity in the SERT Met172 mice, such an observation could be confounded 

by changes in total SERT protein expression, leading to unbalanced dose administration, and/or 

altered 5-HT receptor expression or sensitivity. Any minute changes to SERT protein expression 

basally or over development could dramatically or subtly alter neurodevelopment, which we would 
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hope to see in gross morphology (data not shown) or monoamine homeostasis, which are unaltered. 

Such changes could impact basal behavioral effects or sensitivity to SSRIs. Of further importance, 

the premise of these studies is that we have only altered pharmacology of some SSRIs at SERT 

without impacting its basal function with respect to 5-HT uptake. Any aberrations in normative 

function in SERT would create an abnormal state basally, and any conclusions we would draw 

from SSRI behavioral sensitivity studies could not be attributed solely to deficient SERT binding 

since many other compensatory effects would also be present in such a mouse. Importantly, I saw 

no differences in SERT Met172 compared to WT SERT in the 5-HT uptake kinetics, which mirrors 

what I observed in the biogenic amine level analysis, which would have been altered were SERT 

kinetics maligned in any functional capacity. And lastly, I was able to show that the backcrossing 

did not impact the lowered affinities of fluoxetine and citalopram for SERT Met172. These 

findings indicate that the SERT Met172 mouse, on a biochemical scale, has been validated to a 

degree to which we can comfortably move forward towards the assessment of SERT specific 

effects of acute and chronic SSRI sensitivity in a confound-free manner.  
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CHAPTER III 

 

ACUTE BEHAVIORAL SENSITIVITY OF SERT MET172 TO SSRI 

 

Note: The work presented in this chapter was published as: Nackenoff AG, Moussa-Tooks AB, 

McMeekin AM, Veenstra-VanderWeele J, Blakely RD (2015). Essential Contributions of 

Serotonin Transporter Inhibition to the Acute and Chronic Actions of Fluoxetine and Citalopram 

in the SERT Met172 Mouse. Neuropsychopharmacology 

 

 

Introduction 

 

In the prior chapter, I described studies that show that SERT Met172 protein is expressed 

as efficiently as WT SERT, can function equivalently to WT SERT with respect to 5-HT uptake, 

and does not alter brain monoamine homeostasis. Thus, the C57Bl/6 SERT Met172 mouse is 

validated as a model to assess the functional consequences of the loss of SSRI antagonism of 

SERT—due to the perturbed affinity for most SSRIs for SERT Met172—in a confound free 

manner. Provided this shift in pharmacological sensitivity, I should be able to administer a dose of 

the SSRI that is able to functionally antagonize WT SERT but not SERT Met172 in vivo, assuming 

that the ‘dose window’—the gap between IC80’s of WT and SERT Met172—falls within range of 

behaviorally relevant doses of SSRIs. Based upon prior validation studies (Thompson et al, 2011), 

we know that a relatively high, behaviorally relevant dose of 20 mg/kg of both fluoxetine and 

citalopram are able to hit this ‘dose window’, where this dose is able to functionally antagonize 

WT SERT but not SERT Met172. This would provide the desired situation where the SSRIs 

fluoxetine and citalopram are present at normal levels in the brain in SERT Met172 mice, yet fail 
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to engage and functionally antagonize its SERT, leaving those compounds free to engage off-target 

proteins and receptors that may contribute to antidepressant actions, as some have suggested. In 

short, since the only differences in SSRI response between WT and SERT Met172 would solely 

be due to engagement at SERT, we can determine definitively whether SERT antagonism is 

required for the behavioral efficacy of SSRIs in the acute models of antidepressant efficacy tail 

suspension test (TST) and forced swim test (FST).  

We chose the TST and FST due to their wide adoption and extensive history in the field of 

antidepressant screening (Crowley et al, 2005; Lucki et al, 2001; Porsolt et al, 1977b; Steru et al, 

1985). Clinical antidepressants—including fluoxetine, citalopram, and paroxetine—are known to 

promote escape-like behavior in mice when presented with an inescapable stressor, such as 

suspension by the tail (TST) or placement in a cylinder of water (FST). These tests evolved from 

early depression models, notably the original canine learned-helplessness shuttlebox assay (Maier 

and Seligman, 1976; Overmier and Seligman, 1967). This model could reliably produce a 

depression-like state in animals that are presented a series of inescapable shocks, to a point where 

an opportunity to escape is presented, they engage in maladaptive behavior termed ‘learned 

helplessness’ whereby they fail to seek the escape from the now escapable shock grid. This assay 

was then adapted for small rodents and found to produce similar results (Seligman and Beagley, 

1975). Animals treated with antidepressants are more likely to engage in escape-like behavior than 

non-treated control animals, in part validating the utility of animal models for human psychotropic 

drug response (Leshner et al, 1979). The disadvantage of the learned helplessness shuttlebox assay 

is that it requires multiple days of training and repeated sessions to produce the learned 

helplessness phenotype. In an attempt to produce a quicker developing depression-like state and 

antidepressant sensitive model, the forced swim test (FST) was developed (Porsolt et al, 1977b). 
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This model involves placing a rodent in a cylindrical container filled partly with water, where the 

animal swims rapidly in escape-like exploratory behavior until it acquires a ‘learned helplessness’ 

phenotype and floats, usually over the course of a single 6-minute session. Originally this test was 

performed in rats, which require 2 total sessions on sequential days to observe an antidepressant 

induced increases in escape-like swimming behavior (Porsolt et al, 1977b). Mice only require one 

single 6-minute session to observe the antidepressant sensitive escape-like swimming behavior 

(Porsolt et al, 1977a). Animals treated with a single dose of antidepressant will engage in more 

escape-like swimming behavior, traditionally plotted as a reduction in immobility time due to the 

predominant immobility/floating behavior in this assay. Additionally, another rapid antidepressant 

sensitivity screen was developed inspired by Porsolt’s FST, denoted the tail suspension test (TST) 

(Steru et al, 1985), involving the suspension of a mouse by its tail, representing the inescapable 

stress, and monitoring the mobility and escape-like behavior like in the FST. This assay could not 

utilize rats as their increased body weight precludes the successful ability to suspend them by their 

tail for the time required in this assay. Antidepressants suppress the ‘learned helplessness’ 

phenotype of simply hanging and instead promote rapid movement of escape-like behavior. The 

antidepressant-like effect in these assays is usually described as ‘resiliency’ due to the promotion 

of increased escape-like behavior and suppression of the ‘learned helplessness’, as seen through 

the lens of the original shuttlebox assay. Though one could argue that this escape-like behavior in 

these assays is maladaptive as floating/hanging conserves energy, especially considering that the 

water, or suspension by the tail, while unpleasant and represents a potential predator stress 

environment, is not an equivalent stressor to the shock grid. It is this reason that the FST and TST 

loses some face and construct validity that the shuttle box assay possesses. But when these assays 

lose these types of validity, they importantly gain practical utility and retain the predictive validity 
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of antidepressant sensitivity. This predictive validity is most significant, in that drugs that are 

clinically effective antidepressants will reliably produce behavioral effects in the FST and TST, 

which is the major reason why they are still widely utilized in the field of antidepressant research 

as well as in pharmaceutical antidepressant drug development. 

Previous efforts in the lab sought to assess the functional requirement of SERT antagonism 

for the SSRI antidepressant effect in the TST and FST. Unfortunately, the 129S6/S4 genetic 

background of the SERT Met172 mice in those studies precluded their usefulness in these acute 

behavioral SSRI sensitivity assays, either due to poor effect size or directionality of the SSRI 

induced behavioral effect. In hopes of optimal interpretation of the SERT dependency of SSRI 

actions, we backcrossed this SERT Met172 mouse onto a more suitable background for behavioral 

assays. In this effort, we repeat those attempts to ascertain whether acute behavioral sensitivity to 

SSRIs require SERT antagonism, utilizing the predictively valid TST and FST behavioral assays.  

 

Animal Procedures 

 

All behavioral assays were performed upon behaviorally naïve 8-12 week old male mice 

in the Neurobehavioral Core lab at the Vanderbilt University Medical Center. Animals were held 

at 12 hour light:dark cycle (light cycle: 7:00 to 19:00 hours), and all experimentation occurred 

between 13:00 and 18:00 hours. Animals were transferred to housing within the facility and 

allowed to acclimate for at least 1 week prior to behavioral manipulations. For acute drug studies, 

animals were acclimated to handling the day prior to experimentation, at which point body weight 

was measured for drug dosing considerations. All drugs for acute drug studies were prepared fresh 

and administered in 0.9% sterile saline solution at 20 mg/kg (10 μL/g body weight). This dose was 
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utilized to match our prior studies where we demonstrated significant functional SERT occupancy 

in vivo in WT but not SERT Met172 mice (Thompson et al, 2011) as assessed by microdialysis 

studies, and representing a relatively high behaviorally relevant dose (Crowley et al, 2005), which 

would maximize the potential to detect off-target effects. All experiments and data analyses were 

scored manually utilizing instantaneous sampling and binning methods of scoring while performed 

blind to drug condition and genotype. 

 

Tail Suspension Test (TST) 

 

Method 

Mice were allowed to acclimate for 1 hour in the testing room at full white room 

illumination, away from the main colony. Mice were injected (i.p) with saline vehicle, fluoxetine, 

citalopram, or paroxetine 30 min before a 6 minute TST. The apparatus allows for multiple mice 

to be run at the same time, though mice are visually isolated from each other in 5 sided opaque 

plexiglass boxes, with the open side facing towards the room for video capture and handling 

purposes. Thirty minutes after injection, mice were then suspended by taping the tail to a vertical 

aluminum bar and activity was recorded by video. Immobility was manually quantified as the time 

when mice are motionless, excluding minute limb movements. Data was analyzed via two-way 

ANOVA and Bonferroni post-hoc tests (Graphpad Prism 6.0). 

 

Results 

Having validated the C57BL/6J SERT Met172 model as having normal SERT expression 

and function, yet disrupted ex vivo sensitivity to the SSRIs fluoxetine and citalopram, we moved 
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to assess the efficacy of these drugs in behavioral assays that are known to be sensitive to acute 

antidepressant administration (Porsolt et al, 1977b; Steru et al, 1985). WT and SERT Met172 mice 

display equivalently high rates of immobility in the TST. As expected, WT mice showed a robust 

decrease in immobility following acute fluoxetine and citalopram administration (Figure 10), 

with effect sizes that match those observed in the literature accounting for age, genetic background 

strain, and drugs utilized (Crowley et al, 2005). SERT Met172 mice, however, displayed no 

response to either drug (Figure 10). Importantly, paroxetine equivalently suppressed immobility 

in WT and SERT Met172 mice in the TST, consistent with the inability of the Met172 substitution 

to perturb paroxetine interactions. This important control also demonstrates a normal capacity of 

the SERT Met172 mice to translate SERT inhibition and elevations in extracellular 5-HT into 

enhanced mobility in both tests. 

 

Forced Swim Test (FST) 

 

Method 

Mice were allowed to acclimate for 1 hour in the testing room at full white room 

illumination, away from the main colony. Mice were injected (i.p) with saline vehicle, fluoxetine, 

citalopram, or paroxetine 30 min before a 6 minute FST. Mice were placed in the center of a 15 

cm diameter clear plexiglass cylinder filled with tap water (25-27 °C) to a depth of approximately 

15 cm for the 6 minute FST and activity was recorded by video.  
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Figure 10. Tail Suspension Test. Actions of fluoxetine and citalopram in the TST arise from SERT 

antagonism.  All tests were performed 30 min after i.p. injection of 20mg/kg drug. Time immobile 

in a 6-minute TST. Two way ANOVA revealed significant main effects of genotype (F(1,72) = 

17.11, P < 0.05), treatment (F(3,72) = 10.82, P < 0.05), and interaction effect (F(3,72) = 4.62, P < 

0.05).  WT mice display significant decreases in immobility time in response to all drug treatments. 

Met172 mice display significant decreases in immobility time only in response to paroxetine. * 

indicates significance (P<.05) compared to vehicle treatment via Bonferonni posttests (n = 10-12 

per genotype and condition). 
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Multiple mice were assessed at the same time, though mice were kept visually unaware of 

the other mice via black plastic separators. Immobility was manually quantified as the time when 

mice floated or only made movements to maintain balance. Data was analyzed via two-way 

ANOVA and Bonferroni post-hoc tests (Graphpad Prism 6.0). 

 

Results 

 Given that the FST and TST report presumably identical effects of acute SSRI 

administration, we expected similar findings in the FST as we observed in the TST. In the FST, 

both WT and SERT Met172 mice display high rates of immobility, given that C57Bl/6 display the 

highest rates of immobility of the most commonly experimentally utilized mouse strains (Crowley 

et al, 2005; Lucki et al, 2001). We found that WT animals display reduced immobility time 

following administration of all fluoxetine, citalopram, and paroxetine. Like the results in the TST, 

SERT Met172 mice are behaviorally insensitive to fluoxetine and citalopram (Figure 11). 

Additionally, SERT Met172 mice are still responsive to paroxetine, due to the antidepressant’s 

pharmacological insensitivity to the I172M substitution; this responsiveness to paroxetine also 

shows that our SERT Met172 animals are behaviorally responsive to traditional monoaminergic 

antidepressants as well as showing that our behavioral paradigm was effective for the SERT 

Met172 mice. These results fully mirror what I observed in the TST, namely that SERT 

antagonism—which is functionally lost in fluoxetine and citalopram in the SERT Met172 model—

is required for the acute behavioral effects of SSRIs.  
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Figure 11. Forced Swim Test. Actions of fluoxetine and citalopram in the FST arise from SERT 

antagonism.  All tests were performed 30 min after i.p. injection of 20mg/kg drug. Time immobile 

in a 6-min FST. Two way ANOVA revealed significant effects of genotype (F(1,71) = 18.80, P < 

0.05), treatment (F(3,71) = 15.92, P < 0.05), and interaction effect (F(3,71) = 4.52, P< 0.05). WT 

mice display significant decreases in immobility time in response to all drug treatments. Met172 

mice display significant decreases in immobility time only in response to paroxetine. For A-B, * 

indicates significance (P<.05) compared to vehicle treatment via Bonferonni posttests (n = 10-12 

per genotype and condition). 
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The only differences that we observed between the TST and FST are that the FST has a 

larger effect size than the TST (Crowley et al, 2005; Lucki et al, 2001). When analyzing behavioral 

sensitivity to SSRIs in C57Bl/6 mice, it could be useful to utilize the FST in favor of the TST, due 

to the C57Bl/6 displaying among the highest rates of immobility in these assays as well as the 

smallest behavioral response to SSRIs (Crowley et al, 2005; Lucki et al, 2001). Due to the high 

rates of use of C57Bl/6 mouse lines because of their extensive utility in various mouse behavioral, 

genetic, and proteomic analyses, the field should be aware of potential false negative findings of 

antidepressant properties of drugs if only using the TST for procedural convenience. I have 

encountered many reports of negative results in the TST with known SSRIs (various personal 

communications), supporting a strain-dependent limitation of the TST. 

 

Conclusions 

 

 With the biochemical validation showing that the I172M substitution does not impact 

SERT expression or function, the first question we wanted to answer was whether the loss of SERT 

antagonism of SSRIs, brought about via SERT Met172, would ablate acute behavioral sensitivity 

in traditional preclinical tests of antidepressant sensitivity. In other words, we wished to ascertain 

whether SERT antagonism is required for SSRI-mediated antidepressant efficacy. In this aim, I 

utilized behavioral assays that are only sensitive to a single administration of SSRIs, namely the 

TST and FST, which are utilized by the pharmaceutical industry for antidepressant drug screening 

efforts.  

The reason behind this motivation is due to a multitude of reports exist describing the 

interactions of SSRIs with non-SERT targets at physiologically relevant concentrations. When 
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these targets are manipulated specifically, they have been found to recapitulate antidepressant-like 

effects in the TST and FST. Furthermore, certain gene knockout studies deleting these non-SERT 

receptors have provided evidence for a role in the antidepressant effect of SSRIs in TST and FST, 

suggesting SERT as unnecessary for the acute antidepressant-like effects of SSRIs. Although there 

have been studies that show that knocking out SERT ablates the behavioral sensitivity of SSRIs in 

the FST and TST (Holmes et al, 2002), the SERT knockout studies are plagued by compensatory 

alterations that produces a non-native environment in which these SSRIs are being evaluated. In 

short, there is no definitive reason to assume conclusively from the SERT knockout studies that 

SERT is a requisite component of SSRI antidepressant action. 

