DETERMINATION OF OPTIMAL OPERATING SCHEMES FOR A HYDROPOWER RESERVOIR UNDER ENVIRONMENTAL CONSTRAINTS

By

Amelia R. Shaw

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University
in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Environmental Engineering

May 11, 2018

Nashville, Tennessee

Approved:

Eugene J. LeBoeuf, Ph.D., P.E.

Mark McDonald, Ph.D., P.E.

George Hornberger, Ph.D.

Mark Ellingham, Ph.D.

Boualem Hadjerioua, Ph.D.

In memory of my grandmother, who raised my dad to become the kind of man who encouraged his daughter to play in the dirt. For that, I am forever grateful.
Marilyn Lease Shaw
1925 - 2018

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Eugene LeBoeuf, for first introducing me to hydropower operations and its environmental impacts, and for his continued support. I also want to thank my committee members for the time they spent guiding this research. Drs. Mark McDonald and Bo Hadjerioua were integral to the success of this project. I appreciate the thorough mathematics review provided by Dr. Mark Ellingham. Lastly, thanks to Dr. George Hornberger for his mentorship and for reminding me to step back and examine the big picture.

Funding for this work was provided by the U.S. Department of Energy Wind and Water Program under contract DE-AC05-00OR22725 through Oak Ridge National Laboratory and the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy under Award Number DE-EE0002668 through the Hydro Research Foundation. The Vanderbilt University Department of Civil and Environmental Engineering provided additional financial support, and I thank the faculty and staff for supporting the research and career development of graduate students. Additional scholarship and fellowship support was provided by the National Precast Concrete Association, Chi Epsilon, the American Water Resources Association, and the Air and Waste Management Association Southern Section.

Thank you to Heather Smith Sawyer for helping me learn the ins and outs of CE-QUAL-W2. Bob Sneed and Jeff Gregory from the U.S. Army Corps of Engineers Nashville District provided reservoir operations data, models, and lots of guidance. Gergely Varga from the Institute for Software Integrated Systems trimmed years from this work with his data management tools. I greatly appreciate the support and resources provided by the Hydro Research Foundation and want to especially thank Brenna Vaughn, Deborah Linke, and Mike Sale for welcoming me and the other "Hydro Fellows" to the world of hydropower with open arms.

I had the honor of spending the first part of 2017 as a Mirzayan Fellow at the National Academy of Engineering. I want to thank Randy Atkins for his excellent mentorship, the NAE Program Office staff for providing so many opportunities to get involved, and Dr. Anne-Marie Mazza for inspiring years of fellows through her leadership of the program. My brilliant class of fellows made the experience so fulfilling, and I thank them for sharing their passion for science policy.

Last but certainly not least, none of this would have been possible without the support of my family and friends. I have to thank my parents for always prioritizing my education. The importance of the camaraderie provided by my fellow graduate students really can't be measured, and I've made many lifelong friends during my time here. My bookworm of a fiancé Sam deserves a round of applause for reviewing and helping improve my writing. More importantly, I appreciate him for always believing in me even at times when I struggled to believe in myself.

TABLE OF CONTENTS

I	Page
DEDICATION	ii
ACKNOWLEDGMENTS	iii
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS AND ACRONYMS	xiii
I INTRODUCTION	1
I.1 Plan of Research	4
II STATE-OF-THE-ART LITERATURE REVIEW	8
II.1 Reservoir Modeling and Operations	8
II.1.1 Environmental Mitigation Techniques for Hydropower Systems	8
II.1.2 Hydrodynamic and Water Quality Modeling for Rivers and Reservoirs	10
II.1.3 Decision Support Systems	19
II.2 Surrogate Modeling Techniques	25
II.2.1 Design of Experiments	27
II.2.2 Function Approximation Models	28
II.2.3 Analysis Frameworks	38
II.2.4 Response Surface Surrogate Usage in Water Resources	42
II.3 Optimization of Hydropower Systems	47
II.3.1 Classic Methods	48
II.3.2 Heuristic Algorithms	51
II.4 Gaps in the Literature and Research Advancement	56
III HYDROPOWER OPTIMIZATION USING ARTIFICIAL NEURAL NETWORK SUR-	
ROGATE MODELS OF A HIGH-FIDELITY HYDRODYNAMICS AND WATER QUAL-	
ITY MODEL	58
III.1 Introduction	58
III.2 Case Study Description	60

	III.3	Optimization Problem Formulation	62
		III.3.1 Objective Function and Soft Constraint	63
		III.3.2 Hard Constraints	65
	III.4	Methodology	66
	III.5	Experimental Setup	72
	III.6	Results	78
		III.6.1 Experiment 1: Trade-Offs Between Water Quality and Energy Production .	80
		III.6.2 Experiment 2: Simultaneous Constraints on Temperature and DO	84
	III.7	Discussion	84
	III.8	Conclusions	87
IV	ADA	APTIVE NEURAL NETWORKS FOR EFFICIENT WATER QUALITY-CONSTRAINI	ED
	HYD	DROPOWER OPTIMIZATION	89
	IV.1	Introduction	89
	IV.2	Adaptive Linked Neural Network-Genetic Algorithms	90
	IV.3	Case Study Description	91
	IV.4	Optimization Problem Formulation	91
	IV.5	Methodology	92
		IV.5.1 Resampling for ANN Adaptation	93
		IV.5.2 Random Immigrants Replacement	95
	IV.6	Experimental Setup	96
	IV.7	Results	97
	IV.8	Discussion	101
	IV.9	Conclusions	103
V	SEN	SITIVITY ANALYSIS FOR INFORMED WATER QUALITY-CONSTRAINED HY-	
	DRO	POWER SYSTEM OPTIMIZATION	105
	V.1	Introduction	105
	V.2	Case Study Description	107
	V.3	Methodology and Experimental Setup	108
	V.4	Results	110
	W5	Discussion	112

V.6 Conclusions	116
VI CONCLUSIONS AND FUTURE WORK	120
VI.1 Conclusions	120
VI.2 Future Work	122
Appendix A OLD HICKORY RESERVOIR CE-QUAL-W2 MODEL CALIBRATION AND	
VALIDATION FIGURES	125
Appendix B CORDELL HULL RESERVOIR CE-QUAL-W2 MODEL CALIBRATION	
AND VALIDATION FIGURES	131
Appendix C MATLAB® CODE FOR NARX MODEL TRAINING	137
Appendix D MATLAB® CODE FOR HYDROPOWER OPTIMIZATION UNDER WATER	
QUALITY CONSTRAINTS	149
Appendix E MATLAB® CODE FOR HYDROPOWER OPTIMIZATION UNDER WATER	
QUALITY CONSTRAINTS MODIFIED FOR RANDOM IMMIGRANTS REPLACE-	
MENT AND ADAPTIVE ADDITIONAL SAMPLING	216
REFERENCES	307

LIST OF TABLES

Table		Page
III.1	Summary of Old Hickory CE-QUAL-W2 model calibration and validation results	74
III.2	Exogenous variables lists for Old Hickory discharge NARX models	75
III.3	Optimization parameter settings	82
III.4	Optimization constraint values	82
III.5	Summary of Experiment 1 and Experiment 2 results	83
IV.1	GA and overall framework settings	98
IV.2	Power values for best feasible solutions found by the four approaches in eight trials.	98
V.1	Summary of Cordell Hull CE-QUAL-W2 model calibration and validation results	109
V.2	Cordell Hull release scenarios used in sensitivity analysis	110
V.3	Cordell Hull and Old Hickory release temperature and DO concentration differ-	
	ences between experimental Cordell Hull release scenarios and 2005 (CH-0) re-	
	leases, computed as AME	113

LIST OF FIGURES

Figure	e	Page
I.1	Dams in the United States by completion date (U.S. Army Corps of Engineers,	
	2013a)	3
I.2	Methodology overall approach	6
I.3	Cumberland River System (courtesy of Nashville District of the U.S. Army Corps	
	of Engineers)	6
II.1	Evolution of surrogate modeling publications (Viana and Haftka, 2008)	29
III.1	Dam projects in the Cumberland River Basin (adapted from figure courtesy of	
	Nashville District of the U.S. Army Corps of Engineers)	61
III.2	Cost curve used in optimization applications	64
III.3	Schematic of optimization methodology	70
III.4	Bathymetry of Old Hickory reservoir CE-QUAL-W2 model, showing (a) plan view	
	of all branches and (b) elevation view of the mainstem, Branch 1 (created using	
	AGPM-2D v3.5 post-processor for CE-QUAL-W2 by Loginetics, Inc.)	73
III.5	Old Hickory discharge temperature lagged cross correlation test examples for (a)	
	turbine outflow, (b) branch 1 inflow, (c) air temperature, and (d) tributary 2 in-	
	flow with 95% confidence bounds. Inputs shown in (a), (b), and (c) are considered	
	correlated with discharge temperature and are included in the NARX model ex-	
	ogenous variables, while input (d) is not.	76
III.6	Data division demonstration for NARX model training. Each box represents 1%	
	of the total set of CE-QUAL-W2 simulations resulting from design of experiments	. 77
III.7	Old Hickory NARX model distributions of hourly prediction errors for (a) temper-	
	ature training, (b) temperature validation, (c) DO training, and (d) DO validation	
	sets. Normal distribution fits are shown by the curve	79

III.8	Examples of validation simulation results for (a-b) Old Hickory discharge temper-	
	ature and (c-d) Old Hickory discharge DO. Discontinuities in the curves represent	
	times with neither spill nor turbine discharge present. CE-QUAL-W2 outcomes	
	shown here and used in initial NARX training are smoothed on a 24-hour moving	
	average	79
III.9	Results of population size parameter tuning for DO constraint violation minimiza-	
	tion optimization routine, showing (a) Optimal solutions found, and (b) Optimiza-	
	tion time. Error bars represent the range of solutions for the 10 evaluations made	
	per population size	81
III.10	Results of population size parameter tuning for power value maximization opti-	
	mization routine, showing (a) Optimal solutions found, and (b) Optimization time.	
	Error bars represent the range of solutions for the 10 evaluations made per popula-	
	tion size	81
III.11	Cumulative spill and turbine discharges over 10-day planning period for various	
	minimum discharge DO constraint levels	85
III.12	Experiment 2 results for optimization of Old Hickory reservoir operations for a 10-	
	day planning period: (a) Turbine discharge flowrates, (b) Spill discharge flowrates,	
	(c) Headwater elevations, (d) Discharge DO predictions, and (e) Discharge temper-	
	ature predictions. AME values represent absolute mean error between the NARX	
	and CE-QUAL-W2 model predictions at the optimal solution	85
IV.1	Framework for adaptively-trained ANN water quality constraint within GA-based	
	hydropower optimization routine	94
IV.2	Means and ranges for (a) power values of the best feasible solutions found, (b) total	
	ANN function calls, and (c) total CE-QUAL-W2 simulations for the four tested cases.	99
IV.3	Generation number versus (a) power values for newly-discovered incumbent solu-	
	tions and (b) percentage change in incumbent solution power value for the Case 4	
	trials	00
IV.4	Population average standard deviations for the four tested cases	00

IV.5	Averaged proportions of GA water quality solutions found within cache at each	
	GA generation for the four test cases	102
V.1	Bathymetries of the mainstem sections of Cordell Hull and Old Hickory reservoirs,	
	with turbine (red) and spill (blue) release elevations indicated by arrows and sum-	
	mer power pool storage zones shown in yellow	109
V.2	Cordell Hull baseline (CH-0) and experimental (CH-1, CH-2, CH-3, and CH-4)	
	turbine and spill releases over the 10-day planning period	111
V.3	Cordell Hull and Old Hickory baseline (CH-0) and experimental (CH-1, CH-2,	
	CH-3, and CH-4) discharge temperatures and differences from baseline temperatures.	112
V.4	Cordell Hull and Old Hickory baseline (CH-0) and experimental (CH-1, CH-2,	
	CH-3, and CH-4) discharge DO concentrations and differences from baseline DO	
	concentrations	114
V.5	Old Hickory release temperatures at all timepoints in 10-day planning period as-	
	suming operations found in Chapter III Experiment 2, assuming Cordell Hull base-	
	line releases (CH-0) along the x-axis and experimental releases (CH-1, CH-2, CH-	
	3, and CH-4) along the y-axis. Horizontal and vertical lines represent constraint	
	boundaries	117
V.6	Old Hickory release DO concentrations at all timepoints in 10-day planning pe-	
	riod assuming operations found in Chapter III Experiment 2, assuming Cordell	
	Hull baseline releases (CH-0) along the x-axis and experimental releases (CH-1,	
	CH-2, CH-3, and CH-4) along the y-axis. Horizontal and vertical lines represent	
	constraint boundaries	118
A.1	Old Hickory CE-QUAL-W2 model calibration timeseries outcomes for the year	
	1988: (a) water surface elevation, (b) discharge temperature, and (c) discharge DO.	126
A.2	Old Hickory CE-QUAL-W2 model calibration temperature profiles for the year	
	1988 (created using AGPM-2D v3.5 post-processor for CE-QUAL-W2 by Logi-	
	netics, Inc.). Profile measurements were collected on 7 dates at 8 locations	127

A.3	Old Hickory CE-QUAL-W2 model calibration DO profiles for the year 1988 (cre-	
	ated using AGPM-2D v3.5 post-processor for CE-QUAL-W2 by Loginetics, Inc.).	
	Profile measurements were collected on 7 dates at 8 locations	128
A.4	Old Hickory CE-QUAL-W2 model validation timeseries outcomes for the year	
	2005: (a) water surface elevation, (b) discharge temperature, and (c) discharge DO.	129
A.5	Old Hickory CE-QUAL-W2 model validation temperature profiles for the year	
	2005 (created using AGPM-2D v3.5 post-processor for CE-QUAL-W2 by Logi-	
	netics, Inc.). Profile measurements were collected on 2 dates at 7 locations	130
A.6	Old Hickory CE-QUAL-W2 model validation DO profiles for the year 2005 (cre-	
	ated using AGPM-2D v3.5 post-processor for CE-QUAL-W2 by Loginetics, Inc.).	
	Profile measurements were collected on 2 dates at 7 locations	130
B.1	Cordell Hull CE-QUAL-W2 model calibration timeseries outcomes for the year	
D.1	·	
	2000: (a) water surface elevation, (b) discharge temperature, and (c) discharge DO.	132
B.2	Cordell Hull CE-QUAL-W2 model calibration temperature profiles for the year	
	2000 (created using AGPM-2D v3.5 post-processor for CE-QUAL-W2 by Logi-	
	netics, Inc.). Profile measurements were collected on 2 dates at 9 locations	133
B.3	Cordell Hull CE-QUAL-W2 model calibration DO profiles for the year 2000 (cre-	
	ated using AGPM-2D v3.5 post-processor for CE-QUAL-W2 by Loginetics, Inc.).	
	Profile measurements were collected on 2 dates at 9 locations	133
B.4	Cordell Hull CE-QUAL-W2 model validation timeseries outcomes for the year	
	2005: (a) water surface elevation, (b) discharge temperature, and (c) discharge DO.	134
B.5	Cordell Hull CE-QUAL-W2 model validation temperature profiles for the year	
	2005 (created using AGPM-2D v3.5 post-processor for CE-QUAL-W2 by Logi-	
	netics, Inc.). Profile measurements were collected on 5 dates at 9 locations	135
B.6	Cordell Hull CE-QUAL-W2 model validation DO profiles for the year 2005 (cre-	
	ated using AGPM-2D v3.5 post-processor for CE-QUAL-W2 by Loginetics, Inc.).	
	Profile measurements were collected on 5 dates at 9 locations	136

LIST OF ABBREVIATIONS AND ACRONYMS

ACO ant colony optimization

ALGA Augmented Lagrangian Genetic Algorithm

AME absolute mean error

ANN artificial neural network

BOD biochemical oxygen demand

CalSim California Water Resources Simulation Model

CBOD carbonaceous biochemical oxygen demand

CSO combined sewer overflow

CSV comma separated values

CWMS Corps Water Management System

DO dissolved oxygen

DOP dynamic optimization problem

DP dynamic programming

DSS decision support system

EFDC Environmental Fluid Dynamics Code

EGO efficient global optimization

EIF expected improvement function

GA genetic algorithm

GEM Gaussian emulator machine

HBMO honey bees mating optimization

HEC Hydrologic Engineering Center

HEC-PRM Hydrologic Engineering Center Prescriptive Reservoir Model

HSPF Hydrologic Simulation Program Fortran

JDAY Julian day

kNN k-nearest neighbors

LP linear programming

MBO marriage in honey bees optimization

MINLP mixed integer nonlinear programming

MW megawatt

MWh megawatt-hour

NARX nonlinear autoregressive network with exogenous inputs

NLP nonlinear programming

OECD Organization for Economic Cooperation and Development

PSO particle swarm optimization

RBF radial basis function

SA simulated annealing

SMS Surface Water Modeling System

SVM support vector machine

SVR support vector regression

SWAT Soil and Water Assessment Tool

TCD temperature control device

TDG total dissolved gas

TDS total dissolved solids

TKN total Kjeldahl nitrogen

TMDL total maximum daily load

TN total nitrogen

TOC total organic carbon

TVA Tennessee Valley Authority

USACE U.S. Army Corps of Engineers

USBR U.S. Bureau of Reclamation

USEPA U.S. Environmental Protection Agency

WASP Water Quality Analysis Simulation Program

WQM water quality model

WRIMS Water Resource Integrated Modeling System

Chapter I

INTRODUCTION

One of the largest challenges facing societies worldwide is energy scarcity. Global energy consumption is projected to grow by 48% over the 28-year period from 2012 to 2040 (*U.S. Department of Energy*, 2016a). This growth stems largely from a consumption increase in countries outside the Organization for Economic Cooperation and Development (OECD), whose membership consists of 35 countries worldwide, most of which are advanced (*The Organisation for Economic Co-operation and Development (OECD)*, 2018); however, energy use is still predicted to increase by 18% in OECD member countries, which includes the United States (*U.S. Department of Energy*, 2016a). While fossil fuels will continue to dominate world energy use, renewable resources are the fastest growing electricity source, rising by 2.9% each year worldwide and 1.8% each year in the United States through 2040 (*U.S. Department of Energy*, 2016a).

The majority of hydroelectric power derives from dammed river systems, in which impounded water's potential energy drives turbines and generates electricity. There are currently over 45,000 large (over 10⁷ cubic meters of storage as defined by *Graf* (2005)) dams worldwide (*McCartney*, 2009). Twenty-seven percent of the projected growth in worldwide renewables is expected to come from hydroelectric power (*U.S. Department of Energy*, 2016a), primarily from construction of new, large, and gravity concrete and earth dammed systems. While other countries are still actively constructing large conventional dams, the U.S. has witnessed a sharp decline in new large dam construction since the 1970s (Figure I.1), primarily due to concerns over adverse environmental impacts (Endangered Species Act of 1973, Clean Water Act of 1977). U.S. hydroelectric power generation is projected to increase by 0.1% annually (*U.S. Department of Energy*, 2016a), corresponding to 1.7% of U.S. renewables growth. This is expected to be derived from hydropower development at existing non-powered dams, additional pumped-storage facilities, new small in-stream hydropower, and improved turbine and generator efficiencies through equipment upgrades and optimized reservoir and turbine operations procedures (*U.S. Department of Energy*, 2015). This growth is important as hydropower can supplement power demands, especially as a responsive and flexible power genera-

tion source during peak demand periods, which thermal electric power sources and other renewables cannot deliver (*U.S. Department of Energy*, 2016b). Without construction of new large hydropower projects, the projected increase of hydroelectric power must come from improved equipment efficiencies and optimized operation procedures. This research focuses on the latter idea.

The general environmental impacts of dams and hydropower operations are well-known, but the exact impacts of a particular dam are difficult to predict due to unique characteristics of aquatic ecosystems (Friedl and Wuest, 2002; McCartney, 2009). Hydropower plants typically operate on a "peaking" schedule, supplying additional electricity to the power grid during high demand periods. This can result in flow fluctuations, impacting downstream fish habitats (Jager and Smith, 2008). Globally on average, damming triples river water residence times (Covich, 1993). Reduced flow velocities enhance sedimentation rates upstream of dams, and the reduced sediment loads and fluctuating velocities can enhance erosion downstream (McCartney, 2009). The resulting large mass of still water absorbs heat and may result in stratification, where surface water layers are considerably warmer than deeper layers. If release locations are deep in the reservoir, the reservoir releases can be considerably cooler than would occur under a natural regime (McCartney, 2009). Drought and warm weather exacerbate this due to greater differences in water densities between the cool deep water and warmer surface waters (Dortch, 1997). Thermal stratification reduces vertical exchanges, which can create anoxic conditions in deep water layers. If outflow structure elevations lie in oxygen-depleted regions of a reservoir, discharge waters may also be oxygen-depleted. When most of the energy of the release is dedicated to power production, this leaves little energy for reaeration (Dortch, 1997). This water may also have reduced levels of other compounds, leading to a poor downstream assimilative capacity; this can be especially harmful in river reaches which receive wastewater and other effluents (*Friedl and Wuest*, 2002). Temperature and dissolved oxygen (DO) are primarily the greatest water quality interest for reservoirs, as temperature regulates biotic growth rates and oxygen is necessary to sustain life within waterbodies (Dortch, 1997). Studies of U.S. Army Corps of Engineers (USACE) and the Tennessee Valley Authority (TVA) water resources projects in the southeastern U.S. revealed significant dam tailwater quality DO issues (Kennedy and Gaugush, 1988; Hayes et al., 1998; Higgins and Brock, 1999). The greatest needs associated with dams relate to tailwater quality, especially for hydropower projects where structural design and the desire to meet maximum turbine efficiency reduces reaeration during power generation (Kennedy

Figure I.1: Dams in the United States by completion date (U.S. Army Corps of Engineers, 2013a).

and Gaugush, 1988). Additionally, nuclear and coal power plants rely on river flow for condenser cooling water and must comply with regulatory temperature limits before discharging the cooling water into the river (*U.S. Environmental Protection Agency*, 2016). Consequently, there is great value in managing reservoir temperatures to minimize thermal power plant derating, especially during warm weather periods. Reservoir operators must also consider how warm water releases from thermal plants and peaking cold water released from hydropower dams can produce sudden temperature changes, which may negatively impact sensitive fish species, particularly during winter.

Tradeoffs are made when considering both water quantity and quality objectives, often resulting in a desire for flow release decision-making that benefits water quality in conjunction with other project demands, such as flood abatement or energy production (*Loftis et al.*, 1985). There are three primary mechanisms that can improve water quality: (i) pretreatment or control of inflows, (ii) inpool management or treatment techniques, and (iii) outflow management (*Dortch*, 1997). Outflow management is the most commonly used method, as controlling outflow rates, outlet locations, and timing of releases can impact both in-pool and release water quality by influencing in-pool water quality gradients (*Dortch*, 1997; *Price and Meyer*, 1992). Outflow decision-making represents the primary focus of this research work.

Reservoirs with hydropower capabilities are generally operated with the primary goal of maximizing energy production while meeting legal water regulations (Jager and Smith, 2008). The optimization of reservoir operations has been extensively studied, with initial studies focusing on water quantity constraints and more recent studies integrating constraints related to wildlife and water quality. The limited number of studies which consider water quality have not employed state-of-the-art two-dimensional high-fidelity water quality models (WQMs), instead incorporating one-dimensional coarse-grid models or minimum flow requirements deemed to support sufficient water quality (Jager and Smith, 2008). For example, Hayes et al. (1998) integrated the quasi-2D coarse-grid water quality DORM-II model of the upper Cumberland River basin in the southeastern United States into an optimal control model to analyze water quality improvement opportunities through operational changes. While computationally feasible, this work included simplifications such as 24 hour periods of generation, stratification defined by two well-mixed vertical layers with no mixing between layers, and simplified heat transfer and reaeration equations. Optimizing operations for a single reservoir under simulated environmental constraints has proven computationally difficult, and expanding to multireservoir systems is even more challenging (*Dhar and Datta*, 2008). A technique for integrating high-fidelity water quality simulation models within a hydropower decision support system would provide reservoir releases which better meet defined objectives and constraints.

I.1 Plan of Research

Presented here is an approach for computing globally optimal power generation schemes for a hydropower reservoir using high-fidelity WQMs, surrogate modeling techniques, and multidimensional optimization methods. The combination of these approaches allows for the inclusion of high-fidelity water quality constraints within dam release decision making on an operational timescale, as well as comparison between resulting optimal schemes and current operating procedures. This methodology reveals a power generation benefit while maintaining water quality standards or minimizing water quality standard violations.

The primary objective is to perform simulation and optimization for determination of flow releases from turbines and control structures along river systems with consideration of power production, navigability, temperature, water quality, and flood risk. The general workflow for this process is shown in Figure I.2. To determine optimal releases, high-fidelity spatial and temporal information are needed on system hydraulics and water quality. This information is generally managed on an individual system basis, and can be estimated by high-fidelity models such as the CE-QUAL-W2 model (*Cole and Wells*, 2007), which is currently used by the USACE and TVA to model the Cumberland and Tennessee Rivers, respectively. A section of the Cumberland River containing two US-ACE hydropower projects (Old Hickory and Cordell Hull reservoirs) is used as a prototype system (Figure I.3). These run-of-the-river type hydropower facilities have small storage capacities which are sensitive to smaller timescale variations in inflows and outflows (*Ferreira and Teegavarapu*, 2012); therefore, short-term operations planning on daily or hourly timescales is highly valuable.

As expressed by *Bartholow et al.* (2001), there is a need to link optimization software with the CE-QUAL-W2 model, which would allow managers to satisfy both downstream and in-reservoir water quality objectives. Previously *Dhar and Datta* (2008) developed a method for determining optimal short-term operation of a single reservoir to control downstream water quality through a linked simulation (CE-QUAL-W2) and optimization (elitist genetic algorithm) process. Their methodology is limited by time requirements of the simulation model, which could be improved through development of parallel code or use of metamodels. Metamodels, also known as response surface models, surrogates, or emulators, mimic the behavior of a simulation model with substantial computational savings (*Forrester et al.*, 2008).

Chapter II details the state-of-the-art of research in the areas of reservoir modeling and operations, surrogate modeling techniques, and hydropower systems optimization. Following chapters detail work encompassing three main objectives, all centered around the goal of exploring optimal operational schemes while maintaining water quality. In Chapter III, construction of surrogate WQMs and integration of these models within an optimization application is described. This is applied to a single multipurpose reservoir with hydropower capabilities, and the surrogate-enabled optimizer is used to explore the trade-offs between spillway and hydropower flow releases. Chapter IV focuses on the optimizer itself, exploring modifications to the optimization algorithm which improve solution quality. Random immigrants replacement, a technique to improve genetic algorithm (GA) population diversity when solving dynamic optimization problems, and soliciting additional surrogate model training data adaptively mid-optimization are both investigated. Chapter V looks

Figure I.2: Methodology overall approach.

Figure I.3: Cumberland River System (courtesy of Nashville District of the U.S. Army Corps of Engineers).

toward expanding this work to a system of reservoirs by performing a necessary exploration of the feedbacks exhibited between two reservoirs connected in series. Determination of the sensitivity of downstream water quality due to changes in upstream operations is examined. Chapter VI provides concluding thoughts and proposed areas of future work.

Chapter II

STATE-OF-THE-ART LITERATURE REVIEW

Developing an optimization tool which incorporates water quality parameters requires integrating mathematical and modeling methods from several independent fields of study. An understanding of the strengths and weaknesses of available techniques in these fields, including their use in previous applications, can be gained from the following literature review.

II.1 Reservoir Modeling and Operations

In many hydropower systems, there is a desire to improve water quality outcomes by modifying operations or applying other mitigation techniques. We discuss currently employed mitigation techniques below. Reservoir modeling is an integral piece of this research, including both hydrodynamic and water quality components. There is extensive research in this area, with recent research growth due in part to improvements in computational abilities. General and reservoir-specific water quality and hydrodynamic models have various characteristics; here, we discuss the advantages, disadvantages, and applications of such models. This includes detailed coverage of CE-QUAL-W2, a two-dimensional hydrodynamic and WQM which has simulated over 2,300 surface water bodies worldwide, including over 300 manmade reservoir applications (*Portland State University*, 2007). Additionally, we discuss incorporating hydrodynamic models in power generation management systems, which attempt to optimize hydropower performance.

II.1.1 Environmental Mitigation Techniques for Hydropower Systems

Hydropower operations can negatively impact river system water quality. Impounded dams can reduce flow velocities, increase sedimentation rates upstream, reduce sediment loads downstream, and enhance erosion (*McCartney*, 2009). Stratification of water temperature and constituent concentrations may occur, reducing vertical exchanges. DO levels, water temperatures, and ensuring adequate water quality and quantity (i.e., environmental flows) for aquatic species are the primary

water quality concerns within controlled river systems (U.S. Department of Energy, 2016b).

Dortch (1997) states that there are three primary efforts that can improve water quality: (i) pretreatment or control of inflows, (ii) in-pool management or treatment techniques, and (iii) outflow management. Pretreating of reservoir inflows requires watershed control and land management planning, and engaging multiple stakeholders beyond river operators alone. In-pool management and treatment techniques include pumps which supply oxygenated water to the turbine penstock intakes to improve release aeration, line diffusers to increase oxygen concentrations in the forebay, disrupting or preventing stratification using water jets, sediment removal to increase volume and reduce toxicity, and aquatic plant harvesting and phosphorus inactivation by adding aluminum sulfate or sodium aluminate for algal control (Dortch, 1997; U.S. Department of Energy, 2016b). Outflow management is the most common method, as methods such as controlling outflow rates, outlet locations, and timing of releases can impact both in-pool and release water quality by influencing inpool water quality gradients (Dortch, 1997; Price and Meyer, 1992). Outflow management methods include using temperature control devices for selective withdrawal of cold water for fisheries downstream, auto-venting turbines that add oxygen to hydropower releases, and mixing warm turbine releases with cold water bypass releases to provide a cooler downstream environment (U.S. Department of Energy, 2016b). Modifying dam releases has also been successful for producing flow regimes that maintain sensitive species. For example, incorporating flow pulses along the Putah Creek in California created favorable spawning and rearing conditions and maintained stable base ecological flows in order to regain native fish populations (*Poff and Schmidt*, 2016). Additional detail on in-pool management, treatment techniques, and outflow management can be found in *Price* and Meyer (1992) and Dortch (1997).

Studies of USACE and TVA water resources projects in the southeastern U.S. revealed significant dam tailwater quality DO issues (*Hayes et al.*, 1998; *Higgins and Brock*, 1999). In the early 1990s, TVA implemented the Reservoir Release Improvement program to improve water quality and provide a minimum constant flow at 20 TVA river system projects. DO mitigation techniques included oxygen and air injection, surface water pumping, turbine venting, oxygen line diffusion, and reregulation and aeration weirs (*Mobley and Brock*, 1995; *Higgins and Brock*, 1999). These actions resulted in reduction in the total number of days below DO targets in a year for the 16 projects with aeration improvements reduced from the historic average of 1,346 days per year to 454, 424,

231, and 267 days per year for 1994, 1995, 1996, and 1997, respectively. TVA also observed improvements in both benthic macroinvertebrate and fish communities overall. More recently, the USACE Nashville District installed a fixed-cone release valve at Percy Priest Dam on the Cumberland River (*Batick*, 2011) and Duke Energy installed aerating turbines at their Bridgewater Project in North Carolina in order to improve downstream DO levels (*U.S. Department of Energy*, 2016b).

WQMs can simulate the impacts of mitigation techniques such as the ones mentioned here, allowing managers to determine appropriate site-specific designs and operating schemes for these mitigation technologies (*U.S. Department of Energy*, 2016b). *Saito et al.* (2001) used a WQM to forecast changes in phytoplankton production due to installation of a temperature control device enabling selective withdrawal at the dam at Shasta Lake, California, and then linked this model to a food web-energy transfer model to assess impact further up the food web. The authors concluded that modeling can aid in the challenging task of predicting reservoir impacts of new dam operations. *Shirangi et al.* (2008) combined a water quality simulation model with conflict resolution theory to determine improved operational strategies for reservoir selective withdrawal. *Caliskan and Elci* (2009) used the 3D Environmental Fluid Dynamics Code (EFDC) numerical model to analyze the effect of selective withdrawal from four outlets at a reservoir in Turkey on water temperatures, as well as the impact on mixing and thermal stratification.

II.1.2 Hydrodynamic and Water Quality Modeling for Rivers and Reservoirs

The following subsections detail the early Streeter-Phelps equation model as well as a selection of 1D, 2D, and 3D hydrodynamic and WQMs that are available and described in the literature. This discussion focuses on water quality modeling capabilities, especially for DO calculation.

Streeter-Phelps

First developed in 1925, the Streeter-Phelps model describes the relationship between DO and biochemical oxygen demand (BOD). It is considered the pioneer work in the field of water quality modeling. Streeter and Phelps performed numerous studies on oxygen demand and depletion in the Ohio River (*Streeter and Phelps*, 1925) and developed the Streeter-Phelps equation:

$$D = D_0 e^{-k_a t} + \frac{k_d L_0}{k_a - k_r} \left(e^{-k_r t} - e^{-k_a t} \right)$$
 (II.1)

where D is the DO saturation deficit, D_0 is the initial DO deficit at time t = 0, L_0 is the ultimate BOD, k_a is the reaeration rate, k_r is the total deoxygenation rate, and k_d is the decomposition rate (*Chapra*, 1997).

The Streeter-Phelps model ties together decomposition of organic matter and oxygen reaeration mechanisms for computation of DO in a sewage-receiving stream (*Chapra*, 1997). Without the availability of computers, model solutions were closed-form, with applications limited to linear kinetics, simple geometries, and steady-state conditions. The original model assumes only plug flow advection with no mixing occurring and only a single DO source and sink. With the advent of computers, expanded models were developed which incorporate photosynthesis, respiration, and sediment oxygen demand (*O'Connor*, 1960). *Thomann* (1963) expanded the Streeter-Phelps model to allow for multi segment systems.

QUAL

The QUAL series of models begins in the late 1960s with the development of the one-dimensional QUAL-I stream model by the Texas Water Development Board (*Brown and Barnwell*, 1987). QUAL-I simulated conservative constituents, temperature, BOD, and DO in a steady flow river (*Grenney et al.*, 1978). Tufts University and the U.S. Environmental Protection Agency (USEPA) expanded the model to add additional constituents (ammonia, nitrate, coliform, phosphate, and algae) and named the QUAL-II model (*Cox*, 2003; *Grenney et al.*, 1978). Further enhancements led to the "enhanced QUAL-II" model, or QUAL2E (*Chapra*, 1997). QUAL2E is a one-dimensional model for stream flow and water quality, capable of simulating up to 15 water quality determinants in a river and tributary system. It allows for multiple waste discharges, withdrawals, tributary flows, and incremental inflow and outflow, and can operate in steady-state or dynamic modes. When used dynamically, the effects of meteorological variations and DO diurnal variations due to algal growth and respiration can be studied, but dynamic forcing functions cannot be modeled (*Brown and Barnwell*, 1987).

Other enhanced versions now exist. QUAL2E-UNCAS adds uncertainty analysis features to

the steady-state simulation mode. Three options are available: sensitivity analysis, first order error analysis, and Monte Carlo simulation. QUAL2K 2002 (*Park and Lee*, 2002) expands the QUAL2E computational structure and adds new constituent interactions, such as algal BOD, denitrification, and DO change caused by fixed plant. Another version, QUAL2Kw, was developed by Pelletier and Chapra, modifying their QUAL2K 2003 model (of no relationship to Park and Lee's QUAL2K 2002) (*Kannel et al.*, 2011). QUAL2Kw includes the ability to model unequally spaced reaches, multiple loadings input to any reach, non-living particulate organic matter, and two forms of carbonaceous BOD (CBOD) to represent organic carbon. It also includes a GA to automatically calibrate kinetic rate parameters. The Washington State Department of Ecology used QUAL2Kw to study total maximum daily load for temperature, nutrients, DO, and pH in the Wenatchee River (*Cristea and Pelletier*, 2005), model DO in the Bagmati River in Nepal (*Kannel et al.*, 2007), model DO and pH in the Umpqua River in Oregon (*Turner et al.*, 2009), and assist in automatic calibration of the QUAL2K 2003 model for the Gangneung Namdaecheon River in Korea (*Cho and Ha*, 2010).

Delft3D

Delft3D is a an open source modeling suite for simulation in 2-D and 3-D. It contains modules for simulating flow (Delft3D-FLOW), sediment transport (Delft3D-SED), morphology (Delft3D-MOR), waves (Delft3D-WAVE), water quality (Delft3D-WAQ), and ecology (Delft3D-ECO) (Deltares, 2015). The modules are dynamically interfaced for data exchange and embedded in a graphical user interface. Delft3D also includes pre-processing and post-processing modules capable of preparing grid oriented data, performing tidal analysis of time series data, visualization and animation of results, and connection to ArcGIS® and MATLAB®. The hydrodynamic module calculates non-steady flow and transport based on the full Navier-Stokes equations with the shallow water approximation and can be applied to studies on salt intrusion in estuaries, lake thermal stratification, cooling water intakes, waste water outlets, transport of dissolved material, river flows, floodplains with and without vegetation, and reservoir siltation and degradation below dams. The water quality computations solve the advection-diffusion equation and include the complete natural cycles of carbon, nitrogen, phosphorus, silicon, oxygen, sediments, bacteria, salinity, temperature, heavy metals, and organic micro-pollutants. Water quality processes are formulated using linear or non-linear functions available in a library covering 140 standard substances. Constituents are considered

"passive," meaning their concentrations are assumed to have no influence on transport processes. The water quality module can be used for analyzing water balance, sewage outfalls, nutrient cycling and eutrophication, sedimentation, and recirculation of cooling water from power and desalination plants.

Most commonly, Delft3D is used for coastal and estuarial studies. *Lee and Qu* (2004) used the Delft3D-FLOW model in three dimensions to model the advective transport of red tides in the Pearl River Estuary in Hong Kong. They determined bloom initiation locations that correspond to the tidal and wind conditions during individual fish kill events in the 1998 massive red tide. *El Serafy and Mynett* (2008) modeled the hourly stratification and circulation in the Osaka Bay in Japan using Delft3D-FLOW in three dimensions and investigated improvement of daily operational forecasts of salinity and current profiles using an ensemble Kalman filter-based steady state Kalman filter (EnKF-based SSKF). *Dissanayake et al.* (2012) explored the morphodynamic response to future sea level rise using a large inlet/basin system located on the Dutch Wadden Sea.

Delft3D is less commonly applied to rivers and lakes. *Kacikoc and Beyhan* (2014) used the Delft3D flow and water quality modules to build and calibrate a WQM of a vertically well-mixed lake in Turkey. The application of Delft3D on river systems has typically been for sediment transport studies. *Edmonds and Slingerland* (2008) investigated the stability of fine-grained delta networks using the flow and morphology modules. *Bos* (2011) used the model to address the morphological effects of river sediment diversions on the final 110 km of the Lower Mississippi River, analyzing the conflicting interests of delta building and maintaining navigable waterways. He determined the best site from which to divert sediment into the delta and minimize future erosion.

Water Quality Analysis Simulation Program (WASP)

The Water Quality Analysis Simulation Program (WASP) is a dynamic compartment-modeling program for water systems, developed by the USEPA. It incorporates advection, dispersion, point and diffuse mass loading, and boundary exchange in one, two, or three dimensions (*Wool et al.*, 2002). The version 6.0 system consists of two standalone programs: DYNHYD5 for hydrodynamics and WASP6 for water quality. The basic principle behind both programs is conservation of mass, and the hydrodynamics program also conserves momentum in both time and space. Other hydrodynamic programs have been successfully linked to the WASP WQM. For example, EFDC was

used for hydrodynamic calculations and linked with WASP6 for water quality simulation in order to build a three-dimensional estuary model aimed at evaluating total maximum daily load (TMDL) scenarios (*Wool et al.*, 2003).

Water quality computations are made using kinetic subroutines, which originate from a library or can be written by the user. This ability to customize subroutines makes the WASP ideal for problem-specific models. Two subroutines are included with the version 6.0 model: TOXI and EUTRO. The TOXI subroutine models "toxic pollution," such as organic chemicals, metals, sediments, and tracers. EUTRO models "conventional pollution," including DO, BOD, nutrients, and eutrophication. More submodels have been included in the latest version (WASP7), including an advanced EUTRO (Periphyton), MERCURY, and HEAT. Early versions of WASP were capable of simulating the transport and transformation of 8 state variables, while WASP7 can simulation 10-14 state variables ("depending on how they are counted") (Kannel et al., 2011). DO can be modeled at many levels of complexity depending on available information, ranging from the basic Streeter-Phelps BOD-DO relationship to a nonlinear DO balance. The WASP model has been used to analyze the influence of sediment resuspension in Lake Okeechobee (James et al., 1997), study phytoplankton productivity and nutrient dynamics in a large South Carolina reservoir (Tufford and McKellar, 1999), assess management scenarios related to urban effluent loads in the Thermaikos Gulf (Nikolaidis et al., 2006), determine the effects of aquatic macrophytes and hydropower operations on DO concentrations in a shallow tailwater reservoir (Stansbury and Admiraal, 2004), and predict concentrations of atrazine in Lake Michigan (Rygwelski et al., 1999).

RMA2/RMA4

RMA2 and RMA4 are 2D, depth-averaged, finite-element models for hydrodynamics and water quality transport, respectively. The RMA models are part of the TABS-MD (Multi-Dimensional) Numerical Modeling System and the Surface Water Modeling System (SMS) (*Camp*, 2009). RMA2 models free-surface and sub-critical flows without regard for vertical stratification. It uses a finite element solution of the Reynolds-averaged Navier-Stokes equations for turbulent flow for both steady and unsteady problems (*Donnell et al.*, 2006). RMA4 models the advective-diffusive transport of up to 6 constituents, either conservative or non-conservative with a first order decay, and utilizes the hydrodynamics provided by RMA4 or another hydrodynamics model (*Letter et al.*, 2011). RMA4

water quality computations can be made on a 1D or 2D finite element grid.

Using RMA2, modelers have determined water levels and flow distribution around islands, flows at bridges with relief openings, flows into and out of off-channel hydropower plants and pumping plant channels, flows at river junctions, wetland water body circulation and transport, and general water surface elevations and flow patterns in rivers, reservoirs, and estuaries (*Donnell et al.*, 2006). *Crowder and Diplas* (2006) and *Stewart et al.* (2005) used RMA2 hydrodynamic models for fish habitat flow studies. Using RMA4, modelers have defined horizontal salinity distributions and intrusion, traced power plant temperature effects, calculated residence times, optimized outlet placement, identified critical areas for pollutant spills, evaluated turbidity plumes, monitored game and fish habitat water quality, and defined mixing zones (*Letter et al.*, 2011). *Xu et al.* (2008) used RMA2 and RMA4 to model and predict water quality for a Chinese tidal river network.

Environmental Fluid Dynamics Code (EFDC)

EFDC, first developed by the Virginia Institute of Marine Science at The College of William and Mary, solves "three-dimensional, vertically hydrostatic, free surface, turbulent averaged equations of motions for a variable density fluid" (*Hamrick*, 1996). The EFDC model can also be configured as a one-dimensional or two-dimensional model in either horizontal or vertical planes. It is appropriate for surface water systems, including rivers, lakes, estuaries, reservoirs, wetlands, and coastal regions (*Ji et al.*, 2002). It allows for drying and wetting in shallow areas and has the ability to simulate discharge control structures, including weirs, spillways, and culverts (*Hamrick*, 1996). The code is written in FORTRAN-77 and requires no internal source code modifications for applications to specific sites; however, since the code is in the public domain source code modifications are possible. The preprocessor generates the computational grid and interpolates bathymetry and initial conditions (salinity and temperature) based on observed data. EFDC's water quality capabilities are limited to temperature, transport of conservative substances, sediment transport, and eutrophication processes (*Ji et al.*, 2002), but the model is capable of outputting hydrodynamic solutions in formats intended for easy linkage to WQMs, such as WASP5 (*Camp*, 2009). Postprocessing capabilities include time series analysis at user specified locations, plotting, and animations.

Virginia's James and York River estuaries were the first waterbodies modeled using EFDC. For the Chesapeake Bay estuary, EFDC has simulated pollutant and pathogenic organism transport, power plan cooling water discharges, oyster and crab larvae transport, and dredging and dredge spoil disposal alternatives (*Hamrick*, 1996). *Ji et al.* (2002) used EFDC to build a 1D hydrodynamic, sediment, and toxic model of the Blackstone River in Massachusetts, simulating concentrations of sediments and five metals over three storm events. *Jin et al.* (2002a) assessed vertical thermal and wind-driven mixing in Lake Okeechobee, Florida using a three-dimensional EFDC model. *Caliskan and Elci* (2009) also employed EFDC for a stratified reservoir, looking at selective withdrawal in a reservoir in Turkey on a 30-minute timestep. The authors determined withdrawal from the bottom of four available outlets best encouraged mixing in the water column and reduced anoxia. *Anderson* (2010) modeled Lake Elsinore in southern California in three dimensions using EFDC under the effects of a proposed pumped-storage facility for hydropower generation. The author's simulations revealed variations in surface elevation associated with pumping and generation, but limited overall effect on sediment resuspension or stratification in the lake. *Xia et al.* (2010) employed the EFDC model to simulate distributions of DO, salinity, temperature, and nutrients in the Caloosahatchee River Estuary in southwestern Florida, concluding that tidal forcing greatly influences deep layer DO concentrations in the estuary.

CE-QUAL-W2

CE-QUAL-W2 is a two-dimensional hydrodynamic and WQM used for simulating rivers, lakes, reservoirs, and estuaries since 1975. The spatial grid is laterally averaged, making it well-suited for modeling long narrow water bodies; it is not an appropriate model for water bodies with lateral water quality gradients. The model uses a finite-different approximation to laterally averaged partial differential equations for the governing equations (*Kuo et al.*, 2006). The governing equations shown below are comprised of x-momentum (horizontal momentum) (II.2), z-momentum (vertical momentum) (II.3), continuity (II.4), the equation of state (II.5), the free surface equation (II.6), and conservation of mass/heat (II.7). These six equations are shown below, where *U* represents horizontal velocity (m/s), *W* represents vertical velocity (m/s), *B* represents channel width, *P* represents pressure, τ_{xx} represents turbulent shear stress acting in the x-direction on the x-face of the control volume, τ_{xz} represents turbulent shear stress acting in the x-direction on the z-face of the control volume, τ_{xz} represents the channel slope angle (where slope, S_0 , is equal to $\tan \alpha$), ρ represents density, ρ represents inflow per unit width, ρ represents water temperature, ρ represents concentration

or temperature, g represents gravitational acceleration, η represents water surface location, D_x and D_z represent longitudinal and vertical dispersion coefficients, q_{Φ} represents lateral inflow or outflow mass flow rate of constituent per unit volume, and S_{Φ} represents a laterally averaged source or sink term (*Cole and Wells*, 2007).

$$\frac{\partial UB}{\partial t} + \frac{\partial UUB}{\partial x} + \frac{\partial WUB}{\partial z} = gB\sin\alpha + g\cos\alpha B \frac{\partial \eta}{\partial x}
- \frac{g\cos\alpha B}{\rho} \int_{\eta}^{z} \frac{\partial \rho}{\partial x} dz + \frac{1}{\rho} \frac{\partial B\tau_{xx}}{\partial x} + \frac{1}{\rho} \frac{\partial B\tau_{xz}}{\partial z} + qBU_{x}$$
(II.2)

$$0 = g\cos\alpha - \frac{1}{\rho}\frac{\partial P}{\partial z} \tag{II.3}$$

$$\frac{\partial UB}{\partial x} + \frac{\partial WB}{\partial z} = qB \tag{II.4}$$

$$\rho = f(T_w, \Phi_{TDS}, \Phi_{ISS}) \tag{II.5}$$

$$B_{\eta} \frac{\partial \eta}{\partial t} = \frac{\partial}{\partial x} \int_{\eta}^{h} UBdz - \int_{\eta}^{h} qBdz \tag{II.6}$$

$$\frac{\partial B\Phi}{\partial t} + \frac{\partial UB\Phi}{\partial x} + \frac{\partial WB\Phi}{\partial z} - \frac{\partial (BD_x \frac{\partial \Phi}{\partial x})}{\partial x} - \frac{\partial (BD_z \frac{\partial \Phi}{\partial z})}{\partial z} = q_{\Phi}B + S_{\Phi}B$$
 (II.7)

CE-QUAL-W2 models physical, chemical, and biological processes including temperature, DO, nutrients, algae, and sediments. This complex dynamic model's detailed computational abilities include residence time; pH; total dissolved gases; multiple phytoplankton, zooplankton, and macrophyte groups; derived constituents including total nitrogen (TN), total Kjeldahl nitrogen (TKN), and total organic carbon (TOC); and allows users to define additional constituent subroutines to be included in the water quality algorithm (*Mooij et al.*, 2010). The model includes features that allow users to add branches and tributaries, link multiple water bodies, and incorporate various types of inflow and outflow structures. The model code is written in FORTRAN and is open-source, allowing users to make modifications as desired. The spatial grid resolution is user-defined, while the temporal resolution is determined by time stepping routines which attempt to limit numerical instability (*Cole and Wells*, 2007).

CE-QUAL-W2 has been used widely throughout the United States. In one of the earliest published applications of CE-QUAL-W2, the hydrodynamics and water quality of DeGray Lake in Arkansas were accurately simulated by CE-QUAL-W2 (*Martin*, 1988). *Adams et al.* (1997) em-

ployed a CE-QUAL-W2 model of the Cheatham Reservoir (on the Cumberland River, located downstream of Nashville, TN) to determine the impacts of combined sewer overflow (CSO) discharges, concluding that they had little influence on the DO levels in the reservoir. Using a CE-QUAL-W2 model of Shasta Lake in northern California, Bartholow et al. (2001) employed multivariable testing, a structured design-of-experiments method, to minimize computational expense while analyzing the potential impacts of adding a temperature control device (TCD) selective withdrawal structure. It was determined that early spring water surface elevation and reservoir storage had a much greater influence on hypolimnetic nutrient levels than the TCD. The Shasta Lake CE-QUAL-W2 model was linked to a food web-energy transfer model in order to assess the impacts of phytoplankton availability on fish (Saito et al., 2001). Deliman and Gerald (2002) modeled the Conowingo Reservoir in the Chesapeake Bay watershed with the goal of studying sediment and nutrient trapping; they made code modifications to account for three distinct particle settling classes and incorporate scour. By comparing the results from CE-QUAL-W2 to results from a onedimensional Hydrologic Simulation Program Fortran (HSPF) WQM, the authors concluded that CE-QUAL-W2 better matched measured DO values and performed similarly to the HSPF model for other constituents. Bowen and Hieronymus (2003) employed CE-QUAL-W2 with code modifications to study the impacts of nitrogen TMDL reductions on the Neuse River Estuary in North Carolina. Modifications involved inclusion of three separate algal groups (a feature later incorporated in release versions of CE-QUAL-W2), addition of a linear relationship to correlate light attenuation to salinity, and allowances for users to define algal boundary conditions as chlorophyll a concentrations rather than algal organic matter. The prediction of load reduction required to reach acceptable water quality levels as determined by CE-QUAL-W2 closely matched the results of two previous studies of this estuary, one developed using EFDC and WASP and another formulated as a Bayesian probability network model. Debele et al. (2008) linked CE-QUAL-W2 with a Soil and Water Assessment Tool (SWAT) model in order to simulate the Cedar Creek Reservoir and its upland watershed in Texas. After calibration, CE-QUAL-W2 was able to reproduce most observed hydrodynamic and water quality variables; however, some constituent measurements (ammonium/ammonia, total phosphorus, and total nitrogen) failed to be reproduced due to poor input data quality and propagation of errors stemming from upstream assumptions. There are numerous additional studies incorporating CE-QUAL-W2 WQMs in the United States, including those by

Garvey et al. (1998), Annear and Wells (2002), Nestler et al. (2002), Lung and Bai (2003), Sullivan et al. (2003), Xu et al. (2007), Berger and Wells (2008), Dhar and Datta (2008), Wang and Yang (2008), Chung and Gu (2009), Huang and Liu (2010), Lee and Foster (2013), and Singleton et al. (2013).

International modeling studies regularly employ CE-QUAL-W2 as well. *Kurup et al.* (2000) compared the modeling capabilities of two laterally averaged, two-dimensional models, TISAT (*Bloss et al.*, 1988) and CE-QUAL-W2, for a stratified Australian estuary. The authors determined that CE-QUAL-W2 exhibited far fewer numerical diffusion effects and better predicted surface salinity. *Kuo et al.* (2003) produced a calibrated model of the Feitsui Reservoir in Taiwan and concluded that a 50% reduction of total phosphate load would shift the reservoir's trophic state from eutrophic/mesotrophic to oligotrophic. Additionally, thermocline depths for two other stratified reservoirs in Taiwan under different climate conditions (temperature and sub-tropical climates) have been correctly predicted using CE-QUAL-W2 (*Kuo et al.*, 2006). *Chung and Oh* (2006) studied the impacts of turbidity during monsoon season on a Korean reservoir using a calibrated and verified CE-QUAL-W2 model, in anticipation of developing a real-time turbidity monitoring and modeling system. *Afshar et al.* (2011) developed an automatic calibration process and demonstrated using the Karkheh Reservoir in Iran as a case study. Other uses of CE-QUAL-W2 outside of the United States include *Gunduz et al.* (1998), *Saloranta* (2006), *Choi et al.* (2007), *Norton and Bradford* (2009), *Bonalumi et al.* (2012), and *Saadatpour and Afshar* (2013).

II.1.3 Decision Support Systems

Decision support systems (DSSs) enable decision makers to utilize available data and models in a user-friendly environment. Decision makers, including managers, engineers, and operators, are then able to compare alternatives and scenarios. DSSs for reservoir operations often include many connected modules, including database management, inflow modeling and forecasting, and monthly or real-time operation simulation and optimization (*Karamouz et al.*, 2005). These systems should be designed with the end-user in mind, and usually with the goal of a seamless transition between these underlying modules. This section describes a few of the primary general DSSs for evaluating and planning reservoir operations.

HEC-3/HEC-5/HEC-ResSim

HEC-ResSim is a generalized reservoir/river system simulation model produced by the USACE Hydrologic Engineering Center (HEC). HEC-ResSim is a component of the larger Corps Water Management System (CWMS), allowing it to be used in combination with the HEC-DSS data storage tool and other HEC models. HEC-3 and HEC-5 are predecessors of the HEC-ResSim model (*Wurbs*, 2005). HEC-3, developed in 1965-1966, simulates operation of reservoir systems for conservation purposes. HEC-5, initially released in 1973, duplicates HEC-3's capabilities with the addition of simulation of flood control capabilities for real-time operations. HEC-5 allows for variable time intervals, meaning larger timesteps may be used for normal or low flows while hourly data may be used during flood conditions. HEC-5 also has the ability to compute expected flood damages and water supply and hydroelectric power yields. A version containing one-dimensional water quality computations, HEC-5Q, can compute release requirements to satisfy downstream water quality targets (*Dortch*, 1997).

Development of HEC-ResSim began in 1996, with the latest version released in 2013 (*U.S. Army Corps of Engineers*, 2013b). HEC-ResSim allows modelers to perform project studies as well as allowing reservoir operators to monitor during real-time events. The tool is comprised of a graphical user interface, a reservoir operation simulator, data management capabilities, and tools for graphics and results reporting. The tool allows for timesteps to vary from 15 minutes to 1 day. Users can define operating goals, pool zones, release requirements, hydropower requirements, downstream control requirements (*Wurbs*, 2005), but water quality computations are not included in this tool. Employing HEC-ResSim, *Reis et al.* (2011) investigated malaria control around a reservoir in Ethiopia, *Park and Kim* (2014) analyzed the impacts of climate change on water and hydropower supply for a multipurpose dam in South Korea, *Ziaei et al.* (2012) determined monthly operating rules for a reservoir system in Iran, and *Piman et al.* (2013) looked at the impacts of future dam development in the Mekong River basin.

HEC-PRM

The Prescriptive Reservoir Model (HEC-PRM) is a network flow programming model used for determining generalized reservoir system releases based on minimizing costs "associated with various purposes including hydroelectric power, recreation, water supply, navigation, and flood control"

(*Wurbs*, 2005). HEC-PRM employs a substantially different modeling approach from HEC-3/HEC-5/HEC-ResSim and has not been as widely applied. User-supplied bounds on flows and storages are reflected as constraints, while the objective function of the network problem consists of the sum of linear approximations of penalty functions (*U.S. Army Corps of Engineers*, 2003a). HEC-PRM applications have generally used a monthly time interval for long-term planning. The model assumes future flows are known and performs computations simultaneously over all time intervals.

In an effort to address competing water users during drought conditions, USACE first developed HEC-PRM for studies of two major systems in the Missouri and Columbia River basins. The Missouri River study included six mainstem reservoirs to determine operation plans over a 90 year period of historical data (Lund and Ferreira, 1996). The only environmental concern included was maintenance of flows for sand bar nesting birds (Wurbs, 2005). Simulation modeling tested the final rules. USACE applied HEC-PRM to a review of the Columbia River basin operations at 14 reservoirs, with an objective function reflecting penalties representing hydropower, flood control, navigation, salmon and steelhead fish seasonal flows, water supply, and recreation (U.S. Army Corps of Engineers, 2003b). This study used gaged monthly streamflows from 1928 to 1978, adjusted to 1980 basin development conditions. Draper et al. (2003) and Jenkins et al. (2004) detail optimization of water systems in California using the California Value Integrated Network model, which includes HEC-PRM along with data from simulation models and economic values. This large model includes 51 reservoirs, 28 groundwater basins, 19 urban water demand areas, 24 agricultural economic demand areas, and 39 environmental flow locations, all modeled on a monthly timestep using historical data over 1922-1993. Watkins and Moser (2006) describe how HEC-PRM was used to study the operations of the Panama Canal system, analyzing the trade-off between hydroelectric power generation and navigation requirements. They also used the tool to look at the impacts of the Panama Canal expansion. Additionally, HEC-PRM enabled multiobjective reservoir operations optimization of the Upper Mississippi system of 14 reservoirs (Faber and Harou, 2006).

MODSIM

MODSIM is a river basin management decision support system developed by Colorado State University and the Bureau of Reclamation's Pacific North West Region (*Rani and Moreira*, 2010). It is designed for "developing improved basin wide and regional strategies for short-term water man-

agement, long-term operational planning, drought contingency planning, water rights analysis and resolving conflicts between urban, agricultural, and environmental concerns" (Labadie and Larson, 2007). MODSIM's graphical user interface allows for easy connection to database management components and a network flow optimization model, which contains objective function and constraints that are automatically constructed without requiring any user background in optimization or programming. The objective function provides a means to achieve system targets and demands. The flow allocation problem is modeled at each timestep of a network flow optimization problem solved with RELAX-IV, a Langrangian relaxation algorithm. Nonlinearies are handled using a successive approximations solution procedure (Sulis and Sechi, 2013). MODSIM includes hydropower generation capacity and production computations, as well as simulation of stochastically generated inflows and demands for use in Monte Carlo analysis. According to the version 8.1 user manual (Labadie and Larson, 2007), MODSIM has modeled reservoir systems in Brazil (Srdjevic et al., 2004), Egypt, the Phillippines, the Dominican Republic, Korea, and extensively across the western United States, as well as the Sirvan basin in Iran (Shourian et al., 2008). MODSIM is distributed as freeware online and allows for user customization and recoding in any of the several .NET languages provided with the .NET Framework.

Several studies integrate MODSIM water quantity computations with water quality objectives. de Azevedo et al. (2000) assessed six management alternatives for a river basin in Sao Paulo, Brazil using a combination of modified versions of the network flow allocation model MODSIM and the stream flow routing and WQM QUAL2E-UNCAS. Their study addresses both water supply (total reliability, total vulnerability, and total resiliency) and water quality (stream standard compliance reliability, water quality index, spatial uniformity of water quality, and temporal uniformity of water quality) performance measures. First the MODSIM model simulates many potential operational scenarios with respect to established priorities, and then the basin flows are input into the QUAL2E-UNCAS model to simulate concentrations of DO, BOD, total nitrogen, total phosphorus, and fecal coliform. The fidelity of this study was limited to annual quarters (temporal) and one-dimensional computations at 12 stations (spatial). Dai and Labadie (2001) improved this process by linking QUAL2E with MODSIMQ, a modified form of MODSIM with two additional water quality constraints. Successive relaxation is invoked to relax these additional constraints during initial estimation of the flow solution, and then these flows are input back into the QUAL2E

model and concentrations are updated. The process is iterated until convergence of water quality concentrations.

River Ware

RiverWare is a generalized river basin modeling tool developed and maintained by the Center for Advanced Decision Support for Water and Environmental Systems at the University of Colorado Boulder (*Zagona et al.*, 2001). Its development was supported by TVA and the U.S. Bureau of Reclamation (USBR) (*Gastelum and Cullom*, 2013). It has the capability to model hydrology and hydrologic processes, hydropower production and energy uses, and water rights and account transactions (*Center for Advanced Decision Support for Water and Environmental Systems (CADSWES)*, 2015). It uses empirical relationships to model basic water quality, including total dissolved solids (TDS), DO, and temperature. Work is currently underway to include total dissolved gas (TDG) estimation within RiverWare, largely as a function of releases (*Magee*, 2015; *Witt et al.*, 2017). RiverWare includes a "point-and-click" graphical interface, allowing users to visualize and construct a network of simulation objects, linkages, and select applicable physical process algorithms for each. With computational timesteps ranging from 1 hour to 1 year, RiverWare can be applied for both scheduling and long-term planning.

RiverWare operates primarily in one of three modes: pure simulation, rule-based simulation, and optimization (*Magee*, 2015). Pure simulation involves calculating system outputs given a complete set of inputs, i.e. discharge flows. Rule-based simulation allows the user to employ prioritized if-then rules to determine solutions. These rules contain logic for operating the system and are expressed in the RiverWare Policy Language, an interpreted language developed exclusively for River-Ware (*Center for Advanced Decision Support for Water and Environmental Systems (CADSWES)*, 2015). The optimization mode employs a preemptive linear goal programming approach, which optimizes multi-objective problems with user-ranked prioritized goals formulated as soft constraints. Hydropower production is often the primary objective, which is incorporated within the algorithm as a lower-priority constraint. RiverWare linearizes nonlinear variables in order to employ a robust CPLEX linear programming solver; this means that solutions found are approximate and may be local optima, not global. A post-optimization rule-based simulation is often performed (*Magee*, 2015).

Water managers employed the RiverWare environment for release scheduling on both power and nonpower reservoirs. In 1996 TVA began performing daily scheduling modelings using River-Ware (Zagona et al., 2001). Since then TVA has used the optimization routine to schedule the 35 reservoirs on the Tennessee River with as many as 800 active user specified constraints (Biddle, 2001; Eschenbach et al., 2001). Using 6 hour timesteps over an operating forecast period of one week, the TVA RiverWare optimization model had a computational time of about 5 minutes. They additionally employ RiverWare to build hourly models when this resolution is needed. In 1996 the USBR transitioned from their Colorado River Simulation System, first developed in the 1970s, to RiverWare for long-term monthly planning on the Colorado River and nine tributaries (Zagona et al., 2001). Fifty operating policy-based rules are incorporated. It also includes TDS modeling, but these calculations ignore temperature effects, precipitation, and ion exchange; additionally, reservoirs are assumed to be completely mixed throughout. The USBR also employs RiverWare for determining monthly operations on the Colorado River and daily operations on the three Lower Colorado projects (Hoover Dam, Davis Dam, and Parker Dam). RiverWare has been linked with the three-dimensional groundwater model MODFLOW and applied to the Middle Rio Grande Basin in New Mexico (Valerio et al., 2010).

CalSim/WRIMS

The Water Resources Integrated Modeling System (WRIMS), formerly referred to as the California Water Resources Simulation Model (CalSim) and renamed to avoid confusion with its specific application to the California system, is a simulation model for planning and management of large river basins (*Draper et al.*, 2004). CalSim-I was developed by the California State Department of Water Resources and the USBR for application to the State Water Project and the federal Central Valley Project, and later enhanced the CalSim-II and CalSim 3.0 versions. The model employs the Water Resources Engineering Simulation Language to allow users to define the system, priorities, and operational constraints; this language is based on the Java language and structured query language (SQL) statements. Constraints may be expressed as either hard or soft. Users supply model information as text files in a defined tree structure and time series data in HEC-DSS files. Water is routed through the system network using the XA solver, a mixed integer LP solver. Because it is not a detailed operations model, CalSim cannot capture forecasts and actual operations of project

facilities; however, the flexibility of the model allows it to simulate the impacts of complex new environmental water demands (*Wang et al.*, 2011).

The CalSim-II model representing the Central Valley Project-State Water Project system includes 24 surface reservoirs and their interconnected flows. It simulates operations on a monthly timestep, including complex water right permit requirements and project sharing agreements. These include transport fish flows and water quality standards that are translated into flow equivalents. Salinity is estimated externally at four water quality stations by an artificial neural network (ANN) which has been previously trained using a one-dimensional hydrodynamic finite difference model of the channel system (*Draper et al.*, 2004).

II.2 Surrogate Modeling Techniques

Computer simulation models attempt to replicate the behavior of natural systems using physicallybased mathematical equations and assumptions, when appropriate. These models are utilized in numerous problem categories, including "prediction, optimization, operational management, design space exploration, sensitivity analysis, and uncertainty analysis" (Razavi et al., 2012a). The degree of realism a simulation model exhibits refers to its fidelity. Models that are considered "highfidelity" are better able to reproduce real-world systems, but may also require a large amount of computational time. Depending on the intended application in which a model will be employed, computer models may need to be run hundreds or thousands of times; computational expense quickly becomes prohibitive (Razavi et al., 2012b). Surrogate modeling methods have been developed to overcome this hurdle. Surrogate modeling, also known as metamodeling, model emulation, proxy modeling, and functional mapping, can be thought of as the creation of a "model of a model" to approximate a simulation model response. The model response surface is a function of the input variables that influence the original simulation model. Computationally expensive simulation models are models of the true environment; therefore, if the real system is considered to be a "black box" model, associated simulation models can be considered metamodels which predict the response of the original system.

Differing from response surface surrogates, lower-fidelity surrogates are simply less-detailed versions of original simulation models. They retain "the main body of processes modeled in the

original simulation model" (*Razavi et al.*, 2012a). Examples of lower-fidelity surrogates include coarse grid and large numerical time step versions of high-fidelity simulation models, which generally have fine spatial grids and small time steps. This literature review will not cover lower-fidelity surrogates; instead the focus is on response surface methods, which are not structured mathematically similar to an original model.

Surrogate models are commonly used as replacements for expensive simulation codes to be included within optimization problems. Metamodel quality is important, as metamodel-enabled optimization performance has been found to be much more dependent on surrogate accuracy than the search technique (*Johnson and Rogers*, 2000; *Zou et al.*, 2007). Metamodels can also be used to aid in model calibration, deal with noisy or missing data, and assist in determining relationships between variables and their levels of influence on a particular outcome (*Forrester et al.*, 2008). *Razavi et al.* (2012a) provides six problem characteristics that should be considered when choosing a surrogate modeling technique:

- 1. Whether the surrogate will be used for either searching or sampling. Search analyses include optimization problems and uncertainty-based calibration procedures.
- 2. Computational budget constraints. This may limit the number of original model evaluations available to construct and train a surrogate.
- 3. Problem dimensionality. As the number of input variables increases, surrogate modeling may become infeasible.
- 4. Number of outputs required. For example, multi-output surrogates are required for problems where outputs of interest vary with time and space.
- 5. Exact emulation versus inexact emulation. Simply put, "an emulator is a statistical approximation of a simulator" (*O'Hagan*, 2006). Should the surrogate match all training data exactly, or be a smoothed approximation?
- 6. Availability of original simulation model developers, as they can provide insight into surrogate performance in relation to the original model.

II.2.1 Design of Experiments

Creation of a surrogate model typically starts with a design of experiments, which will generate an initial sample of training data. The response surface will be computed to fit this set of initial data and, depending on the model form, parameter values are estimated. Space-filling strategies are employed to ensure that the set of training data captures all model behaviors within the bounds of exploration. Common techniques to produce a space-filling set are Latin hypercube sampling, symmetric Latin hypercube sampling, full factorial design, fractional factorial design, and central composite design. For a large number of design variables, deterministic methods (e.g., full factorial design, fractional factorial design, and central composite design) may become computationally expensive. Random methods (e.g., Latin hypercube sampling and symmetric Latin hypercube sampling) can be scaled up to accommodate a large number of design variables, lessening computational expense (*Razavi et al.*, 2012a).

The selection of training data depends on the original model. If a surrogate is being used to replicate field data, a space-filling sampling plan can be implemented from the onset. In the case of a high-fidelity computer model, multiple runs may be required in order to achieve an adequate set, and even then there is no guarantee that the set will be space-filling. The size of the training data set is important; if the set is too large computational savings are diminished, but if the set is too small it may not capture detailed behavior of the original model. Search spaces can become very large for high-dimensional problems, resulting in a large number of training points to cover the space sufficiently (*Razavi et al.*, 2012a). *O'Hagan* (2006) provides a comparison of a 25-D space versus a 5-D space, noting that 200 training points will lead to sparse coverage and dense coverage for each, respectively.

The minimum number of training points required as well as the maximum number of training points that will still allow feasibility are partly determined by the function approximation technique (*Razavi et al.*, 2012a). Techniques that require as many correlation functions as training points, such as kriging, radial basis functions (RBFs), and Gaussian emulator machines (GEMs), become computationally expensive as the training set grows. GEM applications suffer from this the most, but it is also especially true for kriging, in which the determination of correlation parameters is performed by maximum likelihood estimation. Design sites in kriging applications are "typically less

than a few thousand" (*Razavi et al.*, 2012a). RBFs can handle a larger number of training points, but the correlation parameter tuning process may become computationally challenging (*Razavi et al.*, 2012a). ANNs are capable of handling a very large number of training sites; for example, *Broad et al.* (2005) used 10,000 data points to calibrate an ANN surrogate for a water distribution system simulation.

Dimensionality also plays a role. O'Hagan (2006) notes that there is little coverage in the literature related to high-dimensional kriging surrogates used in practice, but that kriging metamodeling can likely be employed effectively on current computing platforms for problems up to 50-D. *Jones* et al. (1998) found that at least n = 10k space-filling initial points, where k is the dimension size, are necessary for kriging and RBF models; however, Sóbester et al. (2005) notes that "rules of thumb" such as this have not been rigorously proven and that (in the context of employing surrogate models in optimization frameworks) "to date there is no clear understanding of how this figure should be chosen and what influence the choice has on the performance of the optimizer." Sóbester et al. (2005) concluded from numerical experiments using an uncertainty-based, metamodel-enabled optimizer that an initial sample size between 35% and 60% of the total computational budget is appropriate. If the size is too large, points are extraneously placed in a space-filling manner (rather than in regions of interest). If the size is too small, the results of an expected improvement-based objective function become nearly meaningless. Razavi et al. (2012b) suggest employing a screening method for high-dimensional problems in which the design space is screened to "identify and remove decision variables that are less important." Unfortunately, this process can be difficult and may decrease approximation accuracy if relevant parameters are fixed via screening.

II.2.2 Function Approximation Models

Response surface surrogate modeling encompasses numerous techniques, which fall under the main categories of exact and inexact emulators. An exact emulator fits training sites exactly with no error, while inexact emulators allow for smoothing of noisy data sets. Typically, inexact emulator models are suitable for replicating physical experiments, which tend to have some element of random noise, while exact emulators are appropriate for approximating deterministic computer models (*Razavi et al.*, 2012a). *Viana and Haftka* (2008) searched the Publish or Perish software system and

Google Scholar databases to determine how the number of publications related to surrogate modeling has changed over time. Figure II.1(a) shows their findings over all research fields, while Figure II.1(b) narrows the research field to just the optimization arena. In their study, "response surface" refers to polynomial response surface methods. While support vector regression and ANNs are the most dominant published forms for surrogate modeling overall, in optimization problems all techniques are fairly equal in number in the literature as of the year 2008. A later update of this study of the literature revealed the continuation of these trends (*Viana et al.*, 2014). These four commonly-employed categories of function approximation models are discussed in detail in this section, in addition to radial basis function models, which are closely related to kriging, and Shepard's method for inverse distance weighting, as it can be engaged as a surrogate model. Relevant applications of these and other surrogate models in the water resources literature are covered in section II.2.4.

Polynomial Response Surface Models

Box and Wilson (1951) introduced the earliest work in response surface surrogates. In their classic paper, they developed a process to find optimal operating conditions for chemical production using polynomial functions to estimate output dependent on several input variables. Their work has become the basis of response surface methodology. Other techniques that typically incorporate polynomial models as function approximations, including Taylor series expansion and trust-region methods, can be thought of as early applications of the response surface concept (Razavi et al., 2012a).

Figure II.1: Evolution of surrogate modeling publications (Viana and Haftka, 2008).

An *m*-order polynomial approximation of the true response f as a function of sampling points $\mathbf{X} = \{x^{(1)}, x^{(2)}, \dots, x^{(n)}\}^{\mathsf{T}}$ is written as

$$\widehat{f}(m, x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_m x^m = \sum_{i=0}^n w_i x^i$$
 (II.8)

Using the true response vector $\mathbf{y} = \{y^{(1)}, y^{(2)}, \dots, y^{(n)}\}^\mathsf{T}$, the vector of weights can be determined by least squares (*Forrester et al.*, 2008). Other function forms can be used, including exponentials (*Blanning*, 1975), but polynomials are most common due to their simplicity, minimal expense, and clarity of parameter sensitivity (*Fen et al.*, 2009). Since prediction errors can occur at training data locations, polynomial surrogates are inexact emulators; however, if prior knowledge suggests that the original function may be of a similar form to a polynomial, it becomes be a strong option (*Razavi et al.*, 2012a). Polynomial models are typically not applicable to models with more than 10 input variables or when the response surface is highly nonlinear (*Simpson et al.*, 2001). Non-linear, multi-model, multi-dimensional design landscapes are often encountered in engineering problems. The ranges of variables can be reduced through trust-region methods, but for highly dimensional problems obtaining the amount of data necessary to estimate high-order polynomial terms may not be viable (*Forrester and Keane*, 2009).

Modelers are tasked with selecting the polynomial order size, m. $Razavi\ et\ al$. (2012a) state that second-order polynomial functions are the most popular order size employed as response functions; however, greater values of m generate more accurate predictions, but may overfit noisy data if too many terms are allowed. $Forrester\ et\ al$. (2008) suggest using cross-validation to determine an appropriate value for m. Cross-validation involves splitting the training data into several equal subsets, removing each subset individually, fitting the model, and determining prediction errors at all input locations. This process is performed for several values of m, and the value with the lowest prediction error is chosen. More information about cross-validation can be found in the work of $Viana\ et\ al$. (2010).

Inverse Distance Weighting (Shepard's Method)

Shepard's method is an inverse distance weighting method for construction of global interpolations "by blending local interpolants using local-support weight functions" (*Thacker et al.*, 2010). It

is useful for constructing interpolations from irregularly spaced data points. In his paper introducing the original form of the method, Shepard states the desire to develop a smooth two-dimensional interpolation function, meaning the response surface is continuous and once differentiable. He concludes that this method is generalizable to higher dimensional spaces. Shepard also notes that "the function should be suitable for computer application at reasonable cost" (*Shepard*, 1968).

The original Shepard algorithm is a local method characterized as weighted sums of local approximations f_k with weights $W_k(\mathbf{x})$ that when normalized as a set form a partition of unity. The overall support is considered local because the weight functions have local support; in other words, they are nonzero near the region of interest and go to zero at farther distances. For a set of irregularly-spaced data points $\{\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^n\}$ and associated scalar values f_i for each point, an interpolated approximation for the underlying function can be written as

$$\widehat{f}(\mathbf{x}) = \frac{\sum_{k=1}^{n} W_k(\mathbf{x}) f_k}{\sum_{k=1}^{n} W_k(\mathbf{x})}$$
(II.9)

where the weight functions are defined by

$$W_k(\mathbf{x}) = \frac{1}{\|\mathbf{x} - \mathbf{x}^{(k)}\|^p}$$
(II.10)

where typically p = 2, but can be set to other values (*Thacker et al.*, 2010). Weight functions can be written in various forms, including a Gaussian form of

$$W_k(\mathbf{x}) = e^{-\|\mathbf{x} - \mathbf{x}^{(k)}\|^2 / (2\sigma^2)}$$
 (II.11)

as used for applications in *Fasshauer* (2007). The original form of Shepard's method's benefits include implementation simplicity, no required parameters to be tuned, ability to work in any dimensional space, and capability to interpolate scattered data on any grid and with coinciding nodes. Deficiencies include slow performance with large datasets and large weights for distant nodes in high-dimensional spaces (*ALGLIB*, 2014).

Franke and Nielson (1980) propose a modified Shepard's method which allows for greater local support and replaces the nodal values (f_k) with a local approximation function $P_k(\mathbf{x})$. Weight

functions for the modified Shepard's method can be written as

$$W_k(\mathbf{x}) = \left[\frac{(R_w^{(k)} - \|\mathbf{x} - \mathbf{x}^{(k)}\|)_+}{R_w^{(k)} \|\mathbf{x} - \mathbf{x}^{(k)}\|} \right]^2$$
(II.12)

where the constant $R_w^{(k)}$ is a radius about the point $x^{(k)}$ in which training points are allowed to influence prediction. Franke and Nielson suggest using the relationship $R_w = \frac{D}{2} \sqrt{\frac{N_w}{n}}$ where D is the maximum Euclidean distance between any two data points and N_w is a positive integer parameter that must be tuned. Renka (1988) tested several variations of Shepard's method and tuned this parameter by testing values of N_w , seeking to minimize error. Additional parameter considerations are required for non-constant values of $P_k(\mathbf{x})$, such as polynomial functions ($Thacker\ et\ al.$, 2010). Modified Shepard's method improves performance for large datasets and eliminates "flat spots" near nodes when combined with a polynomial function, but computational expense may increase for high-dimensional spaces (above 5) (ALGLIB, 2014).

Radial Basis Function (RBF) Models

RBF models approximate smooth, continuous functions as a combination of weighted symmetrical basis functions. *Sóbester* (2003) relates this process to synthesizers which imitate the sounds of various musical instruments by weighting a combination of tones. Bases are centered at training points in the space, resulting in interpolated outcomes. Assuming data is noise-free, as is the case when data is collected from deterministic computer simulations, an approximation of the true response f as a function of sampling points $\mathbf{X} = \{x^{(1)}, x^{(2)}, \dots, x^{(n)}\}^{\mathsf{T}}$ is written as

$$\widehat{f}(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \Psi = \sum_{i=1}^{n_c} w_i \psi(\|\mathbf{x} - c^{(i)}\|)$$
 (II.13)

where n_c is the total number of basis centers, $c^{(i)}$ is the ith basis function center, ψ are the basis functions, and Ψ is a vector containing basis function values evaluated at the Euclidean distance between prediction sites and centers (*Forrester et al.*, 2008). RBF models can be augmented by adding a polynomial term to equation (II.13), which may provide additional global support (*Elsayed et al.*, 2012). Basis functions can be of many mathematical forms, including linear, cubic, and thin plate spline. Gaussian, multiquadric, and inverse multiquadric basis functions can provide better sensitivity, but require the estimation of additional parameters to specify the spread of basis

function influence. Gaussian basis functions allow modelers to easily estimate prediction error at any location, making them a popular choice. Since basis functions are symmetric in all directions, RBF models treat all influencing variables equally; to eliminate the influence of varying variables units and scales, input data is generally normalized to a [0,1] interval (*Razavi et al.*, 2012a).

The weights vector is computed by $\mathbf{w} = \mathbf{G}^{-1}\mathbf{y}$, where \mathbf{G} , the Gram matrix, is defined by $\mathbf{G}_{i,j} = \psi(\|\mathbf{x}^{(i)} - \mathbf{x}^{(j)}\|)$ for $i, j = 1, ..., n_c$ (Forrester et al., 2008). If two training points in the set are very closely located to each other, \mathbf{G} may become ill-conditioned (Micchelli, 1986) and the computation of the weights vector becomes numerically unstable. The correct estimation of the weights vector \mathbf{w} allows the model to accurately simulate at training point locations, but it is also important to carefully set additional parameters in order to minimize errors in the remainder of the design space. This can be performed by finding the parameters that produce the minimum error estimate during cross-validation (Forrester et al., 2008).

Gaussian Basis (Kriging) Models

The kriging model method, also known as Gaussian process modeling, was first developed by and named after Danie Krige, a South African mining engineer who used the method to estimate gold ore spatial patterns (*Krige*, 1951). The kriging model consists of a combination of localized basis functions, also known as correlation functions. The most commonly used is an exponentially decaying correlation function of the form

$$\psi^{(i)} = e^{-\sum_{j=1}^{k} \theta_j |x_j^{(i)} - x_j|^{p_j}}$$
(II.14)

where k is the number of input variables and θ_j are correlation or width parameters (*Simpson et al.*, 2001). The kriging basis function above is mathematically similar to the Gaussian RBF form, with two notable differences. The vector $\theta = \{\theta_1, \theta_2, \dots, \theta_k\}^{\mathsf{T}}$ of correlation parameters allows each variable to have a unique basis function width parameter, and p_j is a "smoothness" parameter than can be tuned. Larger values of the correlation parameter θ_j result in extended influence, and by comparing values a dominant input variable can roughly be inferred (*Forrester et al.*, 2008). By allowing independent correlation parameters for each input dimension, sensitivities to units of measurement are negligible. This suggests that normalizing input data to unity is not as important in a

kriging model as it is for RBF models (*Jones*, 2001). *Razavi et al.* (2012a) suggest that large correlation parameter values indicate nonlinear behaviors in that particular dimension and small values indicate a smooth function with minimal variances. Larger values of p_j increase the smoothness of the Gaussian basis curves, while very small values suggest no correlation between a point and its neighboring space; in other words, the function is discontinuous at this location. When all values of p_j are fixed at 2 and all values of θ_j are equal, the kriging basis function is the same as the Gaussian (*Forrester et al.*, 2008). Considering this, kriging models can be either exact or inexact emulators depending on parameter choice (*Elsayed et al.*, 2012).

The kriging method treats interpolated outcome values as regionalized variables, which have characteristics of both random and deterministic variables. Regionalized variables continuously vary in space, assuming that points near each other are spatially correlated and points far from one another are statistically independent (*Elsayed et al.*, 2012). The kriging prediction function is written as

$$\widehat{\mathbf{y}}(\mathbf{x}) = \widehat{\boldsymbol{\mu}} + \boldsymbol{\psi}^{\mathsf{T}} \boldsymbol{\Psi}^{-1} (\mathbf{y} - \mathbf{1}\widehat{\boldsymbol{\mu}})$$
 (II.15)

where $\hat{\mu}$ is the expected mean value, ψ is a vector of correlations between training data and the prediction, Ψ is the correlation matrix, and y is the vector of observed sample values. A detailed derivation of (II.15) can be found in *Forrester et al.* (2008). Like RBF models, kriging models may be augmented with a polynomial function to provide additional global support; this is often taken to be a constant term, as shown above in (II.15) (*Srivastava et al.*, 2004). In total, the model has 2k+2 parameters: $\hat{\mu}$, $\hat{\sigma}^2$, $\{\theta_1, \theta_2, \dots, \theta_k\}$, and $\{p_1, p_2, \dots, p_k\}$. These can be computed by maximum likelihood estimation (*Elsayed et al.*, 2012); however, due to the expense of estimating the correlation and smoothness parameters, kriging is most useful for cases where the original simulation model is exceptionally computationally intensive (e.g., computational fluid dynamics models) (*Forrester and Keane*, 2009).

The kriging method "treats the deterministic response of a computer model as a realization of a stochastic process, thereby providing a statistical basis for fitting" (*Razavi et al.*, 2012a). The estimated mean square error for a kriging model at a location x in the design space can be computed by

$$s^{2}(\mathbf{x}) = \sigma^{2} \left[\mathbf{1} - \boldsymbol{\psi}^{\mathsf{T}} \boldsymbol{\Psi}^{-1} \boldsymbol{\psi} + \frac{\mathbf{1} - \mathbf{1}^{\mathsf{T}} \boldsymbol{\Psi}^{-1} \boldsymbol{\psi}}{\mathbf{1}^{\mathsf{T}} \boldsymbol{\Psi}^{-1} \mathbf{1}} \right]$$
(II.16)

as given in *Forrester and Keane* (2009). This allows kriging models to be easily used for approximating uncertainty at any given point in the design space, which makes it a popular choice for surrogate-based optimization.

Support Vector Regression (SVR)

Support vector machine (SVM) theory was first developed at AT&T Bell Laboratories in the 1990s, making it a newer family of methods (*Forrester and Keane*, 2009). SVM is traditionally a classification approach rather than a method for function approximation (*Basudhar et al.*, 2012). Methods have been developed from SVM theory that can be used for approximation, including support vector regression (SVR). SVR can be thought of as an extension of RBF and kriging methods due to many similarities (*Forrester et al.*, 2008).

SVR models incorporate a margin ε in which errors are acceptable in the sample data, and these errors are not allowed to affect predictions. Training points within the $\pm \varepsilon$ band, also called the ε -tube, are ignored for prediction. The predictor is defined only by exterior points and points on the region boundary; these training points form support vectors (*Forrester et al.*, 2008). SVR's ability to reduce noise sensitivity makes it useful for noisy models and inexact emulation (*Razavi et al.*, 2012a). SVR models also incorporate a user defined constant C, which determines the linear rate of influence loss for points outside of the ε -tube (*Forrester et al.*, 2008).

The SVR prediction formulation is similar to that of the kriging model, consisting of the sum of weighted basis functions and the bias term μ . Basis functions are also referred to as kernels in SVM literature; popular choices include linear, d degree homogeneous polynomial, d degree inhomogeneous polynomial, Gaussian, and kriging. A lengthy derivation involving constrained convex quadratic optimization and introduction of Langrange multipliers results in a prediction function of the form

$$\widehat{y}(\mathbf{x}) = \mu + \sum_{i=1}^{n} (\alpha^{+(i)} - \alpha^{-(i)}) (\mathbf{x}^{(i)} \cdot \mathbf{x})$$
(II.17)

Basis functions of various forms are incorporated via space mapping and kernel substitution, and

support vectors can be found by forming a dual variable optimization problem. The bias term μ can be computed through exploiting the idea that at the solution of the dual variable optimization problem the products between dual variables and constraints go to zero; this is one of the Karush-Kuhn-Tucker conditions for optimality. The user-defined constant C governs "trade-off between model complexity and the degree to which errors larger than ε are tolerated" and can be computed by testing values of varying orders of magnitude and selecting the one with the lowest resulting RMSE. C can be sensitive to the scaling, so the values in \mathbf{y} should be normalized to unity. To properly assign ε , the source of data must be considered. The precision limits of measurement can be used for ε if training data comes from physical experiments, but for data stemming from deterministic computer simulations ε can be calculated by using the v-SVR technique (Forrester et al., 2008). The two parameters ε and C are mutually dependent, meaning a change in one may influence the effect of the other on prediction (Razavi et al., 2012a).

SVR is a powerful prediction method for large, high-dimensional data sets, but due to the method being relatively young there is little implementation of its use in engineering design in the literature. Another possible reason for its limited use is the lack of large amounts of data in some high-dimensional engineering design problems. In these cases, it may be necessary to use all available data for model training, and SVR's fundamental idea of incorporating data subsets becomes unattractive. Also, SVR training time is longer than other surrogate methods, making SVR models difficult to implement in problems that involve surrogate refinement within an optimization loop (Forrester and Keane, 2009).

Artificial Neural Networks (ANNs)

Feedforward ANNs are flexible tools for function approximation composed of neurons assembled into a multi-layer architecture. They have been used for a variety of complex problems including speech and handwriting recognition, face recognition, currency exchange rate prediction, chemical processes optimization, cancerous cell identification, and spacecraft trajectory prediction (*Cheng and Titterington*, 1994). The neurons are multiple linear regression models with a nonlinear transformation on \mathbf{y} . If input variables to each neuron are given by $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$, then the predicted output can be written as

$$y = \frac{1}{1 + e^{-\eta/T}}$$
 (II.18)

where $\eta = \sum_{i=1}^{n} w_i \mathbf{x}_i + \beta$. β represents the "bias value" of a neuron, T is a user-defined slope parameter, and w_i are model weights (Simpson et al., 2001).

There are two main steps in constructing an ANN. First the architecture must be specified, and secondly the network must be trained. Modelers specify the model architecture through several parameters, including the number of hidden layers, number of neurons in each hidden layer, and the form of transfer functions. These decisions can be subjective, but processes have been developed for structure development. These include methods based on growing or pruning strategies, network geometrical interpretation, and Bayesian statistics. Unfortunately, these methods can be computationally extensive as they involve testing a variety of network structures; considering this, the appropriate architecture of ANN applications in the literature are generally decided by trial-anderror (Razavi et al., 2012a). The architecture parameters are combined, ANN models are trained for these network configurations, and the architecture resulting in the lowest error metric measured on the test set is chosen (Liong et al., 2001; Zou et al., 2007; Shrestha et al., 2009). As in all modeling approaches, the smallest architecture with an acceptably low error should be used to minimize computational expense, both during training and prediction. Networks involving "tens of thousands of parameters" have been successfully built, but data management and calculation of model parameters can be very expensive. Once the architecture is defined, model weights are determined when a training process converges upon minimized validation errors; this is often performed by backpropagation (Simpson et al., 2001). Training is typically performed multiple times, as there may be many sets of weights that can represent the training data satisfactorily.

ANNs can be used as inexact emulators for noisy data sources or exact emulators for deterministic computer code. With a large enough structure ANNs can perform exact emulation of deterministic code, but this may lead to poor performance in unsampled areas of the design space and a risk of overfitting (*Razavi et al.*, 2012a). Considering this, ANNs are more suitable for physical experiments than deterministic experiments (*Razavi et al.*, 2012b). *Tamura and Tateishi* (1997) proved theoretically that ANNs with two hidden layers require fewer hidden neurons to perform as exact emulators as compared to ANNs with only one hidden layer; however, in a review of response

surface modeling literature *Razavi et al.* (2012a) conclude for water resources applications single hidden layer ANNs are most popular. ANNs are capable of handling large amounts of training data and it is generally believed that more input data results in a better-generalized model; however, large amounts of data can require additional computational time for training and may trap the training process at a local (rather than global) solution (*Zou et al.*, 2007). Finally, it should be noted that some references, including the MATLAB® Neural Network Toolbox, consider RBFs as a type of feedforward ANN (*Razavi et al.*, 2012a).

II.2.3 Analysis Frameworks

Once a surrogate model is built, it can be utilized in frameworks of various types. There are four main "families" of surrogate-enabled frameworks, and each specific type may only be applicable for certain uses (i.e., searching versus sampling) (*Razavi et al.*, 2012a). Framework development is an important step in the utilization of surrogate models for practical problems and must be considered in the initial planning stages, because certain surrogate-enabled frameworks can be more easily implemented using specific surrogate model forms. A key feature in the frameworks discussed below is search point selection method, which can be performed as one-stage or two-stage. Most current approaches employ two-step search point methods (*Jones*, 2001).

Basic Sequential Framework (Off-Line)

The simplest analysis framework which employs metamodels is the basic sequential framework. It can also be referred to as an off-line framework because the metamodel requires no updating during analyses. This framework follows a three step process:

- 1. Develop a design of experiments in which a predetermined number of samples are taken throughout the feasible space and, in the case of a search analysis, objective function values at each location are evaluated by the original simulation model.
- 2. A surrogate model is built and parameters are tuned.
- 3. The surrogate model can be substituted in place of the original simulation model for performing time-intensive analyses.

Since the majority of computational budget is allocated during the design of experiments, the number of locations sampled initially is much higher than in the more-advanced frameworks discussed later. This one-stage training point selection method can provide a globally stronger surrogate model initially, but the model may not accurately represent the original model in regions of interest. This could lead to failure in both search and sampling applications (*Razavi et al.*, 2012a). In order to avoid poor performance in regions near optimal conditions, *Bliznyuk et al.* (2008) narrowed the search region by applying optimization techniques directly on the original model, and then fit a surrogate model only in the local optimal region. While this may be beneficial for off-line problems where global accuracy is not required, applying optimization procedures on original simulation models may not be computationally feasible.

Adaptive-Recursive Framework

The adaptive-recursive framework is similar to a basic sequential framework, with the addition of surrogate refinement using a two-stage point selection process. This framework also follows a three step process:

- 1. Develop a design of experiments in which a predetermined number of samples are taken throughout the feasible space and, in the case of a search analysis, objective function values at each location are evaluated by the original simulation model.
- 2. A surrogate model is built and parameters are tuned.
- 3. Identify regions of interest using a search or sampling algorithm, sample additional points in this region using the original simulation model, and repeat Steps 2 and 3 until convergence is reached.

When used for optimization searching, the best point found during the framework process is generally considered the final optimal solution (*Razavi et al.*, 2012a). *Zou et al.* (2007) employed an adaptive strategy for ANN-enabled optimization of a water quality modeling problem, citing previous linked ANN optimization studies which failed to perform well under off-line sampling. While the adaptive-recursive framework seeks to address the drawbacks of the off-line method, there are cases where this method may fail to find solutions in the true function optimal region (*Jones*, 2001). This may result in situations where new sampling points are added in close proximity to preexisting training points (thereby adding no additional knowledge for response surface training) or may converge to local optimal solutions.

Metamodel-Embedded Evolution Framework

The metamodel-enabled evolution framework is similar to the adaptive-recursive framework but is designed for use with evolutionary optimization procedures. With this method, an initial sampling plan stemming from a formal design of experiments is not required. Rather, first a population-based optimization algorithm such as a GA is used for several generations, computing function values from the original simulation model. These data points are used to fit a surrogate model. In all subsequent generations, individuals are evaluated by either the surrogate or the original model using a pre-defined process, which has been termed evolution control by Jin et al. (2002b). Jin explains that this can be performed two ways: either by designating a certain number of individuals (called controlled individuals) within each generation to be evaluated using the original fitness function, or to introduce controlled generations in which all individuals in that generation are evaluated by the original fitness function. All other individuals are evaluated by the surrogate model. Depending on the approach taken, modelers must decide either the number of controlled individuals or controlled generations; the process can be made further complex by adaptively changing these parameters as the optimization algorithm progresses. The surrogate model is refitted occasionally as training points are added to the set. In order for an optimization process to find global optima under this framework, the evolutionary algorithm chosen must be a global optimizer and any individual in any generation should have some probability of being solved through the original simulation model. Otherwise, failure modes similar to those occurring in an adaptive-recursive framework are possible (Razavi et al., 2012a). It is also important that the initial collection individuals are well-distributed and approximate the response surface well, as all following generations are conditioned from this set of individuals. If this is not fulfilled, the evolutionary optimization algorithm may fail to find a global solution (*Broad et al.*, 2005).

Approximation Uncertainty-Based Framework

The approximation uncertainty-based framework relies on the basic shell of the adaptive-recursive framework while incorporating surrogate model uncertainty in the sampling decision process. This method has been extensively used in structural (*Bichon et al.*, 2013; *Sóbester et al.*, 2005), aerospace (*Basudhar et al.*, 2012; *Queipo et al.*, 2005), manufacturing (*Boukouvala and Ierapetritou*, 2013; *Chen et al.*, 2012; *Huang et al.*, 2006), and petroleum engineering (*Horowitz et al.*, 2010; *Queipo*

et al., 2002) fields, but with the exception of the work of Mugunthan and Shoemaker (2006) and (di Pierro et al., 2009) it has not been well-employed in the water resources arena. While the adaptive-recursive framework assumes surrogate approximate values to be true, this may not be so in many regions of the design space, including at globally optimally regions. This technique relies on an approximation uncertainty quantity, which is readily available in certain surrogate forms including kriging and Gaussian RBF models. The three steps involved in this framework are:

- Develop a design of experiments in which a predetermined number of samples are taken throughout the feasible space and, in the case of a search analysis, objective function values at each location are evaluated by the original simulation model.
- 2. A surrogate model is built and parameters are tuned.
- 3. Optimize a new surface function, which balances a desire to minimize model uncertainty and find globally optimal results.

