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Chapter I

INTRODUCTION

One of the largest challenges facing societies worldwide is energy scarcity. Global energy con-
sumption is projected to grow by 48% over the 28-year period from 2012 to 2040 (U.S. Department
of Energy, 2016a). This growth stems largely from a consumption increase in countries outside the
Organization for Economic Cooperation and Development (OECD), whose membership consists of
35 countries worldwide, most of which are advanced (The Organisation for Economic Co-operation
and Development (OECD), 2018); however, energy use is still predicted to increase by 18% in
OECD member countries, which includes the United States (U.S. Department of Energy, 2016a).
While fossil fuels will continue to dominate world energy use, renewable resources are the fastest
growing electricity source, rising by 2.9% each year worldwide and 1.8% each year in the United
States through 2040 (U.S. Department of Energy, 2016a).

The majority of hydroelectric power derives from dammed river systems, in which impounded
water’s potential energy drives turbines and generates electricity. There are currently over 45,000
large (over 107 cubic meters of storage as defined by Graf (2005)) dams worldwide (McCartney,
2009). Twenty-seven percent of the projected growth in worldwide renewables is expected to come
from hydroelectric power (U.S. Department of Energy, 2016a), primarily from construction of new,
large, and gravity concrete and earth dammed systems. While other countries are still actively
constructing large conventional dams, the U.S. has witnessed a sharp decline in new large dam con-
struction since the 1970s (Figure I.1), primarily due to concerns over adverse environmental impacts
(Endangered Species Act of 1973, Clean Water Act of 1977). U.S. hydroelectric power generation is
projected to increase by 0.1% annually (U.S. Department of Energy, 2016a), corresponding to 1.7%
of U.S. renewables growth. This is expected to be derived from hydropower development at exist-
ing non-powered dams, additional pumped-storage facilities, new small in-stream hydropower, and
improved turbine and generator efficiencies through equipment upgrades and optimized reservoir
and turbine operations procedures (U.S. Department of Energy, 2015). This growth is important as

hydropower can supplement power demands, especially as a responsive and flexible power genera-



tion source during peak demand periods, which thermal electric power sources and other renewables
cannot deliver (U.S. Department of Energy, 2016b). Without construction of new large hydropower
projects, the projected increase of hydroelectric power must come from improved equipment effi-
ciencies and optimized operation procedures. This research focuses on the latter idea.

The general environmental impacts of dams and hydropower operations are well-known, but
the exact impacts of a particular dam are difficult to predict due to unique characteristics of aquatic
ecosystems (Friedl and Wuest, 2002; McCartney, 2009). Hydropower plants typically operate on a
“peaking” schedule, supplying additional electricity to the power grid during high demand periods.
This can result in flow fluctuations, impacting downstream fish habitats (Jager and Smith, 2008).
Globally on average, damming triples river water residence times (Covich, 1993). Reduced flow
velocities enhance sedimentation rates upstream of dams, and the reduced sediment loads and fluc-
tuating velocities can enhance erosion downstream (McCartney, 2009). The resulting large mass
of still water absorbs heat and may result in stratification, where surface water layers are consider-
ably warmer than deeper layers. If release locations are deep in the reservoir, the reservoir releases
can be considerably cooler than would occur under a natural regime (McCartney, 2009). Drought
and warm weather exacerbate this due to greater differences in water densities between the cool
deep water and warmer surface waters (Dortch, 1997). Thermal stratification reduces vertical ex-
changes, which can create anoxic conditions in deep water layers. If outflow structure elevations
lie in oxygen-depleted regions of a reservoir, discharge waters may also be oxygen-depleted. When
most of the energy of the release is dedicated to power production, this leaves little energy for reaer-
ation (Dortch, 1997). This water may also have reduced levels of other compounds, leading to a
poor downstream assimilative capacity; this can be especially harmful in river reaches which re-
ceive wastewater and other effluents (Friedl and Wuest, 2002). Temperature and dissolved oxygen
(DO) are primarily the greatest water quality interest for reservoirs, as temperature regulates biotic
growth rates and oxygen is necessary to sustain life within waterbodies (Dortch, 1997). Studies of
U.S. Army Corps of Engineers (USACE) and the Tennessee Valley Authority (TVA) water resources
projects in the southeastern U.S. revealed significant dam tailwater quality DO issues (Kennedy and
Gaugush, 1988; Hayes et al., 1998; Higgins and Brock, 1999). The greatest needs associated with
dams relate to tailwater quality, especially for hydropower projects where structural design and the

desire to meet maximum turbine efficiency reduces reaeration during power generation (Kennedy



Dams By Completion Date

19768
3829 39593

13372
11475
g e
E Y
]
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and Gaugush, 1988). Additionally, nuclear and coal power plants rely on river flow for condenser
cooling water and must comply with regulatory temperature limits before discharging the cooling
water into the river (U.S. Environmental Protection Agency, 2016). Consequently, there is great
value in managing reservoir temperatures to minimize thermal power plant derating, especially dur-
ing warm weather periods. Reservoir operators must also consider how warm water releases from
thermal plants and peaking cold water released from hydropower dams can produce sudden temper-
ature changes, which may negatively impact sensitive fish species, particularly during winter.
Tradeoffs are made when considering both water quantity and quality objectives, often resulting
in a desire for flow release decision-making that benefits water quality in conjunction with other
project demands, such as flood abatement or energy production (Loftis et al., 1985). There are three
primary mechanisms that can improve water quality: (i) pretreatment or control of inflows, (ii) in-
pool management or treatment techniques, and (iii) outflow management (Dortch, 1997). Outflow
management is the most commonly used method, as controlling outflow rates, outlet locations, and
timing of releases can impact both in-pool and release water quality by influencing in-pool water
quality gradients (Dortch, 1997; Price and Meyer, 1992). Outflow decision-making represents the

primary focus of this research work.



Reservoirs with hydropower capabilities are generally operated with the primary goal of max-
imizing energy production while meeting legal water regulations (Jager and Smith, 2008). The
optimization of reservoir operations has been extensively studied, with initial studies focusing on
water quantity constraints and more recent studies integrating constraints related to wildlife and
water quality. The limited number of studies which consider water quality have not employed
state-of-the-art two-dimensional high-fidelity water quality models (WQMs), instead incorporating
one-dimensional coarse-grid models or minimum flow requirements deemed to support sufficient
water quality (Jager and Smith, 2008). For example, Hayes et al. (1998) integrated the quasi-2D
coarse-grid water quality DORM-II model of the upper Cumberland River basin in the southeastern
United States into an optimal control model to analyze water quality improvement opportunities
through operational changes. While computationally feasible, this work included simplifications
such as 24 hour periods of generation, stratification defined by two well-mixed vertical layers with
no mixing between layers, and simplified heat transfer and reaeration equations. Optimizing oper-
ations for a single reservoir under simulated environmental constraints has proven computationally
difficult, and expanding to multireservoir systems is even more challenging (Dhar and Datta, 2008).
A technique for integrating high-fidelity water quality simulation models within a hydropower de-
cision support system would provide reservoir releases which better meet defined objectives and

constraints.

I.1 Plan of Research

Presented here is an approach for computing globally optimal power generation schemes for a
hydropower reservoir using high-fidelity WQMs, surrogate modeling techniques, and multidimen-
sional optimization methods. The combination of these approaches allows for the inclusion of high-
fidelity water quality constraints within dam release decision making on an operational timescale,
as well as comparison between resulting optimal schemes and current operating procedures. This
methodology reveals a power generation benefit while maintaining water quality standards or mini-
mizing water quality standard violations.

The primary objective is to perform simulation and optimization for determination of flow re-

leases from turbines and control structures along river systems with consideration of power produc-



tion, navigability, temperature, water quality, and flood risk. The general workflow for this process
is shown in Figure I.2. To determine optimal releases, high-fidelity spatial and temporal information
are needed on system hydraulics and water quality. This information is generally managed on an
individual system basis, and can be estimated by high-fidelity models such as the CE-QUAL-W2
model (Cole and Wells, 2007), which is currently used by the USACE and TVA to model the Cum-
berland and Tennessee Rivers, respectively. A section of the Cumberland River containing two US-
ACE hydropower projects (Old Hickory and Cordell Hull reservoirs) is used as a prototype system
(Figure 1.3). These run-of-the-river type hydropower facilities have small storage capacities which
are sensitive to smaller timescale variations in inflows and outflows (Ferreira and Teegavarapu,
2012); therefore, short-term operations planning on daily or hourly timescales is highly valuable.

As expressed by Bartholow et al. (2001), there is a need to link optimization software with the
CE-QUAL-W2 model, which would allow managers to satisfy both downstream and in-reservoir
water quality objectives. Previously Dhar and Datta (2008) developed a method for determin-
ing optimal short-term operation of a single reservoir to control downstream water quality through
a linked simulation (CE-QUAL-W?2) and optimization (elitist genetic algorithm) process. Their
methodology is limited by time requirements of the simulation model, which could be improved
through development of parallel code or use of metamodels. Metamodels, also known as response
surface models, surrogates, or emulators, mimic the behavior of a simulation model with substantial
computational savings (Forrester et al., 2008).

Chapter II details the state-of-the-art of research in the areas of reservoir modeling and oper-
ations, surrogate modeling techniques, and hydropower systems optimization. Following chapters
detail work encompassing three main objectives, all centered around the goal of exploring opti-
mal operational schemes while maintaining water quality. In Chapter III, construction of surrogate
WOQMs and integration of these models within an optimization application is described. This is
applied to a single multipurpose reservoir with hydropower capabilities, and the surrogate-enabled
optimizer is used to explore the trade-offs between spillway and hydropower flow releases. Chapter
IV focuses on the optimizer itself, exploring modifications to the optimization algorithm which im-
prove solution quality. Random immigrants replacement, a technique to improve genetic algorithm
(GA) population diversity when solving dynamic optimization problems, and soliciting additional

surrogate model training data adaptively mid-optimization are both investigated. Chapter V looks
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toward expanding this work to a system of reservoirs by performing a necessary exploration of the
feedbacks exhibited between two reservoirs connected in series. Determination of the sensitivity of
downstream water quality due to changes in upstream operations is examined. Chapter VI provides

concluding thoughts and proposed areas of future work.



Chapter 11

STATE-OF-THE-ART LITERATURE REVIEW

Developing an optimization tool which incorporates water quality parameters requires integrat-
ing mathematical and modeling methods from several independent fields of study. An understand-
ing of the strengths and weaknesses of available techniques in these fields, including their use in

previous applications, can be gained from the following literature review.

II.1 Reservoir Modeling and Operations

In many hydropower systems, there is a desire to improve water quality outcomes by modify-
ing operations or applying other mitigation techniques. We discuss currently employed mitigation
techniques below. Reservoir modeling is an integral piece of this research, including both hydrody-
namic and water quality components. There is extensive research in this area, with recent research
growth due in part to improvements in computational abilities. General and reservoir-specific water
quality and hydrodynamic models have various characteristics; here, we discuss the advantages,
disadvantages, and applications of such models. This includes detailed coverage of CE-QUAL-W2,
a two-dimensional hydrodynamic and WQM which has simulated over 2,300 surface water bodies
worldwide, including over 300 manmade reservoir applications (Portland State University, 2007).
Additionally, we discuss incorporating hydrodynamic models in power generation management sys-

tems, which attempt to optimize hydropower performance.

II.1.1 Environmental Mitigation Techniques for Hydropower Systems

Hydropower operations can negatively impact river system water quality. Impounded dams can
reduce flow velocities, increase sedimentation rates upstream, reduce sediment loads downstream,
and enhance erosion (McCartney, 2009). Stratification of water temperature and constituent con-
centrations may occur, reducing vertical exchanges. DO levels, water temperatures, and ensuring

adequate water quality and quantity (i.e., environmental flows) for aquatic species are the primary



water quality concerns within controlled river systems (U.S. Department of Energy, 2016b).

Dortch (1997) states that there are three primary efforts that can improve water quality: (i)
pretreatment or control of inflows, (ii) in-pool management or treatment techniques, and (iii) out-
flow management. Pretreating of reservoir inflows requires watershed control and land management
planning, and engaging multiple stakeholders beyond river operators alone. In-pool management
and treatment techniques include pumps which supply oxygenated water to the turbine penstock
intakes to improve release aeration, line diffusers to increase oxygen concentrations in the forebay,
disrupting or preventing stratification using water jets, sediment removal to increase volume and re-
duce toxicity, and aquatic plant harvesting and phosphorus inactivation by adding aluminum sulfate
or sodium aluminate for algal control (Dortch, 1997; U.S. Department of Energy, 2016b). Out-
flow management is the most common method, as methods such as controlling outflow rates, outlet
locations, and timing of releases can impact both in-pool and release water quality by influencing in-
pool water quality gradients (Dortch, 1997; Price and Meyer, 1992). Outflow management methods
include using temperature control devices for selective withdrawal of cold water for fisheries down-
stream, auto-venting turbines that add oxygen to hydropower releases, and mixing warm turbine
releases with cold water bypass releases to provide a cooler downstream environment (U.S. De-
partment of Energy, 2016b). Modifying dam releases has also been successful for producing flow
regimes that maintain sensitive species. For example, incorporating flow pulses along the Putah
Creek in California created favorable spawning and rearing conditions and maintained stable base
ecological flows in order to regain native fish populations (Poff and Schmidt, 2016). Additional de-
tail on in-pool management, treatment techniques, and outflow management can be found in Price
and Meyer (1992) and Dortch (1997).

Studies of USACE and TVA water resources projects in the southeastern U.S. revealed signif-
icant dam tailwater quality DO issues (Hayes et al., 1998; Higgins and Brock, 1999). In the early
1990s, TVA implemented the Reservoir Release Improvement program to improve water quality
and provide a minimum constant flow at 20 TVA river system projects. DO mitigation techniques
included oxygen and air injection, surface water pumping, turbine venting, oxygen line diffusion,
and reregulation and aeration weirs (Mobley and Brock, 1995; Higgins and Brock, 1999). These ac-
tions resulted in reduction in the total number of days below DO targets in a year for the 16 projects

with aeration improvements reduced from the historic average of 1,346 days per year to 454, 424,



231, and 267 days per year for 1994, 1995, 1996, and 1997, respectively. TVA also observed im-
provements in both benthic macroinvertebrate and fish communities overall. More recently, the
USACE Nashville District installed a fixed-cone release valve at Percy Priest Dam on the Cumber-
land River (Batick, 2011) and Duke Energy installed aerating turbines at their Bridgewater Project
in North Carolina in order to improve downstream DO levels (U.S. Department of Energy, 2016b).

WQMs can simulate the impacts of mitigation techniques such as the ones mentioned here,
allowing managers to determine appropriate site-specific designs and operating schemes for these
mitigation technologies (U.S. Department of Energy, 2016b). Saito et al. (2001) used a WQM to
forecast changes in phytoplankton production due to installation of a temperature control device
enabling selective withdrawal at the dam at Shasta Lake, California, and then linked this model to
a food web-energy transfer model to assess impact further up the food web. The authors concluded
that modeling can aid in the challenging task of predicting reservoir impacts of new dam operations.
Shirangi et al. (2008) combined a water quality simulation model with conflict resolution theory to
determine improved operational strategies for reservoir selective withdrawal. Caliskan and Elci
(2009) used the 3D Environmental Fluid Dynamics Code (EFDC) numerical model to analyze the
effect of selective withdrawal from four outlets at a reservoir in Turkey on water temperatures, as

well as the impact on mixing and thermal stratification.

II.1.2 Hydrodynamic and Water Quality Modeling for Rivers and Reservoirs

The following subsections detail the early Streeter-Phelps equation model as well as a selection
of 1D, 2D, and 3D hydrodynamic and WQMs that are available and described in the literature. This

discussion focuses on water quality modeling capabilities, especially for DO calculation.

Streeter-Phelps

First developed in 1925, the Streeter-Phelps model describes the relationship between DO and
biochemical oxygen demand (BOD). It is considered the pioneer work in the field of water quality
modeling. Streeter and Phelps performed numerous studies on oxygen demand and depletion in the

Ohio River (Streeter and Phelps, 1925) and developed the Streeter-Phelps equation:
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where D is the DO saturation deficit, Dy is the initial DO deficit at time r = 0, Ly is the ultimate
BOD, k, is the reaeration rate, k, is the total deoxygenation rate, and k, is the decomposition rate
(Chapra, 1997).

The Streeter-Phelps model ties together decomposition of organic matter and oxygen reaeration
mechanisms for computation of DO in a sewage-receiving stream (Chapra, 1997). Without the
availability of computers, model solutions were closed-form, with applications limited to linear
kinetics, simple geometries, and steady-state conditions. The original model assumes only plug
flow advection with no mixing occurring and only a single DO source and sink. With the advent
of computers, expanded models were developed which incorporate photosynthesis, respiration, and
sediment oxygen demand (O’ Connor, 1960). Thomann (1963) expanded the Streeter-Phelps model

to allow for multi segment systems.

QUAL

The QUAL series of models begins in the late 1960s with the development of the one-dimensional
QUAL-I stream model by the Texas Water Development Board (Brown and Barnwell, 1987). QUAL-
I simulated conservative constituents, temperature, BOD, and DO in a steady flow river (Grenney
et al., 1978). Tufts University and the U.S. Environmental Protection Agency (USEPA) expanded
the model to add additional constituents (ammonia, nitrate, coliform, phosphate, and algae) and
named the QUAL-II model (Cox, 2003; Grenney et al., 1978). Further enhancements led to the
“enhanced QUAL-II” model, or QUAL2E (Chapra, 1997). QUALZ2E is a one-dimensional model
for stream flow and water quality, capable of simulating up to 15 water quality determinants in a
river and tributary system. It allows for multiple waste discharges, withdrawals, tributary flows, and
incremental inflow and outflow, and can operate in steady-state or dynamic modes. When used dy-
namically, the effects of meteorological variations and DO diurnal variations due to algal growth and
respiration can be studied, but dynamic forcing functions cannot be modeled (Brown and Barnwell,
1987).

Other enhanced versions now exist. QUAL2E-UNCAS adds uncertainty analysis features to
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the steady-state simulation mode. Three options are available: sensitivity analysis, first order error
analysis, and Monte Carlo simulation. QUAL2K 2002 (Park and Lee, 2002) expands the QUAL2E
computational structure and adds new constituent interactions, such as algal BOD, denitrification,
and DO change caused by fixed plant. Another version, QUAL2Kw, was developed by Pelletier
and Chapra, modifying their QUAL2K 2003 model (of no relationship to Park and Lee’s QUAL2K
2002) (Kannel et al., 2011). QUAL2Kw includes the ability to model unequally spaced reaches,
multiple loadings input to any reach, non-living particulate organic matter, and two forms of car-
bonaceous BOD (CBOD) to represent organic carbon. It also includes a GA to automatically cal-
ibrate kinetic rate parameters. The Washington State Department of Ecology used QUAL2Kw to
study total maximum daily load for temperature, nutrients, DO, and pH in the Wenatchee River
(Cristea and Pelletier, 2005), model DO in the Bagmati River in Nepal (Kannel et al., 2007), model
DO and pH in the Umpqua River in Oregon (Turner et al., 2009), and assist in automatic calibration

of the QUAL2K 2003 model for the Gangneung Namdaecheon River in Korea (Cho and Ha, 2010).

Delft3D

Delft3D is a an open source modeling suite for simulation in 2-D and 3-D. It contains modules
for simulating flow (Delft3D-FLOW), sediment transport (Delft3D-SED), morphology (Delft3D-
MOR), waves (Delft3D-WAVE), water quality (Delft3D-WAQ), and ecology (Delft3D-ECO) (Deltares,
2015). The modules are dynamically interfaced for data exchange and embedded in a graphical user
interface. Delft3D also includes pre-processing and post-processing modules capable of prepar-
ing grid oriented data, performing tidal analysis of time series data, visualization and animation of
results, and connection to ArcGIS® and MATLAB®. The hydrodynamic module calculates non-
steady flow and transport based on the full Navier-Stokes equations with the shallow water ap-
proximation and can be applied to studies on salt intrusion in estuaries, lake thermal stratification,
cooling water intakes, waste water outlets, transport of dissolved material, river flows, floodplains
with and without vegetation, and reservoir siltation and degradation below dams. The water qual-
ity computations solve the advection-diffusion equation and include the complete natural cycles
of carbon, nitrogen, phosphorus, silicon, oxygen, sediments, bacteria, salinity, temperature, heavy
metals, and organic micro-pollutants. Water quality processes are formulated using linear or non-

linear functions available in a library covering 140 standard substances. Constituents are considered
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“passive,” meaning their concentrations are assumed to have no influence on transport processes.
The water quality module can be used for analyzing water balance, sewage outfalls, nutrient cycling
and eutrophication, sedimentation, and recirculation of cooling water from power and desalination
plants.

Most commonly, Delft3D is used for coastal and estuarial studies. Lee and Qu (2004) used the
Delft3D-FLOW model in three dimensions to model the advective transport of red tides in the Pearl
River Estuary in Hong Kong. They determined bloom initiation locations that correspond to the
tidal and wind conditions during individual fish kill events in the 1998 massive red tide. El Serafy
and Mynett (2008) modeled the hourly stratification and circulation in the Osaka Bay in Japan using
Delft3D-FLOW in three dimensions and investigated improvement of daily operational forecasts
of salinity and current profiles using an ensemble Kalman filter-based steady state Kalman filter
(EnKF-based SSKF). Dissanayake et al. (2012) explored the morphodynamic response to future
sea level rise using a large inlet/basin system located on the Dutch Wadden Sea.

Delft3D is less commonly applied to rivers and lakes. Kacikoc and Beyhan (2014) used the
Delft3D flow and water quality modules to build and calibrate a WQM of a vertically well-mixed
lake in Turkey. The application of Delft3D on river systems has typically been for sediment transport
studies. Edmonds and Slingerland (2008) investigated the stability of fine-grained delta networks
using the flow and morphology modules. Bos (2011) used the model to address the morphological
effects of river sediment diversions on the final 110 km of the Lower Mississippi River, analyzing
the conflicting interests of delta building and maintaining navigable waterways. He determined the

best site from which to divert sediment into the delta and minimize future erosion.

Water Quality Analysis Simulation Program (WASP)

The Water Quality Analysis Simulation Program (WASP) is a dynamic compartment-modeling
program for water systems, developed by the USEPA. It incorporates advection, dispersion, point
and diffuse mass loading, and boundary exchange in one, two, or three dimensions (Wool et al.,
2002). The version 6.0 system consists of two standalone programs: DYNHYD?3 for hydrodynam-
ics and WASPG6 for water quality. The basic principle behind both programs is conservation of mass,
and the hydrodynamics program also conserves momentum in both time and space. Other hydro-

dynamic programs have been successfully linked to the WASP WQM. For example, EFDC was
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used for hydrodynamic calculations and linked with WASP6 for water quality simulation in order
to build a three-dimensional estuary model aimed at evaluating total maximum daily load (TMDL)
scenarios (Wool et al., 2003).

Water quality computations are made using kinetic subroutines, which originate from a library
or can be written by the user. This ability to customize subroutines makes the WASP ideal for
problem-specific models. Two subroutines are included with the version 6.0 model: TOXI and
EUTRO. The TOXI subroutine models “toxic pollution,” such as organic chemicals, metals, sedi-
ments, and tracers. EUTRO models “conventional pollution,” including DO, BOD, nutrients, and
eutrophication. More submodels have been included in the latest version (WASP7), including an
advanced EUTRO (Periphyton), MERCURY, and HEAT. Early versions of WASP were capable
of simulating the transport and transformation of 8 state variables, while WASP7 can simulation
10-14 state variables (“depending on how they are counted”) (Kannel et al., 2011). DO can be
modeled at many levels of complexity depending on available information, ranging from the basic
Streeter-Phelps BOD-DO relationship to a nonlinear DO balance. The WASP model has been used
to analyze the influence of sediment resuspension in Lake Okeechobee (James et al., 1997), study
phytoplankton productivity and nutrient dynamics in a large South Carolina reservoir (Tufford and
McKellar, 1999), assess management scenarios related to urban effluent loads in the Thermaikos
Gulf (Nikolaidis et al., 2006), determine the effects of aquatic macrophytes and hydropower oper-
ations on DO concentrations in a shallow tailwater reservoir (Stansbury and Admiraal, 2004), and

predict concentrations of atrazine in Lake Michigan (Rygwelski et al., 1999).

RMA2/RMA4

RMA?2 and RMA4 are 2D, depth-averaged, finite-element models for hydrodynamics and water
quality transport, respectively. The RMA models are part of the TABS-MD (Multi-Dimensional)
Numerical Modeling System and the Surface Water Modeling System (SMS) (Camp, 2009). RMA2
models free-surface and sub-critical flows without regard for vertical stratification. It uses a finite el-
ement solution of the Reynolds-averaged Navier-Stokes equations for turbulent flow for both steady
and unsteady problems (Donnell et al., 2006). RMA4 models the advective-diffusive transport of
up to 6 constituents, either conservative or non-conservative with a first order decay, and utilizes the

hydrodynamics provided by RMA4 or another hydrodynamics model (Letter et al., 2011). RMA4
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water quality computations can be made on a 1D or 2D finite element grid.

Using RMA2, modelers have determined water levels and flow distribution around islands, flows
at bridges with relief openings, flows into and out of off-channel hydropower plants and pumping
plant channels, flows at river junctions, wetland water body circulation and transport, and gen-
eral water surface elevations and flow patterns in rivers, reservoirs, and estuaries (Donnell et al.,
2006). Crowder and Diplas (2006) and Stewart et al. (2005) used RMA2 hydrodynamic models
for fish habitat flow studies. Using RMA4, modelers have defined horizontal salinity distributions
and intrusion, traced power plant temperature effects, calculated residence times, optimized outlet
placement, identified critical areas for pollutant spills, evaluated turbidity plumes, monitored game
and fish habitat water quality, and defined mixing zones (Letter et al., 2011). Xu et al. (2008) used

RMA?2 and RMA4 to model and predict water quality for a Chinese tidal river network.

Environmental Fluid Dynamics Code (EFDC)

EFDC, first developed by the Virginia Institute of Marine Science at The College of William and
Mary, solves “three-dimensional, vertically hydrostatic, free surface, turbulent averaged equations
of motions for a variable density fluid” (Hamrick, 1996). The EFDC model can also be configured as
a one-dimensional or two-dimensional model in either horizontal or vertical planes. It is appropriate
for surface water systems, including rivers, lakes, estuaries, reservoirs, wetlands, and coastal regions
(Ji et al., 2002). It allows for drying and wetting in shallow areas and has the ability to simulate
discharge control structures, including weirs, spillways, and culverts (Hamrick, 1996). The code
is written in FORTRAN-77 and requires no internal source code modifications for applications
to specific sites; however, since the code is in the public domain source code modifications are
possible. The preprocessor generates the computational grid and interpolates bathymetry and initial
conditions (salinity and temperature) based on observed data. EFDC’s water quality capabilities are
limited to temperature, transport of conservative substances, sediment transport, and eutrophication
processes (Ji et al., 2002), but the model is capable of outputting hydrodynamic solutions in formats
intended for easy linkage to WQMs, such as WASPS (Camp, 2009). Postprocessing capabilities
include time series analysis at user specified locations, plotting, and animations.

Virginia’s James and York River estuaries were the first waterbodies modeled using EFDC. For

the Chesapeake Bay estuary, EFDC has simulated pollutant and pathogenic organism transport,
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power plan cooling water discharges, oyster and crab larvae transport, and dredging and dredge
spoil disposal alternatives (Hamrick, 1996). Ji et al. (2002) used EFDC to build a 1D hydrodynamic,
sediment, and toxic model of the Blackstone River in Massachusetts, simulating concentrations of
sediments and five metals over three storm events. Jin et al. (2002a) assessed vertical thermal and
wind-driven mixing in Lake Okeechobee, Florida using a three-dimensional EFDC model. Caliskan
and Elci (2009) also employed EFDC for a stratified reservoir, looking at selective withdrawal in a
reservoir in Turkey on a 30-minute timestep. The authors determined withdrawal from the bottom
of four available outlets best encouraged mixing in the water column and reduced anoxia. Anderson
(2010) modeled Lake Elsinore in southern California in three dimensions using EFDC under the
effects of a proposed pumped-storage facility for hydropower generation. The author’s simulations
revealed variations in surface elevation associated with pumping and generation, but limited overall
effect on sediment resuspension or stratification in the lake. Xia et al. (2010) employed the EFDC
model to simulate distributions of DO, salinity, temperature, and nutrients in the Caloosahatchee
River Estuary in southwestern Florida, concluding that tidal forcing greatly influences deep layer

DO concentrations in the estuary.

CE-QUAL-W2

CE-QUAL-W2 is a two-dimensional hydrodynamic and WQM used for simulating rivers, lakes,
reservoirs, and estuaries since 1975. The spatial grid is laterally averaged, making it well-suited for
modeling long narrow water bodies; it is not an appropriate model for water bodies with lateral
water quality gradients. The model uses a finite-different approximation to laterally averaged par-
tial differential equations for the governing equations (Kuo et al., 2006). The governing equations
shown below are comprised of x-momentum (horizontal momentum) (II.2), z-momentum (vertical
momentum) (II.3), continuity (I1.4), the equation of state (IL.5), the free surface equation (I1.6), and
conservation of mass/heat (IL.7). These six equations are shown below, where U represents hori-
zontal velocity (m/s), W represents vertical velocity (m/s), B represents channel width, P represents
pressure, T, represents turbulent shear stress acting in the x-direction on the x-face of the control
volume, T, represents turbulent shear stress acting in the x-direction on the z-face of the control
volume, o represents the channel slope angle (where slope, Sy, is equal to tan ¢t), p represents den-

sity, g represents inflow per unit width, 7,, represents water temperature, ® represents concentration
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or temperature, g represents gravitational acceleration, 1) represents water surface location, D, and
D, represent longitudinal and vertical dispersion coefficients, g represents lateral inflow or outflow
mass flow rate of constituent per unit volume, and S¢ represents a laterally averaged source or sink

term (Cole and Wells, 2007).
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CE-QUAL-W?2 models physical, chemical, and biological processes including temperature, DO,
nutrients, algae, and sediments. This complex dynamic model’s detailed computational abilities
include residence time; pH; total dissolved gases; multiple phytoplankton, zooplankton, and macro-
phyte groups; derived constituents including total nitrogen (TN), total Kjeldahl nitrogen (TKN),
and total organic carbon (TOC); and allows users to define additional constituent subroutines to be
included in the water quality algorithm (Mooij et al., 2010). The model includes features that allow
users to add branches and tributaries, link multiple water bodies, and incorporate various types of
inflow and outflow structures. The model code is written in FORTRAN and is open-source, al-
lowing users to make modifications as desired. The spatial grid resolution is user-defined, while
the temporal resolution is determined by time stepping routines which attempt to limit numerical
instability (Cole and Wells, 2007).

CE-QUAL-W?2 has been used widely throughout the United States. In one of the earliest pub-
lished applications of CE-QUAL-W2, the hydrodynamics and water quality of DeGray Lake in

Arkansas were accurately simulated by CE-QUAL-W2 (Martin, 1988). Adams et al. (1997) em-
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ployed a CE-QUAL-W?2 model of the Cheatham Reservoir (on the Cumberland River, located
downstream of Nashville, TN) to determine the impacts of combined sewer overflow (CSO) dis-
charges, concluding that they had little influence on the DO levels in the reservoir. Using a CE-
QUAL-W?2 model of Shasta Lake in northern California, Bartholow et al. (2001) employed mul-
tivariable testing, a structured design-of-experiments method, to minimize computational expense
while analyzing the potential impacts of adding a temperature control device (TCD) selective with-
drawal structure. It was determined that early spring water surface elevation and reservoir storage
had a much greater influence on hypolimnetic nutrient levels than the TCD. The Shasta Lake CE-
QUAL-W?2 model was linked to a food web-energy transfer model in order to assess the impacts
of phytoplankton availability on fish (Saito et al., 2001). Deliman and Gerald (2002) modeled
the Conowingo Reservoir in the Chesapeake Bay watershed with the goal of studying sediment
and nutrient trapping; they made code modifications to account for three distinct particle settling
classes and incorporate scour. By comparing the results from CE-QUAL-W?2 to results from a one-
dimensional Hydrologic Simulation Program Fortran (HSPF) WQM, the authors concluded that
CE-QUAL-W?2 better matched measured DO values and performed similarly to the HSPF model
for other constituents. Bowen and Hieronymus (2003) employed CE-QUAL-W2 with code modi-
fications to study the impacts of nitrogen TMDL reductions on the Neuse River Estuary in North
Carolina. Modifications involved inclusion of three separate algal groups (a feature later incor-
porated in release versions of CE-QUAL-W?2), addition of a linear relationship to correlate light
attenuation to salinity, and allowances for users to define algal boundary conditions as chlorophyll
a concentrations rather than algal organic matter. The prediction of load reduction required to
reach acceptable water quality levels as determined by CE-QUAL-W?2 closely matched the results
of two previous studies of this estuary, one developed using EFDC and WASP and another formu-
lated as a Bayesian probability network model. Debele et al. (2008) linked CE-QUAL-W2 with
a Soil and Water Assessment Tool (SWAT) model in order to simulate the Cedar Creek Reservoir
and its upland watershed in Texas. After calibration, CE-QUAL-W2 was able to reproduce most
observed hydrodynamic and water quality variables; however, some constituent measurements (am-
monium/ammonia, total phosphorus, and total nitrogen) failed to be reproduced due to poor input
data quality and propagation of errors stemming from upstream assumptions. There are numerous

additional studies incorporating CE-QUAL-W2 WQMs in the United States, including those by
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Garvey et al. (1998), Annear and Wells (2002), Nestler et al. (2002), Lung and Bai (2003), Sullivan
et al. (2003), Xu et al. (2007), Berger and Wells (2008), Dhar and Datta (2008), Wang and Yang
(2008), Chung and Gu (2009), Huang and Liu (2010), Lee and Foster (2013), and Singleton et al.
(2013).

International modeling studies regularly employ CE-QUAL-W2 as well. Kurup et al. (2000)
compared the modeling capabilities of two laterally averaged, two-dimensional models, TISAT
(Bloss et al., 1988) and CE-QUAL-W?2, for a stratified Australian estuary. The authors determined
that CE-QUAL-W?2 exhibited far fewer numerical diffusion effects and better predicted surface
salinity. Kuo et al. (2003) produced a calibrated model of the Feitsui Reservoir in Taiwan and con-
cluded that a 50% reduction of total phosphate load would shift the reservoir’s trophic state from
eutrophic/mesotrophic to oligotrophic. Additionally, thermocline depths for two other stratified
reservoirs in Taiwan under different climate conditions (temperature and sub-tropical climates) have
been correctly predicted using CE-QUAL-W2 (Kuo et al., 2006). Chung and Oh (2006) studied the
impacts of turbidity during monsoon season on a Korean reservoir using a calibrated and verified
CE-QUAL-W2 model, in anticipation of developing a real-time turbidity monitoring and modeling
system. Afshar et al. (2011) developed an automatic calibration process and demonstrated using the
Karkheh Reservoir in Iran as a case study. Other uses of CE-QUAL-W?2 outside of the United States
include Gunduz et al. (1998), Saloranta (2006), Choi et al. (2007), Norton and Bradford (2009),
Bonalumi et al. (2012), and Saadatpour and Afshar (2013).

I1.1.3 Decision Support Systems

Decision support systems (DSSs) enable decision makers to utilize available data and models
in a user-friendly environment. Decision makers, including managers, engineers, and operators, are
then able to compare alternatives and scenarios. DSSs for reservoir operations often include many
connected modules, including database management, inflow modeling and forecasting, and monthly
or real-time operation simulation and optimization (Karamouz et al., 2005). These systems should
be designed with the end-user in mind, and usually with the goal of a seamless transition between
these underlying modules. This section describes a few of the primary general DSSs for evaluating

and planning reservoir operations.
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HEC-3/HEC-5/HEC-ResSim

HEC-ResSim is a generalized reservoir/river system simulation model produced by the USACE
Hydrologic Engineering Center (HEC). HEC-ResSim is a component of the larger Corps Water
Management System (CWMS), allowing it to be used in combination with the HEC-DSS data stor-
age tool and other HEC models. HEC-3 and HEC-5 are predecessors of the HEC-ResSim model
(Wurbs, 2005). HEC-3, developed in 1965-1966, simulates operation of reservoir systems for con-
servation purposes. HEC-5, initially released in 1973, duplicates HEC-3’s capabilities with the
addition of simulation of flood control capabilities for real-time operations. HEC-5 allows for vari-
able time intervals, meaning larger timesteps may be used for normal or low flows while hourly data
may be used during flood conditions. HEC-5 also has the ability to compute expected flood damages
and water supply and hydroelectric power yields. A version containing one-dimensional water qual-
ity computations, HEC-5Q, can compute release requirements to satisfy downstream water quality
targets (Dortch, 1997).

Development of HEC-ResSim began in 1996, with the latest version released in 2013 (U.S.
Army Corps of Engineers, 2013b). HEC-ResSim allows modelers to perform project studies as
well as allowing reservoir operators to monitor during real-time events. The tool is comprised of
a graphical user interface, a reservoir operation simulator, data management capabilities, and tools
for graphics and results reporting. The tool allows for timesteps to vary from 15 minutes to 1
day. Users can define operating goals, pool zones, release requirements, hydropower requirements,
downstream control requirements (Wurbs, 2005), but water quality computations are not included in
this tool. Employing HEC-ResSim, Reis et al. (2011) investigated malaria control around a reservoir
in Ethiopia, Park and Kim (2014) analyzed the impacts of climate change on water and hydropower
supply for a multipurpose dam in South Korea, Ziaei et al. (2012) determined monthly operating
rules for a reservoir system in Iran, and Piman et al. (2013) looked at the impacts of future dam

development in the Mekong River basin.

HEC-PRM
The Prescriptive Reservoir Model (HEC-PRM) is a network flow programming model used for
determining generalized reservoir system releases based on minimizing costs “associated with vari-

ous purposes including hydroelectric power, recreation, water supply, navigation, and flood control”
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(Wurbs, 2005). HEC-PRM employs a substantially different modeling approach from HEC-3/HEC-
S/HEC-ResSim and has not been as widely applied. User-supplied bounds on flows and storages are
reflected as constraints, while the objective function of the network problem consists of the sum of
linear approximations of penalty functions (U.S. Army Corps of Engineers, 2003a). HEC-PRM ap-
plications have generally used a monthly time interval for long-term planning. The model assumes
future flows are known and performs computations simultaneously over all time intervals.

In an effort to address competing water users during drought conditions, USACE first devel-
oped HEC-PRM for studies of two major systems in the Missouri and Columbia River basins. The
Missouri River study included six mainstem reservoirs to determine operation plans over a 90 year
period of historical data (Lund and Ferreira, 1996). The only environmental concern included
was maintenance of flows for sand bar nesting birds (Wurbs, 2005). Simulation modeling tested
the final rules. USACE applied HEC-PRM to a review of the Columbia River basin operations at
14 reservoirs, with an objective function reflecting penalties representing hydropower, flood con-
trol, navigation, salmon and steelhead fish seasonal flows, water supply, and recreation (U.S. Army
Corps of Engineers, 2003b). This study used gaged monthly streamflows from 1928 to 1978, ad-
justed to 1980 basin development conditions. Draper et al. (2003) and Jenkins et al. (2004) detail
optimization of water systems in California using the California Value Integrated Network model,
which includes HEC-PRM along with data from simulation models and economic values. This large
model includes 51 reservoirs, 28 groundwater basins, 19 urban water demand areas, 24 agricultural
economic demand areas, and 39 environmental flow locations, all modeled on a monthly timestep
using historical data over 1922-1993. Watkins and Moser (2006) describe how HEC-PRM was used
to study the operations of the Panama Canal system, analyzing the trade-off between hydroelectric
power generation and navigation requirements. They also used the tool to look at the impacts of
the Panama Canal expansion. Additionally, HEC-PRM enabled multiobjective reservoir operations

optimization of the Upper Mississippi system of 14 reservoirs (Faber and Harou, 2000).

MODSIM
MODSIM is a river basin management decision support system developed by Colorado State
University and the Bureau of Reclamation’s Pacific North West Region (Rani and Moreira, 2010). It

is designed for “developing improved basin wide and regional strategies for short-term water man-
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agement, long-term operational planning, drought contingency planning, water rights analysis and
resolving conflicts between urban, agricultural, and environmental concerns” (Labadie and Larson,
2007). MODSIM’s graphical user interface allows for easy connection to database management
components and a network flow optimization model, which contains objective function and con-
straints that are automatically constructed without requiring any user background in optimization
or programming. The objective function provides a means to achieve system targets and demands.
The flow allocation problem is modeled at each timestep of a network flow optimization problem
solved with RELAX-IV, a Langrangian relaxation algorithm. Nonlinearies are handled using a suc-
cessive approximations solution procedure (Sulis and Sechi, 2013). MODSIM includes hydropower
generation capacity and production computations, as well as simulation of stochastically generated
inflows and demands for use in Monte Carlo analysis. According to the version 8.1 user manual
(Labadie and Larson, 2007), MODSIM has modeled reservoir systems in Brazil (Srdjevic et al.,
2004), Egypt, the Phillippines, the Dominican Republic, Korea, and extensively across the western
United States, as well as the Sirvan basin in Iran (Shourian et al., 2008). MODSIM is distributed as
freeware online and allows for user customization and recoding in any of the several .NET languages
provided with the .NET Framework.

Several studies integrate MODSIM water quantity computations with water quality objectives.
de Azevedo et al. (2000) assessed six management alternatives for a river basin in Sao Paulo, Brazil
using a combination of modified versions of the network flow allocation model MODSIM and the
stream flow routing and WQM QUAL2E-UNCAS. Their study addresses both water supply (to-
tal reliability, total vulnerability, and total resiliency) and water quality (stream standard compli-
ance reliability, water quality index, spatial uniformity of water quality, and temporal uniformity
of water quality) performance measures. First the MODSIM model simulates many potential op-
erational scenarios with respect to established priorities, and then the basin flows are input into
the QUAL2E-UNCAS model to simulate concentrations of DO, BOD, total nitrogen, total phos-
phorus, and fecal coliform. The fidelity of this study was limited to annual quarters (temporal)
and one-dimensional computations at 12 stations (spatial). Dai and Labadie (2001) improved this
process by linking QUAL2E with MODSIMQ, a modified form of MODSIM with two additional
water quality constraints. Successive relaxation is invoked to relax these additional constraints dur-

ing initial estimation of the flow solution, and then these flows are input back into the QUAL2E

22



model and concentrations are updated. The process is iterated until convergence of water quality

concentrations.

RiverWare

RiverWare is a generalized river basin modeling tool developed and maintained by the Center
for Advanced Decision Support for Water and Environmental Systems at the University of Col-
orado Boulder (Zagona et al., 2001). Its development was supported by TVA and the U.S. Bureau
of Reclamation (USBR) (Gastelum and Cullom, 2013). It has the capability to model hydrology and
hydrologic processes, hydropower production and energy uses, and water rights and account trans-
actions (Center for Advanced Decision Support for Water and Environmental Systems (CADSWES),
2015). It uses empirical relationships to model basic water quality, including total dissolved solids
(TDS), DO, and temperature. Work is currently underway to include total dissolved gas (TDG)
estimation within RiverWare, largely as a function of releases (Magee, 2015; Witt et al., 2017).
RiverWare includes a “point-and-click” graphical interface, allowing users to visualize and con-
struct a network of simulation objects, linkages, and select applicable physical process algorithms
for each. With computational timesteps ranging from 1 hour to 1 year, RiverWare can be applied
for both scheduling and long-term planning.

RiverWare operates primarily in one of three modes: pure simulation, rule-based simulation,
and optimization (Magee, 2015). Pure simulation involves calculating system outputs given a com-
plete set of inputs, i.e. discharge flows. Rule-based simulation allows the user to employ prioritized
if-then rules to determine solutions. These rules contain logic for operating the system and are ex-
pressed in the RiverWare Policy Language, an interpreted language developed exclusively for River-
Ware (Center for Advanced Decision Support for Water and Environmental Systems (CADSWES),
2015). The optimization mode employs a preemptive linear goal programming approach, which op-
timizes multi-objective problems with user-ranked prioritized goals formulated as soft constraints.
Hydropower production is often the primary objective, which is incorporated within the algorithm
as a lower-priority constraint. RiverWare linearizes nonlinear variables in order to employ a robust
CPLEX linear programming solver; this means that solutions found are approximate and may be
local optima, not global. A post-optimization rule-based simulation is often performed (Magee,

2015).
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Water managers employed the RiverWare environment for release scheduling on both power
and nonpower reservoirs. In 1996 TVA began performing daily scheduling modelings using River-
Ware (Zagona et al., 2001). Since then TVA has used the optimization routine to schedule the 35
reservoirs on the Tennessee River with as many as 800 active user specified constraints (Biddle,
2001; Eschenbach et al., 2001). Using 6 hour timesteps over an operating forecast period of one
week, the TVA RiverWare optimization model had a computational time of about 5 minutes. They
additionally employ RiverWare to build hourly models when this resolution is needed. In 1996
the USBR transitioned from their Colorado River Simulation System, first developed in the 1970s,
to RiverWare for long-term monthly planning on the Colorado River and nine tributaries (Zagona
et al., 2001). Fifty operating policy-based rules are incorporated. It also includes TDS model-
ing, but these calculations ignore temperature effects, precipitation, and ion exchange; additionally,
reservoirs are assumed to be completely mixed throughout. The USBR also employs RiverWare
for determining monthly operations on the Colorado River and daily operations on the three Lower
Colorado projects (Hoover Dam, Davis Dam, and Parker Dam). RiverWare has been linked with the
three-dimensional groundwater model MODFLOW and applied to the Middle Rio Grande Basin in

New Mexico (Valerio et al., 2010).

CalSim/WRIMS

The Water Resource Integrated Modeling System (WRIMS), formerly referred to as the Califor-
nia Water Resources Simulation Model (CalSim) and renamed to avoid confusion with its specific
application to the California system, is a simulation model for planning and management of large
river basins (Draper et al., 2004). CalSim-I was developed by the California State Department of
Water Resources and the USBR for application to the State Water Project and the federal Central
Valley Project, and later enhanced the CalSim-II and CalSim 3.0 versions. The model employs the
Water Resources Engineering Simulation Language to allow users to define the system, priorities,
and operational constraints; this language is based on the Java language and structured query lan-
guage (SQL) statements. Constraints may be expressed as either hard or soft. Users supply model
information as text files in a defined tree structure and time series data in HEC-DSS files. Water is
routed through the system network using the XA solver, a mixed integer LP solver. Because it is

not a detailed operations model, CalSim cannot capture forecasts and actual operations of project
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facilities; however, the flexibility of the model allows it to simulate the impacts of complex new
environmental water demands (Wang et al., 2011).

The CalSim-II model representing the Central Valley Project-State Water Project system in-
cludes 24 surface reservoirs and their interconnected flows. It simulates operations on a monthly
timestep, including complex water right permit requirements and project sharing agreements. These
include transport fish flows and water quality standards that are translated into flow equivalents.
Salinity is estimated externally at four water quality stations by an artificial neural network (ANN)
which has been previously trained using a one-dimensional hydrodynamic finite difference model

of the channel system (Draper et al., 2004).

II.2 Surrogate Modeling Techniques

Computer simulation models attempt to replicate the behavior of natural systems using physically-
based mathematical equations and assumptions, when appropriate. These models are utilized in
numerous problem categories, including “prediction, optimization, operational management, de-
sign space exploration, sensitivity analysis, and uncertainty analysis” (Razavi et al., 2012a). The
degree of realism a simulation model exhibits refers to its fidelity. Models that are considered “high-
fidelity” are better able to reproduce real-world systems, but may also require a large amount of com-
putational time. Depending on the intended application in which a model will be employed, com-
puter models may need to be run hundreds or thousands of times; computational expense quickly
becomes prohibitive (Razavi et al., 2012b). Surrogate modeling methods have been developed to
overcome this hurdle. Surrogate modeling, also known as metamodeling, model emulation, proxy
modeling, and functional mapping, can be thought of as the creation of a “model of a model” to
approximate a simulation model response. The model response surface is a function of the input
variables that influence the original simulation model. Computationally expensive simulation mod-
els are models of the true environment; therefore, if the real system is considered to be a “black box™
model, associated simulation models can be considered metamodels which predict the response of
the original system.

Differing from response surface surrogates, lower-fidelity surrogates are simply less-detailed

versions of original simulation models. They retain “the main body of processes modeled in the
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original simulation model” (Razavi et al., 2012a). Examples of lower-fidelity surrogates include
coarse grid and large numerical time step versions of high-fidelity simulation models, which gener-
ally have fine spatial grids and small time steps. This literature review will not cover lower-fidelity
surrogates; instead the focus is on response surface methods, which are not structured mathemati-
cally similar to an original model.

Surrogate models are commonly used as replacements for expensive simulation codes to be
included within optimization problems. Metamodel quality is important, as metamodel-enabled
optimization performance has been found to be much more dependent on surrogate accuracy than
the search technique (Johnson and Rogers, 2000; Zou et al., 2007). Metamodels can also be used
to aid in model calibration, deal with noisy or missing data, and assist in determining relationships
between variables and their levels of influence on a particular outcome (Forrester et al., 2008).
Razavi et al. (2012a) provides six problem characteristics that should be considered when choosing
a surrogate modeling technique:

1. Whether the surrogate will be used for either searching or sampling. Search analyses include

optimization problems and uncertainty-based calibration procedures.

2. Computational budget constraints. This may limit the number of original model evaluations
available to construct and train a surrogate.

3. Problem dimensionality. As the number of input variables increases, surrogate modeling may
become infeasible.

4. Number of outputs required. For example, multi-output surrogates are required for problems
where outputs of interest vary with time and space.

5. Exact emulation versus inexact emulation. Simply put, “an emulator is a statistical approxi-
mation of a simulator” (O’Hagan, 2006). Should the surrogate match all training data exactly,
or be a smoothed approximation?

6. Availability of original simulation model developers, as they can provide insight into surro-

gate performance in relation to the original model.
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I1.2.1 Design of Experiments

Creation of a surrogate model typically starts with a design of experiments, which will generate
an initial sample of training data. The response surface will be computed to fit this set of initial
data and, depending on the model form, parameter values are estimated. Space-filling strategies
are employed to ensure that the set of training data captures all model behaviors within the bounds
of exploration. Common techniques to produce a space-filling set are Latin hypercube sampling,
symmetric Latin hypercube sampling, full factorial design, fractional factorial design, and central
composite design. For a large number of design variables, deterministic methods (e.g., full facto-
rial design, fractional factorial design, and central composite design) may become computationally
expensive. Random methods (e.g., Latin hypercube sampling and symmetric Latin hypercube sam-
pling) can be scaled up to accommodate a large number of design variables, lessening computational
expense (Razavi et al., 2012a).

The selection of training data depends on the original model. If a surrogate is being used to
replicate field data, a space-filling sampling plan can be implemented from the onset. In the case
of a high-fidelity computer model, multiple runs may be required in order to achieve an adequate
set, and even then there is no guarantee that the set will be space-filling. The size of the training
data set is important; if the set is too large computational savings are diminished, but if the set is
too small it may not capture detailed behavior of the original model. Search spaces can become
very large for high-dimensional problems, resulting in a large number of training points to cover the
space sufficiently (Razavi et al., 2012a). O’Hagan (2006) provides a comparison of a 25-D space
versus a 5-D space, noting that 200 training points will lead to sparse coverage and dense coverage
for each, respectively.

The minimum number of training points required as well as the maximum number of training
points that will still allow feasibility are partly determined by the function approximation technique
(Razavi et al., 2012a). Techniques that require as many correlation functions as training points,
such as kriging, radial basis functions (RBFs), and Gaussian emulator machines (GEMs), become
computationally expensive as the training set grows. GEM applications suffer from this the most,
but it is also especially true for kriging, in which the determination of correlation parameters is per-

formed by maximum likelihood estimation. Design sites in kriging applications are “typically less
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than a few thousand” (Razavi et al., 2012a). RBFs can handle a larger number of training points, but
the correlation parameter tuning process may become computationally challenging (Razavi et al.,
2012a). ANNSs are capable of handling a very large number of training sites; for example, Broad
et al. (2005) used 10,000 data points to calibrate an ANN surrogate for a water distribution system
simulation.

Dimensionality also plays a role. O’Hagan (2006) notes that there is little coverage in the liter-
ature related to high-dimensional kriging surrogates used in practice, but that kriging metamodeling
can likely be employed effectively on current computing platforms for problems up to 50-D. Jones
et al. (1998) found that at least n = 10k space-filling initial points, where k is the dimension size, are
necessary for kriging and RBF models; however, Sébester et al. (2005) notes that “rules of thumb”
such as this have not been rigorously proven and that (in the context of employing surrogate models
in optimization frameworks) “to date there is no clear understanding of how this figure should be
chosen and what influence the choice has on the performance of the optimizer.” Sébester et al.
(2005) concluded from numerical experiments using an uncertainty-based, metamodel-enabled op-
timizer that an initial sample size between 35% and 60% of the total computational budget is ap-
propriate. If the size is too large, points are extraneously placed in a space-filling manner (rather
than in regions of interest). If the size is too small, the results of an expected improvement-based
objective function become nearly meaningless. Razavi et al. (2012b) suggest employing a screen-
ing method for high-dimensional problems in which the design space is screened to “identify and
remove decision variables that are less important.” Unfortunately, this process can be difficult and

may decrease approximation accuracy if relevant parameters are fixed via screening.

I1.2.2 Function Approximation Models

Response surface surrogate modeling encompasses numerous techniques, which fall under the
main categories of exact and inexact emulators. An exact emulator fits training sites exactly with no
error, while inexact emulators allow for smoothing of noisy data sets. Typically, inexact emulator
models are suitable for replicating physical experiments, which tend to have some element of ran-
dom noise, while exact emulators are appropriate for approximating deterministic computer models

(Razavi et al., 2012a). Viana and Haftka (2008) searched the Publish or Perish software system and
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Google Scholar databases to determine how the number of publications related to surrogate model-
ing has changed over time. Figure II.1(a) shows their findings over all research fields, while Figure
II.1(b) narrows the research field to just the optimization arena. In their study, “response surface”
refers to polynomial response surface methods. While support vector regression and ANNs are the
most dominant published forms for surrogate modeling overall, in optimization problems all tech-
niques are fairly equal in number in the literature as of the year 2008. A later update of this study of
the literature revealed the continuation of these trends (Viana et al., 2014). These four commonly-
employed categories of function approximation models are discussed in detail in this section, in
addition to radial basis function models, which are closely related to kriging, and Shepard’s method
for inverse distance weighting, as it can be engaged as a surrogate model. Relevant applications of

these and other surrogate models in the water resources literature are covered in section 11.2.4.

Polynomial Response Surface Models

Box and Wilson (1951) introduced the earliest work in response surface surrogates. In their
classic paper, they developed a process to find optimal operating conditions for chemical production
using polynomial functions to estimate output dependent on several input variables. Their work has
become the basis of response surface methodology. Other techniques that typically incorporate
polynomial models as function approximations, including Taylor series expansion and trust-region
methods, can be thought of as early applications of the response surface concept (Razavi et al.,
2012a).
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Figure II.1: Evolution of surrogate modeling publications (Viana and Haftka, 2008).
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An m-order polynomial approximation of the true response f as a function of sampling points

X = {x1), x®) . x"T is written as

n
fA(m,x,W) =wo 4 wix+wax® + -+ wx" = Zw,-xi (IL.8)
i=0

Using the true response vector y = {y(l),y(z), ey y(")}T, the vector of weights can be determined
by least squares (Forrester et al., 2008). Other function forms can be used, including exponentials
(Blanning, 1975), but polynomials are most common due to their simplicity, minimal expense, and
clarity of parameter sensitivity (Fen et al., 2009). Since prediction errors can occur at training
data locations, polynomial surrogates are inexact emulators; however, if prior knowledge suggests
that the original function may be of a similar form to a polynomial, it becomes be a strong option
(Razavi et al., 2012a). Polynomial models are typically not applicable to models with more than 10
input variables or when the response surface is highly nonlinear (Simpson et al., 2001). Non-linear,
multi-model, multi-dimensional design landscapes are often encountered in engineering problems.
The ranges of variables can be reduced through trust-region methods, but for highly dimensional
problems obtaining the amount of data necessary to estimate high-order polynomial terms may not
be viable (Forrester and Keane, 2009).

Modelers are tasked with selecting the polynomial order size, m. Razavi et al. (2012a) state that
second-order polynomial functions are the most popular order size employed as response functions;
however, greater values of m generate more accurate predictions, but may overfit noisy data if too
many terms are allowed. Forrester et al. (2008) suggest using cross-validation to determine an
appropriate value for m. Cross-validation involves splitting the training data into several equal
subsets, removing each subset individually, fitting the model, and determining prediction errors at
all input locations. This process is performed for several values of m, and the value with the lowest
prediction error is chosen. More information about cross-validation can be found in the work of

Viana et al. (2010).

Inverse Distance Weighting (Shepard’s Method)
Shepard’s method is an inverse distance weighting method for construction of global interpola-

tions “by blending local interpolants using local-support weight functions” (Thacker et al., 2010). It
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is useful for constructing interpolations from irregularly spaced data points. In his paper introduc-
ing the original form of the method, Shepard states the desire to develop a smooth two-dimensional
interpolation function, meaning the response surface is continuous and once differentiable. He con-
cludes that this method is generalizable to higher dimensional spaces. Shepard also notes that “the
function should be suitable for computer application at reasonable cost” (Shepard, 1968).

The original Shepard algorithm is a local method characterized as weighted sums of local
approximations f; with weights Wi (x) that when normalized as a set form a partition of unity.
The overall support is considered local because the weight functions have local support; in other
words, they are nonzero near the region of interest and go to zero at farther distances. For a set
of irregularly-spaced data points {x!,x?,...,x"} and associated scalar values f; for each point, an

interpolated approximation for the underlying function can be written as

fx)=5—r (IL.9)

where the weight functions are defined by

1

MO =

(I1.10)

where typically p = 2, but can be set to other values (Thacker et al., 2010). Weight functions can

be written in various forms, including a Gaussian form of

Wi (x) = o Ix—x"|?/(20%) IL11)

as used for applications in Fasshauer (2007). The original form of Shepard’s method’s benefits
include implementation simplicity, no required parameters to be tuned, ability to work in any di-
mensional space, and capability to interpolate scattered data on any grid and with coinciding nodes.
Deficiencies include slow performance with large datasets and large weights for distant nodes in
high-dimensional spaces (ALGLIB, 2014).

Franke and Nielson (1980) propose a modified Shepard’s method which allows for greater lo-

cal support and replaces the nodal values (f;) with a local approximation function P,(x). Weight

31



functions for the modified Shepard’s method can be written as

Wk (X) =

® g —x®Omn. 1
(Rw —|x—x Hhi i

k
R x—x®)|

where the constant REf ) is a radius about the point x¥) in which training points are allowed to

influence prediction. Franke and Nielson suggest using the relationship R,, = % % where D is the
maximum Euclidean distance between any two data points and N,, is a positive integer parameter
that must be tuned. Renka (1988) tested several variations of Shepard’s method and tuned this
parameter by testing values of »,,, seeking to minimize error. Additional parameter considerations
are required for non-constant values of P(x), such as polynomial functions (Thacker et al., 2010).
Modified Shepard’s method improves performance for large datasets and eliminates “flat spots”

near nodes when combined with a polynomial function, but computational expense may increase

for high-dimensional spaces (above 5) (ALGLIB, 2014).

Radial Basis Function (RBF) Models

RBF models approximate smooth, continuous functions as a combination of weighted symmet-
rical basis functions. Sébester (2003) relates this process to synthesizers which imitate the sounds
of various musical instruments by weighting a combination of tones. Bases are centered at train-
ing points in the space, resulting in interpolated outcomes. Assuming data is noise-free, as is the

case when data is collected from deterministic computer simulations, an approximation of the true

response f as a function of sampling points X = {x(l),x(z), .. ,x(”)}T is written as
o~ Tc .
Fx) =wi¥ =Y wiy(|lx—c?|) (IL.13)
i=1

where n, is the total number of basis centers, ¢\ is the ith basis function center, Y are the basis
functions, and W is a vector containing basis function values evaluated at the Euclidean distance
between prediction sites and centers (Forrester et al., 2008). RBF models can be augmented by
adding a polynomial term to equation (II.13), which may provide additional global support (Elsayed
et al., 2012). Basis functions can be of many mathematical forms, including linear, cubic, and
thin plate spline. Gaussian, multiquadric, and inverse multiquadric basis functions can provide

better sensitivity, but require the estimation of additional parameters to specify the spread of basis
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function influence. Gaussian basis functions allow modelers to easily estimate prediction error at
any location, making them a popular choice. Since basis functions are symmetric in all directions,
RBF models treat all influencing variables equally; to eliminate the influence of varying variables
units and scales, input data is generally normalized to a [0,1] interval (Razavi et al., 2012a).

The weights vector is computed by w = G~ 'y, where G, the Gram matrix, is defined by G =
v(|[xD —x)||) fori,j=1,...,n. (Forrester et al., 2008). If two training points in the set are very
closely located to each other, G may become ill-conditioned (Micchelli, 1986) and the computation
of the weights vector becomes numerically unstable. The correct estimation of the weights vector
w allows the model to accurately simulate at training point locations, but it is also important to
carefully set additional parameters in order to minimize errors in the remainder of the design space.
This can be performed by finding the parameters that produce the minimum error estimate during

cross-validation (Forrester et al., 2008).

Gaussian Basis (Kriging) Models

The kriging model method, also known as Gaussian process modeling, was first developed by
and named after Danie Krige, a South African mining engineer who used the method to estimate
gold ore spatial patterns (Krige, 1951). The kriging model consists of a combination of localized
basis functions, also known as correlation functions. The most commonly used is an exponentially
decaying correlation function of the form

Lon 1 p;
- 421 0;x;" —x;["

yli) —¢ - (I1.14)

where k is the number of input variables and 6; are correlation or width parameters (Simpson et al.,
2001). The kriging basis function above is mathematically similar to the Gaussian RBF form, with
two notable differences. The vector 8 = {6;,6,,...,6;}T of correlation parameters allows each
variable to have a unique basis function width parameter, and p; is a “smoothness” parameter than
can be tuned. Larger values of the correlation parameter 6; result in extended influence, and by
comparing values a dominant input variable can roughly be inferred (Forrester et al., 2008). By
allowing independent correlation parameters for each input dimension, sensitivities to units of mea-

surement are negligible. This suggests that normalizing input data to unity is not as important in a
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kriging model as it is for RBF models (Jones, 2001). Razavi et al. (2012a) suggest that large corre-
lation parameter values indicate nonlinear behaviors in that particular dimension and small values
indicate a smooth function with minimal variances. Larger values of p; increase the smoothness of
the Gaussian basis curves, while very small values suggest no correlation between a point and its
neighboring space; in other words, the function is discontinuous at this location. When all values of
p; are fixed at 2 and all values of 6; are equal, the kriging basis function is the same as the Gaussian
(Forrester et al., 2008). Considering this, kriging models can be either exact or inexact emulators
depending on parameter choice (Elsayed et al., 2012).

The kriging method treats interpolated outcome values as regionalized variables, which have
characteristics of both random and deterministic variables. Regionalized variables continuously
vary in space, assuming that points near each other are spatially correlated and points far from
one another are statistically independent (Elsayed et al., 2012). The kriging prediction function is

written as

yx) =fd+yT (y—-17) (IL15)

where [l is the expected mean value, W is a vector of correlations between training data and the
prediction, ¥ is the correlation matrix, and y is the vector of observed sample values. A detailed
derivation of (II.15) can be found in Forrester et al. (2008). Like RBF models, kriging models may
be augmented with a polynomial function to provide additional global support; this is often taken to
be a constant term, as shown above in (II.15) (Srivastava et al., 2004). In total, the model has 2k +2
parameters: [, 62, {01,6,,...,6:},and {p1,p2,...,pr}. These can be computed by maximum like-
lihood estimation (Elsayed et al., 2012); however, due to the expense of estimating the correlation
and smoothness parameters, kriging is most useful for cases where the original simulation model is
exceptionally computationally intensive (e.g., computational fluid dynamics models) (Forrester and
Keane, 2009).

The kriging method “treats the deterministic response of a computer model as a realization of
a stochastic process, thereby providing a statistical basis for fitting” (Razavi et al., 2012a). The
estimated mean square error for a kriging model at a location x in the design space can be computed

by
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as given in Forrester and Keane (2009). This allows kriging models to be easily used for approx-
imating uncertainty at any given point in the design space, which makes it a popular choice for

surrogate-based optimization.

Support Vector Regression (SVR)

Support vector machine (SVM) theory was first developed at AT&T Bell Laboratories in the
1990s, making it a newer family of methods (Forrester and Keane, 2009). SVM is traditionally a
classification approach rather than a method for function approximation (Basudhar et al., 2012).
Methods have been developed from SVM theory that can be used for approximation, including sup-
port vector regression (SVR). SVR can be thought of as an extension of RBF and kriging methods
due to many similarities (Forrester et al., 2008).

SVR models incorporate a margin € in which errors are acceptable in the sample data, and these
errors are not allowed to affect predictions. Training points within the +& band, also called the
e-tube, are ignored for prediction. The predictor is defined only by exterior points and points on the
region boundary; these training points form support vectors (Forrester et al., 2008). SVR’s ability
to reduce noise sensitivity makes it useful for noisy models and inexact emulation (Razavi et al.,
2012a). SVR models also incorporate a user defined constant C, which determines the linear rate of
influence loss for points outside of the e-tube (Forrester et al., 2008).

The SVR prediction formulation is similar to that of the kriging model, consisting of the sum
of weighted basis functions and the bias term u. Basis functions are also referred to as kernels
in SVM literature; popular choices include linear, d degree homogeneous polynomial, d degree
inhomogeneous polynomial, Gaussian, and kriging. A lengthy derivation involving constrained
convex quadratic optimization and introduction of Langrange multipliers results in a prediction

function of the form

F(x)=p+ f(oﬁ@ — o~ D) (x.x) (IL.17)

i=1

Basis functions of various forms are incorporated via space mapping and kernel substitution, and
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support vectors can be found by forming a dual variable optimization problem. The bias term u
can be computed through exploiting the idea that at the solution of the dual variable optimization
problem the products between dual variables and constraints go to zero; this is one of the Karush-
Kuhn-Tucker conditions for optimality. The user-defined constant C governs “trade-off between
model complexity and the degree to which errors larger than € are tolerated” and can be computed
by testing values of varying orders of magnitude and selecting the one with the lowest resulting
RMSE. C can be sensitive to the scaling, so the values in y should be normalized to unity. To
properly assign &, the source of data must be considered. The precision limits of measurement
can be used for ¢ if training data comes from physical experiments, but for data stemming from
deterministic computer simulations € can be calculated by using the v-SVR technique (Forrester
et al., 2008). The two parameters € and C are mutually dependent, meaning a change in one may
influence the effect of the other on prediction (Razavi et al., 2012a).

SVR is a powerful prediction method for large, high-dimensional data sets, but due to the
method being relatively young there is little implementation of its use in engineering design in
the literature. Another possible reason for its limited use is the lack of large amounts of data in
some high-dimensional engineering design problems. In these cases, it may be necessary to use
all available data for model training, and SVR’s fundamental idea of incorporating data subsets be-
comes unattractive. Also, SVR training time is longer than other surrogate methods, making SVR
models difficult to implement in problems that involve surrogate refinement within an optimization

loop (Forrester and Keane, 2009).

Artificial Neural Networks (ANNs)

Feedforward ANNSs are flexible tools for function approximation composed of neurons assem-
bled into a multi-layer architecture. They have been used for a variety of complex problems in-
cluding speech and handwriting recognition, face recognition, currency exchange rate prediction,
chemical processes optimization, cancerous cell identification, and spacecraft trajectory prediction
(Cheng and Titterington, 1994). The neurons are multiple linear regression models with a nonlin-
ear transformation on y. If input variables to each neuron are given by {x;,xX,...,X,}, then the

predicted output can be written as
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y

where 1 =Y ,w;x; + . P represents the “bias value” of a neuron, T is a user-defined slope
parameter, and w; are model weights (Simpson et al., 2001).

There are two main steps in constructing an ANN. First the architecture must be specified, and
secondly the network must be trained. Modelers specify the model architecture through several
parameters, including the number of hidden layers, number of neurons in each hidden layer, and
the form of transfer functions. These decisions can be subjective, but processes have been devel-
oped for structure development. These include methods based on growing or pruning strategies,
network geometrical interpretation, and Bayesian statistics. Unfortunately, these methods can be
computationally extensive as they involve testing a variety of network structures; considering this,
the appropriate architecture of ANN applications in the literature are generally decided by trial-and-
error (Razavi et al., 2012a). The architecture parameters are combined, ANN models are trained for
these network configurations, and the architecture resulting in the lowest error metric measured on
the test set is chosen (Liong et al., 2001; Zou et al., 2007; Shrestha et al., 2009). As in all model-
ing approaches, the smallest architecture with an acceptably low error should be used to minimize
computational expense, both during training and prediction. Networks involving “tens of thousands
of parameters” have been successfully built, but data management and calculation of model param-
eters can be very expensive. Once the architecture is defined, model weights are determined when
a training process converges upon minimized validation errors; this is often performed by back-
propagation (Simpson et al., 2001). Training is typically performed multiple times, as there may be
many sets of weights that can represent the training data satisfactorily.

ANNSs can be used as inexact emulators for noisy data sources or exact emulators for deter-
ministic computer code. With a large enough structure ANNs can perform exact emulation of
deterministic code, but this may lead to poor performance in unsampled areas of the design space
and a risk of overfitting (Razavi et al., 2012a). Considering this, ANNs are more suitable for physi-
cal experiments than deterministic experiments (Razavi et al., 2012b). Tamura and Tateishi (1997)
proved theoretically that ANNs with two hidden layers require fewer hidden neurons to perform as

exact emulators as compared to ANNs with only one hidden layer; however, in a review of response
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surface modeling literature Razavi et al. (2012a) conclude for water resources applications single
hidden layer ANNs are most popular. ANNS are capable of handling large amounts of training data
and it is generally believed that more input data results in a better-generalized model; however,
large amounts of data can require additional computational time for training and may trap the train-
ing process at a local (rather than global) solution (Zou et al., 2007). Finally, it should be noted that
some references, including the MATLAB® Neural Network Toolbox, consider RBFs as a type of

feedforward ANN (Razavi et al., 2012a).

I1.2.3 Analysis Frameworks

Once a surrogate model is built, it can be utilized in frameworks of various types. There are four
main “families” of surrogate-enabled frameworks, and each specific type may only be applicable for
certain uses (i.e., searching versus sampling) (Razavi et al., 2012a). Framework development is an
important step in the utilization of surrogate models for practical problems and must be considered
in the initial planning stages, because certain surrogate-enabled frameworks can be more easily
implemented using specific surrogate model forms. A key feature in the frameworks discussed
below is search point selection method, which can be performed as one-stage or two-stage. Most

current approaches employ two-step search point methods (Jones, 2001).

Basic Sequential Framework (Off-Line)

The simplest analysis framework which employs metamodels is the basic sequential framework.
It can also be referred to as an off-line framework because the metamodel requires no updating
during analyses. This framework follows a three step process:

1. Develop a design of experiments in which a predetermined number of samples are taken
throughout the feasible space and, in the case of a search analysis, objective function values
at each location are evaluated by the original simulation model.

2. A surrogate model is built and parameters are tuned.

3. The surrogate model can be substituted in place of the original simulation model for perform-
ing time-intensive analyses.

Since the majority of computational budget is allocated during the design of experiments, the num-

ber of locations sampled initially is much higher than in the more-advanced frameworks discussed
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later. This one-stage training point selection method can provide a globally stronger surrogate model
initially, but the model may not accurately represent the original model in regions of interest. This
could lead to failure in both search and sampling applications (Razavi et al., 2012a). In order to
avoid poor performance in regions near optimal conditions, Bliznyuk et al. (2008) narrowed the
search region by applying optimization techniques directly on the original model, and then fit a
surrogate model only in the local optimal region. While this may be beneficial for off-line prob-
lems where global accuracy is not required, applying optimization procedures on original simulation

models may not be computationally feasible.

Adaptive-Recursive Framework

The adaptive-recursive framework is similar to a basic sequential framework, with the addition
of surrogate refinement using a two-stage point selection process. This framework also follows a
three step process:

1. Develop a design of experiments in which a predetermined number of samples are taken
throughout the feasible space and, in the case of a search analysis, objective function values
at each location are evaluated by the original simulation model.

2. A surrogate model is built and parameters are tuned.

3. Identify regions of interest using a search or sampling algorithm, sample additional points in
this region using the original simulation model, and repeat Steps 2 and 3 until convergence is
reached.

When used for optimization searching, the best point found during the framework process is gen-
erally considered the final optimal solution (Razavi et al., 2012a). Zou et al. (2007) employed an
adaptive strategy for ANN-enabled optimization of a water quality modeling problem, citing previ-
ous linked ANN optimization studies which failed to perform well under off-line sampling. While
the adaptive-recursive framework seeks to address the drawbacks of the off-line method, there are
cases where this method may fail to find solutions in the true function optimal region (Jones, 2001).
This may result in situations where new sampling points are added in close proximity to preexist-
ing training points (thereby adding no additional knowledge for response surface training) or may

converge to local optimal solutions.
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Metamodel-Embedded Evolution Framework

The metamodel-enabled evolution framework is similar to the adaptive-recursive framework but
is designed for use with evolutionary optimization procedures. With this method, an initial sampling
plan stemming from a formal design of experiments is not required. Rather, first a population-based
optimization algorithm such as a GA is used for several generations, computing function values
from the original simulation model. These data points are used to fit a surrogate model. In all
subsequent generations, individuals are evaluated by either the surrogate or the original model using
a pre-defined process, which has been termed evolution control by Jin et al. (2002b). Jin explains
that this can be performed two ways: either by designating a certain number of individuals (called
controlled individuals) within each generation to be evaluated using the original fitness function, or
to introduce controlled generations in which all individuals in that generation are evaluated by the
original fitness function. All other individuals are evaluated by the surrogate model. Depending on
the approach taken, modelers must decide either the number of controlled individuals or controlled
generations; the process can be made further complex by adaptively changing these parameters
as the optimization algorithm progresses. The surrogate model is refitted occasionally as training
points are added to the set. In order for an optimization process to find global optima under this
framework, the evolutionary algorithm chosen must be a global optimizer and any individual in any
generation should have some probability of being solved through the original simulation model.
Otherwise, failure modes similar to those occurring in an adaptive-recursive framework are possible
(Razavi et al., 2012a). It is also important that the initial collection individuals are well-distributed
and approximate the response surface well, as all following generations are conditioned from this
set of individuals. If this is not fulfilled, the evolutionary optimization algorithm may fail to find a

global solution (Broad et al., 2005).

Approximation Uncertainty-Based Framework

The approximation uncertainty-based framework relies on the basic shell of the adaptive-recursive
framework while incorporating surrogate model uncertainty in the sampling decision process. This
method has been extensively used in structural (Bichon et al., 2013; Sébester et al., 2005), aerospace
(Basudhar et al., 2012; Queipo et al., 2005), manufacturing (Boukouvala and lerapetritou, 2013;

Chen et al., 2012; Huang et al., 2006), and petroleum engineering (Horowitz et al., 2010; Queipo
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et al., 2002) fields, but with the exception of the work of Mugunthan and Shoemaker (2006) and
(di Pierro et al., 2009) it has not been well-employed in the water resources arena. While the
adaptive-recursive framework assumes surrogate approximate values to be true, this may not be so
in many regions of the design space, including at globally optimally regions. This technique re-
lies on an approximation uncertainty quantity, which is readily available in certain surrogate forms
including kriging and Gaussian RBF models. The three steps involved in this framework are:

1. Develop a design of experiments in which a predetermined number of samples are taken
throughout the feasible space and, in the case of a search analysis, objective function values
at each location are evaluated by the original simulation model.

2. A surrogate model is built and parameters are tuned.

3. Optimize a new surface function, which balances a desire to minimize model uncertainty and
find globally optimal results.

The third step aims to balance exploration and exploitation (Razavi et al., 2012a). Different methods
have been developed to perform the third step, but the maximization of an expected improvement
function (EIF) approach can be considered the most advanced. An EIF can be used to select training
data to be added to the surrogate model of optimization results by calculating the “expectation that
any point in the search space will provide a better solution than the current best solution based on
the expected values and variances predicted” by the current surrogate model (Bichon et al., 2013).

The EIF at any location x for a kriging metamodel prediction can be expressed as

EI(x) = (f(x*) —uf(x)) @ (f(x)_”f(x)) +07(x)¢ <f(x)_“f(x)> (IL19)

G]?(X) Gf(X)

where f(x*) is the current best function value located at x* found by the optimization routine, ,ujy.(x)
is the mean of the kriging prediction at X, Gf(X) is the standard deviation of the kriging prediction
at x, and ® and ¢ are the standard normal cumulative distribution and probability density functions.
A global optimization routine must be used to determine the maximum of the EIF; the branch-and-
bound algorithm (Jones et al., 1998), the DIRECT method (Bichon et al., 2013), and GAs (di Pierro

et al., 2009) have been used successfully for this application.

Developed by Jones et al. (1998), the efficient global optimization (EGO) algorithm is a commonly-
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used optimizer which utilizes an EIF for sampling point search. EGO works well when the function
shape and smoothness are generally well-estimated from an initial collection of training points; how-
ever, if this is badly approximated due to poorly distributed design sites, the process may converge
slowly or prematurely stall (Jones, 2001; Razavi et al., 2012a). EGO will not attempt to add training
points identical to those already in the set, but as the optimizer converges there is potential to create
an ill-conditioned correlation matrix in the kriging model due to newly-added points being located
near previously sampled points in the training set. This can be overcome by using an uncertainty
ratio to remove points that are deemed “too close” to other points or employing a “layering” method
which “uses separate kriging models for short and long correlation lengths” (Bichon et al., 2013).
The EGO algorithm’s initial formulation is intended for single objective optimization, but it has
been extended to perform multiobjective optimization as well. ParEGO (Knowles, 2006) does this
by applying weighting factors to aggregate all objectives into a single function, SMS-EGO (Pon-
weiser et al., 2008) incorporates multiple surrogates to simulate multiple objectives, and Shinkyu
and Obayashi’s multi-EGO procedure embeds a multiobjective GA into an EGO-based framework

(Shinkyu and Obayashi, 2005).

I1.2.4 Response Surface Surrogate Usage in Water Resources

Just as Viana and Haftka (2008) found in their literature search over all fields, earlier applica-
tions of metamodeling in water resources generally incorporated regression or ANN models. Krig-
ing, RBF, and SVM models have gained popularity in recent years, as well as the combination of
multiple surrogate model forms. Surrogate models have been employed in water resources appli-
cations for various purposes, with the two primary purposes being to aid in calibration parameter
selection and for use within optimization routines for operations and design. Automatic calibra-
tion applies an optimization algorithm to an objective function which aims to minimize the error
between predictions and measured values (Shoemaker et al., 2007). Automatic calibration can be
superior to traditional “trial-and-error” methods, which can be inefficient, oversubjective, and un-
reliable (Zou et al., 2007). Surrogate models have also been used within optimization routines as
replacements for high-fidelity models, which are sometimes necessary for computing constraint and

objective function values.
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Surrogates in Automatic Calibration Procedures

The majority of water resources publications using metamodels to aid automatic calibration rou-
tines have been designed for watershed models. Liong et al. (2001), Khu and Werner (2003), and
Khu et al. (2004) used ANN metamodels in automatic calibration procedures to find optimal param-
eter values for the rainfall-runoff models HydroWorks, the Storm Water Management Model, and
MIKE 11/NAM, respectively. These procedures use feedforward ANNSs to estimate the response of
the catchment model, allowing for faster search by GA of the parameter space. In both Liong et al.
(2001) and Khu and Werner (2003), the ANN metamodel is not fit over a set of uniform training
points found from a formal DoE, but rather initial optimization trials are conducted on the original
simulation and the evaluated points from this process are used for fitting. Liong et al. (2001) found
that a network with three hidden layers which is trained by data from six storm events accurately re-
produces the original HydroWorks model in all regions of the parameter space; however, in regions
near closely spaced training points a linear interpolation approach performs just as well. Khu and
Werner (2003) and Khu et al. (2004) both use a single hidden layer. To avoid overfitting the ANN
model, Khu and Werner (2003) employ the early stopping approach; while this procedure results
in a savings of 80% of full evaluations, it can limit the number of unique design sites available
for training, testing, and validation sets. Additional studies have developed automatic calibration
procedures for the SWAT watershed model using various surrogate model forms. Shoemaker et al.
(2007) incorporate RBF models within an evolution framework, screening offspring by estimated
fitness predicted by the RBF model and then confirming optimal values with the computationally
expensive SWAT model. In comparing the results of the evolutionary algorithm combined with
RBF approximation to other calibration methods, they conclude that it is “the most effective algo-
rithm when there was a severe limitation on the number of simulations that can be performed” and
methods with model approximation “should be seriously considered as alternatives to widely used
methods such as SCE [Shuffled Complex Evolution] and evolutionary algorithms without func-
tion approximation when the complexity of the simulation model limits the number of simulations
that can feasibly be done.” Zhang et al. (2009) approximated the SWAT model by one-hidden-
layer ANN and SVM, tested both methods on two watersheds in the eastern United States, and
determined that the SVM form resulted in better generalized models than those constructed using

ANNSs. Razavi et al. (2012b) compared the behavior of two SWAT metamodel-enabled calibration
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optimizers, kriging-GA and Multistart Local Metric Stochastic RBF, with two optimizers without
metamodeling, dynamically dimensioned search and GA. They concluded kriging-GA and dynami-
cally dimensioned search performed similarly in all computational budget settings, with kriging-GA
performing slightly better when a harsh limit is placed on the number of allowable function evalua-
tions.

Computationally expensive groundwater models can also be calibrated via surrogate-enabled
procedures. Rizzo and Dougherty (1994) used a neural kriging network, which consists of both
training and spatial interpolation phases, to estimate hydraulic conductivity fields in both two- and
three-dimensional aquifer models using limited field data. Johnson and Rogers (2000) tested the
accuracy of using linear regression and ANN models for automatic calibration of the 2D finite-
difference groundwater model SUTRA, using simulated annealing techniques to search the parame-
ter space. The authors included linear approximator tests, which failed to reproduce the high-fidelity
model, in their study to avoid “the pitfall of addressing a problem with an unnecessarily complex
method,” but acknowledged that from the onset they did not anticipate that they would perform
well. Mugunthan et al. (2005) tested two RBF-based function approximation methods (Regis and
Shoemaker, 2004; Gutmann, 2001) within various optimization algorithms for autocalibration of
chlorinated ethene biodegradation in an aquifer. The original simulation model, DECHLOR, is a
multispecies reactive transport model that uses the finite different model MODFLOW for flow com-
putations and the reactive transport model RT3D for contaminant transport computations. For their
field case study, the original model requires 2.5 hours to complete a single simulation, making it
very poorly suited for use directly within an optimization routine. This routine computes objective
function values at each evaluation point through the original groundwater model and then fits an
RBF surface to aid in optimization search. Both function approximation models performed well,
with the model developed by Regis and Shoemaker (2004) performing best for minimizing overall
errors in the final calibrated model form.

Automatic calibration routines have also been developed for surface water body models which
incorporate surrogate model forms. Zou et al. (2007) demonstrated how an adaptive ANN-GA
approach can determine values for 19 calibration parameters which minimize errors in relation to
measured values for a eutrophication model (WASP5/EUTRO) linked to a previously calibration

CE-QUAL-W2 hydrodynamic model. The 19 calibration parameters were first determined through
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a sensitivity analysis, and various ANN models were created to emulate the eutrophication model.
The authors determined that an adaptive ANN-GA procedure (which starts with a limited training
set and adaptively adds additional information during optimization) converges closer to the global
optimal solution than a one-step ANN-GA process (which starts with a robust training set but no
additional training data is added during optimization). The total computational time from training
data generation through optimization for this method is about 6.5 days of continuous computation,
which largely consists of training data generation and ANN training time. Huang and Liu (2010)
performed a similar analysis for calibration of a CE-QUAL-W?2 hydrodynamic and WQM, in which
26 calibration parameters were determined by sensitivity analysis in terms of their ability to predict
6 hydrodynamic and water quality outputs (including vertical profile measurements). They also
concluded an adaptive procedure performs better than one-step and that the largest computational
expense comes from generation of training data through runs of the original high-fidelity model.
Ostfeld and Salomons (2005) also demonstrated a routine for autocalibration of a CE-QUAL-W2
model using a k-nearest neighbors algorithm (kNN) for approximating the error resulting from
various parameter combinations. A GA was used for searching. Two application locations were
used: a hypothetical reservoir was used to tune the GA-KNN parameters, while a model of the
Lower Columbia Slough water body was used to demonstrate autocalibration for temperature and
DO prediction. The coupled GA-kNN algorithm produced results similar to those of a pure GA

(without model reduction), while reducing computational expense.

Surrogates in Operations and Design Optimization

One of the earliest examples of surrogate-enabled optimization in water resources to minimize
computational expense can be found in the work of Alley (1986), which expanded on the work
of Gorelick et al. (1984) by creating response functions of computationally expensive contami-
nant transport models using polynomial regression. These regressions are functions of pumping-
recharge rates at several wells, which form the decision variables of a groundwater contamination
concentration minimization optimization problem, and are generated from the results of multiple
transport simulation model runs. Lefkoff and Gorelick (1990)’s work expanded on Alley’s by using
regression to predict salt mass, rather than concentration, in an irrigated stream-aquifer system in

the Arkansas Valley in southeastern Colorado. Although this study did not employ optimization
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in the formal sense, the salt transport surrogate results were incorporated into a larger economic-
hydrologic-agronomic model which serves as a tool for analyzing the relationship between crop
mixing and profit in farming. This linked model system could be further formalized within an
optimization routine to determine optimal trade-off points. Cooper et al. (1998) also developed a
simulation/regression/optimization model for optimization of the oil recovery process from ground-
water, expanding to a non-steady state problem. Response functions for residual oil and free oil
were created using outputs from multiple runs of the ARMOS 2D finite element flow simulator, and
verification of the surrogate-enabled optimization results by ARMOS simulation show small error
levels.

Noting a need to expand these ideas to surface water applications, Ejaz and Peralta (1995)
incorporated water quality processes from the QUAL2E simulation model within a simulation-
optimization model via simplified regression equations. From the results of numerous systematic
QUALZ2E simulations, regression equations with a traditional mass balance form best fit all con-
stituent response data with the exception of DO, which required a more detailed equation as a func-
tion of mass flow rates of BODS, total nitrogen, and chlorophyll a. A verification step was included
following nonlinear optimization to confirm that regression equations predicted acceptably close to
QUALZ2E. Saad et al. (1996) employed RBF ANNs to decompose the optimal operating policies
obtained through dynamic programming for a reservoir system, which were combined to form one
equivalent reservoir of equal potential energy. Using historical flow records, 500 equally likely
deterministic inflow sequences were generated as inputs, and a year’s optimal operations and corre-
sponding potential energy were found for each on a monthly timestep. This formed the data set used
for ANN training, and a fuzzy clustering approach was used to compute RBF parameters. Neelakan-
tan and Pundarikanthan (1999) also used an ANN for simulation of a reservoir system’s operation
as substitution for a conventional simulation model, with the goal of maximizing drinking water
supply. The monthly conventional mass-balance simulation model inputs and results were used to
train a three-layer feedforward ANN, which was then embedded within a nonlinear optimization
algorithm. Training each ANN required 8 hours of computational time, but the ANN model was
reported to run 300 times faster than the conventional model. Solving the optimization problem
took as long as 15 days of continuous computations using the conventional model, but only a few

hours with the ANN model. Castelletti et al. (2010) used response surface methods to optimize the
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number and location of water quality rehabilitation devices (i.e., mixers) in order to improve overall
water quality in the Googong Reservoir in Australia. The 3-D coupled hydrodynamic-ecological
model ELCOM-CAEDYM was used to compute training data for linear interpolators, RBF ANNSs,
and inverse distance weighting; the authors termed this step as the “learning phase.” Then during
the “planning phase,” an approximate solution to the design problem is found. The learning and
planning phases are performed iteratively to improve performance near optimal solutions(s), and at
each iteration the response surface form with the smallest errors was chosen. Their results showed
that significant improvements were possible by simply moving the currently installed mixers and
that an additional pair of mixers would further improve destratification. To solve this design op-
timization problem using what-if analysis would “require about 5.5 years of computation with a

modern computer” according to the authors.

II.3 Optimization of Hydropower Systems

Various techniques have been employed for hydropower optimization. Early studies employed
linear programming (LP), which entails short computational times but requires functions to be linear
or linearizable. This is often not the case for hydropower generation problems. A step up from LP,
nonlinear programming (NLP) algorithms do not have the linear function requirement. NLP requires
all functions to be differentiable, which may not be the case for hydropower systems. Dynamic
programming (DP) methods have been popular in hydropower optimization tool development due
to their ability to handle nonconvex and discontinuous functions and structure which emulates the
multistage decision-making process involved in reservoir system operations (Labadie, 2004). The
curse of dimensionality arises in these types of problems, which has led to various DP modifications
to lessen the computational time of high-dimensional problems.

More recently, heuristic programming methods have become popular for investigating hydropower
optimal operating patterns. In contrast to traditional derivative-based methods, heuristic techniques
are less-structured, can rely on both quantitative and qualitative information, and can handle com-
plexities including multiple objectives, uncertainty, nonlinearity, and discontinuities. Although con-
vergence to an optimal solution cannot be guaranteed, heuristic methods are generally capable of

locating global optima in all but the most complex problems, where traditional methods converge to

47



local optima (Rani and Moreira, 2010). These benefits may come at a computational cost by requir-
ing more function evaluations than traditional optimization methods, but evolutionary or population-
based methods allow for parallel computations (Rani and Moreira, 2010). Evolutionary methods
that have been used for hydropower optimization applications in the literature include GAs, sim-
ulated annealing, ant colony optimization, particle swarm optimization, and honey bees mating
optimization. These techniques have all been used in hydropower-related studies, but the literature
is limited in comparison to traditional derivative-based methods.

Multiobjective reservoir optimization applications using both traditional and heuristic optimiza-
tion approaches have sought to analyze the trade-off between a variety of outcomes including power
generation, flood control, and water supply/quality. Fontane et al. (1997) employed stochastic DP
to quantify optimal monthly releases for a 12-month period in terms of hydropower generation,
flood control, water supply, and recreational demands. Using a GA, Teegavarapu et al. (2013) an-
alyzed the trade-offs between power generation and downstream water quality using a simplistic
one-dimensional decay process on a daily timescale, Chen et al. (2016) performed daily and hourly
reservoir system scheduling subject to fish flow and other competing constraints, and Liu et al.
(2011) incorporated minimization of flood risk on a daily timestep. These applications all assumed

a well-mixed system or were performed in one spatial dimension.