 Here, we utilize the SERT Met172 model, which is devoid of the confounds that are present 

in the SERT knockout model. We tested whether SERT is required for acute behavioral efficacy 

of two SSRIs, citalopram and fluoxetine. We administered these drugs to both WT and SERT 

Met172 mice using relatively high behaviorally relevant dose of the drugs, including paroxetine 

as a positive control. The dose we utilized (20 mg/kg i.p.) was chosen due to prior work that 

showed that this dose fell within the ‘dose window’ and attained separation between WT and SERT 

Met172 with respect to functional SERT antagonism, and due to our desire to maximize any 

potential for non-SERT interactions and contributions to behavioral endpoint analysis. In these 

efforts, I found that all three SSRIs are able to reduce immobility time in both the TST and FST, 

relative to saline treated control mice, as expected since this is a well characterized feature of 

antidepressants in these assays. SERT Met172 mice, however, failed to respond to both fluoxetine 

and citalopram, whereas paroxetine was able to significantly reduce immobility time. Paroxetine 

is capable of this feat in SERT Met172 mice because of its insensitivity to the I172M substitution, 

and also serves as a positive control acting as an active SSRI in these SERT Met172 mice, proving 
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that these knock-in mice are still capable of a traditional serotonin mediated antidepressant-like 

effect. What these experiments show is that by only changing the pharmacological sensitivity of 

SERT, thus otherwise retaining a physiologically and neurologically normal mouse, these other 

non-SERT targets that are theoretically being engaged in both the WT and SERT Met172 mouse 

are insufficient alone to produce an antidepressant effect. Conversely, we can show definitively 

with the most specific assay to date that SERT is required for the acute behavioral sensitivity to 

the SSRIs fluoxetine and citalopram. 
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CHAPTER IV 

 

BEHAVIORAL AND BIOCHEMICAL SENSITIVITY OF SERT MET172 TO CHRONIC 

SSRI 

 

Note: The work presented in this chapter was published as: Nackenoff AG, Moussa-Tooks AB, 

McMeekin AM, Veenstra-VanderWeele J, Blakely RD (2015). Essential Contributions of 

Serotonin Transporter Inhibition to the Acute and Chronic Actions of Fluoxetine and Citalopram 

in the SERT Met172 Mouse. Neuropsychopharmacology 

 

Introduction 

 

 In our prior studies, we were able to demonstrate that the acute behavioral responses to 

SSRI antidepressants (fluoxetine and citalopram), require SERT antagonism. These findings are 

important in their own right, but are solely derived from acute single dose responses, meaning that 

the results we are observing are likely due to the supraphysiological increases in 5-HT signaling 

brought about via functional SERT antagonism by the SSRIs in the central nervous system (CNS). 

Whereas SSRIs are able to penetrate the CNS in both mice and human within 1 hour of peripheral 

drug administration, humans do not experience clinical remediation of depression symptoms after 

a single administration of SSRI. In fact, SSRI antidepressant pharmacotherapy requires, 

minimally, 4 weeks of chronic administration before any clinically measurable antidepressant 

effects are observable. 

 The temporal disconnect between human antidepressant clinical efficacy (4 weeks) and the 

behavioral sensitivity in the TST and FST assays is cause to evaluate whether they reflect 

manipulation of the same biological phenomena. This temporal incongruity suggests that human 
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clinical efficacy requires much more than just the increases in extracellular 5-HT brought about 

following a single acute SSRI administration. Although the TST and FST have predictive validity 

for clinical utility of antidepressant efficacy, these tests do not accurately reflect or produce the 

biological changes that are required for human clinical efficacy, and thus are not the most valid 

models for measuring clinically relevant aspects of antidepressant mechanisms. The TST and FST 

are utilized in the field of antidepressant pharmacology for their ease of use, require no training of 

the animals, and most importantly because they have predictive validity for agents that are 

clinically efficacious as antidepressants. Because the TST and FST do not require chronic SSRI 

administration, they cannot accurately produce or measure the necessary biological components 

or adaptations that are required for chronic antidepressant efficacy. It is for this reason that we 

sought tests that are sensitive only to chronic—but not acute—SSRI administration. What could 

be true for the requirements in acute SSRI sensitivity assays may not hold true for the molecular 

requirements for chronic SSRI sensitivity. Namely, while SSRIs require SERT antagonism for 

acute behavioral efficacy in the TST and FST, there is no guarantee that SERT antagonism is 

required for chronic behavioral sensitivity to SSRIs. 

 In this aim, we implemented the novelty induced hypophagia (NIH) assay, which is a subtle 

anxiogenic procedure in which animals reduce food consumption in a novel environment (Dulawa 

and Hen, 2005). These assays have been utilized for the screening of traditional anxiolytics, but 

have also been shown to be sensitive to chronic—but not acute—antidepressant administration. 

The premise of the assay is that the mouse is trained to consume a palatable substance in a stress-

free manner in its home cage under low light conditions, which are not stress inducing. On the test 

day, the mouse is transferred to a new cage that lacks bedding, and the cage is placed on a relatively 

reflective surface in a room with bright white lights, but in the presence of the same palatable 
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substance that they have been trained to consume. These sets of conditions produce an anxiety-

like state, and promotes anxious exploratory behavior. The major endpoint measure is the latency 

of the mouse between when it was placed in the novel anxious environment and when it first licks 

the palatable substance.  

The NIH test is a modification of the novelty suppressed feeding (NSF) task, and as such 

utilizes a liquid palatable substance where the NSF assay uses a small single food pellet (Dulawa 

and Hen, 2005). Because of this, one can also measure the total amount of palatable liquid 

consumed over the 30-minute test, which can also tap into the hedonic desire of the animal, a trait 

that is stimulated following successful antidepressant regimens in human patients. The other 

advantage of the NIH modification is it requires no food deprivation/restriction of the animal. This 

reduces the stress put on the animal, as well as providing a more natural environment for which to 

measure this potential hedonic drive. The NSF assay does not have this luxury since hunger, 

brought about by food restriction, is a strong motivating force, and thus can reduce the predictive 

value and effect size of the behavioral assay. Chronic antidepressants, in this assay, promote the 

reduction in latency to consume the palatable substance as well as increase the total amount 

consumed in the novel cage. These results indicate the anxiolytic component of the antidepressant 

effect that is often seen in addition to antidepressant effects in the clinic. 

Based upon the necessity for chronic SSRI administration for behavioral efficacy in the 

NIH test, this assay already shows some face and construct validity than that of either the TST or 

FST, and therefore much more suitable as a behavioral model of antidepressant efficacy. But it is 

also important to consider the other factors that are evident upon chronic SSRI administration, 

which could further illuminate whether the NIH assay is a suitable test to measure chronic 

antidepressant sensitivity. Following the discoveries of adult neurogenesis in rodents, it was 
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further discovered that adult neurogenesis can indeed happen in other mammals, including 

humans, in regions including the hippocampus (Eriksson et al, 1998; Malberg et al, 2000; van 

Praag et al, 2002). These findings led investigators to determine the neurological utility of adult 

neurogenesis, and why the brain would keep a stable pool of adult neural progenitor stem cells. 

Further efforts in the field of depression research found that depressed patients exhibit reduced 

hippocampal volume, and that antidepressant therapy can rescue this phenotype and recover these 

volume losses in successfully treated individuals. In animal studies, it was shown that chronic 

stress paradigms reduced basal rates of hippocampal neurogenesis, and that chronic antidepressant 

drug administration could recover rates of hippocampal neurogenesis to normal levels (Murray et 

al, 2008; Warner-Schmidt and Duman, 2006). In unstressed animals, chronic SSRI 

administration—but not acute—could stimulate rates of hippocampal neurogenesis, and on the 

same timescale of human clinical efficacy (Malberg et al, 2000).  

Though these findings are intriguing, it was unclear whether adult hippocampal 

neurogenesis was a coincidental result of chronic antidepressant pharmacotherapy or whether it 

indeed was a necessary intermediate mechanism of antidepressant efficacy. To test the requirement 

of hippocampal neurogenesis for the behavioral actions of SSRIs, the Hen group decided to block 

adult neurogenesis during chronic antidepressant pharmacotherapy in mice and then test whether 

mice were still behaviorally responsive to chronic SSRI (Santarelli et al, 2003). To accomplish 

this, they chose to focally X-ray irradiate a vertical column (masked by lead shield) of the mouse 

brain that covered the hippocampus. The X-irradiation induces double stranded DNA breaks, while 

the largely senescent CNS would be largely unaffected, much like cancer therapy only the highly 

proliferative cells would be disrupted to a significant degree. And because these neurogenic events 

require mitosis from the neural stem cell pool before maturation and functional integration into the 
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hippocampus, the X-irradiation is able to prevent successful mitotic events from occurring, and 

thus ablating hippocampal neurogenesis, while leaving the rest of the brain arguably intact. It was 

under these conditions that they ran the NSF assay to see whether the loss of hippocampal 

neurogenesis could disrupt behavioral sensitivity to chronic SSRI treatment. What they found is 

that the animals where hippocampal neurogenesis was prevented were insensitive to chronic SSRI 

treatment and displayed no antidepressant-like effects in the NSF assay, as opposed to untreated 

antidepressant administered mice. In sum, these seminal studies showed that adult hippocampal 

neurogenesis is required for the behavioral efficacy of chronic SSRI administration. 

The evidence of adult hippocampal neurogenesis occurring in human patients, the fact that 

the phenomena is stimulated following chronic SSRI administration, and that it is required for 

behavioral efficacy in the NSF/NIH test suggests increased face and construct validity of the NIH 

test for the evaluation of SSRI sensitivity over the acute TST and FST assays. Additionally, this 

provides a non-behavioral endpoint for analysis for SSRI action and the dependency of SERT for 

antidepressant actions of SSRIs. While the TST and FST are important quick measures of 

antidepressant efficacy, we now have at our disposal more construct valid endpoints for which to 

measure antidepressant efficacy that are more congruent with human clinical features.  

 

Materials 

 

Drugs 

For chronic administration studies, drugs were dissolved in tap water and filtered for 

sterility (Stericup-HV, 0.45 µm, PVDF; SCHVU05RE, Millipore, Billerica, MA, USA). Drinking 
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rates were monitored and found to be unaffected between genotypes or by drug treatments (data 

not shown). 

 

Novelty Induced Hypophagia (NIH) 

 

Method 

Animals were trained to consume a palatable substance (Vanilla Ensure®) in their home 

cage under low red light conditions (~50 lumens) in the testing room for a total of 3 days of 30 

min sessions. On the first day of testing, mice were moved to a novel cage with no bedding and 

high white light illumination (~1200 lumens), where the latency to first consume Vanilla Ensure®, 

as well as the amount consumed after 30 min (in grams), were measured. On the following day, 

latency and consumption values of Vanilla Ensure® were assessed in the home cage under low 

light. To avoid ordering effects, the two testing days were switched for half of the mice. We 

administered citalopram, fluoxetine, or paroxetine in the drinking water (160 mg/L) for 28 days 

prior to behavioral screening, which was designed to accomplish a ~20 mg/kg-day chronic dosing 

regimen (David et al, 2009; Santarelli et al, 2003; Warner-Schmidt et al, 2011). Drug dosage was 

chosen for continuity with the acute drug sensitivity studies described above, as well as producing 

drug serum concentrations that are on the high end of clinically relevant serum concentrations 

(Dulawa and Hen, 2005), maximizing the potential to detect off-target activity. Animals were 

singly housed during training and testing phases. Data was analyzed via two-way ANOVA and 

Bonferroni post-hoc tests (Graphpad Prism 6.0). 
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Results 

Although the FST and TST are tests with predictive validity for antidepressant efficacy, 

we sought to evaluate the SERT-dependency of SERT actions in the Met172 model using tests 

that more closely mirror the time course associated with SSRI clinical efficacy. Thus, we 

implemented the NIH test, a behavioral paradigm sensitive to chronic, but not acute, antidepressant 

administration (Dulawa and Hen, 2005). The NIH test involves monitoring the latency of animals 

to approach and consume a known palatable substance in a novel, stressful environment, where 

SSRIs reduce latency and enhance consumption after chronic but not acute administration (Dulawa 

and Hen, 2005). We administered citalopram, fluoxetine, or paroxetine in the drinking water 

(160mg/L) for 28 days prior to behavioral screening. Compared to home cage testing, vehicle 

treated mice display significant increases in the latency to initially consume the palatable 

substance, upon presentation. Following chronic SSRI administration, WT mice displayed a 

significantly reduced latency to consume Vanilla Ensure® in the novel cage compared to vehicle 

condition (Figure 12). SERT Met172 mice administered paroxetine displayed similar reductions 

in latency as WT animals, whereas those provided fluoxetine or citalopram showed no significant 

reductions relative to vehicle condition. Paralleling our findings with latency, WT mice also 

displayed increased novel cage consumption following all SSRI treatments whereas SERT Met172 

mice displayed increased consumption only with paroxetine administration (Figure 12).  
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Figure 12. Novelty Induced Hypophagia Test. SERT antagonism is required for the chronic effects 

of fluoxetine and citalopram in the NIH test. A: Latency to consume Ensure® in novel cage was 

recorded. Two way ANOVA revealed significant main effects of genotype (F(1,97) = 4.81, P < 

0.05) and treatment (F(3,97) = 5.97, P < 0.05), but not a interaction effect (F(3,97) = 1.92, P > 

0.05). WT mice display significant reductions in latency following chronic SSRI administration, 

whereas Met172 mice display significant reductions only following paroxetine administration. B: 

Consumption effects: mice were left in novel cage for a total of 30 minutes and allowed to freely 

consume vanilla Ensure®. Two way ANOVA revealed significant main effects of genotype 

(F(1,97) = 8.53, P < 0.05) and treatment (F(3,97) = 6.10, P < 0.05), but not an interaction effect 

(F(3,97) = 1.46, P > 0.05). WT mice significantly increase consumption following chronic SSRI 

administration. SERT Met172 mice only increase consumption following paroxetine 

administration. For A-B, * indicates significance (P <.05) compared to vehicle treatment 

Bonferroni post-hoc tests (n = 12-18 per genotype and condition) 
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Hippocampal Neurogenesis 

 

Method 

 Proliferation: Following chronic administration of SSRIs and behavioral screening in the 

NIH test, mice were assayed for levels of hippocampal stem cell proliferation. Mice were 

administered 5-bromo-2'-deoxyuridine (BrdU; 4 x 75mg/kg i.p., every 2hr; Sigma-Aldrich, St. 

Louis, MO, USA) to pulse label newly proliferating S-phase mitotic cells. 24 hours following the 

last injection of BrdU, mice were anesthetized via injection of 100 mg/kg i.p. pentobarbital and 

transcardially perfused with ice-cold PBS, followed by ice-cold 4% paraformaldehyde. Brains 

were sectioned (40 μm) via a freezing stage sliding microtome (Leica, SM2000R, Buffalo Grove, 

IL, USA). Every sixth section of the hippocampus (plates 41-61 (Paxinos and Franklin, 2004)) or 

the subventricular zone (SVZ; plates 27-40) were immunostained for BrdU incorporation (mouse 

anti-BrdU; 1:1000; BD#347580; BD Biosciences; Franklin Lakes, NJ, USA) and detected 

following secondary antibody incubation (biotinylated donkey anti-mouse; 1:500; PA1-28627; 

ThermoFisher), ABC amplification (VectaStain; Vector Labs; Burlingame, CA, USA), and 

diaminobenzidine (DAB) detection. Brightfield stitched images were captured (Zeiss Axio 

Imager.M2) and stored for analysis. BrdU+ cells in the subgranular zone (SGZ) of the 

hippocampus or SVZ were counted using the ITCN (Image-based Tool for Counting Nuclei) 

plugin for ImageJ (Byun et al, 2006) by an observer blinded to genotype and drug treatment. Total 

counts were extrapolated to whole region analyzed, accounting for the harmonic mean of sections 

per region and initial sampling limits.  

Survival: We injected a separate cohort with BrdU prior to administration of SSRIs. 

Proliferating cells at steady state were pulse labeled with BrdU (4 x 75mg/kg i.p., every 2hr), and 
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then their drinking water was then supplanted with SSRI infused drinking water (at 160 mg/L). 