The third step aims to balance exploration and exploitation (*Razavi et al.*, 2012a). Different methods have been developed to perform the third step, but the maximization of an expected improvement function (EIF) approach can be considered the most advanced. An EIF can be used to select training data to be added to the surrogate model of optimization results by calculating the "expectation that any point in the search space will provide a better solution than the current best solution based on the expected values and variances predicted" by the current surrogate model (*Bichon et al.*, 2013). The EIF at any location x for a kriging metamodel prediction can be expressed as

$$EI(\mathbf{x}) = \left(f(\mathbf{x}^*) - \mu_{\widehat{f}}(\mathbf{x})\right) \Phi\left(\frac{f(\mathbf{x}^*) - \mu_{\widehat{f}}(\mathbf{x})}{\sigma_{\widehat{f}}(\mathbf{x})}\right) + \sigma_{\widehat{f}}(\mathbf{x}) \phi\left(\frac{f(\mathbf{x}^*) - \mu_{\widehat{f}}(\mathbf{x})}{\sigma_{\widehat{f}}(\mathbf{x})}\right)$$
(II.19)

where $f(\mathbf{x}^*)$ is the current best function value located at \mathbf{x}^* found by the optimization routine, $\mu_{\widehat{f}}(\mathbf{x})$ is the mean of the kriging prediction at \mathbf{x} , $\sigma_{\widehat{f}}(\mathbf{x})$ is the standard deviation of the kriging prediction at \mathbf{x} , and Φ and ϕ are the standard normal cumulative distribution and probability density functions. A global optimization routine must be used to determine the maximum of the EIF; the branch-and-bound algorithm (*Jones et al.*, 1998), the DIRECT method (*Bichon et al.*, 2013), and GAs (*di Pierro et al.*, 2009) have been used successfully for this application.

Developed by Jones et al. (1998), the efficient global optimization (EGO) algorithm is a commonly-

used optimizer which utilizes an EIF for sampling point search. EGO works well when the function shape and smoothness are generally well-estimated from an initial collection of training points; however, if this is badly approximated due to poorly distributed design sites, the process may converge slowly or prematurely stall (*Jones*, 2001; *Razavi et al.*, 2012a). EGO will not attempt to add training points identical to those already in the set, but as the optimizer converges there is potential to create an ill-conditioned correlation matrix in the kriging model due to newly-added points being located near previously sampled points in the training set. This can be overcome by using an uncertainty ratio to remove points that are deemed "too close" to other points or employing a "layering" method which "uses separate kriging models for short and long correlation lengths" (*Bichon et al.*, 2013). The EGO algorithm's initial formulation is intended for single objective optimization, but it has been extended to perform multiobjective optimization as well. ParEGO (*Knowles*, 2006) does this by applying weighting factors to aggregate all objectives into a single function, SMS-EGO (*Ponweiser et al.*, 2008) incorporates multiple surrogates to simulate multiple objectives, and Shinkyu and Obayashi's multi-EGO procedure embeds a multiobjective GA into an EGO-based framework (*Shinkyu and Obayashi*, 2005).

II.2.4 Response Surface Surrogate Usage in Water Resources

Just as *Viana and Haftka* (2008) found in their literature search over all fields, earlier applications of metamodeling in water resources generally incorporated regression or ANN models. Kriging, RBF, and SVM models have gained popularity in recent years, as well as the combination of multiple surrogate model forms. Surrogate models have been employed in water resources applications for various purposes, with the two primary purposes being to aid in calibration parameter selection and for use within optimization routines for operations and design. Automatic calibration applies an optimization algorithm to an objective function which aims to minimize the error between predictions and measured values (*Shoemaker et al.*, 2007). Automatic calibration can be superior to traditional "trial-and-error" methods, which can be inefficient, oversubjective, and unreliable (*Zou et al.*, 2007). Surrogate models have also been used within optimization routines as replacements for high-fidelity models, which are sometimes necessary for computing constraint and objective function values.

Surrogates in Automatic Calibration Procedures

The majority of water resources publications using metamodels to aid automatic calibration routines have been designed for watershed models. Liong et al. (2001), Khu and Werner (2003), and Khu et al. (2004) used ANN metamodels in automatic calibration procedures to find optimal parameter values for the rainfall-runoff models HydroWorks, the Storm Water Management Model, and MIKE 11/NAM, respectively. These procedures use feedforward ANNs to estimate the response of the catchment model, allowing for faster search by GA of the parameter space. In both Liong et al. (2001) and Khu and Werner (2003), the ANN metamodel is not fit over a set of uniform training points found from a formal DoE, but rather initial optimization trials are conducted on the original simulation and the evaluated points from this process are used for fitting. Liong et al. (2001) found that a network with three hidden layers which is trained by data from six storm events accurately reproduces the original HydroWorks model in all regions of the parameter space; however, in regions near closely spaced training points a linear interpolation approach performs just as well. Khu and Werner (2003) and Khu et al. (2004) both use a single hidden layer. To avoid overfitting the ANN model, Khu and Werner (2003) employ the early stopping approach; while this procedure results in a savings of 80% of full evaluations, it can limit the number of unique design sites available for training, testing, and validation sets. Additional studies have developed automatic calibration procedures for the SWAT watershed model using various surrogate model forms. Shoemaker et al. (2007) incorporate RBF models within an evolution framework, screening offspring by estimated fitness predicted by the RBF model and then confirming optimal values with the computationally expensive SWAT model. In comparing the results of the evolutionary algorithm combined with RBF approximation to other calibration methods, they conclude that it is "the most effective algorithm when there was a severe limitation on the number of simulations that can be performed" and methods with model approximation "should be seriously considered as alternatives to widely used methods such as SCE [Shuffled Complex Evolution] and evolutionary algorithms without function approximation when the complexity of the simulation model limits the number of simulations that can feasibly be done." Zhang et al. (2009) approximated the SWAT model by one-hiddenlayer ANN and SVM, tested both methods on two watersheds in the eastern United States, and determined that the SVM form resulted in better generalized models than those constructed using ANNs. Razavi et al. (2012b) compared the behavior of two SWAT metamodel-enabled calibration optimizers, kriging-GA and Multistart Local Metric Stochastic RBF, with two optimizers without metamodeling, dynamically dimensioned search and GA. They concluded kriging-GA and dynamically dimensioned search performed similarly in all computational budget settings, with kriging-GA performing slightly better when a harsh limit is placed on the number of allowable function evaluations.

Computationally expensive groundwater models can also be calibrated via surrogate-enabled procedures. Rizzo and Dougherty (1994) used a neural kriging network, which consists of both training and spatial interpolation phases, to estimate hydraulic conductivity fields in both two- and three-dimensional aquifer models using limited field data. Johnson and Rogers (2000) tested the accuracy of using linear regression and ANN models for automatic calibration of the 2D finitedifference groundwater model SUTRA, using simulated annealing techniques to search the parameter space. The authors included linear approximator tests, which failed to reproduce the high-fidelity model, in their study to avoid "the pitfall of addressing a problem with an unnecessarily complex method," but acknowledged that from the onset they did not anticipate that they would perform well. Mugunthan et al. (2005) tested two RBF-based function approximation methods (Regis and Shoemaker, 2004; Gutmann, 2001) within various optimization algorithms for autocalibration of chlorinated ethene biodegradation in an aquifer. The original simulation model, DECHLOR, is a multispecies reactive transport model that uses the finite different model MODFLOW for flow computations and the reactive transport model RT3D for contaminant transport computations. For their field case study, the original model requires 2.5 hours to complete a single simulation, making it very poorly suited for use directly within an optimization routine. This routine computes objective function values at each evaluation point through the original groundwater model and then fits an RBF surface to aid in optimization search. Both function approximation models performed well, with the model developed by Regis and Shoemaker (2004) performing best for minimizing overall errors in the final calibrated model form.

Automatic calibration routines have also been developed for surface water body models which incorporate surrogate model forms. *Zou et al.* (2007) demonstrated how an adaptive ANN-GA approach can determine values for 19 calibration parameters which minimize errors in relation to measured values for a eutrophication model (WASP5/EUTRO) linked to a previously calibration CE-QUAL-W2 hydrodynamic model. The 19 calibration parameters were first determined through

a sensitivity analysis, and various ANN models were created to emulate the eutrophication model. The authors determined that an adaptive ANN-GA procedure (which starts with a limited training set and adaptively adds additional information during optimization) converges closer to the global optimal solution than a one-step ANN-GA process (which starts with a robust training set but no additional training data is added during optimization). The total computational time from training data generation through optimization for this method is about 6.5 days of continuous computation, which largely consists of training data generation and ANN training time. Huang and Liu (2010) performed a similar analysis for calibration of a CE-QUAL-W2 hydrodynamic and WQM, in which 26 calibration parameters were determined by sensitivity analysis in terms of their ability to predict 6 hydrodynamic and water quality outputs (including vertical profile measurements). They also concluded an adaptive procedure performs better than one-step and that the largest computational expense comes from generation of training data through runs of the original high-fidelity model. Ostfeld and Salomons (2005) also demonstrated a routine for autocalibration of a CE-OUAL-W2 model using a k-nearest neighbors algorithm (kNN) for approximating the error resulting from various parameter combinations. A GA was used for searching. Two application locations were used: a hypothetical reservoir was used to tune the GA-kNN parameters, while a model of the Lower Columbia Slough water body was used to demonstrate autocalibration for temperature and DO prediction. The coupled GA-kNN algorithm produced results similar to those of a pure GA (without model reduction), while reducing computational expense.

Surrogates in Operations and Design Optimization

One of the earliest examples of surrogate-enabled optimization in water resources to minimize computational expense can be found in the work of *Alley* (1986), which expanded on the work of *Gorelick et al.* (1984) by creating response functions of computationally expensive contaminant transport models using polynomial regression. These regressions are functions of pumping-recharge rates at several wells, which form the decision variables of a groundwater contamination concentration minimization optimization problem, and are generated from the results of multiple transport simulation model runs. *Lefkoff and Gorelick* (1990)'s work expanded on Alley's by using regression to predict salt mass, rather than concentration, in an irrigated stream-aquifer system in the Arkansas Valley in southeastern Colorado. Although this study did not employ optimization

in the formal sense, the salt transport surrogate results were incorporated into a larger economic-hydrologic-agronomic model which serves as a tool for analyzing the relationship between crop mixing and profit in farming. This linked model system could be further formalized within an optimization routine to determine optimal trade-off points. *Cooper et al.* (1998) also developed a simulation/regression/optimization model for optimization of the oil recovery process from groundwater, expanding to a non-steady state problem. Response functions for residual oil and free oil were created using outputs from multiple runs of the ARMOS 2D finite element flow simulator, and verification of the surrogate-enabled optimization results by ARMOS simulation show small error levels.

Noting a need to expand these ideas to surface water applications, *Ejaz and Peralta* (1995) incorporated water quality processes from the QUAL2E simulation model within a simulationoptimization model via simplified regression equations. From the results of numerous systematic QUAL2E simulations, regression equations with a traditional mass balance form best fit all constituent response data with the exception of DO, which required a more detailed equation as a function of mass flow rates of BOD5, total nitrogen, and chlorophyll a. A verification step was included following nonlinear optimization to confirm that regression equations predicted acceptably close to QUAL2E. Saad et al. (1996) employed RBF ANNs to decompose the optimal operating policies obtained through dynamic programming for a reservoir system, which were combined to form one equivalent reservoir of equal potential energy. Using historical flow records, 500 equally likely deterministic inflow sequences were generated as inputs, and a year's optimal operations and corresponding potential energy were found for each on a monthly timestep. This formed the data set used for ANN training, and a fuzzy clustering approach was used to compute RBF parameters. Neelakantan and Pundarikanthan (1999) also used an ANN for simulation of a reservoir system's operation as substitution for a conventional simulation model, with the goal of maximizing drinking water supply. The monthly conventional mass-balance simulation model inputs and results were used to train a three-layer feedforward ANN, which was then embedded within a nonlinear optimization algorithm. Training each ANN required 8 hours of computational time, but the ANN model was reported to run 300 times faster than the conventional model. Solving the optimization problem took as long as 15 days of continuous computations using the conventional model, but only a few hours with the ANN model. Castelletti et al. (2010) used response surface methods to optimize the number and location of water quality rehabilitation devices (i.e., mixers) in order to improve overall water quality in the Googong Reservoir in Australia. The 3-D coupled hydrodynamic-ecological model ELCOM-CAEDYM was used to compute training data for linear interpolators, RBF ANNs, and inverse distance weighting; the authors termed this step as the "learning phase." Then during the "planning phase," an approximate solution to the design problem is found. The learning and planning phases are performed iteratively to improve performance near optimal solutions(s), and at each iteration the response surface form with the smallest errors was chosen. Their results showed that significant improvements were possible by simply moving the currently installed mixers and that an additional pair of mixers would further improve destratification. To solve this design optimization problem using what-if analysis would "require about 5.5 years of computation with a modern computer" according to the authors.

II.3 Optimization of Hydropower Systems

Various techniques have been employed for hydropower optimization. Early studies employed linear programming (LP), which entails short computational times but requires functions to be linear or linearizable. This is often not the case for hydropower generation problems. A step up from LP, nonlinear programming (NLP) algorithms do not have the linear function requirement. NLP requires all functions to be differentiable, which may not be the case for hydropower systems. Dynamic programming (DP) methods have been popular in hydropower optimization tool development due to their ability to handle nonconvex and discontinuous functions and structure which emulates the multistage decision-making process involved in reservoir system operations (*Labadie*, 2004). The curse of dimensionality arises in these types of problems, which has led to various DP modifications to lessen the computational time of high-dimensional problems.

More recently, heuristic programming methods have become popular for investigating hydropower optimal operating patterns. In contrast to traditional derivative-based methods, heuristic techniques are less-structured, can rely on both quantitative and qualitative information, and can handle complexities including multiple objectives, uncertainty, nonlinearity, and discontinuities. Although convergence to an optimal solution cannot be guaranteed, heuristic methods are generally capable of locating global optima in all but the most complex problems, where traditional methods converge to

local optima (*Rani and Moreira*, 2010). These benefits may come at a computational cost by requiring more function evaluations than traditional optimization methods, but evolutionary or population-based methods allow for parallel computations (*Rani and Moreira*, 2010). Evolutionary methods that have been used for hydropower optimization applications in the literature include GAs, simulated annealing, ant colony optimization, particle swarm optimization, and honey bees mating optimization. These techniques have all been used in hydropower-related studies, but the literature is limited in comparison to traditional derivative-based methods.

Multiobjective reservoir optimization applications using both traditional and heuristic optimization approaches have sought to analyze the trade-off between a variety of outcomes including power generation, flood control, and water supply/quality. *Fontane et al.* (1997) employed stochastic DP to quantify optimal monthly releases for a 12-month period in terms of hydropower generation, flood control, water supply, and recreational demands. Using a GA, *Teegavarapu et al.* (2013) analyzed the trade-offs between power generation and downstream water quality using a simplistic one-dimensional decay process on a daily timescale, *Chen et al.* (2016) performed daily and hourly reservoir system scheduling subject to fish flow and other competing constraints, and *Liu et al.* (2011) incorporated minimization of flood risk on a daily timestep. These applications all assumed a well-mixed system or were performed in one spatial dimension.

II.3.1 Classic Methods

Linear Programming (LP)

LP is one of the most popular methods for reservoir system optimization due its many advantages, which include efficiency, ability to solve large-scale problems, global convergence guarantee, no initial solutions required to start the algorithm, duality theory to assist in sensitivity analyses, and ease of problem setup and solution using readily available software packages (*Labadie*, 2004). The most notable limitation of this technique is the requirement of objective and constraint functions to be linear or linearizable and convex. These limitations can be overcome in some cases by extension methods including separable LP, successive LP, and binary, integer, and mixed integer LP; however, many reservoir systems are represented by highly nonlinear or discontinuous functions associated with reservoir hydrodynamics, power generation, and water quality. These are either not appropriate

for or cannot be efficiently solved by LP, even with extension methods.

Simple reservoir optimization problems have been solved using LP techniques. *Ponnambalam et al.* (1989) solved for monthly turbine releases for two reservoirs connected in series over a 40 year period, resulting in 880 decision variables and 3680 constraints. They compared the performance of simplex and interior point algorithms, concluding that the interior point method converges in far fewer steps for large problems. *Crawley and Dandy* (1993) used linear goal programming to identify monthly optimal operating policies for a much larger reservoir system in South Australia, with the objective of minimizing pumping costs from a nearby river for reservoir fill. The authors used separable programming to piece-wise linearize the nonlinear pumping cost curves. *Needham et al.* (2000) analyzed the flood-control procedures for three U.S. Army Corps of Engineers reservoirs using a mixed integer LP model, concluding that coordinated releases may be unnecessary to minimize flood damage by showing this to be true for 8 of the 10 largest flood events on record. Additional application of optimization by LP for reservoir operations include (*Martin*, 1983), (*Martin*, 1995), *Lee et al.* (2006), *Seifi and Hipel* (2001), *Ziaei et al.* (2012), and *Mousavi et al.* (2004).

Nonlinear Programming (NLP)

Because many reservoir systems cannot be realized by linear or linearizable functions, NLP techniques have been employed in previous optimization applications. NLP has the disadvantages of slow convergence, leading to large computation time requirements. There is also no guarantee of find global optima, demonstrated by NLP algorithms often converging to local optima instead. The Karush-Kuhn-Tucker conditions for constrained nonlinear programming optimality may not be computationally feasible for many large-scale nonlinear problems (*Hiew*, 1987). Because of this, constrained NLP problems are often solved using penalty and barrier constraint-handling methods, which require careful choice of penalty weights and may not converge to the true feasible optimum. As noted by *Rani and Moreira* (2010), software packages are available which can solve large scale nonlinear optimization problems; regardless, global optimality proves difficult for practical applications employing NLP.

This is a broad family of techniques which includes sequential linear programming (*Barros et al.*, 2003; *Grygier and Stedinger*, 1985), sequential quadratic programming (*Tejada-Guibert et al.*, 1990; *Finardi et al.*, 2005), the augmented Lagrangian method (also known as the method

of multipliers) (*Arnold et al.*, 1994; *Naresh and Sharma*, 2002; *Finardi and Scuzziato*, 2013), and the generalized reduced gradient method (*Sale et al.*, 1982; *Unver and Mays*, 1990). All of these methods require differentiable objective and constraint functions, which may not be the case for hydropower systems due to the presence of discontinuities often associated with turbine operations. *Hiew* (1987) compared various nonlinear algorithms for optimization of a system of hydropower reservoirs and concluded the sequential linear programming method to be the most efficient. Using mixed integer nonlinear programming (MINLP), *Teegavarapu and Simonovic* (2000) optimized power generation revenues for a system of 4 hydropower plants with daily scheduling and *Ferreira and Teegavarapu* (2012) formulated a single run-of-the-river hydropower reservoir optimization problem on a daily timestep over a 15 day operating period. They included a simplistic downstream water quality constraint to explore dam operations' ability to counteract a downstream pollutant point source. Although formulated as a MINLP, the authors opted to solve the problem using GAs, noting that the "reduced gradient based method used initially in this study as optimization solver provided unsatisfactory (i.e., non-optimal) solutions."

Dynamic Programming (DP)

DP methods are able to address nonconvex and discontinuous functions and their structure emulates the multistage decision-making process involved in reservoir system operations (*Labadie*, 2004). DP breaks the original problem into subproblems that are then solved in stages sequentially. For each subproblem, an optimal cost-to-go function is developed which represents the optimal value accumulated from the current period going forward, as a function of an initial state condition. For the majority of reservoir applications, the state consists of reservoir storage. If additional states are relevant to the constraint and objective formulations, such as the inclusion of water quality or additional reservoirs, the size of the problem grows quickly; this has been coined the "curse of dimensionality" associated with DP. Discrete DP overcomes difficulties due to nonlinear, nonconvex, and discontinuous objective and constraint functions (*Labadie*, 2004).

The earliest application of determining optimal operating rules for a single multi-purpose reservoir using deterministic DP was performed by *Hall et al.* (1968). Their technique provided for what were considered to be "complex constraints" at the time, including time-variable flood control reservations; mandatory fish, wildlife, and recreational releases; and navigation minimum flows. This

resulted in an optimal schedule of releases for each month given a price schedule. *Stedinger et al.* (1984) developed a stochastic DP model to define releases from a dam in the Nile River Basin based on the best inflow forecast as a hydrologic state variable, resulting in improved operations compared to using the proceeding period's inflow as the state variable. *Georgakakos et al.* (1997) used a combination of dynamic programming and optimal control method modules to maximize firm energy generation of the Lanier-Allatoona-Carters hydropower system across multiple timescales (instantaneously, hourly, and daily).

Optimization of many linked reservoirs becomes computationally infeasible using the original DP formulation, which is the reason much of the hydropower optimization by DP literature involves modified DP approaches. *Castelletti et al.* (2007) employed neuro-dynamic programming, which approximates Bellman functions with ANNs, for reservoir network management. *Yi et al.* (2003) solved a multireservoir unit allocation problem using dynamic programming with successive approximation, a technique which "replaces the original multidimensional problem with a sequence of 1D problems" and whose computational expense increases linearly with respect to the problem size. *Wang et al.* (2005) was able to solve a problem combining multiobjective optimization (hydropower, water supply, and flood control), a multireservoir system (three reservoirs in parallel), and stochastic inflows using a combination of modifications. These included a constraint technique (to transform the optimization to a single objective form) and combined decomposition iteration and simulation analysis to overcome the dimensionality problem. *El-Awar et al.* (1998), *Yurtal et al.* (2005), and *Zhao et al.* (2014) also employed modified DP approaches to solve for optimal hydropower reservoir operations.

II.3.2 Heuristic Algorithms

Genetic Algorithms (GAs)

GAs, first introduced by *Holland* (1975), are a family of algorithms based on the mechanics of genetics and natural selection. They use a variety of methods to transition from one generation population to the next, including genetic operators such as inheritance, mutation, selection, and crossover. Populations of candidate solutions are evolved toward better solutions in an iterative process which rewards feasible, near-optimal solutions. Candidate solutions are copied into the

next generation, mutated, and combined stochastically based on their assigned fitness levels,. This attempts to balance exploration of solutions from new areas of the design space and exploitation of solutions already found in regions of high fitness. This process terminates when stopping criteria has been reached; examples of these criteria include a maximum number of generations or solutions, a satisfactory fitness level, or a population homogeneity level being reached.

One of the earliest introductions of genetics algorithms in the water resources literature comes from Esat and Hall (1994), where GAs were used to solve the "four-reservoir problem." This problem concerns a system of four reservoirs, with both parallel and series connections, operated over twelve 2 hour periods (a total of 24 hours), searching for optimal releases with constraints related to flood control and turbine capacities. The authors concluded that as system size increases, computational expense for DDDP increases exponentially while the expense of GAs increase linearly. Wardlaw and Sharif (1999) solved the same "four-reservoir problem" as well as a more complex 10-reservoir problem, testing sensitivities to various GA settings. Oliveira and Loucks (1997) combined a genetic search algorithm with simulation models to determine optimal operating policy rules for several multireservoir systems, focusing on satisfying joint water demands and joint energy requirements. Similarly, Suiadee and Tingsanchali (2007) used a combined simulation-GA optimization model to determine optimal monthly reservoir rule curves for a single reservoir in Thailand, with the objective function equal to the maximum net system benefit subject to irrigation constraints and the monthly releases computed by the simulation model. Ahmed and Sarma (2005), Chang and Chang (2001), and Cheng et al. (2008) each employed various forms of GA for determining optimal reservoir operations.

GAs have been used in combination with surface WQMs. *Kerachian and Karamouz* (2007) determined optimal operating rules for the Ghomrud Reservoir-River system in Iran for water quality management using a stochastic GA-based conflict resolution technique. A one-dimensional WQM simulating thermal stratification and water quality at releases from different outlets was used, as well as simulation of pollutants in the downstream river. This one-dimensional model was based on the existing Ghomrud HEC-5Q model, which could not be easily linked to the optimization model. *Ostfeld and Salomons* (2005) and *Huang and Liu* (2010) coupled hybrid GAs and ANN models for calibration of surface water quality CE-QUAL-W2 models. *Ostfeld and Salomons* (2005) reduced computational time by implementing a "hurdle race" approach which halts CE-QUAL-W2 simula-

tions early if a threshold is not met during simulation, while *Huang and Liu* (2010) combined a GA with a local search method to improve the results while reducing expense. *Dhar and Datta* (2008) linked a CE-QUAL-W2 model with an elitist GA to determine optimal reservoir operation policy with the aim of maintaining water quality downstream of the reservoir while minimizing the storage deviation from target storage. The authors employed this method on a hypothetical reservoir on the upstream end of the Middle Willamette River in Oregon, USA for daily operating decisions over a 10 day management period. They concluded with the note that "[d]evelopment of parallel code or use of metamodels (e.g. ANNs) may be very useful in reducing the CPU time" and that those modifications would "make it feasible to solve larger and more complex real-life optimal reservoir system operation problems."

Simulated Annealing (SA)

First introduced by Kirkpatrick et al. (1983), SA is a global search method which emulates the annealing process in glasses and metals to find optimal solutions for large systems. Using a temperature parameter, simulated annealing solves an optimization problem by theoretically maximizing strength and minimizing brittleness. Early water resources applications of this technique were for groundwater management problems, with the first reservoir operations optimization application performed by Teegavarapu and Simonovic (2002). They used the technique to optimize a four-reservoir system for hydropower and irrigation needs, including a simulation model for computing reservoir states during optimization. They solved a weekly problem on a half-day timestep and showed that SA provides similar results to a mixed integer NLP problem. Then they expanded the decision space by solving for hourly operations over a weekly horizon, which the SA algorithm was able to solve in a computationally feasible manner. Tospornsampan et al. (2005) compared the performance of using simulated annealing and GAs for determining monthly operations over 3 years for a multi-reservoir system with diversions, with the goal of minimizing irrigation deficits. Their results showed SA to be more efficient than GA for their application, generating higher quality solutions and requiring less computational time. Li and Wei (2008) also found SA to perform better than GA while optimizing a 3-reservoir system in series for electricity generation maximization. Of the methods they tested, the authors determined that their improved GA-SA algorithm produced the highest quality solutions at a lower computational time than the traditional unimproved GA-SA

algorithm. *Chiu et al.* (2007) also employed a hybrid GA-SA for optimizing the operation scheme of a single reservoir in Taiwan, concluding that the method results in superior performance as well as reduced computational time due to parallel analyses.

Ant Colony Optimization (ACO)

ACO is a heuristic technique based on observations of the behavioral patterns of ant colonies. Certain ant species are capable of finding shortest paths by using pheromone communication. ACO aims to emulate the shortest path search capabilities of these species (Dorigo and Stützle, 2004). Examples of ACO use in hydropower optimization applications are limited. Kumar and Reddy (2006) compared ACO to real coded GA for optimization of a multi-purpose reservoir in India and determined that the ACO algorithm converges to more globally optimal results than GA does. The developed models were used to determine operations on a monthly timestep for both short-term and long-term horizons. Optimization objectives were minimizing flood risk, minimizing irrigation deficits, and maximizing hydropower production; no water quality objectives or constraints were considered. Jalali et al. (2007) used a special version of the ACO algorithm to overcome ACO's difficulty handling continuous problems. A random mesh of the search space was used to minimize the chance of missing the global optimum, and the algorithm is also capable of handling discrete and continuous decision variables. The algorithm was tested on a complex 10-reservoir problem, which is "beyond the capacity of traditional DP and is difficult with variants such as DDDP [discrete differential dynamic programming], but is relatively simple to solve by LP." The system consists of reservoirs in parallel and series and was optimized over 12 operating periods with the goal of maximizing hydropower production. ACO was able to reach solutions which were 99.8% of the known global solutions. Madadgar and Afshar (2009) extended the initial ACO discrete space search method to continuous domains, improved algorithm performance and efficiency with the addition of an adaptation operator and explorer ants, and tested their algorithm on well-known benchmark problems and a single hydropower reservoir optimization problem with the objective of minimizing the sum of relative generation deficits from the installed capacity over 240 monthly operating periods.

Particle Swarm Optimization (PSO)

PSO is a technique for searching continuous nonlinear functions inspired by bird flocking and fish schooling behavior (*Eberhart and Kennedy*, 1995). It can solve many of the same types of problems as GAs. PSO is similar to a GA while overcoming some of GA's challenges, including being able to retain an active memory of good solutions. Unlike a GA, there are no evolution operators. Instead, each potential solution is assigned a random velocity, and then these "particles" are "flown through hyperspace." There are only two variables that must be defined by the user: maximum velocity and an acceleration constant.

Kumar and Reddy (2007) employed elitist-mutated PSO to determine operation plans for a multipurpose reservoir. Elitist-mutated PSO improves the standard PSO algorithm by adding an elitist-mutation mechanism. In their study, Kumar and Reddy applied elitist-mutated PSO to a hypothetical case and then to a realistic case, the Bhadra reservoir in India, which serves irrigation and hydropower generation purposes. The system was optimized on a monthly time step, for both 1 year (short-term) and 15 year (long-term) problems. This study concluded that elitist-mutated PSO performs better than both standard PSO and GAs, by yielding better solutions with fewer function evaluations. Similarly, *Zhang et al.* (2013) used a modified PSO approach to determine optimal hourly discharge rates for 10 cascading hydroelectric plants in a multi-reservoir system, with the goals of minimizing power deficit and uniformly distributing deficit if it should occur. This was achieved using a multi-elite guide PSO, which incorporated an archive set which preserves elite solutions. Multi-elite guide PSO produced improved solutions and converged quickly in comparison with other methods.

Honey Bees Mating Optimization (HBMO or MBO)

Another swarm-based algorithm is the HBMO method, which is inspired by the mating behavior of honey-bees in nature. This algorithm typically captures the bees' genetic potentiality, environment, and colony social conditions in order to converge to optimal solutions. *Haddad et al.* (2006) tested this algorithm on a water resources application for the first time. First it was applied to several benchmark constrained and unconstrained mathematical functions. Then the authors applied this algorithm to optimize single reservoir monthly operations over 5 years, aiming to minimize deviations between releases and target demands. They concluded that the HBMO algorithms per-

forms similarly well to GAs. More recently, *Dariane and Farahmandfar* (2013) applied the similar marriage in honey bees optimization (MBO) algorithm to determine 47 years of monthly operations for a three-reservoir system under irrigation and environmental flow requirements. This represented a problem with a very large number of decision variables. Their experiments revealed that MBO proved to be superior to other algorithms tested, including GA, ACO, PSO, and elitist-mutation PSO. The authors conclude by stating that "development of a hybrid algorithm consisting of MBO and any of the GA or elitist-mutation PSO algorithms could be considered in future research to further aid in solving complex optimisation problems with a large number of decision variables."

II.4 Gaps in the Literature and Research Advancement

This chapter summarizes the scope of the literature on reservoir modeling and operations, surrogate modeling techniques, and hydropower systems optimization. There is extensive documentation of a variety of hydrodynamic and WQMs capable of modeling waterbodies. These models have been applied to study the water quality impacts of an assortment of changes to natural and engineered systems; however, these studies typically apply to long-term planning and design purposes, not real-time operation. Although DSSs such as RiverWare and HEC-3/HEC-5/HEC-ResSim are powerful tools for determining optimal real-time hydropower operations, they have at most limited capabilities for considering water quality. When considered, water quality metrics are assessed by derived relationships between releases and water quality outcomes. This may not be adequate for river systems with strong temporal or spatial water quality gradients in areas of concern. These tools also cannot assess water quality system-wide, potentially missing areas of concern such as thermal plant cooling water withdrawal and release points or sensitive species spawning grounds.

Hydropower optimization objectives and constraints are typically represented by nonlinear and discontinuous functions. Most hydropower optimization studies have relied upon classic optimization algorithms that involve simplified function forms, linearization, and a focus solely on water quantity rather than quality. We observed recent growth in applying heuristic optimization methods for determining optimal hydropower operations, but the literature is limited in terms of applications for planning at an operational, rather than seasonal, timescale. While some studies such as those by *Kerachian and Karamouz* (2007) and *Dhar and Datta* (2008) considered water quality, none have

done so using a timestep of operational fidelity and high-fidelity WQM simulation. A primary reason for this lies in the high computational expense of high-fidelity WQMs and their structure being ill-suites for direct use in complex optimization problems. To counteract this, surrogate modeling approaches have been applied to water resources operations and design optimization applications. Even so, this approach has not yet been applied to solve for real-time hydropower operations optimization subject to constraints informed by high-fidelity WQMs.

This dissertation presents a foundation for developing a DSS capable of providing optimized real-time operational guidance for a hydropower system with refined water quality considerations. Optimized operations are influenced by robust WQMs capable of simulating water quality gradients, which may require high spatial and temporal model resolution. Integrating WQMs within a discontinuous, nonlinearized optimization problem that can be solved with limited computational resources is achieved by using surrogate modeling techniques.

Chapter III

HYDROPOWER OPTIMIZATION USING ARTIFICIAL NEURAL NETWORK SURROGATE MODELS OF A HIGH-FIDELITY HYDRODYNAMICS AND WATER QUALITY MODEL

This chapter is a modification of a previously published paper by *Shaw et al.* (2017) in *Water Resources Research* and has been reproduced with permission. Copyright is held by John Wiley & Sons, Inc.

III.1 Introduction

Reservoirs with hydropower capabilities are generally operated to maximize energy generation while meeting other water management policies and regulations (Jager and Smith, 2008). The optimization of reservoir operations is extensively studied (*Labadie*, 2004), with initial studies primarily focusing on water quantity constraints (Hall et al., 1968; Martin, 1983; Grygier and Stedinger, 1985; Arnold et al., 1994; Teegavarapu and Simonovic, 2000; Chang and Chang, 2001; Seifi and Hipel, 2001; Teegavarapu and Simonovic, 2002; Yi et al., 2003; Barros et al., 2003; Cheng et al., 2008) and more recent studies integrating constraints related to ecosystems and water quality (Hayes et al., 1998; Chaves and Kojiri, 2007; Kerachian and Karamouz, 2007; Dhar and Datta, 2008; Ferreira and Teegavarapu, 2012; Castelletti et al., 2014). The inclusion of water quality as a constraint has been limited in that studies have not employed state-of-the-art multi-dimension high-fidelity hydrodynamic and WQMs, but instead generally incorporate one-dimensional or quasi two-dimensional coarse-grid models (Hayes et al., 1998; Jager and Smith, 2008; Ferreira and Teegavarapu, 2012). Fidelity is defined here as a measure of similarity between a real-life system and a synthetic system, or model; in terms of time and space, this can also be called model resolution. Extending reservoir optimization modeling to multi-dimension and/or high-fidelity greatly increases computational requirements, even for a single reservoir under simulated environmental constraints (e.g., (Dhar and Datta, 2008)). The need for high-fidelity models within optimization schemes has come of age, driven by increased computational capabilities (Castelletti et al., 2010) and by increased requirements to meet specific points of compliance with greater accuracy.

Hydropower optimization efforts to date have not incorporated high-fidelity WQMs on an operations timescale, where operating decisions are made every hour or less, but rather for long-term seasonal or yearly planning. Additionally, such models often employ either one-dimensional WQMs, utilize relatively low spatial resolution, or both. Low temporal and spatial resolution restricts applications timescales and limits the ability to capture well the complex hydrodynamic and water quality interactions at water release points and other points of compliance of interest such as in vicinity of sensitive species areas or thermal electric water intake and discharge zones. Further, many optimization methods require linearity and differentiable functions, which cannot be addressed by numerical models. Lastly, both traditional and heuristic optimization routines often require significant numbers of objective and constraint evaluations, hindering the use of computationally expensive models.

The optimization of hydropower-equipped reservoir operations subject to numerous constraints is typically realized by a high-dimensional, non-linear, discontinuous problem formulation (*Labadie*, 2004), presenting a challenge in determining globally optimal solutions. Computationally-efficient gradient-based solvers can converge to local optima (especially for high-dimensional problems) and require known analytical function forms in order to compute gradients (*Labadie*, 2004; *Jin*, 2005). Reservoir operations are, by their nature, dynamic, and dynamic programming has been heavily employed in this area; however, this approach is not feasible for high-dimensional problems. The inclusion of water quality constraints is feasible when employing simple differentiable function approximations of water quality and hydrodynamic processes; however, this is not the case when including computationally-demanding simulation models within optimization routines. A heuristic global optimization method overcomes these challenges and allows for inclusion of high-fidelity models within constraints by use of surrogate models (*Forrester et al.*, 2008).

Here, we describe an advancement for computing optimal hourly power generation schemes for a hydropower reservoir through use of computationally-demanding WQMs, surrogate modeling techniques, and optimization methods. Optimal schemes are those in which water quality and other constraints are met as closely as possible, while flows are passed through hydropower turbines to produce maximum power value. Due to problem complexity and the use of heuristic methods, "optimal solution" here refers to the best solution found by the global solver employed. This study presents the development and application of an approach where the predictive power of the high-

fidelity hydrodynamic and WQM CE-QUAL-W2 is successfully emulated using an ANN model, which is then integrated into a GA-based optimization scheme to inform scheduling on an operations timescale of reservoir operations subject to high-fidelity spatial and temporal constraints (*Smith Sawyer et al.*, 2013; *Shaw et al.*, 2013, 2015, 2016, 2017).

This architecture allows for inclusion of water quality constraints in the decision-making process and for comparison between resulting optimal schemes and current operating procedures, all at high spatial and temporal accuracy. This provides a means for stratified reservoir operators to determine preferred releases on an operational timescale, maximizing power output while minimizing spill volumes necessary to maintain water quality standards. To date, no such approach exists on an operational timescale at a resolution that captures water quality gradients in dynamic, stratified reservoirs.

III.2 Case Study Description

The USACE Nashville District operates nine hydropower projects along the Cumberland River in Tennessee and Kentucky, USA (*U.S. Army Corps of Engineers*, 1998). The Cumberland River and its tributaries form the Cumberland River Basin (Figure III.1). The Cumberland River reservoirs' water levels are set by guide curves, which define volumes of water dedicated to purposes including power, flood, and minimum storage.

Old Hickory reservoir, a mainstem multipurpose reservoir for navigation, hydropower, and recreation located upstream of Nashville, Tennessee, has a backwater distance of 97.3 miles and is retained by a combination earthfill and concrete-gravity dam. Outflow structures are 6 tainter gates and 4 Kaplan hydropower turbine units, with a total installed capacity of 100 megawatts (MWs). The run-of-river Old Hickory project exhibits little fluctuation in water level due to navigation and recreation requirements; consequently, a review of historical operations reveals that Old Hickory's turbines consistently operate at or near their defined rating of 25 MW. Release decision projections are typically made 10 days in advance; additionally, operations are defined on an hourly or finer timescale and in terms of number of active turbines and spill gate settings.

Temperatures and water quality constituents of concern, including DO, are highly stratified vertically and longitudinally during the warm months. The Nashville District employs the CE-

Figure III.1: Dam projects in the Cumberland River Basin (adapted from figure courtesy of Nashville District of the U.S. Army Corps of Engineers).

QUAL-W2 hydrodynamic and WQM for Old Hickory reservoir, allowing them to more accurately estimate water quality at points of compliance, to include releases and locations (both depth and river mile) of sensitive species; however, they do not currently directly incorporate the model within decision support systems for reservoir operations.

III.3 Optimization Problem Formulation

To determine optimal operations of Old Hickory reservoir, problems are formulated to determine turbine operations that generate maximum power value, subject to operational constraints. The problems are nonlinear with integer decision variables $\{x_1, x_2, ..., x_n\}$, representing the number of active turbines at each hour i = 1 : n. Optimization is performed for a defined planning period, in this case 10 days, a typical river system scheduling operational period (*U.S. Army Corps of Engineers*, 1998). Computational expense increases substantially as the number of decision variables grows; therefore, the planning period is divided into daily sub-problems which are solved consecutively.

Old Hickory reservoir must fulfill many requirements, which are formulated as a set of hard and soft constraints. The algorithm seeks to meet soft constraints, but if they are not fulfilled completely the algorithm still proceeds. Soft constraints are integrated into the objective function by use of a penalty parameter. Several hard constraints and a single soft constraint applied in the experiments are described below and in Table III.4. The optimization problem objective and constraints can be written as follows and explained below. Equations III.2-III.8 are firm constraints on the problem that must be satisfied.

minimize
$$-\left[\sum_{i=1}^{n} C(i) \cdot x_i \cdot r\right] + \left[d \cdot (e_f - e_t)^2\right]$$
 (III.1)

s.t.
$$p_l \le E(x_1, x_2, ..., x_i)_i \le p_u, \ \forall \ i = 1:n$$
 (III.2)

$$\sum_{i}^{i+z} x_{i} \ge 1, \ \forall \ i = 1: (n-z)$$
 (III.3)

$$|x_{i+1} - x_i| \le c, \ \forall \ i = 1: (n-1)$$
 (III.4)

$$(x_i \le x_{i+1} \le x_{i+2} \le x_{i+3}) \lor (x_i \ge x_{i+1} \ge x_{i+2} \ge x_{i+3}),$$

$$\forall i = 1: (n-3) \tag{III.5}$$

$$\{x_i \in \mathbb{Z} \mid 0 \le x_i \le a\}, \ \forall \ i = 1: n$$
 (III.6)

$$\frac{\sum_{i=1}^{|S|} \max(0, o_l - o_i)}{|S|} \le 0$$
 (III.7)

$$\frac{\sum_{i=1}^{|S|} \max(0, t_l - t_i)}{|S|} \le 0$$
 (III.8)

III.3.1 Objective Function and Soft Constraint

The objective (Equation III.1) is to maximize (formulated as a minimization as is convention) the value of hydropower produced over a set planning period. n is the number of hours in the planning period, C(i) is the power value at time i, and r is the turbine power rating in MW. A cost curve defines the relationship between the value of power production and the time of day, which is important due to changes in electricity demand and the use of hydropower traditionally as peaking power to supplement thermal power production. If no cost curve is provided, i.e., C(i) = 1 for all values of i, the problem is equivalent to maximizing the total power generated over the planning period. The employed cost curve (Figure III.2) was created using Old Hickory reservoir historical operating patterns to estimate a relationship between time of day and generation. This approach is intended to be used for planning, not for real-time grid balancing, so a historically-based cost curve is appropriate.

The second term in Equation III.1 is a penalty term representing a soft constraint, penalizing deviations of final water level e_f from the final target elevation e_t . This restricts the solution from draining to the bottom of the power pool at the end of each daily optimized sub-problem. Briefly,

Figure III.2: Cost curve used in optimization applications.

for each daily sub-problem potential solution the final water level elevation is found, the penalty is computed, and a deduction to the objective function value is made for water level elevations below target levels. Prior to the start of the GA solver, a penalty coefficient is computed using linear interpolation:

$$d = y_{projected} \cdot \left(v_u + (v_l - v_u) \frac{p_T - p_l}{p_u - p_l} \right)$$
 (III.9)

where d is the penalty coefficient in dollars per meter below target (or megawatt-hour, MWh, per meter below target if no cost curve is provided), $y_{projected}$ is the estimated power value under projected operations for the sub-problem optimization time period (in dollars if a cost curve is provided, otherwise in MWh), p_T is the target water level elevation at the end of the time period, p_l and p_u are lower and upper bounds of the power pool, respectively, and v_l and v_u are scaling coefficients with $v_l \le v_u$. The penalty coefficient is greater the closer the target water level elevation is to the bottom of the power pool. Scaling coefficients are a function of the value of power and reservoir generation capacity, with larger coefficients aligned with increased penalty. For reservoirs with total capacities of 100 MW, like the one used in this study, and a cost curve with value magnitudes in the range of \$40-\$100/MWh as assumed here, values of $v_l = 500$ and $v_u = 1000$ perform well.

III.3.2 Hard Constraints

Equation III.2 sets lower and upper bounds (p_l and p_u , respectively) on water levels. $E(x_1, x_2, ..., x_i)$ is an elevation model that predicts water level elevations for all timesteps 1: i. For reservoirs operated on a seasonal guide curve, p_l and p_u are typically set to the lower and upper bounds of the power pool. The simplified water level elevation model assumes the water level to be consistent along the entire reservoir and is a function of all inflows and outflows. Spill flow is often engaged to improve downstream water quality. An average spill flowrate for each daily sub-problem is computed during elevation calculations based on turbine releases, inflows, and user-provided midnight target elevation values. First, water level elevation is computed based on the hourly turbine settings assuming no spill release. If the final elevation for the sub-problem is less than the target elevation, spill remains zero. If the final elevation is greater than the target elevation, an average spill flowrate for the sub-problem is assigned which results in a final water level elevation equal to the target value. This incorporates spill without requiring additional decision variables, which is important since spill flow is often engaged to improve downstream water quality.

In an effort to maintain minimum flows along the river, the maximum number of consecutive hours z allowed without power generation is defined by Equation III.3. The USACE Nashville District implements this rule for water quality purposes as well.

Equation III.4 limits the hourly rate of change in the number of active turbines, with c being is the maximum number of turbine units that can become active or go inactive each hour. Since Old Hickory reservoir exists on a navigable waterway with lock systems, this constraint assists in minimizing fluctuations in the surface elevation and adverse impacts on water level stability.

Equation III.5 attempts to reduce oscillations in the turbine operations over time. This constraint is formulated with logic that states that, except in cases of ramping turbines up or down, the number of active turbines must be fixed for at least three hours consecutively before changing. Reducing oscillations is desired to minimize equipment wear.

Equation III.6 defines the maximum number of turbines at the hydropower facility, a. It is assumed that all turbines operate at the same turbine power rating, r, and that the number of active turbines is selected from a set of integer options.

The Nashville District monitors DO levels in the Old Hickory dam, which is directly upstream of

the metropolitan Nashville area and has historically proven to be a strong indicator of water quality system-wide ($U.S.\ Army\ Corps\ of\ Engineers$, 1998). Maintaining cool discharge temperatures is also important as the Cumberland River serves as a source of cooling water for TVA's thermal power plants both upstream and downstream of Old Hickory dam. Equations III.7 and III.8 define lower constraints on discharge DO and temperature, respectively, where o_l and t_l are lower limits and o_i and t_i are DO and temperature estimates at time i. These equations can be modified to account for maximum constraints as well. Discharge water quality over the operating period is computed by:

$$O(\vec{x}) = (o_1 \ o_2 \ \cdots \ o_n) \tag{III.10}$$

$$T(\vec{x}) = (t_1 \ t_2 \ \cdots \ t_n) \tag{III.11}$$

where $O(\vec{x})$ is a function estimating discharge DO concentration and $T(\vec{x})$ is a function estimating discharge temperature. In this application, $O(\vec{x})$ and $T(\vec{x})$ are ANN models predicting the water quality estimations of a simulation model. S, the set of timesteps with total dam discharge flow not equal to zero, is defined by:

$$S = \{i \mid (Q_i^T + Q_i^S) \neq 0\}$$
 (III.12)

where Q_i^T is the turbine discharge and Q_i^S is the spill discharge at time i. |S| is the size of set S. Dividing by |S| accounts for the fact that at times when there is no release from the turbines or spillway, discharge water quality is undefined. This approach also makes it easier to compare population members which are not fully-feasible with respect to water quality by having a single metric for comparison. Equations III.7 and III.8 require the average hourly constraint violation to be less than or equal to zero; since the constraint violation can never be negative, the average hourly constraint violation is equal to zero.

III.4 Methodology

A GA-based decision support tool was developed to determine optimal turbine operations for a single hydropower reservoir, with inclusion of point release water quality constraints informed by a high-fidelity simulation model. The overall approach, illustrated in Figure I.2, integrates a system of water quality and hydrodynamic models into an optimization framework by use of a reduced model. This model is formulated as an ANN of the nonlinear autoregressive network with exogenous inputs (NARX) form, and is trained using model simulation outputs. The computational expense of prediction is considerably reduced from that of the original model, thereby allowing for a great number of function evaluations required during optimization. An hourly timescale over a 10-day horizon was employed, reflective of actual operator planning routines; however, this approach could be applied over longer horizons on a less-refined timescale for seasonal or yearly planning. Longer horizon studies would be sensitive to accuracy of inflow and meteorological forecasts.

CE-QUAL-W2, a two-dimensional high-fidelity hydrodynamic and WQM, was used as the original simulation model. CE-QUAL-W2 has successfully been used to simulate rivers, lakes, reservoirs, and estuaries since 1975 (*Martin*, 1988; *Adams et al.*, 1997; *Saito et al.*, 2001; *Bowen and Hieronymus*, 2003; *Kuo et al.*, 2006; *Chung and Oh*, 2006; *Debele et al.*, 2008; *Afshar et al.*, 2011), with the ability to model physical, chemical, and biological processes including temperature, DO, nutrients, algae, and sediments (*Cole and Wells*, 2007). The spatial grid is user-defined and laterally averaged, making it well-suited for modeling long narrow water bodies such as the Cumberland River system controlled reservoirs. The temporal resolution is determined by time stepping routines which limit numerical instability.

The reduced model is represented by a NARX network, a form of ANN. ANNs are flexible tools for function approximation composed of neurons assembled into a multi-layer architecture, and have been used for numerous complex problems (*Cheng and Titterington*, 1994), including as emulators in reservoir operations problems (*Raman and Chandramouli*, 1996; *Saad et al.*, 1994). *Solomatine and Avila Torres* (1996) used ANNs within an optimization routine to meet water depth and power generation targets, but the spatial and temporal resolution were coarse and the optimization formulation highly simplified. *Aguilar et al.* (2014) built a water quality forecasting surrogate model using a tree-based approach as an alternative to ANNs, acknowledging a likelihood for error propagation. They did not integrate the reduced model within a decision-making process.

Construction of ANNs consists of two steps: (i) specifying the architecture and (ii) training the network. Model architecture is generally determined by trial-and-error (*Razavi et al.*, 2012a), and is specified through several parameters, including number of hidden layers, number of neurons in each hidden layer, and form of transfer function. As in all modeling approaches, the smallest architecture with an acceptably low error should be used to minimize computational expense, both

during training and prediction. Once the architecture is defined, model weights are determined through a training process like back-propagation (*Simpson et al.*, 2001).

Several surrogate model forms were initially tested. Linear regression, Gaussian process, radial basis function, and Shepard's Method were unable to emulate CE-QUAL-W2's highly nonlinear and dynamic water quality predictions (*Shaw et al.*, 2013). The NARX model form was selected for its ability to approximate time-dependent functions that are dependent upon a large number of inputs using training data derived from high-fidelity simulation model runs. NARX training, visualization, and prediction tools are available in the MATLAB® Neural Network Toolbox (R2016a, The MathWorks Inc., Natick, Massachusetts, United States). This model relates past values of the same series in the following way:

$$y(t) = f(y(t - n_{y,1}), y(t - n_{y,2}), \dots, y(t - n_{y,last}), u(t - n_{u,1}), u(t - n_{u,2}), \dots, u(t - n_{u,last}))$$
(III.13)

where y is/are the variable(s) of interest, u is/are the exogenous variable(s), and f is a nonlinear function mapped by a multilayer perceptron ($Lin\ et\ al.$, 1996). The model is a function of feedback delays defined by the set n_y and input delays defined by the set n_u . NARX models are trained using a family of CE-QUAL-W2 simulation results, obtained by combining different CE-QUAL-W2 input scenarios. Training is performed using a Levenberg-Marquardt backpropagation optimization algorithm, considered to be one of the most computationally efficient ANN training methods ($Razavi\ et\ al.$, 2012a). Once trained, a NARX model emulates CE-QUAL-W2's predictive ability for new scenarios without the need for additional CE-QUAL-W2 simulations. MATLAB® codes utilized to create NARX surrogate models are provided in Appendix C.

GA optimization was selected due to its ability to identify global optima for problems with nonlinearities and discontinuities, as are present in objective and constraint functions in many hydropower optimization operations (*Esat and Hall*, 1994; *Oliveira and Loucks*, 1997; *Wardlaw and Sharif*, 1999; *Labadie*, 2004; *Ahmed and Sarma*, 2005; *Suiadee and Tingsanchali*, 2007), including optimization of systems in combination with surface WQMs (*Kerachian and Karamouz*, 2007; *Dhar and Datta*, 2008). GAs represent a family of heuristic algorithms based on the mechanics of genetics and natural selection, employing a variety of methods to transition from one generation

population to the next, including inheritance, mutation, selection, and crossover. In GA applications, stopping criteria as well as other algorithm parameters are typically tuned through trial-and-error (*Reed et al.*, 2000). GAs are not mathematically guaranteed to find globally optimal solutions, but studies have shown their improved performance in terms of avoiding local optima over LP and NLP for complex applications (*Azamathulla et al.*, 2008; *Aly and Peralta*, 1999; *Wardlaw and Bhaktikul*, 2004).

Dhar and Datta (2008) linked CE-QUAL-W2 model with a GA to determine optimal reservoir operation policy with the aim of maintaining water quality downstream of a reservoir release, concluding that development of parallel code or integration of metamodels, such as ANNs, could reduce computational time and increase the feasibility of solving larger, more complex reservoir system operations problems. In the study described, water quality processes are integrated using NARX models, which can be viewed as "black box" approximators. The optimization routine seeks to determine the active turbine pattern on an hourly timestep to maximize power production or power value subject to constraints on discharge water quality, water level elevation, zero-generation hourly limits, limits on rate of change in turbines, and turbine unit availability. The objective and constraint functions are structured so that they can be modified to meet the needs of other reservoirs in a multi-reservoir, linked system.

The optimization routine was constructed using the GA functionality available in the MATLAB® Optimization Toolbox (R2016a, The MathWorks Inc., Natick, Massachusetts, United States), and the MATLAB® codes used for the hydropower optimization process described here are provided in Appendix D. This process (Figure III.3) begins with defining reservoir characteristics: tailwater rating curve, storage elevation curve, number of turbine units, turbine rating in MWs, and turbine discharge curve. A turbine discharge curve provides a relationship between turbine release, head difference, and turbine rating in MW. At a fixed turbine rating, the turbine discharge curve allows one to compute turbine release flowrates as a function of the number of turbines active, upstream water surface elevation, and tailwater elevation (computed using the tailwater rating curve). A CE-QUAL-W2 model folder is also provided with measured and forecasted input files updated to reflect the current year.

Optimization settings include optimization start date (JDAY, or Julian day), operating period length (days), midnight water surface elevation targets (meters), maximum change in active turbine

Figure III.3: Schematic of optimization methodology.

units (units/hour), maximum hours with zero power generation, daily cost curve, and elevation and water quality constraint limits. Scenarios may exist where elevation or water quality constraints are not feasible, independent of release decisions. For these constraints, a hard constraint feasibility estimate is performed prior to power value optimization. If no feasible solution can be found for a particular constraint, the constraint bound is relaxed to the value found nearest to the constraint limit. Power value optimization can proceed in scenarios with no fully feasible solution by allowing the algorithm to prioritize these constraints over the objective of power generation. An initial population of potential solutions satisfying all hard constraints is produced and supplied to GA at the onset of each daily sub-problem. These potential solutions are found using logical decision-making and random selection, starting with first hour turbine setting and progressing through the last hour for each potential solution for the sub-problem. If the projected turbine operations are feasible they are added to the initial population set.

The GA employs creation and mutation functions which produce populations consisting of integer values for the decision variables. The optimal solution is identified by the GA and iterating forward until a stopping condition is satisfied, with each daily sub-problem solved in succession. After optimal operations have been determined over the planning period, a CE-QUAL-W2 validation simulation provides means for comparison to the surrogate WQM predictions. Following each optimization iteration, the best iteration is determined by the tiered logic system described below. When the best iteration ceases to change over two iterations, the stopping condition is satisfied and the algorithm terminates.

After the series of daily sub-problems is solved over one iteration, a CE-QUAL-W2 confirmation simulation is performed at the identified optimal release operations to ensure the surrogate model sufficiently emulates the CE-QUAL-W2 model. If the confirmation simulation and NARX predictions acceptably agree, the solution is accepted. Otherwise, NARX models are retrained and updated using two CE-QUAL-W2 simulations as training data. These two simulations consist of (i) the CE-QUAL-W2 confirmation simulation, and (ii) a simulation with the confirmation turbine and spill discharges swapped. This provides diversity in the spill and turbine exogenous inputs, and assists the surrogate model in emulating the water quality outcomes from each release point. NARX models are retrained five times and the resulting model with the lowest cross-validation error is chosen, which provides enhanced training data for improved prediction of the optimal solution.

Following each iteration, two CE-QUAL-W2 simulations (confirmation and confirmation with releases swapped) are added to the training data set; therefore, following the first iteration (which uses a robust training data set described below) each training data set consists of $2 \cdot (iteration - 1)$ CE-QUAL-W2 simulations.

The algorithm's stopping condition is based upon the "best iteration" index at the end of each iteration. If any water quality constraint is "active", meaning not fully satisfied, the absolute mean error (AME) between the NARX and CE-QUAL-W2 water quality predictions is checked. If the AME is greater than 0.5 °C for temperature or 0.5 mg/L for DO (AME thresholds lower than acceptable levels given by *Cole and Wells* (2007)), the iterations solution is not acceptable and the best iteration is set to the previously found best iteration, or null in the case of no acceptable solution found thus far. If the AME is acceptable and the best iteration is null thus far, the current iteration is the best iteration. If a best iteration has been determined already, the water quality violation from the constraint limit is compared between the current iteration and the previously found best iteration. If the current iteration achieves a smaller water quality violation, it becomes the new best iteration. If there are no "active" water quality constraints (i.e., these constraints are fully satisfied), then the best iteration is based on the objective function valuation, which represents the power value. The power value of each iteration is compared to the power value of the best iteration found thus far, and if the new solution results in greater power value, it then becomes the new best iteration.

III.5 Experimental Setup

The USACE Nashville District provided operations data, field measurements, and CE-QUAL-W2 version 3.5 (*Cole and Wells*, 2007) models. CE-QUAL-W2 models were calibrated and validated for the case study reservoir for prediction of water level, temperature, and DO. Temperature and DO predictions were compared to measured values at the dam releases and available in-stream vertical profiles. Visualization and plotting during this process were performed using the AGPM-2D v3.5 post-processor for CE-QUAL-W2 (Loginetics, Inc.).

Calibration and validation time series results and water quality profiles are provided in Appendix A as Figures A.1 through A.6. Calibration and validation error metrics are summarized in Table III.1. Here, we consider CE-QUAL-W2 model calibration or validation acceptable when the

AME values are less than 1 °C for temperature and 1.5 mg/L for DO (*Cole and Wells*, 2007). Error metrics are within this threshold with the exception of Old Hickory in-stream temperature profiles for both years, likely due to only having daily temperature values available for the mainstem inflow. Old Hickory reservoir's main inflows consist of releases from two upstream dams, both of which are stratified in the summer and have outlet structures at multiple depths. The temperature and other water quality characteristics of the upstream dams' discharges are strongly impacted by release decisions, which much like Old Hickory reservoir are adjusted by operators on a short timescale. Consequently, the water quality of upstream releases is not adequately captured by a single measurement each day, thereby resulting in larger water quality prediction errors at profile locations in the upstream half of the reservoir.

Additionally, the original developers of the Old Hickory model separated side bank storage volume from mainstem conveyance volume by use of a separate branch and a series of weirs connecting the storage branch to the mainstem. While this may improve hydrodynamics modeling, this methodology does not properly represent the water quality phenomenon of the system. This makes a particular impact in the forebay of the reservoir, where the additional storage branch (Branch 10) enters the mainstem (Branch 1) as shown in Figure III.4. While the model is not constructed as desired, CE-QUAL-W2 emulation by surrogate model and integration within an optimization scheme is demonstrated using the Old Hickory model regardless of model structure and accuracy. The focus here is transition from high-fidelity simulation to reduced surrogate model, not transition from the true system to high-fidelity simulation model.

Figure III.4: Bathymetry of Old Hickory reservoir CE-QUAL-W2 model, showing (a) plan view of all branches and (b) elevation view of the mainstem, Branch 1 (created using AGPM-2D v3.5 post-processor for CE-QUAL-W2 by Loginetics, Inc.).

Table III.1: Summary of Old Hickory CE-QUAL-W2 model calibration and validation results.

	Calibration	Validation
Year	1988	2005
Computational Time (minutes)	9	9
Elevation AME ^a (meters)	0.025	0.053
Dam Releases:		
Temperature AME a (°C)	0.963	0.617
DO AME a (mg/L)	1.010	1.196
In-stream Profiles:		
Temperature AME a (°C)	2.076	1.350
DO AME ^a (mg/L)	0.943	0.716

^a Errors are presented as absolute mean error (AME). In-stream profile measurements of temperature and DO were collected at 8 locations on 7 dates in the calibration year (1988) and at 7 locations on 2 dates in the validation year (2005).

The Old Hickory tailwater is considered the point of compliance and monitoring for water quality by dam operators; therefore, ANN models were trained to emulate the hourly discharge temperature and DO predictions of the CE-QUAL-W2 model. Based on observations made during CE-QUAL-W2 model calibration and validation, the discharge temperature and DO at Old Hickory are sensitive to only the two most dominant upstream inflows: Branch 1 (the mainstem) and Tributary 2 (Caney Fork, and the Center Hill dam discharge). Flowrates, temperatures, and DO concentrations for these two inflows were included in an initial exogenous input set. Additionally, meteorological data and operational data (spill and turbine flowrates) were included. Using the 2005 Old Hickory CE-QUAL-W2 model inputs and outputs, correlation tests were performed to narrow the set of exogenous inputs to the main driving factors for discharge temperature and to estimate the appropriate sets of input and feedback delays. Examples of correlation plots for discharge temperature are shown in Figure III.5 for demonstration. Exogenous inputs with low correlations were removed from the set. For the narrowed exogenous variable set, correlations with discharge temperature and DO were maximized in the vicinities of 0, 1, and 12 hour delays; hence, the input delay set was assigned to these values. Lagged autocorrelation testing of the discharge temperature and DO output time series show decreasing correlation over time, meaning a single feedback of 1 is appropriate. The resulting sets of exogenous variables for temperature and DO NARX models are given in Table III.2. The number of hidden layers and neurons in each layer were assigned to the default values of 1 and 10, respectively, following sensitivity testing that revealed an increase in these values yielded little to no improvement in prediction ability at considerable computational expense.

Training data for Old Hickory NARX WQMs was generated by combining dominant inflows, outflows, and meteorological data time series. For each input type, three variations were considered. Meteorological conditions consisted of the 2005 (average year), 2006 (wet year), and 2007 (dry year) values. Inflow temperatures and DO concentrations consisted of the values from 2005 and the 2005 values were increased and decreased by 5%. Inflows were not varied, but outflows were varied to create heavy spill and heavy turbine scenarios. The heavy spill scenario was created by allocating 20% of the 2005 turbine outflow to the spill gates, and the heavy turbine scenario was created by allocating 20% of the 2005 spill outflow to the turbine structure outflow. Spill and turbine scenarios were not combined exhaustively, but instead were paired to maintain an equivalent total outflow to maintain water balance stability in the CE-QUAL-W2 simulations. This process creates a surrogate model which can be used to explore the trade-off between releases through the turbines and spill gates. An exhaustive combination of all variables, with the exception of the paired spill and turbine inputs as explained, resulted in a total of 729 CE-QUAL-W2 model simulations.

Seventy percent of the simulations were provided to the training algorithm and the remaining thirty percent saved for final validation. To minimize the impact of substantial oscillatory noise found in some CE-QUAL-W2 simulation results, the water quality predictions were smoothed using a 24-hour moving average process prior to training. A smoothing approach was selected in order to avoid removing runs from the design of experiments set; with the understanding that the

Table III.2: Exogenous variables lists for Old Hickory discharge NARX models.

Discharge Temperature	Discharge DO
Branch 1 Inflow	Branch 1 Inflow
Branch 1 Temperature	Branch 1 Temperature
Tributary 2 Temperature	Branch 1 DO
Air Temperature	Tributary 2 Temperature
Dew Point	Tributary 2 DO
Turbine Flow	Air Temperature
Spill Flow	Dew Point
	Turbine Flow
	Spill Flow

Figure III.5: Old Hickory discharge temperature lagged cross correlation test examples for (a) turbine outflow, (b) branch 1 inflow, (c) air temperature, and (d) tributary 2 inflow with 95% confidence bounds. Inputs shown in (a), (b), and (c) are considered correlated with discharge temperature and are included in the NARX model exogenous variables, while input (d) is not.

initial set of NARX models provides somewhat "smoothed" predictions due to the wide range of conditions in the training data set; and due to the fact that the NARX models are later updated in a retraining step within the optimization process, which is based upon non-smoothed CE-QUAL-W2 outputs. The training algorithm randomly divides its portion of data between training (70%), validation (15%), and test (15%) subsets. The training subset is used to compute gradients and update network weights and biases, the validation subset for computing errors and determining when to halt the training routine, and the test subset for confirming an appropriate division of data by comparing when the test subset and validation subset errors reach their minimums. Figure III.6 provides a visual demonstration of the random data division, with each box representing a CE-QUAL-W2 simulation.

Because the models are trained using an optimization algorithm that incorporates a random process, temperature and DO networks were each trained five times. After five networks were constructed and bias correction performed, an interior point constrained nonlinear optimization algorithm was employed to compute network weights (which sum to 1) that minimize the validation set error. After the first weight set was computed, any networks with a weight less than 25% of the maximum weight were removed and the weights recomputed for the smaller set of NARX models. This removes inferior networks from the set while still maintaining a "family" of networks that may provide better global predictions than a single trained network. In this application, the temperature surrogate model consists of 4 weighted NARX models and the DO surrogate model consists of 4 weighted NARX models.

Figure III.6: Data division demonstration for NARX model training. Each box represents 1% of the total set of CE-QUAL-W2 simulations resulting from design of experiments.

III.6 Results

NARX models were trained to simulate hourly summer (May-September) discharge water quality using the family of CE-QUAL-W2 simulations described earlier, and validation errors computed. Shown in Figure III.7, training and validation errors have similar distributions suggesting no occurrence of overfitting. Examples of NARX model predictions compared to the 24-hour moving average smoothed CE-QUAL-W2 outcomes for Old Hickory reservoir are given in Figure III.8. The NARX surrogate model predictions closely follow the seasonal trends produced by CE-QUAL-W2, but are unable to fully replicate "peaks and valleys." The initial surrogate training data set consists of many exogenous variable and release scenario combinations, producing a robust model capable of providing general solutions for a variety of scenarios at the expense of refined predictions. Missing these extreme values could provide incorrect solutions in the region of optimization constraints; therefore, solution confirmation by CE-QUAL-W2 and surrogate model updating (as shown in Figure III.3) are vital steps for refining surrogate water quality predictions.

The success rate of a heuristic optimization algorithm is highly dependent on the problem to be solved and algorithm settings (*Reed et al.*, 2000). For GAs, computational time and accuracy are often at odds and depend on population size. It is beneficial to determine the population size where little accuracy is gained from larger populations. Researchers have attempted to determine heuristics for setting population size based on the number of problem decision variables (i.e., the variable space dimension) (*Reed et al.*, 2000; *Gotshall et al.*, 2002), but there is little consensus.

Population sizes were determined for both GA optimization steps shown in Figure III.3: the pre-screening constraint violation minimizer and power value maximizer. First the minimum DO constraint was set to 10 mg/L. For the 24-hour period of August 3, 2005, this constraint bound is unobtainable so the constraint violation minimizer step is activated. Various population sizes were tested, with 10 optimization trials conducted for each size. Figure III.9 displays the resulting optimal solution values (i.e., minimum DO constraint violations) found as well as computational times. The optimal solutions found appear to be logarithmically related to population, while computational time is linearly related. There is little to no improvement for population sizes greater than 360, so this value was chosen for the water quality pre-screening optimizer population size. The DO constraint was then relaxed to the obtainable value of 5 mg/L and the process was repeated, maximizing power

Figure III.7: Old Hickory NARX model distributions of hourly prediction errors for (a) temperature training, (b) temperature validation, (c) DO training, and (d) DO validation sets. Normal distribution fits are shown by the curve.

Figure III.8: Examples of validation simulation results for (a-b) Old Hickory discharge temperature and (c-d) Old Hickory discharge DO. Discontinuities in the curves represent times with neither spill nor turbine discharge present. CE-QUAL-W2 outcomes shown here and used in initial NARX training are smoothed on a 24-hour moving average.

value over the same 24-hour period using various GA population sizes. These results are shown in Figure III.10, and a population size of 480 was selected. All other GA parameter settings were determined by trial-and-error and are provided in Table III.3.

The optimization methodology is demonstrated on Old Hickory reservoir over the 10 day operating period from midnight 3 August through midnight 13 August 2005 (Julian days 215-225). This represents a period in the summer when the reservoir is vertically stratified and water quality issues appear in the reservoir and tailwater. In order to demonstrate the effectiveness of this tool for improving water quality and the impact that high-fidelity WQM incorporation can have on optimal power generation solutions, two experiments were performed. First, the relationship between maintaining several stages of constraints on DO and the resulting energy production was explored. Second, reservoir operations were optimized under constraints on both discharge temperature and DO. Computations were performed on a server equipped with 64-bit Windows Server 2008 R2 Enterprise and two 3.10 GHz AMD® OpteronTM 4334 triple core processors. As stated earlier, GA solvers are capable of, but not mathematically guaranteed, to find globally optimal solutions; therefore, comparisons to historical operations are provided to show improved performance of solutions found by GA.

III.6.1 Experiment 1: Trade-Offs Between Water Quality and Energy Production

Optimization constraint values were set to those listed in Table III.4, with the addition of a lower constraint on discharge DO (o_l). Operations were optimized under a series of values for this constraint, ranging from $o_l = 5$ mg/L to $o_l = 8$ mg/L. While this experiment could be formulated as a multi-objective optimization problem, the purpose of the developed methodology is for implementation for a system with known regulatory water quality limits, not for determination of a trade-off point between discharge water quality and power production, so the additional computational expense required to solve a multi-objective problem is not beneficial to the intended usage. This presentation intends to demonstrate how the algorithm returns results that agree with the standard practice of incorporating additional spill release to reduce negative water quality outcomes. During the constraint feasibility pre-screen step, surface elevation and discharge DO constraints were prioritized in that order, respectively. Target elevations were set to match the elevation pattern from

Figure III.9: Results of population size parameter tuning for DO constraint violation minimization optimization routine, showing (a) Optimal solutions found, and (b) Optimization time. Error bars represent the range of solutions for the 10 evaluations made per population size.

Figure III.10: Results of population size parameter tuning for power value maximization optimization routine, showing (a) Optimal solutions found, and (b) Optimization time. Error bars represent the range of solutions for the 10 evaluations made per population size.

Table III.3: Optimization parameter settings.

Constraint	Power
Violation	Value
Minimization	Maximization
360	480
10	$)^{-8}$
10	$)^{-8}$
single	e point
0.	85
integer	Gaussian
0.	15
integer	uniform
stochasti	c uniform
ceiling(0.05*p	opulation size)
5	50
2	3
0	not applicable
	Violation Minimization 360 10 10 single 0. integer 0. integer stochasti ceiling(0.05*p

recorded operations over this time period.

Table III.5 summarizes the 4 optimization trials performed. During this 10-day period in 2005, recorded operations resulted in 10,450 MWh produced with a value of \$812,750 using the assumed cost curve. For lower DO constraint limits of 5 mg/L and 6 mg/L, greater power values were achieved by the optimization routine. As the DO constraint becomes more restrictive, computational time increases and the value of the power generated decreases. Additionally, the DO constraint is not fully satisfied during the entire planning period for the last two cases.

Figure III.11 shows the cumulative turbine and spill releases at the optimal operations for each constraint level. Additional spill is required to maintain the desired DO concentration level when

Table III.4: Optimization constraint values.

Turbine power rating, r (MW)	25
Number of turbines, a	4
Power pool elevation upper bound, p_u (meters)	135.636
Power pool elevation lower bound, p_l (meters)	134.722
Maximum zero-generation hours, z	6
Rate of change of active turbines, c (turbines/hour)	1
Minimum discharge DO concentration, o_l (mg/L)	varies
Minimum discharge temperature, t_l (°C)	varies

Table III.5: Summary of Experiment 1 and Experiment 2 results.

	DO Constraint	Temperature Constraint	Iterations Required	Time $(minutes)^a$	Mean Hourly DO Violation (mg/L)	Mean Hourly Temperature Violation (°C)	Energy Produced (MWh)	Generation Value (\$) b
Exp. I:							,	
	\geq 5 mg/L		æ	190.8	0		10050	\$868250
	\geq 6 mg/L		4	254.3	0	1	10100	\$866500
	\geq 7 mg/L	1	16	997.3	0.035	1	8825	\$730000
	$\geq 8 \mathrm{mg/L}$		14	1436.1	0.344		2600	\$171500
<i>Exp.</i> 2:								
	\geq 7 mg/L	≥ 25 °C	13	1915.9	0.005	0.071	4300	\$316000

^a Time to complete optimization of series of sub-problems, not including CE-QUAL-W2 simulation or NARX retraining time.

^b Generation value determined using assumed cost curve shown in Figure III.2.

the DO constraint threshold is greater. In the case when $o_l = 8 \text{ mg/L}$, this results in more release by spill than by turbine.

III.6.2 Experiment 2: Simultaneous Constraints on Temperature and DO

Optimization constraint values were set to those listed in Table III.4, with the addition of lower constraints on discharge DO ($o_l = 7 \text{ mg/L}$) and temperature ($t_l = 25 \,^{\circ}\text{C}$). These constraints represent potential requirements for a downstream sensitive aquatic species, as seen in the past elsewhere in the Cumberland River system (*Andrews*, 2014). During the constraint feasibility pre-screen step, constraints were prioritized in the following order: surface elevation, discharge DO, and discharge temperature. Figure III.12 illustrates the resulting flowrates, elevations, and discharge water quality predictions at the identified optimal solution. The surrogate water quality predictions cannot replicate CE-QUAL-W2 predictions with zero error, but the temperature and DO surrogate models successfully captured overall trends and provided improved predictions at "peaks and valleys" over those seen in the robust model (see Figure III.8) due to retraining the model using improved training data found by the optimizer. Additional results are detailed in Table III.5. Employing the assumed cost curve, the power value of the optimized solution over the 10 day period is \$316,000, as compared to the projected (or actual) operations value of \$812,750 due to the introduction of spill release in order to meet water quality constraints.

III.7 Discussion

Water quality prediction computational time through the chosen operating period was reduced from approximately 6 minutes to 2 seconds per operations scenario by use of a NARX ANN surrogate model rather than CE-QUAL-W2. Optimization computational time increases as feasible space shrinks due to constraints, and additional iterations are necessary for algorithm convergence for stricter water quality limits; however, for all experiments shown there are considerable computational cost savings as compared to expense should CE-QUAL-W2 be directly embedded within the framework. For perspective, Experiment 2 required 313,423 objective and constraint function-pair evaluations per iteration on average. This depends on the optimization problem characteristics, not the form of the simulation model embedded within. The optimization problem demonstrated has a

Figure III.11: Cumulative spill and turbine discharges over 10-day planning period for various minimum discharge DO constraint levels.

Figure III.12: Experiment 2 results for optimization of Old Hickory reservoir operations for a 10-day planning period: (a) Turbine discharge flowrates, (b) Spill discharge flowrates, (c) Headwater elevations, (d) Discharge DO predictions, and (e) Discharge temperature predictions. AME values represent absolute mean error between the NARX and CE-QUAL-W2 model predictions at the optimal solution.

large number of decision variables, is highly-constrained, and is highly nonlinear with many discontinuities; this means a greater number of function evaluations are required in order to have confidence in the GA's outcomes. Therefore, because the number of function evaluations required during GA optimization is considerably greater than the number of CE-QUAL-W2 simulations required for initial NARX training, the surrogate-enabled framework provides computational savings overall despite the necessary initial simulations and training. Further, completing 313,423 water quality predictions using CE-QUAL-W2 in parallel on the 6-core machine employed here would alone require over seven months, as compared to the 40 hours in total spent for the iterative surrogate-enabled optimization routine. The surrogate models are not perfect emulators of CE-QUAL-W2, which is why the overall surrogate-embedded framework is iterative, has retraining steps between iterations, and includes final confirmation by CE-QUAL-W2. Based on the large number of function-pair evaluations required to solve each optimization iteration, these additional steps add considerably less time than a single, non-iterative optimization approach with CE-QUAL-W2 embedded.

This routine requires several computing steps prior to optimization, including CE-QUAL-W2 model construction, calibration, and validation; design and implementation of CE-QUAL-W2 experiments to inform the surrogate model; and NARX architecture design, model training, and validation. CE-QUAL-W2 construction, calibration, and validation should be performed by an experienced modeler with knowledge of the river system. With careful implementation and data management, the design of experiments and NARX model training can be performed as an automated process. NARX architecture design can also be automated but should be supervised to ensure reasonable performance.

The relationship between spill and turbine releases and tailwater quality demonstrated by the results is in agreement with current Nashville District operator experience. During periods of water quality stress, a portion of discharges are diverted from the turbine release to the spill release to alleviate this stress. Old Hickory reservoir's operators currently make this determination based on past operator experience, and the exact amount of spill necessary in a specific situation to result in water quality compliance is unknown. In the Old Hickory case study, too little spill release results in suboptimal water quality outcomes and too much spill release results in unnecessary loss of potential hydropower production. The optimization methodology returns optimal turbine and spill release for scheduling on an operations timescale, reducing potential for downstream water quality

noncompliance and unnecessary loss of potential energy production.

III.8 Conclusions

This study demonstrated development and application of a novel method to optimize the value of hydropower production under a variety of operational constraints, including constraints on tailwater water quality, for hourly operations over a 10 day planning period for a USACE reservoir with turbine and gate control structures. The high-fidelity CE-QUAL-W2 model was employed to generate data for training NARX ANN models for prediction of discharge temperature and DO as a function of exogenous inputs, including upstream inflows, meteorological data, and structure releases. NARX models trained using an initial set of 729 CE-QUAL-W2 simulations were employed initially, GA optimization performed, and when necessary the NARX models were retrained using a CE-QUAL-W2 simulation at the discovered optimal solution, and optimization repeated. The retraining step is important in cases when the GA explores regions of the decision space not captured in the original training set, which is likely to occur in complex applications. Surrogate validity outside of the training region is difficult to evaluate and should be further researched (*Castelletti et al.*, 2012).

This methodology could be applied to other water quality constituents of concern such as total dissolved gas, phosphorus, nitrogen, or suspended sediments. Water quality at a single monitoring location is the focus here, but the process could be adapted to address water quality at additional point locations or to incorporate a metric for average water quality based on high-fidelity simulation outputs. This type of application would be valuable for assessing the impacts of river operations at water withdrawal locations for thermal and water treatment plants as well as known locations of protected species. Additionally, this approach can be applied over longer horizons on a less-refined timescale for seasonal or yearly planning; however, accuracy of inflow and meteorological forecasts must be considered for longer-term applications. For reservoirs with storage facilities, the problem could be reformulated with the end of day water level constraints as decision variables in a bilevel optimization problem; however, this adds computational expense. Efforts are currently underway to expand this methodology to a system of multiple controlled reservoirs. Future efforts include exploring additional means for improving constraint handling (*Ilich and Simonovic*, 2001), ANN

retraining (Yan and Minsker, 2006), and overall computational efficiency.

Chapter IV

ADAPTIVE NEURAL NETWORKS FOR EFFICIENT WATER QUALITY-CONSTRAINED HYDROPOWER OPTIMIZATION

IV.1 Introduction

Hydroelectric power generation serves as both a renewable energy source and a flexible power supplement for baseload generation (i.e., fossil and nuclear power production) during times of peak demand (*U.S. Department of Energy*, 2016b). Hydropower is expected to account for 27% of the anticipated growth in worldwide renewables production and 1.7% of the growth in U.S. renewables production through the year 2040 (*U.S. Department of Energy*, 2016a). This growth in power production must be achieved while fulfilling other reservoir objectives and constraints. Hydropower facilities and their impounded backwater serve many roles, including power production, navigation, recreation, water supply, and flood control. Hydropower operations can have environmental impacts, particularly due to releasing water on a peaking schedule in order to supply electricity to the grid during periods of high demand (*Jager and Smith*, 2008). Additionally, reservoir thermal stratification (i.e., when surface layers are warmer than deep layers, thereby reducing or eliminating vertical mixing) can be exacerbated by hydropower release decisions (*Dortch*, 1997).

This chapter demonstrates an approach for optimizing operating schemes, with a focus on efficiently determining hydropower outflow allocations while treating water quality impacts as operational constraints. This is accomplished by embedding an ANN WQM, a surrogate of a complex WQM, within a GA optimization framework and adaptively training the ANN model within the GA. Offline or static training alone, performed prior to the optimization run, results in poor accuracy for problems with complex search spaces; the broad sampling of training points may not produce accurate solutions in local regions and lead to false optima (*Yan and Minsker*, 2006).

This issue compounds when the feasible space is bounded by a set of constraints, as shown here. In many real-world constrained optimization problems, optimal solutions lie along constraint boundaries. When constraints depend on an approximation model and the true optimal solution lies

along the constraint boundary, offline training alone can produce solutions that are infeasible. Adaptive surrogate model updating within an optimization process balances exploration of the decision space and exploitation in regions with suspected optima. As the optimizer proceeds towards convergence, the surrogate model is updated to improve prediction quality in the region being searched. Building upon *Shaw et al.* (2017), we demonstrate how adaptively updating a surrogate WQM embedded within a population-based hydropower optimization routine improves solution quality. We know of no prior work that employs adaptive ANNs for constraint formulation within a GA routine, let alone for a hydropower optimization application.

IV.2 Adaptive Linked Neural Network-Genetic Algorithms

In offline ANN training, a set of potential model inputs is typically randomly generated and simulated by the original model that is to be approximated. The outputs of these runs are used to train an ANN approximator, which is then employed to solve for optima. This approach can perform well for simple problems (*Zou et al.*, 2007) with appropriate sampling. High-fidelity simulators typically model complicated relationships with nonlinearities, discontinuities, and local minima, making it difficult to develop an offline sampling plan. For problems requiring high-fidelity models, there is a need to employ surrogate models to solve within computational budgets, and offline ANN training alone is not likely to produce satisfactory optimization results. For these applications, an approach in which the ANN is updated with new information during its application within an optimization routine is necessary.

Yan and Minsker (2006) developed an adaptive ANN-GA approach and applied it to a ground-water remediation design optimizer. The full WQM was the linked multi-layer two-dimensional flow and transport model MODFLOW-MT3DMS. They implemented a caching system to improve performance by using the true WQM outcomes as the fitness values for population members previously sampled by the full WQM, and used the ANN for fitness value estimation otherwise. This reduced the number of calls to the ANN while improving GA performance. The authors concluded that the adaptive ANN with caching approach saved more than 85 percent of the full WQM evaluations required by the GA if solved without use of ANN surrogate models, while returning comparable quality solutions. This approach was later modified to account for sampling noise (Yan

and Minsker, 2011).

Zou et al. (2007) demonstrated an adaptive linked ANN-GA method to calibrate a computationally-expensive eutrophication model, where an ANN is used in place of the simulation model within the error-minimizing fitness function. For each final GA population, candidate solutions were grouped into clusters. The best solutions from each cluster formed a new set of simulations to be performed using the full WQM and then used for ANN updating. The authors note that this approach improved ANN capability for a particular desired usage rather than overall generalization (i.e., the goal of offline, one-step ANN training).

IV.3 Case Study Description

Here, we demonstrate the methodology by solving for optimal operations at Old Hickory reservoir; Old Hickory operations are described in detail in Chapter III and *U.S. Army Corps of Engineers* (1998). During the warm summer months, temperature and DO concentrations are highly stratified both longitudinally (along the direction of river flow) and vertically directly upstream of outlet structures. To better predict stratification conditions, the Nashville District uses the high-fidelity CE-QUAL-W2 model to simulate water quality throughout the reservoir as well as at reservoir discharge locations.

Outlet structures include tainter gates for spill flow and 4 Kaplan hydropower turbine units, each with a capacity of 25 MW. Release projections are made typically on an hourly or finer timescale 10 days in advance, and then updated daily. These projections consist of the number of active turbines to be used over time, as well as projected spill volumes. Spill releases are used when heavy precipitation is expected and operators are planning for flood conditions, and also as a means to improve discharge DO concentrations by incorporating oxygenated spill water when flow through the turbines has a low DO concentration.

IV.4 Optimization Problem Formulation

The adaptive optimization approach is demonstrated using the hydropower optimization problem defined in Chapter III, which has the objective of generating maximum power value subject to several operational constraints. USACE operations forecasting plans for the Cumberland River system are typically generated over a 10 day period and updated daily with a focus on the next day's operations (*U.S. Army Corps of Engineers*, 1998); the optimization scenario thus covers 1 day, or 24 hours. In order to demonstrate the adaptive ANN training approach, a single water quality constraint was applied (representing a lower bound on DO) and no constraint on temperature was considered.

IV.5 Methodology

Given unlimited computing resources, Equation III.7 would be solved using a high-fidelity WQM; however, high-fidelity models are computationally expensive, and therefore ill-suited to be used within optimization routines. Considering this limitation, water quality estimates are determined by a surrogate model, which is trained using the original model simulation outputs. The high-fidelity WQM here is CE-QUAL-W2, and the surrogate model is formulated as an ANN of the NARX form.

GA optimization is a flexible method that is capable of handling nonlinearities and discontinuities, as well as quasi-black box functions including ANNs as present in the objective and constraint functions noted above. The GA functionality in the MATLAB® Optimization Toolbox (R2016a, The MathWorks Inc., Natick, Massachusetts, United States) was used in this application. GA operators consist of elitism (where the best population members are passed directly to the next generation) and score-weighted selection for creating mutation and crossover children. For nonlinear constrained optimization problems, penalty and augmented Lagrangian methods attempt to evolve populations toward the feasible space when determining candidate solution fitness; here, an Augmented Lagrangian GA (ALGA) approach is used (*Conn et al.*, 1997).

An approach for incorporating an adaptive ANN-based constraint on water quality within a GA-based hydropower optimization process for determining hourly turbine releases is shown in Figure IV.1. First, an initial population of potential solutions that satisfy all hard constraints with the exception of water quality was created. Using a problem-specific creation function that accounts for constraint equations III.2-III.6, the initial population of operating scenarios is constructed using logical decision-making and random selection, starting with the first hour's turbine setting and progressing to the final hour. Using historical hourly operations data from 1987-2015, transition probabilities were determined for ramping up, ramping down, and maintaining turbine levels given

the previous hour's active turbines.

The initial population is divided into *K* clusters by the k-means method (*MacQueen*, 1967), which increases the diversity of training data sampling points. A member from each cluster is chosen to create a set of *K* training members. Additionally, if the operator's anticipated turbine operating pattern satisfies the constraints it is included in the initial population set; this manuscript uses past operations for demonstration, so they are used here in the place of anticipated operations. The initial NARX model is constructed by simulating the selected training members and the anticipated operations with the full CE-QUAL-W2 model and training the surrogate using the resulting set of outputs. The initial offline training builds a surrogate with broad predictive coverage over the design space, but poor detailed predictive capability. A cache of full CE-QUAL-W2 model outputs is updated every time the CE-QUAL-W2 model is called. In future generations if a previously-sampled population member is present, then the water quality estimations are provided by the cache rather than the NARX model. While NARX model estimation errors will never be fully eliminated, the caching step eliminates error at points where WQM results are known.

With the initial population assigned and offline surrogate training complete, the process enters into a GA phase stepping forward one generation. The feasible population member with the best fitness value is saved as x_{gen} . If the new population appears to contain no feasible solutions, then the member with the smallest constraint violation is chosen. If necessary, x_{gen} is simulated using the full CE-QUAL-W2 model, and if the stopping condition is not met an additional selection of A population members is chosen for additional sampling with CE-QUAL-W2. The surrogate model is updated using the expanded training data set. In an effort to improve population diversity, a random immigrants step is employed in which a portion of the population is replaced with new randomly generated new population members.

The following subsections further describe the resampling for ANN updating and the random immigrants replacement steps.

IV.5.1 Resampling for ANN Adaptation

The surrogate WQM's range of predictive power depends on the set of training data it is built upon. Even a very large randomly-generated training data set can yield a surrogate model that can-

Figure IV.1: Framework for adaptively-trained ANN water quality constraint within GA-based hydropower optimization routine.

not produce reliable predictions in the region of optima. The locations of these optima are unknown prior to optimization, so an approach to choose additional training points within GA optimization is employed here. As the GA progresses, the population of potential solutions converges to a set of solutions with improving fitness and estimated feasibility. Additionally, as the surrogate model improves from generation to generation, the estimated feasibility error reduces. For these reasons, generating training data from these improving populations is more beneficial than by random selection.

After the traditional GA step and x_{gen} simulation with the full CE-QUAL-W2 model, an additional A samples from the population are simulated by CE-QUAL-W2. This not only provides additional training data to the ANN, but also eliminates prediction errors at these points going forward. The members of $final_pop_{gen}$ considered for additional sampling are (i) feasible with respect to all constraints that are not dependent upon the surrogate WQM, (ii) have superior fitness values than the previous best feasible solution found, and (iii) have not yet been simulated using CE-QUAL-W2. These members are sorted primarily by the ANN-dependent constraint violation and secondarily by fitness value, both ascending. The highest ranked members are then selected (i.e., those approximated first as most feasible, and secondarily of best fitness) for simulation.

IV.5.2 Random Immigrants Replacement

Dynamic optimization problems (DOPs) are those in which the problem (i.e., the decision variables or the objective or constraint functions) changes during the solution-solving process (*Tinos and Yang*, 2007). For DOPs, intermediate potential solutions may no longer be effective going forward. One method for approaching DOPs is to restart the optimizer under the new conditions, which is computationally inefficient. In cases like the one shown here, changes in the problem are related to the trajectory of the optimizer, and there are techniques which use prior solutions to move forward under a problem's new conditions. Methods such as hypermutation and random immigrants replacement aim to avoid premature GA convergence by improving population diversity, thereby improving the algorithm's effectiveness for solving DOPs. Hypermutation is triggered when changes in the DOP are detected based on current population members; however, the current population may not represent the search space where changes are occurring, in which case hyper-

mutation can fail (*Grefenstette*, 1992). Alternatively, random immigrants is a method in which a portion of the population is routinely replaced with new members, inspired by immigrants entering a biological population. Studies have found the random immigrants approach to be favorable for solving problems whose response surface (i.e., objective and/or constraint function outputs) changes dynamically during searching (*Grefenstette*, 1992; *Tinos and Yang*, 2007).

The optimization formulation here exhibits such dynamic changes, since water quality predictions change each time the surrogate model is updated. The replacement rate R is the percentage of the population members to be replaced in each generation. In each generation, the optimizer replaces the least desirable population members. The algorithm ranks population members by weighted average constraint violation by normalizing the violation of each constraint across all population members, averaging across all constraints, and then ranking from least to most feasible. Ranking fully feasible members is also dependent upon fitness, with best fitness value ranking last. The optimizer then replaces the earliest-ranked (i.e., the least desirable) R percentage of the current population with new members generated by the creation function used to generate the initial population.

IV.6 Experimental Setup

The Nashville District USACE provided a CE-QUAL-W2 version 3.5 model for Old Hickory reservoir. This model underwent calibration and validation steps for prediction of water level, temperature, and DO (*Shaw et al.*, 2017). Sensitivity testing using the model determined an appropriate NARX model architecture for predicting tailwater DO, as this location is considered the water quality point of compliance and monitoring by dam operators. Selection of NARX model architecture, including number of neurons, layers, delays, and exogenous variables set, is described in *Shaw et al.* (2017).

Using the problem formulation described earlier, operations at Old Hickory reservoir were optimized on an hourly timestep from midnight 3 August through midnight 4 August 2005 (Julian days 215-216). This date was chosen because 2005 was the validation year during CE-QUAL-W2 model development, so operations and water quality data were available. Additionally, during this period in late summer the reservoir is vertically stratified and water quality issues influence operations. Old

Hickory has a power rating r of 25 MW for each of its four turbines. The employed cost curve C(i) (see *Shaw et al.* (2017)) was created from historical operating patterns. Lower and upper bounds on water levels were based on the USACE guide curve and set to $p_l = 134.722$ m and $p_u = 135.636$ m, respectively. The maximum number of consecutive hours allowable without generation is z = 6, and the turbine rate change limit is c = 1 turbine/hour. The minimum DO concentration at the dam discharge is set to $o_l = 7$ mg/L; the true operations on this day in 2005 resulted in DO concentrations below 7 mg/L, so this setting provides an adequate demonstration of how the methodology successfully discovers the feasible space under a demanding constraint limit.

The problem was solved by four approaches: (i) without random immigrants replacement or adaptive sampling (beyond simulating the best solution x_{gen} after each generation), (ii) with replacement but without additional sampling, (iii) with additional sampling but without replacement, and (iv) full adaptive framework shown in Figure IV.1 including additional sampling and random immigrants replacement.

Surrogate retraining is performed in all four scenarios; this means the surrogate model changes between each generation, but retraining is influenced by the introduction of additional training data beyond x_{gen} in cases 3 and 4. Based on previous work, the GA population size, pop_size , was set to 480. Additional GA settings are provided in Table IV.1. In cases 2 and 4, the replacement rate R = 0.2 was chosen. In cases 3 and 4, the number of additional samples simulated by the full CE-QUAL-W2 model is four for generations where x_{gen} does not require simulation and three for generations where x_{gen} requires simulation by CE-QUAL-W2, resulting in a total of four CE-QUAL-W2 simulations per generation.

IV.7 Results

Because the methodology employs random number generation, each experiment was performed eight times, with each of the four approaches tested using the same eight random number generator seeds. The power values (first term in Equation III.1) of the resulting best feasible solutions are provided in Table IV.2. Figure IV.2 shows the power value means and ranges, as well as the means and ranges of the ANN function call and CE-QUAL-W2 simulation counts for each case. All trials returned a solution in the feasible space. As expected, Case 1 performed the worst, with all eight

Table IV.1: GA and overall framework settings.

Population size (<i>pop_size</i>)	480		
Objective function tolerance	10^{-20}		
Constraint function tolerance	10^{-20}		
Creation function	logical decision-making with constraint		
	consideration and random selection		
Elite count	ceiling(0.05*population size)		
Crossover function	single point		
Crossover fraction	0.95		
Mutation function	integer Gaussian		
Mutation fraction	0.05		
Selection function	stochastic uniform		
Max generations (stopping condition)	50		
Initial training set size (<i>K</i>)	10		
Additional samples for ANN training (A)	3 or 4		
Replacement rate (R)	0.2		
Mutation function Mutation fraction Selection function Max generations (stopping condition) Initial training set size (<i>K</i>) Additional samples for ANN training (<i>A</i>)	integer Gaussian 0.05 stochastic uniform 50 10 3 or 4		

trials converging on local minima. The addition of either random immigrants to the population pools or adaptive additional sampling improved solutions. Implementing random immigrants and additional sampling together yielded the best results, improving solutions by 8.5% on average over Case 1. Cases 3 and 4 have a similar range of results, but on average Case 4 performed best. Further analysis of the Case 4 trials revealed decreasing solution improvement as the optimizer proceeds (Figure IV.3). This means later generations provide smaller gains in power value than provided by earlier generations.