I1.3.1 Classic Methods

Linear Programming (LP)

LP is one of the most popular methods for reservoir system optimization due its many advan-
tages, which include efficiency, ability to solve large-scale problems, global convergence guarantee,
no initial solutions required to start the algorithm, duality theory to assist in sensitivity analyses, and
ease of problem setup and solution using readily available software packages (Labadie, 2004). The
most notable limitation of this technique is the requirement of objective and constraint functions to
be linear or linearizable and convex. These limitations can be overcome in some cases by extension
methods including separable LP, successive LP, and binary, integer, and mixed integer LP; however,
many reservoir systems are represented by highly nonlinear or discontinuous functions associated

with reservoir hydrodynamics, power generation, and water quality. These are either not appropriate
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for or cannot be efficiently solved by LP, even with extension methods.

Simple reservoir optimization problems have been solved using LP techniques. Ponnambalam
et al. (1989) solved for monthly turbine releases for two reservoirs connected in series over a 40
year period, resulting in 880 decision variables and 3680 constraints. They compared the perfor-
mance of simplex and interior point algorithms, concluding that the interior point method converges
in far fewer steps for large problems. Crawley and Dandy (1993) used linear goal programming to
identify monthly optimal operating policies for a much larger reservoir system in South Australia,
with the objective of minimizing pumping costs from a nearby river for reservoir fill. The authors
used separable programming to piece-wise linearize the nonlinear pumping cost curves. Needham
et al. (2000) analyzed the flood-control procedures for three U.S. Army Corps of Engineers reser-
voirs using a mixed integer LP model, concluding that coordinated releases may be unnecessary to
minimize flood damage by showing this to be true for 8 of the 10 largest flood events on record. Ad-
ditional application of optimization by LP for reservoir operations include (Martin, 1983), (Martin,

1995), Lee et al. (2006), Seifi and Hipel (2001), Ziaei et al. (2012), and Mousavi et al. (2004).

Nonlinear Programming (NLP)

Because many reservoir systems cannot be realized by linear or linearizable functions, NLP
techniques have been employed in previous optimization applications. NLP has the disadvantages
of slow convergence, leading to large computation time requirements. There is also no guarantee
of find global optima, demonstrated by NLP algorithms often converging to local optima instead.
The Karush-Kuhn-Tucker conditions for constrained nonlinear programming optimality may not be
computationally feasible for many large-scale nonlinear problems (Hiew, 1987). Because of this,
constrained NLP problems are often solved using penalty and barrier constraint-handling methods,
which require careful choice of penalty weights and may not converge to the true feasible opti-
mum. As noted by Rani and Moreira (2010), software packages are available which can solve large
scale nonlinear optimization problems; regardless, global optimality proves difficult for practical
applications employing NLP.

This is a broad family of techniques which includes sequential linear programming (Barros
et al., 2003; Grygier and Stedinger, 1985), sequential quadratic programming (Tejada-Guibert

et al., 1990; Finardi et al., 2005), the augmented Lagrangian method (also known as the method
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of multipliers) (Arnold et al., 1994; Naresh and Sharma, 2002; Finardi and Scuzziato, 2013), and
the generalized reduced gradient method (Sale et al., 1982; Unver and Mays, 1990). All of these
methods require differentiable objective and constraint functions, which may not be the case for
hydropower systems due to the presence of discontinuities often associated with turbine operations.
Hiew (1987) compared various nonlinear algorithms for optimization of a system of hydropower
reservoirs and concluded the sequential linear programming method to be the most efficient. Us-
ing mixed integer nonlinear programming (MINLP), Teegavarapu and Simonovic (2000) optimized
power generation revenues for a system of 4 hydropower plants with daily scheduling and Ferreira
and Teegavarapu (2012) formulated a single run-of-the-river hydropower reservoir optimization
problem on a daily timestep over a 15 day operating period. They included a simplistic downstream
water quality constraint to explore dam operations’ ability to counteract a downstream pollutant
point source. Although formulated as a MINLP, the authors opted to solve the problem using GAs,
noting that the “reduced gradient based method used initially in this study as optimization solver

provided unsatisfactory (i.e., non-optimal) solutions.”

Dynamic Programming (DP)

DP methods are able to address nonconvex and discontinuous functions and their structure em-
ulates the multistage decision-making process involved in reservoir system operations (Labadie,
2004). DP breaks the original problem into subproblems that are then solved in stages sequentially.
For each subproblem, an optimal cost-to-go function is developed which represents the optimal
value accumulated from the current period going forward, as a function of an initial state condition.
For the majority of reservoir applications, the state consists of reservoir storage. If additional states
are relevant to the constraint and objective formulations, such as the inclusion of water quality or
additional reservoirs, the size of the problem grows quickly; this has been coined the “curse of di-
mensionality” associated with DP. Discrete DP overcomes difficulties due to nonlinear, nonconvex,
and discontinuous objective and constraint functions (Labadie, 2004).

The earliest application of determining optimal operating rules for a single multi-purpose reser-
voir using deterministic DP was performed by Hall et al. (1968). Their technique provided for what
were considered to be “complex constraints” at the time, including time-variable flood control reser-

vations; mandatory fish, wildlife, and recreational releases; and navigation minimum flows. This
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resulted in an optimal schedule of releases for each month given a price schedule. Stedinger et al.
(1984) developed a stochastic DP model to define releases from a dam in the Nile River Basin based
on the best inflow forecast as a hydrologic state variable, resulting in improved operations com-
pared to using the proceeding period’s inflow as the state variable. Georgakakos et al. (1997) used
a combination of dynamic programming and optimal control method modules to maximize firm
energy generation of the Lanier-Allatoona-Carters hydropower system across multiple timescales
(instantaneously, hourly, and daily).

Optimization of many linked reservoirs becomes computationally infeasible using the original
DP formulation, which is the reason much of the hydropower optimization by DP literature involves
modified DP approaches. Castelletti et al. (2007) employed neuro-dynamic programming, which
approximates Bellman functions with ANNSs, for reservoir network management. Yi et al. (2003)
solved a multireservoir unit allocation problem using dynamic programming with successive ap-
proximation, a technique which “replaces the original multidimensional problem with a sequence
of 1D problems” and whose computational expense increases linearly with respect to the problem
size. Wang et al. (2005) was able to solve a problem combining multiobjective optimization (hy-
dropower, water supply, and flood control), a multireservoir system (three reservoirs in parallel),
and stochastic inflows using a combination of modifications. These included a constraint technique
(to transform the optimization to a single objective form) and combined decomposition iteration
and simulation analysis to overcome the dimensionality problem. El-Awar et al. (1998), Yurtal
et al. (2005), and Zhao et al. (2014) also employed modified DP approaches to solve for optimal

hydropower reservoir operations.

I1.3.2 Heuristic Algorithms

Genetic Algorithms (GAs)

GAs, first introduced by Holland (1975), are a family of algorithms based on the mechanics
of genetics and natural selection. They use a variety of methods to transition from one generation
population to the next, including genetic operators such as inheritance, mutation, selection, and
crossover. Populations of candidate solutions are evolved toward better solutions in an iterative

process which rewards feasible, near-optimal solutions. Candidate solutions are copied into the
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next generation, mutated, and combined stochastically based on their assigned fitness levels,. This
attempts to balance exploration of solutions from new areas of the design space and exploitation of
solutions already found in regions of high fitness. This process terminates when stopping criteria
has been reached; examples of these criteria include a maximum number of generations or solutions,
a satisfactory fitness level, or a population homogeneity level being reached.

One of the earliest introductions of genetics algorithms in the water resources literature comes
from Esat and Hall (1994), where GAs were used to solve the “four-reservoir problem.” This prob-
lem concerns a system of four reservoirs, with both parallel and series connections, operated over
twelve 2 hour periods (a total of 24 hours), searching for optimal releases with constraints related
to flood control and turbine capacities. The authors concluded that as system size increases, com-
putational expense for DDDP increases exponentially while the expense of GAs increase linearly.
Wardlaw and Sharif (1999) solved the same “four-reservoir problem” as well as a more complex
10-reservoir problem, testing sensitivities to various GA settings. Oliveira and Loucks (1997) com-
bined a genetic search algorithm with simulation models to determine optimal operating policy
rules for several multireservoir systems, focusing on satisfying joint water demands and joint en-
ergy requirements. Similarly, Suiadee and Tingsanchali (2007) used a combined simulation-GA
optimization model to determine optimal monthly reservoir rule curves for a single reservoir in
Thailand, with the objective function equal to the maximum net system benefit subject to irriga-
tion constraints and the monthly releases computed by the simulation model. Ahmed and Sarma
(2005), Chang and Chang (2001), and Cheng et al. (2008) each employed various forms of GA for
determining optimal reservoir operations.

GAs have been used in combination with surface WQMs. Kerachian and Karamouz (2007) de-
termined optimal operating rules for the Ghomrud Reservoir-River system in Iran for water quality
management using a stochastic GA-based conflict resolution technique. A one-dimensional WQM
simulating thermal stratification and water quality at releases from different outlets was used, as
well as simulation of pollutants in the downstream river. This one-dimensional model was based on
the existing Ghomrud HEC-5Q model, which could not be easily linked to the optimization model.
Ostfeld and Salomons (2005) and Huang and Liu (2010) coupled hybrid GAs and ANN models for
calibration of surface water quality CE-QUAL-W2 models. Ostfeld and Salomons (2005) reduced

computational time by implementing a “hurdle race” approach which halts CE-QUAL-W?2 simula-
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tions early if a threshold is not met during simulation, while Huang and Liu (2010) combined a GA
with a local search method to improve the results while reducing expense. Dhar and Datta (2008)
linked a CE-QUAL-W2 model with an elitist GA to determine optimal reservoir operation policy
with the aim of maintaining water quality downstream of the reservoir while minimizing the storage
deviation from target storage. The authors employed this method on a hypothetical reservoir on the
upstream end of the Middle Willamette River in Oregon, USA for daily operating decisions over
a 10 day management period. They concluded with the note that “[d]evelopment of parallel code
or use of metamodels (e.g. ANNs) may be very useful in reducing the CPU time” and that those
modifications would “make it feasible to solve larger and more complex real-life optimal reservoir

system operation problems.”

Simulated Annealing (SA)

First introduced by Kirkpatrick et al. (1983), SA is a global search method which emulates
the annealing process in glasses and metals to find optimal solutions for large systems. Using a
temperature parameter, simulated annealing solves an optimization problem by theoretically max-
imizing strength and minimizing brittleness. Early water resources applications of this technique
were for groundwater management problems, with the first reservoir operations optimization appli-
cation performed by Teegavarapu and Simonovic (2002). They used the technique to optimize a
four-reservoir system for hydropower and irrigation needs, including a simulation model for com-
puting reservoir states during optimization. They solved a weekly problem on a half-day timestep
and showed that SA provides similar results to a mixed integer NLP problem. Then they expanded
the decision space by solving for hourly operations over a weekly horizon, which the SA algorithm
was able to solve in a computationally feasible manner. Tospornsampan et al. (2005) compared
the performance of using simulated annealing and GAs for determining monthly operations over 3
years for a multi-reservoir system with diversions, with the goal of minimizing irrigation deficits.
Their results showed SA to be more efficient than GA for their application, generating higher quality
solutions and requiring less computational time. Li and Wei (2008) also found SA to perform better
than GA while optimizing a 3-reservoir system in series for electricity generation maximization.
Of the methods they tested, the authors determined that their improved GA-SA algorithm produced

the highest quality solutions at a lower computational time than the traditional unimproved GA-SA
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algorithm. Chiu et al. (2007) also employed a hybrid GA-SA for optimizing the operation scheme
of a single reservoir in Taiwan, concluding that the method results in superior performance as well

as reduced computational time due to parallel analyses.

Ant Colony Optimization (ACO)

ACO is a heuristic technique based on observations of the behavioral patterns of ant colonies.
Certain ant species are capable of finding shortest paths by using pheromone communication. ACO
aims to emulate the shortest path search capabilities of these species (Dorigo and Stiitzle, 2004).
Examples of ACO use in hydropower optimization applications are limited. Kumar and Reddy
(2006) compared ACO to real coded GA for optimization of a multi-purpose reservoir in India and
determined that the ACO algorithm converges to more globally optimal results than GA does.The
developed models were used to determine operations on a monthly timestep for both short-term
and long-term horizons. Optimization objectives were minimizing flood risk, minimizing irrigation
deficits, and maximizing hydropower production; no water quality objectives or constraints were
considered. Jalali et al. (2007) used a special version of the ACO algorithm to overcome ACO’s
difficulty handling continuous problems. A random mesh of the search space was used to minimize
the chance of missing the global optimum, and the algorithm is also capable of handling discrete and
continuous decision variables. The algorithm was tested on a complex 10-reservoir problem, which
is “beyond the capacity of traditional DP and is difficult with variants such as DDDP [discrete
differential dynamic programming], but is relatively simple to solve by LP.” The system consists
of reservoirs in parallel and series and was optimized over 12 operating periods with the goal of
maximizing hydropower production. ACO was able to reach solutions which were 99.8% of the
known global solutions. Madadgar and Afshar (2009) extended the initial ACO discrete space
search method to continuous domains, improved algorithm performance and efficiency with the
addition of an adaptation operator and explorer ants, and tested their algorithm on well-known
benchmark problems and a single hydropower reservoir optimization problem with the objective
of minimizing the sum of relative generation deficits from the installed capacity over 240 monthly

operating periods.
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Particle Swarm Optimization (PSO)

PSO is a technique for searching continuous nonlinear functions inspired by bird flocking and
fish schooling behavior (Eberhart and Kennedy, 1995). It can solve many of the same types of
problems as GAs. PSO is similar to a GA while overcoming some of GA’s challenges, including
being able to retain an active memory of good solutions. Unlike a GA, there are no evolution
operators. Instead, each potential solution is assigned a random velocity, and then these “particles”
are “flown through hyperspace.” There are only two variables that must be defined by the user:
maximum velocity and an acceleration constant.

Kumar and Reddy (2007) employed elitist-mutated PSO to determine operation plans for a
multipurpose reservoir. Elitist-mutated PSO improves the standard PSO algorithm by adding an
elitist-mutation mechanism. In their study, Kumar and Reddy applied elitist-mutated PSO to a hy-
pothetical case and then to a realistic case, the Bhadra reservoir in India, which serves irrigation
and hydropower generation purposes. The system was optimized on a monthly time step, for both 1
year (short-term) and 15 year (long-term) problems. This study concluded that elitist-mutated PSO
performs better than both standard PSO and GAs, by yielding better solutions with fewer function
evaluations. Similarly, Zhang et al. (2013) used a modified PSO approach to determine optimal
hourly discharge rates for 10 cascading hydroelectric plants in a multi-reservoir system, with the
goals of minimizing power deficit and uniformly distributing deficit if it should occur. This was
achieved using a multi-elite guide PSO, which incorporated an archive set which preserves elite so-
lutions. Multi-elite guide PSO produced improved solutions and converged quickly in comparison

with other methods.

Honey Bees Mating Optimization (HBMO or MBO)

Another swarm-based algorithm is the HBMO method, which is inspired by the mating behavior
of honey-bees in nature. This algorithm typically captures the bees’ genetic potentiality, environ-
ment, and colony social conditions in order to converge to optimal solutions. Haddad et al. (2006)
tested this algorithm on a water resources application for the first time. First it was applied to sev-
eral benchmark constrained and unconstrained mathematical functions. Then the authors applied
this algorithm to optimize single reservoir monthly operations over 5 years, aiming to minimize

deviations between releases and target demands. They concluded that the HBMO algorithms per-

55



forms similarly well to GAs. More recently, Dariane and Farahmandfar (2013) applied the similar
marriage in honey bees optimization (MBO) algorithm to determine 47 years of monthly operations
for a three-reservoir system under irrigation and environmental flow requirements. This represented
a problem with a very large number of decision variables. Their experiments revealed that MBO
proved to be superior to other algorithms tested, including GA, ACO, PSO, and elitist-mutation
PSO. The authors conclude by stating that “development of a hybrid algorithm consisting of MBO
and any of the GA or elitist-mutation PSO algorithms could be considered in future research to

further aid in solving complex optimisation problems with a large number of decision variables.”

II.4 Gaps in the Literature and Research Advancement

This chapter summarizes the scope of the literature on reservoir modeling and operations, surro-
gate modeling techniques, and hydropower systems optimization. There is extensive documentation
of a variety of hydrodynamic and WQMs capable of modeling waterbodies. These models have
been applied to study the water quality impacts of an assortment of changes to natural and engi-
neered systems; however, these studies typically apply to long-term planning and design purposes,
not real-time operation. Although DSSs such as RiverWare and HEC-3/HEC-5/HEC-ResSim are
powerful tools for determining optimal real-time hydropower operations, they have at most limited
capabilities for considering water quality. When considered, water quality metrics are assessed by
derived relationships between releases and water quality outcomes. This may not be adequate for
river systems with strong temporal or spatial water quality gradients in areas of concern. These tools
also cannot assess water quality system-wide, potentially missing areas of concern such as thermal
plant cooling water withdrawal and release points or sensitive species spawning grounds.

Hydropower optimization objectives and constraints are typically represented by nonlinear and
discontinuous functions. Most hydropower optimization studies have relied upon classic optimiza-
tion algorithms that involve simplified function forms, linearization, and a focus solely on water
quantity rather than quality. We observed recent growth in applying heuristic optimization methods
for determining optimal hydropower operations, but the literature is limited in terms of applications
for planning at an operational, rather than seasonal, timescale. While some studies such as those by

Kerachian and Karamouz (2007) and Dhar and Datta (2008) considered water quality, none have
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done so using a timestep of operational fidelity and high-fidelity WQM simulation. A primary rea-
son for this lies in the high computational expense of high-fidelity WQMs and their structure being
ill-suites for direct use in complex optimization problems. To counteract this, surrogate modeling
approaches have been applied to water resources operations and design optimization applications.
Even so, this approach has not yet been applied to solve for real-time hydropower operations opti-
mization subject to constraints informed by high-fidelity WQMs.

This dissertation presents a foundation for developing a DSS capable of providing optimized
real-time operational guidance for a hydropower system with refined water quality considerations.
Optimized operations are influenced by robust WQMs capable of simulating water quality gradi-
ents, which may require high spatial and temporal model resolution. Integrating WQMs within a
discontinuous, nonlinearized optimization problem that can be solved with limited computational

resources is achieved by using surrogate modeling techniques.
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Chapter 111

HYDROPOWER OPTIMIZATION USING ARTIFICIAL NEURAL NETWORK
SURROGATE MODELS OF A HIGH-FIDELITY HYDRODYNAMICS AND WATER
QUALITY MODEL

This chapter is a modification of a previously published paper by Shaw et al. (2017) in Water
Resources Research and has been reproduced with permission. Copyright is held by John Wiley &

Sons, Inc.

II1.1 Introduction

Reservoirs with hydropower capabilities are generally operated to maximize energy genera-
tion while meeting other water management policies and regulations (Jager and Smith, 2008). The
optimization of reservoir operations is extensively studied (Labadie, 2004), with initial studies pri-
marily focusing on water quantity constraints (Hall et al., 1968; Martin, 1983; Grygier and Ste-
dinger, 1985; Arnold et al., 1994; Teegavarapu and Simonovic, 2000; Chang and Chang, 2001;
Seifi and Hipel, 2001; Teegavarapu and Simonovic, 2002; Yi et al., 2003; Barros et al., 2003; Cheng
et al., 2008) and more recent studies integrating constraints related to ecosystems and water quality
(Hayes et al., 1998; Chaves and Kojiri, 2007; Kerachian and Karamouz, 2007; Dhar and Datta,
2008; Ferreira and Teegavarapu, 2012; Castelletti et al., 2014). The inclusion of water quality
as a constraint has been limited in that studies have not employed state-of-the-art multi-dimension
high-fidelity hydrodynamic and WQMs, but instead generally incorporate one-dimensional or quasi
two-dimensional coarse-grid models (Hayes et al., 1998; Jager and Smith, 2008; Ferreira and Tee-
gavarapu, 2012). Fidelity is defined here as a measure of similarity between a real-life system
and a synthetic system, or model; in terms of time and space, this can also be called model reso-
lution. Extending reservoir optimization modeling to multi-dimension and/or high-fidelity greatly
increases computational requirements, even for a single reservoir under simulated environmental
constraints (e.g., (Dhar and Datta, 2008)). The need for high-fidelity models within optimization

schemes has come of age, driven by increased computational capabilities (Castelletti et al., 2010)
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and by increased requirements to meet specific points of compliance with greater accuracy.

Hydropower optimization efforts to date have not incorporated high-fidelity WQMs on an opera-
tions timescale, where operating decisions are made every hour or less, but rather for long-term sea-
sonal or yearly planning. Additionally, such models often employ either one-dimensional WQMs,
utilize relatively low spatial resolution, or both. Low temporal and spatial resolution restricts appli-
cations timescales and limits the ability to capture well the complex hydrodynamic and water quality
interactions at water release points and other points of compliance of interest such as in vicinity of
sensitive species areas or thermal electric water intake and discharge zones. Further, many optimiza-
tion methods require linearity and differentiable functions, which cannot be addressed by numerical
models. Lastly, both traditional and heuristic optimization routines often require significant num-
bers of objective and constraint evaluations, hindering the use of computationally expensive models.

The optimization of hydropower-equipped reservoir operations subject to numerous constraints
is typically realized by a high-dimensional, non-linear, discontinuous problem formulation (Labadie,
2004), presenting a challenge in determining globally optimal solutions. Computationally-efficient
gradient-based solvers can converge to local optima (especially for high-dimensional problems) and
require known analytical function forms in order to compute gradients (Labadie, 2004; Jin, 2005).
Reservoir operations are, by their nature, dynamic, and dynamic programming has been heavily
employed in this area; however, this approach is not feasible for high-dimensional problems. The
inclusion of water quality constraints is feasible when employing simple differentiable function
approximations of water quality and hydrodynamic processes; however, this is not the case when
including computationally-demanding simulation models within optimization routines. A heuristic
global optimization method overcomes these challenges and allows for inclusion of high-fidelity
models within constraints by use of surrogate models (Forrester et al., 2008).

Here, we describe an advancement for computing optimal hourly power generation schemes
for a hydropower reservoir through use of computationally-demanding WQMs, surrogate model-
ing techniques, and optimization methods. Optimal schemes are those in which water quality and
other constraints are met as closely as possible, while flows are passed through hydropower turbines
to produce maximum power value. Due to problem complexity and the use of heuristic methods,
“optimal solution” here refers to the best solution found by the global solver employed. This study

presents the development and application of an approach where the predictive power of the high-
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fidelity hydrodynamic and WQM CE-QUAL-W?2 is successfully emulated using an ANN model,
which is then integrated into a GA-based optimization scheme to inform scheduling on an op-
erations timescale of reservoir operations subject to high-fidelity spatial and temporal constraints
(Smith Sawyer et al., 2013; Shaw et al., 2013, 2015, 2016, 2017).

This architecture allows for inclusion of water quality constraints in the decision-making process
and for comparison between resulting optimal schemes and current operating procedures, all at high
spatial and temporal accuracy. This provides a means for stratified reservoir operators to determine
preferred releases on an operational timescale, maximizing power output while minimizing spill
volumes necessary to maintain water quality standards. To date, no such approach exists on an
operational timescale at a resolution that captures water quality gradients in dynamic, stratified

reservoirs.

III.2 Case Study Description

The USACE Nashville District operates nine hydropower projects along the Cumberland River
in Tennessee and Kentucky, USA (U.S. Army Corps of Engineers, 1998). The Cumberland River and
its tributaries form the Cumberland River Basin (Figure III.1). The Cumberland River reservoirs’
water levels are set by guide curves, which define volumes of water dedicated to purposes including
power, flood, and minimum storage.

Old Hickory reservoir, a mainstem multipurpose reservoir for navigation, hydropower, and
recreation located upstream of Nashville, Tennessee, has a backwater distance of 97.3 miles and is
retained by a combination earthfill and concrete-gravity dam. Outflow structures are 6 tainter gates
and 4 Kaplan hydropower turbine units, with a total installed capacity of 100 megawatts (MWs).
The run-of-river Old Hickory project exhibits little fluctuation in water level due to navigation and
recreation requirements; consequently, a review of historical operations reveals that Old Hickory’s
turbines consistently operate at or near their defined rating of 25 MW. Release decision projections
are typically made 10 days in advance; additionally, operations are defined on an hourly or finer
timescale and in terms of number of active turbines and spill gate settings.

Temperatures and water quality constituents of concern, including DO, are highly stratified

vertically and longitudinally during the warm months. The Nashville District employs the CE-
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QUAL-W?2 hydrodynamic and WQM for Old Hickory reservoir, allowing them to more accurately
estimate water quality at points of compliance, to include releases and locations (both depth and
river mile) of sensitive species; however, they do not currently directly incorporate the model within

decision support systems for reservoir operations.

III.3 Optimization Problem Formulation

To determine optimal operations of Old Hickory reservoir, problems are formulated to determine
turbine operations that generate maximum power value, subject to operational constraints. The
problems are nonlinear with integer decision variables {x;,x2,...,x,}, representing the number of
active turbines at each hour i = 1 : n. Optimization is performed for a defined planning period, in this
case 10 days, a typical river system scheduling operational period (U.S. Army Corps of Engineers,
1998). Computational expense increases substantially as the number of decision variables grows;
therefore, the planning period is divided into daily sub-problems which are solved consecutively.

Old Hickory reservoir must fulfill many requirements, which are formulated as a set of hard and
soft constraints. The algorithm seeks to meet soft constraints, but if they are not fulfilled completely
the algorithm still proceeds. Soft constraints are integrated into the objective function by use of a
penalty parameter. Several hard constraints and a single soft constraint applied in the experiments
are described below and in Table II1.4. The optimization problem objective and constraints can be
written as follows and explained below. Equations III.2-II1.8 are firm constraints on the problem

that must be satisfied.
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IIL.3.1 Objective Function and Soft Constraint

The objective (Equation III.1) is to maximize (formulated as a minimization as is convention)
the value of hydropower produced over a set planning period. n is the number of hours in the
planning period, C(i) is the power value at time i, and r is the turbine power rating in MW. A cost
curve defines the relationship between the value of power production and the time of day, which is
important due to changes in electricity demand and the use of hydropower traditionally as peaking
power to supplement thermal power production. If no cost curve is provided, i.e., C(i) = 1 for all
values of i, the problem is equivalent to maximizing the total power generated over the planning
period. The employed cost curve (Figure II1.2) was created using Old Hickory reservoir historical
operating patterns to estimate a relationship between time of day and generation. This approach is
intended to be used for planning, not for real-time grid balancing, so a historically-based cost curve
is appropriate.

The second term in Equation III.1 is a penalty term representing a soft constraint, penalizing
deviations of final water level ey from the final target elevation e;. This restricts the solution from

draining to the bottom of the power pool at the end of each daily optimized sub-problem. Briefly,
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Figure II1.2: Cost curve used in optimization applications.

for each daily sub-problem potential solution the final water level elevation is found, the penalty is
computed, and a deduction to the objective function value is made for water level elevations below
target levels. Prior to the start of the GA solver, a penalty coefficient is computed using linear

interpolation:

d = Yprojected - <vu + (v —v) LR > (I11.9)
Pu—Di
where d is the penalty coefficient in dollars per meter below target (or megawatt-hour, MWh, per
meter below target if no cost curve is provided), Y jecrea 18 the estimated power value under pro-
jected operations for the sub-problem optimization time period (in dollars if a cost curve is provided,
otherwise in MWh), pr is the target water level elevation at the end of the time period, p; and p, are
lower and upper bounds of the power pool, respectively, and v; and v, are scaling coefficients with
v; < v,. The penalty coefficient is greater the closer the target water level elevation is to the bottom
of the power pool. Scaling coefficients are a function of the value of power and reservoir generation
capacity, with larger coefficients aligned with increased penalty. For reservoirs with total capacities

of 100 MW, like the one used in this study, and a cost curve with value magnitudes in the range of

$40-$100/MWh as assumed here, values of v; = 500 and v,, = 1000 perform well.
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II1.3.2 Hard Constraints

Equation III.2 sets lower and upper bounds (p; and p,,, respectively) on water levels. E(x1,x2, ..., X;)
is an elevation model that predicts water level elevations for all timesteps 1 : i. For reservoirs op-
erated on a seasonal guide curve, p; and p, are typically set to the lower and upper bounds of the
power pool. The simplified water level elevation model assumes the water level to be consistent
along the entire reservoir and is a function of all inflows and outflows. Spill flow is often engaged
to improve downstream water quality. An average spill flowrate for each daily sub-problem is com-
puted during elevation calculations based on turbine releases, inflows, and user-provided midnight
target elevation values. First, water level elevation is computed based on the hourly turbine settings
assuming no spill release. If the final elevation for the sub-problem is less than the target elevation,
spill remains zero. If the final elevation is greater than the target elevation, an average spill flowrate
for the sub-problem is assigned which results in a final water level elevation equal to the target
value. This incorporates spill without requiring additional decision variables, which is important
since spill flow is often engaged to improve downstream water quality.

In an effort to maintain minimum flows along the river, the maximum number of consecutive
hours z allowed without power generation is defined by Equation III.3. The USACE Nashville
District implements this rule for water quality purposes as well.

Equation II1.4 limits the hourly rate of change in the number of active turbines, with ¢ being
is the maximum number of turbine units that can become active or go inactive each hour. Since
Old Hickory reservoir exists on a navigable waterway with lock systems, this constraint assists in
minimizing fluctuations in the surface elevation and adverse impacts on water level stability.

Equation II1.5 attempts to reduce oscillations in the turbine operations over time. This constraint
is formulated with logic that states that, except in cases of ramping turbines up or down, the number
of active turbines must be fixed for at least three hours consecutively before changing. Reducing
oscillations is desired to minimize equipment wear.

Equation III.6 defines the maximum number of turbines at the hydropower facility, a. It is
assumed that all turbines operate at the same turbine power rating, r, and that the number of active
turbines is selected from a set of integer options.

The Nashville District monitors DO levels in the Old Hickory dam, which is directly upstream of
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the metropolitan Nashville area and has historically proven to be a strong indicator of water quality
system-wide (U.S. Army Corps of Engineers, 1998). Maintaining cool discharge temperatures is
also important as the Cumberland River serves as a source of cooling water for TVA’s thermal
power plants both upstream and downstream of Old Hickory dam. Equations III.7 and II1.8 define
lower constraints on discharge DO and temperature, respectively, where o; and t; are lower limits
and o; and ¢; are DO and temperature estimates at time i. These equations can be modified to account
for maximum constraints as well. Discharge water quality over the operating period is computed
by:

O(X)= (01 02 -+ on) (II1.10)

TR = (1 1 - 1) (IIL11)

where O(X) is a function estimating discharge DO concentration and 7' (X) is a function estimating
discharge temperature. In this application, O(X) and 7(X) are ANN models predicting the water
quality estimations of a simulation model. S, the set of timesteps with total dam discharge flow not

equal to zero, is defined by:

s={il (o] +07) #0} (I11.12)

where Q7 is the turbine discharge and QiS is the spill discharge at time i. |S| is the size of set
S. Dividing by |S| accounts for the fact that at times when there is no release from the turbines
or spillway, discharge water quality is undefined. This approach also makes it easier to compare
population members which are not fully-feasible with respect to water quality by having a single
metric for comparison. Equations II1.7 and II1.8 require the average hourly constraint violation to
be less than or equal to zero; since the constraint violation can never be negative, the average hourly

constraint violation is equal to zero.

III.4 Methodology

A GA-based decision support tool was developed to determine optimal turbine operations for
a single hydropower reservoir, with inclusion of point release water quality constraints informed
by a high-fidelity simulation model. The overall approach, illustrated in Figure 1.2, integrates a

system of water quality and hydrodynamic models into an optimization framework by use of a
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reduced model. This model is formulated as an ANN of the nonlinear autoregressive network with
exogenous inputs (NARX) form, and is trained using model simulation outputs. The computational
expense of prediction is considerably reduced from that of the original model, thereby allowing for
a great number of function evaluations required during optimization. An hourly timescale over a 10-
day horizon was employed, reflective of actual operator planning routines; however, this approach
could be applied over longer horizons on a less-refined timescale for seasonal or yearly planning.
Longer horizon studies would be sensitive to accuracy of inflow and meteorological forecasts.

CE-QUAL-W2, a two-dimensional high-fidelity hydrodynamic and WQM, was used as the orig-
inal simulation model. CE-QUAL-W?2 has successfully been used to simulate rivers, lakes, reser-
voirs, and estuaries since 1975 (Martin, 1988; Adams et al., 1997, Saito et al., 2001; Bowen and
Hieronymus, 2003; Kuo et al., 2006; Chung and Oh, 2006; Debele et al., 2008; Afshar et al., 2011),
with the ability to model physical, chemical, and biological processes including temperature, DO,
nutrients, algae, and sediments (Cole and Wells, 2007). The spatial grid is user-defined and laterally
averaged, making it well-suited for modeling long narrow water bodies such as the Cumberland
River system controlled reservoirs. The temporal resolution is determined by time stepping routines
which limit numerical instability.

The reduced model is represented by a NARX network, a form of ANN. ANNs are flexible
tools for function approximation composed of neurons assembled into a multi-layer architecture,
and have been used for numerous complex problems (Cheng and Titterington, 1994), including as
emulators in reservoir operations problems (Raman and Chandramouli, 1996; Saad et al., 1994).
Solomatine and Avila Torres (1996) used ANNs within an optimization routine to meet water depth
and power generation targets, but the spatial and temporal resolution were coarse and the optimiza-
tion formulation highly simplified. Aguilar et al. (2014) built a water quality forecasting surrogate
model using a tree-based approach as an alternative to ANNs, acknowledging a likelihood for error
propagation. They did not integrate the reduced model within a decision-making process.

Construction of ANNs consists of two steps: (i) specifying the architecture and (ii) training
the network. Model architecture is generally determined by trial-and-error (Razavi et al., 2012a),
and is specified through several parameters, including number of hidden layers, number of neurons
in each hidden layer, and form of transfer function. As in all modeling approaches, the smallest

architecture with an acceptably low error should be used to minimize computational expense, both
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during training and prediction. Once the architecture is defined, model weights are determined
through a training process like back-propagation (Simpson et al., 2001).

Several surrogate model forms were initially tested. Linear regression, Gaussian process, radial
basis function, and Shepard’s Method were unable to emulate CE-QUAL-W2’s highly nonlinear
and dynamic water quality predictions (Shaw et al., 2013). The NARX model form was selected
for its ability to approximate time-dependent functions that are dependent upon a large number of
inputs using training data derived from high-fidelity simulation model runs. NARX training, visu-
alization, and prediction tools are available in the MATLAB® Neural Network Toolbox (R2016a,
The MathWorks Inc., Natick, Massachusetts, United States). This model relates past values of the

same series in the following way:

y(t) = f(y(t —ny1), Yt —ny2), .. V(= Ry gas) u(t —ny 1) u(t —ny2), ..., u(t — nuylm)) (I11.13)

where y is/are the variable(s) of interest, u is/are the exogenous variable(s), and f is a nonlinear
function mapped by a multilayer perceptron (Lin et al., 1996). The model is a function of feedback
delays defined by the set n, and input delays defined by the set n,,. NARX models are trained using a
family of CE-QUAL-W?2 simulation results, obtained by combining different CE-QUAL-W?2 input
scenarios. Training is performed using a Levenberg-Marquardt backpropagation optimization algo-
rithm, considered to be one of the most computationally efficient ANN training methods (Razavi
et al., 2012a). Once trained, a NARX model emulates CE-QUAL-W2’s predictive ability for new
scenarios without the need for additional CE-QUAL-W?2 simulations. MATLAB® codes utilized to
create NARX surrogate models are provided in Appendix C.

GA optimization was selected due to its ability to identify global optima for problems with
nonlinearities and discontinuities, as are present in objective and constraint functions in many hy-
dropower optimization operations (Esat and Hall, 1994; Oliveira and Loucks, 1997; Wardlaw and
Sharif, 1999; Labadie, 2004; Ahmed and Sarma, 2005; Suiadee and Tingsanchali, 2007), includ-
ing optimization of systems in combination with surface WQMSs (Kerachian and Karamouz, 2007;
Dhar and Datta, 2008). GAs represent a family of heuristic algorithms based on the mechanics

of genetics and natural selection, employing a variety of methods to transition from one generation
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population to the next, including inheritance, mutation, selection, and crossover. In GA applications,
stopping criteria as well as other algorithm parameters are typically tuned through trial-and-error
(Reed et al., 2000). GAs are not mathematically guaranteed to find globally optimal solutions, but
studies have shown their improved performance in terms of avoiding local optima over LP and NLP
for complex applications (Azamathulla et al., 2008; Aly and Peralta, 1999; Wardlaw and Bhaktikul,
2004).

Dhar and Datta (2008) linked CE-QUAL-W2 model with a GA to determine optimal reser-
voir operation policy with the aim of maintaining water quality downstream of a reservoir release,
concluding that development of parallel code or integration of metamodels, such as ANNs, could
reduce computational time and increase the feasibility of solving larger, more complex reservoir
system operations problems. In the study described, water quality processes are integrated using
NARX models, which can be viewed as “black box” approximators. The optimization routine seeks
to determine the active turbine pattern on an hourly timestep to maximize power production or
power value subject to constraints on discharge water quality, water level elevation, zero-generation
hourly limits, limits on rate of change in turbines, and turbine unit availability. The objective and
constraint functions are structured so that they can be modified to meet the needs of other reservoirs
in a multi-reservoir, linked system.

The optimization routine was constructed using the GA functionality available in the MATLAB®
Optimization Toolbox (R2016a, The MathWorks Inc., Natick, Massachusetts, United States), and
the MATLAB® codes used for the hydropower optimization process described here are provided
in Appendix D. This process (Figure II1.3) begins with defining reservoir characteristics: tailwater
rating curve, storage elevation curve, number of turbine units, turbine rating in MWs, and turbine
discharge curve. A turbine discharge curve provides a relationship between turbine release, head
difference, and turbine rating in MW. At a fixed turbine rating, the turbine discharge curve allows
one to compute turbine release flowrates as a function of the number of turbines active, upstream
water surface elevation, and tailwater elevation (computed using the tailwater rating curve). A CE-
QUAL-W?2 model folder is also provided with measured and forecasted input files updated to reflect
the current year.

Optimization settings include optimization start date (JDAY, or Julian day), operating period

length (days), midnight water surface elevation targets (meters), maximum change in active turbine
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units (units/hour), maximum hours with zero power generation, daily cost curve, and elevation and
water quality constraint limits. Scenarios may exist where elevation or water quality constraints are
not feasible, independent of release decisions. For these constraints, a hard constraint feasibility
estimate is performed prior to power value optimization. If no feasible solution can be found for a
particular constraint, the constraint bound is relaxed to the value found nearest to the constraint limit.
Power value optimization can proceed in scenarios with no fully feasible solution by allowing the
algorithm to prioritize these constraints over the objective of power generation. An initial population
of potential solutions satisfying all hard constraints is produced and supplied to GA at the onset of
each daily sub-problem. These potential solutions are found using logical decision-making and
random selection, starting with first hour turbine setting and progressing through the last hour for
each potential solution for the sub-problem. If the projected turbine operations are feasible they are
added to the initial population set.

The GA employs creation and mutation functions which produce populations consisting of in-
teger values for the decision variables. The optimal solution is identified by the GA and iterating
forward until a stopping condition is satisfied, with each daily sub-problem solved in succession.
After optimal operations have been determined over the planning period, a CE-QUAL-W?2 valida-
tion simulation provides means for comparison to the surrogate WQM predictions. Following each
optimization iteration, the best iteration is determined by the tiered logic system described below.
When the best iteration ceases to change over two iterations, the stopping condition is satisfied and
the algorithm terminates.

After the series of daily sub-problems is solved over one iteration, a CE-QUAL-W?2 confir-
mation simulation is performed at the identified optimal release operations to ensure the surrogate
model sufficiently emulates the CE-QUAL-W?2 model. If the confirmation simulation and NARX
predictions acceptably agree, the solution is accepted. Otherwise, NARX models are retrained and
updated using two CE-QUAL-W?2 simulations as training data. These two simulations consist of
(i) the CE-QUAL-W?2 confirmation simulation, and (ii) a simulation with the confirmation turbine
and spill discharges swapped. This provides diversity in the spill and turbine exogenous inputs,
and assists the surrogate model in emulating the water quality outcomes from each release point.
NARX models are retrained five times and the resulting model with the lowest cross-validation error

is chosen, which provides enhanced training data for improved prediction of the optimal solution.
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Following each iteration, two CE-QUAL-W?2 simulations (confirmation and confirmation with re-
leases swapped) are added to the training data set; therefore, following the first iteration (which
uses a robust training data set described below) each training data set consists of 2 - (iteration — 1)
CE-QUAL-W2 simulations.

The algorithm’s stopping condition is based upon the “best iteration” index at the end of each
iteration. If any water quality constraint is “active”, meaning not fully satisfied, the absolute mean
error (AME) between the NARX and CE-QUAL-W2 water quality predictions is checked. If the
AME is greater than 0.5 °C for temperature or 0.5 mg/L for DO (AME thresholds lower than ac-
ceptable levels given by Cole and Wells (2007)), the iterations solution is not acceptable and the best
iteration is set to the previously found best iteration, or null in the case of no acceptable solution
found thus far. If the AME is acceptable and the best iteration is null thus far, the current iteration is
the best iteration. If a best iteration has been determined already, the water quality violation from the
constraint limit is compared between the current iteration and the previously found best iteration.
If the current iteration achieves a smaller water quality violation, it becomes the new best iteration.
If there are no “active” water quality constraints (i.e., these constraints are fully satisfied), then the
best iteration is based on the objective function valuation, which represents the power value. The
power value of each iteration is compared to the power value of the best iteration found thus far, and

if the new solution results in greater power value, it then becomes the new best iteration.

IIL.5 Experimental Setup

The USACE Nashville District provided operations data, field measurements, and CE-QUAL-
W2 version 3.5 (Cole and Wells, 2007) models. CE-QUAL-W2 models were calibrated and vali-
dated for the case study reservoir for prediction of water level, temperature, and DO. Temperature
and DO predictions were compared to measured values at the dam releases and available in-stream
vertical profiles. Visualization and plotting during this process were performed using the AGPM-2D
v3.5 post-processor for CE-QUAL-W?2 (Loginetics, Inc.).

Calibration and validation time series results and water quality profiles are provided in Ap-
pendix A as Figures A.1 through A.6. Calibration and validation error metrics are summarized in

Table III.1. Here, we consider CE-QUAL-W2 model calibration or validation acceptable when the

72



AME values are less than 1 °C for temperature and 1.5 mg/L for DO (Cole and Wells, 2007). Error
metrics are within this threshold with the exception of Old Hickory in-stream temperature profiles
for both years, likely due to only having daily temperature values available for the mainstem inflow.
Old Hickory reservoir’s main inflows consist of releases from two upstream dams, both of which
are stratified in the summer and have outlet structures at multiple depths. The temperature and other
water quality characteristics of the upstream dams’ discharges are strongly impacted by release
decisions, which much like Old Hickory reservoir are adjusted by operators on a short timescale.
Consequently, the water quality of upstream releases is not adequately captured by a single mea-
surement each day, thereby resulting in larger water quality prediction errors at profile locations in
the upstream half of the reservoir.

Additionally, the original developers of the Old Hickory model separated side bank storage
volume from mainstem conveyance volume by use of a separate branch and a series of weirs con-
necting the storage branch to the mainstem. While this may improve hydrodynamics modeling, this
methodology does not properly represent the water quality phenomenon of the system. This makes
a particular impact in the forebay of the reservoir, where the additional storage branch (Branch 10)
enters the mainstem (Branch 1) as shown in Figure II1.4. While the model is not constructed as de-
sired, CE-QUAL-W2 emulation by surrogate model and integration within an optimization scheme
is demonstrated using the Old Hickory model regardless of model structure and accuracy. The focus
here is transition from high-fidelity simulation to reduced surrogate model, not transition from the

true system to high-fidelity simulation model.
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Figure II1.4: Bathymetry of Old Hickory reservoir CE-QUAL-W2 model, showing (a) plan view
of all branches and (b) elevation view of the mainstem, Branch 1 (created using AGPM-2D v3.5
post-processor for CE-QUAL-W?2 by Loginetics, Inc.).
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Table III.1: Summary of Old Hickory CE-QUAL-W2 model calibration and validation results.

Calibration Validation

Year 1988 2005
Computational Time (minutes) 9 9
Elevation AME ¢ (meters) 0.025 0.053
Dam Releases:

Temperature AME ¢ (°C) 0.963 0.617

DO AME “ (mg/L) 1.010 1.196
In-stream Profiles:

Temperature AME ¢ (°C) 2.076 1.350

DO AME “ (mg/L) 0.943 0.716

¢ Errors are presented as absolute mean error (AME). In-stream
profile measurements of temperature and DO were collected at 8
locations on 7 dates in the calibration year (1988) and at 7 locations
on 2 dates in the validation year (2005).

The Old Hickory tailwater is considered the point of compliance and monitoring for water qual-
ity by dam operators; therefore, ANN models were trained to emulate the hourly discharge tem-
perature and DO predictions of the CE-QUAL-W2 model. Based on observations made during
CE-QUAL-W2 model calibration and validation, the discharge temperature and DO at Old Hick-
ory are sensitive to only the two most dominant upstream inflows: Branch 1 (the mainstem) and
Tributary 2 (Caney Fork, and the Center Hill dam discharge). Flowrates, temperatures, and DO
concentrations for these two inflows were included in an initial exogenous input set. Additionally,
meteorological data and operational data (spill and turbine flowrates) were included. Using the
2005 Old Hickory CE-QUAL-W2 model inputs and outputs, correlation tests were performed to
narrow the set of exogenous inputs to the main driving factors for discharge temperature and to esti-
mate the appropriate sets of input and feedback delays. Examples of correlation plots for discharge
temperature are shown in Figure III.5 for demonstration. Exogenous inputs with low correlations
were removed from the set. For the narrowed exogenous variable set, correlations with discharge
temperature and DO were maximized in the vicinities of 0, 1, and 12 hour delays; hence, the input
delay set was assigned to these values. Lagged autocorrelation testing of the discharge temperature
and DO output time series show decreasing correlation over time, meaning a single feedback of 1
is appropriate. The resulting sets of exogenous variables for temperature and DO NARX models

are given in Table III.2. The number of hidden layers and neurons in each layer were assigned to
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the default values of 1 and 10, respectively, following sensitivity testing that revealed an increase
in these values yielded little to no improvement in prediction ability at considerable computational
expense.

Training data for Old Hickory NARX WQMs was generated by combining dominant inflows,
outflows, and meteorological data time series. For each input type, three variations were considered.
Meteorological conditions consisted of the 2005 (average year), 2006 (wet year), and 2007 (dry
year) values. Inflow temperatures and DO concentrations consisted of the values from 2005 and the
2005 values were increased and decreased by 5%. Inflows were not varied, but outflows were varied
to create heavy spill and heavy turbine scenarios. The heavy spill scenario was created by allocating
20% of the 2005 turbine outflow to the spill gates, and the heavy turbine scenario was created by
allocating 20% of the 2005 spill outflow to the turbine structure outflow. Spill and turbine scenarios
were not combined exhaustively, but instead were paired to maintain an equivalent total outflow to
maintain water balance stability in the CE-QUAL-W?2 simulations. This process creates a surrogate
model which can be used to explore the trade-off between releases through the turbines and spill
gates. An exhaustive combination of all variables, with the exception of the paired spill and turbine
inputs as explained, resulted in a total of 729 CE-QUAL-W2 model simulations.

Seventy percent of the simulations were provided to the training algorithm and the remaining
thirty percent saved for final validation. To minimize the impact of substantial oscillatory noise
found in some CE-QUAL-W?2 simulation results, the water quality predictions were smoothed us-
ing a 24-hour moving average process prior to training. A smoothing approach was selected in

order to avoid removing runs from the design of experiments set; with the understanding that the

Table II1.2: Exogenous variables lists for Old Hickory discharge NARX models.

Discharge Temperature Discharge DO
Branch 1 Inflow Branch 1 Inflow
Branch 1 Temperature Branch 1 Temperature

Tributary 2 Temperature Branch 1 DO
Air Temperature Tributary 2 Temperature
Dew Point Tributary 2 DO
Turbine Flow Air Temperature
Spill Flow Dew Point
Turbine Flow
Spill Flow
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Discharge Temperature & Turbine Outflow Discharge Temperature & Branch 1 Inflow
Cross Correlation Function Cross Correlation Function
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Figure II1.5: Old Hickory discharge temperature lagged cross correlation test examples for (a) tur-
bine outflow, (b) branch 1 inflow, (¢) air temperature, and (d) tributary 2 inflow with 95% confidence
bounds. Inputs shown in (a), (b), and (c) are considered correlated with discharge temperature and
are included in the NARX model exogenous variables, while input (d) is not.
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initial set of NARX models provides somewhat “smoothed” predictions due to the wide range of
conditions in the training data set; and due to the fact that the NARX models are later updated in a
retraining step within the optimization process, which is based upon non-smoothed CE-QUAL-W?2
outputs. The training algorithm randomly divides its portion of data between training (70%), vali-
dation (15%), and test (15%) subsets. The training subset is used to compute gradients and update
network weights and biases, the validation subset for computing errors and determining when to
halt the training routine, and the test subset for confirming an appropriate division of data by com-
paring when the test subset and validation subset errors reach their minimums. Figure II1.6 provides
a visual demonstration of the random data division, with each box representing a CE-QUAL-W2
simulation.

Because the models are trained using an optimization algorithm that incorporates a random
process, temperature and DO networks were each trained five times. After five networks were
constructed and bias correction performed, an interior point constrained nonlinear optimization al-
gorithm was employed to compute network weights (which sum to 1) that minimize the validation
set error. After the first weight set was computed, any networks with a weight less than 25% of the
maximum weight were removed and the weights recomputed for the smaller set of NARX models.
This removes inferior networks from the set while still maintaining a “family” of networks that may
provide better global predictions than a single trained network. In this application, the temperature
surrogate model consists of 4 weighted NARX models and the DO surrogate model consists of 4

weighted NARX models.

Set aside 30%
for final
validation

NARX #1
NARX #2
NARX #3
NARX #4
NARX #5

Y T

Set Provided to train() Function Final Validation Set
[] Train (70%) [] validate (15%) ] Test (15%) [l Final vaiidation

Figure I11.6: Data division demonstration for NARX model training. Each box represents 1% of the
total set of CE-QUAL-W?2 simulations resulting from design of experiments.
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II1.6 Results

NARX models were trained to simulate hourly summer (May-September) discharge water qual-
ity using the family of CE-QUAL-W?2 simulations described earlier, and validation errors computed.
Shown in Figure III.7, training and validation errors have similar distributions suggesting no oc-
currence of overfitting. Examples of NARX model predictions compared to the 24-hour moving
average smoothed CE-QUAL-W?2 outcomes for Old Hickory reservoir are given in Figure IIL.8.
The NARX surrogate model predictions closely follow the seasonal trends produced by CE-QUAL-
W2, but are unable to fully replicate “peaks and valleys.” The initial surrogate training data set
consists of many exogenous variable and release scenario combinations, producing a robust model
capable of providing general solutions for a variety of scenarios at the expense of refined predic-
tions. Missing these extreme values could provide incorrect solutions in the region of optimization
constraints; therefore, solution confirmation by CE-QUAL-W2 and surrogate model updating (as
shown in Figure II1.3) are vital steps for refining surrogate water quality predictions.

The success rate of a heuristic optimization algorithm is highly dependent on the problem to
be solved and algorithm settings (Reed et al., 2000). For GAs, computational time and accuracy
are often at odds and depend on population size. It is beneficial to determine the population size
where little accuracy is gained from larger populations. Researchers have attempted to determine
heuristics for setting population size based on the number of problem decision variables (i.e., the
variable space dimension) (Reed et al., 2000; Gotshall et al., 2002), but there is little consensus.

Population sizes were determined for both GA optimization steps shown in Figure II1.3: the
pre-screening constraint violation minimizer and power value maximizer. First the minimum DO
constraint was set to 10 mg/L. For the 24-hour period of August 3, 2005, this constraint bound is
unobtainable so the constraint violation minimizer step is activated. Various population sizes were
tested, with 10 optimization trials conducted for each size. Figure II1.9 displays the resulting optimal
solution values (i.e., minimum DO constraint violations) found as well as computational times. The
optimal solutions found appear to be logarithmically related to population, while computational time
is linearly related. There is little to no improvement for population sizes greater than 360, so this
value was chosen for the water quality pre-screening optimizer population size. The DO constraint

was then relaxed to the obtainable value of 5 mg/L and the process was repeated, maximizing power
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Figure I11.7: Old Hickory NARX model distributions of hourly prediction errors for (a) temperature
training, (b) temperature validation, (c) DO training, and (d) DO validation sets. Normal distribution
fits are shown by the curve.
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value over the same 24-hour period using various GA population sizes. These results are shown in
Figure II1.10, and a population size of 480 was selected. All other GA parameter settings were
determined by trial-and-error and are provided in Table III.3.

The optimization methodology is demonstrated on Old Hickory reservoir over the 10 day op-
erating period from midnight 3 August through midnight 13 August 2005 (Julian days 215-225).
This represents a period in the summer when the reservoir is vertically stratified and water quality
issues appear in the reservoir and tailwater. In order to demonstrate the effectiveness of this tool
for improving water quality and the impact that high-fidelity WQM incorporation can have on op-
timal power generation solutions, two experiments were performed. First, the relationship between
maintaining several stages of constraints on DO and the resulting energy production was explored.
Second, reservoir operations were optimized under constraints on both discharge temperature and
DO. Computations were performed on a server equipped with 64-bit Windows Server 2008 R2 En-
terprise and two 3.10 GHz AMD® Opteron™ 4334 triple core processors. As stated earlier, GA
solvers are capable of, but not mathematically guaranteed, to find globally optimal solutions; there-
fore, comparisons to historical operations are provided to show improved performance of solutions

found by GA.

I11.6.1 Experiment 1: Trade-Offs Between Water Quality and Energy Production

Optimization constraint values were set to those listed in Table I11.4, with the addition of a lower
constraint on discharge DO (0;). Operations were optimized under a series of values for this con-
straint, ranging from o; = 5 mg/L to o; = 8 mg/L. While this experiment could be formulated as a
multi-objective optimization problem, the purpose of the developed methodology is for implemen-
tation for a system with known regulatory water quality limits, not for determination of a trade-off
point between discharge water quality and power production, so the additional computational ex-
pense required to solve a multi-objective problem is not beneficial to the intended usage. This
presentation intends to demonstrate how the algorithm returns results that agree with the standard
practice of incorporating additional spill release to reduce negative water quality outcomes. During
the constraint feasibility pre-screen step, surface elevation and discharge DO constraints were pri-

oritized in that order, respectively. Target elevations were set to match the elevation pattern from
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Table II1.3: Optimization parameter settings.

Population size

Objective function tolerance
Constraint function tolerance
Crossover function
Crossover fraction

Mutation function

Mutation fraction

Creation function

Selection function

Elite count

Constraint Power
Violation Value
Minimization Maximization
360 480
10°8
10-8
single point
0.85
integer Gaussian
0.15

integer uniform
stochastic uniform
ceiling(0.05*population size)

Stopping criteria:

Maximum number of generations 50
Maximum stalled generations (no more than) 2 3
Fitness limit 0 not applicable

recorded operations over this time period.

Table II1.5 summarizes the 4 optimization trials performed. During this 10-day period in 2005,
recorded operations resulted in 10,450 MWh produced with a value of $812,750 using the assumed
cost curve. For lower DO constraint limits of 5 mg/LL and 6 mg/L, greater power values were
achieved by the optimization routine. As the DO constraint becomes more restrictive, computational
time increases and the value of the power generated decreases. Additionally, the DO constraint is
not fully satisfied during the entire planning period for the last two cases.

Figure I1I.11 shows the cumulative turbine and spill releases at the optimal operations for each

constraint level. Additional spill is required to maintain the desired DO concentration level when

Table II1.4: Optimization constraint values.

Turbine power rating, r (MW) 25
Number of turbines, a 4
Power pool elevation upper bound, p, (meters) 135.636
Power pool elevation lower bound, p; (meters) 134.722
Maximum zero-generation hours, z 6
Rate of change of active turbines, ¢ (turbines/hour) 1
Minimum discharge DO concentration, o; (mg/L) varies
Minimum discharge temperature, ¢; (°C) varies
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the DO constraint threshold is greater. In the case when o; = 8 mg/L, this results in more release by

spill than by turbine.

I11.6.2 Experiment 2: Simultaneous Constraints on Temperature and DO

Optimization constraint values were set to those listed in Table I11.4, with the addition of lower
constraints on discharge DO (0; = 7 mg/L) and temperature (¢, = 25 °C). These constraints represent
potential requirements for a downstream sensitive aquatic species, as seen in the past elsewhere in
the Cumberland River system (Andrews, 2014). During the constraint feasibility pre-screen step,
constraints were prioritized in the following order: surface elevation, discharge DO, and discharge
temperature. Figure II1.12 illustrates the resulting flowrates, elevations, and discharge water qual-
ity predictions at the identified optimal solution. The surrogate water quality predictions cannot
replicate CE-QUAL-W?2 predictions with zero error, but the temperature and DO surrogate mod-
els successfully captured overall trends and provided improved predictions at “peaks and valleys”
over those seen in the robust model (see Figure II1.8) due to retraining the model using improved
training data found by the optimizer. Additional results are detailed in Table III.5. Employing the
assumed cost curve, the power value of the optimized solution over the 10 day period is $316,000,
as compared to the projected (or actual) operations value of $812,750 due to the introduction of spill

release in order to meet water quality constraints.

II1.7 Discussion

Water quality prediction computational time through the chosen operating period was reduced
from approximately 6 minutes to 2 seconds per operations scenario by use of a NARX ANN sur-
rogate model rather than CE-QUAL-W2. Optimization computational time increases as feasible
space shrinks due to constraints, and additional iterations are necessary for algorithm convergence
for stricter water quality limits; however, for all experiments shown there are considerable computa-
tional cost savings as compared to expense should CE-QUAL-W?2 be directly embedded within the
framework. For perspective, Experiment 2 required 313,423 objective and constraint function-pair
evaluations per iteration on average. This depends on the optimization problem characteristics, not

the form of the simulation model embedded within. The optimization problem demonstrated has a
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large number of decision variables, is highly-constrained, and is highly nonlinear with many dis-
continuities; this means a greater number of function evaluations are required in order to have confi-
dence in the GA’s outcomes. Therefore, because the number of function evaluations required during
GA optimization is considerably greater than the number of CE-QUAL-W?2 simulations required for
initial NARX training, the surrogate-enabled framework provides computational savings overall de-
spite the necessary initial simulations and training. Further, completing 313,423 water quality pre-
dictions using CE-QUAL-W?2 in parallel on the 6-core machine employed here would alone require
over seven months, as compared to the 40 hours in total spent for the iterative surrogate-enabled op-
timization routine. The surrogate models are not perfect emulators of CE-QUAL-W?2, which is why
the overall surrogate-embedded framework is iterative, has retraining steps between iterations, and
includes final confirmation by CE-QUAL-W2. Based on the large number of function-pair evalua-
tions required to solve each optimization iteration, these additional steps add considerably less time
than a single, non-iterative optimization approach with CE-QUAL-W2 embedded.

This routine requires several computing steps prior to optimization, including CE-QUAL-W?2
model construction, calibration, and validation; design and implementation of CE-QUAL-W2 ex-
periments to inform the surrogate model; and NARX architecture design, model training, and val-
idation. CE-QUAL-W?2 construction, calibration, and validation should be performed by an expe-
rienced modeler with knowledge of the river system. With careful implementation and data man-
agement, the design of experiments and NARX model training can be performed as an automated
process. NARX architecture design can also be automated but should be supervised to ensure rea-
sonable performance.

The relationship between spill and turbine releases and tailwater quality demonstrated by the
results is in agreement with current Nashville District operator experience. During periods of water
quality stress, a portion of discharges are diverted from the turbine release to the spill release to
alleviate this stress. Old Hickory reservoir’s operators currently make this determination based on
past operator experience, and the exact amount of spill necessary in a specific situation to result in
water quality compliance is unknown. In the Old Hickory case study, too little spill release results
in suboptimal water quality outcomes and too much spill release results in unnecessary loss of
potential hydropower production. The optimization methodology returns optimal turbine and spill

release for scheduling on an operations timescale, reducing potential for downstream water quality
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noncompliance and unnecessary loss of potential energy production.

II1.8 Conclusions

This study demonstrated development and application of a novel method to optimize the value
of hydropower production under a variety of operational constraints, including constraints on tail-
water water quality, for hourly operations over a 10 day planning period for a USACE reservoir
with turbine and gate control structures. The high-fidelity CE-QUAL-W?2 model was employed to
generate data for training NARX ANN models for prediction of discharge temperature and DO as
a function of exogenous inputs, including upstream inflows, meteorological data, and structure re-
leases. NARX models trained using an initial set of 729 CE-QUAL-W?2 simulations were employed
initially, GA optimization performed, and when necessary the NARX models were retrained using
a CE-QUAL-W?2 simulation at the discovered optimal solution, and optimization repeated. The re-
training step is important in cases when the GA explores regions of the decision space not captured
in the original training set, which is likely to occur in complex applications. Surrogate validity out-
side of the training region is difficult to evaluate and should be further researched (Castelletti et al.,
2012).

This methodology could be applied to other water quality constituents of concern such as total
dissolved gas, phosphorus, nitrogen, or suspended sediments. Water quality at a single monitoring
location is the focus here, but the process could be adapted to address water quality at additional
point locations or to incorporate a metric for average water quality based on high-fidelity simulation
outputs. This type of application would be valuable for assessing the impacts of river operations
at water withdrawal locations for thermal and water treatment plants as well as known locations of
protected species. Additionally, this approach can be applied over longer horizons on a less-refined
timescale for seasonal or yearly planning; however, accuracy of inflow and meteorological forecasts
must be considered for longer-term applications. For reservoirs with storage facilities, the problem
could be reformulated with the end of day water level constraints as decision variables in a bilevel
optimization problem; however, this adds computational expense. Efforts are currently underway
to expand this methodology to a system of multiple controlled reservoirs. Future efforts include

exploring additional means for improving constraint handling (Ilich and Simonovic, 2001), ANN
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retraining (Yan and Minsker, 2006), and overall computational efficiency.
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Chapter IV

ADAPTIVE NEURAL NETWORKS FOR EFFICIENT WATER
QUALITY-CONSTRAINED HYDROPOWER OPTIMIZATION

IV.1 Introduction

Hydroelectric power generation serves as both a renewable energy source and a flexible power
supplement for baseload generation (i.e., fossil and nuclear power production) during times of peak
demand (U.S. Department of Energy, 2016b). Hydropower is expected to account for 27% of the
anticipated growth in worldwide renewables production and 1.7% of the growth in U.S. renewables
production through the year 2040 (U.S. Department of Energy, 2016a). This growth in power pro-
duction must be achieved while fulfilling other reservoir objectives and constraints. Hydropower
facilities and their impounded backwater serve many roles, including power production, naviga-
tion, recreation, water supply, and flood control. Hydropower operations can have environmental
impacts, particularly due to releasing water on a peaking schedule in order to supply electricity to
the grid during periods of high demand (Jager and Smith, 2008). Additionally, reservoir thermal
stratification (i.e., when surface layers are warmer than deep layers, thereby reducing or eliminating
vertical mixing) can be exacerbated by hydropower release decisions (Dortch, 1997).

This chapter demonstrates an approach for optimizing operating schemes, with a focus on ef-
ficiently determining hydropower outflow allocations while treating water quality impacts as oper-
ational constraints.This is accomplished by embedding an ANN WQM, a surrogate of a complex
WQM, within a GA optimization framework and adaptively training the ANN model within the
GA. Offline or static training alone, performed prior to the optimization run, results in poor ac-
curacy for problems with complex search spaces; the broad sampling of training points may not
produce accurate solutions in local regions and lead to false optima (Yan and Minsker, 2006).

This issue compounds when the feasible space is bounded by a set of constraints, as shown
here. In many real-world constrained optimization problems, optimal solutions lie along constraint

boundaries. When constraints depend on an approximation model and the true optimal solution lies
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along the constraint boundary, offline training alone can produce solutions that are infeasible. Adap-
tive surrogate model updating within an optimization process balances exploration of the decision
space and exploitation in regions with suspected optima. As the optimizer proceeds towards conver-
gence, the surrogate model is updated to improve prediction quality in the region being searched.
Building upon Shaw et al. (2017), we demonstrate how adaptively updating a surrogate WQM em-
bedded within a population-based hydropower optimization routine improves solution quality. We
know of no prior work that employs adaptive ANNs for constraint formulation within a GA routine,

let alone for a hydropower optimization application.

IV.2 Adaptive Linked Neural Network-Genetic Algorithms

In offline ANN training, a set of potential model inputs is typically randomly generated and
simulated by the original model that is to be approximated. The outputs of these runs are used to
train an ANN approximator, which is then employed to solve for optima. This approach can perform
well for simple problems (Zou et al., 2007) with appropriate sampling. High-fidelity simulators
typically model complicated relationships with nonlinearities, discontinuities, and local minima,
making it difficult to develop an offline sampling plan. For problems requiring high-fidelity models,
there is a need to employ surrogate models to solve within computational budgets, and offline ANN
training alone is not likely to produce satisfactory optimization results. For these applications,
an approach in which the ANN is updated with new information during its application within an
optimization routine is necessary.

Yan and Minsker (2006) developed an adaptive ANN-GA approach and applied it to a ground-
water remediation design optimizer. The full WQM was the linked multi-layer two-dimensional
flow and transport model MODFLOW-MT3DMS. They implemented a caching system to improve
performance by using the true WQM outcomes as the fitness values for population members pre-
viously sampled by the full WQM, and used the ANN for fitness value estimation otherwise. This
reduced the number of calls to the ANN while improving GA performance. The authors con-
cluded that the adaptive ANN with caching approach saved more than 85 percent of the full WQM
evaluations required by the GA if solved without use of ANN surrogate models, while returning

comparable quality solutions. This approach was later modified to account for sampling noise (Yan
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and Minsker, 2011).

Zou et al. (2007) demonstrated an adaptive linked ANN-GA method to calibrate a computationally-
expensive eutrophication model, where an ANN is used in place of the simulation model within the
error-minimizing fitness function. For each final GA population, candidate solutions were grouped
into clusters. The best solutions from each cluster formed a new set of simulations to be performed
using the full WQM and then used for ANN updating. The authors note that this approach im-
proved ANN capability for a particular desired usage rather than overall generalization (i.e., the

goal of offline, one-step ANN training).

IV.3 Case Study Description

Here, we demonstrate the methodology by solving for optimal operations at Old Hickory reser-
voir; Old Hickory operations are described in detail in Chapter Il and U.S. Army Corps of Engineers
(1998). During the warm summer months, temperature and DO concentrations are highly stratified
both longitudinally (along the direction of river flow) and vertically directly upstream of outlet
structures. To better predict stratification conditions, the Nashville District uses the high-fidelity
CE-QUAL-W2 model to simulate water quality throughout the reservoir as well as at reservoir
discharge locations.

Outlet structures include tainter gates for spill flow and 4 Kaplan hydropower turbine units, each
with a capacity of 25 MW. Release projections are made typically on an hourly or finer timescale
10 days in advance, and then updated daily. These projections consist of the number of active
turbines to be used over time, as well as projected spill volumes. Spill releases are used when heavy
precipitation is expected and operators are planning for flood conditions, and also as a means to
improve discharge DO concentrations by incorporating oxygenated spill water when flow through

the turbines has a low DO concentration.

IV.4 Optimization Problem Formulation

The adaptive optimization approach is demonstrated using the hydropower optimization prob-
lem defined in Chapter III, which has the objective of generating maximum power value subject

to several operational constraints. USACE operations forecasting plans for the Cumberland River
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system are typically generated over a 10 day period and updated daily with a focus on the next day’s
operations (U.S. Army Corps of Engineers, 1998); the optimization scenario thus covers 1 day, or 24
hours. In order to demonstrate the adaptive ANN training approach, a single water quality constraint

was applied (representing a lower bound on DO) and no constraint on temperature was considered.

IV.5S Methodology

Given unlimited computing resources, Equation III.7 would be solved using a high-fidelity
WQM; however, high-fidelity models are computationally expensive, and therefore ill-suited to
be used within optimization routines. Considering this limitation, water quality estimates are de-
termined by a surrogate model, which is trained using the original model simulation outputs. The
high-fidelity WQM here is CE-QUAL-W2, and the surrogate model is formulated as an ANN of the
NARX form.

GA optimization is a flexible method that is capable of handling nonlinearities and discontinu-
ities, as well as quasi-black box functions including ANNSs as present in the objective and constraint
functions noted above. The GA functionality in the MATLAB® Optimization Toolbox (R2016a,
The MathWorks Inc., Natick, Massachusetts, United States) was used in this application. GA op-
erators consist of elitism (where the best population members are passed directly to the next gen-
eration) and score-weighted selection for creating mutation and crossover children. For nonlinear
constrained optimization problems, penalty and augmented Lagrangian methods attempt to evolve
populations toward the feasible space when determining candidate solution fitness; here, an Aug-
mented Lagrangian GA (ALGA) approach is used (Conn et al., 1997).

An approach for incorporating an adaptive ANN-based constraint on water quality within a
GA-based hydropower optimization process for determining hourly turbine releases is shown in
Figure IV.1. First, an initial population of potential solutions that satisfy all hard constraints with
the exception of water quality was created. Using a problem-specific creation function that accounts
for constraint equations II1.2-I11.6, the initial population of operating scenarios is constructed us-
ing logical decision-making and random selection, starting with the first hour’s turbine setting and
progressing to the final hour. Using historical hourly operations data from 1987-2015, transition

probabilities were determined for ramping up, ramping down, and maintaining turbine levels given
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the previous hour’s active turbines.

The initial population is divided into K clusters by the k-means method (MacQueen, 1967),
which increases the diversity of training data sampling points. A member from each cluster is chosen
to create a set of K training members. Additionally, if the operator’s anticipated turbine operating
pattern satisfies the constraints it is included in the initial population set; this manuscript uses past
operations for demonstration, so they are used here in the place of anticipated operations. The
initial NARX model is constructed by simulating the selected training members and the anticipated
operations with the full CE-QUAL-W2 model and training the surrogate using the resulting set
of outputs. The initial offline training builds a surrogate with broad predictive coverage over the
design space, but poor detailed predictive capability. A cache of full CE-QUAL-W?2 model outputs
is updated every time the CE-QUAL-W?2 model is called. In future generations if a previously-
sampled population member is present, then the water quality estimations are provided by the cache
rather than the NARX model. While NARX model estimation errors will never be fully eliminated,
the caching step eliminates error at points where WQM results are known.

With the initial population assigned and offline surrogate training complete, the process enters
into a GA phase stepping forward one generation. The feasible population member with the best
fitness value is saved as xg,. If the new population appears to contain no feasible solutions, then
the member with the smallest constraint violation is chosen. If necessary, x,, is simulated using
the full CE-QUAL-W?2 model, and if the stopping condition is not met an additional selection of A
population members is chosen for additional sampling with CE-QUAL-W2. The surrogate model is
updated using the expanded training data set. In an effort to improve population diversity, a random
immigrants step is employed in which a portion of the population is replaced with new randomly
generated new population members.

The following subsections further describe the resampling for ANN updating and the random

immigrants replacement steps.

IV.5.1 Resampling for ANN Adaptation

The surrogate WQM’s range of predictive power depends on the set of training data it is built

upon. Even a very large randomly-generated training data set can yield a surrogate model that can-
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not produce reliable predictions in the region of optima. The locations of these optima are unknown
prior to optimization, so an approach to choose additional training points within GA optimization
is employed here. As the GA progresses, the population of potential solutions converges to a set
of solutions with improving fitness and estimated feasibility. Additionally, as the surrogate model
improves from generation to generation, the estimated feasibility error reduces. For these reasons,
generating training data from these improving populations is more beneficial than by random selec-
tion.

After the traditional GA step and xg., simulation with the full CE-QUAL-W2 model, an ad-
ditional A samples from the population are simulated by CE-QUAL-W2. This not only provides
additional training data to the ANN, but also eliminates prediction errors at these points going for-
ward. The members of final_popg., considered for additional sampling are (i) feasible with respect
to all constraints that are not dependent upon the surrogate WQM, (ii) have superior fitness values
than the previous best feasible solution found, and (iii) have not yet been simulated using CE-
QUAL-W?2. These members are sorted primarily by the ANN-dependent constraint violation and
secondarily by fitness value, both ascending. The highest ranked members are then selected (i.e.,

those approximated first as most feasible, and secondarily of best fitness) for simulation.

IV.5.2 Random Immigrants Replacement

Dynamic optimization problems (DOPs) are those in which the problem (i.e., the decision vari-
ables or the objective or constraint functions) changes during the solution-solving process (Tinos
and Yang, 2007). For DOPs, intermediate potential solutions may no longer be effective going
forward. One method for approaching DOPs is to restart the optimizer under the new conditions,
which is computationally inefficient. In cases like the one shown here, changes in the problem
are related to the trajectory of the optimizer, and there are techniques which use prior solutions
to move forward under a problem’s new conditions. Methods such as hypermutation and random
immigrants replacement aim to avoid premature GA convergence by improving population diver-
sity, thereby improving the algorithm’s effectiveness for solving DOPs. Hypermutation is triggered
when changes in the DOP are detected based on current population members; however, the current

population may not represent the search space where changes are occurring, in which case hyper-

95



mutation can fail (Grefenstette, 1992). Alternatively, random immigrants is a method in which a
portion of the population is routinely replaced with new members, inspired by immigrants entering
a biological population. Studies have found the random immigrants approach to be favorable for
solving problems whose response surface (i.e., objective and/or constraint function outputs) changes
dynamically during searching (Grefenstette, 1992; Tinos and Yang, 2007).

The optimization formulation here exhibits such dynamic changes, since water quality predic-
tions change each time the surrogate model is updated. The replacement rate R is the percentage
of the population members to be replaced in each generation. In each generation, the optimizer
replaces the least desirable population members. The algorithm ranks population members by
weighted average constraint violation by normalizing the violation of each constraint across all
population members, averaging across all constraints, and then ranking from least to most feasible.
Ranking fully feasible members is also dependent upon fitness, with best fitness value ranking last.
The optimizer then replaces the earliest-ranked (i.e., the least desirable) R percentage of the cur-
rent population with new members generated by the creation function used to generate the initial

population.

IV.6 Experimental Setup

The Nashville District USACE provided a CE-QUAL-W?2 version 3.5 model for Old Hickory
reservoir. This model underwent calibration and validation steps for prediction of water level, tem-
perature, and DO (Shaw et al., 2017). Sensitivity testing using the model determined an appropriate
NARX model architecture for predicting tailwater DO, as this location is considered the water qual-
ity point of compliance and monitoring by dam operators. Selection of NARX model architecture,
including number of neurons, layers, delays, and exogenous variables set, is described in Shaw et al.
(2017).

Using the problem formulation described earlier, operations at Old Hickory reservoir were opti-
mized on an hourly timestep from midnight 3 August through midnight 4 August 2005 (Julian days
215-216). This date was chosen because 2005 was the validation year during CE-QUAL-W?2 model
development, so operations and water quality data were available. Additionally, during this period

in late summer the reservoir is vertically stratified and water quality issues influence operations. Old
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Hickory has a power rating r of 25 MW for each of its four turbines. The employed cost curve C(i)
(see Shaw et al. (2017)) was created from historical operating patterns. Lower and upper bounds on
water levels were based on the USACE guide curve and set to p; = 134.722 m and p, = 135.636
m, respectively. The maximum number of consecutive hours allowable without generation is z = 6,
and the turbine rate change limit is ¢ = 1 turbine/hour. The minimum DO concentration at the dam
discharge is set to 0o; = 7 mg/L; the true operations on this day in 2005 resulted in DO concentra-
tions below 7 mg/L, so this setting provides an adequate demonstration of how the methodology
successfully discovers the feasible space under a demanding constraint limit.

The problem was solved by four approaches: (i) without random immigrants replacement or
adaptive sampling (beyond simulating the best solution x4, after each generation), (ii) with re-
placement but without additional sampling, (iii) with additional sampling but without replacement,
and (iv) full adaptive framework shown in Figure IV.1 including additional sampling and random
immigrants replacement.

Surrogate retraining is performed in all four scenarios; this means the surrogate model changes
between each generation, but retraining is influenced by the introduction of additional training data
beyond x4, in cases 3 and 4. Based on previous work, the GA population size, pop_size, was
set to 480. Additional GA settings are provided in Table IV.1. In cases 2 and 4, the replacement
rate R = 0.2 was chosen. In cases 3 and 4, the number of additional samples simulated by the
full CE-QUAL-W2 model is four for generations where xg., does not require simulation and three
for generations where xg., requires simulation by CE-QUAL-W?2, resulting in a total of four CE-

QUAL-W2 simulations per generation.

IV.7 Results

Because the methodology employs random number generation, each experiment was performed
eight times, with each of the four approaches tested using the same eight random number generator
seeds. The power values (first term in Equation III.1) of the resulting best feasible solutions are
provided in Table IV.2. Figure IV.2 shows the power value means and ranges, as well as the means
and ranges of the ANN function call and CE-QUAL-W?2 simulation counts for each case. All trials

returned a solution in the feasible space. As expected, Case 1 performed the worst, with all eight
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Table IV.1: GA and overall framework settings.

Population size (pop_size) 480

Objective function tolerance 10720

Constraint function tolerance 10720

Creation function logical decision-making with constraint
consideration and random selection

Elite count ceiling(0.05*population size)

Crossover function single point

Crossover fraction 0.95

Mutation function integer Gaussian

Mutation fraction 0.05

Selection function stochastic uniform

Max generations (stopping condition) 50

Initial training set size (K) 10

Additional samples for ANN training (A) 3or4

Replacement rate (R) 0.2

trials converging on local minima. The addition of either random immigrants to the population
pools or adaptive additional sampling improved solutions. Implementing random immigrants and
additional sampling together yielded the best results, improving solutions by 8.5% on average over
Case 1. Cases 3 and 4 have a similar range of results, but on average Case 4 performed best. Further
analysis of the Case 4 trials revealed decreasing solution improvement as the optimizer proceeds
(Figure IV.3). This means later generations provide smaller gains in power value than provided by
earlier generations.

Random immigrants replacement aims to counter premature homogenization of the population.

Table IV.2: Power values for best feasible solutions found by the four approaches in eight trials.

Random Case 1: Case 2: Case 3: Case 4:
Number Without With Replacement & Without Replacement ~ With Replacement
Generator Replacement or Without Additional & With & With Additional

Seed Additional Sampling Sampling Additional Sampling Sampling

1 42000 43750 43500 45250

2 41500 43750 47500 44250

3 40500 44250 47750 47750

4 43750 43750 43750 47750

5 45250 46500 47500 47750

6 43750 47500 43750 43750

7 42500 44000 44250 47500

8 43000 41000 44250 47500
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Figure IV.2: Means and ranges for (a) power values of the best feasible solutions found, (b) total
ANN function calls, and (c) total CE-QUAL-W?2 simulations for the four tested cases.

The average standard deviation of the decision variable makeup in each generation, SDg,,, is a
metric which can demonstrate replacement’s impact on population diversity. Average standard de-
viations are calculated by scaling decision variables to a [—1.0,1.0] range, calculating the standard
deviation of each variable, and averaging these values. This is computed after the GA minimiza-
tion step in each generation. The population standard deviations at each generation for each case,
averaged over the eight simulations, is shown in Figure IV.4. Standard deviations are maintained at
higher levels for the two approaches which included random immigrants replacement. In all four
cases, standard deviations reach approximate minimums around generation 25. Because the prob-
lem is dynamically changing via the water quality constraint, standard deviations do not converge
to zero as they would for a static optimization problem.

The caching step eliminates prediction errors at points which have been evaluated by the full
simulation model by returning the full simulator (rather than the ANN) water quality predictions
during future constraint function calls. This step also lessens the number of calls to the ANN

function as optimization progresses. The percentage of the population intersecting with the cached
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Figure IV.3: Generation number versus (a) power values for newly-discovered incumbent solutions
and (b) percentage change in incumbent solution power value for the Case 4 trials.
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Figure IV.4: Population average standard deviations for the four tested cases.
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set at each generation, averaged over the eight trials, is shown in Figure IV.5. This metric reflects

on the convergence of the GA, with populations becoming less diverse as optimization progresses.

IV.8 Discussion

Figure I'V.2 indicates the modified optimization methodologies (Cases 2, 3, and 4) provide so-
lutions of superior fitness value compared to those provided by the unmodified optimizer (Case 1).
This reveals turbine release patterns which provide additional hydropower revenue without forcing
discharge flow DO concentrations below the minimum allowable. These refined optimal release
schedules are a function of water quality and depend upon many factors, and are therefore likely
unknown to hydropower decision-makers without optimization.

As seen in Figure IV.5, the test cases without replacement ultimately converge to populations
with a high percentage of cached (i.e. previously simulated using CE-QUAL-W?2) points, while the
cases with replacement converge to populations with a lower proportion of previously simulated
members. This difference is greatest for the case with additional sampling (Case 2). Additionally,
the cases with additional sampling exhibit smoother growth in percentage of the population in the
cache, while the cases without additional sampling exhibit occasional drops and less steady growth.
The approaches providing more samples to the training data set result in ANN surrogate models
with smoother changes in prediction values from generation to generation, meaning the makeup of
the population from generation to generation is not dramatically altered due to adjustments to water
quality constraint values. For the approaches that only provide additional training data when a new
suspected optimal feasible solution is discovered and checked by the full CE-QUAL-W2 model, the
training data supply is more sparse and is updated less frequently, which can cause more extreme
adjustments to the surrogate model when new data is supplied.

The two cases with additional training data sampling provided the highest quality solutions
overall. This comes with the computational drawback of additional calls to CE-QUAL-W?2, as seen
in Figure IV.2. Including the simulations used for initial NARX training, the four cases required on
average 27, 36, 62, and 210 CE-QUAL-W?2 simulations. There is a less-clear relationship in terms
of required ANN function calls. While results indicate that Case 4 has the highest likelihood of re-

turning a superior solution, the combined approach also has a greater computational burden in terms
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Figure IV.5: Averaged proportions of GA water quality solutions found within cache at each GA
generation for the four test cases.

of CE-QUAL-W?2 simulations. Translating function and simulation calls to execution time depends
on problem specifics and computational resources. For this problem, ANN water quality surrogate
predictions and CE-QUAL-W?2 simulations each required approximately 0.08 and 55 seconds, re-
spectively, when solved in parallel batches on a 64-bit Windows 10 computer equipped with a 3.40
GHz Intel® quad core processor. Adaptive resampling with the original simulation model, even to
a limited extent, can therefore result in a notable computational expense increase. Additionally,
results indicate that later optimization generations provide less solution improvement than earlier
generations, so halting the optimizer early could reduce computational burden with limited impact
on solution quality. These factors should be considered when determining which approach is most
appropriate for future applications. As always, the modeler must consider the potential trade-off
between computational expense and the benefits provided by improved solution quality.

This demonstration yielded a potential average improvement in power value of 8.5% or $3,657
for a single 24-hour interval during a period of low discharge DO concentrations. Figures A.1l
and A.4 in Appendix A show a period of approximately 100 days in which discharge DO levels
were measured in the vicinity of the regulatory limit of 5 mg/L. Assuming the $3,657 additional
power value provided daily is realized over the 100 day period, the algorithm modifications have

the potential to improve power value by approximately $360,000 while maintaining water quality
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in the Old Hickory tailwater.

Using a surrogate model in place of the full CE-QUAL-W2 model delivered computational sav-
ings. The ALGA method for constrained GA optimization requires a series of subproblems to be
solved within each generation; therefore, more than pop_size calls to the objective and constraint
functions are made. In each generation the GA minimizer step required approximately 1450 con-
straint function evaluations. Over 50 generations (the chosen stopping condition), each solution re-
quired approximately 72,500 constraint evaluations. Without using a high performance computing
cluster, this many evaluations of the full CE-QUAL-W2 model (which in this case takes 1-3 minutes

to evaluate on a desktop computer) would not be feasible for real-world operations planning.

IV.9 Conclusions

We demonstrated an approach for solving a constrained optimization problem with a dynamically-
changing constraint formulated as a ANN model, a surrogate of an expensive simulation model.
The surrogate model replaces a full simulation model to reduce computational expense. Because
the ANN model is not an exact emulator, prediction errors can lead the optimizer to converge on
infeasible solutions. To counteract this, two approaches were tested. The first approach, random
immigrants replacement, involves injecting new members within each population. This is an easily-
implemented technique for increasing population diversity, which is of particular importance for
DOPs. The second approach improves surrogate model prediction quality in a way that is influ-
enced by the optimization trajectory. Additional training data samples are routinely chosen from
GA populations and simulated with the full simulation model, improving surrogate performance in
regions of suspected optimality.

These approaches were used to solve a high-constrained hourly operations planning problem
for a single, multipurpose reservoir with hydropower capabilities. The objective was to maximize
the value of power generated, while satisfying numerous constraints including a constraint on tail-
water DO. DO predictions were generated by a ANN model trained to emulate the CE-QUAL-W2
hydrodynamics and WQM. Of the approach combinations tested, combining random immigrants
replacement and adaptive additional sampling produced superior fitness values, and when used in-

dividually improved results over trials where neither approach was used.
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Prior work in the area of adaptive model updating within optimization relies on surrogate model
forms which provide statistical information (for example, GPs as used in Bichon et al. (2013)).
Black-box emulators like ANNs do not produce the statistical information necessary to use such
techniques, so a population-based resampling approach was described here. The algorithm modi-
fications shown here could prove useful for solving any optimization problem where a population-
based optimizer is appropriate, a constraint depends on an black-box inexact emulator of an expen-
sive simulation model, and there is a need for emulator construction and/or training to be influenced
by outcomes from the optimization process itself. Additional research on the level of additional sam-
pling necessary for improved results is needed. Developing a non-problem-specific heuristic for this
would be greatly beneficial when exploring additional applications for the framework shown here.

Peaking hydropower operations have been known to negatively impact river systems. The mod-
ified optimization methodology provides solutions of superior fitness value compared to those from
the optimizer without the two modified features. This reveals an even greater potential for addi-
tional hydropower generation at times of peak demand than shown in Shaw et al. (2017), translating
to additional revenue generation, without having an adverse impact on water quality. Hydropower
producers are often required to make tradeoffs between power generation and water quality objec-
tives (Loftis et al., 1985). The results seen here indicate that an approach such as this is capable
of discovering release patterns which improve both power generation revenue and water quality

simultaneously.
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Chapter V

SENSITIVITY ANALYSIS FOR INFORMED WATER QUALITY-CONSTRAINED
HYDROPOWER SYSTEM OPTIMIZATION

V.1 Introduction

Previous chapters focused on optimizing hydropower production for a single reservoir subject
to a variety of constraints, including constraints on water quality informed by a high-fidelity sim-
ulation model. It is often the case that reservoirs with hydropower capabilities are not operated in
isolation, but are part of a larger water management system, including other hydropower-producing
waterbodies. Operations that optimize power production at individual reservoirs may not provide
system-wide maximal power. Upper reservoir power production also depends on lower reservoir
pool levels, which are influenced by lower reservoir operations. Including water quality considera-
tions further complicates this, as downstream water quality is driven by upstream releases.

With the advantages of flexibility and global searching, GAs have a general disadvantage of
high computational expense, which increases with larger problem size. GAs do not scale well; as
the number of decision variables increases, the search space becomes exponentially larger. With
additional constraints, the problem may require a large number of function evaluations to find the
feasible space, let alone a globally optimal solution. A GA optimizer is the foundation of the
reservoir optimization routine discussed earlier. Real-time dam operations optimization for a river
system with multiple hydropower facilities represents a highly-constrained large-scale problem. To
efficiently implement the methodology developed for a single reservoir on a larger system of reser-
voirs, an approach for reducing computational expense while expanding the problem size should be
explored.

One approach to counteract expanding problem size is problem segmentation. This involves
breaking a large-scale problem into segments and optimizing them individually; the optimization re-
sults can then be used to solve a reduced network-level optimization problem (Hegazy and Rashed;,

2013). The challenge with this approach in this application is the dependencies of downstream
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reservoir water quality on the releases from upstream reservoirs, downstream reservoir water avail-
ability for power production on upstream reservoir releases, and upstream reservoir head differential
on tailwater elevations, which may fluctuate based on downstream reservoir pool levels. In order
to fully optimize a system of reservoirs with water quality constraints, reservoirs should not be as-
sumed to operate in isolation, without the feedforward impacts of water quality or the feedforward
and feedback impacts of water balance on hydropower production. However, if it can be shown that
varying operations within reasonable bounds at individual reservoirs has little or minimal impact on
water quality or balance at other reservoirs in the system, a segmented approach could be a viable
method for expanding the water quality-constrained optimization approach here to larger systems
of reservoirs.

An extensive body of literature exists examining river and lake hydrodynamic and water quality
sensitivity to changes or uncertainties in model inputs or structure. In most studies, researchers
modify model structure such as resolution or dimension (Mufioz-Carpena et al., 2007; Blumen-
saat et al., 2014), calibration parameters such as kinetics rates or oxygen demands (Spear and
Hornberger, 1980; Reichert and Vanrolleghem, 2001; Sincock et al., 2003; Rangel-Peraza et al.,
2016; Cheng et al., 2018), or boundary conditions such as hydrological or meteorological con-
ditions (Henderson-Sellers, 1988; Reichert and Vanrolleghem, 2001; van der Linden et al., 2015;
Rangel-Peraza et al., 2016) and then observe changes to model outputs. Some sensitivity analyses
are intended to alert WQM users of potential impacts of uncertainties and how they may propagate
through to model predictions (e.g., Blumensaat et al. (2014)). Other studies use sensitivity analyses
to explore waterbody response to extreme boundary conditions, such as climate change scenarios
(e.g., van der Linden et al. (2015)).

Solutions to optimization problems are sensitive to many factors, including objective and con-
straint functions (Padula et al., 2006) and decision variable choice (Gramacy et al., 2013). Con-
straint function uncertainty (in this case, driven by uncertain boundary conditions) is the main in-
terest of this application. It is possible to assess solution sensitivity to linear constraints by studying
marginal values and “right hand side” and coefficient ranges (Bisschop, 2018), but these techniques
are not valid for highly nonlinear and black box functional forms. Quantifying model output uncer-
tainties requires first identifying and characterizing all sources of uncertainty (Eslick et al., 2014).

Here, the uncertainty source of interest is the neighboring hydropower facility operations that for-
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mulate boundary conditions. Defining this uncertainty with ranges and probabilities is not possible
as the operations are human-driven, based on a large set of operational constraints, and in the case
of a fully-optimized system of reservoirs also depend on their own potentially-uncertain boundary
conditions.