After 4 weeks of SSRI administration, mice were sacrificed and brain tissue collected and 

developed using the immunohistochemistry procedures described above. BrdU+ cell 

quantification for proliferation measures included the SGZ and the granule cell layer of the dentate. 

Cell counting was performed as described above. Data was analyzed via two-way ANOVA and 

Bonferroni post-hoc tests (Graphpad Prism 6.0). 

 

Results 

 Hippocampal neurogenesis is a non-behavioral measure of antidepressant efficacy that has 

been shown to be sensitive to chronic, but not acute, antidepressant administration, and irradiation 

studies demonstrate neurogenesis as essential for SSRI efficacy in the NIH test (Santarelli et al, 

2003). SSRIs promote both hippocampal stem cell proliferation rate and survival of newly 

generated hippocampal stem cells (Wang et al, 2008). Consistent with these studies, chronic 

administration of fluoxetine, citalopram, and paroxetine robustly stimulated versus vehicle treated 

mice (~2x increase over vehicle) the proliferation rate (Figure 13) of hippocampal stem cells in 

WT mice, assessed via BrdU+ immunohistochemistry. In contrast, only paroxetine was able to 

enhance hippocampal stem cell proliferation (Figure 13B) in SERT Met172 mice, with similar 

magnitude of stimulation as seen in WT mice. Importantly, we saw no effect of chronic SSRI 

administration upon the stimulation of stem cell proliferation in the SVZ across both genotypes 

(Figure 14), concurrent with other studies showing the exclusivity of SSRI stem cell effects to 

the SGZ (Malberg et al, 2000; Santarelli et al, 2003).  
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Figure 13. Hippocampal Neurogenesis. SERT antagonism is required for the stimulation of 

hippocampal stem cell proliferation and survival following chronic fluoxetine and citalopram. A. 

Example images of hippocampal stem cell proliferation studies. Scale bar represents 100 µm. 

Dotted line represents the border of the of the granular cell layer of the dentate gyrus for visual 

aid. B. Proliferation: Following administration of SSRIs, WT mice display significant increases in 

stem cell proliferation rate. Met172 mice display significant increases in proliferation only after 

paroxetine. Two way ANOVA revealed significant effects of genotype (F(1,19) = 4.60, P < 0.05), 

treatment (3,19) = 8.88, P < 0.05), and interaction effect (F(3,19) = 5.06, P < 0.05). C. Survival: 

Newly generated stem cells survive significantly more in SSRI treated mice than vehicle. SERT 

Met172 mice display increased survival rates only after paroxetine. Two way ANOVA revealed 

significant main effect of genotype (F(1,22) = 6.04, P < 0.05) and treatment (F(3,22) = 6.03, P < 

0.05), but not on interaction effect (F(3,22) = 2.47, P > 0.05. For A-C, * indicates significance 

compared to vehicle (P <.05) following Bonferroni post-hoc tests (n = 4-5 per genotype and 

condition). 
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Figure 14. Stem cell proliferation in SVZ. Following chronic SSRI administration, SVZ stem cell 

proliferation rate (rate analysis 24 hours following BrdU injection) is unchanged, irrespective of 

genotype. Results are normalized to WT vehicle treated condition. Two-way ANOVA found no 

significant effects of treatment (F(1,3) = 0.59, P > 0.05) or genotype (F(1,1) = 0.64, P >0.05) (n = 

4 per genotype and condition). 
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Most basally proliferated stem cells do not survive and functionally integrate into the 

dentate gyrus of the hippocampus (Eriksson et al, 1998; Malberg et al, 2000). As such, we 

observed a roughly 75% pruning of basally proliferated stem cells in vehicle treated mice in our 

paradigm. WT mice, when chronically administered fluoxetine, citalopram, and paroxetine 

following BrdU pulse labeling of hippocampal stem cells, display increased survival rates of 

basally proliferated stem cells (Figure 13C). Parallel to the proliferation experiments, SERT 

Met172 mice do not display increased survival of the basally proliferated hippocampal stem cell 

pool following administration of fluoxetine and citalopram (Figure 13C). SERT Met172 mice, 

however, do display increased survival of the stem cell pool following chronic administration of 

paroxetine (Figure 13C). 

 

Conclusions 

  

 In the previous chapter, I presented the findings concerning the SERT dependence of 

behavioral effects following acute administration of SSRIs. These analyses were performed as the 

majority of the assertions of non-SERT targets as responsible for antidepressant efficacy of SSRIs 

derive from utilizing acute antidepressant sensitive behavioral models. If these non-SERT binding 

events were important for the behavioral effects of SSRIs in the FST and TST, SSRIs should still 

be effective in the SERT Met172 mouse model following a single administration of SSRI. SERT 

Met172 mice, however, do not respond behaviorally to SSRI treatment in the FST and TST, 

indicating that SERT antagonism is required for the acute behavioral efficacy of SSRIs, and 

additionally that these non-SERT engagements of SSRIs—should they be occurring—are 

insufficient alone to produce an antidepressant effect in these acute behavioral models. These 
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models, as stated previously, are not truly representative and efficacious in testing the chronic 

nature of SSRI administration that is required for clinical antidepressant efficacy. When SSRIs 

must be administered at high levels for weeks, this suggests that the simple proposed 

pharmacological activity at SERT may not be a critical mechanism on a chronic administration 

timescale, and that other lower affinity targets engaged over the long term may be responsible for 

the antidepressant effects of SSRIs. This scenario is intriguing considering that SSRIs have been 

shown to modulate nerve branching and growth in a non-SERT manner (Bonnin et al, 2012), and 

that new nerve growth is important and required for chronic SSRI efficacy (Santarelli et al, 2003). 

Given the shortcomings of the TST and FST for testing these more complicated scenarios, we next 

moved to test the importance of SERT antagonism onto behavioral and biochemical models that 

are sensitive to chronic—but not acute—SSRI administration. 

 Here, I first test the ability of SSRIs to induce antidepressant-like effects in the NIH test, a 

model mixing aspects of anxiety and anhedonia, which is sensitive to chronic SSRIs (Dulawa and 

Hen, 2005; Santarelli et al, 2003). On its own, the delayed timescale to antidepressant efficacy is 

important for establishing some semblance that the NIH test is sensitive to similar biological 

processes as are occurring in clinical populations taking SSRIs. The NIH test is believed to 

measure certain core aspects of depression, namely anxiety and anhedonia, both of which are 

presented in patients afflicted with depression, and are remedied following successful 

antidepressant treatment. In fact, mice that have been chronically administered SSRIs display 

reduced anxiety and anhedonia (here hypophagia to a known palatable substance) in the NIH test 

compared to vehicle treated control mice (Dulawa and Hen, 2005; Santarelli et al, 2003), though 

it is unknown whether this effect of SSRIs requires SERT antagonism. Utilizing the SERT Met172 

mouse, we can assess this question due to its selective removal of the ability of SERT blockers to 
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bind and inhibit SERT, yet retaining all other non-SERT CNS targets for these SSRIs to engage 

and potentially create antidepressant effects. When I administer SERT Met172 mice SSRIs 

chronically, these mice do not display any anxiolytic or hedonic-like effects in the NIH. These 

SERT Met172 mice, in other words, are behaviorally insensitive to chronic SSRI in the NIH test, 

indicating that, like the acute tests, SERT antagonism is required for the chronic behavioral effects 

of SSRIs. 

 Next, we needed to investigate another important facet of chronic SSRI actions, namely 

their ability to stimulate hippocampal neurogenesis. Hippocampal neurogenesis is ongoing, but 

decreases with age (Kuhn et al, 1996). This process is supported by the proliferation of stem cells 

in the subgranular zone of the dentate gyrus of the hippocampus, and these cells differentiate into 

functional neurons and integrate into the dentate gyrus of the hippocampus (van Praag et al, 2002), 

though most do not survive this process (Eriksson et al, 1998). Chronic SSRI administration, 

however, robustly increases the rate of stem cell proliferation and additionally increases the rate 

of survival among basally proliferated stem cells (Wang et al, 2008). The timescale of this 

enhanced proliferation effect of SSRIs occurs along the timeframe like that required for clinical 

efficacy of SSRIs, as well as when behavioral effects are seen in the NIH test (Santarelli et al, 

2003). Additionally, when neurogenesis is prevented, mice are not behaviorally sensitive to SSRIs 

in the NIH test (Santarelli et al, 2003). We thus felt it was an important endpoint to measure in 

addition to behavioral sensitivity in the NIH test, as some studies have shown neurogenesis 

independent behaviors that are still sensitive to chronic SSRIs (David et al, 2009), as well as strain 

differences in the requirement of neurogenesis for NIH behavioral efficacy of SSRIs (Holick et al, 

2007). However, in these studies, we did observe congruent effects of behavioral efficacy and 

hippocampal neurogenesis in our mice. WT mice, when chronically administered SSRIs display 
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an increased proliferation rate of hippocampal stem cells. These effects were limited to the SGZ 

and did not extend to another important stem cell niche of the SVZ (Alvarez-Buylla and Garcı́a-

Verdugo, 2002). These findings corroborate earlier work stating the selectivity of SSRI-induced 

stem cell proliferation to the SGZ and not the SVZ (Malberg et al, 2000; Santarelli et al, 2003), 

further highlighting the importance of the SGZ in the antidepressant response. Basally proliferated 

stem cells in WT mice are also sensitive to administration of SSRIs, displaying increased survival 

rates. When I chronically administered fluoxetine or citalopram to SERT Met172 mice, which are 

behaviorally insensitive in NIH test, these mice display no increase in the proliferation rate or 

survival of proliferated cells compared to vehicle treated control mice, though SERT Met172 mice 

are still responsive to paroxetine in both measures.  

 Taken together, these data from the behavioral NIH test and the effects upon hippocampal 

neurogenesis indicate that SERT antagonism is required for the chronic behavioral and 

biochemical effects of SSRIs. While the full pathway and effects brought about by chronic 

antidepressant administration have not been entirely defined or evaluated, these endpoints have 

been well characterized by the field to be critical for chronic SSRI efficacy. While these results 

may not be the most surprising to some, given the well characterized serotonin hypothesis of 

depression and SSRI antidepressant efficacy, there have been many characterizations of non-SERT 

SSRI engagements that may be contributing towards antidepressant efficacy, and no other models 

or assays have been able to dispel these notions or indicate without doubt or caveat that SERT is 

required for the acute and chronic behavioral and biochemical effects of SSRIs. Our tests, utilizing 

the SERT Met172 mice, clearly show that SERT is required for the antidepressant effects of SSRIs. 

These findings represent the most specific analyses to date supporting a role for SERT in both 

acute and chronic SSRI behavioral and biochemical actions in vivo.  
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CHAPTER V 

 

ANTIDEPRESSANT SENSITIVITY TO THE NOVEL ANTIDEPRESSANT 

VORTIOXETINE IN SERT MET172 

 

Note: This work was accomplished with the assistance of members of the Blakely laboratory and 

Lundbeck Research USA, under the direction of Dr. Randy Blakely and Dr. Connie Sanchez, 

respectively. Chronoamperometry experiments were performed by Dr. Nicole Baganz and 

microdialysis experiments were performed by Dr. Linda Simmler, within the Blakely laboratory. 

Slice competition binding experiments were performed by Dr. Alan Pehrson of Lundbeck 

Research USA. 

 

Introduction 

 

Depression is one of the most common psychological disorders, with incidence rates 

approaching 7% (Kessler et al, 2005), lifetime incidence 17% (Kessler, 2005), and among the 

leading contributors to global disease burden (Ferrari et al, 2013). The most common 

pharmaceutical treatment options rely upon serotonin selective reuptake inhibitors (SSRI), which 

act to prevent the serotonin transporter (SERT) from removing serotonin (5-HT) from the synaptic 

space, thereby prolonging 5-HT signal duration. Despite this, SSRIs have limited utility due to 

high rates of pharmacological insensitivity (Warden et al, 2007) and delayed clinical efficacy. To 

improve efficacy, a number of drugs have been developed that offer additional target engagements, 

including other transporters and receptors, though always retaining actions at SERT. This shift 

represents a desire to develop newer pharmacological treatments based upon updated scientific 

understanding of the complexities of depression and limitations of existing treatments. One of 

these drugs is vortioxetine, the most recently approved FDA-approved antidepressant that targets 
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SERT as well as 5-HT1A, 5-HT1B, 5-HT1D, 5-HT3 and 5-HT7 receptors (Mørk et al, 2012). The 

introduction of these new mechanisms raises the question as to whether the 5-HT receptor actions 

alone—without SERT inhibition—could be efficacious as an antidepressant. There is precedence 

for this expectation, given that many 5-HTR directed ligands possess antidepressant-like effects in 

preclinical animal behavioral studies (Artigas, 2013; Carr and Lucki, 2010). Of note, 

antidepressant-like effects can be produced by activation of 5-HT1A (Singh and Lucki, 1993), 5-

HT1B (Tatarczyńska et al, 2005), 5-HT2C (Cryan and Lucki, 2000), and 5-HT4 (Lucas et al, 2010) 

receptors. Additionally, antidepressant-like effects can be generated via antagonism of 5-HT2A 

(Patel et al, 2004), 5-HT3 (Ramamoorthy et al, 2008), and 5-HT7 (Wesołowska et al, 2006) 

receptors. Although these 5-HT receptor directed ligands have been shown to be efficacious in 

preclinical animal studies, none have been proven clinically superior to SSRI antidepressants, 

either due to poor metabolic profile, limited efficacy, or side effect profile. The study of 

vortioxetine provides a unique opportunity to question whether it is possible to recapitulate an 

antidepressant effect without SERT inhibition in a clinically relevant molecule. 

 In order to selectively remove the SERT component of vortioxetine action, one could use 

the SERT knockout mouse. This approach would be counterproductive considering the SERT 

knockout mouse displays reductions in CNS tissue 5-HT levels (Bengel et al, 1998), 5-HT neurons 

(Lira et al, 2003), and altered dorsal raphe firing rates (Lira et al, 2003). Particularly concerning 

are the observed changes in 5-HT receptor expression in SERT knockout mice (Cour et al, 2001; 

Fabre et al, 2000; Li et al, 2000; Rioux et al, 1999). Were we to utilize the SERT knockout mouse, 

our findings of potential SERT-independent efficacy would be confounded, for example, by the 

alterations in 5-HT1A expression—one of the major non-SERT targets of vortioxetine—and would 

be clinically non-generalizable. 
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 Our approach to ameliorate this problem is to utilize the SERT Met172 model, a novel 

transgenic mouse model that disrupts high-affinity binding of SERT antagonists without affecting 

5-HT transport capability at SERT, preserving monoamine homeostasis (Nackenoff et al, 2015; 

Thompson et al, 2011). Through this approach, we will be able to remove the actions of 

vortioxetine at SERT but preserve its effects at other 5-HT receptors in a system devoid of 

developmental alterations (Figure 15). Should vortioxetine remain behaviorally efficacious in 

SERT Met172 mice, this would indicate that SERT may not be a critical target for future 

development of 5-HT directed antidepressants, and that these future efforts would have more 

freedom pursuing specific 5-HT receptors to recapitulate the traditional antidepressant response, 

potentially presenting lesser side-effect profile and quicker clinical efficacy.   

 

Animals 

 

SERT Met172 knock-in mice were created as described previously (Thompson et al, 2011). 