Random immigrants replacement aims to counter premature homogenization of the population.

Table IV.2: Power values for best feasible solutions found by the four approaches in eight trials.

Random	Case 1:	Case 2:	Case 3:	Case 4:	
Number	Without	With Replacement &	Without Replacement	With Replacement	
Generator	Replacement or	Without Additional	& With	& With Additional	
Seed	Additional Sampling	Sampling	Additional Sampling	Sampling	
1	42000	43750	43500	45250	
2	41500	43750	47500	44250	
3	40500	44250	47750	47750	
4	43750	43750	43750	47750	
5	45250	46500	47500	47750	
6	43750	47500	43750	43750	
7	42500	44000	44250	47500	
8	43000	41000	44250	47500	

Figure IV.2: Means and ranges for (a) power values of the best feasible solutions found, (b) total ANN function calls, and (c) total CE-QUAL-W2 simulations for the four tested cases.

The average standard deviation of the decision variable makeup in each generation, SD_{gen} , is a metric which can demonstrate replacement's impact on population diversity. Average standard deviations are calculated by scaling decision variables to a [-1.0, 1.0] range, calculating the standard deviation of each variable, and averaging these values. This is computed after the GA minimization step in each generation. The population standard deviations at each generation for each case, averaged over the eight simulations, is shown in Figure IV.4. Standard deviations are maintained at higher levels for the two approaches which included random immigrants replacement. In all four cases, standard deviations reach approximate minimums around generation 25. Because the problem is dynamically changing via the water quality constraint, standard deviations do not converge to zero as they would for a static optimization problem.

The caching step eliminates prediction errors at points which have been evaluated by the full simulation model by returning the full simulator (rather than the ANN) water quality predictions during future constraint function calls. This step also lessens the number of calls to the ANN function as optimization progresses. The percentage of the population intersecting with the cached

Figure IV.3: Generation number versus (a) power values for newly-discovered incumbent solutions and (b) percentage change in incumbent solution power value for the Case 4 trials.

Figure IV.4: Population average standard deviations for the four tested cases.

set at each generation, averaged over the eight trials, is shown in Figure IV.5. This metric reflects on the convergence of the GA, with populations becoming less diverse as optimization progresses.

IV.8 Discussion

Figure IV.2 indicates the modified optimization methodologies (Cases 2, 3, and 4) provide solutions of superior fitness value compared to those provided by the unmodified optimizer (Case 1). This reveals turbine release patterns which provide additional hydropower revenue without forcing discharge flow DO concentrations below the minimum allowable. These refined optimal release schedules are a function of water quality and depend upon many factors, and are therefore likely unknown to hydropower decision-makers without optimization.

As seen in Figure IV.5, the test cases without replacement ultimately converge to populations with a high percentage of cached (i.e. previously simulated using CE-QUAL-W2) points, while the cases with replacement converge to populations with a lower proportion of previously simulated members. This difference is greatest for the case with additional sampling (Case 2). Additionally, the cases with additional sampling exhibit smoother growth in percentage of the population in the cache, while the cases without additional sampling exhibit occasional drops and less steady growth. The approaches providing more samples to the training data set result in ANN surrogate models with smoother changes in prediction values from generation to generation, meaning the makeup of the population from generation to generation is not dramatically altered due to adjustments to water quality constraint values. For the approaches that only provide additional training data when a new suspected optimal feasible solution is discovered and checked by the full CE-QUAL-W2 model, the training data supply is more sparse and is updated less frequently, which can cause more extreme adjustments to the surrogate model when new data is supplied.

The two cases with additional training data sampling provided the highest quality solutions overall. This comes with the computational drawback of additional calls to CE-QUAL-W2, as seen in Figure IV.2. Including the simulations used for initial NARX training, the four cases required on average 27, 36, 62, and 210 CE-QUAL-W2 simulations. There is a less-clear relationship in terms of required ANN function calls. While results indicate that Case 4 has the highest likelihood of returning a superior solution, the combined approach also has a greater computational burden in terms

Figure IV.5: Averaged proportions of GA water quality solutions found within cache at each GA generation for the four test cases.

of CE-QUAL-W2 simulations. Translating function and simulation calls to execution time depends on problem specifics and computational resources. For this problem, ANN water quality surrogate predictions and CE-QUAL-W2 simulations each required approximately 0.08 and 55 seconds, respectively, when solved in parallel batches on a 64-bit Windows 10 computer equipped with a 3.40 GHz Intel® quad core processor. Adaptive resampling with the original simulation model, even to a limited extent, can therefore result in a notable computational expense increase. Additionally, results indicate that later optimization generations provide less solution improvement than earlier generations, so halting the optimizer early could reduce computational burden with limited impact on solution quality. These factors should be considered when determining which approach is most appropriate for future applications. As always, the modeler must consider the potential trade-off between computational expense and the benefits provided by improved solution quality.

This demonstration yielded a potential average improvement in power value of 8.5% or \$3,657 for a single 24-hour interval during a period of low discharge DO concentrations. Figures A.1 and A.4 in Appendix A show a period of approximately 100 days in which discharge DO levels were measured in the vicinity of the regulatory limit of 5 mg/L. Assuming the \$3,657 additional power value provided daily is realized over the 100 day period, the algorithm modifications have the potential to improve power value by approximately \$360,000 while maintaining water quality

in the Old Hickory tailwater.

Using a surrogate model in place of the full CE-QUAL-W2 model delivered computational savings. The ALGA method for constrained GA optimization requires a series of subproblems to be solved within each generation; therefore, more than *pop_size* calls to the objective and constraint functions are made. In each generation the GA minimizer step required approximately 1450 constraint function evaluations. Over 50 generations (the chosen stopping condition), each solution required approximately 72,500 constraint evaluations. Without using a high performance computing cluster, this many evaluations of the full CE-QUAL-W2 model (which in this case takes 1-3 minutes to evaluate on a desktop computer) would not be feasible for real-world operations planning.

IV.9 Conclusions

We demonstrated an approach for solving a constrained optimization problem with a dynamically-changing constraint formulated as a ANN model, a surrogate of an expensive simulation model. The surrogate model replaces a full simulation model to reduce computational expense. Because the ANN model is not an exact emulator, prediction errors can lead the optimizer to converge on infeasible solutions. To counteract this, two approaches were tested. The first approach, random immigrants replacement, involves injecting new members within each population. This is an easily-implemented technique for increasing population diversity, which is of particular importance for DOPs. The second approach improves surrogate model prediction quality in a way that is influenced by the optimization trajectory. Additional training data samples are routinely chosen from GA populations and simulated with the full simulation model, improving surrogate performance in regions of suspected optimality.

These approaches were used to solve a high-constrained hourly operations planning problem for a single, multipurpose reservoir with hydropower capabilities. The objective was to maximize the value of power generated, while satisfying numerous constraints including a constraint on tailwater DO. DO predictions were generated by a ANN model trained to emulate the CE-QUAL-W2 hydrodynamics and WQM. Of the approach combinations tested, combining random immigrants replacement and adaptive additional sampling produced superior fitness values, and when used individually improved results over trials where neither approach was used.

Prior work in the area of adaptive model updating within optimization relies on surrogate model forms which provide statistical information (for example, GPs as used in *Bichon et al.* (2013)). Black-box emulators like ANNs do not produce the statistical information necessary to use such techniques, so a population-based resampling approach was described here. The algorithm modifications shown here could prove useful for solving any optimization problem where a population-based optimizer is appropriate, a constraint depends on an black-box inexact emulator of an expensive simulation model, and there is a need for emulator construction and/or training to be influenced by outcomes from the optimization process itself. Additional research on the level of additional sampling necessary for improved results is needed. Developing a non-problem-specific heuristic for this would be greatly beneficial when exploring additional applications for the framework shown here.

Peaking hydropower operations have been known to negatively impact river systems. The modified optimization methodology provides solutions of superior fitness value compared to those from the optimizer without the two modified features. This reveals an even greater potential for additional hydropower generation at times of peak demand than shown in *Shaw et al.* (2017), translating to additional revenue generation, without having an adverse impact on water quality. Hydropower producers are often required to make tradeoffs between power generation and water quality objectives (*Loftis et al.*, 1985). The results seen here indicate that an approach such as this is capable of discovering release patterns which improve both power generation revenue and water quality simultaneously.

Chapter V

SENSITIVITY ANALYSIS FOR INFORMED WATER QUALITY-CONSTRAINED HYDROPOWER SYSTEM OPTIMIZATION

V.1 Introduction

Previous chapters focused on optimizing hydropower production for a single reservoir subject to a variety of constraints, including constraints on water quality informed by a high-fidelity simulation model. It is often the case that reservoirs with hydropower capabilities are not operated in isolation, but are part of a larger water management system, including other hydropower-producing waterbodies. Operations that optimize power production at individual reservoirs may not provide system-wide maximal power. Upper reservoir power production also depends on lower reservoir pool levels, which are influenced by lower reservoir operations. Including water quality considerations further complicates this, as downstream water quality is driven by upstream releases.

With the advantages of flexibility and global searching, GAs have a general disadvantage of high computational expense, which increases with larger problem size. GAs do not scale well; as the number of decision variables increases, the search space becomes exponentially larger. With additional constraints, the problem may require a large number of function evaluations to find the feasible space, let alone a globally optimal solution. A GA optimizer is the foundation of the reservoir optimization routine discussed earlier. Real-time dam operations optimization for a river system with multiple hydropower facilities represents a highly-constrained large-scale problem. To efficiently implement the methodology developed for a single reservoir on a larger system of reservoirs, an approach for reducing computational expense while expanding the problem size should be explored.

One approach to counteract expanding problem size is problem segmentation. This involves breaking a large-scale problem into segments and optimizing them individually; the optimization results can then be used to solve a reduced network-level optimization problem (*Hegazy and Rashedi*, 2013). The challenge with this approach in this application is the dependencies of downstream

reservoir water quality on the releases from upstream reservoirs, downstream reservoir water availability for power production on upstream reservoir releases, and upstream reservoir head differential on tailwater elevations, which may fluctuate based on downstream reservoir pool levels. In order to fully optimize a system of reservoirs with water quality constraints, reservoirs should not be assumed to operate in isolation, without the feedforward impacts of water quality or the feedforward and feedback impacts of water balance on hydropower production. However, if it can be shown that varying operations within reasonable bounds at individual reservoirs has little or minimal impact on water quality or balance at other reservoirs in the system, a segmented approach could be a viable method for expanding the water quality-constrained optimization approach here to larger systems of reservoirs.

An extensive body of literature exists examining river and lake hydrodynamic and water quality sensitivity to changes or uncertainties in model inputs or structure. In most studies, researchers modify model structure such as resolution or dimension (*Muñoz-Carpena et al.*, 2007; *Blumensaat et al.*, 2014), calibration parameters such as kinetics rates or oxygen demands (*Spear and Hornberger*, 1980; *Reichert and Vanrolleghem*, 2001; *Sincock et al.*, 2003; *Rangel-Peraza et al.*, 2016; *Cheng et al.*, 2018), or boundary conditions such as hydrological or meteorological conditions (*Henderson-Sellers*, 1988; *Reichert and Vanrolleghem*, 2001; *van der Linden et al.*, 2015; *Rangel-Peraza et al.*, 2016) and then observe changes to model outputs. Some sensitivity analyses are intended to alert WQM users of potential impacts of uncertainties and how they may propagate through to model predictions (e.g., *Blumensaat et al.* (2014)). Other studies use sensitivity analyses to explore waterbody response to extreme boundary conditions, such as climate change scenarios (e.g., *van der Linden et al.* (2015)).

Solutions to optimization problems are sensitive to many factors, including objective and constraint functions (*Padula et al.*, 2006) and decision variable choice (*Gramacy et al.*, 2013). Constraint function uncertainty (in this case, driven by uncertain boundary conditions) is the main interest of this application. It is possible to assess solution sensitivity to linear constraints by studying marginal values and "right hand side" and coefficient ranges (*Bisschop*, 2018), but these techniques are not valid for highly nonlinear and black box functional forms. Quantifying model output uncertainties requires first identifying and characterizing all sources of uncertainty (*Eslick et al.*, 2014). Here, the uncertainty source of interest is the neighboring hydropower facility operations that for-

mulate boundary conditions. Defining this uncertainty with ranges and probabilities is not possible as the operations are human-driven, based on a large set of operational constraints, and in the case of a fully-optimized system of reservoirs also depend on their own potentially-uncertain boundary conditions.

Here, we look toward expanding the prior Chapters' work to a system of reservoirs by performing a necessary exploration of the feedforward water quality relationship between two reservoirs connected in series. The sensitivity of release water quality at the downstream reservoir due to changes in the upstream boundary condition (i.e., upstream dam operations) is examined. Because the optimization routine is designed to be used for hourly operational planning over a typical planning period, the sensitivity analysis is focused on short-term fluctuations in water quality due to changing operations, not seasonal effects. The purpose of the boundary condition sensitivity analysis is to develop a computationally efficient method for optimizing a system of reservoirs in which individual reservoirs can be handled individually and optimized in parallel. Therefore, a straightforward bracketing approach testing a range of boundary conditions, without the effort of defining uncertainty conditions, is selected.

V.2 Case Study Description

The sensitivity analysis was conducted on Old Hickory and Cordell Hull reservoirs on the Cumberland River system. These two run-of-river projects are linked in series, with Cordell Hull located upstream and Old Hickory downstream (see Figures I.3, III.1, and V.1). Both have total hydropower capacities of 100 MW; while Old Hickory's capacity is spread across four 25 MW turbines, Cordell Hull is equipped with three 33.3 MW turbines. Similar to Old Hickory reservoir, Cordell Hull is equipped to allow releases through a spillway, typically used for flood control and water quality mitigation purposes. Both reservoirs are operated on a peaking pattern, with generation greatest at times of high power demand.

The hydrodynamics and water quality behaviors of both reservoirs were modeled in 2D using CE-QUAL-W2, which is well-suited for riverine waterbodies such as these. The Old Hickory modeling efforts were described earlier in Chapter III. As with Old Hickory reservoir, Cordell Hull reservoir's CE-QUAL-W2 model was upgraded to version 3.5, calibrated, and validated. Calibra-

tion and validation time series results and water quality profiles are provided in Appendix B as Figures B.1 through B.6. Calibration and validation error metrics are summarized in Table V.1.

V.3 Methodology and Experimental Setup

This methodology explores the dependency of Old Hickory reservoir water quality on Cordell Hull reservoir releases. The chosen testing period is the same 10-day planning period utilized in Chapter III, and the sensitivity analysis tested temperature and DO sensitives separately as discussed below. We utilized CE-QUAL-W2 models for the two reservoirs to determine water quality changes as a result of changes to the operating pattern. In this case study, the outflow rates and water quality constituent concentrations of Cordell Hull become the mainstem inflow rates and water quality constituent concentrations for Old Hickory reservoir downstream. Figure V.1 shows the bathymetries of the two reservoirs and indicates the locations of withdrawal structures, consisting of turbine and spillway release points.

The interaction between reservoirs in terms of water quality is a feedforward relationship. Releases from upstream reservoirs are transported downstream. Water quality feedback may need to be considered for applications in an estuarine setting or when pumped storage hydropower is present, but constituents have no means of transport from downstream reservoir to upstream reservoir in traditional river systems like the Cumberland River.

To test the impact of Cordell Hull's operations on Old Hickory reservoir's tailwater water quality, we performed a series of CE-QUAL-W2 simulations in which we modified Cordell Hull's withdrawal patterns over the planning period used in Chapter III, JDAY 215-225 during the year 2005. Target water elevations define the overall water volume passed through the dam prior to optimization; we constructed the experiments defined here with this in mind. Over this period there was no recorded spill flow out of Cordell Hull dam, and the first test simulation (CH-1) performed diverted the turbine flow to spill flow, resulting in all flow passing through the spillway. The second test simulation (CH-2) converted the hourly peaking turbine flow pattern to a daily average flow through the turbines. The third test simulation (CH-3) went further, by setting turbine releases at Cordell Hull to a fixed flowrate over the full 10-day planning period. In contrast, the fourth test simulation (CH-4) exaggerates the turbine discharge peaking pattern from the actual 2005 operations. Table

Table V.1: Summary of Cordell Hull CE-QUAL-W2 model calibration and validation results.

	Calibration	Validation
Year	2000	2005
Computational Time (minutes)	15	17
Elevation AME ^a (meters)	0.045	0.032
Dam Releases:		
Temperature AME ^a (°C)	0.658	0.745
DO AME a (mg/L)	1.245	1.298
In-stream Profiles:		
Temperature AME ^a (°C)	0.938	0.866
DO AME ^a (mg/L)	1.096	1.102

^a Errors are presented as absolute mean error (AME). In-stream profile measurements of temperature and DO were collected at 9 locations on 2 dates in the calibration year (2000) and at 9 locations on 5 dates in the validation year (2005).

Figure V.1: Bathymetries of the mainstem sections of Cordell Hull and Old Hickory reservoirs, with turbine (red) and spill (blue) release elevations indicated by arrows and summer power pool storage zones shown in yellow.

V.2 summarizes the Cordell Hull release scenarios tested, and Figure V.2 provides the Cordell Hull actual turbine and spillway discharges over the defined planning period (CH-0), as well as the four modified flow regimes that were tested.

Cordell Hull's experimental outflows and discharge temperatures and DO concentrations then replaced the Old Hickory mainstem inflows, resulting in changes in Old Hickory tailwater temperature and DO concentrations. This allows for analysis of how changing operations at a singular dam propagates water quality changes downstream. We performed this twice, first assuming Old Hickory actual outflows from 2005, and then using the Old Hickory outflows from Experiment 2 in Chapter III, with simultaneous constraints on DO and temperature (see Subsection III.6.2 for additional information).

V.4 Results

Figure V.3 provides the CE-QUAL-W2 discharge temperatures at both reservoirs resulting from the experimental Cordell Hull release scenarios. Scenario CH-1, in which the only outflow modification was diverting the turbine flow to spillway flow, exhibited the smallest change from CH-0. The extreme peaking scenario (CH-4) exhibited the second smallest change, and the scenarios with daily (CH-2) and full 10-day averaged (CH-3) flows resulted in the greatest differences. The maximum difference at any time at Cordell Hull's release is approximately 0.5 °C, and at Old Hickory's release is 0.6 °C.

Figure V.4 provides discharge DO concentrations at both reservoirs resulting from the experimental Cordell Hull release scenarios. The temperature results echo the same general patterns exhibited by the DO results. Scenario CH-1 exhibited the smallest change from CH-0, CH-4 exhibited the second smallest change, and the smoothed scenarios CH-2 and CH-3 resulted in the greatest

Table V.2: Cordell Hull release scenarios used in sensitivity analysis.

Name	Description
CH-0	2005 actual turbine and spillway discharges (all flow released through turbines)
CH-1	CH-0 discharges swapped (all flow released through spillway)
CH-2	CH-0 hourly peaking turbine flow pattern converted to a daily average flowrate
CH-3	CH-0 hourly peaking turbine flow pattern converted to a 10-day average flowrate
CH-4	CH-0 turbine discharge peaking pattern exaggerated

Figure V.2: Cordell Hull baseline (CH-0) and experimental (CH-1, CH-2, CH-3, and CH-4) turbine and spill releases over the 10-day planning period.

Figure V.3: Cordell Hull and Old Hickory baseline (CH-0) and experimental (CH-1, CH-2, CH-3, and CH-4) discharge temperatures and differences from baseline temperatures.

differences. The maximum difference at any time at Cordell Hull's release is approximately 0.6 mg/L, and at Old Hickory's release is 0.3 mg/L.

For each experiment, the water quality prediction AME over the 10-day operating period due to changes in Cordell Hull releases was computed, as provided in Table V.3. Because of the system's feedforward water quality relationship, Old Hickory releases impact Old Hickory release water quality, while Cordell Hull releases impact release water quality at both reservoirs.

V.5 Discussion

Discharge water quality at the downstream reservoir Old Hickory does exhibit some sensitivity to operations at the upstream Cordell Hull reservoir, although this sensitivity is small. For both temperature and DO, the fluctuations caused by changing Cordell Hull operations are greater at the Cordell Hull discharge and dampened further downstream at the Old Hickory discharge, as expected. The approximate upper two thirds of Old Hickory's 97.3 miles of impounded backwater is well-mixed, even during the late summer when the lower end of the reservoir becomes vertically stratified. The stratified zone, which drives Old Hickory reservoir's discharge water quality, is resistant to mixing due to low density water stored at the surface and high density water stored deeper in the forebay. If stratification is present, minor fluctuations in water quality upstream are not sufficient to offset density gradients in the forebay and induce mixing. Although minor fluctuations are seen in Figure V.3 and Figure V.4, Old Hickory discharge water quality during this time period is relatively stable regardless of Cordell Hull operations.

Table V.3: Cordell Hull and Old Hickory release temperature and DO concentration differences between experimental Cordell Hull release scenarios and 2005 (CH-0) releases, computed as AME.

Flow Release Pattern		Temperature (°C)		DO (mg/L)	
Cordell Hull (CH)	Old Hickory (OH)	СН	OH	СН	ОН
CH-1	2005	0.017	0.062	0.026	0.025
	Exp 2	0.017	0.077		0.048
CH-2	2005	0.167	0.110	0.109	0.042
	Exp 2		0.103		0.072
CH-3	2005	0.167	0.123	0.129	0.065
	Exp 2	0.167	0.128		0.090
CH-4	2005	0.073	0.057	0.049	0.033
	Exp 2		0.075		0.045

Figure V.4: Cordell Hull and Old Hickory baseline (CH-0) and experimental (CH-1, CH-2, CH-3, and CH-4) discharge DO concentrations and differences from baseline DO concentrations.

The scenario in which all Cordell Hull outlet flow is diverted from the turbines to the spillway resulted in the smallest alteration to water quality downstream. This is due to the small elevation difference between spill and turbine release structures, as seen in Figure V.1. Regardless of which structure at Cordell Hull is used for releases, water is drawn from the same approximate depth and stratification has little impact on release water quality. This may not be the case when upstream reservoirs are constructed with release structures located further apart. For example, a scenario in which the release structure of Old Hickory, whose turbine withdrawal point is 15 meters below the spillway withdrawal, is located at the upstream reservoir would likely be a system in which downstream water quality is much more sensitive to upstream structure release choice than the system used for sensitivity analysis here.

The tested Cordell Hull releases are not all realistic examples of hydropower release patterns. For example, hydropower typically operates on a peaking pattern to supply power during peak demand periods, so scenarios CH-2 and CH-3 will likely never occur. The sensitivity analysis aims to provide insight into the potential for water quality prediction errors due to changes in boundary conditions. The conditions tested, though somewhat unrealistic, represent "extreme conditions" with regard to peaking pattern severity. Water quality sensitivity appears to be small when assessed using the extreme conditions, so actual boundary conditions (i.e., hydropower and spill releases) will likely produce even smaller errors. In other words, the sensitivity analysis approach uses extreme boundary conditions as a means for determining an upper limit on expected water quality prediction errors due to changes in upstream release decisions.

This sensitivity analysis aims to inform hourly optimization of the case study reservoirs subject to one or more constraints on Old Hickory reservoir water quality; for example, Experiment 2 applies simultaneous lower bounds on DO concentrations and temperature of the Old Hickory discharge. Subplot (e) in Figures V.3 and V.4 provide the error for Old Hickory discharge water quality, assuming the Chapter III Experiment 2 Old Hickory discharges and the various experimental upstream Cordell Hull release patterns; however, since water quality predictions constitute a constraint on operations, errors away from constraint boundaries are of little interest. Chapter III Experiment 2 applied lower bounds on discharge DO ($o_l = 7 \text{ mg/L}$) and temperature ($t_l = 25 \text{ °C}$), and Figures V.5 and V.6 compare Old Hickory discharge water quality values using Cordell Hull baseline compared to experimental operations. The best solution found for Experiment 2 was not fully feasible with

respect to DO or temperature constraints over the full 10-day period, which is indicated by values less than o_l and t_l present along the temperature and DO response to CH-0 axes. Focusing on the constraint boundaries, quadrants two and four represent areas of concern, as they contain predictions which shifted across the constraint limit as a result of differences in the upstream boundary condition. Simply put, prediction differences here cause infeasible timepoints to be falsely determined as feasible (and vice versa) due to differences in upstream reservoir discharge. Although CH-1 and CH-4 overall provide water quality outcomes more similar to CH-0 than do CH-2 and CH-3, the differences overall are minimal and there are no additional trends visible near the constraint boundary. These results indicate that Old Hickory reservoir discharges are fairly independent from the operating pattern at the upstream reservoir over this time period. Therefore, a segmented approach for optimizing the Cordell Hull-Old Hickory linked system, in which reservoirs are optimized independently with assumed boundary conditions, will likely result in minimal errors in downstream water quality predictions.

V.6 Conclusions

For two reservoirs with hydropower capabilities linked in series, we assessed the sensitivity of the downstream reservoir's discharge water quality in response to the upstream reservoir's discharge pattern. Determining independence between these variables could enable expanded application of the previously-developed optimization routine (detailed in Chapter III) from single reservoirs to reservoir systems. Here, we used the linked Cordell Hull-Old Hickory system to demonstrate a method for analyzing downstream water quality dependency on upstream release scheduling over a typical 10-day operating period. Assuming a fixed volume of water is passed through the upstream Cordell Hull reservoir, these results indicate minor impacts on downstream water quality predictions. For the demonstrated problem formulation with defined lower bounds on temperature and DO, prediction errors caused by differences in upstream boundary condition indicate minimal impact on potential solutions to an optimization procedure, where water quality constraints are defined by these predictions.

This study analyzed the downstream propagation of water quality changes in a system of two reservoirs linked in series. We fixed the total volume of flow released from the upstream reservoir

Figure V.5: Old Hickory release temperatures at all timepoints in 10-day planning period assuming operations found in Chapter III Experiment 2, assuming Cordell Hull baseline releases (CH-0) along the x-axis and experimental releases (CH-1, CH-2, CH-3, and CH-4) along the y-axis. Horizontal and vertical lines represent constraint boundaries.

Figure V.6: Old Hickory release DO concentrations at all timepoints in 10-day planning period assuming operations found in Chapter III Experiment 2, assuming Cordell Hull baseline releases (CH-0) along the x-axis and experimental releases (CH-1, CH-2, CH-3, and CH-4) along the y-axis. Horizontal and vertical lines represent constraint boundaries.

over each day or the planning period as a whole and modified the time series of upstream reservoir discharges by adjusting peaking intensity. This reflects the typical decision-making process at these reservoirs for short-term planning, in which total release volumes are defined first and then operations are determined on a refined timestep in order to best meet constraints and objectives. While changes to the water balance of the two reservoirs here are likely limited, this is still an important consideration when determining the feasibility of using a segmented optimization approach. Power generation is a function of the headwater and tailwater head difference, so even small errors in headwater or tailwater elevation predictions at specific instances in time over the operating period could result in errors in power production estimates, which drive the direction of an optimizer seeking to maximize power generation. Future work should expand this sensitivity analysis to explore the impacts of boundary condition flow differences on water balance (and therefore hydropower production).

We formulated this sensitivity analysis around the current case study system with the aim of optimizing operations over a concise 10-day period, with water quality considerations solely at a tailwater location. Other waterbody systems may have different concerns, such as an interest in water quality at specific locations within the waterbody itself, including spawning grounds of sensitive species, water utility withdrawal points, or thermal power plant withdrawal and/or discharge points. The sensitivity analysis methodology demonstrated is easily applied to such scenarios.

Chapter VI

CONCLUSIONS AND FUTURE WORK

VI.1 Conclusions

In this work, we described and demonstrated an approach for computing globally optimal power generation schemes for a hydropower reservoir using high-fidelity WQMs, surrogate modeling techniques, and multidimensional optimization methods. By combining these methods, we were able to include high-fidelity water quality constraints within dam release decision-making on an operational timescale. We applied the approach to a single multipurpose reservoir with hydropower capabilities and used the surrogate-enabled optimizer to explore the trade-offs between spillway and hydropower flow releases. We then explored methods to improve optimization solution quality. Finally, we investigated the sensitivity of downstream water quality on upstream boundary conditions to better inform future applications of the approach to a larger system of reservoirs.

We introduced the overall optimization methodology and case study reservoir in Chapter III. Old Hickory reservoir, located on the Cumberland River and operated by the USACE Nashville District, is a run-of-river hydropower facility with downstream water quality concerns. The reservoir is modeled using the high-fidelity hydrodynamics and water quality model CE-QUAL-W2, but the model is not currently employed for decision-making due to computational expense. The CE-QUAL-W2 model generated data for training NARX ANN surrogate models which predict discharge temperature and DO as a function of exogenous inputs, including upstream inflows, meteorological data, and structure releases. Validation tests revealed that the ANN model form successfully emulates the dynamic water quality simulator. We utilized the ANN model within a genetic algorithm optimization approach to maximize hydropower generation subject to constraints on dam operations and water quality. The model successfully reproduced high-fidelity reservoir information while enabling 6.8 and 6.6 percent increases in hydropower production value relative to actual operations for DO limits of 5 and 6 mg/L, respectively, while witnessing an expected decrease in power generation at more restrictive DO constraints. Exploration of simultaneous temperature and DO constraints

revealed capability to address multiple water quality constraints at specified locations. The reduced computational requirements of the new modeling approach provides decision support for reservoir operations scheduling while maintaining high-fidelity hydrodynamic and water quality information as part of the optimization decision support routines.

Chapter IV focused on the optimizer itself, exploring modifications to the optimization algorithm in an effort to improve solution quality. Because the ANN surrogate model is not an exact emulator, prediction errors can lead the optimizer to converge on infeasible solutions. To counteract this, two approaches were tested. The first approach, random immigrants replacement, is a technique to improve GA population diversity by injecting new members within each population. Improving population diversity is of particular importance for DOPs. The second approach involved soliciting additional surrogate model training data adaptively mid-optimization. Additional training data samples were chosen from GA populations and simulated with the full simulation model, improving surrogate performance in regions of suspected optimality. We merged these two approaches within the optimization methodology introduced in Chapter III in order to optimize Old Hickory reservoir operations over 24 hours with a constraint on minimum release DO concentrations. Combining random immigrants replacement and adaptive additional sampling produced superior fitness values, and when used individually improved results over trials where neither approach was used.

Chapter V looked toward expanding this work to a system of reservoirs by performing a necessary exploration of the feedbacks exhibited between two reservoirs connected in series. For two reservoirs with hydropower capabilities linked in series, we assessed the sensitivity of the downstream reservoir's discharge water quality in response to the upstream reservoir's discharge pattern. Determining independence between these variables could enable expanded application of the previously-developed optimization routine (detailed in Chapter III) from single reservoirs to reservoir systems. Here, we used the linked Cordell Hull-Old Hickory system to demonstrate a method for analyzing downstream water quality dependency on upstream release scheduling over a typical 10-day operating period. Assuming a fixed volume of water is passed through the upstream Cordell Hull reservoir, these results indicate minor impacts on downstream water quality predictions. For the demonstrated problem formulation with defined lower bounds on temperature and DO, prediction errors caused by differences in upstream boundary condition indicate minimal impact on potential solutions to an optimization procedure, where water quality constraints are defined

by these predictions.

VI.2 Future Work

This work provides an initial demonstration of how a high-fidelity WQM can be integrated within a hydropower operations decision support tool in order to couple water quality with hydropower generation decision-making. We developed this approach using two Cumberland River mainstem reservoirs as prototypes, and made methodology development assumptions with this system in mind. These include assumptions that turbines operate at rated capacity, turbines are dispatched hourly, and spill is adjusted daily, as well as the water quality compliance point assumption and the target elevation storage assumption. In order for this approach to be applied to other systems, these assumptions will need to reconsidered for appropriateness.

Here, the optimized mainstem hydropower reservoir has little power pool storage and flood control storage. Pool elevations are relatively fixed in this case, so the optimizer focuses on reallocating a predetermined volume of release water over the planning period between two release structures. The overall seasonal water allocation plan for the basin largely determines stratification, which drives the water quality characteristics of these releases. Pool levels at tributary reservoirs are more flexible, and tributary reservoir operations strongly impact stratification downstream based on the timing and supply of cool water through the warm, dry season. Additionally, tributary projects on the Cumberland River have greater power capacities than projects on the mainstem. It would be beneficial to apply this optimization methodology to tributary reservoirs, as well as to develop an approach for seasonal planning optimization to be informed by high-fidelity water quality simulators.

This work assumes that spillway aeration has a negligible influence on tailwater DO, and that discharge DO concentrations result from the simple mixing of turbine and spill releases computed by the equation:

$$DO_{mix} = \frac{Q_{spill} \cdot DO_{spill} + Q_{turbines} \cdot DO_{turbines}}{Q_{spill} + Q_{turbines}}$$
(VI.1)

where DO_{spill} and $DO_{turbines}$ are concentrations and Q_{spill} and $Q_{turbines}$ are flowrates. However, releases over the spillway are subject to aeration including oxygenation. Assuming that this flow is at

saturation concentration is appropriate in some cases, but in other cases supersaturation may occur (*Wolff et al.*, 2013). By neglecting spillway aeration, the solutions found here are conservative in regards to meeting a lower bound constraint on DO, but conversely this may cause the optimizer to bypass solutions with higher power generation potential. Applying this optimization methodology to a system with constraints on TDG for aquatic species health requires spillway aeration to be considered, as gas entrainment primarily occurs during times of high spill (*Witt et al.*, 2017). Therefore, future work should incorporate spillway aeration as an additional process following release through the dam structure.

Another potential area of study is applying the WQM-informed optimizer to reservoir water quality mitigation device design, including forebay and turbine aeration installations. Many studies have employed WQMs to analyze site-specific mitigation techniques (*Bartholow et al.*, 2001; *Saito et al.*, 2001; *Caliskan and Elci*, 2009; *Castelletti et al.*, 2010; *Singleton et al.*, 2013), but these studies tend to consider water quality changes due to mitigation action and neglect to explore how water quality improvements impact reservoir operations. When designing devices like forebay and turbine aerators, expenses including construction, operations, and maintenance costs are considered, and impacts on optimal hydropower generation potential should also be considered. Determining optimal generation potential under various conditions and mitigation device designs requires integrating optimization and high-fidelity water quality predictions, and the methodology demonstrated here serves as a foundation for these types of studies.

Chapter IV focused on the optimizer itself, exploring modifications to the optimization algorithm in an effort to improve solution quality. Prior work in the area of adaptive model updating within optimization relies on surrogate model forms which provide statistical information (for example, GPs as used in *Bichon et al.* (2013)). Black-box emulators like ANNs do not produce the statistical information necessary to use such techniques, so a population-based resampling approach was described here. The algorithm modifications demonstrated in Chapter IV could prove useful for solving any optimization problem where a population-based optimizer is appropriate, a constraint depends on a black-box inexact emulator of an expensive simulation model, and there is a need for emulator construction and/or training to be influenced by outcomes from the optimization process itself. Further research on the level of additional sampling necessary for improved results is needed, and a non-problem-specific heuristic defining appropriate additional sampling levels is necessary

for exploring new applications for the framework shown here. An approach for quantifying ANN surrogate model error during optimization would be a valuable addition to the methodology, as this could be used to further inform the resampling step as well as provide the user with a metric for assessing confidence in the provided solution.

Looking forward, expanding this methodology to efficiently optimize a system of reservoirs would provide a beneficial tool for hydropower operations. The optimization routine here, built on a GA, is not well-suited for unlimited problem size expansion. Researchers should explore techniques for applying the general approach shown here to larger problems. We performed the water quality propagation sensitivity analysis in Chapter V with the idea of potentially optimizing a larger system of reservoirs by segmenting it into smaller problems to be solved in parallel. Before exploring this, the sensitivity of assumed upstream and downstream boundary conditions on water balance, and therefore hydropower production estimation, needs to be assessed.

In summary, the proposed improvements to the model framework presented herein would provide a powerful tool for activities including mitigation technology design, tributary reservoir operations planning, and reservoir system release decision-making. Bringing together high-fidelity water quality predictions and global optimization methods strengthens capabilities to regulate water quality while maximizing power production in controlled waterways.

Appendix A

OLD HICKORY RESERVOIR CE-QUAL-W2 MODEL CALIBRATION AND VALIDATION FIGURES

Figure A.1: Old Hickory CE-QUAL-W2 model calibration timeseries outcomes for the year 1988: (a) water surface elevation, (b) discharge temperature, and (c) discharge DO.

Figure A.2: Old Hickory CE-QUAL-W2 model calibration temperature profiles for the year 1988 (created using AGPM-2D v3.5 post-processor for CE-QUAL-W2 by Loginetics, Inc.). Profile measurements were collected on 7 dates at 8 locations.

Figure A.3: Old Hickory CE-QUAL-W2 model calibration DO profiles for the year 1988 (created using AGPM-2D v3.5 post-processor for CE-QUAL-W2 by Loginetics, Inc.). Profile measurements were collected on 7 dates at 8 locations.

Figure A.4: Old Hickory CE-QUAL-W2 model validation timeseries outcomes for the year 2005: (a) water surface elevation, (b) discharge temperature, and (c) discharge DO.

Figure A.5: Old Hickory CE-QUAL-W2 model validation temperature profiles for the year 2005 (created using AGPM-2D v3.5 post-processor for CE-QUAL-W2 by Loginetics, Inc.). Profile measurements were collected on 2 dates at 7 locations.

Figure A.6: Old Hickory CE-QUAL-W2 model validation DO profiles for the year 2005 (created using AGPM-2D v3.5 post-processor for CE-QUAL-W2 by Loginetics, Inc.). Profile measurements were collected on 2 dates at 7 locations.

Appendix B

CORDELL HULL RESERVOIR CE-QUAL-W2 MODEL CALIBRATION AND VALIDATION FIGURES

Figure B.1: Cordell Hull CE-QUAL-W2 model calibration timeseries outcomes for the year 2000: (a) water surface elevation, (b) discharge temperature, and (c) discharge DO.

Figure B.2: Cordell Hull CE-QUAL-W2 model calibration temperature profiles for the year 2000 (created using AGPM-2D v3.5 post-processor for CE-QUAL-W2 by Loginetics, Inc.). Profile measurements were collected on 2 dates at 9 locations.

Figure B.3: Cordell Hull CE-QUAL-W2 model calibration DO profiles for the year 2000 (created using AGPM-2D v3.5 post-processor for CE-QUAL-W2 by Loginetics, Inc.). Profile measurements were collected on 2 dates at 9 locations.

Figure B.4: Cordell Hull CE-QUAL-W2 model validation timeseries outcomes for the year 2005: (a) water surface elevation, (b) discharge temperature, and (c) discharge DO.

Figure B.5: Cordell Hull CE-QUAL-W2 model validation temperature profiles for the year 2005 (created using AGPM-2D v3.5 post-processor for CE-QUAL-W2 by Loginetics, Inc.). Profile measurements were collected on 5 dates at 9 locations.

Figure B.6: Cordell Hull CE-QUAL-W2 model validation DO profiles for the year 2005 (created using AGPM-2D v3.5 post-processor for CE-QUAL-W2 by Loginetics, Inc.). Profile measurements were collected on 5 dates at 9 locations.

Appendix C

MATLAB® CODE FOR NARX MODEL TRAINING

The following code is used to train a family of NARX WQMs for temperature and DO for Old Hickory reservoir, and performed similarly for Cordell Hull reservoir. Training data must be provided in comma separated values (CSV) format for each intput and output variable, with all simulations combined in a single file.

1_Train_NARX_for_discharge_temp_DO.m

```
%% Discharge temp ANN - tweaked for OHL 2005 model
   %Has sections for both temperature and DO neural nets
2
3
   %% (1) - Load all data files
 5
   *Data files are csv for each input/output, with the first column being run
       \hookrightarrow number, the second column being JDAY, and following columns with data
 6
   clearvars
   d=dir('DATA_FOR_TRAINING/*.csv');
   for i=1:length(d)
10
       Dstr_max_structure(i).name=d(i).name;
11
12
       Dstr_max_structure(i).matrix=...
13
          csvread(['DATA_FOR_TRAINING/' d(i).name]);
14
15
   end
16
   clearvars d i ans
17
    %Vector of Run IDs, where -1 is base case
   RunIDs=unique(Dstr_max_structure(1).matrix(:,1));
19
20
   %% (2) - Bring in data from each run
21
   %Find index for each input in Dstr_max_structure
23
   indexes.dischargeDO=...
24
       find(strcmp('dischargeDO.csv', {Dstr_max_structure.name}) == 1);
25
   indexes.dischargeTemp=...
26
       find(strcmp('dischargeTemp.csv', {Dstr_max_structure.name}) == 1);
27
   indexes.exogBR1D0=...
       find(strcmp('exogBR1DO.csv', {Dstr_max_structure.name}) == 1);
29
   indexes.exogBR1Q=...
30
       find(strcmp('exogBR1Q.csv', {Dstr_max_structure.name}) ==1);
31
   indexes.exogBR1T=...
       find(strcmp('exogBR1T.csv', {Dstr_max_structure.name}) ==1);
33
   indexes.exogDODT=...
34
       find(strcmp('exogDODT.csv', {Dstr_max_structure.name}) ==1);
35
   indexes.exogMET=...
       find(strcmp('exogMETBig.csv', {Dstr_max_structure.name}) == 1);
36
   indexes.exogQDT=...
       find(strcmp('exogQDT.csv', {Dstr_max_structure.name}) ==1);
39
   indexes.exogTDT=...
40
       find(strcmp('exogTDT.csv', {Dstr_max_structure.name}) ==1);
41
   indexes.exogTR2D0=...
       find(strcmp('exogTR2D0.csv', {Dstr_max_structure.name}) == 1);
```

```
43
   indexes.exogTR2Q=...
44
       find(strcmp('exogTR2Q.csv', {Dstr_max_structure.name}) ==1);
45
   indexes.exogTR2T=...
46
       find(strcmp('exogTR2T.csv', {Dstr_max_structure.name}) ==1);
47
   indexes.exogTurbSpill=...
48
       find(strcmp('exogTurbSpill.csv', {Dstr_max_structure.name}) == 1);
49
50
   %Loop through all Run IDs
51
   for i=1:size(RunIDs)
52
       RunID=RunIDs(i); fprintf([num2str(RunID), ' \n'])
53
       %Discharge DO
54
       [r,c]=find(Dstr_max_structure(indexes.dischargeDO).matrix(:,1)==RunID);
55
       Discharge.DO{i}=...
56
          unique (sortrows (Dstr_max_structure (indexes.dischargeDO) .matrix (r, 2:end)),'
              \hookrightarrow rows');
57
       %Discharge Temp
58
       [r,c]=find(Dstr_max_structure(indexes.dischargeTemp).matrix(:,1)==RunID);
59
       Discharge.temp{i}=...
60
          unique(sortrows(Dstr_max_structure(indexes.dischargeTemp).matrix(r,2:end))
              \hookrightarrow ,'rows');
61
       %BR1 Q, T, DO
62
       [r,c]=find(Dstr_max_structure(indexes.exoqBR1Q).matrix(:,1)==RunID);
63
       Exog.BR1Q\{i\}=...
64
          unique (sortrows (Dstr_max_structure (indexes.exogBR1Q).matrix(r,2:end)),'
              \hookrightarrow rows');
65
       [r,c]=find(Dstr_max_structure(indexes.exogBR1T).matrix(:,1)==RunID);
66
       Exoq.BR1T{i}=...
67
          unique(sortrows(Dstr_max_structure(indexes.exogBR1T).matrix(r,2:end)),'
              \hookrightarrow rows');
68
       [r,c]=find(Dstr_max_structure(indexes.exogBR1D0).matrix(:,1)==RunID);
69
       Exog.BR1DO{i}=...
70
          unique (sortrows (Dstr_max_structure (indexes.exogBR1D0).matrix (r, 2:end)),'
              \rightarrow rows');
71
       %TR2 Q, T, DO
72
       [r,c]=find(Dstr_max_structure(indexes.exogTR2Q).matrix(:,1)==RunID);
73
       Exoq.TR2Q\{i\}=...
74
          unique(sortrows(Dstr_max_structure(indexes.exogTR2Q).matrix(r,2:end)),'
              \rightarrow rows');
75
       [r,c]=find(Dstr_max_structure(indexes.exogTR2T).matrix(:,1)==RunID);
76
       Exoq.TR2T\{i\}=...
77
          unique(sortrows(Dstr_max_structure(indexes.exogTR2T).matrix(r,2:end)),'
              \hookrightarrow rows');
78
       [r,c]=find(Dstr_max_structure(indexes.exogTR2DO).matrix(:,1)==RunID);
79
       Exog.TR2DO{i}=...
80
          unique(sortrows(Dstr_max_structure(indexes.exogTR2D0).matrix(r,2:end)),'
              \hookrightarrow rows');
81
       %Met
82
       [r,c]=find(Dstr_max_structure(indexes.exogMET).matrix(:,1)==RunID);
83
       Exog.met\{i\}=...
84
          unique(sortrows(Dstr_max_structure(indexes.exogMET).matrix(r,3:end)),'rows

→ '); %skip col 2, which contains year right now
85
       %Turb, Spill
86
       [r,c]=find(Dstr_max_structure(indexes.exogTurbSpill).matrix(:,1)==RunID);
87
       Exog.turb_spill{i}=...
88
          unique(sortrows(Dstr_max_structure(indexes.exogTurbSpill).matrix(r,2:end))
              \hookrightarrow ,'rows');
89
       %QDT Q, T, DO
90
       [r,c]=find(Dstr_max_structure(indexes.exogQDT).matrix(:,1)==RunID);
91
       Exog.QDT\{i\}=...
92
          unique(sortrows(Dstr_max_structure(indexes.exogQDT).matrix(r,2:end)),'rows
93
       [r,c]=find(Dstr_max_structure(indexes.exogTDT).matrix(:,1)==RunID);
94
       Exog.TDT\{i\}=...
95
          unique(sortrows(Dstr_max_structure(indexes.exogTDT).matrix(r,2:end)),'rows
```

```
\hookrightarrow ');
96
        [r,c]=find(Dstr_max_structure(indexes.exoqDODT).matrix(:,1)==RunID);
97
        Exoq.DODT{i}=...
98
           unique(sortrows(Dstr_max_structure(indexes.exogDODT).matrix(r,2:end)),'
               \hookrightarrow rows');
99
100
    end
101
    clearvars ans c r i RunID indexes Dstr_max_structure
102
103
    %% (3) - Define timestep and get raw data at these times using correct
        → interpolation setting
104
105
    timesteps=[121:(1/24):274]';
106
    clearvars Inputs Output Inputs_seq Output_seq Discharge.temp_no0s Discharge.
        → DO_no0s
107
108
    %Make temperature Inputs and Outputs
109
    for i=1:size(RunIDs)
110
        fprintf([num2str(RunIDs(i)), ' \n'])
111
        Inputs.discharge_temp{i}=[];
112
        %BR1Q, BR1T - interpolation OFF
113
        for ii=1:size(timesteps, 1)
114
           index1(ii) = find(Exoq.BR1Q{i}(:,1) \le timesteps(ii),1,'last');
115
           index2(ii)=find(Exog.BR1T{i}(:,1)<=timesteps(ii),1,'last');
116
       end
117
        Inputs.discharge_temp{i}(:,1:2) = [Exog.BR1Q{i}(index1,2)] Exog.BR1T{i}(index2)
           \hookrightarrow ,2)];
118
        clearvars ii index1 index2
119
        %TR2Q, TR2T, - interpolation ON
120
        Inputs.discharge_temp{i}(:,end+1)=interp1(Exog.TR2Q{i}(:,1),Exog.TR2Q{i}(:,2)
           \hookrightarrow , timesteps);
121
        Inputs.discharge_temp{i}(:,end+1)=interp1(Exog.TR2T{i}(:,1),Exog.TR2T{i}(:,2)
            → ,timesteps);
122
        %Met - interpolation ON
        Inputs.discharge_temp{i}(:,end+1:end+5)=interp1(Exog.met{i}(:,1),Exog.met{i}
123
           \hookrightarrow } (:,2:end), timesteps);
124
        %Turb & spill - interpolation ON
125
        Inputs.discharge_temp{i}(:,end+1:end+2)=interp1(Exog.turb_spill{i}(:,1),Exog.
           → turb_spill{i}(:,2:end),timesteps);
126
127
        %Discharge temps output
128
        *Option 1 - interpolate to remove timepoints with no discharge (temp=0)
129
        % --> Use this for testing correlations (discontinuities mess this up)
130
        index=find(Discharge.temp{i}(:,2)~=0);
131
        %Remove rows with zeros (no discharge)
132
        Discharge.temp_no0s{i}=Discharge.temp{i} (index,:);
133
        %Smooth data
134
        Discharge.temp_no0s_smooth{i}(:,1)=Discharge.temp_no0s{i}(:,1);
135
        Discharge.temp_no0s_smooth{i}(:,2)=smooth(Discharge.temp_no0s{i}(:,1),
            \hookrightarrow Discharge.temp_no0s{i}(:,2),24);
136
        discharge_temp_no0s{i}(:,1)=interp1(Discharge.temp_no0s_smooth{i}(:,1),
            → Discharge.temp_no0s_smooth{i}(:,2),timesteps);
137
        clearvars index
138
        clearvars xlims ylims xrange yrange
139
        index=find(Discharge.temp{i}(:,2)==0);
140
        discharge_with_nans(:,1) = Discharge.temp{i}(:,1);
141
        discharge_with_nans(:,2)=interp1(Discharge.temp_no0s_smooth{i}(:,1),Discharge

→ .temp_no0s_smooth{i}(:,2),Discharge.temp{i}(:,1));
142
        discharge_with_nans(index, 2) = nan;
143
        Output.discharge_temp{i}(:,1)=interp1(discharge_with_nans(:,1),
            → discharge_with_nans(:,2:end),timesteps);
144
        clearvars index discharge_with_nans
145
        %Sensitive inputs seem to be BR1Q, BR1T, TR2T, 1st 2 cols in met,
146
```

```
147
             %turb, spill
148
              Inputs.discharge_temp{i}=Inputs.discharge_temp{i}(:,[1:2 4:6 10:11]);
149
150
              %Convert to cells
151
              Inputs_seq.discharge_temp{i} = con2seq(Inputs.discharge_temp{i}');
152
             Output_seq.discharge_temp{i} = con2seq(Output.discharge_temp{i}');
153
154
        end
155
156
        %Make DO Inputs and Outputs
157
        for i=1:size(RunIDs)
158
              fprintf([num2str(RunIDs(i)), '\n'])
159
              Inputs.discharge_DO{i}=[];
160
              %BR1Q, BR1T, BR1DO - interpolation OFF
161
              for ii=1:size(timesteps,1)
162
                   index1(ii) = find(Exog.BR1Q{i}(:,1) <= timesteps(ii),1,'last');</pre>
163
                   index2(ii) = find(Exoq.BR1T{i}(:,1) <= timesteps(ii),1,'last');</pre>
164
                   index3(ii) = find(Exoq.BR1DO(i)(:,1) <= timesteps(ii),1,'last');
165
             end
166
              Inputs.discharge_DO(i)(:,1:3)=[Exoq.BR1Q(i)(index1,2)...
167
                   Exog.BR1T{i}(index2,2) Exog.BR1DO{i}(index3,2)];
168
              clearvars ii index1 index2 index3 index4
169
              %TR2Q, TR2T, TR2DO - interpolation ON
170
              Inputs.discharge_DO\{i\}(:,end+1)=interp1(Exoq.TR2Q\{i\}(:,1),Exoq.TR2Q\{i\}(:,2),
                    → timesteps);
171
              Inputs.discharge_DO{i}(:,end+1)=interp1(Exog.TR2T{i}(:,1),Exog.TR2T{i}(:,2),
                    → timesteps);
172
              Inputs.discharge_DO{i}(:,end+1)=interp1(Exog.TR2DO{i}(:,1),Exog.TR2DO{i}(:,2)
                    \hookrightarrow , timesteps);
173
              %Met - interpolation ON
174
              Inputs.discharge_DO(i)(:,end+1:end+5)=interp1(Exog.met(i)(:,1),Exog.met(i)
                    \rightarrow } (:,2:end), timesteps);
175
              %Turb & spill - interpolation ON
176
              Inputs.discharge_DO(i)(:,end+1:end+2)=interp1(Exog.turb_spill(i)(:,1),Exog.
                    → turb_spill{i}(:,2:end),timesteps);
177
178
              %Discharge DO output
179
              index=find(Discharge.DO{i}(:,2)~=0);
180
              %Remove rows with zeros (no discharge)
181
             Discharge.DO_no0s{i}=Discharge.DO{i} (index,:);
182
              %Smooth data
183
              Discharge.DO_no0s_smooth{i}(:,1)=Discharge.DO_no0s{i}(:,1);
184
             Discharge.DO_no0s\_smooth\{i\}(:,2)=smooth(Discharge.DO_no0s\{i\}(:,1),Discharge.Do_no0s\{i\}(:,1),Discharge.Do_no0s\{i\}(:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Discharge.Do_no0s[i](:,1),Di
                    → DO_no0s{i}(:,2),24);
185
             \label{linear}  \mbox{discharge\_DO\_no0s[i](:,1)=} \\  \mbox{interp1}(\mbox{Discharge.DO\_no0s\_smooth[i](:,1),Discharge.} \\ 
                    → DO_no0s_smooth(i)(:,2),timesteps);
186
             clearvars index
187
              index=find(Discharge.DO{i}(:,2)==0);
188
              discharge_with_nans(:,1) = Discharge.DO(i)(:,1);
189
             discharge_with_nans(:,2)=interp1(Discharge.DO_no0s_smooth{i}(:,1),Discharge.
                     \hookrightarrow DO_no0s_smooth{i}(:,2),Discharge.DO{i}(:,1));
190
              discharge_with_nans(index,2)=nan;
191
             Output.discharge_DO{i}(:,1)=interp1(discharge_with_nans(:,1),

    discharge_with_nans(:,2:end),timesteps);
             clearvars index discharge_with_nans
192
193
194
              %Sensitive inputs seem to be BR1Q, BR1T, BR1DO, TR2T, TR2DO, 1st 2 cols in
                    → met, turb, spill
195
              Inputs.discharge_DO(i)=Inputs.discharge_DO(i)(:,[1:3 5:6 7:8 12:13]);
196
197
              %Convert to cells
198
              Inputs_seq.discharge_DO{i} = con2seq(Inputs.discharge_DO{i}');
199
              Output_seq.discharge_DO{i} = con2seq(Output.discharge_DO{i}');
200
```

```
201
       end
202
        clearvars i
203
204
        %% Check for input delays and correlations
205
        clearvars Temp_correlations DO_correlations
206
        for i=1:size(RunIDs)
207
              for ii=1:size(Inputs.discharge_temp{i},2)
208
                    %Temp
209
                    figure
210
                    crosscorr(Inputs.discharge_temp{i}(:,ii),discharge_temp_no0s{i},30)
211
                    [r,lags]=xcorr(Inputs.discharge_temp{i}(:,ii)-mean(Inputs.discharge_temp{i
                           → }(:,ii)),discharge_temp_no0s{i}-mean(discharge_temp_no0s{i}),30,
                          ⇔ coeff');
212
                    [^{\sim}, b] = \max(abs(r));
213
                    Temp_correlations{ii} (i,:)=[r(b) lags(b)];
214
              end
215
        end
216
        for i=1:size(RunIDs)
217
              for ii=1:size(Inputs.discharge_DO(i),2)
218
                    유DO
219
                          figure
220
                         crosscorr(Inputs.discharge_DO{i}(:,ii),discharge_DO_no0s{i},30)
221
                    [r,lags]=xcorr(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{i}(:,ii)-mean(Inputs.discharge_DO{
                           → ii)),discharge_DO_no0s{i}-mean(discharge_DO_no0s{i}),30,'coeff');
222
                    [ , b ] = \max (abs(r));
223
                   DO_correlations{ii}(i,:)=[r(b) lags(b)];
224
              end
225
        end
226
        clearvars b r lags
227
228
        %% (4) - Define training and validation sets and combine into cell arrays
229
230
        %Define validation & training sets
231
        validation_indexes=sort(randsample(size(RunIDs,1),round(.3*size(RunIDs,1)),'
               → false'));
232
        training_indexes=setdiff(1:size(RunIDs,1),validation_indexes)';
233
234
        %Combine them all into single Input and Output cell arrays
235
        %Training set
236
        tic
237
        Inputs_seq_mul.discharge_temp_train=catsamples(Inputs_seq.discharge_temp{

  training_indexes},'pad');
238
        Output_seq_mul.discharge_temp_train=catsamples(Output_seq.discharge_temp{
               → training_indexes},'pad');
239
        Inputs_seq_mul.discharge_DO_train=catsamples(Inputs_seq.discharge_DO{
               → training_indexes}, 'pad');
240
        Output_seq_mul.discharge_DO_train=catsamples(Output_seq.discharge_DO{
               → training_indexes}, 'pad');
241
        toc
242
        %Validation set
243
        tic
244
        Inputs_seq_mul.discharge_temp_valid=catsamples(Inputs_seq.discharge_temp{
                → validation_indexes},'pad');
245
        Output_seq_mul.discharge_temp_valid=catsamples(Output_seq.discharge_temp{
                → validation_indexes},'pad');
246
        Inputs_seq_mul.discharge_DO_valid=catsamples(Inputs_seq.discharge_DO{
               → validation_indexes},'pad');
247
        Output_seq_mul.discharge_DO_valid=catsamples(Output_seq.discharge_DO{
               → validation_indexes}, 'pad');
248
        toc
249
250
        %% (5) - Train temp model
251
        clearvars ohl_temp_narx
252 | clearvars ame_temp_training ame_temp_validation ameavg_temp_training
```

```
→ ameavg_temp_validation

253
    savename='ohl_temp_narx_20160906';
254
    for i=1:5
255
        fprintf(['Training model #', num2str(i), '\n'])
256
        inputDelays = [0 1 12];
257
        feedbackDelays = [1];
258
       hiddenNeurons=[10];
259
       narx_net = narxnet(inputDelays, feedbackDelays, hiddenNeurons);
260
       % For a list of all data division functions type: help nndivide
261
       narx_net.divideFcn = 'dividerand';
262
        % The property DIVIDEMODE set to TIMESTEP means that targets are divided
        % into training, validation and test sets according to timesteps.
263
264
        % For a list of data division modes type: help nntype_data_division_mode
265
       narx_net.divideMode = 'time'; % Divide up every value
266
       narx_net.divideParam.trainRatio = 70/100;
267
       narx_net.divideParam.valRatio = 15/100;
268
       narx net.divideParam.testRatio = 15/100;
269
       narx_net.trainParam.min_grad = 1e-10;
270
       narx_net.trainFcn = 'trainlm';
271
       narx_net.trainParam.showWindow=0;
272
       narx_net.trainParam.showCommandLine=1;
273
       narx_net.trainParam.show=100;
274
        [Xs, Xi, Ai, Ts] = preparets(narx_net, Inputs_seq_mul.discharge_temp_train, {},
           \hookrightarrow ...
275
          Output_seq_mul.discharge_temp_train);
276
277
        [narx_net,tr]=train(narx_net,Xs,Ts,Xi,Ai,'UseParallel','yes');
278
       ohl_temp_narx.train_time{i}(1,1)=toc;
279
       tic
280
       %Convert to closed loop
281
       narx_net_closed = closeloop(narx_net);
282
       narx_net_closed.trainParam.mu_max=1e14;
283
        narx_net_closed.TrainParam.epochs=3000;
284
        %Continue training as a closed loop - as suggested here: http://www.mathworks
           → .com/matlabcentral/answers/89070-narx-model-training-in-the-neural-
           → network-tool-box
285
        [Xs, Xi, Ai, Ts] = preparets(narx_net_closed, Inputs_seq_mul.discharge_temp_train
           → , { } , ...
286
           Output_seq_mul.discharge_temp_train);
287
        [narx_net_closed,tr] = train(narx_net_closed, Xs, Ts, Xi, Ai, 'UseParallel', 'yes')
288
        ohl_temp_narx.train_time{i}(1,2)=toc;
289
290
        %% (6) - Save it all in one stucture, for input in optimization problem
291
       ohl_temp_narx.Inputs=Inputs.discharge_temp;
292
       ohl_temp_narx.Output=Output.discharge_temp;
293
       ohl_temp_narx.Discharge_temp_no0s=Discharge.temp_no0s; %save interpolated set

→ in case starting condition is at NaN entry

294
       ohl_temp_narx.Discharge_temp_no0s_smooth=Discharge.temp_no0s_smooth; %save
           → interpolated set in case starting condition is at NaN entry
295
       ohl_temp_narx.turb_column=6;
296
        ohl_temp_narx.spill_column=7;
297
       ohl_temp_narx.inputDelays=inputDelays;
298
       ohl_temp_narx.feedbackDelays=feedbackDelays;
299
       ohl_temp_narx.input_variables={'QIN_BR1','TIN_BR1','TTR_TR2',...
300
           'MET_WB1','MET_WB1','QOT_BR1_T','QOT_BR1_S';...
301
           1,1,1,1,2,1,1};
302
       ohl_temp_narx.narx_net_closed{i}=narx_net_closed;
303
        save(savename, 'ohl_temp_narx')
304
305
        %% (7) - Predict full time series
306
        for run=validation_indexes'
307
          u=Inputs_seq.discharge_temp{run};
308
          y=Output_seq.discharge_temp{run};
```

```
309
          y1 = y(1:size(timesteps, 1));
310
           u1 = u(1:size(timesteps, 1));
311
           [p1,Pi1,Ai1,t1] = preparets(ohl_temp_narx.narx_net_closed{i},u1,{},y1);
312
           yp1 = ohl_temp_narx.narx_net_closed{i}(p1,Pi1,Ai1);
313
           %Remove plotting for indexes where discharge=0
314
          t1=cell2mat(t1);
315
          yp1=cell2mat(yp1);
316
           start=(max([ohl_temp_narx.inputDelays';...
317
              ohl_temp_narx.feedbackDelays'])+1);
318
           indexes=find(isnan(Output.discharge_temp{run}(start:end,end)));
319
           t1(1,indexes)=nan;
320
           vp1(1,indexes) = nan;
321
           ame_temp_validation{i} (run) = nanmean (abs (t1-yp1));
322
323
324
        for run=training_indexes'
325
          u=Inputs_seq.discharge_temp{run};
326
          y=Output_seq.discharge_temp{run};
327
          y1 = y(1:size(timesteps, 1));
328
          u1 = u(1:size(timesteps, 1));
329
           [p1,Pi1,Ai1,t1] = preparets(ohl_temp_narx.narx_net_closed{i},u1,{},y1);
           yp1 = ohl_temp_narx.narx_net_closed{i}(p1,Pi1,Ai1);
330
331
           %Remove plotting for indexes where discharge=0
332
          t1=cell2mat(t1);
333
          yp1=cell2mat(yp1);
334
           start=(max([ohl_temp_narx.inputDelays';...
335
              ohl_temp_narx.feedbackDelays'])+1);
336
           indexes=find(isnan(Output.discharge_temp{run}(start:end,end)));
337
           t1(1,indexes)=nan;
338
           yp1(1, indexes) = nan;
339
           ame_temp_training{i} (run) = nanmean (abs (t1-yp1));
340
341
342
       ameavg_temp_training{i}=sum(ame_temp_training{i})./sum(ame_temp_training{i}
           \hookrightarrow } ~=0);
343
       ameavg_temp_validation(i)=sum(ame_temp_validation(i))./sum(
           → ame_temp_validation{i}~=0);
344
        save(savename, 'ohl_temp_narx','ameavg_temp_training','ameavg_temp_validation
345
           'ame_temp_training','ame_temp_validation');
346
    end
347
348
    %% (8) - Train DO model
349
    clearvars ohl_DO_narx
350
    clearvars ame_DO_training ame_DO_validation ameavg_DO_training
        → ameavg DO validation
351
    savename='ohl_DO_narx_20160906';
352
    for i=1:5
353
       fprintf(['Training model #', num2str(i), '\n'])
354
        inputDelays = [0 1 12];
355
        feedbackDelays = [1];
356
       hiddenNeurons=[10];
357
       narx_net = narxnet(inputDelays, feedbackDelays, hiddenNeurons);
358
        % For a list of all data division functions type: help nndivide
359
       narx_net.divideFcn = 'dividerand';
360
        % The property DIVIDEMODE set to TIMESTEP means that targets are divided
361
       % into training, validation and test sets according to timesteps.
362
       % For a list of data division modes type: help nntype_data_division_mode
363
       narx_net.divideMode = 'time'; % Divide up every value
364
       narx_net.divideParam.trainRatio = 70/100;
365
       narx_net.divideParam.valRatio = 15/100;
366
       narx_net.divideParam.testRatio = 15/100;
367
       narx_net.trainParam.min_grad = 1e-10;
       narx_net.trainFcn = 'trainlm';
368
```

```
369
       narx net.trainParam.showWindow=0;
370
       narx net.trainParam.showCommandLine=1;
371
        narx_net.trainParam.show=100;
372
        [Xs,Xi,Ai,Ts] = preparets(narx_net,Inputs_seq_mul.discharge_DO_train,{}, ...
373
           Output_seq_mul.discharge_DO_train);
374
375
376
        [narx_net,tr]=train(narx_net,Xs,Ts,Xi,Ai,'UseParallel','yes');
377
       ohl_DO_narx.train_time{i}(1,1)=toc;
378
       tic
379
        %Convert to closed loop
380
       narx_net_closed = closeloop(narx_net);
381
       narx_net_closed.trainParam.mu_max=1e12;
382
       narx_net_closed.TrainParam.epochs=3000;
383
        %Continue training as a closed loop - as suggested here: http://www.mathworks
           → .com/matlabcentral/answers/89070-narx-model-training-in-the-neural-
           → network-tool-box
384
        [Xs, Xi, Ai, Ts] = preparets(narx_net_closed, Inputs_seq_mul.discharge_DO_train
           \hookrightarrow , {}, ...
385
           Output_seq_mul.discharge_DO_train);
386
        [narx_net_closed,tr] = train(narx_net_closed, Xs, Ts, Xi, Ai, 'UseParallel', 'yes')
387
        ohl_DO_narx.train_time{i}(1,2)=toc;
388
389
        %% (9) - Save it all in one stucture, for input in optimization problem
390
       ohl_DO_narx.Inputs=Inputs.discharge_DO;
391
       ohl_DO_narx.Output=Output.discharge_DO;
392
        ohl_DO_narx.Discharge_DO_no0s=Discharge.DO_no0s; %save interpolated set in

    → case starting condition is at NaN entry

393
       ohl_DO_narx.turb_column=8;
394
       ohl_DO_narx.spill_column=9;
395
        ohl_DO_narx.inputDelays=inputDelays;
396
        ohl_DO_narx.feedbackDelays=feedbackDelays;
397
       ohl_DO_narx.input_variables={'QIN_BR1','TIN_BR1','CIN_BR1',...
           'TTR_TR2','CTR_TR2','MET_WB1','MET_WB1','QOT_BR1_T','QOT_BR1_S';...
398
399
           1,1,1,1,1,1,2,1,1};
400
        ohl_DO_narx.narx_net_closed{i}=narx_net_closed;
401
        save(savename, 'ohl_DO_narx')
402
403
       %% (10) - Predict full time series
404
        for run=validation_indexes'
405
           u=Inputs_seq.discharge_DO{run};
406
           y=Output_seq.discharge_DO{run};
407
          y1 = y(1:size(timesteps, 1));
408
          u1 = u(1:size(timesteps, 1));
409
           [p1,Pi1,Ai1,t1] = preparets(ohl_DO_narx.narx_net_closed{i},u1,{},y1);
410
          yp1 = ohl_DO_narx.narx_net_closed{i} (p1,Pi1,Ai1);
411
           %Remove plotting for indexes where discharge=0
412
          t1=cell2mat(t1);
413
          yp1=cell2mat(yp1);
414
           start=(max([ohl_DO_narx.inputDelays';...
415
              ohl_DO_narx.feedbackDelays'])+1);
416
           indexes=find(isnan(Output.discharge_DO(run)(start:end,end)));
417
           t1(1,indexes)=nan;
418
           yp1(1,indexes)=nan;
419
           ame_DO_validation{i} (run) = nanmean(abs(t1-yp1));
420
421
422
        for run=training_indexes'
423
          u=Inputs_seq.discharge_DO{run};
424
           y=Output_seq.discharge_DO{run};
425
          y1 = y(1:size(timesteps, 1));
426
          u1 = u(1:size(timesteps, 1));
427
           [p1,Pi1,Ai1,t1] = preparets(ohl_DO_narx.narx_net_closed{i},u1,{},y1);
```

```
428
           yp1 = ohl_DO_narx.narx_net_closed{i}(p1,Pi1,Ai1);
429
           %Remove plotting for indexes where discharge=0
430
           t1=cell2mat(t1);
431
           yp1=cell2mat(yp1);
432
           start=(max([ohl_DO_narx.inputDelays';...
433
              ohl_DO_narx.feedbackDelays'])+1);
434
           indexes=find(isnan(Output.discharge_DO(run)(start:end,end)));
435
           t1(1, indexes) = nan;
436
          yp1(1,indexes)=nan;
437
           ame_DO_training{i} (run) = nanmean(abs(t1-yp1));
438
       end
439
440
        ameavq DO training{i}=sum(ame DO training{i})./sum(ame DO training{i}~=0);
441
       ameavg_DO_validation{i}=sum(ame_DO_validation{i})./sum(ame_DO_validation{i
           → }~=0);
442
        save(savename, 'ohl_DO_narx','ameavg_DO_training','ameavg_DO_validation',...
443
           'ame_DO_training','ame_DO_validation');
444
    end
```

2a_Compute_weights_for_DO_model.m

```
1
    clearvars yp1 t1 residuals
 2
    for i=1:size(ohl_DO_narx.narx_net_closed,2)
       fprintf(['NARX model #', num2str(i), '\n'])
 3
 4
       for run=validation_indexes'
 5
          u=Inputs_seq.discharge_DO{run};
 6
          y=Output_seq.discharge_DO{run};
 7
          y1 = y(1:size(timesteps, 1));
 8
          u1 = u(1:size(timesteps, 1));
 9
          [p1,Pi1,Ai1,t1{run}] = preparets(ohl_DO_narx.narx_net_closed{i},u1,{},y1);
10
          yp1{run}(i,:) = ohl_DO_narx.narx_net_closed{i}(p1,Pi1,Ai1);
11
       end
12
   end
13
    for run=validation_indexes'
14
       %Remove plotting for indexes where discharge=0
15
       t1{run}=cell2mat(t1{run});
16
       yp1{run}=cell2mat(yp1{run});
17
       start=(max([ohl_DO_narx.inputDelays';...
          ohl_DO_narx.feedbackDelays'])+1);
18
19
       indexes=find(isnan(Output.discharge_DO(run)(start:end,end)));
20
       t1{run}(1,indexes)=nan;
21
       yp1{run}(:,indexes)=nan;
22
   end
23
   for i=1:size(ohl_DO_narx.narx_net_closed,2)
24
       for run=validation_indexes'
25
          residuals(i,run)=nanmean(yp1{run}(i,:)-t1{run});
26
       end
27
   end
28
    for i=1:size(ohl_DO_narx.narx_net_closed,2)
29
       count=1;
30
       for j=validation_indexes(:)'
31
       residuals_validationonly(i,count)=residuals(i,j);
32
       count=count+1;
33
       end
34
   end
35
   clearvars j i
36
   ohl_DO_narx.bias=mean(residuals_validationonly')';
37
    for i=1:size(ohl_DO_narx.narx_net_closed,2)
38
       fprintf(['NARX model #', num2str(i), '\n'])
39
       for run=validation_indexes'
40
          yp1{run}(i,:)=yp1{run}(i,:)-ohl_DO_narx.bias(i);
41
          mean_of_square_errors{i} (run) = nanmean((t1{run}-yp1{run}(i,:)).^2);
42
```

```
43
   end
   for i=1:size(ohl DO narx.narx net closed,2)
45
       for j=validation_indexes(:)'
46
47
         mse_validationonly(i,count)=mean_of_square_errors{i}(j);
48
          count=count+1;
49
       end
   end
50
51
   clearvars j i
52.
53
   %% Optimize weights
54
   init_weights=ones(1, size(ohl_DO_narx.narx_net_closed, 2)) * (1/size(ohl_DO_narx.
       → narx_net_closed,2));
55
   Aeq=ones(1, size(ohl_DO_narx.narx_net_closed, 2));
56
   beq=1;
57
   lb=zeros(1, size(ohl_DO_narx.narx_net_closed, 2));
   ub=ones(1, size(ohl_DO_narx.narx_net_closed,2));
   options=optimset('Display','iter-detailed');
   FitnessFunction=@(weights) optimal_weights(weights,validation_indexes,t1,yp1);
60
61
   [weights, avg_mse] = fmincon(FitnessFunction, init_weights, [], [], Aeq, beq, lb, ub, [],
       → options);
   weights=weights';
63
   Remove the networks with weights <25% the max weight
   lb(find(weights/max(weights) < (1/4))) = 0;
64
65
   ub (find (weights/max (weights) < (1/4))) =0;
   [weights,avg_mse]=fmincon(FitnessFunction,init_weights,[],[],Aeq,beq,lb,ub,[],
       → options);
67
   weights=weights';
   %Save weights, bias, and networks into final stucture
68
69
   indexes=find(weights~=0);
   ohl_DO_narx.weights=weights(indexes);
70
71
   ohl_DO_narx.bias=ohl_DO_narx.bias(indexes);
72.
   for i=1:size(indexes,1)
73
      ohl_DO_narx.narx_net_closed3{i}=ohl_DO_narx.narx_net_closed{indexes(i)};
74
75
   ohl_DO_narx.narx_net_closed=ohl_DO_narx.narx_net_closed3;
   ohl_DO_narx=rmfield(ohl_DO_narx,'narx_net_closed3');
```

2b_Compute_weights_for_temp_model.m

```
1
   clearvars yp1 t1 residuals
2
   for i=1:size(ohl_temp_narx.narx_net_closed,2)
3
       fprintf(['NARX model #', num2str(i), '\n'])
 4
       for run=validation_indexes'
 5
         u=Inputs_seq.discharge_temp{run};
 6
         y=Output_seq.discharge_temp{run};
 7
         y1 = y(1:size(timesteps, 1));
 8
         u1 = u(1:size(timesteps, 1));
 9
          [p1,Pi1,Ai1,t1{run}] = preparets(ohl_temp_narx.narx_net_closed{i},u1,{},y1
10
         yp1{run}(i,:) = ohl_temp_narx.narx_net_closed{i}(p1,Pi1,Ai1);
11
      end
12
13
   for run=validation_indexes'
14
       %Remove plotting for indexes where discharge=0
15
       t1{run}=cell2mat(t1{run});
16
       yp1{run}=cell2mat(yp1{run});
       start=(max([ohl_temp_narx.inputDelays';...
17
18
          ohl_temp_narx.feedbackDelays'])+1);
19
       indexes=find(isnan(Output.discharge_temp{run}(start:end,end)));
20
       t1{run}(1,indexes)=nan;
21
      yp1{run}(:,indexes)=nan;
22 end
```

```
23
   for i=1:size(ohl_temp_narx.narx_net_closed,2)
       for run=validation_indexes'
25
          residuals(i, run) = nanmean(yp1{run}(i,:)-t1{run});
26
      end
27
   end
28
   for i=1:size(ohl_temp_narx.narx_net_closed,2)
29
       count=1;
30
       for j=validation_indexes(:)'
31
       residuals_validationonly(i,count)=residuals(i,j);
32
       count=count+1:
33
      end
34
   end
35
   clearvars j i
36
   ohl_temp_narx.bias=mean(residuals_validationonly')';
37
   for i=1:size(ohl_temp_narx.narx_net_closed,2)
38
       fprintf(['NARX model #', num2str(i), '\n'])
39
       for run=validation indexes'
40
          yp1\{run\}(i,:)=yp1\{run\}(i,:)-ohl\_temp\_narx.bias(i);
41
          mean_of_square_errors{i} (run)=nanmean((t1{run}-yp1{run}(i,:)).^2);
42
       end
43
   end
44
    for i=1:size(ohl_temp_narx.narx_net_closed,2)
45
       count=1:
46
       for j=validation_indexes(:)'
47
          mse_validationonly(i,count)=mean_of_square_errors{i}(j);
48
          count=count+1:
49
      end
   end
50
51
   clearvars j i
52.
53
    %% Optimize weights
54
   init_weights=ones(1, size(ohl_temp_narx.narx_net_closed, 2)) * (1/size(ohl_temp_narx
        → .narx_net_closed,2));
55
   Aeq=ones(1, size(ohl_temp_narx.narx_net_closed, 2));
56
   bea=1:
57
   lb=zeros(1, size(ohl_temp_narx.narx_net_closed, 2));
58
   ub=ones(1, size(ohl_temp_narx.narx_net_closed, 2));
59
   options=optimset('Display','iter-detailed');
60
   FitnessFunction=@(weights) optimal_weights(weights, validation_indexes, t1, yp1);
61
   [weights, avg_mse] = fmincon(FitnessFunction, init_weights, [], [], Aeq, beq, lb, ub, [],
        → options);
62
   weights=weights';
63
    Remove the networks with weights <25% the max weight
64
   lb(find(weights/max(weights) < (1/4))) = 0;
65
   ub(find(weights/max(weights)<(1/4)))=0;</pre>
   [weights, avg_mse] = fmincon(FitnessFunction, init_weights, [], [], Aeq, beq, lb, ub, [],
        → options);
67
   weights=weights';
68
   %Save weights, bias, and networks into final stucture
69
   indexes=find(weights~=0);
70
   ohl_temp_narx.weights=weights(indexes);
71
   ohl_temp_narx.bias=ohl_temp_narx.bias(indexes);
72
   for i=1:size(indexes, 1)
73
       ohl_temp_narx.narx_net_closed3{i}=ohl_temp_narx.narx_net_closed{indexes(i)};
74
   end
75
   ohl_temp_narx.narx_net_closed=ohl_temp_narx.narx_net_closed3;
   ohl_temp_narx=rmfield(ohl_temp_narx,'narx_net_closed3');
```

optimal_weights.m

```
function avg_mse=optimal_weights(weights, validation_indexes, t1, yp1)
weights=weights';
```

```
4
5
   for run=validation_indexes(:)'
     6
7
        \hookrightarrow ));
8
9
   end
10
   count=1;
11
   for j=validation_indexes(:)'
12
     weighted_mse_validation(count) = weighted_mse(j);
13
     count=count+1;
14
   end
15
   clearvars j i
16
17
  avg_mse=mean(weighted_mse_validation,2);
```

Appendix D

MATLAB® CODE FOR HYDROPOWER OPTIMIZATION UNDER WATER QUALITY CONSTRAINTS

The following code can be used to optimize multiple reservoirs linked in series on an hourly timestep over multiple days, as described in Chapter III. Each day is optimized individually, creating a series of daily sub-problems. A configuration file defines general optimization settings and the layout of waterbodies, and each waterbody has an additional configuration file defining reservoir characteristics and constraints. The base file of the optimizer is main.m. The user must supply:

- An already-trained water quality NARX surrogate model in order to use water quality constraints.
- 2. A CE-QUAL-W2 base folder for each reservoir.
- 3. Each CE-QUAL-W2 input and output file reconfigured as individual CSV files.
- 4. A CSV file defining inflow and withdrawal interpolation settings as determined from the CE-QUAL-W2 configuration file.

config.json

```
1 {
2     "jdayStart": "215",
3     "OperatingPeriod": "10",
4     "LogFile": "results/results_log.txt",
5     "NumberOfWaterbodies": "1",
6     "wblconfig": "config_OHL.json"
7 }
```

config_OHL.json

```
1
2
          "Name": "Old Hickory",
3
          "WaterSurfaceElevationInitial": "",
4
          "DischargeDOInitial": "",
5
          "DischargeTempInitial": "",
          "WaterSurfaceElevationMin": "134.722",
6
7
          "WaterSurfaceElevationMax": "135.636",
8
          "DischargeDOMin": "6",
          "DischargeDOMax": "",
9
10
          "DischargeTempMin": ""
          "DischargeTempMax": "",
11
          "MaxHourlyChangeInTurbineUnit": "1",
12
13
          "MaxHoursWithZeroGeneration": "6",
14
          "NumberOfTurbineUnits": "4",
```

```
15
          "MWRatingPerTurbineUnit": "25",
16
          "TurbineDischargeCurve": "OHL/testfiles/turbine_discharge_curve_25MW.txt",
17
          "StorageElevationCurve": "OHL/testfiles/storage_elevation.txt",
          "TailWaterRatingCurve": "OHL/testfiles/tailwater_rating.txt",
18
19
          "DailyCostCurve": "OHL/testfiles/cost_curve2.txt"
20
          "TrainedDONeuralNetworkFile": "OHL/testfiles/ohl_DO_narx_20160906.mat",
21
          "TrainedTempNeuralNetworkFile": "OHL/testfiles/ohl_temp_narx_20160906.mat
             → ",
22
          "WaterSurfaceElevationTargets": "",
23
          "optimizationDir": "OHL/testfiles/optimization215/",
24
          "ForecastTurbinePattern": "OHL/testfiles/forecast_turbine_pattern215.txt",
25
          "PreviousTurbinePattern": "OHL/testfiles/previous_turbine_pattern215.txt",
26
          "w2inputDir": "OHL/testfiles/w2input215/",
27
          "TurbSpillOrder": "1",
          "MainstemBR1Qin": "qin_br1.npt",
28
          "MainstemBR1Tin": "tin_br1_2005.npt",
29
30
          "MainstemBR1Cin": "cin_br1_2005.npt"
31
```

main.m

```
1
   function main(configfile)
2
   %% Startup: Empty vars, setup paths, check input, init config
4
   clearvars -except configfile
 5
   % add path to 'lib' folder
6
 7
   if (~isdeployed)
 8
       addpath('./lib');
9
   end
10
11
   % load general config
   config=loadjson('config.json');
12
13
   %Load config for each waterbody, as defined in general config
14
   for wb=1:str2double(config.NumberOfWaterbodies)
15
      CFG{wb}=loadjson(eval(['config.wb' num2str(wb) 'config']));
16
   end
17
18
   % create logger
19
   L = log4m.getLogger('optimization_run.log');
20
21
   %% Load in data and set constraints and system specs
22
23
   %TOTAL time period to optimize on
24
   start_date=str2double(config.jdayStart);
25
   frequency=1/24;
26
   days_forward=str2double(config.OperatingPeriod);
27
   t=[start_date:frequency:start_date+1];
28
   %GA population sizes
29
   ga_pop_size=480*size(CFG,2); %max(240,size(CFG,2)*(size(t,2)-1)*10);
30
   feasiblilitycheck_ga_pop_size=360*size(CFG, 2);
31
32
   for wb=1:size(CFG,2)
33
       %Number of turbines - 4 for OHL
34
       no_of_units{wb}=str2double(CFG{wb}.NumberOfTurbineUnits);
35
       %Operating level, MW
36
      MW_rating{wb}=str2double(CFG{wb}.MWRatingPerTurbineUnit);
37
          %Previous elevations
38
       elevtemp{wb}=dlmread(strcat(CFG{wb}.optimizationDir,filesep,'ELWS.csv'),','
          \hookrightarrow , 1, 0);
39
       %Elevation constraints - general
40
      ELWS_limit{wb}(1) = str2double(CFG{wb}.WaterSurfaceElevationMin);
      ELWS_limit{wb}(2) = str2double(CFG{wb}.WaterSurfaceElevationMax);
```

```
42
       %Max hourly unit change constraint
43
       if ~isempty(CFG{wb}.MaxHourlyChangeInTurbineUnit)
44
          max_hrly_unit_change{wb}=str2double(CFG{wb}.MaxHourlyChangeInTurbineUnit);
45
       else
46
          max_hrly_unit_change{wb}=[];
47
       end
48
       %Zero generation hourly limit - can't go longer than this with no turb flow
49
       if ~isempty(CFG{wb}.MaxHoursWithZeroGeneration)
50
          zero_gen_limit{wb}=str2double(CFG{wb}.MaxHoursWithZeroGeneration);
51
       else
52
          zero_gen_limit{wb}=[];
53
       end
54
       %DO discharge NARX model
55
       if isempty(CFG{wb}.TrainedDONeuralNetworkFile)
56
                WQ{wb}.DO_narx=[];
57
          else
58
                WO(wb).DO narx=load(CFG(wb).TrainedDONeuralNetworkFile);
59
                fn=fieldnames(WQ{wb}.DO_narx); WQ{wb}.DO_narx=WQ{wb}.DO_narx.(fn{1})
                    \hookrightarrow ; clearvars fn
60
          end
61
       WQ{wb}.DO_limit(1) = str2double(CFG{wb}.DischargeDOMin);
       WQ{wb}.DO_limit(2) = str2double(CFG{wb}.DischargeDOMax);
62
63
       WQ{wb}.DO_slack=0;
       %Temperature discharge NARX model
64
65
       if isempty(CFG{wb}.TrainedTempNeuralNetworkFile)
66
                WQ{wb}.Temp_narx=[];
67
          else
68
                WQ{wb}.Temp_narx=load(CFG{wb}.TrainedTempNeuralNetworkFile);
69
                fn=fieldnames(WQ{wb}.Temp_narx); WQ{wb}.Temp_narx=WQ{wb}.Temp_narx.(
                    \hookrightarrow fn{1});
70
                clearvars fn
71
          end
72.
          WQ{wb}.Temp_limit(1) = str2double(CFG{wb}.DischargeTempMin);
73
          WQ{wb}.Temp_limit(2) = str2double(CFG{wb}.DischargeTempMax);
74
       WQ{wb}.Temp_slack=0;
75
       %Cost curve
76
       if isempty(CFG{wb}.DailyCostCurve)
77
          cost_curve_MW{wb}=[0 1];
78
       else
79
          cost_curve_MW{wb}=dlmread(CFG{wb}.DailyCostCurve,' ',1,0);
80
81
       %Turbine discharge curve - meters, cms at MW_rating
82
       turbine_discharge{wb}=dlmread(CFG{wb}.TurbineDischargeCurve,' ',1,0);
83
          %Find initial elevation
84
       ic_elev_first{wb}=interp1(elevtemp{wb}(:,1),elevtemp{wb}(:,2),start_date);
85
       Build the variable O, which includes all flows for water balance,
          \hookrightarrow interpolation settings, tw curve both tabular discharge vs. tw and tw
          → as f(twprev, discharge)), se curve, and other WQ inputs needed for NARX
          \hookrightarrow predictions
86
       Q{wb}=buildQ(CFG{wb}.optimizationDir);
87
       Q{wb}.tw_curve_cms_m=dlmread(CFG{wb}.TailWaterRatingCurve,' ',1,0);
       Q{wb}.SE_meters_m3=dlmread(CFG{wb}.StorageElevationCurve,' ',1,0);
88
          %Save a copy of Q as original projected values - Q will update during
89
              → optimziation
          Qprojected=Q;
90
91
   end
92
93
   t_all=[start_date:frequency:start_date+days_forward];
94
   t_all_round=roundn(t_all,-2);
95
   tprev=[t(1)-max(cell2mat(zero_gen_limit(:)))*frequency:frequency:t(1)];
96
   tprev_round=roundn(tprev,-2);
97
    for wb=1:size(CFG, 2)
98
          %Forecast turbine pattern (if supplied)
99
          if isempty(CFG{wb}.ForecastTurbinePattern)
```

```
100
                 L.warn('INITIALIZATION',['No reservoir', num2str(wb),' forecast
                     → turbine pattern provided - assuming from turbine flows in W2
                     → QOT file.'])
101
                 x0_all(wb,:) = actual_turb_ops(t_all_round,Qprojected{wb},elevtemp{wb
                     → },turbine_discharge{wb},...
102
                       no_of_units{wb});
103
           else
104
                 forecastturbpattern=dlmread(CFG{wb}.ForecastTurbinePattern,'\t',1,0)
105
                 for i=1:size(t_all_round, 2)-1
106
                       index=find(forecastturbpattern(:,1) <=t_all_round(i+1));</pre>
107
                       x0_all(wb, i) = forecastturbpattern(index(end), 2);
108
109
                 clearvars i forecastturbpattern index
110
           end
111
           %Previous turbine pattern for the year (if supplied)
112
           if isempty(CFG{wb}.ForecastTurbinePattern)
113
                 L.warn('INITIALIZATION', ['No reservoir', num2str(wb), ' previous
                     → turbine pattern provided - assuming from turbine flows in W2
                     → QOT file.'])
114
                 xprev{wb}=actual_turb_ops(tprev_round,Qprojected{wb},elevtemp{wb},
                     → turbine_discharge(wb), no_of_units(wb));
115
           else
116
                 prevturbpattern=dlmread(CFG{wb}.PreviousTurbinePattern,'\t',1,0);
117
                 for i=1:size(tprev_round, 2)
118
                       index=find(prevturbpattern(:,1) <=tprev_round(i));</pre>
119
                       xprev{wb} (i) = prevturbpattern (index (end), 2);
120
                 end
121
                 clearvars i prevturbpattern index
122
        end
123
           %Target elevations (soft constraint)
124
        if isempty(CFG{wb}.WaterSurfaceElevationTargets)
125
           L.warn('INITIALIZATION',['No reservoir', num2str(wb),' ELWS targets
               → provided - assuming targets from projected operations W2 simulation
               \hookrightarrow . ^{\prime} 1)
126
           [~,~,HWs_x0,~,~]=activeunits_to_discharges(x0_all(wb,:),t_all,...
127
                        frequency, Qprojected{wb}, ic_elev_first{wb},...
128
              turbine_discharge(wb),[],[],[]);
129
                 ELWS_targets{wb}(:,1)=[start_date+1:1:start_date+days_forward]';
130
                 ELWS_targets{wb}(:,2)=interp1(t_all,HWs_x0,...
131
                        [start_date+1:1:start_date+days_forward])';
132
           if isnan(ELWS_targets(wb)(end,2))
133
              ELWS_targets{wb} (end, 2) = elevtemp{wb} (end, 2);
134
           end
135
        else
136
           ELWS targets { wb} = dlmread (CFG { wb} . WaterSurfaceElevationTargets, '\t', 1, 0);
137
        end
138
           ELWS_targets{wb}(:,2)=min(ELWS_targets{wb}(:,2),ELWS_limit{wb}(2));
139
           ELWS_targets\{wb\}(:,2) = max(ELWS_targets\{wb\}(:,2), ELWS_limit\{wb\}(1));
140
           clearvars HWs_x0
141
    end
142
    clearvars wb t_all_round t_prev_round elevtemp
143
    %Soft penalty coeff for deviation from final target elevation
144
    elev_soft_penalty_coeff_constant=[1e3 5e2];
145
    %Water quality and elevation constraint rounding setting (10=tenths place, 100=
        → hundredths place, etc.)
146
    elev_constraint_rounding=100;
147
    wq_constraint_rounding=100;
    %Assign priority ranking for constraints on elev, DO, and temp, starting with
148
        \hookrightarrow highest priority first. This is used during the prescreen to see if

→ constraints are even feasible

149
    ranking={'elev','do','temp'};
    %Penalty tolerance
150
151 | tolerance=10^-8;
```

```
152
153
    retraining='Y';
154
    iter=0; best_iter=[];
155
156
    fileID=fopen(config.LogFile,'w');
157
    fprintf(fileID,'%12s %12s %12s %12s %12s %12s %12s','Iter','Fcn_Evals','Time(s)'
        → ,'Proj_MWh','Tot_MWh','Proj_Dollars','Tot_Dollars');
158
    for wb=1:size(CFG,2)
159
        fprintf(fileID,' %12s %12s',['Wb' num2str(wb) '_MWh'],['Wb' num2str(wb) '

    _dollars']);
160
    end
161
    for wb=1:size(CFG,2)
162
        fprintf(fileID,' %12s %12s %15s %15s %15s %15s',...
           ['Wb' num2str(wb) '_T_AME'],['Wb' num2str(wb) '_DO_AME'],...
['Wb' num2str(wb) '_NN_T_slack'],['Wb' num2str(wb) '_NN_DO_slack'],...
163
164
           ['Wb' num2str(wb) '_W2_T_slack'],['Wb' num2str(wb) '_W2_DO_slack']);
165
166
    end
167
    fprintf(fileID,'%12s\r\n','Best_Iter');
168
    fclose(fileID);
169
170
    while retraining=='Y'
171
        iter=iter+1;
172
        %Run optimization over planning period
173
        tic; optimization_routine; timing=toc;
174
        %Run W2 validation check
175
       runW2validation;
176
        %Plot results and save to files
177
       close all; ga_results_plotting_nobanding
178
       h = get(0,'children'); h=sort(h);
179
        for wb=1:length(h)
180
           str=['results/' datestr(clock,'yyyy-mm-dd-HHMM') '_iter' num2str(iter) '
               \rightarrow _wb' num2str(wb) '_' num2str(round(y_dollars_total(2)))];
181
           savefig(h(wb),str)
182
        end
183
        %Print to results log file
184
        fileID=fopen(config.LogFile,'a');
185
        results.dollars(iter) = y_dollars_total(2);
186
        fprintf(fileID,'%12.0f %12.0f %12.0f %12.0f %12.0f %12.0f %12.0f',...
187
           iter,function_evals,timing,y_MWh_total(1),y_MWh_total(2),...
188
           y_dollars_total(1),y_dollars_total(2));
189
        for wb=1:size(CFG,2)
190
           fprintf(fileID,' %12.0f %12.0f', y_MWh(wb, 2), y_dollars(wb, 2));
191
192
        for wb=1:size(CFG,2)
193
           results.AME(iter, wb*2-1:wb*2) = [AME(wb).T, AME(wb).DO];
194
           results.slacks(iter,wb*2-1:wb*2)=[slacks{wb}.T.W2,slacks{wb}.DO.W2];
195
           fprintf(fileID,' %12.3f %12.3f %15.3f %15.3f %15.3f %15.3f',...
196
              AME {wb}.T, AME {wb}.DO, slacks {wb}.T.NN, slacks {wb}.DO.NN,...
197
              slacks{wb}.T.W2,slacks{wb}.DO.W2);
198
        end
199
        clearvars slacks ans data_start objfuncvalues Output_no0s Outputprev h wb Ax1
            → Ax2 Ax3 H h1 h2 h3 h5 h6 h7 legend1 output nVar maxdelay wb xlims
            200
201
        %Determine if termination criteria is reached
202
        if any(results.AME(iter,:)>0.5)
203
           if isempty(best_iter)
204
              best_iter(iter)=nan;
205
           else
206
              best_iter(iter) = best_iter(iter-1);
207
208
209
           if isempty(best_iter) | isnan(best_iter(iter-1))
210
              best_iter(iter)=iter;
```

```
211
           else
212
               if all((results.slacks(iter,:)-results.slacks(best_iter(iter-1),:))<=0)</pre>
213
                  best_iter(iter) = iter;
214
               else
215
                 best_iter(iter) = best_iter(iter-1);
216
              end
217
           end
218
        end
219
        fprintf(fileID,'%12.0f\r\n',best_iter(iter));
220
        fclose(fileID);
221
        if size(best_iter,2)>=2
222
           if best_iter(iter) == best_iter(iter-1)
223
              retraining='N';
224
           end
225
        end
226
227
        %Ask for user's input on how well the NARX predictions look and if they need
            \hookrightarrow to retrain the models
228
        if retraining=='Y'
229
           for wb=1:size(CFG,2)
230
               fprintf(['NARX_RETRAIN: Retraining NARX models for waterbody ' num2str(
                   \hookrightarrow wb) '.\n']);
231
              NARX_retrain;
232
           end
233
        else
234
           str=['results/' datestr(clock,'yyyy-mm-dd-HHMM') '_iter' num2str(iter) '_'
               → num2str(round(y_dollars_total(2)))];
235
           save(str)
236
           clearvars str
237
        end
238
    end
239
    L.info('OPTIMIZATION','Optimization over operating period complete.')
240
    cumulative_discharge_plot;
```