Here, we look toward expanding the prior Chapters’ work to a system of reservoirs by perform-
ing a necessary exploration of the feedforward water quality relationship between two reservoirs
connected in series. The sensitivity of release water quality at the downstream reservoir due to
changes in the upstream boundary condition (i.e., upstream dam operations) is examined. Because
the optimization routine is designed to be used for hourly operational planning over a typical plan-
ning period, the sensitivity analysis is focused on short-term fluctuations in water quality due to
changing operations, not seasonal effects. The purpose of the boundary condition sensitivity analy-
sis is to develop a computationally efficient method for optimizing a system of reservoirs in which
individual reservoirs can be handled individually and optimized in parallel. Therefore, a straight-
forward bracketing approach testing a range of boundary conditions, without the effort of defining

uncertainty conditions, is selected.

V.2 Case Study Description

The sensitivity analysis was conducted on Old Hickory and Cordell Hull reservoirs on the Cum-
berland River system. These two run-of-river projects are linked in series, with Cordell Hull located
upstream and Old Hickory downstream (see Figures 1.3, III.1, and V.1). Both have total hydropower
capacities of 100 MW; while Old Hickory’s capacity is spread across four 25 MW turbines, Cordell
Hull is equipped with three 33.3 MW turbines. Similar to Old Hickory reservoir, Cordell Hull is
equipped to allow releases through a spillway, typically used for flood control and water quality
mitigation purposes. Both reservoirs are operated on a peaking pattern, with generation greatest at
times of high power demand.

The hydrodynamics and water quality behaviors of both reservoirs were modeled in 2D us-
ing CE-QUAL-W2, which is well-suited for riverine waterbodies such as these. The Old Hickory
modeling efforts were described earlier in Chapter III. As with Old Hickory reservoir, Cordell Hull

reservoir’s CE-QUAL-W?2 model was upgraded to version 3.5, calibrated, and validated. Calibra-
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tion and validation time series results and water quality profiles are provided in Appendix B as

Figures B.1 through B.6. Calibration and validation error metrics are summarized in Table V.1.

V.3 Methodology and Experimental Setup

This methodology explores the dependency of Old Hickory reservoir water quality on Cordell
Hull reservoir releases. The chosen testing period is the same 10-day planning period utilized in
Chapter III, and the sensitivity analysis tested temperature and DO sensitives separately as discussed
below. We utilized CE-QUAL-W?2 models for the two reservoirs to determine water quality changes
as a result of changes to the operating pattern. In this case study, the outflow rates and water
quality constituent concentrations of Cordell Hull become the mainstem inflow rates and water
quality constituent concentrations for Old Hickory reservoir downstream. Figure V.1 shows the
bathymetries of the two reservoirs and indicates the locations of withdrawal structures, consisting
of turbine and spillway release points.

The interaction between reservoirs in terms of water quality is a feedforward relationship. Re-
leases from upstream reservoirs are transported downstream. Water quality feedback may need to be
considered for applications in an estuarine setting or when pumped storage hydropower is present,
but constituents have no means of transport from downstream reservoir to upstream reservoir in
traditional river systems like the Cumberland River.

To test the impact of Cordell Hull’s operations on Old Hickory reservoir’s tailwater water qual-
ity, we performed a series of CE-QUAL-W2 simulations in which we modified Cordell Hull’s with-
drawal patterns over the planning period used in Chapter III, JDAY 215-225 during the year 2005.
Target water elevations define the overall water volume passed through the dam prior to optimiza-
tion; we constructed the experiments defined here with this in mind. Over this period there was no
recorded spill flow out of Cordell Hull dam, and the first test simulation (CH-1) performed diverted
the turbine flow to spill flow, resulting in all flow passing through the spillway. The second test
simulation (CH-2) converted the hourly peaking turbine flow pattern to a daily average flow through
the turbines. The third test simulation (CH-3) went further, by setting turbine releases at Cordell
Hull to a fixed flowrate over the full 10-day planning period. In contrast, the fourth test simulation

(CH-4) exaggerates the turbine discharge peaking pattern from the actual 2005 operations. Table
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Table V.1: Summary of Cordell Hull CE-QUAL-W?2 model calibration and validation results.

Calibration Validation

Year 2000 2005
Computational Time (minutes) 15 17
Elevation AME ¢ (meters) 0.045 0.032
Dam Releases:

Temperature AME ¢ (°C) 0.658 0.745

DO AME “ (mg/L) 1.245 1.298
In-stream Profiles:

Temperature AME ¢ (°C) 0.938 0.866

DO AME “ (mg/L) 1.096 1.102

¢ Errors are presented as absolute mean error (AME). In-stream
profile measurements of temperature and DO were collected at 9
locations on 2 dates in the calibration year (2000) and at 9 locations
on 5 dates in the validation year (2005).
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Figure V.1: Bathymetries of the mainstem sections of Cordell Hull and Old Hickory reservoirs, with
turbine (red) and spill (blue) release elevations indicated by arrows and summer power pool storage
zones shown in yellow.
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V.2 summarizes the Cordell Hull release scenarios tested, and Figure V.2 provides the Cordell Hull
actual turbine and spillway discharges over the defined planning period (CH-0), as well as the four
modified flow regimes that were tested.

Cordell Hull’s experimental outflows and discharge temperatures and DO concentrations then
replaced the Old Hickory mainstem inflows, resulting in changes in Old Hickory tailwater temper-
ature and DO concentrations. This allows for analysis of how changing operations at a singular
dam propagates water quality changes downstream. We performed this twice, first assuming Old
Hickory actual outflows from 2005, and then using the Old Hickory outflows from Experiment 2
in Chapter III, with simultaneous constraints on DO and temperature (see Subsection II1.6.2 for

additional information).

V.4 Results

Figure V.3 provides the CE-QUAL-W?2 discharge temperatures at both reservoirs resulting from
the experimental Cordell Hull release scenarios. Scenario CH-1, in which the only outflow modi-
fication was diverting the turbine flow to spillway flow, exhibited the smallest change from CH-O.
The extreme peaking scenario (CH-4) exhibited the second smallest change, and the scenarios with
daily (CH-2) and full 10-day averaged (CH-3) flows resulted in the greatest differences. The maxi-
mum difference at any time at Cordell Hull’s release is approximately 0.5 °C, and at Old Hickory’s
release is 0.6 °C.

Figure V.4 provides discharge DO concentrations at both reservoirs resulting from the experi-
mental Cordell Hull release scenarios. The temperature results echo the same general patterns ex-
hibited by the DO results. Scenario CH-1 exhibited the smallest change from CH-0, CH-4 exhibited

the second smallest change, and the smoothed scenarios CH-2 and CH-3 resulted in the greatest

Table V.2: Cordell Hull release scenarios used in sensitivity analysis.

Name Description

CH-0 2005 actual turbine and spillway discharges (all flow released through turbines)
CH-1 CH-0 discharges swapped (all flow released through spillway)

CH-2 CH-0 hourly peaking turbine flow pattern converted to a daily average flowrate
CH-3 CH-0 hourly peaking turbine flow pattern converted to a 10-day average flowrate
CH-4 CH-0 turbine discharge peaking pattern exaggerated
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Figure V.2: Cordell Hull baseline (CH-0) and experimental (CH-1, CH-2, CH-3, and CH-4) turbine

and spill releases over the 10-day planning period.
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differences. The maximum difference at any time at Cordell Hull’s release is approximately 0.6
mg/L, and at Old Hickory’s release is 0.3 mg/L.

For each experiment, the water quality prediction AME over the 10-day operating period due to
changes in Cordell Hull releases was computed, as provided in Table V.3. Because of the system’s
feedforward water quality relationship, Old Hickory releases impact Old Hickory release water

quality, while Cordell Hull releases impact release water quality at both reservoirs.

V.5 Discussion

Discharge water quality at the downstream reservoir Old Hickory does exhibit some sensitivity
to operations at the upstream Cordell Hull reservoir, although this sensitivity is small. For both
temperature and DO, the fluctuations caused by changing Cordell Hull operations are greater at
the Cordell Hull discharge and dampened further downstream at the Old Hickory discharge, as
expected. The approximate upper two thirds of Old Hickory’s 97.3 miles of impounded backwater
is well-mixed, even during the late summer when the lower end of the reservoir becomes vertically
stratified. The stratified zone, which drives Old Hickory reservoir’s discharge water quality, is
resistant to mixing due to low density water stored at the surface and high density water stored
deeper in the forebay. If stratification is present, minor fluctuations in water quality upstream are not
sufficient to offset density gradients in the forebay and induce mixing. Although minor fluctuations
are seen in Figure V.3 and Figure V.4, Old Hickory discharge water quality during this time period

is relatively stable regardless of Cordell Hull operations.

Table V.3: Cordell Hull and Old Hickory release temperature and DO concentration differences
between experimental Cordell Hull release scenarios and 2005 (CH-0) releases, computed as AME.

Flow Release Pattern Temperature (°C) DO (mg/L)
Cordell Hull (CH) Old Hickory (OH) CH OH CH OH
" oo 002 o 0
i TR T
> TR T
>, o 0BT | o 002

113



Release DO at Cordell Hull

10l ] 0.6 (b)
8 .uvdf‘ fV‘ 0o 04 1
o 5 ‘\/’4\ Q £ —~02f Ny
2 %} 8 W g g %I) 0 ﬂh-hnr'\' T'lm Sl SR k’\-““‘ ‘5“ s
s = 3 -f.x-k-u}‘- - n o
c E L EE | VI TN T AR
8 = =\‘ -on; 3 ~-0.2 72N N ’ \]
a 6 ] = 041 I'I 4
‘ -0.6 ‘ ‘ ‘ ‘ 1
Release DO at Old Hickory Assuming Old Hickory Releases from 2005
10/ ©71 g %8 ON
8 - 06T 0.4+ 1
3 £ <3 o02)
< S 9 ’ E
fv’: = ‘wa o ;“’_; x 027 ‘.’
8 6l & EC-04;
-0.6 [
Release DO at Old Hickory Assuming Old Hickory Releases from Experiment 2
LI | | BRCE o6f | | R
Q YR E o4} . ]
a ||| ] gL | \
o3 St i '.A T 2027 r‘\,\‘ pan saithh
S I 2 0 £ —— (2 T
E 2 ll. L.g\g i! ,.\gbll *’LJ q ;‘A‘,y\ g €3 0 ! =|| ,&. ‘\*r»?fl‘-*"qt;‘" »«“uq &,ﬁ ~
o o5 x 02 i 1
2 oEO
[a] 61 ES 047
‘ ‘ ‘ ‘ -0.6 ‘ ‘ ‘ ‘
215 217 219 221 223 225 215 217 219 221 223 225
JDAY JDAY

|—CH-0—-=-CH-1 ~~ CH-2- = CH-3 - CH-4]

Figure V.4: Cordell Hull and Old Hickory baseline (CH-0) and experimental (CH-1, CH-2, CH-3,
and CH-4) discharge DO concentrations and differences from baseline DO concentrations.
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The scenario in which all Cordell Hull outlet flow is diverted from the turbines to the spillway
resulted in the smallest alteration to water quality downstream. This is due to the small elevation
difference between spill and turbine release structures, as seen in Figure V.1. Regardless of which
structure at Cordell Hull is used for releases, water is drawn from the same approximate depth and
stratification has little impact on release water quality. This may not be the case when upstream
reservoirs are constructed with release structures located further apart. For example, a scenario in
which the release structure of Old Hickory, whose turbine withdrawal point is 15 meters below
the spillway withdrawal, is located at the upstream reservoir would likely be a system in which
downstream water quality is much more sensitive to upstream structure release choice than the
system used for sensitivity analysis here.

The tested Cordell Hull releases are not all realistic examples of hydropower release patterns.
For example, hydropower typically operates on a peaking pattern to supply power during peak
demand periods, so scenarios CH-2 and CH-3 will likely never occur. The sensitivity analysis aims
to provide insight into the potential for water quality prediction errors due to changes in boundary
conditions. The conditions tested, though somewhat unrealistic, represent “extreme conditions”
with regard to peaking pattern severity. Water quality sensitivity appears to be small when assessed
using the extreme conditions, so actual boundary conditions (i.e., hydropower and spill releases) will
likely produce even smaller errors. In other words, the sensitivity analysis approach uses extreme
boundary conditions as a means for determining an upper limit on expected water quality prediction
errors due to changes in upstream release decisions.

This sensitivity analysis aims to inform hourly optimization of the case study reservoirs sub-
ject to one or more constraints on Old Hickory reservoir water quality; for example, Experiment 2
applies simultaneous lower bounds on DO concentrations and temperature of the Old Hickory dis-
charge. Subplot (e) in Figures V.3 and V.4 provide the error for Old Hickory discharge water quality,
assuming the Chapter III Experiment 2 Old Hickory discharges and the various experimental up-
stream Cordell Hull release patterns; however, since water quality predictions constitute a constraint
on operations, errors away from constraint boundaries are of little interest. Chapter III Experiment 2
applied lower bounds on discharge DO (0; = 7 mg/L) and temperature (f; =25 °C), and Figures V.5
and V.6 compare Old Hickory discharge water quality values using Cordell Hull baseline compared

to experimental operations. The best solution found for Experiment 2 was not fully feasible with
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respect to DO or temperature constraints over the full 10-day period, which is indicated by values
less than o; and #; present along the temperature and DO response to CH-0 axes. Focusing on the
constraint boundaries, quadrants two and four represent areas of concern, as they contain predictions
which shifted across the constraint limit as a result of differences in the upstream boundary condi-
tion. Simply put, prediction differences here cause infeasible timepoints to be falsely determined
as feasible (and vice versa) due to differences in upstream reservoir discharge. Although CH-1 and
CH-4 overall provide water quality outcomes more similar to CH-0 than do CH-2 and CH-3, the
differences overall are minimal and there are no additional trends visible near the constraint bound-
ary. These results indicate that Old Hickory reservoir discharges are fairly independent from the
operating pattern at the upstream reservoir over this time period. Therefore, a segmented approach
for optimizing the Cordell Hull-Old Hickory linked system, in which reservoirs are optimized in-
dependently with assumed boundary conditions, will likely result in minimal errors in downstream

water quality predictions.

V.6 Conclusions

For two reservoirs with hydropower capabilities linked in series, we assessed the sensitivity of
the downstream reservoir’s discharge water quality in response to the upstream reservoir’s discharge
pattern. Determining independence between these variables could enable expanded application of
the previously-developed optimization routine (detailed in Chapter III) from single reservoirs to
reservoir systems. Here, we used the linked Cordell Hull-Old Hickory system to demonstrate a
method for analyzing downstream water quality dependency on upstream release scheduling over a
typical 10-day operating period. Assuming a fixed volume of water is passed through the upstream
Cordell Hull reservoir, these results indicate minor impacts on downstream water quality predic-
tions. For the demonstrated problem formulation with defined lower bounds on temperature and
DO, prediction errors caused by differences in upstream boundary condition indicate minimal im-
pact on potential solutions to an optimization procedure, where water quality constraints are defined
by these predictions.

This study analyzed the downstream propagation of water quality changes in a system of two

reservoirs linked in series. We fixed the total volume of flow released from the upstream reservoir
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Figure V.5: Old Hickory release temperatures at all timepoints in 10-day planning period assuming
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over each day or the planning period as a whole and modified the time series of upstream reservoir
discharges by adjusting peaking intensity. This reflects the typical decision-making process at these
reservoirs for short-term planning, in which total release volumes are defined first and then opera-
tions are determined on a refined timestep in order to best meet constraints and objectives. While
changes to the water balance of the two reservoirs here are likely limited, this is still an important
consideration when determining the feasibility of using a segmented optimization approach. Power
generation is a function of the headwater and tailwater head difference, so even small errors in
headwater or tailwater elevation predictions at specific instances in time over the operating period
could result in errors in power production estimates, which drive the direction of an optimizer seek-
ing to maximize power generation. Future work should expand this sensitivity analysis to explore
the impacts of boundary condition flow differences on water balance (and therefore hydropower
production).

We formulated this sensitivity analysis around the current case study system with the aim of
optimizing operations over a concise 10-day period, with water quality considerations solely at a
tailwater location. Other waterbody systems may have different concerns, such as an interest in wa-
ter quality at specific locations within the waterbody itself, including spawning grounds of sensitive
species, water utility withdrawal points, or thermal power plant withdrawal and/or discharge points.

The sensitivity analysis methodology demonstrated is easily applied to such scenarios.
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Chapter VI

CONCLUSIONS AND FUTURE WORK

VI.1 Conclusions

In this work, we described and demonstrated an approach for computing globally optimal power
generation schemes for a hydropower reservoir using high-fidelity WQMs, surrogate modeling tech-
niques, and multidimensional optimization methods. By combining these methods, we were able
to include high-fidelity water quality constraints within dam release decision-making on an op-
erational timescale. We applied the approach to a single multipurpose reservoir with hydropower
capabilities and used the surrogate-enabled optimizer to explore the trade-offs between spillway and
hydropower flow releases. We then explored methods to improve optimization solution quality. Fi-
nally, we investigated the sensitivity of downstream water quality on upstream boundary conditions
to better inform future applications of the approach to a larger system of reservoirs.

We introduced the overall optimization methodology and case study reservoir in Chapter III. Old
Hickory reservoir, located on the Cumberland River and operated by the USACE Nashville District,
is a run-of-river hydropower facility with downstream water quality concerns. The reservoir is mod-
eled using the high-fidelity hydrodynamics and water quality model CE-QUAL-W2, but the model
is not currently employed for decision-making due to computational expense. The CE-QUAL-W?2
model generated data for training NARX ANN surrogate models which predict discharge temper-
ature and DO as a function of exogenous inputs, including upstream inflows, meteorological data,
and structure releases. Validation tests revealed that the ANN model form successfully emulates
the dynamic water quality simulator. We utilized the ANN model within a genetic algorithm op-
timization approach to maximize hydropower generation subject to constraints on dam operations
and water quality. The model successfully reproduced high-fidelity reservoir information while en-
abling 6.8 and 6.6 percent increases in hydropower production value relative to actual operations for
DO limits of 5 and 6 mg/L, respectively, while witnessing an expected decrease in power generation

at more restrictive DO constraints. Exploration of simultaneous temperature and DO constraints
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revealed capability to address multiple water quality constraints at specified locations. The reduced
computational requirements of the new modeling approach provides decision support for reservoir
operations scheduling while maintaining high-fidelity hydrodynamic and water quality information
as part of the optimization decision support routines.

Chapter IV focused on the optimizer itself, exploring modifications to the optimization algo-
rithm in an effort to improve solution quality. Because the ANN surrogate model is not an exact
emulator, prediction errors can lead the optimizer to converge on infeasible solutions. To counteract
this, two approaches were tested. The first approach, random immigrants replacement, is a technique
to improve GA population diversity by injecting new members within each population. Improving
population diversity is of particular importance for DOPs. The second approach involved soliciting
additional surrogate model training data adaptively mid-optimization. Additional training data sam-
ples were chosen from GA populations and simulated with the full simulation model, improving
surrogate performance in regions of suspected optimality. We merged these two approaches within
the optimization methodology introduced in Chapter III in order to optimize Old Hickory reservoir
operations over 24 hours with a constraint on minimum release DO concentrations. Combining
random immigrants replacement and adaptive additional sampling produced superior fitness values,
and when used individually improved results over trials where neither approach was used.

Chapter V looked toward expanding this work to a system of reservoirs by performing a nec-
essary exploration of the feedbacks exhibited between two reservoirs connected in series. For two
reservoirs with hydropower capabilities linked in series, we assessed the sensitivity of the down-
stream reservoir’s discharge water quality in response to the upstream reservoir’s discharge pat-
tern. Determining independence between these variables could enable expanded application of the
previously-developed optimization routine (detailed in Chapter III) from single reservoirs to reser-
voir systems. Here, we used the linked Cordell Hull-Old Hickory system to demonstrate a method
for analyzing downstream water quality dependency on upstream release scheduling over a typi-
cal 10-day operating period. Assuming a fixed volume of water is passed through the upstream
Cordell Hull reservoir, these results indicate minor impacts on downstream water quality predic-
tions. For the demonstrated problem formulation with defined lower bounds on temperature and
DO, prediction errors caused by differences in upstream boundary condition indicate minimal im-

pact on potential solutions to an optimization procedure, where water quality constraints are defined
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by these predictions.

V1.2 Future Work

This work provides an initial demonstration of how a high-fidelity WQM can be integrated
within a hydropower operations decision support tool in order to couple water quality with hy-
dropower generation decision-making. We developed this approach using two Cumberland River
mainstem reservoirs as prototypes, and made methodology development assumptions with this sys-
tem in mind. These include assumptions that turbines operate at rated capacity, turbines are dis-
patched hourly, and spill is adjusted daily, as well as the water quality compliance point assumption
and the target elevation storage assumption. In order for this approach to be applied to other systems,
these assumptions will need to reconsidered for appropriateness.

Here, the optimized mainstem hydropower reservoir has little power pool storage and flood
control storage. Pool elevations are relatively fixed in this case, so the optimizer focuses on re-
allocating a predetermined volume of release water over the planning period between two release
structures. The overall seasonal water allocation plan for the basin largely determines stratification,
which drives the water quality characteristics of these releases. Pool levels at tributary reservoirs are
more flexible, and tributary reservoir operations strongly impact stratification downstream based on
the timing and supply of cool water through the warm, dry season. Additionally, tributary projects
on the Cumberland River have greater power capacities than projects on the mainstem. It would be
beneficial to apply this optimization methodology to tributary reservoirs, as well as to develop an
approach for seasonal planning optimization to be informed by high-fidelity water quality simula-
tors.

This work assumes that spillway aeration has a negligible influence on tailwater DO, and that
discharge DO concentrations result from the simple mixing of turbine and spill releases computed
by the equation:

DOmix _ Qspill : DOspill + Qturbines . DOturbines (VI 1)

Qspill + Qturbines

where DO, and DOy rpines are concentrations and Qi and Qyyrpines are flowrates. However, re-

leases over the spillway are subject to aeration including oxygenation. Assuming that this flow is at
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saturation concentration is appropriate in some cases, but in other cases supersaturation may occur
(Wolff et al., 2013). By neglecting spillway aeration, the solutions found here are conservative in
regards to meeting a lower bound constraint on DO, but conversely this may cause the optimizer to
bypass solutions with higher power generation potential. Applying this optimization methodology
to a system with constraints on TDG for aquatic species health requires spillway aeration to be con-
sidered, as gas entrainment primarily occurs during times of high spill (Witt et al., 2017). Therefore,
future work should incorporate spillway aeration as an additional process following release through
the dam structure.

Another potential area of study is applying the WQM-informed optimizer to reservoir water
quality mitigation device design, including forebay and turbine aeration installations. Many studies
have employed WQMs to analyze site-specific mitigation techniques (Bartholow et al., 2001; Saito
et al., 2001; Caliskan and Elci, 2009; Castelletti et al., 2010; Singleton et al., 2013), but these stud-
ies tend to consider water quality changes due to mitigation action and neglect to explore how water
quality improvements impact reservoir operations. When designing devices like forebay and tur-
bine aerators, expenses including construction, operations, and maintenance costs are considered,
and impacts on optimal hydropower generation potential should also be considered. Determining
optimal generation potential under various conditions and mitigation device designs requires inte-
grating optimization and high-fidelity water quality predictions, and the methodology demonstrated
here serves as a foundation for these types of studies.

Chapter IV focused on the optimizer itself, exploring modifications to the optimization algo-
rithm in an effort to improve solution quality. Prior work in the area of adaptive model updating
within optimization relies on surrogate model forms which provide statistical information (for ex-
ample, GPs as used in Bichon et al. (2013)). Black-box emulators like ANNs do not produce the
statistical information necessary to use such techniques, so a population-based resampling approach
was described here. The algorithm modifications demonstrated in Chapter IV could prove useful for
solving any optimization problem where a population-based optimizer is appropriate, a constraint
depends on a black-box inexact emulator of an expensive simulation model, and there is a need for
emulator construction and/or training to be influenced by outcomes from the optimization process
itself. Further research on the level of additional sampling necessary for improved results is needed,

and a non-problem-specific heuristic defining appropriate additional sampling levels is necessary
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for exploring new applications for the framework shown here. An approach for quantifying ANN
surrogate model error during optimization would be a valuable addition to the methodology, as this
could be used to further inform the resampling step as well as provide the user with a metric for
assessing confidence in the provided solution.

Looking forward, expanding this methodology to efficiently optimize a system of reservoirs
would provide a beneficial tool for hydropower operations. The optimization routine here, built
on a GA, is not well-suited for unlimited problem size expansion. Researchers should explore
techniques for applying the general approach shown here to larger problems. We performed the
water quality propagation sensitivity analysis in Chapter V with the idea of potentially optimizing a
larger system of reservoirs by segmenting it into smaller problems to be solved in parallel. Before
exploring this, the sensitivity of assumed upstream and downstream boundary conditions on water
balance, and therefore hydropower production estimation, needs to be assessed.

In summary, the proposed improvements to the model framework presented herein would pro-
vide a powerful tool for activities including mitigation technology design, tributary reservoir op-
erations planning, and reservoir system release decision-making. Bringing together high-fidelity
water quality predictions and global optimization methods strengthens capabilities to regulate water

quality while maximizing power production in controlled waterways.
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Appendix A

OLD HICKORY RESERVOIR CE-QUAL-W2 MODEL CALIBRATION AND
VALIDATION FIGURES
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Figure A.1: Old Hickory CE-QUAL-W2 model calibration timeseries outcomes for the year 1988:
(a) water surface elevation, (b) discharge temperature, and (c) discharge DO.
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Figure A.2: Old Hickory CE-QUAL-W2 model calibration temperature profiles for the year 1988
(created using AGPM-2D v3.5 post-processor for CE-QUAL-W?2 by Loginetics, Inc.). Profile mea-
surements were collected on 7 dates at 8 locations.
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Figure A.3: Old Hickory CE-QUAL-W?2 model calibration DO profiles for the year 1988 (created
using AGPM-2D v3.5 post-processor for CE-QUAL-W?2 by Loginetics, Inc.). Profile measurements
were collected on 7 dates at 8 locations.
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Figure A.4: Old Hickory CE-QUAL-W2 model validation timeseries outcomes for the year 2005:
(a) water surface elevation, (b) discharge temperature, and (c) discharge DO.
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Figure A.5: Old Hickory CE-QUAL-W2 model validation temperature profiles for the year 2005
(created using AGPM-2D v3.5 post-processor for CE-QUAL-W2 by Loginetics, Inc.). Profile mea-
surements were collected on 2 dates at 7 locations.
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Figure A.6: Old Hickory CE-QUAL-W2 model validation DO profiles for the year 2005 (created
using AGPM-2D v3.5 post-processor for CE-QUAL-W2 by Loginetics, Inc.). Profile measurements
were collected on 2 dates at 7 locations.
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Appendix B

CORDELL HULL RESERVOIR CE-QUAL-W2 MODEL CALIBRATION AND
VALIDATION FIGURES
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Figure B.1: Cordell Hull CE-QUAL-W2 model calibration timeseries outcomes for the year 2000:
(a) water surface elevation, (b) discharge temperature, and (c) discharge DO.
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Figure B.2: Cordell Hull CE-QUAL-W2 model calibration temperature profiles for the year 2000
(created using AGPM-2D v3.5 post-processor for CE-QUAL-W2 by Loginetics, Inc.). Profile mea-
surements were collected on 2 dates at 9 locations.
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Figure B.3: Cordell Hull CE-QUAL-W?2 model calibration DO profiles for the year 2000 (created
using AGPM-2D v3.5 post-processor for CE-QUAL-W2 by Loginetics, Inc.). Profile measurements

were collected on 2 dates at 9 locations.
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Figure B.4: Cordell Hull CE-QUAL-W?2 model validation timeseries outcomes for the year 2005:
(a) water surface elevation, (b) discharge temperature, and (c) discharge DO.
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Figure B.5: Cordell Hull CE-QUAL-W2 model validation temperature profiles for the year 2005
(created using AGPM-2D v3.5 post-processor for CE-QUAL-W?2 by Loginetics, Inc.). Profile mea-
surements were collected on 5 dates at 9 locations.
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Cordell Hull CE-QUAL-W?2 model validation DO profiles for the year 2005 (created

using AGPM-2D v3.5 post-processor for CE-QUAL-W?2 by Loginetics, Inc.). Profile measurements
were collected on 5 dates at 9 locations.
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Appendix C

MATLAB® CODE FOR NARX MODEL TRAINING

The following code is used to train a family of NARX WQMs for temperature and DO for
Old Hickory reservoir, and performed similarly for Cordell Hull reservoir. Training data must be
provided in comma separated values (CSV) format for each intput and output variable, with all

simulations combined in a single file.

1_Train NARX for_discharge_temp_DO.m

%% Discharge temp ANN - tweaked for OHL 2005 model
Has sections for both temperature and DO neural nets

o\°

o

% (1) - Load all data files
$Data files are csv for each input/output, with the first column being run
<~ number, the second column being JDAY, and following columns with data

clearvars
d=dir (' DATA_FOR_TRAINING/x.csv’);
for i=1:length(d)
Dstr_max_structure (i) .name=d (i) .name;
tic
Dstr_max_structure (i) .matrix=...
csvread ([/DATA_FOR_TRAINING/’ d(i) .namel);
toc
end
clearvars d i ans
%$Vector of Run IDs, where -1 is base case
RunIDs=unique (Dstr_max_structure(l) .matrix(:,1));

o\°

% (2) — Bring in data from each run

%$Find index for each input in Dstr_max_structure
indexes.dischargeDO=. ..

find(strcmp (' dischargeDO.csv’, {Dstr_max_structure.name})==1);
indexes.dischargeTemp=...

find(strcmp (' dischargeTemp.csv’, {Dstr_max_structure.name})==1);
indexes.exogBR1DO=. ..

find(strcmp (' exogBR1DO.csv’, {Dstr_max_structure.name})==1);
indexes.exogBR1Q=. ..

find(strcmp (" exogBR1Q.csv’, {Dstr_max_structure.name})==1);
indexes.exogBR1T=...

find(strcmp (' exogBR1T.csv’, {Dstr_max_structure.name})==1);
indexes.exogDODT=. ..

find(strcmp (' exogDODT.csv’, {Dstr_max_structure.name})==1);
indexes.exogMET=. ..

find(strcmp (' exogMETBig.csv’, {Dstr_max_structure.name})==1);
indexes.exogQDT=. ..

find(strcmp (' exogQDT.csv’, {Dstr_max_structure.name})==1);
indexes.exogTDT=...

find(strcmp (’exogIDT.csv’, {Dstr_max_structure.name})==1);
indexes.exogTR2DO=. ..

find(strcmp (' exogTR2DO.csv’, {Dstr_max_structure.name})==1);
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61
62
63
64

68
69
70

71
72
73
74

93
94
95

indexes.exogTR20Q=. ..

find(strcmp (" exogTR2Q.csv’, {Dstr_max_structure.name})==1);

indexes.exogTR2T=. ..

find(strcmp (' exogTR2T.csv’, {Dstr_max_structure.name})==1);

indexes.exogTurbSpill=...

find(strcmp (' exogTurbSpill.csv’, {Dstr_max_structure.name})==1);

$Loop through all Run IDs
for i=1l:size (RunIDs)

RunID=RunIDs (i); fprintf ([num2str (RunID), ' \n’])
%$Discharge DO
[r,c]l=find (Dstr_max_structure (indexes.dischargeDO) .matrix (:, 1) ==RunID) ;
Discharge.DO{i}=...
unique (sortrows (Dstr_max_structure (indexes.dischargeDO) .matrix (r,2:end)),’
— rows’);
$Discharge Temp
[r,c]=find (Dstr_max_structure (indexes.dischargeTemp) .matrix (:, 1)==RunlID) ;
Discharge.temp{i}=...
unique (sortrows (Dstr_max_structure (indexes.dischargeTemp) .matrix (r,2:end))
— ,"rows’);
$BR1 Q, T, DO
[r,c]=find (Dstr_max_structure (indexes.exogBR1Q) .matrix (:,1)==RunlID);
Exog.BR1Q{i}=...
unique (sortrows (Dstr_max_structure (indexes.exogBR1Q) .matrix (r,2:end)),’
— rows’);
[r,c]=find (Dstr_max_structure (indexes.exogBR1T) .matrix (:,1)==RunlID);
Exog.BR1T{i}=...
unique (sortrows (Dstr_max_structure (indexes.exogBR1T) .matrix (r,2:end)),’
— rows’);
[r,c]=find (Dstr_max_structure (indexes.exogBR1DO) .matrix (:,1)==RunID);
Exog.BR1DO{i}=...
unique (sortrows (Dstr_max_structure (indexes.exogBR1DO) .matrix(r,2:end)),’
— rows’);
$TR2 Q, T, DO
[r,c]l=find (Dstr_max_structure (indexes.exogTR2Q) .matrix (:,1)==RunlID);
Exog.TR2Q{i}=...
unique (sortrows (Dstr_max_structure (indexes.exogTR2Q) .matrix(r,2:end)),’
— rows’);
[r,c]=find (Dstr_max_structure (indexes.exogTR2T) .matrix (:,1)==RunlID);
Exog.TR2T{i}=...
unique (sortrows (Dstr_max_structure (indexes.exogTR2T) .matrix(r,2:end)),”’
— rows’);
[r,c]=find (Dstr_max_structure (indexes.exogTR2D0O) .matrix (:, 1)==RunlID);
Exog.TR2DO{i}=...
unique (sortrows (Dstr_max_structure (indexes.exogTR2D0O) .matrix(r,2:end)),’
— rows’);
$Met
[r,c]=find (Dstr_max_structure (indexes.exogMET) .matrix (:,1)==RunID);
Exog.met{i}=...
unique (sortrows (Dstr_max_structure (indexes.exogMET) .matrix (r,3:end)),’ rows
— "); %skip col 2, which contains year right now
$Turb, Spill
[r,c]=find (Dstr_max_structure (indexes.exogTurbSpill) .matrix (:, 1)==RunID) ;
Exog.turb_spill{i}=...
unique (sortrows (Dstr_max_structure (indexes.exogTurbSpill) .matrix(r,2:end))
— ,"rows’);
$QDT Q, T, DO
[r,c]=find (Dstr_max_structure (indexes.exogQDT) .matrix (:,1)==RunID);
Exog.QDT{i}=...
unique (sortrows (Dstr_max_structure (indexes.exogQDT) .matrix (r,2:end)),’ rows
— ")
[r,c]l=find (Dstr_max_structure (indexes.exogTDT) .matrix (:,1)==RunID);
Exog.TDT{i}=...
unique (sortrows (Dstr_max_structure (indexes.exogTDT) .matrix(r,2:end)),’ rows
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— ")
[r,c]=find (Dstr_max_structure (indexes.exogDODT) .matrix (:,1)==RunlID) ;
Exog.DODT{i}=...
unique (sortrows (Dstr_max_structure (indexes.exogDODT) .matrix (r,2:end)),’
— rows’);

end
clearvars ans ¢ r i1 RunID indexes Dstr_max_structure

%% (3) — Define timestep and get raw data at these times using correct
— interpolation setting

timesteps=[121:(1/24):274]1";
clearvars Inputs Output Inputs_seq Output_seq Discharge.temp_noOs Discharge.
<~ DO_no0s

$Make temperature Inputs and Outputs
for i=1l:size (RunlDs)

fprintf ([num2str (RunIDs (1)), ’ \n’])

Inputs.discharge_temp{i}=[];

$BR1Q, BRIT - interpolation OFF

for ii=l:size(timesteps, 1)
indexl (ii)=find (Exog.BR1Q{i} (:,1)<=timesteps(ii), 1, last’);
index2 (ii)=find (Exog.BR1T{i} (:,1)<=timesteps(ii),1,’last’);

end

Inputs.discharge_temp{i} (:,1:2)=[Exog.BR1Q{i} (indexl,2) Exog.BR1T{i} (index2
— ,2)1;

clearvars i1i indexl index?2

$TR2Q, TR2T, - interpolation ON

Inputs.discharge_temp{i} (:,end+1l)=interpl (Exog.TR2Q{1i} (:,1),Exog.TR2Q{1i} (:,2)
— ,timesteps) ;

Inputs.discharge_temp{i} (:,end+1l)=interpl (Exog.TR2T{i} (:,1),Exog.TR2T{i} (:,2)
— ,timesteps);

%$Met - interpolation ON

Inputs.discharge_temp{i} (:,end+l:end+5)=interpl (Exog.met{i} (:,1),Exog.met{i
~ }(:,2:end),timesteps);

$Turb & spill - interpolation ON

Inputs.discharge_temp{i} (:,end+1l:end+2)=interpl (Exog.turb_spill{i} (:,1),Ex0qg.
— turb_spill{i} (:,2:end),timesteps);

%$Discharge temps output

%$O0Option 1 - interpolate to remove timepoints with no discharge (temp=0)
% ——> Use this for testing correlations (discontinuities mess this up)

index=find (Discharge.temp{i} (:,2) "=0);
%$Remove rows with zeros (no discharge)
Discharge.temp_noOs{i}=Discharge.temp{i} (index, :);
%$Smooth data
Discharge.temp_noOs_smooth{i} (:,1)=Discharge.temp_noOs{i} (:,1);
Discharge.temp_noOs_smooth{i} (:,2)=smooth (Discharge.temp_noOs{i} (:,1),
< Discharge.temp_noOs{i} (:,2),24);
discharge_temp_noOs{i} (:,1)=interpl (Discharge.temp_noOs_smooth{i} (:,1),
— Discharge.temp_noOs_smooth{i} (:,2),timesteps);
clearvars index
clearvars xlims ylims xrange yrange
index=find (Discharge.temp{i} (:,2)==0);
discharge_with_nans(:,1)=Discharge.temp{i} (:,1);
discharge_with_nans(:,2)=interpl (Discharge.temp_noOs_smooth{i} (:,1),Discharge
— .temp_noOs_smooth{i} (:,2),Discharge.temp{i} (:,1));
discharge_with_nans (index, 2)=nan;
Output.discharge_temp{i} (:,1)=interpl (discharge_with_nans(:,1),
— discharge_with_nans(:,2:end),timesteps);
clearvars index discharge_with_nans

%$Sensitive inputs seem to be BR1Q, BR1T, TR2T, 1lst 2 cols in met,
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$turb, spill
Inputs.discharge_temp{i}=Inputs.discharge_temp{i} (:,[1:2 4:6 10:11]);

$Convert to cells
Inputs_seqg.discharge_temp{i} = con2seq(Inputs.discharge_temp{i}’);
Output_seqg.discharge_temp{i} = con2seq(Output.discharge_temp{i}’);

end

%$Make DO Inputs and Outputs
for i=1l:size (RunlDs)

fprintf ([num2str (RunIDs (1)), ' \n’])

Inputs.discharge_DO{i}=[1;

%$BR1Q, BR1T, BR1DO - interpolation OFF

for ii=l:size(timesteps, 1)
indexl (ii)=find (Exog.BR1Q{i} (:,1)<=timesteps(ii),1,’last’);
index2 (ii)=find (Exog.BR1T{i} (:,1)<=timesteps(ii),1,’last’);
index3(ii)=find (Exog.BR1DO{i} (:,1)<=timesteps(ii),1l,’last’);

end

Inputs.discharge_DO{i} (:,1:3)=[Ex0og.BR1Q{i} (indexl, 2)
Exog.BR1T{i} (index2,2) Exog.BR1DO{i} (index3,2)1];

clearvars 1i indexl index2 index3 index4

%$TR2Q, TR2T, TR2DO - interpolation ON

Inputs.discharge_DO{i} (:,end+1l)=interpl (Exog.TR2Q{i} (:,1),Exog.TR2Q{i} (:,2),
— timesteps);

Inputs.discharge_DO{i} (:,end+1l)=interpl (Exog.TR2T{i} (:,1),Exog.TR2T{i} (:,2),
— timesteps);

Inputs.discharge_DO{i} (:,end+1l)=interpl (Exog.TR2DO{i} (:,1),Exog.TR2DO{1i} (:,2)
— ,timesteps);

%$Met - interpolation ON

Inputs.discharge_DO{i} (:,end+l:end+5)=interpl (Exog.met{i} (:,1),Exog.met{i
~ }(:,2:end),timesteps);

$Turb & spill - interpolation ON

Inputs.discharge_DO{i} (:,end+1l:end+2)=interpl (Exog.turb_spill{i} (:,1),Exo0g.
— turb_spill{i} (:,2:end),timesteps);

$Discharge DO output
index=find (Discharge.DO{i} (:,2)7=0);
$Remove rows with zeros (no discharge)
Discharge.DO_noOs{i}=Discharge.DO{i} (index, :);
%$Smooth data
Discharge.DO_noOs_smooth{i} (:,1)=Discharge.DO_noOs{i} (:,1);
Discharge.DO_noOs_smooth{i} (:,2)=smooth (Discharge.DO_noOs{i} (:,1),Discharge.
< DO_noOs{i} (:,2),24);
discharge_DO_noOs{i} (:,1)=interpl (Discharge.DO_noOs_smooth{i} (:,1),Discharge.
<~ DO_noOs_smooth{i} (:,2),timesteps);
clearvars index
index=find (Discharge.DO{i} (:,2)==0);
discharge_with_nans(:,1)=Discharge.DO{i} (:,1);
discharge_with_nans(:,2)=interpl (Discharge.DO_no0Os_smooth{i} (:,1),Discharge.
<~ DO_noOs_smooth{i} (:,2),Discharge.DO{i} (:,1));
discharge_with_nans (index, 2)=nan;
Output.discharge_DO{i} (:,1)=interpl (discharge_with_nans(:,1),
< discharge_with_nans(:,2:end),timesteps);
clearvars index discharge_with_nans

%$Sensitive inputs seem to be BR1Q, BR1T, BR1DO, TR2T, TR2DO, 1lst 2 cols in
— met, turb, spill
Inputs.discharge_DO{i}=Inputs.discharge_DO{i} (:,[1:3 5:6 7:8 12:13]);

%$Convert to cells

Inputs_seqg.discharge_DO{i} = con2seq(Inputs.discharge_DO{i}’);
Output_seqg.discharge_DO{i} = con2seq(Output.discharge_DO{i}");
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end
clearvars 1

%% Check for input delays and correlations
clearvars Temp_correlations DO_correlations
for i=1l:size (RunlIDs)
for ii=l:size (Inputs.discharge_temp{i}, 2)
% Temp
figure
crosscorr (Inputs.discharge_temp{i} (:,1i),discharge_temp_nolOs{i}, 30)
[r,lags]=xcorr (Inputs.discharge_temp{i} (:,1i) -mean (Inputs.discharge_temp{i
<~ }(:,11)),discharge_temp_noOs{i}-mean (discharge_temp_noOs{i}),30,’
— coeff’);
[T/ bl=max (abs(r));
Temp_correlations{ii} (i, :)=[r(b) lags(b)];
end
end
for i=1l:size (RunlDs)
for ii=l:size (Inputs.discharge_DO{i}, 2)
%$DO
figure
crosscorr (Inputs.discharge_DO{i} (:,1i),discharge_DO_noOs{i},30)
[r,lags]=xcorr (Inputs.discharge_DO{i} (:,1i) mean (Inputs.discharge_DO{1i} (:,
<~ ii)),discharge_DO_noOs{i}-mean (discharge_DO_noOs{i}),30,"coeff’);
[T, bl=max (abs(r));
DO_correlations{ii} (i, :)=[r(b) lags(b)];
end
end
clearvars b r lags

o\

% (4) — Define training and validation sets and combine into cell arrays

%$Define validation & training sets

validation_indexes=sort (randsample (size (RunIDs, 1), round(.3xsize (RunIDs,1)),’
— false’));

training_indexes=setdiff (l:size(RunlDs,1l),validation_indexes)’;

$Combine them all into single Input and Output cell arrays

$Training set

tic

Inputs_seq _mul.discharge_temp_train=catsamples (Inputs_seqg.discharge_temp({
— training_indexes}, ' pad’);

Output_seq mul.discharge_temp_train=catsamples (Output_seq.discharge_temp{
— training_indexes}, pad’);

Inputs_seqg _mul.discharge_DO_train=catsamples (Inputs_seqg.discharge_DO({
<~ training_indexes}, 'pad’);

Output_seq mul.discharge_DO_train=catsamples (Output_seqg.discharge_DO({
— training_indexes}, ' pad’);

toc

%$Validation set

tic

Inputs_seqg mul.discharge_temp_valid=catsamples (Inputs_seqg.discharge_temp({
— validation_indexes}, ' pad’);

Output_seq mul.discharge_temp_valid=catsamples (Output_seq.discharge_temp(
— validation_indexes}, pad’);

Inputs_seqg _mul.discharge_DO_valid=catsamples (Inputs_seqg.discharge_DO({
— validation_indexes},’ pad’);

Output_seq mul.discharge_DO_valid=catsamples (Output_seqg.discharge_DO({
— validation_indexes}, ' pad’);

toc

$% (5) - Train temp model

clearvars ohl_temp_narx
clearvars ame_temp_training ame_temp_validation ameavg_temp_training
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— ameavg_temp_validation
savename='ohl_temp_narx_20160906";
for i=1:5

fprintf ([’ Training model #’, num2str (i), ’"\n’])
inputDelays = [0 1 12];

feedbackDelays = [1];

hiddenNeurons=[10];

narx_net = narxnet (inputDelays, feedbackDelays, hiddenNeurons) ;

% For a list of all data division functions type: help nndivide
narx_net.divideFcn = ’'dividerand’;

o\

The property DIVIDEMODE set to TIMESTEP means that targets are divided
into training, validation and test sets according to timesteps.

For a list of data division modes type: help nntype_data_division_mode
narx_net.divideMode = 'time’; % Divide up every value
narx_net.divideParam.trainRatio = 70/100;

narx_net.divideParam.valRatio = 15/100;

narx_net.divideParam.testRatio = 15/100;

narx_net.trainParam.min_grad = 1le-10;

narx_net.trainFcn = 'trainlm’;

narx_net.trainParam.showWindow=0;

narx_net.trainParam.showCommandLine=1;

narx_net.trainParam.show=100;

o

o

[Xs,X1,Ai,Ts] = preparets (narx_net, Inputs_seq mul.discharge_temp_train, {},
— ...
Output_seqg mul.discharge_temp_train);

tic

[narx_net,tr]=train(narx_net,Xs,Ts,Xi,Ai, ' UseParallel’,’yes’);
ohl_temp_narx.train_time{i} (1,1)=toc;

tic
%$Convert to closed loop
narx_net_closed = closeloop (narx_net);

narx_net_closed.trainParam.mu_max=1lel4;
narx_net_closed.TrainParam.epochs=3000;
%Continue training as a closed loop - as suggested here: http://www.mathworks
— .com/matlabcentral/answers/89070-narx-model-training-in-the-neural-
— network-tool-box

[Xs,X1i,Ai,Ts] = preparets (narx_net_closed, Inputs_seq _mul.discharge_temp_train
— ,{},
Output_seq mul.discharge_temp_train);

[narx_net_closed, tr] = train(narx_net_closed,Xs,Ts,Xi,Ail,’UseParallel’,’yes’)
i

ohl_temp_narx.train_time{i} (1,2)=toc;

%% (6) — Save it all in one stucture, for input in optimization problem
ohl_temp_narx.Inputs=Inputs.discharge_temp;
ohl_temp_narx.Output=Output.discharge_temp;
ohl_temp_narx.Discharge_temp_noOs=Discharge.temp_nols; %$save interpolated set
— 1in case starting condition is at NaN entry
ohl_temp_narx.Discharge_temp_noOs_smooth=Discharge.temp_no0Os_smooth; $%$save
— interpolated set in case starting condition is at NaN entry
ohl_temp_narx.turb_column=6;
ohl_temp_narx.spill_column=7;
ohl_temp_narx.inputDelays=inputDelays;
ohl_temp_narx.feedbackDelays=feedbackDelays;
ohl_temp_narx.input_variables={’QIN_BR1’,’TIN_BR1’,’TTR_TR2',...
'"MET_WB1’,’MET_WB1’,’QOT_BR1_T’,’QOT_BR1_S’;...
1,1,1,1,2,1,1};
ohl_temp_narx.narx_net_closed{i}=narx_net_closed;
save (savename, ’'ohl_temp_narx’)

%% (7) - Predict full time series

for run=validation_indexes’
u=Inputs_seqg.discharge_temp{run};
y=Output_seqg.discharge_temp{run};
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vl y(l:size(timesteps,1l));
ul u(l:size(timesteps,1));
[pl,Pil1,Ail,tl] = preparets(ohl_temp_narx.narx_net_closed{i},ul, {},v1l);
ypl = ohl_temp_narx.narx_net_closed{i} (pl,Pil,Ail);
%$Remove plotting for indexes where discharge=0
tl=cell2mat (tl1);
ypl=cell2mat (ypl) ;
start=(max ([ohl_temp_narx.inputDelays’;...
ohl_temp_narx.feedbackDelays’])+1);
indexes=find (isnan (Output.discharge_temp{run} (start:end,end)));
tl(1l, indexes)=nan;
ypl (1, indexes)=nan;
ame_temp_validation{i} (run)=nanmean (abs (tl-ypl));
end

for run=training_indexes’
u=Inputs_seqg.discharge_temp{run};
y=Output_seqg.discharge_temp{run};
vyl = y(l:size(timesteps,1));
ul = u(l:size(timesteps,1));
[pl,Pil,Ail,tl] = preparets(ohl_temp_narx.narx_net_closed{i},ul, {},v1l);
ypl = ohl_temp_narx.narx_net_closed{i} (pl,Pil,Ail);
%Remove plotting for indexes where discharge=0
tl=cell2mat (tl);
ypl=cell2mat (ypl) ;
start=(max ([ohl_temp_narx.inputDelays’;...
ohl_temp_narx.feedbackDelays’])+1);
indexes=find (isnan (Output.discharge_temp{run} (start:end,end)));
tl(1l, indexes)=nan;
ypl (1, indexes)=nan;
ame_temp_training{i} (run)=nanmean (abs (tl-ypl));
end

ameavg_temp_training{i}=sum(ame_temp_training{i})./sum(ame_temp_training{i
— }7=0);

ameavg_temp_validation{i}=sum(ame_temp_validation{i}) ./sum/(
— ame_temp_validation{i}~"=0);

save (savename, ’'ohl_temp_narx’,’ameavg_temp_training’,’ameavg_temp_validation
— ', ..
"ame_temp_training’,’ame_temp_validation’);

end

%% (8) — Train DO model

clearvars ohl_DO_narx

clearvars ame_DO_training ame_DO_validation ameavg_DO_training
— ameavg_DO_validation

savename='ohl_DO_narx_20160906";

for i=1:5
fprintf ([’ Training model #’, num2str (i), ’"\n’])
inputDelays = [0 1 12];

feedbackDelays = [1];

hiddenNeurons=[10];

narx_net = narxnet (inputDelays, feedbackDelays, hiddenNeurons) ;

% For a list of all data division functions type: help nndivide
narx_net.divideFcn = ’'dividerand’;

o

The property DIVIDEMODE set to TIMESTEP means that targets are divided
into training, validation and test sets according to timesteps.

For a list of data division modes type: help nntype_data_division_mode
narx_net.divideMode = 'time’; % Divide up every value
narx_net.divideParam.trainRatio = 70/100;

narx_net.divideParam.valRatio = 15/100;

narx_net.divideParam.testRatio = 15/100;

narx_net.trainParam.min_grad = 1le-10;

narx_net.trainFcn = 'trainlm’;

o\

o
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narx_net.trainParam.showWindow=0;

narx_net.trainParam.showCommandLine=1;

narx_net.trainParam.show=100;

[Xs,Xi,A1,Ts] = preparets (narx_net, Inputs_seq mul.discharge_DO_train, {},
Output_seq mul.discharge_DO_train);

tic
[narx_net,tr]=train(narx_net,Xs,Ts,Xi,Ai, ' UseParallel’,’yes’);
ohl_DO_narx.train_time{i} (1,1)=toc;

tic
%$Convert to closed loop
narx_net_closed = closeloop (narx_net);

narx_net_closed.trainParam.mu_max=1lel2;

narx_net_closed.TrainParam.epochs=3000;

%Continue training as a closed loop - as suggested here: http://www.mathworks
— .com/matlabcentral/answers/89070-narx-model-training-in-the-neural-
— network-tool-box

[Xs,X1i,Ai,Ts] = preparets (narx_net_closed, Inputs_seqg_mul.discharge_DO_train
— ,{}
Output_seq mul.discharge_DO_train);

[narx_net_closed, tr] = train(narx_net_closed,Xs,Ts,Xi,Ai,’UseParallel’,’yes’)
.

ohl_DO_narx.train_time{i} (1,2)=toc;

%% (9) - Save it all in one stucture, for input in optimization problem

ohl_ DO_narx.Inputs=Inputs.discharge_DO;

ohl_DO_narx.Output=Output.discharge_DO;

ohl_DO_narx.Discharge_DO_noOs=Discharge.DO_no0s; %$save interpolated set in
<~ case starting condition is at NaN entry

ohl_DO_narx.turb_column=38;

ohl_DO_narx.spill_column=9;

ohl_DO_narx.inputDelays=inputDelays;

ohl_DO_narx.feedbackDelays=feedbackDelays;

ohl DO_narx.input_variables={’QIN_BR1’,’TIN_BR1’,’CIN_BR1’, ...
"TTR_TR2’,’CTR_TR2’,’MET_WB1’,’MET_WB1’,’QOT_BR1_T’,’QOT_BR1 _S’;...
1,1,1,1,1,1,2,1,1};

ohl_DO_narx.narx_net_closed{i}=narx_net_closed;

save (savename, ’'ohl_DO_narx’)

%% (10) — Predict full time series
for run=validation_indexes’
u=Inputs_seq.discharge_DO{run};
y=Output_seqg.discharge_DO{run};
yl = y(l:size(timesteps,1));
ul = u(l:size(timesteps,1));
[pl,Pil,Ail,tl] = preparets(ohl_DO_narx.narx_net_closed{i},ul,{},v1l);
ypl = ohl_DO_narx.narx_net_closed{i} (pl,Pil,Ail);
%$Remove plotting for indexes where discharge=0
tl=cell2mat (tl1);
ypl=cell2mat (ypl);
start=(max ([ohl_DO_narx.inputDelays’; ...
ohl_DO_narx.feedbackDelays’])+1);
indexes=find (isnan (Output.discharge_DO{run} (start:end,end)));
tl(1l, indexes)=nan;
ypl (1, indexes)=nan;
ame_DO_validation{i} (run)=nanmean (abs (tl-ypl));
end

for run=training_indexes’
u=Inputs_seqg.discharge_DO{run};
y=Output_seq.discharge_DO{run};
vl = y(l:size(timesteps,1));
ul = u(l:size(timesteps,1));
[pl,Pil1,Ail,tl] = preparets(ohl_DO_narx.narx_net_closed{i},ul, {},vy1l);
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ypl = ohl_DO_narx.narx_net_closed{i} (pl,Pil,Ail);
%$Remove plotting for indexes where discharge=0
tl=cell2mat (t1);
ypl=cellZmat (ypl);
start=(max ([ohl_DO_narx.inputDelays’; ...
ohl_DO_narx.feedbackDelays’])+1);

indexes=find (isnan (Output.discharge_DO{run} (start:end,end)));
tl(1l, indexes)=nan;
ypl (1, indexes)=nan;
ame_DO_training{i} (run)=nanmean (abs (tl-ypl));

end

ameavg_DO_training{i}=sum(ame_DO_training{i})./sum(ame_DO_training{i} ~=0);
ameavg_DO_validation{i}=sum(ame_DO_validation{i})./sum(ame_DO_validation{i
— }7=0);
save (savename, ’'ohl_DO_narx’,’ameavg_DO_training’,’ameavg_DO_validation’, ...
"ame_DO_training’,’”ame_DO_validation’);
end

2a_Compute_weights_for_ DO_model.m

clearvars ypl tl residuals
for i=l:size(ohl_DO_narx.narx_net_closed, 2)
fprintf ([/NARX model #’, num2str(i), ’"\n’])
for run=validation_indexes’
u=Inputs_seqg.discharge_DO{run};
y=Output_seq.discharge_DO{run};
vyl = y(l:size(timesteps,1));

ul = u(l:size(timesteps,1));
[pl,Pil1,Ail,tl{run}] = preparets(ohl_DO_narx.narx_net_closed{i},ul, {},v1l);
ypl{run} (i,:) = ohl_DO_narx.narx_net_closed{i} (pl,Pil,Ail);

end

end
for run=validation_indexes’
%$Remove plotting for indexes where discharge=0
tl{run}=cell2mat (t1l{run});
ypl{run}=cell2mat (ypl{run});
start=(max ([ohl_DO_narx.inputDelays’; ...
ohl _DO_narx.feedbackDelays’])+1);
indexes=find (isnan (Output.discharge_DO{run} (start:end,end)));
tl{run} (1, indexes)=nan;
ypl{run} (:, indexes)=nan;
end
for i=l:size(ohl_DO_narx.narx_net_closed, 2)
for run=validation_indexes’
residuals (i, run)=nanmean (ypl{run} (i, :)-tl{run});

end

end

for i=1l:size(ohl_DO_narx.narx_net_closed, 2)
count=1;
for j=validation_indexes(:)’

residuals_validationonly (i, count)=residuals (i, j);
count=count+1;
end
end
clearvars j i
ohl_DO_narx.bias=mean (residuals_validationonly’)’;
for i=l:size (ohl_DO_narx.narx_net_closed, 2)
fprintf (['NARX model #’, num2str(i), ’"\n’])
for run=validation_indexes’
ypl{run} (i, :)=ypl{run} (i, :)-ohl_DO_narx.bias(i);
mean_of_square_errors{i} (run)=nanmean ((tl{run}-ypl{run} (i, :))."2);
end
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end
for i=l:size(ohl_DO_narx.narx_net_closed, 2)
count=1;
for j=validation_indexes(:)’
mse_validationonly (i, count)=mean_of_square_errors{i} (J);
count=count+1;
end
end

clearvars j i

%% Optimize weights

init_weights=ones (1, size (ohl_DO_narx.narx_net_closed,2))*(1/size (ohl_DO_narx.
< narx_net_closed, 2));

Aeg=ones (1l,size(ohl_DO_narx.narx_net_closed,2));

beg=1;

lb=zeros (1l,size (ohl_DO_narx.narx_net_closed, 2));

ub=ones (1, size (ohl_DO_narx.narx_net_closed,2));

options=optimset ('Display’,’iter-detailed’);

FitnessFunction=@ (weights) optimal_weights (weights,validation_indexes,tl,ypl);

[weights,avg_mse]=fmincon (FitnessFunction, init_weights, [], [],Aeq,beq, 1b,ub, [],
— options);

weights=weights’;

%Remove the networks with weights <25% the max weight

1b(find (weights/max (weights)<(1/4)))=0;

ub (find (weights/max (weights)<(1/4)))=0;

[weights, avg_mse]=fmincon (FitnessFunction,init_weights, [], [],RAeq,beq, 1b,ub, [],
— options);

weights=weights’;

%$Save weights, bias, and networks into final stucture

indexes=find (weights™=0);

ohl_DO_narx.weights=weights (indexes) ;

ohl_DO_narx.bias=ohl_DO_narx.bias (indexes) ;

for i=l:size (indexes, 1)
ohl _DO_narx.narx_net_closed3{i}=ohl_DO_narx.narx_net_closed{indexes (i) };

end

ohl_DO_narx.narx_net_closed=ohl_DO_narx.narx_net_closed3;

ohl_DO_narx=rmfield(ohl_DO_narx,’'narx_net_closed3’);

2b_Compute_weights_for_temp_model.m

clearvars ypl tl residuals
for i=l:size(ohl_temp_narx.narx_net_closed, 2)
fprintf ([/NARX model #’, num2str(i), ’"\n’])
for run=validation_indexes’
u=Inputs_seqg.discharge_temp{run};
y=Output_seq.discharge_temp{run};
vyl = y(l:size(timesteps,1));

ul = u(l:size(timesteps,1));
[pl,Pil,Ail,tl{run}] = preparets(ohl_temp_narx.narx_net_closed{i},ul,{},yl
)i
ypl{run} (i, :) = ohl_temp_narx.narx_net_closed{i} (pl,Pil,Ail);
end

end

for run=validation_indexes’
$Remove plotting for indexes where discharge=0
tl{run}=cell2mat (t1l{run});
ypl{run}=cell2mat (ypl{run});
start=(max ([ohl_temp_narx.inputDelays’; ...

ohl_temp_narx.feedbackDelays’])+1);

indexes=find (isnan (Output.discharge_temp{run} (start:end,end)));
tl{run} (1, indexes)=nan;
ypl{run} (:,indexes)=nan;

end
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for i=l:size(ohl_temp_narx.narx_net_closed,2)
for run=validation_indexes’
residuals (i, run)=nanmean (ypl{run} (i, :)-tl{run});

end

end

for i=l:size(ohl_temp_narx.narx_net_closed, 2)
count=1;
for j=validation_indexes(:)’

residuals_validationonly (i, count)=residuals (i, Jj);
count=count+1;
end
end
clearvars j i
ohl_temp_narx.bias=mean (residuals_validationonly’)’;
for i=l:size(ohl_temp_narx.narx_net_closed, 2)
fprintf ([/NARX model #’, num2str(i), ’"\n’])
for run=validation_indexes’

ypl{run} (i, :)=ypl{run} (i, :)-ohl_temp_narx.bias(i);
mean_of_square_errors{i} (run)=nanmean ((tl{run}-ypl{run} (i, :))."2);
end
end
for i=l:size(ohl_temp_narx.narx_net_closed, 2)
count=1;
for j=validation_indexes(:)’
mse_validationonly (i, count)=mean_of_square_errors{i} (J);
count=count+1;
end
end

clearvars j i

%% Optimize weights

init_weights=ones (1, size (ohl_temp_narx.narx_net_closed,2))*(1/size (ohl_temp_narx
< .narx_net_closed, 2));

Aeg=ones (1l,size(ohl_temp_narx.narx_net_closed,2));

beg=1;

lb=zeros(l,size (ohl_temp_narx.narx_net_closed,2));

ub=ones (1, size (ohl_temp_narx.narx_net_closed, 2));

options=optimset ('Display’,’iter-detailed’);

FitnessFunction=@ (weights) optimal_weights (weights,validation_indexes,tl,ypl);

[weights, avg_mse]=fmincon (FitnessFunction,init_weights, [], [],RAeq, beq, 1b,ub, [],
— options);

weights=weights’;

%$Remove the networks with weights <25% the max weight

1b (find (weights/max (weights)<(1/4)))=0;

ub (find (weights/max (weights)<(1/4)))=0;

[weights,avg_mse]=fmincon (FitnessFunction, init_weights, [], [],Aeq, beqg, 1b,ub, [],
— options);

weights=weights’;

$Save weights, bias, and networks into final stucture

indexes=find (weights™=0) ;

ohl_temp_narx.weights=weights (indexes) ;

ohl_temp_narx.bias=ohl_temp_narx.bias (indexes);

for i=l:size(indexes, 1)
ohl_temp_narx.narx_net_closed3{i}=ohl_temp_narx.narx_net_closed{indexes (i) };

end

ohl_temp_narx.narx_net_closed=ohl_temp_narx.narx_net_closed3;

ohl_temp_narx=rmfield(ohl_temp_narx,’narx_net_closed3’);

optimal_weights.m

function avg_mse=optimal_weights (weights,validation_indexes,tl,ypl)

weights=weights’;
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for run=validation_indexes(:)’
weighted_mse (run)=nanmean ( (t1l{run}-sum(bsxfun (@times,weights,ypl{run})))." 2);
weightedNARXame (run)=nanmean (abs (tl{run}-sum(bsxfun (@times,weights, ypl{run}))
= ))i
end

count=1;

for j=validation_indexes(:)’
weighted_mse_validation (count)=weighted_mse (j);
count=count+1;

end

clearvars j i

avg_mse=mean (weighted_mse_validation, 2);
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Appendix D

MATLAB® CODE FOR HYDROPOWER OPTIMIZATION UNDER WATER QUALITY
CONSTRAINTS

The following code can be used to optimize multiple reservoirs linked in series on an hourly
timestep over multiple days, as described in Chapter I1I. Each day is optimized individually, creating
a series of daily sub-problems. A configuration file defines general optimization settings and the
layout of waterbodies, and each waterbody has an additional configuration file defining reservoir
characteristics and constraints. The base file of the optimizer is main.m. The user must supply:

1. An already-trained water quality NARX surrogate model in order to use water quality con-

straints.

2. A CE-QUAL-W?2 base folder for each reservoir.

3. Each CE-QUAL-W?2 input and output file reconfigured as individual CSV files.

4. A CSV file defining inflow and withdrawal interpolation settings as determined from the CE-

QUAL-W?2 configuration file.

config.json

"jdayStart": "215",
"OperatingPeriod": "10",

"LogFile": "results/results_log.txt",
"NumberOfWaterbodies": "1",
"wblconfig": "config_ OHL. json"

config_OHL.json

"Name": "Old Hickory",
"WaterSurfaceElevationInitial": "",
"DischargeDOInitial": "",
"DischargeTempInitial”: "",
"WaterSurfaceElevationMin": "134.722",
"WaterSurfaceElevationMax": "135.636",
"DischargeDOMin": "6",
"DischargeDOMax": "",
"DischargeTempMin": "",
"DischargeTempMax": "",
"MaxHourlyChangeInTurbineUnit": "1",
"MaxHoursWithZeroGeneration": "6",
"NumberOfTurbineUnits": "4",
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39
40
41

"MWRatingPerTurbineUnit": "25",

"TurbineDischargeCurve": "OHL/testfiles/turbine_discharge_curve_25MW.txt",

"StorageElevationCurve": "OHL/testfiles/storage_elevation.txt",

"TailWaterRatingCurve": "OHL/testfiles/tailwater_rating.txt",

"DailyCostCurve": "OHL/testfiles/cost_curve2.txt",

"TrainedDONeuralNetworkFile": "OHL/testfiles/ohl_DO_narx_20160906.mat",

"TrainedTempNeuralNetworkFile": "OHL/testfiles/ohl_temp_narx_20160906.mat
(_> ",

"WaterSurfaceElevationTargets": "",

"optimizationDir": "OHL/testfiles/optimization215/",

"ForecastTurbinePattern": "OHL/testfiles/forecast_turbine_pattern215.txt",

"PreviousTurbinePattern": "OHL/testfiles/previous_turbine_pattern215.txt",

"w2inputDir": "OHL/testfiles/w2input215/",

"TurbSpillOrder": "1",

"MainstemBR1Qin": "gin_brl.npt",

"MainstemBR1Tin": "tin_brl_2005.npt",

"MainstemBR1Cin": "cin_brl_2005.npt"

main.m

function main (configfile)

%% Startup: Empty vars, setup paths, check input, init config
clearvars -except configfile

% add path to ’1ib’ folder
if (“isdeployed)

addpath (’./1ib");
end

% load general config

config=loadjson(’config.json’);

$Load config for each waterbody, as defined in general config

for wb=1l:str2double (config.NumberOfWaterbodies)
CFG{wb}=loadjson(eval ([’ config.wb’ num2str (wb) ’config’]));

end

% create logger
L = log4m.getLogger (' optimization_run.log’);

%% Load in data and set constraints and system specs

$TOTAL time period to optimize on
start_date=str2double (config. jdayStart);

frequency=1/24;

days_forward=str2double (config.OperatingPeriod) ;
t=[start_date:frequency:start_date+1l];

%$GA population sizes

ga_pop_size=480xsize (CFG,2); %max(240,size(CFG,2)*(size(t,2)-1)%10);
feasiblilitycheck_ga_pop_size=360xsize (CFG,2);

for wb=1l:size (CFG,2)

$Number of turbines - 4 for OHL

no_of_units{wb}=str2double (CFG{wb} .NumberOfTurbineUnits) ;

%$Operating level, MW

MW_rating{wb}=str2double (CFG{wb} .MWRatingPerTurbineUnit) ;
%$Previous elevations

elevtemp{wb}=dlmread (strcat (CFG{wb}.optimizationDir, filesep,’ELWS.csv’),’,’
— ,1,0);

$Elevation constraints - general

ELWS_limit{wb} (1)=str2double (CFG{wb}.WaterSurfaceElevationMin) ;

ELWS_limit{wb} (2)=str2double (CFG{wb}.WaterSurfaceElevationMax) ;
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$Max hourly unit change constraint
if Tisempty (CFG{wb}.MaxHourlyChangeInTurbineUnit)
max_hrly_unit_change{wb}=str2double (CFG{wb} .MaxHourlyChangeInTurbineUnit) ;

else
max_hrly_unit_change{wb}=[];
end
%$Zero generation hourly limit - can’t go longer than this with no turb flow

if "isempty (CFG{wb}.MaxHoursWithZeroGeneration)
zero_gen_limit{wb}=str2double (CFG{wb}.MaxHoursWithZeroGeneration) ;
else
zero_gen_limit{wb}=[];
end
%$DO discharge NARX model
if isempty (CFG{wb}.TrainedDONeuralNetworkFile)
WQ{wb}.DO_narx=[];

else
WQ{wb}.DO_narx=load (CFG{wb}.TrainedDONeuralNetworkFile) ;
fn=fieldnames (WQ{wb}.DO_narx); WQ{wb}.DO_narx=WQ{wb}.DO_narx. (fn{l})
— ; clearvars fn
end

WQ{wb}.DO_limit (1)=str2double (CFG{wb}.DischargeDOMin) ;

WQ{wb}.DO_limit (2)=str2double (CFG{wb}.DischargeDOMax) ;

WQ{wb} .DO_slack=0;

$Temperature discharge NARX model

if isempty (CFG{wb}.TrainedTempNeuralNetworkFile)
WO{wb}.Temp_narx=[];

else
WO{wb}.Temp_narx=load (CFG{wb}.TrainedTempNeuralNetworkFile);
fn=fieldnames (WQ{wb}.Temp_narx); WQ{wb}.Temp_narx=WQ{wb}.Temp_narx. (
— fn{l});
clearvars fn
end

WQ{wb}.Temp_limit (1)=str2double (CFG{wb}.DischargeTempMin) ;
WO{wb}.Temp_limit (2)=str2double (CFG{wb}.DischargeTempMax) ;
WQO{wb}.Temp_slack=0;
%$Cost curve
if isempty (CFG{wb}.DailyCostCurve)
cost_curve_MW{wb}=[0 1];

else

cost_curve_MW{wb}=dlmread (CFG{wb}.DailyCostCurve,’” ’,1,0);
end
%$Turbine discharge curve - meters, cms at MW_rating

turbine_discharge{wb}=dlmread (CFG{wb}.TurbineDischargeCurve,’ ’,1,0);

%$Find initial elevation
ic_elev_first{wb}=interpl (elevtemp{wb} (:,1),elevtemnp{wb} (:,2),start_date);
%$Build the variable Q, which includes all flows for water balance,

— interpolation settings, tw curve both tabular discharge vs. tw and tw

— as f (twprev,discharge)), se curve, and other WQ inputs needed for NARX

<~ predictions
Q{wb}=buildQ (CFG{wb}.optimizationDir);

Q{wb}.tw_curve_cms_m=dlmread (CFG{wb}.TailWaterRatingCurve,’ ’,1,0);
Q{wb}.SE_meters_m3=dlmread (CFG{wb}.StorageElevationCurve,’” ’,1,0);
%$Save a copy of Q as original projected values - Q will update during
— optimziation
Qprojected=Q;
end

t_all=[start_date:frequency:start_datetdays_forward];
t_all_round=roundn (t_all,-2);
tprev=[t (1) max (cell2mat (zero_gen_limit (:)))~frequency:frequency:t (1) ];
tprev_round=roundn (tprev, -2);
for wb=1l:size (CFG, 2)

%$Forecast turbine pattern (if supplied)

if isempty (CFG{wb}.ForecastTurbinePattern)
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L.warn(/ INITIALIZATION’, ["No reservoir ', num2str(wb), ’ forecast
— turbine pattern provided - assuming from turbine flows in W2
— Q0T file.’])
x0_all (wb, :)=actual_turb_ops (t_all_round,Qprojected{wb},elevtemp{wb
<~ },turbine_discharge{wb}, ...
no_of_units{wb});

else
forecastturbpattern=dlmread (CFG{wb}.ForecastTurbinePattern,’\t’,1,0)
—
for i=l:size(t_all_round,2)-1
index=find (forecastturbpattern(:,1l)<=t_all_round(i+l));
x0_all (wb,i)=forecastturbpattern (index(end),2);
end
clearvars 1 forecastturbpattern index
end

$Previous turbine pattern for the year (if supplied)
if isempty (CFG{wb}.ForecastTurbinePattern)
L.warn (" INITIALIZATION’, ["No reservoir ', num2str(wb), ’ previous
— turbine pattern provided - assuming from turbine flows in W2
— Q0T file.’])
xprevi{wb}=actual_turb_ops (tprev_round, Qprojected{wb},elevtemp{wb},
<~ turbine_discharge{wb},no_of_units{wb});

else
prevturbpattern=dlmread (CFG{wb}.PreviousTurbinePattern,’\t’,1,0);
for i=l:size (tprev_round, 2)
index=find (prevturbpattern(:,1)<=tprev_round(i));
xprev{wb} (i) =prevturbpattern (index (end), 2);
end
clearvars 1 prevturbpattern index
end

%$Target elevations (soft constraint)
if isempty (CEG{wb}.WaterSurfaceElevationTargets)
L.warn (/" INITIALIZATION’, ["No reservoir ', num2str(wb),’ ELWS targets
— provided - assuming targets from projected operations W2 simulation
— ."1)
[T, 7 ,HWs_x0, ", "]1=activeunits_to_discharges (x0_all (wb,:),t_all, ...
frequency, Qprojected{wb},ic_elev_first{wb}, ...
turbine_discharge{wb}, [1,[1,1]);
ELWS_targets{wb} (:,1)=[start_date+l:1l:start_datet+days_forward]’;
ELWS_targets{wb} (:,2)=interpl (t_all,HWs_x0, ...
[start_date+l:1l:start_date+days_forward])’;
if isnan (ELWS_targets{wb} (end,2))
ELWS_targets{wb} (end, 2)=elevtemp{wb} (end, 2) ;
end
else
ELWS_targets{wb}=dlmread (CFG{wb}.WaterSurfaceElevationTargets,’\t’,1,0);
end
ELWS_targets{wb} (:,2)=min (ELWS_targets{wb} (:,2),ELWS_limit{wb} (2));
ELWS_targets{wb} (:,2)=max (ELWS_targets{wb} (:,2),ELWS_limit{wb} (1));
clearvars HWs_x0
end
clearvars wb t_all_round t_prev_round elevtemp
$Soft penalty coeff for deviation from final target elevation
elev_soft_penalty_coeff_ constant=[1le3 5e2];
$Water quality and elevation constraint rounding setting (10=tenths place, 100=
— hundredths place, etc.)
elev_constraint_rounding=100;
wqg_constraint_rounding=100;
%$Assign priority ranking for constraints on elev, DO, and temp, starting with
— highest priority first. This is used during the prescreen to see if
— constraints are even feasible
ranking={’elev’,’do’,’ ' temp’ };
%$Penalty tolerance
tolerance=10"-8;
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retraining='Y’;
iter=0; best_iter=[];

fileID=fopen (config.LogFile, ' w’);
fprintf (filelID,’%12s %$12s %12s %12s %12s %12s %12s’,’Iter’,’Fcn_Evals’,’'Time(s)’
— ,’Proj_MWh’,’Tot_MWh’,’Proj_Dollars’,’Tot_Dollars’);
for wb=1l:size (CFG, 2)
fprintf (filelID,’ %12s %$12s’, ['Wb’ num2str(wb) ’'_MWh’], ['Wb’ num2str (wb) ’
— _dollars’1]);
end
for wb=1l:size (CFG, 2)
fprintf (filelID,’ %1
["Wb’ num2str (wb
["Wb’ num2str (wb
["Wbh’” num2str (wb

2s %12s %15s %15s %15s %15s’,...

) '_T_AME’], ['Wb’ num2str(wb) ’'_DO_AME’],...

) '_NN_T_slack’], ['Wb’ num2str(wb) ’_NN_DO_slack’], ...
) '_W2_T_slack’], ['Wb’ num2str(wb) ’'_W2_DO_slack’]1);
end

fprintf (filelID,’%12s\r\n’,’Best_TIter’);

fclose (filelID);

while retraining==’Y’
iter=iter+l;
%$Run optimization over planning period
tic; optimization_routine; timing=toc;
$Run W2 validation check
runW2validation;
$Plot results and save to files
close all; ga_results_plotting_nobanding
h = get(0,’children’); h=sort (h);
for wb=1l:1length (h)
str=['results/’ datestr(clock,’yyyy-mm-dd-HHMM’) ’_iter’ num2str(iter) '
— _wb’ num2str(wb) ’_’ num2str (round(y_dollars_total(2)))];
savefig (h (wb), str)
end
%$Print to results log file
fileID=fopen (config.LogFile,’a’);
results.dollars (iter)=y_dollars_total (2);
fprintf (fileID,’%12.0f $12.0f %$12.0f %12.0f %12.0f %$12.0f %12.0f’,...
iter, function_evals, timing,y_MWh_total (1),y_MWwh_total(2),...
y_dollars_total(l),y_dollars_total(2));
for wb=1l:size (CFG, 2)
fporintf (fileID,’ %12.0f $12.0f’,y_MWh(wb,2),y_dollars(wb,2));
end
for wb=1l:size (CFG, 2)
results.AME (iter, wbx2-1:wb*2)=[AME{wb}.T,AME{wb} .DO];
results.slacks (iter,wb*2-1:wbx2)=[slacks{wb}.T.W2,slacks{wb}.DO.W2];
fprintf (fileID,’ %12.3f %12.3f %$15.3f %15.3f %15.3f %15.3f’,...
AME{wb}.T,AME{wb}.DO,slacks{wb}.T.NN, slacks{wb}.DO.NN, ...
slacks{wb}.T.W2,slacks{wb}.DO.W2);
end
clearvars slacks ans data_start objfuncvalues Output_noOs Outputprev h wb Axl
— Ax2 Ax3 H hl h2 h3 h5 h6 h7 legendl output nVar maxdelay wb xlims
<~ xrange ylims yrange

%$Determine if termination criteria is reached
if any(results.AME (iter, :)>0.5)
if isempty (best_iter)
best_iter (iter)=nan;

else
best_iter (iter)=best_iter (iter-1);
end
else
if isempty (best_iter) | isnan(best_iter(iter-1))

best_iter (iter)=iter;
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211 else
212 if all((results.slacks (iter, :)-results.slacks (best_iter (iter-1),:))<=0)
213 best_iter (iter)=iter;
214 else
215 best_iter (iter)=best_iter (iter-1);
216 end
217 end
218 end
219 fprintf (£ileID,’%$12.0f\r\n’ ,best_iter (iter));
220 fclose (filelID);
221 if size(best_iter,2)>=2
222 if best_iter (iter)==best_iter (iter-1)
223 retraining='N’;
224 end
225 end
226
227 %Ask for user’s input on how well the NARX predictions look and if they need
— to retrain the models
228 if retraining=='Y’
229 for wb=1l:size (CFG, 2)
230 fprintf ([ NARX_RETRAIN: Retraining NARX models for waterbody ’ num2str (
— wb) ".\n’1);
231 NARX_retrain;
232 end
233 else
234 str=['results/’ datestr(clock,’yyyy-mm-dd-HHMM’) ’_iter’ num2str (iter) ’_’
— num2str (round(y_dollars_total(2)))]1;
235 save (str)
236 clearvars str
237 end
238 | end
239 |L.info (' OPTIMIZATION’,’Optimization over operating period complete.’)
240 | cumulative_discharge_plot;

optimization_routine.m

1 |%% Optimize over days_forward

2

3 |day=1;

4 |if “exist ('plot_data’,’dir’)

5 mkdir (‘plot_data’);

6 |end

7 | clearvars xprev tprev

8 | for wb=1l:size (CFG, 2)

9 x_final{wb}=[1];

10 %$Previous turbine pattern for the year (if supplied)

11 if isempty (CEG{wb}.ForecastTurbinePattern)

12 xprev{wb}=actual_turb_ops (tprev_round, Qprojected{wb},elevtemp{wb},
— turbine_discharge{wb},no_of_units{wb});

13 else

14 prevturbpattern=dlmread (CFG{wb}.PreviousTurbinePattern,’\t’,1,0);

15 for i=l:size (tprev_round, 2)

16 index=find (prevturbpattern(:,1)<=tprev_round(i));

17 xprev{wb} (i) =prevturbpattern (index (end), 2);

18 end

19 clearvars i prevturbpattern index

20 end

21 |end

22 |clearvars wb

23 |tprev=[t_all(l)-max(cell2mat (zero_gen_limit (:)))*frequency:frequency:t_all(1l)];

24 | xprev_ic=xprev; tprev_ic=tprev;

25

26 |while day<=days_forward
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27
28

44
45
46

$For each day, determine if elevation, DO , and temp constraints are even
— feasible (in priority order). If not found feasible, then bounds
— defined earlier by the config files are modified. Then problem is
— optimized for maximize power (or power value)

L.info (Y OPTIMIZATION’, [’OPTIMIZING DAY ’, num2str (day)]);

WQ_subproblem{day}=WQ;
ELWS_limit_subproblem{day}=ELWS_limit;

%$O0Optimization timeperiod
t=[start_datetday-1l:frequency:start_date+day];

%$Set initial condition elevation
for wb=1l:size (CFG, 2)
if day==
ic_elev{wb}=ic_elev_first{wb};
if ic_elev_first{wb}<ELWS_limit_subproblem{day}{wb} (1)
L.warn (/' INITIALIZATION’, [’Reservoir ', num2str(wb),’ initial
— elevation of ' cell2mat (ic_elev_first{wb}) " m is less than
— ELWS lower limit (firm constraint). Expanding ELWS limits to
— continue with optimization.’1]);
ELWS_limit_subproblem{day}{wb} (1)=ic_elev_first{wb};
elseif ic_elev_first{wb}>ELWS_limit_subproblem{day}{wb} (2)
L.warn(’ INITIALIZATION’, [’Reservoir ', num2str(wb),’ initial
— elevation of ' cell2mat (ic_elev_first{wb}) ' m is greater
<~ than ELWS upper limit (firm constraint). Expanding ELWS
— limits to continue with optimization.’]);
ELWS_limit_subproblem{day}{wb} (2)=ic_elev_first{wb};
end
else
ic_elev{wb}=HWs{wb} (end) ;
end
end

for wb=1l:size (CFG, 2)

%$Determine x0, actual turbine operations, to seed initial population

x0 (wb, :)=x0_all (wb, (day-1) * (1/frequency)+1l:dayx (1/frequency)) ;

[T, y_dollarsl]=power_value (x0(wb,:),t,cost_curve_MW{wb}, ...
MW_rating{wb});

elev_soft_penalty_coeff{day} (wb)=interpl (ELWS_limit_subproblem{day}{wb} (:)
...
elev_soft_penalty_coeff_constant, ...
interpl (ELWS_targets{wb} (:,1),ELWS_targets{wb} (:,2),start_date+day), ...
"linear’,’extrap’)xy_dollarsl; $$/m with cost curve, MWh/m with all cc

— =1
clearvars y_dollarsl

%$Find possible values for x(1l) (based on previous zero_gen_limit turbs)
options=[0:no_of_units{wb}];
% (1) Eliminate options based on change in active unit violations
if "isnan(max_hrly_unit_change{wb})
auvoptions=[xprev{wb} (end) -max_hrly_unit_change{wb}:...
xprev{wb} (end) +max_hrly_unit_change{wb}];
options=intersect (options, auvoptions);
end
(2) Non-integer constraint (assumed in selection algorithm)
% (3) Eliminate options based on zero generation hourly limit
if "isnan(zero_gen_limit{wb})
if sum(xprev{wb} (end-zero_gen_limit{wb}+l:end))==
zghloptions=[1l:no_of_units{wb}]; %$if previous zero_gen_limit hrs had
— zero total flow, must have flow next hr
options=intersect (options, zghloptions);

o
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81

82
83
84
85
86

103
104
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106
107
108
109

110

111
112
113
114
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120
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123
124
125
126
127
128
129

130
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132
133
134

end
end
% (4) Eliminate options that violate oscillations constraint - violates
— whenever the number of turbines increases and then decreases within
— 2 hours, or vice versa
allopt=[0:no_of_units{wb}];
if xprev{wb} (end-1)<xprev{wb} (end) %if prev turbs increasing
oscoptions=allopt (allopt>=xprev{wb} (end)) ;
options=intersect (options, oscoptions);
elseif xprev{wb} (end-1)==xprev{wb} (end) %need 3 hrs btwn ramping up and
— down
if xprev{wb} (end-2)<xprev{wb} (end-1) %ramping up
oscoptions=allopt (allopt>=xprev{wb} (end));
options=intersect (options, oscoptions);
elseif xprev{wb} (end-2)>xprev{wb} (end-1) S$ramping down
oscoptions=allopt (allopt<=xprev{wb} (end));
options=intersect (options, oscoptions);
elseif xprev{wb} (end-2)==xprev{wb} (end-1)
$do nothing —-->3 consecutive hours between ramping up and down
— satisfied
end
elseif xprev{wb} (end-1)>xprev{wb} (end) %$if prev turbs decreasing
oscoptions=allopt (allopt<=xprevi{wb} (end));
options=intersect (options, oscoptions);
end
x1_options{wb}=options;
if isempty(x1l_options{wb})
L.fatal ("OPTIMIZATION’,’Based on previous turbine pattern, there is no
— feasible first hour turbine level.’);
return
end
clearvars tprev options auvoptions zghloptions allopt oscoptions
end
clearvars wb

$Determine if elevation, DO, and temp constraints are feasible (based on
<~ ranking order) and adjust bounds in this order if necessary
L.info ("OPTIMIZATION’,’Check constraint feasibilities and adjust if needed.’)
=
feasible_optionl=[];
[WQ_subproblem{day},ELWS_limit_subproblem{day}, funccount (day, 1), ...
feasible_optionl]=check_feasibilities (ranking,x1_options, ...
feasiblilitycheck_ga_pop_size, frequency,Q,ic_elev, ...
no_of_units,t,max_hrly_unit_change,zero_gen_limit, ...
turbine_discharge, ELWS_limit, WQ, xprev, ELWS_targets, ...
elev_constraint_rounding, wg_constraint_rounding,tolerance);
if "isempty (feasible_optionl)
c=penalty_fcn(feasible_optionl,t, frequency,Q,ic_elev, ...
turbine_discharge, ELWS_limit_subproblem{day}, ...
max_hrly_unit_change, WQ_subproblem{day}, zero_gen_limit, xprev, ...
ELWS_targets, tolerance);
funccount (day, 1)=funccount (day, 1) +size (feasible_optionl,1);
feasible_optionl=feasible_optionl (find(all (c<=eps,2)),:);
clearvars c
end

%$Create initial population that satisfies all constraints

L.info (’OPTIMIZATION',’Finding initial population to seed genetic algorithm.’
— )i

[feasible_options,objfuncvalues, 7, funccount (day,2) ]=...
create_feasible_initpop (ga_pop_size, feasible_optionl, ...
x1_options, frequency,Q,ic_elev,MW_rating,no_of_units,t, ...
max_hrly_unit_change, zero_gen_limit, turbine_discharge, ...
ELWS_limit_subproblem{day},WQ_subproblem{day},cost_curve_MW,xprev, ...
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elev_soft_penalty_coeff{day},ELWS_targets,tolerance);
if isempty (feasible_options) & isempty (feasible_optionl)
L.info ("OPTIMIZATION’,’No feasible solutions found during initialization \
— n’);
return
end
[objfuncvalues,b]=sort (objfuncvalues, ' descend’);
feasible_options=feasible_options (b, :);
clearvars objfcn feasible_optionl b

%$Check if x0 is feasible - include it if it is
y=penalty_fcn (reshape(x0’,1,[]),t,frequency,Q,ic_elev, ...

turbine_discharge, ELWS_limit_subproblem{day},max_hrly_unit_change, ...
WQ_subproblem{day}, zero_gen_limit, xprev, ELWS_targets,tolerance);
best_fvals (day,1l)=obj_fcn(reshape(x0’,1,[]),t,cost_curve_MW,MW_rating, ...
elev_soft_penalty_coeff{day},ELWS_targets, ...
frequency,Q,ic_elev, turbine_discharge);
funccount (day, 2) =funccount (day, 2) +1;
%$Check to see if any values in x0>no_of_units
over_no_of_units=0;
for wb=1l:size (CFG, 2)
if any (x0 (wb, :)>no_of_units{wb}) over_no_of_units=1; end
end
if "all(y==0) | over_no_of_units==
L.info ("OPTIMIZATION'’,’x0 is not feasible with respect to previous optimal
— solution.’);
best_fvals (day, 2)=max (objfuncvalues);
%$Diversity measurement
diversity(day,1l)=std(objfuncvalues);
else
L.info (OPTIMIZATION’,’x0 is feasible with respect to previous optimal
— solution.’);

if size(feasible_options,l)==ga_pop_sizex*3
feasible_options=[reshape (x0’,1,[]); feasible_options(l:end-1,:)];
objfuncvalues=[best_fvals(day,1l); objfuncvalues(l:end-1,:)];

else

feasible_options=[reshape (x0’,1,[]);feasible_options];
objfuncvalues=[best_fvals(day,1l); objfuncvalues];
end
best_fvals (day, 2)=max (objfuncvalues);
%$Diversity measurement
diversity(day,1l)=std(objfuncvalues);
end
clearvars over_no_of_units

%$GA setup

%$1f feasible_options<GA pop size, fill in a larger matrix with repeating
— values to create a full initial population

if size(feasible_options,l)<ga_pop_size
feasible_options=repmat (feasible_options,ceil (ga_pop_size/size (

— feasible_options,1l)),1);

feasible_options=feasible_options (l:ga_pop_size, :);

else
feasible_options=feasible_options(l:ga_pop_size, :);

end

clearvars y x count

$Set optimization algorithm options

FitnessFunction = @(x) -obj_fcn(x,t,cost_curve_MW, ...
MW_rating,elev_soft_penalty_coeff{day}, ...
ELWS_targets, frequency, Q, ic_elev, ...
turbine_discharge);

mycon= @ (x) penalty_fcn(x,t, frequency,Q,ic_elev, ...
turbine_discharge, ELWS_limit_subproblem{day}, ...
max_hrly_unit_change, WQ_subproblem{day}, zero_gen_limit, ...
xprev, ELWS_targets, tolerance);
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opt = gaoptimset (...
"Display’,’iter’,’Vectorized’,’on’,’Generations’, 50,
"PopulationSize’,ga_pop_size, ...
"EliteCount’,ceil (0.05+«ga_pop_size), ...
"InitialPopulation’, feasible_options, ...
"StallGenLimit’,2,’TolFun’,tolerance,’TolCon’,tolerance, ...
"CrossoverFcn’ ,dcrossoversinglepoint,’CrossoverFraction’,0.85,...
"CreationFcn’,@int_pop,’ MutationFcn’,@int_mutation);

nvVar = size (CFG,2) % (size(t,2)-1);

%$Set dv lower and upper bounds, narrowed considering max_hrly_unit_change,
— for both reservoirs

for wb=1l:size (CFG, 2)
1b (wb, :)=0%ones(1l,size(t,2)-1); lb(wb,1l)=x1_options{wb} (1);
for i=2:no_of_units{wb}

1b(wb,1i)=1b(wb,i-1) -max_hrly_unit_change{wb};

end
1b (wb, :)=max (0, 1b (wb, :));
ub (wb, :)=no_of_units{wb}*ones (1l,size(t,2)-1);

ub (wb, 1)=x1_options{wb} (end);
for i=2:no_of_units{wb}
ub (wb, i) =ub (wb, i-1) +max_hrly_unit_change{wb};

end
ub (wb, :)=min (no_of_units{wb},ub(wb, :));
clearvars i

end

lb=reshape (1b’,1,[]); ub=reshape(ub’,1,1[]1);

$Run GA

L.info ("OPTIMIZATION’,’Begin running genetic algorithm.’);

[x,fval, ",output, 7, "1=ga (FitnessFunction,nvar, [],[],[],[],1b,ub, ...
mycon, [],opt);

funccount (day, 3) =output.funccountx2; S%multiply by 2 to cover penalty & obj
— functions

best_fvals (day, 3)=-fval;

%$Split up rows of x to separate reservoirs
for wb=1l:size (CFG, 2)
x_final{wb}=[x_final{wb}
X (:,wh* (size(t,2)-1)—-(size(t,2)-2) :wbx(size(t,2)-1))1;
end
clearvars wb fval x 1lb ub FitnessFunction opt mycon feasible_options

$Update elevations and discharges/inflows in Q before going on to next day
Q=updateQ (Q,CFG,x_final, t, frequency,ic_elev, turbine_discharge, ...
WQ_subproblem{day}, ELWS_targets);
%$Generate csv data files for plotting
if day =days_forward
for wb=1l:size (CFG, 2)
[~,~,HWS{Wb},~,~J =
activeunits_to_discharges (x_final{wb},...
t_all(l:1+day= (1/frequency)), frequency, Q{wb}, ...
ic_elev_first{wb},turbine_discharge{wb},ELWS_targets{wb}, ...
[1,01);
%don’t need to supply mainstem_inflows because it’s already been
— updated in Q{wb}
end
day=day+1;
for wb=1l:size (CFG, 2)
xprev{wb}=[xprev_ic{wb} x_final{wb}];
end
else
day=day+1;
end
end
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O 01NN kAW =

day=day-1;

$Sum funccount
function_evals=sum (sum(funccount)) ;
clearvars funccount

$Compute total y_dollars
clearvars elev_soft_penalty_coeff
for wb=1l:size (CFG,2)
[y_MWh (wb, 1), y_dollars(wb,1)]=power_value (x0_all (wb,1l:day* (1/frequency)),
— t_all(l:1+day* (1/frequency)),cost_curve_ MW{wb}, ...
MW_rating{wb});
elev_soft_penalty_coeff{wb}=interpl (ELWS_limit{wb} (:)’,...
elev_soft_penalty_coeff_ constant,ELWS_targets{wb} (day), ...
"linear’,’extrap’)x+y_dollars(wb,1); %$/m with cost curve, MWh/m with all
— cc=1
[y_MWh (wb,2), y_dollars (wb,2)]=power_value(x_final{wb},t_all(l:1+day~*(1l/
— frequency)),cost_curve_MW{wb}, ...
MW_rating{wb});
end
y_MWh_total=sum(y_MWh(l:size (CFG,2),:),1);
y_dollars_total=sum(y_dollars(l:size(CFG,2),:),1);

%$Compute average WQ constraint violation for each wb

for wb=1l:size (CFG, 2)
slacks{wb}.DO.NN=[]; slacks{wb}.T.NN=[];
for i=l:size (WQ_subproblem, 2)
slacks{wb}.DO.NN(i)=WQ_subproblem{i}{wb}.DO_slack;
slacks{wb}.T.NN(i)=WQ_subproblem{i}{wb}.Temp_slack;
end
slacks{wb}.DO.NN=mean (slacks{wb}.DO.NN) ;
slacks{wb}.T.NN=mean (slacks{wb}.T.NN);

end

clearvars wb 1

activeunits_to_discharges.m

function [turb_discharges,spill_discharges, HWs, TWs, Storage] =
activeunits_to_discharges (x,t, frequency,Q,ic_elev, ...
turbine_discharge, ELWS_targets,mainstem_inflows_t,mainstem_inflows_Q)

o\

Calculates discharges and HWs and TWs from time series of number of
active units

o o

o°

Inputs:

x — hourly turbine time series (as rows for vectorizing!), integers
between 0 and no_of_ units

t time series of JDAY values

frequency - frequency of predictions (hourly=1/24)

Q — all other inflows and outflows, interpolation settings,
storage-elev curve, and tailwater curve (all in meters)

ic_elev - initial condition (meters)

turbine_discharge - turbine discharge curve at fixed MW level, with
col 1 in meters and col 2 in cms

o o o° A o o o o

o\

% ELWS_targets — 2 column matrix with JDAY in coll and elevation target

% in col2

% mainstem_inflows_t - vector of JDAY values that correspond to

% mainstem_inflows_Q

% mainstem_inflows_Q - if applicable (wb™=1), rows of incoming flows from
% upstream reservoir correlated to times in mainstem_inflows_t

% Outputs:

% turb_discharges turbine discharge time series in cms

% spill_discharges - spill discharge in cms
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% HWs — headwater time series in m
% TWs - tailwater time series in m
% Storage - storage time series in cubic meters

JDAY_initial=t(1);

$Number of x scenarios being tested
n=size(x,1);

if n<1
fprintf ('Active units to discharges code —--> x is empty!’)
return

end

$Initial condition

clearvars HWs Storage turb_discharges TWs

HWs (1,1:n)=ic_elev;

Storage (l:n,1l)=interpl (Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),HWs(1,1));

index1=find (Q.QOT_BR1_T(:,1)<=JDAY_initial);

index2=find (Q.QOT_BR1_S(:,1)<=JDAY_initial);

turb_discharges (1l:n,1)=0.Q0T_BR1_T (index1 (end),2);

tot_discharge=Q.Q0T_BR1_T (indexl (end),2)+Q.Q0T_BR1_S (index2 (end),2);

TWs (l:n,1l)=interpl (Q.tw_curve_cms_m(:,1),Q.tw_curve_cms_m(:,2),
tot_discharge);

clearvars indexl index2 tot_discharge

$Compute discharge (cms) per unit at first timestep using prev hr HW and TW

head=HWs (1, :)’-TWs(:,1);

unit_discharges=interpl (turbine_discharge(:,1),turbine_discharge(:,2),
head) ;

unit_discharges (head>=turbine_discharge (end, 1) )=turbine_discharge (end, 2);

unit_discharges (head<=turbine_discharge(1l,1))=turbine_discharge(1l,2);

turb_discharges (l:n,2)=unit_discharges.*x(:,1);

clearvars head unit_discharges

%$Compute HW elevs for every scenario
for i=2:size(t,2)
elevation=HWs (i-1,:);
turbs=turb_discharges(:,1i-1:1);
if isempty (ELWS_targets) %If testing projected operations
HWs (i-1:1, :)=Elevation_massbalance_vectorized (turbs, [], ...
t(i-1),t (i), frequency,Q,elevation, mainstem_inflows_t, ...
mainstem_inflows_Q);
else %$If testing new operations, assuming no spill flow here
HWs (i-1:1, :)=Elevation_massbalance_vectorized (turbs, ...
zeros (size (turbs)),t (i-1),t (1), frequency,Q,elevation, ...
mainstem_inflows_t,mainstem_inflows_Q);
end
clearvars elevation turbs
%$Compute storage and TWs
$If too full and overtops SE curve (or drains and empties), linearly
— extrapolate
Storage(:,1i)=interpl (Q.SE_meters_m3(:,1),0.SE_meters_m3(:,2), ...
HWs (i, :)",’linear’,’extrap’);
if isempty (ELWS_targets) %$if testing projected operations
index2=find (Q.QOT_BR1_S(:,1)<=t(i));
tot_discharge=turb_discharges(:,1)+Q.Q0T_BR1_S (index2 (end),2);
clearvars index?2
else %if testing new operations, assuming no spill flow here
tot_discharge=turb_discharges(:,1i)+0; %assume no spill
end
TWs (:,1)=interpl (Q.tw_curve_cms_m(:,1),Q.tw_curve_cms_m(:,2),
tot_discharge,’ linear’,’extrap’);
clearvars tot_discharge
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$Compute total turbine flowrate
if i7=size(t,2)
head=HWs (i, :)"-TWs (:,1);
%$Compute turbine flow based on head, with catches at bounds of turbine
— discharge curve
unit_discharges=interpl (turbine_discharge(:,1),
turbine_discharge(:,2),head);
unit_discharges (head>=turbine_discharge(end,1l))=...
turbine_discharge (end, 2);
unit_discharges (head<=turbine_discharge(1,1))=...
turbine_discharge(1,2);
turb_discharges (:,i+1l)=unit_discharges.*x(:,1);
clearvars head unit_discharges
end
end
clearvars i 1ii

%$If testing new operations (i.e. ELWS_targets is not empty), continue on and
— compute spill
if "isempty (ELWS_targets)
%$Check for cases when the final HW elev is greater than target
ELWS_goal=interpl (ELWS_targets(:,1),ELWS_targets(:,2),t (end));
volume_to_spill=max (0, ...
interpl (Q.SE_meters_m3(:,1),0Q.3E_meters_m3(:,2),HWs (end, :)) ...
—interpl (Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),ELWS_goal));
spill_discharges=0.95% ((volume_to_spill/ ((t (end)—-t (1)) *24x60x60)))";

$Compute HWs again for situations with spill added to lower to ELWS target
[a, "]=find(spill_discharges™=0);
if "isempty (a)
stop=0;
while stop==
for i=2:size(t,2)
elevation=HWs (i-1, a);
turbs=turb_discharges(a,i-1:1);
if isempty(mainstem_inflows_Q)
HWs (i-1:1,a)=Elevation_massbalance_vectorized (turbs, ...
[spill_discharges(a) spill_discharges(a)l, ...
t(i-1),t (i), frequency,Q,elevation,mainstem_inflows_t, ...
mainstem_inflows_Q);
else
HWs (i-1:i,a)=Elevation_massbalance_vectorized (turbs, ...
[spill_discharges(a) spill_discharges(a)l,...
t(i-1),t (i), frequency,Q,elevation, mainstem_inflows_t, ...
mainstem_inflows_Q(a, :));
end
clearvars elevation turbs
$Compute storage and TWs
Storage (a,i)=interpl (Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),...
HWs (i,a)");
tot_discharge=turb_discharges(a,i)+spill_discharges(a); %now assume
<~ we have the spill we calculated above
TWs (a,i)=interpl (Q.tw_curve_cms_m(:,1),0Q.tw_curve_cms_m(:,2),
tot_discharge);
clearvars tot_discharge
%$Compute total turbine flowrate
if i"=size(t,2)
head=HWs (i,a)’-TWs (a, i) ;
$Compute turbine flow based on head, with catches at bounds of
<~ turbine discharge curve
unit_discharges=interpl (turbine_discharge(:,1),
turbine_discharge (:,2),head);
unit_discharges (head>=turbine_discharge (end,1))=...
turbine_discharge (end, 2);
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150 unit_discharges (head<=turbine_discharge (1,1))=...