These animals were then backcrossed onto a C57BL/6 genetic background for future utility in 

behavioral assays and described previously (Nackenoff et al, 2015). Due to functional coding 

differences between 129S6 and C57BL/6 mice in the 5-HTT gene (Carneiro et al, 2009), the ‘WT’ 

animals here are the result of parallel backcrossing of 129S6 mice onto the C57BL/6 genetic 

background, preserving the 129S6 5-HTT polymorphisms (Nackenoff et al, 2015). Animals used 

in all experiments were male mice aged 8-12 weeks (at time of beginning of experimental 

manipulation) generated from homozygous WT and knock-in (SERT Met172) breeders. All 

animal studies were performed in accordance with protocols approved by the Vanderbilt 

University animal care and use committee. 
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Figure 15. Research Strategy for Vortioxetine in SERT Met172. Cartoon diagram of combined 

effects of vortioxetine in WT and SERT Met172. Vortioxetine is sensitive to the SERT Met172 

substitution. Here, we propose the potential maintained efficacy of vortioxetine in the SERT 

Met172 model due to its maintained actions directly at 5-HT receptors 
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Drugs  

 

Vortioxetine HBr was provided by Lundbeck Research USA (Paramus, NJ, USA), and 

Paroxetine HCl was procured from TCI Chemicals (Portland, OR, USA). For in vitro and ex vivo 

studies, vortioxetine was prepared at 10mM stock solutions in 100% DMSO. Final DMSO 

concentrations for these studies were under 1%. All control conditions contained the highest level 

of DMSO that would be presented by the most concentrated vortioxetine solution. For acute animal 

studies, vortioxetine was prepared fresh at 5 and 10mg/kg (free base) and paroxetine at 20 mg/kg, 

dissolved in 10% β-cyclodextrin/0.9% sterile saline solution (vehicle), sterile filtered (0.2 µm 

syringe filter, 195-2520, ThermoScientific, Waltham, MA, USA), and administered intraperitoneal 

(i.p.) at 10uL/g animal weight.  

 

In Vitro Analysis of Vortioxetine Competition of 5-HT Uptake 

 

Method 

 HEK-293T cells were cultured at 37ºC in modified DMEM cell media containing 10% 

dialyzed fetal bovine serum (to eliminate 5-HT in growth media) and antibiotics. Cells were 

transfected with 5µg of plasmid DNA from either WT hSERT or SERT Met172 containing 

pcDNA3 plasmids (Invitrogen). Plasmid DNA was preincubated and loaded into artificial 

membrane using TransIT (3µL per µg DNA; Mirus, Madison, WI, USA) for 15 minutes. A cellular 

suspension containing 5 x 106 cells in cell growth media was then added to this transfection mixture 

and incubated for 30 minutes, allowing the artificial membranes to fuse and deliver plasmid DNA 

into the cells. Afterwards, the cell and transfection suspension was loaded onto poly-D-lysine 
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coated (to aid adherence) 12 well plates. A separate equal aliquot was plated in a separate plate for 

protein determination at the time of uptake, affording normalization by cellular protein levels. The 

cells were allowed to plate, grow, and express SERT from the plasmid DNA for 48 hours. At the 

time of the radiouptake assay, cell media was replaced with Krebs-Ringer HEPES buffer (KRH) 

assay buffer containing pargyline (MAOI, prevents enzymatic metabolism of 5-HT), and ascorbic 

acid (preservative; prevents spontaneous oxidation of 5-HT). Cells were then preincubated with 

various concentrations of vortioxetine for 10 minutes at 37ºC. Cells were then incubated with 20 

nM [3H]5-HT (PerkinElmer, NET498001MC, Waltham, MA, USA) and allowed to accumulate 5-

HT for 10 minutes at 37ºC. Assay buffer was then aspirated off and cells were washed three times 

in assay buffer. Cells were then solubilized in scintillation fluid (Microscint 20, 6013621, 

PerkinElmer) overnight, before scintillation spectroscopy (Topcount, PerkinElmer). Uptake 

counts were normalized to protein concentration (Pierce BCA; ThermoFisher), averaged across 

experiments, and limited to maximum (uninhibited 5-HT uptake condition) and minimum via full 

block (1 µM paroxetine; defines non-specific uptake) conditions. Competition curve was fit to a 

single site inhibition model (Graphpad Prism 6.0). 

 

Results 

 The SERT I172M substitution disrupts affinity for many SERT directed ligands without 

affecting 5-HT affinity or uptake via SERT (Henry et al, 2006; Thompson et al, 2011). We were 

able to determine that vortioxetine is indeed sensitive to the SERT I172M substitution (Figure 

16), and that the shift in inhibition efficacy (~20 fold) is on par with that of fluoxetine, which we 

have demonstrated that can achieve functional SERT inhibition at a single dose in WT but not in 

SERT Met172 mice (Nackenoff et al, 2015; Thompson et al, 2011).   
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Figure 16. In Vitro Vortioxetine Competition 5-HT Uptake. Competition 5-HT uptake analysis in 

HEK-293T cells transfected with pcDNA3 plasmids containing WT SERT or SERT Met172. 

Vortioxetine (WT: KI 21.9nM +/- 1.1; Met172 KI 425nM +/- 1.07) was assessed for their ability 

to compete with [3H]5-HT uptake. (n = 4/condition). Vortioxetine is less able to inhibit 5-HT 

uptake in cells tranfected with SERT Met172, as opposed to WT SERT. This affinity reduction for 

SERT Met172 is on the order of ~20 fold decreased potency. 
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These data suggest that we should be able to achieve similar success with vortioxetine, and 

that the ‘dose window’ we see here is not too small in our pursuit to remove the SERT component 

from the actions of vortioxetine. Though, this system is slightly artificial given the in vitro nature 

as well as the transfection conditions, so it would be more suitable to test this pharmacological 

sensitivity profile of vortioxetine in more suitable native-like system (ie. Ex vivo synaptosomal 5-

HT competition uptake) before any actual attempts towards analyzing the requirement of SERT 

for the actions of vortioxetine.  

 

Ex vivo Synaptosomal Competition 5-HT Uptake 

 

Method 

Following sacrifice via rapid decapitation, the whole brains of 8-12 week old male mice 

were dissected on ice and used for synaptosomal preparations as described previously (Thompson 

et al, 2011). Briefly, midbrain sections were mechanically homogenized in 0.32M sucrose in 5mM 

HEPES buffer. This homogenate was subjected to a low gravity centrifugation (10 min, 4°C at 

1,000x g) in order to remove large cellular components (eg. mitochondria, nuclei, and large 

membranes) from the reconstituted nerve terminals, classified as ‘synaptosomes’. The supernatant 

after this first spin contains the synaptosomes. The synaptosomes are then pelleted via a high 

gravity centrifugation (15 min, 4°C at 10,000x g). The pellet was resuspended in KRH buffer 

containing glucose (for synaptosomal viability throughout the preparation and assay), pargyline 

(MAOI, prevents enzymatic metabolism of 5-HT), and ascorbic acid (preservative, prevents 

spontaneous oxidation of 5-HT. Equal volumes of synaptosomes were incubated with 20 nM 

[3H]5-HT (PerkinElmer) and varying concentrations of vortioxetine and incubated at 37 °C for 10 
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minutes. Uptake was terminated via vacuum filtration through GF/B filter (Whatman, Pittsburgh, 

PA, USA) and three washes with ice cold 1x PBS buffer. Specific uptake was defined by 

subtracting uptake obtained in the presence of 1μM paroxetine. Competition curve was fit to a 

single site inhibition model (Graphpad Prism 6.0) 

 

Results 

 In order to assess whether the antidepressant actions of vortioxetine require SERT 

antagonism, we first needed to verify that vortioxetine is sensitive to the I172M substitution. 

Utilizing [3H]5-HT uptake into midbrain derived synaptosomes, and competition with 

vortioxetine, we demonstrate that vortioxetine is 20 fold less potent at SERT Met172 compared to 

WT SERT (Figure 17). These data corroborate what was found utilizing in vitro cellular 

transfection and competition uptake assays. This shift is roughly equivalent to the shift in potency 

of fluoxetine in the same paradigm, which we have shown can still render separations in functional 

SERT antagonism between these two SERT variants, it should therefore be possible to attain 

functional SERT antagonism with a single in vivo dose of vortioxetine in WT SERT mice that 

renders inconsequential antagonism in SERT Met172 mice. These studies alone cannot confirm 

this possibility, so further steps must be taken to ensure a separation in SERT binding as well as 

antagonism, both in reconstituted and functional determinations of these effects. 
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Figure 17. Ex Vivo Vortioxetine 5-HT Uptake Competition. The SERT Met172 mutant imposes 

altered pharmacological sensitivity with normal SERT expression and function. Competition 5-

HT uptake analysis in midbrain derived synaptosomes. Vortioxetine (WT: KI 17.1nM +/- 2.0; 

Met172: KI 262nM +/- 2.0) was assessed for their ability to compete with [3H]5-HT uptake. (n = 

4/condition). Like the in vitro studies, vortioxetine displays reduced potency for SERT Met172 vs 

WT SERT (~20-fold reduction). 
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Ex Vivo SERT Occupancy 

 

Method 

 We administered vortioxetine at 5 and 10 mg/kg i.p. to WT and SERT Met172 mice 1 hour 

prior to sacrifice. Following decapitation, brains were removed and frozen on dry ice and stored 

at -20°C until further use. Frontal cortex was coronally sliced at 20 µm thickness approximately 

0.9-0.7mm anterior from Bregma (Paxinos and Franklin, 2004) via cryostat, and mounted onto 

slides. Slides were stored in slide boxes with desiccator pellets at -20oC until use. Slide boxes were 

allowed to defrost following 30 minutes of constant high flow air stream prior to opening. Slides 

were incubated in assay buffer (50 mM Tris HCl, 120 mM NaCl, and 5 mM KCl (pH=7.4)) 

containing 1nM [3H]paroxetine for 2h at room temperature. Non-specific binding was determined 

via incubation in excess (1 µM) non-radiolabeled paroxetine in assay buffer. Slides were then 

washed twice in assay buffer for 30 minutes, each at room temperature. Slides were allowed to air 

dry following washes for 30 minutes before transferal to a vacuum desiccator for at least 1 hour.  

Autoradiographic analysis was then performed upon the slides using a Beta Imager 

(Biospace Lab, Paris, France). Bound radioactivity was measured by the Beta Imager for 24 hours, 

and quantified using the β-Vision software (Biospace lab, Paris, France). Surface radioactivity 

(measured as counts per min per millimeter squared, or cpm/mm2) was measured from a region of 

interest defined a priori based on the results of receptor mapping experiments using 

[3H]paroxetine, and included the lateral and medial septum, the nucleus accumbens, and the 

olfactory tubercle.  

Total binding for a given mouse brain was determined by taking the average cpm/mm2 

from each of four replicate slices. Nonspecific binding was determined by averaging cpm/mm2 
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from the four brain slices in the nonspecific binding condition. Specific binding was determined 

for each mouse brain by subtracting the average nonspecific binding from total binding. Specific 

binding levels for each brain were then normalized to the average specific binding from the vehicle 

treated animals and expressed as a percent of average vehicle specific binding.  

Fractional receptor occupancies were determined by subtracting these normalized values 

from 100.  Fractional SERT occupancies observed in wild type or I172M mice were compared 

using a two way between subjects analysis of variance (ANOVA), with the factors being defined 

by genotype and dose. Where appropriate, post hoc analysis was conducted using Fisher’s 

protected t. Alpha value stringency was set at P = 0.05. 

  

Results 

 We aimed to validate that behaviorally relevant concentrations of vortioxetine would not 

fully saturate SERT Met172, which could limit the selectivity of our approach to selectively 

remove the SERT component of vortioxetine via the SERT Met172 model. The first way we chose 

to validate this idea was through brain slice competition binding. It was necessary to utilize 

radiolabeled and non-radiolabeled paroxetine as the competitive ligand due to its insensitivity to 

the I172M substitution. Pre-administration of the behaviorally relevant doses of 5 and 10 mg/kg 

vortioxetine (Guilloux et al, 2013) were able to produce robust SERT occupancy in WT animals, 

nearing and exceeding the requisite SERT occupancy for acute antidepressant efficacy of 

traditional pure SSRIs (Meyer et al, 2004). At both doses, SERT Met172 mice displayed 

significant reductions in vortioxetine SERT occupancy compared to WT mice (Figure 18).  
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Figure 18. Ex Vivo Vortioxetine SERT Occupancy. Vortioxetine occupancy at SERT following 

peripheral administration of behaviorally relevant doses of vortioxetine. Coronal brain sections 

were harvested from mice that were administered 5 or 10 mg/kg vortioxetine (i.p.), which were 

sacrificed 1 hour following drug administration (the time by which behavioral analyses would 

occur in other studies).  
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However, the SERT Met172 mice did display appreciable levels of SERT occupancy, 

which could be problematic for our future studies. It should be noted, however, that both in in vitro 

and behavioral studies, classical SSRI occupancy at SERT must reach >80% occupancy to attain 

functional antagonism of SERT to yield inhibition of 5-HT uptake or antidepressant-like effects in 

the TST and FST (Meyer et al, 2004). So, it may not be problematic for our future experiments, 

as this lower level of vortioxetine occupation at SERT in the SERT Met172 animals may be 

inconsequential with respect to functional SERT antagonism. Though we cannot be sure of this 

given solely this assay, we must consider assays that are sensitive to functional SERT antagonism 

in a complete animal in vivo system. 

 

In Vivo Chronoamperometry 

 

Method 

 In vivo chronoamperometry with carbon fiber electrodes (30 μm diameter) was carried out 

according to the methods described previously (Thompson et al, 2011). The electrode–

micropipette recording assembly was lowered into the CA3 region of the dorsal hippocampus 

[anteroposterior (AP), −1.94 from bregma; mediolateral (ML), +2.0 from midline; dorsoventral 

(DV) −2.0 from dura] of anesthetized mice. To assess 5-HT clearance kinetics, 5-HT was pressure 

ejected in increasing volumes to attain signal amplitudes matching in vitro calibration standards 

of approximately 0.5 to 10 μM. To examine the effect of vortioxetine on 5-HT clearance, 

exogenous 5-HT was intrahippocampally applied by pressure-ejection before and after peripheral 

(i.p.) injection of 10 mg/kg vortioxetine, and T80 values collected at 10 minute intervals.  
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Results 

 In order to assess whether the levels of SERT occupancy produce functional SERT 

antagonism in vivo in SERT Met172 mice, we first utilized in vivo chronoamperometry, which can 

measure real-time 5-HT clearance kinetics following exogenous administration of 5-HT (Daws et 

al, 1998; Schenk et al, 1983). This technique is sensitive to pre-administration of SSRIs, indicated 

by the delay in amount of time required to clear 80% of peak 5-HT signal (T80), which is indicative 

of functional SERT antagonism (Baganz et al, 2008), and has been previously been validated to 

be sensitive to our SERT Met172 model (Thompson et al, 2011). Following peripheral 

administration of vortioxetine and measuring clearance kinetics every 10 minutes, we found 

significant elevations in T80 in WT mice across all time points compared to pre-drug baseline 

(Figure 19). SERT Met172, however, display no such increase in T80 following administration of 

vortioxetine, indicating that the levels of SERT occupancy that are produced in SERT Met172 

animals are not functionally relevant and are unable to produce functional SERT-mediated 5-HT 

clearance in the hippocampus. 

 

In Vivo Microdialysis 

 

Method 

For in vivo microdialysis, a guide cannula was implanted above the lateral hippocampus 

(stereotactic coordinates for the tip of the guide cannula were -3.18 A/P, 2.8 M/L, and -1 D/V, 

relative to bregma).  
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Figure 19. In Vivo Chronoamperometry of Vortioxetine-Inhibited 5-HT Clearance. Vortioxetine 

induced delayed clearance of 5-HT in dorsal hippocampus, detected via in vivo 

chronoamperometry. Extrasynaptic 5-HT content was measured from the CA3 region of the 

hippocampus in real time, via in vivo electrochemical detection. Vortioxetine (10 mg/kg, i.p) is 

able to delay 5-HT clearance in WT SERT but not SERT Met172, indicating functional SERT 

antagonism in WT but not SERT Met172 mice (P < 0.05, two way RMANOVA) 
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After recovery from surgery, the guide cannula was replaced with a microdialysis probe (3 

mm active site, 20’000 Da cut-off, from Synaptech, MI) and perfused with aCSF (149 mM NaCl, 

2.8 mM KCl, 1.2 mM CaCl2, 1.2 mM MgCl2, pH 7.2) at a flow-rate of 1 µL/min. aCSF samples 

were collected in 20 min intervals before and after 10 mg/kg vortioxetine (i.p.). 5-HT levels were 

quantified with HPLC/EC in the Vanderbilt Brain Institute Neurochemistry Core. Data were 

expressed as the level of 5-HT relative to pre-injection baseline. Probe location was verified post-

mortem via coronal brain slice procedures (40 µm). Data were analyzed via two-way RMANOVA, 

alpha stringency set to P = 0.05. 