optimization_routine.m

```
%% Optimize over days_forward
 2
3
   day=1;
4
   if ~exist('plot_data','dir')
5
      mkdir('plot_data');
6
   end
   clearvars xprev tprev
8
   for wb=1:size(CFG,2)
9
      x_{final\{wb\}=[];}
10
       %Previous turbine pattern for the year (if supplied)
11
       if isempty(CFG{wb}.ForecastTurbinePattern)
12
          xprev{wb}=actual_turb_ops(tprev_round,Qprojected{wb},elevtemp{wb},
              → turbine_discharge(wb), no_of_units(wb));
13
      else
14
          prevturbpattern=dlmread(CFG{wb}.PreviousTurbinePattern,'\t',1,0);
15
          for i=1:size(tprev_round, 2)
16
             index=find(prevturbpattern(:,1) <=tprev_round(i));</pre>
17
             xprev{wb} (i) =prevturbpattern(index(end), 2);
18
19
          clearvars i prevturbpattern index
20
      end
21
   end
22.
    clearvars wb
23
   tprev=[t_all(1)-max(cell2mat(zero_gen_limit(:)))*frequency:frequency:t_all(1)];
24
   xprev_ic=xprev; tprev_ic=tprev;
26 while day<=days_forward
```

```
27
28
       %For each day, determine if elevation, DO , and temp constraints are even \hookrightarrow feasible (in priority order). If not found feasible, then bounds
           \hookrightarrow defined earlier by the config files are modified. Then problem is
           → optimized for maximize power (or power value)
29
30
       L.info('OPTIMIZATION', ['OPTIMIZING DAY ', num2str(day)]);
31
32
       WQ_subproblem{day}=WQ;
33
       ELWS_limit_subproblem{day}=ELWS_limit;
34
35
       %Optimization timeperiod
36
       t=[start_date+day-1:frequency:start_date+day];
37
38
       %Set initial condition elevation
39
       for wb=1:size(CFG,2)
40
          if day==1
41
             ic_elev{wb}=ic_elev_first{wb};
42
              if ic_elev_first{wb}<ELWS_limit_subproblem{day}{wb}(1)</pre>
43
                 L.warn('INITIALIZATION', ['Reservoir', num2str(wb),' initial
                     \hookrightarrow elevation of ' cell2mat(ic_elev_first{wb}) ' m is less than
                     → ELWS lower limit (firm constraint). Expanding ELWS limits to
                     → continue with optimization.']);
44
                 ELWS_limit_subproblem{day}{wb}(1)=ic_elev_first{wb};
45
             elseif ic_elev_first{wb}>ELWS_limit_subproblem{day}{wb} (2)
46
                 L.warn('INITIALIZATION', ['Reservoir', num2str(wb),' initial
                     → elevation of ' cell2mat(ic_elev_first{wb}) ' m is greater
                     \hookrightarrow than ELWS upper limit (firm constraint). Expanding ELWS
                     → limits to continue with optimization.']);
47
                 ELWS_limit_subproblem{day}{wb}(2)=ic_elev_first{wb};
48
             end
49
          else
50
              ic_elev{wb}=HWs{wb} (end);
51
          end
52
       end
53
54
       for wb=1:size(CFG, 2)
55
          *Determine x0, actual turbine operations, to seed initial population
56
          x0(wb,:)=x0_all(wb,(day-1)*(1/frequency)+1:day*(1/frequency));
57
          [~, y_dollars1] = power_value (x0 (wb,:),t,cost_curve_MW{wb},...
             MW_rating{wb});
58
59
          elev_soft_penalty_coeff{day} (wb) = interp1 (ELWS_limit_subproblem{day} {wb} (:)
              \hookrightarrow , . . .
60
             elev_soft_penalty_coeff_constant,...
61
             interp1(ELWS_targets{wb}(:,1),ELWS_targets{wb}(:,2),start_date+day),...
62
              'linear','extrap')*y_dollars1; %$/m with cost curve, MWh/m with all cc
                 \hookrightarrow =1
63
          clearvars y_dollars1
64
65
          Find possible values for x(1) (based on previous zero_gen_limit turbs)
66
          options=[0:no_of_units{wb}];
67
          % (1) Eliminate options based on change in active unit violations
68
          if ~isnan(max_hrly_unit_change(wb))
69
             auvoptions=[xprev{wb} (end) -max_hrly_unit_change{wb}:...
70
                 xprev{wb} (end) +max_hrly_unit_change{wb}];
             options=intersect(options, auvoptions);
71
72
73
          % (2) Non-integer constraint (assumed in selection algorithm)
74
          % (3) Eliminate options based on zero generation hourly limit
75
          if ~isnan(zero_gen_limit(wb))
76
              if sum(xprev{wb} (end-zero_gen_limit{wb}+1:end)) ==0
77
                 zghloptions=[1:no_of_units{wb}]; %if previous zero_gen_limit hrs had

→ zero total flow, must have flow next hr

78
                 options=intersect(options, zghloptions);
```

```
79
              end
 80
           end
 81
           % (4) Eliminate options that violate oscillations constraint - violates
               \hookrightarrow whenever the number of turbines increases and then decreases within
               → 2 hours, or vice versa
82
           allopt=[0:no_of_units{wb}];
83
           if xprev{wb} (end-1) < xprev{wb} (end) %if prev turbs increasing
84
              oscoptions=allopt(allopt>=xprev{wb}(end));
85
              options=intersect(options,oscoptions);
86
           elseif xprev{wb} (end-1) == xprev{wb} (end) %need 3 hrs btwn ramping up and
               → down
87
              if xprev{wb} (end-2) <xprev{wb} (end-1) %ramping up
88
                 oscoptions=allopt(allopt>=xprev{wb}(end));
                 options=intersect(options,oscoptions);
89
90
              elseif xprev{wb} (end-2) > xprev{wb} (end-1) % ramping down
91
                 oscoptions=allopt(allopt<=xprev{wb} (end));</pre>
92
                 options=intersect (options, oscoptions);
93
              elseif xprev{wb} (end-2) == xprev{wb} (end-1)
94
                 %do nothing -->3 consecutive hours between ramping up and down
                     → satisfied
95
              end
96
           elseif xprev{wb} (end-1) > xprev{wb} (end) %if prev turbs decreasing
97
              oscoptions=allopt(allopt<=xprev{wb}(end));
98
              options=intersect (options, oscoptions);
99
           end
100
           x1_options{wb}=options;
101
           if isempty(x1_options{wb})
102
              L.fatal('OPTIMIZATION','Based on previous turbine pattern, there is no
                  → feasible first hour turbine level.');
103
              return
104
           end
105
           clearvars tprev options auvoptions zghloptions allopt oscoptions
106
        end
107
        clearvars wb
108
109
        %Determine if elevation, DO, and temp constraints are feasible (based on
            → ranking order) and adjust bounds in this order if necessary
110
        L.info('OPTIMIZATION','Check constraint feasibilities and adjust if needed.')
           \hookrightarrow ;
111
        feasible_option1=[];
112
        [WQ_subproblem{day}, ELWS_limit_subproblem{day}, funccount(day,1),...
113
           feasible_option1]=check_feasibilities(ranking,x1_options,...
114
           feasiblilitycheck_ga_pop_size, frequency, Q, ic_elev, ...
115
           no_of_units,t,max_hrly_unit_change,zero_gen_limit,...
116
           turbine_discharge, ELWS_limit, WQ, xprev, ELWS_targets, ...
117
           elev_constraint_rounding, wq_constraint_rounding, tolerance);
118
        if ~isempty(feasible_option1)
119
           c=penalty_fcn(feasible_option1,t,frequency,Q,ic_elev,...
120
              turbine_discharge, ELWS_limit_subproblem{day},...
121
              max_hrly_unit_change, WQ_subproblem{day}, zero_gen_limit, xprev,...
122
              ELWS_targets, tolerance);
123
           funccount (day, 1) = funccount (day, 1) + size (feasible_option1, 1);
124
           feasible_option1=feasible_option1(find(all(c<=eps,2)),:);</pre>
125
           clearvars c
126
        end
127
128
        %Create initial population that satisfies all constraints
129
        L.info('OPTIMIZATION','Finding initial population to seed genetic algorithm.'
            → );
130
        [feasible_options,objfuncvalues,\tilde{},funccount(day,2)]=...
131
           create_feasible_initpop(ga_pop_size,feasible_option1,...
132
           x1_options, frequency, Q, ic_elev, MW_rating, no_of_units, t, ...
133
           max_hrly_unit_change, zero_gen_limit, turbine_discharge,...
134
           ELWS_limit_subproblem{day}, WQ_subproblem{day}, cost_curve_MW, xprev,...
```

```
135
           elev_soft_penalty_coeff{day}, ELWS_targets, tolerance);
136
        if isempty(feasible_options) & isempty(feasible_option1)
137
           L.info('OPTIMIZATION','No feasible solutions found during initialization \
               \hookrightarrow n');
138
           return
139
        end
140
        [objfuncvalues,b]=sort(objfuncvalues,'descend');
141
        feasible_options=feasible_options(b,:);
142
        clearvars objfcn feasible_option1 b
143
        %Check if x0 is feasible - include it if it is
144
        y=penalty_fcn(reshape(x0',1,[]),t,frequency,Q,ic_elev,...
145
           turbine_discharge, ELWS_limit_subproblem{day}, max_hrly_unit_change,...
146
           WQ_subproblem{day},zero_qen_limit,xprev,ELWS_targets,tolerance);
147
        best_fvals(day,1)=obj_fcn(reshape(x0',1,[]),t,cost_curve_MW,MW_rating,...
148
           elev_soft_penalty_coeff{day},ELWS_targets,...
149
           frequency,Q,ic_elev,turbine_discharge);
150
        funccount (day, 2) = funccount (day, 2) + 1;
151
        %Check to see if any values in x0>no_of_units
152
        over_no_of_units=0;
153
        for wb=1:size(CFG, 2)
154
           if any(x0(wb,:)>no_of_units(wb)) over_no_of_units=1; end
155
156
        if ~all(y==0) | over_no_of_units==1
157
           L.info('OPTIMIZATION','x0 is not feasible with respect to previous optimal
               \hookrightarrow solution.');
158
           best_fvals(day,2) = max(objfuncvalues);
159
           %Diversity measurement
160
           diversity(day,1)=std(objfuncvalues);
161
        else
162
           L.info('OPTIMIZATION','x0 is feasible with respect to previous optimal
              → solution.');
163
           if size(feasible_options,1) == ga_pop_size * 3
164
              feasible_options=[reshape(x0',1,[]);feasible_options(1:end-1,:)];
165
              objfuncvalues=[best_fvals(day,1); objfuncvalues(1:end-1,:)];
166
167
              feasible_options=[reshape(x0',1,[]);feasible_options];
168
              objfuncvalues=[best_fvals(day,1); objfuncvalues];
169
170
           best_fvals(day,2) = max(objfuncvalues);
171
           %Diversity measurement
172
           diversity(day,1)=std(objfuncvalues);
173
        end
174
        clearvars over_no_of_units
175
176
        %GA setup
        %If feasible options<GA pop size, fill in a larger matrix with repeating
177
            → values to create a full initial population
178
        if size(feasible_options,1) < ga_pop_size</pre>
179
           feasible_options=repmat(feasible_options,ceil(ga_pop_size/size(

  feasible_options, 1)), 1);
180
           feasible_options=feasible_options(1:ga_pop_size,:);
181
182
           feasible_options=feasible_options(1:ga_pop_size,:);
183
        end
184
        clearvars y x count
185
        %Set optimization algorithm options
186
        FitnessFunction = @(x) -obj_fcn(x,t,cost_curve_MW,...
187
           MW_rating, elev_soft_penalty_coeff{day},...
188
           ELWS_targets, frequency, Q, ic_elev, ...
189
           turbine_discharge);
190
       mycon= @(x) penalty_fcn(x,t,frequency,Q,ic_elev,...
191
           turbine_discharge, ELWS_limit_subproblem{day},...
192
           max_hrly_unit_change, WQ_subproblem{day}, zero_gen_limit,...
193
           xprev,ELWS_targets,tolerance);
```

```
194
        opt = gaoptimset(...
           'Display','iter','Vectorized','on','Generations',50, ...
195
196
           'PopulationSize', ga_pop_size,...
197
           'EliteCount', ceil(0.05*ga_pop_size),...
198
           'InitialPopulation', feasible_options,...
           'StallGenLimit', 2, 'TolFun', tolerance, 'TolCon', tolerance, ...
199
           'CrossoverFcn', @crossoversinglepoint, 'CrossoverFraction', 0.85,...
200
201
           'CreationFcn', @int_pop, 'MutationFcn', @int_mutation);
202
        nVar = size(CFG, 2) * (size(t, 2) - 1);
203
        %Set dv lower and upper bounds, narrowed considering max_hrly_unit_change,
            \hookrightarrow for both reservoirs
204
        for wb=1:size(CFG,2)
205
           lb(wb,:) = 0 \times ones(1, size(t,2)-1); lb(wb,1) = x1_options\{wb\}(1);
206
           for i=2:no_of_units{wb}
207
              lb(wb,i)=lb(wb,i-1)-max_hrly_unit_change{wb};
208
209
           lb(wb,:) = max(0, lb(wb,:));
210
           ub (wb,:) = no_of_units\{wb\}*ones(1, size(t, 2) - 1);
211
           ub(wb, 1) = x1\_options\{wb\}(end);
212
           for i=2:no_of_units{wb}
213
              ub(wb,i)=ub(wb,i-1)+max_hrly_unit_change{wb};
214
215
           ub (wb,:) = min (no_of_units {wb}, ub (wb,:));
216
           clearvars i
217
        end
218
        lb=reshape(lb',1,[]); ub=reshape(ub',1,[]);
219
220
221
        L.info('OPTIMIZATION','Begin running genetic algorithm.');
222
        [x,fval,~,output,~,~]=ga(FitnessFunction,nVar,[],[],[],[],lb,ub,...
223
           mycon, [], opt);
224
        funccount(day,3)=output.funccount*2; %multiply by 2 to cover penalty & obj

→ functions

225
        best_fvals(day, 3) =-fval;
226
227
        %Split up rows of x to separate reservoirs
228
        for wb=1:size(CFG, 2)
229
           x_{final\{wb\}}=[x_{final\{wb\}}...
230
              x(:, wb*(size(t, 2)-1)-(size(t, 2)-2):wb*(size(t, 2)-1))];
231
        end
232
        clearvars wb fval x lb ub FitnessFunction opt mycon feasible_options
233
234
        %Update elevations and discharges/inflows in Q before going on to next day
235
        Q=updateQ(Q,CFG,x_final,t,frequency,ic_elev,turbine_discharge,...
236
           WQ_subproblem{day},ELWS_targets);
237
        %Generate csv data files for plotting
238
        if day~=days_forward
239
           for wb=1:size(CFG,2)
240
              [~,~,~,HWs\{wb\},~,~] = ...
241
                 activeunits_to_discharges(x_final{wb},...
242
                 t_all(1:1+day*(1/frequency)), frequency, Q{wb},...
243
                 ic_elev_first{wb},turbine_discharge{wb},ELWS_targets{wb},...
244
                 [],[]);
245
              %don't need to supply mainstem_inflows because it's already been
                  → updated in Q{wb}
246
           end
247
           day=day+1;
248
           for wb=1:size(CFG,2)
249
              xprev{wb}=[xprev_ic{wb} x_final{wb}];
250
           end
251
        else
252
           day=day+1;
253
        end
254
    end
```

```
255
          day=day-1;
256
257
            %Sum funccount
258
            function_evals=sum(sum(funccount));
259
            clearvars funccount
260
261
            %Compute total y_dollars
262
            clearvars elev_soft_penalty_coeff
263
            for wb=1:size(CFG,2)
264
                     [y_MWh(wb,1), y_dollars(wb,1)] = power_value(x0_all(wb,1:day*(1/frequency)),

    t_all(1:1+day*(1/frequency)),cost_curve_MW{wb},...

265
                            MW_rating{wb});
                    elev_soft_penalty_coeff{wb}=interp1(ELWS_limit{wb}(:)',...
266
267
                             elev_soft_penalty_coeff_constant, ELWS_targets{wb} (day), ...
268
                             'linear','extrap')*y_dollars(wb,1); %$/m with cost curve, MWh/m with all
                                       \hookrightarrow cc=1
269
                     [y_MWh(wb,2), y_dollars(wb,2)] = power_value(x_final{wb},t_all(1:1+day*(1/wb,2)), t_all(1:1+day*(1/wb,2)), t_all(1:1+da
                              → frequency)),cost_curve_MW{wb},...
270
                            MW_rating{wb});
271
            end
272
            y_MWh_total=sum(y_MWh(1:size(CFG,2),:),1);
273
            y_dollars_total=sum(y_dollars(1:size(CFG,2),:),1);
274
275
            %Compute average WQ constraint violation for each wb
276
            for wb=1:size(CFG,2)
277
                    slacks{wb}.DO.NN=[]; slacks{wb}.T.NN=[];
278
                    for i=1:size(WQ_subproblem, 2)
279
                    slacks{wb}.DO.NN(i)=WQ_subproblem{i}{wb}.DO_slack;
280
                    slacks{wb}.T.NN(i) = WQ_subproblem{i}{wb}.Temp_slack;
281
282
                    slacks{wb}.DO.NN=mean(slacks{wb}.DO.NN);
283
                    slacks{wb}.T.NN=mean(slacks{wb}.T.NN);
284
            end
285
            clearvars wb i
```

activeunits_to_discharges.m

```
function [turb_discharges, spill_discharges, HWs, TWs, Storage] = ...
 1
2
      activeunits_to_discharges(x,t,frequency,Q,ic_elev,...
3
      turbine_discharge, ELWS_targets, mainstem_inflows_t, mainstem_inflows_Q)
4
5
   % Calculates discharges and HWs and TWs from time series of number of
6
   % active units
7
8
   % Inputs:
9
   % x - hourly turbine time series (as rows for vectorizing!), integers
10
   % between 0 and no_of_units
11
   % t time series of JDAY values
12
   % frequency - frequency of predictions (hourly=1/24)
13
   % Q - all other inflows and outflows, interpolation settings,
14
   % storage-elev curve, and tailwater curve (all in meters)
15
   % ic_elev - initial condition (meters)
   % turbine_discharge - turbine discharge curve at fixed MW level, with
17
   % col 1 in meters and col 2 in cms
18
   % ELWS_targets - 2 column matrix with JDAY in coll and elevation target
19
   % in col2
20
   % mainstem_inflows_t - vector of JDAY values that correspond to
21
   % mainstem_inflows_Q
22
   % mainstem_inflows_Q - if applicable (wb~=1), rows of incoming flows from
23
   % upstream reservoir correlated to times in mainstem_inflows_t
24
   % Outputs:
   % turb_discharges turbine discharge time series in cms
26 | % spill_discharges - spill discharge in cms
```

```
27
   % HWs - headwater time series in m
   % TWs - tailwater time series in m
29
   % Storage - storage time series in cubic meters
30
31
   JDAY_initial=t(1);
32
33
   %Number of x scenarios being tested
34
   n=size(x,1);
35
36
   if n<1
37
      fprintf('Active units to discharges code --> x is empty!')
38
       return
39
   end
40
41
   %Initial condition
42
   clearvars HWs Storage turb_discharges TWs
   HWs(1,1:n)=ic elev;
44
   Storage (1:n,1) = interp1 (Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),HWs(1,1));
   index1=find(Q.QOT_BR1_T(:,1)<=JDAY_initial);</pre>
45
46
   index2=find(Q.QOT_BR1_S(:,1) <= JDAY_initial);</pre>
   turb_discharges(1:n,1)=Q.QOT_BR1_T(index1(end),2);
48
   tot_discharge=Q.QOT_BR1_T(index1(end),2)+Q.QOT_BR1_S(index2(end),2);
49
   TWs(1:n,1) = interp1(Q.tw_curve_cms_m(:,1),Q.tw_curve_cms_m(:,2), \dots
50
       tot_discharge);
51
   clearvars index1 index2 tot_discharge
53
   %Compute discharge (cms) per unit at first timestep using prev hr HW and TW
54
   head=HWs (1,:)'-TWs (:,1);
55
   unit_discharges=interp1(turbine_discharge(:,1),turbine_discharge(:,2), ...
56
      head);
57
   unit_discharges(head>=turbine_discharge(end, 1))=turbine_discharge(end, 2);
58
   unit_discharges (head<=turbine_discharge(1,1))=turbine_discharge(1,2);
59
   turb_discharges(1:n,2)=unit_discharges.*x(:,1);
60
   clearvars head unit_discharges
61
62.
   %Compute HW elevs for every scenario
63
   for i=2:size(t,2)
64
       elevation=HWs(i-1,:);
65
       turbs=turb_discharges(:,i-1:i);
66
       if isempty(ELWS_targets) %If testing projected operations
67
          HWs(i-1:i,:)=Elevation_massbalance_vectorized(turbs,[],...
68
             t(i-1),t(i),frequency,Q,elevation,mainstem_inflows_t,...
69
             mainstem_inflows_Q);
70
       else %If testing new operations, assuming no spill flow here
71
          HWs(i-1:i,:)=Elevation_massbalance_vectorized(turbs,...
72
             zeros(size(turbs)),t(i-1),t(i),frequency,Q,elevation,...
73
             mainstem_inflows_t, mainstem_inflows_Q);
74
       end
75
       clearvars elevation turbs
76
       %Compute storage and TWs
77
       %If too full and overtops SE curve (or drains and empties), linearly
           → extrapolate
78
       Storage(:,i) = interp1(Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),...
79
         HWs(i,:)','linear','extrap');
       if isempty(ELWS_targets) %if testing projected operations
80
          index2=find(Q.QOT_BR1_S(:,1)<=t(i));
81
82
          tot_discharge=turb_discharges(:,i)+Q.QOT_BR1_S(index2(end),2);
83
          clearvars index2
84
       else %if testing new operations, assuming no spill flow here
85
          tot_discharge=turb_discharges(:,i)+0; %assume no spill
86
87
       TWs(:,i) = interp1(Q.tw_curve\_cms_m(:,1),Q.tw_curve\_cms_m(:,2), \dots
          tot_discharge,'linear','extrap');
88
89
       clearvars tot_discharge
```

```
90
       %Compute total turbine flowrate
91
        if i^=size(t.2)
92
           head=HWs(i,:)'-TWs(:,i);
93
           %Compute turbine flow based on head, with catches at bounds of turbine

→ discharge curve

94
          unit_discharges=interp1(turbine_discharge(:,1), ...
95
              turbine_discharge(:,2), head);
96
           unit_discharges(head>=turbine_discharge(end, 1))=...
97
              turbine_discharge(end, 2);
98
           unit_discharges(head<=turbine_discharge(1,1))=...
99
              turbine_discharge(1,2);
100
           turb_discharges(:,i+1) = unit_discharges.*x(:,i);
101
           clearvars head unit_discharges
102
       end
103
    end
104
    clearvars i ii
105
106
    %If testing new operations (i.e. ELWS_targets is not empty), continue on and
        → compute spill
107
    if ~isempty(ELWS_targets)
108
        %Check for cases when the final HW elev is greater than target
109
       ELWS_goal=interp1(ELWS_targets(:,1),ELWS_targets(:,2),t(end));
110
        volume_to_spill=max(0,...
111
           interp1(Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),HWs(end,:))...
112
           -interp1(Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),ELWS_goal));
113
        spill_discharges=0.95*((volume_to_spill/((t(end)-t(1))*24*60*60)))';
114
115
        %Compute HWs again for situations with spill added to lower to ELWS target
116
        [a, ~] = find (spill_discharges~=0);
117
        if ~isempty(a)
118
           stop=0;
119
           while stop==0
120
              for i=2:size(t,2)
121
                 elevation=HWs(i-1,a);
122
                 turbs=turb_discharges(a,i-1:i);
123
                 if isempty(mainstem_inflows_Q)
124
                    HWs(i-1:i,a)=Elevation_massbalance_vectorized(turbs,...
125
                       [spill_discharges(a) spill_discharges(a)],...
126
                       t(i-1),t(i),frequency,Q,elevation,mainstem_inflows_t,...
127
                       mainstem_inflows_Q);
128
                 else
129
                    HWs(i-1:i,a)=Elevation_massbalance_vectorized(turbs,...
130
                        [spill_discharges(a) spill_discharges(a)],...
131
                       t(i-1),t(i),frequency,Q,elevation,mainstem_inflows_t,...
132
                       mainstem_inflows_Q(a,:));
133
134
                 clearvars elevation turbs
135
                 %Compute storage and TWs
136
                 Storage(a,i) = interp1(Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),...
137
                    HWs(i,a)');
138
                 tot_discharge=turb_discharges(a,i)+spill_discharges(a); %now assume
                     → we have the spill we calculated above
139
                 TWs(a,i) = interp1(Q.tw_curve_cms_m(:,1),Q.tw_curve_cms_m(:,2), ...
140
                    tot_discharge);
141
                 clearvars tot_discharge
142
                 %Compute total turbine flowrate
143
                 if i^=size(t,2)
144
                    head=HWs(i,a)'-TWs(a,i);
145
                    %Compute turbine flow based on head, with catches at bounds of
                        \hookrightarrow turbine discharge curve
146
                    unit_discharges=interp1(turbine_discharge(:,1), ...
147
                       turbine_discharge(:,2),head);
148
                    unit_discharges(head>=turbine_discharge(end, 1))=...
149
                       turbine_discharge(end, 2);
```

```
150
                    unit_discharges(head<=turbine_discharge(1,1))=...
151
                        turbine_discharge(1,2);
152
                    turb_discharges(a,i+1) = unit_discharges.*x(a,i);
153
                    clearvars head unit_discharges
154
                 end
155
              end
156
              %Check end elevations again and adjust spill and iterate (if necessary)
157
              volume_to_spill=max(0,...
158
                 interp1(Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),HWs(end,:))...
159
                 -interp1(Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),ELWS_goal));
160
              spill_discharges2=spill_discharges+0.95*((volume_to_spill/((t(end)-t(1)))))
                  → ) *24*60*60)))';
161
              diffspill=spill_discharges2-spill_discharges;
162
              if all(round(diffspill, 3) == 0)
163
                 stop=1;
164
              end
165
              spill_discharges=spill_discharges2; clearvars spill_discharges2
166
167
           clearvars i ii stop diffspill
168
           %Recompute HWs and TWs with final spillrate
169
           for i=2:size(t,2)
170
              elevation=HWs(i-1,a);
171
              turbs=turb_discharges(a,i-1:i);
172
              if isempty(mainstem_inflows_Q)
173
                    HWs(i-1:i,a) = Elevation_massbalance_vectorized(turbs,...
174
                        [spill_discharges(a) spill_discharges(a)],...
175
                        t(i-1),t(i),frequency,Q,elevation,mainstem_inflows_t,...
176
                        mainstem_inflows_Q);
177
                 else
178
                    HWs(i-1:i,a) = Elevation_massbalance_vectorized(turbs,...
179
                        [spill_discharges(a) spill_discharges(a)],...
180
                        t(i-1),t(i),frequency,Q,elevation,mainstem_inflows_t,...
181
                        mainstem_inflows_Q(a,:));
182
                 end
183
              clearvars elevation turbs
184
              %Compute storage and TWs
185
              %If too full and overtops SE curve (or drains and empties), linearly
                  → extrapolate
186
              Storage(a,i)=interp1(Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),...
187
                 HWs(i,a)','linear','extrap');
188
              tot_discharge=turb_discharges(a,i)+spill_discharges(a); %now assume we
                  → have the spill we calculated above
189
              TWs(a,i) = \underbrace{interp1}(Q.tw\_curve\_cms\_m(:,1), Q.tw\_curve\_cms\_m(:,2), \ldots
190
                 tot_discharge);
191
              clearvars tot_discharge
192
              %Compute total turbine flowrate
193
              if i^=size(t,2)
194
                 head=HWs(i,a)'-TWs(a,i);
195
                 %Compute turbine flow based on head, with catches at bounds of

→ turbine discharge curve

196
                 unit_discharges=interp1(turbine_discharge(:,1), ...
197
                    turbine_discharge(:,2),head);
198
                 unit_discharges(head>=turbine_discharge(end, 1)) = ...
199
                    turbine_discharge(end, 2);
                 unit_discharges(head<=turbine_discharge(1,1))=...</pre>
200
201
                    turbine_discharge(1,2);
202
                 turb_discharges(a,i+1)=unit_discharges.*x(a,i);
203
                 clearvars head unit_discharges
204
              end
205
206
           clearvars i ii
207
208
    else
209
        spill_discharges=zeros(n,1);
```

```
210 end
211
212
213 HWs=HWs';%change back to rows to match all the other outputs (computed as cols

→ to make vectorizing Elevation_massbalance_vectorized easier)
```

buildO.m

```
function Q=buildQ(directory)
3
   % Builds the variable Q, used for the water balance
 5
   % Inputs:
   % directory - directory of csv files needed to build Q
   % Outputs:
   % Q - all other inflows and outflows, interpolation settings,
    % storage-elev curve, and tailwater curve (all in meters)
10
11
   clearvars Q
12
13
   %Load in interpolation file (can't use csvread due to strings)
   C=importdata(strcat(directory, 'interpolation.csv'),',');
   for i=1:size(C,1)
15
16
       Q.interpolation(i,:) = strsplit(C(i,1),',');
17
   end
18
   clearvars i C
19
20
   %Load in data files from optimization directory folder
21
   d=dir(strcat(directory, '*.csv'));
22
   for i=1:length(d)
23
       if ~strcmp(d(i).name,'interpolation.csv') & d(i).bytes~=0
24
          Dstr_max_structure(i).name=d(i).name;
25
          Dstr_max_structure(i).matrix=csvread(strcat(directory, d(i).name));
26
          [~, name, ~] = fileparts(Dstr_max_structure(i).name);
27
          %Make sure that each matrix has 2 rows (avoid interpolation errors)
28
          if size(Dstr_max_structure(i).matrix,1)<2</pre>
29
             Dstr_max_structure(i).matrix(end+1,1)=366;
30
             Dstr_max_structure(i).matrix(end, 2) = ...
31
                Dstr_max_structure(i).matrix(1,2);
32
33
          Q.(sprintf(name)) = Dstr_max_structure(i).matrix;
34
35
   end
   clearvars d i name Dstr_max_structure
```

check_feasibilities.m

```
1
   function [WQ_adjusted, ELWS_limit_adjusted, funccount, feasible_options] =
      2
      x1_options, ga_pop_size, frequency, Q, ic_elev, no_of_units, t, max_hrly_unit_change
          \hookrightarrow , . . .
3
      zero_gen_limit,turbine_discharge,ELWS_limit,WQ,xprev,ELWS_targets,...
      elev_constraint_rounding, wq_constraint_rounding, tolerance)
6
   % Checks the feasibility of constraints (elev, do, temp) in the priority
7
   % order defined by the user, and adjusting constraints as necessary
8
9
   % Inputs:
10
   % ranking - assign priority ranking for constraints on elev, DO, and temp,
      → starting
   % with highest priority first
  % x1_options - options for the turbine setting at the first hour
```

```
13 | % ga_pop_size - population size
   % frequency - frequency of predictions (hourly=1/24)
15
   % Q - all other inflows and outflows, interpolation settings,
16
   % storage-elev curve, and tailwater curve
   % ic_elev - initial condition (meters)
17
   % no_of_units - max number of turbines (4 for OHL)
   % t time series of JDAY values
   % max_hrly_unit_change - max number of units that can be changed per hour
21
   % (1 for OHL)
2.2.
   % zero_gen_limit - Zero generation hourly limit (can't go longer than
   % this with no turb flow)
   % turbine_discharge - turbine discharge curve at fixed MW level, with
25
   % col 1 in meters and col 2 in cms
   % ELWS_limit - min and max elevation limits for constraints, in meters
27
   % WQ - structure containing water quality constraints and NARX models
   \ \mbox{\%}\ \mbox{DO\_narx}\ -\ \mbox{structure} containing everything needed to make DO discharge
   % predictions, including:
   % turb_colum - column in exogenous variables with turb flows
31
   % spill_column - column in exogenous variables with spill flows
32
   % times - JDAY values used in training (not used)
33
   % inputDelays - delays for exogenous inputs
   \mbox{\%} feedbackDelays - delays for prediction feedbacks
35
   % input_variables - 2 row cell containing variable names in first
   % row and column number in second. For example, 'MET_WB1'
   % contains multiple columns of data but only some may be used
   % for NARX predictions
   % bias - bias for each trained neural network
40
   % weights - weights for each trained neural network (sum to 1)
41
   % narx_net_closed - neural networks
42.
   % DO_limit - lower and upper DO limits (NaN means it doesn't exist)
43
   % DO_slack - relaxation from DO_limit (either upper or lower -
   % doesn't make sense to have both)
45
   % Temp_narx - structure containing everything needed to make temp discharge
46
   % predictions, including:
   % turb_colum - column in exogenous variables with turb flows
   % spill_column - column in exogenous variables with spill flows
   % times - JDAY values used in training (not used)
50
   % inputDelays - delays for exogenous inputs
51
   % feedbackDelays - delays for prediction feedbacks
   % input_variables - 2 row cell containing variable names in first
   % row and column number in second. For example, 'MET_WB1'
   % contains multiple columns of data but only some may be used
55
   % for NARX predictions
   % bias - bias for each trained neural network
   % weights - weights for each trained neural network (sum to 1)
   % narx_net_closed - neural networks
   % Temp_limit - lower and upper temp limits (NaN means it doesn't exist)
   % Temp_slack - relaxation from Temp_limit (either upper or lower -
61
   % doesn't make sense to have both)
62.
   \mbox{\ensuremath{\upsigma}}\xspace xprev - vector of previous active turbine levels
63
   % ELWS_targets - 2 column matrix with JDAY in coll and elevation target
   % in col2
   % elev_constraint_rounding - rounding setting (10=tenths place,
65
   % 100=hundredths place, etc.)
66
67
   % wq_constraint_rounding - rounding setting (10=tenths place,
   % 100=hundredths place, etc.)
69
   % tolerance - penalty tolerance
70
   % Outputs:
71
   % WQ_adjusted updated WQ structure (same structure as WQ, with updated
   % constraints if necessary)
73
   % ELWS_limit_adjusted - updated elevation limits (if necessary)
74
   % function - total number of function evaluations (both obj and penalty)
75
   % feasible_options - save any solutions that are totally feasible to feed
76 % into initial population creation function next
```

```
77
 78
    funccount=0; generations=0;
79
    exitflag=[];
80
81
    %% Create 500 potential solutions feasible wrt constraints #1-3
82
83
84
    for wb=1:size(x1_options,2)
85
    for i=2:no_of_units{wb}+1
86
       weights{wb}{i}(1)=no_of_units{wb};
87
        for ii=2:i
88
           weights{wb}{i}(ii)=weights{wb}{i}(ii-1)*.1;
89
90
    end
91
    end
92
    clearvars i ii wb
93
94
    %First, generate a few solutions quickly and test feasibility. If any are
        → feasible, terminate this function with changes to WQ or elevation

→ constraints

    setsize=[10 2*ga_pop_size];
95
96
    for z=1:size(setsize,2)
97
        for wb=1:size(x1_options,2)
98
           raw_options\{wb\}\{z\}=nan(setsize(z), size(t, 2)-1);
99
           if size(x1_options{wb},2) == 1 % only 1 option left
100
              raw_options\{wb\}\{z\}(:,1)=x1_options\{wb\};
101
           else
102
              if z==1
103
                 raw_options{wb}{z}(:,1)=randsample(x1_options{wb}, setsize(z), true);
104
              elseif z==2
105
                 raw_options\{wb\}\{z\}(:,1) = randsample(x1_options\{wb\}, setsize(z), true,

→ weights{wb}{size(x1_options{wb},2)});
106
              end
107
           end
108
           for i=1:size(raw_options{wb}{z},1)
109
              for j=2:size(t,2)-1
110
                 %Variable consisting of xprev and turbine pattern through j-1
111
                 pattern=[xprev{wb} raw_options{wb}{z}(i,1:j-1)];
112
                 %First start with all available options, then eliminate infeasible
                     \hookrightarrow ones based on turbines from 1:j-1
113
                 options=[0:no_of_units{wb}];
114
                 % (1) Eliminate options based on change in active unit violations
115
                 if ~isnan(max_hrly_unit_change(wb))
116
                    auvoptions=[pattern(end)-max_hrly_unit_change{wb}: ...
117
                        pattern(end)+max_hrly_unit_change(wb)];
118
                    options=intersect (options, auvoptions);
119
120
                 % (2) Non-integer constraint (assumed in selection algorithm)
121
                 % (3) Eliminate options based on zero generation hourly limit
122
                 if ~isnan(zero_gen_limit(wb))
123
                    if sum(pattern(end-zero_gen_limit{wb}+1:end))==0
124
                        zqhloptions=[1:no_of_units{wb}]; %if previous zero_qen_limit
                            → hrs had zero total flow, must have flow next hr
125
                        options=intersect (options, zghloptions);
126
                    end
127
128
                 % (4) Eliminate options that violate oscillations constraint -
                     → violates whenever the number of turbines increases and then
                     \hookrightarrow decreases within 3 hours, or vice versa
129
                 allopt=[0:no_of_units{wb}];
130
                 if pattern(end-1) <pattern(end) %if prev turbs increasing
131
                    oscoptions=allopt(allopt>=pattern(end));
132
                    options=intersect (options, oscoptions);
                 elseif pattern(end-1) == pattern(end) % need 3 hrs btwn ramping up and
133
```

```
→ down
134
                                       if pattern(end-2) <pattern(end-1) %ramping up
135
                                             oscoptions=allopt(allopt>=pattern(end));
136
                                             options=intersect (options, oscoptions);
137
                                       elseif pattern(end-2)>pattern(end-1) %ramping down
138
                                             oscoptions=allopt(allopt<=pattern(end));</pre>
139
                                             options=intersect(options,oscoptions);
140
                                       elseif pattern(end-2) == pattern(end-1)
141
                                             %do nothing -->3 consecutive hours between ramping up and down
                                                     → satisfied
142
                                       end
143
                                 elseif pattern(end-1)>pattern(end) %if prev turbs decreasing
144
                                       oscoptions=allopt(allopt<=pattern(end));
145
                                       options=intersect (options, oscoptions);
146
                                 end
147
                                 %Out of the available options left, pick the next turbine setting
148
                                 if size(options,2) == 1 % only 1 option left
149
                                       raw_options{wb}{z}(i, j)=options;
150
                                 else
151
                                       if z==1
152
                                             raw_options{wb}{z}(i, j) = randsample(options, 1, true);
153
                                       elseif z==2
154
                                             raw_options{wb}{z}(i,j)=randsample(options,1,true,weights{wb}{
                                                     \hookrightarrow size(options, 2)});
155
                                       end
156
                                 end
157
                           end
158
                     end
159
               end
160
161
               %Convert raw_options cells to long vectors containing all reservoirs per row
162
               raw_options2{z}=[];
163
               for wb=1:size(x1_options,2)
164
                     raw_options2{z}=[raw_options2{z} raw_options{wb}{z}];
165
166
167
               %Check feasibilities if first small set
168
               if z==1
169
                     [c,~]=penalty_fcn(raw_options2{z},t,frequency,Q,ic_elev,...
170
                           turbine_discharge, ELWS_limit, max_hrly_unit_change, ...
171
                           WQ, zero_gen_limit, xprev, ELWS_targets, tolerance);
172
                     funccount=funccount+size(raw_options2{z},1);
173
                     feasibles=raw_options2{z}(find(all(c<=eps,2)),:);</pre>
174
                     if ~isempty(feasibles)
175
                           fprintf('All constraints are feasible. \n');
176
                           WO adjusted=WO; ELWS limit adjusted=ELWS limit;
177
                           feasible_options=feasibles;
178
                           return
179
                     end
180
               end
181
         end
182
         feasible_options2=[];
183
         for z=1:size(setsize,2)
184
               feasible_options2=[feasible_options2; raw_options2{z}];
185
186
         feasible_options=feasible_options2; feasible_options_raw=feasible_options;
187
         clearvars z i a j feasibles feasible_options2
188
189
         %% Optimize each constraint in priority order and terminate at 0. Otherwise,
                \buildrel \bui
190
191
         for wb=1:size(x1_options,2)
192
               ELWS_limit_adjusted{wb}=nan(size(ELWS_limit{wb}));
193
               WQ_adjusted{wb}.DO_limit=nan(size(WQ{wb}.DO_limit));
```

```
194
        WQ_adjusted{wb}.Temp_limit=nan(size(WQ{wb}.Temp_limit));
195
        WQ_adjusted{wb}.DO_narx=WQ{wb}.DO_narx;
196
        WQ_adjusted{wb}.Temp_narx=WQ{wb}.Temp_narx;
197
        WQ_adjusted{wb}.DO_slack=WQ{wb}.DO_slack;
198
        WQ_adjusted{wb}.Temp_slack=WQ{wb}.Temp_slack;
199
    end
200
    skip=0;
201
202
    for wb=1:size(x1_options,2)
203
        for i=1:size(ranking,2)
204
           if strcmp(ranking{i},'elev') & (~isnan(ELWS_limit{wb}(1)) | ~isnan(
               205
              fprintf(['Checking reservoir #', num2str(wb),' elevation constraint
                  \hookrightarrow feasibility. \n']);
206
           elseif strcmp(ranking{i},'do') & (~isnan(WQ{wb}.DO_limit(1)) | ~isnan(WQ{
               \hookrightarrow wb}.DO_limit(2))
207
              fprintf(['Checking reservoir #', num2str(wb),' DO constraint
                  \hookrightarrow feasibility. \n']);
           elseif strcmp(ranking{i},'temp') & (~isnan(WQ{wb}.Temp_limit(1)) | ~isnan(
208
               → WQ{wb}.Temp_limit(2)))
209
              fprintf(['Checking reservoir #', num2str(wb),' temperature constraint
                  \hookrightarrow feasibility. \n']);
210
           end
211
212
           %Check lower limit then upper limit. In each step, check maximum violation
              \hookrightarrow and then mean value (for temp & DO, not elevation)
213
           for a=1:2
2.14
              if a==1 level='lower'; elseif a==2 level='upper'; end
215
216
              if strcmp(ranking{i},'elev') & ~isnan(ELWS_limit{wb}(a))
217
                 skip=0;
              elseif strcmp(ranking{i},'do') & ~isnan(WQ{wb}.DO_limit(a))
218
219
                 skip=0:
220
              elseif strcmp(ranking{i},'temp') & ~isnan(WQ{wb}.Temp_limit(a))
221
                 skip=0;
222
              else
223
                 skip=1; %if there is no constraint being added here, no need to
                     → check feasibility!
224
              end
225
226
              if skip==0
227
                 clearvars FitnessFunction mycon opt
228
229
                 %(1) Test the maximum constraint violation first
230
231
                 %Set penalty function first to make sure it doesn't include the
                     \hookrightarrow constraint that is being optimized, but all constraints
                     \hookrightarrow before that one
232
                 mycon= @(x) penalty_fcn(x,t,frequency,Q,ic_elev,...
233
                    turbine_discharge, ELWS_limit_adjusted, max_hrly_unit_change,...
234
                    WQ_adjusted, zero_gen_limit, xprev, ELWS_targets, tolerance);
235
                 %Load in the relevant constraints
236
                 if strcmp(ranking{i},'elev')
237
                    ELWS_limit_adjusted{wb} (a) = ELWS_limit{wb} (a);
238
                 elseif strcmp(ranking{i},'do')
239
                    WQ_adjusted{wb}.DO_limit(a)=WQ{wb}.DO_limit(a);
240
                    WQ_adjusted{wb}.DO_slack=WQ{wb}.DO_slack;
241
                 elseif strcmp(ranking{i},'temp')
242
                    WQ_adjusted{wb}.Temp_limit(a)=WQ{wb}.Temp_limit(a);
243
                    WQ_adjusted{wb}.Temp_slack=WQ{wb}.Temp_slack;
244
245
                 %Set objective function
246
                 if strcmp(ranking{i},'elev') & ~isnan(ELWS_limit_adjusted{wb}(a))
247
                    FitnessFunction = @(x) obj_fcn_elev(x,t,frequency,Q,ic_elev,...
```

```
248
                        turbine_discharge, ELWS_limit_adjusted{wb}, ELWS_targets, level,
                            \hookrightarrow wb);
249
                  elseif strcmp(ranking{i},'do') & ~isnan(WQ_adjusted{wb}.DO_limit(a))
250
                     FitnessFunction = @(x) obj_fcn_do(x,t,frequency,Q,ic_elev,...
251
                        turbine_discharge, WQ_adjusted, ELWS_targets, level, wb);
252
                  elseif strcmp(ranking{i},'temp') & ~isnan(WQ_adjusted{wb}.Temp_limit
253
                     FitnessFunction = Q(x) obj_fcn_temp(x,t,frequency,Q,ic_elev,...
254
                        turbine_discharge, WQ_adjusted, ELWS_targets, level, wb);
255
                  end
256
                  %Check feasibility
257
                  if any (FitnessFunction (feasible options (1:min (size (feasible options
                      \rightarrow ,1), setsize(1)),:))==0)
258
                     fval=0; funccount=funccount+size(feasible_options,1);
259
                     pop=feasible_options;
260
                  else
261
                     %If feasible_options<GA pop size, fill in a larger matrix with
                         → repeating values to create a full initial population
262
                     if size(feasible_options,1) < ga_pop_size</pre>
263
                        feasible_options=repmat(feasible_options,ceil(ga_pop_size/size
                            \hookrightarrow (feasible_options,1)),1);
264
                        feasible_options=feasible_options(1:ga_pop_size,:);
265
                     end
266
                     %GA settings
267
                     opt = gaoptimset(...
                        'Display','iter','Vectorized','on','Generations',50, ...
268
269
                        'PopulationSize', ga_pop_size, ...
270
                        'InitialPopulation', feasible_options(1:ga_pop_size,:),...
271
                        'StallGenLimit', 1, 'TolFun', tolerance, 'TolCon', tolerance, ...
272
                        'CrossoverFcn', @crossoversinglepoint, 'CrossoverFraction'
                            → ,0.85,...
273
                        'EliteCount', ceil(.05*ga_pop_size),...
274
                        'CreationFcn',@int_pop,'MutationFcn',@int_mutation,'
                            → FitnessLimit',0);
275
                     nVar = size(x1\_options, 2) * (size(t, 2) - 1);
276
                     %Set dv lower and upper bounds, narrowed considering
                         → max_hrly_unit_change
2.77
                     clearvars lb ub
278
                     for wb2=1:size(x1_options,2)
279
                        lb(wb2,:)=0*ones(1, size(t,2)-1); lb(wb2,1)=x1_options\{wb2\}(1);
280
                        for ii=2:no_of_units{wb2}
281
                           lb(wb2,ii)=lb(wb2,ii-1)-max_hrly_unit_change{wb2};
282
283
                        1b(wb2,:) = max(0, 1b(wb2,:));
284
                        ub(wb2,:)=no\_of\_units\{wb2\}*ones(1,size(t,2)-1);
285
                        ub(wb2,1)=x1 options\{wb2\}(end);
286
                        for ii=2:no_of_units{wb2}
287
                           ub (wb2, ii) = ub (wb2, ii-1) + max_hrly_unit_change {wb2};
288
289
                        ub(wb2,:)=min(no_of_units{wb2},ub(wb2,:));
290
                        clearvars ii
291
                     end
292
                     clearvars wb2
293
                     lb=reshape(lb',1,[]); ub=reshape(ub',1,[]);
294
                     %Riin GA
295
                     [~,fval,~,output,pop,~]=ga(FitnessFunction,nVar,[],[],[],[],lb,ub
                         \hookrightarrow , . . .
296
                        mycon, [], opt);
297
                     funccount=funccount+output.funccount*2; %multiply by 2 to cover
                         \hookrightarrow penalty & obj functions
298
                     generations=output.generations;
299
300
                  %Adjust constraint limits if necessary
301
                 if fval~=0
```

```
302
                    if level=='lower'
303
                        plusminus=-1;
304
                    elseif level=='upper'
305
                       plusminus=1;
306
307
                    if strcmp(ranking{i},'elev')
308
                        fprintf(['Adjusting reservoir #', num2str(wb),' ', level, '
                            \hookrightarrow elevation constraint. \n']);
309
                        ELWS_limit_adjusted{wb} (a) = ELWS_limit{wb} (a) ...
310
                           +plusminus*ceil(elev_constraint_rounding*fval)/
                               → elev_constraint_rounding;
311
                        if ~isempty(pop)
312
                           pop=[pop; feasible_options_raw]; pop=unique(pop,'rows');
313
                           c=mycon(pop); pop=pop(all(c<=tolerance,2),:);</pre>
314
                           o=FitnessFunction(pop);
315
                           feasible_options=pop(find(o==min(o)),:);
316
                        end
317
                    elseif strcmp(ranking{i},'do')
318
                        fprintf(['Adjusting reservoir #', num2str(wb),' ', level, ' DO
                           ⇔ slack constraint. \n']);
319
                        WQ_adjusted{wb}.DO_slack(a) = ceil(wq_constraint_rounding*fval)/
                           → wq_constraint_rounding;
                        if ~isempty(pop)
320
321
                           pop=[pop; feasible_options_raw]; pop=unique(pop,'rows');
322
                           c=mycon(pop); pop=pop(all(c<=tolerance, 2),:);</pre>
323
                           o=FitnessFunction(pop);
324
                           feasible_options=pop(find(o==min(o)),:);
325
                        end
326
                    elseif strcmp(ranking{i},'temp')
327
                        fprintf(['Adjusting reservoir #', num2str(wb),' ', level, '
                            → temperature slack constraint. \n']);
328
                        WQ_adjusted{wb}.Temp_slack(a) = ceil(wq_constraint_rounding*fval
                            → )/wq_constraint_rounding;
                        if ~isempty(pop)
329
330
                           pop=[pop; feasible_options_raw]; pop=unique(pop,'rows');
331
                           c=mycon(pop); pop=pop(all(c<=tolerance,2),:);</pre>
332
                           o=FitnessFunction(pop);
333
                           feasible_options=pop(find(o==min(o)),:);
334
                        end
335
                    end
336
                 else
337
                    pop=[pop; feasible_options_raw]; pop=unique(pop,'rows','stable');
338
                    c=mycon(pop); pop=pop(all(c<=tolerance,2),:);</pre>
339
                    o=FitnessFunction(pop);
340
                    feasible_options=pop(find(o==min(o)),:);
341
342
                 clearvars plusminus output
343
              end
344
           end
345
       end
346
    end
347
    clearvars i a
348
    WQ_adjusted{wb}.DO_slack=sum(WQ_adjusted{wb}.DO_slack,2);
349
    WQ_adjusted{wb}.Temp_slack=sum(WQ_adjusted{wb}.Temp_slack,2);
```

cost_curve.m

```
function price = cost_curve(t,output_MW,cost_curve_MW)

calculates elevation predictions under various turbine outflow conditions

function price = cost_curve(t,output_MW,cost_curve_MW)

calculates elevation predictions under various turbine outflow conditions

function price = cost_curve(t,output_MW,cost_curve_MW)

calculates elevation predictions under various turbine outflow conditions

function price = cost_curve(t,output_MW,cost_curve_MW)

calculates elevation predictions under various turbine outflow conditions

turbine function price = cost_curve(t,output_MW,cost_curve_MW)

calculates elevation predictions under various turbine outflow conditions

turbine function price = cost_curve(t,output_MW,cost_curve_MW)

calculates elevation predictions under various turbine outflow conditions

turbine function price = cost_curve(t,output_MW,cost_curve_MW)

calculates elevation predictions under various turbine outflow conditions

turbine function price = cost_curve(t,output_MW,cost_curve_MW)

calculates elevation predictions under various turbine outflow conditions

turbine function price = cost_curve(t,output_MW,cost_curve_MW)

calculates elevation predictions under various turbine outflow conditions

turbine function price = cost_curve(t,output_MW,cost_curve_MW)

calculates elevation price = cost_curve_MW

calculates elevation p
```

```
7
   |% output_MW - MW at each timepoint (step function)
8
   % cost_curve_MW 2 row matrix to create step function, with 1st row
 9
   % being hours and 2nd row $/MW-hr values
10
   % Outputs:
   % price total price in $ of generation pattern
11
12
   timepoint_dollars=nan(size(t,2),2);
13
   if size(cost_curve_MW, 1) == 1
14
15
       timepoint_dollars(:,1) = cost_curve_MW(1,2);
16
       timepoint_dollars(:,2)=1;
17
   else
18
       for i=1:size(t,2)
19
          a=round((t(i)-floor(t(i)))*24-cost\_curve\_MW(1,:));
20
          a=a(a>=0);
21
          [c index] = min(a);
22
          timepoint_dollars(i,1)=cost_curve_MW(2,index);
23
          timepoint_dollars(i,2)=index;
24
       end
25
   end
26
27
   price=nan(size(output_MW));
28
    for i=1:size(t,2)-1
29
       if timepoint_dollars(i,2) == timepoint_dollars(i+1,2)
30
          price(:,i) = output_MW(:,i) *timepoint_dollars(i,1) *(t(i+1)-t(i)) *24;
31
       else
32
          if timepoint_dollars(i+1,2)>=timepoint_dollars(i,2)
33
             price(:,i)=0;
34
              for ii=timepoint_dollars(i,2):timepoint_dollars(i+1,2)-1
35
                 price(:,i) = price(:,i) + (cost\_curve\_MW(1,ii+1) - (t(i) - ...
36
                    floor(t(i))) *24) *output_MW(:,i) *cost_curve_MW(2,ii);
37
             end
38
              if i+1>size(cost_curve_MW, 2)
39
                 price(:,i) = price(:,i) + ((t(i+1) - floor(t(i+1))) *24 - ...
40
                    cost_curve_MW(1,timepoint_dollars(i+1,2)))*...
41
                    output_MW(:,i)*cost_curve_MW(2,1);
42
             else
43
                price(:,i) = price(:,i) + ((t(i+1) - floor(t(i+1))) *24 - ...
44
                    cost_curve_MW(1,timepoint_dollars(i+1,2)))*...
45
                    output_MW(:,i)*cost_curve_MW(2,i+1);
46
             end
47
          %if we've passed midnight into next day...
48
          elseif timepoint_dollars(i+1,2) < timepoint_dollars(i,2)</pre>
49
             price(:,i)=0;
50
              for ii=timepoint_dollars(i,2):size(cost_curve_MW,2)
51
                 price(:,i) = price(:,i) + (24-(t(i)-floor(t(i)))*24)*...
52
                    output_MW(:,i)*cost_curve_MW(2,ii);
53
54
              for ii=1:timepoint_dollars(i+1,2)-1
55
                 price(:,i) = price(:,i) + (cost_curve_MW(1,ii+1) - (t(i) - . . .
                    floor(t(i)))*24)*output_MW(:,i)*cost_curve_MW(2,ii);
56
57
             end
58
              if i+1>size(cost_curve_MW, 2)
59
                 price(:,i) = price(:,i) + ((t(i+1) - floor(t(i+1))) *24 - ...
60
                    cost_curve_MW(1,timepoint_dollars(i+1,2)))*...
61
                    output_MW(:,i)*cost_curve_MW(2,1);
62
63
                price(:,i) = price(:,i) + ((t(i+1) - floor(t(i+1))) *24 - ...
64
                    cost_curve_MW(1,timepoint_dollars(i+1,2)))*...
65
                    output_MW(:,i)*cost_curve_MW(2,i+1);
66
             end
67
          end
68
       end
   end
69
70
```

```
71 price=sum(price')';
72 end
```

create_feasible_initpop.m

```
function [feasible_options, y, c, funccount] = create_feasible_initpop(no_of_solns
 1
 2
      feasible_options,x1_options,frequency,Q,ic_elev,MW_rating,no_of_units,t,...
 3
      max_hrly_unit_change,zero_gen_limit,turbine_discharge,ELWS_limit,...
 4
      WQ, cost_curve_MW, xprev, elev_soft_penalty_coeff, ...
 5
      ELWS_targets, tolerance)
6
   % Generate and save lots of solutions that are feasible in terms of:
   % (1) Change in active unit violations
   % (2) Non-integer constraint (assumed in this seletion algorithm)
10
   % (3) Zero generation hourly limit
   % (4) Oscillations constraint
11
12
13
   % Inputs:
14
   % no_of_solns - the number of feasible solutions we want to find
   % feasible_options - feasible solutions already found during constraint
15
16
   % prescreening
   % x1_options - feasible options for first value of x, between 0 and
17
18
   % no_of_units
19
   % frequency - frequency of predictions (hourly=1/24)
20
   % Q - all other inflows and outflows, interpolation settings,
21
   % storage-elev curve, and tailwater curve (all in meters)
   % ic_elev - initial elevation condition (m)
23
   % MW_rating - the fixed MW level of turbine_discharge_curve (25 MW for
   % OHL)
   % no_of_units - max number of available turbine units
   % t time series of JDAY values
   % max_hrly_unit_change - max number of units that can be changed per hour
28
   % (1 for OHL)
29
   % zero_gen_limit - Zero generation hourly limit (can't go longer than
30
   % this with no turb flow)
31
   % turbine_discharge - turbine discharge curve at fixed MW level, with
   % col 1 in meters and col 2 in cms
33
   % ELWS_limit - min and max elevation limits for constraints, in meters
34
   % WQ - structure containing water quality constraints and NARX models
   % DO_narx - structure containing everything needed to make DO discharge
   % predictions, including:
37
   % turb_colum - column in exogenous variables with turb flows
38
   % spill_column - column in exogenous variables with spill flows
39
   % times - JDAY values used in training (not used)
40
   % inputDelays - delays for exogenous inputs
41
   \mbox{\%} feedbackDelays - delays for prediction feedbacks
42
   % input_variables - 2 row cell containing variable names in first
43
   % row and column number in second. For example, 'MET_WB1'
   % contains multiple columns of data but only some may be used
   % for NARX predictions
   % bias - bias for each trained neural network
47
   % weights - weights for each trained neural network (sum to 1)
48
   % narx_net_closed - neural networks
49
   % DO_limit - lower and upper DO limits (NaN means it doesn't exist)
50
   % DO_slack - relaxation from DO_limit (either upper or lower -
51
   % doesn't make sense to have both)
52
   % Temp_narx - structure containing everything needed to make temp discharge
53
   % predictions, including:
54
   % turb_colum - column in exogenous variables with turb flows
   % spill_column - column in exogenous variables with spill flows
56 |% times - JDAY values used in training (not used)
```

```
57 |% inputDelays - delays for exogenous inputs
    % feedbackDelays - delays for prediction feedbacks
    % input_variables - 2 row cell containing variable names in first
60
    % row and column number in second. For example, 'MET_WB1'
61
    % contains multiple columns of data but only some may be used
62
    % for NARX predictions
    % bias - bias for each trained neural network
    % weights - weights for each trained neural network (sum to 1)
65
    % narx_net_closed - neural networks
    % Temp_limit - lower and upper temp limits (NaN means it doesn't exist)
66
67
    % Temp_slack - relaxation from Temp_limit (either upper or lower -
    % doesn't make sense to have both)
69
    % cost_curve_MW 2 row matrix to create step function, with 1st row
70
    % being hours and 2nd row $/MW-hr values
71
    % xprev - vector of previous active turbine levels
    % elev_soft_penalty_coeff - penalty coefficient for soft ending elev soft
72
    % constraint
74
    % ELWS_targets - target elevations for end of time period
75
    % tolerance - penalty tolerance
76
    % Outputs:
    % feasible_options feasible potential solutions for GA initialization
    % y - objective function solutions for feasible_options
    % c - constraint violations
    % funccount - number of paired function evaluations
80
81
82
    %Start with upstream reservoir (wb=1), find feasible operations, and
    %compute associated discharge flows for each. Then use those flows as
84
    %upstream inflow for next wb, find feasible operations, and compute
85
    %associated discharge flows. Etc...
86
87
    c=[];
88
    n=size(feasible_options,1);
89
    funccount=0;
90
91
    count=1;
92
    while size(feasible_options,1) < no_of_solns</pre>
93
94
       if count==1
95
          %Starting set size
96
           setsize=no_of_solns;
97
       elseif count == 2
98
           %Modify set size as a function of how many feasible solns found so far (
              → maximum is 30*setsize)
99
           setsize=min(5*(setsize),round((setsize/(size(feasible_options,1)-n))*...
100
              (no_of_solns-(size(feasible_options,1)-n)));
101
102
          %If still not enough solns found, should be close so try 50 at a time
103
           setsize=50;
104
       end
105
106
       for wb=1:size(x1_options,2)
107
           raw_options\{wb\}=nan(setsize, size(t, 2)-1);
108
           if size(x1_options{wb},2) == 1 % only 1 option left
109
             raw_options{wb} (:,1) =x1_options{wb};
110
          else
             raw_options{wb} (:,1) =randsample(x1_options{wb}, setsize, true);
111
112
          end
113
          for i=1:setsize
114
             for j=2:size(t,2)-1
115
                 %Variable consisting of xprev and turbine pattern through j-1
116
                pattern=[xprev{wb} raw_options{wb}(i,1:j-1)];
117
                 %First start with all available options, then eliminate infeasible
                     \hookrightarrow ones based on turbines from 1:j-1
118
                options=[0:no_of_units{wb}];
```

```
119
                 % (1) Eliminate options based on change in active unit violations
120
                 if ~isnan(max_hrly_unit_change{wb})
121
                    auvoptions=[pattern(end)-max_hrly_unit_change{wb}: ...
122
                        pattern(end)+max_hrly_unit_change(wb)];
123
                    options=intersect (options, auvoptions);
124
                 end
125
                 % (2) Non-integer constraint (assumed in selection algorithm)
126
                 % (3) Eliminate options based on zero generation hourly limit
127
                 if ~isnan(zero_gen_limit{wb})
128
                    if sum(pattern(end-zero_gen_limit(wb)+1:end))==0
129
                        zghloptions=[1:no_of_units{wb}]; %if previous zero_gen_limit
                            → hrs had
130
                        %zero total flow, must have flow next hr
131
                        options=intersect (options, zghloptions);
132
                    end
133
                 end
134
                 % (4) Eliminate options that violate oscillations constraint -
                     \hookrightarrow violates whenever the number of turbines increases and then
                     → decreases within 3 hours, or vice versa
135
                 allopt=[0:no_of_units{wb}];
136
                 if pattern(end-1) <pattern(end) %if prev turbs increasing
137
                    oscoptions=allopt(allopt>=pattern(end));
138
                    options=intersect (options, oscoptions);
139
                 elseif pattern(end-1) == pattern(end) % need 3 hrs btwn ramping up and
                     → down
140
                    if pattern(end-2) <pattern(end-1) %ramping up</pre>
141
                        oscoptions=allopt(allopt>=pattern(end));
142
                        options=intersect (options, oscoptions);
143
                    elseif pattern(end-2)>pattern(end-1) %ramping down
144
                        oscoptions=allopt(allopt<=pattern(end));</pre>
145
                        options=intersect(options,oscoptions);
146
                    elseif pattern(end-2) == pattern(end-1)
147
                        %do nothing -->3 consecutive hours between ramping up and down
                           → satisfied
148
149
                 elseif pattern(end-1)>pattern(end) %if prev turbs decreasing
150
                    oscoptions=allopt(allopt<=pattern(end));</pre>
151
                    options=intersect (options, oscoptions);
152
                 end
153
                 %Out of the available options left, pick the next turbine setting
154
                 if size(options, 2) == 1 % only 1 option left
155
                     raw_options{wb}(i,j)=options;
156
                 else
157
                    raw_options{wb} (i, j) = randsample (options, 1, true);
158
                 end
159
              end
160
           end
161
        end
162
163
        %Convert raw_options cells to long vectors containing all reservoirs per row
164
        raw options2=[];
165
        for wb=1:size(x1_options,2)
166
           raw_options2=[raw_options2 raw_options{wb}];
167
        end
168
169
        %Check feasibility
170
        [c_new,~]=penalty_fcn(raw_options2,t,frequency,Q,ic_elev,...
171
           turbine_discharge, ELWS_limit, max_hrly_unit_change, WQ, ...
172
           zero_gen_limit, xprev, ELWS_targets, tolerance);
173
        funccount=funccount+size(raw_options2,1);
174
        c=c_new;
175
176
        raw_options3=raw_options2(all(c_new<=tolerance,2),:);</pre>
        feasible_options=[feasible_options; raw_options3];
177
```

```
178
       fprintf(['Feasible options found: ',...
179
          num2str(size(feasible_options,1)), '\n']);
180
        if count==2 & isempty(feasible_options)
181
          y=[]; return
182
       elseif count==5 & ~isempty(feasible_options)
183
          y=obj_fcn(feasible_options,t,cost_curve_MW,MW_rating,...
184
              elev_soft_penalty_coeff,ELWS_targets,frequency,Q,ic_elev,...
185
              turbine_discharge);
186
           funccount=funccount+size(feasible_options,1);
187
           [y,b]=sort(y,'descend');
188
           feasible_options=feasible_options(b,:);
189
          return
190
       else
191
          count=count+1;
192
       end
193
    end
194
195
    %Pick the best no_of_solns from feasible_options
196
    y=obj_fcn(feasible_options,t,cost_curve_MW,MW_rating,...
197
       elev_soft_penalty_coeff,ELWS_targets,frequency,Q,ic_elev,...
198
        turbine_discharge);
199
    funccount=funccount+size(feasible_options,1);
200
    [y,b]=sort(y,'descend');
201
    feasible_options=feasible_options(b,:);
```

Elevation_massbalance_vectorized.m

```
1
    function Predictions=Elevation_massbalance_vectorized(turb_discharges, ...
       spill_discharges, JDAY_initial, JDAY_end, frequency, Q, elevation, ...
 3
      mainstem_inflows_t, mainstem_inflows_Q)
 4
 5
   % Calculates elevation predictions under various turbine outflow conditions
 6
   % Inputs:
 8
   % turb_discharges turbine discharge time series to test (rows)
9
   % spill_discharges - spill discharge time series
10
   % JDAY_initial start JDAY (initial condition)
   % JDAY_end end JDAY
11
12
   % frequency - prediction frequency (ex: 0.25=1/4 day=6 hours)
13
   % Q - all other inflows and outflows, interpolation settings, and
14
   % storage-elev curve
15
   % elevation - initial elevation at JDAY_initial
   % mainstem_inflows_t - vector of JDAY values that correspond to
17
   % mainstem_inflows_Q
18
   % mainstem_inflows_Q - if applicable (wb~=1), rows of incoming flows from
19
   % upstream reservoir correlated to times in mainstem_inflows_t
20
   % Outputs:
21
   % Predictions vector of elevation predictions
23
   n=round((JDAY_end-JDAY_initial)/frequency);
24
   m=size(turb_discharges, 1);
   Predictions=nan(n+1,m);
   Storage=nan(n+1,m);
27
   deltav=nan(n+1,m);
28
29
   %Initial condition
30
   Predictions(1,:) = elevation;
31
   %If too full and overtops SE curve (or drains and empties), linearly extrapolate
32
   Storage(1,:)=interp1(Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),...
33
      Predictions(1,:),'linear','extrap');
34
35
   %Run the model
36 | q1=[];
```

```
37
   q2 = [];
38
    for time=2:n+1
39
       volin=0;
40
       volout=0;
41
       turbout=0;
42
       spillout=0;
43
       volin BR1=0;
44
       %Loop through all inflows and outflows (except turbine out)
45
       for i=1:size(Q.interpolation, 2)
46
          %VOLUMES IN
47
          %Inflow w/out interpolation
48
          if (isequal(char(Q.interpolation(2,i)),'inflow') | ...
49
                 isequal(char(Q.interpolation(2,i)),'dist')) & ...
50
                 isequal(char(Q.interpolation(3,i)),'OFF')
51
              %If the inflow is the mainstem, check if there is data in
                  \hookrightarrow mainstem_inflows and use that instead of Q
52
              if isequal(char(Q.interpolation(1,i)),'QIN_BR1') & ...
53
                     isempty (mainstem_inflows_Q)
54
                 index1=find(mainstem_inflows_t<=...
55
                    JDAY_initial+(time-2)*frequency,1,'last');
56
                 index2=find(mainstem_inflows_t<=...</pre>
57
                    JDAY_initial+(time-1)*frequency,1,'last');
58
                 q1=mainstem_inflows_Q(:,index1);
59
                 if index1==index2
60
                    volin_BR1=volin_BR1+q1*frequency*24*60*60;
61
                else
62
                    volin_BR1=volin_BR1+q1*...
63
                        (mainstem_inflows_t(1,index1+1)-(JDAY_initial+...
64
                        (time-2) *frequency)) *24 * 60 * 60;
65
                    for ii=index1+1:index2-1
66
                       q1=mainstem_inflows_Q(:,ii);
67
                       volin_BR1=volin_BR1+q1*...
68
                           (mainstem_inflows_t(1,ii+1)-...
69
                          mainstem_inflows_t(1, ii)) \star24 \star60 \star60;
70
71
                    g1=mainstem_inflows_Q(:,index2);
72
                    volin_BR1=volin_BR1+q1*...
73
                       ((JDAY_initial+(time-1)*frequency)-...
74
                       mainstem_inflows_t(1,index2))*24*60*60;
75
                end
76
             else
77
                 flow=Q.(Q.interpolation{1,i});
78
                 index1=find(flow(:,1)<=...</pre>
79
                    JDAY_initial+(time-2)*frequency,1,'last');
80
                 index2 = find(flow(:, 1) \le ...
81
                    JDAY_initial+(time-1)*frequency,1,'last');
82
                 q1=flow(index1,2); %flowrate at beginning of timestep
83
                 if index1==index2
84
                    volin=volin+q1*frequency*24*60*60;
85
                 else
86
                    volin=volin+q1*(flow(index1+1,1)-(JDAY_initial+...
87
                       (time-2) *frequency)) *24 * 60 * 60;
88
                    for ii=index1+1:index2-1
89
                       q1=flow(ii,2);
90
                       volin=volin+q1*(flow(ii+1,1)-flow(ii,1))*24*60*60;
91
92
                    q1=flow(index2,2);
93
                    volin=volin+q1*((JDAY_initial+(time-1)*frequency)-...
94
                       flow(index2,1)) *24*60*60;
95
                end
96
             end
97
98
          %Inflow w/ interpolation
99
          if (isequal(char(Q.interpolation(2,i)),'inflow') | ...
```

```
100
                 isequal(char(Q.interpolation(2,i)),'dist')) & ...
101
                 isequal(char(Q.interpolation(3,i)),'ON')
              %If the inflow is the mainstem, check if there is data in
102
                  \hookrightarrow mainstem_inflows and use that instead of Q
103
              if isequal(char(Q.interpolation(1,i)),'QIN_BR1') & ...
104
                      isempty(mainstem_inflows_Q)
105
                 index1=find(mainstem inflows t<=...
106
                     JDAY_initial+(time-2)*frequency,1,'last');
107
                 index2=find(mainstem_inflows_t<=...</pre>
108
                     JDAY_initial+(time-1)*frequency,1,'last');
109
                 q1=interp1 (mainstem_inflows_t',...
110
                     mainstem_inflows_Q(:,index1)',JDAY_initial+(time-2)*...
111
                     frequency);
112
                 %if JDAY_initial+(time-2) *frequency=timesteps(1), interp1 outputs
                     → nan
113
                 q1(isnan(q1))=mainstem_inflows_Q(isnan(q1),1);
114
                 if index1==index2
115
                     q2=interp1 (mainstem_inflows_t', mainstem_inflows_Q',...
116
                        JDAY_initial+(time-1)*...
117
                        frequency);
                     volin_BR1=volin_BR1+.5*(q1+q2)*...
118
119
                        ((JDAY_initial+(time-1)*frequency)-...
120
                        (JDAY_initial+(time-2) *frequency)) *24 *60 *60;
121
                 else
122
                     q2=mainstem_inflows_Q(:,index1+1)';
123
                     volin_BR1=volin_BR1+.5*(q1+q2)*...
124
                        (mainstem_inflows_t(1,index1+1)-...
125
                        (JDAY_initial+(time-2) *frequency)) *24 *60 *60;
126
                     for ii=index1+2:index2
127
                        q1=q2; %start flowrate is equal to previous end flowrate
128
                        q2=mainstem_inflows_Q(:,ii);
129
                        volin_BR1=volin_BR1+.5*(q1+q2)*...
130
                           (mainstem_inflows_t(1,ii)-...
131
                           mainstem_inflows_t(1,ii-1)) *24*60*60;
132
                     end
133
                     q1 = q2;
134
                     q2=interp1 (mainstem_inflows_t', mainstem_inflows_Q',...
135
                        JDAY_initial+(time-1)*frequency);
136
                     if ~any(isnan(q2)) %may have some rounding issues, causing it to
                         \hookrightarrow go past JDAY_end?
137
                        volin_BR1=volin_BR1+.5*(q1+q2)*...
138
                           ((JDAY_initial+(time-1)*frequency)-...
139
                           mainstem_inflows_t(1,index2)) *24 *60 *60;
140
                     end
141
                 end
142
              else
143
                 flow=Q.(Q.interpolation{1,i});
144
                 index1=find(flow(:,1) <= ...
145
                     JDAY_initial+(time-2)*frequency,1,'last');
146
                 index2=find(flow(:,1)<=...</pre>
147
                     JDAY_initial+(time-1)*frequency,1,'last');
148
                 q1=interp1(flow(:,1),flow(:,2),JDAY_initial+...
149
                     (time-2) * frequency); % flowrate at beginning of timestep
150
                 if index1==index2
151
                     q2=interp1(flow(:,1),flow(:,2),JDAY_initial+...
152
                        (time-1) *frequency);
153
                     volin=volin+.5*(q1+q2)*...
154
                        ((JDAY_initial+(time-1) *frequency)-...
155
                        (JDAY_initial+(time-2) *frequency)) *24*60*60;
156
157
                     q2=flow(index1+1,2);
158
                     volin=volin+.5*(q1+q2)*...
159
                        (flow(index1+1,1)-...
160
                        (JDAY_initial+(time-2) *frequency)) *24*60*60;
```

```
161
                    for ii=index1+2:index2
162
                        q1=q2; %start flowrate is equal to previous end flowrate
163
                        q2=flow(ii,2);
164
                        volin=volin+.5*(q1+q2)*(flow(ii,1)-flow(ii-1,1))...
165
                           *24*60*60;
166
                    end
167
                    q1=q2;
168
                    q2=interp1(flow(:,1),flow(:,2),...
169
                        JDAY_initial+(time-1)*frequency);
170
                    volin=volin+.5*(q1+q2)*((JDAY_initial+(time-1)*...
171
                        frequency) - flow(index2,1)) *24 * 60 * 60;
172
                 end
173
              end
174
           end
175
           %VOLUMES OUT
176
           *Outflow w/out interpolation - EXCEPT TURB (and spill if it's defined in

→ the outputs, otherwise take values from Q)
177
           if (isequal(char(Q.interpolation(2,i)),'outflow') | ...
178
                 (isequal(char(Q.interpolation(2,i)),'outflow_spill') & isempty(
                     → spill_discharges)) | ...
179
                 isequal(char(Q.interpolation(2,i)),'qwd')) & ...
180
                 isequal(char(Q.interpolation(3,i)),'OFF')
181
              flow=Q.(Q.interpolation{1,i});
182
              index1=find(flow(:,1) <= ...
183
                 JDAY_initial+(time-2)*frequency,1,'last');
184
              index2 = find(flow(:,1) <= ...
185
                 JDAY_initial+(time-1)*frequency,1,'last');
186
              q1=flow(index1,2); %flowrate at beginning of timestep
187
              if index1==index2
188
                 volout=volout+q1*frequency*24*60*60;
189
              else
190
                 volout=volout+q1*(flow(index1+1,1)-(JDAY_initial+...
191
                    (time-2) *frequency)) *24 *60 *60;
192
                 for ii=index1+1:index2-1
193
                    q1=flow(ii,2);
194
                    volout=volout+q1*(flow(ii+1,1)-flow(ii,1))*24*60*60;
195
196
                 q1=flow(index2,2);
197
                 volout=volout+q1*((JDAY_initial+(time-1)*frequency)-...
198
                    flow(index2,1)) *24*60*60;
199
              end
200
           end
201
           %Outflow w/ interpolation - EXCEPT TURB (and spill if it's defined in the
               → outputs, otherwise take values from Q)
202
           if (isequal(char(Q.interpolation(2,i)),'outflow') | ..
203
                 (isequal(char(Q.interpolation(2,i)),'outflow_spill') & isempty(
                     → spill_discharges)) | ...
204
                 isequal(char(Q.interpolation(2,i)),'qwd')) & ...
205
                 isequal(char(Q.interpolation(3,i)),'ON')
206
              flow=Q.(Q.interpolation{1,i});
207
              index1=find(flow(:,1)<=...
208
                 JDAY_initial+(time-2)*frequency,1,'last');
209
              index2 = find(flow(:, 1) <= ...
210
                 JDAY_initial+(time-1)*frequency,1,'last');
211
              q1=interp1 (flow(:,1),flow(:,2),JDAY_initial+(time-2)*...
212
                 frequency); %flowrate at beginning of timestep
213
              if index1==index2
2.14
                 q2=interp1(flow(:,1),flow(:,2),JDAY_initial+(time-1)*...
215
                    frequency);
216
                 volout=volout+.5*(q1+q2)*((JDAY_initial+(time-1)*...
217
                    frequency) - (JDAY_initial+(time-2) * frequency)) *24 * 60 * 60;
218
219
                 q2=flow(index1+1,2);
220
                 volout=volout+.5*(q1+q2)*(flow(index1+1,1)-...
```

```
221
                     (JDAY_initial+(time-2) * frequency)) *24 * 60 * 60;
222
                 for ii=index1+2:index2
223
                     q1=q2;%start flowrate is equal to previous end flowrate
224
                     q2=flow(ii,2);
225
                     volout=volout+.5*(q1+q2)*(flow(ii,1)-flow(ii-1,1))*...
226
                        24 * 60 * 60;
227
228
                 q1=q2;
229
                 q2=interp1(flow(:,1),flow(:,2),JDAY_initial+(time-1)*...
230
                     frequency);
231
                 volout=volout+.5*(q1+q2)*((JDAY_initial+(time-1)*...
232
                     frequency) -flow(index2,1)) \star24 \star60 \star60;
233
              end
234
           end
235
        end
236
237
        %Turbine outflow using turb_discharges
238
        q1=[]; q2=[];
239
        timesteps=[JDAY_initial:frequency:JDAY_end];
240
        %find turbine interpolation setting (b)
241
        [a,b]=find(strcmp(Q.interpolation,'outflow_turb'));
242
        if isequal(char(Q.interpolation(3,b)),'OFF')
243
           index1=find(timesteps(1,:)<=...
244
              JDAY_initial+(time-2)*frequency,1,'last');
245
           index2=find(timesteps(1,:)<=...</pre>
246
              JDAY_initial+(time-1)*frequency,1,'last');
247
           q1=turb_discharges(:,index1); %flowrates at beginning of timestep
248
           if index1==index2
249
              turbout=turbout+q1*frequency*24*60*60;
250
           else
251
              turbout=turbout+q1*(timesteps(1,index1+1)-(JDAY_initial+...
252
                 (time-2) *frequency)) *24 * 60 * 60;
253
              for ii=index1+1:index2-1
254
                 q1=turb_discharges(:,ii);
                 turbout=turbout+q1*(timesteps(1,ii+1)-timesteps(1,ii))*...
255
256
                     24 * 60 * 60;
257
258
              q1=turb_discharges(:,index2);
259
              turbout=turbout+q1*((JDAY_initial+(time-1)*frequency)-...
260
                 timesteps(1,index2))*24*60*60;
261
262
        elseif isequal(char(Q.interpolation(3,b)),'ON')
263
           index1=find(timesteps(1,:)<=...</pre>
264
              JDAY_initial+(time-2)*frequency,1,'last');
265
           index2=find(timesteps(1,:)<=...</pre>
266
              JDAY initial+(time-1)*frequency,1,'last');
267
           q1=interp1(timesteps',turb_discharges',JDAY_initial+(time-2)*...
268
              frequency);
269
           %if JDAY_initial+(time-2)*frequency=timesteps(1), interp1 outputs nan
270
           q1(isnan(q1))=turb_discharges(isnan(q1),1);
271
           if index1==index2
272
              q2=interp1(timesteps',turb_discharges',...
2.73
                 JDAY_initial+(time-1)*frequency);
274
              turbout=turbout+.5*(q1+q2)*((JDAY_initial+(time-1)*...
275
                 frequency) - (JDAY_initial+(time-2) * frequency)) *24 * 60 * 60;
276
277
              q2=turb_discharges(:,index1+1)';
278
              turbout=turbout+.5* (q1+q2)* (timesteps(1,index1+1)-...
279
                  (JDAY_initial+(time-2) *frequency)) *24*60*60;
280
              for ii=index1+2:index2
281
                 q1=q2; %start flowrate is equal to previous end flowrate
282
                 q2=turb_discharges(:,ii);
283
                 turbout=turbout+.5*(q1+q2)*(timesteps(1,ii)-...
284
                     timesteps (1, ii-1)) *24 * 60 * 60;
```

```
285
              end
286
              \alpha 1 = \alpha 2:
287
              q2=interp1 (timesteps', turb_discharges', JDAY_initial+...
288
                  (time-1) *frequency);
289
              if ~any(isnan(q2)) %may have some rounding issues, causing it to go
                  → past JDAY_end?
290
                  turbout=turbout+.5*(q1+q2)*((JDAY_initial+(time-1)*...
291
                     frequency) -timesteps(1,index2)) *24 * 60 * 60;
292
              end
293
           end
294
        end
295
296
         %Spill outflow from spill_discharges
297
        if ~isempty(spill_discharges)
298
           q1=[]; q2=[];
299
           timesteps=[JDAY_initial:frequency:JDAY_end];
300
           %find spill interpolation setting (b)
301
           [a,b]=find(strcmp(Q.interpolation,'outflow_spill'));
302
           if isequal(char(Q.interpolation(3,b)),'OFF')
303
              index1=find(timesteps(1,:)<=...
304
                  JDAY_initial+(time-2)*frequency,1,'last');
305
              index2=find(timesteps(1,:)<=...</pre>
306
                  JDAY_initial+(time-1)*frequency,1,'last');
307
              q1=spill_discharges(:,index1); %flowrates at beginning of timestep
308
              if index1==index2
                  spillout=spillout+q1*frequency*24*60*60;
309
310
              else
311
                  spillout=spillout+q1*(timesteps(1,index1+1)-(JDAY_initial+...
312
                     (time-2) *frequency)) *24 * 60 * 60;
313
                  for ii=index1+1:index2-1
314
                     q1=spill_discharges(:,ii);
315
                     spillout=spillout+q1*(timesteps(1,ii+1)-timesteps(1,ii))*...
316
                        24 * 60 * 60;
317
                 end
318
                 q1=spill_discharges(:,index2);
319
                  spillout=spillout+q1*((JDAY_initial+(time-1)*frequency)-...
320
                     timesteps(1,index2)) *24 * 60 * 60;
321
              end
322
           elseif isequal(char(Q.interpolation(3,b)),'ON')
323
              index1=find(timesteps(1,:)<=...</pre>
324
                  JDAY_initial+(time-2)*frequency,1,'last');
325
              index2=find(timesteps(1,:)<=...</pre>
326
                  JDAY_initial+(time-1)*frequency,1,'last');
327
              q1=interp1 (timesteps', spill_discharges', JDAY_initial+(time-2) *...
328
                  frequency);
329
              q1(isnan(q1)) = spill_discharges(isnan(q1), 1);
330
              if index1==index2
331
                  q2=interp1(timesteps',spill_discharges',JDAY_initial+(time-1)*...
332
                     frequency);
                  spillout=spillout+.5*(q1+q2)*((JDAY_initial+(time-1)*...
333
334
                     frequency) - (JDAY_initial+(time-2)*frequency))*24*60*60;
335
336
                  q2=spill_discharges(:,index1+1)';
337
                  spillout=spillout+.5*(q1+q2)*(timesteps(1,index1+1)-...
338
                     (JDAY_initial+(time-2)*frequency))*24*60*60;
339
                  for ii=index1+2:index2
340
                     q1=q2; %start flowrate is equal to previous end flowrate
341
                     g2=spill_discharges(:,ii);
342
                     spillout=spillout+.5*(q1+q2)*(timesteps(1,ii)-...
343
                        timesteps (1, ii-1)) *24 * 60 * 60;
344
                 end
345
                 q1 = q2;
346
                 q2=interp1(timesteps',spill_discharges',JDAY_initial+...
347
                     (time-1) *frequency);
```

```
348
                 %may have some rounding issues, causing it to go past JDAY_end?
349
                 if ~anv(isnan(g2))
350
                    spillout=spillout+.5*(q1+q2)*((JDAY_initial+(time-1)*...
351
                        frequency) -timesteps(1,index2)) *24 *60 *60;
352
                 end
353
              end
354
           end
355
        end
356
357
        deltav(time-1,:)=volin-volout-turbout-spillout+volin_BR1';
358
        Storage(time,:) = Storage(time-1,:) + deltav(time-1,:);
359
        %If too full and overtops SE curve (or drains and empties), linearly
            → extrapolate
360
        pred=interp1(Q.SE_meters_m3(:,2),Q.SE_meters_m3(:,1),...
361
           Storage(time,:),'linear','extrap');
362
       Predictions(time,:) = pred;
363
    end
```