151 turbine_discharge (1, 2);

152 turb_discharges(a,i+l)=unit_discharges.*x(a,1);

153 clearvars head unit_discharges

154 end

155 end

156 %Check end elevations again and adjust spill and iterate (if necessary)

157 volume_to_spill=max (0, ...

158 interpl (Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),HWs (end, :)) ...

159 —interpl (Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),ELWS_goal));

160 spill_discharges2=spill_discharges+0.95* ( (volume_to_spill/ ((t (end) -t (1)
— )*x24%60x60)))"’;

161 diffspill=spill_discharges2-spill_discharges;

162 if all(round(diffspill, 3)==0)

163 stop=1;

164 end

165 spill_discharges=spill_discharges2; clearvars spill_discharges?2

166 end

167 clearvars i ii stop diffspill

168 %$Recompute HWs and TWs with final spillrate

169 for i=2:size(t,2)

170 elevation=HWs (i-1,a);

171 turbs=turb_discharges(a,i-1:1);

172 if isempty (mainstem_inflows_Q)

173 HWs (i-1:1,a)=Elevation_massbalance_vectorized (turbs, ...

174 [spill_discharges(a) spill_discharges(a)l, ...

175 t(i-1),t (i), frequency,Q,elevation,mainstem_inflows_t, ...

176 mainstem_inflows_Q);

177 else

178 HWs (i-1:1,a)=Elevation_massbalance_vectorized (turbs, ...

179 [spill_discharges(a) spill_discharges(a)l, ...

180 t(i-1),t (i), frequency,Q,elevation,mainstem_inflows_t, ...

181 mainstem_inflows_Q(a, :));

182 end

183 clearvars elevation turbs

184 %Compute storage and TWs

185 $If too full and overtops SE curve (or drains and empties), linearly
— extrapolate

186 Storage (a, i) =interpl (Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),...

187 HWs (i,a)’,’linear’,’extrap’);

188 tot_discharge=turb_discharges(a,i)+spill_discharges(a); %now assume we
— have the spill we calculated above

189 TWs (a, 1) =interpl (Q.tw_curve_cms_m(:,1),Q.tw_curve_cms_m(:,2),

190 tot_discharge) ;

191 clearvars tot_discharge

192 %$Compute total turbine flowrate

193 if i"=size(t,2)

194 head=HWs (i,a)’-TWs (a, i) ;

195 %Compute turbine flow based on head, with catches at bounds of

— turbine discharge curve

196 unit_discharges=interpl (turbine_discharge(:,1),

197 turbine_discharge (:,2),head);

198 unit_discharges (head>=turbine_discharge (end,1))=...

199 turbine_discharge (end, 2) ;

200 unit_discharges (head<=turbine_discharge(1,1))=...

201 turbine_discharge (1,2);

202 turb_discharges(a,i+l)=unit_discharges.*x(a,1);

203 clearvars head unit_discharges

204 end

205 end

206 clearvars i ii

207 end

208 |else

209 spill_discharges=zeros(n,1);
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end

HWs=HWs’ ; $change back to rows to match all the other outputs (computed as cols
— to make vectorizing Elevation_massbalance_vectorized easier)

buildQ.m

function Q=buildQ (directory)

oe

Builds the variable Q, used for the water balance

o\

% Inputs:

% directory - directory of csv files needed to build Q

% Outputs:

% Q — all other inflows and outflows, interpolation settings,

o°

storage-elev curve, and tailwater curve (all in meters)
clearvars Q

%$Load in interpolation file (can’t use csvread due to strings)
C=importdata (strcat (directory, ’'interpolation.csv’),’,’);
for i=l:size(C,1)
Q.interpolation(i,:) = strsplit(C{i,1},’,");
end
clearvars 1 C

$Load in data files from optimization directory folder
d=dir (strcat (directory, ’'*.csv’));
for i=1:1length (d)
if “strcmp(d(i) .name,’ interpolation.csv’) & d(i) .bytes™=0
Dstr_max_structure (i) .name=d (i) .name;
Dstr_max_structure (i) .matrix=csvread(strcat (directory, d(i).name));
[T,name, "] = fileparts (Dstr_max_structure (i) .name);
%$Make sure that each matrix has 2 rows (avoid interpolation errors)
if size (Dstr_max_structure (i) .matrix,1)<2
Dstr_max_structure (i) .matrix (end+1,1)=366;
Dstr_max_structure (i) .matrix(end,2)=...
Dstr_max_structure (i) .matrix(1,2);
end
Q. (sprintf (name) )=Dstr_max_structure (i) .matrix;
end
end
clearvars d 1 name Dstr_max_structure

check_feasibilities.m

function [WQ_adjusted,ELWS_limit_adjusted, funccount, feasible_options]=
<~ check_feasibilities (ranking, ...
x1_options,ga_pop_size, frequency,Q,ic_elev,no_of_units,t,max_hrly_unit_change
e TN
zero_gen_limit,turbine_discharge, ELWS_limit,WQ, xprev, ELWS_targets, ...
elev_constraint_rounding,wqg_constraint_rounding,tolerance)

o\

Checks the feasibility of constraints (elev, do, temp) in the priority
order defined by the user, and adjusting constraints as necessary

o o

o\

Inputs:

ranking - assign priority ranking for constraints on elev, DO, and temp,
— starting

with highest priority first

x1_options - options for the turbine setting at the first hour

o\

o°

o\
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oe

ga_pop_size - population size

frequency - frequency of predictions (hourly=1/24)

Q — all other inflows and outflows, interpolation settings,
storage-elev curve, and tailwater curve

ic_elev - initial condition (meters)

no_of_units - max number of turbines (4 for OHL)

t time series of JDAY values

max_hrly_unit_change - max number of units that can be changed per hour
(1 for OHL)

zero_gen_limit - Zero generation hourly limit (can’t go longer than
this with no turb flow)

turbine_discharge - turbine discharge curve at fixed MW level, with
col 1 in meters and col 2 in cms

ELWS_limit - min and max elevation limits for constraints, in meters
WQ - structure containing water quality constraints and NARX models
DO_narx - structure containing everything needed to make DO discharge
predictions, including:

turb_colum - column in exogenous variables with turb flows
spill_column - column in exogenous variables with spill flows

times - JDAY values used in training (not used)

inputDelays - delays for exogenous inputs

feedbackDelays - delays for prediction feedbacks

input_variables - 2 row cell containing variable names in first

row and column number in second. For example, ’'MET_WBLl’
contains multiple columns of data but only some may be used
for NARX predictions

bias - bias for each trained neural network

weights - weights for each trained neural network (sum to 1)
narx_net_closed - neural networks

DO_limit - lower and upper DO limits (NaN means it doesn’t exist)
DO_slack - relaxation from DO_limit (either upper or lower -
doesn’t make sense to have both)

Temp_narx - structure containing everything needed to make temp discharge
predictions, including:

turb_colum - column in exogenous variables with turb flows
spill_column - column in exogenous variables with spill flows
times - JDAY values used in training (not used)

inputDelays - delays for exogenous inputs

feedbackDelays - delays for prediction feedbacks

input_variables - 2 row cell containing variable names in first

row and column number in second. For example, ’'MET_WBL1’

contains multiple columns of data but only some may be used

for NARX predictions

bias - bias for each trained neural network

weights - weights for each trained neural network (sum to 1)
narx_net_closed - neural networks

Temp_limit - lower and upper temp limits (NaN means it doesn’t exist)
Temp_slack - relaxation from Temp_limit (either upper or lower -
doesn’t make sense to have both)

xprev - vector of previous active turbine levels
ELWS_targets - 2 column matrix with JDAY in coll and elevation target
in col2

elev_constraint_rounding - rounding setting (10=tenths place,
100=hundredths place, etc.)

wqg_constraint_rounding - rounding setting (10=tenths place,
100=hundredths place, etc.)

tolerance - penalty tolerance

Outputs:

WQ_adjusted updated WQ structure (same structure as WQ, with updated
constraints if necessary)

ELWS_limit_adjusted - updated elevation limits (if necessary)

funccount - total number of function evaluations (both obj and penalty)
feasible_options - save any solutions that are totally feasible to feed
into initial population creation function next
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funccount=0; generations=0;
exitflag=[];

%% Create 500 potential solutions feasible wrt constraints #1-3

$Weights
for wb=1l:size(x1_options,2)
for 1=2:no_of_units{wb}+1
weights{wb}{i} (1)=no_of_units{wb};
for 1i=2:1i
weights{wb}{i} (ii)=weights{wb}{i} (1i-1)=*.1;
end
end
end
clearvars 1 ii wb

$First, generate a few solutions quickly and test feasibility. If any are
— feasible, terminate this function with changes to WQ or elevation
— constraints
setsize=[10 2xga_pop_sizel;
for z=l:size(setsize,2)
for wb=1l:size (x1_options,2)
raw_options{wb}{z}=nan (setsize(z),size(t,2)-1);

if size(xl_options{wb},2)==1 %only 1 option left
raw_options{wb}{z} (:,1)=x1_options{wb};
else
if z==
raw_options{wb}{z} (:,1)=randsample (x1_options{wb}, setsize(z),true);
elseif z==

raw_options{wb}{z} (:,1)=randsample (x1_options{wb}, setsize(z),true,
— weights{wb}{size (x1_options{wb},2)});
end
end
for i=l:size(raw_options{wb}{z},1)
for j=2:size(t,2)-1
%Variable consisting of xprev and turbine pattern through j-1
pattern=[xprev{wb} raw_options{wb}{z} (i,1:3-1)];
$First start with all available options, then eliminate infeasible
<~ ones based on turbines from 1:3j-1
options=[0:no_of_units{wb}];
% (1) Eliminate options based on change in active unit violations
if "isnan(max_hrly_unit_change{wb})
auvoptions=[pattern(end)-max_hrly_unit_change{wb}:
pattern (end) +max_hrly_unit_change{wb}];
options=intersect (options, auvoptions) ;
end
(2) Non-integer constraint (assumed in selection algorithm)
(3) Eliminate options based on zero generation hourly limit
if "isnan(zero_gen_limit{wb})
if sum(pattern(end-zero_gen_limit{wb}+l:end))==
zghloptions=[1l:no_of_units{wb}]; %if previous zero_gen_limit
— hrs had zero total flow, must have flow next hr
options=intersect (options, zghloptions);
end
end
% (4) Eliminate options that violate oscillations constraint -
— violates whenever the number of turbines increases and then
— decreases within 3 hours, or vice versa
allopt=[0:no_of_units{wb}];
if pattern(end-1l)<pattern(end) %if prev turbs increasing
oscoptions=allopt (allopt>=pattern (end));
options=intersect (options, oscoptions);
elseif pattern(end-1)==pattern(end) %need 3 hrs btwn ramping up and

o

o\
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— down

if pattern(end-2)<pattern(end-1) Sramping up
oscoptions=allopt (allopt>=pattern(end));
options=intersect (options, oscoptions);

elseif pattern(end-2)>pattern(end-1) S$ramping down
oscoptions=allopt (allopt<=pattern(end));
options=intersect (options, oscoptions);

elseif pattern(end-2)==pattern(end-1)
%do nothing —-->3 consecutive hours between ramping up and down

— satisfied
end
elseif pattern(end-1)>pattern(end) %$if prev turbs decreasing
oscoptions=allopt (allopt<=pattern (end)) ;
options=intersect (options, oscoptions);

end
$0ut of the available options left, pick the next turbine setting
if size(options,2)==1 %only 1 option left
raw_options{wb}{z} (i, j)=options;
else
if z==

raw_options{wb}{z} (i, j)=randsample (options, 1, true);

elseif z==2
raw_options{wb}{z} (i, j)=randsample (options, 1, true,weights{wb}{

<~ size(options,2)});
end
end
end
end
end

%$Convert raw_options cells to long vectors containing all reservoirs per row
raw_options2{z}=[1];
for wb=l:size(x1_options, 2)
raw_options2{z}=[raw_options2{z} raw_options{wb}{z}];
end

%$Check feasibilities if first small set
if z==
[c, "]1=penalty_fcn(raw_options2{z},t, frequency,Q,ic_elev, ...
turbine_discharge, ELWS_limit,max_hrly_unit_change,
WQ, zero_gen_limit, xprev, ELWS_targets,tolerance);
funccount=funccount+size (raw_options2{z},1);
feasibles=raw_options2{z} (find(all (c<=eps,2)),:);
if "isempty (feasibles)
fprintf ("All constraints are feasible. \n’);
WQ_adjusted=WQ; ELWS_limit_adjusted=ELWS_limit;
feasible_options=feasibles;
return
end
end
end
feasible_options2=[];
for z=l:size(setsize,2)
feasible_options2=[feasible_options2; raw_options2{z}];
end
feasible_options=feasible_options2; feasible_options_raw=feasible_options;
clearvars z i1 a j feasibles feasible_options2

%% Optimize each constraint in priority order and terminate at 0. Otherwise,
— modify the constraint bounds

for wb=1l:size(x1_options,2)

ELWS_limit_adjusted{wb}=nan(size (ELWS_limit{wb}));
WQ_adjusted{wb}.DO_limit=nan (size (WQ{wb}.DO_limit));
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WQ_adjusted{wb}.Temp_limit=nan (size (WQ{wb}.Temp_limit));
WQ_adjusted{wb}.DO_narx=WQ{wb}.DO_narx;
WQ_adjusted{wb}.Temp_narx=WQ{wb}.Temp_narx;
WQ_adjusted{wb}.DO_slack=WQ{wb}.DO_slack;
WQ_adijusted{wb}.Temp_slack=WQ{wb}.Temp_slack;

end

skip=0;

for wb=1l:size (x1_options,2)
for i=l:size(ranking, 2)
if strcmp (ranking{i},’elev’) & (“isnan(ELWS_limit{wb} (1)) | “isnan(
— ELWS_limit{wb} (2)))
fprintf ([’ Checking reservoir #’, num2str (wb),’ elevation constraint
— feasibility. \n’]);

elseif strcmp(ranking{i},’do’) & (“isnan(WQ{wb}.DO_limit (1)) | “isnan (WQ{

— wb}.DO_limit (2)))
fprintf ([’ Checking reservoir #’, num2str(wb),’ DO constraint
— feasibility. \n’]);

elseif strcmp(ranking{i},’temp’) & (“isnan(WQ{wb}.Temp_limit(1l)) | “isnan(

— WQ{wb}.Temp_limit (2)))

fprintf ([’ Checking reservoir #’, num2str(wb),’ temperature constraint

— feasibility. \n’]);
end

%Check lower limit then upper limit. In each step, check maximum violation

— and then mean value (for temp & DO, not elevation)
for a=1:2
if a==1 level='lower’; elseif a==2 level="upper’; end

if strcmp (ranking{i},’elev’) & “isnan(ELWS_limit{wb} (a))
skip=0;

elseif strcmp (ranking{i},’do’) & “isnan(WQ{wb}.DO_limit (a))
skip=0;

elseif strcmp(ranking{i},’temp’) & “isnan (WQ{wb}.Temp_limit (a))
skip=0;

else
skip=1; %$if there is no constraint being added here, no need to

— check feasibility!
end

if skip==
clearvars FitnessFunction mycon opt

% (1) Test the maximum constraint violation first

$Set penalty function first to make sure it doesn’t include the
— constraint that is being optimized, but all constraints
— before that one

mycon= @ (x) penalty_fcn(x,t,frequency,Q,ic_elev, ...
turbine_discharge, ELWS_limit_adjusted,max_hrly_unit_change, ...
WQ_adjusted, zero_gen_limit, xprev, ELWS_targets,tolerance);

%$Load in the relevant constraints

if strcmp (ranking{i},’elev’)
ELWS_limit_adjusted{wb} (a)=ELWS_limit {wb} (a);

elseif strcmp (ranking{i},’do’)
WQ_adjusted{wb}.DO_limit (a)=WQ{wb}.DO_limit (a);
WQ_adijusted{wb}.DO_slack=WQ{wb}.DO_slack;

elseif strcmp (ranking{i},’temp’)
WQ_adjusted{wb}.Temp_limit (a)=WQ{wb}.Temp_limit (a);
WQ_adijusted{wb}.Temp_slack=WQ{wb}.Temp_slack;

end

$Set objective function

if strcmp (ranking{i},’elev’) & “isnan(ELWS_limit_adjusted{wb} (a))

FitnessFunction = @(x) obj_fcn_elev(x,t, frequency,Q,ic_elev, ...
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turbine_discharge, ELWS_limit_adjusted{wb},ELWS_targets, level,

— wb) ;
elseif strcmp(ranking{i},’do’) & “isnan (WQ_adjusted{wb}.DO_limit (a))
FitnessFunction = @ (x) obj_fcn_do(x,t, frequency,Q,ic_elev, ...

turbine_discharge, WQ_adjusted, ELWS_targets, level,wb) ;
elseif strcmp(ranking{i},’temp’) & “isnan (WQ_adjusted{wb}.Temp_limit
— (a))
FitnessFunction = @(x) obj_fcn_temp (x,t, frequency,Q,ic_elev, ...
turbine_discharge, WQ_adjusted, ELWS_targets, level,wb) ;
end
%$Check feasibility
if any(FitnessFunction (feasible_options (l:min(size (feasible_options
— ,1),setsize (1)), :))==0)
fval=0; funccount=funccount+size (feasible_options,1);
pop=feasible_options;
else
$If feasible_options<GA pop size, fill in a larger matrix with
— repeating values to create a full initial population
if size(feasible_options,1l)<ga_pop_size
feasible_options=repmat (feasible_options,ceil (ga_pop_size/size
— (feasible_options,1)),1);
feasible_options=feasible_options(l:ga_pop_size, :);
end
$GA settings
opt = gaoptimset (...
"Display’,’iter’,’Vectorized’,’on’,’Generations’, 50,
"PopulationSize’,ga_pop_size, ...
"InitialPopulation’, feasible_options(l:ga_pop_size,:), ...
"StallGenLimit’,1,’TolFun’,tolerance,’TolCon’,tolerance, ...
"CrossoverFcn’ ,dcrossoversinglepoint, 'CrossoverFraction’
— ,0.85,...
"EliteCount’,ceil (.05xga_pop_size), ...
"CreationFcn’,@int_pop, 'MutationFcn’,@int_mutation,’
— FitnessLimit’,0);
nVar = size(xl_options,2)*(size(t,2)-1);
$Set dv lower and upper bounds, narrowed considering
— max_hrly_unit_change
clearvars 1lb ub
for wb2=1:size(x1_options,2)
1b(wb2, :)=0%ones(1l,size(t,2)-1); lb(wb2,1)=x1_options{wb2} (1);
for ii=2:no_of_units{wb2}
1b(wb2,1ii)=1b(wb2,ii-1) -max_hrly_unit_change{wb2};
end
1b (wb2, :)=max (0, 1b (wb2, :));
ub (wb2, :)=no_of_units{wb2}*ones(1l,size(t,2)-1);
ub (wb2,1)=x1_options{wb2} (end);
for i1i=2:no_of_units{wb2}
ub (wb2,1ii)=ub(wb2,1ii-1)+max_hrly_unit_change{wb2};

end
ub (wb2, :)=min (no_of_units{wb2},ub (wb2, :));
clearvars ii

end

clearvars wb2

lb=reshape (1b’,1,[]1); ub=reshape(ub’,1,1[1);

$Run GA

[T, fval, 7, output, pop, "1=ga (FitnessFunction,nVar, [], [],[],[],1lb,ub
e SN
mycon, [],opt);

funccount=funccount+output.funccount*2; %multiply by 2 to cover
— penalty & obj functions

generations=output.generations;

end
%$Adjust constraint limits if necessary
if fval™=0
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if level==’lower’
plusminus=-1;
elseif level=='upper’
plusminus=1;
end
if strcmp (ranking{i},’elev’)
fprintf ([’Adjusting reservoir #’, num2str(wb),’ ', level, '
— elevation constraint. \n’]);
ELWS_limit_adjusted{wb} (a)=ELWS_limit{wb} (a)...
+plusminus*ceil (elev_constraint_roundingxfval) /
— elev_constraint_rounding;
if "isempty (pop)
pop=[pop; feasible_options_raw]; pop=unique (pop,’rows’);
c=mycon (pop); pop=pop (all (c<=tolerance,2),:);
o=FitnessFunction (pop) ;
feasible_options=pop (find(o==min (o)), :);
end
elseif strcmp(ranking{i},’do’)
fprintf ([’Adjusting reservoir #’, num2str(wb),’ ’, level, ’ DO
<~ slack constraint. \n’]);
WQ_adjusted{wb}.DO_slack (a)=ceil (wg_constraint_roundingx*fval)/
— wqg_constraint_rounding;
if "isempty (pop)
pop=[pop; feasible_options_raw]; pop=unique (pop,’rows’);
c=mycon (pop) ; pop=pop (all (c<=tolerance,2),:);
o=FitnessFunction (pop) ;
feasible_options=pop (find (o==min (o)), :);
end
elseif strcmp(ranking{i},’temp’)
fprintf ([’Adjusting reservoir #’, num2str(wb),’ ', level, '
— temperature slack constraint. \n’]);
WQ_adjusted{wb}.Temp_slack (a)=ceil (wg_constraint_rounding+fval
— ) /wg_constraint_rounding;
if "isempty (pop)
pop=[pop; feasible_options_raw]; pop=unique (pop,’rows’);
c=mycon (pop) ; pop=pop (all (c<=tolerance,?2),:);
o=FitnessFunction (pop) ;
feasible_options=pop (find (o==min (o)), :);
end
end
else
pop=[pop; feasible_options_raw]; pop=unique (pop,’ rows’,’stable’);
c=mycon (pop); pop=pop (all (c<=tolerance,2),:);
o=FitnessFunction (pop);
feasible_options=pop (find (o==min (o)), :);
end
clearvars plusminus output
end
end
end

end

clearvars 1 a
WQ_adjusted{wb}.DO_slack=sum(WQ_adijusted{wb}.DO_slack, 2);
WQ_adjusted{wb}.Temp_slack=sum (WQ_adjusted{wb}.Temp_slack, 2);

cost_curve.m

function price = cost_curve (t,output_MW, cost_curve_MW)

o\° o° oo

o°

Calculates elevation predictions under various turbine outflow conditions

Inputs:
t time series of JDAY values
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o\

output_MW - MW at each timepoint (step function)

cost_curve_MW 2 row matrix to create step function, with 1lst row
being hours and 2nd row $/MW-hr values

Outputs:

price total price in $ of generation pattern

o° o o

o\

timepoint_dollars=nan(size(t,2),2);

if size(cost_curve_MwW,1)==1
timepoint_dollars(:,1l)=cost_curve_MW(1l,2);
timepoint_dollars(:,2)=1;

else
for i=l:size(t,2)
a=round ((t (i)-floor(t(i)))*24-cost_curve_MW(1l,:));
a=a (a>=0);
[c index] = min(a);
timepoint_dollars (i, 1l)=cost_curve_MW (2, index) ;
timepoint_dollars (i, 2)=index;
end
end

price=nan (size (output_MW)) ;
for i=l:size(t,2)-1
if timepoint_dollars (i, 2)==timepoint_dollars(i+l,2)
price(:,1i)=output_MW(:,i)+timepoint_dollars(i,1)* (t (i+1)-t (1)) x24;
else
if timepoint_dollars (i+l,2)>=timepoint_dollars (i, 2)
price(:,1)=0;
for ii=timepoint_dollars(i,2) :timepoint_dollars (i+l,2)-1
price(:,i)=price(:,1i)+ (cost_curve_ MW (1l,ii+1)—-(t(i)—-...
floor(t(i)))*24)output_MW(:,1i)*cost_curve_MW(2,1ii);
end
if i+1>size(cost_curve_MW, 2)
price(:,i)=price(:,i)+((t (i+1l)-floor (t (i+1)
cost_curve_MW(1l,timepoint_dollars (i+1,2)
output_MW(:,1) *cost_curve_MwW(2,1);

)) *x24—. ..
)) *x. ..
else
price(:,i)=price(:,i)+((t(i+1l)-floor (t (i+1)))*24-...
cost_curve_MW(l,timepoint_dollars (i+l1,2)))*...
output_MW(:, 1) *cost_curve_MW(2,1i+1);
end
%1f we’ve passed midnight into next day...
elseif timepoint_dollars(i+l,2)<timepoint_dollars(i,2)
price(:,1)=0;
for ii=timepoint_dollars (i, 2) :size (cost_curve_MW, 2)
price(:,i)=price(:,1i)+(24-(t(1i)-floor(t(i)))*24)«...
output_MW(:, 1) «*cost_curve_MW(2,11);
end
for ii=l:timepoint_dollars(i+1l,2)-1
price(:,i)=price(:,1i)+ (cost_curve MW (1l,ii+1)—-(t(i)—-...
floor(t(i)))*24)routput_MW(:,1) «cost_curve_MW(2,11);
end
if i+1>size(cost_curve_MW, 2)
price(:,i)=price(:,1i)+((t (i+1l)-floor (t (i+1)
cost_curve_MW (1, timepoint_dollars (i+1,2)
output_MW(:, 1) *cost_curve_MW(2,1);

)) *x24—. ..
IDE
else
price(:,i)=price(:,i)+((t(i+1l)-floor (t (i+1l)))*24—-...
cost_curve_MW (1, timepoint_dollars (i+1,2)))*...
output_MW (:,1i)xcost_curve_MW (2, i+1);
end
end
end
end
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71

73

price=sum(price’)’;

end

create_feasible_initpop.m

function [feasible_options,y,c, funccount]=create_feasible_initpop (no_of_solns

o0 o o o° A% A A AP A A O OO OO O A A A A O OO O° O A A A A A AN O O A A A A A A A O O A A A A A A O° o° o° o

o°

e SN

feasible_options,xl_options, frequency,Q,ic_elev,MW_rating,no_of_units,t, ...
max_hrly_unit_change, zero_gen_limit, turbine_discharge, ELWS_limit, ...

WQ, cost_curve_MW, xprev,elev_soft_penalty_coeff, ...

ELWS_targets,tolerance)

Generate and save lots of solutions that are feasible in terms of:

(
(
(
(

1) Change in active unit violations

2) Non-integer constraint (assumed in this seletion algorithm)
3) Zero generation hourly limit

4) Oscillations constraint

Inputs:

no_of_solns - the number of feasible solutions we want to find
feasible_options - feasible solutions already found during constraint
prescreening

x1_options - feasible options for first value of x, between 0 and
no_of_units

frequency - frequency of predictions (hourly=1/24)

Q - all other inflows and outflows, interpolation settings,

S

torage-elev curve, and tailwater curve (all in meters)

ic_elev - initial elevation condition (m)

MW_rating - the fixed MW level of turbine_discharge_curve (25 MW for
OHL)

no_of_units - max number of available turbine units

t time series of JDAY values

max_hrly_unit_change - max number of units that can be changed per hour
(1 for OHL)

zero_gen_limit - Zero generation hourly limit (can’t go longer than
this with no turb flow)

t

urbine_discharge - turbine discharge curve at fixed MW level, with

col 1 in meters and col 2 in cms

ELWS_limit - min and max elevation limits for constraints, in meters
WQ - structure containing water quality constraints and NARX models
DO_narx - structure containing everything needed to make DO discharge
predictions, including:

turb_colum - column in exogenous variables with turb flows
spill_column - column in exogenous variables with spill flows
times - JDAY values used in training (not used)

inputDelays - delays for exogenous inputs

feedbackDelays - delays for prediction feedbacks
input_variables - 2 row cell containing variable names in first

row and column number in second. For example, 'MET_WB1’

contains multiple columns of data but only some may be used

for NARX predictions

bias - bias for each trained neural network

weights - weights for each trained neural network (sum to 1)
narx_net_closed - neural networks

DO_limit - lower and upper DO limits (NaN means it doesn’t exist)
DO_slack - relaxation from DO_limit (either upper or lower -
doesn’t make sense to have both)

Temp_narx — structure containing everything needed to make temp discharge
predictions, including:

t
S
t

urb_colum - column in exogenous variables with turb flows
pill_column - column in exogenous variables with spill flows
imes - JDAY values used in training (not used)
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57 | % inputDelays - delays for exogenous inputs

58 | % feedbackDelays - delays for prediction feedbacks

59 | % input_variables - 2 row cell containing variable names in first
60 | % row and column number in second. For example, 'MET_WB1’

61 |% contains multiple columns of data but only some may be used
62 | % for NARX predictions

63 |% bias - bias for each trained neural network

64 | % weights - weights for each trained neural network (sum to 1)

65 | % narx_net_closed - neural networks

66 |% Temp_limit - lower and upper temp limits (NaN means it doesn’t exist)
67 | % Temp_slack - relaxation from Temp_limit (either upper or lower -

68 | % doesn’t make sense to have both)

69 | % cost_curve_MW 2 row matrix to create step function, with 1lst row

70 | % being hours and 2nd row $/MW-hr values

71 | % xprev - vector of previous active turbine levels

72 | % elev_soft_penalty_coeff - penalty coefficient for soft ending elev soft
73 | % constraint

74 | % ELWS_targets - target elevations for end of time period

75 | % tolerance - penalty tolerance

76 | % Outputs:

77 |% feasible_options feasible potential solutions for GA initialization
78 |$ y — objective function solutions for feasible_options

79 |$ ¢ - constraint violations

80 | % funccount - number of paired function evaluations

81

82 |%Start with upstream reservoir (wb=1), find feasible operations, and
83 | $compute associated discharge flows for each. Then use those flows as
84 | Supstream inflow for next wb, find feasible operations, and compute
85 |%associated discharge flows. Etc...

87 |c=1[1;
88 |n=size (feasible_options,1);
89 | funccount=0;

91 |count=1;
92 |while size(feasible_options,1)<no_of_solns

93

94 if count==

95 $Starting set size

96 setsize=no_of_solns;

97 elseif count==

98 %$Modify set size as a function of how many feasible solns found so far (
< maximum is 30*xsetsize)

99 setsize=min (5* (setsize), round((setsize/ (size (feasible_options,1l)-n))*...

100 (no_of_solns—(size (feasible_options,1)-n))));

101 else

102 %$If still not enough solns found, should be close so try 50 at a time

103 setsize=50;

104 end

105

106 for wb=1l:size(x1_options,2)

107 raw_options{wb}=nan (setsize,size(t,2)-1);

108 if size(xl_options{wb},2)==1 %only 1 option left

109 raw_options{wb} (:,1)=x1_options{wb};

110 else

111 raw_options{wb} (:,1)=randsample (x1_options{wb}, setsize,true);

112 end

113 for i=l:setsize

114 for j=2:size(t,2)-1

115 %$Variable consisting of xprev and turbine pattern through j-1

116 pattern=[xprev{wb} raw_options{wb} (i,1:3-1)1;

117 $First start with all available options, then eliminate infeasible

<~ ones based on turbines from 1:3j-1
118 options=[0:no_of_units{wb}];
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119
120
121
122
123
124
125
126
127
128
129

130
131
132
133
134

135
136
137
138
139

140
141
142
143
144
145
146
147

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

% (1) Eliminate options based on change in active unit violations
if "isnan(max_hrly_unit_change{wb})
auvoptions=[pattern (end) max_hrly_unit_change{wb}:
pattern (end)+max_hrly_unit_change{wb}];
options=intersect (options, auvoptions) ;
end
(2) Non-integer constraint (assumed in selection algorithm)
(3) Eliminate options based on zero generation hourly limit
f "isnan(zero_gen_limit{wb})
if sum(pattern(end-zero_gen_limit{wb}+1l:end))==
zghloptions=[1l:no_of_units{wb}]; %if previous zero_gen_limit
< hrs had
$zero total flow, must have flow next hr
options=intersect (options, zghloptions);
end
end
% (4) Eliminate options that violate oscillations constraint -
— violates whenever the number of turbines increases and then
— decreases within 3 hours, or vice versa
allopt=[0:no_of_units{wb}];
if pattern(end-1)<pattern(end) $%$if prev turbs increasing
oscoptions=allopt (allopt>=pattern(end));
options=intersect (options, oscoptions);
elseif pattern(end-1)==pattern(end) %need 3 hrs btwn ramping up and
— down
if pattern(end-2)<pattern(end-1) Sramping up
oscoptions=allopt (allopt>=pattern (end));
options=intersect (options, oscoptions);
elseif pattern(end-2)>pattern(end-1) S%ramping down
oscoptions=allopt (allopt<=pattern(end));
options=intersect (options, oscoptions);
elseif pattern(end-2)==pattern(end-1)
%do nothing -->3 consecutive hours between ramping up and down
— satisfied

o\ o

-

end

elseif pattern(end-1)>pattern(end) %$if prev turbs decreasing
oscoptions=allopt (allopt<=pattern (end));
options=intersect (options, oscoptions);

end

$0ut of the available options left, pick the next turbine setting

if size(options,2)==1 %only 1 option left
raw_options{wb} (i, j)=options;

else
raw_options{wb} (i, j)=randsample (options, 1, true);

end

end
end
end

%$Convert raw_options cells to long vectors containing all reservoirs per row
raw_options2=[];
for wb=1l:size(x1_options, 2)
raw_options2=[raw_options2 raw_options{wb}];
end

%$Check feasibility

[c_new, "]=penalty_fcn(raw_options2,t, frequency,Q,ic_elev, ...
turbine_discharge, ELWS_limit,max_hrly_unit_change,WQ, ...
zero_gen_limit, xprev, ELWS_targets,tolerance);

funccount=funccount+size (raw_options2,1);

c=c_new;

raw_options3=raw_options2 (all (c_new<=tolerance,2),:);
feasible_options=[feasible_options; raw_options3];
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178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

O 00 JON N B~ W~

fprintf ([’Feasible options found: ', ...
num2str (size (feasible_options, 1)), "\n’]);
if count==2 & isempty (feasible_options)
y=[1; return
elseif count==5 & “isempty (feasible_options)
y=obj_fcn(feasible_options, t,cost_curve_MW,MW_rating, ...
elev_soft_penalty_coeff,ELWS_targets, frequency,Q,ic_elev, ...
turbine_discharge);
funccount=funccount+size (feasible_options, 1) ;
[y, bl=sort (y,"descend’);
feasible_options=feasible_options (b, :);
return
else
count=count+1;
end
end

%$Pick the best no_of_solns from feasible_options

y=obj_fcn (feasible_options, t,cost_curve_MW,MW_rating, ...
elev_soft_penalty_coeff,ELWS_targets, frequency,Q,ic_elev, ...
turbine_discharge);

funccount=funccount+size (feasible_options,1);

[y, bl=sort (y, descend’);

feasible_options=feasible_options (b, :);

Elevation_massbalance_vectorized.m

function Predictions=Elevation_massbalance_vectorized (turb_discharges,
spill_discharges, JDAY_initial, JDAY_end, frequency,Q,elevation, ...
mainstem_inflows_t,mainstem_inflows_Q)

o\

Calculates elevation predictions under various turbine outflow conditions

o°

% Inputs:
% turb_discharges turbine discharge time series to test (rows)
% spill_discharges - spill discharge time series

o°

JDAY_initial start JDAY (initial condition)
JDAY_end end JDAY
frequency - prediction frequency (ex: 0.25=1/4 day=6 hours)

o\

o\

% Q - all other inflows and outflows, interpolation settings, and

% storage—-elev curve

% elevation - initial elevation at JDAY_initial

% mainstem_inflows_t - vector of JDAY values that correspond to

$ mainstem_inflows_Q

% mainstem_inflows_Q - if applicable (wb™=1), rows of incoming flows from
% upstream reservoir correlated to times in mainstem_inflows_t

% Outputs:

o°

Predictions vector of elevation predictions

n=round ( (JDAY_end-JDAY_initial) /frequency);
m=size (turb_discharges, 1) ;

Predictions=nan (n+1,m);

Storage=nan (n+l,m);

deltav=nan (n+1l,m);

%$Initial condition

Predictions (1, :)=elevation;

$If too full and overtops SE curve (or drains and empties), linearly extrapolate

Storage (1, :)=interpl (Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),...
Predictions (1, :),’ linear’,’extrap’);

$Run the model
ql=[];

174




qz2=1[1;
for time=2:n+1
volin=0;

volout=0;
turbout=0;
spillout=0;
volin_BR1=0;
%$Loop through all inflows and outflows (except turbine out)
for i=l:size(Q.interpolation, 2)
$VOLUMES IN
$Inflow w/out interpolation
if (isequal (char(Q.interpolation(2,1i)),’ inflow’) |
isequal (char (Q.interpolation(2,1i)),’dist’)) &
isequal (char (Q.interpolation(3,1i)),’ OFF")
$If the inflow is the mainstem, check if there is data in
< mainstem_inflows and use that instead of Q
if isequal (char (Q.interpolation(1l,i)),’QIN_BR1") &
“isempty (mainstem_inflows_Q)
indexl=find (mainstem_inflows_t<=...
JDAY_initial+ (time-2) xfrequency,1l,’last’);
index2=find (mainstem_inflows_t<=...
JDAY_initial+ (time-1) xfrequency,1l,’last’);
gl=mainstem_inflows_Q(:,indexl);
if indexl==index?2
volin_BRl=volin_BRIl+glxfrequency*24+x60%60;
else
volin_BRl=volin_BR1l+glx*...
(mainstem_inflows_t (1, index1+1) - (JDAY_initial+...
(time-2) xfrequency) ) x24x60%60;
for ii=indexl+l:index2-1
gl=mainstem_inflows_Q(:,1i1i);
volin_BR1l=volin_BR1l+glx*...
(mainstem_inflows_t (1,ii+1)-...
mainstem_inflows_t (1,1i))*24+x60%60;
end
gl=mainstem_inflows_Q(:, index2);
volin_BR1l=volin_BR1l1+glx...
((JDAY_initial+ (time-1)«frequency)-...
mainstem_inflows_t (1, index2) ) *24%x60x60;
end
else
flow=Q. (Q.interpolation{l,1i});
indexl=find(flow(:,1)<=...
JDAY_initial+(time-2) xfrequency,1l,’last’);
index2=find(flow(:,1)<=...
JDAY_initial+ (time-1) xfrequency,1l,’last’);
gl=flow (index1,2); %$flowrate at beginning of timestep
if indexl==index2
volin=volin+tglxfrequency*24+x60%60;
else
volin=volin+glx (flow (index1+1,1)— (JDAY_initial+...
(time-2) xfrequency) ) x24x60%60;
for ii=indexl+l:index2-1
gl=flow(ii,2);
volin=volin+gl* (flow(ii+1,1)-flow(ii, 1)) *24x60%60;
end
gl=flow (index2,2);
volin=volin+glx ((JDAY_initial+ (time-1)«frequency)-...
flow (index2,1)) *24%x60%60;
end
end
end
$Inflow w/ interpolation
if (isequal (char (Q.interpolation(2,1i)),’inflow’) |
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100
101
102

103
104
105
106
107
108
109
110
111
112

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

isequal (char (Q.interpolation(2,i)),’dist’)) &
isequal (char (Q.interpolation(3,i)), ON")
$If the inflow is the mainstem, check if there is data in
— mainstem_inflows and use that instead of Q
if isequal (char (Q.interpolation(l,i)),’QIN_BR1") &
“isempty (mainstem_inflows_Q)
indexl=find(mainstem_inflows_t<=...
JDAY_initial+ (time-2) xfrequency,1l,’last’);
index2=find (mainstem _inflows_t<=...
JDAY_initial+(time-1) xfrequency,1l,’last’);
gl=interpl (mainstem_inflows_t’, ...
mainstem_inflows_Q(:,indexl)’,JDAY_initial+ (time-2)*...
frequency) ;
%if JDAY_initial+ (time-2)xfrequency=timesteps(l), interpl outputs
— nan
gl (isnan(gl))=mainstem_inflows_Q(isnan(gl),1);
if indexl==index2
gz2=interpl (mainstem_inflows_t’,mainstem_inflows_Q’, ...
JDAY_initial+ (time-1)*...
frequency) ;
volin_BRl=volin_BR1+.5% (gl+g2) ...
((JDAY_initial+ (time-1)«frequency)-...
(JDAY_initial+ (time-2)xfrequency)) *x24%x60%60;
else
g2=mainstem_inflows_Q(:,index1+1)’;
volin_BRl=volin_BRI1+.5x (gl+g2) ...
(mainstem_inflows_t (1, index1+1)—-...
(JDAY_initial+ (time-2)xfrequency) ) *x24%x60%60;
for ii=indexl1+2:index2
gl=qg2; %start flowrate is equal to previous end flowrate
g2=mainstem_inflows_Q(:,1i1i);
volin_BR1=volin_BR1+.5x (gl+g2) ...
(mainstem_inflows_t (1,ii)-...
mainstem_inflows_t (1,1i-1))*24x60%x60;
end
ql=g2;
g2=interpl (mainstem_inflows_t’,mainstem_inflows_Q’, ...
JDAY_initial+ (time-1) xfrequency) ;
if "any(isnan(g2)) %$may have some rounding issues, causing it to
— go past JDAY_end?
volin_BRl1=volin_BR1+.5x (gl+g2) ...
((JDAY_initial+ (time-1)xfrequency)-...
mainstem_inflows_t (1, index2))*24%x60x60;
end
end
else
flow=Q. (Q.interpolation{l,1i});
indexl=find(flow(:,1)<=...
JDAY_initial+ (time-2) xfrequency,1l,’last’);
index2=find(flow(:,1)<=...
JDAY_initial+ (time-1) xfrequency,1l,’last’);
gl=interpl (flow(:,1),flow(:,2),JDAY_initial+...
(time-2) xfrequency); %flowrate at beginning of timestep
if indexl==index2
g2=interpl (flow(:,1),flow(:,2),JDAY_initial+...
(time-1) xfrequency) ;
volin=volin+.5x (gl+g2) ...
((JDAY_initial+(time-1)+xfrequency)-...
(JDAY_initial+ (time-2)xfrequency) ) *x24%x60%60;
else
gz2=flow(indexl1+1,2);
volin=volin+.5x (gl+g2) ...
(flow (index1+1,1)—-...
(JDAY_initial+ (time-2)xfrequency) ) *x24%x60%60;
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161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

177
178

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

202
203

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

end
$VO
%0u

if

end
%0u

if

for ii=index1+2:index2
gl=qg2; $start flowrate is equal to previous end flowrate
gz=flow(ii, 2);
volin=volin+.5* (gl+g2)* (flow(ii,1)-flow(ii-1,1))...

*24%60%x60;

end

ql=q2;

g2=interpl (flow(:,1),flow(:,2), ...
JDAY_initial+ (time-1) xfrequency) ;

volin=volin+.5* (gql+g2) = ((JDAY_initial+ (time-1)x*...
frequency)-flow(index2,1)) *x24x60%x60;

end
end

LUMES OUT
tflow w/out interpolation - EXCEPT TURB (and spill if it’s defined in
— the outputs, otherwise take values from Q)
(isequal (char (Q.interpolation(2,1)), outflow’) | ..
(isequal (char (Q.interpolation(2,1)), ’outflow_spill’) & isempty (
<~ spill_discharges)) |
isequal (char (Q.interpolation(2,i)), ' qwd’)) &
isequal (char (Q.interpolation(3,1i)),’ OFF")
flow=Q. (Q.interpolation{l,1});
indexl=find(flow(:,1)<=...
JDAY_initial+(time-2) xfrequency,1l,’last’);
index2=find (flow(:,1)<=...
JDAY_initial+ (time-1) xfrequency,1l,’last’);
gl=flow(index1,2); %$flowrate at beginning of timestep
if indexl==index2
volout=volout+gl+frequency*24x60x60;
else
volout=volout+gl«* (flow(index1+1,1)- (JDAY_ initial+...
(time-2) xfrequency) ) »24x60%60;
for ii=indexl+l:index2-1
gl=flow(ii,2);
volout=volout+gl* (flow(ii+1,1)-flow(ii, 1)) *24%x60%60;
end
gl=flow(index2,2);
volout=volout+glx* ((JDAY_initial+ (time-1)xfrequency)-...
flow (index2,1)) *24%60%60;
end

tflow w/ interpolation - EXCEPT TURB (and spill if it’s defined in the
— outputs, otherwise take values from Q)
(isequal (char (Q.interpolation(2,1)), ’outflow’) | ...
(isequal (char (Q.interpolation(2,1i)),’outflow_spill’) & isempty(
<~ spill_discharges)) |
isequal (char (Q.interpolation(2,1i)),’ qwd’)) &
isequal (char (Q.interpolation(3,1i)), ON")
flow=Q. (Q.interpolation{l,1i});
indexl=find(flow(:,1)<=...
JDAY_initial+(time-2) xfrequency,1l,’last’);
index2=find(flow(:,1)<=...
JDAY_initial+ (time-1) xfrequency,1l,’last’);
gl=interpl (flow(:,1),flow(:,2),JDAY_initial+(time-2)~*...
frequency); %$flowrate at beginning of timestep
if indexl==index2
g2=interpl (flow(:,1),flow(:,2),JDAY_initial+(time-1)~*...
frequency) ;
volout=volout+.5* (gl+g2) « ( (JDAY_initial+ (time-1)«...
frequency) - (JDAY_initial+ (time-2)xfrequency) ) *x24x60%60;
else
g2=flow (index1l+1,2);
volout=volout+.5* (gl+g2) « (flow(index1+1,1)—...
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221 (JDAY_initial+ (time-2) «frequency)) «24x60%60;

222 for ii=index1l+2:index?2

223 gql=g2; %$start flowrate is equal to previous end flowrate
224 g2=flow(ii,2);

225 volout=volout+.5% (gql+g2)  (flow (ii,1)-flow (ii-1,1))*...
226 24x60x60;

227 end

228 ql=q2;

229 g2=interpl (flow(:,1),flow(:,2),JDAY_initial+ (time-1)x*...
230 frequency) ;

231 volout=volout+.5* (ql+g2) » ((JDAY_initial+ (time-1)=*...

232 frequency)-flow (index2,1)) *24+«60%60;

233 end

234 end

235 end

236

237 $Turbine outflow using turb_discharges

238 al=[1; q2=I[1;

239 timesteps=[JDAY_initial:frequency:JDAY_end];

240 $find turbine interpolation setting (b)

241 [a,b]=find(strcmp (Q.interpolation,’outflow_turb’));

242 if isequal (char (Q.interpolation(3,b)),’ OFF’)

243 indexl=find (timesteps (1, :)<=...

244 JDAY_initial+ (time-2) xfrequency,1l,’last’);

245 index2=find (timesteps (1, :)<=...

246 JDAY_initial+ (time-1) xfrequency,1,’last’);

247 gl=turb_discharges (:,indexl); $flowrates at beginning of timestep
248 if indexl==index2

249 turbout=turbout+gl*frequency*24x60+60;

250 else

251 turbout=turbout+gl* (timesteps (1, index1+1) - (JDAY_initial+...
252 (time-2) »frequency) ) *24x60x60;

253 for ii=indexl+1l:index2-1

254 gl=turb_discharges (:,1i1i);

255 turbout=turbout+gl* (timesteps(1l,1ii+1l)-timesteps(1,ii))*...
256 24%60%60;

257 end

258 gl=turb_discharges (:, index2) ;

259 turbout=turbout+glx ( (JDAY_initial+ (time-1)«frequency)-...
260 timesteps (1,index2)) *24%60%60;

261 end

262 elseif isequal (char (Q.interpolation(3,b)),’ ON’")

263 indexl=find (timesteps (1, :)<=...

264 JDAY_initial+ (time-2)*frequency,1,’last’);

265 index2=find (timesteps (1, :)<=...

266 JDAY_initial+ (time-1)+frequency,1,’last’);

267 gl=interpl (timesteps’, turb_discharges’,JDAY_initial+ (time-2)*...
268 frequency) ;

269 $if JDAY_initial+ (time-2)«frequency=timesteps(l), interpl outputs nan
270 gl (isnan(gl))=turb_discharges (isnan(qgl),1);

271 if indexl==index2

272 g2=interpl (timesteps’, turb_discharges’, ...

273 JDAY_initial+ (time-1) xfrequency) ;

274 turbout=turbout+.5* (ql+g2) * ( (JDAY_initial+ (time—-1) ...

275 frequency) - (JDAY_initial+ (time-2) xfrequency) ) «24x60%60;
276 else

277 g2=turb_discharges (:,index1+1)’;

278 turbout=turbout+.5% (ql+g2) * (timesteps (1, index1+1)—-...

279 (JDAY_initial+ (time-2) xfrequency) ) *24x60%60;

280 for ii=indexl+2:index2

281 gl=qg2; %start flowrate is equal to previous end flowrate
282 g2=turb_discharges (:,1i);

283 turbout=turbout+.5* (ql+g2) * (timesteps (1,ii)—-...

284 timesteps (1l,1i-1))*24x60%60;
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end

ql=q2;

g2=interpl (timesteps’, turb_discharges’,JDAY_initial+...
(time-1) «frequency) ;

if Tany(isnan(g2)) %may have some rounding issues, causing it to go
— past JDAY_end?
turbout=turbout+.5% (gl+g2) = ( (JDAY_initial+ (time-1)*...

frequency) -timesteps (1, index2)) «24x60%x60;
end
end
end

$Spill outflow from spill_discharges

if "isempty(spill_discharges)
gql=[1; az2=I[1;
timesteps=[JDAY_initial:frequency:JDAY_end];
$find spill interpolation setting (b)
[a,b]=find (strcmp (Q.interpolation,’ocutflow_spill’));
if isequal (char (Q.interpolation(3,b)),  OFF")

indexl=find (timesteps (1, :)<=...

JDAY_initial+(time-2) xfrequency,1l,’last’);
index2=find (timesteps (1, :)<=...

JDAY_initial+(time-1) xfrequency,1l,’last’);
gl=spill_discharges(:,indexl); %$flowrates at beginning of timestep
if indexl==index2

spillout=spillout+gl*xfrequency*24x60%60;
else

spillout=spillout+gl+ (timesteps (1l,index1+1)—- (JDAY_initial+...

(time-2) rfrequency) ) »24x60%60;
for ii=indexl+l:index2-1
gl=spill_discharges(:,1ii);
spillout=spillout+gl« (timesteps (l,ii+l)-timesteps(l,ii))*...
24%60%60;

end

gl=spill_discharges (:,index2);

spillout=spillout+qglx ((JDAY_initial+ (time-1)+frequency)-...

timesteps (1, index2)) x24x60%60;
end
elseif isequal (char(Q.interpolation(3,b)),’ ON")
indexl=find (timesteps (1, :)<=...

JDAY_initial+(time-2) xfrequency,1l,’last’);
index2=find (timesteps (1, :)<=...

JDAY_initial+ (time-1) xfrequency,1l,’last’);
gl=interpl (timesteps’,spill_discharges’,JDAY_initial+(time-2)*...

frequency) ;
gl (isnan(gl))=spill_discharges(isnan(gl),1);
if indexl==index2

g2=interpl (timesteps’,spill_discharges’,JDAY_initial+(time-1)~*...

frequency) ;
spillout=spillout+.5% (gl+g2) * ((JDAY_initial+ (time-1)=*...
frequency) - (JDAY_initial+ (time-2) xfrequency) ) *x24x60%60;
else
g2=spill_discharges(:,index1+1)’;
spillout=spillout+.5% (gl+g2) * (timesteps (1, indexl+1)—...
(JDAY_initial+ (time-2)xfrequency) ) *24%x60%60;
for ii=index1+2:index2
gl=g2; %start flowrate is equal to previous end flowrate
g2=spill_discharges(:,1ii);
spillout=spillout+.5% (gl+g2) « (timesteps(1l,ii)—...
timesteps(1l,1ii-1))*24x60x60;

end

ql=q2;

g2=interpl (timesteps’,spill_discharges’,JDAY_initial+...

(time-1) xfrequency) ;

179




348
349
350
351
352
353
354
355
356
357
358
359

360
361
362
363

O 001NN A~ W —

35

36

37

$may have some rounding issues, causing it to go past JDAY_end?
if Tany(isnan(qg2))
spillout=spillout+.5* (ql+g2) * ( (JDAY_initial+ (time-1)=*...
frequency)-timesteps (1, index2) ) *x24x60%60;

end
end
end
end
deltav (time-1, :)=volin-volout-turbout-spillout+volin_BR1l’;
Storage (time, :)=Storage (time-1, :)+deltav (time-1,:);
%$If too full and overtops SE curve (or drains and empties), linearly

— extrapolate
pred=interpl (Q.SE_meters_m3(:,2),Q.SE_meters_m3(:,1),...
Storage (time, :),’linear’,’extrap’);
Predictions (time, :)=pred;
end

ga_results_plotting_nobanding.m

%% plot_data

% L.info ('OPTIMIZATION’,'Generating plotting data in plot_data folder.’)
t_all=[start_date:frequency:start_datetdays_forward];
for wb=1l:size (CFG,2)

maxdelay=max ([WQ{wb}.DO_narx.inputDelays’; WQ{wb}.DO_narx.feedbackDelays’]);
data_start=frequencyx* (maxdelay-1);
figure ("units’,’'normalized’,’outerposition’, [0 O 1 1])
% Title
annotation (’textbox’, ...
[0.357741573033708 0.952787192414743 0.325808054820903
<~ 0.04102468877337557, ...
"String’, { [CFG{wb}.Name ’ Reservoir Optimization Results’]},...
"FontWeight’,’bold’, ...
"FontSize’,16, ...
"EdgeColor’, [0.941176470588235 0.941176470588235 0.941176470588235], ...
"HorizontalAlignment’,’center’);

o\
o\

Subplot 1: Turbine discharge patterns as active units

subplot (12,2, [1 3 51])

Axl=plot (tprev_ic,xprev_ic{wb}, k", ...
t_all(l:1+day=* (1/frequency)), [xprev_ic{wb} (end) x0_all (wb,l:day* (1/frequency)

—)],'b", ...

t_all(l:1+day=* (1/frequency)), [xprev_ic{wb} (end) x_final{wb}],’:r’,...
'LineWidth’, 2);

xlabel ("Julian Day’); xlim([t_all(l)-data_start t_all(l+day*24)]);

set (gca,’YTick’,0:1:no_of_units{wb});

ylabel ("Active turbine units’)

title(’'Active Turbine Units’)

y1lim ([0 max ([xprev_ic{wb} (end) x0_all (wb,1l:day= (1l/frequency)) x_final{wb}])])

ylims=get (gca,’ylim’); xlims=get (gca,’xlim’); xrange=xlims (2)-xlims(l); yrange=
— ylims (2)-ylims (1) ;

text (x1ims (1) +0.025«xrange,ylims (1) +0.9xyrange,’ (a)’,’ FontSize’,12);

%% Subplot 2: Turbine discharge patterns as flowrate
turb_discharges_x0{wb}=interpl (Qprojected{wb}.Q0OT_BR1_T(:,1),Qprojected{wb}.
— QOT_BR1_T(:,2),t_all(l:1+day*(1/frequency)));
turb_discharges{wb}=interpl (Q{wb}.QOT_BR1_T(:,1),Q{wb}.Q0OT_BR1_T(:,2),t_all(l:1+
— day=* (1/frequency)));
turb_discharges_prev{wb}=interpl (Q{wb}.QOT_BR1_T(:,1),Q{wb}.Q0T_BR1_T(:,2),
— tprev_ic);
subplot (12,2, [9 11 131)
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Ax2=plot (tprev_ic, turb_discharges_prev{wb},’ k', ...
t_all(l:1+day=* (1/frequency)), [turb_discharges_prev{wb} (end)
— turb_discharges_x0{wb} (2:end)],’'b’, ...
t_all(l:1+day=* (1/frequency)), [turb_discharges_prev{wb} (end) turb_discharges/{
— wb}(2:end)],’:r’,’Linewidth’,2);
xlabel (" Julian Day’); xlim([t_all(l)-data_start t_all(l+day* (1/frequency))]);
ylabel (' Turbine discharge, cms’)
title (' Turbine Discharges’)
ylims=get (gca,’ylim’); xlims=get (gca,’xlim’); xrange=xlims (2)-xlims(l); yrange=
— ylims (2)-ylims (1) ;
text (x1ims (1) +0.025«xrange,ylims (1) +0.9xyrange,’ (b)’,’FontSize’,12);

%% Subplot 3: Spill discharge patterns as flowrate
spill_discharges_x0{wb}=interpl (Qprojected{wb}.QO0T_BR1_S(:,1),Qprojected{wb}.
— QOT_BR1_S(:,2),t_all(l:1+day*(1/frequency)));
spill_discharges{wb}=interpl (Q{wb}.QO0T_BR1_S(:,1),Q{wb}.Q0T_BR1_S(:,2),t_all
— (l:14+day* (1/frequency)));
spill_discharges_prev{wb}=interpl (Qprojected{wb}.QOT_BR1_S(:,1l),Qprojected{wb}.
~— QOT_BR1_S(:,2),tprev_ic);
subplot (12,2, [17 19 211])
Ax2=plot (tprev_ic,spill_discharges_prev{wb},’ k’, ...
t_all(l:1+day=*(1/frequency)), [spill_discharges_prev{wb} (end)
— spill_discharges_x0{wb} (2:end)],’'b’, ...
t_all(l:1+day=*(1/frequency)), [spill_discharges_prev{wb} (end) spill_discharges
— {wb} (2:end)],’ :r’, " LineWidth’, 2);
xlabel (" Julian Day’); xlim([t_all(l)-data_start t_all(l+day* (1/frequency))]);
ylabel (' Spill discharge, cms’)
title(’Spill Discharges’)
if all([spill_discharges_prev{wb} (end) spill_discharges_x0{wb} spill_discharges{
— wb}]==0)
ylim ([0 17)
end
ylims=get (gca,’ylim’); xlims=get (gca,’xlim’); xrange=xlims (2)-xlims(1l); yrange=
— ylims (2)-ylims (1) ;
text (xlims (1) +0.025xxrange, ylims (1) +0.9xyrange,’ (c)’,’FontSize’,12);

%% Subplot 4: Headwater elevations
[T, ,HWs_x0{wb}, 7, "]=activeunits_to_discharges (x0_all (wb,1l:dayx (1/frequency)),
— t_all(l:1+day* (1/frequency)), ...
frequency, Qprojected{wb},ic_elev_first{wb}, ...
turbine_discharge{wb}, [1,[1,1[]);
HWs_prev{wb}=interpl (Q{wb}.ELWS(:,1),Q{wb}.ELWS(:,2),tprev_ic);
HWs{wb}=interpl (Q{wb}.ELWS(:,1),Q{wb}.ELWS(:,2),t_all(l:1+day* (1/frequency)));
subplot (12,2, [2 4 6])
Ax3=plot (tprev_ic, HWs_prev{wb},’ k’, ...
t_all(l:1+day=* (1/frequency)),HWs_x0{wb}, 'b’, ...
t_all(l:1+day=* (1/frequency)),HWs{wb},’ :r’,’LineWidth’,2);
hold on;
h5=plot ([t_all(1l) t_all(l+day*(1/frequency))], ...
[ELWS_limit{wb} (1) ELWS_limit{wb} (1)1,” :k’, ...
’LineWidth’,1.5);
plot ([t_all(1l) t_all(l+dayx(l/frequency))]l,...
[ELWS_limit{wb} (2) ELWS_limit{wb}(2)1,”:k’, ...
"LineWidth’,1.5)
h6=scatter (ELWS_targets{wb} (:,1),ELWS_targets{wb} (:,2));
hold off;
xlabel (" Julian Day’); xlim([t_all(l)-data_start t_all (l+day* (1/frequency))]);
ylabel ("Elevation, m’)
title (' Headwater Elevation’)
ylims=get (gca,’ylim’); xlims=get (gca,’xlim’); xrange=xlims (2)-xlims(l); yrange=
— ylims (2)-ylims (1) ;
text (xlims (1) +0.025xxrange,ylims (1) +0.9xyrange,’ (d)’,’FontSize’,12);

%% Subplot 5: Discharge DO
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DO_pred_x0{wb}=interpl (Qprojected{wb}.CWO (Qprojected{wb}.CWO(:,2) "=0,1),

— Qprojected{wb}.CWO (Qprojected{wb}.CWO(:,2) "=0,2),t_all(2:1+day*(1/

— frequency)));
DO_pred{wb}=interpl (Q{wb}.CWO(:,1),Q{wb}.CWO(:,2),t_all(2:1+day* (1/frequency)));
flowout_x0=turb_discharges_x0{wb} (2:end)+spill_discharges_x0{wb} (2:end);
flowout=turb_discharges{wb} (2:end)+spill_discharges{wb} (2:end);

DO_pred_x0{wb} (flowout_x0==0)=nan; DO_pred{wb} (flowout==0)=nan;
Output_noOs{wb}=interpl (Qprojected{wb}.CWO (find (Qprojected{wb}.CWO(:,2) "=0),1)
— ...

Qprojected{wb}.CWO (find (Qprojected{wb}.CWO(:,2) " =0),2), ...
[t_all(l)-data_start:frequency:t_all(l)])’;
if interpl (Qprojected{wb}.QO0T_BR1_T(:,1),Qprojected{wb}.Q0T_BR1_T(:,2),...
tprev_ic (end))==0 &
interpl (Qprojected{wb}.QOT_BR1_S(:,1),Qprojected{wb}.Q0OT_BR1_S(:,2),...
tprev_ic(end))==
DOinitcon{wb}=nan;

else
DOinitcon{wb}=0Output_noOs{wb} (end) ;

end

Outputprev{wb}=interpl ([t_all(l)-data_start:frequency:t_all(1l)],Output_noOs{wb
— ...

tprev_ic);
j=find (interpl (Qprojected{wb}.QOT_BR1_T(:,1),Qprojected{wb}.Q0OT_BR1_T(:,2),...

tprev_ic)==0 &
interpl (Qprojected{wb}.QOT_BR1_S(:,1),Qprojected{wb}.Q0T_BR1_S(:,2),...
tprev_ic)==0);

Outputprev{wb} (j)=nan; clearvars J
subplot (12,2, [10 12 147)
hl=plot (tprev_ic, Outputprev{wb},’k’,’ LineWidth’,2);
hold on;
h2=plot (t_all (l:1+day* (1/frequency)), [DOinitcon{wb} DO_pred_x0{wb}],’b’,’
— LinewWidth’,2);
h3=plot (t_all (l:1+day* (1/frequency)), [DOinitcon{wb} DO_pred{wb}],’ :r’,’LineWidth

— ",2);
index="isnan (W2validation{wb}.DO(:,2)); index2=isnan([DOinitcon{wb} DO_pred{wb
— 1)

$Remove rows with zeros (no discharge)
W2_noOs=W2validation{wb}.DO (index, :);
%$Smooth data
W2_noOs_smooth (:,1)=W2_no0s(:,1); W2_noOs_smooth(:,2)=smooth (W2_nol0s(:,1),
— W2_noOs(:,2),1);
W2_noOs_smooth2 (:,1)=t_all(l:1+day* (1/frequency))’;
W2_noOs_smooth2(:,2)=interpl (W2_noOs_smooth(:,1),W2_noOs_smooth(:,2),t_all(l:1+
— day=* (1/frequency))’);
W2_noOs_smooth2 (index2, 2) =nan;
h7=plot ([t_all(l); W2_noOs_smooth2 (W2_noOs_smooth2(:,1)>t_all(1l),1)],...
[DOinitcon{wb}; W2_noOs_smooth2 (W2_noOs_smooth2(:,1)>t_all(l),2)1,’g’,’
— LinewWidth’, 2);
if “isnan (WQ{wb}.DO_limit (1))
hS5=plot ([t_all(l) t_all(l+dayx (1l/frequency))], [WQ{wb}.DO_limit (1) WQ{wb}.
— DO_limit (1)],’ k", ...
"LineWidth’,1.5);
elseif "isnan(WQ{wb}.DO_limit (2))
plot ([t_all(l) t_all(l+dayx(l/frequency))], [WQ{wb}.DO_limit (2) WQ{wb}.
— DO_limit (2)1,’ k", ...
"LineWidth’,1.5);
end
xlabel (" Julian Day’); xlim([t_all(l)-data_start t_all(l+day* (1/frequency))]);
ylabel (DO, mg/L’);
ylim([min ([min (W2_noOs_smooth2 (W2_noOs_smooth2(:,1)>t_all(l),2)) min(DO_pred{wb
— }) min(DO_pred_x0{wb}) Output_noOs{wb}’ WQ{wb}.DO_limit (1) WQ{wb}.
— DO_limit (2)]1)-.25...
max ([max (W2_no0Os_smooth2 (W2_noOs_smooth2(:,1)>t_all(l),2)) max (DO_pred{wb})
— max (DO_pred_x0{wb}) Output_noOs{wb}’ WQ{wb}.DO_limit (1) WQ{wb}.
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— DO_limit (2)1)+.25]1);
title(’Discharge DO Predictions’)
ylims=get (gca,’ylim’); xlims=get (gca,’xlim’); xrange=xlims(2)-xlims(1l); yrange=
— ylims (2)-ylims (1) ;
text (xlims (1) +0.025xxrange,ylims (1) +0.9xyrange,’ (e)’,’FontSize’,12);
AME {wb} .DO=nanmean (abs (W2_no0s_smooth2 (W2_no0s_smooth2 (:,1)>t_all(l),2)-DO_pred{
— wb}’"));
str=["AME = ', sprintf (’%5.3f’,AME{wb}.DO), ' mg/L’];
text (x1lims (1) +0.025xxrange,ylims (1) +0.1lxyrange, str,’FontSize’,12);
%$Compute WQ average slack using W2 results
slack_compute=W2_no0Os_smooth2 (W2_noOs_smooth2(:,1)>t_all(l),2);
non_nan_count=sum(~isnan (slack_compute),1l);
if "isnan (WQ{wb}.DO_limit (1))
slacks{wb}.DO.W2=sum(-min (0, slack_compute-WQ{wb}.DO_limit (1)),1)./
— non_nan_count;
elseif “isnan (WQ{wb}.DO_limit (2))
slacks{wb}.DO.W2=sum(-min (0, slack_compute-WQ{wb}.DO_limit (2)),1)./
~— non_nan_count;
else
slacks{wb}.DO.W2=0;
end
clearvars W2_no0Os_smooth index index2 W2_no0Os str slack_compute non_nan_count
%% Subplot 5: Discharge Temp
Temp_pred_x0{wb}=interpl (Qprojected{wb}.TWO (Qprojected{wb}.TWO(:,2) "=0,1),
— Qprojected{wb}.TWO (Qprojected{wb}.TWO (:,2) "=0,2),t_all(2:1+day= (1/
— frequency)));
Temp_pred{wb}=interpl (Q{wb}.TWO(:,1),Q{wb}.TWO(:,2),t_all(2:1+day* (1/frequency))
— )
Temp_pred_x0{wb} (flowout_x0==0)=nan; Temp_pred{wb} (flowout==0)=nan;
clearvars flowout_x0
Output_noOs{wb}=interpl (Qprojected{wb}.TWO (find (Qprojected{wb}.TWO(:,2) "=0),1)
— ...
Qprojected{wb}.TWO (find (Qprojected{wb}.TWO(:,2) "=0),2), ...
[t_all(l)-data_start:frequency:t_all(l)])’;
if interpl (Qprojected{wb}.QOT_BR1 _T(:,1),Qprojected{wb}.Q0T_BR1_T(:,2),...
tprev_ic(end))==0 &
interpl (Qprojected{wb}.QOT_BR1_S(:,1),Qprojected{wb}.Q0T_BR1_S(:,2),...
tprev_ic (end))==0
Tempinitcon{wb}=nan;

else
Tempinitcon{wb}=0Output_noOs{wb} (end) ;
end
Outputprev{wb}=interpl ([t_all (1) -data_start:frequency:t_all(l)],Output_noOs{wb
— }, ...

tprev_ic);

j=find (interpl (Qprojected{wb}.QO0T_BR1_T(:,1),Qprojected{wb}.Q0T_BR1_T(:,2),...
tprev_ic)==0 &
interpl (Qprojected{wb}.QOT_BR1_S(:,1),Qprojected{wb}.Q0T_BR1_S(:,2),...
tprev_ic)==0);

Outputprev{wb} (j)=nan; clearvars j

subplot (12,2, [18 20 221])

hl=plot (tprev_ic, Outputprev{wb},’k’,’ LineWidth’,2);

hold on;

h2=plot (t_all(l:1+day* (1/frequency)), [Tempinitcon{wb} Temp_pred_x0{wb}],’b’,’
— LineWidth’, 2);

h3=plot (t_all (l:1+day* (1/frequency)), [Tempinitcon{wb} Temp_pred{wb}],’:r’,’
< LineWidth’,2);

index="isnan (W2validation{wb}.T (:,2)); index2=isnan([Tempinitcon{wb} Temp_pred{
— wb}]);

$Remove rows with zeros (no discharge)

W2_noOs=W2validation{wb}.T (index, :);

%$Smooth data

W2_noOs_smooth(:,1)=W2_no0s(:,1); W2_noOs_smooth(:,2)=smooth (W2_no0s(:,1),
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— W2_noOs(:,2),1);
W2_noOs_smooth2 (:,1)=t_all(l:1+day* (1/frequency))’;
W2_noOs_smooth2 (:,2)=interpl (W2_noOs_smooth(:,1),W2_noOs_smooth(:,2),t_all(l:1+
— day=* (1/frequency))’);
W2_noOs_smooth2 (index2, 2) =nan;
h7=plot ([t_all(l); W2_noOs_smooth2 (W2_noOs_smooth2(:,1)>t_all(l),1)], .
[Tempinitcon{wb}; W2_noOs_smooth2 (W2_noOs_smooth2 (:,1)>t_all(l),2)],'g",’
— LineWidth’, 2);
if "isnan (WQ{wb}.Temp_limit (1))
h5=plot ([t_all(l) t_all(l+dayx(1/frequency))], [WQ{wb}.Temp_limit (1) WQ{wb}.
— Temp_limit (1)],":k",...
"LineWidth’,1.5);
elseif "isnan(WQ{wb}.Temp_limit (2))
h5=plot ([t_all(l) t_all(l+dayx(1/frequency))], [WQ{wb}.Temp_limit (2) WQ{wb}.
— Temp_limit (2)]," k", ...
"LineWidth’,1.5);
end
xlabel (" Julian Day’); xlim([t_all(l)-data_start t_all(l+day* (1/frequency))]);
ylabel (' Temperature, C’);
ylim([min ([min (W2_noOs_smooth2 (W2_noOs_smooth2 (:,1)>t_all(l),2)) min(Temp_pred{
— wb}) min(Temp_pred_x0{wb}) Output_noOs{wb}’ WQ{wb}.Temp_limit (1) WQ{wb}.
— Temp_limit (2)])-.25...
max ([max (W2_no0Os_smooth2 (W2_noOs_smooth2(:,1)>t_all(l),2)) max(Temp_pred{wb})
— max (Temp_pred_x0{wb}) Output_noOs{wb}’ WQ{wb}.Temp_limit (1) WQ{wb}.
— Temp_limit (2)])+.2571);
title(’Discharge Temperature Predictions’)
ylims=get (gca,’ylim’); xlims=get (gca,’xlim’); xrange=xlims(2)-xlims(1l); yrange=
— ylims (2)-ylims (1) ;
text (x1ims (1) +0.025«xrange,ylims (1) +0.9xyrange,’ (f)’,’FontSize’,12);
AME {wb} .T=nanmean (abs (W2_no0Os_smooth2 (W2_no0s_smooth2(:,1)>t_all(l),2)-Temp_pred
— {wb}"));
str=["AME = ', sprintf(’%5.3f’,AME{wb}.T), " C’'];
text (x1ims (1) +0.025«xrange,ylims (1) +0.1lxyrange, str,’FontSize’,12);
$Compute WQ average slack using W2 results
slack_compute=W2_no0Os_smooth2 (W2_noOs_smooth2(:,1)>t_all(l),2);
non_nan_count=sum(~isnan (slack_compute),1);
if "isnan (WQ{wb}.Temp_limit (1))
slacks{wb}.T.W2=sum(-min (0, slack_compute-WQ{wb}.Temp_limit (1)),1)./
— non_nan_count;
elseif “isnan (WQ{wb}.Temp_limit (2))
slacks{wb}.T.W2=sum(-min (0, slack_compute-WQ{wb}.Temp_limit (2)),1)./
— non_nan_count;
else
slacks{wb}.T.W2=0;
end
clearvars W2_no0Os_smooth W2_noOs_smooth2 index index2 W2_noOs flowout str
— slack_compute non_nan_count

legendl=legend([hl h2 h3 h7 h5 h6],’Past Values’, ...
"Projected Operations’, ...
’Optimal Solution’, ...
"W2 Validation at Optimal Solution’, ...
’Constraint Bounds’, ...
"Target Elevations’);
set (legendl, ...
"Position’, [0.39086885358981 0.0131729985010991 0.256670797003518
— 0.11936777525015271, ...
"FontSize’,10);

end

int_mutation.m
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function mutationChildren = int_mutation (parents,options, GenomelLength,
FitnessFcn, state,thisScore, thisPopulation)

% Mutation function to generate childrens satisfying the range and integer
% constraints on decision variables.

shrink = .01;
scale = 1;
scale = scale - shrink = scale » state.Generation/options.Generations;
range = options.PopInitRange;
lower = range(l,:);
upper = range(2,:);
scale = scale x (upper - lower);
mutationPop = length (parents);
% The use of ROUND function will make sure that childrens are integers.
mutationChildren = repmat (lower,mutationPop,l) +
round (repmat (scale, mutationPop,l) .x rand(mutationPop,GenomelLength));

)

% End of mutation function

int_pop.m

function Population = int_pop (GenomeLength,FitnessFcn, options)

totalpopulation = sum(options.PopulationSize);

range = options.PopInitRange;

lower= range (1, :);

span = range(2,:) - lower;

% The use of ROUND function will make sure that individuals are integers.
Population = repmat (lower,totalpopulation,l) +

round (repmat (span, totalpopulation, 1) .*x...
rand (totalpopulation, GenomeLength)) ;
% End of creation function

narx_predictions.m

function pred=narx_predictions (NARX_model, frequency,t,Q,x, ...
turb_discharges, spill_discharges,mainstem_inflows, previous_Output, flag)

o\

Calculates WQ predictions using a trained family of NARX models

o\

% Inputs:

% NARX model - structure containing everything needed to make WQ
% discharge predictions, including:

% turb_colum - column in exogenous variables with turb flows

% spill_column - column in exogenous variables with spill flows

% inputDelays - delays for exogenous inputs

% feedbackDelays - delays for prediction feedbacks

% input_variables - 2 row cell containing variable names in first

o°

row and column number in second. For example, "MET_WBL1’
contains multiple columns of data but only some may be used
for NARX predictions

oe

o\

% bias - bias for each trained neural network
% weights - weights for each trained neural network (sum to 1)
% narx_net_closed - neural networks

o\

frequency - frequency of predictions (hourly=1/24)

t time series of JDAY values

Q - all other inflows and outflows, interpolation settings,
storage-elev curve, and tailwater curve

x — hourly turbine time series (as rows for vectorizing!), integers
between 0 and no_of_ units

turb_discharges - matrix the same size as x that includes the turbine
discharge flowrates over the time t

o ol° o° o° o o

o\

185




% spill_discharges - spill discharge flowrates

% mainstem_inflows - structure containing Q, T, and DO with time series
% data from previous days’ optimal solution

% previous_Output - the time series of previous outputs of the

o\

constituent being predicted by NARX model

flag - ’'do’ if predicting DO, to check to make sure not <0
Outputs:

pred vector of NARX model predictions for water quality, with NaN
values anywhere turb+spill=0

o\° o° oo

o°

if isempty (mainstem_inflows)
mainstem_inflows.Q=[];
mainstem_inflows.T=[];
mainstem_inflows.DO=[];

end

if exist ('mainstem_inflows’, ’var’) && isfield(mainstem_inflows, 'Q’)
if isempty (mainstem_inflows.Q) mainstem_inflows.Q=[]; end

else
mainstem_inflows.Q=[1];

end

if exist ('mainstem_inflows’, ’'var’) && isfield(mainstem_inflows, ’"T')
if isempty (mainstem_inflows.T) mainstem_inflows.T=[]; end

else
mainstem_inflows.T=[];

end

if exist ('mainstem_inflows’, ’'var’) && isfield(mainstem_inflows, ’'DO’)
if isempty(mainstem_inflows.DO) mainstem_inflows.DO=[]; end

else
mainstem_inflows.DO=[];

end

maxdelay=max ( [NARX_model.inputDelays’; NARX_ model.feedbackDelays’]);
data_start=frequencyx (maxdelay-1);
timesteps=[t (l)-data_start:frequency:t];
Output_noOs=interpl (previous_Output (find (previous_Output (:,2) "=0),1), ...
previous_Output (find (previous_Output (:,2) "=0),2),timesteps)’;
clearvars timesteps
yl=con2seqg([Output_noOs’ nan(l,size(x,2))1);
timesteps2=[t (1) -data_start:frequency:t t(2:end)];
Inputs=nan(size (timesteps2,2),size (NARX_model.input_variables,2));
index_QIN_BR1=[]; index_TIN_BR1=[]; index_CIN_BR1=[];
for i=1l:size (NARX_model.input_variables, 2)
$If mainstem_inflows are provided and the variable is BR1 Q, T, or DO
if "isempty (mainstem_inflows.Q) &
isequal (NARX_model.input_variables{1l,1i},’ QIN_BR1")
index_QIN_BR1=1i;
end
if "isempty (mainstem_inflows.T) &
isequal (NARX_model.input_variables{1l,1i},’ TIN_BR1")
index_TIN_BR1=i;
end
if "isempty (mainstem_inflows.DO) &
isequal (NARX_model.input_variables{1l,1i},’CIN_BR1’")
index_CIN_BR1=1i;
end
Inputs(:,1i)=interpl (Q. (sprintf (NARX _model.input_variables{1l,i})) (:,1),...
Q. (sprintf (NARX_model.input_variables{1l,1i})) (:,NARX model.input_variables
— {2,1}+1), ...
timesteps2);
end
clearvars 1 timesteps2
pred=nan(size(x,1),size(x,2));
for i=l:size(x,1) %attempt to vectorize this part later
%$Update mainstem_inflows, i1f necessary
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if "isempty (index_QIN_BR1)

Inputs (size (Inputs,l)-size (mainstem_inflows.Q,2)+1:...
size (Inputs,l),index_QIN_BR1l)=mainstem_inflows.Q (i, :)’;
end

if "isempty (index_TIN_BR1)

Inputs (size (Inputs,l)-size (mainstem_inflows.T,2)+1:...
size (Inputs,l),index_TIN_BR1l)=mainstem_inflows.T(i,:)’;
end

if "isempty (index_CIN_BR1)

Inputs (size (Inputs,l)-size (mainstem_inflows.DO,2)+1:...
size (Inputs,l),index_CIN_BR1l)=mainstem_inflows.DO(i,:)’;
end

$Update turbine outflow and spill outflow columns, if necessary

if "isempty (turb_discharges)

Inputs (size (Inputs,1l)-size (turb_discharges,2)+...
l:size (Inputs,1l),NARX model.turb_column)=...
turb_discharges (i, :)’;
end
if "isempty (spill_discharges)
Inputs(size (Inputs,1l)-size (turb_discharges,2)+...
l:size(Inputs,1l),NARX_model.spill_column)=...
spill_discharges (i) ;
end
ul = con2seqg(Inputs’);
if size (NARX_model.narx_net_closed,2)==
if iscell (NARX_model.narx_net_closed)
[pl,Pil,Ail,tl]=preparets (NARX_model.narx_net_closed{:},ul, {},vyl);
ypl (1, :)=NARX_model.narx_net_closed{:} (pl,Pil,Ail);

else
[pl,Pil,Ail,tl]=preparets (NARX_model.narx_net_closed,ul,{},vyl);
ypl (1, :)=NARX_model.narx_net_closed(pl,Pil,Ail);

end

else
for j=l:size (NARX_model.narx_net_closed, 2)

[pl,Pil,Ail,tl]=preparets (NARX_model.narx_net_closed{]j},ul, {},yl);
ypl (Jj, :)=NARX_model.narx_net_closed{j} (pl,Pil,Ail);
end

end

ypl=cell2mat (ypl) ;

if size (NARX_model.weights,1)==
ypl=ypl-NARX model.bias;
pred(i, :)=ypl;

else
ypl=bsxfun (@minus, ypl, NARX_model.bias);
pred (i, :)=sum(bsxfun (@times, NARX _model.weights,ypl));

end

clearvars ypl

end
clearvars 1 j
if strcmp(flag,’do’)
pred=max (0,pred); %can’t have negative concentrations of DO
end
for i=l:size(x,1)

=01

if "isempty(spill_discharges)
if all(spill_discharges (i)==0)

J=find (x (i, :)==0);
else
if size(spill_discharges(i,:),2)==1 %$if solving subproblem
j=[1;
else

j=find (turb_discharges (i, 2:end)==0 & spill_discharges (i,2:end)==0);
— %if solving final solution over all subproblems
end
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end
else
Jj=find(x (i, :)==0 & interpl (Q.QOT_BR1_S(:,1),Q.Q00T_BR1_S(:,2),t(2:end))
— ==0);
end
pred (i, j)=nan;

end
clearvars 1 j

NARX _retrain.m

$Retrain temperature and DO NARX models for wb

$For each iteration, add the new W2 validation run data to the training data set
<~ , and then retrain. This means the training set grows with each iteration
— .