 

Results 

 Because in vivo chronoamperometry requires exogenous application of 5-HT, we felt it 

necessary to ensure that a behaviorally relevant dose of vortioxetine is incapable of producing 

functional SERT antagonism of endogenous 5-HT clearance in SERT Met172 mice. We thusly 

chose to explore this effect utilizing in vivo microdialysis. In this setup, behaviorally relevant doses 

of SSRIs administered are peripherally, leading to functional antagonism of SERT, elevating 

extracellular 5-HT in the extra-synaptic space, where it can be sampled with a microdialysis probe. 

Using this approach, we showed that SSRIs are unable to functionally antagonize SERT Met172, 

and sustain normal levels of 5-HT (Thompson et al, 2011). As shown here, vortioxetine can 

produce elevated levels of extracellular 5-HT in WT mice, indicative of functional SERT 

antagonism (Figure 20). Vortioxetine fails to stimulate extracellular levels of 5-HT in SERT 

Met172 mice (Figure 20), indicating that the highest concentration of vortioxetine we utilize in 

the behavioral studies is unable to functionally antagonize the 5-HT clearance by SERT Met172. 
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Figure 20. In Vivo Microdialysis of Vortioxetine-Induced Elevations in Extrasynaptic 5-HT. 

Vortioxetine induced increases in extrasynaptic 5-HT in dorsal hippocampus, detected via in vivo 

microdialysis. Dialysate was sampled from the CA3 region of the hippocampus every 20 minutes, 

and assessed for 5-HT content, via electrochemical detection. Vortioxetine (10 mg/kg, i.p) is able 

to elevate extrasynaptic 5-HT levels in WT SERT but not SERT Met172, indicating functional 

SERT antagonism in WT but not SERT Met172 mice (P < 0.05, two way RMANOVA) 
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Acute Behavioral Paradigm Animal Procedure 

 

All behavioral assays were performed upon behaviorally naïve 8-12 week old male mice 

in the Neurobehavioral Core lab of the Vanderbilt University Medical Center. Animals were 

housed with a 12:12 hour light:dark cycle (light cycle: 7:00 to 19:00 hours), and all 

experimentation occurred between 13:00 and 18:00 hours. Animals were transferred to housing 

within the facility and allowed to acclimate for at least 1 week prior to behavioral manipulations. 

For acute drug studies, animals were acclimated to handling the day prior to experimentation, at 

which point body weight was measured to establish appropriate drug dose. All drugs were prepared 

fresh and dissolved in 10% β-cyclodextrin/0.9% sterile saline solution and injected intraperitoneal 

at 10 μL/g body weight with either vehicle solution or 5 or 10 mg/kg vortioxetine. These doses 

were utilized to match prior studies by other research groups investigating the effects of 

vortioxetine in WT animals (Guilloux et al, 2013; Mørk et al, 2012). These prior studies, using 

WT C57Bl/6 mice, indicate high SERT occupancy was achieved at these doses as well as 

significant behavioral sensitivity. Our choice of these doses that reflects our desire to eliminate 

SERT occupancy in SERT Met172 mice to determine whether these doses maintain behavioral 

efficacy of vortioxetine without SERT antagonism. All experiments and data analyses were scored 

manually utilizing instantaneous sampling and binning methods of scoring while performed blind 

to drug condition and genotype. 
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Tail Suspension Test (TST) 

 

Method 

Mice were injected (i.p) with 10% β-cyclodextrin vehicle or vortioxetine (5 or 10 mg/kg) 

60 minutes before a 6 minute TST. Mice were then suspended by taping the tail to a vertical 

aluminum bar and activity recorded by video. The apparatus allows for multiple mice to be tested 

at the same time. Mice are visually isolated from each other in 5 sided opaque plexiglass boxes, 

with the open side facing towards the room for video capture and handling purposes. Sixty minutes 

after injection, mice were then suspended by taping the tail to a vertical aluminum bar and activity 

was recorded by video. Immobility was defined when mice are motionless, excluding minute limb 

movements. Time immobile was manually assessed by an observer blinded to genotype and drug 

treatment. Data were analyzed following planned Student t comparisons, alpha stringency of P = 

0.05. 

 

Results 

 Following the indications reported above that we can selectively remove the SERT 

antagonism from the pharmacological actions of vortioxetine, but maintain its actions at 5-HT 

receptors, we aimed to probe whether vortioxetine was still behaviorally efficacious in the TST in 

SERT Met172 mice. As expected, WT animals in the TST display significantly increased time 

mobile relative to vehicle condition in response to both doses of acute vortioxetine and the SSRI 

paroxetine (Figure 21). SERT Met172 mice also display significant increase in mobility in 

response to the active SSRI paroxetine, which is insensitive to the Met172 substitution. 

Interestingly, the SERT Met172 mice displayed significant increases in mobility following both 

doses of vortioxetine (Figure 21).  
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Figure 21. Tail Suspension Test with Vortioxetine. Actions of vortioxetine in the TST arise 

independently of SERT antagonism.  All tests were performed 30 min after i.p. injection of 

20mg/kg drug. Time mobile in a 6-minute TST. Two-way ANOVA revealed significant main 

effects of genotype.  WT and Met172 mice display significant increases in mobility time in 

response to both doses of vortioxetine. Replotted are data from other experiments indicating the 

loss of efficacy of pure SSRIs citalopram and fluoxetine, yet maintained efficacy of paroxetine in 

Met172 mice. * indicates significance (P<.05) compared to vehicle treatment via planned students 

T test posttests (n = 10-12 per genotype and condition). 
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Forced Swim Test (FST) 

 

Method 

Mice were injected (i.p) with 10% β-cyclodextrin vehicle or vortioxetine 60 minutes before 

a 6-minute FST. Mice were placed in the center of a 15 cm diameter clear plexiglass cylinder filled 

with tap water (25-27 °C) to a depth of approximately 15 cm for the 6 minute FST and activity 

was recorded by video. Multiple mice were assessed at the same time, though, as with the TST, 

mice were kept visually unaware of the other mice via black plastic separators. Immobility was 

defined when mice only make movements to maintain balance. Time immobile was manually 

tabulated by an observer blinded to genotype and drug treatment. Data were analyzed following 

planned Student t comparisons, alpha stringency of P = 0.05. 

 

Result 

 Given that we can remove the SERT antagonism from the pharmacological actions of 

vortioxetine, but maintain its actions at 5-HT receptors, we aimed to probe whether vortioxetine 

was still behaviorally efficacious in the FST in SERT Met172 mice. As expected, WT animals in 

the FST display significantly increased time mobile relative to vehicle condition in response to 

both doses of acute vortioxetine and the SSRI paroxetine (Figure 22). Paralleling the maintained 

efficacy of vortioxetine in the TST, SERT Met172 mice show significant increases in mobility 

following treatment with both doses of vortioxetine and paroxetine (Figure 22). Vortioxetine has 

been shown to induce climbing behavior in WT mice (Guilloux et al, 2013), which is thought to 

be due to its ability to enhance norepinephrine release in the prefrontal cortex (Mørk et al, 2012) 

via 5-HT3 mediated silencing of forebrain cortical GABAergic neurons (Puig et al, 2004).  
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Figure 22. Forced Swim Test with Vortioxetine. Actions of vortioxetine in the FST arise 

independently of SERT antagonism.  All tests were performed 30 min after i.p. injection of 

20mg/kg drug. Time mobile and climbing in a 6-minute FST. Two-way ANOVA revealed 

significant main effects of genotype.  WT and Met172 mice display significant increases in 

mobility time in response to both doses of vortioxetine. Replotted are data from other experiments 

indicating the loss of efficacy of pure SSRIs citalopram and fluoxetine, yet maintained efficacy of 

paroxetine in Met172 mice. Also shown is the SERT independent dose dependent increase in 

vortioxetine induced climbing behavior in both WT and SERT Met172 mice. * indicates 

significance (P<.05) compared to vehicle treatment via planned student’s T test posttests (n = 10-

12 per genotype and condition). 
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We observed this climbing-enhancing effect in our WT mice, in that vortioxetine could 

dose dependently increase climbing behavior in the FST (Figure 22), a trait that SSRIs like 

paroxetine do not possess (Detke et al, 1995). SERT Met172 mice also display increased climbing 

behavior following acute vortioxetine administration, but not after paroxetine (Figure 22). 

Together, these findings indicate that despite the loss of SERT antagonism, vortioxetine is still 

able to produce mobility enhancing effects in the TST and FST.  

 

Novelty Induced Hypophagia (NIH)  

 

Method 

Animals were trained to consume a palatable substance (Vanilla Ensure®) in their home 

cage under low red light conditions (~50 lumens) in the testing room for a total of 3 days of 30 

min sessions. On the first day of testing, mice were moved to a novel cage with no bedding and 

high white light illumination (~1200 lumens), where the latency to first consume Vanilla Ensure®, 

as well as the amount consumed after 30 min (in grams), were measured. On the following day, 

latency and consumption values of Vanilla Ensure® were assessed in the home cage under low 

light. To avoid ordering effects, the two testing days were switched for half of the mice. We 

administered vortioxetine in specially formulated rodent chow (to accomplish a ~10 mg/kg-day 

dosing regimen) for 28 days prior to behavioral screening, (David et al, 2009; Santarelli et al, 

2003; Warner-Schmidt et al, 2011). Drug dosage was chosen for continuity with the acute drug 

sensitivity studies described earlier, as well as to produce serum concentrations of drug that are on 

the high end of clinically relevant serum concentrations in humans for traditional SSRIs (Dulawa 
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and Hen, 2005). Animals were singly housed during training and testing phases. Data were 

analyzed using two-way ANOVA and Bonferroni post hoc tests (Graphpad Prism 6.0). 

 

Results 

As noted above, the FST and TST are tests with predictive validity for antidepressant 

efficacy. Here we sought to evaluate the SERT-dependency of vortioxetine actions in the SERT 

Met172 model using an assay that possess more construct validity, and is thus more likely to 

measure the neurobiological processes that are required for human clinical efficacy. Thus, we 

implemented the NIH test, a behavioral paradigm sensitive to chronic, but not acute, antidepressant 

administration (Dulawa and Hen, 2005). The NIH test involves monitoring the latency of animals 

to approach and consume a known palatable substance in a novel, stressful environment, where 

SSRIs reduce latency and enhance consumption after chronic but not acute administration (Dulawa 

and Hen, 2005). We administered vortioxetine in specially formulated chow for 28 days prior to 

behavioral screening. Following vortioxetine administration, WT mice displayed a reduced latency 

to consume Vanilla Ensure® in the novel cage compared to vehicle condition (Figure 23). SERT 

Met172 mice, also display reduced latency to consume the Vanilla Ensure® in the novel cage. 

These findings suggest that despite ablating the functional effects of vortioxetine at SERT via the 

SERT Met172 substitution, the actions of vortioxetine at serotonin receptors are sufficient to 

produce antidepressant-like activity in the NIH assay. In other words, the chronic antidepressant 

behavioral activity of vortioxetine in the NIH test does not require SERT antagonism. 

We had suspected the potential possibility of SERT-independent antidepressant effects of 

vortioxetine prior to our initial efforts, due to the direct actions of vortioxetine upon the 5-HT1A 

receptor (Mørk et al, 2012).   
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Figure 23. Novelty Induced Hypophagia with Vortioxetine. SERT antagonism is not required for 

the chronic effects of vortioxetine in the NIH test. Latency to consume Ensure® in novel cage was 

recorded. Two-way ANOVA revealed significant main effects of genotype. WT and Met172 mice 

display significant reductions in latency following chronic SSRI administration. * indicates 

significance (P <.05) compared to vehicle treatment following Two Way ANOVA and Bonferroni 

post-hoc tests (n = 20-25 per genotype and condition).  Two Way ANOVA revealed significant 

main effect of drug (F(1,78) = 13.26, P < 0.05), but not of genotype (F(1,78) = 0.10, P > 0.05) or 

interaction (F(1,78) = 0.06, P > 0.05. 
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5-HT1A activation has also been shown to stimulate hippocampal stem cell proliferation, 

as opposed to survival (Benninghoff et al, 2012; Klempin et al, 2010). 5-HT1A receptors has been 

shown to be implicated in chronic behavioral and biochemical changes observed with SSRIs in the 

NIH assay, as well as hippocampal stem cell proliferation (Santarelli et al, 2003), a process that is 

required for chronic behavioral efficacy of SSRIs in the NIH test. Based upon these prior 

observations, we hypothesized that vortioxetine would show SERT-independent behavioral effects 

in the NIH by showing reduced latency to consume Vanilla Ensure® in the novel cage. These 

predictions were realized, provided the preserved efficacy of vortioxetine in the SERT Met172 

mice. It would be interesting to compare the effect size of latency suppression between WT and 

SERT Met172 mice, as to ascertain whether SERT antagonism provides greater behavioral 

efficacy, though the assay was not powered to test this question. In our experiments, we could 

detect no differences in the magnitude of the effect sizes between the two groups, suggesting that 

SERT antagonism is rather inconsequential with respect to the actions of vortioxetine. Though one 

must also consider the limits in detection, and possible maximum effect that may be limiting this 

line of questioning. The NIH test provides sufficient dynamic range to detect antidepressant 

sensitive effects (Dulawa and Hen, 2005; Santarelli et al, 2003), though the magnitude is largely 

dictated by the strength of the anxiogenic paradigm and not perfectly suited for the separation of 

antidepressant strength (Dulawa and Hen, 2005). We cannot be sure which receptor, or set of 

receptors, is required for the activity of vortioxetine in this assay, though, reasonably, we can state 

that chronic vortioxetine does not require SERT antagonism for efficacy in the NIH test, and that, 

likely, its residual actions on 5-HT receptors are sufficient to produce the behavioral efficacy of 

vortioxetine in the NIH test. 
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Hippocampal Neurogenesis 

 

Method 

Proliferation: Following chronic administration of SSRIs and behavioral screening in the 

NIH test, mice were assayed for levels of hippocampal stem cell proliferation. Mice were 

administered 5-bromo-2'-deoxyuridine (BrdU; 150mg/kg i.p.; Sigma-Aldrich, St. Louis, MO, 

USA) to pulse label newly proliferating S-phase mitotic cells. 24hr following the last injection of 

BrdU, mice were anesthetized via injection of 100 mg/kg i.p. pentobarbital and transcardially 

perfused with ice-cold PBS, followed by ice-cold 4% paraformaldehyde. Brains were sectioned 

(40 μm) via freezing stage sliding microtome (Leica, SM2000R, Buffalo Grove, IL, USA). Every 

sixth section of the hippocampus (plates 41-61 (Paxinos and Franklin, 2004)) was immunostained 

for BrdU incorporation (mouse anti-BrdU; 1:1000; BD#347580; BD Biosciences; Franklin Lakes, 

NJ, USA) and detected following secondary antibody incubation (biotinylated donkey anti-mouse; 

1:500; PA1-28627; ThermoFisher), ABC amplification (VectaStain; Vector Labs; Burlingame, 

CA, USA), and diaminobenzidine (DAB) detection. Brightfield stitched images were captured 

(Zeiss Axio Imager.M2) and stored for analysis. BrdU+ cells in the subgranular zone (SGZ) of the 

hippocampus were counted using the ITCN (Image-based Tool for Counting Nuclei) plugin for 

ImageJ (Byun et al, 2006) by an observer blinded to genotype and drug treatment. Total counts 

were extrapolated to whole hippocampus, accounting for the harmonic mean of hippocampal 

sections per mouse and initial sampling limits.  

Survival: We injected a separate cohort with BrdU prior to administration of SSRIs. 

Proliferating cells at steady state were pulse labeled with BrdU (150mg/kg i.p.), and then their 

drinking water was then supplanted with SSRI infused drinking water (at 160 mg/L). After 4 weeks 



 117 

of SSRI administration, mice were sacrificed and brain tissue collected and developed using the 

immunohistochemistry procedures described above. BrdU+ cell quantification for proliferation 

measures included the SGZ and the granule cell layer of the dentate. Cell counting was performed 

as described above. Data were analyzed using two-way ANOVA and Bonferroni post hoc tests 

(Graphpad Prism 6.0). 