ga_results_plotting_nobanding.m

```
1
   %% plot_data
2
 3
   % L.info('OPTIMIZATION','Generating plotting data in plot_data folder.')
   t_all=[start_date:frequency:start_date+days_forward];
 5
   for wb=1:size(CFG,2)
 6
 7
   maxdelay=max([WQ{wb}.DO_narx.inputDelays'; WQ{wb}.DO_narx.feedbackDelays']);
 8
   data_start=frequency*(maxdelay-1);
 9
    figure('units','normalized','outerposition',[0 0 1 1])
10
   % Title
   annotation('textbox',...
11
       [0.357741573033708 0.952787192414743 0.325808054820903
12
          → 0.0410246887733755],...
13
       'String', { [CFG {wb}. Name ' Reservoir Optimization Results'] },...
       'FontWeight','bold',...
14
15
       'FontSize',16,...
       'EdgeColor', [0.941176470588235 0.941176470588235 0.941176470588235],...
16
17
       'HorizontalAlignment','center');
18
19
   %% Subplot 1: Turbine discharge patterns as active units
20
   subplot(12,2,[1 3 5])
21
   Ax1=plot(tprev_ic, xprev_ic{wb},'k',...
       t_all(1:1+day*(1/frequency)),[xprev_ic{wb}(end) x0_all(wb,1:day*(1/frequency)

→ ) ], 'b', ...
23
       t_all(1:1+day*(1/frequency)),[xprev_ic{wb}(end) x_final{wb}],':r',...
24
       'LineWidth',2);
25
   xlabel('Julian Day'); xlim([t_all(1)-data_start t_all(1+day*24)]);
26
   set(gca,'YTick',0:1:no_of_units{wb});
27
   ylabel('Active turbine units')
28
   title('Active Turbine Units')
29
   ylim([0 max([xprev_ic{wb}(end) x0_all(wb,1:day*(1/frequency)) x_final{wb}])])
   ylims=get(gca,'ylim'); xlims=get(gca,'xlim'); xrange=xlims(2)-xlims(1); yrange=
        \hookrightarrow ylims(2)-ylims(1);
31
   text(xlims(1)+0.025*xrange,ylims(1)+0.9*yrange,'(a)','FontSize',12);
32.
33
    %% Subplot 2: Turbine discharge patterns as flowrate
34
   turb_discharges_x0{wb}=interp1(Qprojected{wb}.QOT_BR1_T(:,1),Qprojected{wb}.
       → QOT_BR1_T(:,2),t_all(1:1+day*(1/frequency)));
35
    turb_discharges{wb}=interp1(Q{wb}.QOT_BR1_T(:,1),Q{wb}.QOT_BR1_T(:,2),t_all(1:1+

→ day*(1/frequency)));
36
   turb_discharges_prev{wb}=interp1(Q{wb}.QOT_BR1_T(:,1),Q{wb}.QOT_BR1_T(:,2),
       → tprev_ic);
   subplot (12,2,[9 11 13])
```

```
| Ax2=plot(tprev_ic,turb_discharges_prev{wb},'k',...
38
39
       t_all(1:1+day*(1/frequency)),[turb_discharges_prev{wb}(end)

→ turb_discharges_x0{wb}(2:end)],'b',...
40
       t_all(1:1+day*(1/frequency)),[turb_discharges_prev{wb}(end) turb_discharges{
           \hookrightarrow wb} (2:end)],':r','LineWidth',2);
41
   xlabel('Julian Day'); xlim([t_all(1)-data_start t_all(1+day*(1/frequency))]);
   vlabel('Turbine discharge, cms')
43
   title('Turbine Discharges')
   ylims=get(gca,'ylim'); xlims=get(gca,'xlim'); xrange=xlims(2)-xlims(1); yrange=
        \hookrightarrow ylims(2)-ylims(1);
45
   text(xlims(1)+0.025*xrange,ylims(1)+0.9*yrange,'(b)','FontSize',12);
46
47
    %% Subplot 3: Spill discharge patterns as flowrate
   spill_discharges_x0{wb}=interp1(Qprojected{wb}.QOT_BR1_S(:,1),Qprojected{wb}.
48
       \hookrightarrow QOT_BR1_S(:,2),t_all(1:1+day*(1/frequency)));
   spill_discharges{wb}=interp1(Q{wb}.QOT_BR1_S(:,1),Q{wb}.QOT_BR1_S(:,2),t_all
       \hookrightarrow (1:1+dav*(1/frequency)));
50
   spill_discharges_prev{wb}=interp1(Qprojected{wb}.QOT_BR1_S(:,1),Qprojected{wb}.
       \hookrightarrow QOT_BR1_S(:,2),tprev_ic);
51
   subplot(12,2,[17 19 21])
52
   Ax2=plot(tprev_ic, spill_discharges_prev{wb},'k',...
53
       t_all(1:1+day*(1/frequency)),[spill_discharges_prev{wb}(end)

    spill_discharges_x0{wb}(2:end)],'b',...
54
       t_all(1:1+day*(1/frequency)),[spill_discharges_prev{wb}(end) spill_discharges
           \hookrightarrow {wb} (2:end)],':r','LineWidth',2);
   xlabel('Julian Day'); xlim([t_all(1)-data_start t_all(1+day*(1/frequency))]);
   ylabel('Spill discharge, cms')
57
   title('Spill Discharges')
58
   if all([spill_discharges_prev{wb} (end) spill_discharges_x0{wb} spill_discharges{
       \hookrightarrow wb}]==0)
       ylim([0 1])
59
60
   end
61
   ylims=get(gca,'ylim'); xlims=get(gca,'xlim'); xrange=xlims(2)-xlims(1); yrange=
       \hookrightarrow ylims(2)-ylims(1);
62
   text(xlims(1)+0.025*xrange,ylims(1)+0.9*yrange,'(c)','FontSize',12);
63
64
    %% Subplot 4: Headwater elevations
   [~,~,HWs_x0{wb},~,~] = active units_to_discharges (x0_all(wb,1:day*(1/frequency)),
65
        \hookrightarrow t_all(1:1+day*(1/frequency)),...
66
                       frequency, Qprojected{wb}, ic_elev_first{wb},...
             turbine_discharge(wb),[],[],[]);
67
68
   HWs_prev{wb}=interp1(Q{wb}.ELWS(:,1),Q{wb}.ELWS(:,2),tprev_ic);
69
   HWs\{wb\}=interp1(Q\{wb\}.ELWS(:,1),Q\{wb\}.ELWS(:,2),t_all(1:1+day*(1/frequency)));
70
   subplot(12,2,[2 4 6])
71
   Ax3=plot(tprev_ic, HWs_prev{wb}, 'k', ...
72
       t all(1:1+day*(1/frequency)), HWs x0{wb},'b',...
73
       t_all(1:1+day*(1/frequency)),HWs{wb},':r','LineWidth',2);
74
   hold on;
75
   h5=plot([t_all(1) t_all(1+day*(1/frequency))],...
76
       [ELWS_limit{wb}(1) ELWS_limit{wb}(1)],':k',...
77
       'LineWidth', 1.5);
78
   plot([t_all(1) t_all(1+day*(1/frequency))],...
       [ELWS_limit{wb}(2) ELWS_limit{wb}(2)],':k',...
79
80
       'LineWidth', 1.5)
81
   h6=scatter(ELWS_targets{wb}(:,1),ELWS_targets{wb}(:,2));
82
   hold off;
83
   xlabel('Julian Day'); xlim([t_all(1)-data_start t_all(1+day*(1/frequency))]);
84
   ylabel('Elevation, m')
85
   title('Headwater Elevation')
   ylims=get(gca,'ylim'); xlims=get(gca,'xlim'); xrange=xlims(2)-xlims(1); yrange=
        \hookrightarrow ylims(2)-ylims(1);
87
   text(xlims(1)+0.025*xrange,ylims(1)+0.9*yrange,'(d)','FontSize',12);
88
   %% Subplot 5: Discharge DO
```

```
90 | DO_pred_x0{wb}=interp1(Qprojected{wb}.CWO(Qprojected{wb}.CWO(:,2)~=0,1),
        \rightarrow Qprojected(wb).CWO(Qprojected(wb).CWO(:,2)~=0,2),t_all(2:1+day*(1/
        → frequency)));
91
    DO_pred{wb}=interp1(Q{wb}.CWO(:,1),Q{wb}.CWO(:,2),t_all(2:1+day*(1/frequency)));
92
    flowout_x0=turb_discharges_x0{wb}(2:end)+spill_discharges_x0{wb}(2:end);
    flowout=turb_discharges{wb}(2:end)+spill_discharges{wb}(2:end);
    DO pred x0{wb}(flowout x0==0)=nan; DO pred{wb}(flowout==0)=nan;
95
    Output_no0s{wb}=interp1(Qprojected{wb}.CWO(find(Qprojected{wb}.CWO(:,2)~=0),1)
96
       Qprojected{wb}.CWO(find(Qprojected{wb}.CWO(:,2)~=0),2),...
97
       [t_all(1)-data_start:frequency:t_all(1)])';
98
    if interpl(Qprojected{wb}.QOT_BR1_T(:,1),Qprojected{wb}.QOT_BR1_T(:,2),...
99
          tprev_ic(end)) == 0 & ...
100
          interp1 (Qprojected{wb}.QOT_BR1_S(:,1),Qprojected{wb}.QOT_BR1_S(:,2),...
101
          tprev_ic(end)) ==0
102
       DOinitcon{wb}=nan;
103
    else
104
       DOinitcon{wb}=Output_no0s{wb} (end);
105
    end
106
    Outputprev{wb}=interp1([t_all(1)-data_start:frequency:t_all(1)],Output_no0s{wb
        \hookrightarrow },...
107
       tprev_ic);
108
    j=find(interp1(Qprojected{wb}.QOT_BR1_T(:,1),Qprojected{wb}.QOT_BR1_T(:,2),...
109
       tprev_ic) == 0 & ...
110
       interp1 (Qprojected{wb}.QOT_BR1_S(:,1),Qprojected{wb}.QOT_BR1_S(:,2),...
111
       tprev_ic) == 0);
112
    Outputprev{wb}(j)=nan; clearvars j
113
    subplot(12,2,[10 12 14])
114
    h1=plot(tprev_ic,Outputprev{wb},'k','LineWidth',2);
115
    hold on:
   h2=plot(t_all(1:1+day*(1/frequency)),[DOinitcon{wb} DO_pred_x0{wb}],'b','
116
        \hookrightarrow LineWidth',2);
117
    h3=plot(t_all(1:1+day*(1/frequency)),[DOinitcon{wb} DO_pred{wb}],':r','LineWidth
        \hookrightarrow ',2);
    index=~isnan(W2validation{wb}.DO(:,2)); index2=isnan([D0initcon{wb} D0_pred{wb
118
        → }]);
119
    %Remove rows with zeros (no discharge)
120
    W2_no0s=W2validation{wb}.D0(index,:);
121
    %Smooth data
122
    W2_no0s_smooth(:,1) = W2_no0s(:,1); W2_no0s_smooth(:,2) = smooth(W2_no0s(:,1),
        \hookrightarrow W2_no0s(:,2),1);
123
    W2_{no0s\_smooth2}(:,1)=t_{all}(1:1+day*(1/frequency))';
124

    day*(1/frequency))');
125
    W2_no0s_smooth2(index2,2)=nan;
    h7 = plot([t all(1); W2 no0s smooth2(W2 no0s smooth2(:,1)>t all(1),1)],...
126
127
       [DOinitcon{wb}; W2_no0s_smooth2(W2_no0s_smooth2(:,1)>t_all(1),2)],'q','
           \hookrightarrow LineWidth',2);
    if ~isnan(WQ{wb}.DO_limit(1))
128
129
       h5=plot([t_all(1) t_all(1+day*(1/frequency))], [WQ{wb}.DO_limit(1) WQ{wb}.
           → DO_limit(1)],':k',...
130
          'LineWidth', 1.5);
    elseif ~isnan(WQ{wb}.DO_limit(2))
131
132
       plot([t_all(1) t_all(1+day*(1/frequency))],[WQ{wb}.DO_limit(2) WQ{wb}.
           → DO_limit(2)],':k',...
133
          'LineWidth', 1.5);
134
    end
135
    xlabel('Julian Day'); xlim([t_all(1)-data_start t_all(1+day*(1/frequency))]);
136
    ylabel('DO, mg/L');
137
    → }) min(DO_pred_x0{wb}) Output_no0s{wb}' WQ{wb}.DO_limit(1) WQ{wb}.
        → DO_limit(2)])-.25...
138
       \max([\max(W2\_no0s\_smooth2(W2\_no0s\_smooth2(:,1)>t_all(1),2)) \max(D0\_pred\{wb\})
           → max(DO_pred_x0{wb}) Output_no0s{wb}' WQ{wb}.DO_limit(1) WQ{wb}.
```

```
\hookrightarrow DO limit(2)1)+.251);
139
        title('Discharge DO Predictions')
       ylims=get(gca,'ylim'); xlims=get(gca,'xlim'); xrange=xlims(2)-xlims(1); yrange=
140
               \hookrightarrow ylims(2)-ylims(1);
141
        text(xlims(1)+0.025*xrange,ylims(1)+0.9*yrange,'(e)','FontSize',12);
142
       AME\{wb\}.DO=nanmean(abs(W2\_no0s\_smooth2(W2\_no0s\_smooth2(:,1)>t\_all(1),2)-DO\_pred\{(wb)\}.DO=nanmean(abs(W2\_no0s\_smooth2(:,1)>t_all(1),2)-DO\_pred\{(wb)\}.DO=nanmean(abs(W2\_no0s\_smooth2(:,1)>t_all(1),2)-DO\_pred\{(wb)\}.DO=nanmean(abs(W2\_no0s\_smooth2(:,1)>t_all(1),2)-DO\_pred\{(wb)\}.DO=nanmean(abs(W2\_no0s\_smooth2(:,1)>t_all(1),2)-DO\_pred\{(wb)\}.DO=nanmean(abs(W2\_no0s\_smooth2(:,1)>t_all(1),2)-DO\_pred\{(wb)\}.DO=nanmean(abs(W2\_no0s\_smooth2(:,1)>t_all(1),2)-DO\_pred\{(wb)\}.DO=nanmean(abs(W2\_no0s\_smooth2(:,1)>t_all(1),2)-DO\_pred\{(wb)\}.DO=nanmean(abs(W2\_no0s\_smooth2(:,1)>t_all(1),2)-DO\_pred\{(wb)\}.DO=nanmean(abs(W2\_no0s\_smooth2(:,1)>t_all(1),2)-DO\_pred\{(wb)\}.DO=nanmean(abs(W2\_no0s\_smooth2(:,1)>t_all(1),2)-DO\_pred\{(wb)\}.DO=nanmean(abs(W2\_no0s\_smooth2(:,1)>t_all(1),2)-DO\_pred\{(wb)\}.DO=nanmean(abs(W2\_no0s\_smooth2(:,1)>t_all(1),2)-DO\_pred\{(wb)\}.DO=nanmean(abs(W2\_no0s\_smooth2(:,1)>t_all(1),2)-DO\_pred\{(wb)\}.DO=nanmean(abs(W2\_no0s\_smooth2(:,1)>t_all(1),2)-DO\_pred\{(wb)\}.DO=nanmean(abs(W2\_no0s\_smooth2(:,1)>t_all(1),2)-DO\_pred\{(wb)\}.DO=nanmean(abs(W2\_no0s\_smooth2(:,1)>t_all(1),2)-DO\_pred\{(wb)\}.DO=nanmean(abs(W2\_no0s\_smooth2(:,1)>t_all(1),2)-DO\_pred\{(wb)\}.DO=nanmean(abs(W2\_no0s\_smooth2(:,1)>t_all(1),2)-DO\_pred\{(wb)\}.DO=nanmean(abs(W2\_no0s\_smooth2(:,1)>t_all(1),2)-DO\_pred\{(wb)\}.DO=nanmean(abs(W2\_no0s\_smooth2(:,1)>t_all(1),2)-DO\_pred\{(wb)\}.DO=nanmean(abs(W2\_no0s\_smooth2(:,1)>t_all(1),2)-DO\_pred\{(wb)\}.DO=nanmean(abs(W2\_no0s\_smooth2(:,1)>t_all(1),2)-DO\_pred\{(wb)\}.DO=nanmean(abs(W2\_no0s\_smooth2(:,1)>t_all(1),2)-DO\_pred\{(wb)\}.DO=nanmean(abs(W2\_no0s\_smooth2(:,1)>t_all(1),2)-DO\_pred\{(wb)\}.DO=nanmean(abs(W2\_no0s\_smooth2(:,1)>t_all(1),2)-DO\_pred\{(wb)\}.DO=nanmean(abs(W2\_no0s\_smooth2(:,1)>t_all(1),2)-DO\_pred\{(wb)\}.DO=nanmean(abs(W2\_no0s\_smooth2(:,1)>t_all(1),2)-DO\_pred\{(wb)\}.DO=nanmean(abs(W2\_no0s\_smooth2(:,1)>t_all(1),2)-DO\_pred\{(wb)\}.DO=nanmean(abs(W2\_no0s\_smooth2(:,1)>t_all(1),2)-DO\_pred\{(wb)\}.DO=nanmean(abs(W2\_no0s\_smooth2(:,1)>t_all(1),2)-DO\_pred\{(wb)\}.DO=nanmean(abs(W2\_no0s\_smooth2(:,1)>t_all(1),2)-DO\_pred\{(wb)\}.DO=nanmean(abs(W2\_no0s\_smooth2(:,1)>
143
        str=['AME = ', sprintf('%5.3f', AME\{wb\}.DO), 'mg/L'];
144
        text(xlims(1)+0.025*xrange,ylims(1)+0.1*yrange,str,'FontSize',12);
145
        %Compute WQ average slack using W2 results
146
        slack_compute=W2_no0s_smooth2(W2_no0s_smooth2(:,1)>t_all(1),2);
147
        non_nan_count=sum(~isnan(slack_compute),1);
148
        if ~isnan(WQ{wb}.DO_limit(1))
149
              slacks{wb}.DO.W2=sum(-min(0,slack_compute-WQ{wb}.DO_limit(1)),1)./
                    → non_nan_count;
150
        elseif ~isnan(WQ{wb}.DO_limit(2))
151
              slacks{wb}.DO.W2=sum(-min(0,slack_compute-WQ{wb}.DO_limit(2)),1)./
                     → non_nan_count;
152
        else
153
              slacks{wb}.DO.W2=0;
154
        end
155
        clearvars W2_no0s_smooth index index2 W2_no0s str slack_compute non_nan_count
156
157
        %% Subplot 5: Discharge Temp
       Temp_pred_x0{wb}=interp1(Qprojected{wb}.TWO(Qprojected{wb}.TWO(:,2)~=0,1),
158
               \hookrightarrow Qprojected{wb}.TWO(Qprojected{wb}.TWO(:,2)~=0,2),t_all(2:1+day*(1/
               → frequency)));
159
        Temp\_pred\{wb\}=interp1(Q\{wb\}.TWO(:,1),Q\{wb\}.TWO(:,2),t\_all(2:1+day*(1/frequency))
               → );
160
        Temp_pred_x0{wb} (flowout_x0==0) = nan; Temp_pred{wb} (flowout==0) = nan;
161
        clearvars flowout_x0
162
        Output_no0s{wb}=interp1(Qprojected{wb}.TWO(find(Qprojected{wb}.TWO(:,2)~=0),1)
163
              Qprojected{wb}.TWO(find(Qprojected{wb}.TWO(:,2)~=0),2),...
164
              [t_all(1)-data_start:frequency:t_all(1)])';
165
       if interpl(Qprojected{wb}.QOT_BR1_T(:,1),Qprojected{wb}.QOT_BR1_T(:,2),...
166
                   tprev_ic(end)) == 0 & ...
167
                    interp1 (Qprojected{wb}.QOT_BR1_S(:,1),Qprojected{wb}.QOT_BR1_S(:,2),...
168
                   tprev_ic(end)) ==0
169
              Tempinitcon{wb}=nan;
170
        else
171
              Tempinitcon{wb}=Output_no0s{wb} (end);
172
173
        Outputprev{wb}=interp1([t_all(1)-data_start:frequency:t_all(1)],Output_no0s{wb
               \hookrightarrow },...
174
              tprev ic);
175
        j=find(interp1(Qprojected{wb}.QOT_BR1_T(:,1),Qprojected{wb}.QOT_BR1_T(:,2),...
176
             tprev_ic) == 0 & ...
177
              interp1 (Qprojected{wb}.QOT_BR1_S(:,1),Qprojected{wb}.QOT_BR1_S(:,2),...
178
              tprev_ic) == 0);
179
        Outputprev{wb} (j) = nan; clearvars j
180
        subplot (12, 2, [18 20 22])
       h1=plot(tprev_ic,Outputprev{wb},'k','LineWidth',2);
181
182
        hold on;
183
       h2=plot(t_all(1:1+day*(1/frequency)),[Tempinitcon{wb} Temp_pred_x0{wb}],'b','
               \hookrightarrow LineWidth',2);
       h3=plot(t_all(1:1+day*(1/frequency)),[Tempinitcon{wb} Temp_pred{wb}],':r','
184
               \hookrightarrow LineWidth',2);
185
        index=~isnan(W2validation{wb}.T(:,2)); index2=isnan([Tempinitcon{wb} Temp_pred{
               → wb}]);
        %Remove rows with zeros (no discharge)
187
        W2_no0s=W2validation{wb}.T(index,:);
        %Smooth data
188
|W2\_no0s\_smooth(:,1)=W2\_no0s(:,1); W2\_no0s\_smooth(:,2)=smooth(W2\_no0s(:,1),
```

```
\hookrightarrow W2 no0s(:,2),1);
190
    W2_no0s_smooth2(:,1)=t_all(1:1+day*(1/frequency))';
191
    W2\_no0s\_smooth2(:,2) = interp1(W2\_no0s\_smooth(:,1), W2\_no0s\_smooth(:,2), t\_all(1:1+)

    day*(1/frequency))');
192
    W2_no0s_smooth2(index2,2)=nan;
193
    h7 = plot([t_all(1); W2_no0s_smooth2(W2_no0s_smooth2(:,1)>t_all(1),1)],...
194
        [Tempinitcon{wb}; W2 no0s smooth2(W2 no0s smooth2(:,1)>t all(1),2)],q', q'
            → LineWidth',2);
    if ~isnan(WQ{wb}.Temp_limit(1))
195
196
        h5=plot([t_all(1) t_all(1+day*(1/frequency))], [WQ{wb}.Temp_limit(1) WQ{wb}.
            \hookrightarrow Temp_limit(1)],':k',...
197
           'LineWidth', 1.5);
198
    elseif ~isnan(WQ{wb}.Temp_limit(2))
199
       h5=plot([t_all(1) t_all(1+day*(1/frequency))], [WQ{wb}.Temp_limit(2) WQ{wb}.
            \hookrightarrow Temp_limit(2)],':k',...
200
           'LineWidth', 1.5);
201
    end
202
    xlabel('Julian Day'); xlim([t_all(1)-data_start t_all(1+day*(1/frequency))]);
203
    ylabel('Temperature, C');
204
    ylim([min(W2_no0s_smooth2(W2_no0s_smooth2(:,1)>t_all(1),2)) min(Temp_pred{
         → wb}) min(Temp_pred_x0{wb}) Output_no0s{wb}' WQ{wb}.Temp_limit(1) WQ{wb}.
        → Temp_limit(2)])-.25...
205
       \max([\max(W2\_no0s\_smooth2(W2\_no0s\_smooth2(:,1)>t\_all(1),2)) \max(Temp\_pred\{wb\})

→ max(Temp_pred_x0{wb}) Output_no0s{wb}' WQ{wb}.Temp_limit(1) WQ{wb}.

            \hookrightarrow Temp_limit(2)])+.25]);
206
    title('Discharge Temperature Predictions')
207
    ylims=get(gca,'ylim'); xlims=get(gca,'xlim'); xrange=xlims(2)-xlims(1); yrange=
         \hookrightarrow ylims(2)-ylims(1);
208
    text(xlims(1)+0.025*xrange,ylims(1)+0.9*yrange,'(f)','FontSize',12);
209
    AME{wb}.T=nanmean(abs(W2_no0s_smooth2(W2_no0s_smooth2(:,1)>t_all(1),2)-Temp_pred
        \hookrightarrow {wb}'));
210
    str=['AME = ', sprintf('%5.3f', AME{wb}.T), ' C'];
211
    text(xlims(1)+0.025*xrange,ylims(1)+0.1*yrange,str,'FontSize',12);
212
    %Compute WQ average slack using W2 results
213
    slack\_compute=W2\_no0s\_smooth2(W2\_no0s\_smooth2(:,1)>t\_all(1),2);
214
    non nan_count=sum(~isnan(slack_compute),1);
215
       ~isnan(WQ{wb}.Temp_limit(1))
216
        slacks{wb}.T.W2=sum(-min(0,slack_compute-WQ{wb}.Temp_limit(1)),1)./

→ non_nan_count;

    elseif ~isnan(WQ{wb}.Temp_limit(2))
217
218
        slacks{wb}.T.W2=sum(-min(0,slack_compute-WQ{wb}.Temp_limit(2)),1)./
            → non_nan_count;
219
    else
220
       slacks{wb}.T.W2=0;
221
    end
222
    clearvars W2 no0s smooth W2 no0s smooth2 index index2 W2 no0s flowout str

→ slack_compute non_nan_count

223
224
    legend1=legend([h1 h2 h3 h7 h5 h6],'Past Values',...
        'Projected Operations',...
225
226
        'Optimal Solution',...
227
        'W2 Validation at Optimal Solution',...
228
        'Constraint Bounds',...
229
        'Target Elevations');
230
    set (legend1, ...
231
        'Position',[0.39086885358981 0.0131729985010991 0.256670797003518
            → 0.119367775250152],...
232
        'FontSize', 10);
233
234
    end
```

int_mutation.m

```
function mutationChildren = int_mutation(parents,options,GenomeLength, ...
      FitnessFcn, state, thisScore, thisPopulation)
   % Mutation function to generate childrens satisfying the range and integer
   % constraints on decision variables.
   shrink = .01;
   scale = 1;
   scale = scale - shrink * scale * state.Generation/options.Generations;
10
   range = options.PopInitRange;
11
   lower = range(1,:);
12
   upper = range(2,:);
13
   scale = scale * (upper - lower);
14
   mutationPop = length(parents);
   % The use of ROUND function will make sure that childrens are integers.
15
   mutationChildren = repmat(lower, mutationPop, 1) + ...
16
17
      round(repmat(scale, mutationPop, 1) .* rand(mutationPop, GenomeLength));
   % End of mutation function
```

int_pop.m

```
function Population = int_pop(GenomeLength, FitnessFcn, options)

totalpopulation = sum(options.PopulationSize);

range = options.PopInitRange;

lower= range(1,:);

span = range(2,:) - lower;

The use of ROUND function will make sure that individuals are integers.

Population = repmat(lower, totalpopulation, 1) + ...

round(repmat(span, totalpopulation, 1) .*...

rand(totalpopulation, GenomeLength));

End of creation function
```

narx_predictions.m

```
function pred=narx_predictions(NARX_model, frequency, t, Q, x, ...
      turb_discharges, spill_discharges, mainstem_inflows, previous_Output, flag)
3
4
   % Calculates WQ predictions using a trained family of NARX models
5
6
   % Inputs:
   % NARX_model - structure containing everything needed to make WQ
   % discharge predictions, including:
   % turb_colum - column in exogenous variables with turb flows
10
   % spill_column - column in exogenous variables with spill flows
   % inputDelays - delays for exogenous inputs
11
12
   % feedbackDelays - delays for prediction feedbacks
13
   % input_variables - 2 row cell containing variable names in first
14
   % row and column number in second. For example, 'MET_WB1'
15
   % contains multiple columns of data but only some may be used
   % for NARX predictions
17
   % bias - bias for each trained neural network
   % weights - weights for each trained neural network (sum to 1)
18
19
   % narx_net_closed - neural networks
   % frequency - frequency of predictions (hourly=1/24)
   % t time series of JDAY values
   % Q - all other inflows and outflows, interpolation settings,
   % storage-elev curve, and tailwater curve
   % x - hourly turbine time series (as rows for vectorizing!), integers
   % between 0 and no_of_units
   % turb_discharges - matrix the same size as x that includes the turbine
27 % discharge flowrates over the time t
```

```
28 | % spill_discharges - spill discharge flowrates
   % mainstem_inflows - structure containing Q, T, and DO with time series
30
   % data from previous days' optimal solution
31
   % previous_Output - the time series of previous outputs of the
32
   % constituent being predicted by NARX model
33
   % flag - 'do' if predicting DO, to check to make sure not <0
   % Outputs:
35
   % pred vector of NARX model predictions for water quality, with NaN
   % values anywhere turb+spill=0
37
38
   if isempty(mainstem_inflows)
39
      mainstem_inflows.Q=[];
40
      mainstem_inflows.T=[];
41
      mainstem_inflows.DO=[];
42
   end
43
   if exist('mainstem_inflows', 'var') && isfield(mainstem_inflows, 'Q')
44
      if isempty(mainstem_inflows.Q) mainstem_inflows.Q=[]; end
45
46
      mainstem_inflows.Q=[];
47
   end
48
   if exist('mainstem_inflows', 'var') && isfield(mainstem_inflows, 'T')
49
      if isempty(mainstem_inflows.T) mainstem_inflows.T=[]; end
50
51
      mainstem_inflows.T=[];
52
   end
53
   if exist('mainstem_inflows', 'var') && isfield(mainstem_inflows, 'DO')
      if isempty(mainstem_inflows.DO) mainstem_inflows.DO=[]; end
55
56
      mainstem_inflows.DO=[];
57
   end
58
59
   maxdelay=max([NARX_model.inputDelays'; NARX_model.feedbackDelays']);
60
   data_start=frequency*(maxdelay-1);
   timesteps=[t(1)-data_start:frequency:t];
61
   Output_no0s=interp1(previous_Output(find(previous_Output(:,2)~=0),1),...
62
63
      previous_Output(find(previous_Output(:,2)~=0),2),timesteps)';
64
   clearvars timesteps
65
   y1=con2seq([Output_no0s' nan(1, size(x, 2))]);
66
   timesteps2=[t(1)-data_start:frequency:t t(2:end)];
67
   Inputs=nan(size(timesteps2,2), size(NARX_model.input_variables,2));
68
   index_QIN_BR1=[]; index_TIN_BR1=[]; index_CIN_BR1=[];
69
   for i=1:size(NARX_model.input_variables,2)
70
       %If mainstem_inflows are provided and the variable is BR1 Q, T, or DO
71
          isempty(mainstem_inflows.Q) & ...
72
             isequal(NARX_model.input_variables{1,i},'QIN_BR1')
73
         index_QIN_BR1=i;
74
75
       if ~isempty(mainstem_inflows.T) & ...
76
             isequal(NARX_model.input_variables{1,i},'TIN_BR1')
77
         index_TIN_BR1=i;
78
      end
79
       if ~isempty(mainstem_inflows.DO) & ...
80
             isequal(NARX_model.input_variables{1,i},'CIN_BR1')
81
          index_CIN_BR1=i;
82
      end
83
       Inputs(:,i)=interp1(Q.(sprintf(NARX_model.input_variables{1,i}))(:,1),...
84
         Q.(sprintf(NARX_model.input_variables{1,i}))(:,NARX_model.input_variables
             \hookrightarrow {2,i}+1),...
85
         timesteps2);
86
   end
87
   clearvars i timesteps2
88
   pred=nan(size(x,1), size(x,2));
89
   for i=1:size(x,1) %attempt to vectorize this part later
90
       %Update mainstem_inflows, if necessary
```

```
91
        if ~isempty(index_QIN_BR1)
92
           Inputs(size(Inputs,1)-size(mainstem_inflows.Q,2)+1:...
93
              size(Inputs, 1), index_QIN_BR1) = mainstem_inflows.Q(i,:)';
94
95
        if ~isempty(index_TIN_BR1)
 96
           Inputs(size(Inputs, 1) - size(mainstem_inflows.T, 2) +1:...
97
              size(Inputs, 1), index_TIN_BR1) = mainstem_inflows.T(i,:)';
98
gg
        if ~isempty(index_CIN_BR1)
100
           Inputs(size(Inputs, 1) - size(mainstem_inflows.DO, 2) +1:...
101
              size(Inputs, 1), index_CIN_BR1) = mainstem_inflows.DO(i,:)';
102
103
        %Update turbine outflow and spill outflow columns, if necessary
104
        if ~isempty(turb_discharges)
105
           Inputs (size (Inputs, 1) -size (turb_discharges, 2) + . . .
106
              1:size(Inputs, 1), NARX_model.turb_column) = ...
107
              turb discharges(i,:)';
108
109
        if ~isempty(spill_discharges)
110
        Inputs(size(Inputs, 1) - size(turb_discharges, 2) + . . .
111
           1:size(Inputs, 1), NARX_model.spill_column) = ...
112
           spill_discharges(i);
113
114
        u1 = con2seq(Inputs');
115
        if size (NARX_model.narx_net_closed, 2) == 1
116
           if iscell(NARX model.narx net closed)
117
              [p1,Pi1,Ai1,t1]=preparets(NARX_model.narx_net_closed{:},u1,{},y1);
118
              yp1(1,:)=NARX_model.narx_net_closed{:}(p1,Pi1,Ai1);
119
           else
120
              [p1,Pi1,Ai1,t1]=preparets(NARX_model.narx_net_closed,u1,{},y1);
121
              yp1(1,:)=NARX_model.narx_net_closed(p1,Pi1,Ai1);
122
           end
123
        else
124
           for j=1:size(NARX_model.narx_net_closed, 2)
              [p1,Pi1,Ai1,t1]=preparets(NARX_model.narx_net_closed{j},u1,{},y1);
125
126
              yp1(j,:)=NARX_model.narx_net_closed{j}(p1,Pi1,Ai1);
127
128
        end
129
        yp1=cell2mat(yp1);
130
        if size(NARX_model.weights,1) == 1
           yp1=yp1-NARX_model.bias;
131
132
           pred(i,:)=yp1;
133
        else
134
           yp1=bsxfun(@minus,yp1,NARX_model.bias);
135
           pred(i,:)=sum(bsxfun(@times,NARX_model.weights,yp1));
136
        end
137
        clearvars yp1
138
    end
139
     clearvars i j
140
    if strcmp(flag,'do')
141
        pred=max(0,pred); %can't have negative concentrations of DO
142
143
    for i=1:size(x,1)
144
        j=[];
145
        if ~isempty(spill_discharges)
146
           if all(spill_discharges(i) == 0)
147
              j = find(x(i,:) == 0);
148
           else
149
              if size(spill_discharges(i,:),2) == 1 %if solving subproblem
150
                  j=[];
151
              else
152
                  j=find(turb_discharges(i,2:end)==0 & spill_discharges(i,2:end)==0);
                     → %if solving final solution over all subproblems
153
              end
```

```
154 | end

155 | else

156 | j=find(x(i,:)==0 & interp1(Q.QOT_BR1_S(:,1),Q.QOT_BR1_S(:,2),t(2:end))

→ ==0);

157 | end

158 | pred(i,j)=nan;

159 | end

160 | clearvars i j
```

NARX_retrain.m

```
%Retrain temperature and DO NARX models for wb
   %For each iteration, add the new W2 validation run data to the training data set
2
        \hookrightarrow , and then retrain. This means the training set grows with each iteration
       \hookrightarrow .
3
4
    %% DO validation run
 5
   \label{eq:timesteps} $$ $ [t_all(1) - max(WQ\{wb\}.DO_narx.inputDelays)/24:(1/24):t_all(end)]'$; $$ $$ $$ $$ $$ $$ $$
 6
    vars=WQ{wb}.DO_narx.input_variables;
    Inputs{wb}.discharge_DO{iter}=[]; count=0;
8
    for i=1:size(vars,2)
9
       count=count+1;
10
          if strfind(char(vars(1,i)),'TIN')
11
          flow_variable=strrep(char(vars(1,i)),'TIN','QIN');
12
       elseif strfind(char(vars(1,i)),'CIN')
13
          flow_variable=strrep(char(vars(1,i)),'CIN','QIN');
14
       elseif strfind(char(vars(1,i)),'TTR')
15
          flow_variable=strrep(char(vars(1,i)),'TTR','QTR');
16
       elseif strfind(char(vars(1,i)),'CTR')
17
          flow_variable=strrep(char(vars(1,i)),'CTR','QTR');
18
       else
19
          flow_variable=char(vars(1,i));
20
       end
21
       if "strcmp(char(vars(1,i)),'MET_WB1') %assume interpolation for MET data
22
          for ii=1:size(Q{wb}.interpolation,2)
23
              if strcmp(char(Q{wb}.interpolation(1,ii)),flow_variable)
24
                 break
25
             end
26
27
          if strcmp(char(Q{wb}.interpolation(3,ii)),'ON')
28
              Inputs\{wb\}.discharge_DO\{iter\}(:,i)=interp1(Q\{wb\}.(vars\{1,i\})(:,1),...
29
                 Q{wb}.(vars{1,i})(:,vars{2,i}+1),timesteps);
30
          elseif strcmp(char(Q{wb}.interpolation(3,ii)),'OFF')
31
              for iii=1:size(timesteps, 1)
32
                 index = find(Q\{wb\}.(vars\{1,i\})(:,1) \le timesteps(ii),1,'last');
33
                 Inputs{wb}.discharge_DO{iter}(iii,i)=Q{wb}.(vars{1,i})(index,vars{2,
                     \hookrightarrow i}+1);
34
             end
35
          end
36
       else
37
          Inputs\{wb\}.discharge_DO\{iter\}(:,i)=interp1(Q\{wb\}.(vars\{1,i\})(:,1),...
38
             Q{wb}.(vars{1,i})(:,vars{2,i}+1),timesteps);
39
       end
40
   end
41
    %Smooth output data (zeros already removed in W2validation)
42.
   Discharge.DO_no0s=W2validation{wb}.DO;
43
   Discharge.DO_no0s_smooth(:,1) = Discharge.DO_no0s(:,1);
44
   Discharge.DO_no0s_smooth(:,2)=smooth(Discharge.DO_no0s(:,1),Discharge.DO_no0s
        \hookrightarrow (:,2),1);
45
   Output {wb}.discharge_DO{iter}(:,1)=interp1(Discharge.DO_no0s_smooth(:,1),
        → Discharge.DO_no0s_smooth(:,2),timesteps);
46
   %Convert to cells
47 | Inputs_seq{wb}.discharge_DO{iter*2-1} = con2seq(Inputs{wb}.discharge_DO{iter}');
```

```
48
   |Output_seq{wb}.discharge_DO{iter*2-1} = con2seq(Output{wb}.discharge_DO{iter}');
    clearvars i ii iii flow variable
50
51
    %% DO validation run with turb and spill flipped
    [~,a]= find(cellfun(@(s) ~isempty(strfind('QOT_BR1_T', s)), vars)==1);
[~,b]= find(cellfun(@(s) ~isempty(strfind('QOT_BR1_S', s)), vars)==1);
52
    timesteps_flip=[t_all(1):(1/24):t_all(end)]';
    Inputs{wb}.discharge_DO_flip{iter}=Inputs{wb}.discharge_DO{iter};
    turb=Inputs{wb}.discharge_DO{iter}(:,a); spill=Inputs{wb}.discharge_DO{iter}(:,b
        \hookrightarrow );
57

    end, a) = spill(size(timesteps, 1) - size(timesteps_flip, 1) + 1: end);
    Inputs{wb}.discharge_DO_flip{iter}(size(timesteps,1)-size(timesteps_flip,1)+1:

→ end, b) = turb (size (timesteps, 1) - size (timesteps_flip, 1) + 1: end);
59
    %Smooth output data (zeros already removed in W2validation)
60
   Discharge.DO_no0s=W2validation_flip{wb}.DO;
61
   Discharge.DO_no0s_smooth(:,1) = Discharge.DO_no0s(:,1);
62
   Discharge.DO_no0s_smooth(:,2)=smooth(Discharge.DO_no0s(:,1),Discharge.DO_no0s
        \hookrightarrow (:,2),1);
63
    Output{wb}.discharge_DO_flip{iter}(:,1)=interp1(Discharge.DO_no0s_smooth(:,1),
        → Discharge.DO_no0s_smooth(:,2),timesteps);
    %Convert to cells
65
    Inputs_seq{wb}.discharge_DO{iter*2} = con2seq(Inputs{wb}.discharge_DO_flip{iter
        \hookrightarrow }');
    Output_seq{wb}.discharge_DO{iter*2} = con2seq(Output{wb}.discharge_DO_flip{iter
66
        \hookrightarrow }');
    clearvars vars Discharge turb spill a b
69
    %% DO training
70
    %Combine them all into single Input and Output cell arrays
71
    Inputs_seq_mul{wb}.discharge_DO=catsamples(Inputs_seq{wb}.discharge_DO{:},'pad')
72
    Output_seq_mul{wb}.discharge_DO=catsamples(Output_seq{wb}.discharge_DO{:},'pad')
        \hookrightarrow ;
73
74
    %Train DO model - start with best DO model from before (greatest weight)
75
    fprintf(['Training 5 DO models and picking the best \n'])
76
    for i=1:5
77
       inputDelays = [0 1 12]; %[10:14]?
78
       feedbackDelays = [1];
       hiddenNeurons=[10];
79
80
       narx_net{i} = narxnet(inputDelays, feedbackDelays, hiddenNeurons);
81
       narx_net{i}.divideFcn = 'dividerand';
82
       % The property DIVIDEMODE set to TIMESTEP means that targets are divided
83
       % into training, validation and test sets according to timesteps.
84
       % For a list of data division modes type: help nntype_data_division_mode
85
       narx_net{i}.divideMode = 'time'; % Divide up every value
86
       narx_net{i}.divideParam.trainRatio = 70/100;
87
       narx_net{i}.divideParam.valRatio = 15/100;
88
       narx_net{i}.divideParam.testRatio = 15/100;
89
       narx_net{i}.trainParam.min_grad = 1e-10;
90
       narx_net{i}.trainFcn = 'trainlm';
91
       narx_net{i}.trainParam.showWindow=0;
92
       narx_net{i}.trainParam.showCommandLine=1;
93
       [Xs,Xi,Ai,Ts]=preparets(narx_net{i},Inputs_seq_mul{wb}.discharge_DO,{}, ...
94
          Output_seq_mul{wb}.discharge_DO);
95
       [narx_net{i},~]=train(narx_net{i},Xs,Ts,Xi,Ai,'UseParallel','yes');
96
       narx_net_closed{i} = closeloop(narx_net{i});
97
       narx_net_closed{i}.trainParam.mu_max=1e14;
98
       [Xs, Xi, Ai, Ts]=preparets(narx_net_closed{i},Inputs_seq_mul{wb}.discharge_DO
           99
          Output_seq_mul{wb}.discharge_DO);
100
       [narx_net_closed{i},tr{i}]=train(narx_net_closed{i},Xs,Ts,Xi,Ai,'UseParallel'
           \hookrightarrow ,'yes');
```

```
101
   end
102
    for i=1:5 tr2(i)=tr{i}.best_perf; end
103
    [~,b]=min(tr2); WQ{wb}.DO_narx.narx_net_closed=narx_net_closed{b};
104
    yp1= WQ{wb}.DO_narx.narx_net_closed(Xs, Xi, Ai);
105
    %Calculate bias & standard dev using only predictions at test timepoints
106
    bias=cell2mat(yp1(tr{b}.testInd))-cell2mat(Ts(tr{b}.testInd)); bias=nanmean(bias
107
    allerrors=(cell2mat(yp1(tr{b}.testInd))-bias)-cell2mat(Ts(tr{b}.testInd));
108
    allerrors=allerrors(~isnan(allerrors));
109
    [~, sigmahat] = normfit(allerrors);
110
    WQ{wb}.DO_narx.bias=bias;
111
    WQ{wb}.DO_narx.weights=1;
112
    WQ{wb}.DO_narx.inputDelays=inputDelays;
113
    WQ{wb}.DO_narx.std_dev=sigmahat;
114
    WQ{wb}.DO_narx.Inputs=Inputs{wb}.discharge_DO;
115
    WQ{wb}.DO_narx.Output=Output{wb}.discharge_DO;
116
    if isfield(WQ{wb}.DO_narx,'train_time')
117
       WQ{wb}.DO_narx=rmfield(WQ{wb}.DO_narx, {'train_time'});
118
    end
119
    if isfield(WQ{wb}.DO_narx,'Discharge_DO_no0s')
       WQ{wb}.DO_narx=rmfield(WQ{wb}.DO_narx,{'Discharge_DO_no0s'});
120
121
122
    clearvars b Xs Xi Ai Ts tr tr2 b yp1 TS bias narx_net_closed narx_net muhat

→ sigmahat

123
124
    %% Temp validation run
125
    timesteps=[t_all(1)-max(WQ{wb}.Temp_narx.inputDelays)/24:(1/24):t_all(end)]';
126
    vars=WQ{wb}.Temp_narx.input_variables;
127
    Inputs{wb}.discharge_Temp{iter}=[];
128
    for i=1:size(vars,2)
129
       if strfind(char(vars(1,i)),'TIN')
130
           flow_variable=strrep(char(vars(1,i)),'TIN','QIN');
131
       elseif strfind(char(vars(1,i)),'CIN')
132
           flow_variable=strrep(char(vars(1,i)),'CIN','QIN');
133
       elseif strfind(char(vars(1,i)),'TTR')
134
           flow_variable=strrep(char(vars(1,i)),'TTR','QTR');
135
       elseif strfind(char(vars(1,i)),'CTR')
136
           flow_variable=strrep(char(vars(1,i)),'CTR','QTR');
137
       else
138
          flow_variable=char(vars(1,i));
139
140
        if ~strcmp(char(vars(1,i)),'MET_WB1') %assume interpolation for MET data
141
           for ii=1:size(Q{wb}.interpolation, 2)
142
              if strcmp(char(Q{wb}.interpolation(1,ii)),flow_variable)
143
                 break
144
              end
145
          end
146
           if strcmp(char(Q{wb}.interpolation(3,ii)),'ON')
147
              Inputs{wb}.discharge_Temp{iter}(:,i)=interp1(Q{wb}.(vars{1,i})(:,1),...
148
                 Q{wb}.(vars{1,i})(:,vars{2,i}+1),timesteps);
149
          elseif strcmp(char(Q{wb}.interpolation(3,ii)),'OFF')
150
              for iii=1:size(timesteps, 1)
151
                 index=find(Q\{wb\}.(vars\{1,i\})(:,1) \le timesteps(ii),1,'last');
152
                 Inputs{wb}.discharge_Temp{iter}(iii,i)=Q{wb}.(vars{1,i})(index,vars
                     \hookrightarrow {2,i}+1);
153
              end
154
          end
155
       else
156
           Inputs{wb}.discharge_Temp{iter}(:,i)=interp1(Q\{wb\}.(vars{1,i})(:,1),...
157
              Q{wb}.(vars{1,i})(:,vars{2,i}+1),timesteps);
158
       end
159
160
    %Smooth output data (zeros already removed in W2validation)
    Discharge.Temp_no0s=[W2validation{wb}.T(:,1) interp1(W2validation{wb}.T(~isnan(
```

```
\hookrightarrow W2validation{wb}.T(:,2)),1),...
162
       W2validation\{wb\}.T("isnan(W2validation\{wb\}.T(":,2)),W2validation\{wb\}.T(":,1)
163
    Discharge.Temp_no0s_smooth(:,1) = Discharge.Temp_no0s(:,1);
    Discharge.Temp_no0s_smooth(:,2)=smooth(Discharge.Temp_no0s(:,1),Discharge.
164
        \hookrightarrow Temp_no0s(:,2),1);
    Output {wb}.discharge Temp{iter}(:,1)=interp1(Discharge.Temp no0s smooth(:,1),
165
        → Discharge.Temp_no0s_smooth(:,2),timesteps);
166
    %Convert to cells
167
    Inputs_seq{wb}.discharge_Temp{iter*2-1} = con2seq(Inputs{wb}.discharge_Temp{iter
        → }');
168
    Output_seq{wb}.discharge_Temp{iter*2-1} = con2seq(Output{wb}.discharge_Temp{iter
        → }');
169
    clearvars i ii iii flow_variable
170
171
    %% Temp validation run with turb and spill flipped
    [~,a] = find(cellfun(@(s) ~isempty(strfind('QOT_BR1_T', s)), vars)==1);
172
    [",b] = find(cellfun(@(s) ~isempty(strfind('QOT_BR1_S', s)), vars)==1);
173
174
    timesteps_flip=[t_all(1):(1/24):t_all(end)]';
175
    Inputs{wb}.discharge_Temp_flip{iter}=Inputs{wb}.discharge_Temp{iter};
176
    turb=Inputs{wb}.discharge_Temp{iter}(:,a); spill=Inputs{wb}.discharge_Temp{iter
        \hookrightarrow } (:,b);
177
    Inputs{wb}.discharge_Temp_flip{iter}(size(timesteps,1)-size(timesteps_flip,1)+1:

→ end, a) = spill (size (timesteps, 1) - size (timesteps_flip, 1) + 1: end);
178
    Inputs{wb}.discharge_Temp_flip{iter}(size(timesteps,1)-size(timesteps_flip,1)+1:
        → end,b) = turb (size (timesteps, 1) - size (timesteps_flip, 1) +1:end);
179
    %Smooth output data (zeros already removed in W2validation)
180
    Discharge.Temp_no0s=[W2validation_flip{wb}.T(:,1) interp1(W2validation_flip{wb}.
        → T(~isnan(W2validation_flip(wb).T(:,2)),1),...
181
       W2validation_flip{wb}.T(~isnan(W2validation_flip{wb}.T(:,2)),2),
           → W2validation_flip{wb}.T(:,1))];
182
    Discharge.Temp_no0s_smooth(:,1) = Discharge.Temp_no0s(:,1);
183
    Discharge.Temp_no0s_smooth(:,2)=smooth(Discharge.Temp_no0s(:,1),Discharge.
        \hookrightarrow Temp_no0s(:,2),1);
184
    Output {wb}.discharge_Temp_flip{iter}(:,1)=interp1(Discharge.Temp_no0s_smooth
        185
    %Convert to cells
186
    Inputs_seq{wb}.discharge_Temp{iter*2} = con2seq(Inputs{wb}.discharge_Temp_flip{
        \hookrightarrow iter}');
187
    Output_seq{wb}.discharge_Temp{iter*2} = con2seq(Output{wb}.discharge_Temp_flip{
        \hookrightarrow iter}');
188
    clearvars vars Discharge turb spill a b
189
190
    %% Temp training
191
    %Combine them all into single Input and Output cell arrays
192
    Inputs_seq_mul{wb}.discharge_Temp=catsamples(Inputs_seq{wb}.discharge_Temp{:},'
193
    Output_seq_mul{wb}.discharge_Temp=catsamples(Output_seq{wb}.discharge_Temp{:},'
        \hookrightarrow pad');
194
    clearvars vars i Discharge
195
196
    %Train temp model - start with best DO model from before (greatest weight)
197
    fprintf(['Training 5 temperature models and picking the best <math>n'])
198
    for i=1:5
199
        inputDelays = [0 1 12]; %[10:14]?
200
        feedbackDelays = [1];
201
       hiddenNeurons=[10];
202
       narx_net{i} = narxnet(inputDelays, feedbackDelays, hiddenNeurons);
203
       narx_net{i}.divideFcn = 'dividerand';
204
       % The property DIVIDEMODE set to TIMESTEP means that targets are divided
205
        % into training, validation and test sets according to timesteps.
206
        % For a list of data division modes type: help nntype_data_division_mode
207
       narx_net{i}.divideMode = 'time'; % Divide up every value
208
       narx_net{i}.divideParam.trainRatio = 70/100;
```

```
209
       narx net{i}.divideParam.valRatio = 15/100;
210
       narx net{i}.divideParam.testRatio = 15/100;
211
       narx_net{i}.trainParam.min_grad = 1e-10;
212
       narx_net{i}.trainFcn = 'trainlm';
213
       narx_net{i}.trainParam.showWindow=0;
214
       narx_net{i}.trainParam.showCommandLine=1;
215
        [Xs, Xi, Ai, Ts] = preparets (narx_net{i}, Inputs_seq_mul{wb}.discharge_Temp, {}, ...
216
           Output_seq_mul{wb}.discharge_Temp);
217
        [narx_net{i},~]=train(narx_net{i},Xs,Ts,Xi,Ai,'UseParallel','yes');
218
       narx_net_closed{i} = closeloop(narx_net{i});
219
       narx_net_closed{i}.trainParam.mu_max=1e14;
220
        [Xs, Xi, Ai, Ts]=preparets(narx_net_closed{i}, Inputs_seq_mul{wb}.discharge_Temp
            → , { } , . . . .
221
           Output_seq_mul{wb}.discharge_Temp);
222
        [narx_net_closed{i},tr{i}]=train(narx_net_closed{i},Xs,Ts,Xi,Ai,'UseParallel'
           \hookrightarrow ,'yes');
223
    end
224
    for i=1:5 tr2(i)=tr{i}.best_perf; end
225
    [~,b]=min(tr2); WQ{wb}.Temp_narx.narx_net_closed=narx_net_closed{b};
226
    yp1= WQ{wb}.Temp_narx.narx_net_closed(Xs,Xi,Ai);
227
    %Calculate bias & standard dev using only predictions at test timepoints
228
    bias=cell2mat(yp1(tr{b}.testInd))-cell2mat(Ts(tr{b}.testInd)); bias=nanmean(bias
        \hookrightarrow );
229
    allerrors=(cell2mat(yp1(tr{b}.testInd))-bias)-cell2mat(Ts(tr{b}.testInd));
230
    allerrors=allerrors(~isnan(allerrors));
231
    [~, sigmahat] = normfit(allerrors);
232
    WQ{wb}.Temp_narx.bias=bias;
233
    WQ{wb}.Temp_narx.weights=1;
234
    WQ{wb}.Temp_narx.inputDelays=inputDelays;
235
    WQ{wb}.Temp_narx.std_dev=sigmahat;
236
    WQ{wb}.Temp_narx.Inputs=Inputs{wb}.discharge_Temp;
237
    WQ{wb}.Temp_narx.Output=Output{wb}.discharge_Temp;
238
    if isfield(WQ{wb}.Temp_narx,'train_time')
239
       WQ{wb}.Temp_narx=rmfield(WQ{wb}.Temp_narx, {'train_time'});
240
241
    if isfield(WQ{wb}.Temp_narx,'Discharge_temp_no0s')
242
       WQ{wb}.Temp_narx=rmfield(WQ{wb}.Temp_narx,{'Discharge_temp_no0s'});
243
244
    clearvars b Xs Xi Ai Ts tr tr2 yp1 TS bias narx_net_closed narx_net muhat

→ sigmahat

245
246
    clearvars timesteps timesteps_flip
```

obj_fcn.m

```
function y=obj_fcn(x_allwb,t,cost_curve_MW,MW_rating,...
1
2
      elev_soft_penalty_coeff,ELWS_targets,frequency,Q,ic_elev,...
3
      turbine_discharge)
4
5
   % Calculates value of generation pattern over time t
6
7
   % Inputs:
   % x_allwb - hourly turbine time series (as rows for vectorizing!),
   % integers between 0 and no_of_units for all waterbodies
10
   % t time series of JDAY values
11
   % cost_curve_MW 2 row matrix to create step function, with 1st row
12
   % being hours and 2nd row $/MW-hr values
13
   % MW_rating - the fixed MW level of turbine_discharge_curve (25 MW for
14
   % OHL)
15
   % elev_soft_penalty_coeff - penalty coefficient for soft ending elev soft
   % constraint
16
17
   % ELWS_targets - target elevations for end of time period
18 | % frequency - frequency of predictions (hourly=1/24)
```

```
19 \mid % Q - all other inflows and outflows, interpolation settings,
   % storage-elev curve, and tailwater curve (all in meters)
   % ic_elev - initial elevation condition (m)
22
   % turbine_discharge - turbine discharge curve at fixed MW level, with
23
   % col 1 in meters and col 2 in cms
24
   % Outputs:
25
   % y total price in $ of generation pattern
26
27
   y=zeros(size(x_allwb,1),1);
28
29
   %Split up rows of x to separate reservoirs
30
   for wb=1:size(MW rating,2)
31
      x\{wb\}=x_allwb(:,wb*(size(t,2)-1)-(size(t,2)-2):wb*(size(t,2)-1));
32.
33
   clearvars wb
34
35
   for wb=1:size(MW_rating,2)
36
37
       %Calculate turbine output over 10 days
38
       %Multiply each turbine output by number of turbines online
39
       output_MW{wb}=x{wb}*MW_rating{wb}; %MW
40
41
       %Calculate total power output
42
       y_MWh{wb}=sum(output_MW{wb}')';
43
       %Calculate weighted price output
44
      y_dollars{wb}=cost_curve(t,output_MW{wb},cost_curve_MW{wb}');
45
46
       %Calculate deviation from ELWS_target and subtract/add penalty
47
       if wb == 1
48
          %Preallocate mainstem_inflows for following wbs
49
          mainstem_inflows=cell(1:size(MW_rating,2));
50
          for i=1:size(MW_rating,2)
51
             mainstem_inflows{i}.t=[];
52
             mainstem_inflows{i}.Q=[];
53
          end
54
          clearvars i
55
          [turb_discharges{wb}, spill_discharges{wb}, HWs{wb}, ~,~] = ...
56
             activeunits_to_discharges(x{wb},t,frequency,...
57
             Q{wb},ic_elev{wb},turbine_discharge{wb},ELWS_targets{wb},...
58
             [],[]);
59
       else
60
          [turb_discharges{wb}, spill_discharges{wb}, HWs{wb}, ~,~] = ...
61
             activeunits_to_discharges(x{wb},t,frequency,...
62
             Q{wb},ic_elev{wb},turbine_discharge{wb},ELWS_targets{wb},...
63
             mainstem_inflows{wb}.t, mainstem_inflows{wb}.Q);
64
       end
65
66
       %ELWS end goal
67
       ELWS_goal{wb}=interp1(ELWS_targets{wb}(:,1),ELWS_targets{wb}(:,2),t(end));
68
       ELWS_error{wb}=HWs{wb}(:,end)-ELWS_goal{wb};
69
       ELWS_deduction{wb} = (ELWS_error{wb}.^2) *elev_soft_penalty_coeff(wb);
70
71
      y=y+y_dollars{wb}-ELWS_deduction{wb};
72
73
       %If we haven't reached the last reservoir, update mainstem_inflows
74
       if wb~=size(ic_elev,2)
75
          mainstem_inflows{wb+1}.t=t;
76
          mainstem_inflows{wb+1}.Q=bsxfun(@plus,turb_discharges{wb},spill_discharges
              \hookrightarrow {wb});
77
       end
78
79
   end
```

obj_fcn_do.m

```
function y=obj_fcn_do(x_allwb,t,frequency,Q,ic_elev,...
      turbine_discharge, WQ, ELWS_targets, level, waterbody)
4
   % Objective function to minimize DO constraint violation
5
6
   % Inputs:
   % x_allwb - hourly turbine time series (as rows for vectorizing!),
7
   % integers between 0 and no_of_units for all waterbodies
   % t time series of JDAY values
10
   % frequency - frequency of predictions (hourly=1/24)
   % Q - all other inflows and outflows, interpolation settings,
11
12
   % storage-elev curve, and tailwater curve (all in meters)
   % ic_elev - initial elevation condition (m)
   % turbine_discharge - turbine discharge curve at fixed MW level, with
15
   % col 1 in meters and col 2 in cms
16
   % WQ - structure containing water quality constraints and NARX models
17
   % DO_narx - structure containing everything needed to make DO discharge
   % predictions, including:
19
   % turb_colum - column in exogenous variables with turb flows
20
   % spill_column - column in exogenous variables with spill flows
21
   % times - JDAY values used in training (not used)
   % inputDelays - delays for exogenous inputs
   % feedbackDelays - delays for prediction feedbacks
   % input_variables - 2 row cell containing variable names in first
25
   % row and column number in second. For example, 'MET_WB1'
   % contains multiple columns of data but only some may be used
27
   % for NARX predictions
   % bias - bias for each trained neural network
   % weights - weights for each trained neural network (sum to 1)
30
   % narx_net_closed - neural networks
   \mbox{\% DO\_limit} - lower and upper DO limits (NaN means it doesn't exist)
31
   % DO_slack - relaxation from DO_limit (either upper or lower -
33
   % doesn't make sense to have both)
34
   % Temp_narx - structure containing everything needed to make temp discharge
35
   % predictions, including:
36
   % turb_colum - column in exogenous variables with turb flows
   % spill_column - column in exogenous variables with spill flows
   % times - JDAY values used in training (not used)
   % inputDelays - delays for exogenous inputs
40
   % feedbackDelays - delays for prediction feedbacks
41
   % input_variables - 2 row cell containing variable names in first
   % row and column number in second. For example, 'MET_WB1'
43
   % contains multiple columns of data but only some may be used
   % for NARX predictions
45
   % bias - bias for each trained neural network
   \mbox{\ensuremath{\$}} weights - weights for each trained neural network (sum to 1)
   % narx_net_closed - neural networks
   % Temp_limit - lower and upper temp limits (NaN means it doesn't exist)
48
   % Temp_slack - relaxation from Temp_limit (either upper or lower -
   % doesn't make sense to have both)
   % ELWS_targets - 2 column matrix with JDAY in coll and elevation target
   % in col2
   % level - 'upper' or 'lower'
53
54
   % waterbody - which waterbody we're checking the discharge DO for
55
   % Outputs:
   % y DO constraint violation for each scenario in x
57
58
   %Split up rows of x to separate reservoirs
59
   for wb=1:waterbody
60
      x\{wb\}=x_allwb(:,wb*(size(t,2)-1)-(size(t,2)-2):wb*(size(t,2)-1));
61
   end
62 | clearvars wb
```

```
63
64
    %Calculate headwater elevs for constraints
65
    for wb=1:waterbody
66
        %Calculate headwater elevs for constraints
67
        if wh==1
68
          mainstem_inflows{wb}.t=[];
69
          mainstem inflows{wb}.O=[];
70
           [turb_discharges{wb}, spill_discharges{wb}, HWs{wb},~,~] = ...
 71
              activeunits_to_discharges(x{wb},t,frequency,...
72
              Q{wb},ic_elev{wb},turbine_discharge{wb},ELWS_targets{wb},...
 73
              [],[]);
 74
        else
           [turb_discharges{wb}, spill_discharges{wb}, HWs{wb}, ~, ~] = ...
 75
76
              activeunits_to_discharges(x{wb},t,frequency,...
77
              Q{wb},ic_elev{wb},turbine_discharge{wb},ELWS_targets{wb},...
78
              mainstem_inflows{wb}.t,mainstem_inflows{wb}.Q);
 79
        end
80
        %If we haven't reached the last reservoir, update mainstem_inflows.Q (include
            → both turbine + spill incoming!) and mainstem_inflows.t
81
        if wb~=size(ic_elev,2)
82
          mainstem_inflows{wb+1}.Q=...
83
              bsxfun(@plus,turb_discharges{wb},spill_discharges{wb});
84
          mainstem_inflows{wb+1}.t=t;
85
        end
86
    end
87
88
    for wb=1:waterbody
89
90
        if wb^{-}=1
91
          mainstem_inflows_temp{wb}.t=mainstem_inflows{wb}.t;
92
          mainstem_inflows_temp{wb}.Q=mainstem_inflows{wb}.Q;
93
          mainstem_inflows_temp{wb}.T=mainstem_inflows{wb}.T;
94
          mainstem_inflows_temp{wb}.DO=mainstem_inflows{wb}.DO;
95
           Remove Nan values and interpolate for T and DO
96
           for i=1:size(x{wb},1)
97
              extrap_index=~isnan(mainstem_inflows_temp{wb}.T(i,:));
98
              [~,c]=find(extrap_index==1); extrap_index=c(end);
aa
              mainstem_inflows_temp{wb}.T(i,:)=...
100
                 interp1 (mainstem_inflows_temp{wb}.t(1, ~isnan (mainstem_inflows_temp{
                     \hookrightarrow wb}.T(i,:))),...
101
                 mainstem_inflows_temp{wb}.T(i,~isnan(mainstem_inflows_temp{wb}.T(i

→ ,:))),...
102
                 mainstem_inflows_temp{wb}.t,'linear',...
103
                 mainstem_inflows_temp{wb}.T(i,extrap_index));
104
              mainstem_inflows_temp{wb}.DO(i,:)=...
105
                 interp1 (mainstem_inflows_temp{wb}.t(1,~isnan(mainstem_inflows_temp{
                     \hookrightarrow wb}.DO(i,:))),...
106
                 mainstem_inflows_temp{wb}.DO(i, ~isnan(mainstem_inflows_temp{wb}.DO(i)
                     → ,:))),...
107
                 mainstem_inflows_temp{wb}.t,'linear',...
108
                 mainstem_inflows_temp{wb}.DO(i,extrap_index));
109
              clearvars extrap_index c
110
           end
111
           clearvars i
112
        end
113
114
        %Discharge Temp estimation, to update incoming mainstem temp for next
            → waterbody discharge DO estimation
115
        Temp_narx=WQ{wb}.Temp_narx;
116
        if wb==1 & waterbody~=1
117
           Temp_pred{wb}=...
118
              narx_predictions(Temp_narx, frequency, t, Q{wb}, x{wb},...
119
              turb_discharges{wb}, spill_discharges{wb}, [],...
120
              Q{wb}.TWO,'temp');
```

```
121
       elseif wb~=1 & wb~=waterbody
122
           Temp_pred{wb}=narx_predictions(Temp_narx, frequency, t, Q{wb}, x{wb},...
123
              turb_discharges{wb}, spill_discharges{wb},...
124
              mainstem_inflows_temp{wb},Q{wb}.TWO,'temp');
125
126
        %If we haven't reached the last reservoir, update mainstem_inflows.T
127
       if wb~=waterbody
128
          mainstem_inflows{wb+1}.T(1:size(x{wb},1),1)=...
129
              interp1(Q{wb}.TWO(:,1),Q{wb}.TWO(:,2),t(1));
130
          mainstem_inflows{wb+1}.T(:,2:size(Temp_pred{wb},2)+1)=...
131
              Temp_pred{wb};
132
       end
133
134
        %Now move on to DO....
135
       DO_narx=WQ{wb}.DO_narx; DO_limit=WQ{wb}.DO_limit;
136
       if wb==1
137
          DO_pred{wb}=narx_predictions(DO_narx,frequency,t,Q{wb},x{wb},...
138
              turb_discharges{wb}, spill_discharges{wb}, [],...
139
              Q{wb}.CWO,'do');
140
       else
141
           DO_pred{wb}=narx_predictions(DO_narx,frequency,t,Q{wb},x{wb},...
142
              turb_discharges{wb},spill_discharges{wb},...
143
              mainstem_inflows_temp{wb},Q{wb}.CWO,'do');
144
145
        %If we haven't reached the last reservoir, update mainstem_inflows.DO
146
       if wb~=waterbody
147
          mainstem_inflows{wb+1}.DO(1:size(x\{wb\},1),1)=...
148
              interp1(Q{wb}.CWO(:,1),Q{wb}.CWO(:,2),t(1));
149
           mainstem_inflows\{wb+1\}.DO(:,2:size(DO_pred\{wb\},2)+1)=...
150
              DO pred{wb};
151
       else
152
           non_nan_count=sum(~isnan(DO_pred{wb}),2);
153
           if strcmp(level,'lower')
154
              %DO violations - lower
155
              if isnan(DO limit(1))
156
                 DO_violations=zeros(size(DO_pred{wb},1),1);
157
              else
158
                 DO_violations=sum(-min(0,DO_pred{wb}-DO_limit(1)),2)./non_nan_count;
159
              end
160
           elseif strcmp(level,'upper')
161
              %DO violations - upper
162
              if isnan(DO_limit(2))
163
                 DO_violations=zeros(size(DO_pred{wb},1),1);
164
              else
165
                 DO_violations=sum(max(0,DO_pred{wb}-DO_limit(2)),2)./non_nan_count;
166
              end
167
           end
168
169
          y=max(DO_violations,[],2);
170
       end
171
    end
```

obj_fcn_elev.m

```
function y=obj_fcn_elev(x_allwb,t,frequency,Q,ic_elev,...
    turbine_discharge,ELWS_limit,ELWS_targets,level,waterbody)

description to minimize elevation constraint violation

function y=obj_fcn_elev(x_allwb,t,frequency,Q,ic_elev,...
    turbine_discharge,ELWS_limit,ELWS_targets,level,waterbody)

function y=obj_fcn_elev(x_allwb,t,frequency,Q,ic_elev,t,elevel,waterbody)

function y=obj_fcn_elev(x_allwb,t,elevel,waterbody)

function y=obj_fcn_ele
```

```
10 |% frequency - frequency of predictions (hourly=1/24)
11
   % Q - all other inflows and outflows, interpolation settings,
12
   % storage-elev curve, and tailwater curve (all in meters)
13
   % ic_elev - initial elevation condition (m)
   % turbine_discharge - turbine discharge curve at fixed MW level, with
14
15
   % col 1 in meters and col 2 in cms
   % ELWS limit - min and max elevation limits for constraints, in meters
17
   % ELWS_targets - 2 column matrix with JDAY in coll and elevation target
18
   % in col2
19
   % level - 'upper' or 'lower'
20
   % waterbody - which waterbody we're checking elevation for
21
   % Outputs:
22
        elevation constraint violation for each scenario in x
23
24
   %Split up rows of x to separate reservoirs
25
   for wb=1:waterbody
26
      x\{wb\}=x_allwb(:,wb*(size(t,2)-1)-(size(t,2)-2):wb*(size(t,2)-1));
27
28
   clearvars wb
29
30
   for wb=1:waterbody
31
       %Calculate headwater elevs for constraints
32
       if wb==1
33
         mainstem_inflows{wb}.t=[];
34
         mainstem_inflows{wb}.Q=[];
35
          [turb_discharges{wb},spill_discharges{wb},HWs{wb},~,~] = ...
36
             activeunits_to_discharges(x{wb},t,frequency,...
37
             Q{wb},ic_elev{wb},turbine_discharge{wb},ELWS_targets{wb},...
38
             [],[]);
39
      else
40
          [turb_discharges{wb}, spill_discharges{wb}, HWs{wb}, ~,~] = ...
41
             activeunits_to_discharges(x{wb},t,frequency,...
42
             Q{wb},ic_elev{wb},turbine_discharge{wb},ELWS_targets{wb},...
43
             mainstem_inflows{wb}.t, mainstem_inflows{wb}.Q);
44
      end
45
      %If we haven't reached the last reservoir, update mainstem_inflows.Q (include
          → both turbine + spill incoming!) and mainstem_inflows.t
46
       if wb~=size(ic_elev,2)
47
         mainstem_inflows{wb+1}.Q=...
48
             bsxfun(@plus,turb_discharges{wb},spill_discharges{wb});
49
         mainstem_inflows{wb+1}.t=t;
50
      end
51
   end
52
53
   %Inequality constraints:
   if strcmp(level,'lower')
55
      %Elevation violations - lower
56
       if isnan(ELWS_limit(1))
57
          deductions=zeros(size(HWs{waterbody}(:,1:end)));
58
      else
59
         deductions=-min(0,HWs{waterbody}(:,1:end)-ELWS_limit(1));
60
      end
61
   elseif strcmp(level, 'upper')
62
       %Elevation violations - upper
63
      if isnan(ELWS_limit(2))
64
          deductions=zeros(size(HWs{waterbody}(:,1:end)));
65
66
          deductions=max(0,HWs{waterbody}(:,1:end)-ELWS_limit(2));
67
      end
68
   end
69
   y=max(deductions,[],2);
```

obj_fcn_penalty_dollars.m

```
function [penalty,dollars,ELWS_error2]=obj_fcn_penalty_dollars(x_allwb,t,
       → cost_curve_MW, MW_rating,...
      elev_soft_penalty_coeff, ELWS_targets, frequency, Q, ic_elev, ...
3
      turbine_discharge)
4
5
   % Calculates value of generation pattern over time t
6
   % Inputs:
8
   % x_allwb - hourly turbine time series (as rows for vectorizing!),
   % integers between 0 and no_of_units for all waterbodies
10
   % t time series of JDAY values
   % cost_curve_MW 2 row matrix to create step function, with 1st row
11
   % being hours and 2nd row $/MW-hr values
13
   % MW_rating - the fixed MW level of turbine_discharge_curve (25 MW for
14
   % OHL)
15
   % elev_soft_penalty_coeff - penalty coefficient for soft ending elev soft
   % constraint
16
17
   % ELWS_targets - target elevations for end of time period
18
   % frequency - frequency of predictions (hourly=1/24)
19
   % Q - all other inflows and outflows, interpolation settings,
20
   % storage-elev curve, and tailwater curve (all in meters)
   % ic_elev - initial elevation condition (m)
   % turbine_discharge - turbine discharge curve at fixed MW level, with
23
   % col 1 in meters and col 2 in cms
24
   % Outputs:
25
   % penalty - penalty amount
26
   % dollars - total price in $ of generation pattern
   % ELWS_error2 how far elevation is from target
27
28
29
30
   %Split up rows of x to separate reservoirs
31
   for wb=1:size(MW rating,2)
32
      x\{wb\}=x_allwb(:,wb*(size(t,2)-1)-(size(t,2)-2):wb*(size(t,2)-1));
33
   end
34
   clearvars wb
35
36
   for wb=1:size(MW_rating,2)
37
38
       %Calculate turbine output over 10 days
39
       %Multiply each turbine output by number of turbines online
40
      output_MW{wb}=x{wb}*MW_rating{wb}; %MW
41
42
      %Calculate total power output
43
      y_MWh{wb}=sum(output_MW{wb}')';
44
       %Calculate weighted price output
45
      y_dollars{wb}=cost_curve(t,output_MW{wb},cost_curve_MW{wb}');
46
47
       %Calculate deviation from ELWS_target and subtract/add penalty
48
      if wb==1
49
          %Preallocate mainstem_inflows for following wbs
50
         mainstem_inflows=cell(1:size(MW_rating,2));
51
         for i=1:size(MW_rating,2)
52
            mainstem_inflows{i}.t=[];
53
            mainstem_inflows{i}.Q=[];
54
         end
55
         clearvars i
56
          [turb_discharges{wb}, spill_discharges{wb}, HWs{wb}, ~,~] = ...
57
             activeunits_to_discharges(x{wb},t,frequency,...
58
             Q{wb},ic_elev{wb},turbine_discharge{wb},ELWS_targets{wb},...
59
             [],[]);
60
      else
          [turb_discharges{wb}, spill_discharges{wb}, HWs{wb}, ~,~] = ...
61
```

```
activeunits_to_discharges(x{wb},t,frequency,...
62
63
             Q{wb},ic_elev{wb},turbine_discharge{wb},ELWS_targets{wb},...
64
             mainstem_inflows{wb}.t, mainstem_inflows{wb}.Q);
65
       end
66
67
       %ELWS end goal
68
       if size(ELWS targets(wb),1)>1
69
          ELWS_qoal{wb}=interp1(ELWS_targets{wb}(:,1),ELWS_targets{wb}(:,2),t(end));
70
71
          ELWS_goal{wb}=ELWS_targets{wb}(:,2);
72
       end
73
       ELWS_error{wb}=HWs{wb} (:,end)-ELWS_goal{wb};
74
       ELWS_error2=ELWS_error{wb}; ELWS_error{wb} (ELWS_error{wb}>0) = 0;
75
       ELWS_deduction{wb} = (ELWS_error{wb}.^2) *elev_soft_penalty_coeff (wb);
76
77
       %If we haven't reached the last reservoir, update mainstem_inflows
78
       if wb~=size(ic elev,2)
79
          mainstem_inflows{wb+1}.t=t;
80
          mainstem_inflows{wb+1}.Q=bsxfun(@plus,turb_discharges{wb},spill_discharges
              \hookrightarrow {wb});
81
       end
82
83
   end
84
85
   penalty=0; dollars=0;
86
   for wb=1:size(MW_rating,2)
87
       dollars=dollars+y_dollars{wb};
88
       penalty=penalty+ELWS_deduction{wb};
89
   end
```

obj_fcn_temp.m

```
function y=obj_fcn_temp(x_allwb,t,frequency,Q,ic_elev,...
      turbine_discharge, WQ, ELWS_targets, level, waterbody)
3
4
   \ensuremath{\$} Objective function to minimize temp constraint violation
5
6
   % Inputs:
   % x - hourly turbine time series (as rows for vectorizing!), integers
   % between 0 and no_of_units
   % t time series of JDAY values
10
   % frequency - frequency of predictions (hourly=1/24)
11
   % Q - all other inflows and outflows, interpolation settings,
   % storage-elev curve, and tailwater curve (all in meters)
13
   % ic_elev - initial elevation condition (m)
14
   % turbine_discharge - turbine discharge curve at fixed MW level, with
15
   % col 1 in meters and col 2 in cms
16
   % WQ - structure containing water quality constraints and NARX models
17
   % DO_narx - structure containing everything needed to make DO discharge
18
   % predictions, including:
19
   % turb_colum - column in exogenous variables with turb flows
   % spill_column - column in exogenous variables with spill flows
   % times - JDAY values used in training (not used)
   % inputDelays - delays for exogenous inputs
23
   % feedbackDelays - delays for prediction feedbacks
   % input_variables - 2 row cell containing variable names in first
   % row and column number in second. For example, 'MET_WB1'
   % contains multiple columns of data but only some may be used
27
   % for NARX predictions
   % bias - bias for each trained neural network
   % weights - weights for each trained neural network (sum to 1)
   % narx_net_closed - neural networks
31 | % DO_limit - lower and upper DO limits (NaN means it doesn't exist)
```

```
32 | % DO_slack - relaxation from DO_limit (either upper or lower -
   % doesn't make sense to have both)
   % Temp_narx - structure containing everything needed to make temp discharge
35
   % predictions, including:
   % turb_colum - column in exogenous variables with turb flows
   % spill_column - column in exogenous variables with spill flows
   % times - JDAY values used in training (not used)
   % inputDelays - delays for exogenous inputs
40
   % feedbackDelays - delays for prediction feedbacks
41
   \mbox{\ensuremath{\$}} input_variables - 2 row cell containing variable names in first
42
   % row and column number in second. For example, 'MET_WB1'
   % contains multiple columns of data but only some may be used
44
   % for NARX predictions
45
   % bias - bias for each trained neural network
46
   % weights - weights for each trained neural network (sum to 1)
   % narx_net_closed - neural networks
   % Temp_limit - lower and upper temp limits (NaN means it doesn't exist)
49
   % Temp_slack - relaxation from Temp_limit (either upper or lower -
50
   % doesn't make sense to have both)
51
   % ELWS_targets - 2 column matrix with JDAY in coll and elevation target
   % in col2
53
   % level - 'upper' or 'lower'
   % waterbody - which waterbody we're checking the discharge temp for
55
   % Outputs:
56
   % y temp constraint violation for each scenario in x
   %Split up rows of x to separate reservoirs
59
   for wb=1:waterbody
60
      x\{wb\}=x_allwb(:,wb*(size(t,2)-1)-(size(t,2)-2):wb*(size(t,2)-1));
61
   end
62
   clearvars wb
63
64
   %Calculate headwater elevs for constraints
65
   for wb=1:waterbody
66
       %Calculate headwater elevs for constraints
67
      if wh == 1
68
         mainstem_inflows{wb}.t=[];
69
         mainstem_inflows{wb}.Q=[];
70
          [turb_discharges{wb}, spill_discharges{wb}, HWs{wb}, ~,~] = ...
71
             activeunits_to_discharges(x{wb},t,frequency,...
72
             Q{wb},ic_elev{wb},turbine_discharge{wb},ELWS_targets{wb},...
73
             [],[]);
74
      else
75
          [turb_discharges{wb}, spill_discharges{wb}, HWs{wb}, ~,~] = ...
76
             activeunits_to_discharges(x{wb},t,frequency,...
77
             Q{wb},ic_elev{wb},turbine_discharge{wb},ELWS_targets{wb},...
78
             mainstem_inflows{wb}.t, mainstem_inflows{wb}.Q);
79
80
      %If we haven't reached the last reservoir, update mainstem_inflows.Q (include
          → both turbine + spill incoming!) and mainstem_inflows.t
81
      if wb~=size(ic_elev,2)
82
         mainstem_inflows{wb+1}.Q=...
83
             bsxfun(@plus,turb_discharges{wb},spill_discharges{wb});
84
         mainstem_inflows{wb+1}.t=t;
85
      end
86
   end
87
88
89
   for wb=1:waterbody
90
91
       if wb^{-}=1
92
         mainstem_inflows_temp{wb}.t=mainstem_inflows{wb}.t;
93
         mainstem_inflows_temp{wb}.Q=mainstem_inflows{wb}.Q;
94
         mainstem_inflows_temp{wb}.T=mainstem_inflows{wb}.T;
```

```
95
           %Remove Nan values and interpolate for T
96
           for i=1:size(x{wb},1)
97
              extrap_index=~isnan(mainstem_inflows_temp{wb}.T(i,:));
98
              [~,c]=find(extrap_index==1); extrap_index=c(end);
99
              mainstem_inflows_temp{wb}.T(i,:)=...
100
                 interp1 (mainstem_inflows_temp{wb}.t(1, ~isnan (mainstem_inflows_temp{
                     \hookrightarrow wb}.T(i,:))),...
101
                 mainstem_inflows_temp{wb}.T(i,~isnan(mainstem_inflows_temp{wb}.T(i
                     \hookrightarrow ,:))),...
102
                 mainstem_inflows_temp{wb}.t,'linear',... %'extrap');
103
                 mainstem_inflows_temp{wb}.T(i,extrap_index));
104
              clearvars extrap index c
105
106
           clearvars i
107
        end
108
109
        %Discharge Temp estimation
110
        Temp_narx=WQ{wb}.Temp_narx; Temp_limit=WQ{wb}.Temp_limit;
111
        if wb==1
112
           Temp_pred(wb)=narx_predictions(Temp_narx, frequency, t, Q(wb), x(wb),...
113
              turb_discharges{wb},spill_discharges{wb},[],...
114
              Q{wb}.TWO,'temp');
115
        else
116
           Temp_pred{wb}=narx_predictions(Temp_narx,frequency,t,Q{wb},x{wb},...
117
              turb_discharges{wb}, spill_discharges{wb},...
118
              mainstem_inflows_temp{wb},Q{wb}.TWO,'temp');
119
120
        %If we haven't reached the last reservoir, update mainstem_inflows.T
121
        if wb~=waterbody
122
           mainstem_inflows{wb+1}. T(1:size(x\{wb\},1),1)=...
              interp1(Q{wb}.TWO(:,1),Q{wb}.TWO(:,2),t(1));
123
124
           mainstem_inflows{wb+1}.T(:,2:size(Temp_pred{wb},2)+1)=...
125
              Temp_pred{wb};
126
        else
127
           non_nan_count=sum(~isnan(Temp_pred{wb}),2);
128
           if strcmp(level,'lower')
129
              %Temp violations - lower
130
              if isnan(Temp_limit(1))
131
                 Temp_violations=zeros(size(Temp_pred{wb},1),1);
132
              else
133
                 Temp_violations=sum(-min(0,Temp_pred{wb}-Temp_limit(1)),2)./
                     → non_nan_count;
134
135
           elseif strcmp(level,'upper')
136
              %Temp violations - upper
137
              if isnan(Temp_limit(2))
138
                 Temp_violations=zeros(size(Temp_pred{wb},1),1);
139
140
                 Temp_violations=sum(max(0,Temp_pred{wb}-Temp_limit(2)),2)./
                     → non_nan_count;
141
              end
142
143
144
           y=max(Temp_violations,[],2);
145
       end
146
    end
```

penalty_fcn.m

```
function [c_all,ceq]=penalty_fcn(x_allwb,t,frequency,Q,ic_elev,...
turbine_discharge,ELWS_limit,max_hrly_unit_change,...
WQ,zero_gen_limit,xprev,ELWS_targets,tolerance)
```

```
5 \mid % Calculates penalty violations, starting with the least expensive
      % computations and continuing on to the more expensive computations for
      % runs that are found to be feasible thus far
 8
 9
      % Inputs:
      \mbox{\ensuremath{\,^\circ}} x\_\mbox{\ensuremath{\,^\circ}} x_{\mbox{\ensuremath{\,^\circ}}} \mbox{\ensuremath{\,^\circ}} x_{\mbox{\ensuremath{\,^\circ}}} \mbox{\ensuremath{\,^\circ}} \mbox{\ensuremath{
10
11
      % integers between 0 and no_of_units for all waterbodies
      % t time series of JDAY values
13
      % frequency - frequency of predictions (hourly=1/24)
14
      % Q - all other inflows and outflows, interpolation settings,
15
      \mbox{\ensuremath{\upsigma}} storage-elev curve, and tailwater curve
16
      % ic_elev - initial condition (meters)
17
      % turbine discharge - turbine discharge curve at fixed MW level, with
      % col 1 in meters and col 2 in cms
18
19
      % ELWS_limit - min and max elevation limits for constraints, in meters
     % max_hrly_unit_change - max number of units that can be changed per hour
21
     % (1 for OHL)
      % WQ - structure containing water quality constraints and NARX models
23
      % DO_narx - structure containing everything needed to make DO discharge
24
      % predictions, including:
25
      \mbox{\ensuremath{\$}}\xspace turb_column - column in exogenous variables with turb flows
      % spill_column - column in exogenous variables with spill flows
      % times - JDAY values used in training (not used)
      % inputDelays - delays for exogenous inputs
      % feedbackDelays - delays for prediction feedbacks
      % input_variables - 2 row cell containing variable names in first
      % row and column number in second. For example, 'MET_WB1'
      % contains multiple columns of data but only some may be used
33
      % for NARX predictions
34
      % bias - bias for each trained neural network
      \mbox{\ensuremath{\$}} weights - weights for each trained neural network (sum to 1)
35
      % narx_net_closed - neural networks
37
      % DO_limit - lower and upper DO limits (NaN means it doesn't exist)
      % DO_slack - relaxation from DO_limit (either upper or lower -
      % doesn't make sense to have both)
     % Temp_narx - structure containing everything needed to make temp discharge
41
     % predictions, including:
42.
      % turb_colum - column in exogenous variables with turb flows
43
      % spill_column - column in exogenous variables with spill flows
      % times - JDAY values used in training (not used)
45
      % inputDelays - delays for exogenous inputs
46
      \mbox{\%} feedbackDelays - delays for prediction feedbacks
      % input_variables - 2 row cell containing variable names in first
47
      % row and column number in second. For example, 'MET_WB1'
      % contains multiple columns of data but only some may be used
      % for NARX predictions
      % bias - bias for each trained neural network
      % weights - weights for each trained neural network (sum to 1)
53
      % narx_net_closed - neural networks
      % Temp_limit - lower and upper temp limits (NaN means it doesn't exist)
      % Temp_slack - relaxation from Temp_limit (either upper or lower -
      % doesn't make sense to have both)
      % zero_gen_limit - Zero generation hourly limit (can't go longer than
57
      % this with no turb flow)
      % xprev - vector of previous active turbine levels
     % ELWS_targets - 2 column matrix with JDAY in col1 and elevation target
61
     % in col2
62
      % tolerance - penalty tolerance
63
      % Outputs:
64
      % c_all inequality constraint output (n/a, so 0)
      % ceq - equality constraint output (=0 for feasible solution)
65
      %Equality constraint
67
68 | ceq=[];
```

```
69
 70
    %Preallocate memory
 71
    x{1, size(ic_elev, 2)}=[];
72
    xall{1, size(ic_elev, 2)}=[];
73
    turb_discharges{1, size(ic_elev, 2)}=[];
74
    HWs{1, size(ic_elev, 2)}=[];
75
    c_{all=zeros}(size(x{1},1),size(ic_{elev},2)*(3+(1+size(x{1},2))*2+2+2+2+2));
76
77
    zeroRows_empty=0;
78
    zeroRows0=[1:size(x_allwb,1)]';
79
80
     for wb=1:size(ic elev,2)
81
        %Split up rows of x to separate reservoirs
82
        x\{wb\}=x_allwb(:,wb*(size(t,2)-1)-(size(t,2)-2):wb*(size(t,2)-1));
83
        %Preallocate c, with columns representing: (1) change in active unit
            \hookrightarrow violations, (2) zero gen hourly limit, (3) oscillations constraint,
            \hookrightarrow (4:28) ELWS lower violations, (29:53) ELWS upper violations, (54:77)
            → hrly DO upper violations, (78:101) hrly DO lower violations, (102)
            → mean DO upper violation, (103) mean DO lower violations, (104:127)
            \hookrightarrow hrly temp upper violations, (128:151) hrly temp lower violations,
            \hookrightarrow (152) mean temp upper violation, and (153) mean temp lower violations
84
        c\{wb\}=zeros(size(x\{1\},1),3+(1+size(x\{1\},2))*2+2+2+2+2);
85
     end
86
    clearvars wb
87
88
89
90
    for wb=1:size(ic_elev,2)
91
92
        c\{wb\} (setdiff([1:size(x{wb},1)],zeroRows0),:)=1;
93
94
        %Check if all entries in x are infeasible due to previous reservoirs, and if
            \hookrightarrow so set the rest of c==1 and go to end
95
        if zeroRows_empty==1
96
           c\{wb\}(:)=1;
97
        else
98
99
           %Break up WQ structure into separate variables
100
           DO_narx=WQ{wb}.DO_narx; DO_limit=WQ{wb}.DO_limit; DO_slack=WQ{wb}.DO_slack
               \hookrightarrow ;
           Temp_narx=WQ{wb}.Temp_narx; Temp_limit=WQ{wb}.Temp_limit; Temp_slack=WQ{wb}
101
               → }.Temp_slack;
102
103
           %Stitch together xprev & x to check for feasibility wrt active unit viols,
               \hookrightarrow zero generation hrly limit, and oscillations
104
           xall\{wb\}=[repmat(xprev\{wb\}, size(x\{wb\}, 1), 1) x\{wb\}];
105
106
           %Change in active unit violations
107
           if isempty(max_hrly_unit_change(wb))
108
              delta_sum=zeros(size(zeroRows0,1),1);
109
           else
110
              delta=abs(round(xall{wb}(zeroRows0,2:end))-...
111
                  round(xall{wb}(zeroRows0,1:end-1)));
112
               index=find(delta<=max_hrly_unit_change{wb});
113
              delta(index)=0:
114
              delta_sum=sum(delta')';
115
116
117
           %Zero generation hourly limit - can't go longer with no turb flow
118
           if isempty(zero_gen_limit{wb})
119
               zero_gen_viols_sum=zeros(size(zeroRows0,1),1);
120
121
               zero_gen_viols=zeros(size(zeroRows0,1), size(xall{wb},2)-...
122
                  zero_gen_limit{wb}-1);
```

```
123
              x_trans=xall{wb} (zeroRows0,:)';
124
              for i=1:size(x_trans,1)-zero_gen_limit{wb}
125
                  a=sum(x_trans(i:i+zero_gen_limit{wb},:))';
126
                 zero_gen_viols(:,i) = (a==0);
127
              end
128
              clearvars i
129
              zero_gen_viols_sum=sum(zero_gen_viols')';
130
131
132
           %Oscillations constraint - violates whenever the number of turbines
               \hookrightarrow increases and then decreases within 3 hours, or vice versa
133
           osc_violations=zeros(size(zeroRows0,1), size(xall{wb},2)-2);
134
           xall_osc=xall{wb}(zeroRows0,:);
135
           for ii=1:size(xall_osc,1) %loop through each member of population
136
              for i=1:size(xall_osc,2)-2; %loop forward through time
137
                  if xall_osc(ii,i+1)>xall_osc(ii,i) & ...
138
                        xall_osc(ii,i+2) <xall_osc(ii,i+1)</pre>
139
                     osc_violations(ii,i)=1;
140
                 elseif xall_osc(ii,i+1) < xall_osc(ii,i) & ...</pre>
141
                        xall_osc(ii, i+2) > xall_osc(ii, i+1)
142
                     osc_violations(ii,i)=1;
143
                 elseif i~=1
144
                     if xall_osc(ii,i) == xall_osc(ii,i+1) % need 3 hrs btwn ramping up
                         → and down
145
                        if xall_osc(ii,i-1)<xall_osc(ii,i) & ...</pre>
146
                               xall_osc(ii,i+1)>xall_osc(ii,i+2) %ramping up & back

→ down too quickly

147
                           osc_violations(ii,i)=1;
148
                        elseif xall_osc(ii,i-1)>xall_osc(ii,i) & ...
149
                              xall_osc(ii,i+1) < xall_osc(ii,i+2) % ramping down & back</pre>
                                   \hookrightarrow up too quickly
150
                           osc_violations(ii,i)=1;
151
                        end
152
                     end
153
                 end
154
              end
155
156
           clearvars i ii xall_osc
157
           osc_violations_sum=sum(osc_violations')';
158
159
           %Compile least expensive constraints
160
           c\{wb\} (zeroRows0,1:3)=...
161
              [delta_sum zero_gen_viols_sum osc_violations_sum];
162
163
           clearvars zeroRows1 zeroRows2 zeroRows3 zeroRows4 x_zeroRows1 x_zeroRows2
               → x zeroRows3 x zeroRows4
164
           x_zeroRows1=[];
165
           x_zeroRows2=[];
166
           x_zeroRows3=[];
167
           x_zeroRows4=[];
168
           %Only compute expensive constraints if all others pass
169
           zeroRows1=find(all(c{wb}<=tolerance,2));</pre>
170
           x_zeroRows1=x{wb} (zeroRows1,:);
171
           if isempty(x_zeroRows1)
172
              c\{wb\}(:, 4:end)=1;
173
              zeroRows_empty=1;
174
           end
175
176
           if zeroRows_empty~=1
177
178
              %Calculate headwater elevs for constraints
179
              if wb==1
180
                  %Preallocate mainstem_inflows for following wbs
181
                 mainstem_inflows=cell(1:size(ic_elev,2));
```

```
182
                 for i=1:size(ic_elev,2)
183
                    mainstem_inflows{i}.t=[];
184
                    mainstem_inflows{i}.Q=[];
185
                    mainstem_inflows{i}.T=[];
186
                    mainstem_inflows{i}.DO=[];
187
                 end
188
                 clearvars i
189
                 [turb_discharges{wb}, spill_discharges{wb}, HWs{wb},~,~] = ...
190
                    activeunits_to_discharges(x_zeroRows1,t,...
191
                    frequency,Q{wb},ic_elev{wb},turbine_discharge{wb},...
192
                    ELWS_targets{wb},[],[]);
193
              else
194
                 [turb_discharges{wb}, spill_discharges{wb}, HWs{wb}, ~,~] = ...
195
                    activeunits_to_discharges(x_zeroRows1,t,...
196
                    frequency,Q{wb},ic_elev{wb},turbine_discharge{wb},...
197
                    ELWS_targets{wb}, mainstem_inflows{wb}.t,...
198
                    mainstem_inflows{wb}.Q(zeroRows1,:));
199
              end
200
              %If we haven't reached the last reservoir, update mainstem_inflows.Q (
                  → include both turbine + spill incoming!)
201
              if wb~=size(ic_elev,2)
202
                 mainstem_inflows{wb+1}.Q(zeroRows1,:)=...
203
                 bsxfun(@plus,turb_discharges{wb},spill_discharges{wb});
204
205
              %Inequality constraints:
206
              %Elevation violations - lower
207
              if isnan(ELWS_limit{wb}(1))
208
                 deductions1=zeros(size(HWs{wb}(:,1:end)));
209
              else
210
                 deductions1=-min(0, HWs{wb}(:,1:end)-ELWS_limit{wb}(1));
211
              end
212
              %Elevation violations - upper
213
              if isnan(ELWS_limit{wb}(2))
214
                 deductions2=zeros(size(HWs{wb}(:,1:end)));
215
              else
216
                 deductions2=max(0,HWs{wb}(:,1:end)-ELWS_limit{wb}(2));
217
              end
218
219
              c\{wb\} (setdiff([1:size(x{wb},1)], zeroRows1), 4:end)=1;
220
              c\{wb\} (zeroRows1, 4:3+(1+size(x{wb},2))*2)=[deductions1 deductions2];
221
222
              zeroRows2=find(all(c{wb}<=tolerance,2));</pre>
223
              x_zeroRows2=x{wb} (zeroRows2,:);
224
              if isempty(x_zeroRows2)
225
                 c\{wb\}(:, 3+(1+size(x\{wb\}, 2))*2+1:end)=1;
226
                 zeroRows_empty=1;
227
              end
228
229
              turb\_discharges2=zeros(size(x{wb},1),size(x{wb},2)+1);
230
              turb_discharges2(zeroRows1,:)=turb_discharges{wb};
231
              %-->need to reset this with zero rows back in
232
              turb_discharges{wb}=turb_discharges2;
233
              spill_discharges2=zeros(size(x{wb},1),1);
234
              spill_discharges2(zeroRows1,:)=spill_discharges{wb};
235
              %-->need to reset this with zero rows back in
236
              spill_discharges{wb}=spill_discharges2;
237
              clearvars spill_discharges2 turb_discharges2
238
           end
239
240
           %Continue on and calculate discharge DO if still feasible, if DO_narx is
               → provided and a limit exists
241
           if zeroRows_empty~=1 & ~isempty(DO_narx) & (wb~=size(ic_elev,2) | any(
              → DO_limit))
242
```

```
243
              %Discharge DO constraint
244
              if wb==1
245
                 DO_pred{wb}=narx_predictions(DO_narx,...
246
                     frequency,t,Q{wb},x_zeroRows2,...
247
                    turb_discharges{wb} (zeroRows2,:),...
248
                    spill_discharges{wb} (zeroRows2),[],...
249
                    O{wb}.CWO,'do');
250
              else
251
                 mainstem_inflows_zeroRows2{wb}.Q=...
252
                    mainstem_inflows{wb}.Q(zeroRows2,:);
253
                 mainstem_inflows_zeroRows2{wb}.T=...
254
                    mainstem inflows{wb}.T(zeroRows2,:);
255
                 mainstem_inflows_zeroRows2{wb}.DO=...
256
                    mainstem_inflows{wb}.DO(zeroRows2,:);
257
                 DO_pred{wb}=narx_predictions(DO_narx,...
258
                    frequency,t,Q{wb},x_zeroRows2,...
259
                    turb_discharges{wb} (zeroRows2,:),...
260
                    spill_discharges{wb} (zeroRows2),...
261
                    mainstem_inflows_zeroRows2{wb},Q{wb}.CWO,'do');
262
              end
263
              %If we haven't reached the last reservoir, update mainstem_inflows.DO
264
              if wb~=size(ic_elev,2)
265
                 mainstem_inflows{wb+1}.DO(zeroRows2,1)=...
266
                     interp1(Q{wb}.CWO(:,1),Q{wb}.CWO(:,2),t(1));
267
                 mainstem\_inflows\{wb+1\}.D0(zeroRows2,2:size(D0\_pred\{wb\},2)+1)=...
268
                    DO_pred{wb};
269
270
              non_nan_count=sum(~isnan(DO_pred{wb}),2);
271
              %DO violations - lower
272
              if isnan(DO_limit(1))
273
                 DO_violations1=zeros(size(DO_pred{wb},1),1);
274
              else
275
                 DO_violations1=sum(-min(0,DO_pred{wb}-DO_limit(1)),2)./non_nan_count
276
              end
277
              %DO violations - upper
278
              if isnan(DO_limit(2))
2.79
                 DO_violations2=zeros(size(DO_pred{wb},1),1);
280
              else
281
                 DO_violations2=sum(max(0,DO_pred{wb}-DO_limit(2)),2)./non_nan_count;
282
283
              DO_violations=[max(0,DO_violations1-DO_slack) max(0,DO_violations2-
                  → DO_slack)];
284
285
              c\{wb\} (setdiff([1:size(x{wb},1)],zeroRows2),3+(1+size(x{wb},2))*2+1:end)
                  \hookrightarrow =1;
286
              c\{wb\}(zeroRows2, 3+(1+size(x\{wb\}, 2))*2+1:3+(1+size(x\{wb\}, 2))*2+2)=
                  → DO_violations;
287
              clearvars DO_violations1 DO_violations2 Last_values
288
289
              zeroRows3=find(all(c{wb}<=tolerance,2));</pre>
290
              x_zeroRows3=x{wb} (zeroRows3,:);
291
              DO_pred{wb} (zeroRows2,:) = DO_pred{wb};
292
              DO_pred{wb}=DO_pred{wb} (zeroRows3,:);
293
              if isempty(x_zeroRows3)
294
                 c\{wb\}(:, 3+(1+size(x\{wb\}, 2))*2+2+1:end)=1;
295
                 zeroRows_empty=1;
296
              end
297
298
           end
299
300
           %Continue on and calculate discharge temp if still feasible
301
           if zeroRows_empty~=1 & ~isempty(Temp_narx) & (wb~=size(ic_elev,2) | any(
               → Temp_limit))
```

```
302
              zeroRows4=find(all(c{wb}<=tolerance,2));</pre>
303
              x zeroRows4=x{wb} (zeroRows4,:);
304
              if isempty(x_zeroRows4)
305
                  c\{wb\}(:, 3+(1+size(x\{wb\}, 2))*2+2+2+1:end)=1;
306
                  zeroRows_empty=1;
307
              end
308
309
              if zeroRows_empty~=1
310
                  %Discharge Temp constraint
311
                  if wb==1
312
                     Temp_pred{wb}=...
313
                        narx_predictions(Temp_narx,...
314
                        frequency,t,Q{wb},x_zeroRows4,...
315
                        turb_discharges{wb} (zeroRows4,:),...
316
                        spill_discharges{wb} (zeroRows4,:),[],...
317
                        Q{wb}.TWO,'temp');
318
                 else
319
                     mainstem_inflows_zeroRows4{wb}.Q=...
320
                        mainstem_inflows{wb}.Q(zeroRows4,:);
321
                     mainstem_inflows_zeroRows4{wb}.T=...
322
                        mainstem_inflows{wb}.T(zeroRows4,:);
323
                     mainstem_inflows_zeroRows4{wb}.DO=...
324
                        mainstem_inflows{wb}.DO(zeroRows4,:);
325
                     Temp_pred{wb}=...
326
                        narx_predictions (Temp_narx, ...
327
                        frequency,t,Q{wb},x_zeroRows4,...
328
                        turb_discharges{wb} (zeroRows4,:),...
329
                        spill_discharges{wb} (zeroRows4,:),...
330
                        mainstem_inflows_zeroRows4{wb},...
331
                        Q{wb}.TWO,'temp');
332
                 end
333
                  %If we haven't reached the last reservoir, update mainstem_inflows.T
334
                  if wb~=size(ic_elev,2)
335
                     mainstem_inflows{wb+1}.T(zeroRows3,1)=...
336
                        interp1(Q{wb}.TWO(:,1),Q{wb}.TWO(:,2),t(1));
337
                     mainstem_inflows{wb+1}.T(zeroRows3,2:size(Temp_pred{wb},2)+1)=...
338
                        Temp_pred{wb};
339
                 end
340
                 non_nan_count=sum(~isnan(Temp_pred{wb}),2);
341
                  %Temp violations - lower
342
                 if isnan(Temp_limit(1))
343
                     Temp_violations1=zeros(size(Temp_pred{wb},1),1);
344
                 else
345
                     Temp_violations1=sum(-min(0,Temp_pred(wb)-Temp_limit(1)),2)./
                         → non_nan_count;
346
                 end
347
                  %Temp violations - upper
348
                  if isnan(Temp_limit(2))
349
                     Temp_violations2=zeros(size(Temp_pred{wb},1),1);
350
                 else
351
                     Temp_violations2=sum(max(0,Temp_pred{wb}-Temp_limit(2)),2)./
                         → non_nan_count;
352
353
                 Temp_violations=[max(0,Temp_violations1-Temp_slack) max(0,
                     → Temp_violations2-Temp_slack)];
354
355
                 c\{wb\} (setdiff([1:size(x{wb},1)],zeroRows4),3+(1+size(x{wb},2))
                     \leftrightarrow *2+2+2+1:end)=1;
356
                  c\{wb\} (zeroRows4, 3+(1+size(x{wb},2))*2+2+2+1:3+(1+size(x{wb},2))
                     \leftrightarrow *2+2+2+2) = Temp_violations;
357
358
                  zeroRows5=find(all(c{wb}<=tolerance,2));</pre>
359
                  x_zeroRows5=x{wb} (zeroRows5,:);
360
                 Temp_pred{wb} (zeroRows4,:) = Temp_pred{wb};
```

```
361
                 Temp_pred{wb}=Temp_pred{wb} (zeroRows5,:);
362
                  if isempty(x_zeroRows5)
363
                     c\{wb\} (:, 3+(1+size(x{wb},2))*2+2+2+1:end)=1;
364
                     zeroRows_empty=1;
365
                  end
366
367
              end
368
           end
369
        end
370
        %If we haven't reached the last reservoir, update mainstem_inflows.t, remove
            \hookrightarrow NaN from mainstem_inflows.T and mainstem_inflows.DO, and update
            → zeroRows0
371
        if wb~=size(ic_elev,2) & zeroRows_empty~=1
372
           mainstem_inflows{wb+1}.t=t;
373
           %Remove Nan values and interpolate for T and DO
374
           for i=1:size(mainstem_inflows{wb+1}.T,1)
375
              extrap_index=~isnan(mainstem_inflows{wb+1}.T(i,:));
376
              [~,column]=find(extrap_index==1); extrap_index=column(end);
377
              mainstem_inflows\{wb+1\}.T(i,:)=...
378
                  interp1(t(1,~isnan(mainstem_inflows{wb+1}.T(i,:))),...
379
                 \verb|mainstem_inflows{wb+1}.T(i, \verb|`isnan(mainstem_inflows{wb+1}.T(i, :)))|\\
380
                  t,'linear', mainstem_inflows{wb+1}.T(i, extrap_index));
381
              mainstem_inflows{wb+1}.DO(i,:)=...
382
                 interp1(t(1,~isnan(mainstem_inflows{wb+1}.DO(i,:))),...
383
                 mainstem_inflows{wb+1}.DO(i,~isnan(mainstem_inflows{wb+1}.DO(i,:)))
                     \hookrightarrow , . . .
384
                  t,'linear', mainstem_inflows{wb+1}.DO(i,extrap_index));
385
              clearvars extrap_index column
386
           end
387
           zeroRows0=find(all(c{wb}<=tolerance,2));</pre>
388
        end
389
390
    end
391
392
    %Update c_all with the values from c{wb}
393
    c_all=[c{:}];
```