%% DO validation run
timesteps=[t_all(1l)-max (WQ{wb}.DO_narx.inputDelays)/24:(1/24):t_all(end)]’;
vars=WQ{wb}.DO_narx.input_variables;
Inputs{wb}.discharge_DO{iter}=[]; count=0;
for i=l:size(vars,2)
count=count+1;
if strfind(char(vars(l,i)),’TIN")
flow_variable=strrep (char(vars(l,1i)),’TIN’,’QIN");
elseif strfind(char(vars(l,i)),’CIN")
flow_variable=strrep (char (vars(l,i)),’CIN’," QIN");
elseif strfind(char(vars(l,i)),’TTR")
flow_variable=strrep (char(vars(l,1i)),’TTR’,’QTIR");
elseif strfind(char(vars(l,i)),’CTR")
flow_variable=strrep (char (vars(l,i)),’CTR’,"QTR");

else
flow_variable=char (vars(1l,1));
end
if "strcmp (char(vars(l,i)),’MET_WB1l’) %assume interpolation for MET data

for ii=1l:size(Q{wb}.interpolation, 2)
if strcmp (char (Q{wb}.interpolation(l,ii)), flow_variable)
break
end
end
if strcmp (char (Q{wb}.interpolation(3,1ii)),’ ON")
Inputs{wb}.discharge_DO{iter} (:,i)=interpl (Q{wb}. (vars{1l,i}) (:,1),...
Q{wb}. (vars{l,i}) (:,vars{2,1i}+1l),timesteps);
elseif strcmp (char (Q{wb}.interpolation(3,1ii)),’OFF")
for iii=l:size(timesteps,1)

index=find (Q{wb}. (vars{l,1i}) (:,1)<=timesteps(ii),1,’last’);
Inputs{wb}.discharge_DO{iter} (iii,i)=Q{wb}. (vars{l,1i}) (index,vars{2,
— 1}+1);
end
end
else
Inputs{wb}.discharge_DO{iter} (:,i)=interpl (Q{wb}. (vars{l,i}) (:,1),...
Q{wb}. (vars{l,i}) (:,vars{2,i}+1),timesteps);
end

end
$Smooth output data (zeros already removed in W2validation)
Discharge.DO_noOs=W2validation{wb} .DO;
Discharge.DO_noOs_smooth(:,1)=Discharge.DO_noOs(:,1);
Discharge.DO_noOs_smooth (:,2)=smooth (Discharge.DO_noOs(:,1),Discharge.DO_no0s

= (:,2),1);
Output{wb}.discharge_DO{iter} (:,1)=interpl (Discharge.DO_noOs_smooth(:,1),

— Discharge.DO_noOs_smooth(:,2),timesteps);
%$Convert to cells
Inputs_seqg{wb}.discharge_DO{iterx2-1} = con2seq(Inputs{wb}.discharge_DO{iter}’);
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Output_seqg{wb}.discharge_DO{iter+2-1} = con2seq(Output{wb}.discharge_DO{iter}’);
clearvars 1 ii iii flow_variable

%% DO validation run with turb and spill flipped

[T,a]l= find(cellfun(@(s) “isempty(strfind(’QOT_BR1_T’, s)), vars)==1);

[T,b]= find(cellfun(@(s) “isempty(strfind(’QOT_BR1_S’, s)), vars)==1);

timesteps_flip=[t_all(1l):(1/24):t_all(end)]’;

Inputs{wb}.discharge_DO_flip{iter}=Inputs{wb}.discharge_DO{iter};

turb=Inputs{wb}.discharge_DO{iter} (:,a); spill=Inputs{wb}.discharge_DO{iter} (:,b
— )

Inputs{wb}.discharge_DO_flip{iter} (size(timesteps,l)-size(timesteps_flip,1)+1:
<~ end,a)=spill (size(timesteps,l)-size (timesteps_flip,1)+1l:end);

Inputs{wb}.discharge_DO_flip{iter} (size(timesteps,l)-size(timesteps_flip,1)+1:
— end,b)=turb(size (timesteps, 1) -size (timesteps_£flip,1l)+1l:end);

$Smooth output data (zeros already removed in W2validation)

Discharge.DO_noOs=W2validation_flip{wb}.DO;

Discharge.DO_noOs_smooth(:,1)=Discharge.DO_noOs(:,1);

Discharge.DO_noOs_smooth(:,2)=smooth (Discharge.DO_no0Os(:,1),Discharge.DO_no0s
— (:,2),1);

Output {wb}.discharge_DO_flip{iter} (:,1)=interpl (Discharge.DO_noOs_smooth(:,1),
— Discharge.DO_noOs_smooth(:,2),timesteps);

%$Convert to cells

Inputs_seqg{wb}.discharge_DO{iterx2} = conZ2seq(Inputs{wb}.discharge_DO_flip{iter

=}
Output_seqg{wb}.discharge_DO{iter+x2} = con2seq(Output{wb}.discharge_DO_flip{iter
— 1)

clearvars vars Discharge turb spill a b

o°

% DO training

Combine them all into single Input and Output cell arrays

Inputs_seq_mul{wb}.discharge_DO=catsamples (Inputs_seq{wb}.discharge_DO{:}, pad’)
—

Output_seq mul{wb}.discharge_DO=catsamples (Output_seqg{wb}.discharge_DO{:}, " pad’)

—

o\

%$Train DO model - start with best DO model from before (greatest weight)
fprintf ([’ Training 5 DO models and picking the best \n’])

for i=1:5
inputDelays = [0 1 12]; %[10:14]7
feedbackDelays = [1];
hiddenNeurons=[10];
narx_net{i} = narxnet (inputDelays, feedbackDelays,hiddenNeurons) ;
narx_net{i}.divideFcn = ’'dividerand’;

o

The property DIVIDEMODE set to TIMESTEP means that targets are divided
into training, validation and test sets according to timesteps.
For a list of data division modes type: help nntype_data_division_mode

o\

o\

narx_net{i}.divideMode = "time’; % Divide up every value
narx_net{i}.divideParam.trainRatio = 70/100;
narx_net{i}.divideParam.valRatio = 15/100;
narx_net{i}.divideParam.testRatio = 15/100;
narx_net{i}.trainParam.min_grad = le-10;
narx_net{i}.trainFcn = ’'trainlm’;

narx_net{i}.trainParam.showWindow=0;
narx_net{i}.trainParam.showCommandLine=1;
[Xs,Xi,Al, Ts]=preparets (narx_net{i}, Inputs_seq mul{wb}.discharge_DO, {},
Output_seq mul{wb}.discharge_DO);
[narx_net{i}, "]=train(narx_net{i},Xs,Ts,Xi,Ai, ' UseParallel’,’vyes’);
narx_net_closed{i} = closeloop(narx_net{i});
narx_net_closed{i}.trainParam.mu_max=1lel4;
[Xs,Xi,Ai, Ts]=preparets (narx_net_closed{i}, Inputs_seq _mul{wb}.discharge_DO
— ,{},
Output_seq mul{wb}.discharge_DO) ;
[narx_net_closed{i},tr{i}]l=train(narx_net_closed{i},Xs,Ts,Xi,Ai, ’UseParallel’
— ,'yes’);
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for i=1:5 tr2(i)=tr{i}.best_perf; end
[T, b]l=min(tr2); WQ{wb}.DO_narx.narx_net_closed=narx_net_closed{b};
ypl= WQ{wb}.DO_narx.narx_net_closed(Xs,Xi,Al);
$Calculate bias & standard dev using only predictions at test timepoints
bias=cell2mat (ypl (tr{b}.testInd))-cell2mat (Ts(tr{b}.testInd)); bias=nanmean (bias
— )
allerrors=(cell2mat (ypl (tr{b}.testInd))-bias)-cell2mat (Ts(tr{b}.testInd));
allerrors=allerrors(~“isnan(allerrors));
[T, sigmahat] = normfit (allerrors);
WQ{wb}.DO_narx.bias=bias;
WQ{wb}.DO_narx.weights=1;
WQO{wb}.DO_narx.inputDelays=inputDelays;
WQ{wb}.DO_narx.std_dev=sigmahat;
WQ{wb}.DO_narx.Inputs=Inputs{wb}.discharge_DO;
WQ{wb}.DO_narx.Output=0Output {wb}.discharge_DO;
if isfield(WQ{wb}.DO_narx,’train_time’)
WQ{wb}.DO_narx=rmfield (WQ{wb}.DO_narx, {'train_time’ });
end
if isfield (WQ{wb}.DO_narx,’Discharge_DO_no0Os’)
WQ{wb}.DO_narx=rmfield (WQ{wb}.DO_narx, {’Discharge_DO_noOs’});
end
clearvars b Xs Xi Ai Ts tr tr2 b ypl TS bias narx_net_closed narx_net muhat
<~ sigmahat

%% Temp validation run
timesteps=[t_all(l)-max (WQ{wb}.Temp_narx.inputDelays)/24:(1/24):t_all(end)]’;
vars=WQ{wb}.Temp_narx.input_variables;
Inputs{wb}.discharge_Temp{iter}=[1];
for i=l:size(vars,2)
if strfind(char(vars(l,i)),’ TIN")
flow_variable=strrep (char(vars(l,i)),’TIN’,’ QIN");
elseif strfind(char(vars(l,i)),’CIN")
flow_variable=strrep (char(vars(l,i)),’CIN’," QIN");
elseif strfind(char(vars(l,1i)),’TTR")
flow_variable=strrep (char(vars(l,i)),’TIR’,"QTR");
elseif strfind(char(vars(l,i)),’CTR")
flow_variable=strrep (char(vars(l,i)),’CTR’,"QTR");
else
flow_variable=char (vars(1l,1));
end
if "strcmp (char(vars(l,i)),’'MET_WB1l’) %assume interpolation for MET data
for ii=l:size(Q{wb}.interpolation, 2)
if strcmp (char (Q{wb}.interpolation(l,1ii)),flow_variable)
break
end
end
if strcmp (char (Q{wb}.interpolation(3,1ii)),’ON")
Inputs{wb}.discharge_Temp{iter} (:,i)=interpl (Q{wb}. (vars{1l,i}) (:,1), ...
Q{wb}. (vars{l,1i}) (:,vars{2,1i}+1),timesteps);
elseif strcmp (char (Q{wb}.interpolation(3,1ii)),’OFF")
for iii=l:size(timesteps, 1)
index=find (Q{wb}. (vars{l,1i}) (:,1)<=timesteps(ii),1,’last’);
Inputs{wb}.discharge_Temp{iter} (iii,i)=Q{wb}. (vars{l,1i}) (index,vars
— {2,1i}+1);

end
end
else
Inputs{wb}.discharge_Temp{iter} (:,i)=interpl (Q{wb}. (vars{l,i}) (:, 1), ...
Q{wb}. (vars{l,i}) (:,vars{2,i}+1l),timesteps);
end
end

%$Smooth output data (zeros already removed in W2validation)
Discharge.Temp_noOs=[W2validation{wb}.T(:,1) interpl (W2validation{wb}.T( isnan (

190




162

163
164

165

166
167

168

169
170
171
172
173
174
175
176

177

178

179
180

181

182
183

184

185
186

187

188
189
190
191
192

193

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

— W2validation{wb}.T(:,2)),1),...
W2validation{wb}.T ("isnan (W2validation{wb}.T(:,2)),2),W2validation{wb}.T(:,1)
— )1

Discharge.Temp_noOs_smooth (:,1)=Discharge.Temp_nols(:,1);
Discharge.Temp_noOs_smooth (:,2)=smooth (Discharge.Temp_noOs(:,1),Discharge.

— Temp_noOs(:,2),1);
Output{wb}.discharge_Temp{iter} (:,1)=interpl (Discharge.Temp_noOs_smooth(:,1),

< Discharge.Temp_noOs_smooth(:,2),timesteps);
$Convert to cells
Inputs_seqg{wb}.discharge_Temp{iterx2-1}

con2seq (Inputs{wb}.discharge_Temp{iter

— 1)
Output_seq{wb}.discharge_Temp{iter*2-1} = con2seq(Output{wb}.discharge_Temp{iter
= }");

clearvars 1 ii iii flow_variable

%% Temp validation run with turb and spill flipped
[T,al= find(cellfun(@(s) “isempty(strfind(’'QOT_BR1_T’, s)), vars)==1)
[T,b]= find(cellfun(@(s) “isempty(strfind(’QOT_BR1_S’, s)), vars)==1)
timesteps_flip=[t_all(1l):(1/24):t_all(end)]’;
Inputs{wb}.discharge_Temp_flip{iter}=Inputs{wb}.discharge_Temp{iter};
turb=Inputs{wb}.discharge_Temp{iter} (:,a); spill=Inputs{wb}.discharge_Temp{iter
— }(:,b);
Inputs{wb}.discharge_Temp_flip{iter} (size(timesteps,l)-size(timesteps_flip,1)+1:
— end,a)=spill (size (timesteps,l)-size (timesteps_flip,1)+1l:end);
Inputs{wb}.discharge_Temp_flip{iter} (size(timesteps,1l)-size(timesteps_flip,1)+1:
— end,b)=turb(size (timesteps,l) -size (timesteps_flip,1l)+1l:end);
$Smooth output data (zeros already removed in W2validation)
Discharge.Temp_noOs=[W2validation_flip{wb}.T(:,1) interpl (W2validation_flip{wb}.
— T("isnan (W2validation_flip{wb}.T(:,2)),1),...
W2validation_flip{wb}.T("isnan(W2validation_flip{wb}.T(:,2)),2),
— W2validation_flip{wb}.T(:,1))]1;
Discharge.Temp_noOs_smooth (:,1)=Discharge.Temp_nols(:,1);
Discharge.Temp_noOs_smooth (:,2)=smooth (Discharge.Temp_noOs(:,1),Discharge.
— Temp_noOs(:,2),1);
Output {wb}.discharge_Temp_flip{iter} (:,1)=interpl (Discharge.Temp_nols_smooth
<~ (:,1),Discharge.Temp_noOs_smooth(:,2),timesteps);
$Convert to cells
Inputs_seq{wb}.discharge_Temp{iterx2} = con2seq(Inputs{wb}.discharge_Temp_flip{
— iter}’);
Output_seqg{wb}.discharge_Temp{iter+x2} = con2seq(Output{wb}.discharge_Temp_flip{
— iter}’);
clearvars vars Discharge turb spill a b

’
’

o°

% Temp training

Combine them all into single Input and Output cell arrays

Inputs_seq_mul{wb}.discharge_Temp=catsamples (Inputs_seqg{wb}.discharge_Temp{:},’
— pad’);

Output_seqg mul{wb}.discharge_Temp=catsamples (Output_seqg{wb}.discharge_Temp{:},’
— pad’);

clearvars vars i Discharge

o\

%$Train temp model - start with best DO model from before (greatest weight)
fprintf ([’ Training 5 temperature models and picking the best \n’])
for i=1:5

inputDelays = [0 1 12]; %[10:14]7

feedbackDelays = [1];

hiddenNeurons=[101];

narx_net{i} = narxnet (inputDelays, feedbackDelays, hiddenNeurons) ;
narx_net{i}.divideFcn = ’"dividerand’;

o\

The property DIVIDEMODE set to TIMESTEP means that targets are divided
into training, validation and test sets according to timesteps.
For a list of data division modes type: help nntype_data_division_mode

narx_net{i}.divideMode = ’"time’; % Divide up every value
narx_net{i}.divideParam.trainRatio = 70/100;

o\

oe
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narx_net{i}.divideParam.valRatio = 15/100;
narx_net{i}.divideParam.testRatio = 15/100;
narx_net{i}.trainParam.min_grad = 1le-10;
narx_net{i}.trainFcn = "trainlm’;

narx_net{i}.trainParam.showWindow=0;
narx_net{i}.trainParam.showCommandLine=1;
[Xs,X1i,Ai, Ts]=preparets (narx_net{i}, Inputs_seq mul{wb}.discharge_Temp, {},
Output_seq mul{wb}.discharge_Temp) ;
[narx_net{i}, "]=train(narx_net{i},Xs,Ts,Xi,Ai, ' UseParallel’,’"yes’);
narx_net_closed{i} = closeloop (narx_net{i});
narx_net_closed{i}.trainParam.mu_max=1lel4;
[Xs,Xi,Al, Ts]=preparets (narx_net_closed{i}, Inputs_seq mul{wb}.discharge_Temp
%’{}I
Output_seq mul{wb}.discharge_Temp) ;
[narx_net_closed{i},tr{i}]l=train(narx_net_closed{i},Xs,Ts,Xi,Ai, ' UseParallel’
— ,’yes’);
end
for i=1:5 tr2(i)=tr{i}.best_perf; end
[T, b]l=min(tr2); WQ{wb}.Temp_narx.narx_net_closed=narx_net_closed{b};
ypl= WQ{wb}.Temp_narx.narx_net_closed(Xs,Xi,Ai);
%$Calculate bias & standard dev using only predictions at test timepoints
bias=cell2mat (ypl (tr{b}.testInd))-cell2mat (Ts(tr{b}.testInd)); bias=nanmean (bias
— )i
allerrors=(cell2mat (ypl (tr{b}.testInd))-bias)-cell2mat (Ts(tr{b}.testInd));
allerrors=allerrors(~“isnan(allerrors));
[7,sigmahat] = normfit (allerrors);
WQ{wb}.Temp_narx.bias=bias;
WO{wb}.Temp_narx.weights=1;
WQ{wb}.Temp_narx.inputDelays=inputDelays;
WQ{wb}.Temp_narx.std_dev=sigmahat;
WQ{wb}.Temp_narx.Inputs=Inputs{wb}.discharge_Temp;
WO{wb}.Temp_narx.Output=Output{wb}.discharge_Temp;
if isfield(WQ{wb}.Temp_narx,’train_time’)
WQ{wb}.Temp_narx=rmfield (WQ{wb}.Temp_narx, {’train_time’});
end
if isfield(WQ{wb}.Temp_narx,’Discharge_temp_nols’)
WQ{wb}.Temp_narx=rmfield (WQ{wb}.Temp_narx, {’Discharge_temp_no0s’});
end
clearvars b Xs Xi Ai Ts tr tr2 ypl TS bias narx_net_closed narx_net muhat
— sigmahat

clearvars timesteps timesteps_flip

obj_fcn.m

function y=obj_fcn(x_allwb,t,cost_curve_MW,MW_rating, ...
elev_soft_penalty_coeff,ELWS_targets, frequency,Q,ic_elev, ...
turbine_discharge)

o\

Calculates value of generation pattern over time t

o\

o°

Inputs:

x_allwb - hourly turbine time series (as rows for vectorizing!),
integers between 0 and no_of_units for all waterbodies

t time series of JDAY values

cost_curve_MW 2 row matrix to create step function, with 1lst row
being hours and 2nd row $/MW-hr values

MW_rating - the fixed MW level of turbine_discharge_curve (25 MW for
OHL)

elev_soft_penalty_coeff - penalty coefficient for soft ending elev soft
constraint

ELWS_targets — target elevations for end of time period

frequency - frequency of predictions (hourly=1/24)

o° o o° o° A A o o o o

o°
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y=

Q - all other inflows and outflows, interpolation settings,
storage—-elev curve, and tailwater curve (all in meters)

ic_elev - initial elevation condition (m)

turbine_discharge - turbine discharge curve at fixed MW level, with
col 1 in meters and col 2 in cms

Outputs:

y total price in $ of generation pattern

zeros (size (x_allwb,1),1);

%Split up rows of x to separate reservoirs
for wb=l:size (MW_rating, 2)

x{wb}=x_allwb (:,wb* (size(t,2)-1)-(size(t,2)-2) :wb*(size(t,2)-1));

end
clearvars wb

for wb=1l:size (MW_rating,2)

%$Calculate turbine output over 10 days
$Multiply each turbine output by number of turbines online
output_MW{wb}=x{wb}+MW_rating{wb}; $MW

%$Calculate total power output

y_MWh{wb}=sum (output_MW{wb}”’)’;

%$Calculate weighted price output
y_dollars{wb}=cost_curve (t, output_MW{wb}, cost_curve_ MW{wb}’);

%$Calculate deviation from ELWS_target and subtract/add penalty
if wb==1
%$Preallocate mainstem_inflows for following wbs
mainstem_inflows=cell (l:size (MW_rating,2));
for i=l:size (MW_rating, 2)
mainstem_inflows{i}.t=[];
mainstem_inflows{i}.Q=[1];
end
clearvars i
[turb_discharges{wb},spill_discharges{wb},HWs{wb}, , ] =
activeunits_to_discharges (x{wb},t, frequency, ...
Q{wb},ic_elev{wb}, turbine_discharge{wb},ELWS_targets{wb}, ...
[1,01);

else
[turb_discharges{wb}, spill_discharges{wb},HWs{wb}, ", ] =
activeunits_to_discharges (x{wb},t, frequency, ...
Q{wb},ic_elev{wb}, turbine_discharge{wb},ELWS_targets{wb}, ...
mainstem_inflows{wb}.t,mainstem_inflows{wb}.Q);
end

$ELWS end goal
ELWS_goal{wb}=interpl (ELWS_targets{wb} (:,1),ELWS_targets{wb} (:,2),t (end));
ELWS_error{wb}=HWs{wb} (:,end) -ELWS_goal{wb};
ELWS_deduction{wb}=(ELWS_error{wb}. 2)+elev_soft_penalty_coeff (wb);

y=y+y_dollars{wb}-ELWS_deduction{wb};

$If we haven’t reached the last reservoir, update mainstem_inflows
if wb =size(ic_elev,2)
mainstem_inflows{wb+1}.t=t;
mainstem_inflows{wb+1}.Q0=bsxfun (@plus,turb_discharges{wb}, spill_discharges
— {wb});
end

end
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obj_fcn_do.m

function y=obj_fcn_do(x_allwb,t, frequency,Q,ic_elev, ...

o0 o o o° A% A% A o A A O O OO A A A A A O OO O° O A A A A A AN AN O O A A A A A AN N O A A A A A A OO O° O° O° O o o

o°

turbine_discharge, WQ, ELWS_targets, level,waterbody)
Objective function to minimize DO constraint violation

Inputs:

x_allwb - hourly turbine time series (as rows for vectorizing!),
integers between 0 and no_of_units for all waterbodies

t time series of JDAY values

frequency - frequency of predictions (hourly=1/24)

Q — all other inflows and outflows, interpolation settings,
storage-elev curve, and tailwater curve (all in meters)

ic_elev - initial elevation condition (m)

turbine_discharge - turbine discharge curve at fixed MW level, with
col 1 in meters and col 2 in cms

WQ - structure containing water quality constraints and NARX models
DO_narx - structure containing everything needed to make DO discharge
predictions, including:

turb_colum - column in exogenous variables with turb flows
spill_column - column in exogenous variables with spill flows

times - JDAY values used in training (not used)

inputDelays - delays for exogenous inputs

feedbackDelays - delays for prediction feedbacks

input_variables - 2 row cell containing variable names in first

row and column number in second. For example, "MET_WBL’
contains multiple columns of data but only some may be used
for NARX predictions

bias - bias for each trained neural network

weights - weights for each trained neural network (sum to 1)
narx_net_closed - neural networks

DO_limit - lower and upper DO limits (NaN means it doesn’t exist)
DO_slack - relaxation from DO_limit (either upper or lower -
doesn’t make sense to have both)

Temp_narx - structure containing everything needed to make temp discharge
predictions, including:

turb_colum - column in exogenous variables with turb flows
spill_column - column in exogenous variables with spill flows
times - JDAY wvalues used in training (not used)

inputDelays - delays for exogenous inputs

feedbackDelays - delays for prediction feedbacks

input_variables - 2 row cell containing variable names in first

row and column number in second. For example, 'MET_WB1’

contains multiple columns of data but only some may be used

for NARX predictions

bias - bias for each trained neural network

weights - weights for each trained neural network (sum to 1)
narx_net_closed - neural networks

Temp_limit - lower and upper temp limits (NaN means it doesn’t exist)
Temp_slack - relaxation from Temp_limit (either upper or lower -
doesn’t make sense to have both)

ELWS_targets — 2 column matrix with JDAY in coll and elevation target
in col2

level - ’"upper’ or ’lower’
waterbody - which waterbody we’re checking the discharge DO for
Outputs:

y DO constraint violation for each scenario in x

%Split up rows of x to separate reservoirs
for wb=1l:waterbody

x{wb}=x_allwb (:,wbx (size(t,2)-1)-(size(t,2)-2) :wb*(size(t,2)-1));

end
clearvars wb
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%$Calculate headwater elevs for constraints
for wb=1:waterbody
%$Calculate headwater elevs for constraints
if wb==1

mainstem_inflows{wb}.t=[];

mainstem_inflows{wb}.Q=[1;

[turb_discharges{wb}, spill_discharges{wb},HWs{wb}, , ] =
activeunits_to_discharges (x{wb},t, frequency, ...
Q{wb},ic_elev{wb},turbine_discharge{wb}, ELWS_targets{wb}, ...
[1,01);

else
[turb_discharges{wb}, spill_discharges{wb},HWs{wb}, , ] =
activeunits_to_discharges (x{wb},t, frequency, ...
Q{wb},ic_elev{wb},turbine_discharge{wb},ELWS_targets{wb}, ...
mainstem_inflows{wb}.t,mainstem_inflows{wb}.Q);
end
%$If we haven’t reached the last reservoir, update mainstem_inflows.Q (include
— Dboth turbine + spill incoming!) and mainstem_inflows.t

if wb =size(ic_elev,2)
mainstem_inflows{wb+1}.Q=...
bsxfun (@plus, turb_discharges{wb},spill_discharges{wb});
mainstem_inflows{wb+1}.t=t;
end
end

for wb=1:waterbody

if wb™=1
mainstem_inflows_temp{wb}.t=mainstem_inflows{wb}.t;
mainstem_inflows_temp{wb}.Q=mainstem_inflows{wb}.Q;
mainstem_inflows_temp{wb}.T=mainstem_inflows{wb}.T;
mainstem_inflows_temp{wb}.DO=mainstem_inflows{wb} .DO;
%Remove Nan values and interpolate for T and DO
for i=l:size(x{wb},1)
extrap_index="isnan (mainstem_inflows_temp{wb}.T(i,:));
[7,c]l=find (extrap_index==1); extrap_index=c (end);
mainstem_inflows_temp{wb}.T (i, :)=...
interpl (mainstem_inflows_temp{wb}.t (1, "isnan(mainstem_inflows_temp(
— wbh}.T(i,:))), ...
mainstem_inflows_temp{wb}.T (i, "isnan (mainstem_inflows_temp{wb}.T (i
S ,))) ...
mainstem_inflows_temp{wb}.t,’linear’, ...
mainstem_inflows_temp{wb}.T(i,extrap_index));
mainstem_inflows_temp{wb}.DO(i,:)=...
interpl (mainstem_inflows_temp{wb}.t (1, "isnan(mainstem_inflows_temp(
— wb}.DO(i, :))), ...
mainstem_inflows_temp{wb}.DO (i, "isnan (mainstem_inflows_temp{wb}.DO (i
— ,))) ...
mainstem_inflows_temp{wb}.t,’linear’, ...
mainstem_inflows_temp{wb}.DO (i, extrap_index));
clearvars extrap_index c
end
clearvars i
end

%$Discharge Temp estimation, to update incoming mainstem temp for next
— waterbody discharge DO estimation
Temp_narx=WQ{wb}.Temp_narx;
if wb==1 & waterbody =1
Temp_pred{wb}=...
narx_predictions (Temp_narx, frequency, t,Q{wb},x{wb}, ...
turb_discharges{wb},spill_discharges{wb}, [],...
Q{wb}.TIWO, "temp’);
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elseif wb™=1 & wb ™ =waterbody
Temp_pred{wb}=narx_predictions (Temp_narx, frequency,t,Q{wb},x{wb}, ...
turb_discharges{wb},spill_discharges{wb}, ...
mainstem_inflows_temp{wb},Q{wb}.TWO, temp’) ;
end
%$If we haven’t reached the last reservoir, update mainstem_inflows.T
if wb =waterbody
mainstem_inflows{wb+1}.T(l:size(x{wb},1),1)=...
interpl (Q{wb}.TWO(:,1),Q{wb}.TWO(:,2),t (1)) ;
mainstem_inflows{wb+1}.T(:,2:size (Temp_pred{wb},2)+1l)=...
Temp_pred{wb};
end

%$Now move on to DO....
DO_narx=WQ{wb}.DO_narx; DO_limit=WQ{wb}.DO_limit;
if wb==1
DO_pred{wb}=narx_predictions (DO_narx, frequency,t,Q{wb},x{wb}, ...
turb_discharges{wb},spill_discharges{wb}, [],...
Q{wb}.CWO,"do");
else
DO_pred{wb}=narx_predictions (DO_narx, frequency,t,Q{wb},x{wb}, ...
turb_discharges{wb},spill_discharges{wb}, ...
mainstem_inflows_temp{wb},Q{wb}.CWO, " do");
end
%$If we haven’t reached the last reservoir, update mainstem_inflows.DO
if wb =waterbody
mainstem_inflows{wb+1}.DO(l:size(x{wb},1),1)=...
interpl (Q{wb}.CWO(:,1),Q{wb}.CWO(:,2),t(1));
mainstem_inflows{wb+1}.DO(:,2:size (DO_pred{wb},2)+1l)=...
DO_pred{wb};
else
non_nan_count=sum(~isnan (DO_pred{wb}),2);
if strcmp(level,’lower’)
$DO violations - lower
if isnan(DO_limit (1))
DO_violations=zeros(size (DO_pred{wb},1),1);
else
DO_violations=sum (-min (0, DO_pred{wb}-DO_limit (1)),2)./non_nan_count;
end
elseif strcmp(level, ’ upper’)
%DO violations - upper
if isnan(DO_limit (2))
DO_violations=zeros (size (DO_pred{wb},1),1);
else
DO_violations=sum (max (0,DO_pred{wb}-DO_limit (2)),2)./non_nan_count;
end
end

y=max (DO_violations, [],2);
end

end

obj_fcn_elev.m

function y=obj_fcn_elev(x_allwb,t,frequency,Q,ic_elev, ...

o° o o° o° o

o°

turbine_discharge, ELWS_limit, ELWS_targets, level,waterbody)
Objective function to minimize elevation constraint violation
Inputs:

x_allwb - hourly turbine time series (as rows for vectorizing!),

integers between 0 and no_of_units for all waterbodies
t time series of JDAY values
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frequency - frequency of predictions (hourly=1/24)
Q - all other inflows and outflows, interpolation settings,
storage-elev curve, and tailwater curve (all in meters)

o°

o\

% ic_elev - initial elevation condition (m)

% turbine_discharge - turbine discharge curve at fixed MW level, with

% col 1 in meters and col 2 in cms

% ELWS_limit - min and max elevation limits for constraints, in meters
% ELWS_targets — 2 column matrix with JDAY in coll and elevation target
% in col2

% level - ’'upper’ or ’lower’

% waterbody - which waterbody we’re checking elevation for

% Outputs:

o°

y elevation constraint violation for each scenario in x

$Split up rows of x to separate reservoirs
for wb=1:waterbody
x{wb}=x_allwb (:,wb* (size(t,2)-1)-(size(t,2)-2) :wb*(size(t,2)-1));
end
clearvars wb

for wb=1l:waterbody
%$Calculate headwater elevs for constraints
if wbh==
mainstem_inflows{wb}.t=[];
mainstem_inflows{wb}.Q=[1];
[turb_discharges{wb},spill_discharges{wb},HWs{wb}, , ] =
activeunits_to_discharges (x{wb},t, frequency, ...
Q{wb},ic_elev{wb}, turbine_discharge{wb},ELWS_targets{wb}, ...
[1,01)7

else
[turb_discharges{wb}, spill_discharges{wb},HWs{wb}, , ] =
activeunits_to_discharges (x{wb},t, frequency, ...
Q{wb},ic_elev{wb}, turbine_discharge{wb}, ELWS_targets{wb}, ...
mainstem_inflows{wb}.t,mainstem_inflows{wb}.Q);
end

%$If we haven’t reached the last reservoir, update mainstem_inflows.Q
<~ Dboth turbine + spill incoming!) and mainstem_inflows.t

if wb =size (ic_elev,2)
mainstem_inflows{wb+1}.Q=...

bsxfun (@plus, turb_discharges{wb},spill_discharges{wb});

mainstem_inflows{wb+1}.t=t;

end

end

%Inequality constraints:
if strcmp(level,’lower’)
$Elevation violations - lower
if isnan (ELWS_limit (1))
deductions=zeros (size (HWs{waterbody} (:,1l:end)));
else
deductions=-min (0, HWs{waterbody} (:, l:end) -ELWS_limit (1)) ;
end
elseif strcmp(level,’upper’)
$Elevation violations - upper
if isnan(ELWS_limit (2))
deductions=zeros (size (HWs{waterbody} (:,1l:end)));
else
deductions=max (0, HWs{waterbody} (:, l:end) -ELWS_limit (2));
end
end

y=max (deductions, [],2);

(include
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obj_fcn_penalty_dollars.m

function [penalty,dollars,ELWS_error2]=obj_fcn_penalty_dollars(x_allwb,t,
— cost_curve_MW,MW_rating, ...
elev_soft_penalty_coeff,ELWS_targets, frequency,Q,ic_elev, ...
turbine_discharge)

o°

Calculates value of generation pattern over time t

o°

o\

Inputs:

x_allwb - hourly turbine time series (as rows for vectorizing!),
integers between 0 and no_of_units for all waterbodies

t time series of JDAY values

cost_curve_MW 2 row matrix to create step function, with 1lst row
being hours and 2nd row $/MW-hr values

MW_rating - the fixed MW level of turbine_discharge_curve (25 MW for
OHL)

elev_soft_penalty_coeff - penalty coefficient for soft ending elev soft
constraint

ELWS_targets - target elevations for end of time period

frequency - frequency of predictions (hourly=1/24)

Q — all other inflows and outflows, interpolation settings,
storage-elev curve, and tailwater curve (all in meters)

ic_elev - initial elevation condition (m)

turbine_discharge - turbine discharge curve at fixed MW level, with
col 1 in meters and col 2 in cms

o o o° A A o o A A O° o° o° o° o° o

o\

% Outputs:
% penalty - penalty amount
% dollars - total price in $ of generation pattern

o\

ELWS_error2 how far elevation is from target

%Split up rows of x to separate reservoirs
for wb=1l:size (MW_rating, 2)
x{wb}=x_allwb (:,wbx (size(t,2)-1)-(size(t,2)-2) :wb*(size(t,2)-1));
end
clearvars wb

for wb=1l:size (MW_rating,2)

%$Calculate turbine output over 10 days
$Multiply each turbine output by number of turbines online
output_MW{wb}=x{wb}+MW_rating{wb}; $MW

%$Calculate total power output

y_MWh{wb}=sum (output_MW{wb}”’)’;

%$Calculate weighted price output
y_dollars{wb}=cost_curve (t, output_MW{wb}, cost_curve_ MW{wb}’);

$Calculate deviation from ELWS_target and subtract/add penalty
if wb==
%$Preallocate mainstem_inflows for following wbs
mainstem_inflows=cell (l:size (MW_rating,2));
for i=l:size (MW_rating, 2)
mainstem_inflows{i}.t=[1];
mainstem_inflows{i}.Q=[];
end
clearvars i
[turb_discharges{wb},spill_discharges{wb},HWs{wb}, , ] =
activeunits_to_discharges (x{wb},t, frequency, ...
Q{wb},ic_elev{wb}, turbine_discharge{wb},ELWS_targets{wb}, ...
[1,01)7
else
[turb_discharges{wb}, spill_discharges{wb},HWs{wb}, ~, ] =
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activeunits_to_discharges (x{wb},t, frequency, ...
Q{wb},ic_elev{wb}, turbine_discharge{wb},ELWS_targets{wb}, ...
mainstem_inflows{wb}.t,mainstem_inflows{wb}.Q);

end

$ELWS end goal
if size (ELWS_targets{wb},1)>1
ELWS_goal{wb}=interpl (ELWS_targets{wb} (:,1),ELWS_targets{wb} (:,2),t (end));
else
ELWS_goal{wb}=ELWS_targets{wb} (:,2);
end
ELWS_error{wb}=HWs{wb} (:,end) -ELWS_goal{wb};
ELWS_error2=ELWS_error{wb}; ELWS_error{wb} (ELWS_error{wb}>0)=0;
ELWS_deduction{wb}=(ELWS_error{wb}. 2)xelev_soft_penalty_coeff (wb);

$If we haven’t reached the last reservoir, update mainstem_inflows
if wb =size(ic_elev,2)
mainstem_inflows{wb+1}.t=t;
mainstem_inflows{wb+1}.Q=bsxfun (@plus,turb_discharges{wb},spill_discharges
— {wb});
end

end

penalty=0; dollars=0;

for wb=l:size (MW_rating, 2)
dollars=dollars+y_dollars{wb};
penalty=penalty+ELWS_deduction{wb};

end

obj_fcn_temp.m

function y=obj_fcn_temp(x_allwb,t, frequency,Q,ic_elev, ...
turbine_discharge, WQ, ELWS_targets, level, waterbody)

o°

Objective function to minimize temp constraint violation

o°

o\

Inputs:

x — hourly turbine time series (as rows for vectorizing!), integers
between 0 and no_of_ units

t time series of JDAY values

frequency - frequency of predictions (hourly=1/24)

Q — all other inflows and outflows, interpolation settings,
storage—-elev curve, and tailwater curve (all in meters)

ic_elev - initial elevation condition (m)

turbine_discharge - turbine discharge curve at fixed MW level, with
col 1 in meters and col 2 in cms

o° o o° o d° o° o o

o\

% WQ - structure containing water quality constraints and NARX models

% DO_narx - structure containing everything needed to make DO discharge
% predictions, including:

% turb_colum - column in exogenous variables with turb flows

% spill_column - column in exogenous variables with spill flows

% times - JDAY values used in training (not used)

% inputDelays - delays for exogenous inputs

% feedbackDelays - delays for prediction feedbacks

% input_variables - 2 row cell containing variable names in first

o\

row and column number in second. For example, 'MET_WB1’

contains multiple columns of data but only some may be used

for NARX predictions

bias - bias for each trained neural network

weights - weights for each trained neural network (sum to 1)
narx_net_closed - neural networks

DO_limit - lower and upper DO limits (NaN means it doesn’t exist)

o° o o° o° o

o°
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o°

DO_slack - relaxation from DO_limit (either upper or lower -

doesn’t make sense to have both)

Temp_narx - structure containing everything needed to make temp discharge
predictions, including:

turb_colum - column in exogenous variables with turb flows

spill_column - column in exogenous variables with spill flows

times - JDAY values used in training (not used)

inputDelays - delays for exogenous inputs

feedbackDelays - delays for prediction feedbacks

input_variables - 2 row cell containing variable names in first

row and column number in second. For example, 'MET_WB1’

contains multiple columns of data but only some may be used

for NARX predictions

bias - bias for each trained neural network

weights - weights for each trained neural network (sum to 1)
narx_net_closed - neural networks

Temp_limit - lower and upper temp limits (NaN means it doesn’t exist)
Temp_slack - relaxation from Temp_limit (either upper or lower -
doesn’t make sense to have both)

ELWS_targets - 2 column matrix with JDAY in coll and elevation target
in col2

level - "upper’ or ’'lower’

waterbody - which waterbody we’re checking the discharge temp for
Outputs:

y temp constraint violation for each scenario in x

$Split up rows of x to separate reservoirs
for wb=1l:waterbody

x{wb}=x_allwb (:,wbx (size(t,2)-1)-(size(t,2)-2) :wb*(size(t,2)-1));

end
clearvars wb

%$Calculate headwater elevs for constraints
for wb=1l:waterbody

%$Calculate headwater elevs for constraints
if wb==

mainstem_inflows{wb}.t=[];

mainstem_inflows{wb}.Q=[];

[turb_discharges{wb}, spill_discharges{wb},HWs{wb}, ", ] =
activeunits_to_discharges (x{wb},t, frequency, ...
Q{wb},ic_elev{wb},turbine_discharge{wb},ELWS_targets{wb}, ...
[1,01);

else

[turb_discharges{wb},spill_discharges{wb}, HWs{wb}, , ] =
activeunits_to_discharges (x{wb},t, frequency, ...
Q{wb},ic_elev{wb}, turbine_discharge{wb},ELWS_targets{wb}, ...
mainstem_inflows{wb}.t,mainstem_inflows{wb}.Q);

end

%$If we haven’t reached the last reservoir, update mainstem_inflows.Q (include

~— Dboth turbine + spill incoming!) and mainstem_inflows.t
if wb =size(ic_elev,2)
mainstem_inflows{wb+1}.Q=...
bsxfun (@plus, turb_discharges{wb},spill_discharges{wb});
mainstem_inflows{wb+1}.t=t;
end

end

for wb=1l:waterbody

if wb™=1
mainstem_inflows_temp{wb}.t=mainstem_inflows{wb}.t;
mainstem_inflows_temp{wb}.Q=mainstem_inflows{wb}.Q;
mainstem_inflows_temp{wb}.T=mainstem_inflows{wb}.T;
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%$Remove Nan values and interpolate for T
for i=l:size(x{wb},1)
extrap_index="isnan (mainstem_inflows_temp{wb}.T(i,:));
[7,cl=find (extrap_index==1); extrap_index=c (end);
mainstem_inflows_temp{wb}.T(i,:)=...
interpl (mainstem_inflows_temp{wb}.t (1, "isnan (mainstem_inflows_temp({

— wb}.T(i,:))),...
mainstem_inflows_temp{wb}.T (i, "isnan (mainstem_inflows_temp{wb}.T (1
5 ,))), ...
mainstem_inflows_temp{wb}.t,’linear’, ... % extrap’);

mainstem_inflows_temp{wb}.T(i,extrap_index));
clearvars extrap_index c
end
clearvars i
end

$Discharge Temp estimation
Temp_narx=WQ{wb}.Temp_narx; Temp_limit=WQ{wb}.Temp_limit;
if wb==
Temp_pred{wb}=narx_predictions (Temp_narx, frequency,t,Q{wb},x{wb}, ...
turb_discharges{wb},spill_discharges{wb}, [],...
Q{wb}.TIWO, "temp’);
else
Temp_pred{wb}=narx_predictions (Temp_narx, frequency,t,Q{wb},x{wb}, ...
turb_discharges{wb},spill_discharges{wb}, ...
mainstem_inflows_temp{wb},Q{wb}.TWO, temp’) ;
end
$If we haven’t reached the last reservoir, update mainstem_inflows.T
if wb =waterbody
mainstem_inflows{wb+1}.T(l:size(x{wb},1),1)=...
interpl (Q{wb}.TWO(:,1),Q{wb}.TWO(:,2),t (1)) ;
mainstem_inflows{wb+1}.T(:,2:size (Temp_pred{wb},2)+1)=...
Temp_pred{wb};
else
non_nan_count=sum(~isnan (Temp_pred{wb}),2);
if strcmp(level,’lower’)
%$Temp violations - lower
if isnan(Temp_limit (1))
Temp_violations=zeros (size (Temp_pred{wb},1),1);
else
Temp_violations=sum(-min (0, Temp_pred{wb}-Temp_limit (1)),2)./
— non_nan_count;

end
elseif strcmp(level,’upper’)
%$Temp violations - upper

if isnan(Temp_limit (2))
Temp_violations=zeros (size (Temp_pred{wb},1),1);
else
Temp_violations=sum (max (0, Temp_pred{wb}-Temp_limit (2)),2)./
— non_nan_count;
end
end

y=max (Temp_violations, [],2);
end
end

penalty_fcn.m

function [c_all,ceqgl=penalty_fcn(x_allwb,t, frequency,Q,ic_elev, ...
turbine_discharge, ELWS_limit,max_hrly_unit_change, ...
WQ, zero_gen_limit, xprev, ELWS_targets, tolerance)
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Calculates penalty violations, starting with the least expensive
computations and continuing on to the more expensive computations for
runs that are found to be feasible thus far

Inputs:

x_allwb - hourly turbine time series (as rows for vectorizing!),
integers between 0 and no_of_units for all waterbodies

t time series of JDAY values

frequency - frequency of predictions (hourly=1/24)

Q — all other inflows and outflows, interpolation settings,
storage-elev curve, and tailwater curve

ic_elev - initial condition (meters)

turbine_discharge - turbine discharge curve at fixed MW level, with
col 1 in meters and col 2 in cms

ELWS_limit - min and max elevation limits for constraints, in meters
max_hrly_unit_change - max number of units that can be changed per hour
(1 for OHL)

WQ - structure containing water quality constraints and NARX models
DO_narx - structure containing everything needed to make DO discharge
predictions, including:

turb_colum - column in exogenous variables with turb flows
spill_column - column in exogenous variables with spill flows

times - JDAY values used in training (not used)

inputDelays - delays for exogenous inputs

feedbackDelays - delays for prediction feedbacks

input_variables - 2 row cell containing variable names in first

row and column number in second. For example, 'MET_WBL1’
contains multiple columns of data but only some may be used
for NARX predictions

bias - bias for each trained neural network

weights - weights for each trained neural network (sum to 1)
narx_net_closed - neural networks

DO_limit - lower and upper DO limits (NaN means it doesn’t exist)
DO_slack - relaxation from DO_limit (either upper or lower -

doesn’t make sense to have both)

Temp_narx — structure containing everything needed to make temp discharge

predictions, including:
turb_colum - column in exogenous variables with turb flows

spill_column - column in exogenous variables with spill flows
times — JDAY values used in training (not used)

inputDelays - delays for exogenous inputs

feedbackDelays - delays for prediction feedbacks
input_variables - 2 row cell containing variable names in first

row and column number in second. For example, 'MET_WBL1’
contains multiple columns of data but only some may be used
for NARX predictions

bias - bias for each trained neural network

weights - weights for each trained neural network (sum to 1)

narx_net_closed - neural networks

Temp_limit - lower and upper temp limits (NaN means it doesn’t exist)
Temp_slack - relaxation from Temp_limit (either upper or lower -
doesn’t make sense to have both)

zero_gen_limit - Zero generation hourly limit (can’t go longer than
this with no turb flow)

xprev - vector of previous active turbine levels

ELWS_targets - 2 column matrix with JDAY in coll and elevation target
in col2

tolerance - penalty tolerance

Outputs:

c_all inequality constraint output (n/a, so 0)

ceqg - equality constraint output (=0 for feasible solution)

$Equality constraint
ceg=[];
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%Preallocate memory

x{1l,size(ic_elev,2)}=[1;

xall{l,size(ic_elev,2)}=[1;

turb_discharges{l,size(ic_elev,2)}=[];

HWs{1l,size(ic_elev,2)}=1[];

c_all=zeros(size(x{1l},1),size(ic_elev,2)* (3+(1l+size(x{1},2)) *x2+2+2+2+2));

zeroRows_empty=0;
zeroRowsO=[1l:size(x_allwb,1)1’;

for wb=l:size (ic_elev, 2)
%$Split up rows of x to separate reservoirs
x{wb}=x_allwb (:,wbx (size(t,2)-1)-(size(t,2)-2) :wb*(size(t,2)-1));
%$Preallocate ¢, with columns representing: (1) change in active unit
— violations, (2) zero gen hourly limit, (3) oscillations constraint,
(4:28) ELWS lower violations, (29:53) ELWS upper violations, (54:77)
hrly DO upper violations, (78:101) hrly DO lower violations, (102)
mean DO upper violation, (103) mean DO lower violations, (104:127)
hrly temp upper violations, (128:151) hrly temp lower violations,
<~ (152) mean temp upper violation, and (153) mean temp lower violations
c{wb}=zeros(size (x{1},1),3+(l+size(x{1},2))*2+2+2+2+2);
end
clearvars wb

(S
(SN
(SN
[N

for wb=l:size (ic_elev, 2)
c{wb} (setdiff([1l:size(x{wb},1)]1,zeroRows0), :)=1;

%$Check if all entries in x are infeasible due to previous reservoirs, and if
— so set the rest of c==1 and go to end

if zeroRows_empty==
c{wb} (:)=1;

else

%$Break up WQ structure into separate variables

DO_narx=WQ{wb}.DO_narx; DO_limit=WQ{wb}.DO_limit; DO_slack=WQ{wb}.DO_slack
—

Temp_narx=WQ{wb}.Temp_narx; Temp_limit=WQ{wb}.Temp_limit; Temp_slack=WQ{wb
— }.Temp_slack;

%$Stitch together xprev & x to check for feasibility wrt active unit viols,
— =zero generation hrly limit, and oscillations
xall{wb}=[repmat (xprev{wb}, size(x{wb},1),1) x{wb}];

%$Change in active unit wviolations

if isempty (max_hrly_unit_change{wb})
delta_sum=zeros (size (zeroRows0,1),1);

else
delta=abs (round(xall{wb} (zeroRows0,2:end))—-...

round (xall{wb} (zeroRows0, l:end-1)));

index=find (delta<=max_hrly_unit_change{wb});
delta (index)=0;
delta_sum=sum(delta’)’;

end

%$Zero generation hourly limit - can’t go longer with no turb flow
if isempty(zero_gen_limit{wb})
zero_gen_viols_sum=zeros (size (zeroRows0,1),1);
else
zero_gen_viols=zeros (size (zeroRows0,1),size(xall{wb},2)-...
zero_gen_limit{wb}-1);
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x_trans=xall{wb} (zeroRows0, :)’;

for i=l:size(x_trans,l)-zero_gen_limit{wb}
a=sum(x_trans(i:i+zero_gen_limit{wb},:))’;
zero_gen_viols(:,1)=(a==0);

end

clearvars i

zero_gen_viols_sum=sum(zero_gen_viols’)’;

end

%0scillations constraint - violates whenever the number of turbines
< increases and then decreases within 3 hours, or vice versa
osc_violations=zeros (size (zeroRows0,1),size(xall{wb},2)-2);
xall_osc=xall{wb} (zeroRowsO, :);
for ii=l:size(xall_osc,1l) %loop through each member of population
for i=l:size(xall_osc,2)-2; %loop forward through time
if xall_osc(ii,i+1l)>xall_osc(ii,i) &
xall_osc(ii,i+2)<xall_osc(ii,i+1)
osc_violations (ii,i)=1;
elseif xall_osc(ii,i+l)<xall_osc(ii,i) &
xall_osc(ii,i+2)>xall_osc(ii,i+1)
osc_violations (ii,i)=1;
elseif i"=1
if xall_osc(ii,i)==xall_osc(ii,i+l) S%need 3 hrs btwn ramping up
— and down
if xall_osc(ii,i-1)<xall_osc(ii,i) &
xall_osc(ii,i+l)>xall_osc(ii,i+2) S%Sramping up & back
— down too quickly
osc_violations (ii,i)=1;
elseif xall_osc(ii,i-1)>xall_osc(ii,i) &
xall_osc(ii,i+l)<xall_osc(ii,i+2) S%ramping down & back
— up too quickly
osc_violations (ii,i)=1;
end
end
end
end
end
clearvars 1 1ii xall_osc
osc_violations_sum=sum(osc_violations’)’;

%$Compile least expensive constraints
c{wb} (zeroRows0,1:3)=...
[delta_sum zero_gen_viols_sum osc_violations_sum];

clearvars zeroRowsl zeroRows2 zeroRows3 zeroRows4 x_zeroRowsl x_zeroRows2
— x_zeroRows3 x_zeroRows4

x_zeroRowsl=[];

x_zeroRows2=[];

x_zeroRows3=[];
1

X_zeroRowsd=[
%$0nly compute expensive constraints if all others pass
zeroRowsl=find (all (c{wb}<=tolerance, 2));
x_zeroRowsl=x{wb} (zeroRowsl, :);
if isempty (x_zeroRowsl)

c{wb} (:,4:end)=1;

zeroRows_empty=1;
end

’

if zeroRows_empty =1

$Calculate headwater elevs for constraints

if wb==
%$Preallocate mainstem_inflows for following wbs
mainstem_inflows=cell (l:size (ic_elev,2));
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for i=l:size(ic_elev, 2)
mainstem_inflows{i}.t=[
mainstem_inflows{i}.Q=]
mainstem_inflows{i}.T=[
mainstem_inflows{i} .DO=

end

clearvars 1

[turb_discharges{wb}, spill_discharges{wb}, HWs{wb}, 7, ~

activeunits_to_discharges (x_zeroRowsl,t, ...

]

frequency,Q{wb},ic_elev{wb},turbine_discharge{wb}, ...

ELWS_targets{wb}, [1,[]);
else

[turb_discharges{wb}, spill_discharges{wb},HWs{wb}, ", ~

activeunits_to_discharges (x_zeroRowsl,t, ...

]

frequency,Q{wb},ic_elev{wb},turbine_discharge{wb}, ...

ELWS_targets{wb},mainstem_inflows{wb}.t, ...
mainstem_inflows{wb}.Q(zeroRowsl, :));
end

%If we haven’t reached the last reservoir, update mainstem_inflows.Q

<~ include both turbine + spill incoming!)
if wb =size(ic_elev, 2)
mainstem_inflows{wb+1}.Q(zeroRowsl, :)=...

bsxfun (@plus, turb_discharges{wb},spill_discharges{wb});

end

%$Inequality constraints:

$Elevation violations - lower

if isnan(ELWS_limit{wb} (1))
deductionsl=zeros (size (HWs{wb} (:,1l:end)));

else
deductionsl=-min (0, HWs{wb} (:,1l:end)-ELWS_limit{wb} (1)

end

%$Elevation violations - upper

if isnan(ELWS_limit{wb} (2))
deductions2=zeros (size (HWs{wb} (:,1l:end)));

else
deductions2=max (0, HWs{wb} (:,1:end)-ELWS_limit{wb} (2))

end

c{wb} (setdiff ([l:size(x{wb},1)],zeroRowsl),4:end)=1;

)i

’

c{wb} (zeroRowsl, 4:3+ (1l+size (x{wb},2))*2)=[deductionsl deductions2];

zeroRows2=find (all (c{wb}<=tolerance,2));
x_zeroRows2=x{wb} (zeroRows2, :);
if isempty (x_zeroRows2)
c{wb} (:,3+(1+size (x{wb},2))*2+1:end)=1;
zeroRows_empty=1;
end

turb_discharges2=zeros(size (x{wb},1),size(x{wb},2)+1);
turb_discharges2 (zeroRowsl, :)=turb_discharges{wb};
$——>need to reset this with zero rows back in
turb_discharges{wb}=turb_discharges2;
spill_discharges2=zeros (size(x{wb},1),1);
spill_discharges?2 (zeroRowsl, :)=spill_discharges{wb};
$——>need to reset this with zero rows back in
spill_discharges{wb}=spill_discharges2;
clearvars spill_discharges2 turb_discharges2

end

%$Continue on and calculate discharge DO if still feasible,
— provided and a limit exists

if DO_narx is

if zeroRows_empty =1 & “isempty (DO_narx) & (wb =size(ic_elev,2) | any(

— DO_limit))
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end

%Co
if

%$Discharge DO constraint
if wb==
DO_pred{wb}=narx_predictions (DO_narx, ...
frequency, t,Q{wb},x_zeroRows2, ...
turb_discharges{wb} (zeroRows2, :), ...
spill_discharges{wb} (zeroRows2),[], ...
Q{wb}.CWO,"do");
else
mainstem_inflows_zeroRows2{wb}.Q=...
mainstem_inflows{wb}.Q (zeroRows2, :);
mainstem_inflows_zeroRows2{wb}.T=...
mainstem_inflows{wb}.T (zeroRows2, :);
mainstem_inflows_zeroRows2{wb}.DO=...
mainstem_inflows{wb}.DO (zeroRows2, :);
DO_pred{wb}=narx_predictions (DO_narx, ...
frequency, t,Q{wb},x_zeroRows2, ...
turb_discharges{wb} (zeroRows2, :), ...
spill_discharges{wb} (zeroRows2), ...
mainstem_inflows_zeroRows2{wb},Q{wb}.CWO, " do’);
end
%$If we haven’t reached the last reservoir, update mainstem_inflows.DO
if wb =size(ic_elev,2)
mainstem_inflows{wb+1}.DO(zeroRows2,1)=...
interpl (Q{wb}.CWO(:,1),Q{wb}.CWO(:,2),t(1));
mainstem_inflows{wb+1}.DO(zeroRows2,2:size (DO_pred{wb},2)+1l)=...
DO_pred{wb};

end
non_nan_count=sum(~isnan (DO_pred{wb}),2);
$DO violations - lower

if isnan(DO_limit (1))
DO_violationsl=zeros(size (DO_pred{wb},1),1);

else
DO_violationsl=sum(-min (0,D0_pred{wb}-DO_limit (1)),2)./non_nan_count
—
end
%$DO violations - upper

if isnan(DO_limit (2))
DO_violations2=zeros (size (DO_pred{wb},1),1);
else
DO_violations2=sum(max (0, DO_pred{wb}-DO_limit (2)),2)./non_nan_count;
end
DO_violations=[max (0,DO_violationsl-DO_slack) max (0,DO_violations2-
— DO_slack)];

c{wb} (setdiff ([1l:size(x{wb},1)],zeroRows2),3+(l+size(x{wb},2))*2+1:end)
— =1;

c{wb} (zeroRows2, 3+ (1l+size (x{wb},2))*2+1:3+ (1l+size (x{wb},2))*2+2)=
— DO_violations;

clearvars DO_violationsl DO_violations2 Last_values

zeroRows3=find (all (c{wb}<=tolerance, 2));
x_zeroRows3=x{wb} (zeroRows3, :);
DO_pred{wb} (zeroRows2, :)=DO_pred{wb};
DO_pred{wb}=DO_pred{wb} (zeroRows3, :);
if isempty (x_zeroRows3)
c{wb} (:,3+(1+size (x{wb},2))*2+2+1:end)=1;
zeroRows_empty=1;
end

ntinue on and calculate discharge temp if still feasible
zeroRows_empty =1 & “isempty (Temp_narx) & (wb =size(ic_elev,2) | any/(
— Temp_limit))
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zeroRows4=find (all (c{wb}<=tolerance, 2));
x_zeroRowsd4=x{wb} (zeroRows4, :);
if isempty (x_zeroRows4)
c{wb} (:,3+(1l+size(x{wb},2))*2+2+2+1:end)=1;
zeroRows_empty=1;
end

if zeroRows_empty =1
%$Discharge Temp constraint
1if wbh==
Temp_pred{wb}=...
narx_predictions (Temp_narx, ...
frequency, t,Q{wb},x_zeroRows4, ...
turb_discharges{wb} (zeroRows4, :), ...
spill_discharges{wb} (zeroRows4,:), [],...
Q{wb}.TWO, "temp’);
else
mainstem_inflows_zeroRows4{wb}.Q=...
mainstem_inflows{wb}.Q(zeroRows4, :);
mainstem_inflows_zeroRows4{wb}.T=...
mainstem_inflows{wb}.T (zeroRows4, :);
mainstem_inflows_zeroRows4{wb}.DO=...
mainstem_inflows{wb}.DO (zeroRows4, :);
Temp_pred{wb}=...
narx_predictions (Temp_narx, ...
frequency, t,Q{wb},x_zeroRows4, ...
turb_discharges{wb} (zeroRows4, :), ...
spill_discharges{wb} (zeroRows4, :), ...
mainstem_inflows_zeroRows4{wb}, ...
Q{wb}.TWO, " temp’);
end
%$If we haven’t reached the last reservoir, update mainstem_inflows.
if wb=size(ic_elev,2)
mainstem_inflows{wb+1l}.T (zeroRows3,1l)=...
interpl (Q{wb}.TWO(:,1),Q{wb}.TWO(:,2),t(1));
mainstem_inflows{wb+1}.T (zeroRows3,2:size (Temp_pred{wb},2)+1l)=...
Temp_pred{wb};

end
non_nan_count=sum(~isnan (Temp_pred{wb}),2);
$Temp violations - lower

if isnan(Temp_limit (1))
Temp_violationsl=zeros (size (Temp_pred{wb},1),1);
else
Temp_violationsl=sum(-min (0, Temp_pred{wb}-Temp_limit (1)),2)./
— non_nan_count;
end
$Temp violations - upper
if isnan(Temp_limit (2))
Temp_violations2=zeros (size (Temp_pred{wb},1),1);
else
Temp_violations2=sum (max (0, Temp_pred{wb}-Temp_limit (2)),2)./
<~ non_nan_count;
end
Temp_violations=[max (0, Temp_violationsl-Temp_slack) max (0,
— Temp_violations2-Temp_slack)];

c{wb} (setdiff([1l:size(x{wb},1)],zeroRowsd),3+(l+size(x{wb},2))
— *x24+2+2+1:end)=1;

c{wb} (zeroRows4, 3+ (1+size (x{wb},2))*2+2+2+1:3+ (1+size (x{wb},2))
— *2+2+2+2)=Temp_violations;

zeroRowsb5=find (all (c{wb}<=tolerance, 2));

x_zeroRowsb=x{wb} (zeroRows5, :);
Temp_pred{wb} (zeroRows4, :)=Temp_pred{wb};
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Temp_pred{wb}=Temp_pred{wb} (zeroRows5, :);

if isempty (x_zeroRowsb5)
c{wb} (:,3+(1+size (x{wb},2))*2+2+2+2+1:end)=1;
zeroRows_empty=1;

end

end
end
end
%$If we haven’t reached the last reservoir, update mainstem_inflows.t, remove
— NaN from mainstem_inflows.T and mainstem_inflows.DO, and update
— zeroRows0
if wb"=size(ic_elev,2) & zeroRows_empty =1
mainstem_inflows{wb+1}.t=t;
%Remove Nan values and interpolate for T and DO
for i=l:size (mainstem_inflows{wb+1}.T,1)
extrap_index="isnan (mainstem_inflows{wb+1}.T(i,:));
[7,column]=find(extrap_index==1); extrap_index=column (end) ;
mainstem_inflows{wb+1}.T (i, :)=...
interpl (t (1, "isnan (mainstem_inflows{wb+1}.T(i,:))), ...
mainstem_inflows{wb+1}.T (i, "isnan(mainstem_inflows{wb+1}.T (i, :)))
— ...
t,’linear’ ,mainstem_inflows{wb+1}.T(i,extrap_index));
mainstem_inflows{wb+1}.DO(i,:)=...
interpl (t (1, "isnan(mainstem_inflows{wb+1}.DO(i,:))), ...
mainstem_inflows{wb+1}.DO(i, "isnan(mainstem_inflows{wb+1}.DO(i, :)))
e SR
t,’linear’ ,mainstem_inflows{wb+1}.DO (i, extrap_index));
clearvars extrap_index column
end
zeroRowsO=find (all (c{wb}<=tolerance, 2));
end

end

%Update c_all with the values from c{wb}
c_all=[c{:}];

power_value.m

function [y_MWh, y_dollars]=power_value (x,t,cost_curve_MW,MW_rating)

% Calculates value of generation pattern over time t

o°

Inputs:

x — hourly turbine time series (as rows for vectorizing!), integers
between 0 and no_of_ units

t time series of JDAY values

cost_curve_MW 2 row matrix to create step function, with 1lst row
being hours and 2nd row $/MW-hr values

MW_rating - the fixed MW level of turbine_discharge_curve (25 MW for
OHL)

Outputs:

y_MWh - total MWh produced

y_dollars total price in $ of generation pattern

o° o o° o A o o o° o

o°

$Multiply each turbine output by number of turbines online
output_MW=x+MW_rating; S$MW

%$Calculate total power output

y_MWh=sum (output_MW’) "’ ;

%$Calculate price output

y_dollars= cost_curve(t, output_MW, cost_curve_MW’);
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24
25 |clearvars t output_MwW i

runW2validation.m

1
2 | for wb=1l:size (CFG,?2)
3 %% Run W2 validation and bring the resulting two and cwo values back
4 fprintf ([/Running W2 validation simulation for reservoir #’, num2str(wb),’. \
—n’l);
5 %$Copy W2 folder into new directory in results
6 copyfile (CFG{wb}.w2inputDir, [ results/w2_iter’ num2str (iter) ’'_wb’ num2str (wb
=) 1)
7
8 %0Open control file and modify TMEND
9 fid=fopen ([’ results/w2_iter’ num2str(iter) ’'_wb’ num2str(wb) ’'/w2_con.npt’]);
10 i=1; A{i}=fgetl (fid);
11 while ischar (A{i}) i=i+1; A{i}=fgetl (fid); end
12 fclose (fid); A{28}(22:24)=num2str(t_all(end));
13 fid=fopen ([’ results/w2_iter’ num2str(iter) ’_wb’ num2str(wb) ’'/w2_con.npt’],’
> w');
14 for i=1:numel (A)
15 fprintf (fid, " %$s\r\n’, A{i});
16 if A{i+1l}==-1
17 break
18 end
19 end
20 fclose (fid); clearvars A i fid
21
22 $If wb™=1, update BR1l Qin, Tin, and DOin
23 if wb™=1
24 %$BR1 Qin
25 fid=fopen ([’ results/w2_iter’ num2str (iter) ’_wb’ num2str(wb) '/’ CFG{wb}.
— MainstemBR1Qin]) ;
26 i=1; A{i}=fgetl (fid);
27 while ischar (A{i})
28 i=i+1; A{i}=fgetl (fid);
29 if i>3
30 if str2double (A{i} (1:8))>=t_all(1l)
31 A(end)=[]; break
32 end
33 end
34 end
35 fclose (fid);
36 for i=l:size(replacements{wb-1},1)
37 A{numel (A)+1l}=sprintf (' %8.3£%8.3f", ...
38 [replacements{wb-1}(i,1) sum(replacements{wb-1}(i,2:end),2)]);
39 end
40 fid=fopen ([’ results/w2_iter’ num2str(iter) ’'_wb’ num2str (wb) '/’ CFG{wb}.
< MainstemBR1Qin],’w’);
41 for i=1:numel (A)
42 fprintf (fid, "$s\r\n’, A{i});
43 end
44 fclose (fid); clearvars A i fid
45 $BR1 Tin
46 fid=fopen ([’ results/w2_iter’ num2str (iter) ’_wb’ num2str(wb) '/’ CFG{wb}.
~— MainstemBR1Tin]) ;
47 for 1i=1:3
48 A{i}=fgetl (fid);
49 end
50 fclose (fid);
51 temps=W2validation{wb-1}.T( isnan (W2validation{wb-1}.T(:,2)),:);
52 for i=l:size (temps, 1)
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A{i+3}=sprintf (' %$8.3£%8.3f’, temps(i,:));
end
fid=fopen ([’ results/w2_iter’ num2str(iter) ’'_wb’ num2str (wb) '/’ CFG{wb}.
— MainstemBR1Tin],’ w’);
for i=1:numel (A)
fprintf (fid,’ $s\r\n’, A{i});
end
fclose (fid); clearvars A i1 fid temps
%$BR1 DOin
fid=fopen ([’ results/w2_iter’ num2str (iter) ’'_wb’ num2str(wb) '/’ CFG{wb}.
— MainstemBR1Cin]) ;
for 1i=1:3
A{i}=fgetl (fid);
end
fclose (fid);
fid=fopen ([’ results/w2_iter’ num2str (iter) ’_wb’ num2str(wb) '/’ CFG{wb}.
— MainstemBR1Cin]) ;
C=textscan (fid, [repmat (' %$8f’, 1, 50) "%$x["\n]’]1,1078,...
"headerLines’, 3,’collectoutput’, true); %50 & 1078 are arbitrary big
— numbers
C{1l}(:,isnan(C{1}(1,:)))=
dos=W2validation{wb-1}.DO
flag=0;
for i=l:size(C{1},1)
r(i)=interpl(dos(:,1),dos(:,2),C{1}(i,1));
if Tisnan(r(i))
C{1}(i,end)=r(i);
elseif isnan(r(i)) & C{1l}(i,1)>dos(end,l) & flag==0
a=dos (end, 2); flag=1l;
C{1} (i,end)=a;
end
end
for i=l:size(C{1},1)
A{i+3}=sprintf (' %$8.3£%8.3£%$8.3£%8.3£%8.3£%8.3£%8.3£%8.3£%8.3f", C{1} (1
= 1))

[1; C{1}=C{1}(C{1}(:,1)<=t_all(end),:);
("isnan (W2validation{wb-1}.DO(:,2)),:);

end
fclose (fid);
fid=fopen ([’ results/w2_iter’ num2str(iter) ’'_wb’ num2str (wb) '/’ CFG{wb}.
< MainstemBR1Cin],’w’);
for i=1:numel (A7)
fprintf (fid, "%s\r\n’, A{i});
end
fclose (fid); clearvars A fid C i r dos flag a
end
%0pen got_brl.npt and modify turb and spill columns
fid=fopen ([’ results/w2_iter’ num2str (iter) ’_wb’ num2str (wb) ’/qgot_brl.npt’])
—
i=1; A{i}=fgetl (fid);
while ischar (A{i})
i=i+1; A{i}=fgetl(fid);

if i>3
if str2double (A{i} (1:8))>=t_all (1)
A(end)=[]; break
end
end
end

fclose (fid);
if strcmp (CEG{wb}.TurbSpillOrder,’1")
replacements{wb}=[Q{wb}.QO0T_BR1_T(Q{wb}.QOT_BR1_T(:,1)>=t_all(l),:)
Q{wb}.QO0T_BR1_S (Q{wb}.QOT_BR1_S(:,1)>=t_all(l),2)]1;
elseif strcmp (CFG{wb}.TurbSpillOrder,’0")
replacements{wb}=[Q{wb}.QO0T_BR1_S (Q{wb}.QOT_BR1_S(:,1)>=t_all(1l),:)
Q{wb}.QOT_BRI_T (Q{wb}.QOT_BR1_T(:,1)>=t_all(l),2)];
end
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for i=l:size(replacements{wb}, 1)
A{numel (A)+1l}=sprintf (' $8.3£%8.3£f%8.3f’, replacements{wb} (i, :));

end

fid=fopen ([’ results/w2_iter’ num2str(iter) ’'_wb’ num2str(wb) ’'/got_brl.npt’],
— 'w');

for i=1:numel (A7)
fprintf (fid, " %$s\r\n’, A{i});

end

fclose (fid); clearvars A 1 fid

%$Run executable w2.exe

str=['results/w2_iter’ num2str (iter) ’_wb’ num2str (wb)];
cd(str)

[T, " ]=system('w2.exe’);

cd ../..

clearvars str

%$Read in results from two and cwo files (assume DO is last col in cwo)
W2validation{wb}.T=[]; W2validation{wb}.DO=[];
d=dir ([’ results/w2_iter’ num2str(iter) ’'_wb’ num2str (wb) ’/twox.opt’]);
fid=fopen ([’ results/w2_iter’ num2str (iter) ’_wb’ num2str(wb) ’/’ d(end) .name
— 1);
C=textscan (fid, [repmat (' %8f’, 1, 50) "%+«["\n]’]1,1078,...
"headerLines’, 3,’collectoutput’, true); %50 & 1078 are arbitrary big
— numbers
W2validation{wb}.T=C{1l}; W2validation{wb}.T(:,isnan (W2validation{wb}.T(1,:)))
— =[1;
fclose (fid);
d=dir ([’ results/w2_iter’ num2str(iter) ’_wb’ num2str (wb) ’/cwox.opt’]);
fid=fopen ([’ results/w2_iter’ num2str(iter) ’'_wb’ num2str (wb) '/’ d(end) .name
— 1);
C=textscan (fid, [repmat (' $8f’, 1, 50) "%+["\n]’]1,1078,...
"headerLines’, 3,’collectoutput’, true); %50 & 1078 are arbitrary big
— numbers
W2validation{wb}.DO=C{1l}; W2validation{wb}.DO(:,isnan (W2validation{wb} .DO
= (1,:)))=I[1;
W2validation{wb}.DO=[W2validation{wb}.DO(:,1) W2validation{wb}.DO(:,end)];
fclose (fid);
clearvars d C fid
$Reset 0 values to nan
W2validation{wb}.T (W2validation{wb}.T(:,2)==0,2)=nan;
W2validation{wb}.DO (W2validation{wb}.DO(:,2)==0,2)=nan;

%% Run another W2 simulation, swapping turb and spill, for NARX training data
— diversity
fprintf ([/Running W2 simulation for reservoir #’, num2str(wb),’, swapping
< turb and spill for NARX training data diversity. \n’]);
%$Copy W2 folder into new directory in results
copyfile ([’ results/w2_iter’ num2str (iter) ’_wb’ num2str(wb)], [’ results/
— w2_iter’ num2str(iter) ’'_wb’ num2str(wb) ’_flip’]);
%$0pen got_brl.npt and modify turb and spill columns
fid=fopen ([’ results/w2_iter’ num2str (iter) ’'_wb’ num2str(wb) ’'_flip/got_brl.
— npt’1]);
i=1; A{i}=fgetl (fid);
while ischar (A{i})
i=i+1; A{i}=fgetl(fid);
if i>3
if str2double (A{i} (1:8))>=t_all(l)
A(end)=[]; break
end
end
end
fclose (fid);
if strcmp (CEG{wb}.TurbSpillOrder,’1”) $THIS PART IS SWAPPED FROM ABOVE
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replacements{wb}=[Q{wb}.Q0OT_BR1_S (Q{wb}.QOT_BR1_S(:,1)>=t_all(1l),:)
Q{wb}.QOT_BRI_T (Q{wb}.QOT_BR1_T(:,1)>=t_all(l),2)]1;
elseif strcmp (CFG{wb}.TurbSpillOrder,’0")
replacements{wb}=[Q{wb}.QO0T_BR1_T (Q{wb}.QOT_BR1_T(:,1)>=t_all(l),:)
Q{wb}.QOT_BR1_S (Q{wb}.QOT_BR1_S(:,1)>=t_all(1l),2)]1;
end
for i=l:size(replacements{wb},1)
A{numel (A)+1l}=sprintf (' $8.3£%8.3£%8.3f’, replacements{wb} (i,:));
end
fid=fopen ([’ results/w2_iter’ num2str (iter) ’'_wb’ num2str(wb) ’'_flip/got_brl.
— npt’1,'w");
for 1i=1:numel (A7)
fprintf (£id, " $s\r\n’, A{i});
end
fclose(fid); clearvars A 1 fid
$Run executable w2.exe
str=['results/w2_iter’ num2str (iter) ’'_wb’ num2str(wb) ’_flip’];
cd(str)
[T, ]=system('w2.exe’);
cd ../..
clearvars str
%$Read in results from two and cwo files (assume DO is last col in cwo)
W2validation_flip{wb}.T=[]; W2validation_flip{wb}.DO=[];
d=dir ([’ results/w2_iter’ num2str(iter) ’'_wb’ num2str(wb) ’_flip/twox.opt’]);
fid=fopen ([’ results/w2_iter’ num2str (iter) ’_wb’ num2str(wb) ’'_flip/’ d(end).
— name]) ;
C=textscan (fid, [repmat (' %$8f’, 1, 50) "%+«["\n]’]1,1078,...
"headerLines’, 3,’collectoutput’, true); %50 & 1078 are arbitrary big
— numbers
W2validation_flip{wb}.T=C{1l}; W2validation_flip{wb}.T(:,isnan/(
— W2validation_flip{wb}.T(1,:)))=1[];
fclose (fid);
d=dir ([’ results/w2_iter’ num2str(iter) ’'_wb’ num2str(wb) '_flip/cwox.opt’]);
fid=fopen ([’ results/w2_iter’ num2str (iter) ’'_wb’ num2str(wb) ’'_flip/’ d(end).
— name]) ;
C=textscan (fid, [repmat (' $8f’, 1, 50) "%+["\n]’]1,1078,...
"headerLines’,3,’collectoutput’, true); %50 & 1078 are arbitrary big
— numbers
W2validation_flip{wb}.DO=C{1l}; W2validation_flip{wb}.DO(:,isnan (
— W2validation_flip{wb}.DO(1,:)))=I[1;
W2validation_flip{wb}.DO=[W2validation_flip{wb}.DO(:,1) W2validation_flip{wb
<~ }.DO(:,end)];
fclose (fid);
clearvars d C fid
%$Reset 0 values to nan
W2validation_flip{wb}.T (W2validation_flip{wb}.T(:,2)==0,2)=nan;
W2validation_flip{wb}.DO(W2validation_flip{wb}.DO(:,2)==0,2)=nan;
end

clearvars replacements

updateQ.m

function Q=updateQ(Q,CFG,x_final,t, frequency,ic_elev,turbine_discharge, ...
WQ, ELWS_targets)

o\

Updates the structure Q with ELWS, discharge flows, and discharge WQ
based on previous days optimized

o° oo

o°

Inputs:

QO — all other inflows and outflows, interpolation settings, and
storage-elev curve

CFG - structure containing field values from config files

o\ oo

o°
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o°

x_final - vector containing timeseries of active turbine levels for all
waterbodies

t time series of JDAY values

frequency - prediction frequency (ex: 0.25=1/4 day=6 hours)

ic_elev - initial elevation condition (meters)

turbine_discharge - turbine discharge curve at fixed MW level, with
col 1 in meters and col 2 in cms

WQ - structure containing water quality constraints and NARX models
DO_narx - structure containing everything needed to make DO discharge
predictions, including:

turb_colum - column in exogenous variables with turb flows

o o0 o° o© o° o° d° o oP

o\

% spill_column - column in exogenous variables with spill flows

% times - JDAY values used in training (not used)

% inputDelays - delays for exogenous inputs

% feedbackDelays - delays for prediction feedbacks

% input_variables - 2 row cell containing variable names in first

o°

row and column number in second. For example, 'MET_WB1’
contains multiple columns of data but only some may be used
for NARX predictions

oe

o\

% bias - bias for each trained neural network

% weights - weights for each trained neural network (sum to 1)

% narx_net_closed - neural networks

% DO_limit - lower and upper DO limits (NaN means it doesn’t exist)

% DO_slack - relaxation from DO_limit (either upper or lower -

% doesn’t make sense to have both)

% Temp_narx - structure containing everything needed to make temp discharge

o\

predictions, including:

turb_colum - column in exogenous variables with turb flows
spill_column - column in exogenous variables with spill flows
times - JDAY values used in training (not used)

inputDelays - delays for exogenous inputs

feedbackDelays - delays for prediction feedbacks

input_variables - 2 row cell containing variable names in first
row and column number in second. For example, 'MET_WB1’

contains multiple columns of data but only some may be used

for NARX predictions

bias - bias for each trained neural network

weights - weights for each trained neural network (sum to 1)
narx_net_closed - neural networks

Temp_limit - lower and upper temp limits (NaN means it doesn’t exist)
Temp_slack - relaxation from Temp_limit (either upper or lower -
doesn’t make sense to have both)

ELWS_targets — 2 column matrix with JDAY in coll and elevation target
in col2

Outputs:

Q - all other inflows and outflows, interpolation settings,
storage-elev curve, and tailwater curve (all in meters)

o° o© o° o A% A A P A O O° A° A° A o o o° o° o

o°

for wb=1l:size (CFG,2)
clearvars incoming_flow
$If wb==1, update ELWS, QOT_BR1l_T, CWO, TWO
$If wb™=1, update ELWS, QOT_BR1_T, CWO, TWO, QIN_BR1, CIN_BR1, TIN_BRl (CWO &
— TWO may not update for last reservoir if NARX models aren’t provided)
x=x_final{wb} (size (x_final{wb},2)-size(t,2)+2:end);
if wb==
[turb_discharges{wb},spill_discharges{wb},HWs{wb}, , ] =
activeunits_to_discharges (x,t, frequency, ...
Q{wb},ic_elev{wb}, turbine_discharge{wb},ELWS_targets{wb}, ...
[1,01);
Q{wb}.ELWS=[Q{wb} .ELWS (Q{wb} .ELWS (:,1)<t (1), :); t’ HWs{wb}’];
Q{wb}.Q0T_BR1_T=[Q{wb}.Q0T_BR1_T (Q{wb}.QOT_BRI1_T(:,1)<t(l),:);...
t’ turb_discharges{wb}’];
Q{wb}.Q0T_BR1_S=[Q{wb}.QO0T_BR1_S(Q{wb}.QOT_BR1_S(:,1)<t(1l),:);...
t’ ones(size(t,2),1)*spill_discharges{wb}];
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DO_pred{wb}=narx_predictions (WQ{wb}.DO_narx, frequency,t,Q{wb},x, ...
turb_discharges{wb},spill_discharges{wb}, [],Q{wb}.CWO, " do’);
Temp_pred{wb}=narx_predictions (WQ{wb}.Temp_narx, frequency,t,Q{wb},x, ...
turb_discharges{wb},spill_discharges{wb}, [],Q{wb}.TWO, ' temp’) ;
$Remove NaNs from DO_pred and Temp_pred!
outgoing_DO{wb}=[t (2:end)’ DO_pred{wb}’];
outgoing_DO{wb}=outgoing_DO{wb} ("isnan (outgoing_DO{wb} (:,2)),:);
outgoing_Temp{wb}=[t (2:end)’ Temp_pred{wb}’];
outgoing_Temp{wb}=outgoing_Temp{wb} ("isnan (outgoing_Temp{wb} (:,2)),:);
%$If last values in WQ predictions are NaN, need to add last row to
— outgoing_DO and outgoing_Temp
if outgoing_Temp{wb} (end, 1)<t (end)
outgoing_Temp{wb}=[outgoing_Temp{wb}; t (end) outgoing_Temp{wb} (end,2)];
outgoing_DO{wb}=[outgoing_DO{wb}; t(end) outgoing_DO{wb} (end,2)];
end
Q{wb}.CWO=[Q{wb}.CWO (Q{wb}.CWO(:,1)<t (2)
Q{wb}.TWO=[Q{wb}.TWO (Q{wb}.TWO (:, 1)<t (2)
else
incoming_flow=turb_discharges{wb-1}+spill_discharges{wb-1};
[turb_discharges{wb}, spill_discharges{wb},HWs{wb}, ", ] =
activeunits_to_discharges (x,t, frequency, ...
Q{wb},ic_elev{wb},turbine_discharge{wb},ELWS_targets{wb}, ...
t,incoming_flow);
Q{wb}.ELWS=[Q{wb}.ELWS (Q{wb}.ELWS (:,1)<t (1),:); t’ HWs{wb}’'];
Q{wb}.Q0T_BR1_T=[Q{wb}.QOT_BR1_T (Q{wb}.QOT_BR1_T(:,1)<t(1l),:);...
t’ turb_discharges{wb}’];
Q{wb}.QO0T_BR1_S=[Q{wb}.Q0T_BR1_S(Q{wb}.QOT_BR1_S(:,1)<t(l),:);...
t’ ones(size(t,2),1)+*spill_discharges{wb}];
%Qin contains both spill and turbine
Q{wb}.QIN_BR1=[Q{wb}.QIN_BR1 (Q{wb}.QIN_BR1(:,1)<t(l),:);...
t’ incoming_flow’];
Q{wb}.CIN_BR1I=[Q{wb}.CIN_BR1 (Q{wb}.CIN_BRI(:,1)<t(2),:);...
outgoing_DO{wb-1}1];
Q{wb}.TIN_BR1=[Q{wb}.TIN_BRl (Q{wb}.TIN_BR1(:,1)<t(2),:);...
outgoing_Temp{wb-1}];
%$May not have WQ calculations for final reservoir’s discharge (depends on
— problem definition) so check for these
if "isempty (WQ{wb}.DO_narx)
DO_pred{wb}=narx_predictions (WQ{wb}.DO_narx, frequency,t, ...
Q{wb}, x,turb_discharges{wb},spill_discharges{wb}, [],Q{wb}.CWO,"do’");
%$Remove NaNs from DO_pred and Temp_pred!
outgoing_DO{wb}=[t (2:end)’ DO_pred{wb}’];
outgoing_DO{wb}=outgoing_DO{wb} ("isnan (outgoing_DO{wb} (:,2)),:);
%$If last values in WQ predictions are NaN, need to add last row to
— outgoing_DO and outgoing_Temp
if outgoing_DO{wb} (end, 1)<t (end)
outgoing_DO{wb}=[outgoing DO{wb}; t (end) outgoing_DO{wb} (end,2)1];
end
Q{wb}.CWO=[Q{wb}.CWO (Q{wb}.CWO(:,1)<t(l),:); outgoing DO{wb}];
end
if "isempty (WQ{wb}.Temp_narx)
Temp_pred{wb}=narx_predictions (WQ{wb}.Temp_narx, frequency, t,
Q{wb}, x,turb_discharges{wb},spill_discharges{wb}, []1,Q{wb}.TWO, temp’
= )
$Remove NaNs from DO_pred and Temp_pred!
outgoing_Temp{wb}=[t (2:end)’ Temp_pred{wb}’];
outgoing_Temp{wb}=...
outgoing_Temp{wb} (“isnan (outgoing_Temp{wb} (:,2)),:);
%$If last values in WQ predictions are NaN, need to add last row to
— outgoing_ DO and outgoing_Temp
if outgoing_Temp{wb} (end, 1)<t (end)
outgoing_Temp{wb}=[outgoing_Temp{wb}; t (end) outgoing_Temp{wb} (end
— ,2)1;

; outgoing_DO{wb}];

r )
, 1) ; outgoing_Temp{wb}];

end
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Q{wb}.TWO=[Q{wb}.TWO (Q{wb}.TWO(:,1)<t (1), :);

end
end
end

clearvars outgoing_DO outgoing_Temp

outgoing_Temp{wb}];
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Appendix E

MATLAB® CODE FOR HYDROPOWER OPTIMIZATION UNDER WATER QUALITY
CONSTRAINTS MODIFIED FOR RANDOM IMMIGRANTS REPLACEMENT AND
ADAPTIVE ADDITIONAL SAMPLING

This appendix contains code that is in addition to or modified from that which is provided in
Appendix D in order to create the replacement and adaptive additional sampling functionalities

described in Chapter IV. As written, it is not equipped to handle multiple waterbodies or multiday

problems.
config.json

{
"jdayStart": "215",
"OperatingPeriod": "1",
"OptimizeDayByDay": "0",
"LogFile": "results/results_log.txt",
"NumberOfWaterbodies": "1",
"wblconfig": "config_ OHL.json",
"GAPopSizeMultiplierStart": "480",
"FeasibilityCheckPopSizeMultiplierStart": "480",
"GAGenerationsEarlyStoppingStart": "1",
"RandomNumberGeneratorSeed": "7",
"TrainingSetSize": "4",
"InitialTrainingSetSize": "10",
"ReplacementOnOff": "ON",
"AdditionalSamplingOnOff": "OFF"

}

config_OHL.json

{
"Name": "Old Hickory",
"WaterSurfaceElevationInitial”™: "",
"DischargeDOInitial": "",
"DischargeTempInitial": "",
"WaterSurfaceElevationMin": "134.722",
"WaterSurfaceElevationMax": "135.636",
"DischargeDOMin": "7",
"DischargeDOMax": "",
"DischargeTempMin": "",
"DischargeTempMax": "",
"MaxHourlyChangeInTurbineUnit": "1",
"MaxHoursWithZeroGeneration": "6",
"NumberOfTurbineUnits": "4",
"MWRatingPerTurbineUnit": "25",
"TurbineDischargeCurve": "OHL/testfiles/turbine_discharge_curve_25MW.txt",
"StorageElevationCurve": "OHL/testfiles/storage_elevation.txt",
"TailWaterRatingCurve": "OHL/testfiles/tailwater_rating.txt",
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16
17
18
19
20
21

23
24
25
26

27

36
37
38

"DailyCostCurve": "OHL/testfiles/cost_curve2.txt",
"TrainedDONeuralNetworkFile": "OHL/testfiles/ohl_DO_narx_20160906.mat",
"TrainedTempNeuralNetworkFile": "OHL/testfiles/ohl_temp_narx_20160906.mat
(_> Al ,
"WaterSurfaceElevationTargets": "",
"optimizationDir": "OHL/testfiles/optimization215/",
"ForecastTurbinePattern": "OHL/testfiles/forecast_turbine_pattern215.txt",
"PreviousTurbinePattern": "OHL/testfiles/previous_turbine_pattern215.txt",
"w2inputDir": "OHL/testfiles/w2input215/",
"TurbSpillOrder": "1",
"MainstemBR1Qin": "gin_brl.npt",
"MainstemBR1Tin": "tin_brl_2005.npt",
"MainstemBR1Cin": "cin_brl_2005.npt",
"TransitionMatrix": "OHL/testfiles/transition_matrix.txt"
}
main.m

function main (configfile)

initialization;
tic; initial NARX_model_generation; toc

while retraining=='Y’
iter=iter+1;
$Run optimization over planning period
fprintf (['Running 2-step optimization to minimize WQ constraint violations,
— then maximize power value. \n’]);
opttiming=tic; optimization_routine; timing(l)=toc(opttiming); clearvars
— opttiming

close all; ga_results_plotting_nobanding

h = get(0,’children’); h=sort (h);

for wb=1:1length (h)
str=["results/’ datestr(clock,’yyyy-mm-dd-HHMM’) ’_iter’ num2str (iter) ’

— _wb’ num2str(wb) ’_’ num2str (round(y_dollars_total(2)))];

savefig (h (wb), str)

end

$Retrain NARX models

retraintiming=tic; NARX_retrain_trpt; timing(3)=toc(retraintiming);

clearvars trainingpop retraintiming

%$Print to results log file
fileID=fopen (config.LogFile,’a’);
results.dollars (iter)=y_dollars_total (2);
fprintf (filelID,’%12.0f %$16.0f %$12.0f %18.0f %$18.0f %$14.0f %14.0f %14.0f %14.0
— £ %12.3f %12.3f %12.0f %12.0f %$12.0f %12.0f",...
iter, feasiblilitycheck_ga_pop_size,ga_pop_size,training_ss_clusters,
— training_ss_nearby, ...
funccount_tot, funccount_cache, funccount_ga_tot, funccount_ga_cache, SD (iter
~ +1), replacement_rate,y_MWh_total(l),y_MWh_total(2),...
y_dollars_total(l),y_dollars_total(2));
for wb=1l:size (CFG, 2)
fprintf (fileID,’ %12.0f $12.0f’,y_MWh(wb,2),y_dollars(wb,2));
end
for wb=1l:size (CFG, 2)
results.AME (iter, wbx2-1:wb*2)=[AME{wb}.T,AME{wb} .DO];
results.slacks (iter,wb*2-1:wb*2)=[slacks{wb}.T.W2,slacks{wb}.DO.W2];
fprintf (fileID,’ %12.3f %12.3f %$16.3f %16.3f %15.3f %$15.3f %15.3f %15.3f’
— ...
AME{wb}.T,AME{wb}.DO,AME_trpt.T_avg(iter),AME_trpt.DO_avg(iter), ...
slacks{wb}.T.NN,slacks{wb}.DO.NN, ...
slacks{wb}.T.W2,slacks{wb}.DO.W2);
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end

clearvars slacks ans data_start objfuncvalues Output_noOs Outputprev h wb Axl
— Ax2 Ax3 H hl h2 h3 h5 h6 h7 legendl output nVar maxdelay wb xlims
<~ xrange ylims yrange

$Adjust ga_pop_size, if best solution found is the same as the best solution
— from the last iteration
if iter==1
ga_pop_size_l=ga_pop_size;
else
if all(x_final_all{iter}==x_final_all{best_iter(iter-1)})
ga_pop_size=round (min (4800, ga_pop_sizexga_pop_size_expand));
else
ga_pop_size=round (max (ga_pop_size_1,ga_pop_size/ga_pop_size_expand)) ;
end
end

%$Determine if we’ve met stopping point, when best soln has not changed in 3
< iter and DO and/or temp validation checks at best soln are below 0.5

— AME
fprintf (filelID,’ %12.0f %$13s %13s’,best_iter(iter),x_in_initpop,x_in_prevpop)
—

if iter==50 retraining='N’; end

if iter==
fprintf (£ileID,’ %$12.0f’,nan);
else
%$2-norm between current solution and best iteration solution
two_norm(iter)=norm(x_final_ all{iter} (:)—-x_final all{best_iter(iter-1)1}(:)
— )i
fprintf (fileID,’ %12.3f’,two_norm(iter));
end

%Optimization timing(1l) includes W2 runs and NARX retraining, so subtract
— those out

timing (1l)=timing(1l)-timing(2);

fprintf (fileID,’%12.3f %$12.3f %12.3f\r\n’,timing(1l),timing(2), ...
timing(3)); fclose(filelD);

end
save (' results/end.mat’);

fprintf (OPTIMIZATION’,'Optimization over operating period complete.’)
cumulative_discharge_plot;

initialization.m

$Initialization

%% Startup: Empty vars, setup paths, check input, init config, random # init
clearvars -except configfile transition_matrix

%$Start parallel pool
gcp;

% add path to "1lib’ folder

if ("“isdeployed)
addpath (' ./1ib");

end

% load general config

config=loadjson(’config. json’);

%$Load config for each waterbody, as defined in general config
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for wb=1l:str2double (config.NumberOfWaterbodies)
CFG{wb}=loadjson (eval (['config.wb’ num2str (wb) ’config’]));
end

% create logger
L = log4m.getLogger (' optimization_run.log’);

%% Load in data and set constraints and system specs

%$Do replacement and/or additional W2 sampling steps?
ReplacementOnOff=config.ReplacementOnOff;
AdditionalSamplingOnOff=config.AdditionalSamplingOnOff;

transition_matrix=[];

$TOTAL time period to optimize on

start_date=str2double (config.jdayStart);

frequency=1/24;

days_forward=str2double (config.OperatingPeriod);
t=[start_date:frequency:start_date+l];

$Optimize day by day (1), or all in one step (0)
Optimize_day_by_day=str2double (config.OptimizeDayByDay) ;
%GA population sizes

ga_pop_size=str2double (config.GAPopSizeMultiplierStart) xsize (CFG,2);
feasiblilitycheck_ga_pop_size=str2double (config.