 

Result 

 Proliferation:  Hippocampal neurogenesis is known to be stimulated after chronic, but not 

acute, antidepressant administration, which occurs along similar timescales of chronic SSRI 

behavioral sensitivity. Through the use of irradiation ablation studies, hippocampal neurogenesis 

has been shown to be required for the behavioral efficacy of chronic SSRI administration in the 

NIH test (Santarelli et al, 2003). SSRIs promote both hippocampal stem cell proliferation rate and 

survival of newly generated hippocampal stem cells (Wang et al, 2008), of which vortioxetine is 

no different (Guilloux et al, 2013). Consistent with these studies, chronic administration of 

vortioxetine stimulated the proliferation rate (Figure 24) of hippocampal stem cells in WT mice, 

assessed via BrdU+ immunohistochemistry. Vortioxetine was also able to stimulate the 

proliferation rate of these hippocampal stem cells in SERT Met172 mice (Figure 24), which 

agrees with prior studies that hippocampal stem cell proliferation stimulation tracks with 

behavioral efficacy in the NIH test.  
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Figure 24. Hippocampal Neurogenesis: Proliferation Stimulation by Vortioxetine. SERT 

antagonism is not required for the stimulation of hippocampal stem cell proliferation and survival 

following chronic vortioxetine administration. Proliferation: Following administration of SSRIs, 

WT and Met172 mice display significant increases in stem cell proliferation rate. * indicates 

significance compared to vehicle (P <.05) following Two Way ANOVA Bonferroni post-hoc tests 

(n = 4 per genotype and condition). Two way ANOVA revealed insignificant effects of genotype 

(F(1,10) = 3.20, P > 0.05), significant effects of drug (F(1,10) = 78.29, P < 0.05), and insignificant 

interaction (F(1,10) = 0.50, P < 0.05). 
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These data corroborate our findings that vortioxetine can sufficiently stimulate hippocampal stem 

cell proliferation due to the SERT-independent actions of vortioxetine, potentially via 5-HT1A 

receptor activation, given that 5-HT1A receptor activation leads to the proliferation of these stem 

cells (Benninghoff et al, 2012; Klempin et al, 2010) and is required for both proliferation and 

efficacy of chronic SSRI behavioral efficacy in the NIH test (Santarelli et al, 2003). These data 

also indicate that SERT antagonism is not required for the proliferative component of hippocampal 

neurogenesis induced by chronic vortioxetine. Our findings support the potential for directly 

engaging specific 5-HT receptors as opposed to simply invoking SERT antagonism for the 

development of future antidepressant drugs. 

 Survival:  After the neural progenitor cells proliferate and divide in the subgranular zone, 

they can differentiate into neurons and their functional integration and dendritic arborization into 

the hippocampus (van Praag et al, 2002). Most of these proliferated cells, however, do not survive, 

and the pruning of proliferated cells is thought to be under the control of 5-HT receptors (Klempin 

et al, 2010). The major effect of chronic SSRIs for behavioral efficacy in the NIH test is their 

stimulatory effect upon the stem cell proliferation, though they can also promote the survival of 

basally proliferated stem cells (Klempin et al, 2010). The function of the hippocampal 

neurogenesis, both proliferation and the survival/integration processes, is not fully understood, but 

has been implicated to maintain hippocampus-dependent behavioral plasticities (Benninghoff et 

al, 2012). In this aim, we tested to see the contribution of vortioxetine towards promoting the 

survival of basally proliferated hippocampal stem cells, and whether this process required SERT 

antagonism. Following a pulse label of basally proliferating hippocampal stem cells with BrdU, 

we administered vortioxetine to WT and SERT Met172 animals for 4 weeks. Following the 

immunohistochemistry for the BrdU label, we found that both WT and SERT Met172 mice display 
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increased rates of survival (Figure 25). These data indicate that stem cell survival component of 

vortioxetine, as well as stem cell proliferation, does not require SERT antagonism, and that its 

array of activity at other targets, specifically 5-HT receptors, is sufficient to stem cell proliferation 

and survival.  

  

Conclusions 

  

 The rationale for the use and development of vortioxetine in the clinic stems from the broad 

and engagement of multiple 5-HT receptors following SSRI administration. With SSRI 

administration and subsequent SERT blockade, all 5-HT receptors are stimulated and activated 

due to this generic enhancement of serotonergic signaling, some of which might be deleterious to 

the desired antidepressant profile (Ramamoorthy et al, 2008; Wesołowska et al, 2006). It could 

thus be beneficial to develop pharmacological agents that can selectively target specific 5-HT 

receptors, limiting actions at receptors that diminish efficacy or those that produce unacceptable 

side effects, all while possibly eliminating traditional engagement at SERT. Vortioxetine aims to 

accomplish this aim of specific 5-HT receptor engagement through its actions as an agonist at 5-

HT1A and as a partial agonist at 5-HT1B. Vortioxetine is also an antagonist at 5-HT3 and 5-HT7 

receptors, and retains significant activity as a SERT antagonist (Mørk et al, 2012), though whether 

its activity at SERT is relevant for clinical efficacy has not been tested.  

 Due to preclinical studies indicating potential antidepressant utility of compounds that 

target 5-HT receptors that vortioxetine targets individually, our lab sought to query whether these 

SERT-independent 5-HT receptor actions of vortioxetine could be sufficient to produce 

antidepressant effects.   
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Figure 25. Hippocampal Neurogenesis: Survival Preservation with Vortioxetine. SERT 

antagonism is not required for the survival of basally proliferated hippocampal stem cells 

following chronic vortioxetine administration. Survival: Following administration of BrdU, 

vortioxetine was administered to WT and SERT Met172 mice. WT and Met172 mice display 

significant increases in survival of stem cells. * indicates significance compared to vehicle (P <.05) 

following Two Way ANOVA and Bonferroni post-hoc tests (n = 4 per genotype and condition). 

Two Way ANOVA revealed insignificant main effect of genotype (F(1,9) = 0.37, P > 0.05), 

significant effect of drug (F(1,9) = 25.08, P < 0.05), and insignificant interaction (F(1,9) = 0.56, P 

> 0.05) 

  



 122 

In order to accomplish this task, we utilized the SERT Met172 mouse model, to selectively 

reduce the ability of vortioxetine to bind and inhibit SERT, all while preserving SERT expression 

and function and thus free from the compensatory alterations that plague the SERT knockout 

model (Bengel et al, 1998; Cour et al, 2001; Fabre et al, 2000; Li et al, 2000; Lira et al, 2003; 

Rioux et al, 1999). Utilizing the SERT Met172 model, vortioxetine actions at these 5-HT receptors 

are preserved while limiting SERT antagonism. In this aim, I tested whether vortioxetine retained 

antidepressant properties in acute and chronic models of antidepressant efficacy. In the acute tests 

for antidepressant sensitivity, vortioxetine is able to reduce immobility time equivalently in both 

WT and SERT Met172 mice in both the TST and FST, indicative of an antidepressant-like effect. 

Interestingly, vortioxetine is able to produce a climbing effect in the FST in both WT and SERT 

Met172 mice, an effect that is not produced by SSRIs and other SERT blockers and that is usually 

seen in norepinephrine enhancing antidepressants, such as NET blockers, though vortioxetine has 

no significant activity at norepinephrine receptors or NET (Mørk et al, 2012). This effect is thought 

to be due to the antagonist effect of vortioxetine at 5-HT3 receptors (Puig et al, 2004). The relevant 

antagonism of 5-HT3 receptors, which are thought reside on GABAergic interneurons in the PFC, 

would effectively reduce the GABAergic inhibition of norepinephrine release in the PFC, thereby 

driving this climbing effect in the FST (Puig et al, 2004). This interesting effect further exemplifies 

the SERT independence of vortioxetine in acute antidepressant-sensitive assays. Together, our 

findings reveal that vortioxetine does not require SERT for its antidepressant activity in assays that 

are sensitive to acute antidepressant administration. 

 As has been noted previously, these acute measures of antidepressant efficacy are not 

ostensibly measuring the same biological processes that arise during the timecourse of clinical 

antidepressant efficacy, which requires weeks of chronic administration. Moreover, many 
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preclinical compounds that have shown antidepressant-like efficacy in the TST and FST, have 

failed in clinical trials or failed to surpass antidepressant efficacy of SSRIs. Therefore, there is no 

guarantee that the SERT independence of vortioxetine in the ability to produce antidepressant-like 

effects in the TST and FST would translate to chronic antidepressant sensitive models. 

Alternatively, the actions of vortioxetine at 5-HT receptors could merely act in an accessory 

manner, dependent upon that overall enhancement of serotonergic tone brought about by SERT 

inhibition. However, 5-HT1A stimulation has been shown to drive hippocampal stem cell 

proliferation (Klempin et al, 2010), and the presence of the receptor is required for the stimulatory 

effects on hippocampal stem cell proliferation and chronic antidepressant sensitivity (Santarelli et 

al, 2003). Given the stimulatory actions of vortioxetine at 5-HT1A receptors, vortioxetine may 

drive hippocampal stem cell proliferation and chronic antidepressant sensitivity, via a 5-HT 

receptor linked pathway as opposed to SERT antagonism.  

 I next tested the ability of vortioxetine to induce antidepressant-like effects in assays that 

are sensitive to chronic—but not acute—antidepressant administration. After administering 

vortioxetine chronically to WT and SERT Met172 mice, I then found that both WT and SERT 

Met172 mice were behaviorally responsive to the drug, with respect the anxiolytic properties of 

consumption latency values. These data indicate that SERT is not required for the chronic 

behavioral actions of vortioxetine, and that the combined 5-HT receptor activity of vortioxetine is 

sufficient to produce an antidepressant effect. Next, I tested the ability of vortioxetine to stimulate 

hippocampal stem cell proliferation, and whether this process required its ability to inhibit SERT. 

Using the same models as previously, both WT and SERT Met172 mice displayed significant 

increases in hippocampal stem cells following chronic vortioxetine administration, indicating 
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again that vortioxetine does not require activity at SERT for this effect and that the 5-HT receptor 

activity profile of vortioxetine outside of SERT binding is sufficient to produce this effect. 

 My findings show that vortioxetine does not require activity at SERT to produce 

antidepressant effects in models that are sensitive to either acute or chronic antidepressant 

administration. Although these data are limited in scope to the SERT-independent efficacy of 

vortioxetine, they demonstrate the principle that future iterations of serotonergic antidepressant 

drugs may not require SERT antagonism. The field of antidepressant pharmacology has largely 

stagnated surrounding the dogma that engagement at SERT is required for clinical efficacy. 

Elevations in 5-HT brought about by SERT antagonism produces global enhancement 5-HT 

receptor activation, which may be deleterious towards antidepressant profile, as well as enhancing 

side effect profile. Next generation serotonergic antidepressants would be wise to engage those 5-

HT receptors that are beneficial to producing antidepressant effects while avoiding those that 

negate those effects. Vortioxetine is able to accomplish this aim, albeit with major activity at 

SERT. It is able to do so with a single chemical compound, which is remarkable and surprising in 

its own right, though I do not expect future drug development efforts to achieve this feat, nor 

should it absolutely be necessary to do so. These studies do provide justification for future 

development of multitargeted drugs at a preclinical level, and could usher in a new wave of 

serotonergic based antidepressants that lack appreciable activity at SERT, and representing a 

logical next step in the development of serotonergic antidepressants lacking SERT antagonism.   
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CHAPTER VI 

 

CONCLUSIONS AND FUTURE EXPERIMENTATION 

 

 The purpose of these studies was multifaceted, all designed to assess the requirement of 

SSRIs to antagonize the serotonin transporter for its antidepressant effects. The complicated and 

delayed nature by which antidepressants exert their effects in the clinical population has generated 

some doubt to the serotonin hypothesis of depression, and there have been various examples that 

have directly questioned whether the antidepressant effects of SSRIs are enacted through SERT 

antagonism. Up until this point, there have been no definitive tests or models that have been able 

to address these concerns without significant caveats. The SERT knockout mouse, while intriguing 

to test the nature by which SERT is required for the antidepressant effects of SSRIs, exhibits major 

compensatory alterations that perturb normal neurodevelopment and serotonergic homeostasis, 

rendering an abnormal environment within which the SSRIs act. Though the studies using the 

SERT knockout model suggest that SSRIs do require SERT antagonism (Holmes et al, 2002), the 

confounds that plague the model have done little to dispel the multiple lines of research suggesting 

the role of non-SERT SSRI targets involved in the antidepressant effects of SSRI 

pharmacotherapy.  

 The SERT Met172 mouse model was developed in part to test this question of SERT 

dependence of SSRI antidepressant activity (Thompson et al, 2011). This effort was led by Dr. 

Randy Blakely, who sought to create a model that did not have the problems the SERT knockout 

model possesses, in part to test the SERT dependence of SSRI actions. The aim of this endeavor 

was to create a model that lacks pharmacological inhibition of SSRIs at SERT, but lacks the 
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compensatory alterations seen in the SERT knockout model. This effort led the group to pursue 

the observed differences in pharmacological sensitivity of different serotonin transporters across 

phylogeny to SSRIs (specifically human and mouse SERT compared to Drosophila SERT), and 

ascertain which amino acid residues were integral to that shift in pharmacological sensitivity. The 

result of much mutagenesis work was that Ile172 was highly responsible for high affinity SSRI 

binding at human and mouse SERT, whereas the corollary amino acid in Drosophila (methionine), 

when substituted into human or mouse SERT, could recapitulate the reductions in SSRI sensitivity 

seen in Drosophila SERT (Henry et al, 2006). DNA encoding this substitution (Ile172Met; I172M) 

was then achieved in mice via embryonic knock-in homologous recombination techniques. The 

substitution did not impact SERT protein expression, SERT surface expression, CNS biogenic 

amine levels, or SERT protein function (Thompson et al, 2011). Importantly, behaviorally relevant 

doses of SSRIs could not functionally antagonize SERT Met172 in in vivo paradigms (Thompson 

et al, 2011). The genetic background of the mouse in which the embryonic knock-in was created, 

however, was not conducive to further behavioral experimentation, including achieving the 

answers pertaining to whether SERT interactions are required for SSRI antidepressant activity. 

The importance of these efforts, as well as for the plans for this mouse moving forward, dictated 

that the SERT Met172 mouse be backcrossed onto a suitable genetic background. Here, we show 

the results of the studies on the SERT Met172 mouse following the backcrossing onto the C57Bl/6 

background. I first ensured that the act of backcrossing did not perturb the observation that SERT 

Met172 is benign with respect to SERT protein expression, CNS biogenic amine levels, and SERT 

protein function, and induced these parameters equivalently to WT littermates (Nackenoff et al, 

2015). Additionally, the expected loss of potency for SERT antagonists, fluoxetine and citalopram, 

were preserved in the C57Bl/6 SERT Met172 model, with maintained sensitivity for paroxetine, 
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which serves as an important positive control for our experiments (Nackenoff et al, 2015). Because 

of the utility of the C57Bl/6 mouse model for behavioral testing, we next moved to behavioral 

assays that are sensitive to acute administration of SSRIs. Should SSRIs retain behavioral activity 

in SERT Met172 mice, this would indicate that SSRIs do not require SERT antagonism, since 

behaviorally relevant doses of SSRIs do not functionally antagonize SERT Met172 and thus 

maintained CNS interactions with other non-SERT targets would be producing the antidepressant-

like effects in these acute SSRI sensitive tests. When I tested these mice in the TST and FST, I 

found that SERT Met172 mice fail to respond to fluoxetine and citalopram, paralleling their 

inability to antagonize SERT Met172 in vivo. Thus, acute antidepressant effects of the SSRIs 

fluoxetine and citalopram in the preclinical forced swim and tail suspension tests require SERT 

antagonism.  

 Since acute preclinical tests of antidepressant sensitivity do not accurately reflect the 

complex nature of clinical response to antidepressants, we next wanted to move to assays that are 

sensitive to chronic—but not acute—SSRI administration. These tests would best to parallel the 

chronic nature of SSRI antidepressant administration that is required for clinical efficacy. In this 

aim, I tested the ability of chronic SSRI administration to induce antidepressant-like effects in the 

NIH test. SERT Met172 mice fail to respond behaviorally to chronic SSRI in this test (Nackenoff 

et al, 2015). Additionally, I also investigated the degree to which SSRIs can enhance hippocampal 

stem cell proliferation in the SERT Met172 mice, an effect that occurs with chronic SSRI 

administration, and is required for chronic SSRI behavioral sensitivity (Santarelli et al, 2003). Like 

the lack of sensitivity in the NIH test, following chronic administration of SSRI SERT Met172 

mice fail to display enhanced hippocampal stem cell proliferation, nor do they display any 

increased rates of survival of basally proliferated stem cells (Nackenoff et al, 2015), both of which 
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are produced by chronic SSRI administration in WT mice. These data indicate that both acute and 

chronic antidepressant effects induced by SSRIs require SERT antagonism. These results are 

important in their own right, due the fact that they represent the most specific set of assays to date 

that could definitively state that SERT antagonism is required for the antidepressant efficacy of 

SSRIs. 