power_value.m

```
1
   function [y_MWh, y_dollars]=power_value(x,t,cost_curve_MW,MW_rating)
2
3
   % Calculates value of generation pattern over time t
 4
 5
   % Inputs:
 6
   % x - hourly turbine time series (as rows for vectorizing!), integers
 7
   % between 0 and no_of_units
   % t time series of JDAY values
   % cost_curve_MW 2 row matrix to create step function, with 1st row
10
   % being hours and 2nd row $/MW-hr values
11
   % MW_rating - the fixed MW level of turbine_discharge_curve (25 MW for
12
   % OHI.)
13
   % Outputs:
14
   % y_MWh - total MWh produced
15
   % y_dollars total price in $ of generation pattern
16
   %Multiply each turbine output by number of turbines online
17
18
   output_MW=x*MW_rating; %MW
19
20
   %Calculate total power output
21
   y_MWh=sum(output_MW')';
22
   %Calculate price output
23 | y_dollars = cost_curve(t, output_MW, cost_curve_MW');
```

runW2validation.m

```
2
    for wb=1:size(CFG,2)
3
       %% Run W2 validation and bring the resulting two and cwo values back
 4
       fprintf(['Running W2 validation simulation for reservoir #', num2str(wb),'. \
 5
       %Copy W2 folder into new directory in results
       copyfile(CFG{wb}.w2inputDir,['results/w2_iter' num2str(iter) '_wb' num2str(wb
 6
          \hookrightarrow )])
 7
 8
       %Open control file and modify TMEND
9
       fid=fopen(['results/w2_iter' num2str(iter) '_wb' num2str(wb) '/w2_con.npt']);
10
       i=1; A{i}=fgetl(fid);
       while ischar(A{i}) i=i+1; A{i}=fgetl(fid); end
11
12
       fclose(fid); A{28}(22:24) = num2str(t_all(end));
13
       fid=fopen(['results/w2_iter' num2str(iter) '_wb' num2str(wb) '/w2_con.npt'],'
           \hookrightarrow w');
       for i=1:numel(A)
14
15
          fprintf(fid,'%s\r\n', A{i});
16
          if A{i+1}==-1
17
             break
18
          end
19
       end
20
       fclose(fid); clearvars A i fid
21
22
       %If wb~=1, update BR1 Qin, Tin, and DOin
23
       if wb^=1
24
          %BR1 Oin
25
          fid=fopen(['results/w2_iter' num2str(iter) '_wb' num2str(wb) '/' CFG{wb}.
              → MainstemBR1Qin]);
26
          i=1; A{i}=fgetl(fid);
27
          while ischar(A{i})
28
             i=i+1; A{i}=fgetl(fid);
29
             if i>3
30
                if str2double(A{i}(1:8))>=t_all(1)
31
                   A(end) = []; break
32
                end
33
             end
34
          end
35
          fclose(fid);
36
          for i=1:size(replacements{wb-1},1)
37
             A{numel(A)+1}=sprintf('%8.3f%8.3f',...
38
                 [replacements{wb-1}(i,1) sum(replacements{wb-1}(i,2:end),2)]);
39
40
          fid=fopen(['results/w2_iter' num2str(iter) '_wb' num2str(wb) '/' CFG{wb}.

    MainstemBR1Qin],'w');
41
          for i=1:numel(A)
42
             fprintf(fid,'%s\r\n', A{i});
43
44
          fclose(fid); clearvars A i fid
45
          %BR1 Tin
46
          fid=fopen(['results/w2_iter' num2str(iter) '_wb' num2str(wb) '/' CFG{wb}.
              → MainstemBR1Tin]);
47
          for i=1:3
48
             A{i}=fgetl(fid);
49
          end
50
          fclose(fid);
51
          temps=W2validation{wb-1}.T(~isnan(W2validation{wb-1}.T(:,2)),:);
          for i=1:size(temps, 1)
```

```
53
              A{i+3}=sprintf('%8.3f%8.3f', temps(i,:));
54
          end
55
           fid=fopen(['results/w2_iter' num2str(iter) '_wb' num2str(wb) '/' CFG{wb}.
               → MainstemBR1Tin],'w');
56
           for i=1:numel(A)
              fprintf(fid,'%s\r\n', A{i});
57
 58
 59
           fclose(fid); clearvars A i fid temps
60
           %BR1 DOin
61
           fid=fopen(['results/w2_iter' num2str(iter) '_wb' num2str(wb) '/' CFG{wb}.
              → MainstemBR1Cin]);
62
           for i=1:3
63
              A{i}=fgetl(fid);
64
           end
65
           fclose(fid);
66
           fid=fopen(['results/w2_iter' num2str(iter) '_wb' num2str(wb) '/' CFG{wb}.
               → MainstemBR1Cin]);
67
           C=textscan(fid, [repmat('%8f', 1, 50) '%*[^{\n}]],10^{\n}8,...
68
              'headerLines', 3,'collectoutput', true); %50 & 10^8 are arbitrary big
                  → numbers
69
          C{1}(:, isnan(C{1}(1,:))) = []; C{1}=C{1}(C{1}(:,1) \le t_all(end),:);
70
           dos=W2validation{wb-1}.DO(~isnan(W2validation{wb-1}.DO(:,2)),:);
71
           flag=0;
72
           for i=1:size(C{1},1)
73
              r(i) = interp1(dos(:,1), dos(:,2), C{1}(i,1));
74
              if ~isnan(r(i))
75
                 C\{1\}\ (i, end) = r(i);
76
              elseif isnan(r(i)) & C\{1\}(i,1)>dos(end,1) & flag==0
77
                 a=dos(end,2); flag=1;
78
                 C\{1\}\ (i, end) = a;
 79
              end
80
           end
81
           for i=1:size(C{1},1)
              82
                  \hookrightarrow ,:));
83
          end
84
           fclose(fid);
85
           fid=fopen(['results/w2_iter' num2str(iter) '_wb' num2str(wb) '/' CFG{wb}.

    MainstemBR1Cin],'w');
86
           for i=1:numel(A)
87
              fprintf(fid,'%s\r\n', A{i});
88
89
           fclose(fid); clearvars A fid C i r dos flag a
90
91
        %Open qot_br1.npt and modify turb and spill columns
92
        fid=fopen(['results/w2_iter' num2str(iter) '_wb' num2str(wb) '/qot_br1.npt'])
           \hookrightarrow :
93
        i=1; A{i}=fgetl(fid);
94
        while ischar(A{i})
95
          i=i+1; A{i}=fgetl(fid);
96
           if i>3
97
              if str2double(A{i}(1:8))>=t_all(1)
98
                 A(end) = []; break
99
              end
100
          end
101
        end
102
        fclose(fid);
103
        if strcmp(CFG{wb}.TurbSpillOrder,'1')
104
           replacements\{wb\}=[Q\{wb\}.QOT\_BR1\_T(Q\{wb\}.QOT\_BR1\_T(:,1)>=t\_all(1),:) ...
105
              Q\{wb\}.QOT_BR1_S(Q\{wb\}.QOT_BR1_S(:,1)>=t_all(1),2)];
106
        elseif strcmp(CFG{wb}.TurbSpillOrder,'0')
107
           replacements\{wb\}=[Q\{wb\}.QOT\_BR1\_S(Q\{wb\}.QOT\_BR1\_S(:,1)>=t\_all(1),:) ...
108
              Q\{wb\}.QOT_BR1_T(Q\{wb\}.QOT_BR1_T(:,1)>=t_all(1),2)];
109
       end
```

```
110
        for i=1:size(replacements{wb},1)
           A\{\text{numel}(A)+1\}=\text{sprintf}('\$8.3f\$8.3f\$8.3f', \text{replacements}\{\text{wb}\}(i,:));
111
112
        fid=fopen(['results/w2_iter' num2str(iter) '_wb' num2str(wb) '/qot_br1.npt'],
113
           \hookrightarrow 'w');
114
        for i=1:numel(A)
           fprintf(fid,'%s\r\n', A{i});
115
116
117
        fclose(fid); clearvars A i fid
118
119
        %Run executable w2.exe
120
        str=['results/w2_iter' num2str(iter) '_wb' num2str(wb)];
121
        cd(str)
        [~,~] = system('w2.exe');
122
123
       cd ../..
124
       clearvars str
125
126
        %Read in results from two and cwo files (assume DO is last col in cwo)
127
       W2validation{wb}.T=[]; W2validation{wb}.DO=[];
        d=dir(['results/w2_iter' num2str(iter) '_wb' num2str(wb) '/two*.opt']);
128
129
        fid=fopen(['results/w2_iter' num2str(iter) '_wb' num2str(wb) '/' d(end).name
130
        C=textscan(fid, [repmat('%8f', 1, 50) '%*[^{\n}], 10^{\n}8,...
131
           'headerLines', 3, 'collectoutput', true); %50 & 10^8 are arbitrary big
               → numbers
132
        W2validation{wb}.T=C{1}; W2validation{wb}.T(:,isnan(W2validation{wb}.T(1,:)))
           133
        fclose(fid);
134
        d=dir(['results/w2_iter' num2str(iter) '_wb' num2str(wb) '/cwo*.opt']);
135
        fid=fopen(['results/w2_iter' num2str(iter) '_wb' num2str(wb) '/' d(end).name
           → 1);
        C=textscan(fid,[repmat('%8f', 1, 50) '%*[^\n]'],10^8,...
136
137
           'headerLines',3,'collectoutput', true); %50 & 10^8 are arbitrary big
              → numbers
138
       W2validation{wb}.DO=C{1}; W2validation{wb}.DO(:,isnan(W2validation{wb}.DO
           \hookrightarrow (1,:)) = [];
139
        W2validation(wb).D0=[W2validation(wb).D0(:,1) W2validation(wb).D0(:,end)];
140
        fclose(fid);
141
        clearvars d C fid
        %Reset 0 values to nan
142
143
        W2validation{wb}.T(W2validation{wb}.T(:,2)==0,2)=nan;
144
        W2validation{wb}.DO(W2validation{wb}.DO(:,2)==0,2)=nan;
145
146
        %% Run another W2 simulation, swapping turb and spill, for NARX training data

→ diversity

147
        fprintf(['Running W2 simulation for reservoir #', num2str(wb),', swapping

→ turb and spill for NARX training data diversity. \n']);
148
        %Copy W2 folder into new directory in results
149
        copyfile(['results/w2_iter' num2str(iter) '_wb' num2str(wb)],['results/

    w2_iter' num2str(iter) '_wb' num2str(wb) '_flip']);

150
        %Open qot_br1.npt and modify turb and spill columns
151
        fid=fopen(['results/w2_iter' num2str(iter) '_wb' num2str(wb) '_flip/qot_br1.
           \hookrightarrow npt']);
152
        i=1; A{i}=fgetl(fid);
153
        while ischar(A{i})
154
           i=i+1; A{i}=fgetl(fid);
155
           if i>3
156
              if str2double(A{i}(1:8))>=t_all(1)
157
                 A(end) = []; break
158
              end
159
           end
160
        end
161
        fclose(fid);
        if strcmp(CFG(wb).TurbSpillOrder,'1') %THIS PART IS SWAPPED FROM ABOVE
162
```

```
163
            replacements\{wb\} = [Q\{wb\}.QOT\_BR1\_S(Q\{wb\}.QOT\_BR1\_S(:,1) >= t\_all(1),:) \dots
164
               Q\{wb\}.QOT_BR1_T(Q\{wb\}.QOT_BR1_T(:,1)>=t_all(1),2)];
165
        elseif strcmp(CFG{wb}.TurbSpillOrder,'0')
166
            replacements{wb}=[Q{wb}.QOT_BR1_T(Q{wb}.QOT_BR1_T(:,1)>=t_all(1),:) ...
167
               Q\{wb\}.QOT_BR1_S(Q\{wb\}.QOT_BR1_S(:,1)>=t_all(1),2)];
168
169
        for i=1:size(replacements{wb},1)
170
           A\{\text{numel}(A)+1\}=\text{sprintf}('\%8.3f\%8.3f\%8.3f', \text{replacements}\{\text{wb}\}(i,:));
171
172
        fid=fopen(['results/w2_iter' num2str(iter) '_wb' num2str(wb) '_flip/qot_br1.
            \hookrightarrow npt'],'w');
173
        for i=1:numel(A)
174
           fprintf(fid,'%s\r\n', A{i});
175
176
        fclose(fid); clearvars A i fid
177
        %Run executable w2.exe
178
        str=['results/w2_iter' num2str(iter) '_wb' num2str(wb) '_flip'];
179
        cd (str)
180
        [\tilde{\ \ },\tilde{\ \ }] =system('w2.exe');
181
        cd ../..
182
        clearvars str
183
        %Read in results from two and cwo files (assume DO is last col in cwo)
184
        W2validation_flip{wb}.T=[]; W2validation_flip{wb}.DO=[];
        d=dir(['results/w2_iter' num2str(iter) '_wb' num2str(wb) '_flip/two*.opt']);
fid=fopen(['results/w2_iter' num2str(iter) '_wb' num2str(wb) '_flip/' d(end).
185
186
            \hookrightarrow namel):
187
        C=textscan(fid,[repmat('%8f', 1, 50) '%*[^\n]'],10^8,...
188
            'headerLines',3,'collectoutput', true); %50 & 10^8 are arbitrary big
                → numbers
189
        W2validation_flip{wb}.T=C{1}; W2validation_flip{wb}.T(:,isnan(
            \hookrightarrow W2validation_flip{wb}.T(1,:)))=[];
190
        fclose(fid);
191
        d=dir(['results/w2_iter' num2str(iter) '_wb' num2str(wb) '_flip/cwo*.opt']);
        fid=fopen(['results/w2_iter' num2str(iter) '_wb' num2str(wb) '_flip/' d(end).
192
            \hookrightarrow name]);
193
        C=textscan(fid,[repmat('%8f', 1, 50) '%*[^\n]'],10^8,...
194
            'headerLines',3,'collectoutput', true); %50 & 10^8 are arbitrary big
                → numbers
195
        W2validation_flip{wb}.DO=C{1}; W2validation_flip{wb}.DO(:,isnan(
            \hookrightarrow W2validation_flip{wb}.DO(1,:)))=[];
196
        W2validation_flip{wb}.DO=[W2validation_flip{wb}.DO(:,1) W2validation_flip{wb}
             \hookrightarrow }.DO(:,end)];
197
        fclose(fid);
198
        clearvars d C fid
199
        %Reset 0 values to nan
200
        W2validation_flip{wb}.T(W2validation_flip{wb}.T(:,2)==0,2)=nan;
201
        W2validation_flip{wb}.DO(W2validation_flip{wb}.DO(:,2)==0,2)=nan;
202
     end
203
204
     clearvars replacements
```

updateQ.m

```
11 | % x_final - vector containing timeseries of active turbine levels for all
12
   % waterbodies
13
   % t time series of JDAY values
   % frequency - prediction frequency (ex: 0.25=1/4 day=6 hours)
14
15
   % ic_elev - initial elevation condition (meters)
   % turbine_discharge - turbine discharge curve at fixed MW level, with
   % col 1 in meters and col 2 in cms
   % WQ - structure containing water quality constraints and NARX models
19
   % DO_narx - structure containing everything needed to make DO discharge
20
   % predictions, including:
21
   % turb_colum - column in exogenous variables with turb flows
   % spill_column - column in exogenous variables with spill flows
   % times - JDAY values used in training (not used)
   % inputDelays - delays for exogenous inputs
   % feedbackDelays - delays for prediction feedbacks
   % input_variables - 2 row cell containing variable names in first
   % row and column number in second. For example, 'MET_WB1'
   % contains multiple columns of data but only some may be used
29
   % for NARX predictions
30
   % bias - bias for each trained neural network
31
   % weights - weights for each trained neural network (sum to 1)
   % narx_net_closed - neural networks
   % DO_limit - lower and upper DO limits (NaN means it doesn't exist)
33
   % DO_slack - relaxation from DO_limit (either upper or lower -
   % doesn't make sense to have both)
   % Temp_narx - structure containing everything needed to make temp discharge
   % predictions, including:
   % turb_colum - column in exogenous variables with turb flows
   % spill_column - column in exogenous variables with spill flows
40
   % times - JDAY values used in training (not used)
41
   % inputDelays - delays for exogenous inputs
   % feedbackDelays - delays for prediction feedbacks
% input_variables - 2 row cell containing variable names in first
43
   % row and column number in second. For example, 'MET_WB1'
   % contains multiple columns of data but only some may be used
   % for NARX predictions
47
   % bias - bias for each trained neural network
48
   % weights - weights for each trained neural network (sum to 1)
49
   % narx_net_closed - neural networks
50
   % Temp_limit - lower and upper temp limits (NaN means it doesn't exist)
   % Temp_slack - relaxation from Temp_limit (either upper or lower -
   % doesn't make sense to have both)
53
   % ELWS_targets - 2 column matrix with JDAY in coll and elevation target
54
   % in col2
   % Outputs:
   % Q - all other inflows and outflows, interpolation settings,
57
   % storage-elev curve, and tailwater curve (all in meters)
58
59
   for wb=1:size(CFG,2)
60
      clearvars incoming_flow
61
       %If wb==1, update ELWS, QOT_BR1_T, CWO, TWO
       %If wb~=1, update ELWS, QOT_BR1_T, CWO, TWO, QIN_BR1, CIN_BR1, TIN_BR1 (CWO &
62
          → TWO may not update for last reservoir if NARX models aren't provided)
63
      x=x_{final\{wb\}}(size(x_{final\{wb\},2)-size(t,2)+2:end);
64
      if wb==1
          [turb_discharges{wb}, spill_discharges{wb}, HWs{wb}, ~,~] = ...
65
66
             activeunits_to_discharges(x,t,frequency,...
67
             Q{wb},ic_elev{wb},turbine_discharge{wb},ELWS_targets{wb},...
68
             [],[]);
69
          Q\{wb\}.ELWS=[Q\{wb\}.ELWS(Q\{wb\}.ELWS(:,1)<t(1),:); t' HWs\{wb\}'];
70
          Q\{wb\}.QOT_BR1_T = [Q\{wb\}.QOT_BR1_T(Q\{wb\}.QOT_BR1_T(:,1) < t(1),:);...
71
             t' turb_discharges{wb}'];
         Q\{wb\}.QOT_BR1_S = [Q\{wb\}.QOT_BR1_S(Q\{wb\}.QOT_BR1_S(:,1) < t(1),:);...
72
73
             t' ones(size(t,2),1)*spill_discharges{wb}];
```

```
74
           DO_pred{wb}=narx_predictions(WQ{wb}.DO_narx, frequency, t, Q{wb}, x, ...
 75
              turb_discharges{wb}, spill_discharges{wb}, [], Q{wb}.CWO, 'do');
 76
           Temp_pred{wb}=narx_predictions(WQ{wb}.Temp_narx,frequency,t,Q{wb},x,...
 77
              turb_discharges{wb},spill_discharges{wb},[],Q{wb}.TWO,'temp');
78
           %Remove NaNs from DO_pred and Temp_pred!
 79
           outgoing_DO{wb}=[t(2:end)' DO_pred{wb}'];
80
           outgoing_DO{wb}=outgoing_DO{wb}(~isnan(outgoing_DO{wb}(:,2)),:);
81
           outgoing_Temp{wb}=[t(2:end)' Temp_pred{wb}'];
82
           outgoing_Temp{wb}=outgoing_Temp{wb}(~isnan(outgoing_Temp{wb}(:,2)),:);
83
           %If last values in WQ predictions are NaN, need to add last row to
               → outgoing_DO and outgoing_Temp
 84
           if outgoing_Temp{wb} (end, 1) <t (end)</pre>
85
              outgoing_Temp{wb}=[outgoing_Temp{wb}; t(end) outgoing_Temp{wb}(end,2)];
86
              outgoing_DO{wb}=[outgoing_DO{wb}; t(end) outgoing_DO{wb}(end,2)];
87
           end
88
           Q\{wb\}.CWO=[Q\{wb\}.CWO(Q\{wb\}.CWO(:,1)<t(2),:); outgoing_DO\{wb\}];
89
           Q\{wb\}.TWO=[Q\{wb\}.TWO(Q\{wb\}.TWO(:,1)<(2),:); outgoing_Temp\{wb\}];
90
91
           incoming_flow=turb_discharges{wb-1}+spill_discharges{wb-1};
92
           [turb_discharges{wb}, spill_discharges{wb}, HWs{wb}, ~,~] = ...
93
              activeunits_to_discharges(x,t,frequency,...
94
              Q{wb},ic_elev{wb},turbine_discharge{wb},ELWS_targets{wb},...
95
              t, incoming_flow);
96
           Q{wb}.ELWS=[Q{wb}.ELWS(Q{wb}.ELWS(:,1)<t(1),:); t' HWs{wb}'];
97
           Q\{wb\}.QOT_BR1_T = [Q\{wb\}.QOT_BR1_T(Q\{wb\}.QOT_BR1_T(:,1) < t(1),:);...
 98
              t' turb_discharges{wb}'];
99
           Q\{wb\}.QOT_BR1_S = [Q\{wb\}.QOT_BR1_S(Q\{wb\}.QOT_BR1_S(:,1) < t(1),:);...
100
              t' ones(size(t,2),1)*spill_discharges{wb}];
101
           %Qin contains both spill and turbine
102
           Q\{wb\}.QIN_BR1=[Q\{wb\}.QIN_BR1(Q\{wb\}.QIN_BR1(:,1)<t(1),:);...
103
              t' incoming_flow'];
104
           Q\{wb\}.CIN\_BR1 = [Q\{wb\}.CIN\_BR1(Q\{wb\}.CIN\_BR1(:,1) < t(2),:);...
105
              outgoing_DO{wb-1}];
106
           Q\{wb\}.TIN_BR1 = [Q\{wb\}.TIN_BR1(Q\{wb\}.TIN_BR1(:,1) < t(2),:);...
107
              outgoing_Temp{wb-1}];
108
           %May not have WQ calculations for final reservoir's discharge (depends on
               → problem definition) so check for these
109
           if ~isempty(WQ{wb}.DO_narx)
110
              DO_pred{wb}=narx_predictions(WQ{wb}.DO_narx, frequency, t, ...
                 Q{wb},x,turb_discharges{wb},spill_discharges{wb},[],Q{wb}.CWO,'do');
111
112
              %Remove NaNs from DO_pred and Temp_pred!
113
              outgoing_DO{wb}=[t(2:end)' DO_pred{wb}'];
              outgoing_DO{wb}=outgoing_DO{wb}(~isnan(outgoing_DO{wb}(:,2)),:);
114
115
              %If last values in WQ predictions are NaN, need to add last row to
                  → outgoing_DO and outgoing_Temp
116
              if outgoing DO(wb)(end,1)<t(end)
117
                 outgoing_DO{wb}=[outgoing_DO{wb}; t(end) outgoing_DO{wb}(end,2)];
118
              end
119
              Q\{wb\}.CWO = [Q\{wb\}.CWO(Q\{wb\}.CWO(:,1) < t(1),:); outgoing_DO\{wb\}];
120
           end
121
           if ~isempty(WQ{wb}.Temp_narx)
122
              Temp_pred{wb}=narx_predictions(WQ{wb}.Temp_narx,frequency,t,...
123
                 Q{wb}, x, turb_discharges{wb}, spill_discharges{wb}, [], Q{wb}.TWO, 'temp'
                     \hookrightarrow );
124
              %Remove NaNs from DO_pred and Temp_pred!
125
              outgoing_Temp{wb}=[t(2:end)' Temp_pred{wb}'];
126
              outgoing_Temp{wb}=...
127
                 outgoing_Temp{wb}(~isnan(outgoing_Temp{wb}(:,2)),:);
128
              %If last values in WQ predictions are NaN, need to add last row to
                  → outgoing_DO and outgoing_Temp
129
              if outgoing_Temp{wb} (end, 1) <t (end)</pre>
130
                 outgoing_Temp{wb} = [outgoing_Temp{wb}; t(end) outgoing_Temp{wb} (end
                     \hookrightarrow ,2)];
131
              end
```

```
132 | Q{wb}.TWO=[Q{wb}.TWO(Q{wb}.TWO(:,1)<t(1),:); outgoing_Temp{wb}];
133 | end
134 | end
135 | end
136 |
137 | clearvars outgoing_DO outgoing_Temp
```

Appendix E

MATLAB® CODE FOR HYDROPOWER OPTIMIZATION UNDER WATER QUALITY CONSTRAINTS MODIFIED FOR RANDOM IMMIGRANTS REPLACEMENT AND ADAPTIVE ADDITIONAL SAMPLING

This appendix contains code that is in addition to or modified from that which is provided in Appendix D in order to create the replacement and adaptive additional sampling functionalities described in Chapter IV. As written, it is not equipped to handle multiple waterbodies or multiday problems.

config.json

```
2
          "jdayStart": "215",
3
          "OperatingPeriod": "1",
          "OptimizeDayByDay": "0",
4
5
          "LogFile": "results/results_log.txt",
6
          "NumberOfWaterbodies": "1",
7
          "wblconfig": "config_OHL.json",
8
          "GAPopSizeMultiplierStart": "480",
9
          "FeasibilityCheckPopSizeMultiplierStart": "480",
10
          "GAGenerationsEarlyStoppingStart": "1",
11
          "RandomNumberGeneratorSeed": "7",
12
          "TrainingSetSize": "4",
13
          "InitialTrainingSetSize": "10",
14
          "ReplacementOnOff": "ON",
15
          "AdditionalSamplingOnOff": "OFF"
16
```

config_OHL.json

```
1
2
          "Name": "Old Hickory",
3
          "WaterSurfaceElevationInitial": "",
          "DischargeDOInitial": "",
5
          "DischargeTempInitial": "",
6
          "WaterSurfaceElevationMin": "134.722",
          "WaterSurfaceElevationMax": "135.636",
7
8
         "DischargeDOMin": "7",
9
          "DischargeDOMax": ""
          "DischargeTempMin": ""
10
          "DischargeTempMax": "",
11
12
          "MaxHourlyChangeInTurbineUnit": "1",
13
          "MaxHoursWithZeroGeneration": "6",
14
          "NumberOfTurbineUnits": "4",
          "MWRatingPerTurbineUnit": "25",
15
          "TurbineDischargeCurve": "OHL/testfiles/turbine_discharge_curve_25MW.txt",
16
          "StorageElevationCurve": "OHL/testfiles/storage_elevation.txt",
17
          "TailWaterRatingCurve": "OHL/testfiles/tailwater_rating.txt",
18
```

```
19
          "DailyCostCurve": "OHL/testfiles/cost_curve2.txt",
20
          "TrainedDONeuralNetworkFile": "OHL/testfiles/ohl_DO_narx_20160906.mat",
21
          "TrainedTempNeuralNetworkFile": "OHL/testfiles/ohl_temp_narx_20160906.mat
              \hookrightarrow ",
22
          "WaterSurfaceElevationTargets": "",
23
          "optimizationDir": "OHL/testfiles/optimization215/",
24
          "ForecastTurbinePattern": "OHL/testfiles/forecast_turbine_pattern215.txt",
25
          "Previous Turbine Pattern": "OHL/testfiles/previous_turbine_pattern215.txt",
26
          "w2inputDir": "OHL/testfiles/w2input215/",
27
          "TurbSpillOrder": "1",
28
          "MainstemBR1Qin": "qin_br1.npt",
          "MainstemBR1Tin": "tin_br1_2005.npt",
29
30
          "MainstemBR1Cin": "cin_br1_2005.npt",
          "TransitionMatrix": "OHL/testfiles/transition_matrix.txt"
31
32
```

main.m

```
1
   function main(configfile)
 2
3
   initialization;
4
   tic; initial_NARX_model_generation; toc
 5
 6
   while retraining=='Y'
7
       iter=iter+1;
 8
       %Run optimization over planning period
9
       fprintf(['Running 2-step optimization to minimize WQ constraint violations,
           \hookrightarrow then maximize power value. \n']);
10
      opttiming=tic; optimization_routine; timing(1)=toc(opttiming); clearvars
           → opttiming
11
12
       close all; ga_results_plotting_nobanding
13
      h = get(0,'children'); h=sort(h);
14
       for wb=1:length(h)
15
          str=['results/' datestr(clock,'yyyy-mm-dd-HHMM') '_iter' num2str(iter) '
              → _wb' num2str(wb) '_' num2str(round(y_dollars_total(2)))];
16
          savefig(h(wb),str)
17
       end
18
       %Retrain NARX models
19
       retraintiming=tic; NARX_retrain_trpt; timing(3)=toc(retraintiming);
20
       clearvars trainingpop retraintiming
21
22
       %Print to results log file
23
       fileID=fopen(config.LogFile,'a');
24
       results.dollars(iter)=y_dollars_total(2);
25
       fprintf(fileID,'%12.0f %16.0f %12.0f %18.0f %18.0f %14.0f %14.0f %14.0f %14.0

→ f %12.3f %12.3f %12.0f %12.0f %12.0f %12.0f',...
26
          iter, feasiblility check\_ga\_pop\_size, ga\_pop\_size, training\_ss\_clusters,

→ training_ss_nearby,...
2.7
          funccount_tot, funccount_cache, funccount_ga_tot, funccount_ga_cache, SD (iter

→ +1), replacement_rate, y_MWh_total(1), y_MWh_total(2),...
28
          y_dollars_total(1),y_dollars_total(2));
29
       for wb=1:size(CFG,2)
30
          fprintf(fileID,' %12.0f %12.0f', y_MWh(wb, 2), y_dollars(wb, 2));
31
      end
32
       for wb=1:size(CFG,2)
33
          results.AME(iter, wb*2-1:wb*2) = [AME(wb).T, AME(wb).DO];
34
          results.slacks(iter,wb*2-1:wb*2) = [slacks{wb}.T.W2,slacks{wb}.DO.W2];
35
          fprintf(fileID,' %12.3f %12.3f %16.3f %15.3f %15.3f %15.3f %15.3f'
              \hookrightarrow , . . .
36
             AME{wb}.T,AME{wb}.DO,AME_trpt.T_avg(iter),AME_trpt.DO_avg(iter),...
37
             slacks{wb}.T.NN,slacks{wb}.DO.NN,...
             slacks{wb}.T.W2, slacks{wb}.DO.W2);
```

```
39
       end
40
       clearvars slacks ans data_start objfuncvalues Output_no0s Outputprev h wb Ax1
           \hookrightarrow Ax2 Ax3 H h1 h2 h3 h5 h6 h7 legend1 output nVar maxdelay wb xlims
           \hookrightarrow xrange ylims yrange
41
       %Adjust ga_pop_size, if best solution found is the same as the best solution
42
           \hookrightarrow from the last iteration
43
       if iter==1
44
          ga_pop_size_1=ga_pop_size;
45
       else
46
          if all(x_final_all{iter}==x_final_all{best_iter(iter-1)})
47
             qa_pop_size=round(min(4800,qa_pop_size*qa_pop_size_expand));
48
49
              ga_pop_size=round(max(ga_pop_size_1, ga_pop_size/ga_pop_size_expand));
50
          end
51
       end
52
53
       %Determine if we've met stopping point, when best soln has not changed in 3
           \rightarrow iter and DO and/or temp validation checks at best soln are below 0.5
54
       fprintf(fileID,' %12.0f %13s %13s',best_iter(iter),x_in_initpop,x_in_prevpop)
55
       if iter==50 retraining='N'; end
56
57
       if iter==1
58
          fprintf(fileID,' %12.0f',nan);
59
       else
60
          %2-norm between current solution and best iteration solution
61
          two_norm(iter) = norm(x_final_all{iter}(:)-x_final_all{best_iter(iter-1)}(:)
              \hookrightarrow );
62
          fprintf(fileID,' %12.3f',two_norm(iter));
63
       end
64
       \$Optimization timing(1) includes \$2 runs and NARX retraining, so subtract
65

→ those out

66
       timing(1) = timing(1) - timing(2);
       fprintf(fileID,'%12.3f %12.3f %12.3f\r\n',timing(1),timing(2),...
67
68
          timing(3)); fclose(fileID);
69
70
   end
71
   save('results/end.mat');
72
73
    fprintf('OPTIMIZATION','Optimization over operating period complete.')
74
   cumulative_discharge_plot;
```

initialization.m

```
%Initialization
3
   %% Startup: Empty vars, setup paths, check input, init config, random # init
   clearvars -except configfile transition_matrix
6
   %Start parallel pool
7
   gcp;
8
9
   % add path to 'lib' folder
10
   if (~isdeployed)
11
      addpath('./lib');
12
   end
13
14
   % load general config
   config=loadjson('config.json');
15
16 %Load config for each waterbody, as defined in general config
```

```
17
   for wb=1:str2double(config.NumberOfWaterbodies)
      CFG{wb}=loadjson(eval(['config.wb' num2str(wb) 'config']));
18
19
   end
20
21
   % create logger
22
   L = log4m.getLogger('optimization_run.log');
23
24
   %% Load in data and set constraints and system specs
25
26
   %Do replacement and/or additional W2 sampling steps?
27
   ReplacementOnOff=config.ReplacementOnOff;
   AdditionalSamplingOnOff=config.AdditionalSamplingOnOff;
29
30
   transition_matrix=[];
31
   %TOTAL time period to optimize on
32
   start_date=str2double(config.jdayStart);
33
   frequency=1/24;
34
   days_forward=str2double(config.OperatingPeriod);
35
   t=[start_date:frequency:start_date+1];
36
   %Optimize day by day (1), or all in one step (0)
37
   Optimize_day_by_day=str2double(config.OptimizeDayByDay);
38
   %GA population sizes
39
   ga_pop_size=str2double(config.GAPopSizeMultiplierStart)*size(CFG,2);
40
   feasiblilitycheck_ga_pop_size=str2double(config.
       → FeasibilityCheckPopSizeMultiplierStart) *size(CFG,2);
41
   GAgenerations=str2double(config.GAGenerationsEarlyStoppingStart);
42.
   %Random number generator seed
43
   rng(str2double(config.RandomNumberGeneratorSeed))
44
   %Training set size (number of kmeans clusters, and number of samples near
       → optimal)
45
   training_ss=str2double(config.TrainingSetSize);
   training_ss_clusters=training_ss; training_ss_nearby=0; %initial values
46
47
   Initialtrainingsetsize=str2double(config.InitialTrainingSetSize);
48
   %Other variables from config files
49
   for wb=1:size(CFG,2)
50
       %Transition matrix for markov chain
51
       if ~isempty(CFG{wb}.TransitionMatrix)
52
          transition_matrix{wb}=dlmread(CFG{wb}.TransitionMatrix);
53
      else
54
         transition_matrix{wb}=[];
55
56
       %Number of turbines - 4 for OHL
57
      no_of_units{wb}=str2double(CFG{wb}.NumberOfTurbineUnits);
58
       %Operating level, MW
59
      MW_rating{wb}=str2double(CFG{wb}.MWRatingPerTurbineUnit);
60
          %Previous elevations
61
       elevtemp{wb}=dlmread(strcat(CFG{wb}.optimizationDir,filesep,'ELWS.csv'),','
          \hookrightarrow ,1,0);
62
       %Elevation constraints - general
63
      ELWS_limit{wb} (1) = str2double(CFG{wb}.WaterSurfaceElevationMin);
64
      ELWS limit{wb}(2) = str2double(CFG{wb}.WaterSurfaceElevationMax);
65
       %Max hourly unit change constraint
       if ~isempty(CFG{wb}.MaxHourlyChangeInTurbineUnit)
66
67
         max_hrly_unit_change{wb}=str2double(CFG{wb}.MaxHourlyChangeInTurbineUnit);
68
      else
69
         max_hrly_unit_change{wb}=[];
70
      end
      %Zero generation hourly limit - can't go longer than this with no turb flow
71
72
       if ~isempty(CFG{wb}.MaxHoursWithZeroGeneration)
73
          zero_gen_limit{wb}=str2double(CFG{wb}.MaxHoursWithZeroGeneration);
74
      else
75
          zero_gen_limit{wb}=[];
76
      end
      %DO discharge NARX model
```

```
78
       if isempty(CFG{wb}.TrainedDONeuralNetworkFile)
 79
                 WO(wb).DO narx=[]:
80
           else
81
                 WQ{wb}.DO_narx=load(CFG{wb}.TrainedDONeuralNetworkFile);
82
                 fn=fieldnames(WQ{wb}.DO_narx); WQ{wb}.DO_narx=WQ{wb}.DO_narx.(fn{1})
                    \hookrightarrow ; clearvars fn
 83
          end
84
       WQ{wb}.DO_limit(1) = str2double(CFG{wb}.DischargeDOMin);
85
       WQ{wb}.DO_limit(2) = str2double(CFG{wb}.DischargeDOMax);
86
       WQ{wb}.DO_slack=0;
 87
       %Temperature discharge NARX model
88
       if isempty(CFG{wb}.TrainedTempNeuralNetworkFile)
89
                 WQ{wb}.Temp_narx=[];
90
           else
91
                 WQ{wb}.Temp_narx=load(CFG{wb}.TrainedTempNeuralNetworkFile);
92
                 \hookrightarrow fn{1});
93
                 clearvars fn
94
          end
95
          WQ{wb}.Temp_limit(1) = str2double(CFG{wb}.DischargeTempMin);
96
           WQ{wb}.Temp_limit(2) = str2double(CFG{wb}.DischargeTempMax);
97
       WQ{wb}.Temp_slack=0;
98
       %Cost curve
99
       if isempty(CFG{wb}.DailyCostCurve)
           cost_curve_MW{wb}=[0 1];
100
101
       else
102
          cost_curve_MW{wb}=dlmread(CFG{wb}.DailyCostCurve,' ',1,0);
103
       end
104
       %Turbine discharge curve - meters, cms at MW_rating
105
       turbine_discharge{wb}=dlmread(CFG{wb}.TurbineDischargeCurve,'',1,0);
106
           %Find initial elevation
107
       ic_elev_first{wb}=interp1(elevtemp{wb}(:,1),elevtemp{wb}(:,2),start_date);
108
       %Build the variable Q, which includes all flows for water balance,
           \hookrightarrow interpolation settings, tw curve both tabular discharge vs. tw and tw
           \hookrightarrow as f(twprev, discharge)), se curve, and other WQ inputs needed for NARX
           → predictions
109
       Q{wb}=buildQ(CFG{wb}.optimizationDir);
110
       Q{wb}.tw_curve_cms_m=dlmread(CFG{wb}.TailWaterRatingCurve,' ',1,0);
111
       Q{wb}.SE_meters_m3=dlmread(CFG{wb}.StorageElevationCurve,' ',1,0);
112
           %Save a copy of Q as original projected values - Q will update during
              → optimization
113
          Qprojected=Q;
114
    end
115
116
    %Set up flag for when to do validation checks and retraining of NARX models
117
    for wb=1:size(CFG,2)
118
          WQ{wb}.DO_valid_check=0; WQ{wb}.Temp_valid_check=0;
119
    end
120
    for wb=1:size(CFG,2)
121
       if any(~isnan(WQ{wb}.DO_limit))
122
          WQ{wb}.DO_valid_check=1;
123
           if wb^{-}=1
124
              for i=1:size(WQ{wb}.DO_narx.input_variables,2)
125
                 if WQ{wb}.DO_narx.input_variables{1,i}=='TIN_BR1'
126
                    WQ{wb-1}.Temp_valid_check=1;
127
128
                 if WQ{wb}.DO_narx.input_variables{1,i}=='CIN_BR1'
129
                    WQ{wb-1}.DO_valid_check=1;
130
                 end
131
             end
132
          end
133
       end
134
    end
135
    for wb=1:size(CFG,2)
```

```
136
        if any(~isnan(WQ{wb}.Temp_limit))
137
           WO{wb}.Temp valid check=1;
138
139
        if wb^{-}=1
140
           for i=1:size(WQ{wb}.Temp_narx.input_variables,2)
141
              if WQ{wb}.Temp_narx.input_variables{1,i}=='TIN_BR1'
142
                 WO{wb-1}. Temp valid check=1;
143
144
              if WQ{wb}.Temp_narx.input_variables{1,i}=='CIN_BR1'
145
                 WQ{wb-1}.DO_valid_check=1;
146
              end
147
           end
148
        end
149
    end
150
    clearvars i
151
152
    *Set feasibility_check to start algorithm checking constraint feasibility
153
    feasibility_check=1;
154
    feasible_soln_found=0;
155
156
    *Set up time variables, determine forecast and past turbine patterns
157
    t_all=[start_date:frequency:start_date+days_forward];
158
    t_all_round=roundn(t_all,-2);
159
    tprev=[t(1)-max(cell2mat(zero_gen_limit(:)))*frequency:frequency:t(1)];
160
    tprev_round=roundn(tprev,-2);
161
    for wb=1:size(CFG,2)
162
           %Forecast turbine pattern (if supplied)
163
           if isempty(CFG{wb}.ForecastTurbinePattern)
164
                 L.warn('INITIALIZATION', ['No reservoir', num2str(wb), ' forecast
                     \hookrightarrow turbine pattern provided - assuming from turbine flows in W2
                     → OOT file.'))
165
                 x0_all(wb,:) = actual_turb_ops(t_all_round, Qprojected(wb), elevtemp(wb
                     → },turbine_discharge{wb},...
166
                       no_of_units{wb});
167
           else
168
                 forecastturbpattern=dlmread(CFG{wb}.ForecastTurbinePattern,'\t',1,0)
169
                 for i=1:size(t_all_round, 2)-1
170
                       index=find(forecastturbpattern(:,1) <=t_all_round(i+1));</pre>
171
                       x0_all(wb, i) = forecastturbpattern(index(end), 2);
172
173
                 clearvars i forecastturbpattern index
174
        end
175
           %Previous turbine pattern for the year (if supplied)
176
           if isempty(CFG{wb}.ForecastTurbinePattern)
177
                 L.warn('INITIALIZATION', ['No reservoir', num2str(wb), ' previous
                     → turbine pattern provided - assuming from turbine flows in W2
                     → QOT file.'])
178
                 xprev{wb}=actual_turb_ops(tprev_round,Qprojected{wb},elevtemp{wb},
                     → turbine_discharge(wb), no_of_units(wb));
179
           else
180
                 prevturbpattern=dlmread(CFG{wb}.PreviousTurbinePattern,'\t',1,0);
181
                 for i=1:size(tprev_round, 2)
182
                        index=find(prevturbpattern(:,1) <=tprev_round(i));</pre>
183
                       xprev{wb} (i) = prevturbpattern (index (end), 2);
184
185
                 clearvars i prevturbpattern index
186
        end
187
    end
188
189
    %% Do W2 run with outflows consistent with x0_all (supplied W2 folder isn't
        → quaranteed to have flows corresponding to x0 operations)
190
    for wb=1:size(CFG,2)
191
        [turb_discharges, spill_discharges, ~, ~, ~] = active units_to_discharges (x0_all (wb
```

```
\hookrightarrow ,:),t_all,...
192
           frequency, Qprojected{wb}, ic_elev_first{wb},...
193
           turbine_discharge{wb},[],[],[]);
194
        Q\{wb\}.QOT_BR1_T = [Q\{wb\}.QOT_BR1_T(Q\{wb\}.QOT_BR1_T(:,1) < t(1),:);...
195
           t_all' turb_discharges'];
        if Optimize_day_by_day==1
196
           Q\{wb\}.QOT_BR1_S = [Q\{wb\}.QOT_BR1_S(Q\{wb\}.QOT_BR1_S(:,1) < t(1),:);...
197
198
               t_all' ones(size(t_all,2),1)*spill_discharges];
199
        else
200
           for ii=1:size(spill_discharges,2)
201
              spill_values(1, (1/frequency) * (ii-1) +1: (1/frequency) * (ii) +1) = ...
202
                  spill_discharges(1,ii);
203
204
           Q\{wb\}.QOT_BR1_S = [Q\{wb\}.QOT_BR1_S(Q\{wb\}.QOT_BR1_S(:,1) < t(1),:);...
205
              t_all' spill_values'];
206
           clearvars ii spill_values
207
        end
208
        if ~exist(['results/w2_iter0_wb' num2str(wb)]) %If folder already exists in
            → the results folder from previous testing, don't have to rerun W2 here
209
           copyfile(CFG{wb}.w2inputDir,['results/w2_iter0_wb' num2str(wb)])
210
           %Open control file and modify TMEND
211
           fid=fopen(['results/w2_iter0_wb' num2str(wb) '/w2_con.npt']);
212
           i=1; A{i}=fgetl(fid);
213
           while ischar(A{i}) i=i+1; A{i}=fgetl(fid); end
214
           fclose(fid); A{28}(22:24)=num2str(t_all(end));
215
           fid=fopen(['results/w2_iter0_wb' num2str(wb) '/w2_con.npt'],'w');
216
           for i=1:numel(A)
217
               fprintf(fid,'%s\r\n', A{i});
218
               if A\{i+1\} ==-1
219
                  break
220
              end
221
222
           fclose(fid); clearvars A i fid
223
224
           %If wb~=1, update BR1 Qin, Tin, and DOin
225
           if wb^{-}=1
226
               %BR1 Oin
227
               fid=fopen(['results/w2_iter0_wb' num2str(wb) '/' CFG{wb}.MainstemBR1Qin
                  → ]);
228
              i=1; A{i}=fgetl(fid);
229
              while ischar(A{i})
230
                  i=i+1; A{i}=fgetl(fid);
231
                  if i>3
232
                     if str2double(A{i}(1:8))>=t_all(1)
233
                        A(end) = []; break
234
                     end
235
                  end
236
              end
237
               fclose(fid);
238
               for i=1:size(replacements{wb-1},1)
239
                  A\{\text{numel}(A) + 1\} = \text{sprintf}(' 8.3f 8.3f', ...
240
                     [replacements{wb-1}(i,1) sum(replacements{wb-1}(i,2:end),2)]);
241
              end
242
              fid=fopen(['results/w2_iter0_wb' num2str(wb) '/' CFG{wb}.MainstemBR1Qin
                  \hookrightarrow ],'w');
               for i=1:numel(A)
243
244
                  fprintf(fid,'%s\r\n', A{i});
245
              end
246
              fclose(fid); clearvars A i fid
247
              %BR1 Tin
248
              fid=fopen(['results/w2_iter0_wb' num2str(wb) '/' CFG{wb}.MainstemBR1Tin
                  \hookrightarrow ]);
249
              for i=1:3
250
                  A{i}=fgetl(fid);
```

```
251
              end
252
              fclose(fid);
253
              temps=W2validation{wb-1}.T(~isnan(W2validation{wb-1}.T(:,2)),:);
254
              for i=1:size(temps, 1)
255
                 A\{i+3\}=sprintf('88.3f88.3f', temps(i,:));
256
257
              fid=fopen(['results/w2 iter0 wb' num2str(wb) '/' CFG{wb}.MainstemBR1Tin
                  \hookrightarrow ],'w');
258
              for i=1:numel(A)
259
                 fprintf(fid,'%s\r\n', A{i});
260
              end
261
              fclose(fid); clearvars A i fid temps
262
263
              fid=fopen(['results/w2_iter0_wb' num2str(wb) '/' CFG{wb}.MainstemBR1Cin
                  \hookrightarrow 1):
264
              for i=1:3
265
                 A{i}=fgetl(fid);
266
              end
267
              fclose(fid);
268
              fid=fopen(['results/w2_iter0_wb' num2str(wb) '/' CFG{wb}.MainstemBR1Cin
                  → 1);
              C=textscan(fid,[repmat('%8f', 1, 50) '%*[^\n]'],10^8,...
269
270
                 'headerLines', 3, 'collectoutput', true); %50 & 10^8 are arbitrary big
                     → numbers
271
              C\{1\}(:, isnan(C\{1\}(1,:))) = []; C\{1\} = C\{1\}(C\{1\}(:,1) \le t_all(end),:);
272
              dos=W2validation{wb-1}.DO(~isnan(W2validation{wb-1}.DO(:,2)),:);
273
              flag=0;
2.74
              for i=1:size(C{1},1)
275
                 r(i) = interp1(dos(:,1), dos(:,2), C{1}(i,1));
276
                 if ~isnan(r(i))
277
                    C\{1\}\ (i, end) = r(i);
278
                 elseif isnan(r(i)) & C{1}(i,1)>dos(end,1) & flag==0
279
                    a=dos(end,2); flag=1;
280
                    C\{1\}\ (i, end) = a;
281
                 end
282
              end
283
              for i=1:size(C{1},1)
284
                 \hookrightarrow {1}(i,:));
285
              end
              fclose(fid);
286
287
              fid=fopen(['results/w2_iter0_wb' num2str(wb) '/' CFG{wb}.MainstemBR1Cin
                  \hookrightarrow ],'w');
288
              for i=1:numel(A)
289
                 fprintf(fid,'%s\r\n', A{i});
290
291
              fclose(fid); clearvars A fid C i r dos flag a
292
293
           %Open qot_br1.npt and modify turb and spill columns
294
           fid=fopen(['results/w2_iter0_wb' num2str(wb) '/qot_br1.npt']);
295
           i=1; A{i}=fgetl(fid);
296
           while ischar(A{i})
297
              i=i+1; A{i}=fgetl(fid);
298
              if i>3
299
                 if str2double(A{i}(1:8))>=t_all(1)
300
                    A(end) = []; break
301
                 end
302
              end
303
           end
304
           fclose(fid);
305
           if strcmp(CFG{wb}.TurbSpillOrder,'1')
306
              replacements{wb}=[Q\{wb\}.QOT_BR1_T(Q\{wb\}.QOT_BR1_T(:,1)>=t_all(1),:) ...
307
                 Q\{wb\}.QOT_BR1_S(Q\{wb\}.QOT_BR1_S(:,1)>=t_all(1),2)];
308
           elseif strcmp(CFG{wb}.TurbSpillOrder,'0')
```

```
309
              \label{eq:continuity} \verb|replacements{wb}=[Q{wb}.QOT\_BR1\_S(Q{wb}.QOT\_BR1\_S(:,1)>=t\_all(1),:) \dots |
310
                  Q\{wb\}.QOT_BR1_T(Q\{wb\}.QOT_BR1_T(:,1)>=t_all(1),2)];
311
312
           for i=1:size(replacements{wb},1)
313
              A\{\text{numel}(A)+1\}=\text{sprintf}('\$8.3f\$8.3f\%, \text{replacements}\{\text{wb}\}(i,:));
314
315
           fid=fopen(['results/w2_iter0_wb' num2str(wb) '/qot_br1.npt'],'w');
316
           for i=1:numel(A)
317
              fprintf(fid,'%s\r\n', A{i});
318
           end
319
           fclose(fid); clearvars A i fid
320
321
           %Run executable w2.exe
322
           fprintf(['Running W2 for wb' num2str(wb) ' with outflows consistent with
               → projected turbine operations. \n']);
323
           str=['results/w2_iter0_wb' num2str(wb)];
324
           cd(str)
325
           [~,~] = system('w2.exe');
326
           cd ../..
327
        end
328
        %Read in TWO, CWO, and ELWS from W2 run
329
        d=dir(['results/w2_iter0_wb' num2str(wb) '/two*.opt']);
          fid=fopen(['results/w2_iter0_wb' num2str(wb) '/' d(end).name]);   C=textscan(fid,[repmat('%8f', 1, 50) '%*[^\n]'],10^8,...  
330
331
           'headerLines',3,'collectoutput', true); %50 & 10^8 are arbitrary big
332
               → number
333
        Q\{wb\}.TWO=C\{1\}; Q\{wb\}.TWO(:,isnan(Q\{wb\}.TWO(1,:)))=[];
334
        fclose(fid);
335
        d=dir(['results/w2_iter0_wb' num2str(wb) '/cwo*.opt']);
336
        fid=fopen(['results/w2_iter0_wb' num2str(wb) '/' d(end).name]);
        C=textscan(fid,[repmat('%8f', 1, 50) '%*[^\n]'],10^8,...
337
338
           'headerLines',3,'collectoutput', true); %50 & 10^8 are arbitrary big
               → numbers
339
        Q\{wb\}.CWO=C\{1\}; Q\{wb\}.CWO(:, isnan(Q\{wb\}.CWO(1,:)))=[];
340
        Q\{wb\}.CWO=[Q\{wb\}.CWO(:,1) Q\{wb\}.CWO(:,end)];
341
        fclose(fid);
342
        d=dir(['results/w2_iter0_wb' num2str(wb) '/tsr*.opt']);
343
        fid=fopen(['results/w2_iter0_wb' num2str(wb) '/' d(end).name]);
344
        C=textscan(fid,[repmat('%8f', 1, 50) '%*[^\n]'],10^8,...
345
           'headerLines',12,'collectoutput', true); %50 & 10^8 are arbitrary big
               → numbers
346
        Q\{wb\}.ELWS=C\{1\}; Q\{wb\}.ELWS(:,isnan(Q\{wb\}.ELWS(1,:)))=[];
347
        Q\{wb\}.ELWS=[Q\{wb\}.ELWS(:,1) Q\{wb\}.ELWS(:,3)];
348
        fclose(fid);
349
350
        Qprojected=Q; clearvars str turb_discharges spill_discharges C fid d
351
352
    clearvars replacements
353
354
    %% Compute target elevations
355
    for wb=1:size(CFG,2)
        %Target elevations (soft constraint)
356
        [~,~,HWs_x0(wb,:),~,~]=activeunits_to_discharges(x0_all(wb,:),t_all,...
357
358
           frequency,Qprojected{wb},ic_elev_first{wb},...
359
           turbine_discharge{wb},[],[],[]);
360
        if isempty(CFG{wb}.WaterSurfaceElevationTargets)
361
           L.warn('INITIALIZATION', ['No reservoir ', num2str(wb),' ELWS targets
               → provided - assuming targets from projected operations W2 simulation
               \hookrightarrow .'])
362
           ELWS_targets{wb}(:,1)=[start_date+1:1:start_date+days_forward]';
363
           ELWS_targets{wb}(:,2)=interp1(t_all,HWs_x0(wb,:),...
364
               [start_date+1:1:start_date+days_forward])';
365
           if isnan(ELWS_targets{wb}(end,2))
366
              ELWS_targets{wb} (end, 2) = elevtemp{wb} (end, 2);
```

```
367
          end
368
       else
369
          ELWS_targets{wb}=dlmread(CFG{wb}.WaterSurfaceElevationTargets,'\t',1,0);
370
        end
371
          ELWS_targets{wb}(:,2)=min(ELWS_targets{wb}(:,2),ELWS_limit{wb}(2));
372
          ELWS_targets{wb}(:,2)=max(ELWS_targets{wb}(:,2),ELWS_limit{wb}(1));
373
374
    clearvars wb t_all_round t_prev_round elevtemp x0_all_fix
375
    %Soft penalty coeff for deviation from final target elevation
376
    elev_soft_penalty_coeff_constant=[1e3 5e2];
377
    %Water quality and elevation constraint rounding setting (10=tenths place, 100=
        → hundredths place, etc.)
378
    elev_constraint_rounding=100;
379
    wq_constraint_rounding=100;
380
    %Assign priority ranking for constraints on elev, DO, and temp, starting with
        \hookrightarrow highest priority first. This is used during the prescreen to see if
        → constraints are even feasible
381
    ranking={'elev','do','temp'};
382
    %Penalty tolerance
383
    tolerance=10^-20;
384
385
    %% Initialize cache of solutions - only use if Optimize day by day is off and
        \hookrightarrow there is 1 waterbody
386
    cache.t=t_all;
387
    cache.x=[]; cache.HWs=[]; cache.DO=[]; cache.T=[];
388
    cache.x=x0_all(:,:); cache.flag={'x0'}; cache.HWs=HWs_x0(1:end);
389
    cache.DO=interp1(Qprojected{1}.CWO(Qprojected{1}.CWO(:,2)~=0,1),Qprojected{1}.

→ CWO(Qprojected{1}.CWO(:,2)~=0,2),t_all(2:end));
390
    %Fill in Nans at the end
391
    a=cache.DO(~isnan(cache.DO)); cache.DO(isnan(cache.DO)) = a (end);
392
    turbs=interp1 (Qprojected{1}.QOT_BR1_T(:,1),Qprojected{1}.QOT_BR1_T(:,2),t_all);
393
    spills=interp1(Qprojected{1}.QOT_BR1_S(:,1),Qprojected{1}.QOT_BR1_S(:,2),t_all);
394
    flowout_x0=turbs(2:end)+spills(2:end);
395
    cache.DO(flowout_x0==0)=nan;
396
    cache.T=interp1(Qprojected{1}.TWO(Qprojected{1}.TWO(:,2)~=0,1),Qprojected{1}.TWO
        → (Qprojected{1}.TWO(:,2)~=0,2),t_all(2:end));
397
    %Fill in Nans at the end
398
    a=cache.T(~isnan(cache.T)); cache.T(isnan(cache.T)) = a (end);
399
    cache.T(flowout_x0==0)=nan;
400
    clearvars a flowout_x0 turbs spills HWs_x0
401
402
    %% Save projected operations data in Input and Output for future NARX training
403
    if ~exist('Inputs')
404
       wb=1:
405
        Inputs(wb).discharge_DO=[];
406
       Inputs(wb).discharge_Temp=[];
407
408
409
    % DO inputs and output
410
    for wb=1:size(CFG,2)
411
       if WO(wb).DO valid check==1
412
           index=size(Inputs{wb}.discharge_DO,2);
413
           timesteps=[t_all(1)-max(WQ{wb}.DO_narx.inputDelays)/24:(1/24):t_all(end)
              → ]';
414
          vars=WQ{wb}.DO_narx.input_variables;
415
          Inputs(wb).discharge_DO(index+1)=[];
416
           for i=1:size(vars,2)
417
              if strfind(char(vars(1,i)),'TIN')
418
                 flow_variable=strrep(char(vars(1,i)),'TIN','QIN');
419
             elseif strfind(char(vars(1,i)),'CIN')
420
                 flow_variable=strrep(char(vars(1,i)),'CIN','QIN');
421
             elseif strfind(char(vars(1,i)),'TTR')
422
                 flow_variable=strrep(char(vars(1,i)),'TTR','QTR');
423
             elseif strfind(char(vars(1,i)),'CTR')
```

```
424
                 flow_variable=strrep(char(vars(1,i)),'CTR','QTR');
425
              else
426
                 flow_variable=char(vars(1,i));
427
              end
428
              if ~strcmp(char(vars(1,i)),'MET_WB1') %assume interpolation for MET

→ data
429
                 for ii=1:size(O{wb}.interpolation,2)
430
                     if strcmp(char(Q{wb}.interpolation(1,ii)),flow_variable)
431
432
                     end
433
                 end
434
                 if strcmp(char(O{wb}.interpolation(3,ii)),'ON')
435
                     Inputs{wb}.discharge_DO{index+1}(:,i)=interp1(Q{wb}.(vars{1,i}))
                         \hookrightarrow (:,1),...
436
                        Q{wb}.(vars{1,i})(:,vars{2,i}+1),timesteps);
437
                 elseif strcmp(char(Q{wb}.interpolation(3,ii)),'OFF')
438
                     for iii=1:size(timesteps,1)
439
                        index2 = find(Q\{wb\}.(vars\{1,i\})(:,1) \le timesteps(ii),1,'last');
440
                        Inputs{wb}.discharge_DO{index+1}(iii,i)=Q{wb}.(vars{1,i})(
                            \hookrightarrow index2, vars{2,i}+1);
441
                     end
442
                 end
443
              else
444
                 Inputs\{wb\}.discharge_DO\{index+1\}\{:,i\}=interp1\{Q\{wb\}\}.\{vars\{1,i\}\}\{:,1\}
445
                     Q{wb}.(vars{1,i})(:,vars{2,i}+1),timesteps);
446
              end
           end
447
448
           DO_noNAN=interp1 (Qprojected{wb}.CWO(Qprojected{wb}.CWO(:,2)~=0,1),...
449
              Qprojected(wb).CWO(Qprojected(wb).CWO(:,2)~=0,2),timesteps);
450
           %Fill in Nans at the end
451
           a=DO_noNAN(~isnan(DO_noNAN)); DO_noNAN(isnan(DO_noNAN)) = a (end);
452
           turbs=interp1 (Qprojected{wb}.QOT_BR1_T(:,1),Qprojected{wb}.QOT_BR1_T(:,2),
               → timesteps);
453
           spills=interp1(Qprojected{wb}.QOT_BR1_S(:,1),Qprojected{wb}.QOT_BR1_S(:,2)
               → ,timesteps);
454
           flowout=turbs+spills; DO_noNAN(flowout==0)=nan;
455
456
           %Output data
457
           Output {wb}.discharge_DO{index+1}(:,1)=DO_noNAN;
458
459
           for i=1:size(Inputs{wb}.discharge_DO, 2)
460
              %Convert to cells
461
              Inputs_seq{wb}.discharge_DO{i}=con2seq(Inputs{wb}.discharge_DO{i}');
462
              Output_seq{wb}.discharge_DO{i}=con2seq(Output{wb}.discharge_DO{i}');
463
464
           clearvars i ii iii flow_variable index a DO_noNAN turbs spills flowout

→ index2 vars timesteps

465
           %Combine them all into single Input and Output cell arrays
466
           Inputs_seq_mul{wb}.discharge_DO=catsamples(Inputs_seq{wb}.discharge_DO{:}),
               \hookrightarrow 'pad');
467
           Output_seq_mul{wb}.discharge_DO=catsamples(Output_seq{wb}.discharge_DO{:},
               \hookrightarrow 'pad');
468
           clearvars b Xs Xi Ai Ts tr tr2 b yp1 TS bias narx_net_closed narx_net
               → muhat sigmahat
469
470
        end
    end
471
472
473
474
    % Temp inuts and output
475
    for wb=1:size(CFG,2)
476
         if WQ{wb}.Temp_valid_check==1
477
           index=size(Inputs{wb}.discharge_Temp,2);
```

```
478
           timesteps=[t_all(1)-max(WQ{wb}.Temp_narx.inputDelays)/24:(1/24):t_all(end)
               \hookrightarrow 1';
479
           vars=WQ{wb}.Temp_narx.input_variables;
480
           Inputs{wb}.discharge_Temp{index+1}=[];
481
           for i=1:size(vars,2)
482
              if strfind(char(vars(1,i)),'TIN')
483
                  flow variable=strrep(char(vars(1,i)),'TIN','OIN');
484
              elseif strfind(char(vars(1,i)),'CIN')
485
                  flow_variable=strrep(char(vars(1,i)),'CIN','QIN');
486
              elseif strfind(char(vars(1,i)),'TTR')
487
                  flow_variable=strrep(char(vars(1,i)),'TTR','QTR');
488
              elseif strfind(char(vars(1,i)),'CTR')
489
                  flow_variable=strrep(char(vars(1,i)),'CTR','QTR');
490
              else
491
                 flow_variable=char(vars(1,i));
492
              end
493
              if ~strcmp(char(vars(1,i)),'MET_WB1') %assume interpolation for MET
494
                  for ii=1:size(Q{wb}.interpolation,2)
495
                     if strcmp(char(Q{wb}.interpolation(1,ii)),flow_variable)
496
                        break
497
498
                 end
499
                 if strcmp(char(Q{wb}.interpolation(3,ii)),'ON')
500
                     Inputs{wb}.discharge_Temp{index+1}(:,i)=interp1(Q{wb}.(vars{1,i})
                         \hookrightarrow (:,1),...
501
                        Q{wb}.(vars{1,i})(:,vars{2,i}+1),timesteps);
502
                 elseif strcmp(char(Q{wb}.interpolation(3,ii)),'OFF')
503
                     for iii=1:size(timesteps, 1)
504
                        index2=find(Q{wb}.(vars{1,i})(:,1) <= timesteps(ii),1,'last');
505
                        Inputs{wb}.discharge_Temp{index+1}(iii,i)=Q{wb}.(vars{1,i})(
                            \hookrightarrow index2, vars{2,i}+1);
506
                     end
507
                 end
508
              else
509
                  Inputs{wb}.discharge_Temp{index+1}(:,i)=interp1(Q{wb}.(vars{1,i})
                     \hookrightarrow (:,1),\ldots
510
                     Q{wb}.(vars{1,i})(:,vars{2,i}+1),timesteps);
511
              end
512
           end
513
           T_noNAN=interp1 (Qprojected{wb}.TWO(Qprojected{wb}.TWO(:,2)~=0,1),...
514
              Qprojected{wb}.TWO(Qprojected{wb}.TWO(:,2)~=0,2),timesteps);
515
           %Fill in Nans at the end
516
           a=T_noNAN(~isnan(T_noNAN)); T_noNAN(isnan(T_noNAN)) = a (end);
517
           turbs=interp1(Qprojected{wb}.QOT_BR1_T(:,1),Qprojected{wb}.QOT_BR1_T(:,2),
               → timesteps);
518
           spills=interp1(Qprojected{wb}.QOT_BR1_S(:,1),Qprojected{wb}.QOT_BR1_S(:,2)
               \hookrightarrow , timesteps);
519
           flowout=turbs+spills; T_noNAN(flowout==0)=nan;
520
521
           %Output data
522
           Output { wb } .discharge_Temp { index+1 } (:, 1) = T_noNAN;
523
524
           for i=1:size(Inputs{wb}.discharge_Temp,2)
525
              %Convert to cells
526
              Inputs_seq{wb}.discharge_Temp{i}=con2seq(Inputs{wb}.discharge_Temp{i}')
52.7
              Output_seq{wb}.discharge_Temp{i}=con2seq(Output{wb}.discharge_Temp{i}')
528
529
           clearvars i ii iii flow_variable index a T_noNAN turbs spills flowout

→ index2 vars timesteps

530
531
           %Combine them all into single Input and Output cell arrays
```

```
532
            Inputs_seq_mul{wb}.discharge_Temp=catsamples(Inputs_seq{wb}.discharge_Temp
                → {:},'pad');
533
           Output_seq_mul{wb}.discharge_Temp=catsamples(Output_seq{wb}.discharge_Temp
                ↔ {:},'pad');
534
            clearvars b Xs Xi Ai Ts tr tr2 yp1 TS bias narx_net_closed narx_net muhat
               → sigmahat
535
           clearvars timesteps
536
537
         end
538
    end
539
540
     retraining='Y';
541
    iter=0; best_iter=[];
542
543
     %Build log file
544
    if ~exist('results','dir')
545
        mkdir('results');
546
547
     fileID=fopen(config.LogFile,'w');
548
     fprintf(fileID,'%12s %16s %12s %18s %18s %14s %14s %14s %14s %12s %12s %12s %12s
         ⇔ %12s %12s',...
549
     'Iter','Feas_GA_pop_size','GA_pop_size','Train_SS_Clusters','Train_SS_Nearby'
     'Feval_Tot','Feval_Cache','Feval_GAtot','Feval_GAcache','Pop_stdev','ReplaceRate
550
         → ','Proj_MWh','Tot_MWh','Proj_Dollars','Tot_Dollars');
     for wb=1:size(CFG,2)
551
552
        fprintf(fileID,' %12s %12s',['Wb' num2str(wb) '_MWh'],['Wb' num2str(wb) '

    dollars']);
553
     end
554
     for wb=1:size(CFG, 2)
555
        fprintf(fileID,' %12s %12s %16s %16s %15s %15s %15s %15s',...
           ['Wb' num2str(wb) '_T_AME'],['Wb' num2str(wb) '_DO_AME'],...
['Wb' num2str(wb) '_T_trpt_AME'],['Wb' num2str(wb) '_DO_trpt_AME'],...
['Wb' num2str(wb) '_NN_T_slack'],['Wb' num2str(wb) '_NN_DO_slack'],...
556
557
558
            ['Wb' num2str(wb) '_W2_T_slack'], ['Wb' num2str(wb) '_W2_DO_slack']);
559
560
    end
     fprintf(fileID,' %12s %13s %13s %12s','Best_Iter', 'x_in_initpop', 'x_in_prevpop
561
         \hookrightarrow ', '2-norm');
562
     fprintf(fileID,' %12s %12s %12s\r\n','Opt_time(s)','W2_time(s)','Trn_time(s)');
563
     fclose(fileID); clearvars fileID ans wb
```

optimization_routine.m

```
1
   %% Optimize over days_forward
2
3
   day=1; stop=0;
 4
   global funccount_cache_global funccount_tot_global
 5
    funccount_cache_global=0; funccount_tot_global=0;
 6
    if ~exist('plot_data','dir')
7
       mkdir('plot_data');
8
   end
   clearvars xprev tprev
10
   for wb=1:size(CFG,2)
11
       x_final\{wb\}=[];
12
       %Previous turbine pattern for the year (if supplied)
13
       if isempty(CFG{wb}.ForecastTurbinePattern)
14
          xprev{wb}=actual_turb_ops(tprev_round,Qprojected{wb},elevtemp{wb},
              → turbine_discharge(wb), no_of_units(wb));
15
       else
16
          prevturbpattern=dlmread(CFG{wb}.PreviousTurbinePattern,'\t',1,0);
17
          for i=1:size(tprev_round, 2)
18
             index=find(prevturbpattern(:,1) <=tprev_round(i));</pre>
19
             xprev{wb} (i) = prevturbpattern (index (end), 2);
```

```
20
                  end
21
                   clearvars i prevturbpattern index
22
             end
23
       end
24
       clearvars wb
25
       tprev=[t_all(1)-max(cell2mat(zero_gen_limit(:)))*frequency:frequency:t_all(1)];
      xprev_ic=xprev; tprev_ic=tprev;
2.7
28
       while stop==0
29
30
             \mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\ensuremath{\mbox{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ens
                    \hookrightarrow feasible (in priority order). If not found feasible, then bounds
                    \hookrightarrow defined earlier by the config files are modified. Then problem is
                    → optimized for maximize power (or power value)
31
32
             fprintf(['OPTIMIZATION: OPTIMIZING DAY ', num2str(day), ' \n']);
33
34
             WQ_subproblem{day}=WQ;
35
             ELWS_limit_subproblem{day}=ELWS_limit;
36
37
             %Optimization timeperiod
38
             if Optimize_day_by_day==1
39
                   t=[start_date+day-1:frequency:start_date+day];
40
             else
41
                   t=t_all;
42
             end
43
44
             %Set initial condition elevation
45
             for wb=1:size(CFG,2)
46
                   if day==1
47
                         ic_elev{wb}=ic_elev_first{wb};
48
                         if ic_elev_first{wb}<ELWS_limit_subproblem{day}{wb}(1)</pre>
                               49
                                      \hookrightarrow ELWS lower limit (firm constraint). Expanding ELWS limits to
                                      \hookrightarrow continue with optimization. \n']);
50
                               ELWS_limit_subproblem{day}{wb}(1)=ic_elev_first{wb};
51
                         elseif ic_elev_first{wb}>ELWS_limit_subproblem{day}{wb} (2)
52
                               fprintf(['INITIALIZATION: Reservoir ', num2str(wb),' initial
                                      → elevation of ' num2str(ic_elev_first{wb}) ' m is greater than
                                      → ELWS upper limit (firm constraint). Expanding ELWS limits to
                                      \hookrightarrow continue with optimization. \n']);
53
                               ELWS_limit_subproblem{day}{wb}(2)=ic_elev_first{wb};
54
                         end
55
                   else
56
                         ic_elev{wb}=interp1(Q{wb}.ELWS(:,1),Q{wb}.ELWS(:,2),t(1));
57
                   end
58
             end
59
60
             for wb=1:size(CFG,2)
61
                   %Determine x0, actual turbine operations, to seed initial population
62
                   if Optimize_day_by_day==1
63
                         x0 (wb,:)=x0_all (wb, (day-1)*(1/frequency)+1:day*(1/frequency));
64
                   else
65
                         x0 (wb, :) = x0_all (wb, :);
66
                   [~, y_dollars1]=power_value(x0(wb,:),t,cost_curve_MW{wb},...
67
68
                         MW_rating{wb});
69
                   if size (ELWS_targets { wb} (:, 1), 1) == 1
70
                         elev_soft_penalty_coeff{day} (wb) = interp1 (ELWS_limit_subproblem{day}{wb
                                → } (:),...
71
                               elev_soft_penalty_coeff_constant,...
72
                               ELWS_targets{wb}(:,2),'linear','extrap')*y_dollars1; %$/m with cost
                                      \rightarrow curve, MWh/m with all cc=1
```

```
73
           else
 74
              elev_soft_penalty_coeff{day} (wb) = interp1 (ELWS_limit_subproblem{day}{wb
                  → } (:),...
 75
                 elev_soft_penalty_coeff_constant,...
76
                 interp1 (ELWS_targets{wb}(:,1),ELWS_targets{wb}(:,2),start_date+day)
 77
                 'linear','extrap')*y_dollars1; %$/m with cost curve, MWh/m with all
                     \hookrightarrow cc=1
 78
           end
79
           clearvars y_dollars1
 80
81
           if (iter==1 && Optimize_day_by_day==0) || Optimize_day_by_day==1
82
              %Find possible values for x(1) (based on previous zero_qen_limit turbs)
83
              options=[0:no_of_units{wb}];
84
              % (1) Eliminate options based on change in active unit violations
85
              if ~isnan(max_hrly_unit_change(wb))
86
                 auvoptions=[xprev{wb} (end) -max_hrly_unit_change{wb}:...
87
                    xprev{wb} (end) +max_hrly_unit_change{wb}];
88
                 options=intersect (options, auvoptions);
89
              end
90
              % (2) Non-integer constraint (assumed in selection algorithm)
91
              % (3) Eliminate options based on zero generation hourly limit
92
              if ~isnan(zero_gen_limit(wb))
93
                 if sum(xprev{wb} (end-zero_gen_limit{wb}+1:end)) == 0
94
                    zghloptions=[1:no_of_units{wb}]; %if previous zero_gen_limit hrs
                        → had zero total flow, must have flow next hr
95
                    options=intersect(options,zghloptions);
96
                 end
97
              end
98
              % (4) Eliminate options that violate oscillations constraint - violates
                  \hookrightarrow whenever the number of turbines increases and then decreases
                  → within 2 hours, or vice versa
99
              allopt=[0:no_of_units{wb}];
100
              if xprev{wb} (end-1) < xprev{wb} (end) %if prev turbs increasing
101
                 oscoptions=allopt(allopt>=xprev{wb}(end));
102
                 options=intersect(options,oscoptions);
103
              elseif xprev{wb} (end-1) == xprev{wb} (end) %need 3 hrs btwn ramping up and
                  → down
104
                 if xprev{wb} (end-2) < xprev{wb} (end-1) % ramping up</pre>
105
                    oscoptions=allopt(allopt>=xprev{wb}(end));
106
                    options=intersect (options, oscoptions);
107
                 elseif xprev{wb} (end-2) > xprev{wb} (end-1) %ramping down
108
                    oscoptions=allopt(allopt<=xprev{wb}(end));
109
                    options=intersect (options, oscoptions);
                 elseif xprev{wb} (end-2) == xprev{wb} (end-1)
110
111
                     %do nothing -->3 consecutive hours between ramping up and down
                        → satisfied
112
                 end
113
              elseif xprev{wb} (end-1)>xprev{wb} (end) %if prev turbs decreasing
114
                 oscoptions=allopt(allopt<=xprev{wb}(end));
115
                 options=intersect (options, oscoptions);
116
117
              x1_options{wb}=options;
118
              if isempty(x1_options{wb})
                 fprintf('OPTIMIZATION: Based on previous turbine pattern, there is
119
                     \hookrightarrow no feasible first hour turbine level. \n');
120
121
122
              clearvars tprev options auvoptions zghloptions allopt oscoptions
123
           end
124
        end
125
        clearvars wb
126
127
        %Determine if elevation, DO, and temp constraints are feasible (based on
```

```
\hookrightarrow ranking order) and adjust bounds in this order if necessary
128
        fprintf('OPTIMIZATION: Check constraint feasibilities and adjust if needed. \
            \hookrightarrow n');
129
        if iter==1
130
           y=penalty_fcn(trainingpop,t,frequency,Q,ic_elev,...
131
              turbine_discharge, ELWS_limit_subproblem{day}, max_hrly_unit_change, ...
132
              WQ_subproblem{day},zero_qen_limit,xprev,ELWS_targets,tolerance,cache,
                  → Optimize_day_by_day);
133
           y=sum(y,2); feasible_option1=trainingpop(y==0,:); clearvars y
134
           %Check if x0 is feasible - include it if it is
135
           y=penalty_fcn(reshape(x0',1,[]),t,frequency,Q,ic_elev,...
              turbine_discharge,ELWS_limit_subproblem{day},max_hrly_unit_change,...
136
137
              WQ_subproblem{day}, zero_qen_limit, xprev, ELWS_targets, tolerance, cache,
                  → Optimize_day_by_day);
138
           best\_fvals(day, 1) = obj\_fcn(reshape(x0', 1, []), t, cost\_curve\_MW, MW\_rating, ...
139
              elev_soft_penalty_coeff{day},ELWS_targets,...
140
              frequency, Q, ic_elev, turbine_discharge, cache, Optimize_day_by_day);
141
           %Check to see if any values in x0>no_of_units
142
           over_no_of_units=0;
143
           for wb=1:size(CFG,2)
144
              if any(x0(wb,:)>no_of_units{wb}) over_no_of_units=1; end
145
146
           if ~all(y==0) || over_no_of_units==1
              fprintf('OPTIMIZATION: x0 is not feasible with respect to previous
147
                  \hookrightarrow optimal solution. \n');
148
           else
149
              fprintf('OPTIMIZATION: x0 is feasible with respect to previous optimal
                  \hookrightarrow solution. \n');
150
              feasible_option1=[reshape(x0',1,[]);feasible_option1];
151
           end
152
           clearvars over_no_of_units
153
        end
154
        funccount_tot(day,1)=funccount_tot_global;
155
        funccount_cache(day, 1) = funccount_cache_global;
156
        funccount_cache_global=0; funccount_tot_global=0; %reset to 0 to restart
           → count
157
        %Create initial population if iter=1. Otherwise, start with prev gen
158
           \hookrightarrow population and replace a percentage of the population (rank by
           \hookrightarrow weighted avg constraint violation and pick the worst ones) with newly

→ generated points.

159
        fprintf('OPTIMIZATION: Finding initial population to seed genetic algorithm.
           \hookrightarrow \n');
160
        if iter==1
161
           feasible_options=pop0; replacement_rate=0;
162
163
           feasible_options=population{iter-1}; replacement_rate=0;
164
           if strcmp(ReplacementOnOff,'ON')
165
              %Rank pop members by weighted avg constraint violation (use modified
                  → penalty function that computes all constraints)
              violations=penalty_fcn_inf(population{iter-1},t,frequency,Q,ic_elev,...
166
167
                 turbine_discharge, ELWS_limit_subproblem{day},...
168
                 max_hrly_unit_change, WQ_subproblem{day}, zero_gen_limit,...
169
                 xprev,ELWS_targets,tolerance,cache,Optimize_day_by_day);
170
              %Normalize each column and average across, then rank population members

→ from worst (least feasible) to best (feasible). Then amongst

                  → feasible pop members, rank by fval
171
              normc=violations(:,:); normc2=[];
172
              for i=1:size(normc,2)
173
                 if ~all(normc(:,i)==normc(1,i)) normc2=[normc2 normc(:,i)]; end
174
175
              mindata = min(normc2); maxdata = max(normc2);
176
              normc2 = bsxfun(@rdivide, bsxfun(@minus, normc2, mindata), maxdata -
                  → mindata);
```

```
177
              meanc=mean(normc2,2); [meanc,b]=sort(meanc,'descend');
178
              Set the replacement rate for the next generation
179
              replacement_rate=0.2;
180
              replacement_size=round(ga_pop_size*replacement_rate);
181
              if replacement_size>sum(meanc>0)
                 %Rank by fval
182
183
                 bb=b(meanc==0); a=FitnessFunction(population(iter-1)(bb,:));
184
                 [~,bbb]=sort(a,'descend'); b(meanc==0)=bb(bbb);
185
                 clearvars a bb bbb
186
              end
187
              %Generate new replacement pop members
188
              WQ_r=WQ_subproblem{day}; wb=1;
189
              WQ_r{wb}.DO_limit=nan(size(WQ{wb}.DO_limit)); WQ_r{wb}.Temp_limit=nan(

    size(WQ{wb}.Temp_limit));
190
              [replacements] = ...
191
                 create_replacements(replacement_size,[],...
192
                 x1_options, frequency, Q, ic_elev, MW_rating, no_of_units, t, ...
193
                 max_hrly_unit_change, zero_gen_limit, turbine_discharge,...
194
                 ELWS_limit_subproblem{day}, WQ_r, cost_curve_MW, xprev,...
195
                 elev_soft_penalty_coeff{day}, ELWS_targets, tolerance, cache,
                     → Optimize_day_by_day,...
196
                 transition_matrix);
197
              %Sub out the replacement pop members
198
              feasible_options(b(1:replacement_size),:) = replacements;
199
           end
200
        end
201
        funccount_tot(day,2) = funccount_tot_global;
202
        funccount_cache(day, 2) = funccount_cache_global;
203
        funccount_cache_global=0; funccount_tot_global=0; %reset to 0 to restart
           → count
204
        if isempty(feasible_options)
205
           fprintf('OPTIMIZATION: No feasible solutions found during initialization \
               \hookrightarrow n');
206
           return
207
        end
208
       clearvars objfcn feasible_option1 b c normc i normc2 mindata maxdata meanc b

→ replacements

209
210
        %Set optimization algorithm options
211
        FitnessFunction = @(x) - obj_fcn(x,t,cost_curve_MW,...
2.12
           MW_rating,elev_soft_penalty_coeff{day},...
213
           ELWS_targets, frequency, Q, ic_elev, ...
214
           turbine_discharge, cache, Optimize_day_by_day);
215
        mycon= @(x) penalty_fcn(x,t,frequency,Q,ic_elev,...
216
           turbine_discharge,ELWS_limit_subproblem{day},...
217
           max_hrly_unit_change, WQ_subproblem{day}, zero_gen_limit,...
218
           xprev, ELWS_targets, tolerance, cache, Optimize_day_by_day);
219
        opt = gaoptimset(..
           'Display','iter','Vectorized','on','Generations',GAgenerations, ...
220
221
           'PopulationSize', ga_pop_size,...
222
           'EliteCount', ceil(0.05*ga_pop_size),...
223
           'InitialPopulation', feasible_options,...
           'StallGenLimit', 2, 'TolFun', tolerance, 'TolCon', tolerance, ...
224
           'CrossoverFcn', @crossoversinglepoint, 'CrossoverFraction', .95, ...
225
226
           'CreationFcn',@int_pop,'MutationFcn',@int_mutation,...
227
           'InitialPenalty', 10^10);
228
        nVar = size(CFG, 2) * (size(t, 2) - 1);
229
        %Set dv lower and upper bounds, narrowed considering max_hrly_unit_change,
            → for both reservoirs
230
        for wb=1:size(CFG,2)
231
           1b(wb,:)=0*ones(1,size(t,2)-1); lb(wb,1)=x1_options\{wb\}(1);
232
           for i=2:no_of_units{wb}
233
              lb (wb, i) = lb (wb, i-1) -max_hrly_unit_change {wb};
234
           end
```

```
235
           1b(wb,:) = max(0, 1b(wb,:));
236
           ub (wb,:) = no_of_units\{wb\}*ones(1, size(t, 2) - 1);
237
           ub(wb, 1) = x1_options\{wb\}(end);
238
           for i=2:no_of_units{wb}
239
              ub(wb,i)=ub(wb,i-1)+max_hrly_unit_change{wb};
240
241
           ub (wb,:) = min (no_of_units {wb}, ub (wb,:));
242
           clearvars i
243
        end
244
        lb=reshape(lb',1,[]); ub=reshape(ub',1,[]);
245
246
247
        fprintf('OPTIMIZATION: Begin running genetic algorithm. \n');
        [x,fval,~,~,population{iter},scores] = ga(FitnessFunction,nVar,[],[],[],[],b,
248
           \hookrightarrow ub,...
249
           mycon,[],opt);
250
        %Was x in feasible_options?
251
        x_in_initpop='NO'; x_in_prevpop='NO';
252
        if ismember(x, feasible_options, 'rows')
253
           fprintf('x was in feasible_options \n');
254
           x_in_initpop='YES';
255
256
        if iter==1 x_in_prevpop='n/a';
257
        else
258
           if ismember(x,population{iter-1},'rows')
259
              fprintf('x was in prev pop \n');
260
              x_in_prevpop='YES';
261
           end
262
        end
263
        funccount_tot(day,3)=funccount_tot_global;
264
        funccount_cache(day, 3) = funccount_cache_global;
265
        funccount_cache_global=0; funccount_tot_global=0; %reset to 0 to restart
            → count
266
        best_fvals(day,3)=-fval;
267
268
        *Calculate stdev of population (scale first to [-1,1]) - EXPAND TO
            → MULTIRESERVOIR LATER
269
        if Optimize_day_by_day==0
270
           pop_scaled=(2*population{iter}/no_of_units{1})-1;
271
           for variables=1:size(t,2)-1 standarddevs(variables)=std(pop_scaled(:,
               → variables)); end
272
           SD(iter+1) = mean(standarddevs);
273
           if iter==1
274
              pop_scaled=(2*feasible_options/no_of_units{1})-1;
275
              for variables=1:size(t,2)-1 standarddevs(variables)=std(pop_scaled(:,
                  → variables)); end
276
              SD(1)=mean(standarddevs);
277
278
           clearvars variables pop_scaled standarddevs
279
        end
280
        if iter==1 SSD(iter)=SD(iter); end
281
        SSD(iter+1) = SSD(iter) + 0.5*(SD(iter+1) - SSD(iter));
282
283
284
        %Split up rows of x to separate reservoirs
285
        for wb=1:size(CFG,2)
286
           x_{final\{wb\}} = [x_{final\{wb\}} ...
287
              x(:, wb*(size(t, 2)-1)-(size(t, 2)-2):wb*(size(t, 2)-1))];
288
        end
289
        for wb=1:size(CFG,2)
290
           x_final_all{iter}(wb,:)=x_final{wb};
291
292
        clearvars wb fval lb ub opt feasible_options
293
```

```
294
        %Update elevations and discharges/inflows in Q before going on to next
295
        %dav
296
        Q=updateQ(Q,CFG,x_final,t,frequency,ic_elev,turbine_discharge,...
297
           WQ_subproblem{day}, xprev, ELWS_targets, cache, Optimize_day_by_day);
298
299
        %Compute total y_dollars
300
        clearvars elev soft penalty coeff
301
        for wb=1:size(CFG,2)
302
           if Optimize_day_by_day==1
303
              if iter==1
304
                  [y_MWh(wb,1), y_dollars(wb,1)] = power_value(x0_all(wb,1:day*(1/all(wb,1))))
                     → frequency)),t_all(1:1+day*(1/frequency)),cost_curve_MW{wb
                      \hookrightarrow },...
305
                     MW_rating{wb});
306
                 elev_soft_penalty_coeff{wb}=interp1(ELWS_limit{wb}(:)',...
307
                     elev_soft_penalty_coeff_constant,ELWS_targets{wb} (day),...
                     'linear','extrap')*y_dollars(wb,1); %$/m with cost curve, MWh/m
308
                         \hookrightarrow with all cc=1
309
              end
310
              [y_MWh(wb,2), y_dollars(wb,2)] = power_value(x_final{wb},t_all(1:1+day

    * (1/frequency)), cost_curve_MW{wb},...
311
                 MW_rating{wb});
312
           else
313
              if iter==1
314
                  [y_MWh(wb,1), y_dollars(wb,1)]=power_value(x0_all,t_all,

    cost_curve_MW{wb},...

315
                     MW_rating{wb});
316
                  elev_soft_penalty_coeff{wb}=interp1(ELWS_limit{wb}(:)',...
317
                     elev_soft_penalty_coeff_constant,t_all(end),...
318
                     'linear','extrap')*y_dollars(wb,1); %$/m with cost curve, MWh/m
                         \hookrightarrow with all cc=1
319
320
              [y_MWh(wb,2), y_dollars(wb,2)]=power_value(x_final{wb},t_all,

→ cost_curve_MW{wb},...
321
                 MW_rating{wb});
322
           end
323
        end
324
        y_MWh_total=sum(y_MWh(1:size(CFG,2),:),1);
325
        y_dollars_total=sum(y_dollars(1:size(CFG,2),:),1);
326
327
        %Will run W2 for best x from optimization (if it hasn't already been sampled)
            \hookrightarrow and then compute performance (AME)
328
        trainingpop=[]; cache_size_pre=size(cache.x,1);wb=1;
329
        if ~ismember(x, cache.x, 'rows')
330
           trainingpop(1,:)=x; correction=0;
331
           cache.flag{size(cache.flag,1)+1,1}={'bestx'};
332
        else
333
           correction=1;
334
        end
335
336
        if strcmp (Additional Sampling On Off, 'ON')
337
           training_ss_clusters=0;
338
           if correction==1
339
              training_ss_nearby=4;
340
           else
341
              training_ss_nearby=3;
342
           end
343
        else
344
           training_ss_clusters=0; training_ss_nearby=0;
345
346
        training_ss_clusters_reset=training_ss_clusters; training_ss_nearby_reset=

→ training_ss_nearby;

347
        %kmeans clustering on population set and pick one from each cluster to run
           → through W2
```

```
348
        if (training_ss_clusters+training_ss_nearby)>0
349
           ii=1; pop=population{iter}; wb=1;
350
           %Remove points that aren't feasible wrt constraints other than WQ
351
           violations=mycon(pop); violations2=sum(violations(:,1:53),2);
352
           ia=find(violations2==0); %find the pop members feasible wrt all
               \hookrightarrow constraints except WQ
353
           pop=pop(ia,:);
354
           if feasible_soln_found==0
355
              [bb,b]=sortrows([violations(ia,54) FitnessFunction(pop)],[1 2]);
356
           else
357
              pop=pop(FitnessFunction(pop) <FitnessFunction(x_final_all{best_iter(iter</pre>
                  \hookrightarrow -1)}),:);
              if ~isempty(pop)
358
359
                 violations=mycon(pop);
360
                 [bb,b]=sortrows([violations(:,54) FitnessFunction(pop)],[1 2]);
361
              end
362
           end
363
           if ~isempty(pop) pop=pop(b,:); end
364
           clearvars ia violations violations2 b bb
365
           if training_ss_clusters>0
366
              for a=1:500
                 [idx(:,a),~,~,D{a}]=kmeans(pop,training_ss_clusters);
367
368
                 B=unique(idx(:,a));
369
                 group_var(a) = var(histc(idx(:,a),B));
370
              end
371
              %Pick the cluster that minimizes the max group size (i.e., results in
                  → fairly even distribution)
372
              [~,a]=min(group_var); idx=idx(:,a); D=D{a}; clearvars a B group_var
373
           end
374
           if training_ss_nearby>0
375
              e=[1:size(pop,1)]';
376
377
           for i=2:(training_ss_clusters+training_ss_nearby)+1
378
              if any(i==2:(1+training_ss_nearby))
379
                     ~isempty(trainingpop)
380
                    while isempty(e) || ismember(pop(e(ii),:),cache.x,'rows') || ...
381
                           ismember(pop(e(ii),:),trainingpop,'rows')
382
                        if (ii+1)>size(e,1) fprintf('No new points to sample. \n')
383
                           training_ss_nearby_reset=training_ss_nearby_reset-1;
384
                           break
385
                       else ii=ii+1; end
386
                    end
387
                 else
388
                    while isempty(e) || ismember(pop(e(ii),:),cache.x,'rows')
389
                       if (ii+1)>size(e,1) fprintf('No new points to sample. \n')
390
                           training_ss_nearby_reset=training_ss_nearby_reset-1;
391
                           break
392
                       else ii=ii+1; end
393
                    end
394
                 end
395
                 if (ii+1)>size(e,1) %do nothing
396
                 else trainingpop(size(trainingpop,1)+1,:)=pop(e(ii),:); ii=ii+1;

    cache.flag{size(cache.flag,1)+1,1}={'nearby'}; end

397
              elseif ~isempty(pop)
                 b=find(idx==i-1-training_ss_nearby);
398
399
                 %Pick randomly from each cluster
400
                 a=randsample(b,1);
401
                 if ~isempty(trainingpop)
402
                    while ismember(pop(a,:),cache.x,'rows') || ...
403
                           ismember(pop(a,:),trainingpop,'rows')
404
                       b=setdiff(b,a);
405
                       if isempty(b) a=[]; fprintf('No new points to sample. \n')
406
                           training_ss_clusters_reset=training_ss_clusters_reset-1;
407
                           break
```

```
408
                        else a=randsample(b,1); end
409
                    end
410
                 else
411
                    while ismember(pop(a,:),cache.x,'rows')
412
                        b=setdiff(b,a);
413
                        if isempty(b) a=[]; fprintf('No new points to sample. \n')
414
                           training ss clusters reset=training ss clusters reset-1;
415
416
                        else a=randsample(b,1); end
417
                    end
418
                 end
419
                 if ~isempty(a)
420
                    trainingpop(size(trainingpop,1)+1,:)=pop(a,:); cache.flag{size(

    cache.flag, 1) +1, 1} = {'cluster'};
421
                 end
422
              end
423
           end
424
        end
425
        training_ss_clusters=training_ss_clusters_reset;    training_ss_nearby=

→ training_ss_nearby_reset;

426
        clearvars training_ss_clusters_reset training_ss_nearby_reset
427
428
        %Create Qtrainingpop for each trainingpop entry (QOT_BR1_T, QOT_BR1_S, ELWS,
           \hookrightarrow CWO, TWO)
429
        if size(trainingpop, 1) > 0
430
           for i=1:size(trainingpop,1)
431
              xtr{1}=trainingpop(i,:);
432
              Qtrainingpop{i}=updateQ(Q,CFG,xtr,t,frequency,ic_elev,turbine_discharge
433
                 WQ_subproblem{day}, xprev, ELWS_targets, cache, Optimize_day_by_day);
434
           end
435
        end
436
        %Run each row in trainingpop through W2 (only works for 1-day, 1-wb problems
            → for now), and update cache with these values as well
437
        timing (2) = 0;
438
        if size(trainingpop, 1) > 0
439
           w2timing=tic;
440
           for trindex=1:size(trainingpop, 1)
441
442
              if correction==0 && trindex==1
443
                 fprintf(['Running W2 validation simulation for reservoir #', num2str
                     \hookrightarrow (wb),'. \n']);
444
                 directory=['results/w2_iter' num2str(iter) '_wb' num2str(wb)];
445
              else
446
                 if size(trainingpop,1)>(training_ss_clusters+training_ss_nearby)
447
                    fprintf(['Running training point ' num2str(trindex-1) ' for

    reservoir #', num2str(wb),'. \n']);
448
                    directory=['results/w2_iter' num2str(iter) '_trpt' num2str(

    trindex-1) '_wb' num2str(wb)];
449
                 else
450
                    fprintf(['Running training point ' num2str(trindex) ' for

  reservoir #', num2str(wb),'. \n']);
451
                    directory=['results/w2_iter' num2str(iter) '_trpt' num2str(
                        → trindex) '_wb' num2str(wb)];
452
                 end
453
              end
454
              runW2trainingpop;
455
456
           while istaskrunning('w2.exe') end %is w2 still running? if so, hold on
457
           system('taskkill /F /IM cmd.exe'); cache_size_pre=size(cache.x,1);
458
           for trindex=1:size(trainingpop, 1)
459
              wb=1;
460
              if correction==0 && trindex==1
461
                 directory=['results/w2_iter' num2str(iter) '_wb' num2str(wb)];
```

```
462
              else
463
                 if size(trainingpop,1)>(training_ss_clusters+training_ss_nearby)
464
                    directory=['results/w2_iter' num2str(iter) '_trpt' num2str(

    trindex-1) '_wb' num2str(wb)];
465
                 else
466
                    directory=['results/w2_iter' num2str(iter) '_trpt' num2str(
                        → trindex) ' wb' num2str(wb)];
467
                 end
468
              end
469
              runW2trainingpop_part2;
470
           end
471
           timing(2)=toc(w2timing);
472
           %Compute AME for each of these new training points using current NARX
               → surrogate model
473
           for trindex=1:size(trainingpop, 1);
474
              x_trpt=trainingpop(trindex,:); wb=1; compute_AME_trpt;
475
              AME_trpt.DO{iter}(trindex) = nanmean(abs(cache.DO(b,:)-DO_pred));
476
              AME_trpt.T{iter}(trindex) = nanmean(abs(cache.T(b,:)-T_pred));
477
              AME_trpt.DO_error{iter}(trindex,:)=cache.DO(b,:)-DO_pred;
478
              AME_trpt.T_error{iter} (trindex,:) = cache.T(b,:)-T_pred;
479
           end
480
           %Compute AME for each old training point, for comparison against new

    → training points

481
           for index=1:cache_size_pre
482
              x_trpt=cache.x(index,:); wb=1; compute_AME_trpt;
483
              AME_trpt.DO_old{iter}(index)=nanmean(abs(cache.DO(b,:)-DO_pred));
484
              AME_trpt.T_old{iter}(index)=nanmean(abs(cache.T(b,:)-T_pred));
485
              AME_trpt.DO_old_error{iter} (index,:) = cache.DO(b,:) - DO_pred;
486
              AME_trpt.T_old_error{iter}(index,:)=cache.T(b,:)-T_pred;
487
          end
488
           %Compute averages
489
           AME_trpt.DO_avg(iter) = mean (AME_trpt.DO{iter});
490
           AME_trpt.T_avg(iter) = mean (AME_trpt.T{iter});
491
           AME_trpt.DO_old_avg(iter) = mean (AME_trpt.DO_old{iter});
492
          AME_trpt.T_old_avg(iter) = mean (AME_trpt.T_old{iter});
493
       else
494
          AME_trpt.T_avg(iter) = NaN; AME_trpt.DO_avg(iter) = NaN;
495
       end
496
497
        %Save the AME for the best solution found this generation
498
        wb=1; x_trpt=x_final_all{iter}; compute_AME_trpt;
499
       AME {wb}.DO=nanmean(abs(cache.DO(b,:)-DO_pred));
500
       AME {wb}. T=nanmean(abs(cache.T(b,:)-T_pred));
501
502
        %Determine the index in cache corresponding to the best solution from last
           → generation
503
        [~,b]=ismember(x_final_all{iter},cache.x,'rows');
504
        %Compute WQ average slack using W2 results
505
        slack_compute=cache.DO(b,:)';
506
       non_nan_count=sum(~isnan(slack_compute),1);
507
       if ~isnan(WQ{wb}.DO_limit(1))
508
           slacks{wb}.DO.W2=sum(-min(0,[slack_compute-WQ{wb}.DO_limit(1)]),1)./
               → non_nan_count;
509
       elseif ~isnan(WQ{wb}.DO_limit(2))
510
           slacks\{wb\}.DO.W2=sum(-min(0,[slack\_compute-WQ\{wb\}.DO\_limit(2)]),1)./
               → non_nan_count;
511
       else
512
           slacks{wb}.DO.W2=0;
513
       end
514
        %Compute WQ average slack using NN results
515
        slack_compute=DO_pred';
516
       non_nan_count=sum(~isnan(slack_compute),1);
517
           ~isnan(WQ{wb}.DO_limit(1))
518
           slacks{wb}.DO.NN=sum(-min(0,[slack_compute-WQ{wb}.DO_limit(1)]),1)./
```

```
→ non_nan_count;
519
       elseif ~isnan(WQ{wb}.DO_limit(2))
520
           slacks{wb}.DO.NN=sum(-min(0,[slack_compute-WQ{wb}.DO_limit(2)]),1)./

→ non_nan_count;

521
       else
522
          slacks{wb}.DO.NN=0;
523
       end
524
        %Compute WQ average slack using W2 results
525
        slack_compute=cache.T(b,:)';
526
       non_nan_count=sum(~isnan(slack_compute),1);
527
       if ~isnan(WQ{wb}.Temp_limit(1))
528
           slacks{wb}.T.W2=sum(-min(0,[slack_compute-WQ{wb}.Temp_limit(1)]),1)./
               → non_nan_count;
529
       elseif ~isnan(WQ{wb}.Temp_limit(2))
530
           slacks{wb}.T.W2=sum(-min(0,[slack_compute-WQ{wb}.Temp_limit(2)]),1)./
               → non_nan_count;
531
       else
532
           slacks{wb}.T.W2=0;
533
       end
534
        %Compute WQ average slack using NN results
535
        slack_compute=T_pred';
536
       non_nan_count=sum(~isnan(slack_compute),1);
537
        if ~isnan(WQ{wb}.Temp_limit(1))
538
           slacks{wb}.T.NN=sum(-min(0,[slack_compute-WQ{wb}.Temp_limit(1)]),1)./
              → non_nan_count;
539
       elseif ~isnan(WQ{wb}.Temp_limit(2))
540
           slacks{wb}.T.NN=sum(-min(0,[slack_compute-WQ{wb}.Temp_limit(2)]),1)./
               → non_nan_count;
541
       else
542
          slacks{wb}.T.NN=0;
543
       end
544
       clearvars W2_no0s_smooth index2 W2_no0s str slack_compute non_nan_count b
545
        for wb=1:size(CFG,2)
546
           results.AME(iter, wb*2-1:wb*2) = [AME(wb).T, AME(wb).DO];
547
          results.slacks(iter,wb*2-1:wb*2)=[slacks{wb}.T.W2,slacks{wb}.DO.W2];
548
       end
549
       clearvars turb_discharges spill_discharges b s z zz zzz distances
           → distance_mins start_index w2runstiming bestsolniter index pop DO_pred
           → T_pred w2timing trindex xtr idx f i a b D wb D2 correction directory
           → distance_to_soln ii e d
550
551
        %Determine best iteration
552
        results.dollars(iter)=y_dollars_total(2);
553
        if isempty(best_iter)
554
          best_iter(iter)=iter;
555
       else
556
           if all((results.slacks(iter,:)-results.slacks(best_iter(iter-1),:))<=0)</pre>
557
              if all((results.slacks(iter,:)-results.slacks(best_iter(iter-1),:))==0)
558
                 if (results.dollars(iter)-results.dollars(best_iter(iter-1)))>0
559
                    best_iter(iter)=iter;
560
                 else
561
                    best_iter(iter) = best_iter(iter-1);
562
                 end
563
              else
564
                 best_iter(iter)=iter; feasible_soln_found=1;
565
566
           else
567
              best_iter(iter) = best_iter(iter-1);
568
          end
569
       end
570
571
        if Optimize_day_by_day==0
572
           stop=1;
573
       else
```

```
574
           if day~=days_forward
575
              day=day+1;
576
              for wb=1:size(CFG,2)
577
                 xprev{wb}=[xprev_ic{wb} x_final{wb}];
578
              end
579
           else
580
              stop=1;
581
           end
582
        end
583
584
        funccount_tot(day,4)=funccount_tot_global;
585
        funccount_cache(day, 4) = funccount_cache_global;
586
        funccount_cache_global=0; funccount_tot_global=0; %reset to 0 to restart

→ count

587
588
    end
589
590
    %Sum funccount_tot
591
    funccount_ga_tot=funccount_tot(day,3);
592
    funccount_ga_cache=funccount_cache(day, 3);
593
    funccount_tot=sum(sum(funccount_tot));
594
    funccount_cache=sum(sum(funccount_cache));
595
    clear global funccount_cache_global funccount_tot_global
596
597
    %Compute total y_dollars
    clearvars elev_soft_penalty_coeff
598
599
    for wb=1:size(CFG,2)
600
        if Optimize_day_by_day==1
601
           if iter==1
602
              [y_MWh(wb,1), y_dollars(wb,1)]=power_value(x0_all(wb,1:day*(1/frequency
                  → )),t_all(1:1+day*(1/frequency)),cost_curve_MW{wb},...
603
                 MW_rating{wb});
604
              elev_soft_penalty_coeff{wb}=interp1(ELWS_limit{wb}(:)',...
605
                 elev_soft_penalty_coeff_constant, ELWS_targets{wb}(day),...
606
                 'linear','extrap')*y_dollars(wb,1); %$/m with cost curve, MWh/m with
                     → all cc=1
607
608
           [y_MWh(wb,2), y_dollars(wb,2)] = power_value(x_final{wb},t_all(1:1+day*(1/
               → frequency)),cost_curve_MW{wb},...
609
              MW_rating{wb});
610
        else
611
           if iter==1
612
              [y_MWh(wb,1), y_dollars(wb,1)]=power_value(x0_all,t_all,cost_curve_MW{
                  \hookrightarrow wb},...
613
                 MW_rating{wb});
614
              elev_soft_penalty_coeff{wb}=interp1(ELWS_limit{wb}(:)',...
615
                 elev_soft_penalty_coeff_constant,t_all(end),...
616
                 'linear','extrap')*y_dollars(wb,1); %$/m with cost curve, MWh/m with
                     → all cc=1
617
           [y_MWh(wb,2), y_dollars(wb,2)]=power_value(x_final{wb},t_all,cost_curve_MW
618
               \hookrightarrow {wb},...
619
              MW_rating{wb});
620
       end
621
    end
622
    y_MWh_total=sum(y_MWh(1:size(CFG,2),:),1);
623
    y_dollars_total=sum(y_dollars(1:size(CFG,2),:),1);
624
    clearvars wb
```