— FeasibilityCheckPopSizeMultiplierStart) xsize (CFG, 2);
GAgenerations=str2double (config.GAGenerationsEarlyStoppingStart);
$Random number generator seed
rng (str2double (config.RandomNumberGeneratorSeed))
$Training set size (number of kmeans clusters, and number of samples near

— optimal)
training_ss=str2double (config.TrainingSetSize);
training_ss_clusters=training_ss; training_ss_nearby=0; %$initial values
Initialtrainingsetsize=str2double (config.InitialTrainingSetSize);
%0ther variables from config files
for wb=1l:size (CFG, 2)

$Transition matrix for markov chain

if "isempty (CFG{wb}.TransitionMatrix)

transition_matrix{wb}=dlmread (CFG{wb}.TransitionMatrix);

else

transition_matrix{wb}=[];
end
$Number of turbines - 4 for OHL

no_of_units{wb}=str2double (CFG{wb} .NumberOfTurbineUnits) ;

%$Operating level, MW

MW_rating{wb}=str2double (CFG{wb} .MWRatingPerTurbineUnit) ;
$Previous elevations

elevtemp{wb}=dlmread (strcat (CFG{wb}.optimizationDir, filesep,’ELWS.csv’'),’,’
— ,1,0);

%$Elevation constraints - general

ELWS_limit{wb} (1)=str2double (CFG{wb}.WaterSurfaceElevationMin) ;

ELWS_limit{wb} (2)=str2double (CFG{wb}.WaterSurfaceElevationMax) ;

$Max hourly unit change constraint

if "isempty (CEFG{wb}.MaxHourlyChangeInTurbineUnit)
max_hrly_unit_change{wb}=str2double (CFG{wb} .MaxHourlyChangeInTurbineUnit) ;

else
max_hrly_ unit_change{wb}=[];
end
$Zero generation hourly limit - can’t go longer than this with no turb flow

if "isempty (CFG{wb}.MaxHoursWithZeroGeneration)
zero_gen_limit{wb}=str2double (CFG{wb} .MaxHoursWithZeroGeneration);
else
zero_gen_limit{wb}=[];
end
%$DO discharge NARX model
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if isempty (CEG{wb}.TrainedDONeuralNetworkFile)
WQ{wb} .DO_narx=[];

else
WQ{wb}.DO_narx=load (CFG{wb}.TrainedDONeuralNetworkFile);
fn=fieldnames (WQ{wb}.DO_narx); WQ{wb}.DO_narx=WQ{wb}.DO_narx. (fn{l})
— ; clearvars fn
end

WQ{wb}.DO_limit (1)=str2double (CEFG{wb}.DischargeDOMin) ;
WQ{wb}.DO_limit (2)=str2double (CFG{wb}.DischargeDOMax) ;
WQ{wb}.DO_slack=0;
$Temperature discharge NARX model
if isempty (CEG{wb}.TrainedTempNeuralNetworkFile)

WO {wb}.Temp_narx=[];

else
WO{wb}.Temp_narx=load (CFG{wb}.TrainedTempNeuralNetworkFile) ;
fn=fieldnames (WQ{wb}.Temp_narx); WQ{wb}.Temp_narx=WQ{wb}.Temp_narx. (
— fn{l});
clearvars fn
end

WQ{wb}.Temp_limit (1)=str2double (CFG{wb}.DischargeTempMin) ;
WO{wb}.Temp_limit (2)=str2double (CFG{wb}.DischargeTempMax) ;
WQ{wb}.Temp_slack=0;
%$Cost curve
if isempty (CEG{wb}.DailyCostCurve)
cost_curve_MW{wb}=[0 1];
else
cost_curve_MW{wb}=dlmread (CFG{wb}.DailyCostCurve,’ ’,1,0);
end
$Turbine discharge curve - meters, cms at MW_rating
turbine_discharge{wb}=dlmread (CFG{wb}.TurbineDischargeCurve,’ ’,1,0);
$Find initial elevation
ic_elev_first{wb}=interpl (elevtemp{wb} (:,1),elevtemp{wb} (:,2),start_date);
%$Build the variable Q, which includes all flows for water balance,
<~ interpolation settings, tw curve both tabular discharge vs. tw and tw
— as f (twprev,discharge)), se curve, and other WQ inputs needed for NARX
<~ predictions
Q{wb}=buildQ (CFG{wb}.optimizationDir) ;
Q{wb}.tw_curve_cms_m=dlmread (CFG{wb}.TailWaterRatingCurve,’ ’,1,0);
Q{wb}.SE_meters_m3=dlmread (CFG{wb}.StorageElevationCurve,’ ’,1,0);
%$Save a copy of Q as original projected values - Q will update during
— optimization
Qprojected=Q;
end

$Set up flag for when to do validation checks and retraining of NARX models
for wb=1l:size (CFG, 2)
WQ{wb}.DO_valid_check=0; WQ{wb}.Temp_valid_check=0;
end
for wb=1l:size (CFG,2)
if any(“isnan (WQ{wb}.DO_limit))
WQ{wb}.DO_valid_check=1;
if wb™=1
for i=1l:size (WQ{wb}.DO_narx.input_variables, 2)
if WQ{wb}.DO_narx.input_variables{l,i}=="TIN_BR1’
WQ{wb-1}.Temp_valid_check=1;
end
if WQ{wb}.DO_narx.input_variables{l,i}=="CIN_BRL1’
WQ{wb-1}.DO_valid_check=1;
end
end
end
end
end
for wb=1l:size (CFG,2)
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if any(“isnan (WQ{wb}.Temp_limit))
WQ{wb}.Temp_valid_check=1;
end
if wb™=1
for i=l:size (WQ{wb}.Temp_narx.input_variables, 2)
if WQ{wb}.Temp_narx.input_variables{l,i}=="TIN_BR1’
WQ{wb-1}.Temp_valid_check=1;
end
if WQ{wb}.Temp_narx.input_variables{l,i}=="CIN_BR1’
WQ{wb-1}.D0O_valid_check=1;
end
end
end
end
clearvars 1

%$Set feasibility_check to start algorithm checking constraint feasibility
feasibility_check=1;
feasible_soln_found=0;

%$Set up time variables, determine forecast and past turbine patterns
t_all=[start_date:frequency:start_date+days_forward];
t_all_round=roundn (t_all,-2);
tprev=[t (1) max (cell2mat (zero_gen_limit (:))) *frequency:frequency:t(1l)];
tprev_round=roundn (tprev, -2);
for wb=1l:size (CFG, 2)
%$Forecast turbine pattern (if supplied)
if isempty (CEG{wb}.ForecastTurbinePattern)
L.warn(/ INITIALIZATION’, ["No reservoir ', num2str(wb), ’ forecast
— turbine pattern provided - assuming from turbine flows in W2
— QOT file.’])
x0_all (wb, :)=actual_turb_ops(t_all_round,Qprojected{wb},elevtemp{wb
— },turbine_discharge{wb}, ...
no_of_units{wb});

else
forecastturbpattern=dlmread (CFG{wb}.ForecastTurbinePattern,’\t’,1,0)
—

for i=l:size(t_all_round,2)-1
index=find (forecastturbpattern(:,1l)<=t_all_round(i+l));
x0_all (wb,i)=forecastturbpattern (index (end),?2);

end

clearvars 1 forecastturbpattern index

end

%$Previous turbine pattern for the year (if supplied)
if isempty (CFG{wb}.ForecastTurbinePattern)
L.warn (" INITIALIZATION’, ["No reservoir ', num2str(wb), ’ previous
— turbine pattern provided - assuming from turbine flows in W2
— QOT file.’])
xprev{wb}=actual_turb_ops (tprev_round,Qprojected{wb},elevtemp{wb},
— turbine_discharge{wb},no_of_units{wb});

else
prevturbpattern=dlmread (CFG{wb} .PreviousTurbinePattern,’\t’,1,0);
for i=l:size (tprev_round, 2)
index=find (prevturbpattern(:,1l)<=tprev_round(i));
xprev{wb} (i) =prevturbpattern (index (end),2);
end
clearvars 1 prevturbpattern index
end

end

%% Do W2 run with outflows consistent with x0_all (supplied W2 folder isn’t
— guaranteed to have flows corresponding to x0 operations)
for wb=1l:size (CFG, 2)
[turb_discharges, spill_discharges, ™, ", "]=activeunits_to_discharges (x0_all (wb
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— ,:),t_all, ...
frequency, Qprojected{wb},ic_elev_first{wb}, ...
turbine_discharge{wb}, [1,[1,[]);
Q{wb}.QOT_BR1_T=[Q{wb}.QOT_BRI1_T(Q{wb}.QOT_BRI1_T(:,1)<t(1l),:);...
t_all’ turb_discharges’];
if Optimize_day_by_day==1
Q{wb}.Q0T_BR1_S=[Q{wb}.QOT_BR1_S(Q{wb}.QOT_BR1_S(:,1)<t(1l),:);...
t_all’ ones(size(t_all,2),1l)xspill_discharges];
else
for ii=l:size(spill_discharges, 2)
spill_values (1, (1/frequency) (ii-1)+1: (1/frequency) * (ii)+1)=...
spill_discharges(1l,1ii);
end
Q{wb}.QOT_BR1_S=[Q{wb}.QOT_BR1_S(Q{wb}.QOT_BR1_S(:,1)<t(1l),:);...
t_all’ spill_values’];
clearvars 1i spill_values
end
if “exist ([’results/w2_iter0_wb’ num2str(wb)]) %$If folder already exists in
— the results folder from previous testing, don’t have to rerun W2 here
copyfile (CFG{wb}.w2inputDir, [’ results/w2_iter(0_wb’ num2str (wb)])
%0pen control file and modify TMEND
fid=fopen ([’ results/w2_iter0_wb’ num2str(wb) ’/w2_con.npt’]);
i=1; A{i}=fgetl (fid);
while ischar (A{i}) i=i+1l; A{i}=fgetl (fid); end
fclose (fid); A{28} (22:24)=num2str (t_all (end));
fid=fopen ([’ results/w2_iter0_wb’ num2str(wb) ’/w2_con.npt’],’w’);
for i=1:numel (A)
fprintf (fid, " %$s\r\n’, A{i});
if A{i+l}==-1
break
end
end
fclose (fid); clearvars A 1 fid

%$If wb™=1, update BR1 Qin, Tin, and DOin
if wb™=1
$BR1 Qin
fid=fopen ([’ results/w2_iter0_wb’ num2str (wb) '/’ CFG{wb}.MainstemBR1Qin
— 1)
i=1; A{i}=fgetl (fid);
while ischar (A{i})
i=i+1; A{i}=fgetl(fid);

if 1>3
if str2double (A{i} (1:8))>=t_all (1)
A(end)=[]; break
end
end
end

fclose (fid);
for i=l:size(replacements{wb-1},1)
A{numel (A)+1l}=sprintf (' %$8.3£%8.3f", ...
[replacements{wb-1}(i,1) sum(replacements{wb-1}(i,2:end),2)]1);
end
fid=fopen ([’ results/w2_iter0_wb’ num2str (wb) '/’ CFG{wb}.MainstemBR1Qin
= 1,"w");
for i=1:numel (A)
fprintf (fid, " %$s\r\n’, A{i});
end
fclose (fid); clearvars A i fid
$BR1 Tin
fid=fopen ([’ results/w2_iter0_wb’ num2str (wb) '/’ CFG{wb}.MainstemBR1Tin
— 1)
for i=1:3
A{i}=fgetl (fid);
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fclose (fid);
temps=W2validation{wb-1}.T("isnan(W2validation{wb-1}.T(:,2)),:);
for i=l:size(temps, 1)
A{i+3}=sprintf (' %$8.3£%8.3f’, temps(i,:));
end
fid=fopen ([’ results/w2_iter0_wb’ num2str (wb) '/’ CFG{wb}.MainstemBR1Tin
— 1,"w');
for i=1:numel (A)
fprintf (fid, ' %$s\r\n’, A{i});

end

fclose (fid); clearvars A i fid temps

$BR1 DOin

fid=fopen ([’ results/w2_iter0_wb’ num2str (wb) '/’ CFG{wb}.MainstemBR1Cin
— 1)

for i=1:3
A{i}=fgetl (fid);

end

fclose (fid);
fid=fopen ([’ results/w2_iter0_wb’ num2str (wb) '/’ CFG{wb}.MainstemBR1Cin
— 1)
C=textscan (fid, [repmat (' $8f’, 1, 50) "%+x["\n]’]1,107°8,...
"headerLines’,3,’collectoutput’, true); %50 & 1078 are arbitrary big
— numbers
C{1} (:,isnan(C{1}(1,:)))=[1; C{1}=C{1}(C{1}(:,1)<=t_all(end),:);
dos=W2validation{wb-1}.DO( " isnan (W2validation{wb-1}.DO(:,2)),:);
flag=0;
for i=1l:size(C{1},1)
r(i)=interpl(dos(:,1),dos(:,2),C{1l}(i,1));
if Tisnan(r(i))
C{l}(i,end)=r(i);
elseif isnan(r(i)) & C{l}(i,1)>dos(end,l) & flag==
a=dos (end, 2); flag=l;
C{1l} (i, end)=a;
end
end
for i=1l:size(C{1},1)
A{i+3}=sprintf (' $8.3£%8.3£%$8.3£%8.3£%8.3£%8.3£%8.3£%8.3£%8.3£f", C
— {1} (i,:));
end
fclose (fid);
fid=fopen ([’ results/w2_iter0_wb’ num2str (wb) '/’ CFG{wb}.MainstemBR1Cin
= 1,"w');
for i=1:numel (A)
fprintf (fid, "%s\r\n’, A{i});
end
fclose(fid); clearvars A fid C i r dos flag a
end
%0pen got_brl.npt and modify turb and spill columns
fid=fopen ([’ results/w2_iterO_wb’ num2str (wb) ’/got_brl.npt’]);
i=1; A{i}=fgetl (fid);
while ischar (A{i})
i=i+1; A{i}=fgetl (fid);
if i>3
if str2double(A{i} (1:8))>=t_all(l)
A(end)=[]; break
end
end
end
fclose (fid);
if strcmp (CFG{wb}.TurbSpillOrder,”1”)
replacements{wb}=[Q{wb}.QO0T_BR1_T (Q{wb}.QOT_BR1_T(:,1)>=t_all(1l),:)
Q{wb}.QO0T_BR1_S (Q{wb}.QOT_BR1_S(:,1)>=t_all(1l),2)]1;
elseif strcmp (CFG{wb}.TurbSpillOrder,’0")
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replacements{wb}=[Q{wb}.QO0T_BR1_S (Q{wb}.QOT_BR1_S(:,1)>=t_all(1l),:)
Q{wb}.QOT_BRI_T (Q{wb}.QOT_BR1_T(:,1)>=t_all(l),2)];
end
for i=l:size(replacements{wb},1)
A{numel (A)+1l}=sprintf (' $8.3£%8.3£f%8.3f’, replacements{wb} (i,:));
end
fid=fopen ([’ results/w2_iter0_wb’ num2str(wb) ’/got_brl.npt’],’w’);
for i=1:numel (A)
fprintf (fid, "%$s\r\n’, A{i});
end
fclose (fid); clearvars A 1 fid

$Run executable w2.exe
fprintf ([’ Running W2 for wb’ num2str(wb) ’ with outflows consistent with
— projected turbine operations. \n’]);
str=["results/w2_iter0_wb’ num2str (wb)];
cd(str)
[T, " ]=system('w2.exe’);
cd ../..
end
$Read in TWO, CWO, and ELWS from W2 run
d=dir ([’ results/w2_iter0_wb’ num2str(wb) ’/twox.opt’]);
fid=fopen ([’ results/w2_iter0_wb’ num2str (wb) '/’ d(end).name]);
C=textscan (fid, [repmat (' $8f’, 1, 50) "%+«["\n]’],1078,...
"headerLines’,3,’collectoutput’, true); %50 & 1078 are arbitrary big
— number
Q{wb}.TWO=C{1l}; Q{wb}.TWO(:,isnan (Q{wb}.TWO(1,:)))=1[1;
fclose (fid);
d=dir ([’ results/w2_iter0_wb’ num2str (wb) ’/cwox.opt’]);
fid=fopen ([’ results/w2_iter0_wb’ num2str (wb) '/’ d(end).name]);
C=textscan (fid, [repmat (' $8f’, 1, 50) "%+«["\n]’],1078,...
"headerLines’,3,’collectoutput’, true); %50 & 1078 are arbitrary big
< numbers
Q{wb}.CWO=C{1l}; Q{wb}.CWO(:,isnan(Q{wb}.CWO(1l,:)))=I[1;
Q{wb}.CWO=[Q{wb}.CWO(:,1) Qf{wb}.CWO(:,end)];
fclose (fid);
d=dir ([’ results/w2_iter0_wb’ num2str(wb) ’/tsrx.opt’]);
fid=fopen ([’ results/w2_iter0_wb’ num2str (wb) '/’ d(end).name]);
C=textscan (fid, [repmat (' $8f’, 1, 50) "%+["\n]’],1078,...
"headerLines’,12,’collectoutput’, true); %50 & 1078 are arbitrary big
— numbers
Q{wb}.ELWS=C{1l}; Q{wb}.ELWS(:,isnan(Q{wb}.ELWS(1l,:)))=[1;
Q{wb}.ELWS=[Q{wb}.ELWS(:,1) Q{wb}.ELWS(:,3)];
fclose (fid);

Qprojected=Q; clearvars str turb_discharges spill_discharges C fid d
end
clearvars replacements
%% Compute target elevations
for wb=1l:size (CFG,2)

$Target elevations (soft constraint)

[T, ,HWs_x0 (wb, :), ", "]1=activeunits_to_discharges (x0_all(wb,:),t_all, ...
frequency, Qprojected{wb},ic_elev_first{wb},...
turbine_discharge{wb}, [1,[1,11);

if isempty (CFG{wb}.WaterSurfaceElevationTargets)

L.warn (' INITIALIZATION’, ['No reservoir ', num2str(wb),’ ELWS targets
— provided - assuming targets from projected operations W2 simulation
— .71)

ELWS_targets{wb} (:,1)=[start_date+l:1l:start_date+days_forward]’;

ELWS_targets{wb} (:,2)=interpl (t_all,HWs_x0(wb,:), ...
[start_date+l:1:start_date+days_forward])’;

if isnan (ELWS_targets{wb} (end,2))
ELWS_targets{wb} (end, 2)=elevtemp{wb} (end, 2);
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else
ELWS_targets{wb}=dlmread (CFG{wb}.WaterSurfaceElevationTargets,’\t’,1,0);
end
ELWS_targets{wb} (:,2)=min (ELWS_targets{wb} (:,2),ELWS_limit{wb} (2));
ELWS_targets{wb} (:,2)=max (ELWS_targets{wb} (:,2),ELWS_limit{wb} (1));
end
clearvars wb t_all_round t_prev_round elevtemp x0_all_ fix
$Soft penalty coeff for deviation from final target elevation
elev_soft_penalty_coeff_ constant=[1le3 5e2];
$Water quality and elevation constraint rounding setting (10=tenths place, 100=
<~ hundredths place, etc.)
elev_constraint_rounding=100;
wg_constraint_rounding=100;
$Assign priority ranking for constraints on elev, DO, and temp, starting with
< highest priority first. This is used during the prescreen to see if
— constraints are even feasible
ranking={’elev’,’do’, temp’ };
$Penalty tolerance
tolerance=10"-20;

%% Initialize cache of solutions - only use if Optimize day by day is off and
— there is 1 waterbody

cache.t=t_all;

cache.x=[]; cache.HWs=[]; cache.DO=[]; cache.T=[];

cache.x=x0_all(:,:); cache.flag={’'x0’"}; cache.HWs=HWs_x0 (l:end);

cache.DO=interpl (Qprojected{1l}.CWO (Qprojected{1l}.CWO(:,2) " =0,1),Qprojected{1}.
<~ CWO (Qprojected{1l}.CWO(:,2) " =0,2),t_all(2:end));

$Fill in Nans at the end

a=cache.DO (" isnan (cache.DO)); cache.DO(isnan (cache.DO))=a(end);

turbs=interpl (Qprojected{1}.Q0OT_BR1_T(:,1),Qprojected{1}.Q0T_BR1_T(:,2),t_all);

spills=interpl (Qprojected{1l}.Q0T_BR1_S(:,1),Qprojected{1}.Q0T_BR1_S(:,2),t_all);

flowout_x0=turbs (2:end)+spills(2:end);

cache.DO (flowout_x0==0)=nan;

cache.T=interpl (Qprojected{1l}.TWO (Qprojected{1l}.TWO(:,2) "=0,1),Qprojected{1l}.TWO
— (Qprojected{l}.TWO(:,2)7=0,2),t_all(2:end));

$Fill in Nans at the end

a=cache.T("isnan(cache.T)); cache.T (isnan (cache.T))=a(end);

cache.T (flowout_x0==0)=nan;

clearvars a flowout_x0 turbs spills HWs_xO0

%% Save projected operations data in Input and Output for future NARX training
if "exist (’ Inputs’)
wb=1;
Inputs{wb}.discharge_DO=[];
Inputs{wb}.discharge_Temp=[];
end
% DO inputs and output
for wb=1l:size (CFG, 2)
if WQ{wb}.DO_valid_check==
index=size (Inputs{wb}.discharge_DO, 2);
timesteps=[t_all (1l)-max (WQ{wb}.DO_narx.inputDelays)/24:(1/24) :t_all (end)
— 1"
vars=WQ{wb}.DO_narx.input_variables;
Inputs{wb}.discharge_DO{index+1}=[];
for i=l:size(vars,2)
if strfind(char(vars(l,i)),’ TIN’")
flow_variable=strrep (char (vars(l,i)),’TIN’,’ QIN");
elseif strfind(char (vars(l,1i)),’CIN")
flow_variable=strrep (char (vars(l,i)),’ CIN’," QIN");
elseif strfind(char (vars(l,1i)),’TTR")
flow_variable=strrep (char (vars(l,i)),’TTR’,’QTR");
elseif strfind(char (vars(l,1i)),’CTR")
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flow_variable=strrep (char(vars(l,i)),’CTIR’,’"QTR");

else
flow_variable=char (vars(1l,1));

end

if “strcmp (char(vars(l,i)),’'MET_WB1l’) %assume interpolation for MET
— data

for ii=1l:size(Q{wb}.interpolation, 2)
if strcmp (char (Q{wb}.interpolation(l,1ii)),flow_variable)
break
end
end
if strcmp (char (Q{wb}.interpolation(3,1ii)),"ON")

Inputs{wb}.discharge_DO{index+1} (:,i)=interpl (Q{wb}. (vars{l,1i})

— (:,1),...
Q{wb}. (vars{1l,1i}) (:,vars{2,1i}+1),timesteps);
elseif strcmp (char (Q{wb}.interpolation(3,ii)),’ OFF’)
for iii=l:size(timesteps, 1)

index2=find (Q{wb}. (vars{l,1i}) (:,1)<=timesteps(ii),1l,’last’);

Inputs{wb}.discharge_DO{index+1} (iii, 1)=0Q{wb}. (vars{l,1i}) (
— index2,vars{2,1i}+1);

end
end
else
Inputs{wb}.discharge_DO{index+1} (:,1i)=interpl (Q{wb}. (vars{l,i}) (:,1)
— ...
Qf{wb}. (vars{1l,i}) (:,vars{2,1i}+1),timesteps);
end
end

DO_noNAN=interpl (Qprojected{wb}.CWO (Qprojected{wb}.CWO(:,2) "=0,1), ...
Qprojected{wb}.CWO (Qprojected{wb}.CWO(:,2) " =0,2),timesteps);

$Fill in Nans at the end

a=DO_noNAN (“isnan (DO_noNAN) ); DO_noNAN (isnan (DO_noNAN) )=a (end) ;

turbs=interpl (Qprojected{wb}.QOT_BR1_T(:,1),Qprojected{wb}.Q0T_BR1_T(:,2),

— timesteps);

spills=interpl (Qprojected{wb}.QO0T_BR1_S(:,1l),Qprojected{wb}.Q0T_BR1_S(:,2)

— ,timesteps);
flowout=turbs+spills; DO_noNAN (flowout==0)=nan;

%$Output data
Output{wb}.discharge_DO{index+1} (:,1)=DO_noNAN;

for i=1l:size (Inputs{wb}.discharge_DO, 2)
$Convert to cells

Inputs_seqg{wb}.discharge_DO{i}=con2seqg(Inputs{wb}.discharge_DO{i}’);
Output_seqg{wb}.discharge_DO{i}=con2seq(Output{wb}.discharge_DO{i}’");

end

clearvars 1 ii iii flow_variable index a DO_noNAN turbs spills flowout
— index2 vars timesteps

%$Combine them all into single Input and Output cell arrays

Inputs_seq mul{wb}.discharge_DO=catsamples (Inputs_seqg{wb}.discharge_DO{:

— 'pad’);

Output_seq mul{wb}.discharge_DO=catsamples (Output_seqg{wb}.discharge_DO{:

— 'pad’);
clearvars b Xs Xi Al Ts tr tr2 b ypl TS bias narx_net_closed narx_net
— muhat sigmahat

end
end

)

% Temp inuts and output
for wb=1l:size (CFG, 2)
if WQ{wb}.Temp_valid_check==1
index=size (Inputs{wb}.discharge_Temp, 2);
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timesteps=[t_all (1) -max (WQ{wb}.Temp_narx.inputDelays)/24:(1/24):t_all (end)
— 173
vars=WQ{wb}.Temp_narx.input_variables;
Inputs{wb}.discharge_Temp{index+1l}=[];
for i=l:size(vars, 2)
if strfind(char(vars(1l,i)),’TIN")
flow_variable=strrep (char (vars(l,i)),’TIN’," QIN");
elseif strfind(char (vars(l,1i)),’CIN’)
flow_variable=strrep (char(vars(l,i)),’CIN’,’QIN");
elseif strfind(char (vars(l,1i)),’TTR")
flow_variable=strrep (char (vars(l,i)),’TTR’,"QTR");
elseif strfind(char (vars(l,1i)),’CTR")
flow_variable=strrep (char(vars(l,i)),’CTIR’,"QTR");

else
flow_variable=char (vars(1l,1));

end

if “strcmp (char(vars(l,1i)), ' MET_WB1’) %assume interpolation for MET
— data

for ii=1l:size(Q{wb}.interpolation,2)
if strcmp (char (Q{wb}.interpolation(l,1ii)),flow_variable)
break
end
end
if strcmp (char (Q{wb}.interpolation(3,1ii)),"ON")
Inputs{wb}.discharge_Temp{index+1} (:,1)=interpl (Q{wb}. (vars{l,i})
— (:,1),...
Q{wb}. (vars{l,1}) (:,vars{2,1i}+1),timesteps);
elseif strcmp (char (Q{wb}.interpolation(3,ii)),’ OFF")
for iii=l:size(timesteps, 1)
index2=find (Q{wb}. (vars{l,1i}) (:,1)<=timesteps(ii),1l,’last’);
Inputs{wb}.discharge_Temp{index+1} (iii, i)=0Q{wb}. (vars{l,1i}) (
— index2,vars{2,1i}+1);

end
end
else
Inputs{wb}.discharge_Temp{index+1} (:,1i)=interpl (Q{wb}. (vars{l,i})
— (:,1),...
Qf{wb}. (vars{l,1i}) (:,vars{2,1i}+1l),timesteps);
end
end

T_noNAN=interpl (Qprojected{wb}.TWO (Qprojected{wb}.TWO(:,2) "=0,1), ...
Qprojected{wb}.TWO (Qprojected{wb}.TWO(:,2) "=0,2),timesteps);

%$Fill in Nans at the end

a=T_noNAN (“isnan (T_noNAN)); T_noNAN (isnan (T_noNAN))=a (end);

turbs=interpl (Qprojected{wb}.QO0T_BR1_T(:,1),Qprojected{wb}.Q0T_BR1_T(:,2),
— timesteps);

spills=interpl (Qprojected{wb}.QO0T_BR1_S(:,1l),Qprojected{wb}.Q0T_BR1_S(:,2)
— ,timesteps);

flowout=turbs+spills; T_noNAN (flowout==0)=nan;

$Output data
Output{wb}.discharge_Temp{index+1} (:,1)=T_noNAN;

for i=l:size (Inputs{wb}.discharge_Temp, 2)
$Convert to cells
Inputs_seqg{wb}.discharge_Temp{i}=con2seq(Inputs{wb}.discharge_Temp{i}’)
—
Output_seqg{wb}.discharge_Temp{i}=con2seq(Output{wb}.discharge_Temp{i}’)
—
end
clearvars i ii iii flow_variable index a T_noNAN turbs spills flowout
— index2 vars timesteps

%$Combine them all into single Input and Output cell arrays
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Inputs_seq mul{wb}.discharge_Temp=catsamples (Inputs_seqg{wb}.discharge_Temp
— {:},"'pad’);

Output_seqg mul{wb}.discharge_Temp=catsamples (Output_seqg{wb}.discharge_Temp
— {:},"pad”");

clearvars b Xs Xi Al Ts tr tr2 ypl TS bias narx_net_closed narx_net muhat
— sigmahat

clearvars timesteps

end
end

retraining='Y’;
iter=0; best_iter=[];

$Build log file
if “exist (’results’,’dir’)
mkdir ('’ results’);
end
fileID=fopen (config.LogFile, ' w’);
fprintf (filelID,’%12s %$16s %12s %$18s %18s %$14s %14s %$14s %14s %12s %12s %$12s %12s
— %12s %12s’,...
"Iter’,’'Feas_GA_pop_size’,’GA_pop_size’,’Train_SS_Clusters’,’Train_SS_Nearby’
S SR
"Feval_Tot’,’Feval_Cache’,’Feval_GAtot’,’Feval_GAcache’,’Pop_stdev’,’ReplaceRate
— ’,’Proj_Mwh’,’Tot_MWh’,’Proj_Dollars’,’Tot_Dollars’);
for wb=1l:size (CFG, 2)
fprintf (filelID,’ %12s %$12s’, ['Wb’ num2str(wb) '_MWh’], ['Wb’ num2str (wb) '
— _dollars’]1);
end
for wb=l:size (CFG,2)

fprintf (filelID,’ %12s %$12s %16s %$16s %15s %$15s %15s %15s’,...
["Wb’ num2str(wb) '_T_AME’], ['Wb’ num2str(wb) ’'_DO_AME’'],...
["Wb’ num2str(wb) ’'_T_ trpt_AME’], ['Wb’ num2str(wb) ’'_DO_trpt_AME’], ...
["Wb’ num2str(wb) ’_NN_T_slack’], ['Wb’ num2str(wb) ’_NN_DO_slack’], ...
["Wb’” num2str(wb) '_W2_T_slack’], ['Wb’ num2str(wb) ’'_W2_DO_slack’]);

end

fprintf(fileID,’ %12s %$13s %13s %$12s’,’Best_Iter’, ’'x_in_initpop’, ’'x_in_prevpop
— ', "2-norm’);

fprintf (filelID,’ %12s %12s %$12s\r\n’,’Opt_time(s)’,’W2_time(s)’,’Trn_time(s)’);

fclose (fileID); clearvars fileID ans wb

optimization_routine.m

%% Optimize over days_forward

day=1; stop=0;
global funccount_cache_global funccount_tot_global
funccount_cache_global=0; funccount_tot_global=0;
if "exist ('plot_data’,’dir’)
mkdir ("plot_data’);
end
clearvars xprev tprev
for wb=1l:size (CFG,2)
x_final{wb}=[];
$Previous turbine pattern for the year (if supplied)
if isempty (CFG{wb}.ForecastTurbinePattern)
xprev{wb}=actual_turb_ops (tprev_round, Qprojected{wb},elevtemp{wb},
— turbine_discharge{wb},no_of_units{wb});
else
prevturbpattern=dlmread (CFG{wb}.PreviousTurbinePattern,’\t’,1,0);
for i=l:size (tprev_round, 2)
index=find (prevturbpattern(:,1l)<=tprev_round(i));
xprevi{wb} (i) =prevturbpattern (index (end), 2);
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end
clearvars 1 prevturbpattern index
end
end
clearvars wb
tprev=[t_all (l)-max (cell2mat (zero_gen_limit (:)))~frequency:frequency:t_all(l)];
xprev_ic=xprev; tprev_ic=tprev;

while stop==

%$For each day, determine if elevation, DO , and temp constraints are even
— feasible (in priority order). If not found feasible, then bounds
— defined earlier by the config files are modified. Then problem is
— optimized for maximize power (or power value)

fprintf ([OPTIMIZATION: OPTIMIZING DAY ', num2str(day), " \n’]l);

WQ_subproblem{day}=WQ;
ELWS_limit_subproblem{day}=ELWS_limit;

$Optimization timeperiod
if Optimize_day_by_day==1
t=[start_datetday-1l:frequency:start_date+day];
else
t=t_all;
end

%$Set initial condition elevation
for wb=1l:size (CFG, 2)
if day==
ic_elev{wb}=ic_elev_first{wb};
if ic_elev_first{wb}<ELWS_limit_subproblem{day}{wb} (1)
fporintf ([ INITIALIZATION: Reservoir ’, num2str(wb),’ initial
— elevation of ', num2str(ic_elev_first{wb}), " m is less than
— ELWS lower limit (firm constraint). Expanding ELWS limits to
— continue with optimization. \n’]);
ELWS_limit_subproblem{day}{wb} (1)=ic_elev_first{wb};
elseif ic_elev_first{wb}>ELWS_limit_subproblem{day}{wb} (2)
fprintf ([ INITIALIZATION: Reservoir ', num2str(wb),’ initial
— elevation of ’ num2str(ic_elev_first{wb}) ' m is greater than
— ELWS upper limit (firm constraint). Expanding ELWS limits to
— continue with optimization. \n’]);
ELWS_limit_subproblem{day}{wb} (2)=ic_elev_first{wb};
end
else
ic_elev{wb}=interpl (Q{wb}.ELWS(:,1),Q{wb}.ELWS(:,2),t(1));
end
end

for wb=1l:size (CFG, 2)
%$Determine x0, actual turbine operations, to seed initial population
if Optimize_day_by_day==1
%0 (wb, :)=x0_all (wb, (day-1) * (1/frequency)+1:dayx (1/frequency)) ;
else
x0 (wb, :)=x0_all (wb, :);
end
[T, y_dollarsl]=power_value (x0(wb,:),t,cost_curve_MW{wb},...
MW_rating{wb});
if size(ELWS_targets{wb} (:,1),1)==1
elev_soft_penalty_coeff{day} (wb)=interpl (ELWS_limit_subproblem{day} {wb
> F (), ...
elev_soft_penalty_coeff_constant, ...
ELWS_targets{wb} (:,2),’linear’,’extrap’)+y_dollarsl; %$/m with cost
< curve, MWh/m with all cc=1
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else
elev_soft_penalty_coeff{day} (wb)=interpl (ELWS_limit_subproblem{day} {wb
— F(:), ...
elev_soft_penalty_coeff_constant, ...
interpl (ELWS_targets{wb} (:,1),ELWS_targets{wb} (:,2),start_date+day)
— ...
"linear’,’extrap’)*y_dollarsl; %S$/m with cost curve, MWh/m with all
— cc=1
end

clearvars y_dollarsl

if (iter==1 && Optimize_day_by_day==0) || Optimize_day_by_day==
%$Find possible values for x (1) (based on previous zero_gen_limit turbs)
options=[0:no_of_units{wb}];
% (1) Eliminate options based on change in active unit violations
if "isnan(max_hrly_unit_change{wb})
auvoptions=[xprev{wb} (end) max_hrly_unit_change{wb}:...
xprev{wb} (end) +max_hrly_unit_change{wb}];
options=intersect (options, auvoptions) ;
end
% (2) Non-integer constraint (assumed in selection algorithm)
% (3) Eliminate options based on zero generation hourly limit
if "isnan(zero_gen_limit{wb})
if sum(xprev{wb} (end-zero_gen_limit{wb}+1l:end))==
zghloptions=[1l:no_of_units{wb}]; %$if previous zero_gen_ limit hrs
— had zero total flow, must have flow next hr
options=intersect (options, zghloptions) ;
end
end
% (4) Eliminate options that violate oscillations constraint - violates
— whenever the number of turbines increases and then decreases
— within 2 hours, or vice versa
allopt=[0:no_of_units{wb}];
if xprev{wb} (end-1)<xprev{wb} (end) %if prev turbs increasing
oscoptions=allopt (allopt>=xprev{wb} (end));
options=intersect (options, oscoptions) ;
elseif xprev{wb} (end-1)==xprevi{wb} (end) %need 3 hrs btwn ramping up and
— down
if xprevi{wb} (end-2)<xprev{wb} (end-1) S%$ramping up
oscoptions=allopt (allopt>=xprev{wb} (end));
options=intersect (options, oscoptions);
elseif xprev{wb} (end-2)>xprev{wb} (end-1) Sramping down
oscoptions=allopt (allopt<=xprev{wb} (end));
options=intersect (options, oscoptions);

elseif xprev{wb} (end-2)==xprev{wb} (end-1)
%$do nothing —-—->3 consecutive hours between ramping up and down

— satisfied
end
elseif xprev{wb} (end-1)>xprev{wb} (end) %$if prev turbs decreasing
oscoptions=allopt (allopt<=xprev{wb} (end));
options=intersect (options, oscoptions) ;
end
x1_options{wb}=options;
if isempty(xl_options{wb})
fprintf (OPTIMIZATION: Based on previous turbine pattern, there is
— no feasible first hour turbine level. \n’);
return
end
clearvars tprev options auvoptions zghloptions allopt oscoptions
end
end
clearvars wb

%$Determine if elevation, DO, and temp constraints are feasible (based on
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< ranking order) and adjust bounds in this order if necessary
fprintf (OPTIMIZATION: Check constraint feasibilities and adjust if needed. \
—n’);
if iter==
y=penalty_fcn (trainingpop, t, frequency,Q,ic_elev, ...
turbine_discharge, ELWS_limit_subproblem{day},max_hrly_unit_change, ...
WQ_subproblem{day}, zero_gen_limit, xprev, ELWS_targets,tolerance, cache,
— Optimize_day_by_day);
y=sum(y, 2); feasible_optionl=trainingpop(y==0,:); clearvars y
%Check if x0 is feasible - include it if it is
y=penalty_fcn (reshape(x0’,1,[]),t,frequency,Q,ic_elev, ...
turbine_discharge, ELWS_limit_subproblem{day},max_hrly_unit_change, ...
WQ_subproblem{day}, zero_gen_limit, xprev, ELWS_targets,tolerance, cache,
— Optimize_day_by_day);
best_fvals(day,1l)=0obj_fcn (reshape (x0’,1,[]),t,cost_curve_MW,MW_rating, ...
elev_soft_penalty_coeff{day},ELWS_targets, ...
frequency,Q,ic_elev, turbine_discharge, cache,Optimize_day_by_day);
%Check to see if any values in x0>no_of_units
over_no_of_units=0;
for wb=1l:size (CFG, 2)
if any (x0 (wb, :)>no_of_units{wb}) over_no_of_units=1; end
end
if "all(y==0) || over_no_of_units==
fprintf (OPTIMIZATION: x0 is not feasible with respect to previous
— optimal solution. \n’);
else
fprintf (OPTIMIZATION: x0 is feasible with respect to previous optimal
<~ solution. \n’);
feasible_optionl=[reshape (x0’,1,[]); feasible_optionl];
end
clearvars over_no_of_units
end
funccount_tot (day, 1) =funccount_tot_global;
funccount_cache (day, 1) =funccount_cache_global;
funccount_cache_global=0; funccount_tot_global=0; S%reset to 0 to restart
— count

%$Create initial population if iter=1. Otherwise, start with prev gen
— population and replace a percentage of the population (rank by
— weighted avg constraint violation and pick the worst ones) with newly
— generated points.
fprintf (OPTIMIZATION: Finding initial population to seed genetic algorithm.
<~ \n’);
if iter==
feasible_options=pop0; replacement_rate=0;
else
feasible_options=population{iter-1}; replacement_rate=0;
if strcmp (ReplacementOnOff,’ ON’)
%Rank pop members by weighted avg constraint violation (use modified
— penalty function that computes all constraints)
violations=penalty_fcn_inf (population{iter-1},t, frequency,Q,ic_elev, ...
turbine_discharge, ELWS_limit_subproblem{day}, ...
max_hrly_unit_change, WQ_subproblem{day}, zero_gen_limit, ...
xprev, ELWS_targets, tolerance, cache,Optimize_day_by_day);
%$Normalize each column and average across, then rank population members
— from worst (least feasible) to best (feasible). Then amongst
— feasible pop members, rank by fval
normc=violations(:,:); normc2=[];
for i=l:size (normc, 2)
if "all(normc(:,i)==normc(l,1)) normc2=[normc2 normc(:,1i)]; end
end
mindata = min (normc2); maxdata = max (normc2);
normc2 = bsxfun(@rdivide, bsxfun(@minus, normc2, mindata), maxdata -
— mindata) ;
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meanc=mean (normc2,2); [meanc,b]=sort (meanc,’descend’);
%$Set the replacement rate for the next generation
replacement_rate=0.2;
replacement_size=round (ga_pop_sizexreplacement_rate);
if replacement_size>sum(meanc>0)

%$Rank by fval

bb=b (meanc==0); a=FitnessFunction (population{iter-1} (bb,:));
[T, bbb]=sort (a,’descend’); b (meanc==0)=bb (bbb) ;
clearvars a bb bbb

end

%Generate new replacement pop members
WQ_r=WQ_subproblem{day}; wb=1;
WQ_r{wb}.DO_limit=nan(size (WQ{wb}.DO_limit)); WQ_r{wb}.Temp_limit=nan (
— size (WQ{wb}.Temp_limit));
[replacements]=...
create_replacements (replacement_size, [], ...
x1_options, frequency,Q,ic_elev,MW_rating,no_of_units,t, ...
max_hrly_unit_change, zero_gen_limit, turbine_discharge, ...
ELWS_limit_subproblem{day},WQ_xr, cost_curve_MW, xprev, ...
elev_soft_penalty_coeff{day},ELWS_targets,tolerance, cache,
— Optimize_day_by_day, ...
transition_matrix);
%$Sub out the replacement pop members
feasible_options (b (l:replacement_size), :)=replacements;
end
end
funccount_tot (day, 2)=funccount_tot_global;
funccount_cache (day, 2) =funccount_cache_global;
funccount_cache_global=0; funccount_tot_global=0; %$reset to 0 to restart
— count
if isempty (feasible_options)
fprintf ("OPTIMIZATION: No feasible solutions found during initialization \
—n’);
return
end
clearvars objfcn feasible_optionl b ¢ normc i normc2 mindata maxdata meanc b
— replacements

$Set optimization algorithm options

FitnessFunction = Q@(x) -obj_fcn(x,t,cost_curve_MW, ...
MW_rating,elev_soft_penalty_coeff{day}, ...
ELWS_targets, frequency,Q, ic_elev, ...
turbine_discharge, cache,Optimize_day_by_day);

mycon= @ (x) penalty_fcn(x,t, frequency,Q,ic_elev, ...
turbine_discharge, ELWS_limit_subproblem{day}, ...
max_hrly_unit_change, WQ_subproblem{day}, zero_gen_limit, ...
xprev, ELWS_targets, tolerance, cache,Optimize_day_by_day);

opt = gaoptimset (...
"Display’,’iter’,’Vectorized’,’on’,’Generations’,GAgenerations,
"PopulationSize’,ga_pop_size, ...
"EliteCount’,ceil (0.05+«ga_pop_size), ...
"InitialPopulation’, feasible_options, ...
"StallGenLimit’,2,’TolFun’,tolerance,’TolCon’,tolerance, ...
"CrossoverFcn’, @crossoversinglepoint, 'CrossoverFraction’, .95, ...
"CreationFcn’,@int_pop, ' MutationFcn’,@int_mutation, ...
"InitialPenalty’,10710);

nvVar = size (CFG,2) * (size(t,2)-1);

$Set dv lower and upper bounds, narrowed considering max_hrly_ unit_change,
— for both reservoirs

for wb=1l:size (CFG, 2)
1b (wb, :)=0%ones (1,size(t,2)-1); lb(wb,1l)=x1_options{wb} (1);
for i=2:no_of_units{wb}

1b(wb,i)=1b(wb,i-1) -max_hrly_unit_change{wb};

end
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1b (wb, :)=max (0, 1b(wb, :));
ub (wb, :)=no_of_units{wb}+*ones (1,size(t,2)-1);
ub (wb, 1)=x1_options{wb} (end);
for i=2:no_of_units{wb}
ub (wb, 1) =ub (wb,i-1)+max_hrly_unit_change{wb};

end
ub (wb, :)=min (no_of_units{wb},ub(wb, :));
clearvars i

end

lb=reshape (1b’,1, []); ub=reshape(ub’,1,[]);

$Run GA
fprintf (OPTIMIZATION: Begin running genetic algorithm. \n’);
[x,fval,”, ",population{iter}, scores]=ga (FitnessFunction,nvar, [],[],[],[],1lb,
— ub, ...
mycon, [1,opt) ;
$Was x in feasible_options?
X_in_initpop='NO’; x_in_prevpop='NO’;
if ismember (x, feasible_options,’ rows’)
fprintf ('x was in feasible_options \n’);
X_in_initpop=’YES’;
end
if iter==1 x_in_prevpop='n/a’;
else
if ismember (x,population{iter-1},’rows’)
fprintf ('x was in prev pop \n’);
x_in_prevpop=’YES’;
end
end
funccount_tot (day, 3) =funccount_tot_global;
funccount_cache (day, 3) =funccount_cache_global;
funccount_cache_global=0; funccount_tot_global=0; %$reset to 0 to restart
— count
best_fvals (day, 3)=-fval;

%$Calculate stdev of population (scale first to [-1,1]) - EXPAND TO
— MULTIRESERVOIR LATER
if Optimize_day_by_day==
pop_scaled= (2+population{iter}/no_of_units{1l})-1;
for variables=1l:size(t,2)-1 standarddevs (variables)=std(pop_scaled(:,
— variables)); end
SD (iter+1l)=mean (standarddevs) ;
if iter==1
pop_scaled=(2+«feasible_options/no_of_units{1l})-1;
for variables=l:size(t,2)-1 standarddevs (variables)=std(pop_scaled(:,
— variables)); end
SD (1) =mean (standarddevs) ;
end
clearvars variables pop_scaled standarddevs
end
if iter==1 SSD(iter)=SD(iter); end
SSD (iter+1)=SSD (iter)+0.5% (SD (iter+1)-SSD (iter));

%$Split up rows of x to separate reservoirs
for wb=1l:size (CFG, 2)

x_final{wb}=[x_final{wb}

X (:,wh* (size(t,2)-1)—-(size(t,2)-2) :wbx(size(t,2)-1))1;

end
for wb=1l:size (CFG, 2)

x_final_ all{iter} (wb, :)=x_final{wb};
end
clearvars wb fval 1lb ub opt feasible_options
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$Update elevations and discharges/inflows in Q before going on to next

$day

Q=updateQ(Q,CFG,x_final, t, frequency,ic_elev, turbine_discharge, ...
WQ_subproblem{day}, xprev, ELWS_targets, cache,Optimize_day_by_day);

%$Compute total y_dollars
clearvars elev_soft_penalty_coeff
for wb=1l:size (CFG, 2)
if Optimize_day_by_day==
if iter==
[y_MWh (wb,1), y_dollars(wb,1l)]=power_value (x0_all (wb,l:day* (1/
— frequency)),t_all(l:1+day=* (1/frequency)), cost_curve_MW{wb
— }, ...
MW_rating{wb});
elev_soft_penalty_coeff{wb}=interpl (ELWS_limit{wb} (:)’, ...
elev_soft_penalty_coeff_constant,ELWS_targets{wb} (day), ...
"linear’,’extrap’)*y_dollars(wb,1); %$$/m with cost curve, MWh/m
— with all cc=1
end
[y_MWh (wb, 2), y_dollars(wb,2)]=power_value (x_final{wb},t_all(l:1+day
— x (1/frequency) ), cost_curve_MW{wb}, ...
MW_rating{wb});

else
if iter==
[y_MWh (wb, 1), y_dollars(wb,1l)]=power_value(x0_all,t_all,
— cost_curve_MW{wb}, ...
MW_rating{wb});
elev_soft_penalty_coeff{wb}=interpl (ELWS_limit{wb} (:)’,...
elev_soft_penalty_coeff_ constant,t_all(end), ...
’"linear’,’extrap’)*y_dollars(wb,1); %S$/m with cost curve, MWh/m
— with all cc=1
end

[y_MWh (wb,2), y_dollars(wb,?2)]=power_value(x_final{wb},t_all,
—» cost_curve_MW{wb}, ...
MW_rating{wb});
end
end
y_MWh_total=sum(y_MWh(l:size (CFG,2),:),1);
y_dollars_total=sum(y_dollars(l:size(CFG,2),:),1);

$Will run W2 for best x from optimization (if it hasn’t already been sampled)
— and then compute performance (AME)

trainingpop=[]; cache_size_pre=size(cache.x,1);wb=1;

if “ismember (x,cache.x,’rows’)

trainingpop(l, :)=x; correction=0;
cache.flag{size(cache.flag,1)+1,1l}={"bestx’};
else
correction=1;
end

if strcmp (AdditionalSamplingOnOff,” ON’)
training_ss_clusters=0;
if correction==
training_ss_nearby=4;

else
training_ss_nearby=3;
end
else
training_ss_clusters=0; training_ss_nearby=0;
end

training_ss_clusters_reset=training_ss_clusters; training_ss_nearby_reset=
< training_ss_nearby;

$kmeans clustering on population set and pick one from each cluster to run
< through W2
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if

(training_ss_clusters+training_ss_nearby) >0
ii=1; pop=population{iter}; wb=1;
%$Remove points that aren’t feasible wrt constraints other than WQ
violations=mycon (pop); violations2=sum(violations(:,1:53),2);
ia=find(violations2==0); %find the pop members feasible wrt all
<~ constraints except WQ
pop=pop (ia, :);
if feasible_soln_found==0
[bb,bl=sortrows ([violations (ia, 54) FitnessFunction (pop)l,I[1l 21);
else
pop=pop (FitnessFunction (pop) <FitnessFunction(x_final_all{best_iter (iter
= -1},
if "isempty (pop)
violations=mycon (pop) ;
[bb,bl=sortrows ([violations (:,54) FitnessFunction (pop)]l,[1l 21);
end
end
if "isempty (pop) pop=pop (b, :); end
clearvars ia violations violations2 b bb
if training_ss_clusters>0
for a=1:500
[idx(:,a),”, ",D{a}]l=kmeans (pop,training_ss_clusters);
B=unique (idx (:,a));
group_var (a)=var (histc(idx(:,a),B));
end
%Pick the cluster that minimizes the max group size (i.e., results in
— fairly even distribution)
[T,al=min (group_var); idx=idx(:,a); D=D{a}; clearvars a B group_var
end
if training_ss_nearby>0
e=[l:size(pop,1)]’;

end
for i=2: (training_ss_clusters+training_ss_nearby) +1
if any(i==2:(l+training_ss_nearby))
if "isempty (trainingpop)
while isempty(e) || ismember (pop(e(ii), :),cache.x,’rows’) ||

ismember (pop(e(ii), :),trainingpop,’ rows’)
if (ii+l)>size(e,1l) fprintf ('No new points to sample. \n’)
training_ss_nearby_reset=training_ss_nearby_reset-1;
break
else ii=ii+1; end
end
else
while isempty(e) || ismember (pop(e(ii), :),cache.x,’rows’)
if (ii+l)>size(e,1l) fprintf('No new points to sample. \n’)
training_ss_nearby_reset=training_ss_nearby_reset-1;
break
else ii=ii+l; end
end
end
if (ii+l)>size(e,1) %do nothing
else trainingpop (size(trainingpop,1l)+1, :)=pop(e(ii),:); ii=ii+1;
— cache.flag{size(cache.flag,1)+1l,1}={"nearby’}; end
elseif “isempty (pop)
b=find(idx==i-1-training_ss_nearby);
%$Pick randomly from each cluster
a=randsample (b, 1);
if "isempty (trainingpop)
while ismember (pop(a, :),cache.x,’rows’) ||
ismember (pop(a, :),trainingpop,’ rows’)
b=setdiff (b, a);
if isempty(b) a=[]; fprintf ('No new points to sample. \n’)
training_ss_clusters_reset=training_ss_clusters_reset-1;
break
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else a=randsample (b, 1); end
end
else
while ismember (pop(a,:),cache.x,’rows’)
b=setdiff (b, a);
if isempty(b) a=[]; fprintf ('No new points to sample. \n’)
training_ss_clusters_reset=training_ ss_clusters_reset-1;
break
else a=randsample (b,1); end
end
end
if Tisempty (a)
trainingpop(size (trainingpop,l)+1, :)=pop(a,:); cache.flag{size(
— cache.flag,1)+1,1}={"cluster’};
end
end
end
end
training_ss_clusters=training_ss_clusters_reset; training_ss_nearby=
< training_ss_nearby_reset;
clearvars training_ss_clusters_reset training_ss_nearby_reset

%$Create Qtrainingpop for each trainingpop entry (QOT_BR1_T, QOT_BR1_S, ELWS,
— CWO, TWO)
if size(trainingpop,1)>0
for i=l:size(trainingpop, 1)
xtr{l}=trainingpop (i, :);
Qtrainingpop{i}=updateQ (Q,CFG, xtr,t, frequency, ic_elev,turbine_discharge
— ...
WQ_subproblem{day}, xprev, ELWS_targets, cache,Optimize_day_by_day);
end
end
%$Run each row in trainingpop through W2 (only works for l-day, 1l-wb problems
— for now), and update cache with these values as well
timing (2)=0;
if size(trainingpop,1)>0
w2timing=tic;
for trindex=1l:size(trainingpop, 1)
wb=1;
if correction==0 && trindex==1
fprintf ([/Running W2 validation simulation for reservoir #’, num2str
— (wb),”. \n"]);
directory=[’results/w2_iter’ num2str(iter) ’_wb’ num2str (wb)];
else
if size(trainingpop,l)>(training_ss_clusters+training_ss_nearby)
fprintf ([/Running training point ’ num2str(trindex-1) '’ for
— reservolir #’, num2str(wb),’. \n’l);
directory=['results/w2_iter’ num2str(iter) ’'_trpt’ num2str(
— trindex-1) ’_wb’ num2str (wb)];
else
fprintf ([’Running training point ’ num2str (trindex) ’ for
< reservoir #’, num2str(wb),’. \n’]);
directory=['results/w2_iter’ num2str(iter) ’'_trpt’ num2str (
< trindex) ’'_wb’ num2str (wb)];
end
end
runW2trainingpop;
end
while istaskrunning(’w2.exe’) end %$is w2 still running? if so, hold on
system(’taskkill /F /IM cmd.exe’); cache_size_pre=size(cache.x,1);
for trindex=1l:size(trainingpop, 1)
wb=1;
if correction==0 && trindex==
directory=['results/w2_iter’ num2str (iter) ’_wb’ num2str (wb)];
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else
if size(trainingpop,l)>(training_ss_clusters+training_ss_nearby)
directory=[’'results/w2_iter’ num2str(iter) ’'_trpt’ num2str (
< trindex-1) ’_wb’ num2str (wb)];
else
directory=[’'results/w2_iter’ num2str (iter) ’_trpt’ num2str (
— trindex) ’'_wb’ num2str (wb)];
end
end
runW2trainingpop_part2;
end
timing (2)=toc(w2timing) ;
%$Compute AME for each of these new training points using current NARX
— surrogate model
for trindex=1l:size(trainingpop,1);
x_trpt=trainingpop (trindex, :); wb=1; compute_AME_trpt;
AME_trpt.DO{iter} (trindex)=nanmean (abs (cache.DO (b, :)-DO_pred));
AME_trpt.T{iter} (trindex)=nanmean (abs (cache.T (b, :)-T_pred));
AME_trpt.DO_error{iter} (trindex, :)=cache.DO (b, :) -DO_pred;
AME_trpt.T_error{iter} (trindex, :)=cache.T (b, :)-T_pred;
end
%$Compute AME for each old training point, for comparison against new
<~ training points
for index=l:cache_size_pre
Xx_trpt=cache.x (index, :); wb=1l; compute_AME_trpt;
AME_trpt.DO_old{iter} (index)=nanmean (abs (cache.DO (b, :) -DO_pred)) ;
AME_trpt.T_old{iter} (index)=nanmean (abs (cache.T (b, :)-T_pred));
AME_trpt.DO_old_error{iter} (index, :)=cache.DO (b, :) -DO_pred;
AME_trpt.T_old_error{iter} (index, :)=cache.T (b, :)-T_pred;
end
$Compute averages
AME_trpt.DO_avg(iter)=mean (AME_trpt.DO{iter});
AME_trpt.T_avg(iter)=mean (AME_trpt.T{iter});
AME_trpt.DO_old_avg(iter)=mean (AME_trpt.DO_old{iter});
AME_trpt.T_old_avg(iter)=mean (AME_trpt.T_old{iter});
else
AME_trpt.T_avg(iter)=NaN; AME_trpt.DO_avg(iter)=NaN;
end

$Save the AME for the best solution found this generation
wb=1; x_trpt=x_final all{iter}; compute_AME_trpt;

AME{wb} .DO=nanmean (abs (cache.DO (b, :) -DO_pred) ) ;

AME{wb} .T=nanmean (abs (cache.T (b, :)-T_pred));

%$Determine the index in cache corresponding to the best solution from last
<~ generation

[7,b]l=ismember (x_final_all{iter},cache.x,’rows’);

$Compute WQ average slack using W2 results

slack_compute=cache.DO (b, :)’;

non_nan_count=sum(~isnan (slack_compute),l);

if “isnan (WQ{wb}.DO_limit (1))
slacks{wb}.DO.W2=sum(-min (0, [slack_compute-WQ{wb}.DO_limit (1)]),1)./

— non_nan_count;

elseif “isnan (WQ{wb}.DO_limit (2))

slacks{wb}.DO.W2=sum(-min (0, [slack_compute-WQ{wb}.DO_limit (2)1),1)./
~— non_nan_count;

else
slacks{wb}.DO.W2=0;

end

%$Compute WQ average slack using NN results

slack_compute=DO_pred’;

non_nan_count=sum(~isnan (slack_compute),l);

if “isnan (WQ{wb}.DO_limit (1))
slacks{wb}.DO.NN=sum(-min (0, [slack_compute-WQ{wb}.DO_limit (1)]),1)./
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~— non_nan_count;
elseif “isnan (WQ{wb}.DO_limit (2))
slacks{wb}.DO.NN=sum(-min (0, [slack_compute-WQ{wb}.DO_limit (2)]),1)./
“— non_nan_count;
else
slacks{wb}.DO.NN=0;
end
%$Compute WQ average slack using W2 results
slack_compute=cache.T (b, :)’;
non_nan_count=sum(~isnan (slack_compute),1l);
if "isnan (WQ{wb}.Temp_limit (1))
slacks{wb}.T.W2=sum(-min (0, [slack_compute-WQ{wb}.Temp_limit (1)]),1)./
— non_nan_count;
elseif "isnan (WQ{wb}.Temp_limit (2))
slacks{wb}.T.W2=sum(-min (0, [slack_compute-WQ{wb}.Temp_limit (2)]),1)./
“— non_nan_count;
else
slacks{wb}.T.W2=0;
end
$Compute WQ average slack using NN results
slack_compute=T_pred’;
non_nan_count=sum(~isnan (slack_compute),1l);
if "isnan (WQ{wb}.Temp_limit (1))
slacks{wb}.T.NN=sum(-min (0, [slack_compute-WQ{wb}.Temp_limit (1)]),1)./
— non_nan_count;
elseif "isnan(WQ{wb}.Temp_limit (2))
slacks{wb}.T.NN=sum(-min (0, [slack_compute-WQ{wb}.Temp_limit (2)]),1)./
— non_nan_count;
else
slacks{wb}.T.NN=0;
end
clearvars W2_noOs_smooth index2 W2_no0Os str slack_compute non_nan_count b
for wb=1l:size (CFG, 2)
results.AME (iter, wbx2-1:wb*x2)=[AME{wb}.T,AME{wb} .DO];
results.slacks (iter,wb*2-1:wb*2)=[slacks{wb}.T.W2,slacks{wb}.DO.W2];
end
clearvars turb_discharges spill_discharges b s z zz zzz distances
<~ distance_mins start_index w2runstiming bestsolniter index pop DO_pred
— T_pred w2timing trindex xtr idx £ i a b D wb D2 correction directory
—» distance_to_soln ii e d

%$Determine best iteration
results.dollars (iter)=y_dollars_total(2);
if isempty (best_iter)

best_iter (iter)=iter;

else
if all((results.slacks(iter, :)-results.slacks (best_iter(iter-1), :))<=0)
if all((results.slacks(iter, :)-results.slacks(best_iter(iter-1),:))==0)
if (results.dollars(iter)-results.dollars (best_iter (iter-1)))>0
best_iter (iter)=iter;
else
best_iter (iter)=best_iter (iter-1);
end
else
best_iter (iter)=iter; feasible_soln_found=1;
end
else
best_iter (iter)=best_iter (iter-1);
end
end

if Optimize_day_by_day==0
stop=1;
else
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if day~=days_forward
day=day+1;
for wb=1l:size (CFG, 2)

xprev{wb}=[xprev_ic{wb} x_final{wb}];

end

else
stop=1;

end

end

funccount_tot (day, 4)=funccount_tot_global;

funccount_cache (day, 4) =funccount_cache_global;

funccount_cache_global=0; funccount_tot_global=0; S%$reset to 0 to restart
— count

end

%$Sum funccount_tot
funccount_ga_tot=funccount_tot (day, 3);
funccount_ga_cache=funccount_cache (day, 3) ;
funccount_tot=sum (sum (funccount_tot));
funccount_cache=sum (sum (funccount_cache)) ;

clear global funccount_cache_global funccount_tot_global

$Compute total y_dollars
clearvars elev_soft_penalty_coeff
for wb=1l:size (CFG, 2)
if Optimize_day_by_day==1
if iter==1
[y_MWh (wb,1), y_dollars(wb,1)]=power_value (x0_all (wb,1l:day= (1/frequency
— )),t_all(l:1+day* (1/frequency)),cost_curve_MW{wb}, ...
MW_rating{wb});
elev_soft_penalty_coeff{wb}=interpl (ELWS_limit{wb} (:)’, ...
elev_soft_penalty_coeff_constant,ELWS_targets{wb} (day), ...
"linear’,’extrap’)+y_dollars(wb,1l); %S$/m with cost curve, MWh/m with
— all cc=1
end
[y_MWh (wb,2), y_dollars (wb,2)]=power_value(x_final{wb},t_all(l:1l+day~*(1/
— frequency)),cost_curve_MW{wb}, ...
MW_rating{wb});

else
if iter==
[y_MWh (wb, 1), y_dollars(wb,1l)]=power_value(x0_all,t_all,cost_curve_MW({
— wbl}, ...
MW_rating{wb});
elev_soft_penalty_coeff{wb}=interpl (ELWS_limit{wb} (:)’, ...
elev_soft_penalty_coeff_constant,t_all (end), ...
"linear’,’extrap’)*y_dollars(wb,1); %$$/m with cost curve, MWh/m with
— all cc=1
end
[y_MWh (wb, 2), y_dollars(wb,?2)]=power_value (x_final{wb},t_all,cost_curve_MW
— {wb}, ...
MW_rating{wb});
end
end

y_MWh_total=sum(y_MWh (l:size (CFG,2),:),1);
y_dollars_total=sum(y_dollars(l:size(CFG,2),:),1);
clearvars wb

activeunits_to_discharges.m

function [turb_discharges,spill_discharges, HWs, TWs, Storage] =
activeunits_to_discharges (x,t, frequency,Q,ic_elev, ...
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turbine_discharge, ELWS_targets,mainstem_inflows_t,mainstem_inflows_Q, ...
Optimize_day_by_day)

o\

Calculates discharges and HWs and TWs from time series of number of
active units

o o

o\

Inputs:

x — hourly turbine time series (as rows for vectorizing!), integers
between 0 and no_of_ units

t time series of JDAY values

frequency - frequency of predictions (hourly=1/24)

o° o o

o\

% Q — all other inflows and outflows, interpolation settings,
% storage-elev curve, and tailwater curve (all in meters)
% ic_elev - initial condition (meters)

o\

turbine_discharge - turbine discharge curve at fixed MW level, with

col 1 in meters and col 2 in cms

ELWS_targets - 2 column matrix with JDAY in coll and elevation target

in col2. Leave empty if want to backcalculate spill

mainstem_inflows_t - vector of JDAY values that correspond to
mainstem_inflows_Q

mainstem_inflows_Q - if applicable (wb™=1), rows of incoming flows from
upstream reservoir correlated to times in mainstem_inflows_t
Optimize_day_by_day - 1 if optimizing daily, 0 if optimizing all together

o o° o° o° o° o o

o\

% Outputs:

% turb_discharges turbine discharge time series in cms
% spill_discharges - spill discharge in cms

% HWs - headwater time series in m

% TWs - tailwater time series in m

% Storage - storage time series in cubic meters

if isempty (x)
turb_discharges=[]; spill_discharges=[]; HWs=[]; TWs=[]; Storage=[];
else

JDAY_initial=t (1);

$Number of x scenarios being tested
n=size(x,1);

if n<1
fprintf ('Active units to discharges code —--> x is empty!’)
return

end

$Initial condition

clearvars HWs Storage turb_discharges TWs

HWs (1,1:n)=ic_elev;

Storage(l:n,1)=interpl (Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),HWs(1,1));

index1=find (Q.QOT_BR1_T(:,1)<=JDAY_initial);

index2=find (Q.QOT_BR1_S(:,1)<=JDAY_initial);

turb_discharges(l:n,1)=0.Q0T_BR1_T (indexl (end),2);

tot_discharge=Q.Q0T_BR1_T (indexl (end),2)+Q.Q0T_BR1_S (index2 (end),2);

TWs (l:n,1l)=interpl (Q.tw_curve_cms_m(:,1),Q.tw_curve_cms_m(:,2),
tot_discharge);

clearvars indexl index2 tot_discharge

$Compute discharge (cms) per unit at first timestep using prev hr HW and TW

head=HWs (1, :)’-TWs(:,1);

unit_discharges=interpl (turbine_discharge(:,1),turbine_discharge(:,2),
head) ;

unit_discharges (head>=turbine_discharge (end, 1) )=turbine_discharge (end, 2);

unit_discharges (head<=turbine_discharge(1l,1))=turbine_discharge(1l,2);

turb_discharges(l:n,2)=unit_discharges.*x(:,1);

clearvars head unit_discharges
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67
68 | $Compute HW elevs for every scenario
69 |for i=2:size(t,2)
70 elevation=HWs (i-1, :);
71 turbs=turb_discharges (:,i-1:1);
72 if isempty (ELWS_targets) %If testing projected operations
73 HWs (1i-1:1i, :)=Elevation_massbalance_vectorized (turbs, [], ...
74 t(i-1),t (i), frequency,Q,elevation,mainstem_inflows_t, ...
75 mainstem_inflows_Q) ;
76 else $If testing new operations, assuming no spill flow here
77 HWs (i-1:1, :)=Elevation_massbalance_vectorized (turbs, ...
78 zeros (size (turbs)),t (i-1),t (1), frequency,Q,elevation, ...
79 mainstem_inflows_t,mainstem_inflows_Q);
80 end
81 clearvars elevation turbs
82 %$Compute storage and TWs
83 $If too full and overtops SE curve (or drains and empties), linearly
— extrapolate
84 Storage (:,1)=interpl (Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),...
85 HWs (i, :)’,’linear’,’extrap’);
86 if isempty (ELWS_targets) %if testing projected operations
87 index2=find (Q.Q0T_BR1_S(:,1)<=t(i));
88 tot_discharge=turb_discharges(:,1)+Q.Q0T_BR1_S (index2 (end),2);
89 clearvars index2
90 else %if testing new operations, assuming no spill flow here
91 tot_discharge=turb_discharges(:,1)+0; %assume no spill
92 end
93 TWs (:,1i)=interpl (Q.tw_curve_cms_m(:,1),Q.tw_curve_cms_m(:,2),
94 tot_discharge,’linear’,’extrap’);
95 clearvars tot_discharge
96 $Compute total turbine flowrate
97 if i"=size(t,2)
98 head=HWs (i, :)’'-TWs (:,1);
99 %$Compute turbine flow based on head, with catches at bounds of turbine
— discharge curve
100 unit_discharges=interpl (turbine_discharge(:,1),
101 turbine_discharge (:,2),head);
102 unit_discharges (head>=turbine_discharge(end,1l))=...
103 turbine_discharge (end, 2) ;
104 unit_discharges (head<=turbine_discharge(1,1))=...
105 turbine_discharge (1,2);
106 turb_discharges (:,i+1)=unit_discharges.*x(:,1);
107 clearvars head unit_discharges
108 end
109 | end
110 |clearvars i ii
111
112 |$If testing new operations (i.e. ELWS_targets is not empty), continue on and
— compute spill
113 |if “isempty (ELWS_targets)
114 if Optimize_day_by_day==1 %optimize each day in series
115 %$Check for cases when the final HW elev is greater than target
116 if size (ELWS_targets(:,1),1)==
117 ELWS_goal=ELWS_targets (:,2);
118 else
119 ELWS_goal=interpl (ELWS_targets(:,1),ELWS_targets(:,2),t (end));
120 end
121 volume_to_spill=max (0, ...
122 interpl (Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),HWs (end, :)) ...
123 —interpl (Q.SE_meters_m3(:,1),0Q.SE_meters_m3(:,2),ELWS_goal));
124 spill_discharges=0.95* ((volume_to_spill/ ((t (end) -t (1)) *24x60x60)))";
125
126 %Compute HWs again for situations with spill added to lower to ELWS
127 $target
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[a,

“]=find(spill_discharges™=0);

if Tisempty (a)

stop=0;
while stop==0

for i=2:size(t,2)
elevation=HWs (i-1,a);
turbs=turb_discharges(a,i-1:1);
if isempty(mainstem_inflows_Q)
HWs (i-1:1i,a)=Elevation_massbalance_vectorized (turbs, ...
[spill_discharges(a) spill_discharges(a)l, ...
t(i-1),t (i), frequency,Q,elevation, mainstem_inflows_t, ...
mainstem_inflows_Q);
else
HWs (i-1:1,a)=Elevation_massbalance_vectorized (turbs, ...
[spill_discharges(a) spill_discharges(a)], ...
t(i-1),t (i), frequency,Q,elevation,mainstem_inflows_t, ...
mainstem_inflows_Q(a, :));
end
clearvars elevation turbs
%$Compute storage and TWs
Storage (a,i)=interpl (Q.SE_meters_m3(:,1),0.SE_meters_m3(:,2), ...
HWs (i,a)’);
tot_discharge=turb_discharges(a, i) +spill_discharges(a); %now
< assume we have the spill we calculated above
TWs (a,i)=interpl (Q.tw_curve_cms_m(:,1),0Q.tw_curve_cms_m(:,2),
tot_discharge);
clearvars tot_discharge
$Compute total turbine flowrate
if i"=size(t,2)
head=HWs (i,a)’'-TWs (a, i) ;
%$Compute turbine flow based on head, with catches at bounds of
<~ turbine discharge curve
unit_discharges=interpl (turbine_discharge(:,1),
turbine_discharge(:,2),head);
unit_discharges (head>=turbine_discharge(end,1l))=...
turbine_discharge (end, 2) ;
unit_discharges (head<=turbine_discharge(1,1))=...
turbine_discharge(1,2);
turb_discharges(a,i+l)=unit_discharges.x*x(a,1i);
clearvars head unit_discharges
end
end
$Check end elevations again and adjust spill and iterate (if
> necessary)
volume_to_spill=interpl (Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),HWs(

— end,:))...
—interpl (Q.SE_meters_m3(:,1),0Q.SE_meters_m3(:,2),ELWS_goal);
volume_to_spill (setdiff([l:size(volume_to_spill,2)],a))=0;

spill_discharges2=spill_discharges+0.95* ((volume_to_spill/ ((t (end)-t
— (1)) *x24%60%60)))";
diffspill=spill_discharges2-spill_discharges;
if all(round(diffspill, 3)==0)
stop=1;
end
spill_discharges=spill_discharges2; clearvars spill_discharges2

end

clearvars 1 ii stop diffspill

$Recompute HWs and TWs with final spillrate
for i=2:size(t,2)

elevation=HWs (i-1,a);
turbs=turb_discharges(a,i-1:1);
if isempty(mainstem_inflows_Q)
HWs (i-1:1,a)=Elevation_massbalance_vectorized (turbs, ...
[spill_discharges(a) spill_discharges(a)l, ...
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end

for

t(i-1),t (i), frequency,Q,elevation,mainstem_inflows_t, ...
mainstem_inflows_Q);
else
HWs (i-1:1,a)=Elevation_massbalance_vectorized (turbs, ...
[spill_discharges(a) spill_discharges(a)l,...
t(i-1),t (i), frequency,Q,elevation, mainstem_inflows_t, ...
mainstem_inflows_Q(a, :));
end
clearvars elevation turbs
$Compute storage and TWs
$If too full and overtops SE curve (or drains and empties), linearly
— extrapolate
Storage(a,i)=interpl (Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),...
HWs (i,a)’,’linear’,’extrap’);
tot_discharge=turb_discharges(a, i) +spill_discharges(a); %now assume
< we have the spill we calculated above
TWs (a,i)=interpl (Q.tw_curve_cms_m(:,1),0.tw_curve_cms_m(:,2),
tot_discharge);
clearvars tot_discharge
$Compute total turbine flowrate
if 1i7=size(t,2)
head=HWs (i,a)’'-TWs (a, i) ;
%$Compute turbine flow based on head, with catches at bounds of
< turbine discharge curve
unit_discharges=interpl (turbine_discharge(:,1),
turbine_discharge(:,2),head);
unit_discharges (head>=turbine_discharge(end,1l))=...
turbine_discharge (end, 2);
unit_discharges (head<=turbine_discharge(1,1))=...
turbine_discharge(1,2);
turb_discharges(a,i+l)=unit_discharges.xx(a,1i);
clearvars head unit_discharges
end
end
clearvars i ii

else %optimize all days in 1 optimizer

target=1l:size (ELWS_targets,1l) %loop through each target

if target==1 JDAY_initial=t(l); else JDAY_initial=ELWS_targets (target
— -1,1); end

ELWS_goal_time=ELWS_targets (target,l);

ELWS_goal=ELWS_targets (target, 2);

for i=1l:size (HWs, 2)
inital_ HWs_computed (i)=interpl (t,HWs (:,1i),ELWS_goal_time);

end

clearvars 1

volume_to_spill=max (0, ...
interpl (Q.SE_meters_m3(:,1),Q0.SE_meters_m3(:,2),1inital_HWs_computed)
—-interpl (Q.SE_meters_m3(:,1),0.3E_meters_m3(:,2),ELWS_goal));

spill_discharges (:,target)=0.95% ((volume_to_spill/ ((ELWS_goal_time-
— JDAY_initial) «24+x60x60)))’;

clearvars initial_HWs_computed

$Compute HWs again for situations with spill added to lower to ELWS
— target
[a, "]=find(spill_discharges(:,target) "=0);
if “isempty (a)
stop=0;
while stop==0
for i=(1/frequency) * (target-1)+2: (1/frequency) » (target) +1
elevation=HWs (i-1, a);
turbs=turb_discharges(a,i-1:1);
if isempty (mainstem_inflows_Q)
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HWs (i-1:1i,a)=Elevation_massbalance_vectorized (turbs, ...

[spill_discharges(a,target) spill_discharges (a,target)
— 1,...
t(i-1),t (i), frequency,Q,elevation,mainstem_inflows_t, ...
mainstem_inflows_Q);
else

HWs (i-1:1,a)=Elevation_massbalance_vectorized (turbs, ...

[spill_discharges (a,target) spill_discharges (a,target)

> 1,...
t(i-1),t (i), frequency,Q,elevation,mainstem_inflows_t, ...
mainstem_inflows_Q(a, :));

end
clearvars elevation turbs
%$Compute storage and TWs
Storage (a,i)=interpl (Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2)
...
HWs (i,a)’);

tot_discharge=turb_discharges(a,i) +spill_discharges (a,target);
— %now assume we have the spill we calculated above

TWs (a, 1) =interpl (Q.tw_curve_cms_m(:,1),Q.tw_curve_cms_m(:,2),

tot_discharge);

clearvars tot_discharge

%$Compute total turbine flowrate

if 1i7=(1/frequency) * (target) +1

head=HWs (i,a)’-TWs (a, i) ;

%Compute turbine flow based on head, with catches at bounds
— of turbine discharge curve

unit_discharges=interpl (turbine_discharge(:,1),
turbine_discharge(:,2),head);

unit_discharges (head>=turbine_discharge(end, 1))=...
turbine_discharge (end, 2);

unit_discharges (head<=turbine_discharge(1,1))=...
turbine_discharge (1, 2);

turb_discharges(a,i+1l)=unit_discharges.*x(a,1i);

clearvars head unit_discharges

end
end
$Check end elevations again and adjust spill and iterate (if

“— necessary)
for i=l:size (HWs, 2)

HWs_computed_again (i)=interpl (t,HWs (:,1i),ELWS_goal_time);
end
clearvars 1
volume_to_spill=interpl (Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),

— HWs_computed_again) ...

—interpl (Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),ELWS_goal);
volume_to_spill (setdiff([l:size(volume_to_spill,2)],a))=0;
spill_discharges2=spill_discharges(:,target)+0.95% ((

— volume_to_spill/ ((ELWS_goal_time-JDAY_initial)*24x60%60)))

—
diffspill=spill_discharges2-spill_discharges (:,target);
if all(round(diffspill, 3)==0)

stop=1;
end

%$1f overshoot and spills go negative, set to 0.5«previous spill
— guess
spill_discharges2 (spill_discharges2<0)=0.5+xspill_discharges (

<~ spill_discharges2<0,target);
spill_discharges(:,target)=spill_discharges2; clearvars

<~ spill_discharges2 HWs_computed_again

end
clearvars 1 ii stop diffspill volume_to_spill
$Recompute the target day HWs and TWs with final spillrate
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for i=(1l/frequency) x (target-1)+2: (1/frequency)  (target) +1
elevation=HWs (i-1,a);
turbs=turb_discharges(a,i-1:1);
if isempty (mainstem_inflows_Q)
HWs (i-1:1i,a)=Elevation_massbalance_vectorized (turbs, ...

[spill_discharges(a,target) spill_discharges(a,target)], .

t(i-1),t (i), frequency,Q,elevation, mainstem_inflows_t, ...
mainstem_inflows_Q);
else
HWs (i-1:1,a)=Elevation_massbalance_vectorized (turbs, ...

[spill_discharges(a,target) spill_discharges(a,target)], .

t(i-1),t (i), frequency,Q,elevation,mainstem_inflows_t, ...
mainstem_inflows_Q(a, :));
end
clearvars elevation turbs
%$Compute storage and TWs
$If too full and overtops SE curve (or drains and empties),
<~ linearly extrapolate

Storage(a,i)=interpl (Q.SE_meters_m3(:,1),0Q.SE_meters_m3(:,2), ...

HWs (i,a)’,’linear’,’extrap’);
tot_discharge=turb_discharges(a, i) +spill_discharges (a,target);
— now assume we have the spill we calculated above
TWs (a,i)=interpl (Q.tw_curve_cms_m(:,1),0Q.tw_curve_cms_m(:,2),
tot_discharge);
clearvars tot_discharge
%$Compute total turbine flowrate
if i7=size(t,2)
head=HWs (i,a)’-TWs (a, 1) ;
%$Compute turbine flow based on head, with catches at bounds
— turbine discharge curve
unit_discharges=interpl (turbine_discharge(:,1),
turbine_discharge(:,2),head);
unit_discharges (head>=turbine_discharge (end,1))=...
turbine_discharge (end, 2);
unit_discharges (head<=turbine_discharge(1,1))=...
turbine_discharge (1, 2);
turb_discharges(a,i+1)=unit_discharges.*x(a,1i);
clearvars head unit_discharges
end
end
clearvars 1 ii

o
o

of

$Now update HW elevs for the subsequent days, starting with the new

< final HW elev of the target day
for i=(1/frequency) x (target)+l:size(t,2)

elevation=HWs (i-1, a);

turbs=turb_discharges(a,i-1:1);

%$assuming no spill flow here

HWs (i-1:1,a)=Elevation_massbalance_vectorized (turbs, ...
zeros (size (turbs)),t(i-1),t (i), frequency,Q,elevation, ...
mainstem_inflows_t,mainstem_inflows_Q);

clearvars elevation turbs

%$Compute storage and TWs

%$If too full and overtops SE curve (or drains and empties),
— linearly extrapolate

Storage(a,i)=interpl (Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),...