 The SERT Met172 mouse model was not created solely for this purpose, however. A 

significant advantage over the SERT knockout model is that while both models remove the 

pharmacological target of SSRIs [at behaviorally and clinically relevant doses], the SERT Met172 

model is devoid of the compensatory alterations produced by the SERT knockout model. This is 

important when considering the future potential of the SERT Met172 model that cannot be 

achieved by the SERT knockout. Because of the multifaceted and temporally complex nature of 

the antidepressant effect seen clinically, much work has been done to isolate the key facets of the 

antidepressant response, which are obviously more complicated that simply SERT antagonism. 

Were we able to identify the necessary downstream biological alterations and responses to chronic 

SSRI administration that bring about clinical antidepressant efficacy, we could potentially directly 

aim to produce those necessary changes through new drug treatment strategies in order to produce 

new faster treatments for depression. Isolating these necessary changes, however, is difficult due 

to the nature by which SSRIs also engage other non-SERT targets. Any attempts to identify the 

genetic consequences of chronic SSRI administration in mice would generate datasets that would 

contain both SERT-specific changes in addition to those alterations brought about by engagement 

of SERT-independent targets. The SERT knockout model can be utilized, but as noted before, the 

compensatory alterations found in that model render an abnormal environment in which these 

SSRIs can act. And unlike behavior, biochemical alterations that arise with chronic administration 
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may be more sensitive to compensatory alterations, and any such findings would severely cloud 

the accuracy of perceived SERT-specific effects of SSRIs. The SERT Met172 mouse model 

represents the best control condition for the elucidation of SERT specific effects of chronic SSRI 

administration. When compared against WT mice, since SERT Met172 mice only remove the 

ability of SSRIs to bind and antagonize SERT, any molecular or cellular changes seen in SERT 

Met172 can only be due to non-SERT interactions of SSRIs and can be easily removed from WT 

datasets. Efforts to conduct those studies are currently underway, and soon we can start 

deconstructing the serotonin path towards antidepressant efficacy. Identifying the key essential 

elements on the serotonin dependent pathway of antidepressant efficacy can illuminate essential 

components in the antidepressant response, as well as identify potentially better targets of future 

antidepressants. Through prior studies, we know that SSRIs impact the expression of kinases 

(Rausch et al, 2002), BDNF and other neurotrophic elements (Alme et al, 2007; Castrén and 

Rantamäki, 2010), NMDA receptor subunit expression (Boyer et al, 1998), PKA pathway sensitive 

transcription factor CREB expression (Nibuya et al, 1996), as well as 5-HT receptor expression 

and sensitivity (Hensler, 2002), among many others. Whether these effects result from SERT 

antagonism is unknown. Our attention will focus on neurotrophic factors in the hippocampus, as 

neurogenesis seems to be a critical element in the antidepressant effect invoked by chronic SSRI 

administration, and may represent a future direct target for antidepressants, skipping SERT 

antagonism entirely (Malberg and Schechter, 2005). Though only through comparisons to the 

SERT Met172 model can we determine which of these are dependent upon enhancement in 

serotonergic tone and SERT antagonism. 

 These attempts represent a desire to further isolate the key facets of antidepressant actions 

and develop more efficient techniques by which we can induce antidepressant effects. In very early 
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antidepressant therapies, albeit serendipitous, monoamine oxidase was targeted. These drugs 

produced enhancements in serotonergic signal transmission via the inhibition of the metabolism 

by monoamine oxidase. This approach, though clinically effective, is not the most efficient or 

specific means to enhance serotonergic neurotransmission. It was the only antidepressant 

pharmacotherapy at the time, and with improvements in antidepressant pharmacology, MAOIs are 

rarely utilized today. Following in the footsteps of MAOIs, tricyclic antidepressants were 

introduced, again serendipitously. These TCAs also enhanced serotonergic neurotransmission via 

the inhibition of the serotonergic synaptic clearance, allowing for an increase in 5-HT signal 

duration. Though these TCAs are arguably as efficient as current SSRI pharmacotherapies at 

inhibiting SERT and prolonging 5-HT signal duration, TCAs were largely abandoned clinically 

due to their cardiotoxic side effects and drug-drug interactions limited therapeutic utility. SSRIs 

represent the current standard of care for antidepressant pharmacotherapy, though they are not 

necessarily the most efficient and technologically advanced considering what we know about the 

role of different serotonin receptors that contribute to, or retract from, the antidepressant effect. In 

fact, though engagement of certain serotonin receptors is beneficial to the antidepressant effect, 

activating others can potentially be deleterious to the desired antidepressant effect (Nakagawa et 

al, 1998; Singh and Lucki, 1993; Wesołowska et al, 2006). This oppositional and competing nature 

of serotonin receptor activation events may contribute to the delayed clinical efficacy of SSRI 

antidepressants. At the least, it represents a technological barrier that could easily be traversed 

were we to create antidepressants that engage desired 5-HT receptor activity and removes the 

deleterious effects at others. 

 The novel antidepressant vortioxetine aims to accomplish this technological achievement 

(Guilloux et al, 2013; Mørk et al, 2012). Vortioxetine, while engaging and antagonizing SERT, 
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binds and activates 5-HT1A and 5-HT1B while antagonizing 5-HT3 and 5-HT7 receptors (Mørk 

et al, 2012). The strategy for this compound aims to possess faster therapeutic efficacy and/or 

reduced side effect profile, as 5-HT3 activation induces nausea and there already exists a clinical 

compound that antagonizes the 5-HT3 receptor for the reduction in nausea (Glare et al, 2011). 

Vortioxetine, while invoking traditional antidepressant actions at SERT, may not require its 

activity at SERT given that the antidepressant effect can be recapitulated by directly targeting one 

or more of the receptor targets invoked by vortioxetine outside of SERT antagonism 

(Ramamoorthy et al, 2008; Robinson et al, 1990; Singh and Lucki, 1993; Tatarczyńska et al, 2005; 

Wesołowska et al, 2006). We wanted to query whether the antidepressant effect invoked by 

vortioxetine required SERT antagonism, as SERT-independent antidepressant effects would 

represent a technological advancement beyond pure SERT engaging antidepressants. In my 

studies, I tested the ability of vortioxetine to induce antidepressant-like effects in the SERT Met172 

mouse model, using assays that are sensitive to acute and chronic SSRI administration. Firstly, I 

found that vortioxetine remains capable in inducing antidepressant-like effects in SERT Met172 

mice in the TST and FST, tests that are sensitive to acute single dose administration of vortioxetine, 

indicating that vortioxetine does not require SERT antagonism for its ability to induce 

antidepressant-like effects. Additionally, vortioxetine is still capable of inducing climbing effects 

in the FST in SERT Met172 mice, an effect brought about not by SERT antagonism, illustrating 

further that vortioxetine acts in a SERT-independent manner, within certain endpoints. I then 

moved to analyze whether chronic antidepressant actions of vortioxetine required SERT 

antagonism. As acute antidepressant sensitive measures are not representative of clinically relevant 

biological mechanisms required for antidepressant efficacy, we needed to move to assays that are 

only sensitive to chronic—but not acute—antidepressant administration. For this, we chose the 
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NIH test and subsequently assessed hippocampal neurogenesis, a process that is required for SSRI 

efficacy in the NIH test (Santarelli et al, 2003). Chronic administration of vortioxetine can induce 

behavioral sensitivity in the NIH test as well as stimulate the production of hippocampal stem cells 

(Guilloux et al, 2013). Our aim was to investigate whether the removal of SERT from the 

pharmacological profile of vortioxetine, through the use of SERT Met172, would render it 

incapable of producing antidepressant-like effects in chronic measures of SSRI efficacy. I found 

that following chronic administration of vortioxetine, SERT Met172 mice were still behaviorally 

responsive to vortioxetine in the NIH test. Additionally, I found that the major neurogenic 

endpoints in the stimulation of hippocampal stem cell proliferation, as well as survival, were 

preserved in SERT Met172 mice. These data provide strong preclinical evidence that SERT is not 

required for the chronic behavioral efficacy of vortioxetine, suggesting that the residual activity of 

vortioxetine at serotonin receptors is sufficient to produce an antidepressant effect, both acutely 

and chronically. 

 These data indicate the potential of future serotonin directed antidepressants that 

completely lack activity at SERT. As much as the technological advancement occurred from 

MAOIs to the SERT blockers that enhance of serotonin neurotransmission, so could this next leap 

beyond purely antagonizing SERT to achieve serotonergic signal enhancement by engaging 

serotonin receptors—or other targets—directly to produce the desired quality of antidepressant 

pharmacotherapy. Though vortioxetine achieves this with a single molecule, it is not reasonable 

or necessary to do so moving forward. I perceive that future therapies in this serotonergic 

framework could involve a mixture of serotonin receptor specific ligands, invoking different 

serotonin receptors as agonists, partial agonists, or full antagonists. This receptor specificity, 

however, will most likely invoke allosteric mechanisms as serotonin receptors, by definition, share 
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high functional homology at their orthosteric binding sites, which all must bind serotonin. This 

approach would most likely be applied initially in the creation of serotonin receptor subtype 

specific allosteric modulators (both negative and positive) which could be iteratively tested 

alongside SSRI administration in order to achieve a higher fidelity characterization of which 5-HT 

receptors are necessary for the antidepressant effect of SSRIs. Once the necessary 5-HT receptors 

have been identified for the efficacy of SSRIs, those compounds could easily be translated to 

systems amenable for human preclinical trials, either singularly or combinatorial in order to 

produce newer more efficient serotonergic antidepressant pharmacotherapies.  

This novel approach of direct selective actions at serotonin receptors would also be 

beneficial considering the absolute nature of SSRI pharmacotherapy, which requires nearly full 

saturation antagonism of the CNS systemic serotonin transporter in order to visualize any 

antidepressant efficacy. Depression symptom amelioration requires high SERT occupancy of 

SSRIs in order to achieve antidepressant effects, which produces high rates of incidence of 

unacceptable side effects in chronically treated individuals with depression. For the reason of side 

effects alone, this receptor specific approach would be very beneficial. On the other hand, with the 

nature of high dose necessity of SSRIs, one cannot finely control efficacy at certain 5-HT 

receptors, which are largely fully engaged following chronic SSRI administration, potentially 

leading to receptor desensitization, oversaturation, and addiction-like withdrawal sensations 

following pharmacotherapy cessation. It could be highly beneficial to introduce therapies that, 

instead of applying sledgehammer equivalent, all-or-nothing pharmacotherapies, would finely 

tune activity at certain serotonin receptors for subtler and better tolerated antidepressant regimens. 

As the field of neuroscience has accepted the CNS as more of a pathways of intercalating signaling 

networks, the field of pharmacology must also act accordingly and approach the depressed brain 
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as needing signaling recalibration instead of a whole organ that needs abrasive reshaping. It will 

first be necessary to achieve some receptor subtype specificity, but eventually the field of 

pharmacology will move to regionally-specific pharmacotherapies, though some approaches have 

been moderately successful in this regard, though with limited capability (Bortolozzi et al, 2012; 

Lladó-Pelfort et al, 2010). This regional specificity will be required as identical serotonin receptors 

act differently in different parts of the brain. Regional specificity will likely require elements that 

are not capable of single agent chemical structural elements. I anticipate that receptor specificity 

will be achieved with allosteric pharmacology, though region-specific delivery could likely be 

achieved via nanoparticle encapsulation. Nanoparticles have been studied for many years, mostly 

to deliver non-traditional agents past extensive first-pass metabolic mechanisms, as well as 

opportunities for long term delivery and extended release functionality. Recently, nanoparticles 

have been functionalized, allowing the penetration of a pharmaceutical compound (eg. a 

chemotherapeutic) and to deliver this agent preferentially to a desired site of action (eg. a tumor 

mass). In this example, the chemotherapeutic would normally act generally, but nanoparticle 

encapsulation and preferential delivery confers some regional specificity that would otherwise not 

be possible. This type of approach would be entirely possible given some moderate advancements 

in the field of nanoparticle encapsulation. In addition to the technologically capable process of 

developing 5-HT selective allosteric modulators, it is within grasp to create regionally specific 

delivery of 5-HT receptor subtype specific allosteric modulators to create a technologically 

superior serotonin directed pharmacological treatment compared to currently available SSRI 

pharmacotherapies. 
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APPENDICES  

 

In addition to the experimental efforts and results presented in chapters II-V, I have also 

pursued other efforts relating to aspects of delineating serotonin specificity of certain drugs using 

the SERT Met172 mouse model. These efforts included proposed collaborations that were not 

ultimately pursued, or preliminary work that developed into projects for other members of the lab. 

 

 

APPENDIX A. Sensitivity of the Mixed Action SNRI Antidepressant/Pain Medicines Milnacipran 

and Duloxetine to the SERT Met172 Substitution 

 

APPENDIX B. Characterization of the Disrupted Pharmacological Inhibition of Cocaine upon Ex 

Vivo Derived Synaptosomes from C57Bl/6 Backcrossed SERT Met172 Mice 

 

APPENDIX C. Adaptation of Novel Fluorescence-Based SERT Uptake Assay for Ninety-Six Well 

Transfected Cell Format 
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APPENDIX A. SENSITIVITY OF THE MIXED ACTION SNRI ANTIDEPRESSANT/PAIN 

MEDICINES MILNACIPRAN AND DULOXETINE TO THE SERT MET172 

SUBSTITUTION 

 

I have described in depth in chapter II the impact of the SERT Met172 substitution upon 

the ability for SSRIs to inhibit SERT mediated 5-HT uptake. These analyses were performed with 

the intention of analyzing the 5-HT dependent and independent actions of SSRIs. The SERT 

Met172 model is also useful for the evaluation of multitargeted drugs that include targets at SERT, 

like vortioxetine in chapter V. Here, I describe the sensitivities to the multitargeted drugs, 

milnacipran and duloxetine, upon the SERT Met172 substitution. These drugs are newly 

developed mixed SERT and NET inhibitor (SNRI) that are indicated as an antidepressant as well 

as for fibromyalgia-type pain (Arnold et al, 2004; Clauw et al, 2008; Gendreau et al, 2005; 

Nakagawa et al, 2008). SNRIs are partially effective treatments for pain, due to the downwardly 

projecting 5-HT and NE neuronal pathways synapsing upon endogenous opioid releasing neurons, 

which can regulate pain signal synergy in the dorsal horn of the spinal cord (Bardin, 2011; 

Mochizucki, 2004; Ossipov et al, 2010). Here, I determine the magnitude of the degree of the 

disrupted affinity of milnacipran and duloxetine for SERT Met172. This aim was meant to 

determine whether we could disrupt the actions of these drugs at SERT, leaving the drug with only 

major activity at NET, in order to determine the importance of SERT actions of the drug for its 

efficacy in models of chronic pain. 
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Experimental Procedure 

 

Expanding upon the initial characterization by Julie Field in WT hSERT and SERT Met172 

transfected cells, I determined whether this disrupted affinity for milnacipran and duloxetine is 

maintained in a more native preparation, utilizing SERT Met172 derived synaptosomes. Following 

sacrifice via rapid decapitation, the whole brains of 8-12 week old male WT and SERT Met172 

C57Bl/6 mice were dissected on ice and used for synaptosomal preparations as described 

previously (Thompson et al, 2011). Briefly, midbrain sections were mechanically homogenized in 

0.32M sucrose in 5mM HEPES buffer. This homogenate was subjected to a low gravity 

centrifugation (10 min, 4°C at 1,000x g) in order to remove large cellular components (eg. 

mitochondria, nuclei, and large membranes) from the reconstituted nerve terminals, classified as 

‘synaptosomes’. The supernatant after this first spin contains the synaptosomes. The synaptosomes 

are then pelleted via a high gravity centrifugation (15 min, 4°C at 10,000x g). The pellet was 

resuspended in KRH buffer containing glucose (for synaptosomal viability throughout the 

preparation and assay), pargyline (MAOI, prevents enzymatic metabolism of 5-HT), and ascorbic 

acid (preservative, prevents spontaneous oxidation of 5-HT). Equal volumes of synaptosomes were 

then incubated with varying concentrations of milnacipran and duloxetine at 37°C for 10 minutes. 