activeunits_to_discharges.m

```
function [turb_discharges, spill_discharges, HWs, TWs, Storage] = ...
activeunits_to_discharges(x,t,frequency,Q,ic_elev,...
```

```
3
      turbine_discharge, ELWS_targets, mainstem_inflows_t, mainstem_inflows_Q, ...
      Optimize_day_by_day)
 5
   % Calculates discharges and HWs and TWs from time series of number of
6
7
   % active units
8
9
   % Inputs:
10
   % x - hourly turbine time series (as rows for vectorizing!), integers
11
   % between 0 and no_of_units
   % t time series of JDAY values
12
13
   % frequency - frequency of predictions (hourly=1/24)
14
   % Q - all other inflows and outflows, interpolation settings,
15
   % storage-elev curve, and tailwater curve (all in meters)
   % ic_elev - initial condition (meters)
16
17
   % turbine_discharge - turbine discharge curve at fixed MW level, with
18
   % col 1 in meters and col 2 in cms
   % ELWS targets - 2 column matrix with JDAY in coll and elevation target
20
   % in col2. Leave empty if want to backcalculate spill
21
   % mainstem_inflows_t - vector of JDAY values that correspond to
22
   % mainstem_inflows_Q
   % mainstem_inflows_Q - if applicable (wb^{\sim}=1), rows of incoming flows from
   % upstream reservoir correlated to times in mainstem_inflows_t
25
   % Optimize_day_by_day - 1 if optimizing daily, 0 if optimizing all together
26
   % Outputs:
   % turb_discharges turbine discharge time series in cms
   % spill_discharges - spill discharge in cms
   % HWs - headwater time series in m
30
   % TWs - tailwater time series in m
31
   % Storage - storage time series in cubic meters
32
33
   if isemptv(x)
34
      turb_discharges=[]; spill_discharges=[]; HWs=[]; TWs=[]; Storage=[];
35
   else
36
37
   JDAY_initial=t(1);
38
39
   %Number of x scenarios being tested
40
   n=size(x,1);
41
42
   if n<1
43
       fprintf('Active units to discharges code --> x is empty!')
44
       return
45
   end
46
47
   %Initial condition
   clearvars HWs Storage turb_discharges TWs
49
   HWs(1,1:n)=ic_elev;
   Storage(1:n,1) = \underbrace{interp1}(Q.SE\_meters\_m3(:,1),Q.SE\_meters\_m3(:,2),HWs(1,1));
50
51
   index1=find(Q.QOT_BR1_T(:,1) <= JDAY_initial);</pre>
52
   index2=find(Q.QOT_BR1_S(:,1)<=JDAY_initial);</pre>
53
   turb_discharges(1:n,1)=Q.QOT_BR1_T(index1(end),2);
54
   tot_discharge=Q.QOT_BR1_T(index1(end),2)+Q.QOT_BR1_S(index2(end),2);
55
   TWs (1:n,1) = \underbrace{interp1}(Q.tw_curve\_cms_m(:,1), Q.tw_curve\_cms_m(:,2), \dots
56
      tot_discharge);
57
   clearvars index1 index2 tot_discharge
58
59
   %Compute discharge (cms) per unit at first timestep using prev hr HW and TW
60
   head=HWs(1,:)'-TWs(:,1);
61
   unit_discharges=interp1(turbine_discharge(:,1),turbine_discharge(:,2), ...
62
63
   unit_discharges(head>=turbine_discharge(end, 1))=turbine_discharge(end, 2);
64
   unit_discharges(head<=turbine_discharge(1,1))=turbine_discharge(1,2);
65
   turb_discharges(1:n,2) = unit_discharges.*x(:,1);
   clearvars head unit_discharges
```

```
67
68
    %Compute HW elevs for every scenario
69
    for i=2:size(t,2)
70
        elevation=HWs(i-1,:);
71
        turbs=turb_discharges(:,i-1:i);
72
        if isempty(ELWS_targets) %If testing projected operations
73
           HWs(i-1:i,:)=Elevation massbalance vectorized(turbs,[],...
74
              t(i-1),t(i),frequency,Q,elevation,mainstem_inflows_t,...
75
              mainstem_inflows_Q);
76
        else %If testing new operations, assuming no spill flow here
 77
           HWs(i-1:i,:) = Elevation_massbalance_vectorized(turbs,...
 78
              zeros(size(turbs)),t(i-1),t(i),frequency,Q,elevation,...
79
              mainstem_inflows_t, mainstem_inflows_Q);
80
81
        clearvars elevation turbs
82
        %Compute storage and TWs
83
        %If too full and overtops SE curve (or drains and empties), linearly

→ extrapolate

84
        Storage(:,i) = interp1(Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),...
85
           HWs(i,:)','linear','extrap');
86
        if isempty(ELWS_targets) %if testing projected operations
           index2=find(Q.QOT_BR1_S(:,1)<=t(i));
87
88
           tot_discharge=turb_discharges(:,i)+Q.QOT_BR1_S(index2(end),2);
89
           clearvars index2
90
        else %if testing new operations, assuming no spill flow here
91
           tot_discharge=turb_discharges(:,i)+0; %assume no spill
92
93
        TWs(:,i) = \underbrace{interp1}(Q.tw\_curve\_cms\_m(:,1),Q.tw\_curve\_cms\_m(:,2), \ldots
94
           tot_discharge,'linear','extrap');
95
        clearvars tot_discharge
96
        %Compute total turbine flowrate
97
        if i~=size(t,2)
98
           head=HWs(i,:)'-TWs(:,i);
99
           %Compute turbine flow based on head, with catches at bounds of turbine

→ discharge curve

100
           unit_discharges=interp1(turbine_discharge(:,1), ...
101
              turbine_discharge(:,2),head);
102
           unit_discharges(head>=turbine_discharge(end, 1))=...
103
              turbine_discharge(end, 2);
104
          unit_discharges(head<=turbine_discharge(1,1))=...</pre>
              turbine_discharge(1,2);
105
106
           turb_discharges(:,i+1)=unit_discharges.*x(:,i);
107
           clearvars head unit_discharges
108
       end
109
    end
110
    clearvars i ii
111
112
    %If testing new operations (i.e. ELWS_targets is not empty), continue on and
        \hookrightarrow compute spill
113
    if ~isempty(ELWS_targets)
114
        if Optimize_day_by_day==1 %optimize each day in series
115
           %Check for cases when the final HW elev is greater than target
116
           if size(ELWS_targets(:,1),1)==1
117
              ELWS_goal=ELWS_targets(:,2);
118
           else
              ELWS_goal=interp1(ELWS_targets(:,1),ELWS_targets(:,2),t(end));
119
120
121
           volume_to_spill=max(0,...
122
              interp1(Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),HWs(end,:))...
123
              -interp1(Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),ELWS_goal));
124
           spill_discharges=0.95*((volume_to_spill/((t(end)-t(1))*24*60*60)))';
125
126
           %Compute HWs again for situations with spill added to lower to ELWS
127
           %target
```

```
128
           [a, ~] = find (spill_discharges ~= 0);
129
           if ~isempty(a)
130
              stop=0;
131
              while stop==0
132
                 for i=2:size(t,2)
                    elevation=HWs(i-1,a);
133
134
                    turbs=turb discharges(a,i-1:i);
135
                    if isempty(mainstem_inflows_Q)
136
                       HWs(i-1:i,a)=Elevation_massbalance_vectorized(turbs,...
137
                           [spill_discharges(a) spill_discharges(a)],...
138
                          t(i-1),t(i),frequency,Q,elevation,mainstem_inflows_t,...
139
                          mainstem_inflows_Q);
140
                    else
141
                       HWs(i-1:i,a)=Elevation_massbalance_vectorized(turbs,...
142
                           [spill_discharges(a) spill_discharges(a)],...
143
                          t(i-1),t(i),frequency,Q,elevation,mainstem_inflows_t,...
144
                          mainstem_inflows_Q(a,:));
145
146
                    clearvars elevation turbs
147
                    %Compute storage and TWs
148
                    Storage(a,i)=interp1(Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),...
149
                       HWs(i,a)');
150
                    tot_discharge=turb_discharges(a,i)+spill_discharges(a); %now
                        → assume we have the spill we calculated above
151
                    TWs(a,i) = interp1(Q.tw_curve_cms_m(:,1),Q.tw_curve_cms_m(:,2), ...
152
                       tot_discharge);
153
                    clearvars tot_discharge
154
                    %Compute total turbine flowrate
155
                    if i^=size(t,2)
156
                       head=HWs(i,a)'-TWs(a,i);
                       %Compute turbine flow based on head, with catches at bounds of
157

→ turbine discharge curve

158
                       unit_discharges=interp1(turbine_discharge(:,1), ...
159
                          turbine_discharge(:,2), head);
160
                       unit_discharges(head>=turbine_discharge(end, 1))=...
161
                          turbine_discharge(end,2);
162
                       unit_discharges(head<=turbine_discharge(1,1))=...</pre>
163
                          turbine_discharge(1,2);
164
                       turb_discharges(a,i+1) = unit_discharges.*x(a,i);
165
                       clearvars head unit_discharges
                    end
166
167
                 end
168
                 %Check end elevations again and adjust spill and iterate (if
                     → necessary)
169
                 volume_to_spill=interp1(Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),HWs(
                     \hookrightarrow end,:))...
170
                    -interp1(Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),ELWS_qoal);
171
                 volume_to_spill(setdiff([1:size(volume_to_spill,2)],a))=0;
172
                 spill_discharges2=spill_discharges+0.95*((volume_to_spill/((t(end)-t
                     173
                 diffspill=spill_discharges2-spill_discharges;
174
                 if all(round(diffspill, 3) == 0)
175
                    stop=1;
176
                 end
177
                 spill_discharges=spill_discharges2; clearvars spill_discharges2
178
179
              clearvars i ii stop diffspill
180
              %Recompute HWs and TWs with final spillrate
181
              for i=2:size(t,2)
182
                 elevation=HWs(i-1, a);
183
                 turbs=turb_discharges(a,i-1:i);
184
                 if isempty(mainstem_inflows_Q)
185
                    HWs(i-1:i,a)=Elevation_massbalance_vectorized(turbs,...
                       [spill_discharges(a) spill_discharges(a)],...
186
```

```
187
                        t(i-1),t(i),frequency,Q,elevation,mainstem_inflows_t,...
188
                        mainstem inflows 0):
189
                  else
                     HWs(i-1:i,a) = Elevation_massbalance_vectorized(turbs,...
190
191
                        [spill_discharges(a) spill_discharges(a)],...
192
                        t(i-1),t(i),frequency,Q,elevation,mainstem_inflows_t,...
193
                        mainstem inflows O(a,:));
194
195
                  clearvars elevation turbs
196
                  %Compute storage and TWs
197
                  %If too full and overtops SE curve (or drains and empties), linearly
                      → extrapolate
198
                  Storage(a,i) = interp1(Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),...
199
                     HWs(i,a)','linear','extrap');
200
                  tot_discharge=turb_discharges(a,i)+spill_discharges(a); %now assume
                      → we have the spill we calculated above
                  TWs(a,i) = \underbrace{interp1}(Q.tw\_curve\_cms\_m(:,1),Q.tw\_curve\_cms\_m(:,2), \ldots
201
202
                     tot_discharge);
203
                  clearvars tot_discharge
204
                  %Compute total turbine flowrate
205
                  if i^=size(t,2)
206
                     head=HWs(i,a)'-TWs(a,i);
207
                     %Compute turbine flow based on head, with catches at bounds of

→ turbine discharge curve

208
                     unit_discharges=interp1(turbine_discharge(:,1), ...
209
                        turbine_discharge(:,2),head);
210
                     unit_discharges(head>=turbine_discharge(end,1))=...
211
                        turbine_discharge(end, 2);
212
                     unit_discharges(head<=turbine_discharge(1,1))=...
213
                        turbine_discharge(1,2);
                     turb_discharges(a,i+1) = unit_discharges.*x(a,i);
214
215
                     clearvars head unit_discharges
216
                  end
217
              end
218
              clearvars i ii
219
220
        else %optimize all days in 1 optimizer
221
           for target=1:size(ELWS_targets,1) %loop through each target
222
              if target==1 JDAY_initial=t(1); else JDAY_initial=ELWS_targets(target
                  \hookrightarrow -1,1); end
223
              ELWS_goal_time=ELWS_targets(target,1);
224
              ELWS_goal=ELWS_targets(target,2);
225
              for i=1:size(HWs, 2)
226
                  inital_HWs_computed(i)=interp1(t, HWs(:,i), ELWS_goal_time);
227
              end
228
              clearvars i
229
              volume_to_spill=max(0,...
230
                  interp1(Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),inital_HWs_computed)
231
                 - \texttt{interp1} \, (\texttt{Q.SE\_meters\_m3} \, (:, 1) \, , \texttt{Q.SE\_meters\_m3} \, (:, 2) \, , \texttt{ELWS\_goal)) \, ; \\
232
              spill_discharges(:,target)=0.95*((volume_to_spill/((ELWS_goal_time-
                  → JDAY_initial) *24*60*60)))';
233
              clearvars initial_HWs_computed
234
235
              %Compute HWs again for situations with spill added to lower to ELWS
                  → target
236
              [a, ~] = find (spill_discharges (:, target) ~= 0);
237
              if ~isempty(a)
238
                 stop=0;
239
                 while stop==0
240
                     for i=(1/frequency)*(target-1)+2:(1/frequency)*(target)+1
241
                        elevation=HWs(i-1,a);
242
                        turbs=turb_discharges(a,i-1:i);
243
                        if isempty(mainstem_inflows_Q)
```

```
244
                           HWs(i-1:i,a)=Elevation_massbalance_vectorized(turbs,...
245
                              [spill_discharges(a, target) spill_discharges(a, target)
                                  → ],...
246
                              t(i-1),t(i),frequency,Q,elevation,mainstem_inflows_t,...
247
                              mainstem_inflows_Q);
248
                        else
249
                           HWs(i-1:i,a) = Elevation massbalance vectorized(turbs,...
250
                              [spill_discharges(a, target) spill_discharges(a, target)
                                  \hookrightarrow ],...
251
                              t(i-1),t(i),frequency,Q,elevation,mainstem_inflows_t,...
252
                              mainstem_inflows_Q(a,:));
253
                        end
254
                        clearvars elevation turbs
255
                        %Compute storage and TWs
256
                        Storage(a,i)=interp1(Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2)
                           \hookrightarrow , . . .
257
                           HWs(i,a)');
258
                        tot_discharge=turb_discharges(a,i)+spill_discharges(a,target);
                            → %now assume we have the spill we calculated above
259
                        TWs(a,i) = interp1(Q.tw_curve\_cms_m(:,1),Q.tw_curve\_cms_m(:,2),
                           \hookrightarrow \dots
260
                           tot_discharge);
261
                        clearvars tot_discharge
262
                        %Compute total turbine flowrate
263
                        if i~=(1/frequency)*(target)+1
264
                           head=HWs(i,a)'-TWs(a,i);
265
                           %Compute turbine flow based on head, with catches at bounds

→ of turbine discharge curve

266
                           unit_discharges=interp1(turbine_discharge(:,1), ...
267
                              turbine_discharge(:,2),head);
268
                           unit_discharges(head>=turbine_discharge(end, 1))=...
269
                              turbine_discharge(end, 2);
270
                           unit_discharges(head<=turbine_discharge(1,1))=...
271
                              turbine_discharge(1,2);
272
                           turb_discharges(a,i+1) = unit_discharges.*x(a,i);
2.73
                           clearvars head unit_discharges
274
                        end
275
                    end
276
                    %Check end elevations again and adjust spill and iterate (if
                        → necessary)
277
                    for i=1:size(HWs,2)
278
                        HWs_computed_again(i)=interp1(t,HWs(:,i),ELWS_goal_time);
279
280
                    clearvars i
281
                    volume_to_spill=interp1(Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),
                        → HWs computed again)...
282
                        -interp1(Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),ELWS_qoal);
283
                    volume_to_spill(setdiff([1:size(volume_to_spill,2)],a))=0;
284
                    spill_discharges2=spill_discharges(:,target)+0.95*((
                        → volume_to_spill/((ELWS_goal_time-JDAY_initial)*24*60*60)))
                        \hookrightarrow ';
285
                    diffspill=spill_discharges2-spill_discharges(:,target);
286
                    if all(round(diffspill, 3) == 0)
287
                        stop=1;
288
                    end
289
                     %if overshoot and spills go negative, set to 0.5*previous spill
290
                    spill_discharges2(spill_discharges2<0)=0.5*spill_discharges(</pre>
                        → spill_discharges2<0,target);</pre>
291
                    spill_discharges(:,target)=spill_discharges2; clearvars
                        → spill_discharges2 HWs_computed_again
292
293
                 clearvars i ii stop diffspill volume_to_spill
294
                 Recompute the target day HWs and TWs with final spillrate
```

```
295
                 for i=(1/frequency)*(target-1)+2:(1/frequency)*(target)+1
296
                    elevation=HWs(i-1,a);
297
                    turbs=turb_discharges(a,i-1:i);
298
                    if isempty(mainstem_inflows_Q)
299
                       HWs(i-1:i,a) = Elevation_massbalance_vectorized(turbs,...
300
                           [spill_discharges(a,target) spill_discharges(a,target)],...
301
                          t(i-1),t(i),frequency,Q,elevation,mainstem_inflows_t,...
302
                          mainstem_inflows_Q);
303
                    else
304
                       HWs(i-1:i,a)=Elevation_massbalance_vectorized(turbs,...
305
                           [spill_discharges(a,target) spill_discharges(a,target)],...
306
                          t(i-1),t(i),frequency,Q,elevation,mainstem_inflows_t,...
307
                          mainstem_inflows_Q(a,:));
308
309
                    clearvars elevation turbs
310
                    %Compute storage and TWs
311
                    %If too full and overtops SE curve (or drains and empties),
                        → linearly extrapolate
312
                    Storage(a,i)=interp1(Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),...
313
                       HWs(i,a)','linear','extrap');
314
                    tot_discharge=turb_discharges(a,i)+spill_discharges(a,target); %
                        → now assume we have the spill we calculated above
315
                    TWs(a,i) = interp1(Q.tw_curve\_cms_m(:,1),Q.tw_curve\_cms_m(:,2), \dots
316
                       tot_discharge);
317
                    clearvars tot_discharge
318
                    %Compute total turbine flowrate
319
                    if i^=size(t,2)
320
                       head=HWs(i,a)'-TWs(a,i);
321
                       Compute turbine flow based on head, with catches at bounds of

→ turbine discharge curve

322
                       unit_discharges=interp1(turbine_discharge(:,1), ...
323
                          turbine_discharge(:,2),head);
324
                       unit_discharges(head>=turbine_discharge(end, 1))=...
325
                          turbine_discharge(end, 2);
326
                       unit_discharges(head<=turbine_discharge(1,1))=...
327
                          turbine_discharge(1,2);
328
                       turb_discharges(a,i+1)=unit_discharges.*x(a,i);
329
                       clearvars head unit_discharges
330
                    end
331
                 end
332
                 clearvars i ii
333
                 %Now update HW elevs for the subsequent days, starting with the new
                     \hookrightarrow final HW elev of the target day
334
                 for i=(1/frequency) * (target) +1:size(t,2)
335
                    elevation=HWs(i-1,a);
336
                    turbs=turb discharges(a,i-1:i);
337
                    %assuming no spill flow here
338
                    HWs(i-1:i,a)=Elevation_massbalance_vectorized(turbs,...
339
                       zeros(size(turbs)),t(i-1),t(i),frequency,Q,elevation,...
340
                       mainstem_inflows_t, mainstem_inflows_Q);
341
                    clearvars elevation turbs
342
                    %Compute storage and TWs
343
                    %If too full and overtops SE curve (or drains and empties),
                        → linearly extrapolate
344
                    Storage(a,i)=interp1(Q.SE_meters_m3(:,1),Q.SE_meters_m3(:,2),...
345
                       HWs(i,a)','linear','extrap');
346
                    tot_discharge=turb_discharges(a,i)+0; %assume no spill
347
                    TWs(a,i) = interp1(Q.tw_curve_cms_m(:,1),Q.tw_curve_cms_m(:,2), ...
348
                       tot_discharge, 'linear', 'extrap');
349
                    clearvars tot_discharge
350
                    %Compute total turbine flowrate
351
                    if i~=size(t,2)
352
                       head=HWs(i,a)'-TWs(a,i);
353
                       %Compute turbine flow based on head, with catches at bounds of
```

```
→ turbine discharge curve

354
                        unit_discharges=interp1(turbine_discharge(:,1), ...
355
                           turbine_discharge(:,2),head);
356
                        unit_discharges(head>=turbine_discharge(end, 1))=...
357
                           turbine_discharge(end, 2);
                        unit_discharges(head<=turbine_discharge(1,1))=...</pre>
358
359
                           turbine discharge (1,2);
360
                        turb_discharges(a,i+1) = unit_discharges.*x(a,i);
361
                        clearvars head unit_discharges
362
                    end
363
                 end
364
              end
365
           end
366
           clearvars target
367
        end
368
    else
369
        spill_discharges=zeros(n,1);
370
    end
371
372
373
    HWs=HWs'; %change back to rows to match all the other outputs (computed as
374
            %cols to make vectorizing Elevation_massbalance_vectorized easier)
375
376
    end
```

check_feasibilities.m

```
function [WQ_adjusted, ELWS_limit_adjusted, funccount, feasible_options,
       → feasibility_check]=check_feasibilities(ranking,...
2
      feasible_option1,x1_options,ga_pop_size,frequency,Q,ic_elev,no_of_units,t,
          → max_hrly_unit_change,...
3
      zero_gen_limit,turbine_discharge,ELWS_limit,WQ,xprev,ELWS_targets,...
      elev_constraint_rounding, wq_constraint_rounding, tolerance, cache,
          → Optimize day by day,...
5
         transition_matrix, Feasibilitygenerations)
6
7
   % Checks the feasibility of constraints (elev, do, temp) in the priority
8
   % order defined by the user, and adjusting constraints as necessary
9
10
   % Inputs:
11
   % ranking - assign priority ranking for constraints on elev, DO, and temp,
       → starting
12
   % with highest priority first
   % x1_options - options for the turbine setting at the first hour
13
14
   % ga_pop_size - population size
15
   % frequency - frequency of predictions (hourly=1/24)
16
   % Q - all other inflows and outflows, interpolation settings,
17
   % storage-elev curve, and tailwater curve
18
   % ic_elev - initial condition (meters)
19
   % no_of_units - max number of turbines (4 for OHL)
20
   % t time series of JDAY values
21
   % max_hrly_unit_change - max number of units that can be changed per hour
   % (1 for OHL)
23
   % zero_gen_limit - Zero generation hourly limit (can't go longer than
24
   % this with no turb flow)
25
   % turbine_discharge - turbine discharge curve at fixed MW level, with
26
   % col 1 in meters and col 2 in cms
   % ELWS_limit - min and max elevation limits for constraints, in meters
   % WQ - structure containing water quality constraints and NARX models
   % DO_narx - structure containing everything needed to make DO discharge
30
   % predictions, including:
   % turb_colum - column in exogenous variables with turb flows
32 | % spill_column - column in exogenous variables with spill flows
```

```
33 |% times - JDAY values used in training (not used)
   % inputDelays - delays for exogenous inputs
   % feedbackDelays - delays for prediction feedbacks
   % input_variables - 2 row cell containing variable names in first
37
   % row and column number in second. For example, 'MET_WB1'
   % contains multiple columns of data but only some may be used
   % for NARX predictions
   % bias - bias for each trained neural network
41
   % weights - weights for each trained neural network (sum to 1)
42.
   % narx_net_closed - neural networks
43
   % DO_limit - lower and upper DO limits (NaN means it doesn't exist)
   % DO_slack - relaxation from DO_limit (either upper or lower -
45
   % doesn't make sense to have both)
   % Temp_narx - structure containing everything needed to make temp discharge
   % predictions, including:
   % turb_colum - column in exogenous variables with turb flows
   % spill_column - column in exogenous variables with spill flows
50
   % times - JDAY values used in training (not used)
51
   % inputDelays - delays for exogenous inputs
   % feedbackDelays - delays for prediction feedbacks
52
   % input\_variables - 2 row cell containing variable names in first
   % row and column number in second. For example, 'MET_WB1'
55
   % contains multiple columns of data but only some may be used
   % for NARX predictions
   % bias - bias for each trained neural network
   % weights - weights for each trained neural network (sum to 1)
   % narx_net_closed - neural networks
   % Temp_limit - lower and upper temp limits (NaN means it doesn't exist)
61
   % Temp_slack - relaxation from Temp_limit (either upper or lower -
62
   % doesn't make sense to have both)
63
   % xprev - vector of previous active turbine levels
   % ELWS_targets - 2 column matrix with JDAY in col1 and elevation target
65
   % in col2
   % elev_constraint_rounding - rounding setting (10=tenths place,
66
   % 100=hundredths place, etc.)
   % wq_constraint_rounding - rounding setting (10=tenths place,
   % 100=hundredths place, etc.)
70
   % tolerance - penalty tolerance
71
   \mbox{\ensuremath{\mbox{\$}}} cache - water quality predictions provided by W2 simulations
72
   % Optimize_day_by_day - 1 if optimizing daily, 0 if optimizing all together
73
   % transition matrix - transition probabilities for turbine ramping up and down
   % Feasibilitygenerations - max generations for GA feasibility check
75
   % Outputs:
76
   % WQ_adjusted updated WQ structure (same structure as WQ, with updated
   % constraints if necessary)
   % ELWS_limit_adjusted - updated elevation limits (if necessary)
   % function - total number of function evaluations (both obj and penalty)
   % feasible_options - save any solutions that are totally feasible to feed
81
   % into initial population creation function next
82
   % feasibility_check - 0 if no constraints need adjusted, 1 if no fully
   % feasible solution is found and constraints are adjusted
84
85
   funccount=0; generations=0;
86
   exitflag=[]; feasibility_check=0;
87
88
   %First check the cache members to see if any of them are feasible
89
   [c, ~] = penalty_fcn (cache.x, t, frequency, Q, ic_elev, ...
90
      turbine_discharge, ELWS_limit, max_hrly_unit_change, ...
91
      WQ, zero_gen_limit, xprev, ELWS_targets, tolerance, cache, Optimize_day_by_day);
92
   funccount=funccount+size(cache.x,1);
93
   feasibles=cache.x(find(all(c<=eps,2)),:);</pre>
94
   if ~isempty(feasibles)
95
       fprintf('All constraints are feasible. \n');
      WQ_adjusted=WQ; ELWS_limit_adjusted=ELWS_limit;
```

```
97
              feasible_options=feasibles;
 98
              return
 99
        end
100
101
        % Create 500 potential solutions feasible wrt constraints #1-3
102
103
104
        %Weights
105
        for wb=1:size(x1_options,2)
106
              for i=2:no_of_units{wb}+1
107
                    weights{wb}{i}(1)=no_of_units{wb};
108
                     for ii=2:i
109
                          weights {wb} {i} (ii) = weights {wb} {i} (ii-1) \star .1;
110
111
              end
112
        end
113
        clearvars i ii wb
114
115
        %First, generate a few solutions quickly and test feasibility. If any are
116
        %feasible, terminate this function with changes to WQ or elevation
117
        %constraints
118
        setsize=[max(10, size(feasible_option1,1)) 2*ga_pop_size];
119
         for z=1:size(setsize,2)
120
               for wb=1:size(x1_options,2)
121
                    raw_options\{wb\}\{z\}=nan(setsize(z), size(t, 2)-1);
122
                    if size(x1_options{wb},2) == 1 %only 1 option left
123
                          raw_options\{wb\}\{z\}(:,1)=x1_options\{wb\};
124
                    else
125
                          if z==1
126
                                \label{lem:contions} $$ raw\_options\{wb\}\{z\}(1,1)=x1\_options\{wb\}\ (end); $$ scenario with max $$ end of the context of the con

→ turbines

127
                                 raw_options\{wb\}\{z\}(2,1)=x1_options\{wb\}(1);%scenario with max spill
128
                                raw_options\{wb\}\{z\} (3:end,1)=randsample(x1_options\{wb\}, setsize(z)-2,
                                       → true);
                          elseif z==2
129
130
                                raw_options{wb}{z}(:,1)=randsample(x1_options{wb}, setsize(z), true,

  weights{wb}{size(x1_options{wb},2)});
131
                          end
132
                    end
133
                    for i=1:size(raw_options{wb}{z},1)
134
                          for j=2:size(t,2)-1
135
                                %Variable consisting of xprev and turbine pattern through j-1
136
                                pattern=[xprev{wb} raw_options{wb}{z}(i,1:j-1)];
137
                                %First start with all available options, then eliminate infeasible
                                       \hookrightarrow ones based on turbines from 1:j-1
138
                                options=[0:no of units{wb}];
139
                                % (1) Eliminate options based on change in active unit violations
140
                                if ~isnan(max_hrly_unit_change(wb))
141
                                      auvoptions=[pattern(end)-max_hrly_unit_change{wb}: ...
142
                                           pattern(end)+max_hrly_unit_change(wb)];
143
                                      options=intersect (options, auvoptions);
144
145
                                % (2) Non-integer constraint (assumed in selection algorithm)
146
                                % (3) Eliminate options based on zero generation hourly limit
147
                                if ~isnan(zero_gen_limit{wb})
148
                                      if sum(pattern(end-zero_gen_limit(wb)+1:end))==0
149
                                            zghloptions=[1:no_of_units{wb}]; %if previous zero_gen_limit
                                                   → hrs had zero total flow, must have flow next hr
150
                                            options=intersect (options, zghloptions);
151
                                      end
152
153
                                % (4) Eliminate options that violate oscillations constraint -
                                       \hookrightarrow violates whenever the number of turbines increases and then
                                       → decreases within 3 hours, or vice versa
```

```
154
                 allopt=[0:no_of_units{wb}];
155
                 if pattern(end-1) <pattern(end) %if prev turbs increasing
156
                     oscoptions=allopt(allopt>=pattern(end));
157
                     options=intersect (options, oscoptions);
158
                 elseif pattern(end-1) == pattern(end) % need 3 hrs btwn ramping up and
                     → down
159
                     if pattern(end-2) <pattern(end-1) %ramping up
160
                        oscoptions=allopt(allopt>=pattern(end));
161
                        options=intersect(options,oscoptions);
162
                     elseif pattern(end-2)>pattern(end-1) %ramping down
163
                        oscoptions=allopt(allopt<=pattern(end));</pre>
164
                        options=intersect (options, oscoptions);
165
                     elseif pattern(end-2) == pattern(end-1)
                        %do nothing -->3 consecutive hours between ramping up and down
166
                            → satisfied
167
168
                 elseif pattern(end-1)>pattern(end) %if prev turbs decreasing
169
                     oscoptions=allopt(allopt<=pattern(end));
170
                     options=intersect (options, oscoptions);
171
                 end
172
                  %Out of the available options left, pick the next turbine setting
173
                  if size(options, 2) == 1 % only 1 option left
174
                     raw_options{wb}{z}(i, j)=options;
175
                 else
176
                     if z==1
177
                        if i==1 %scenario with max turbines
178
                           raw_options{wb}{z}(i,j)=options(end);
179
                        elseif i==2 %scenario with max spill
180
                           raw_options\{wb\}\{z\}(i,j)=options(1);
181
                        elseif i==3 %scenario with fairly level turbines (minimal

→ change)

182
                           if mod(size(options,2),2) == 0 %is even
183
                               raw_options{wb}{z}(i,j)=options(round((size(options,2)
                                   \rightarrow /2)+.5+randsample([0.1 -0.1],1)));
184
                           else
185
                               raw_options{wb}{z}(i,j)=options(round((size(options,2)
                                   \hookrightarrow /2)+randsample([0.1 -0.1],1)));
186
                           end
187
                        else
188
                           raw_options{wb}{z}(i,j)=randsample(options,1,true);
189
                        end
190
                     elseif z==2
191
                        raw_options{wb}{z}(i,j)=randsample(options,1,true,weights{wb}{
                            \hookrightarrow size(options, 2)});
192
                     end
193
                 end
194
              end
195
           end
196
        end
197
198
        %Convert raw_options cells to long vectors containing all reservoirs
199
        %per row
200
        raw_options2{z}=[];
201
        for wb=1:size(x1_options,2)
202
           raw\_options2\{z\} = [raw\_options2\{z\} \ raw\_options\{wb\}\{z\}];
203
204
        if z==1
205
           raw_options2{z}=[raw_options2{z}; feasible_option1];
206
207
        [raw_options2{z},~,~]=unique(raw_options2{z},'rows');
208
209
        %Check feasibilities of first small set
210
        if z==1
211
           [c,~]=penalty_fcn(raw_options2{z},t,frequency,Q,ic_elev,...
```

```
212
              turbine_discharge, ELWS_limit, max_hrly_unit_change, ...
213
              WQ, zero_gen_limit, xprev, ELWS_targets, tolerance, cache,
                  → Optimize_day_by_day);
214
           funccount=funccount+size(raw_options2{z},1);
215
           feasibles=raw_options2{z}(find(all(c<=eps,2)),:);</pre>
216
           if ~isempty(feasibles)
217
              fprintf('All constraints are feasible. \n');
218
              WQ_adjusted=WQ; ELWS_limit_adjusted=ELWS_limit;
219
              feasible_options=feasibles;
220
              return
221
           end
222
       end
223
    end
224
    feasible_options2=[];
225
    for z=1:size(setsize,2)
226
        feasible_options2=[feasible_options2; raw_options2{z}];
227
228
    [feasible_options2, ~, ~] = unique (feasible_options2, 'rows');
229
    feasible_options=feasible_options2; feasible_options_raw=feasible_options;
230
    clearvars z i a j feasibles feasible_options2
231
232
    %% Optimize each constraint in priority order and terminate at 0. Otherwise,
         → modify the constraint bounds
233
234
    for wb=1:size(x1_options,2)
235
        ELWS_limit_adjusted{wb}=nan(size(ELWS_limit{wb}));
236
        WQ_adjusted{wb}.DO_limit=nan(size(WQ{wb}.DO_limit));
237
        WQ_adjusted{wb}.Temp_limit=nan(size(WQ{wb}.Temp_limit));
238
        WQ_adjusted{wb}.DO_narx=WQ{wb}.DO_narx;
239
        WQ_adjusted{wb}.Temp_narx=WQ{wb}.Temp_narx;
240
        WQ_adjusted{wb}.DO_slack=WQ{wb}.DO_slack;
241
        WQ_adjusted{wb}.Temp_slack=WQ{wb}.Temp_slack;
242
    end
243
    skip=0;
244
245
    for wb=1:size(x1_options,2)
246
        for i=1:size(ranking,2)
           if strcmp(ranking{i},'elev') & (~isnan(ELWS_limit{wb}(1)) | ~isnan(
247
               \hookrightarrow ELWS_limit{wb}(2))
248
              fprintf(['Checking reservoir #', num2str(wb),' elevation constraint
                  \hookrightarrow feasibility. \n']);
249
           elseif strcmp(ranking{i},'do') & (~isnan(WQ{wb}.DO_limit(1)) | ~isnan(WQ{
               \hookrightarrow wb}.DO_limit(2)))
250
              fprintf(['Checking reservoir #', num2str(wb),' DO constraint
                  \hookrightarrow feasibility. \n']);
251
           elseif strcmp(ranking{i},'temp') & (~isnan(WQ{wb}.Temp_limit(1)) | ~isnan(
               \hookrightarrow WQ{wb}.Temp_limit(2))
252
              fprintf(['Checking reservoir #', num2str(wb),' temperature constraint
                  \hookrightarrow feasibility. \n']);
253
           end
254
255
           %Check lower limit then upper limit. In each step, check maximum violation
               → and then mean value (for temp & DO, not elevation)
256
           for a=1:2
257
              if a==1 level='lower'; elseif a==2 level='upper'; end
258
259
              if strcmp(ranking{i},'elev') & ~isnan(ELWS_limit{wb}(a))
260
                 skip=0;
261
              elseif strcmp(ranking{i},'do') & ~isnan(WQ{wb}.DO_limit(a))
262
                 skip=0;
263
              elseif strcmp(ranking{i},'temp') & ~isnan(WQ{wb}.Temp_limit(a))
264
                 skip=0;
265
              else
266
                 skip=1; %if there is no constraint being added here, no need to
```

```
→ check feasibility!

267
              end
268
269
              if skip==0
270
                 clearvars FitnessFunction mycon opt
271
272
                 %(1) Test the maximum constraint violation first
273
274
                 %Set penalty function first to make sure it doesn't include the
                     \hookrightarrow constraint that is being optimized, but all constraints
                     \hookrightarrow before that one
275
                 mycon= @(x) penalty_fcn(x,t,frequency,Q,ic_elev,...
276
                     turbine_discharge, ELWS_limit_adjusted, max_hrly_unit_change,...
277
                    WQ_adjusted, zero_gen_limit, xprev, ELWS_targets, tolerance, cache,
                        → Optimize_day_by_day);
278
                 %Load in the relevant constraints
279
                 if strcmp(ranking{i},'elev')
280
                    ELWS_limit_adjusted{wb} (a) = ELWS_limit{wb} (a);
281
                 elseif strcmp(ranking{i},'do')
282
                    WQ_adjusted{wb}.DO_limit(a)=WQ{wb}.DO_limit(a);
283
                    WQ_adjusted{wb}.DO_slack=WQ{wb}.DO_slack;
284
                 elseif strcmp(ranking{i},'temp')
285
                    WQ_adjusted{wb}.Temp_limit(a)=WQ{wb}.Temp_limit(a);
286
                    WQ_adjusted{wb}.Temp_slack=WQ{wb}.Temp_slack;
287
                 end
288
                 %Set objective function
289
                 if strcmp(ranking{i},'elev') & ~isnan(ELWS_limit_adjusted{wb}(a))
290
                    FitnessFunction = @(x) obj_fcn_elev(x,t,frequency,Q,ic_elev,...
291
                        turbine_discharge, ELWS_limit_adjusted{wb}, xprev, ELWS_targets,
                            → level, wb, cache, Optimize_day_by_day);
292
                 elseif strcmp(ranking{i},'do') & ~isnan(WQ_adjusted{wb}.DO_limit(a))
293
                    FitnessFunction = @(x) obj_fcn_do(x,t,frequency,Q,ic_elev,...
294
                        turbine_discharge, WQ_adjusted, xprev, ELWS_targets, level, wb,

    cache, Optimize_day_by_day);
295
                 elseif strcmp(ranking{i},'temp') & ~isnan(WQ_adjusted{wb}.Temp_limit
                     \hookrightarrow (a))
296
                    FitnessFunction = @(x) obj_fcn_temp(x,t,frequency,Q,ic_elev,...
297
                        turbine_discharge, WQ_adjusted, xprev, ELWS_targets, level, wb,

    cache, Optimize_day_by_day);
298
                 end
299
                 %Check feasibility
300
                 if any (FitnessFunction (feasible_options (1:min (size (feasible_options
                     \hookrightarrow ,1), setsize(1)),:))==0)
301
                    fval=0; funccount=funccount+size(feasible_options,1);
302
                    pop=feasible_options;
303
                 else
304
                    %If feasible_options<GA pop size, fill in a larger matrix with
                        → repeating values to create a full initial population
305
                    if size(feasible_options,1) < ga_pop_size</pre>
306
                        feasible_options=repmat(feasible_options,ceil(ga_pop_size/size
                           307
                        feasible_options=feasible_options(1:qa_pop_size,:);
308
                    end
309
                    %GA settings
310
                    opt = gaoptimset(...
                        'Display','iter','Vectorized','on','Generations',
311
                            → Feasibilitygenerations, ...
312
                        'PopulationSize', ga_pop_size, ...
313
                        'InitialPopulation', feasible_options(1:ga_pop_size,:),...
314
                        'StallGenLimit', 1, 'TolFun', tolerance, 'TolCon', tolerance, ...
315
                        'CrossoverFcn', @crossoversinglepoint, 'CrossoverFraction'

→ , 0.85, ...

316
                        'EliteCount', ceil(.05*ga_pop_size),...
                        'CreationFcn',@int_pop,'MutationFcn',@int_mutation,'
317
```

```
→ FitnessLimit',0);
318
                    nVar = size(x1\_options, 2) * (size(t, 2) - 1);
319
                     %Set dv lower and upper bounds, narrowed considering
                        → max_hrly_unit_change
320
                    clearvars lb ub
321
                     for wb2=1:size(x1_options,2)
322
                        1b(wb2,:)=0*ones(1,size(t,2)-1); 1b(wb2,1)=x1_options\{wb2\}(1);
323
                        for ii=2:no_of_units{wb2}
324
                           lb(wb2,ii)=lb(wb2,ii-1)-max_hrly_unit_change{wb2};
325
326
                        1b(wb2,:) = max(0, 1b(wb2,:));
327
                        ub(wb2,:)=no\_of\_units\{wb2\}*ones(1,size(t,2)-1);
328
                        ub(wb2,1)=x1\_options\{wb2\}(end);
329
                        for ii=2:no_of_units{wb2}
330
                           ub(wb2,ii)=ub(wb2,ii-1)+max_hrly_unit_change{wb2};
331
332
                        ub (wb2,:) =min (no_of_units{wb2}, ub (wb2,:));
333
                        clearvars ii
334
                    end
335
                     clearvars wb2
336
                     lb=reshape(lb',1,[]); ub=reshape(ub',1,[]);
337
338
                     [", fval, ", output, pop, "] = qa (FitnessFunction, nVar, [], [], [], [], lb, ub
                        \hookrightarrow , . . .
339
                        mycon,[],opt);
340
                     funccount=funccount+output.funccount*2; %multiply by 2 to cover
                        → penalty & obj functions
341
                     generations=output.generations;
342
                 end
343
                 %Adjust constraint limits if necessary
                 if fval~=0
344
345
                     if level=='lower'
346
                        plusminus=-1;
347
                     elseif level=='upper'
348
                       plusminus=1;
349
                    end
350
                     if strcmp(ranking{i},'elev')
                        fprintf(['Adjusting reservoir #', num2str(wb),' ', level, '
351
                            \hookrightarrow elevation constraint. \n']);
352
                        ELWS_limit_adjusted{wb} (a) = ELWS_limit{wb} (a) ...
353
                           +plusminus*ceil(elev_constraint_rounding*fval)/

→ elev_constraint_rounding;

354
                        feasibility_check=1;
355
                        if ~isempty(pop)
356
                           pop=[pop; feasible_options_raw]; pop=unique(pop,'rows');
357
                           c=mycon(pop); pop=pop(all(c<=tolerance,2),:);</pre>
358
                           o=FitnessFunction(pop);
359
                           feasible_options=pop(find(o==min(o)),:);
360
                        end
361
                    elseif strcmp(ranking{i},'do')
362
                        fprintf(['Adjusting reservoir #', num2str(wb),' ', level, ' DO
                            WQ_adjusted{wb}.DO_slack(a) = ceil(wq_constraint_rounding*fval)/
363
                            → wq_constraint_rounding;
364
                        feasibility_check=1;
365
                        if ~isempty(pop)
366
                           pop=[pop; feasible_options_raw]; pop=unique(pop,'rows');
367
                           c=mycon(pop); pop=pop(all(c<=tolerance,2),:);</pre>
368
                           o=FitnessFunction(pop);
369
                           feasible_options=pop(find(o==min(o)),:);
370
371
                     elseif strcmp(ranking{i},'temp')
                        fprintf(['Adjusting reservoir #', num2str(wb),' ', level, '
372
                            → temperature slack constraint. \n']);
```

```
373
                        WQ_adjusted{wb}.Temp_slack(a) = ceil(wq_constraint_rounding*fval
                            → )/wq_constraint_rounding;
374
                        feasibility_check=1;
375
                        if ~isempty(pop)
376
                           pop=[pop; feasible_options_raw]; pop=unique(pop,'rows');
377
                           c=mycon(pop); pop=pop(all(c<=tolerance,2),:);</pre>
378
                           o=FitnessFunction(pop);
379
                           feasible_options=pop(find(o==min(o)),:);
380
                        end
381
                    end
382
                 else
383
                    pop=[pop; feasible_options_raw]; pop=unique(pop,'rows','stable');
384
                     c=mycon(pop); pop=pop(all(c<=tolerance,2),:);</pre>
385
                    o=FitnessFunction(pop);
386
                     feasible_options=pop(find(o==min(o)),:);
387
388
                 clearvars plusminus output
389
              end
390
           end
391
       end
392
    end
393
    clearvars i a
394
    WQ_adjusted{wb}.DO_slack=sum(WQ_adjusted{wb}.DO_slack,2);
    WQ_adjusted{wb}.Temp_slack=sum(WQ_adjusted{wb}.Temp_slack,2);
395
    [feasible_options, ~, ~] = unique (feasible_options, 'rows');
396
```

compute_AME_trpt.m

```
%Find index in cache where the trainingpop point is
   [~,b]=ismember(x_trpt,cache.x,'rows');
   %Compute DO and temp predictions
5
   [turb_discharges, spill_discharges, ~, ~, ~]=...
6
      activeunits_to_discharges(x_trpt,t,frequency,Q{wb},ic_elev{wb},...
7
      turbine_discharge{wb}, ELWS_targets{wb},[],[],Optimize_day_by_day);
8
   DO_pred=narx_predictions(WQ{wb}.DO_narx,frequency,t,Q{wb},...
9
      x_trpt,turb_discharges,spill_discharges,[],Q{wb}.CWO,...
10
      'do', Optimize_day_by_day);
11
   T_pred=narx_predictions(WQ{wb}.Temp_narx,frequency,t,Q{wb},...
12
      x_trpt,turb_discharges,spill_discharges,[],Q{wb}.TWO,...
13
      'temp',Optimize_day_by_day);
14
15
   clearvars turb_discharges spill_discharges x_trpt
```

create_feasible_initpop.m

```
function [feasible_options, y, c, funccount] = create_feasible_initpop(no_of_solns
1
       \hookrightarrow , . . .
2
       feasible_options, x1_options, frequency, Q, ic_elev, MW_rating, no_of_units, t, . . .
3
      max_hrly_unit_change,zero_gen_limit,turbine_discharge,ELWS_limit,...
4
       WQ, cost_curve_MW, xprev, elev_soft_penalty_coeff, ...
5
      ELWS_targets, tolerance, cache, Optimize_day_by_day, transition_matrix, ...
6
      initial_NARX_training_pop)
   % Generate and save lots of solutions that are feasible in terms of:
   % (1) Change in active unit violations
10
   % (2) Non-integer constraint (assumed in this seletion algorithm)
11
   % (3) Zero generation hourly limit
   % (4) Oscillations constraint
12
13
   % If can't find enough feasible solutions, the rest of the population is
14
   % filled in with near-feasible soultions
15 | %
```

```
16 | % Inputs:
17
   % no_of_solns - the number of feasible solutions we want to find
   % feasible_options - feasible solutions already found during constraint
19
   % prescreening
20
   % x1_options - feasible options for first value of x, between 0 and
21
   % no_of_units
   % frequency - frequency of predictions (hourly=1/24)
   % Q - all other inflows and outflows, interpolation settings,
   % storage-elev curve, and tailwater curve (all in meters)
25
   % ic_elev - initial elevation condition (m)
   % MW_rating - the fixed MW level of turbine_discharge_curve (25 MW for
   % OHL)
28
   % no_of_units - max number of available turbine units
   % t time series of JDAY values
   % max_hrly_unit_change - max number of units that can be changed per hour
31
   % (1 for OHL)
   % zero_gen_limit - Zero generation hourly limit (can't go longer than
33
   % this with no turb flow)
   % turbine_discharge - turbine discharge curve at fixed MW level, with
35
   % col 1 in meters and col 2 in cms
   % ELWS_limit - min and max elevation limits for constraints, in meters
   % WQ - structure containing water quality constraints and NARX models
   % DO_narx - structure containing everything needed to make DO discharge
   % predictions, including:
   % turb_colum - column in exogenous variables with turb flows
41
   % spill_column - column in exogenous variables with spill flows
   % times - JDAY values used in training (not used)
43
   % inputDelays - delays for exogenous inputs
   % feedbackDelays - delays for prediction feedbacks
45
   % input_variables - 2 row cell containing variable names in first
   % row and column number in second. For example, 'MET_WB1'
   % contains multiple columns of data but only some may be used
48
   % for NARX predictions
49
   % bias - bias for each trained neural network
   % weights - weights for each trained neural network (sum to 1)
   % narx_net_closed - neural networks
   % DO_limit - lower and upper DO limits (NaN means it doesn't exist)
53
   % DO_slack - relaxation from DO_limit (either upper or lower -
54
   % doesn't make sense to have both)
55
   % Temp_narx - structure containing everything needed to make temp discharge
   % predictions, including:
57
   % turb_colum - column in exogenous variables with turb flows
58
   % spill_column - column in exogenous variables with spill flows
   % times - JDAY values used in training (not used)
   % inputDelays - delays for exogenous inputs
   % feedbackDelays - delays for prediction feedbacks
   % input_variables - 2 row cell containing variable names in first
   % row and column number in second. For example, 'MET_WB1'
   % contains multiple columns of data but only some may be used
65
   % for NARX predictions
66
   % bias - bias for each trained neural network
   % weights - weights for each trained neural network (sum to 1)
68
   % narx_net_closed - neural networks
69
   % Temp_limit - lower and upper temp limits (NaN means it doesn't exist)
   % Temp_slack - relaxation from Temp_limit (either upper or lower -
   % doesn't make sense to have both)
72
   % cost_curve_MW 2 row matrix to create step function, with 1st row
73
   % being hours and 2nd row $/MW-hr values
74
   % xprev - vector of previous active turbine levels
75
   % elev_soft_penalty_coeff - penalty coefficient for soft ending elev soft
76
   % constraint
77
   % ELWS_targets - target elevations for end of time period
78
   % tolerance - penalty tolerance
79 \mid% cache - water quality predictions provided by W2 simulations
```

```
80 | % Optimize_day_by_day - 1 if optimizing daily, 0 if optimizing all together
    % transition_matrix - transition probabilities for turbine ramping up and down
82
    % initial_NARX_training_pop - 1 if creating initial population for NARX training
83
    % Outputs:
84
    % feasible_options feasible potential solutions for GA initialization
85
    % y - objective function solutions for feasible_options
    % c - constraint violations
87
    % funccount - number of paired function evaluations
88
89
    %Start with upstream reservoir (wb=1), find feasible operations, and compute
        \hookrightarrow associated discharge flows for each. Then use those flows as upstream
        \hookrightarrow inflow for next wb, find feasible operations, and compute associated
        → discharge flows. Etc...
90
91
    c=[]; infeasibles.x=[]; infeasibles.c=[];
92
    n=size(feasible_options,1);
93
    funccount=0;
94
95
    count=1;
96
    while size(feasible_options, 1) < no_of_solns
97
98
        if count == 1
99
           %Starting set size
100
           setsize=no_of_solns;
101
        elseif count == 2
102
           %Modify set size as a function of how many feasible solns found so far (
               → maximum is 30*setsize)
103
           setsize=min(5*(setsize),round((setsize/(size(feasible_options,1)-n))*...
104
              (no_of_solns-(size(feasible_options,1)-n)));
105
        else
106
           %If still not enough solns found, should be close so try 50 at a time
107
           setsize=50;
108
        end
109
110
        for wb=1:size(x1_options,2)
111
           raw_options\{wb\}=nan(setsize, size(t, 2)-1);
112
           if size(x1_options{wb},2) == 1 % only 1 option left
113
              raw_options{wb} (:,1) =x1_options{wb};
114
           else
115
              if "isempty(initial_NARX_training_pop) %if it's the initial sample,
                  → make sure to include a min and a max outflow
116
                 raw_options{wb} (1,1)=x1_options{wb} (end); %scenario with max turbines
117
                 raw_options{wb}(2,1)=x1_options{wb}(1); %scenario with max spill
118
                 raw_options{wb} (3:end, 1) = randsample(x1_options{wb}, setsize-2, true
119
                    transition_matrix{wb} (xprev{wb} (end) +1, x1_options{wb}+1));
120
121
                 raw_options{wb}(:,1)=randsample(x1_options{wb}, setsize, true,...
122
                    transition_matrix{wb} (xprev{wb} (end) +1, x1_options{wb}+1));
123
              end
124
           end
125
           for i=1:setsize
126
              for j=2:size(t,2)-1
127
                 %Variable consisting of xprev and turbine pattern through j-1
128
                 pattern=[xprev{wb} raw_options{wb}(i,1:j-1)];
129
                 %First start with all available options, then eliminate infeasible
                     \hookrightarrow ones based on turbines from 1:j-1
130
                 options=[0:no_of_units{wb}];
131
                 % (1) Eliminate options based on change in active unit violations
132
                 if ~isnan(max_hrly_unit_change(wb))
133
                    auvoptions=[pattern(end)-max_hrly_unit_change{wb}: ...
134
                       pattern(end) +max_hrly_unit_change(wb)];
135
                    options=intersect (options, auvoptions);
136
                 end
```

```
137
                 % (2) Non-integer constraint (assumed in selection algorithm)
138
                 % (3) Eliminate options based on zero generation hourly limit
139
                     isnan(zero_gen_limit{wb})
140
                     if sum(pattern(end-zero_gen_limit(wb)+1:end))==0
141
                        zghloptions=[1:no_of_units{wb}]; %if previous zero_gen_limit
                            \hookrightarrow hrs had zero total flow, must have flow next hr
142
                        options=intersect (options, zghloptions);
143
                    end
144
                 end
145
                 % (4) Eliminate options that violate oscillations constraint -
                     \hookrightarrow violates whenever the number of turbines increases and then
                     → decreases within 3 hours, or vice versa
146
                 allopt=[0:no_of_units{wb}];
147
                 if pattern(end-1) <pattern(end) %if prev turbs increasing
148
                     oscoptions=allopt(allopt>=pattern(end));
149
                     options=intersect (options, oscoptions);
150
                 elseif pattern(end-1) == pattern(end) % need 3 hrs btwn ramping up and
                     → down
151
                     if pattern(end-2) <pattern(end-1) %ramping up
152
                        oscoptions=allopt(allopt>=pattern(end));
153
                        options=intersect (options, oscoptions);
154
                    elseif pattern(end-2)>pattern(end-1) %ramping down
155
                        oscoptions=allopt(allopt<=pattern(end));
156
                        options=intersect (options, oscoptions);
157
                     elseif pattern(end-2) == pattern(end-1)
158
                        %do nothing -->3 consecutive hours between ramping up and down
                            → satisfied
159
                    end
160
                 elseif pattern(end-1)>pattern(end) %if prev turbs decreasing
161
                    oscoptions=allopt(allopt<=pattern(end));
162
                    options=intersect(options,oscoptions);
163
164
                  %Out of the available options left, pick the next turbine setting
165
                 if size(options,2) == 1 % only 1 option left
166
                    raw_options{wb} (i, j) = options;
167
                 else
168
                     if ~isempty(initial_NARX_training_pop) %if it's the initial
                         → sample, make sure to include a min and a max outflow
169
                        if i==1 %scenario with max turbines
170
                           raw_options(wb)(i,j)=options(end);
171
                        elseif i==2 %scenario with max spill
172
                           raw_options{wb} (i, j) = options(1);
173
174
                           raw_options{wb} (i, j) = randsample (options, 1, true, ...
175
                              transition_matrix{wb} (raw_options{wb} (i, j-1)+1, options
                                   \hookrightarrow +1));
176
                        end
177
                    else
178
                        raw_options{wb} (i, j) = randsample (options, 1, true, ...
179
                           transition_matrix{wb} (raw_options{wb} (i, j-1)+1, options+1));
180
                    end
181
                 end
182
              end
183
           end
184
        end
185
186
        %Convert raw_options cells to long vectors containing all reservoirs per row
187
        raw_options2=[];
188
        for wb=1:size(x1_options,2)
189
           raw_options2=[raw_options2 raw_options{wb}];
190
191
192
        %Check feasibility
193
        [c_new,~]=penalty_fcn(raw_options2,t,frequency,Q,ic_elev,...
```

```
194
          turbine_discharge, ELWS_limit, max_hrly_unit_change, WQ, ...
195
           zero_qen_limit,xprev,ELWS_targets,tolerance,cache,Optimize_day_by_day);
196
        funccount=funccount+size(raw_options2,1);
197
        c=c_new;
198
199
        raw_options3=raw_options2(all(c_new<=tolerance,2),:);</pre>
200
        feasible options=[feasible options; raw options3];
201
        %Save the infeasible options in case needed later
202
        infeasibles.x=[infeasibles.x; raw_options2(any(c_new>tolerance,2),:)];
203
        infeasibles.c=[infeasibles.c; c_new(any(c_new>tolerance,2),:)];
204
        %Remove duplicates
205
        feasible_options=unique(feasible_options,'rows');
        fprintf(['Feasible options found: ',...
206
207
          num2str(size(feasible_options,1)), '\n']);
208
        if count==2 & isempty(feasible_options)
209
          y=[]; return
210
        elseif count==5 & ~isempty(feasible_options)
211
          break
212
        else
213
           count=count+1;
214
       end
215
216
217
    if isempty(initial_NARX_training_pop)
218
        %Pick the best no_of_solns from feasible_options
219
        y=obj_fcn(feasible_options,t,cost_curve_MW,MW_rating,...
220
           elev_soft_penalty_coeff,ELWS_targets,frequency,Q,ic_elev,...
221
           turbine_discharge, cache, Optimize_day_by_day);
222
        funccount=funccount+size(feasible_options,1);
223
        [y,b]=sort(y,'descend');
        feasible_options=feasible_options(b,:);
224
225
226
       y=[];
227
        if size(feasible_options,1)>no_of_solns
228
          picks=randsample(size(feasible_options,1),no_of_solns);
229
           feasible_options=feasible_options(picks,:);
230
231
    end
232
233
    % If haven't found enough feasible options, fill in the rest of the pop with
        → near-feasibles ONLY WORKS FOR 1 WB PROBLEMS FOR NOW
234
    if size(feasible_options,1)<no_of_solns</pre>
235
        relevant_indexes=[];
236
        for wb=1:size(x1_options,2)
237
           if ~isnan(ELWS_limit{wb}(1))
238
              relevant indexes=[relevant indexes 4:3+(1+(size(t,2)-1))*1];
239
240
           if ~isnan(ELWS_limit(wb)(2))
241
              relevant\_indexes=[relevant\_indexes 3+(1+(size(t,2)-1))+1:3+(1+(size(t,2)-1))]
                  \hookrightarrow ,2)-1))*2];
242
           end
243
           if ~isnan(WQ{wb}.DO_limit(1))
244
              relevant_indexes=[relevant_indexes 3+(1+(size(t,2)-1))*2+1];
245
           end
246
          if ~isnan(WQ{wb}.DO_limit(2))
247
              relevant_indexes=[relevant_indexes 3+(1+(size(t,2)-1))*2+2];
248
249
           if ~isnan(WQ{wb}.Temp_limit(1))
250
              relevant_indexes=[relevant_indexes 3+(1+(size(t,2)-1))*2+2+1];
251
252
           if ~isnan(WQ{wb}.Temp_limit(2))
253
              relevant_indexes=[relevant_indexes 3+(1+(size(t,2)-1))*2+2+2];
254
           end
255
       end
```

```
256
        %Remove duplicates
257
        [infeasibles.x,ia,~]=unique(infeasibles.x,'rows');
258
        infeasibles.c=infeasibles.c(ia,:);
259
        %Normalize the relevant index cols
260
        normc=infeasibles.c(:,relevant_indexes); normc2=[];
261
        for i=1:size(normc,2)
262
           if ~all(normc(:,i)==normc(1,i)) normc2=[normc2 normc(:,i)]; end
263
264
       mindata = min(normc2); maxdata = max(normc2);
265
       normc2 = bsxfun(@rdivide, bsxfun(@minus, normc2, mindata), maxdata - mindata)
           \hookrightarrow ;
266
       meanc=mean(normc2,2); [meanc,b]=sort(meanc,'ascend');
267
        feasible_options=[feasible_options; ...
268
          infeasibles.x(b(1:no_of_solns-size(feasible_options,1)),:)];
269
    end
```

create_replacements.m

```
function [feasible_options]=create_replacements(no_of_solns,...
      feasible_options, x1_options, frequency, Q, ic_elev, MW_rating, no_of_units, t, ...
3
      max_hrly_unit_change,zero_gen_limit,turbine_discharge,ELWS_limit,...
4
      WQ, cost_curve_MW, xprev, elev_soft_penalty_coeff, ...
5
      ELWS_targets,tolerance,cache,Optimize_day_by_day,transition_matrix)
6
7
   % Generate and save lots of solutions that are feasible in terms of:
8
   % (1) Change in active unit violations
9
   % (2) Non-integer constraint (assumed in this seletion algorithm)
10
   % (3) Zero generation hourly limit
   % (4) Oscillations constraint
12
   % If can't find enough feasible solutions, the rest of the population is
13
   % filled in with near-feasible soultions
14
15
   % Inputs:
   % no_of_solns - the number of feasible solutions we want to find
17
   % feasible_options - feasible solutions already found during constraint
18
   % prescreening
19
   % x1_{options} - feasible options for first value of x, between 0 and
20
   % no_of_units
21
   % frequency - frequency of predictions (hourly=1/24)
   % Q - all other inflows and outflows, interpolation settings,
   % storage-elev curve, and tailwater curve (all in meters)
   % ic_elev - initial elevation condition (m)
   % MW_rating - the fixed MW level of turbine_discharge_curve (25 MW for
27
   % no_of_units - max number of available turbine units
28
   % t time series of JDAY values
   % max_hrly_unit_change - max number of units that can be changed per hour
   % (1 for OHL)
31
   % zero_gen_limit - Zero generation hourly limit (can't go longer than
32
   % this with no turb flow)
   % turbine_discharge - turbine discharge curve at fixed MW level, with
   % col 1 in meters and col 2 in cms
   % ELWS_limit - min and max elevation limits for constraints, in meters
   % WQ - structure containing water quality constraints and NARX models
37
   % DO_narx - structure containing everything needed to make DO discharge
38
   % predictions, including:
39
   % turb_colum - column in exogenous variables with turb flows
   % spill_column - column in exogenous variables with spill flows
41
   % times - JDAY values used in training (not used)
42
   % inputDelays - delays for exogenous inputs
43
   % feedbackDelays - delays for prediction feedbacks
44 % input_variables - 2 row cell containing variable names in first
45 % row and column number in second. For example, 'MET_WB1'
```

```
46 | % contains multiple columns of data but only some may be used
    % for NARX predictions
    % bias - bias for each trained neural network
49
    % weights - weights for each trained neural network (sum to 1)
    % narx_net_closed - neural networks
    % DO_limit - lower and upper DO limits (NaN means it doesn't exist)
    % DO_slack - relaxation from DO_limit (either upper or lower -
    % doesn't make sense to have both)
    % Temp_narx - structure containing everything needed to make temp discharge
55
    % predictions, including:
    % turb_colum - column in exogenous variables with turb flows
    % spill_column - column in exogenous variables with spill flows
    % times - JDAY values used in training (not used)
    % inputDelays - delays for exogenous inputs
60
    % feedbackDelays - delays for prediction feedbacks
61
   % input_variables - 2 row cell containing variable names in first
    % row and column number in second. For example, 'MET WB1'
63
    % contains multiple columns of data but only some may be used
64
    % for NARX predictions
65
    % bias - bias for each trained neural network
66
    % weights - weights for each trained neural network (sum to 1)
    % narx_net_closed - neural networks
    % Temp_limit - lower and upper temp limits (NaN means it doesn't exist)
    % Temp_slack - relaxation from Temp_limit (either upper or lower -
    % doesn't make sense to have both)
    % cost_curve_MW 2 row matrix to create step function, with 1st row
    % being hours and 2nd row $/MW-hr values
73
    % xprev - vector of previous active turbine levels
74
    % elev_soft_penalty_coeff - penalty coefficient for soft ending elev soft
75
    % constraint
76
    % ELWS_targets - target elevations for end of time period
    % tolerance - penalty tolerance
78
    % cache - water quality predictions provided by W2 simulations
    % Optimize_day_by_day - 1 if optimizing daily, 0 if optimizing all together
80
    % transition_matrix - transition probabilities for turbine ramping up and down
    % Outputs:
82
    % feasible_options feasible potential solutions for GA initialization
83
    % y - objective function solutions for feasible_options
84
    % c - constraint violations
85
    % funccount - number of paired function evaluations
87
    %Start with upstream reservoir (wb=1), find feasible operations, and compute
        \hookrightarrow associated discharge flows for each. Then use those flows as upstream
        \hookrightarrow inflow for next wb, find feasible operations, and compute associated
        \hookrightarrow discharge flows. Etc...
88
    c=[]; infeasibles.x=[]; infeasibles.c=[];
90
    n=size(feasible_options,1);
91
    funccount=0;
92
93
    %Weights
94
    for wb=1:size(x1_options,2)
95
       for i=2:no_of_units{wb}+1
96
          weights{wb}{i}(1)=no_of_units{wb};
97
          for ii=2:i
98
             weights{wb}{i}(ii)=weights{wb}{i}(ii-1) \star .5;
99
100
       end
101
    end
102
    clearvars i ii wb
103
104
105
    while size(feasible_options,1) < no_of_solns</pre>
106
```

```
107
        if count == 1
108
           %Starting set size
109
           setsize=no_of_solns;
110
        elseif count==2
111
           %Modify set size as a function of how many feasible solns found so far (
              → maximum is 30*setsize)
112
           setsize=min(5*(setsize),round((setsize/(size(feasible options,1)-n))*...
113
              (no_of_solns-(size(feasible_options,1)-n)));
114
        else
115
           %If still not enough solns found, should be close so try 50 at a time
116
           setsize=50;
117
       end
118
119
        for wb=1:size(x1_options,2)
120
           raw_options{wb}=nan(setsize, size(t, 2)-1);
121
           if size(x1_options{wb},2) == 1 %only 1 option left
122
              raw_options{wb} (:,1) =x1_options{wb};
123
124
              raw_options{wb}(:,1)=randsample(x1_options{wb}, setsize, true,...
125
                 transition_matrix{wb} (xprev{wb} (end) +1, x1_options{wb}+1));
126
          end
127
           for i=1:setsize
128
              for j=2:size(t,2)-1
129
                 %Variable consisting of xprev and turbine pattern through j-1
130
                 pattern=[xprev{wb} raw_options{wb}(i,1:j-1)];
                 First start with all available options, then eliminate infeasible
131
                     → ones based on turbines from 1:j-1
132
                 options=[0:no_of_units{wb}];
133
                 % (1) Eliminate options based on change in active unit violations
134
                 if ~isnan(max_hrly_unit_change{wb})
                    auvoptions=[pattern(end)-max_hrly_unit_change{wb}: ...
135
136
                       pattern(end) +max_hrly_unit_change(wb)];
137
                    options=intersect (options, auvoptions);
138
                 end
139
                 % (2) Non-integer constraint (assumed in selection algorithm)
140
                 % (3) Eliminate options based on zero generation hourly limit
141
                 if ~isnan(zero_gen_limit(wb))
142
                    if sum(pattern(end-zero_gen_limit(wb)+1:end))==0
143
                       {\tt zghloptions=[1:no\_of\_units\{wb\}];} \ \texttt{%if previous zero\_gen\_limit}
                            → hrs had zero total flow, must have flow next hr
144
                       options=intersect (options, zghloptions);
145
                    end
146
                 end
147
                 % (4) Eliminate options that violate oscillations constraint -
                     \hookrightarrow violates whenever the number of turbines increases and then
                     → decreases within 3 hours, or vice versa
148
                 allopt=[0:no_of_units{wb}];
149
                 if pattern(end-1) <pattern(end) %if prev turbs increasing
150
                    oscoptions=allopt(allopt>=pattern(end));
151
                    options=intersect(options,oscoptions);
152
                 elseif pattern(end-1) == pattern(end) % need 3 hrs btwn ramping up and
                     → down
153
                    if pattern(end-2) <pattern(end-1) %ramping up
154
                       oscoptions=allopt(allopt>=pattern(end));
155
                       options=intersect(options,oscoptions);
156
                    elseif pattern(end-2)>pattern(end-1) %ramping down
157
                       oscoptions=allopt(allopt<=pattern(end));
158
                        options=intersect (options, oscoptions);
159
                    elseif pattern(end-2) == pattern(end-1)
160
                        %do nothing -->3 consecutive hours between ramping up and down
                           → satisfied
161
                 elseif pattern(end-1)>pattern(end) %if prev turbs decreasing
162
163
                    oscoptions=allopt(allopt<=pattern(end));
```

```
164
                    options=intersect (options, oscoptions);
165
                 end
166
                 %Out of the available options left, pick the next turbine setting
                 if size(options,2) == 1 % only 1 option left
167
168
                     raw_options{wb}(i,j)=options;
169
                 else
170
                     raw_options{wb} (i, j) = randsample (options, 1, true, ...
171
                        transition_matrix{wb} (raw_options{wb} (i, j-1) +1, options+1));
172
                 end
173
              end
174
           end
175
176
177
        Convert raw_options cells to long vectors containing all reservoirs per row
178
        raw_options2=[];
179
        for wb=1:size(x1_options,2)
180
           raw_options2=[raw_options2 raw_options{wb}];
181
182
183
        %Check feasibility (all but WQ)
184
        [c_new,~] = penalty_fcn(raw_options2,t,frequency,Q,ic_elev,...
185
           turbine_discharge, ELWS_limit, max_hrly_unit_change, WQ, ...
186
           zero_gen_limit,xprev,ELWS_targets,tolerance,cache,Optimize_day_by_day);
187
        funccount=funccount+size(raw_options2,1);
188
        raw_options3=raw_options2(all(c_new<=tolerance,2),:);</pre>
189
        feasible_options=[feasible_options; raw_options3];
190
191
        %Remove duplicates
192
        feasible_options=unique(feasible_options,'rows');
193
        fprintf(['Feasible options found: ',...
194
           num2str(size(feasible_options,1)), '\n']);
195
        if count==2 & isempty(feasible_options)
196
           y=[]; return
197
        elseif count==5 & ~isempty(feasible_options)
198
          break
199
        else
200
           count=count+1;
201
       end
202
    end
203
204
    if size(feasible_options,1)>no_of_solns
205
        picks=randsample(size(feasible_options,1),no_of_solns);
206
        feasible_options=feasible_options(picks,:);
207
    end
```

ga_results_plotting_nobanding.m

```
1
   %% plot data
 2
3
   %Determine the index in cache corresponding to the best solution from last
       → generation
   [~,index]=ismember(x_final_all{iter},cache.x,'rows');
 6
   t_all=[start_date:frequency:start_date+days_forward];
7
   if Optimize_day_by_day==0
8
      day=days_forward;
9
   end
10
   for wb=1:size(CFG,2)
11
12
      maxdelay=max([WQ{wb}.DO_narx.inputDelays'; WQ{wb}.DO_narx.feedbackDelays']);
13
      data_start=frequency*(maxdelay-1);
14
      figure('units','normalized','outerposition',[0 0 1 1])
15
      % Title
```

```
annotation('textbox',...
16
17
          [0.357741573033708 0.952787192414743 0.325808054820903
              → 0.0410246887733755],...
          'String', {[CFG{wb}.Name ' Reservoir Optimization Results']},...
18
19
          'FontWeight','bold',...
          'FontSize',16,...
20
21
          'EdgeColor', [0.941176470588235 0.941176470588235 0.941176470588235],...
22
          'HorizontalAlignment','center');
23
24
       %% Subplot 1: Turbine discharge patterns as active units
25
       subplot (12,2,[1 3 5])
26
      Ax1=plot(tprev_ic, xprev_ic{wb},'k',...
27
          t_all(1:1+day*(1/frequency)), [xprev_ic{wb}(end) x0_all(wb,1:day*(1/

  frequency))],'b',...

28
          t_all(1:1+day*(1/frequency)),[xprev_ic{wb}(end) x_final{wb}],':r',...
          'LineWidth',2);
29
      xlabel('Julian Day'); xlim([t_all(1)-data_start t_all(1+day*24)]);
30
31
       set(gca,'YTick',0:1:no_of_units{wb});
32
      ylabel('Active turbine units')
33
      title('Active Turbine Units')
34
      ylim([0 max([xprev_ic{wb}(end) x0_all(wb,1:day*(1/frequency)) x_final{wb}])])
35
      ylims=get(gca,'ylim'); xlims=get(gca,'xlim'); xrange=xlims(2)-xlims(1);

→ yrange=ylims(2)-ylims(1);
36
       text(xlims(1)+0.025*xrange,ylims(1)+0.9*yrange,'(a)','FontSize',12);
37
38
       %% Subplot 2: Turbine discharge patterns as flowrate
39
      turb_discharges_x0{wb}=interp1(Qprojected{wb}.QOT_BR1_T(:,1),Qprojected{wb}.
           \hookrightarrow QOT_BR1_T(:,2),t_all(1:1+day*(1/frequency)));
40
       [turb_discharges{wb}, spill_discharges{wb}, ~,~,~]=...
41
          activeunits_to_discharges(x_final{wb},t,frequency,...
42
          Q{wb},ic_elev{wb},turbine_discharge{wb},ELWS_targets{wb},...
43
          [],[],Optimize_day_by_day);
44
       turb_discharges_prev{wb}=interp1(Q{wb}.QOT_BR1_T(:,1),Q{wb}.QOT_BR1_T(:,2),
          → tprev_ic);
45
       subplot (12, 2, [9 11 13])
46
      Ax2=plot(tprev_ic,turb_discharges_prev{wb},'k',...
47
          t_all(1:1+day*(1/frequency)),[turb_discharges_prev{wb}(end)

→ turb_discharges_x0{wb}(2:end)],'b',...
48
          t_all(1:1+day*(1/frequency)),[turb_discharges_prev{wb}(end)
             → turb_discharges{wb}(2:end)],':r','LineWidth',2);
49
      xlabel('Julian Day'); xlim([t_all(1)-data_start t_all(1+day*(1/frequency))]);
50
       ylabel('Turbine discharge, cms')
51
      title('Turbine Discharges')
52
      ylims=get(gca,'ylim'); xlims=get(gca,'xlim'); xrange=xlims(2)-xlims(1);

    yrange=ylims(2)-ylims(1);
53
      text(xlims(1)+0.025*xrange,ylims(1)+0.9*yrange,'(b)','FontSize',12);
54
55
       %% Subplot 3: Spill discharge patterns as flowrate
56
       spill_discharges_x0{wb}=interp1(Qprojected{wb}.QOT_BR1_S(:,1),Qprojected{wb}.
          → QOT_BR1_S(:,2),t_all(1:1+day*(1/frequency)));
57
       if size(spill_discharges{wb},2) ==1
58
          spill_discharges{wb}=ones(1, size(t_all(1:1+day*(1/frequency)),2))*
             → spill_discharges{wb};
59
      else
60
          spill_discharges{wb}=interp1([start_date:1:start_date+days_forward-1],

    spill_discharges{wb},t_all(1:1+day*(1/frequency)));
61
      end
       spill_discharges_prev{wb}=interp1(Qprojected{wb}.QOT_BR1_S(:,1),Qprojected{wb
62.
          → }.QOT_BR1_S(:,2),tprev_ic);
63
       subplot(12,2,[17 19 21])
      Ax2=plot(tprev_ic, spill_discharges_prev{wb},'k',...
64
65
          t_all(1:1+day*(1/frequency)),[spill_discharges_prev{wb}(end)

    spill_discharges_x0{wb}(2:end)],'b',...
66
          t_all(1:1+day*(1/frequency)),[spill_discharges_prev{wb}(end)
```

```
    spill_discharges{wb}(2:end)],':r','LineWidth',2);
67
       xlabel('Julian Day'); xlim([t_all(1)-data_start t_all(1+day*(1/frequency))]);
68
       ylabel('Spill discharge, cms')
69
       title('Spill Discharges')
70
        if all([spill_discharges_prev{wb} (end) spill_discharges_x0{wb}
           → spill_discharges{wb}]==0)
71
          vlim([0 1])
72
       end
 73
       ylims=get(gca,'ylim'); xlims=get(gca,'xlim'); xrange=xlims(2)-xlims(1);
           → yrange=ylims(2)-ylims(1);
 74
        text(xlims(1)+0.025*xrange,ylims(1)+0.9*yrange,'(c)','FontSize',12);
 75
76
        %% Subplot 4: Headwater elevations
77
       clearvars HWs_x0
78
        [~,~,HWs_x0{wb},~,~]=activeunits_to_discharges(x0_all(wb,1:day*(1/frequency))

→ ,t_all(1:1+day*(1/frequency)),...

79
           frequency, Qprojected{wb}, ic_elev_first{wb},...
80
          turbine_discharge{wb},[],[],[],Optimize_day_by_day);
81
       HWs_prev{wb}=interp1(Q{wb}.ELWS(:,1),Q{wb}.ELWS(:,2),tprev_ic);
82
       HWs{wb}=cache.HWs(index,:);
83
       subplot(12,2,[2 4 6])
84
       Ax3=plot(tprev_ic, HWs_prev{wb}, 'k', ...
85
           t_all(1:1+day*(1/frequency)), HWs_x0{wb},'b',...
           t_all(1:1+day*(1/frequency)),HWs{wb},':r','LineWidth',2);
86
87
       hold on:
88
       h5=plot([t_all(1) t_all(1+day*(1/frequency))],...
89
           [ELWS_limit{wb}(1) ELWS_limit{wb}(1)],':k',...
90
           'LineWidth', 1.5);
91
       plot([t_all(1) t_all(1+day*(1/frequency))],...
92
           [ELWS_limit{wb}(2) ELWS_limit{wb}(2)],':k',...
           'LineWidth',1.5)
93
94
        if Optimize_day_by_day==0
95
          h6=scatter(ELWS_targets{wb}(end,1),ELWS_targets{wb}(end,2));
96
97
          h6=scatter(ELWS_targets{wb}(:,1),ELWS_targets{wb}(:,2));
98
       end
99
       hold off;
100
        xlabel('Julian Day'); xlim([t_all(1)-data_start t_all(1+day*(1/frequency))]);
101
       ylabel('Elevation, m')
102
       title('Headwater Elevation')
103
       ylims=get(gca,'ylim'); xlims=get(gca,'xlim'); xrange=xlims(2)-xlims(1);
            \hookrightarrow yrange=ylims(2)-ylims(1);
104
        text(xlims(1)+0.025*xrange,ylims(1)+0.9*yrange,'(d)','FontSize',12);
105
106
        %% Subplot 5: Discharge DO
107
       DO pred x0{wb}=interp1(Oprojected{wb}.CWO(Oprojected{wb}.CWO(:,2)~=0,1),
           → Qprojected{wb}.CWO(Qprojected{wb}.CWO(:,2)~=0,2),t_all(2:1+day*(1/
           → frequency)));
108
        [turb_discharges2, spill_discharges2, ~, ~, ~]=...
           activeunits_to_discharges(x_final{wb},t,frequency,Q{wb},ic_elev{wb},...
109
110
           turbine_discharge{wb}, ELWS_targets{wb}, [], [], Optimize_day_by_day);
111
        DO_pred{wb}=narx_predictions(WQ{wb}.DO_narx,frequency,t,Q{wb},...
112
           x_final{wb},turb_discharges2,spill_discharges2,[],Q{wb}.CWO,...
113
           'do', Optimize_day_by_day);
114
        flowout_x0=turb_discharges_x0{wb}(2:end)+spill_discharges_x0{wb}(2:end);
115
        flowout=turb_discharges{wb}(2:end)+spill_discharges{wb}(2:end);
116
        DO_pred_x0{wb}(flowout_x0==0)=nan; DO_pred{wb}(flowout==0)=nan;
117
       Output_no0s{wb}=interp1(Qprojected{wb}.CWO(find(Qprojected{wb}.CWO(:,2)~=0)
           \hookrightarrow ,1),...
118
           Qprojected{wb}.CWO(find(Qprojected{wb}.CWO(:,2)~=0),2),...
119
           [t_all(1)-data_start:frequency:t_all(1)])';
120
        if interp1(Qprojected{wb}.QOT_BR1_T(:,1),Qprojected{wb}.QOT_BR1_T(:,2),...
121
              tprev_ic(end)) == 0 & ...
122
              interp1 (Qprojected{wb}.QOT_BR1_S(:,1),Qprojected{wb}.QOT_BR1_S(:,2),...
```

```
123
              tprev_ic(end)) == 0
124
           DOinitcon{wb}=nan;
125
        else
126
           DOinitcon{wb}=Output_no0s{wb} (end);
127
        end
128
        Outputprev{wb}=interp1([t_all(1)-data_start:frequency:t_all(1)],Output_no0s{
           \hookrightarrow wb},...
129
           tprev_ic);
130
        j=find(interp1(Qprojected{wb}.QOT_BR1_T(:,1),Qprojected{wb}.QOT_BR1_T(:,2)
           \hookrightarrow , . . .
131
           tprev_ic) == 0 & ...
132
           interp1 (Qprojected{wb}.QOT_BR1_S(:,1),Qprojected{wb}.QOT_BR1_S(:,2),...
133
           tprev_ic) == 0);
134
        Outputprev{wb}(j)=nan; clearvars j
135
        subplot(12,2,[10 12 14])
136
        h1=plot(tprev_ic,Outputprev{wb},'k','LineWidth',2);
137
        hold on;
138
        h2=plot(t_all(1:1+day*(1/frequency)),[DOinitcon{wb} DO_pred_x0{wb}],'b','
            \hookrightarrow LineWidth',2);
139
       h3=plot(t_all(1:1+day*(1/frequency)),[DOinitcon{wb} DO_pred{wb}],':r','
           → LineWidth',2);
140
        h7=plot(cache.t,[DOinitcon{wb} cache.DO(index,:)],'g','LineWidth',2);
141
        if ~isnan(WQ{wb}.DO_limit(1))
142
           h5=plot([t_all(1) t_all(1+day*(1/frequency))], [WQ{wb}.DO_limit(1) WQ{wb}.
               → DO_limit(1)],':k',...
143
              'LineWidth', 1.5);
144
        elseif ~isnan(WQ{wb}.DO_limit(2))
145
           plot([t_all(1) t_all(1+day*(1/frequency))], [WQ{wb}.DO_limit(2) WQ{wb}.
               → DO_limit(2)],':k',...
146
              'LineWidth', 1.5);
147
        end
148
        xlabel('Julian Day'); xlim([t_all(1)-data_start t_all(1+day*(1/frequency))]);
149
        ylabel('DO, mg/L');
150
        ylim([min([DOinitcon{wb} cache.DO(index,:) min(DO_pred{wb}) min(DO_pred_x0{wb
            → }) Output_no0s{wb}' WQ{wb}.DO_limit(1) WQ{wb}.DO_limit(2)])-.25...
151
           max([DOinitcon{wb} cache.DO(index,:) max(DO_pred{wb}) max(DO_pred_x0{wb}))
               → Output_no0s{wb}' WQ{wb}.DO_limit(1) WQ{wb}.DO_limit(2)])+.25]);
152
        title('Discharge DO Predictions')
153
        ylims=get(gca, 'ylim'); xlims=get(gca, 'xlim'); xrange=xlims(2)-xlims(1);
            → yrange=ylims(2)-ylims(1);
154
        text(xlims(1)+0.025*xrange,ylims(1)+0.9*yrange,'(e)','FontSize',12);
155
        str=['AME = ', sprintf('%5.3f', AME{wb}.DO), ' mg/L'];
156
        text(xlims(1)+0.025*xrange,ylims(1)+0.1*yrange,str,'FontSize',12);
157
        clearvars W2_no0s_smooth index2 W2_no0s str slack_compute non_nan_count
158
159
        %% Subplot 5: Discharge Temp
160
        Temp_pred_x0{wb}=interp1(Qprojected{wb}.TWO(Qprojected{wb}.TWO(:,2)~=0,1),
            \hookrightarrow Qprojected{wb}.TWO(Qprojected{wb}.TWO(:,2)~=0,2),t_all(2:1+day*(1/
           → frequency)));
161
        Temp_pred{wb}=narx_predictions(WQ{wb}.Temp_narx,frequency,t,Q{wb},...
162
           x_final{wb},turb_discharges2,spill_discharges2,[],Q{wb}.TWO,...
163
           'temp',Optimize_day_by_day);
164
        Temp_pred_x0{wb}(flowout_x0==0)=nan; Temp_pred{wb}(flowout==0)=nan;
165
        clearvars flowout_x0
166
        Output_no0s{wb}=interp1(Qprojected{wb}.TWO(find(Qprojected{wb}.TWO(:,2)~=0)
            \hookrightarrow ,1),...
167
           Qprojected{wb}.TWO(find(Qprojected{wb}.TWO(:,2)~=0),2),...
168
           [t_all(1)-data_start:frequency:t_all(1)])';
169
        if interp1(Qprojected{wb}.QOT_BR1_T(:,1),Qprojected{wb}.QOT_BR1_T(:,2),...
170
              tprev_ic(end)) == 0 & ...
171
              interp1 (Qprojected{wb}.QOT_BR1_S(:,1),Qprojected{wb}.QOT_BR1_S(:,2),...
172
              tprev_ic(end)) == 0
173
           Tempinitcon(wb)=nan;
174
        else
```

```
175
           Tempinitcon{wb}=Output_no0s{wb} (end);
176
        end
177
        Outputprev{wb}=interp1([t_all(1)-data_start:frequency:t_all(1)],Output_no0s{
            \hookrightarrow wb},...
178
           tprev_ic);
179
        j=find(interp1(Qprojected{wb}.QOT_BR1_T(:,1),Qprojected{wb}.QOT_BR1_T(:,2)
            \hookrightarrow , . . .
           tprev_ic) == 0 & ...
180
181
           interp1 (Qprojected{wb}.QOT_BR1_S(:,1),Qprojected{wb}.QOT_BR1_S(:,2),...
182
           tprev_ic) == 0);
183
        Outputprev{wb}(j)=nan; clearvars j
184
        subplot (12, 2, [18 20 22])
185
        h1=plot(tprev_ic,Outputprev{wb},'k','LineWidth',2);
186
        hold on;
187
        h2=plot(t_all(1:1+day*(1/frequency)),[Tempinitcon{wb} Temp_pred_x0{wb}],'b','
            → LineWidth',2);
        h3=plot(t_all(1:1+day*(1/frequency)),[Tempinitcon{wb} Temp_pred{wb}],':r','
188
            \hookrightarrow LineWidth',2);
        h7=plot(cache.t,[Tempinitcon{wb} cache.T(index,:)],'g','LineWidth',2);
189
190
        if ~isnan(WQ{wb}.Temp_limit(1))
191
           \label{eq:homogeneous} $$h5=plot([t_all(1)\ t_all(1+day*(1/frequency))], [WQ\{wb\}.Temp\_limit(1)\ WQ\{wb\}]$.
               → }.Temp_limit(1)],':k',...
192
              'LineWidth', 1.5);
        elseif ~isnan(WQ{wb}.Temp_limit(2))
193
194
           h5=plot([t_all(1) t_all(1+day*(1/frequency))], [WQ{wb}.Temp_limit(2) WQ{wb}]
               \hookrightarrow }.Temp_limit(2)],':k',...
195
              'LineWidth', 1.5);
196
        end
197
        xlabel('Julian Day'); xlim([t_all(1)-data_start t_all(1+day*(1/frequency))]);
198
        ylabel('Temperature, C');
        ylim([min([Tempinitcon{wb} cache.T(index,:) min(Temp_pred{wb}) min(
199
            → Temp_pred_x0{wb}) Output_no0s{wb}' WQ{wb}.Temp_limit(1) WQ{wb}.
            → Temp_limit(2)])-.25...
200
           max([Tempinitcon{wb} cache.T(index,:) max(Temp_pred{wb}) max(Temp_pred_x0{

→ wb}) Output_no0s{wb}' WQ{wb}.Temp_limit(1) WQ{wb}.Temp_limit(2)])

               \hookrightarrow +.251);
201
        title('Discharge Temperature Predictions')
202
        ylims=get(gca,'ylim'); xlims=get(gca,'xlim'); xrange=xlims(2)-xlims(1);
            → yrange=ylims(2)-ylims(1);
203
        text(xlims(1)+0.025*xrange,ylims(1)+0.9*yrange,'(f)','FontSize',12);
        str=['AME = ', sprintf('%5.3f',AME{wb}.T), ' C'];
204
205
        text(xlims(1)+0.025*xrange,ylims(1)+0.1*yrange,str,'FontSize',12);
206
        clearvars W2_no0s_smooth W2_no0s_smooth2 index2 W2_no0s flowout str
            → slack_compute non_nan_count
207
208
        legend1=legend([h1 h2 h3 h7 h5 h6],'Past Values',...
209
           'Projected Operations',...
210
           'Optimal Solution',...
211
           'W2 Validation at Optimal Solution',...
           'Constraint Bounds',...
212
213
           'Target Elevations');
214
        set (legend1, ...
           'Position',[0.39086885358981 0.0131729985010991 0.256670797003518
215
               → 0.119367775250152],...
216
           'FontSize', 10);
217
218
    end
```