HWs (i,a)’,’linear’,’extrap’);
tot_discharge=turb_discharges(a,i)+0; %assume no spill
TWs (a,1)=interpl (Q.tw_curve_cms_m(:,1),Q.tw_curve_cms_m(:,2),
tot_discharge,’ linear’,’extrap’);
clearvars tot_discharge
%$Compute total turbine flowrate
if i7=size(t,2)
head=HWs (i,a)’-TWs (a, 1) ;
%$Compute turbine flow based on head, with catches at bounds
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— turbine discharge curve
354 unit_discharges=interpl (turbine_discharge(:,1),
355 turbine_discharge (:,2),head);
356 unit_discharges (head>=turbine_discharge (end,1))=...
357 turbine_discharge (end, 2) ;
358 unit_discharges (head<=turbine_discharge(1,1))=...
359 turbine_discharge (1,2);
360 turb_discharges(a, i+1)=unit_discharges.*x(a,i);
361 clearvars head unit_discharges
362 end
363 end
364 end
365 end
366 clearvars target
367 end
368 |else
369 spill_discharges=zeros(n,1);
370 | end
371
372
373 | HWs=HWs’ ; $change back to rows to match all the other outputs (computed as
374 %cols to make vectorizing Elevation_massbalance_vectorized easier)
375
376 |end

check_feasibilities.m

1 | function [WQ_adjusted,ELWS_limit_adjusted, funccount, feasible_options,
— feasibility_check]=check_feasibilities (ranking, ...
2 feasible_optionl,x1_options,ga_pop_size, frequency,Q,ic_elev,no_of_units,t,
— max_hrly_unit_change, ...
3 zero_gen_limit,turbine_discharge, ELWS_limit,WQ, xprev, ELWS_targets, ...
4 elev_constraint_rounding,wg_constraint_rounding,tolerance, cache,
— Optimize_day_by_day, ...
transition_matrix,Feasibilitygenerations)

o°

Checks the feasibility of constraints (elev, do, temp) in the priority
order defined by the user, and adjusting constraints as necessary

o\

o°

Inputs:
ranking - assign priority ranking for constraints on elev, DO, and temp,
— starting

— O O 00 J O\ W
o

o°

12 | % with highest priority first

13 |% x1_options - options for the turbine setting at the first hour
14 |% ga_pop_size - population size

15 | % frequency - frequency of predictions (hourly=1/24)

16 |$ Q - all other inflows and outflows, interpolation settings,

17 | % storage-elev curve, and tailwater curve

18 |$ ic_elev — initial condition (meters)

19 |$ no_of_units — max number of turbines (4 for OHL)

20 |$ t time series of JDAY values

21 |% max_hrly_unit_change - max number of units that can be changed per hour
22 |% (1 for OHL)

23 |% zero_gen_limit - Zero generation hourly limit (can’t go longer than
24 |% this with no turb flow)

25 | % turbine_discharge - turbine discharge curve at fixed MW level, with
26 |$ col 1 in meters and col 2 in cms

27 |% ELWS_limit - min and max elevation limits for constraints, in meters
28 | % WQ - structure containing water quality constraints and NARX models
29 | % DO_narx — structure containing everything needed to make DO discharge
30 | % predictions, including:

31 |% turb_colum - column in exogenous variables with turb flows

32 |% spill_column - column in exogenous variables with spill flows
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o°

times - JDAY values used in training (not used)

inputDelays - delays for exogenous inputs

feedbackDelays - delays for prediction feedbacks
input_variables - 2 row cell containing variable names in first
row and column number in second. For example, "MET_WBL’
contains multiple columns of data but only some may be used

for NARX predictions

o o° o° o oo

oo

% bias - bias for each trained neural network

% weights - weights for each trained neural network (sum to 1)

% narx_net_closed - neural networks

% DO_limit - lower and upper DO limits (NaN means it doesn’t exist)
% DO_slack - relaxation from DO_limit (either upper or lower -

% doesn’t make sense to have both)

% Temp_narx - structure containing everything needed to make temp discharge
% predictions, including:

% turb_colum - column in exogenous variables with turb flows

% spill_column - column in exogenous variables with spill flows

% times - JDAY values used in training (not used)

% inputDelays - delays for exogenous inputs

% feedbackDelays - delays for prediction feedbacks

% input_variables - 2 row cell containing variable names in first

oe

row and column number in second. For example, 'MET_WBL1’

contains multiple columns of data but only some may be used

for NARX predictions

bias - bias for each trained neural network

weights - weights for each trained neural network (sum to 1)
narx_net_closed - neural networks

Temp_limit - lower and upper temp limits (NaN means it doesn’t exist)
Temp_slack - relaxation from Temp_limit (either upper or lower -
doesn’t make sense to have both)

o o° o° o° o° o° o

oe

% xprev — vector of previous active turbine levels
% ELWS_targets — 2 column matrix with JDAY in coll and elevation target
% in col2

o\

elev_constraint_rounding - rounding setting (10=tenths place,
100=hundredths place, etc.)

wqg_constraint_rounding - rounding setting (10=tenths place,
100=hundredths place, etc.)

tolerance - penalty tolerance

cache - water quality predictions provided by W2 simulations
Optimize_day_by_day - 1 if optimizing daily, 0 if optimizing all together
transition_matrix - transition probabilities for turbine ramping up and down
Feasibilitygenerations - max generations for GA feasibility check
Outputs:

WQ_adjusted updated WQ structure (same structure as WQ, with updated
constraints if necessary)

ELWS_limit_adjusted - updated elevation limits (if necessary)

funccount - total number of function evaluations (both obj and penalty)
feasible_options - save any solutions that are totally feasible to feed
into initial population creation function next

feasibility_check - 0 if no constraints need adjusted, 1 if no fully
feasible solution is found and constraints are adjusted

o° o® o o° A% A o o A A O o° o° o° o o

o°

funccount=0; generations=0;
exitflag=[]; feasibility_check=0;

%$First check the cache members to see if any of them are feasible
[c, "]1=penalty_fcn(cache.x,t, frequency,Q,ic_elev, ...

turbine_discharge, ELWS_limit,max_hrly_unit_change,

WQ, zero_gen_limit, xprev, ELWS_targets,tolerance, cache,Optimize_day_by_day);
funccount=funccount+size (cache.x,1);
feasibles=cache.x (find(all (c<=eps,2)),:);
if "isempty (feasibles)

fprintf ("All constraints are feasible. \n’);

WQ_adjusted=WQ; ELWS_limit_adjusted=ELWS_limit;
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feasible_options=feasibles;
return
end

%% Create 500 potential solutions feasible wrt constraints #1-3

$Weights
for wb=1l:size (x1_options,2)
for i=2:no_of_units{wb}+1
weights{wb}{i} (1)=no_of_units{wb};
for 1i=2:1
weights{wb}{i} (ii)=weights{wb}{i} (ii-1)*.1;
end
end
end
clearvars 1 ii wb

$First, generate a few solutions quickly and test feasibility. If any are
$feasible, terminate this function with changes to WQ or elevation
$constraints
setsize=[max (10, size (feasible_optionl,1l)) 2xga_pop_sizel;
for z=1l:size(setsize,2)
for wb=1l:size (x1_options,2)
raw_options{wb}{z}=nan (setsize(z),size(t,2)-1);

if size(x1_options{wb},2)==1 %only 1 option left
raw_options{wb}{z} (:,1)=x1_options{wb};

else
if z==

raw_options{wb}{z} (1,1)=x1_options{wb} (end); $scenario with max
— turbines
raw_options{wb}{z} (2,1)=x1_options{wb} (1);%$scenario with max spill
raw_options{wb}{z} (3:end,1l)=randsample (x1_options{wb},setsize(z)-2,
— true);
elseif z==
raw_options{wb}{z} (:,1)=randsample (x1_options{wb}, setsize(z),true,
— welghts{wb}{size(x1_options{wb},2)1});
end
end
for i=l:size(raw_options{wb}{z},1)
for j=2:size(t,2)-1
$Variable consisting of xprev and turbine pattern through j-1
pattern=[xprev{wb} raw_options{wb}{z} (i,1:3-1)1;
%$First start with all available options, then eliminate infeasible
<~ ones based on turbines from 1:j-1
options=[0:no_of_units{wb}];
% (1) Eliminate options based on change in active unit violations
if Tisnan (max_hrly_unit_change{wb})
auvoptions=[pattern (end) max_hrly_unit_change{wb}:
pattern (end)+max_hrly_unit_change{wb}];
options=intersect (options, auvoptions) ;
end
(2) Non-integer constraint (assumed in selection algorithm)
(3) Eliminate options based on zero generation hourly limit
f "isnan(zero_gen_limit{wb})
if sum(pattern(end-zero_gen_limit{wb}+1l:end))==
zghloptions=[1l:no_of_units{wb}]; %$if previous zero_gen_limit
— hrs had zero total flow, must have flow next hr
options=intersect (options, zghloptions) ;
end
end
% (4) Eliminate options that violate oscillations constraint -
— violates whenever the number of turbines increases and then
— decreases within 3 hours, or vice versa

o0 o

-
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allopt=[0:no_of_units{wb}];

if pattern(end-1)<pattern(end) %if prev turbs increasing
oscoptions=allopt (allopt>=pattern(end));
options=intersect (options, oscoptions);

elseif pattern(end-1)==pattern(end) %need 3 hrs btwn ramping up and

— down

if pattern(end-2)<pattern(end-1) Sramping up
oscoptions=allopt (allopt>=pattern (end));
options=intersect (options, oscoptions);

elseif pattern(end-2)>pattern(end-1) S%Sramping down
oscoptions=allopt (allopt<=pattern(end));
options=intersect (options, oscoptions);

elseif pattern(end-2)==pattern(end-1)

%do nothing -->3 consecutive hours between ramping up and down

— satisfied
end
elseif pattern(end-1)>pattern(end) %if prev turbs decreasing
oscoptions=allopt (allopt<=pattern (end));
options=intersect (options, oscoptions);

end
$0ut of the available options left, pick the next turbine setting
if size(options,2)==1 %only 1 option left
raw_options{wb}{z} (i, j)=options;
else
if z==
if i==1 %scenario with max turbines
raw_options{wb}{z} (i, j)=options (end);
elseif i==2 %scenario with max spill
raw_options{wb}{z} (i, j)=options(1l);
elseif i==3 %scenario with fairly level turbines (minimal
<~ change)
if mod(size (options,2),2)==0 %is even

raw_options{wb}{z} (i, j)=options (round((size (options,2)

< /2)+.5+randsample ([0.1 -0.11,1)));
else

raw_options{wb}{z} (i, j)=options (round((size (options, 2)

— /2)+randsample ([0.1 -0.1],1)));
end
else
raw_options{wb}{z} (i, j)=randsample (options, 1, true);
end
elseif z==

raw_options{wb}{z} (i, j)=randsample (options,1l,true,weights{wb} {

— size (options, 2)});
end
end
end
end
end

%$Convert raw_options cells to long vectors containing all reservoirs
%per row
raw_options2{z}=[];
for wb=1l:size (x1_options,2)
raw_options2{z}=[raw_options2{z} raw_options{wb}{z}];
end
if z==
raw_options2{z}=[raw_options2{z}; feasible_optionl];
end
[raw_options2{z}, ", "]1=unique (raw_options2{z},’ rows’);

%$Check feasibilities of first small set

if z==
[c, "]=penalty_fcn(raw_options2{z},t, frequency,Q,ic_elev, ...
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212 turbine_discharge, ELWS_limit,max_hrly_unit_change,
213 WQ, zero_gen_limit, xprev, ELWS_targets, tolerance, cache,
— Optimize_day_by_day);
214 funccount=funccount+size (raw_options2{z},1);
215 feasibles=raw_options2{z} (find(all (c<=eps,2)),:);
216 if “isempty (feasibles)
217 fprintf ("All constraints are feasible. \n’);
218 WQ_adjusted=WQ; ELWS_limit_adjusted=ELWS_limit;
219 feasible_options=feasibles;
220 return
221 end
222 end
223 | end
224 | feasible_options2=[];
225 | for z=1l:size(setsize,2)
226 feasible_options2=[feasible_options2; raw_options2{z}];
227 |end
228 | [feasible_options2, ”, "]=unique (feasible_options2,’rows’);
229 | feasible_options=feasible_options2; feasible_options_raw=feasible_options;
230 |clearvars z i a j feasibles feasible_options2
231
232 (%% Optimize each constraint in priority order and terminate at 0. Otherwise,
— modify the constraint bounds
233
234 | for wb=1l:size(x1_options,2)
235 ELWS_limit_adjusted{wb}=nan(size (ELWS_limit{wb}));
236 WQ_adjusted{wb}.DO_limit=nan (size (WQ{wb}.DO_limit));
237 WQ_adjusted{wb}.Temp_limit=nan (size (WQ{wb}.Temp_limit));
238 WQ_adjusted{wb}.DO_narx=WQ{wb}.DO_narx;
239 WQ_adjusted{wb}.Temp_narx=WQ{wb}.Temp_narx;
240 WQ_adjusted{wb}.DO_slack=WQ{wb}.DO_slack;
241 WQ_adjusted{wb}.Temp_slack=WQ{wb}.Temp_slack;
242 | end
243 | skip=0;
244
245 | for wb=1l:size(x1l_options,2)
246 for i=l:size(ranking, 2)
247 if strcmp (ranking{i},’elev’) & (“isnan(ELWS_limit{wb} (1)) | “isnan(
— ELWS_limit{wb} (2)))
248 fprintf ([’ Checking reservoir #’, num2str (wb),’ elevation constraint
— feasibility. \n’]);
249 elseif strcmp(ranking{i},’do’) & (“isnan(WQ{wb}.DO_limit(1l)) | “isnan (WQ{
— wb}.DO_limit (2)))
250 fprintf ([’ Checking reservoir #’, num2str(wb),’ DO constraint
— feasibility. \n’]);
251 elseif strcmp(ranking{i},’temp’) & (“isnan (WQ{wb}.Temp_limit (1)) | “isnan(
— WO{wb}.Temp_limit (2)))
252 fprintf ([’ Checking reservoir #’, num2str(wb),’ temperature constraint
— feasibility. \n’]);
253 end
254
255 %Check lower limit then upper limit. In each step, check maximum violation
— and then mean value (for temp & DO, not elevation)
256 for a=1:2
257 if a==1 level='lower’; elseif a==2 level='upper’; end
258
259 if strcmp (ranking{i},’elev’) & “isnan(ELWS_limit{wb} (a))
260 skip=0;
261 elseif strcmp (ranking{i},’do’) & “isnan(WQ{wb}.DO_limit (a))
262 skip=0;
263 elseif strcmp(ranking{i},’temp’) & “isnan (WQ{wb}.Temp_limit (a))
264 skip=0;
265 else
266 skip=1; %if there is no constraint being added here, no need to
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<~ check feasibility!
end

if skip==0
clearvars FitnessFunction mycon opt

% (1) Test the maximum constraint violation first

%$Set penalty function first to make sure it doesn’t include the
— constraint that is being optimized, but all constraints
— before that one
mycon= @ (x) penalty_fcn(x,t, frequency,Q,ic_elev, ...
turbine_discharge, ELWS_limit_adjusted,max_hrly_unit_change, ...
WQ_adjusted, zero_gen_limit, xprev, ELWS_targets,tolerance, cache,
— Optimize_day_by_day);
$Load in the relevant constraints
if strcmp (ranking{i},’elev’)
ELWS_limit_adjusted{wb} (a)=ELWS_limit{wb} (a);
elseif strcmp(ranking{i},’do’)
WQ_adjusted{wb}.DO_limit (a)=WQ{wb}.DO_limit (a);
WQ_adjusted{wb}.DO_slack=WQ{wb}.DO_slack;
elseif strcmp(ranking{i},’temp’)
WQ_adijusted{wb}.Temp_limit (a)=WQ{wb}.Temp_limit (a);
WQ_adijusted{wb}.Temp_slack=WQ{wb}.Temp_slack;
end
%Set objective function
if strcmp(ranking{i},’elev’) & “isnan(ELWS_limit_adjusted{wb} (a))
FitnessFunction = @(x) obj_fcn_elev(x,t, frequency,Q,ic_elev, ...
turbine_discharge, ELWS_limit_adjusted{wb}, xprev, ELWS_targets,
— level,wb,cache,Optimize_day_by_day);
elseif strcmp(ranking{i},’do’) & “isnan(WQ_adjusted{wb}.DO_limit (a))
FitnessFunction = @(x) obj_fcn_do(x,t, frequency,Q,ic_elev, ...
turbine_discharge, WQ_adjusted, xprev, ELWS_targets, level, wb,
— cache, Optimize_day_by_day);
elseif strcmp(ranking{i},’temp’) & “isnan(WQ_adjusted{wb}.Temp_limit
— (a))
FitnessFunction = @(x) obj_fcn_temp(x,t, frequency,Q,ic_elev, ...
turbine_discharge, WQ_adjusted, xprev, ELWS_targets, level, wb,
< cache,Optimize_day_by_day);
end
%Check feasibility
if any(FitnessFunction (feasible_options(l:min(size (feasible_options
~— ,1),setsize (1)), :))==0)
fval=0; funccount=funccount+size (feasible_options,1);
pop=feasible_options;
else
$1f feasible_options<GA pop size, fill in a larger matrix with
< repeating values to create a full initial population
if size(feasible_options,1l)<ga_pop_size
feasible_options=repmat (feasible_options,ceil (ga_pop_size/size
<~ (feasible_options,1)),1);
feasible_options=feasible_options (l:ga_pop_size, :);
end
%$GA settings
opt = gaoptimset (...
"Display’,’iter’,’Vectorized’,’on’,’Generations’,
> Feasibilitygenerations,
"PopulationSize’,ga_pop_size, ...
"InitialPopulation’, feasible_options(l:ga_pop_size,:), ...
"StallGenLimit’,1,’TolFun’,tolerance,’TolCon’,tolerance, ...
"CrossoverFcn’, @crossoversinglepoint,’'CrossoverFraction’
— ,0.85,...
"EliteCount’,ceil (.05+«ga_pop_size), ...
"CreationFcn’,@int_pop, 'MutationFcn’,@int_mutation,’
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— FitnessLimit’,0);
nVar = size(x1_options,2)x*(size(t,2)-1);
%$Set dv lower and upper bounds, narrowed considering
— max_hrly_ unit_change
clearvars 1lb ub
for wb2=1l:size(x1_options, 2)
1b(wb2, :)=0%ones(l,size(t,2)-1); lb(wb2,1)=x1_options{wb2} (1);
for ii=2:no_of_units{wb2}
1b(wb2,ii)=1b(wb2,1ii-1)-max_hrly_unit_change{wb2};
end
1lb (wb2, :)=max (0, 1b (wb2, :));
ub (wb2, :)=no_of_units{wb2}*ones(l,size(t,2)-1);
ub (wb2,1)=x1_options{wb2} (end) ;
for ii=2:no_of_units{wb2}
ub (wb2,1ii)=ub(wb2,1ii-1)+max_hrly_unit_change{wb2};

end
ub (wb2, :)=min (no_of_units{wb2},ub(wb2,:));
clearvars ii

end

clearvars wb2

lb=reshape (1b’,1, []); ub=reshape(ub’,1,1[1]1);

$Run GA

[T, fval, 7, output, pop, "1=ga (FitnessFunction,nvar, [1,[],[]1,[],1b,ub
e
mycon, [],opt);

funccount=funccount+output.funccount*2; %multiply by 2 to cover
— penalty & obj functions

generations=output.generations;

end
$Adjust constraint limits if necessary
if fval™=0

if level==’lower’
plusminus=-1;
elseif level=='upper’
plusminus=1;
end
if strcmp (ranking{i},’elev’)
fprintf ([’Adjusting reservoir #’, num2str(wb),’ ', level, '
— elevation constraint. \n’]);
ELWS_limit_adjusted{wb} (a)=ELWS_limit{wb} (a)...
+plusminus*ceil (elev_constraint_roundingxfval) /
— elev_constraint_rounding;
feasibility_check=1;
if "isempty (pop)
pop=I[pop; feasible_options_raw]; pop=unique (pop,’ rows’);
c=mycon (pop) ; pop=pop (all (c<=tolerance,2),:);
o=FitnessFunction (pop) ;
feasible_options=pop (find (o==min (o)), :);
end
elseif strcmp(ranking{i},’do’)
fprintf ([’Adjusting reservoir #’, num2str(wb),’ ', level, ’ DO
<~ slack constraint. \n’]);
WQ_adjusted{wb}.DO_slack (a)=ceil (wg_constraint_roundingx*fval)/
— wg_constraint_rounding;
feasibility_check=1;
if "isempty (pop)
pop=[pop; feasible_options_raw]; pop=unique (pop,’ rows’);
c=mycon (pop) ; pop=pop (all (c<=tolerance,2),:);
o=FitnessFunction (pop) ;
feasible_options=pop (find (o==min (o)), :);
end
elseif strcmp(ranking{i},’temp’)
fprintf ([’Adjusting reservoir #’, num2str(wb),’ ', level, '
— temperature slack constraint. \n’]);
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WQ_adjusted{wb}.Temp_slack (a)=ceil (wg_constraint_rounding+fval

< )/wg_constraint_rounding;

feasibility_check=1;

if "isempty (pop)
pop=[pop; feasible_options_raw]; pop=unique (pop,’rows’);
c=mycon (pop); pop=pop (all (c<=tolerance,2),:);
o=FitnessFunction (pop) ;
feasible_options=pop (find(o==min (o)), :);

end

end
else

pop=[pop; feasible_options_raw]; pop=unique (pop,’rows’,’stable’);

c=mycon (pop); pop=pop (all (c<=tolerance,2),:);
o=FitnessFunction (pop);
feasible_options=pop (find (o==min (o)), :);
end
clearvars plusminus output
end
end
end
end
clearvars 1 a
WQ_adjusted{wb}.DO_slack=sum(WQ_adijusted{wb}.DO_slack, 2);
WQ_adjusted{wb}.Temp_slack=sum (WQ_adjusted{wb}.Temp_slack, 2);
[feasible_options, 7, "]=unique (feasible_options,’ rows’);

compute_AME _trpt.m

%$Find index in cache where the trainingpop point is
[T, b]l=ismember (x_trpt,cache.x,’rows’);

$Compute DO and temp predictions

[turb_discharges,spill_discharges, ™, , " ]=...
activeunits_to_discharges (x_trpt,t, frequency,Q{wb},ic_elevi{wb}, ...
turbine_discharge{wb},ELWS_targets{wb}, [],[],Optimize_day_by_day);

DO_pred=narx_predictions (WQ{wb}.DO_narx, frequency,t,Q{wb}, ...
x_trpt,turb_discharges,spill_discharges, [],Q{wb}.CWO, ...
"do’,Optimize_day_by_day);

T_pred=narx_predictions (WQ{wb}.Temp_narx, frequency,t,Q{wb}, ...
X_trpt,turb_discharges,spill_discharges, [],Q{wb}.TWO, ...
"temp’ ,Optimize_day_by_day);

clearvars turb_discharges spill_discharges x_trpt

create_feasible_initpop.m

function [feasible_options,y,c, funccount]=create_feasible_initpop (no_of_solns
— ..
feasible_options, x1_options, frequency,Q,ic_elev,MW_rating,no_of_units,t, ...
max_hrly_ unit_change, zero_gen_limit, turbine_discharge, ELWS_limit, ...
WQ, cost_curve_MW, xprev,elev_soft_penalty_coeff, ...
ELWS_targets,tolerance, cache,Optimize_day_by_day,transition_matrix, ...
initial NARX_training_pop)

o\

Generate and save lots of solutions that are feasible in terms of:

(1) Change in active unit violations

(2) Non-integer constraint (assumed in this seletion algorithm)

(3) Zero generation hourly limit

(4) Oscillations constraint

If can’t find enough feasible solutions, the rest of the population is
filled in with near-feasible soultions

o ol° o° o° o o

o\
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Inputs:

no_of_solns - the number of feasible solutions we want to find
feasible_options - feasible solutions already found during constraint
prescreening

x1_options -
no_of_units

feasible options for first value of x, between 0 and

frequency - frequency of predictions (hourly=1/24)

Q - all other inflows and outflows, interpolation settings,
storage-elev curve, and tailwater curve (all in meters)

ic_elev - initial elevation condition (m)

MW_rating - the fixed MW level of turbine_discharge_curve (25 MW for

OHL)
no_of_units

- max number of available turbine units

t time series of JDAY values
max_hrly_unit_change - max number of units that can be changed per hour

(1 for OHL)

zero_gen_limit - Zero generation hourly limit (can’t go longer than

this with no

turb flow)

turbine_discharge - turbine discharge curve at fixed MW level, with
col 1 in meters and col 2 in cms

ELWS_limit -

min and max elevation limits for constraints, in meters

WQ - structure containing water quality constraints and NARX models
DO_narx - structure containing everything needed to make DO discharge

predictions,
turb_colum -
spill_column
times - JDAY

including:

column in exogenous variables with turb flows

— column in exogenous variables with spill flows
values used in training (not used)

inputDelays - delays for exogenous inputs
feedbackDelays - delays for prediction feedbacks
input_variables - 2 row cell containing variable names in first

row and column number in second. For example, ’'MET_WBL’
contains multiple columns of data but only some may be used
for NARX predictions

bias - bias for each trained neural network

weights - weights for each trained neural network (sum to 1)
narx_net_closed - neural networks

DO_limit - lower and upper DO limits (NaN means it doesn’t exist)
DO_slack - relaxation from DO_limit (either upper or lower -

doesn’t make sense to have both)

Temp_narx — structure containing everything needed to make temp discharge
predictions, including:

turb_colum -
spill_column
times - JDAY

column in exogenous variables with turb flows
— column in exogenous variables with spill flows
values used in training (not used)

inputDelays - delays for exogenous inputs
feedbackDelays - delays for prediction feedbacks
input_variables - 2 row cell containing variable names in first

row and column number in second. For example, 'MET_WBL1’
contains multiple columns of data but only some may be used
for NARX predictions

bias - bias for each trained neural network

weights - weights for each trained neural network (sum to 1)
narx_net_closed - neural networks

Temp_limit -
Temp_slack -
doesn’t make

cost_curve_MW

lower and upper temp limits (NaN means it doesn’t exist)
relaxation from Temp_limit (either upper or lower -
sense to have both)

2 row matrix to create step function, with 1lst row

being hours and 2nd row $/MW-hr values
xprev - vector of previous active turbine levels
elev_soft_penalty_coeff - penalty coefficient for soft ending elev soft

constraint
ELWS_targets

- target elevations for end of time period

tolerance - penalty tolerance
cache - water quality predictions provided by W2 simulations
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80 | % Optimize_day_by_day - 1 if optimizing daily, 0 if optimizing all together

81 |% transition_matrix — transition probabilities for turbine ramping up and down

82 |%$ initial NARX_training pop - 1 if creating initial population for NARX training

83 | % Outputs:

84 |% feasible_options feasible potential solutions for GA initialization

85 |%$ y - objective function solutions for feasible_options

86 |%$ ¢ - constraint violations

87 |% funccount - number of paired function evaluations

88

89 |%Start with upstream reservoir (wb=1), find feasible operations, and compute
<~ associated discharge flows for each. Then use those flows as upstream
— inflow for next wb, find feasible operations, and compute associated
<~ discharge flows. Etc...

90

91 |c=[]; infeasibles.x=[]; infeasibles.c=[];

92 |n=size (feasible_options,1);

93 | funccount=0;

94

95 | count=1;

96 |while size(feasible_options, 1) <no_of_solns

97

98 if count==

99 $Starting set size

100 setsize=no_of_solns;

101 elseif count==

102 $Modify set size as a function of how many feasible solns found so far (

— maximum is 30xsetsize)

103 setsize=min (5* (setsize), round((setsize/ (size (feasible_options,1l)-n))*...

104 (no_of_solns—(size (feasible_options,1)-n))));

105 else

106 %$If still not enough solns found, should be close so try 50 at a time

107 setsize=50;

108 end

109

110 for wb=1l:size(x1l_options,2)

111 raw_options{wb}=nan (setsize,size(t,2)-1);

112 if size(xl_options{wb},2)==1 %only 1 option left

113 raw_options{wb} (:,1)=x1_options{wb};

114 else

115 if "isempty(initial_ NARX_training_pop) %if it’s the initial sample,

— make sure to include a min and a max outflow

116 raw_options{wb} (1,1)=x1_options{wb} (end); $scenario with max turbines

117 raw_options{wb} (2,1)=x1_options{wb} (1);%$scenario with max spill

118 raw_options{wb} (3:end, 1) =randsample (x1_options{wb}, setsize-2,true

— ...

119 transition_matrix{wb} (xprev{wb} (end)+1,x1_options{wb}+1));

120 else

121 raw_options{wb} (:,1)=randsample (x1_options{wb}, setsize,true, ...

122 transition_matrix{wb} (xprev{wb} (end)+1,x1_options{wb}+1));

123 end

124 end

125 for i=l:setsize

126 for j=2:size(t,2)-1

127 %$Variable consisting of xprev and turbine pattern through j-1

128 pattern=[xprev{wb} raw_options{wb} (i,1:3-1)1;

129 $First start with all available options, then eliminate infeasible

<~ ones based on turbines from 1:3j-1

130 options=[0:no_of_units{wb}];

131 % (1) Eliminate options based on change in active unit violations

132 if “isnan(max_hrly_unit_change{wb})

133 auvoptions=[pattern (end)-max_hrly_unit_change{wb}:

134 pattern (end) +max_hrly_unit_change{wb}];

135 options=intersect (options, auvoptions);

136 end
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% (2) Non-integer constraint (assumed in selection algorithm)
(3) Eliminate options based on zero generation hourly limit
if "isnan(zero_gen_limit{wb})
if sum(pattern(end-zero_gen_limit{wb}+l:end))==
zghloptions=[1l:no_of_units{wb}]; %if previous zero_gen_limit
< hrs had zero total flow, must have flow next hr
options=intersect (options, zghloptions) ;
end
end
% (4) Eliminate options that violate oscillations constraint -
— violates whenever the number of turbines increases and then
— decreases within 3 hours, or vice versa
allopt=[0:no_of_units{wb}];
if pattern(end-1)<pattern(end) %if prev turbs increasing
oscoptions=allopt (allopt>=pattern (end));
options=intersect (options, oscoptions);
elseif pattern(end-1)==pattern(end) %need 3 hrs btwn ramping up and
— down
if pattern(end-2)<pattern(end-1) Sramping up
oscoptions=allopt (allopt>=pattern (end));
options=intersect (options, oscoptions);
elseif pattern(end-2)>pattern(end-1) S$ramping down
oscoptions=allopt (allopt<=pattern (end)) ;
options=intersect (options, oscoptions);
elseif pattern(end-2)==pattern(end-1)
%do nothing —-->3 consecutive hours between ramping up and down
— satisfied

o°

end

elseif pattern(end-1)>pattern(end) %if prev turbs decreasing
oscoptions=allopt (allopt<=pattern(end));
options=intersect (options, oscoptions);

end

%$0ut of the available options left, pick the next turbine setting

if size(options,2)==1 %only 1 option left
raw_options{wb} (i, j)=options;

else

if "isempty(initial_NARX_ training pop) %if it’s the initial
— sample, make sure to include a min and a max outflow
if i==1 %scenario with max turbines
raw_options{wb} (i, j)=options (end);
elseif i==2 %scenario with max spill
raw_options{wb} (i, j)=options (1) ;
else
raw_options{wb} (i, j)=randsample (options, 1, true, ...
transition_matrix{wb} (raw_options{wb} (i, j—1)+1, options
— +1));
end
else
raw_options{wb} (i, j)=randsample (options,1l,true, ...
transition_matrix{wb} (raw_options{wb} (i, j-1)+1,options+1));
end
end
end
end
end

%$Convert raw_options cells to long vectors containing all reservoirs per row
raw_options2=[1];
for wb=1l:size (x1_options,2)
raw_options2=[raw_options2 raw_options{wb}];
end

%$Check feasibility
[c_new, "]=penalty_fcn(raw_options2,t, frequency,Q,ic_elev, ...
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turbine_discharge, ELWS_limit,max_hrly_unit_change,WQ, ...
zero_gen_limit, xprev, ELWS_targets,tolerance, cache,Optimize_day_by_day);
funccount=funccount+size (raw_options2,1);
c=c_new;

raw_options3=raw_options2 (all (c_new<=tolerance,2),:);
feasible_options=[feasible_options; raw_options3];
%$Save the infeasible options in case needed later
infeasibles.x=[infeasibles.x; raw_options2 (any(c_new>tolerance,2),:)];
infeasibles.c=[infeasibles.c; c_new(any(c_new>tolerance,2),:)];
%$Remove duplicates
feasible_options=unique (feasible_options,’rows’);
fprintf ([’ Feasible options found: ', ...

num2str (size (feasible_options, 1)), "\n’]);
if count==2 & isempty (feasible_options)

y=[1; return
elseif count==5 & “isempty(feasible_options)

break
else

count=count+1;
end

end

if isempty(initial_NARX_training_pop)
%$Pick the best no_of_solns from feasible_options
y=obj_fcn(feasible_options, t,cost_curve_ MW,MW_rating, ...
elev_soft_penalty_coeff,ELWS_targets, frequency,Q,ic_elev, ...
turbine_discharge, cache,Optimize_day_by_day) ;
funccount=funccount+size (feasible_options,1);
[y, bl=sort (y,’descend’);
feasible_options=feasible_options (b, :);
else
y=[1;
if size(feasible_options,1l)>no_of_solns
picks=randsample (size (feasible_options,1l),no_of_solns);
feasible_options=feasible_options (picks, :);
end
end

% If haven’t found enough feasible options, fill in the rest of the pop with
— near—-feasibles ONLY WORKS FOR 1 WB PROBLEMS FOR NOW
if size(feasible_options,1l)<no_of_solns
relevant_indexes=[];
for wb=1l:size(x1_options, 2)
if "isnan(ELWS_limit{wb} (1))
relevant_indexes=[relevant_indexes 4:3+ (1+ (size(t,2)-1))*1];
end
if "isnan(ELWS_limit{wb} (2))
relevant_indexes=[relevant_indexes 3+ (l+(size(t,2)-1))+1:3+(1+(size(t
— ,2)-1))=*2];
end
if “isnan (WQ{wb}.DO_limit (1))
relevant_indexes=[relevant_indexes 3+ (l+(size(t,2)-1))*2+1];
end
if “isnan (WQ{wb}.DO_limit (2))
relevant_indexes=[relevant_indexes 3+ (l+(size(t,2)-1))*2+2];
end
if "isnan (WQ{wb}.Temp_limit (1))
relevant_indexes=[relevant_indexes 3+ (l+(size(t,2)-1))*2+2+1];
end
if "isnan (WQ{wb}.Temp_limit (2))
relevant_indexes=[relevant_indexes 3+ (l+(size(t,2)-1))*2+24+2];
end
end

257




256
257
258
259
260
261
262
263
264
265

266
267
268
269

O 01NN AW =

$Remove duplicates
[infeasibles.x,ia, "]=unique (infeasibles.x,’rows’);
infeasibles.c=infeasibles.c(ia, :);

$Normalize the relevant index cols
normc=infeasibles.c(:,relevant_indexes); normc2=[];
for i=l:size(normc, 2)

if "all (normc(:,i)==normc(l,i)) normc2=[normc2 normc(:,1)]; end

end

mindata = min (normc2); maxdata = max (normc2) ;

normc?2 = bsxfun (@rdivide, bsxfun (@minus, normc2, mindata), maxdata - mindata)
—

meanc=mean (normc2, 2); [meanc,b]=sort (meanc,’ascend’);
feasible_options=[feasible_options;
infeasibles.x(b(l:no_of_solns-size (feasible_options,1)),:)1;
end

create_r eplacements .m

function [feasible_options]=create_replacements (no_of_solns, ...
feasible_options,xl_options, frequency,Q,ic_elev,MW_rating,no_of_units,t, ...
max_hrly_unit_change, zero_gen_limit, turbine_discharge, ELWS_limit, ...
WQ, cost_curve_MW, xprev,elev_soft_penalty_coeff, ...
ELWS_targets,tolerance, cache,Optimize_day_by_day,transition_matrix)

o°

Generate and save lots of solutions that are feasible in terms of:

(1) Change in active unit violations

(2) Non-integer constraint (assumed in this seletion algorithm)

(3) Zero generation hourly limit

(4) Oscillations constraint

If can’t find enough feasible solutions, the rest of the population is
filled in with near-feasible soultions

o° o° o o° o° o° o

o°

Inputs:

no_of_solns - the number of feasible solutions we want to find
feasible_options - feasible solutions already found during constraint
prescreening

x1_options - feasible options for first value of x, between 0 and
no_of_units

frequency - frequency of predictions (hourly=1/24)

Q - all other inflows and outflows, interpolation settings,
storage-elev curve, and tailwater curve (all in meters)

ic_elev - initial elevation condition (m)

MW_rating - the fixed MW level of turbine_discharge_curve (25 MW for
OHL)

o° o© o° o° A A o o° o° o

o°

% no_of_units - max number of available turbine units

% t time series of JDAY values

% max_hrly_unit_change - max number of units that can be changed per hour
% (1 for OHL)

% zero_gen_limit - Zero generation hourly limit (can’t go longer than

% this with no turb flow)

% turbine_discharge - turbine discharge curve at fixed MW level, with

% col 1 in meters and col 2 in cms

% ELWS_limit - min and max elevation limits for constraints, in meters
% WQ - structure containing water quality constraints and NARX models

% DO_narx - structure containing everything needed to make DO discharge

o°

predictions, including:
turb_colum - column in exogenous variables with turb flows

oe

% spill_column - column in exogenous variables with spill flows

% times - JDAY values used in training (not used)

% inputDelays - delays for exogenous inputs

% feedbackDelays - delays for prediction feedbacks

% input_variables - 2 row cell containing variable names in first

o°

row and column number in second. For example, ’'MET_WBL1l’
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o°

contains multiple columns of data but only some may be used
for NARX predictions
bias - bias for each trained neural network

o°

oe

% weights - weights for each trained neural network (sum to 1)

% narx_net_closed - neural networks

% DO_limit - lower and upper DO limits (NaN means it doesn’t exist)

% DO_slack - relaxation from DO_limit (either upper or lower -

% doesn’t make sense to have both)

% Temp_narx - structure containing everything needed to make temp discharge

o°

predictions, including:
turb_colum - column in exogenous variables with turb flows

o\

% spill_column - column in exogenous variables with spill flows

% times - JDAY values used in training (not used)

% inputDelays - delays for exogenous inputs

% feedbackDelays - delays for prediction feedbacks

% input_variables - 2 row cell containing variable names in first

o°

row and column number in second. For example, 'MET_WB1’

contains multiple columns of data but only some may be used

for NARX predictions

bias - bias for each trained neural network

weights - weights for each trained neural network (sum to 1)
narx_net_closed - neural networks

Temp_limit - lower and upper temp limits (NaN means it doesn’t exist)
Temp_slack - relaxation from Temp_limit (either upper or lower -
doesn’t make sense to have both)

cost_curve_MW 2 row matrix to create step function, with 1lst row

being hours and 2nd row $/MW-hr values

xprev - vector of previous active turbine levels
elev_soft_penalty_coeff - penalty coefficient for soft ending elev soft
constraint

ELWS_targets - target elevations for end of time period

tolerance - penalty tolerance

cache - water quality predictions provided by W2 simulations
Optimize_day_by_day - 1 if optimizing daily, 0 if optimizing all together
transition_matrix - transition probabilities for turbine ramping up and down
Outputs:

feasible_options feasible potential solutions for GA initialization

y — objective function solutions for feasible_options

c - constraint violations

funccount - number of paired function evaluations

o0 o© o© o° A A% A o A A O O° OO A A A A A O o° o° o

o°

$Start with upstream reservoir (wb=1l), find feasible operations, and compute
<~ associated discharge flows for each. Then use those flows as upstream
— inflow for next wb, find feasible operations, and compute associated
<~ discharge flows. Etc...

c=[]; infeasibles.x=[]; infeasibles.c=[];
n=size (feasible_options,1);
funccount=0;

%Weights
for wb=1l:size(x1_options, 2)
for i=2:no_of_units{wb}+1
weights{wb}{i} (1)=no_of_units{wb};
for ii=2:1
weights{wb}{i} (ii)=weights{wb}{i} (ii-1)«.5;
end
end
end
clearvars 1 ii wb

count=1;
while size (feasible_options,1l)<no_of_solns
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if count==1
$Starting set size
setsize=no_of_solns;
elseif count==
$Modify set size as a function of how many feasible solns found so far (
— maximum is 30+setsize)
setsize=min (5* (setsize),round( (setsize/ (size (feasible_options,1l)-n))*...
(no_of_solns-(size (feasible_options,1l)-n))));
else
%$If still not enough solns found, should be close so try 50 at a time
setsize=50;
end

for wb=l:size(x1_options, 2)
raw_options{wb}=nan (setsize,size(t,2)-1);
if size(xl_options{wb},2)==1 %Sonly 1 option left
raw_options{wb} (:,1)=x1_options{wb};
else
raw_options{wb} (:,1)=randsample (x1_options{wb},setsize,true, ...
transition_matrix{wb} (xprev{wb} (end)+1,x1_options{wb}+1));
end
for i=l:setsize
for j=2:size(t,2)-1
%$Variable consisting of xprev and turbine pattern through j-1
pattern=[xprev{wb} raw_options{wb} (i,1:3-1)1;
$First start with all available options, then eliminate infeasible
<~ ones based on turbines from 1:7j-1
options=[0:no_of_units{wb}];
% (1) Eliminate options based on change in active unit violations
if "isnan(max_hrly_unit_change{wb})
auvoptions=[pattern (end)-max_hrly_unit_change{wb}:
pattern (end)+max_hrly_unit_change{wb}];
options=intersect (options, auvoptions);
end
% (2) Non—-integer constraint (assumed in selection algorithm)
(3) Eliminate options based on zero generation hourly limit
if "isnan(zero_gen_limit{wb})
if sum(pattern(end-zero_gen_limit{wb}+1l:end))==0
zghloptions=[1l:no_of_units{wb}]; %if previous zero_gen_limit
< hrs had zero total flow, must have flow next hr
options=intersect (options, zghloptions) ;
end
end
% (4) Eliminate options that violate oscillations constraint -
— violates whenever the number of turbines increases and then
— decreases within 3 hours, or vice versa
allopt=[0:no_of_units{wb}];
if pattern(end-1)<pattern(end) %if prev turbs increasing
oscoptions=allopt (allopt>=pattern(end));
options=intersect (options, oscoptions);
elseif pattern(end-1)==pattern(end) %need 3 hrs btwn ramping up and
— down
if pattern(end-2)<pattern(end-1) Sramping up
oscoptions=allopt (allopt>=pattern (end));
options=intersect (options, oscoptions);
elseif pattern(end-2)>pattern(end-1) S%Sramping down
oscoptions=allopt (allopt<=pattern (end));
options=intersect (options, oscoptions);
elseif pattern(end-2)==pattern(end-1)
%do nothing —-->3 consecutive hours between ramping up and down
— satisfied

o°

end
elseif pattern(end-1)>pattern(end) %$if prev turbs decreasing
oscoptions=allopt (allopt<=pattern(end));
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options=intersect (options, oscoptions);

end

$0ut of the available options left, pick the next turbine setting

if size(options,2)==1 %only 1 option left
raw_options{wb} (i, j)=options;

else
raw_options{wb} (i, j)=randsample (options,1l,true, ...

transition_matrix{wb} (raw_options{wb} (i, j-1)+1,options+1l));
end
end
end
end

%$Convert raw_options cells to long vectors containing all reservoirs per row
raw_options2=[];
for wb=1l:size (x1_options,2)
raw_options2=[raw_options2 raw_options{wb}];
end

$Check feasibility (all but WQ)

[c_new, "]=penalty_fcn(raw_options2,t, frequency,Q,ic_elev, ...
turbine_discharge, ELWS_limit,max_hrly_ unit_change,WQ, ...
zero_gen_limit, xprev, ELWS_targets,tolerance, cache,Optimize_day_by_day);

funccount=funccount+size (raw_options2,1);

raw_options3=raw_options2(all (c_new<=tolerance,2),:);

feasible_options=[feasible_options; raw_options3];

$Remove duplicates

feasible_options=unique (feasible_options,’rows’);

fprintf ([’ Feasible options found: ', ...
num2str (size (feasible_options, 1)), "\n’]);

if count==2 & isempty (feasible_options)
y=[1; return

elseif count==5 & “isempty (feasible_options)
break

else
count=count+1;

end

end

if size(feasible_options,1l)>no_of_solns
picks=randsample (size (feasible_options,1l),no_of_solns);
feasible_options=feasible_options (picks, :);

end

ga_results_plotting_nobanding.m

$Determine the index in cache corresponding to the best solution from last
< generation
[T, index]=ismember (x_final_all{iter},cache.x,’rows’);

t_all=[start_date:frequency:start_datetdays_forward];
if Optimize_day_by_day==
day=days_forward;
end
for wb=1l:size (CFG, 2)

maxdelay=max ([WQ{wb}.DO_narx.inputDelays’; WQ{wb}.DO_narx.feedbackDelays’]);
data_start=frequencyx (maxdelay-1);

figure (‘units’,’'normalized’,’outerposition’, [0 0 1 11])

% Title
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annotation (' textbox’, ...
[0.357741573033708 0.952787192414743 0.325808054820903
— 0.0410246887733755], ...
"String’, { [CFG{wb}.Name ' Reservoir Optimization Results’]},...
"FontWeight’,’bold’, ...
"FontSize’,16, ...
"EdgeColor’, [0.941176470588235 0.941176470588235 0.941176470588235], ...
"HorizontalAlignment’,'’center’);

o

% Subplot 1: Turbine discharge patterns as active units

subplot (12,2, [1 3 51)

Axl=plot (tprev_ic, xprev_ic{wb}, "k’ , ...
t_all(l:1+day=* (1/frequency)), [xprev_ic{wb} (end) x0_all (wb,l:dayx*(1/

— frequency))],’'b", ...

t_all(l:1+day=* (1/frequency)), [xprev_ic{wb} (end) x_final{wb}],’:r’,...
"LineWidth’,2);

xlabel (" Julian Day’); xlim([t_all(l)-data_start t_all (l+day=*24)1);

set (gca,’YTick’,0:1:no_of_units{wb});

ylabel ("Active turbine units’)

title (' Active Turbine Units’)

y1lim ([0 max ([xprev_ic{wb} (end) x0_all (wb,1l:day=* (1/frequency)) x_final{wb}])])

ylims=get (gca,’ylim’); xlims=get (gca,’x1lim’); xrange=xlims (2)-xlims (1) ;
— yrange=ylims (2)-ylims (1) ;

text (xlims (1) +0.025xxrange,ylims (1) +0.9xyrange,’ (a)’,’FontSize’,12);

%% Subplot 2: Turbine discharge patterns as flowrate
turb_discharges_x0{wb}=interpl (Qprojected{wb}.QOT_BR1_T(:,1),Qprojected{wb}.
— QOT_BR1_T(:,2),t_all(l:1+day* (1/frequency)));
[turb_discharges{wb},spill_discharges{wb},”, ", " 1=...
activeunits_to_discharges (x_final{wb},t, frequency, ...
Q{wb},ic_elev{wb}, turbine_discharge{wb},ELWS_targets{wb}, ...
[1,[]1,0ptimize_day_by_day);
turb_discharges_prev{wb}=interpl (Q{wb}.QOT_BR1_T(:,1),Q{wb}.Q0T_BR1_T(:,2),
— tprev_ic);
subplot (12,2, [9 11 13])
Ax2=plot (tprev_ic, turb_discharges_previ{wb}, k', ...
t_all(l:1+day=*(1/frequency)), [turb_discharges_prev{wb} (end)
— turb_discharges_x0{wb} (2:end)],’'b’, ...
t_all(l:1+day=* (1/frequency)), [turb_discharges_prev{wb} (end)
— turb_discharges{wb} (2:end)],’ :r’,’ LineWidth’,2);
xlabel (" Julian Day’); xlim([t_all(l)-data_start t_all(l+day* (1/frequency))]);
ylabel (' Turbine discharge, cms’)
title (' Turbine Discharges’)
ylims=get (gca,’ylim’); xlims=get (gca,’x1lim’); xrange=xlims (2)-xlims(1);
— yrange=ylims (2)-ylims (1) ;
text (x1lims (1) +0.025+xxrange, ylims (1) +0.9xyrange,’ (b)’,’FontSize’,12);

%% Subplot 3: Spill discharge patterns as flowrate
spill_discharges_x0{wb}=interpl (Qprojected{wb}.QOT_BR1_S(:,1),Qprojected{wb}.
— QOT_BR1_S(:,2),t_all(l:1+day* (1/frequency)));
if size(spill_discharges{wb},2)==
spill_discharges{wb}=ones (1,size(t_all(l:1+day* (1/frequency)),2))*
> spill_discharges{wb};
else
spill_discharges{wb}=interpl ([start_date:1l:start_date+days_forward-1],
— spill_discharges{wb},t_all(l:1+day* (1/frequency)));
end
spill_discharges_prev{wb}=interpl (Qprojected{wb}.Q0OT_BR1_S(:,1),Qprojected{wb
— }.QO0T_BR1_S(:,2),tprev_ic);
subplot (12,2, [17 19 211])
Ax2=plot (tprev_ic,spill_discharges_previ{wb}, k', ...
t_all(l:1+day=* (1/frequency)), [spill_discharges_prev{wb} (end)
— spill_discharges_x0{wb} (2:end)],’'b", ...
t_all(l:1+day=*(1/frequency)), [spill_discharges_prev{wb} (end)
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<~ spill_discharges{wb} (2:end)],’ :r’,’LineWidth’,2);
xlabel (" Julian Day’); xlim([t_all(l)-data_start t_all(l+day* (1/frequency))]);
ylabel (' Spill discharge, cms’)
title(’Spill Discharges’)
if all([spill_discharges_prev{wb} (end) spill_discharges_x0{wb}
— spill_discharges{wb}]==0)
ylim ([0 1])
end
ylims=get (gca,’ylim’); xlims=get (gca,’xlim’); xrange=xlims (2)-xlims (1) ;
— yrange=ylims (2)-ylims (1) ;
text (x1lims (1) +0.025«xrange,ylims (1) +0.9xyrange,’ (c)’,’FontSize’,12);

%% Subplot 4: Headwater elevations
clearvars HWs_x0
[7, 7, HWs_x0{wb}, ”, "]=activeunits_to_discharges (x0_all (wb,1:day* (1/frequency))
— ,t_all(l:1+day* (1/frequency)), ...
frequency, Qprojected{wb},ic_elev_first{wb}, ...
turbine_discharge{wb}, []1,[],[],0ptimize_day_by_day);
HWs_prev{wb}=interpl (Q{wb}.ELWS(:,1),Q{wb}.ELWS(:,2),tprev_ic);
HWs {wb}=cache.HWs (index, :);
subplot (12,2, [2 4 6])
Ax3=plot (tprev_ic, HWs_prev{wb}, k", ...
t_all(l:1+day=* (1/frequency)),HWs_x0{wb}, 'b’, ...
t_all(l:1+day=* (1/frequency)),HWs{wb},’ :r’,’LineWidth’,2);
hold on;
h5=plot ([t_all(l) t_all(l+dayx(1/frequency))], ...
[ELWS_limit{wb} (1) ELWS_limit{wb} (1)1,”:k’, ...
"LineWidth’,1.5);
plot ([t_all(l) t_all(l+dayx(l/frequency))]l,...
[ELWS_limit{wb} (2) ELWS_limit{wb}(2)1,’:k’, ...
"LineWidth’,1.5)
if Optimize_day_by_day==
hé=scatter (ELWS_targets{wb} (end, 1) ,ELWS_targets{wb} (end, 2));
else
hé=scatter (ELWS_targets{wb} (:,1),ELWS_targets{wb} (:,2));
end
hold off;
xlabel (" Julian Day’); xlim([t_all(l)-data_start t_all(l+day* (1/frequency))]);
ylabel ("Elevation, m’)
title (' Headwater Elevation’)
ylims=get (gca,’ylim’); xlims=get (gca,’x1lim’); xrange=xlims(2)-xlims (1) ;
— yrange=ylims (2)-ylims (1) ;
text (xlims (1) +0.025xxrange, ylims (1) +0.9xyrange,’ (d)’,’FontSize’,12);

%% Subplot 5: Discharge DO

DO_pred_x0{wb}=interpl (Qprojected{wb}.CWO (Qprojected{wb}.CWO(:,2) "=0,1),

— Qprojected{wb}.CWO (Qprojected{wb}.CWO(:,2) "=0,2),t_all(2:1+day=*(1/
— frequency)));

[turb_discharges2, spill_discharges2,”, , " ]1=...
activeunits_to_discharges (x_final{wb},t, frequency,Q{wb},ic_elev{wb}, ...
turbine_discharge{wb},ELWS_targets{wb}, [], [],Optimize_day_by_day);

DO_pred{wb}=narx_predictions (WQ{wb}.DO_narx, frequency,t,Q{wb}, ...
x_final{wb},turb_discharges2,spill_discharges2, [],Q{wb}.CWO, ...
"do’,Optimize_day_by_day);

flowout_x0=turb_discharges_x0{wb} (2:end)+spill_discharges_x0{wb} (2:end);

flowout=turb_discharges{wb} (2:end)+spill_discharges{wb} (2:end);

DO_pred_x0{wb} (flowout_x0==0)=nan; DO_pred{wb} (flowout==0)=nan;

Output_noOs{wb}=interpl (Qprojected{wb}.CWO (find (Qprojected{wb}.CWO (:,2) "=0)
— ,1),...

Qprojected{wb}.CWO (find (Qprojected{wb}.CWO(:,2) " =0),2),...
[t_all(l)-data_start:frequency:t_all(1l)])’;
if interpl (Qprojected{wb}.QOT_BR1_T(:,1),Qprojected{wb}.Q0OT_BR1_T(:,2),...
tprev_ic(end))==0 &
interpl (Qprojected{wb}.QOT_BR1_S(:,1),Qprojected{wb}.Q0T_BR1_S(:,2),...
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tprev_ic (end))==
DOinitcon{wb}=nan;

else
DOinitcon{wb}=0Output_noOs{wb} (end) ;
end
Outputprev{wb}=interpl ([t_all (1) -data_start:frequency:t_all(1l)],Output_noOs{
— wb}, ...

tprev_ic);
Jj=find (interpl (Qprojected{wb}.QOT_BR1_T(:,1),Qprojected{wb}.Q0T_BR1_T(:,2)
e
tprev_ic)==0 & ...
interpl (Qprojected{wb}.QO0T_BR1_S(:,1),Qprojected{wb}.QO0T_BR1_S(:,2),...
tprev_ic)==0);
Outputprev{wb} (j)=nan; clearvars J
subplot (12,2, [10 12 147])
hl=plot (tprev_ic, Outputprev{wb},’k’,’LineWidth’,2);
hold on;
h2=plot (t_all (1:1+day* (1/frequency)), [DOinitcon{wb} DO_pred_x0{wb}],’'b’,’
— LineWidth’, 2);
h3=plot (t_all(l:1+day* (1/frequency)), [DOinitcon{wb} DO_pred{wb}],’ :r’,’
— LineWidth’, 2);
h7=plot (cache.t, [DOinitcon{wb} cache.DO(index,:)]1,’qg’,’ LinewWidth’,2);
if "isnan (WQ{wb}.DO_limit (1))
h5=plot ([t_all(l) t_all(l+dayx(l/frequency))], [WQ{wb}.DO_limit (1) WQ{wb}.
— DO_limit(1)],” k", ...
"LineWidth’,1.5);
elseif “isnan (WQ{wb}.DO_limit (2))
plot ([t_all(l) t_all(l+day=(l/frequency))], [WQ{wb}.DO_limit (2) WQ{wb}.
— DO_limit(2)]," k", ...
"LineWidth’,1.5);
end
xlabel (" Julian Day’); xlim([t_all(l)-data_start t_all(l+day*(l/frequency))]);
ylabel (DO, mg/L’);
ylim([min ([DOinitcon{wb} cache.DO(index, :) min(DO_pred{wb}) min (DO_pred_x0{wb
<~ }) Output_noOs{wb}’ WQ{wb}.DO_limit (1) WQ{wb}.DO_limit(2)])-.25...
max ([DOinitcon{wb} cache.DO(index, :) max (DO_pred{wb}) max (DO_pred_x0{wb})
— Output_noOs{wb}’ WQO{wb}.DO_limit (1) WQ{wb}.DO_limit (2)])+.2571);
title(’Discharge DO Predictions’)
ylims=get (gca,’ylim’); xlims=get (gca,’xlim’); xrange=xlims (2)-xlims(1l);
— yrange=ylims (2)-ylims (1) ;
text (x1lims (1) +0.025«xrange,ylims (1) +0.9xyrange,’ (e)’,’FontSize’,12);
str=['AME = ’, sprintf (’%5.3f’,AME{wb}.DO), ' mg/L’];
text (xlims (1) +0.025xxrange,ylims (1) +0.1lxyrange, str,’FontSize’,12);
clearvars W2_no0Os_smooth index2 W2_noOs str slack_compute non_nan_count

%% Subplot 5: Discharge Temp

Temp_pred_x0{wb}=interpl (Qprojected{wb}.TWO (Qprojected{wb}.TWO(:,2) "=0,1),
— Qprojected{wb}.TWO (Qprojected{wb}.TWO(:,2) "=0,2),t_all(2:1+day*(1/
— frequency)));

Temp_pred{wb}=narx_predictions (WQ{wb}.Temp_narx, frequency,t,Q{wb}, ...
x_final{wb},turb_discharges2,spill_discharges2, [],Q{wb}.TWO, ...
"temp’,Optimize_day_by_day);

Temp_pred_x0{wb} (flowout_x0==0)=nan; Temp_pred{wb} (flowout==0)=nan;

clearvars flowout_x0

Output_noOs{wb}=interpl (Qprojected{wb}.TWO (find (Qprojected{wb}.TWO (:,2) "=0)
— ,1), ...

Qprojected{wb}.TWO (find (Qprojected{wb}.TWO(:,2) "=0),2), ...
[t_all(l)-data_start:frequency:t_all(1l)])’;
if interpl (Qprojected{wb}.QOT_BR1_T(:,1),Qprojected{wb}.Q0OT_BR1_T(:,2),...
tprev_ic(end))==0 &
interpl (Qprojected{wb}.QOT_BR1_S(:,1),Qprojected{wb}.Q0T_BR1_S(:,2),...
tprev_ic (end))==0
Tempinitcon{wb}=nan;
else
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end

Tempinitcon{wb}=0Output_nolOs{wb} (end) ;
end
Outputprev{wb}=interpl ([t_all(l)-data_start:frequency:t_all(1l)],Output_noOls{
— wbl}, ...
tprev_ic);
j=find (interpl (Qprojected{wb}.QOT_BR1_T(:,1),Qprojected{wb}.Q0T_BR1_T(:,2)
...
tprev_ic)==0 &
interpl (Qprojected{wb}.QOT_BR1_S(:,1),0projected{wb}.QO0T_BR1_S(:,2),...
tprev_ic)==0);
Outputprev{wb} (j)=nan; clearvars J
subplot (12,2, [18 20 22])
hl=plot (tprev_ic, Outputprev{wb},’k’,’LineWidth’,2);
hold on;
h2=plot (t_all (1l:1+day* (1/frequency)), [Tempinitcon{wb} Temp_pred_x0{wb}],’b’,’
< LineWidth’,2);
h3=plot (t_all(l:1+day* (1/frequency)), [Tempinitcon{wb} Temp_pred{wb}],’ :r’,’
— LineWidth’, 2);
h7=plot (cache.t, [Tempinitcon{wb} cache.T(index,:)],’g’,’  LinewWidth’,2);
if "isnan (WQ{wb}.Temp_limit (1))
h5=plot ([t_all(l) t_all(l+dayx(1/frequency))], [WQ{wb}.Temp_limit (1) WQ{wb
— }.Temp_limit (1)]," k", ...
"LineWidth’,1.5);
elseif “isnan (WQ{wb}.Temp_limit (2))
h5=plot ([t_all(1l) t_all(l+dayx (1/frequency))], [WQ{wb}.Temp_limit (2) WQ{wb
— }.Temp_limit (2)]," k", ...
"LineWidth’,1.5);

end
xlabel (" Julian Day’); xlim([t_all(l)-data_start t_all(l+day* (1/frequency))]);
ylabel (! Temperature, C’);
ylim([min ([Tempinitcon{wb} cache.T(index, :) min (Temp_pred{wb}) min (
— Temp_pred_x0{wb}) Output_noOs{wb}’ WQ{wb}.Temp_limit (1) WQ{wb}.
— Temp_limit (2)])-.25...
max ([Tempinitcon{wb} cache.T(index, :) max(Temp_pred{wb}) max (Temp_pred_x0{
— wb}) Output_noOs{wb}’ WQ{wb}.Temp_limit (1) WQ{wb}.Temp_limit (2)])
— +.25]1);

title(’Discharge Temperature Predictions’)
ylims=get (gca,’ylim’); xlims=get (gca,’xlim’); xrange=xlims (2)-xlims (1) ;
— yrange=ylims (2)-ylims (1) ;
text (x1lims (1) +0.025«xrange,ylims (1) +0.9xyrange,’ (f)’,’FontSize’,12);
str=["AME = ', sprintf (’%5.3f’,AME{wb}.T), " C'1;
text (x1lims (1) +0.025«xrange,ylims (1) +0.1lxyrange, str, ' FontSize’,12);
clearvars W2_no0Os_smooth W2_no0Os_smooth?2 index2 W2_noOs flowout str
<~ slack_compute non_nan_count

legendl=legend([hl h2 h3 h7 h5 hé6],’Past Values’, ...
"Projected Operations’, ...
"Optimal Solution’, ...
"W2 Validation at Optimal Solution’, ...
"Constraint Bounds’, ...
"Target Elevations’);
set (legendl, ...
"Position’, [0.39086885358981 0.0131729985010991 0.256670797003518
— 0.119367775250152], ...
"FontSize’,10);

initial NARX model_generation.m

$Initial NARX model generation

wb

1;
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global funccount_cache_global funccount_tot_global
funccount_cache_global=0; funccount_tot_global=0;
clearvars xprev tprev
x_final{wb}=[1];
$Previous turbine pattern for the year (if supplied)
if isempty (CFG{wb}.ForecastTurbinePattern)
xprev{wb}=actual_turb_ops (tprev_round,Qprojected{wb},elevtemp{wb},
— turbine_discharge{wb},no_of_units{wb});
else
prevturbpattern=dlmread (CFG{wb}.PreviousTurbinePattern,’\t’,1,0);
for i=l:size (tprev_round, 2)
index=find (prevturbpattern(:,1l)<=tprev_round(i));
xprev{wb} (i) =prevturbpattern (index (end),2);

end
clearvars 1 prevturbpattern index
end
tprev=[t_all (l)-max (cell2mat (zero_gen_limit (:)))rfrequency:frequency:t_all(l)];

xprev_ic=xprev; tprev_ic=tprev;

WQ_initial=WQ;
WQ_initial{wb}.DO_limit=nan(size (WQ{wb}.DO_limit)); WQ_initial{wb}.Temp_limit=
— nan(size (WQ{wb}.Temp_limit));

%O0ptimization timeperiod
if Optimize_day_by_day==
t=[start_datetday-1l:frequency:start_date+day];
else
t=t_all;
end

%$Set initial condition elevation
for wb=1l:size (CFG,2)
ic_elev{wb}=ic_elev_first{wb};
if ic_elev_first{wb}<ELWS_limit{wb} (1)
L.warn(’ INITIALIZATION’, [’Reservoir ', num2str(wb),’ initial elevation of
— ' cell2mat (ic_elev_first{wb}) " m is less than ELWS lower limit (
— firm constraint). Expanding ELWS limits to continue with
— optimization.”]);
ELWS_limit{wb} (1)=ic_elev_first{wb};
elseif ic_elev_first{wb}>ELWS_limit{wb} (2)
L.warn(’ INITIALIZATION’, [’Reservoir ', num2str(wb),’ initial elevation of
— 7 cell2mat (ic_elev_first{wb}) ' m is greater than ELWS upper limit
— (firm constraint). Expanding ELWS limits to continue with
— optimization.’”]);
ELWS_limit{wb} (2)=ic_elev_first{wb};
end
end
%$Find possible values for x (1) (based on previous zero_gen_limit turbs)
options=[0:no_of_units{wb}];
% (1) Eliminate options based on change in active unit violations
if "isnan(max_hrly_unit_change{wb})
auvoptions=[xprev{wb} (end) -max_hrly_unit_change{wb}:...
xprev{wb} (end)+max_hrly_ unit_change{wb}];
options=intersect (options, auvoptions) ;
end
(2) Non-integer constraint (assumed in selection algorithm)
(3) Eliminate options based on zero generation hourly limit
if "isnan(zero_gen_limit{wb})
if sum(xprev{wb} (end-zero_gen_limit{wb}+1l:end))==
zghloptions=[1l:no_of_units{wb}]; %$if previous zero_gen_limit hrs had zero
— total flow, must have flow next hr
options=intersect (options, zghloptions) ;
end
end

o°

o\
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% (4) Eliminate options that violate oscillations constraint - violates whenever
— the number of turbines increases and then decreases within 2 hours, or
— vice versa
allopt=[0:no_of_units{wb}];
if xprev{wb} (end-1)<xprev{wb} (end) %if prev turbs increasing
oscoptions=allopt (allopt>=xprev{wb} (end));
options=intersect (options, oscoptions);
elseif xprev{wb} (end-1)==xprev{wb} (end) %need 3 hrs btwn ramping up and down
if xprev{wb} (end-2)<xprev{wb} (end-1) %ramping up
oscoptions=allopt (allopt>=xprev{wb} (end));
options=intersect (options, oscoptions);
elseif xprev{wb} (end-2)>xprev{wb} (end-1) S%Sramping down
oscoptions=allopt (allopt<=xprev{wb} (end)) ;
options=intersect (options, oscoptions);
elseif xprev{wb} (end-2)==xprev{wb} (end-1)
%$do nothing -->3 consecutive hours between ramping up and down satisfied
end
elseif xprev{wb} (end-1)>xprev{wb} (end) %$if prev turbs decreasing
oscoptions=allopt (allopt<=xprev{wb} (end));
options=intersect (options, oscoptions);
end
x1_options{wb}=options;
if isempty (x1_options{wb})
L.fatal ("OPTIMIZATION’,’Based on previous turbine pattern, there is no
— feasible first hour turbine level.’);
return
end
clearvars tprev options auvoptions zghloptions allopt oscoptions
[pop01~l~r~]:---
create_feasible_initpop (ga_pop_size, []1,...
x1_options, frequency,Q,ic_elev,MW_rating,no_of_units,t, ...
max_hrly_unit_change, zero_gen_limit, turbine_discharge, ...
ELWS_limit,WQ_initial, cost_curve_MW, xprev, ...
[1,ELWS_targets, tolerance, cache,Optimize_day_by_day, ...
transition_matrix,1);
clearvars WQ_initial
%$Take initial pop popO0 and pick out Initialtrainingsetsize number of scenarios
— to run through W2 using kmeans clusters
wb=1; day=1; ELWS_limit_subproblem{day}=ELWS_limit;
%$Determine x0, actual turbine operations, to seed initial population
if Optimize_day_by_day==1
x0 (wb, :)=x0_all (wb, (day-1) * (1/frequency) +1:day* (1/frequency)) ;
else
x0 (wb, :)=x0_all (wb, :);
end
[T, y_dollarsl]=power_value (x0(wb,:),t,cost_curve_MW{wb}, ...
MW_rating{wb});
if size (ELWS_targets{wb} (:,1),1)==
elev_soft_penalty_coeff{day} (wb)=interpl (ELWS_limit_subproblem{day}{wb} (:)
..
elev_soft_penalty_coeff_constant, ...
ELWS_targets{wb} (:,2),’linear’, ' extrap’)+y_dollarsl; %$/m with cost curve,
<~ MWh/m with all cc=1

else
elev_soft_penalty_coeff{day} (wb)=interpl (ELWS_limit_subproblem{day}{wb} (:)
= ...
elev_soft_penalty_coeff_constant, ...
interpl (ELWS_targets{wb} (:,1),ELWS_targets{wb} (:,2),start_date+day), ...
"linear’,’extrap’)*y_dollarsl; %$/m with cost curve, MWh/m with all cc=1
end
FitnessFunction = @(x) -obj_fcn(x,t,cost_curve_MW, ...

MW_rating,elev_soft_penalty_coeff{day}, ...
ELWS_targets, frequency,Q,ic_elev, ...
turbine_discharge, cache,Optimize_day_by_day);
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[",bl=sort (FitnessFunction (pop0), ascend’); poplO=popl (b, :);
for a=1:500
[idx(:,a),” ", ,D{a}]l=kmeans (pop0, Initialtrainingsetsize);
B=unique (idx(:,a));
group_var (a)=var (histc(idx(:,a),B));
end
$Pick the cluster that minimizes the max group size (i.e., results in fairly
— even distribution)
[T,al=min (group_var); idx=idx(:,a); D=D{a};
for i=1l:Initialtrainingsetsize
%$Pick random one from each cluster
b=find(idx==1i); a=randsample(b,1l); init_train_set (i, :)=pop0(a, :);
end
clearvars a b B group_var i

$Create Qtrainingpop for each feasible_options entry (QOT_BR1_T, QOT_BR1_S, ELWS
< , CWO, TWO)

for i=1l:Initialtrainingsetsize
xtr{l}=init_train_set (i, :);
Qtrainingpop{i}=updateQ(Q,CFG, xtr,t, frequency, ic_elev, turbine_discharge, ...

WQ, xprev, ELWS_targets, cache,Optimize_day_by_day);

end

$Run each row in feasible_options through W2 (only works for l-day, 1l-wb
— problems for now), and update cache with these values as well

for trindex=1:Initialtrainingsetsize
fprintf ([/Running initial training point ’ num2str(trindex) ’ for reservoir #

< ', num2str(wb),’. \n’]);

directory=['results/w2_iterO_trpt’ num2str (trindex) ’'_wb’ num2str (wb)];
runW2trainingpop;

end

while istaskrunning(’w2.exe’) end %is w2 still running? if so, hold on

system(’taskkill /F /IM cmd.exe’); cache_size_pre=size(cache.x,1);

for trindex=1l:Initialtrainingsetsize
directory=['results/w2_iter(O_trpt’ num2str (trindex) ’'_wb’ num2str (wb)];
trainingpop=init_train_set; runW2trainingpop_part2;

end

clearvars s z zz zzz distances distance_mins start_index w2runstiming
— bestsolniter index pop b DO_pred T_pred w2timing trindex xtr idx £ i a b
< D wb D2 correction directory distance_to_soln ii e d

for i=1l:Initialtrainingsetsize
cache.flag{size(cache.flag,1l)+1,1}={"initial’};
end

NARX_retrain_trpt;
clearvars Qtrainingpop

narx_predictions.m

function pred=narx_predictions (NARX_model, frequency,t,Q,x, ...
turb_discharges, spill_discharges,mainstem_inflows, previous_Output, flag, ...
Optimize_day_by_day)

o\

Calculates WQ predictions using a trained family of NARX models

o°

% Inputs:

% NARX_model - structure containing everything needed to make WQ
% discharge predictions, including:

% turb_colum - column in exogenous variables with turb flows

% spill_column - column in exogenous variables with spill flows

% inputDelays - delays for exogenous inputs

% feedbackDelays - delays for prediction feedbacks

% input_variables - 2 row cell containing variable names in first
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o\

row and column number in second. For example, 'MET_WBLl’
contains multiple columns of data but only some may be used
for NARX predictions

o°

o\

% bias - bias for each trained neural network

% weights - weights for each trained neural network (sum to 1)

% narx_net_closed - neural networks

% frequency - frequency of predictions (hourly=1/24)

% t time series of JDAY values

% Q — all other inflows and outflows, interpolation settings,

% storage-elev curve, and tailwater curve

% x — hourly turbine time series (as rows for vectorizing!), integers

o\

between 0 and no_of_units
turb_discharges - matrix the same size as x that includes the turbine
discharge flowrates over the time t

o°

o°

% spill_discharges - spill discharge flowrates

% mainstem_inflows - structure containing Q, T, and DO with time series
% data from previous days’ optimal solution

% previous_Output - the time series of previous outputs of the

o\

constitiuent being predicted by NARX model

flag - ’"do’ if predicting DO, to check to make sure not <0
Optimize_day_by_day - 1 if optimizing daily, 0 if optimizing all together
Outputs:

pred vector of NARX model predictions for water quality, with NaN

values anywhere turb+spill=0

o o° o o\

o°

if isempty (x)
pred=[];
else

if isempty (mainstem_inflows)
mainstem_inflows.Q=[1];
mainstem_inflows.T=[];
mainstem_inflows.DO=[];

end

if exist ('mainstem_inflows’, ’var’) && isfield(mainstem_inflows, 'Q’)
if isempty(mainstem_inflows.Q) mainstem_inflows.Q=[]; end

else
mainstem_inflows.Q=[];

end

if exist ('mainstem_inflows’, ’'var’) && isfield(mainstem_inflows, ’"T')
if isempty (mainstem_inflows.T) mainstem_inflows.T=[]; end

else
mainstem_inflows.T=[];

end

if exist ('mainstem_inflows’, ’'var’) && isfield(mainstem_inflows, ’'DO’)
if isempty(mainstem_inflows.DO) mainstem_inflows.DO=[]; end

else
mainstem_inflows.DO=[];

end

maxdelay=max ( [NARX_model.inputDelays’; NARX_ model.feedbackDelays’]);
data_start=frequencyx (maxdelay-1);
timesteps=[t (1l)-data_start:frequency:t];
Output_noOs=interpl (previous_Output (find (previous_Output (:,2) "=0),1), ...
previous_Output (find (previous_Output (:,2) "=0),2),timesteps)’;
clearvars timesteps
yl=con2seqg([Output_noOs’ nan(l,size(x,2))1);
timesteps2=[t (1) -data_start:frequency:t t(2:end)];
Inputs=nan (size (timesteps2,2),size (NARX_model.input_variables,2));
index_QIN_BR1=[]; index_TIN_BR1=[]; index_CIN_BR1=[];
for i=l:size (NARX_model.input_variables, 2)
$If mainstem_inflows are provided and the variable is BR1 Q, T, or DO
if "isempty (mainstem_inflows.Q) &
isequal (NARX_model.input_variables{1l,1i},’QIN_BR1")
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index_QIN_BR1=1i;
end
if "isempty (mainstem_inflows.T) &
isequal (NARX_model.input_variables{1l,1i},’ TIN_BR1")
index_TIN_BR1=i;
end
if "isempty (mainstem_inflows.DO) &
isequal (NARX_model.input_variables{1l,1i},’CIN_BR1")
index_CIN_BR1=1i;
end
Inputs(:,1i)=interpl (Q. (sprintf (NARX _model.input_variables{1l,i})) (:,1),...
Q. (sprintf (NARX_model.input_variables{1l,i})) (:,NARX_model.input_variables
— {2,1}+1), ...
timesteps?2);
end
clearvars 1 timesteps2
pred=nan(size(x,1),size(x,2));
for i=l:size(x,1l) %attempt to vectorize this part later
%$Update mainstem_inflows, 1f necessary
if "isempty (index_QIN_BR1)
Inputs (size (Inputs,l)-size (mainstem_inflows.Q,2)+1:...
size (Inputs,l),index_QIN_BR1l)=mainstem_inflows.Q (i, :)’;
end
if "isempty (index_TIN_BR1)
Inputs (size (Inputs,l)-size (mainstem_inflows.T,2)+1:...
size (Inputs,l),index_TIN_BR1l)=mainstem_inflows.T(i,:)’;
end
if "isempty (index_CIN_BR1)
Inputs (size (Inputs,l)-size (mainstem_inflows.DO,2)+1:...
size (Inputs,l),index_CIN_BR1l)=mainstem_inflows.DO(i,:)’;
end
$Update turbine outflow and spill outflow columns, if necessary
if "isempty (turb_discharges)
Inputs (size (Inputs,1l)-size (turb_discharges,2)+...
l:size (Inputs,1l),NARX model.turb_column)=...
turb_discharges (i, :)’;
end
if "isempty (spill_discharges)
if Optimize_day_by_day==1 %optimize each day sequentially
Inputs (size (Inputs,1l)-size (turb_discharges,2)+...
l:size(Inputs,1l),NARX _model.spill_column)=...
spill_discharges (i) ;
else %optimize all days together, so each col in spill_discharges is each
— day
for ii=1:size(spill_discharges, 2)
spill_values (i, (1/frequency)* (ii-1)+1: (1/frequency) = (1i)+1)=...
spill_discharges(i,ii);
end
Inputs(size (Inputs,l)-size (turb_discharges,2)+1l:...
size (Inputs,l),NARX_model.spill_column)=...
spill_values (i, :)’;
clearvars ii
end
end
ul = con2seqg(Inputs’);
if size (NARX_model.narx_net_closed,2)==
if iscell (NARX_model.narx_net_closed)
[pl,Pil,Ail, tl]=preparets (NARX_model.narx_net_closed{:},ul, {},vyl);
ypl (1, :)=NARX_model.narx_net_closed{:} (pl,Pil,Ail);
else
[pl,Pil,Ail,tl]=preparets (NARX_model.narx_net_closed,ul,{},vyl);
ypl (1, :)=NARX_model.narx_net_closed(pl,Pil,Ail);
end
else
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for j=l:size (NARX_model.narx_net_closed, 2)
[pl,Pil,Ail, tl]=preparets (NARX_model.narx_net_closed{j},ul, {},vy1l);
ypl (j, :)=NARX_model.narx_net_closed{]j} (pl,Pil,Ail);
end
end
ypl=cell2mat (ypl) ;
if size (NARX_model.weights,1l)==1
ypl=ypl-NARX_model.bias;
pred (i, :)=ypl;
else
ypl=bsxfun (@minus, ypl, NARX_model.bias);
pred (i, :)=sum(bsxfun (@times, NARX _model.weights, ypl));
end
clearvars ypl
end
clearvars 1 j
if strcmp(flag,’do’)
pred=max (0, pred); %can’t have negative concentrations of DO
end
for i=l:size(x,1)
j=11;
if "isempty (spill_discharges)
if Optimize_day_by_day==1 %optimize each day sequentially
if all(spill_discharges (i)==0)
j=find(x (i, :)==0);
else
if size(spill_discharges (i, :),2)==1 %if solving subproblem
=013
else
j=find (turb_discharges (i, 2:end)==0 & spill_discharges (i, 2:end)
— ==0); %if solving final solution over all subproblems

end
end
else %optimize all days together, so each col in spill_discharges is each
— day
j=find (turb_discharges (i, 2:end)==0 & spill_values(i,2:end)==0);
end
else
J=find(x (i, :)==0 & interpl (Q.QOT_BR1_S(:,1),Q.Q0T_BR1_S(:,2),t(2:end))==0)
—
end
pred (i, j)=nan;

end
clearvars i1 j spill_values

end

NARX retrain_trpt.m

$Retrain temperature and DO NARX models for wb

$For each iteration, add the new W2 validation run data to the training data set
<~ , and then retrain. This means the training set grows with each iteration
— .

wb=1; %Assume 1 wb system for now

if "exist (! Inputs’)
Inputs{wb}.discharge_DO=[];
Inputs{wb}.discharge_Temp=[];

end

%% DO validation run

if WQ{wb}.DO _valid_check==
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if size(trainingpop,1l)>0
for trindex=l:size(trainingpop,1l)
index=size (Inputs{wb}.discharge_DO, 2);
timesteps=[t_all(1l)-max (WQ{wb}.DO_narx.inputDelays)/24:(1/24):t_all (end
—)1";
vars=WQ{wb}.DO_narx.input_variables;
Inputs{wb}.discharge_DO{index+1}=[];
for i=l:size (vars, 2)
if strfind(char(vars(l,1i)),’TIN")
flow_variable=strrep (char (vars(l,i)),’TIN’, QIN");
elseif strfind(char (vars(l,1i)),’CIN")
flow_variable=strrep (char(vars(l,i)),’CIN’," QIN");
elseif strfind(char (vars(l,1i)),’TTR")
flow_variable=strrep (char (vars(l,i)),’TIR’,"QTR");
elseif strfind(char(vars(l,1i)),’CTR")
flow_variable=strrep (char(vars(l,i)),’CIR’,"QTR");

else
flow_variable=char (vars(1l,1));

end

if "strcmp(char(vars(l,i)),’MET_WB1’) $%assume interpolation for MET
— data

for ii=l:size(Qtrainingpop{trindex}{wb}.interpolation, 2)
if strcmp (char (Qtrainingpop{trindex} {wb}.interpolation(l,ii)),
— flow_variable)

break
end
end
if strcmp (char (Qtrainingpop{trindex}{wb}.interpolation(3,1ii)),’ON
= ")
Inputs{wb}.discharge_DO{index+1} (:,1i)=interpl (Qtrainingpop{
< trindex}{wb}. (vars{1l,1i}) (:,1), ...
Qtrainingpop{trindex}{wb}. (vars{l,1i}) (:,vars{2,i}+1),

— timesteps);
elseif strcmp(char (Qtrainingpop{trindex}{wb}.interpolation(3,1ii))
< ,’OFF’)
for iii=l:size(timesteps,1)
index2=find (Qtrainingpop{trindex} {wb}. (vars{l,i}) (:,1)<=
— timesteps (ii), 1, " last’);
Inputs{wb}.discharge_DO{index+1} (iii, i)=Qtrainingpop{
— trindex}{wb}. (vars{l,1i}) (index2,vars{2,1i}+1);
end
end
else
Inputs{wb}.discharge_DO{index+1} (:,1i)=interpl (Qtrainingpop{
— trindex}{wb}. (vars{1l,1i}) (:,1), ...
Qtrainingpop{trindex}{wb}. (vars{l,1i}) (:,vars{2,i}+1),timesteps
— )i
end
end
DO_noNAN=interpl (DO{trindex} ("isnan(DO{trindex} (:,2)),1), ...
DO{trindex} ("isnan (DO{trindex} (:,2)),2),timesteps);
%Fill in Nans at the end
a=DO_noNAN (“isnan (DO_noNAN) ); DO_noNAN (isnan (DO_noNAN) )=a (end) ;
turbs=interpl (Qtrainingpop{trindex} {wb}.QOT_BR1_T(:,1),Qtrainingpop{
— trindex}{wb}.QOT_BR1_T(:,2),timesteps);
spills=interpl (Qtrainingpop{trindex}{wb}.QO0T_BR1_S(:,1),Qtrainingpop{
— trindex}{wb}.QOT_BR1_S(:,2),timesteps);
flowout=turbs+spills; DO_noNAN (flowout==0)=nan;

$Output data
Output{wb}.discharge_DO{index+1} (:,1)=DO_noNAN;
end
end
for i=l:size (Inputs{wb}.discharge_DO, 2)
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$Convert to cells
Inputs_seqg{wb}.discharge_DO{i}=con2seqg(Inputs{wb}.discharge_DO{i}’);
Output_seqg{wb}.discharge_DO{i}=con2seq (Output{wb}.discharge_DO{i}’);

end

clearvars i1 ii iii flow_variable index a DO_noNAN turbs spills flowout index2
— vars timesteps

%$Combine them all into single Input and Output cell arrays
Inputs_seq mul{wb}.discharge_DO=catsamples (Inputs_seq{wb}.discharge_DO{:},’

— pad’);
Output_seqg mul{wb}.discharge_DO=catsamples (Output_seqg{wb}.discharge_DO{:},’
— pad’);
$Train DO model - start with best DO model from before (greatest weight)
fprintf ([’ Training 5 DO models and picking the best \n’])
for i=1:5
inputDelays = [0 1 12];
feedbackDelays = [1];
hiddenNeurons=[10];
narx_net{i} = narxnet (inputDelays, feedbackDelays,hiddenNeurons) ;
narx_net{i}.divideFcn = ’'dividerand’;

o

The property DIVIDEMODE set to TIMESTEP means that targets are divided
% into training, validation and test sets according to timesteps.
For a list of data division modes type: help nntype_data_division_mode
narx_net{i}.divideMode = ’"time’; % Divide up every value
narx_net{i}.divideParam.trainRatio = 70/100;
narx_net{i}.divideParam.valRatio = 15/100;
narx_net{i}.divideParam.testRatio = 15/100;
narx_net{i}.trainParam.min_grad = 1le-10;
narx_net{i}.trainFcn = 'trainlm’;
narx_net{i}.trainParam.showWindow=0;
narx_net{i}.trainParam.showCommandLine=1;
[Xs,Xi,Ai, Ts]=preparets (narx_net{i}, Inputs_seq mul{wb}.discharge_DO, {},
Output_seqg mul{wb}.discharge_DO) ;
[narx_net{i}, "]=train(narx_net{i},Xs,Ts,Xi,Ai, ' UseParallel’,’yes’);
narx_net_closed{i} = closeloop (narx_net{i});
narx_net_closed{i}.trainParam.mu_max=1lel4;
[Xs,Xi,Al,Ts]=preparets (narx_net_closed{i}, Inputs_seq mul{wb}.discharge_DO
%’{}I
Output_seq mul{wb}.discharge_DO);
[narx_net_closed{i},tr{i}]l=train(narx_net_closed{i},Xs,Ts,Xi,Ai,’
— UseParallel’,’yes’);

o

end
for i=1:5 tr2(i)=tr{i}.best_perf; end
[7,b]l=min (tr2); WQ{wb}.DO_narx.narx_net_closed=narx_net_closed{b};
ypl= WQ{wb}.DO_narx.narx_net_closed(Xs,Xi,Al);
%$Calculate bias & standard dev using only predictions at test timepoints
bias=cell2mat (ypl (tr{b}.testInd))-cell2mat (Ts(tr{b}.testInd)); bias=nanmean (
<~ bias);
allerrors=(cell2mat (ypl (tr{b}.testInd))-bias)-cell2mat (Ts(tr{b}.testInd));
allerrors=allerrors( “isnan(allerrors));
[7,sigmahat] = normfit (allerrors);
WQ{wb}.DO_narx.bias=bias;
WQ{wb}.DO_narx.weights=1;
WQ{wb}.DO_narx.inputDelays=inputDelays;
WQ{wb}.DO_narx.std_dev=sigmahat;
WQ{wb}.DO_narx.Inputs=Inputs{wb}.discharge_DO;
WQ{wb}.DO_narx.Output=Output{wb}.discharge_DO;
if isfield (WQ{wb}.DO_narx,’train_time’)
WQ{wb}.DO_narx=rmfield (WQ{wb}.DO_narx, {'train_time’});
end
if isfield (WQ{wb}.DO_narx,’Discharge_DO_no0Os’)
WQ{wb}.DO_narx=rmfield (WQ{wb}.DO_narx, {’Discharge_DO_no0Os’});

273




121
122

123
124
125
126
127
128
129
130

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

146
147

148
149
150
151

152

153

154

155
156

157

158
159
160
161

162

163
164
165
166
167
168
169

170

end
clearvars b Xs Xi Ai Ts tr tr2 b ypl TS bias narx_net_closed narx_net muhat
— sigmahat
end

%% Temp validation run
if WQ{wb}.Temp_valid_check==
if size(trainingpop,1l)>0
for trindex=l:size(trainingpop, 1)
index=size (Inputs{wb}.discharge_Temp, 2);
timesteps=[t_all (1) -max (WQ{wb}.Temp_narx.inputDelays)/24:(1/24):t_all(
— end)]’;
vars=WQ{wb}.Temp_narx.input_variables;
Inputs{wb}.discharge_Temp{index+1}=[1];
for i=l:size (vars, 2)
if strfind(char(vars(l,1i)),’TIN")
flow_variable=strrep (char (vars(l,i)),’TIN’,"QIN");
elseif strfind(char (vars(l,1i)),’CIN’)
flow_variable=strrep (char(vars(l,i)),’CIN’,"QIN");
elseif strfind(char (vars(l,1i)),’TTR")
flow_variable=strrep (char (vars(l,i)),’TITR’,"QTR");
elseif strfind(char (vars(l,1i)),’CTR")
flow_variable=strrep (char(vars(l,i)),’CIR’,"QTR");

else
flow_variable=char (vars(1l,1));

end

if "strcmp(char(vars(l,i)),’MET_WB1l’) %assume interpolation for MET
— data

for ii=l:size(Qtrainingpop{trindex}{wb}.interpolation, 2)
if strcmp (char (Qtrainingpop{trindex}{wb}.interpolation(1l,ii)),
— flow_variable)

break
end
end
if strcmp (char (Qtrainingpop{trindex}{wb}.interpolation(3,1i)),’ON
— )
Inputs{wb}.discharge_Temp{index+1} (:,1i)=interpl (Qtrainingpop{
— trindex}{wb}. (vars{l,1i}) (:,1), ...
Qtrainingpop{trindex}{wb}. (vars{l,1i}) (:,vars{2,i}+1),

— timesteps);
elseif strcmp(char (Qtrainingpop{trindex}{wb}.interpolation(3,1ii))
< ,’OFF’)
for iii=l:size(timesteps,1)
index2=find (Qtrainingpop{trindex} {wb}. (vars{l,i}) (:,1)<=
— timesteps(ii),1,’last’);
Inputs{wb}.discharge_Temp{index+1} (iii, i)=0Qtrainingpop/{
— trindex}{wb}. (vars{l,1i}) (index2,vars{2,1}+1);
end
end
else
Inputs{wb}.discharge_Temp{index+1} (:,1i)=interpl (Qtrainingpop/{
— trindex}{wb}. (vars{1l,1i}) (:,1), ...
Qtrainingpop{trindex}{wb}. (vars{l,i}) (:,vars{2,i}+1l),timesteps
= )i
end
end
T_noNAN=interpl (T{trindex} ("isnan(T{trindex} (:,2)),1), ...
T{trindex} ("isnan(T{trindex} (:,2)),2),timesteps);
%$Fill in Nans at the end
a=T_noNAN (“isnan (T_noNAN)); T_noNAN (isnan (T_noNAN) )=a (end);
turbs=interpl (Qtrainingpop{trindex}{wb}.QOT_BR1_T(:,1),Qtrainingpop{
<~ trindex}{wb}.QOT_BR1_T(:,2),timesteps);
spills=interpl (Qtrainingpop{trindex}{wb}.QO0T_BR1_S(:,1),Qtrainingpop{
— trindex}{wb}.QOT_BR1_S(:,2),timesteps);
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flowout=turbs+spills; T_noNAN (flowout==0)=nan;

%$Output data
Output {wb}.discharge_Temp{index+1} (:,1)=T_noNAN;
end
end
for i=l:size(Inputs{wb}.discharge_Temp, 2)
$Convert to cells
Inputs_seqg{wb}.discharge_Temp{i}=con2seq(Inputs{wb}.discharge_Temp{i}’);
Output_seqg{wb}.discharge_Temp{i}=con2seq(Output{wb}.discharge_Temp{i}’);
end
clearvars 1 ii iii flow_variable index a T_noNAN turbs spills flowout index2
<~ vars timesteps

%$Combine them all into single Input and Output cell arrays

Inputs_seq mul{wb}.discharge_Temp=catsamples (Inputs_seg{wb}.discharge_Temp
— {:},"pad’);

Output_seqg mul{wb}.discharge_Temp=catsamples (Output_seqg{wb}.discharge_Temp
— {:},"pad’);

$Train temp model - start with best DO model from before (greatest weight)
fprintf ([’ Training 5 temperature models and picking the best \n’])
for i=1:5

inputDelays = [0 1 12];

feedbackDelays = [1];

hiddenNeurons=[10];

narx_net{i} = narxnet (inputDelays, feedbackDelays,hiddenNeurons) ;
narx_net{i}.divideFcn = ’'dividerand’;

oo

The property DIVIDEMODE set to TIMESTEP means that targets are divided
into training, validation and test sets according to timesteps.
For a list of data division modes type: help nntype_data_division_mode

o\

o

narx_net{i}.divideMode = ’"time’; % Divide up every value
narx_net{i}.divideParam.trainRatio = 70/100;
narx_net{i}.divideParam.valRatio = 15/100;
narx_net{i}.divideParam.testRatio = 15/100;
narx_net{i}.trainParam.min_grad = le-10;
narx_net{i}.trainFcn = 'trainlm’;

narx_net{i}.trainParam.showWindow=0;
narx_net{i}.trainParam.showCommandLine=1;
[Xs,Xi,Ai, Ts]=preparets (narx_net{i}, Inputs_seq mul{wb}.discharge_Temp, {},
Output_seqg _mul{wb}.discharge_Temp) ;
[narx_net{i}, "]=train(narx_net{i},Xs,Ts,Xi,Ai,’UseParallel’,’yes’);
narx_net_closed{i} = closeloop (narx_net{i});
narx_net_closed{i}.trainParam.mu_max=1lel4;
[Xs,Xi,Al,Ts]=preparets (narx_net_closed{i}, Inputs_seq mul{wb}.
— discharge_Temp, {},
Output_seq _mul{wb}.discharge_Temp) ;
[narx_net_closed{i},tr{i}]l=train(narx_net_closed{i},Xs,Ts,Xi,Ai,’
<~ UseParallel’,’vyes’);
end
for i=1:5 tr2(i)=tr{i}.best_perf; end
[T, b]l=min(tr2); WQ{wb}.Temp_narx.narx_net_closed=narx_net_closed{b};
ypl= WQ{wb}.Temp_narx.narx_net_closed (Xs,Xi,Ai);
%$Calculate bias & standard dev using only predictions at test timepoints
bias=cell2mat (ypl (tr{b}.testInd))-cell2mat (Ts(tr{b}.testInd)); bias=nanmean (
— bias);
allerrors=(cell2mat (ypl (tr{b}.testInd))-bias)-cell2mat (Ts(tr{b}.testInd));
allerrors=allerrors(~“isnan(allerrors));
[7,sigmahat] = normfit (allerrors);
WQ{wb}.Temp_narx.bias=bias;
WQ{wb}.Temp_narx.weights=1;
WQ{wb}.Temp_narx.inputDelays=inputDelays;
WQ{wb}.Temp_narx.std_dev=sigmahat;
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WQ{wb}.Temp_narx.Inputs=Inputs{wb}.discharge_Temp;

WQO{wb}.Temp_narx.Output=Output{wb}.discharge_Temp;

if isfield (WQ{wb}.Temp_narx,’'train_time’)
WQ{wb}.Temp_narx=rmfield (WQ{wb}.Temp_narx, {'train_time’});

end

if isfield (WQ{wb}.Temp_narx,’Discharge_temp_nols’)
WO{wb}.Temp_narx=rmfield (WQ{wb}.Temp_narx, {’Discharge_temp_no0s’});

end

clearvars b Xs Xi Ai Ts tr tr2 ypl TS bias narx_net_closed narx_net muhat
— sigmahat

end
clearvars timesteps

obj_fcn.m

function y=obj_fcn(x_allwb,t,cost_curve_MW,MW_rating, ...

o o0 o° o o° o° A% A A A A A OO OO A° A A A A o° o° o\

o\

X

y=

elev_soft_penalty_coeff,ELWS_targets, frequency,Q,ic_elev, ...
turbine_discharge, cache,Optimize_day_by_day)

Calculates value of generation pattern over time t

Inputs:

x_allwb - hourly turbine time series (as rows for vectorizing!),
integers between 0 and no_of_units for all waterbodies

t time series of JDAY values

cost_curve_MW 2 row matrix to create step function, with 1lst row
being hours and 2nd row $/MW-hr values

MW_rating - the fixed MW level of turbine_discharge_curve (25 MW for
OHL)

elev_soft_penalty_coeff - penalty coefficient for soft ending elev soft
constraint

ELWS_targets - target elevations for end of time period

frequency - frequency of predictions (hourly=1/24)

Q - all other inflows and outflows, interpolation settings,
storage—-elev curve, and tailwater curve (all in meters)

ic_elev - initial elevation condition (m)

turbine_discharge - turbine discharge curve at fixed MW level, with
col 1 in meters and col 2 in cms

cache - water quality predictions provided by W2 simulations
Optimize_day_by _day - 1 if optimizing daily, 0 if optimizing all together
Outputs:

y total price in $ of generation pattern

_allwb=round(x_allwb) ;

zeros (size(x_allwb,1),1);

$Split up rows of x to separate reservoirs
for wb=l:size (MW_rating, 2)

x{wb}=x_allwb (:,wbx (size(t,2)-1)—-(size(t,2)-2) :wb*(size(t,2)-1));

end
clearvars wb

for wb=1l:size (MW_rating, 2)

%$Calculate turbine output over 10 days
$Multiply each turbine output by number of turbines online
output_MW{wb}=x{wb}+*MW_rating{wb}; S$MW

%Calculate total power output

y_MWh{wb}=sum (output_MW{wb}’)’;

%$Calculate weighted price output

y_dollars{wb}=cost_curve (t,output_MW{wb},cost_curve_Mw{wb}’);
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$Calculate deviation from ELWS_target and subtract/add penalty
if wbh==
%$Preallocate mainstem_inflows for following wbs
mainstem_inflows=cell (l:size (MW_rating,2));
for i=l:size (MW_rating, 2)
mainstem_inflows{i}.t=[1];
mainstem_inflows{i}.Q=[];
end
clearvars i
[turb_discharges{wb},spill_discharges{wb},HWs{wb}, , ] =
activeunits_to_discharges (x{wb},t, frequency, ...
Q{wb},ic_elev{wb}, turbine_discharge{wb},ELWS_targets{wb}, ...
[1,[],0ptimize_day by day);

else
[turb_discharges{wb}, spill_discharges{wb},HWs{wb}, ", ] =
activeunits_to_discharges (x{wb},t, frequency, ...
Q{wb},ic_elev{wb},turbine_discharge{wb},ELWS_targets{wb}, ...
mainstem_inflows{wb}.t,mainstem_inflows{wb}.Q,Optimize_day_by_day);
end

$ELWS end goal
if size (ELWS_targets{wb} (:,1),1)==1
ELWS_goal{wb}=ELWS_targets{wb} (:,2);
else
ELWS_goal{wb}=interpl (ELWS_targets{wb} (:,1),ELWS_targets{wb} (:,2),t (end));
end
ELWS_error{wb}=HWs{wb} (:,end) -ELWS_goal{wb};
ELWS_deduction{wb}=(ELWS_error{wb}. 2)xelev_soft_penalty_coeff (wb);

y=y+y_dollars{wb}-ELWS_deduction{wb};

%$If we haven’t reached the last reservoir, update mainstem_inflows
if wb =size(ic_elev,2)
mainstem_inflows{wb+1}.t=t;
mainstem_inflows{wb+1}.0Q0=bsxfun (@plus, turb_discharges{wb},spill_discharges
— {wb});
end

end

obj_fcn_do.m

function y=obj_fcn_do(x_allwb,t, frequency,Q,ic_elev, ...
turbine_discharge, WQ, xprev, ELWS_targets, level,waterbody, cache,
— Optimize_day_by_day)

o°

Objective function to minimize DO constraint violation

o

o\

Inputs:

x_allwb - hourly turbine time series (as rows for vectorizing!),
integers between 0 and no_of_units for all waterbodies

t time series of JDAY values

frequency - frequency of predictions (hourly=1/24)

o o o°

o\

% Q — all other inflows and outflows, interpolation settings,

% storage-elev curve, and tailwater curve (all in meters)

% ic_elev - initial elevation condition (m)

% turbine_discharge - turbine discharge curve at fixed MW level, with

% col 1 in meters and col 2 in cms

% WQ - structure containing water quality constraints and NARX models

% DO_narx - structure containing everything needed to make DO discharge
% predictions, including:

% turb_colum - column in exogenous variables with turb flows
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% spill_column - column in exogenous variables with spill flows

% times - JDAY values used in training (not used)

% inputDelays - delays for exogenous inputs

% feedbackDelays - delays for prediction feedbacks

% input_variables - 2 row cell containing variable names in first

o°

row and column number in second. For example, 'MET_WBL1’
contains multiple columns of data but only some may be used

for NARX predictions

bias - bias for each trained neural network

weights - weights for each trained neural network (sum to 1)
narx_net_closed - neural networks

DO_limit - lower and upper DO limits (NaN means it doesn’t exist)
DO_slack - relaxation from DO_limit (either upper or lower -
doesn’t make sense to have both)

Temp_narx - structure containing everything needed to make temp discharge
predictions, including:

turb_colum - column in exogenous variables with turb flows
spill_column - column in exogenous variables with spill flows
times - JDAY values used in training (not used)

inputDelays - delays for exogenous inputs

feedbackDelays - delays for prediction feedbacks
input_variables - 2 row cell containing variable names in first
row and column number in second. For example, 'MET_WB1’
contains multiple columns of data but only some may be used

for NARX predictions

bias - bias for each trained neural network

o0 o0 o o o° o° A A A A A A O O° o° O° o O o

oe

% weights - weights for each trained neural network (sum to 1)
% narx_net_closed - neural networks
% Temp_limit - lower and upper temp limits (NaN means it doesn’t exist)

o\

Temp_slack - relaxation from Temp_limit (either upper or lower -
doesn’t make sense to have both)

o\

% ELWS_targets — 2 column matrix with JDAY in coll and elevation target
% in col2
% level - ’'upper’ or ’lower’

o\

waterbody - which waterbody we’re checking the discharge DO for

cache - water quality predictions provided by W2 simulations
Optimize_day_by_day - 1 if optimizing daily, 0 if optimizing all together
Outputs:

y DO constraint violation for each scenario in x

o° o° oo

o

%$If using the cache, get list of cache indices here

[T, ,tib]l=intersect (t,cache.t);

if Optimize_day_by_day==0 & size(ic_elev,2)==1 & "“isempty (cache.x)
[ia,ib]=ismember (x_allwb,cache.x,’rows’);

else
index=find(cache.t==t (1)); %last index for previous operations
if index==1 $first day
[ia, ib]=ismember (x_allwb,cache.x (:,index:index+23),’ rows’);
else
[ia,ib]=ismember ([repmat (xprev{l} (size (xprev{l},2)-tib(l)+2:end), ...
size(x_allwb,1),1) x_allwb],cache.x(:,1l:index+23),’rows’); %fix later
— to solve multi waterbody problems
end
end
ia=find(ia==1); ib=ib (ib™=0);

if “isempty(ia) fprintf ([’Cached points here: ', num2str (ib’), "\n’]); end

%$Split up rows of x to separate reservoirs
for wb=1l:waterbody
x{wb}=x_allwb (:,wb* (size(t,2)-1)-(size(t,2)-2) :wb*(size(t,2)-1));
end
clearvars wb

%$Calculate headwater elevs for constraints
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for wb=1:waterbody
%$Calculate headwater elevs for constraints
if wbh==
mainstem_inflows{wb}.t=[];
mainstem_inflows{wb}.Q=[];
%Check to see if any cached rows can be skipped by elev calcs
if "isempty (ia)
[HWcalcrows,bl=setdiff (l:size(x_allwb,1),1ia);
x_HWcalcrows=x{wb} (HWcalcrows, :);
[turb_discharges{wb} (b, :),spill_discharges{wb} (b, :),HWs{wb} (b, :), ", ] =
c_>
activeunits_to_discharges (x_HWcalcrows,t, ...
frequency,Q{wb},ic_elev{wb}, turbine_discharge{wb}, ...
ELWS_targets{wb}, [], [],0ptimize_day_by_day);
HWs{wb} (setdiff (l:size(x_allwb,1),b), :)=cache.HWs (ib, tib);
else
[turb_discharges{wb},spill_discharges{wb},HWs{wb}, , ] =
activeunits_to_discharges (x{wb},t, frequency, ...
Q{wb},ic_elev{wb},turbine_discharge{wb},ELWS_targets{wb}, ...
[1,[]1,0ptimize_day_by_day);
end
else
[turb_discharges{wb},spill_discharges{wb},HWs{wb}, , ] =
activeunits_to_discharges (x{wb},t, frequency, ...
Q{wb},ic_elev{wb}, turbine_discharge{wb},ELWS_targets{wb}, ...
mainstem_inflows{wb}.t,mainstem_inflows{wb}.Q,Optimize_day_by_day);
end
%$If we haven’t reached the last reservoir, update mainstem_inflows.Q (include
<~ Dboth turbine + spill incoming!) and mainstem_inflows.t
if wb™=size(ic_elev,2)
mainstem_inflows{wb+1}.Q=...
bsxfun (@plus, turb_discharges{wb},spill_discharges{wb});
mainstem_inflows{wb+1}.t=t;
end
end

for wb=1:waterbody

if wb™=1
mainstem_inflows_temp{wb}.t=mainstem_inflows{wb}.t;
mainstem_inflows_temp{wb}.Q=mainstem_inflows{wb}.Q;
mainstem_inflows_temp{wb}.T=mainstem_inflows{wb}.T;
mainstem_inflows_temp{wb}.DO=mainstem_inflows{wb} .DO;
%$Remove Nan values and interpolate for T and DO
for i=l:size(x{wb},1)
extrap_index="isnan (mainstem_inflows_temp{wb}.T(i,:));
[T,cl=find (extrap_index==1); extrap_index=c (end);
mainstem_inflows_temp{wb}.T (i, :)=...
interpl (mainstem_inflows_temp{wb}.t (1, "isnan(mainstem_inflows_temp({

> wb}.T(i,:))), ...
mainstem_inflows_temp{wb}.T (i, "isnan(mainstem_inflows_temp{wb}.T (i
> ,:))), ...

mainstem_inflows_temp{wb}.t,’linear’, ...
mainstem_inflows_temp{wb}.T (i, extrap_index)) ;
mainstem_inflows_temp{wb}.DO(i,:)=...
interpl (mainstem_inflows_temp{wb}.t (1, "isnan (mainstem_inflows_temp({
— wb}.DO(i,:))), ...
mainstem_inflows_temp{wb}.DO (i, "isnan (mainstem_inflows_temp{wb}.DO (i
— ;1)) ...
mainstem_inflows_temp{wb}.t,’linear’, ...
mainstem_inflows_temp{wb}.DO(i,extrap_index));
clearvars extrap_index c
end
clearvars i
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end

%$Discharge Temp estimation, to update incoming mainstem temp for next
— waterbody discharge DO estimation

Temp_narx=WQ{wb}.Temp_narx;

if wb==1 & waterbody =1 %don’t need to search cache for incoming temp,
— because cache is only set up for 1 wb problems
Temp_pred{wb}=...

narx_predictions (Temp_narx, frequency, t,Q{wb},x{wb}, ...
turb_discharges{wb},spill_discharges{wb}, [],...
Q{wb}.TWO, "temp’,Optimize_day_by_day);

elseif wb™=1 & wb =waterbody
Temp_pred{wb}=narx_predictions (Temp_narx, frequency,t,Q{wb},x{wb}, ...

end

turb_discharges{wb},spill_discharges{wb}, ...
mainstem_inflows_temp{wb},Q{wb}.TWO,’ temp’,Optimize_day_by_day);

$If we haven’t reached the last reservoir, update mainstem_inflows.T

if wb”™

=waterbody

mainstem_inflows{wb+1}.T(l:size(x{wb},1),1)=...

interpl (Q{wb}.TWO(:,1),Q{wb}.TWO(:,2),t (1)) ;

mainstem_inflows{wb+1}.T(:,2:size (Temp_pred{wb},2)+1)=...

end

Temp_pred{wb};

%$Now move on to DO....
DO_narx=WQ{wb}.DO_narx; DO_limit=WQ{wb}.DO_limit;
if wb==1

if

“isempty (ia)
[DOcalcrows,bl=setdiff(l:size(x_allwb,1),1ia);
x_DOcalcrows=x{wb} (DOcalcrows, :);
DO_pred{wb} (b, :)=...

narx_predictions (DO_narx, ...

frequency, t,Q{wb},x_DOcalcrows, ...

turb_discharges{wb} (DOcalcrows, :), ...

spill_discharges{wb} (DOcalcrows, :), []1, ...