I then added 20 nM [3H]5-HT (PerkinElmer, NET498001MC, Waltham, MA, USA) to 

synaptosomes and allowed 5-HT accumulation for 10 min at 37°C. 5-HT uptake into synaptosomes 

was terminated via addition of ice cold PBS buffer, and vacuum filtration through 0.3% 

polyethyleneimine treated glass fiber filters (GF/B, Whatman, Pittsburgh, PA, USA). Competition 

uptake inhibition curves were fit to single site competition regression curve fit (Graphpad Prism 

6.0) 
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Results 

 

 As predicted by the in vitro characterization performed by Julie Field, both milnacipran 

and duloxetine are significantly sensitive to the SERT Met172 substitution when assessed in 

synaptosomal preparations. Milnacipran displays a ~17-fold reduction in inhibition potency at 

SERT Met172 compared to WT SERT (Appendix Figure 1). Duloxetine displays a ~170-fold 

reduction in inhibition potency at SERT Met172 compared to WT SERT (Appendix Figure 2). 

Based upon these rightward shifts in inhibition efficacy for SERT Met172, and that we have 

demonstrated that these shifts are permissible for strategies that produce functional SERT 

antagonism in WT but not SERT Met172 in vivo (Nackenoff et al, 2015; Thompson et al, 2011), 

we could utilize the SERT Met172 model to remove the actions of milnacipran and duloxetine at 

SERT to determine the importance of their actions at SERT for their efficacy as antidepressants or 

as analgesics. 
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Appendix Figure 1. Milnacipran Sensitivity to SERT Met172 Synaptosomes. The SERT Met172 

mutant imposes altered pharmacological sensitivity with normal SERT expression and function. 

Competition 5-HT uptake analysis in midbrain derived synaptosomes. Milnacipran (WT: KI 

526nM +/- 1.1; Met172: KI 8.90uM +/- 1.1) was assessed for their ability to compete with [3H]5-

HT uptake. (n = 4/condition). Like the in vitro studies, milnacipran displays reduced potency for 

SERT Met172 vs WT SERT (~17-fold reduction).  
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Appendix Figure 2. Duloxetine Sensitivity to SERT Met172 Synaptosomes. The SERT Met172 

mutant imposes altered pharmacological sensitivity with normal SERT expression and function. 

Competition 5-HT uptake analysis in midbrain derived synaptosomes. Duloxetine (WT: KI 

17.1nM +/- 2.0; Met172: KI 262nM +/- 2.0) was assessed for their ability to compete with [3H]5-

HT uptake. (n = 4/condition). Like the in vitro studies, duloxetine displays reduced potency for 

SERT Met172 vs WT SERT (~170 fold reduction). 
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APPENDIX B. CHARACTERIZATION OF THE DISRUPTED PHARMACOLOGICAL 

INHIBITION OF COCAINE UPON EX VIVO DERIVED SYNAPTOSOMES FROM C57BL/6 

BACKCROSSED SERT MET172 MICE 

 

 I have described earlier, in chapter II, the impact of the SERT Met172 substitution upon 

the ability for SSRIs to inhibit SERT mediated 5-HT uptake. These analyses were performed with 

the intention of analyzing the 5-HT dependent and independent actions of SSRIs. The SERT 

Met172 model is also useful for the determination of the importance of SERT antagonism for 

multitargeted drugs, that include SERT among their targets. Cocaine produces strong 

neuropsychotropic effects via its actions at DAT, SERT, and NET, where it functions as a reuptake 

blocker at all three of those proteins upon their respective neurotransmitter (Uhl et al, 2002). We 

have shown in lab previously that cocaine is sensitive to the SERT Met172 substitution (Henry et 

al, 2006; Thompson et al, 2011). Here, I expand upon those efforts and test whether this disrupted 

affinity of cocaine at SERT Met172 is maintained a more relevant reconstituted system for further 

assessment of in vivo SERT-dependent actions of cocaine. 

 

Experimental Procedure 

 

Expanding upon the initial characterization by Keith Henry, Brent Thompson, and Julie 

Field in WT hSERT and SERT Met172 transfected cells and synaptosomes of 129S6/S4 SERT 

Met172 mice, I determined whether this disrupted affinity for cocaine is maintained in a more 

native preparation, utilizing SERT Met172 derived synaptosomes. Following sacrifice via rapid 

decapitation, the whole brains of 8-12 week old male WT and SERT Met172 C57Bl/6 mice were 
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dissected on ice and used for synaptosomal preparations as described previously (Thompson et al, 

2011). Briefly, midbrain sections were mechanically homogenized in 0.32M sucrose in 5mM 

HEPES buffer. This homogenate was subjected to a low gravity centrifugation (10 min, 4°C at 

1,000x g) in order to remove large cellular components (eg. mitochondria, nuclei, and large 

membranes) from the reconstituted nerve terminals, classified as ‘synaptosomes’. The supernatant 

after this first spin contains the synaptosomes. The synaptosomes are then pelleted via a high 

gravity centrifugation (15 min, 4°C at 10,000x g). The pellet was resuspended in KRH buffer 

containing glucose (for synaptosomal viability throughout the preparation and assay), pargyline 

(MAOI, prevents enzymatic metabolism of 5-HT), and ascorbic acid (preservative, prevents 

spontaneous oxidation of 5-HT). Equal volumes of synaptosomes were then incubated with 

varying concentrations of cocaine at 37°C for 10 minutes. I then added 20 nM [3H]5-HT 

(PerkinElmer, NET498001MC, Waltham, MA, USA) to synaptosomes and allowed 5-HT 

accumulation for 10 min at 37°C. 5-HT uptake into synaptosomes was terminated via addition of 

ice cold PBS buffer, and vacuum filtration through 0.3% polyethyleneimine treated glass fiber 

filters (GF/B, Whatman, Pittsburgh, PA, USA). Competition uptake inhibition curves were fit to 

single site competition regression curve fit (Graphpad Prism 6.0) 

 

Results 

 

 As predicted based upon earlier characterizations, cocaine displays disrupted ability to 

inhibit SERT mediated 5-HT uptake in SERT Met172 derived synaptosomes, rendering a ~25-fold 

rightward shift in inhibition potency (Appendix Figure 3).  
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Appendix Figure 3. Cocaine Sensitivity to SERT Met172 Synaptosomes. The SERT Met172 

mutant imposes altered pharmacological sensitivity with normal SERT expression and function. 

Competition 5-HT uptake analysis in midbrain derived synaptosomes. Cocaine (WT: KI 1.12uM 

+/- 1.1; Met172: KI 27.1uM +/- 1.1) was assessed for their ability to compete with [3H]5-HT 

uptake. (n = 4/condition). Like the in vitro studies, cocaine displays reduced potency for SERT 

Met172 vs WT SERT (~25-fold reduction). 
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Based upon previous efforts to select doses of SSRI that provide functional antagonism in 

SERT but not SERT Met172 in vivo (Nackenoff et al, 2015; Thompson et al, 2011), it should be 

possible to achieve a similar result with cocaine in the SERT Met172 model. This would allow the 

selective removal of SERT antagonism from the pharmacological properties of cocaine, and any 

residual effects of cocaine would not be dependent upon its actions at SERT, and conversely any 

effects lost would be due to the actions of cocaine at SERT. 

I oversaw the efforts of initial characterizations of SERT dependent behavioral effects of 

cocaine in the SERT Met172 model, an undergraduate honors project of Peter Chisnell upon the 

129S6/S4 genetic background SERT Met172 mice. Dr. Linda Simmler inherited this project in our 

lab following the backcrossing of the SERT Met172 mice onto the C57Bl/6 background. My 

findings also initiated collaborations that investigated the dependency of cocaine actions at SERT 

to trigger cocaine induced alterations in circadian rhythm. These efforts found that the well-

described actions of cocaine to alter circadian rhythm is in fact due to its actions at SERT, as 

cocaine-induced alterations in circadian rhythm are lost in SERT Met172 mice (Prosser et al, 

2014).  

Our main focus in the lab, however, has been to investigate the role of serotonin to 

modulate or support cocaine addiction related behaviors. In order to specifically analyze the 

specific roles of serotonin in cocaine action, we will need to pursue more complicated contingent 

measures of cocaine addiction. We have traditionally utilized locomotor chambers to analyze 

cocaine induced increases in locomotion, which is thought to measure raw cocaine sensitivity, but 

because cocaine is administered non-contingently, cannot measure desire to consume or pleasure 

derived from cocaine. Linda Simmler engaged in conditioned place preference (CPP) assays, 

which aim to measure how much the animal attains pleasure from consuming cocaine, though this 



 145 

measure cannot measure drive to consume as cocaine is administered non-contingently. In order 

to assess the subtler modifications to addiction related behaviors, in which serotonin could be 

modulating, we need to investigate whether removal of SERT antagonism from cocaine action 

modulates contingent drug seeking behavior. To accomplish this, we need to initiate cocaine self-

administration paradigms. Optimally, this would entail cranial intraventricular injected cocaine 

upon an operant trained behavior (eg. nose poke), though this would require complicated 

individual surgeries upon all mice utilized for the study. Alternatively, one could administer 

cocaine through small operant behavior-mediated deliveries of cocaine infused water, though the 

route of administration is not as prompt as intracranial delivery, this would alleviate the burden of 

large number of stereotaxic surgeries required for intracranial cocaine delivery. Regardless of the 

method, the self-administration paradigm allows for the investigation into how desirable animals 

view cocaine, because the animal is able to determine the speed and total amount of cocaine 

deliveries over a session. Once basic parameters are established, one could modulate the operant 

paradigm to test the limits of drug seeking behavior, the strongest measure of which would be to 

deliver cocaine upon a progressive ratio, which increases the requirements placed upon the animal 

to access the next delivery of cocaine (eg. progressively increasing the number of nose pokes 

required for next subsequent delivery of cocaine). This tests the ‘break point’, which is a measure 

into the maximal amount of effort that an animal will expend in order to acquire the next delivery 

of cocaine.  

Another important measure would be to investigate alterations in withdrawal/extinction 

following self-administration. Additionally, we should also assess the role of serotonin on cocaine 

action for stress or cue induced reinstatement of drug seeking behavior. Should the actions of 

cocaine on serotonin modify the drug seeking behavior, SERT Met172 mice would display 
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alterations in their ‘break point’ and/or reinstatement behavior compared to WT mice, which 

would illustrate how serotonin modulates cocaine actions, and potentially illuminating new 

serotonergic mechanisms to target for future pharmacotherapies alleviating cocaine addiction. 
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APPENDIX C. ADAPTATION OF NOVEL FLUORESCENCE-BASED SERT UPTAKE 

ASSAY FOR NINETY-SIX WELL TRANSFECTED CELL FORMAT 

 

 All previously described SERT specific uptake assays in the preceding document utilize 

radiolabeled [3H]5-HT. The use of radiolabeling presents numerous problems. Firstly, 

radiolabeling is a safety hazard, necessitating proper personal protection, storage, and disposal to 

ensure minimal human and environmental contact to sources of ionizing and non-ionizing 

radiation. Additionally, while the use of radiolabeling provides a source of direct measurement of 

uptake, it can only do so as an endpoint analysis, where potentially critical information of the 

nature of uptake is lost and unable to be captured. In order to address these highlighted concerns, 

a fluorescent substrate was developed for the monoamine systems DAT, NET, and SERT (Blakely 

et al, 2011). This compound, IDT307, (Appendix Figure 4), is a functional derivative of MPP+ 

(an active metabolite of the infamous MPTP) which itself is a fluorescent substrate of DAT and 

NET, though IDT307 possesses much increased substrate capacity for SERT, allowing it to serve 

as a general fluorescent substrate for all three transporter systems (Blakely et al, 2011). 

Importantly, this fluorescence only occurs when the compound is internalized, allowing for high 

signal to noise and real time administration of uptake. Here, I describe my efforts to adapt and 

create efficient cell transfection for use in 96-well format for higher throughput analyses of 

modulations of SERT uptake. 
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Appendix Figure 4. Structure of IDT307. Comparison of the structure of IDT307 to MPTP and 

its metabolite MPP+ 
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Experimental Procedure 

 

 In order to prepare the cells for efficient transfection, I first setup the transfection in tube 

format, add suspended cells, and then plate this cell and transfection mix to 96-well plates for 

further experimentation. I explain this now in detail. 

 In 14 mL polystyrene tubes (Falcon), I add 2.5 mL of OptiMEM, and then add TransIT 

(Mirus) (at a ratio of 3uL TransIT per 1ug DNA transfected). I then swirl to mix, and let incubate 

at room temperature for 10 minutes, after which I add the appropriate amount of DNA and mix 

gently, followed by a 15-minute incubation. Here, I perform 5ug transfections of hSERT 

containing pcDNA3 plasmids (Invitrogen) (assuming a full 96 well plate transfection). I then take 

cultured cells and suspend them following a trypsin digest and resuspension in cell media. HEK-

293T cells were cultured at 37ºC in modified DMEM cell media containing 10% dialyzed fetal 

bovine serum (to eliminate 5-HT in growth media) and antibiotics. Once cells are suspended in 

new culture media, I count the cell concentration on a hemocytometer. From this, I calculate the 

volume needed for 5 x 106 cells and add this to the OptiMEM transfection reagent tube and wait 

20 minutes. After this, I adjust the volume of the reaction tube to 10 mL, adding fresh cell media. 

This cell transfection suspension is then dispensed at 100 uL per well to poly-D-lysine coated (to 

aid adherence) 96 well black sided clear-bottomed plates, and cells allowed to grow at 37ºC for at 

least 24 hours (best results are found with 36 hours). 

 On test day, cell media was aspirated off of the cells and replaced with Krebs-Ringer 

HEPES buffer (KRH) assay buffer containing pargyline (MAOI, prevents enzymatic metabolism 

of 5-HT), and ascorbic acid (preservative; prevents spontaneous oxidation of 5-HT). Cells were 

then preincubated with drugs for 10 minutes at 37ºC. Cells were then incubated with 1 uM (final) 
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IDT307 and allowed to accumulate at 37ºC. Immediately following administration of IDT307 to 

the wells, the plate is placed into the fluorescence measurement chamber (Flexstation) and 

assessed for uptake into cells. Excitation laser was set at 440nm and emission detection was set at 

520nm. 

 

Result 

 

 The purpose of this effort was to establish an easier and more reliable protocol for 96-well 

fluorescent IDT307 uptake assays in transiently transfected cells. These efforts mainly focused 

upon the transfection procedure. Traditional means of transfecting cells in 12 or 24 well format 

are easily suited for individual transfection of each well of cells (previously grown in a monolayer), 

though the 96 well format presents a problem for reliably doing so. Small variations in transfection 

reagent adherence to pipet tips of small volume administrations present potential large variability 

in transfection efficiency, causing inter-well variability independent of any treatment modulation. 

By transfecting and plating cells at the same time, this reduces the variability induced by individual 

well transfection procedures.  

 Here, I demonstrate the efficacy of the procedure. As shown, clear SERT-specific IDT307 

accumulation is seen in cells when compared against empty vector transfections and citalopram 

(SSRI) inhibited uptake (Appendix Figure 5). This assay can be used for situations that require 

higher throughput of transfection of multiple SERT variants or drug screening procedures which 

would not be best suited utilizing inefficient smaller plate formats. Though, an important caveat 

should be illuminated to any findings generated using IDT307 as opposed to 5-HT uptake studies.  
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Appendix Figure 5. Example trace of SERT-specific IDT307 accumulation. Fluorescence 

accumulation was conducted in the presence of 1uM IDT307 in HEK-293T cells transfected with 

either empty vector (pcDNA3) or hSERT, either uninhibited or in the presence of the SSRI 

citalopram (1uM). 
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As IDT307 and 5-HT are structurally dissimilar, there may be substrate-specific mechanisms that 

support/disrupt the actions of one substrate that may not be consequential for the other. Therefore, 

it may be useful to utilize IDT307 uptake assays when the situation dictates the screening of a 

large number of modulations, though important findings with IDT307 should ultimately be 

confirmed upon traditional substrate systems with smaller [3H]5-HT based uptake assays. 
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