Q{wb}.CWO,"do’,Optimize_day_by_day);
DO_pred{wb} (ia, :)=cache.DO (ib,tib(l:end-1));
clearvars DOcalcrows x_DOcalcrows b

else

end

else

DO_]

end

DO_pred{wb}=narx_predictions (DO_narx, frequency,t,Q{wb},x{wb}, ...
turb_discharges{wb}, spill_discharges{wb}, [], ...
Q{wb}.CWO,"do’,Optimize_day_by_day);

pred{wb}=narx_predictions (DO_narx, frequency,t,Q{wb},x{wb}, ...
turb_discharges{wb},spill_discharges{wb}, ...
mainstem_inflows_temp{wb},Q{wb}.CWO,"do’,Optimize_day_by_day);

%$If we haven’t reached the last reservoir, update mainstem_inflows.DO

if wb”

=waterbody

mainstem_inflows{wb+1}.DO(1l:size(x{wb},1),1)=...

interpl (Q{wb}.CWO(:,1),Q{wb}.CWO(:,2),t(1));

mainstem_inflows{wb+1}.DO(:,2:size (DO_pred{wb},2)+1l)=...

else

DO_pred{wb};

non_nan_count=sum(~isnan (DO_pred{wb}),2);

if

strcmp (level,’ lower’)
%$DO violations - lower
if isnan(DO_limit (1))
DO_violations=zeros (size (DO_pred{wb},1),1);
else
DO_violations=sum(-min (0, DO_pred{wb}-DO_limit (1)),2)./non_nan_count;
end

elseif strcmp(level,’upper’)
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%$DO violations - upper
if isnan(DO_limit (2))
DO_violations=zeros (size (DO_pred{wb},1),1);
else
DO_violations=sum (max (0,DO_pred{wb}-DO_limit (2)),2)./non_nan_count;
end
end

y=max (DO_violations, []1,2);
end
end

obj_fcn_elev.m

function y=obj_fcn_elev(x_allwb,t, frequency,Q,ic_elev, ...
turbine_discharge, ELWS_limit, xprev, ELWS_targets, level, waterbody, cache, ...
Optimize_day_by_day)

o\

Objective function to minimize elevation constraint violation

o\

o°

Inputs:

x_allwb - hourly turbine time series (as rows for vectorizing!),
integers between 0 and no_of_units for all waterbodies

t time series of JDAY values

frequency - frequency of predictions (hourly=1/24)

Q - all other inflows and outflows, interpolation settings,
storage-elev curve, and tailwater curve (all in meters)

ic_elev — initial elevation condition (m)

turbine_discharge - turbine discharge curve at fixed MW level, with
col 1 in meters and col 2 in cms

o° o° o o° o° o o° o

oe

% ELWS_limit - min and max elevation limits for constraints, in meters

% ELWS_targets — 2 column matrix with JDAY in coll and elevation target

% in col2

% level - ’'upper’ or ’lower’

% waterbody - which waterbody we’re checking elevation for

% cache - water quality predictions provided by W2 simulations

% Optimize_day_by day - 1 if optimizing daily, 0 if optimizing all together
% Outputs:

o\

y elevation constraint violation for each scenario in x

%$If using the cache, get list of cache indices here
[T, ,tib]l=intersect (t,cache.t);
if Optimize_day_by_day==0 & size(ic_elev,2)==1 & “isempty (cache.x)
[ia,ib]=ismember (x_allwb, cache.x,’rows’);
else
index=find(cache.t==t (1)); %last index for previous operations
if index==1 $first day
[ia, ib]=ismember (x_allwb,cache.x (:,index:index+23),’ rows’);
else
[ia,ib]=ismember ([repmat (xprev{l} (size (xprev{l},2)-tib(l)+2:end), ...
size(x_allwb,1),1) x_allwb],cache.x(:,1l:index+23),’rows’); %fix later
— to solve multi waterbody problems
end
end
ia=find(ia==1); ib=ib (ib™=0);
if “isempty(ia) fprintf ([’Cached points here: ', num2str (ib’), "\n’]); end

$Split up rows of x to separate reservoirs
for wb=1l:waterbody
x{wb}=x_allwb (:,wbx (size(t,2)-1)-(size(t,2)-2) :wb*(size(t,2)-1));
end
clearvars wb
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for wb=1l:waterbody
%$Calculate headwater elevs for constraints
if wbh==
mainstem_inflows{wb}.t=[];
mainstem_inflows{wb}.Q=[];
%$Check to see if any cached rows can be skipped by elev calcs
if "isempty (ia)
[HWcalcrows,bl=setdiff (l:size(x_allwb,1),1ia);
x_HWcalcrows=x{wb} (HWcalcrows, :);
[turb_discharges{wb} (b, :),spill_discharges{wb} (b, :),HWs{wb} (b, :), ", ] =
c_>
activeunits_to_discharges (x_HWcalcrows,t, ...
frequency,Q{wb},ic_elev{wb}, turbine_discharge{wb}, ...
ELWS_targets{wb}, [], [],0ptimize_day_by_day);
HWs{wb} (setdiff (l:size(x_allwb,1),b), :)=cache.HWs (ib, tib);
else
[turb_discharges{wb},spill_discharges{wb},HWs{wb}, , ] =
activeunits_to_discharges (x{wb},t, frequency, ...
Q{wb},ic_elev{wb},turbine_discharge{wb},ELWS_targets{wb}, ...
[1,[]1,0ptimize_day_by_day);
end
else
[turb_discharges{wb},spill_discharges{wb},HWs{wb}, , ] =
activeunits_to_discharges (x{wb},t, frequency, ...
Q{wb},ic_elev{wb}, turbine_discharge{wb},ELWS_targets{wb}, ...
mainstem_inflows{wb}.t,mainstem_inflows{wb}.Q,Optimize_day_by_day);
end
%$If we haven’t reached the last reservoir, update mainstem_inflows.Q (include
<~ Dboth turbine + spill incoming!) and mainstem_inflows.t
if wb =size(ic_elev,2)
mainstem_inflows{wb+1}.Q=...
bsxfun (@plus, turb_discharges{wb},spill_discharges{wb});
mainstem_inflows{wb+1}.t=t;
end
end

%$Inequality constraints:
if strcmp(level,’lower’)
$Elevation violations - lower
if isnan(ELWS_limit (1))
deductions=zeros (size (HWs{waterbody} (:,1l:end)));
else
deductions=-min (0, HWs{waterbody} (:, l:end) -ELWS_limit (1)) ;
end
elseif strcmp(level, ' upper’)
$Elevation violations - upper
if isnan (ELWS_limit (2))
deductions=zeros (size (HWs{waterbody} (:,1l:end)));
else
deductions=max (0, HWs{waterbody} (:, l:end) -ELWS_limit (2));
end
end

y=max (deductions, [],2);

obj_fcn_temp.m

function y=obj_fcn_temp(x_allwb,t, frequency,Q,ic_elev, ...
turbine_discharge, WQ, xprev, ELWS_targets, level, waterbody, cache,
— Optimize_day_by_day)

% Objective function to minimize temp constraint violation

o°
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o°

Inputs:

x — hourly turbine time series (as rows for vectorizing!), integers
between 0 and no_of_units

t time series of JDAY values

frequency - frequency of predictions (hourly=1/24)

Q - all other inflows and outflows, interpolation settings,
storage-elev curve, and tailwater curve (all in meters)

ic_elev - initial elevation condition (m)

turbine_discharge - turbine discharge curve at fixed MW level, with
col 1 in meters and col 2 in cms

o0 o© o o° o d° o oP

o°

% WQ - structure containing water quality constraints and NARX models

% DO_narx - structure containing everything needed to make DO discharge
% predictions, including:

% turb_colum - column in exogenous variables with turb flows

% spill_column - column in exogenous variables with spill flows

% times - JDAY values used in training (not used)

% inputDelays - delays for exogenous inputs

% feedbackDelays - delays for prediction feedbacks

% input_variables - 2 row cell containing variable names in first

o°

row and column number in second. For example, 'MET_WBL1’
contains multiple columns of data but only some may be used
for NARX predictions

bias - bias for each trained neural network

weights - weights for each trained neural network (sum to 1)

o° o o

o°

% narx_net_closed - neural networks

% DO_limit - lower and upper DO limits (NaN means it doesn’t exist)
% DO_slack - relaxation from DO_limit (either upper or lower -

% doesn’t make sense to have both)

% Temp_narx - structure containing everything needed to make temp discharge
% predictions, including:

% turb_colum - column in exogenous variables with turb flows

% spill_column - column in exogenous variables with spill flows

% times - JDAY values used in training (not used)

% inputDelays - delays for exogenous inputs

% feedbackDelays - delays for prediction feedbacks

% input_variables - 2 row cell containing variable names in first

oe

row and column number in second. For example, ’'MET_WBL1’

contains multiple columns of data but only some may be used

for NARX predictions

bias — bias for each trained neural network

weights - weights for each trained neural network (sum to 1)
narx_net_closed - neural networks

Temp_limit - lower and upper temp limits (NaN means it doesn’t exist)
Temp_slack - relaxation from Temp_limit (either upper or lower -
doesn’t make sense to have both)

o ol° o° o° o° o° o

oe

% ELWS_targets - 2 column matrix with JDAY in coll and elevation target
% in col2

% level - ’'upper’ or ’lower’

% waterbody - which waterbody we’re checking the discharge temp for

% cache - water quality predictions provided by W2 simulations

o°

Optimize_day_by_day - 1 if optimizing daily, 0 if optimizing all together
Outputs:
y temp constraint violation for each scenario in x

o

o\

%$If using the cache, get list of cache indices here

[T, ,tib]=intersect (t,cache.t);

if Optimize_day_by_day==0 & size(ic_elev,2)==1 & “isempty (cache.x)
[ia, ib]=ismember (x_allwb, cache.x,’rows’);

else
index=find (cache.t==t (1)); %last index for previous operations
if index==1 $first day
[ia, ib]l=ismember (x_allwb,cache.x (:,index:index+23),’ rows’);
else

[ia,ib]=ismember ([repmat (xprev{l} (size (xprev{l},2)-tib(l)+2:end), ...
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size(x_allwb,1),1) x_allwb],cache.x(:,1:index+23), ' rows’); %fix later
— to solve multi waterbody problems
end
end
ia=find(ia==1); ib=ib (ib™=0);
if “isempty(ia) fprintf ([’Cached points here: ', num2str(ib’), ’"\n’]); end

$Split up rows of x to separate reservoirs
for wb=1l:waterbody
x{wb}=x_allwb (:,wb* (size(t,2)-1)-(size(t,2)-2) :wb*(size(t,2)-1));
end
clearvars wb

%Calculate headwater elevs for constraints
for wb=1l:waterbody
%$Calculate headwater elevs for constraints

if wb==1
mainstem_inflows{wb}.t=[];
mainstem_inflows{wb}.Q=[];

%$Check to see if any cached rows can be skipped by elev calcs
if "isempty (ia)
[HWcalcrows,bl=setdiff (l:size(x_allwb,1),1ia);
Xx_HWcalcrows=x{wb} (HWcalcrows, :);
[turb_discharges{wb} (b, :),spill_discharges{wb} (b, :),HWs{wb} (b, :), ", ] =
oy
activeunits_to_discharges (x_HWcalcrows,t, ...
frequency,Q{wb},ic_elev{wb}, turbine_discharge{wb}, ...
ELWS_targets{wb}, [],[],0ptimize_day_by_day);
HWs{wb} (setdiff (l:size(x_allwb,1),b), :)=cache.HWs (ib, tib);
else
[turb_discharges{wb}, spill_discharges{wb},HWs{wb}, ", ] =
activeunits_to_discharges (x{wb},t, frequency, ...
Q{wb},ic_elev{wb},turbine_discharge{wb},ELWS_targets{wb}, ...
[1,[],0ptimize_day_by_day);
end
else
[turb_discharges{wb},spill_discharges{wb},HWs{wb}, , ] =
activeunits_to_discharges (x{wb},t, frequency, ...
Q{wb},ic_elev{wb}, turbine_discharge{wb},ELWS_targets{wb}, ...
mainstem_inflows{wb}.t,mainstem_inflows{wb}.Q,Optimize_day_by_day);

end
%$If we haven’t reached the last reservoir, update mainstem_inflows.Q (include
<~ Dboth turbine + spill incoming!) and mainstem_inflows.t

if wb =size(ic_elev,2)
mainstem_inflows{wb+1}.Q=...
bsxfun (@plus, turb_discharges{wb},spill_discharges{wb});
mainstem_inflows{wb+1}.t=t;
end
end

for wb=1l:waterbody

if wb™=1
mainstem_inflows_temp{wb}.t=mainstem_inflows{wb}.t;
mainstem_inflows_temp{wb}.Q=mainstem_inflows{wb}.Q;
mainstem_inflows_temp{wb}.T=mainstem_inflows{wb}.T;
$Remove Nan values and interpolate for T
for i=l:size(x{wb},1)
extrap_index="isnan (mainstem_inflows_temp{wb}.T(i,:));
[T,c]l=find (extrap_index==1); extrap_index=c (end);
mainstem_inflows_temp{wb}.T(i,:)=...
interpl (mainstem_inflows_temp{wb}.t (1, "isnan (mainstem_inflows_temp({
— wb}.T(i,:))), ...
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mainstem_inflows_temp{wb}.T (i, "isnan (mainstem_inflows_temp{wb}
=, ))) ..
mainstem_inflows_temp{wb}.t,’linear’, ...
mainstem_inflows_temp{wb}.T (i, extrap_index)) ;
clearvars extrap_index c
end
clearvars i
end

$Discharge Temp estimation
Temp_narx=WQ{wb}.Temp_narx; Temp_limit=WQ{wb}.Temp_limit;
if wb==
if "isempty (ia)
[Tcalcrows,b]=setdiff(l:size(x_allwb,1),ia);
x_Tcalcrows=x{wb} (Tcalcrows, :);
Temp_pred{wb} (b, :)=...
narx_predictions (Temp_narx, ...
frequency, t,Q{wb},x_Tcalcrows, ...
turb_discharges{wb} (Tcalcrows, :), ...
spill_discharges{wb} (Tcalcrows, :),[], ...
Q{wb}.TWO, " temp’,Optimize_day_by_day);
Temp_pred{wb} (ia, :)=cache.T (ib,tib(l:end-1));
clearvars Tcalcrows x_Tcalcrows b
else

LT(1

Temp_pred{wb}=narx_predictions (Temp_narx, frequency,t,Q{wb},x{wb}, ...

turb_discharges{wb}, spill_discharges{wb}, [], ...
Q{wb}.TWO, " temp’,Optimize_day_by_day);
end
else
Temp_pred{wb}=narx_predictions (Temp_narx, frequency,t,Q{wb},x{wb}, ...
turb_discharges{wb},spill_discharges{wb}, ...
mainstem_inflows_temp{wb},Q{wb}.TWO,  temp’,Optimize_day_by_day);
end
%$If we haven’t reached the last reservoir, update mainstem_inflows.T
if wb™"=waterbody
mainstem_inflows{wb+1}.T(l:size(x{wb},1),1)=...
interpl (Q{wb}.TWO(:,1),Q{wb}.TWO(:,2),t(1));
mainstem_inflows{wb+1l}.T(:,2:size (Temp_pred{wb},2)+1l)=...
Temp_pred{wb};
else
non_nan_count=sum(~isnan (Temp_pred{wb}),2);
if strcmp(level,’lower’)
$Temp violations - lower
if isnan(Temp_limit (1))
Temp_violations=zeros (size (Temp_pred{wb},1),1);
else
Temp_violations=sum(-min (0, Temp_pred{wb}-Temp_limit (1)),2)./
< non_nan_count;

end
elseif strcmp(level,’upper’)
%$Temp violations - upper

if isnan(Temp_limit (2))
Temp_violations=zeros (size (Temp_pred{wb},1),1);
else
Temp_violations=sum(max (0, Temp_pred{wb}-Temp_limit (2)),2)./
<~ non_nan_count;
end
end

y=max (Temp_violations, [],2);
end
end
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penalty_fcn.m

function [c_all,ceqgl=penalty_fcn(x_allwb,t, frequency,Q,ic_elev, ...

o o° o0 A o o° A A% A A A A A OO O A A A A A A N O O° O° A A A A AN AN AN O A A A A A AN N N O A A A A A A O O° O° O° A A A o° o

o\

turbine_discharge, ELWS_limit,max_hrly_unit_change, ...
WQ, zero_gen_limit, xprev, ELWS_targets,tolerance, cache,Optimize_day_by_day)

Calculates penalty violations, starting with the least expensive
computations and continuing on to the more expensive computations for
runs that are found to be feasible thus far

Inputs:

x_allwb - hourly turbine time series (as rows for vectorizing!),
integers between 0 and no_of_units for all waterbodies

t time series of JDAY values

frequency - frequency of predictions (hourly=1/24)

Q - all other inflows and outflows, interpolation settings,
storage-elev curve, and tailwater curve

ic_elev - initial condition (meters)

turbine_discharge - turbine discharge curve at fixed MW level, with
col 1 in meters and col 2 in cms

ELWS_limit - min and max elevation limits for constraints, in meters

max_hrly_unit_change - max number of units that can be changed per hour
(1 for OHL)

WQ - structure containing water quality constraints and NARX models
DO_narx - structure containing everything needed to make DO discharge
predictions, including:

turb_colum - column in exogenous variables with turb flows
spill_column - column in exogenous variables with spill flows

times - JDAY values used in training (not used)

inputDelays - delays for exogenous inputs

feedbackDelays - delays for prediction feedbacks

input_variables - 2 row cell containing variable names in first

row and column number in second. For example, 'MET_WB1’

contains multiple columns of data but only some may be used

for NARX predictions

bias - bias for each trained neural network

weights - weights for each trained neural network (sum to 1)
narx_net_closed - neural networks

DO_limit - lower and upper DO limits (NaN means it doesn’t exist)
DO_slack - relaxation from DO_limit (either upper or lower -

doesn’t make sense to have both)

Temp_narx — structure containing everything needed to make temp discharge
predictions, including:

turb_colum - column in exogenous variables with turb flows

spill_column - column in exogenous variables with spill flows
times - JDAY values used in training (not used)

inputDelays - delays for exogenous inputs

feedbackDelays - delays for prediction feedbacks
input_variables - 2 row cell containing variable names in first

row and column number in second. For example, ’'MET_WBL1l’
contains multiple columns of data but only some may be used
for NARX predictions

bias - bias for each trained neural network

weights - weights for each trained neural network (sum to 1)
narx_net_closed - neural networks

Temp_limit - lower and upper temp limits (NaN means it doesn’t exist)
Temp_slack - relaxation from Temp_limit (either upper or lower -
doesn’t make sense to have both)

zero_gen_limit - Zero generation hourly limit (can’t go longer than
this with no turb flow)

xprev - vector of previous active turbine levels

ELWS_targets - 2 column matrix with JDAY in coll and elevation target
in col2
tolerance - penalty tolerance

286




113
114
115
116
117
118
119
120
121

o\

cache - water quality predictions provided by W2 simulations

o°

o\

Outputs:
c_all inequality constraint output (n/a, so 0)
ceq — equality constraint output (=0 for feasible solution)

o\

o°

$Name global variables to be used for function counts
global funccount_cache_global funccount_tot_global
funccount_tot_global=funccount_tot_global+size(x_allwb,1);
x_allwb=round(x_allwb) ;

$Equality constraint
ceq=[];

$Preallocate memory

x{1l,size(ic_elev,2)}=[1];
xall{l,size(ic_elev,2)}=[1;
turb_discharges{l, 51ze(1c elev,2)}=[1;

HWs{1l,size(ic_elev,2)}=1[];
c_all=zeros(size(x{l},l),31ze(ic_elev,2)*(3+(l+size(x{l},2))*2+2+2));

$If using the cache, get 1list of cache indices here
if Tisempty (cache)
[T, ,tib]=intersect (t,cache.t);
if Optimize_day_by_day==0 & size(ic_elev,2)==1 & “isempty (cache.x)
[ia, ib]l=ismember (x_allwb, cache.x,’ rows’) ;

Optimize_day_by_day - 1 if optimizing daily, 0 if optimizing all together

else
index=find (cache.t==t (1)); %last index for previous operations
if index==1 %first day
[ia, ib]l=ismember (x_allwb, cache.x (:,index:index+23),  rows’);
else
[ia,ib]=ismember ([repmat (xprev{l} (size (xprev{l},2)-tib(1l)+2:end), ...
size(x_allwb,1),1) x_allwb],cache.x(:,1:index+23), " rows’); %$fix
— later to solve multi waterbody problems
end
end
ia=find(ia==1); ib=ib (ib™=0);

funccount_cache_global=funccount_cache_global+size (ia,l);

if “isempty(ia) fprintf ([’Cached points here: ', num2str(ib’), "\n’]);

else
ia=[1; ib=I[1;
end

zeroRows_empty=0;
zeroRowsO=[1l:size(x_allwb,1)]’

for wb=l:size(ic_elev, 2)
%Split up rows of x to separate reservoirs

x{wb}=x_allwb (:,wbx (size(t,2)-1)-(size(t,2)-2) :wb*(size(t,2)-1));
$Preallocate ¢, with columns representlng. (1) change in active unit

end

— violations, (2) zero gen hourly limit, (3) oscillations constraint,
— (4:28) ELWS lower violations, (29:53) ELWS upper violations, (54:55)
— mean lower and upper DO violations, (56:57) mean temp lower and upper

— violations
c{wb}=zeros(size (x{1},1),3+(l+size(x{1},2))*2+2+2);
end
clearvars wb
for wb=l:size(ic_elev, 2)

c{wb} (setdiff([1l:size(x{wb},1)]1,zeroRows0), :)=1;

%$Check if all entries in x are infeasible due to previous reservoirs,

287

and if




122
123
124
125
126
127

128

129
130

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

160
161
162
163
164
165
166
167
168
169
170
171

172
173

174
175
176

177

~— so set the rest of c==1 and go to end
if zeroRows_empty==

c{wb} (:)=1;
else

%$Break up WQ structure into separate variables

DO_narx=WQ{wb}.DO_narx; DO_limit=WQ{wb}.DO_limit; DO_slack=WQ{wb}.DO_slack
—

Temp_narx=WQ{wb}.Temp_narx; Temp_limit=WQ{wb}.Temp_limit; Temp_slack=WQ{wb
— }.Temp_slack;

%$Stitch together xprev & x to check for feasibility wrt active unit viols,
< zero generation hrly limit, and oscillations
xall{wb}=[repmat (xprev{wb},size (x{wb},1),1) x{wb}];

%$Change in active unit violations

if isempty (max_hrly_unit_change{wb})
delta_sum=zeros (size(zeroRows0,1),1);

else
delta=abs (round (xall{wb} (zeroRows0,2:end))—...

round (xall{wb} (zeroRows0, l:end-1)));

index=find (delta<=max_hrly_unit_change{wb});
delta (index)=0;
delta_sum=sum(delta’)’;

end

%Zero generation hourly limit - can’t go longer with no turb flow
if isempty(zero_gen_limit{wb})
zero_gen_viols_sum=zeros (size (zeroRows0,1),1);
else
zero_gen_viols=zeros (size (zeroRows0,1),size(xall{wb},2)-...
zero_gen_limit{wb}-1);
x_trans=xall{wb} (zeroRows0, :)’;
for i=l:size(x_trans,l)-zero_gen_limit{wb}
a=sum (x_trans (i:it+zero_gen_limit{wb},:))’;
zero_gen_viols(:,1)=(a==0);
end
clearvars i
zero_gen_viols_sum=sum(zero_gen_viols’)’;
end

%$0scillations constraint - violates whenever the number of turbines
< increases and then decreases within 3 hours, or vice versa
osc_violations=zeros (size (zeroRows0,1),size(xall{wb},2)-2);
xall_osc=xall{wb} (zeroRowsO0, :);
for ii=l:size(xall_osc,1l) %loop through each member of population
for i=l:size(xall_osc,2)-2; %loop forward through time
if xall_osc(ii,i+l)>xall_osc(ii, i) &
xall_osc(ii,i+2)<xall_osc(ii, i+1)
osc_violations (ii,i)=1;
elseif xall_osc(ii,i+l)<xall_osc(ii,i) &
xall_osc(ii,i+2)>xall_osc(ii,i+1)
osc_violations (ii,i)=1;
elseif 17=1
if xall_osc(ii,i)==xall_osc(ii,i+1l) %need 3 hrs btwn ramping up
— and down
if xall_osc(ii,i-1)<xall_osc(ii,1i) &
xall_osc(ii,i+1)>xall_osc(ii,i+2) Sramping up & back
— down too quickly
osc_violations(ii,i)=1;
elseif xall_osc(ii,i-1)>xall_osc(ii,i) &
xall_osc(ii,i+1)<xall_osc(ii,i+2) Sramping down & back
— up too quickly
osc_violations(ii,i)=1;
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end
end
end
end
end
clearvars 1 1i xall_osc
osc_violations_sum=sum(osc_violations’)’;

%$Compile least expensive constraints
c{wb} (zeroRows0,1:3)=...
[delta_sum zero_gen_viols_sum osc_violations_sum];

clearvars zeroRowsl zeroRows2 zeroRows3 zeroRows4 x_zeroRowsl xX_zeroRows2
— x_zeroRows3 x_zeroRows4

x_zeroRowsl=[];

X_zeroRows2=[];

x_zeroRows3=[];
1

x_zeroRows4d=[];
%0nly compute expensive constraints if all others pass
zeroRowsl=find (all (c{wb}<=tolerance,2));
x_zeroRowsl=x{wb} (zeroRowsl, :);
if isempty (x_zeroRowsl)

c{wb} (:,4:end)=1;

zeroRows_empty=1;
end

if zeroRows_empty =1

%Calculate headwater elevs for constraints
if wb==
$Preallocate mainstem_inflows for following wbs
mainstem_inflows=cell (l:size(ic_elev,2));
for i=l:size(ic_elev,2)
mainstem_inflows{i}.t
mainstem_inflows{i}.Q
mainstem _inflows{i}.T
mainstem_inflows{i}.DO
end
clearvars 1
%Check to see if any cached rows can be skipped by elev calcs
if "isempty (ia)
[HWcalcrows,b]=setdiff (zeroRowsl, ia);
x_HWcalcrows=x{wb} (HWcalcrows, :);
[turb_discharges{wb} (b, :),spill_discharges{wb} (b, :),HWs{wb} (b, :)
— ,7,71 = ...
activeunits_to_discharges (x_HWcalcrows,t, ...
frequency,Q{wb},ic_elev{wb},turbine_discharge{wb}, ...
ELWS_targets{wb}, [],[],0ptimize_day_by_day);
[7,bb]=ismember (x_zeroRowsl, cache.x,’rows’); bb=nonzeros (bb);
HWs{wb} (setdiff (l:size (zeroRowsl,1l),b),:)=...
cache.HWs (bb, tib) ;

1;

[
[1;
[

1;
[

’

N

else
[turb_discharges{wb},spill_discharges{wb},HWs{wb}, , ] =
activeunits_to_discharges (x_zeroRowsl,t, ...
frequency,Q{wb},ic_elev{wb},turbine_discharge{wb}, ...
ELWS_targets{wb}, [],[],0ptimize_day_by_day);
end
else

[turb_discharges{wb},spill_discharges{wb},HWs{wb}, , ] =
activeunits_to_discharges (x_zeroRowsl,t, ...
frequency,Q{wb},ic_elev{wb},turbine_discharge{wb}, ...
ELWS_targets{wb},mainstem_inflows{wb}.t, ...
mainstem_inflows{wb}.Q (zeroRowsl, :),Optimize_day_by_day);

end
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%$If we haven’t reached the last reservoir, update mainstem_inflows.Q
— include both turbine + spill incoming!)
if wb =size(ic_elev,2)
mainstem_inflows{wb+1}.Q(zeroRowsl, :)=...
bsxfun (@plus, turb_discharges{wb},spill_discharges{wb});

end
%$Inequality constraints:
$Elevation violations - lower

if isnan(ELWS_limit{wb} (1))
deductionsl=zeros (size (HWs{wb} (:,1l:end)));

else
deductionsl=-min (0, HWs{wb} (:,1l:end) -ELWS_limit{wb} (1)) ;

end

%$Elevation violations - upper

if isnan(ELWS_limit{wb} (2))
deductions2=zeros (size (HWs{wb} (:,1l:end)));

else
deductions2=max (0, HWs{wb} (:,1l:end)-ELWS_limit{wb} (2));

end

c{wb} (setdiff ([1l:size(x{wb},1)],zeroRowsl),4:end)=1;
c{wb} (zeroRowsl,4:3+ (1l+size (x{wb},2))*2)=[deductionsl deductions2];

zeroRows2=find (all (c{wb}<=tolerance, 2));
x_zeroRows2=x{wb} (zeroRows2, :);
if isempty (x_zeroRows2)
c{wb} (:,3+(1l+size (x{wb},2))*x2+1:end)=1;
zeroRows_empty=1;
end

turb_discharges2=zeros (size (x{wb},1),size(x{wb},2)+1);
spill_discharges2=zeros (size(spill_discharges{wb}));
if Tisempty (ia)

turb_discharges2 (HWcalcrows, :)=turb_discharges{wb} (b, :);
spill_discharges?2 (HWcalcrows, :)=spill_discharges{wb} (b, :);
else
turb_discharges2 (zeroRowsl, :)=turb_discharges{wb};
spill_discharges?2 (zeroRowsl, :)=spill_discharges{wb};
end

$—->need to reset this with zero rows back in

turb_discharges{wb}=turb_discharges2;

spill_discharges{wb}=spill_discharges2;

clearvars spill_discharges2 turb_discharges2 x_HWcalcrows HWcalcrows
end

%Continue on and calculate discharge DO if still feasible, if DO_narx is
— provided and a limit exists

if zeroRows_empty =1 & “isempty(DO_narx) & (wb =size(ic_elev,2) | any(
— DO_limit))

%$Discharge DO constraint

if wb==1
%$Check to see if any cached rows can be skipped by DO calcs
if "isempty (ia)

[DOcalcrows, b]=setdiff (zeroRows2, ia);

x_DOcalcrows=x{wb} (DOcalcrows, :);

DO_pred{wb} (b, :)=narx_predictions (DO_narx, ...
frequency,t,Q{wb},x_DOcalcrows, ...
turb_discharges{wb} (DOcalcrows, :), ...
spill_discharges{wb} (DOcalcrows, :), [], ...
Q{wb}.CWO,"do’,Optimize_day_by_day);

[7,bb]=ismember (x_zeroRows2, cache.x,’rows’); bb=nonzeros (bb);

DO_pred{wb} (setdiff (l:size(zeroRows2,1),b),:)=...
cache.DO (bb,tib(l:end-1));
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end

%Co

clearvars DOcalcrows x_DOcalcrows b
else
DO_pred{wb}=narx_predictions (DO_narx, ...
frequency,t,Q{wb}, x_zeroRows2, ...
turb_discharges{wb} (zeroRows2, :), ...
spill_discharges{wb} (zeroRows2,:), [], ...
Q{wb}.CWO,"do’,Optimize_day_by_day);
end
else
mainstem_inflows_zeroRows2{wb}.Q=...
mainstem_inflows{wb}.Q (zeroRows2, :);
mainstem_inflows_zeroRows2{wb}.T=...
mainstem_inflows{wb}.T (zeroRows2, :);
mainstem_inflows_zeroRows2{wb}.DO=...
mainstem_inflows{wb}.DO (zeroRows2, :);
DO_pred{wb}=narx_predictions (DO_narx, ...
frequency, t,Q{wb}, x_zeroRows2, ...
turb_discharges{wb} (zeroRows2,:), ...
spill_discharges{wb} (zeroRows2, :), ...
mainstem_inflows_zeroRows2{wb},Q{wb}.CWO, ”do’,Optimize_day_by_day
— )
end
$If we haven’t reached the last reservoir, update mainstem_inflows.DO
if wb =size(ic_elev, 2)
mainstem_inflows{wb+1}.DO(zeroRows2,1)=...
interpl (Q{wb}.CWO(:,1),Q{wb}.CWO(:,2),t(1));
mainstem_inflows{wb+1}.DO (zeroRows2,2:size (DO_pred{wb},2)+1)=...
DO_pred{wb};

end
non_nan_count=sum(~isnan (DO_pred{wb}),2);
$DO violations - lower

if isnan(DO_limit (1))
DO_violationsl=zeros (size (DO_pred{wb},1),1);

else
DO_violationsl=sum(-min (0,DO_pred{wb}-DO_limit (1)),2)./non_nan_count
—
end
%$DO violations - upper

if isnan(DO_limit (2))
DO_violations2=zeros (size (DO_pred{wb},1),1);
else
DO_violations2=sum(max (0, DO_pred{wb}-DO_limit (2)),2)./non_nan_count;
end
DO_violations=[max (0,DO_violationsl1-DO_slack) max (0,DO_violations2-
— DO_slack)];

c{wb} (setdiff ([l:size(x{wb},1)],zeroRows2),3+ (l+size(x{wb},2))*2+1:end)
— =1;

c{wb} (zeroRows2, 3+ (1l+size (x{wb},2))*2+1:3+ (1l+size (x{wb},2))*x2+2)=
— DO_violations;

clearvars DO_violationsl DO_violations2 Last_values

zeroRows3=find (all (c{wb}<=tolerance, 2));
x_zeroRows3=x{wb} (zeroRows3, :);
DO_pred{wb} (zeroRows2, :)=DO_pred{wb};
DO_pred{wb}=DO_pred{wb} (zeroRows3, :);
if isempty (x_zeroRows3)
c{wb} (:,3+(1l+size (x{wb},2))*24+2+1:end)=1;
zeroRows_empty=1;
end

ntinue on and calculate discharge temp if still feasible
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if zeroRows_empty =1 & “isempty (Temp_narx) & (wb =size(ic_elev,2) | any(
— Temp_limit))
zeroRows4=find (all (c{wb}<=tolerance, 2));
x_zeroRowsd=x{wb} (zeroRows4, :);
if isempty (x_zeroRows4)
c{wb} (:,3+(1+size (x{wb},2))*2+2+1:end)=1;
zeroRows_empty=1;
end

if zeroRows_empty =1
$Discharge Temp constraint
if wb==
%$Check to see if any cached rows can be skipped by temp calcs
if "isempty (ia)
[Tcalcrows,b]l=setdiff (zeroRows4,ia);
X_Tcalcrows=x{wb} (Tcalcrows, :);
Temp_pred{wb} (b, :)=...
narx_predictions (Temp_narx, ...
frequency,t,Q{wb},x_Tcalcrows, ...
turb_discharges{wb} (Tcalcrows, :), ...
spill_discharges{wb} (Tcalcrows, :), [], ...
Q{wb}.TWO, "temp’,Optimize_day_by_day);
[T, bb]=ismember (x_zeroRows4, cache.x,’rows’); bb=nonzeros (bb);
Temp_pred{wb} (setdiff (l:size(zeroRows4,1),b),:)=...
cache.T (bb,tib(1l:end-1));
clearvars Tcalcrows x_Tcalcrows b
else
Temp_pred{wb}=...
narx_predictions (Temp_narx, ...
frequency,t,Q{wb},x_zeroRows4, ...
turb_discharges{wb} (zeroRows4,:), ...
spill_discharges{wb} (zeroRows4,:), [],...
Q{wb}.TWO,"temp’,Optimize_day_by_day);
end
else
mainstem_inflows_zeroRows4{wb}.Q=...
mainstem_inflows{wb}.Q (zeroRows4, :);
mainstem_inflows_zeroRows4{wb}.T=...
mainstem_inflows{wb}.T (zeroRows4, :);
mainstem_inflows_zeroRows4{wb}.DO=...
mainstem_inflows{wb}.DO (zeroRows4, :);
Temp_pred{wb}=...
narx_predictions (Temp_narx, ...
frequency,t,Q{wb},x_zeroRows4, ...
turb_discharges{wb} (zeroRows4, :), ...
spill_discharges{wb} (zeroRows4, :), ...
mainstem_inflows_zeroRows4{wb}, ...
Q{wb}.TWO, " temp’,Optimize_day_by_day);
end
$If we haven’t reached the last reservoir, update mainstem_inflows.T
if wb =size(ic_elev, 2)
mainstem_inflows{wb+1}.T (zeroRows3,1)=...
interpl (Q{wb}.TWO(:,1),Q{wb}.TWO(:,2),t(1));
mainstem_inflows{wb+1}.T (zeroRows3,2:size (Temp_pred{wb},2)+1)=...
Temp_pred{wb};

end
non_nan_count=sum(~isnan (Temp_pred{wb}),2);
$Temp violations - lower

if isnan(Temp_limit (1))
Temp_violationsl=zeros (size (Temp_pred{wb},1),1);
else
Temp_violationsl=sum(-min (0, Temp_pred{wb}-Temp_limit (1)),2)./
< non_nan_count;
end
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$Temp violations - upper

if isnan(Temp_limit (2))
Temp_violations2=zeros (size (Temp_pred{wb},1),1);

else
Temp_violations2=sum (max (0, Temp_pred{wb}-Temp_limit (2)),2)./

<~ non_nan_count;

end

Temp_violations=[max (0, Temp_violationsl-Temp_slack) max (0,
— Temp_violations2-Temp_slack)];

c{wb} (setdiff ([l:size(x{wb},1)], zeroRowsd), 3+ (1l+size(x{wb},2))
— *2+2+1:end)=1;

c{wb} (zeroRows4, 3+ (1+size (x{wb},2))*2+2+1:3+ (1+size (x{wb},2)) *2+2+2)

— =Temp_violations;

zeroRowsb5=find (all (c{wb}<=tolerance, 2));
x_zeroRowsb=x{wb} (zeroRows5, :);
Temp_pred{wb} (zeroRows4, :)=Temp_pred{wb};
Temp_pred{wb}=Temp_pred{wb} (zeroRows5, :);
if isempty (x_zeroRows5)

zeroRows_empty=1;
end

end
end
end

%$If we haven’t reached the last reservoir, update mainstem_inflows.t, remove

— NaN from mainstem_inflows.T and mainstem_inflows.DO, and update
— zeroRows0
if wb™=size(ic_elev,2) & zeroRows_empty =1
mainstem_inflows{wb+1}.t=t;
%$Remove Nan values and interpolate for T and DO
for i=l:size(mainstem_inflows{wb+1}.T,1)
extrap_index="isnan (mainstem_inflows{wb+1}.T(i,:));
[7,column]=find (extrap_index==1); extrap_index=column (end);
mainstem_inflows{wb+1}.T (i, :)=...
interpl (t (1, "isnan(mainstem_inflows{wb+1}.T(i,:))), ...
mainstem_inflows{wb+1}.T (i, "isnan (mainstem_inflows{wb+1}.T (i, :)))
...
t,’linear’ ,mainstem_inflows{wb+1}.T (i, extrap_index));
mainstem_inflows{wb+1}.DO(i,:)=...
interpl (t (1, "isnan(mainstem_inflows{wb+1}.DO(i,:))), ...

mainstem_inflows{wb+1}.DO(i, "isnan (mainstem_inflows{wb+1}.DO(i,:)))

S SR
t,’linear’,mainstem_inflows{wb+1}.DO(i,extrap_index));
clearvars extrap_index column
end
zeroRowsO=find (all (c{wb}<=tolerance, 2));
end

end

$Update c_all with the values from c{wb}
c_all=[c{:}1]1;

penalty_fcn._inf.m

function [c_all,ceqg]=penalty_fcn_inf(x_allwb,t, frequency,Q,ic_elev, ...
turbine_discharge, ELWS_limit,max_hrly_unit_change, ...
WQ, zero_gen_limit, xprev, ELWS_targets,tolerance, cache,Optimize_day_by_day)

% modified penalty function that computes all constraints

o°
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Calculates penalty violations, starting with the least expensive
computations and continuing on to the more expensive computations for
runs that are found to be feasible thus far

Inputs:

x_allwb - hourly turbine time series (as rows for vectorizing!),
integers between 0 and no_of_units for all waterbodies

t time series of JDAY values

frequency - frequency of predictions (hourly=1/24)

Q — all other inflows and outflows, interpolation settings,
storage-elev curve, and tailwater curve

ic_elev - initial condition (meters)

turbine_discharge - turbine discharge curve at fixed MW level, with
col 1 in meters and col 2 in cms

ELWS_limit - min and max elevation limits for constraints, in meters
max_hrly_unit_change - max number of units that can be changed per hour
(1 for OHL)

WQ - structure containing water quality constraints and NARX models
DO_narx - structure containing everything needed to make DO discharge
predictions, including:

turb_colum - column in exogenous variables with turb flows
spill_column - column in exogenous variables with spill flows

times - JDAY values used in training (not used)

inputDelays - delays for exogenous inputs

feedbackDelays - delays for prediction feedbacks

input_variables - 2 row cell containing variable names in first

row and column number in second. For example, 'MET_WBL1’
contains multiple columns of data but only some may be used
for NARX predictions

bias - bias for each trained neural network

weights - weights for each trained neural network (sum to 1)
narx_net_closed - neural networks

DO_limit - lower and upper DO limits (NaN means it doesn’t exist)
DO_slack - relaxation from DO_limit (either upper or lower -

doesn’t make sense to have both)

Temp_narx — structure containing everything needed to make temp discharge

predictions, including:
turb_colum - column in exogenous variables with turb flows

spill_column - column in exogenous variables with spill flows
times — JDAY values used in training (not used)

inputDelays - delays for exogenous inputs

feedbackDelays - delays for prediction feedbacks
input_variables - 2 row cell containing variable names in first

row and column number in second. For example, 'MET_WBL1’

contains multiple columns of data but only some may be used

for NARX predictions

bias - bias for each trained neural network

weights - weights for each trained neural network (sum to 1)
narx_net_closed - neural networks

Temp_limit - lower and upper temp limits (NaN means it doesn’t exist)
Temp_slack - relaxation from Temp_limit (either upper or lower -
doesn’t make sense to have both)

zero_gen_limit - Zero generation hourly limit (can’t go longer than
this with no turb flow)
xprev - vector of previous active turbine levels

ELWS_targets - 2 column matrix with JDAY in coll and elevation target

in col2

tolerance - penalty tolerance

cache - water quality predictions provided by W2 simulations
Optimize_day_by_day - 1 if optimizing daily, 0 if optimizing all together
Outputs:

c_all inequality constraint output (n/a, so 0)

ceq - equality constraint output (=0 for feasible solution)
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71 | $Name global variables to be used for function counts
72 |global funccount_cache_global funccount_tot_global
73 | funccount_tot_global=funccount_tot_global+size (x_allwb,1);

74

75 | x_allwb=round (x_allwb);
76

77 | %$Equality constraint

78 |ceq=[1;

79

80 | %Preallocate memory

81 |x{1,size(ic_elev,2)}=[]
82 |xall{l,size(ic_elev,2)}
83 | turb_discharges{l,size (ic_
84 |HWs{1l,size(ic_elev,2)}=[];

85 |c_all=zeros(size(x{1l},1),size(ic_elev,2)* (3+(l+size(x{1},2))*x2+2+2));

=[1;
ic_elev,2)}=1[1;
[]

87 |%If using the cache, get list of cache indices here
88 |if “isempty (cache)

89 [T, ,tibl=intersect (t,cache.t);

90 if Optimize_day_by_day==0 & size(ic_elev,2)==1 & ~“isempty (cache.x)

91 [ia,ib]=ismember (x_allwb, cache.x, '’ rows’);

92 else

93 index=find(cache.t==t (1)); %last index for previous operations

94 if index==1 %first day

95 [ia,ib]=ismember (x_allwb, cache.x(:,index:index+23), ' rows’);

96 else

97 [ia,ib]=ismember ([repmat (xprev{l} (size (xprev{l},2)-tib(l)+2:end), ...

98 size(x_allwb,1),1) x_allwb],cache.x(:,1l:index+23), rows’); %$fix
— later to solve multi waterbody problems

99 end

100 end

101 ia=find(ia==1); ib=ib (ib~=0);

102 funccount_cache_global=funccount_cache_global+size (ia,1);

103 if “isempty (ia) fprintf ([’Cached points here: ', num2str(ib’), ’"\n’]); end

104 |else

105 ia=[1; ib=I[1;

106 | end

107

108 | zeroRows_empty=0;
109 | zeroRowsO=[1l:size(x_allwb,1)]’;

110

111 | for wb=1l:size(ic_elev,2)

112 $Split up rows of x to separate reservoirs

113 x{wb}=x_allwb (:,wbx (size(t,2)-1)—-(size(t,2)-2) :wbx (size(t,2)-1));

114 $Preallocate c, with columns representing: (1) change in active unit
— violations, (2) zero gen hourly limit, (3) oscillations constraint,
— (4:28) ELWS lower violations, (29:53) ELWS upper violations, (54:55)
— mean lower and upper DO violations, (56:57) mean temp lower and upper
— violations

115 c{wb}=zeros (size (x{1},1),3+(l+size(x{1},2))*x2+24+2);

116 |end

117 |clearvars wb

118

119 | for wb=1l:size(ic_elev,2)

120

121 c{wb} (setdiff([l:size(x{wb},1)], zeroRows0), :)=Inf;

122

123 $Check 1if all entries in x are infeasible due to previous reservoirs, and if
~— so set the rest of c==1 and go to end

124 if zeroRows_empty==

125 c{wb} (:)=Inf;

126 else

127

128 $Break up WQ structure into separate variables
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DO_narx=WQ{wb}.DO_narx; DO_limit=WQ{wb}.DO_limit; DO_slack=WQ{wb}.DO_slack
—

Temp_narx=WQ{wb}.Temp_narx; Temp_limit=WQ{wb}.Temp_limit; Temp_slack=WQ{wb
— }.Temp_slack;

%$Stitch together xprev & x to check for feasibility wrt active unit viols,
<~ zero generation hrly limit, and oscillations
xall{wb}=[repmat (xprev{wb},size (x{wb},1),1) x{wb}];

%$Change in active unit violations

if isempty (max_hrly_unit_change{wb})
delta_sum=zeros (size (zeroRows0,1),1);

else
delta=abs (round(xall{wb} (zeroRows0,2:end))—...

round (xall{wb} (zeroRows0,l:end-1)));

index=find(delta<=max_hrly_unit_change{wb});
delta (index)=0;
delta_sum=sum(delta’)’;

end

%$Zero generation hourly limit - can’t go longer with no turb flow
if isempty(zero_gen_limit{wb})
zero_gen_viols_sum=zeros (size (zeroRows0,1),1);
else
zero_gen_viols=zeros (size (zeroRows0,1l),size(xall{wb},2)—-...
zero_gen_limit{wb}-1);
x_trans=xall{wb} (zeroRows0, :)"';
for i=l:size(x_trans,l)-zero_gen_limit{wb}
a=sum(x_trans(i:i+zero_gen_limit{wb},:))’;
zero_gen_viols(:,1)=(a==0);
end
clearvars 1
zero_gen_viols_sum=sum(zero_gen_viols’)’;
end

%0scillations constraint - violates whenever the number of turbines
— increases and then decreases within 3 hours, or vice versa
osc_violations=zeros (size (zeroRows0,1),size(xall{wb},2)-2);
xall_osc=xall{wb} (zeroRowsO, :);
for ii=l:size(xall_osc,1l) %loop through each member of population
for i=1l:size(xall_osc,2)-2; %loop forward through time
if xall_osc(ii,i+1l)>xall_osc(ii,i) &
xall_osc(ii,i+2)<xall_osc(ii,i+1)
osc_violations (ii,i)=1;
elseif xall_osc(ii,i+1)<xall_osc(ii,i) &
xall_osc(ii,i+2)>xall_osc(ii,i+1)
osc_violations (ii,i)=1;
elseif i™=1
if xall _osc(ii,i)==xall_osc(ii,i+l) S%need 3 hrs btwn ramping up
— and down
if xall_osc(ii,i-1)<xall_osc(ii,i) &
xall_osc(ii,i+l)>xall_osc(ii,i+2) S%Sramping up & back
— down too quickly
osc_violations (ii,i)=1;
elseif xall_osc(ii,i-1)>xall_osc(ii,i) &
xall_osc(ii,i+l)<xall_osc(ii,i+2) S%Sramping down & back
— up too quickly
osc_violations (ii,i)=1;
end
end
end
end
end
clearvars 1 1i xall_osc
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osc_violations_sum=sum(osc_violations’)’;

%$Compile least expensive constraints
c{wb} (zeroRows0,1:3)=...
[delta_sum zero_gen_viols_sum osc_violations_sum];

clearvars zeroRowsl zeroRows2 zeroRows3 zeroRows4 x_zeroRowsl x_zeroRows2
— x_zeroRows3 x_zeroRows4

x_zeroRowsl=[];

x_zeroRows2=[];

x_zeroRows3=[];
]

X_zeroRows4d=[
%$0nly compute expensive constraints if all others pass
zeroRowsl=zeroRows0;
x_zeroRowsl=x{wb} (zeroRowsl, :);
if isempty (x_zeroRowsl)

c{wb} (:,4:end)=Inf;

zeroRows_empty=1;
end

’

if zeroRows_empty =1

%$Calculate headwater elevs for constraints
if wb==
%Preallocate mainstem_inflows for following wbs
mainstem_inflows=cell (l:size (ic_elev,2));
for i=l:size(ic_elev, 2)
mainstem _inflows{i}.t
mainstem_inflows{i}.Q
mainstem_inflows{i}.T
mainstem_inflows{i}.DO
end
clearvars 1
%Check to see if any cached rows can be skipped by elev calcs
if "isempty (ia)
[HWcalcrows, b]=setdiff (zeroRowsl, ia);
x_HWcalcrows=x{wb} (HWcalcrows, :);
[turb_discharges{wb} (b, :),spill_discharges{wb} (b, :),HWs{wb} (b, :)
<, ,7] =
activeunits_to_discharges (x_HWcalcrows,t, ...
frequency,Q{wb},ic_elev{wb},turbine_discharge{wb}, ...
ELWS_targets{wb}, [],[],0ptimize_day_by_day);
[7,bb]=ismember (x_zeroRowsl, cache.x,’rows’); bb=nonzeros (bb);
HWs{wb} (setdiff (1l:size(zeroRowsl,1l),b),:)=...
cache.HWs (bb, tib) ;

1i

[
[1;
[

1;
[

’

RN

else
[turb_discharges{wb},spill_discharges{wb},HWs{wb}, ", ] =
activeunits_to_discharges (x_zeroRowsl,t, ...
frequency,Q{wb},ic_elev{wb},turbine_discharge{wb}, ...
ELWS_targets{wb}, [], [],0ptimize_day_by_day);
end
else
[turb_discharges{wb},spill_discharges{wb},HWs{wb}, , ] =
activeunits_to_discharges (x_zeroRowsl,t, ...
frequency,Q{wb},ic_elev{wb},turbine_discharge{wb}, ...
ELWS_targets{wb},mainstem_inflows{wb}.t, ...
mainstem_inflows{wb}.Q (zeroRowsl, :),Optimize_day_by_day);
end
%$If we haven’t reached the last reservoir, update mainstem_inflows.Q (
— include both turbine + spill incoming!)
if wb =size(ic_elev,2)
mainstem_inflows{wb+1}.Q(zeroRowsl, :)=...
bsxfun (@plus, turb_discharges{wb},spill_discharges{wb});
end
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247 %$Inequality constraints:

248 $Elevation violations - lower

249 if isnan(ELWS_limit{wb} (1))

250 deductionsl=zeros (size (HWs{wb} (:,1l:end)));

251 else

252 deductionsl=-min (0, HWs{wb} (:,1l:end) -ELWS_limit{wb} (1)) ;

253 end

254 %$Elevation violations - upper

255 if isnan (ELWS_limit{wb} (2))

256 deductions2=zeros (size (HWs{wb} (:,1l:end)));

257 else

258 deductions2=max (0, HWs{wb} (:,1l:end) -ELWS_limit {wb} (2));

259 end

260

261 c{wb} (setdiff([l:size (x{wb},1)], zeroRowsl),4:end)=Inf;

262 c{wb} (zeroRowsl, 4:3+ (1l+size (x{wb},2))*2)=[deductionsl deductions2];

263

264 zeroRows2=zeroRows0;

265 x_zeroRows2=x{wb} (zeroRows2, :) ;

266 if isempty (x_zeroRows2)

267 c{wb} (:,3+(l+size (x{wb},2))*2+1:end)=Inf;

268 zeroRows_empty=1;

269 end

270

271 turb_discharges2=zeros (size (x{wb},1),size (x{wb},2)+1);

272 spill_discharges2=zeros (size(spill_discharges{wb}));

273 if “isempty (ia)

274 turb_discharges2 (HWcalcrows, :)=turb_discharges{wb} (b, :);

275 spill_discharges?2 (HWcalcrows, :)=spill_discharges{wb} (b, :);

276 else

277 turb_discharges2 (zeroRowsl, :)=turb_discharges{wb};

278 spill_discharges2 (zeroRowsl, :)=spill_discharges{wb};

279 end

280 %$——->need to reset this with zero rows back in

281 turb_discharges{wb}=turb_discharges?2;

282 spill_discharges{wb}=spill_discharges2;

283 clearvars spill_discharges2 turb_discharges2 x_HWcalcrows HWcalcrows

284 end

285

286 %Continue on and calculate discharge DO if still feasible, if DO_narx is
— provided and a limit exists

287 if zeroRows_empty =1 & “isempty (DO_narx) & (wb =size(ic_elev,2) | any(
— DO_limit))

288

289 $Discharge DO constraint

290 if wb==

291 %Check to see if any cached rows can be skipped by DO calcs

292 if “isempty(ia)

293 [DOcalcrows,b]l=setdiff (zeroRows2,1ia);

294 x_DOcalcrows=x{wb} (DOcalcrows, :);

295 DO_pred{wb} (b, :)=narx_predictions (DO_narx, ...

296 frequency, t,Q{wb},x_DOcalcrows, ...

297 turb_discharges{wb} (DOcalcrows, :), ...

298 spill_discharges{wb} (DOcalcrows,:), [], ...

299 Q{wb}.CWO,"do’,Optimize_day_by_day);

300 [7,bb]=ismember (x_zeroRows2, cache.x,’rows’); bb=nonzeros (bb);

301 DO_pred{wb} (setdiff (l:size(zeroRows2,1),b),:)=...

302 cache.DO (bb, tib(l:end-1));

303 clearvars DOcalcrows x_DOcalcrows b

304 else

305 DO_pred{wb}=narx_predictions (DO_narx, ...

306 frequency, t,Q{wb}, x_zeroRows2, ...

307 turb_discharges{wb} (zeroRows2, :), ...

308 spill_discharges{wb} (zeroRows2,:), [],...
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309 Q{wb}.CWO,’do’,Optimize_day_by_day);

310 end

311 else

312 mainstem_inflows_zeroRows2{wb}.Q=...

313 mainstem_inflows{wb}.Q (zeroRows2, :);

314 mainstem_inflows_zeroRows2{wb}.T=...

315 mainstem_inflows{wb}.T (zeroRows2, :);

316 mainstem_inflows_zeroRows2{wb}.DO=...

317 mainstem_inflows{wb}.DO (zeroRows2, :);

318 DO_pred{wb}=narx_predictions (DO_narx, ...

319 frequency, t,Q{wb},x_zeroRows2, ...

320 turb_discharges{wb} (zeroRows2,:), ...

321 spill_discharges{wb} (zeroRows2,:), ...

322 mainstem_inflows_zeroRows2{wb},Q{wb}.CWO, do’,Optimize_day_by_day

— )

323 end

324 $If we haven’t reached the last reservoir, update mainstem_inflows.DO

325 if wb =size(ic_elev, 2)

326 mainstem_inflows{wb+1}.DO(zeroRows2,1)=...

327 interpl (Q{wb}.CWO(:,1),Q{wb}.CWO(:,2),t(1l));

328 mainstem_inflows{wb+1}.DO (zeroRows2,2:size (DO_pred{wb},2)+1)=...

329 DO_pred{wb};

330 end

331 non_nan_count=sum(~isnan (DO_pred{wb}),2);

332 %$DO violations - lower

333 if isnan(DO_limit (1))

334 DO_violationsl=zeros(size (DO_pred{wb},1),1);

335 else

336 DO_violationsl=sum(-min (0,D0_pred{wb}-DO_limit (1)),2)./non_nan_count

—

337 end

338 %$DO violations - upper

339 if isnan(DO_limit (2))

340 DO_violations2=zeros (size (DO_pred{wb},1),1);

341 else

342 DO_violations2=sum(max (0, DO_pred{wb}-DO_limit (2)),2)./non_nan_count;

343 end

344 DO_violations=[max (0,DO_violationsl-DO_slack) max (0,DO_violations2-
— DO_slack)];

345

346 c{wb} (setdiff ([l:size(x{wb},1)], zeroRows2), 3+ (l+size (x{wb},2))*2+1:end)
— =Inf;

347 c{wb} (zeroRows2, 3+ (1+size (x{wb},2))*2+1:3+ (1l+size (x{wb},2))*x2+2)=
— DO_violations;

348 clearvars DO_violationsl DO_violations2 Last_values

349

350 zeroRows3=zeroRowsO0;

351 Xx_zeroRows3=x{wb} (zeroRows3, :);

352 DO_pred{wb} (zeroRows2, :)=DO_pred{wb};

353 DO_pred{wb}=DO_pred{wb} (zeroRows3, :);

354 if isempty (x_zeroRows3)

355 c{wb} (:,3+(l+size (x{wb},2))*2+2+1:end)=Inf;

356 zeroRows_empty=1;

357 end

358

359 end

360

361 %$Continue on and calculate discharge temp if still feasible

362 if zeroRows_empty =1 & “isempty (Temp_narx) & (wb =size(ic_elev,2) | any(

— Temp_limit))

363 zeroRows4=zeroRowsO0;

364 x_zeroRows4=x{wb} (zeroRows4, :) ;

365 if isempty (x_zeroRows4)

366 c{wb} (:,3+(l+size (x{wb},2))*2+2+1:end)=Inf;
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zeroRows_empty=1;
end

if zeroRows_empty =1
$Discharge Temp constraint
1if wbh==
%$Check to see i1if any cached rows can be skipped by temp calcs
if "isempty (ia)
[Tcalcrows,b]=setdiff (zeroRows4, ia);
x_Tcalcrows=x{wb} (Tcalcrows, :);
Temp_pred{wb} (b, :)=...
narx_predictions (Temp_narx, ...
frequency, t,Q{wb},x_Tcalcrows, ...
turb_discharges{wb} (Tcalcrows, :), ...
spill_discharges{wb} (Tcalcrows, :), [],...
Q{wb}.TWO, " temp’,Optimize_day_by_day);
[T, bb]=ismember (x_zeroRows4, cache.x,’rows’); bb=nonzeros (bb);
Temp_pred{wb} (setdiff (l:size(zeroRows4,1),b),:)=...
cache.T (bb,tib(l:end-1));
clearvars Tcalcrows x_Tcalcrows b
else
Temp_pred{wb}=...
narx_predictions (Temp_narx, ...
frequency,t,Q{wb}, x_zeroRows4, ...
turb_discharges{wb} (zeroRows4,:), ...
spill_discharges{wb} (zeroRows4,:), [], ...
Q{wb}.TWO, " temp’,Optimize_day_by_day);
end
else
mainstem_inflows_zeroRows4{wb}.Q=...
mainstem_inflows{wb}.Q (zeroRows4, :);
mainstem_inflows_zeroRows4{wb}.T=...
mainstem_inflows{wb}.T (zeroRows4, :);
mainstem_inflows_zeroRows4{wb}.DO=...
mainstem_inflows{wb}.DO (zeroRows4, :);
Temp_pred{wb}=...
narx_predictions (Temp_narx, ...
frequency, t,Q{wb},x_zeroRows4, ...
turb_discharges{wb} (zeroRows4, :), ...
spill_discharges{wb} (zeroRows4, :), ...
mainstem_inflows_zeroRows4d{wb}, ...
Q{wb}.TWO, ' temp’,Optimize_day_by_day);
end
%$If we haven’t reached the last reservoir, update mainstem_inflows.
if wb =size(ic_elev, 2)
mainstem_inflows{wb+1}.T (zeroRows3,1)=...
interpl (Q{wb}.TWO(:,1),Q{wb}.TWO(:,2),t(1));
mainstem_inflows{wb+1l}.T (zeroRows3,2:size (Temp_pred{wb},2)+1)=...
Temp_pred{wb};

end
non_nan_count=sum(~isnan (Temp_pred{wb}),2);
$Temp violations - lower

if isnan(Temp_limit (1))
Temp_violationsl=zeros (size (Temp_pred{wb},1),1);
else
Temp_violationsl=sum(-min (0, Temp_pred{wb}-Temp_limit (1)),2)./
— non_nan_count;
end
%$Temp violations - upper
if isnan(Temp_limit (2))
Temp_violations2=zeros (size (Temp_pred{wb},1),1);
else
Temp_violations2=sum (max (0, Temp_pred{wb}-Temp_limit (2)),2)./
<~ non_nan_count;
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end
Temp_violations=[max (0, Temp_violationsl-Temp_slack) max (0,
— Temp_violations2-Temp_slack)];

c{wb} (setdiff([l:size(x{wb},1)],zeroRowsd), 3+ (l+size(x{wb},2))
— *2+2+1:end)=Inf;

c{wb} (zeroRows4, 3+ (1l+size (x{wb},2))*2+2+1:3+ (1l+size (x{wb},2))*2+2+2)
— =Temp_violations;

zeroRows5=zeroRows0;
x_zeroRowsb=x{wb} (zeroRows5, :);
Temp_pred{wb} (zeroRows4, :)=Temp_pred{wb};
Temp_pred{wb}=Temp_pred{wb} (zeroRows5, :);
if isempty (x_zeroRowsb5)

zeroRows_empty=1;
end

end
end
end
%$If we haven’t reached the last reservoir, update mainstem_inflows.t, remove
— NaN from mainstem_inflows.T and mainstem_inflows.DO, and update
— zeroRows0
if wb =size(ic_elev,2) & zeroRows_empty =1
mainstem_inflows{wb+1}.t=t;
%$Remove Nan values and interpolate for T and DO
for i=l:size (mainstem_inflows{wb+1}.T,1)
extrap_index="isnan (mainstem_inflows{wb+1}.T(i,:));
[7,column]=find(extrap_index==1); extrap_index=column (end) ;
mainstem_inflows{wb+1}.T (i, :)=...
interpl (t (1, "isnan (mainstem_inflows{wb+1}.T(i,:))), ...
mainstem_inflows{wb+1}.T (i, "isnan(mainstem_inflows{wb+1}.T(i,:)))
— ...
t,’linear’ ,mainstem_inflows{wb+1}.T (i, extrap_index));
mainstem_inflows{wb+1}.DO (i, :)=...
interpl (t (1, "isnan (mainstem_inflows{wb+1}.DO(i,:))), ...
mainstem_inflows{wb+1}.DO(i, "isnan (mainstem_inflows{wb+1}.DO(i, :)))
E PR
t,’linear’ ,mainstem_inflows{wb+1}.DO (i, extrap_index));
clearvars extrap_index column
end
zeroRowsO=find (all (c{wb}<=tolerance, 2));
end

end

$Update c_all with the values from c{wb}
c_all=[c{:}]1;

runW2trainingpop.m

copyfile (CFG{wb}.w2inputDir,directory)

%$0Open control file and modify TMEND
fid=fopen ([directory ’'/w2_con.npt’]);
i=1; A{i}=fgetl (fid);
while ischar (A{i}) i=i+1; A{i}=fgetl(fid); end
fclose (fid); A{28} (22:24)=num2str (t_all (end));
fid=fopen ([directory ’'/w2_con.npt’],’w’);
for i=1:numel (A)

fprintf (fid, " $s\r\n’, A{i});

if A{i+l}==-1

break
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end
end
fclose (fid); clearvars A i fid

%$0pen got_brl.npt and modify turb and spill columns
fid=fopen ([directory ’/got_brl.npt’]);
i=1; A{i}=fgetl (fid);
while ischar (A{1i})
i=i+l; A{i}=fgetl(fid);
if i>3
if str2double (A{i} (1:8))>=t_all (1)
A(end)=[]; break
end
end
end
fclose (fid);
if strcmp (CFG{wb}.TurbSpillOrder,’1")
replacements{wb}=[Qtrainingpop{trindex}{wb}.QOT_BR1_T (Qtrainingpop{trindex}{
— wb}.QOT_BRI1_T(:,1)>=t_all(l),:)
Qtrainingpop{trindex}{wb}.Q0T_BR1l_S (Qtrainingpop{trindex}{wb}.Q0T_BR1_S
— (:,1)>=t_all(l),2)];
elseif strcmp (CFG{wb}.TurbSpillOrder,’0")
replacements{wb}=[Qtrainingpop{trindex}{wb}.Q0T_BR1_S(Qtrainingpop{trindex} {
<~ wb}.QOT_BR1_S(:,1)>=t_all(l),:)
Qtrainingpop{trindex}{wb}.QOT_BR1_T (Qtrainingpop{trindex}{wb}.QOT_BR1_T
— (:,1)>=t_all(l),2)];
end
for i=l:size(replacements{wb}, 1)
A{numel (A)+1}=sprintf ('’ %$8.3£%8.3£%8.3f’, replacements{wb} (i, :));
end
fid=fopen ([directory ' /got_brl.npt’],’'w’);
for i=1:numel (A7)
fprintf (fid, " %s\r\n’, A{i});
end
fclose (fid); clearvars A 1 fid

%$Run executable w2.exe

cd(directory)

clearvars binarydecimalguide

[T, "]=system([’'w2.exe &’"]); %the & means execute in the background
cd ../..

clearvars a ia ib DO_noNAN T_noNAN flowout turbs spills HWs

runW2trainingpop_part2.m

cd(directory)
delete ("w2.exe’); delete('pre.exe’);
cd ../..

%$Read 1in results from two and cwo files (assume DO 1is last col in cwo)
T{trindex}=[]; DO{trindex}=[];
d=dir ([directory ’/twox.opt’]);
fid=fopen ([directory '/’ d(end) .name]);
C=textscan (fid, [repmat (' $8f’, 1, 50) '%+x["\n]’],1078,...
"headerLines’, 3,’collectoutput’, true); %50 & 1078 are arbitrary big numbers
T{trindex}=C{1}; T{trindex} (:,isnan(T{trindex} (1,:)))=1[1;
fclose (fid);
d=dir ([directory ’/cwox.opt’]);
fid=fopen ([directory '/’ d(end) .name]);
C=textscan (fid, [repmat (' %8f’, 1, 50) "%+["\n]’],1078,...
"headerLines’,3,’collectoutput’, true); %50 & 1078 are arbitrary big numbers
DO{trindex}=C{1l}; DO{trindex} (:,isnan(DO{trindex} (1,:)))=1[1;

oo ~
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DO{trindex}=[DO{trindex} (:,1) DO{trindex} (:,end)];
fclose (fid);

clearvars d C fid

%$Reset 0 values to nan

T{trindex} (T{trindex} (:,2)==0,2)=nan;

DO{trindex} (DO{trindex} (:,2)==0,2)=nan;

%% Update cache
if size (CFG,2)==
cache.x=[cache.x; trainingpop (trindex, :)];
[T, ,HWs, ", "]=activeunits_to_discharges (trainingpop (trindex, :), ...
t, frequency,Qtrainingpop{trindex} {1}, ic_elev{l}, ...
turbine_discharge{l},ELWS_targets{l},[],[],0ptimize_day_by_day);
cache.HWs=[cache.HWs; HWs];
DO_noNAN=interpl (DO{trindex} ("isnan(DO{trindex} (:,2)),1), ...
DO{trindex} ("isnan (DO{trindex} (:,2)),2),t_all(2:end));
T_noNAN=interpl (T{trindex} ("isnan (T{trindex} (:,2)),1), ...
T{trindex} ("isnan(T{trindex} (:,2)),2),t_all(2:end));
$Fill in Nans at the end
a=DO_noNAN (~“isnan (DO_noNAN) ); DO_noNAN (isnan (DO_noNAN) )=a (end) ;
a=T_noNAN (“isnan (T_noNAN)); T_noNAN (isnan (T_noNAN) )=a (end);
turbs=interpl (Qtrainingpop{trindex}{1}.Q0T_BR1_T(:,1),Qtrainingpop{trindex
— }{1}.QO0T_BR1_T(:,2),t_all);
spills=interpl (Qtrainingpop{trindex}{1}.Q0T_BR1_S(:,1),Qtrainingpop{trindex
< }{1}.QO0T_BR1_S(:,2),t_all);
flowout=turbs (2:end)+spills(2:end);
DO_noNAN (flowout==0)=nan; T_noNAN (flowout==0)=nan;
cache.DO=[cache.DO; DO_noNAN]; cache.T=[cache.T; T_noNAN];
end
clearvars a ia ib DO_noNAN T_noNAN flowout turbs spills HWs directory

update_cache.m

o\

Add solution and W2 outputs to cache

% 1f Optimize_day_by_day==0 & size (CFG,2)==1
f size (CFG,2)==
if "isempty (cache.x)
%$If using the cache, get list of cache indices here
[7,1ia,ib]=intersect (x_final_all{end},cache.x,’ rows’);
else
ia=[];
end
if isempty(ia)
cache.x=[cache.x; x_final_all{end}];
cache.HWs=[cache.HWs; HWs{wb}];

S

DO_noNAN=interpl (W2validation{1l}.DO("isnan (W2validation{1}.DO(:,2)),1), ...

W2validation{1l}.DO("isnan (W2validation{1}.DO(:,2)),2),t_all(2:end));
T_noNAN=interpl (W2validation{1l}.T("isnan(W2validation{1}.T(:,2)),1),...
W2validation{1l}.T("isnan (W2validation{1l}.T(:,2)),2),t_all(2:end));
%$Fill in Nans at the end
a=DO_noNAN (“isnan (DO_noNAN) ); DO_noNAN (isnan (DO_noNAN) )=a (end) ;
a=T_noNAN (“isnan (T_noNAN)); T_noNAN (isnan (T_noNAN) )=a (end);
turbs=interpl (Q{1}.Q0T_BR1_T(:,1),0{1}.Q0T_BR1_T(:,2),t_all);
spills=interpl (Q{1}.Q0T_BR1_S(:,1),Q{1}.Q0T_BR1_S(:,2),t_all);
flowout=turbs (2:end)+spills(2:end);
DO_noNAN (flowout==0)=nan; T_noNAN (flowout==0)=nan;
cache.DO=[cache.DO; DO_noNAN]; cache.T=[cache.T; T_noNAN];
end
end
clearvars a ia ib DO_noNAN T_noNAN flowout turbs spills
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updateQ.m

function Q=updateQ(Q,CFG,x_final,t, frequency,ic_elev,turbine_discharge, ...
WQ, xprev, ELWS_targets, cache, Optimize_day_by_day)

oo

Updates the structure Q with ELWS, discharge flows, and discharge WQ
based on previous days optimized

o oo

o

Inputs:
Q — all other inflows and outflows, interpolation settings, and
storage-elev curve

o\

o\

% CFG - structure containing field values from config files
% x_final - vector containing timeseries of active turbine levels for all
% waterbodies

o°

t time series of JDAY values

frequency - prediction frequency (ex: 0.25=1/4 day=6 hours)

ic_elev - initial elevation condition (meters)

turbine_discharge - turbine discharge curve at fixed MW level, with
col 1 in meters and col 2 in cms

o\° o oo

o°

% WQ - structure containing water quality constraints and NARX models

% DO_narx - structure containing everything needed to make DO discharge
% predictions, including:

% turb_colum - column in exogenous variables with turb flows

% spill_column - column in exogenous variables with spill flows

% times - JDAY values used in training (not used)

% inputDelays - delays for exogenous inputs

% feedbackDelays - delays for prediction feedbacks

% input_variables - 2 row cell containing variable names in first

oe

row and column number in second. For example, 'MET_WB1’
contains multiple columns of data but only some may be used
for NARX predictions

bias - bias for each trained neural network

weights - weights for each trained neural network (sum to 1)

o° o° o

o\

% narx_net_closed - neural networks

% DO_limit - lower and upper DO limits (NaN means it doesn’t exist)
% DO_slack - relaxation from DO_limit (either upper or lower -

% doesn’t make sense to have both)

% Temp_narx - structure containing everything needed to make temp discharge
% predictions, including:

% turb_colum - column in exogenous variables with turb flows

% spill_column - column in exogenous variables with spill flows

% times - JDAY values used in training (not used)

% inputDelays - delays for exogenous inputs

% feedbackDelays - delays for prediction feedbacks

% input_variables - 2 row cell containing variable names in first

o°

row and column number in second. For example, "MET_WBL’

contains multiple columns of data but only some may be used

for NARX predictions

bias - bias for each trained neural network

weights - weights for each trained neural network (sum to 1)
narx_net_closed - neural networks

Temp_limit - lower and upper temp limits (NaN means it doesn’t exist)
Temp_slack - relaxation from Temp_limit (either upper or lower -
doesn’t make sense to have both)

ELWS_targets - 2 column matrix with JDAY in coll and elevation target
in col2

o0 A 0 o A° A o o o

o\

% cache - water quality predictions provided by W2 simulations
% Optimize_day_by_day - 1 if optimizing daily, 0 if optimizing all together
% Outputs:

o\

Q — all other inflows and outflows, interpolation settings,
storage-elev curve, and tailwater curve (all in meters)

o°

for wb=1l:size (CFG,2)
clearvars incoming_flow
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63 $If wb==1, update ELWS, QOT_BR1_T, CWO, TWO
64 $If wb~=1, update ELWS, QOT_BR1_T, CWO, TWO, QIN_BR1, CIN_BR1, TIN_BRl (CWO &
— TWO may not update for last reservoir if NARX models aren’t provided)
65 x=x_final{wb} (size (x_final{wb},2)-size(t,2)+2:end);
66 if wb==1
67 if isempty (cache)
68 ia=[]; ib=[];
69 else
70 %$If using the cache, get list of cache indices here
71 [T, ,tib]=intersect (t,cache.t);
72 if Optimize_day_by_day==0 & size (CFG,2)==1 & “isempty (cache.x)
73 [ia, ib]=ismember (x, cache.x, ' rows’);
74 else
75 index=find (cache.t==t (1)); %last index for previous operations
76 [ia, ib]=ismember (x, cache.x (:, index:index+23), ' rows’); %fix later to
— solve multi waterbody problems
77 end
78 ia=find (ia==1); ib=ib (ib~=0);
79 end
80
81 [turb_discharges{wb},spill_discharges{wb},HWs{wb}, , ] =
82 activeunits_to_discharges (x,t, frequency, ...
83 Q{wb},ic_elev{wb},turbine_discharge{wb},ELWS_targets{wb}, ...
84 [1,[]1,0ptimize_day_by_day);
85 %Check to see if HWs is cached, and replace if it is
86 if “isempty (ia)
87 HWs {wb}=cache.HWs (ib, tib) ;
88 end
89 Q{wb}.ELWS=[Q{wb}.ELWS (Q{wb}.ELWS(:,1)<t (1), :); t’ HWs{wb}’'];
90 Q{wb}.QO0T_BR1_T=[Q{wb}.QOT_BR1_T(Q{wb}.QOT_BR1_T(:,1)<t(1l),:);...
91 t’ turb_discharges{wb}’];
92 if Optimize_day_by_day==
93 Q{wb}.QO0T_BR1_S=[Q{wb}.QOT_BR1_S(Q{wb}.QOT_BRI1_S(:,1)<t(l),:);...
94 t’ ones(size(t,2),1)*spill_discharges{wb}];
95 else
96 for ii=l:size(spill_discharges{wb},2)
97 spill_values (1, (1/frequency)* (ii-1)+1: (1/frequency) * (1i)+1)=...
98 spill_discharges{wb} (1,ii);
99 end
100 Q{wb}.QOT_BR1_S=[Q{wb}.QOT_BR1_S (Q{wb}.QOT_BRI1_S(:,1)<t(1l),:);...
101 t’ spill_values’];
102 clearvars 1i spill_values
103 end
104 if isempty(ia)
105 DO_pred{wb}=narx_predictions (WQ{wb}.DO_narx, frequency,t,Q{wb},x, ...
106 turb_discharges{wb}, spill_discharges{wb}, [],Q{wb}.CWO, " do’,
— Optimize_day_by_day);
107 Temp_pred{wb}=narx_predictions (WQ{wb}.Temp_narx, frequency,t,Q{wb},x, ...
108 turb_discharges{wb},spill_discharges{wb}, [],Q{wb}.TWO,  temp’,
— Optimize_day_by_day);
109 else
110 DO_pred{wb}=cache.DO (ib,tib(l:end-1)); Temp_pred{wb}=cache.T (ib,tib(1:
— end-1));
111 end
112 %Remove NaNs from DO_pred and Temp_pred!
113 outgoing_DO{wb}=[t (2:end)’ DO_pred{wb}’];
114 outgoing_DO{wb}=outgoing_DO{wb} ("isnan (outgoing_DO{wb} (:,2)),:);
115 outgoing_Temp{wb}=[t (2:end)’ Temp_pred{wb}’];
116 outgoing_Temp{wb}=outgoing_Temp{wb} (“isnan (outgoing_Temp{wb} (:,2)),:);
117 $If last values in WQ predictions are NaN, need to add last row to
— outgoing_DO and outgoing_Temp
118 if outgoing_Temp{wb} (end, 1)<t (end)
119 outgoing_Temp{wb}=[outgoing_Temp{wb}; t(end) outgoing_Temp{wb} (end,2)];
120 outgoing_DO{wb}=[outgoing DO{wb}; t (end) outgoing_DO{wb} (end,2)];
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end
Q{wb}.CWO=[Q{wb}.CWO (Q{wb}.CWO(:,1)<t(2),:); outgoing_DO{wb}];
Q{wb}.TWO=[Q{wb}.TWO (Q{wb}.TWO(:,1)<t (2),:); outgoing_Temp{wb}];

else
incoming_flow=turb_discharges{wb-1}+spill_discharges{wb-1};
[turb_discharges{wb},spill_discharges{wb},HWs{wb}, , ] =
activeunits_to_discharges(x,t, frequency, ...
Q{wb},ic_elev{wb},turbine_discharge{wb},ELWS_targets{wb}, ...
t,incoming_flow,Optimize_day_by_day);
Q{wb}.ELWS=[Q{wb} .ELWS (Q{wb} .ELWS (:,1)<t (1), :); t’ HWs{wb}’];
Q{wb}.Q0T_BR1_T=[Q{wb}.Q0T_BR1_T (Q{wb}.QOT_BRI1_T(:,1)<t(l),:);...
t’ turb_discharges{wb}’];
Q{wb}.QOT_BR1_S=[Q{wb}.QOT_BR1_S(Q{wb}.QOT_BR1_S(:,1)<t(1l),:);...
t’ ones(size(t,2),1)*spill_discharges{wb}];
%Qin contains both spill and turbine
Q{wb}.QIN_BR1=[Q{wb}.QIN_BRI (Q{wb}.QIN_BRI (:,1)<t(l),:);...
t’ incoming_flow’];
Q{wb}.CIN_BR1=[Q{wb}.CIN_BRI1 (Q{wb}.CIN_BRL (:,1)<t(2),:);...
outgoing_DO{wb-1}];
Q{wb}.TIN_BR1=[Q{wb}.TIN_BRI (Q{wb}.TIN_BR1 (:,1)<t(2),:);...
outgoing_Temp{wb-1}];
%$May not have WQ calculations for final reservoir’s discharge (depends on
<~ problem definition) so check for these
if "isempty (WQ{wb}.DO_narx)
DO_pred{wb}=narx_predictions (WQ{wb}.DO_narx, frequency,t, ...
Q{wb}, x,turb_discharges{wb},spill_discharges{wb}, [],Q{wb}.CWO,"do’");
%Remove NaNs from DO_pred and Temp_pred!
outgoing_DO{wb}=[t (2:end)’ DO_pred{wb}’1]1;
outgoing_DO{wb}=outgoing_DO{wb} ("isnan (outgoing_DO{wb} (:,2)),:);
%$If last values in WQ predictions are NaN, need to add last row to
— outgoing_DO and outgoing_Temp
if outgoing_DO{wb} (end, 1)<t (end)
outgoing_DO{wb}=[outgoing_DO{wb}; t(end) outgoing_DO{wb} (end,2)];
end
Q{wb}.CWO=[Q{wb}.CWO (Q{wb}.CWO(:,1)<t(l),:); outgoing_DO{wb}];
end
if "isempty (WQ{wb}.Temp_narx)
Temp_pred{wb}=narx_predictions (WQ{wb}.Temp_narx, frequency,t, ...
Q{wb}, x,turb_discharges{wb},spill_discharges{wb}, []1,Q{wb}.TWO,  temp’
— )
%$Remove NaNs from DO_pred and Temp_pred!
outgoing_Temp{wb}=[t (2:end)’ Temp_pred{wb}’];
outgoing_Temp{wb}=...
outgoing_Temp{wb} (“isnan (outgoing_Temp{wb} (:,2)),:);
%$If last values in WQ predictions are NaN, need to add last row to
— outgoing_DO and outgoing_Temp
if outgoing_Temp{wb} (end, 1)<t (end)
outgoing_Temp{wb}=[outgoing_Temp{wb}; t(end) outgoing_Temp{wb} (end
— ,2)1;
end
Q{wb}.TWO=[Q{wb}.TWO (Q{wb}.TWO(:,1)<t (1), :); outgoing_Temp{wb}];
end
end
end

clearvars outgoing_DO outgoing_Temp
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