initial_NARX_model_generation.m

```
1 %Initial NARX model generation
2 
3 wb=1;
```

```
global funccount_cache_global funccount_tot_global
   funccount_cache_global=0; funccount_tot_global=0;
 6
   clearvars xprev tprev
   x_{final\{wb\}=[]};
   %Previous turbine pattern for the year (if supplied)
8
   if isempty(CFG{wb}.ForecastTurbinePattern)
10
      xprev{wb}=actual_turb_ops(tprev_round,Qprojected{wb},elevtemp{wb},
          → turbine_discharge(wb), no_of_units(wb));
11
   else
12
      prevturbpattern=dlmread(CFG{wb}.PreviousTurbinePattern,'\t',1,0);
13
      for i=1:size(tprev_round,2)
14
         index=find(prevturbpattern(:,1) <=tprev_round(i));</pre>
15
         xprev{wb} (i) = prevturbpattern (index (end), 2);
16
17
      clearvars i prevturbpattern index
18
19
   tprev=[t_all(1)-max(cell2mat(zero_gen_limit(:)))*frequency:frequency:t_all(1)];
20
   xprev_ic=xprev; tprev_ic=tprev;
21
22
   WQ_initial=WQ;
   WQ_initial{wb}.DO_limit=nan(size(WQ{wb}.DO_limit)); WQ_initial{wb}.Temp_limit=
       → nan(size(WQ{wb}.Temp_limit));
24
25
   %Optimization timeperiod
26
   if Optimize_day_by_day==1
      t=[start_date+day-1:frequency:start_date+day];
28
   else
29
      t=t_all;
30
   end
31
32
   %Set initial condition elevation
33
   for wb=1:size(CFG, 2)
34
      ic_elev{wb}=ic_elev_first{wb};
35
      if ic_elev_first{wb}<ELWS_limit{wb}(1)</pre>
         L.warn('INITIALIZATION', ['Reservoir ', num2str(wb),' initial elevation of
             → firm constraint). Expanding ELWS limits to continue with
             → optimization.']);
37
         ELWS_limit{wb}(1)=ic_elev_first{wb};
38
      elseif ic_elev_first{wb}>ELWS_limit{wb}(2)
         39
             \hookrightarrow (firm constraint). Expanding ELWS limits to continue with
             → optimization.']);
40
         ELWS_limit{wb}(2)=ic_elev_first{wb};
41
      end
42
   end
43
   %Find possible values for x(1) (based on previous zero_gen_limit turbs)
44
   options=[0:no_of_units{wb}];
45
   % (1) Eliminate options based on change in active unit violations
46
   if ~isnan(max_hrly_unit_change(wb))
47
      auvoptions=[xprev{wb} (end) -max_hrly_unit_change{wb}:...
48
         xprev{wb} (end) +max_hrly_unit_change{wb}];
49
      options=intersect (options, auvoptions);
50
   end
51
   % (2) Non-integer constraint (assumed in selection algorithm)
52
   % (3) Eliminate options based on zero generation hourly limit
53
   if ~isnan(zero_gen_limit{wb})
54
      if sum(xprev{wb} (end-zero_gen_limit{wb}+1:end)) == 0
55
         zghloptions=[1:no_of_units{wb}]; %if previous zero_gen_limit hrs had zero

→ total flow, must have flow next hr

56
         options=intersect (options, zghloptions);
57
      end
58
   end
```

```
59
   |% (4) Eliminate options that violate oscillations constraint - violates whenever

→ the number of turbines increases and then decreases within 2 hours, or

        → vice versa
60
    allopt=[0:no_of_units{wb}];
    if xprev{wb} (end-1) < xprev{wb} (end) %if prev turbs increasing</pre>
61
62
        oscoptions=allopt(allopt>=xprev{wb}(end));
63
       options=intersect(options,oscoptions);
64
    elseif xprev{wb} (end-1) == xprev{wb} (end) %need 3 hrs btwn ramping up and down
65
        if xprev{wb} (end-2) < xprev{wb} (end-1) % ramping up</pre>
66
           oscoptions=allopt(allopt>=xprev{wb} (end));
67
           options=intersect(options,oscoptions);
68
        elseif xprev{wb} (end-2) > xprev{wb} (end-1) % ramping down
69
           oscoptions=allopt(allopt<=xprev{wb}(end));
70
           options=intersect (options, oscoptions);
71
        elseif xprev{wb} (end-2) ==xprev{wb} (end-1)
72
           %do nothing -->3 consecutive hours between ramping up and down satisfied
73
       end
74
    elseif xprev{wb} (end-1) > xprev{wb} (end) %if prev turbs decreasing
75
       oscoptions=allopt(allopt<=xprev{wb}(end));
76
        options=intersect(options,oscoptions);
 77
    end
78
    x1_options{wb}=options;
79
    if isempty(x1_options{wb})
        L.fatal('OPTIMIZATION','Based on previous turbine pattern, there is no
80
           → feasible first hour turbine level.');
81
        return
82
83
    clearvars tprev options auvoptions zghloptions allopt oscoptions
84
    [pop0, ~, ~, ~]=...
85
        create_feasible_initpop(ga_pop_size,[],...
86
        x1_options, frequency, Q, ic_elev, MW_rating, no_of_units, t, ...
87
       max_hrly_unit_change, zero_gen_limit, turbine_discharge,...
88
        ELWS_limit, WQ_initial, cost_curve_MW, xprev, ...
89
        [], ELWS_targets, tolerance, cache, Optimize_day_by_day, ...
90
       transition_matrix, 1);
91
    clearvars WQ_initial
92
    %Take initial pop pop0 and pick out Initialtrainingsetsize number of scenarios
        \hookrightarrow to run through W2 using kmeans clusters
93
    wb=1; day=1; ELWS_limit_subproblem{day}=ELWS_limit;
94
    *Determine x0, actual turbine operations, to seed initial population
95
    if Optimize_day_by_day==1
96
        x0(wb,:)=x0_all(wb,(day-1)*(1/frequency)+1:day*(1/frequency));
97
    else
98
       x0 (wb, :) = x0_all (wb, :);
99
100
    [", y_dollars1]=power_value(x0(wb,:),t,cost_curve_MW{wb},...
101
       MW_rating{wb});
102
    if size(ELWS_targets{wb}(:,1),1) == 1
103
        elev_soft_penalty_coeff{day}(wb)=interp1(ELWS_limit_subproblem{day}{wb}(:)
           \hookrightarrow , . . .
           elev_soft_penalty_coeff_constant,...
104
105
           ELWS_targets{wb}(:,2),'linear','extrap')*y_dollars1; %$/m with cost curve,
               → MWh/m with all cc=1
106
    else
107
        elev_soft_penalty_coeff{day}(wb)=interp1(ELWS_limit_subproblem{day}{wb}(:)
           \hookrightarrow , . . .
108
           elev_soft_penalty_coeff_constant,...
109
           interp1 (ELWS_targets{wb}(:,1),ELWS_targets{wb}(:,2),start_date+day),...
110
           'linear','extrap')*y_dollars1; %$/m with cost curve, MWh/m with all cc=1
111
112
    FitnessFunction = @(x) - obj_fcn(x,t,cost_curve_MW,...
113
        MW_rating,elev_soft_penalty_coeff{day},...
114
        ELWS_targets, frequency, Q, ic_elev,...
115
        turbine_discharge, cache, Optimize_day_by_day);
```

```
116
    [~,b]=sort(FitnessFunction(pop0),'ascend'); pop0=pop0(b,:);
117
    for a=1:500
118
        [idx(:,a),~,~,D{a}]=kmeans(pop0,Initialtrainingsetsize);
119
       B=unique(idx(:,a));
120
       group_var(a) = var(histc(idx(:,a),B));
121
    end
122
    %Pick the cluster that minimizes the max group size (i.e., results in fairly
        → even distribution)
123
    [~,a]=min(group_var); idx=idx(:,a); D=D{a};
124
    for i=1:Initialtrainingsetsize
125
       %Pick random one from each cluster
126
       b=find(idx==i); a=randsample(b,1); init_train_set(i,:)=pop0(a,:);
127
128
    clearvars a b B group_var i
129
130
    Create Qtrainingpop for each feasible_options entry (QOT_BR1_T, QOT_BR1_S, ELWS
        \hookrightarrow , CWO, TWO)
131
    for i=1:Initialtrainingsetsize
132
       xtr{1}=init_train_set(i,:);
133
       Qtrainingpop{i}=updateQ(Q,CFG,xtr,t,frequency,ic_elev,turbine_discharge,...
134
          WQ, xprev, ELWS_targets, cache, Optimize_day_by_day);
135
136
    %Run each row in feasible_options through W2 (only works for 1-day, 1-wb
        \hookrightarrow problems for now), and update cache with these values as well
137
    for trindex=1:Initialtrainingsetsize
138
        fprintf(['Running initial training point ' num2str(trindex) ' for reservoir #
           \hookrightarrow ', num2str(wb),'. \n']);
       directory=['results/w2_iter0_trpt' num2str(trindex) '_wb' num2str(wb)];
139
140
       runW2trainingpop;
141
    end
142
    while istaskrunning('w2.exe') end %is w2 still running? if so, hold on
143
    system('taskkill /F /IM cmd.exe'); cache_size_pre=size(cache.x,1);
144
    for trindex=1:Initialtrainingsetsize
145
       directory=['results/w2_iter0_trpt' num2str(trindex) '_wb' num2str(wb)];
146
       trainingpop=init_train_set; runW2trainingpop_part2;
147
    end
148
    clearvars s z zz zzz distances distance_mins start_index w2runstiming
        → bestsolniter index pop b DO_pred T_pred w2timing trindex xtr idx f i a b
        → D wb D2 correction directory distance_to_soln ii e d
149
150
    for i=1:Initialtrainingsetsize
151
       cache.flag{size(cache.flag,1)+1,1}={'initial'};
152
    end
153
154
    NARX_retrain_trpt;
155
    clearvars Otrainingpop
```

narx_predictions.m

```
function pred=narx_predictions(NARX_model, frequency, t, Q, x, ...
1
2
      turb_discharges, spill_discharges, mainstem_inflows, previous_Output, flag, ...
3
      Optimize_day_by_day)
 5
   % Calculates WQ predictions using a trained family of NARX models
6
7
   % Inputs:
8
   % NARX_model - structure containing everything needed to make WQ
   % discharge predictions, including:
10
   % turb_colum - column in exogenous variables with turb flows
11
   % spill_column - column in exogenous variables with spill flows
   % inputDelays - delays for exogenous inputs
12
   % feedbackDelays - delays for prediction feedbacks
13
14 | % input_variables - 2 row cell containing variable names in first
```

```
15 |% row and column number in second. For example, 'MET_WB1'
16
   % contains multiple columns of data but only some may be used
17
   % for NARX predictions
   % bias - bias for each trained neural network
18
19
   % weights - weights for each trained neural network (sum to 1)
   % narx_net_closed - neural networks
20
   % frequency - frequency of predictions (hourly=1/24)
22.
   % t time series of JDAY values
23
   % Q - all other inflows and outflows, interpolation settings,
   % storage-elev curve, and tailwater curve
25
   % x - hourly turbine time series (as rows for vectorizing!), integers
   % between 0 and no_of_units
27
   % turb_discharges - matrix the same size as x that includes the turbine
   % discharge flowrates over the time t
   % spill_discharges - spill discharge flowrates
   % mainstem_inflows - structure containing Q, T, and DO with time series
   % data from previous days' optimal solution
32
   % previous_Output - the time series of previous outputs of the
33
   % constituent being predicted by NARX model
34
   % flag - 'do' if predicting DO, to check to make sure not <0 \,
35
   % Optimize_day_by_day - 1 if optimizing daily, 0 if optimizing all together
36
   % Outputs:
37
   % pred vector of NARX model predictions for water quality, with NaN
38
   % values anywhere turb+spill=0
40
   if isempty(x)
41
      pred=[];
42.
   else
43
44
   if isempty(mainstem_inflows)
45
      mainstem_inflows.Q=[];
      mainstem_inflows.T=[];
46
47
      mainstem_inflows.DO=[];
48
49
   if exist('mainstem_inflows', 'var') && isfield(mainstem_inflows, 'Q')
50
      if isempty(mainstem_inflows.Q) mainstem_inflows.Q=[]; end
51
   else
52
      mainstem_inflows.Q=[];
53
   end
54
   if exist('mainstem_inflows', 'var') && isfield(mainstem_inflows, 'T')
55
      if isempty(mainstem_inflows.T) mainstem_inflows.T=[]; end
56
57
      mainstem_inflows.T=[];
58
   end
59
   if exist('mainstem_inflows', 'var') && isfield(mainstem_inflows, 'DO')
      if isempty(mainstem_inflows.DO) mainstem_inflows.DO=[]; end
61
62
      mainstem_inflows.DO=[];
63
   end
64
65
   maxdelay=max([NARX_model.inputDelays'; NARX_model.feedbackDelays']);
66
   data_start=frequency*(maxdelay-1);
67
   timesteps=[t(1)-data_start:frequency:t];
   Output_no0s=interp1(previous_Output(find(previous_Output(:,2)~=0),1),...
68
69
      previous_Output(find(previous_Output(:,2)~=0),2),timesteps)';
70
   clearvars timesteps
71
   y1=con2seq([Output_no0s' nan(1, size(x, 2))]);
72
   timesteps2=[t(1)-data_start:frequency:t t(2:end)];
73
   Inputs=nan(size(timesteps2,2), size(NARX_model.input_variables,2));
   index_QIN_BR1=[]; index_TIN_BR1=[]; index_CIN_BR1=[];
75
   for i=1:size(NARX_model.input_variables,2)
76
       %If mainstem_inflows are provided and the variable is BR1 Q, T, or DO
77
          ~isempty(mainstem_inflows.Q) & ...
78
             isequal(NARX_model.input_variables{1,i},'QIN_BR1')
```

```
79
           index OIN BR1=i;
 80
        end
81
        if ~isempty(mainstem_inflows.T) & ...
82
              isequal(NARX_model.input_variables{1,i},'TIN_BR1')
83
           index_TIN_BR1=i;
84
        end
85
        if ~isempty(mainstem inflows.DO) & ...
86
              isequal(NARX_model.input_variables{1,i},'CIN_BR1')
87
           index_CIN_BR1=i;
88
        end
 89
        Inputs(:,i)=interp1(Q.(sprintf(NARX_model.input_variables{1,i}))(:,1),...
90
           Q.(sprintf(NARX_model.input_variables{1,i}))(:,NARX_model.input_variables
               \hookrightarrow {2,i}+1),...
91
           timesteps2);
92
    end
93
    clearvars i timesteps2
94
    pred=nan(size(x,1), size(x,2));
95
     for i=1:size(x,1) %attempt to vectorize this part later
96
        %Update mainstem_inflows, if necessary
97
        if ~isempty(index_QIN_BR1)
98
           Inputs(size(Inputs, 1) - size(mainstem_inflows.Q, 2) + 1:...
99
              size(Inputs, 1), index_QIN_BR1) = mainstem_inflows.Q(i,:)';
100
101
        if ~isempty(index_TIN_BR1)
102
           Inputs(size(Inputs, 1) - size(mainstem_inflows.T, 2) +1:...
103
              size(Inputs, 1), index_TIN_BR1) = mainstem_inflows.T(i,:)';
104
        end
105
        if ~isempty(index_CIN_BR1)
106
           Inputs(size(Inputs, 1) -size(mainstem_inflows.DO, 2) +1:...
107
              size(Inputs,1),index_CIN_BR1)=mainstem_inflows.DO(i,:)';
108
        end
109
        %Update turbine outflow and spill outflow columns, if necessary
110
        if ~isempty(turb_discharges)
111
           Inputs(size(Inputs, 1) -size(turb_discharges, 2) +...
112
              1:size(Inputs, 1), NARX_model.turb_column) = ...
113
              turb_discharges(i,:)';
114
115
        if ~isempty(spill_discharges)
116
           if Optimize_day_by_day==1 %optimize each day sequentially
117
              Inputs (size (Inputs, 1) -size (turb_discharges, 2) +...
118
                  1:size(Inputs, 1), NARX_model.spill_column) = ...
119
                  spill_discharges(i);
           else %optimize all days together, so each col in spill_discharges is each
120
               → dav
121
              for ii=1:size(spill_discharges,2)
                  spill_values(i, (1/frequency) * (ii-1) +1: (1/frequency) * (ii) +1) = ...
122
123
                     spill_discharges(i,ii);
124
              end
125
              Inputs(size(Inputs,1)-size(turb_discharges,2)+1:...
126
                  size(Inputs, 1), NARX_model.spill_column) = . . .
127
                  spill values(i,:)';
128
              clearvars ii
129
           end
130
        end
131
        u1 = con2seq(Inputs');
132
        if size (NARX_model.narx_net_closed, 2) == 1
133
           if iscell(NARX_model.narx_net_closed)
134
              [p1,Pi1,Ai1,t1]=preparets(NARX_model.narx_net_closed{:},u1,{},y1);
135
              yp1(1,:)=NARX_model.narx_net_closed(:)(p1,Pi1,Ai1);
136
137
               [p1,Pi1,Ai1,t1] = preparets (NARX_model.narx_net_closed,u1,{},y1);
138
              yp1(1,:)=NARX_model.narx_net_closed(p1,Pi1,Ai1);
139
           end
140
        else
```

```
141
           for j=1:size(NARX_model.narx_net_closed,2)
142
              [p1, Pi1, Ai1, t1] = preparets (NARX_model.narx_net_closed{j}, u1, {}, y1);
143
              yp1(j,:)=NARX_model.narx_net_closed{j}(p1,Pi1,Ai1);
144
           end
145
        end
146
        yp1=cell2mat(yp1);
147
        if size (NARX model.weights, 1) == 1
148
           yp1=yp1-NARX_model.bias;
149
           pred(i,:)=yp1;
150
        else
151
           yp1=bsxfun(@minus,yp1,NARX_model.bias);
152
           pred(i,:)=sum(bsxfun(@times,NARX_model.weights,yp1));
153
        end
154
        clearvars yp1
155
    end
156
    clearvars i j
157
    if strcmp(flag,'do')
158
       pred=max(0,pred); %can't have negative concentrations of DO
159
    end
160
    for i=1:size(x,1)
161
        j=[];
162
        if ~isempty(spill_discharges)
163
           if Optimize_day_by_day==1 %optimize each day sequentially
              if all(spill_discharges(i) == 0)
164
165
                  j = find(x(i,:) == 0);
166
              else
167
                 if size(spill_discharges(i,:),2) == 1 %if solving subproblem
168
                     j=[];
169
                 else
170
                     j=find(turb_discharges(i,2:end) == 0 & spill_discharges(i,2:end)
                         \rightarrow ==0); %if solving final solution over all subproblems
171
                 end
172
              end
173
           else %optimize all days together, so each col in spill_discharges is each
               → day
174
              j=find(turb_discharges(i,2:end)==0 & spill_values(i,2:end)==0);
175
           end
176
        else
177
           j=find(x(i,:)==0 & interp1(Q.QOT_BR1_S(:,1),Q.QOT_BR1_S(:,2),t(2:end))==0)
178
        end
179
        pred(i, j) = nan;
180
     end
181
    clearvars i j spill_values
182
183
    end
```

NARX_retrain_trpt.m

```
Retrain temperature and DO NARX models for wb
1
2
    %For each iteration, add the new W2 validation run data to the training data set
       \hookrightarrow , and then retrain. This means the training set grows with each iteration
       \hookrightarrow .
3
4
   wb=1; %Assume 1 wb system for now
5
6
    if ~exist('Inputs')
7
       Inputs(wb).discharge_DO=[];
8
       Inputs(wb).discharge_Temp=[];
9
   end
10
   %% DO validation run
11
12 | if WQ{wb}.DO_valid_check==1
```

```
13
       if size(trainingpop, 1) > 0
          for trindex=1:size(trainingpop, 1)
14
15
             index=size(Inputs{wb}.discharge_DO, 2);
16
             timesteps=[t_all(1)-max(WQ{wb}.DO_narx.inputDelays)/24:(1/24):t_all(end
                 \hookrightarrow ) ]';
17
             vars=WQ{wb}.DO_narx.input_variables;
18
             Inputs{wb}.discharge DO{index+1}=[];
19
             for i=1:size(vars,2)
20
                if strfind(char(vars(1,i)),'TIN')
21
                    flow_variable=strrep(char(vars(1,i)),'TIN','QIN');
22
                 elseif strfind(char(vars(1,i)),'CIN')
23
                    flow_variable=strrep(char(vars(1,i)),'CIN','QIN');
24
                elseif strfind(char(vars(1,i)),'TTR')
25
                    flow_variable=strrep(char(vars(1,i)),'TTR','QTR');
26
                elseif strfind(char(vars(1,i)),'CTR')
27
                    flow_variable=strrep(char(vars(1,i)),'CTR','QTR');
28
                else
29
                    flow_variable=char(vars(1,i));
30
                end
31
                if ~strcmp(char(vars(1,i)),'MET_WB1') %assume interpolation for MET

→ data
32
                    for ii=1:size(Qtrainingpop{trindex}{wb}.interpolation,2)
33
                       if strcmp(char(Qtrainingpop{trindex){wb}.interpolation(1,ii)),
                           → flow_variable)
34
                          break
35
                       end
36
                    end
37
                    if strcmp(char(Qtrainingpop{trindex){wb}.interpolation(3,ii)),'ON
                        \hookrightarrow ')
38
                       Inputs{wb}.discharge_DO{index+1}(:,i)=interp1(Qtrainingpop{
                           → trindex}{wb}.(vars{1,i})(:,1),...
39
                          Qtrainingpop{trindex}{wb}.(vars{1,i})(:,vars{2,i}+1),
                              → timesteps);
40
                    elseif strcmp(char(Qtrainingpop{trindex){wb}.interpolation(3,ii))
                        → ,'OFF')
41
                       for iii=1:size(timesteps,1)
42
                          index2=find(Qtrainingpop{trindex}{wb}.(vars{1,i})(:,1)<=</pre>
                              → timesteps(ii),1,'last');
43
                          Inputs{wb}.discharge_DO{index+1}(iii,i)=Qtrainingpop{
                              \hookrightarrow trindex}{wb}.(vars{1,i})(index2,vars{2,i}+1);
44
                       end
45
                    end
46
                else
47
                    Inputs{wb}.discharge_DO{index+1}(:,i)=interp1(Qtrainingpop{

    trindex}{wb}.(vars{1,i})(:,1),...

48
                       Qtrainingpop{trindex}{wb}.(vars{1,i})(:,vars{2,i}+1),timesteps
                           \hookrightarrow );
49
                 end
50
             end
51
             DO_noNAN=interp1(DO{trindex}(~isnan(DO{trindex}(:,2)),1),...
52
                DO{trindex}(~isnan(DO{trindex}(:,2)),2),timesteps);
53
             %Fill in Nans at the end
54
             a=DO_noNAN(~isnan(DO_noNAN)); DO_noNAN(isnan(DO_noNAN)) = a (end);
55
             turbs=interp1(Qtrainingpop{trindex}{wb}.QOT_BR1_T(:,1),Qtrainingpop{

    trindex}{wb}.QOT_BR1_T(:,2),timesteps);
             spills=interp1(Qtrainingpop{trindex){wb}.QOT_BR1_S(:,1),Qtrainingpop{
56
                 → trindex} {wb}.QOT_BR1_S(:,2),timesteps);
57
             flowout=turbs+spills; DO_noNAN(flowout==0)=nan;
58
59
             %Output data
60
             Output {wb}.discharge_DO{index+1}(:,1)=DO_noNAN;
61
          end
62
       end
63
       for i=1:size(Inputs{wb}.discharge_DO, 2)
```

```
64
           %Convert to cells
65
           Inputs_seq{wb}.discharge_DO{i}=con2seq(Inputs{wb}.discharge_DO{i}');
66
           Output_seq{wb}.discharge_DO{i}=con2seq(Output{wb}.discharge_DO{i}');
67
       end
68
       clearvars i ii iii flow_variable index a DO_noNAN turbs spills flowout index2
           → vars timesteps
69
70
        %Combine them all into single Input and Output cell arrays
71
        Inputs_seq_mul{wb}.discharge_DO=catsamples(Inputs_seq{wb}.discharge_DO{:},'
           \hookrightarrow pad');
72
       Output_seq_mul{wb}.discharge_DO=catsamples(Output_seq{wb}.discharge_DO{:},'
           \hookrightarrow pad');
 73
74
        %Train DO model - start with best DO model from before (greatest weight)
75
        fprintf(['Training 5 DO models and picking the best \n'])
76
        for i=1:5
77
           inputDelays = [0 1 12];
78
           feedbackDelays = [1];
79
          hiddenNeurons=[10];
80
          narx_net{i} = narxnet(inputDelays, feedbackDelays, hiddenNeurons);
81
          narx_net{i}.divideFcn = 'dividerand';
82
           % The property DIVIDEMODE set to TIMESTEP means that targets are divided
83
           % into training, validation and test sets according to timesteps.
           % For a list of data division modes type: help nntype_data_division_mode
84
85
          narx_net{i}.divideMode = 'time'; % Divide up every value
86
          narx_net{i}.divideParam.trainRatio = 70/100;
87
          narx_net{i}.divideParam.valRatio = 15/100;
88
          narx_net{i}.divideParam.testRatio = 15/100;
89
          narx_net{i}.trainParam.min_grad = 1e-10;
90
          narx_net{i}.trainFcn = 'trainlm';
91
          narx_net{i}.trainParam.showWindow=0;
92
          narx_net{i}.trainParam.showCommandLine=1;
93
           [Xs, Xi, Ai, Ts] = preparets (narx_net{i}, Inputs_seq_mul{wb}.discharge_DO, {},
94
              Output_seq_mul{wb}.discharge_DO);
95
           [narx_net{i},~]=train(narx_net{i},Xs,Ts,Xi,Ai,'UseParallel','yes');
96
          narx_net_closed{i} = closeloop(narx_net{i});
97
           narx_net_closed{i}.trainParam.mu_max=1e14;
98
           [Xs, Xi, Ai, Ts]=preparets(narx_net_closed{i},Inputs_seq_mul{wb}.discharge_DO
              → , { } , ...
99
              Output_seq_mul{wb}.discharge_DO);
100
           [narx_net_closed{i},tr{i}]=train(narx_net_closed{i},Xs,Ts,Xi,Ai,'
              → UseParallel','yes');
101
       end
102
        for i=1:5 tr2(i)=tr{i}.best_perf; end
103
        [~,b]=min(tr2); WQ{wb}.DO_narx.narx_net_closed=narx_net_closed{b};
104
       yp1= WQ{wb}.DO_narx.narx_net_closed(Xs,Xi,Ai);
105
        %Calculate bias & standard dev using only predictions at test timepoints
106
       bias=cell2mat(yp1(tr{b}.testInd))-cell2mat(Ts(tr{b}.testInd)); bias=nanmean(
           \hookrightarrow bias);
107
       allerrors=(cell2mat(yp1(tr{b}.testInd))-bias)-cell2mat(Ts(tr{b}.testInd));
108
        allerrors=allerrors(~isnan(allerrors));
109
        [~, sigmahat] = normfit(allerrors);
110
       WQ{wb}.DO_narx.bias=bias;
       WQ{wb}.DO_narx.weights=1;
111
112
       WQ{wb}.DO_narx.inputDelays=inputDelays;
113
       WQ{wb}.DO_narx.std_dev=sigmahat;
114
       WQ{wb}.DO_narx.Inputs=Inputs{wb}.discharge_DO;
115
       WQ{wb}.DO_narx.Output=Output{wb}.discharge_DO;
116
       if isfield(WQ{wb}.DO_narx,'train_time')
117
           WQ{wb}.DO_narx=rmfield(WQ{wb}.DO_narx, {'train_time'});
118
119
        if isfield(WQ{wb}.DO_narx,'Discharge_DO_no0s')
120
           WQ{wb}.DO_narx=rmfield(WQ{wb}.DO_narx,{'Discharge_DO_no0s'});
```

```
121
       end
122
        clearvars b Xs Xi Ai Ts tr tr2 b yp1 TS bias narx_net_closed narx_net muhat

→ sigmahat

123
    end
124
125
    %% Temp validation run
126
    if WO(wb). Temp valid check==1
127
        if size(trainingpop, 1) > 0
128
           for trindex=1:size(trainingpop, 1)
129
              index=size(Inputs{wb}.discharge_Temp,2);
130
              timesteps=[t_all(1)-max(WQ{wb}.Temp_narx.inputDelays)/24:(1/24):t_all(
                  \hookrightarrow end)]';
131
              vars=WQ{wb}.Temp_narx.input_variables;
132
              Inputs(wb).discharge_Temp(index+1)=[];
133
              for i=1:size(vars,2)
134
                 if strfind(char(vars(1,i)),'TIN')
135
                    flow_variable=strrep(char(vars(1,i)),'TIN','QIN');
136
                 elseif strfind(char(vars(1,i)),'CIN')
137
                     flow_variable=strrep(char(vars(1,i)),'CIN','QIN');
138
                 elseif strfind(char(vars(1,i)),'TTR')
139
                     flow_variable=strrep(char(vars(1,i)),'TTR','QTR');
140
                 elseif strfind(char(vars(1,i)),'CTR')
141
                     flow_variable=strrep(char(vars(1,i)),'CTR','QTR');
142
                 else
143
                    flow_variable=char(vars(1,i));
144
                 end
145
                 if ~strcmp(char(vars(1,i)),'MET_WB1') %assume interpolation for MET
146
                     for ii=1:size(Qtrainingpop{trindex}{wb}.interpolation,2)
147
                        if strcmp(char(Qtrainingpop{trindex){wb}.interpolation(1,ii)),
                            → flow_variable)
148
149
                        end
150
                    end
151
                    if strcmp(char(Qtrainingpop{trindex}{wb}.interpolation(3,ii)),'ON
152
                        Inputs{wb}.discharge_Temp{index+1}(:,i)=interp1(Qtrainingpop{
                            \hookrightarrow trindex}{wb}.(vars{1,i})(:,1),...
153
                           Qtrainingpop{trindex}{wb}.(vars{1,i})(:,vars{2,i}+1),
                               → timesteps);
154
                    elseif strcmp(char(Qtrainingpop{trindex){wb}.interpolation(3,ii))
                        → ,'OFF')
155
                        for iii=1:size(timesteps,1)
156
                           index2=find(Qtrainingpop{trindex}{wb}.(vars{1,i})(:,1)<=</pre>
                               → timesteps(ii),1,'last');
157
                           Inputs(wb).discharge Temp{index+1}(iii,i)=Otrainingpop{
                               \hookrightarrow trindex}{wb}.(vars{1,i})(index2,vars{2,i}+1);
158
                        end
159
                    end
160
                 else
161
                    Inputs{wb}.discharge_Temp{index+1}(:,i)=interp1(Qtrainingpop{

→ trindex} {wb}.(vars{1,i})(:,1),...
162
                        Qtrainingpop{trindex}{wb}.(vars{1,i})(:,vars{2,i}+1),timesteps
                            \hookrightarrow );
163
                 end
164
165
              T_noNAN=interp1(T{trindex}(~isnan(T{trindex}(:,2)),1),...
166
                 T{trindex}(~isnan(T{trindex}(:,2)),2),timesteps);
167
              %Fill in Nans at the end
168
              a=T_noNAN(~isnan(T_noNAN)); T_noNAN(isnan(T_noNAN))=a(end);
169
              turbs=interp1(Qtrainingpop{trindex}{wb}.QOT_BR1_T(:,1),Qtrainingpop{
                  → trindex} {wb}.QOT_BR1_T(:,2),timesteps);
170
              spills=interp1(Qtrainingpop{trindex}{wb}.QOT_BR1_S(:,1),Qtrainingpop{
                  → trindex} {wb}.QOT_BR1_S(:,2),timesteps);
```

```
171
              flowout=turbs+spills; T_noNAN(flowout==0)=nan;
172
173
              %Output data
174
              Output {wb}.discharge_Temp{index+1}(:,1)=T_noNAN;
175
          end
176
       end
177
        for i=1:size(Inputs{wb}.discharge Temp,2)
178
           %Convert to cells
179
           Inputs_seq{wb}.discharge_Temp{i}=con2seq(Inputs{wb}.discharge_Temp{i}');
180
          Output_seq{wb}.discharge_Temp{i}=con2seq(Output{wb}.discharge_Temp{i}');
181
       end
182
       clearvars i ii iii flow_variable index a T_noNAN turbs spills flowout index2
           → vars timesteps
183
184
        %Combine them all into single Input and Output cell arrays
185
        Inputs_seq_mul{wb}.discharge_Temp=catsamples(Inputs_seq{wb}.discharge_Temp
           → {:},'pad');
186
       Output_seq_mul{wb}.discharge_Temp=catsamples(Output_seq{wb}.discharge_Temp
           → {:},'pad');
187
188
        %Train temp model - start with best DO model from before (greatest weight)
189
        fprintf(['Training 5 temperature models and picking the best <math>n'])
190
        for i=1:5
191
           inputDelays = [0 \ 1 \ 12];
192
           feedbackDelays = [1];
193
          hiddenNeurons=[10];
194
          narx_net{i} = narxnet(inputDelays, feedbackDelays, hiddenNeurons);
195
          narx_net{i}.divideFcn = 'dividerand';
196
          % The property DIVIDEMODE set to TIMESTEP means that targets are divided
197
          % into training, validation and test sets according to timesteps.
198
          % For a list of data division modes type: help nntype_data_division_mode
199
          narx_net{i}.divideMode = 'time'; % Divide up every value
200
          narx_net{i}.divideParam.trainRatio = 70/100;
201
          narx_net{i}.divideParam.valRatio = 15/100;
          narx_net{i}.divideParam.testRatio = 15/100;
202
203
          narx_net{i}.trainParam.min_grad = 1e-10;
204
          narx_net{i}.trainFcn = 'trainlm';
205
          narx_net{i}.trainParam.showWindow=0;
206
          narx_net{i}.trainParam.showCommandLine=1;
207
           [Xs,Xi,Ai,Ts]=preparets(narx_net{i},Inputs_seq_mul{wb}.discharge_Temp,{},
208
              Output_seq_mul{wb}.discharge_Temp);
209
           [narx_net{i},~]=train(narx_net{i},Xs,Ts,Xi,Ai,'UseParallel','yes');
210
          narx_net_closed{i} = closeloop(narx_net{i});
211
          narx_net_closed{i}.trainParam.mu_max=1e14;
212
           [Xs, Xi, Ai, Ts] = preparets (narx_net_closed{i}, Inputs_seq_mul{wb}.

    discharge_Temp, { }, ...

213
              Output_seq_mul{wb}.discharge_Temp);
214
           [narx_net_closed{i},tr{i}]=train(narx_net_closed{i},Xs,Ts,Xi,Ai,'
              → UseParallel','yes');
215
       end
216
        for i=1:5 tr2(i)=tr{i}.best_perf; end
217
        [~,b]=min(tr2); WQ{wb}.Temp_narx.narx_net_closed=narx_net_closed{b};
218
       yp1= WQ{wb}.Temp_narx.narx_net_closed(Xs,Xi,Ai);
219
        %Calculate bias & standard dev using only predictions at test timepoints
220
       bias=cell2mat(yp1(tr{b}.testInd))-cell2mat(Ts(tr{b}.testInd)); bias=nanmean(
           \hookrightarrow bias);
221
       allerrors=(cell2mat(yp1(tr{b}.testInd))-bias)-cell2mat(Ts(tr{b}.testInd));
222
       allerrors=allerrors(~isnan(allerrors));
223
        [~, sigmahat] = normfit(allerrors);
224
       WQ{wb}.Temp_narx.bias=bias;
225
       WQ{wb}.Temp_narx.weights=1;
226
       WQ{wb}.Temp_narx.inputDelays=inputDelays;
       WQ{wb}.Temp_narx.std_dev=sigmahat;
227
```

```
228
       WQ{wb}.Temp_narx.Inputs=Inputs{wb}.discharge_Temp;
229
       WQ{wb}.Temp_narx.Output=Output{wb}.discharge_Temp;
230
       if isfield(WQ{wb}.Temp_narx,'train_time')
231
           WQ{wb}.Temp_narx=rmfield(WQ{wb}.Temp_narx, {'train_time'});
232
233
       if isfield(WQ{wb}.Temp_narx,'Discharge_temp_no0s')
          WQ{wb}.Temp_narx=rmfield(WQ{wb}.Temp_narx,{'Discharge_temp_no0s'});
234
235
236
       clearvars b Xs Xi Ai Ts tr tr2 yp1 TS bias narx_net_closed narx_net muhat
           → sigmahat
237
    end
238
    clearvars timesteps
```

obj_fcn.m

```
1
    function y=obj_fcn(x_allwb,t,cost_curve_MW,MW_rating,...
2
       elev_soft_penalty_coeff, ELWS_targets, frequency, Q, ic_elev, ...
 3
       turbine_discharge, cache, Optimize_day_by_day)
 4
 5
   % Calculates value of generation pattern over time t
 6
7
   % Inputs:
 8
   % x_allwb - hourly turbine time series (as rows for vectorizing!),
   % integers between 0 and no_of_units for all waterbodies
10
   % t time series of JDAY values
   % cost_curve_MW 2 row matrix to create step function, with 1st row
11
12
   % being hours and 2nd row $/MW-hr values
13
   % MW_rating - the fixed MW level of turbine_discharge_curve (25 MW for
14
   % OHL)
15
   % elev_soft_penalty_coeff - penalty coefficient for soft ending elev soft
16
   % constraint
17
   % ELWS_targets - target elevations for end of time period
18
   % frequency - frequency of predictions (hourly=1/24)
   % Q - all other inflows and outflows, interpolation settings,
20
   % storage-elev curve, and tailwater curve (all in meters)
2.1
   % ic_elev - initial elevation condition (m)
22
   % turbine_discharge - turbine discharge curve at fixed MW level, with
   % col 1 in meters and col 2 in cms
   \mbox{\ensuremath{\$}} cache - water quality predictions provided by W2 simulations
25
   % Optimize_day_by_day - 1 if optimizing daily, 0 if optimizing all together
26
   % Outputs:
27
   % y total price in $ of generation pattern
29
   x_allwb=round(x_allwb);
30
31
   y=zeros(size(x_allwb,1),1);
32
33
    %Split up rows of x to separate reservoirs
34
    for wb=1:size(MW_rating,2)
35
       x\{wb\}=x_allwb(:,wb*(size(t,2)-1)-(size(t,2)-2):wb*(size(t,2)-1));
36
   end
37
   clearvars wb
38
39
   for wb=1:size(MW_rating,2)
40
41
       %Calculate turbine output over 10 days
42
       %Multiply each turbine output by number of turbines online
43
      output_MW{wb}=x{wb}*MW_rating{wb}; %MW
44
45
       %Calculate total power output
46
      y_MWh{wb}=sum(output_MW{wb}')';
       %Calculate weighted price output
47
48
      y_dollars{wb}=cost_curve(t,output_MW{wb},cost_curve_MW{wb}');
```

```
49
50
       Calculate deviation from ELWS target and subtract/add penalty
51
52
          %Preallocate mainstem_inflows for following wbs
53
          mainstem_inflows=cell(1:size(MW_rating,2));
54
          for i=1:size(MW_rating,2)
55
             mainstem inflows{i}.t=[];
56
             mainstem_inflows{i}.Q=[];
57
          end
58
          clearvars i
59
          [turb_discharges{wb}, spill_discharges{wb}, HWs{wb},~,~] = ...
60
             activeunits_to_discharges(x{wb},t,frequency,...
61
             Q{wb},ic_elev{wb},turbine_discharge{wb},ELWS_targets{wb},...
62
             [],[],Optimize_day_by_day);
63
       else
64
          [turb_discharges{wb}, spill_discharges{wb}, HWs{wb}, ~,~] = ...
65
             activeunits_to_discharges(x{wb},t,frequency,...
66
             Q{wb},ic_elev{wb},turbine_discharge{wb},ELWS_targets{wb},...
67
             mainstem_inflows{wb}.t, mainstem_inflows{wb}.Q, Optimize_day_by_day);
68
       end
69
70
       %ELWS end goal
71
       if size(ELWS_targets{wb}(:,1),1) ==1
72.
          ELWS_goal{wb}=ELWS_targets{wb}(:,2);
73
       else
74
          ELWS_goal{wb}=interp1(ELWS_targets{wb}(:,1),ELWS_targets{wb}(:,2),t(end));
75
76
       ELWS_error{wb}=HWs{wb} (:,end)-ELWS_goal{wb};
77
       ELWS_deduction{wb} = (ELWS_error{wb}.^2) *elev_soft_penalty_coeff(wb);
78
79
       y=y+y_dollars{wb}-ELWS_deduction{wb};
80
81
       %If we haven't reached the last reservoir, update mainstem_inflows
82
       if wb~=size(ic_elev,2)
83
          mainstem_inflows{wb+1}.t=t;
84
          mainstem_inflows{wb+1}.Q=bsxfun(@plus,turb_discharges{wb},spill_discharges
              \hookrightarrow {wb});
85
       end
86
87
   end
```

obj_fcn_do.m

```
1
   function y=obj_fcn_do(x_allwb,t,frequency,Q,ic_elev,...
      turbine_discharge, WQ, xprev, ELWS_targets, level, waterbody, cache,
2
          → Optimize_day_by_day)
3
 4
   % Objective function to minimize DO constraint violation
 5
6
   % x_allwb - hourly turbine time series (as rows for vectorizing!),
   % integers between 0 and no_of_units for all waterbodies
   % t time series of JDAY values
   % frequency - frequency of predictions (hourly=1/24)
11
   % Q - all other inflows and outflows, interpolation settings,
12
   % storage-elev curve, and tailwater curve (all in meters)
13
   % ic_elev - initial elevation condition (m)
   % turbine_discharge - turbine discharge curve at fixed MW level, with
14
15
   % col 1 in meters and col 2 in cms
16
   \mbox{\%} WQ - structure containing water quality constraints and NARX models
   % DO_narx - structure containing everything needed to make DO discharge
17
   % predictions, including:
18
19 |% turb_colum - column in exogenous variables with turb flows
```

```
20 | % spill_column - column in exogenous variables with spill flows
2.1
   % times - JDAY values used in training (not used)
   % inputDelays - delays for exogenous inputs
   % feedbackDelays - delays for prediction feedbacks
   % input_variables - 2 row cell containing variable names in first
   % row and column number in second. For example, 'MET_WB1'
   % contains multiple columns of data but only some may be used
   % for NARX predictions
   % bias - bias for each trained neural network
29
   % weights - weights for each trained neural network (sum to 1)
30
   \mbox{\ensuremath{\$}} narx_net_closed - neural networks
   % DO_limit - lower and upper DO limits (NaN means it doesn't exist)
   % DO_slack - relaxation from DO_limit (either upper or lower -
33
   % doesn't make sense to have both)
34
   % predictions, including:
   % turb_colum - column in exogenous variables with turb flows
37
   % spill_column - column in exogenous variables with spill flows
38
   % times - JDAY values used in training (not used)
39
   % inputDelays - delays for exogenous inputs
40
   \mbox{\ensuremath{\$}} feedbackDelays - delays for prediction feedbacks
41
   % input_variables - 2 row cell containing variable names in first
42
   % row and column number in second. For example, 'MET_WB1'
43
   % contains multiple columns of data but only some may be used
   % for NARX predictions
   % bias - bias for each trained neural network
   % weights - weights for each trained neural network (sum to 1)
47
   % narx_net_closed - neural networks
   % Temp_limit - lower and upper temp limits (NaN means it doesn't exist)
   % Temp_slack - relaxation from Temp_limit (either upper or lower -
   % doesn't make sense to have both)
51
   % ELWS_targets - 2 column matrix with JDAY in col1 and elevation target
52
   % in col2
53
   % level - 'upper' or 'lower'
   % waterbody - which waterbody we're checking the discharge DO for
   % cache - water quality predictions provided by W2 simulations
   % Optimize_day_by_day - 1 if optimizing daily, 0 if optimizing all together
57
   % Outputs:
58
   % y DO constraint violation for each scenario in x
59
   %If using the cache, get list of cache indices here
60
61
   [~,~,tib]=intersect(t,cache.t);
62
   if Optimize_day_by_day==0 & size(ic_elev,2)==1 & ~isempty(cache.x)
63
      [ia, ib] = ismember(x_allwb, cache.x, 'rows');
64
65
      index=find(cache.t==t(1)); %last index for previous operations
66
      if index==1 %first day
67
         [ia,ib]=ismember(x_allwb,cache.x(:,index:index+23),'rows');
68
69
          [ia,ib]=ismember([repmat(xprev{1}(size(xprev{1},2)-tib(1)+2:end),...
            size(x_allwb,1),1) x_allwb], cache.x(:,1:index+23),'rows'); %fix later
70

→ to solve multi waterbody problems

71
      end
72
   end
73
   ia=find(ia==1); ib=ib(ib~=0);
74
   if ~isempty(ia) fprintf(['Cached points here: ', num2str(ib'), '\n']); end
75
76
   %Split up rows of x to separate reservoirs
77
   for wb=1:waterbody
78
      x\{wb\}=x_allwb(:,wb*(size(t,2)-1)-(size(t,2)-2):wb*(size(t,2)-1));
79
80
   clearvars wb
81
82 | %Calculate headwater elevs for constraints
```

```
83
    for wb=1:waterbody
84
        %Calculate headwater elevs for constraints
85
        if wb==1
86
           mainstem_inflows{wb}.t=[];
87
           mainstem_inflows{wb}.Q=[];
88
           %Check to see if any cached rows can be skipped by elev calcs
89
           if ~isemptv(ia)
90
              [HWcalcrows, b] = setdiff(1:size(x_allwb,1),ia);
91
              x_HWcalcrows=x{wb} (HWcalcrows,:);
92
              [turb_discharges{wb}(b,:),spill_discharges{wb}(b,:),HWs{wb}(b,:),~,~] =
 93
                 activeunits_to_discharges(x_HWcalcrows,t,...
94
                 frequency,Q{wb},ic_elev{wb},turbine_discharge{wb},...
95
                 ELWS_targets{wb},[],[],Optimize_day_by_day);
96
              HWs\{wb\}\ (setdiff(1:size(x_allwb,1),b),:) = cache.HWs(ib,tib);
97
           else
98
           [turb_discharges{wb}, spill_discharges{wb}, HWs{wb}, ~,~] = ...
99
              activeunits_to_discharges(x{wb},t,frequency,...
100
              Q{wb},ic_elev{wb},turbine_discharge{wb},ELWS_targets{wb},...
101
              [],[],Optimize_day_by_day);
102
           end
103
        else
104
           [turb_discharges{wb}, spill_discharges{wb}, HWs{wb},~,~] = ...
105
              activeunits_to_discharges(x{wb},t,frequency,...
106
              Q{wb},ic_elev{wb},turbine_discharge{wb},ELWS_targets{wb},...
107
              mainstem_inflows{wb}.t,mainstem_inflows{wb}.Q,Optimize_day_by_day);
108
109
        %If we haven't reached the last reservoir, update mainstem_inflows.Q (include
            → both turbine + spill incoming!) and mainstem_inflows.t
110
        if wb~=size(ic_elev,2)
111
           mainstem_inflows{wb+1}.Q=...
112
              bsxfun(@plus,turb_discharges{wb},spill_discharges{wb});
113
           mainstem_inflows{wb+1}.t=t;
114
        end
115
    end
116
117
    for wb=1:waterbody
118
119
        if wh^{-}=1
120
           mainstem_inflows_temp{wb}.t=mainstem_inflows{wb}.t;
121
           mainstem_inflows_temp{wb}.Q=mainstem_inflows{wb}.Q;
122
           mainstem_inflows_temp{wb}.T=mainstem_inflows{wb}.T;
123
           mainstem_inflows_temp{wb}.DO=mainstem_inflows{wb}.DO;
124
           %Remove Nan values and interpolate for T and DO
125
           for i=1:size(x{wb},1)
126
              extrap index=~isnan(mainstem inflows temp{wb}.T(i,:));
127
              [~,c]=find(extrap_index==1); extrap_index=c(end);
128
              mainstem_inflows_temp{wb}.T(i,:)=...
129
                 interp1 (mainstem_inflows_temp{wb}.t(1, ~isnan(mainstem_inflows_temp{
                     \hookrightarrow wb}.T(i,:))),...
130
                 mainstem_inflows_temp{wb}.T(i,~isnan(mainstem_inflows_temp{wb}.T(i
                     \hookrightarrow ,:))),...
131
                 mainstem_inflows_temp{wb}.t,'linear',...
132
                 mainstem_inflows_temp{wb}.T(i,extrap_index));
133
              mainstem_inflows_temp{wb}.DO(i,:)=...
134
                 interp1 (mainstem_inflows_temp{wb}.t(1,~isnan(mainstem_inflows_temp{
                     \hookrightarrow wb}.DO(i,:))),...
135
                 mainstem_inflows_temp{wb}.DO(i, ~isnan(mainstem_inflows_temp{wb}.DO(i)
                     \hookrightarrow ,:))),...
136
                 \verb|mainstem_inflows_temp{wb}.t, \verb|'linear'|, \dots
137
                 mainstem_inflows_temp{wb}.DO(i,extrap_index));
138
              clearvars extrap_index c
139
           end
140
           clearvars i
```

```
141
        end
142
143
        %Discharge Temp estimation, to update incoming mainstem temp for next
            → waterbody discharge DO estimation
144
        Temp_narx=WQ{wb}.Temp_narx;
145
        if wb==1 & waterbody~=1 %don't need to search cache for incoming temp,
           → because cache is only set up for 1 wb problems
146
           Temp_pred{wb}=...
147
              narx_predictions(Temp_narx, frequency, t, Q{wb}, x{wb},...
148
              turb_discharges{wb}, spill_discharges{wb}, [],...
149
              Q{wb}.TWO,'temp',Optimize_day_by_day);
        elseif wb~=1 & wb~=waterbody
150
151
           Temp_pred{wb}=narx_predictions(Temp_narx, frequency, t, Q{wb}, x{wb},...
152
              turb_discharges{wb}, spill_discharges{wb},...
153
              mainstem_inflows_temp{wb},Q{wb}.TWO,'temp',Optimize_day_by_day);
154
        end
155
        %If we haven't reached the last reservoir, update mainstem_inflows.T
156
        if wb~=waterbody
157
           mainstem_inflows{wb+1}.T(1:size(x{wb},1),1)=...
158
              interp1 (Q{wb}.TWO(:,1),Q{wb}.TWO(:,2),t(1));
159
           mainstem_inflows{wb+1}.T(:,2:size(Temp_pred{wb},2)+1)=...
160
              Temp_pred{wb};
161
        end
162
163
        %Now move on to DO....
164
        DO_narx=WQ{wb}.DO_narx; DO_limit=WQ{wb}.DO_limit;
165
        if wh==1
166
           if ~isempty(ia)
167
              [DOcalcrows, b] = setdiff(1:size(x_allwb,1),ia);
168
              x_DOcalcrows=x{wb} (DOcalcrows,:);
169
              DO_pred\{wb\} (b, :) = ...
170
                 narx_predictions(DO_narx,...
171
                 frequency, t, Q{wb}, x_DOcalcrows, ...
172
                 turb_discharges{wb} (DOcalcrows,:),...
173
                 spill_discharges{wb} (DOcalcrows,:),[],...
174
                 Q{wb}.CWO,'do',Optimize_day_by_day);
175
              DO_pred{wb} (ia,:) = cache.DO (ib, tib(1:end-1));
176
              clearvars DOcalcrows x_DOcalcrows b
177
           else
178
              DO_pred{wb}=narx_predictions(DO_narx,frequency,t,Q{wb},x{wb},...
179
                 turb_discharges{wb}, spill_discharges{wb},[],...
180
                 Q{wb}.CWO,'do',Optimize_day_by_day);
181
           end
182
        else
183
           DO_pred{wb}=narx_predictions(DO_narx, frequency, t, Q{wb}, x{wb},...
184
              turb_discharges{wb}, spill_discharges{wb},...
185
              mainstem_inflows_temp{wb},Q{wb}.CWO,'do',Optimize_day_by_day);
186
        end
187
        %If we haven't reached the last reservoir, update mainstem_inflows.DO
188
        if wb~=waterbody
189
           mainstem_inflows{wb+1}.DO(1:size(x{wb},1),1)=...
190
              interp1(Q{wb}.CWO(:,1),Q{wb}.CWO(:,2),t(1));
191
           mainstem_inflows\{wb+1\}.DO(:,2:size(DO_pred\{wb\},2)+1)=...
192
              DO_pred{wb};
193
        else
194
           non_nan_count=sum(~isnan(DO_pred{wb}),2);
195
           if strcmp(level,'lower')
196
              %DO violations - lower
197
              if isnan(DO_limit(1))
198
                 DO_violations=zeros(size(DO_pred{wb},1),1);
199
              else
200
                 DO_violations=sum(-min(0,DO_pred{wb}-DO_limit(1)),2)./non_nan_count;
201
              end
           elseif strcmp(level,'upper')
202
```

```
203
              %DO violations - upper
204
              if isnan(DO_limit(2))
205
                 DO_violations=zeros(size(DO_pred{wb},1),1);
206
              else
207
                 DO_violations=sum(max(0,DO_pred{wb}-DO_limit(2)),2)./non_nan_count;
208
              end
209
           end
210
211
           y=max(DO_violations,[],2);
212
        end
213
    end
```

obj_fcn_elev.m

```
function y=obj_fcn_elev(x_allwb,t,frequency,Q,ic_elev,...
 2
       turbine_discharge, ELWS_limit, xprev, ELWS_targets, level, waterbody, cache, ...
3
       Optimize_day_by_day)
 4
 5
   % Objective function to minimize elevation constraint violation
 6
 7
 8
   % x_allwb - hourly turbine time series (as rows for vectorizing!),
   % integers between 0 and no_of_units for all waterbodies
   % t time series of JDAY values
11
   % frequency - frequency of predictions (hourly=1/24)
12
   % Q - all other inflows and outflows, interpolation settings,
13
   % storage-elev curve, and tailwater curve (all in meters)
14
   % ic_elev - initial elevation condition (m)
15
   % turbine_discharge - turbine discharge curve at fixed MW level, with
16
   % col 1 in meters and col 2 in cms
17
   % ELWS_limit - min and max elevation limits for constraints, in meters
18
   % ELWS_targets - 2 column matrix with JDAY in coll and elevation target
19
   % in col2
   % level - 'upper' or 'lower'
21
   % waterbody - which waterbody we're checking elevation for
22
   \mbox{\ensuremath{\$}} cache - water quality predictions provided by W2 simulations
23
   % Optimize_day_by_day - 1 if optimizing daily, 0 if optimizing all together
24
   % Outputs:
25
   % y elevation constraint violation for each scenario in x
26
27
   %If using the cache, get list of cache indices here
28
   [~,~,tib]=intersect(t,cache.t);
   if Optimize_day_by_day==0 & size(ic_elev,2)==1 & ~isempty(cache.x)
30
       [ia,ib]=ismember(x_allwb,cache.x,'rows');
31
   else
32
       index=find(cache.t==t(1)); %last index for previous operations
33
       if index==1 %first day
34
          [ia, ib] = ismember(x_allwb, cache.x(:, index:index+23), 'rows');
35
       else
36
          [ia, ib] = ismember([repmat(xprev{1}(size(xprev{1},2)-tib(1)+2:end),...
37
             size(x_allwb,1),1) x_allwb],cache.x(:,1:index+23),'rows'); %fix later
                 \hookrightarrow to solve multi waterbody problems
38
       end
39
   end
40
   ia=find(ia==1); ib=ib(ib~=0);
41
   if ~isempty(ia) fprintf(['Cached points here: ', num2str(ib'), '\n']); end
42
43
    %Split up rows of x to separate reservoirs
44
   for wb=1:waterbody
45
      x\{wb\}=x_allwb(:,wb*(size(t,2)-1)-(size(t,2)-2):wb*(size(t,2)-1));
46
   end
47
   clearvars wb
48
```

```
49
    for wb=1:waterbody
50
       %Calculate headwater elevs for constraints
51
       if wb==1
52
          mainstem_inflows{wb}.t=[];
53
          mainstem_inflows{wb}.Q=[];
54
           %Check to see if any cached rows can be skipped by elev calcs
55
          if ~isemptv(ia)
56
              [HWcalcrows, b] = setdiff(1:size(x_allwb,1),ia);
57
             x_HWcalcrows=x{wb} (HWcalcrows,:);
58
              [turb_discharges{wb}(b,:),spill_discharges{wb}(b,:),HWs{wb}(b,:),~,~] =
59
                 activeunits_to_discharges(x_HWcalcrows,t,...
60
                 frequency,Q{wb},ic_elev{wb},turbine_discharge{wb},...
                 ELWS_targets{wb},[],[],Optimize_day_by_day);
61
62
             HWs\{wb\}\ (setdiff(1:size(x_allwb,1),b),:) = cache.HWs(ib,tib);
63
          else
64
              [turb_discharges{wb}, spill_discharges{wb}, HWs{wb}, ~,~] = ...
65
                 activeunits_to_discharges(x{wb},t,frequency,...
66
                 Q{wb},ic_elev{wb},turbine_discharge{wb},ELWS_targets{wb},...
67
                 [],[],Optimize_day_by_day);
68
          end
69
       else
70
           [turb_discharges{wb}, spill_discharges{wb}, HWs{wb},~,~] = ...
71
             activeunits_to_discharges(x{wb},t,frequency,...
72
             Q{wb},ic_elev{wb},turbine_discharge{wb},ELWS_targets{wb},...
73
             mainstem_inflows{wb}.t,mainstem_inflows{wb}.Q,Optimize_day_by_day);
74
75
       %If we haven't reached the last reservoir, update mainstem_inflows.Q (include
           → both turbine + spill incoming!) and mainstem_inflows.t
76
       if wb~=size(ic_elev,2)
77
          mainstem_inflows{wb+1}.Q=...
78
             bsxfun(@plus,turb_discharges{wb},spill_discharges{wb});
79
          mainstem_inflows{wb+1}.t=t;
80
       end
81
    end
82
83
    %Inequality constraints:
84
    if strcmp(level,'lower')
85
       %Elevation violations - lower
86
       if isnan(ELWS_limit(1))
87
          deductions=zeros(size(HWs{waterbody}(:,1:end)));
88
       else
89
          deductions=-min(0,HWs{waterbody}(:,1:end)-ELWS_limit(1));
90
       end
91
    elseif strcmp(level,'upper')
92
       %Elevation violations - upper
93
       if isnan(ELWS_limit(2))
94
          deductions=zeros(size(HWs{waterbody}(:,1:end)));
95
       e1se
96
          deductions=max(0, HWs{waterbody}(:,1:end)-ELWS_limit(2));
97
       end
98
    end
99
100
    y=max(deductions,[],2);
```

obj_fcn_temp.m

```
6 % Inputs:
   % x - hourly turbine time series (as rows for vectorizing!), integers
   % between 0 and no_of_units
   % t time series of JDAY values
10
   % frequency - frequency of predictions (hourly=1/24)
11
   % Q - all other inflows and outflows, interpolation settings,
12
   % storage-elev curve, and tailwater curve (all in meters)
   % ic_elev - initial elevation condition (m)
13
   % turbine_discharge - turbine discharge curve at fixed MW level, with
15
   % col 1 in meters and col 2 in cms
   16
17
   % DO_narx - structure containing everything needed to make DO discharge
   % predictions, including:
   % turb_colum - column in exogenous variables with turb flows
19
20
   % spill_column - column in exogenous variables with spill flows
21
   % times - JDAY values used in training (not used)
   % inputDelays - delays for exogenous inputs
23
   % feedbackDelays - delays for prediction feedbacks
24
   % input_variables - 2 row cell containing variable names in first
25
   % row and column number in second. For example, 'MET_WB1'
26
   % contains multiple columns of data but only some may be used
   % for NARX predictions
   % bias - bias for each trained neural network
   % weights - weights for each trained neural network (sum to 1)
   % narx_net_closed - neural networks
   % DO_limit - lower and upper DO limits (NaN means it doesn't exist)
   % DO_slack - relaxation from DO_limit (either upper or lower -
33
   % doesn't make sense to have both)
34
   % Temp_narx - structure containing everything needed to make temp discharge
35
   % predictions, including:
36
   % turb_colum - column in exogenous variables with turb flows
37
   % spill_column - column in exogenous variables with spill flows
38
   % times - JDAY values used in training (not used)
   % inputDelays - delays for exogenous inputs
   % feedbackDelays - delays for prediction feedbacks
   % input_variables - 2 row cell containing variable names in first
   % row and column number in second. For example, 'MET_WB1'
42
43
   % contains multiple columns of data but only some may be used
44
   % for NARX predictions
45
   % bias - bias for each trained neural network
   % weights - weights for each trained neural network (sum to 1)
47
   % narx_net_closed - neural networks
48
   % Temp_limit - lower and upper temp limits (NaN means it doesn't exist)
   % Temp_slack - relaxation from Temp_limit (either upper or lower -
   % doesn't make sense to have both)
   % ELWS_targets - 2 column matrix with JDAY in coll and elevation target
   % in col2
53
   % level - 'upper' or 'lower'
54
   % waterbody - which waterbody we're checking the discharge temp for
55
   \mbox{\%} cache - water quality predictions provided by W2 simulations
   57
   % Outputs:
   % y temp constraint violation for each scenario in x
58
59
60
   %If using the cache, get list of cache indices here
61
   [~,~,tib]=intersect(t,cache.t);
62
   if Optimize_day_by_day==0 & size(ic_elev,2)==1 & ~isempty(cache.x)
63
      [ia, ib] = ismember(x_allwb, cache.x, 'rows');
64
   else
65
      index=find(cache.t==t(1)); %last index for previous operations
66
      if index==1 %first day
67
         [ia, ib] = ismember(x_allwb, cache.x(:, index:index+23), 'rows');
68
      else
69
         [ia, ib] = ismember([repmat(xprev{1}(size(xprev{1}, 2)-tib(1)+2:end),...
```

```
size(x_allwb,1),1) x_allwb],cache.x(:,1:index+23),'rows'); %fix later
70

→ to solve multi waterbody problems

 71
       end
72
    end
73
    ia=find(ia==1); ib=ib(ib~=0);
    if ~isempty(ia) fprintf(['Cached points here: ', num2str(ib'), '\n']); end
74
75
76
    %Split up rows of x to separate reservoirs
77
    for wb=1:waterbody
78
       x\{wb\}=x_allwb(:,wb*(size(t,2)-1)-(size(t,2)-2):wb*(size(t,2)-1));
 79
80
    clearvars wb
81
    %Calculate headwater elevs for constraints
82
83
    for wb=1:waterbody
84
        %Calculate headwater elevs for constraints
85
        if wb==1
86
          mainstem_inflows{wb}.t=[];
87
          mainstem_inflows{wb}.Q=[];
88
           %Check to see if any cached rows can be skipped by elev calcs
89
           if ~isempty(ia)
90
              [HWcalcrows, b] = setdiff(1: size(x_allwb, 1), ia);
91
              x_HWcalcrows=x{wb} (HWcalcrows,:);
92
              [turb_discharges{wb}(b,:),spill_discharges{wb}(b,:),HWs{wb}(b,:),~,~] =
                 \hookrightarrow ...
 93
                 activeunits_to_discharges(x_HWcalcrows,t,...
94
                 frequency,Q{wb},ic_elev{wb},turbine_discharge{wb},...
95
                 ELWS_targets{wb},[],[],Optimize_day_by_day);
96
              HWs\{wb\}\{setdiff(1:size(x_allwb,1),b),:\}=cache.HWs(ib,tib);
97
          else
98
              [turb_discharges{wb}, spill_discharges{wb}, HWs{wb}, ~,~] = ...
99
                 activeunits_to_discharges(x{wb},t,frequency,...
100
                 Q{wb},ic_elev{wb},turbine_discharge{wb},ELWS_targets{wb},...
101
                 [],[],Optimize_day_by_day);
102
           end
103
        else
           [turb_discharges{wb}, spill_discharges{wb}, HWs{wb}, ~,~] = ...
104
105
              activeunits_to_discharges(x{wb},t,frequency,...
106
              Q{wb},ic_elev{wb},turbine_discharge{wb},ELWS_targets{wb},...
107
              mainstem_inflows{wb}.t,mainstem_inflows{wb}.Q,Optimize_day_by_day);
108
109
        %If we haven't reached the last reservoir, update mainstem_inflows.Q (include
            → both turbine + spill incoming!) and mainstem_inflows.t
110
        if wb~=size(ic_elev,2)
111
          mainstem_inflows{wb+1}.Q=...
112
              bsxfun(@plus,turb_discharges{wb},spill_discharges{wb});
113
          mainstem_inflows{wb+1}.t=t;
114
        end
115
    end
116
117
118
    for wb=1:waterbody
119
120
        if wb^{-}=1
121
          mainstem_inflows_temp{wb}.t=mainstem_inflows{wb}.t;
122
          mainstem_inflows_temp{wb}.Q=mainstem_inflows{wb}.Q;
123
          mainstem_inflows_temp{wb}.T=mainstem_inflows{wb}.T;
124
           %Remove Nan values and interpolate for T
125
           for i=1:size(x{wb},1)
126
              extrap_index=~isnan(mainstem_inflows_temp{wb}.T(i,:));
127
              [~,c]=find(extrap_index==1); extrap_index=c(end);
128
              mainstem_inflows_temp{wb}.T(i,:)=...
129
                 interp1 (mainstem_inflows_temp{wb}.t(1, ~isnan(mainstem_inflows_temp{
                     \hookrightarrow wb}.T(i,:))),...
```

```
130
                 mainstem_inflows_temp{wb}.T(i,~isnan(mainstem_inflows_temp{wb}.T(i
                     \hookrightarrow ,:))),...
131
                 mainstem_inflows_temp{wb}.t,'linear',...
132
                 mainstem_inflows_temp{wb}.T(i,extrap_index));
133
              clearvars extrap_index c
134
           end
135
           clearvars i
136
        end
137
138
        %Discharge Temp estimation
139
        Temp_narx=WQ{wb}.Temp_narx; Temp_limit=WQ{wb}.Temp_limit;
140
        if wb==1
           if ~isempty(ia)
141
142
              [Tcalcrows, b] = setdiff(1:size(x_allwb,1),ia);
143
              x_Tcalcrows=x{wb} (Tcalcrows,:);
144
              Temp_pred{wb} (b, :) = ...
145
                 narx_predictions(Temp_narx,...
146
                 frequency, t, Q{wb}, x_Tcalcrows, ...
147
                 turb_discharges { wb } (Tcalcrows,:),...
148
                 spill_discharges{wb} (Tcalcrows,:),[],...
149
                 Q{wb}.TWO,'temp',Optimize_day_by_day);
150
              Temp_pred{wb} (ia,:) = cache.T(ib, tib(1:end-1));
151
              clearvars Tcalcrows x_Tcalcrows b
152
           else
153
              Temp_pred{wb}=narx_predictions(Temp_narx, frequency, t, Q{wb}, x{wb},...
154
                 turb_discharges{wb}, spill_discharges{wb}, [],...
155
                 Q{wb}.TWO, 'temp', Optimize_day_by_day);
156
           end
157
        else
158
           Temp_pred(wb)=narx_predictions(Temp_narx, frequency, t, Q(wb), x(wb),...
159
              turb_discharges{wb}, spill_discharges{wb},...
160
              mainstem_inflows_temp{wb},Q{wb}.TWO,'temp',Optimize_day_by_day);
161
162
        %If we haven't reached the last reservoir, update mainstem_inflows.T
163
        if wb~=waterbody
164
           mainstem_inflows{wb+1}.T(1:size(x{wb},1),1)=...
165
              interp1(Q{wb}.TWO(:,1),Q{wb}.TWO(:,2),t(1));
166
           mainstem_inflows{wb+1}.T(:,2:size(Temp_pred{wb},2)+1)=...
167
              Temp_pred{wb};
168
       else
169
           non_nan_count=sum(~isnan(Temp_pred{wb}),2);
170
           if strcmp(level,'lower')
171
              %Temp violations - lower
172
              if isnan(Temp_limit(1))
173
                 Temp_violations=zeros(size(Temp_pred{wb},1),1);
174
              else
175
                 Temp_violations=sum(-min(0,Temp_pred{wb}-Temp_limit(1)),2)./
                     → non_nan_count;
176
              end
177
           elseif strcmp(level,'upper')
178
              %Temp violations - upper
179
              if isnan(Temp_limit(2))
180
                 Temp_violations=zeros(size(Temp_pred{wb},1),1);
181
182
                 Temp_violations=sum(max(0,Temp_pred{wb}-Temp_limit(2)),2)./
                     → non_nan_count;
183
              end
184
           end
185
186
           y=max(Temp_violations,[],2);
187
        end
188
    end
```

penalty_fcn.m

```
function [c_all,ceq]=penalty_fcn(x_allwb,t,frequency,Q,ic_elev,...
      turbine_discharge,ELWS_limit,max_hrly_unit_change,...
      WQ, zero_gen_limit, xprev, ELWS_targets, tolerance, cache, Optimize_day_by_day)
4
5
   % Calculates penalty violations, starting with the least expensive
6
   % computations and continuing on to the more expensive computations for
   % runs that are found to be feasible thus far
8
9
   % Inputs:
10
   % x allwb - hourly turbine time series (as rows for vectorizing!),
   % integers between 0 and no_of_units for all waterbodies
11
12
   % t time series of JDAY values
   % frequency - frequency of predictions (hourly=1/24)
   % Q - all other inflows and outflows, interpolation settings,
15
   % storage-elev curve, and tailwater curve
   % ic_elev - initial condition (meters)
16
17
   % turbine_discharge - turbine discharge curve at fixed MW level, with
   % col 1 in meters and col 2 in cms
19
   % ELWS_limit - min and max elevation limits for constraints, in meters
20
   % max_hrly_unit_change - max number of units that can be changed per hour
21
   % (1 for OHL)
   % WQ - structure containing water quality constraints and NARX models
   % DO_narx - structure containing everything needed to make DO discharge
   % predictions, including:
25
   % turb_colum - column in exogenous variables with turb flows
   % spill_column - column in exogenous variables with spill flows
27
   % times - JDAY values used in training (not used)
   % inputDelays - delays for exogenous inputs
   % feedbackDelays - delays for prediction feedbacks
   % input_variables - 2 row cell containing variable names in first
31
   % row and column number in second. For example, 'MET_WB1'
   % contains multiple columns of data but only some may be used
   % for NARX predictions
   % bias - bias for each trained neural network
35
   % weights - weights for each trained neural network (sum to 1)
   % narx_net_closed - neural networks
   % DO_limit - lower and upper DO limits (NaN means it doesn't exist)
   % DO_slack - relaxation from DO_limit (either upper or lower -
   % doesn't make sense to have both)
40
   41
   % predictions, including:
   % turb_colum - column in exogenous variables with turb flows
43
   % spill_column - column in exogenous variables with spill flows
   % times - JDAY values used in training (not used)
45
   % inputDelays - delays for exogenous inputs
   \mbox{\%} feedbackDelays - delays for prediction feedbacks
   % input_variables - 2 row cell containing variable names in first
   % row and column number in second. For example, 'MET_WB1'
   % contains multiple columns of data but only some may be used
   % for NARX predictions
   % bias - bias for each trained neural network
   % weights - weights for each trained neural network (sum to 1)
53
   % narx_net_closed - neural networks
54
   \mbox{\%} Temp_limit - lower and upper temp limits (NaN means it doesn't exist)
55
   % Temp_slack - relaxation from Temp_limit (either upper or lower -
   % doesn't make sense to have both)
57
   % zero_gen_limit - Zero generation hourly limit (can't go longer than
   % this with no turb flow)
   \mbox{\ensuremath{\$}} xprev - vector of previous active turbine levels
60
   % ELWS_targets - 2 column matrix with JDAY in col1 and elevation target
61
   % in col2
62 | % tolerance - penalty tolerance
```

```
63 |% cache - water quality predictions provided by W2 simulations
64
    % Optimize_day_by_day - 1 if optimizing daily, 0 if optimizing all together
65
    % Outputs:
    % c_all inequality constraint output (n/a, so 0)
66
    % ceq - equality constraint output (=0 for feasible solution)
67
68
    Name global variables to be used for function counts
70
    global funccount_cache_global funccount_tot_global
71
    funccount_tot_global=funccount_tot_global+size(x_allwb,1);
72.
73
    x_allwb=round(x_allwb);
74
75
    %Equality constraint
76
    ceq=[];
77
78
    %Preallocate memory
79
    x\{1, size(ic elev, 2)\}=[];
80
    xall{1, size(ic_elev, 2)}=[];
81
    turb_discharges{1, size(ic_elev, 2)}=[];
82
    HWs{1, size(ic_elev, 2)}=[];
83
    c_{all=zeros}(size(x{1},1),size(ic_{elev},2)*(3+(1+size(x{1},2))*2+2+2));
84
85
    %If using the cache, get list of cache indices here
86
        ~isempty(cache)
87
        [~,~,tib]=intersect(t,cache.t);
88
       if Optimize_day_by_day==0 & size(ic_elev,2)==1 & ~isempty(cache.x)
89
           [ia, ib] = ismember(x_allwb, cache.x, 'rows');
90
        else
91
           index=find(cache.t==t(1)); %last index for previous operations
92
          if index==1 %first day
93
              [ia,ib]=ismember(x_allwb,cache.x(:,index:index+23),'rows');
94
95
              [ia,ib]=ismember([repmat(xprev{1}(size(xprev{1},2)-tib(1)+2:end),...
96
                 size(x_allwb,1),1) x_allwb],cache.x(:,1:index+23),'rows'); %fix
                     → later to solve multi waterbody problems
97
          end
98
99
        ia=find(ia==1); ib=ib(ib~=0);
100
        funccount_cache_global=funccount_cache_global+size(ia,1);
101
       if ~isempty(ia) fprintf(['Cached points here: ', num2str(ib'), '\n']); end
102
    else
103
       ia=[]; ib=[];
104
    end
105
106
    zeroRows_empty=0;
    zeroRows0=[1:size(x_allwb,1)]';
107
108
109
    for wb=1:size(ic_elev,2)
110
       %Split up rows of x to separate reservoirs
111
       x\{wb\}=x_allwb(:,wb*(size(t,2)-1)-(size(t,2)-2):wb*(size(t,2)-1));
112
        %Preallocate c, with columns representing: (1) change in active unit
           → violations, (2) zero gen hourly limit, (3) oscillations constraint,
           \hookrightarrow (4:28) ELWS lower violations, (29:53) ELWS upper violations, (54:55)
           \hookrightarrow mean lower and upper DO violations, (56:57) mean temp lower and upper

→ violations

113
       c\{wb\}=zeros(size(x\{1\},1),3+(1+size(x\{1\},2))*2+2+2);
114
    end
115
    clearvars wb
116
117
    for wb=1:size(ic_elev,2)
118
119
       c\{wb\} (setdiff([1:size(x{wb},1)],zeroRows0),:)=1;
120
121
       %Check if all entries in x are infeasible due to previous reservoirs, and if
```

```
\hookrightarrow so set the rest of c==1 and go to end
122
        if zeroRows_empty==1
123
           c\{wb\}(:)=1;
124
        else
125
126
           %Break up WQ structure into separate variables
127
           DO_narx=WQ{wb}.DO_narx; DO_limit=WQ{wb}.DO_limit; DO_slack=WQ{wb}.DO_slack
128
           Temp_narx=WQ{wb}.Temp_narx; Temp_limit=WQ{wb}.Temp_limit; Temp_slack=WQ{wb
               → }.Temp_slack;
129
130
           %Stitch together xprev & x to check for feasibility wrt active unit viols,

→ zero generation hrly limit, and oscillations

131
           xall\{wb\}=[repmat(xprev\{wb\}, size(x\{wb\}, 1), 1) x\{wb\}];
132
           %Change in active unit violations
133
134
           if isempty(max_hrly_unit_change(wb))
135
              delta_sum=zeros(size(zeroRows0,1),1);
136
           else
137
              delta=abs(round(xall{wb}(zeroRows0,2:end))-...
138
                 round(xall{wb} (zeroRows0,1:end-1)));
139
              index=find(delta<=max_hrly_unit_change(wb));
140
              delta(index) = 0;
141
              delta_sum=sum(delta')';
142
           end
143
144
           %Zero generation hourly limit - can't go longer with no turb flow
145
           if isempty(zero_gen_limit{wb})
146
              zero_gen_viols_sum=zeros(size(zeroRows0,1),1);
147
           else
148
              zero_gen_viols=zeros(size(zeroRows0,1), size(xall{wb},2)-...
149
                 zero_gen_limit{wb}-1);
150
              x_trans=xall{wb}(zeroRows0,:)';
151
              for i=1:size(x_trans,1)-zero_gen_limit{wb}
                 a=sum(x_trans(i:i+zero_gen_limit{wb},:))';
152
153
                 zero_gen_viols(:,i)=(a==0);
154
155
              clearvars i
156
              zero_gen_viols_sum=sum(zero_gen_viols')';
157
158
159
           %Oscillations constraint - violates whenever the number of turbines
               \hookrightarrow increases and then decreases within 3 hours, or vice versa
160
           osc_violations=zeros(size(zeroRows0,1), size(xall{wb},2)-2);
161
           xall_osc=xall{wb}(zeroRows0,:);
162
           for ii=1:size(xall_osc,1) %loop through each member of population
163
              for i=1:size(xall_osc,2)-2; %loop forward through time
164
                 if xall_osc(ii,i+1)>xall_osc(ii,i) & ...
165
                        xall_osc(ii,i+2)<xall_osc(ii,i+1)</pre>
166
                    osc_violations(ii,i)=1;
                 elseif xall_osc(ii,i+1)<xall_osc(ii,i) & ...</pre>
167
168
                        xall_osc(ii,i+2)>xall_osc(ii,i+1)
169
                     osc_violations(ii,i)=1;
170
                 elseif i~=1
171
                     if xall_osc(ii,i) == xall_osc(ii,i+1) % need 3 hrs btwn ramping up
                         → and down
172
                        if xall_osc(ii,i-1)<xall_osc(ii,i) & ...</pre>
173
                              xall_osc(ii,i+1)>xall_osc(ii,i+2) %ramping up & back

→ down too quickly

174
                           osc_violations(ii,i)=1;
175
                        elseif xall_osc(ii,i-1)>xall_osc(ii,i) & ...
176
                              xall_osc(ii,i+1) < xall_osc(ii,i+2) % ramping down & back</pre>

→ up too quickly

177
                           osc_violations(ii,i)=1;
```

```
178
                        end
179
                    end
180
                 end
181
              end
182
           end
183
           clearvars i ii xall_osc
184
           osc_violations_sum=sum(osc_violations')';
185
186
           %Compile least expensive constraints
187
           c\{wb\} (zeroRows0,1:3)=...
188
              [delta_sum zero_gen_viols_sum osc_violations_sum];
189
190
           clearvars zeroRows1 zeroRows2 zeroRows3 zeroRows4 x_zeroRows1 x_zeroRows2

→ x_zeroRows3 x_zeroRows4

191
           x_zeroRows1=[];
192
           x_zeroRows2=[];
193
           x zeroRows3=[];
194
           x_zeroRows4=[];
195
           %Only compute expensive constraints if all others pass
196
           zeroRows1=find(all(c{wb}<=tolerance,2));</pre>
197
           x_zeroRows1=x{wb} (zeroRows1,:);
198
           if isempty(x_zeroRows1)
199
              c\{wb\}(:, 4:end)=1;
200
              zeroRows_empty=1;
201
           end
202
203
           if zeroRows_empty~=1
204
205
              %Calculate headwater elevs for constraints
206
              if wh == 1
207
                 %Preallocate mainstem_inflows for following wbs
208
                 mainstem_inflows=cell(1:size(ic_elev,2));
209
                 for i=1:size(ic_elev,2)
210
                    mainstem_inflows{i}.t=[];
                    mainstem_inflows{i}.Q=[];
211
212
                    mainstem_inflows{i}.T=[];
213
                    mainstem_inflows{i}.DO=[];
214
                 end
215
                 clearvars i
216
                 %Check to see if any cached rows can be skipped by elev calcs
                 if ~isempty(ia)
217
218
                     [HWcalcrows, b] = setdiff(zeroRows1, ia);
219
                    x_HWcalcrows=x{wb} (HWcalcrows,:);
220
                     [turb_discharges{wb}(b,:),spill_discharges{wb}(b,:),HWs{wb}(b,:)
                        → , ~, ~] = ...
221
                        activeunits_to_discharges(x_HWcalcrows,t,...
222
                        frequency,Q{wb},ic_elev{wb},turbine_discharge{wb},...
223
                        ELWS_targets{wb},[],[],Optimize_day_by_day);
224
                     [~,bb]=ismember(x_zeroRows1,cache.x,'rows'); bb=nonzeros(bb);
225
                    HWs{wb} (setdiff(1:size(zeroRows1,1),b),:)=...
226
                        cache. HWs (bb, tib);
227
228
                     [turb_discharges{wb}, spill_discharges{wb}, HWs{wb}, ~,~] = ...
229
                        activeunits_to_discharges(x_zeroRows1,t,...
230
                        frequency,Q{wb},ic_elev{wb},turbine_discharge{wb},...
231
                        ELWS_targets{wb},[],[],Optimize_day_by_day);
232
                 end
233
              else
234
                 [turb_discharges{wb}, spill_discharges{wb}, HWs{wb}, ~,~] = ...
235
                    activeunits_to_discharges(x_zeroRows1,t,...
236
                     frequency, Q{wb}, ic_elev{wb}, turbine_discharge{wb},...
237
                    ELWS_targets{wb}, mainstem_inflows{wb}.t,...
238
                    mainstem_inflows{wb}.Q(zeroRows1,:),Optimize_day_by_day);
239
              end
```

```
240
              %If we haven't reached the last reservoir, update mainstem_inflows.Q (
                  → include both turbine + spill incoming!)
241
              if wb~=size(ic_elev,2)
242
                 mainstem_inflows{wb+1}.Q(zeroRows1,:)=...
243
                    bsxfun(@plus,turb_discharges(wb),spill_discharges(wb));
244
              end
245
              %Inequality constraints:
              %Elevation violations - lower
246
247
              if isnan(ELWS_limit{wb}(1))
248
                 deductions1=zeros(size(HWs{wb}(:,1:end)));
249
              else
250
                 deductions1=-min(0,HWs{wb}(:,1:end)-ELWS limit{wb}(1));
251
252
              %Elevation violations - upper
253
              if isnan(ELWS_limit{wb}(2))
254
                 deductions2=zeros(size(HWs{wb}(:,1:end)));
255
              else
256
                 deductions2=max(0,HWs{wb}(:,1:end)-ELWS_limit{wb}(2));
257
              end
258
259
              c\{wb\} (setdiff([1:size(x{wb},1)],zeroRows1),4:end)=1;
260
              c\{wb\} (zeroRows1, 4:3+(1+size(x{wb},2))*2)=[deductions1 deductions2];
261
262
              zeroRows2=find(all(c{wb}<=tolerance,2));</pre>
263
              x_zeroRows2=x{wb} (zeroRows2,:);
264
              if isempty(x_zeroRows2)
265
                 c\{wb\}(:, 3+(1+size(x\{wb\}, 2))*2+1:end)=1;
266
                 zeroRows_empty=1;
267
              end
268
269
              turb_discharges2=zeros(size(x{wb},1),size(x{wb},2)+1);
270
              spill_discharges2=zeros(size(spill_discharges{wb}));
271
              if ~isempty(ia)
272
                 turb_discharges2(HWcalcrows,:)=turb_discharges{wb}(b,:);
273
                 spill_discharges2(HWcalcrows,:) = spill_discharges{wb}(b,:);
274
              else
275
                 turb_discharges2(zeroRows1,:)=turb_discharges{wb};
276
                 spill_discharges2(zeroRows1,:)=spill_discharges{wb};
277
              end
278
              %-->need to reset this with zero rows back in
279
              turb_discharges{wb}=turb_discharges2;
280
              spill_discharges{wb}=spill_discharges2;
281
              clearvars spill_discharges2 turb_discharges2 x_HWcalcrows HWcalcrows
282
           end
283
284
           %Continue on and calculate discharge DO if still feasible, if DO_narx is
               → provided and a limit exists
285
           if zeroRows_empty~=1 & ~isempty(DO_narx) & (wb~=size(ic_elev,2) | any(
               → DO limit))
286
287
              %Discharge DO constraint
288
              if wb == 1
289
                 %Check to see if any cached rows can be skipped by DO calcs
290
                 if ~isempty(ia)
291
                    [DOcalcrows, b] = setdiff(zeroRows2, ia);
292
                    x_DOcalcrows=x{wb} (DOcalcrows,:);
293
                    DO_pred{wb} (b,:) = narx_predictions (DO_narx,...
294
                        frequency, t, Q{wb}, x_DOcalcrows, ...
295
                        turb_discharges { wb } (DOcalcrows,:),...
296
                        spill_discharges{wb} (DOcalcrows,:),[],...
297
                       Q{wb}.CWO,'do',Optimize_day_by_day);
298
                     [",bb]=ismember(x_zeroRows2,cache.x,'rows'); bb=nonzeros(bb);
299
                    DO_pred{wb} (setdiff (1:size(zeroRows2,1),b),:)=...
300
                        cache.DO(bb,tib(1:end-1));
```

```
301
                     clearvars DOcalcrows x DOcalcrows b
302
                 else
303
                    DO_pred{wb}=narx_predictions(DO_narx,...
304
                        frequency,t,Q{wb},x_zeroRows2,...
305
                        turb_discharges{wb} (zeroRows2,:),...
306
                        spill_discharges{wb} (zeroRows2,:),[],...
307
                        Q{wb}.CWO, 'do', Optimize_day_by_day);
308
                 end
309
              else
310
                 mainstem_inflows_zeroRows2{wb}.Q=...
311
                    mainstem_inflows{wb}.Q(zeroRows2,:);
312
                 mainstem_inflows_zeroRows2{wb}.T=...
313
                    mainstem_inflows{wb}.T(zeroRows2,:);
314
                 mainstem_inflows_zeroRows2{wb}.DO=...
315
                    mainstem_inflows{wb}.DO(zeroRows2,:);
316
                 DO_pred{wb}=narx_predictions(DO_narx,...
317
                    frequency,t,Q{wb},x_zeroRows2,...
318
                     turb_discharges{wb} (zeroRows2,:),...
319
                     spill_discharges{wb} (zeroRows2,:),...
320
                    mainstem_inflows_zeroRows2{wb},Q{wb}.CWO,'do',Optimize_day_by_day
321
              end
322
              %If we haven't reached the last reservoir, update mainstem_inflows.DO
323
              if wb~=size(ic_elev,2)
324
                 mainstem_inflows{wb+1}.DO(zeroRows2,1)=...
325
                     interp1(Q{wb}.CWO(:,1),Q{wb}.CWO(:,2),t(1));
326
                 mainstem_inflows{wb+1}.DO(zeroRows2,2:size(DO_pred{wb},2)+1)=...
327
                    DO_pred{wb};
328
              end
329
              non_nan_count=sum(~isnan(DO_pred{wb}),2);
330
              %DO violations - lower
331
              if isnan(DO_limit(1))
332
                 DO_violations1=zeros(size(DO_pred{wb},1),1);
333
              else
334
                 DO_violations1=sum(-min(0,DO_pred{wb}-DO_limit(1)),2)./non_nan_count
                     \hookrightarrow ;
335
              end
336
              %DO violations - upper
337
              if isnan(DO_limit(2))
338
                 DO_violations2=zeros(size(DO_pred{wb},1),1);
339
              else
340
                 DO_violations2=sum(max(0,DO_pred{wb}-DO_limit(2)),2)./non_nan_count;
341
342
              DO_violations=[max(0,DO_violations1-DO_slack) max(0,DO_violations2-
                  → DO_slack)];
343
344
              c\{wb\} (setdiff([1:size(x{wb},1)],zeroRows2),3+(1+size(x{wb},2))*2+1:end)
                  \hookrightarrow =1;
345
              c\{wb\}(zeroRows2, 3+(1+size(x\{wb\}, 2))*2+1:3+(1+size(x\{wb\}, 2))*2+2)=
                  → DO_violations;
346
              clearvars DO_violations1 DO_violations2 Last_values
347
348
              zeroRows3=find(all(c{wb}<=tolerance,2));</pre>
349
              x_zeroRows3=x{wb} (zeroRows3,:);
350
              DO_pred{wb} (zeroRows2,:) = DO_pred{wb};
351
              DO_pred{wb}=DO_pred{wb} (zeroRows3,:);
352
              if isempty(x_zeroRows3)
353
                 c\{wb\}(:, 3+(1+size(x\{wb\}, 2))*2+2+1:end)=1;
354
                 zeroRows_empty=1;
355
              end
356
357
           end
358
359
           %Continue on and calculate discharge temp if still feasible
```

```
360
           if zeroRows_empty~=1 & ~isempty(Temp_narx) & (wb~=size(ic_elev,2) | any(
               → Temp_limit))
361
              zeroRows4=find(all(c{wb}<=tolerance,2));</pre>
362
              x_zeroRows4=x{wb} (zeroRows4,:);
363
              if isempty(x_zeroRows4)
364
                 c\{wb\}(:, 3+(1+size(x\{wb\}, 2))*2+2+1:end)=1;
365
                 zeroRows_empty=1;
366
              end
367
368
              if zeroRows_empty~=1
369
                 %Discharge Temp constraint
370
                 if wb==1
371
                     %Check to see if any cached rows can be skipped by temp calcs
372
                    if ~isempty(ia)
373
                        [Tcalcrows, b] = setdiff(zeroRows4, ia);
374
                        x_Tcalcrows=x{wb} (Tcalcrows,:);
375
                        Temp_pred{wb} (b, :) = ...
376
                           narx_predictions (Temp_narx, ...
377
                           frequency,t,Q{wb},x_Tcalcrows,...
378
                           turb_discharges{wb} (Tcalcrows,:),...
379
                           spill_discharges{wb} (Tcalcrows,:),[],...
380
                           Q{wb}.TWO,'temp',Optimize_day_by_day);
381
                        [, bb]=ismember(x_zeroRows4, cache.x, 'rows'); bb=nonzeros(bb);
382
                        Temp_pred{wb} (setdiff(1:size(zeroRows4,1),b),:)=...
383
                           cache.T(bb, tib(1:end-1));
384
                        clearvars Tcalcrows x_Tcalcrows b
385
                    else
386
                        Temp_pred{wb}=...
387
                           narx_predictions (Temp_narx, ...
388
                           frequency, t, Q{wb}, x_zeroRows4, ...
389
                           turb_discharges{wb} (zeroRows4,:),...
390
                           spill_discharges{wb} (zeroRows4,:),[],...
391
                           Q{wb}.TWO, 'temp', Optimize_day_by_day);
392
                    end
393
                 else
394
                    mainstem_inflows_zeroRows4{wb}.Q=...
395
                       mainstem_inflows{wb}.Q(zeroRows4,:);
396
                    mainstem_inflows_zeroRows4{wb}.T=...
397
                        mainstem_inflows{wb}.T(zeroRows4,:);
398
                    mainstem_inflows_zeroRows4{wb}.DO=...
399
                       mainstem_inflows{wb}.DO(zeroRows4,:);
400
                    Temp_pred{wb}=...
401
                        narx_predictions(Temp_narx,...
402
                        frequency,t,Q{wb},x_zeroRows4,...
403
                        turb_discharges{wb} (zeroRows4,:),...
404
                        spill_discharges{wb} (zeroRows4,:),...
405
                        mainstem_inflows_zeroRows4{wb},...
406
                        Q{wb}.TWO, 'temp', Optimize_day_by_day);
407
                 end
408
                 %If we haven't reached the last reservoir, update mainstem_inflows.T
409
                 if wb~=size(ic_elev,2)
410
                    mainstem_inflows{wb+1}.T(zeroRows3,1)=...
411
                        interp1(Q{wb}.TWO(:,1),Q{wb}.TWO(:,2),t(1));
412
                    mainstem_inflows{wb+1}.T(zeroRows3,2:size(Temp_pred{wb},2)+1)=...
413
                        Temp_pred{wb};
414
415
                 non_nan_count=sum(~isnan(Temp_pred{wb}),2);
416
                 %Temp violations - lower
417
                 if isnan(Temp_limit(1))
418
                     Temp_violations1=zeros(size(Temp_pred{wb},1),1);
419
420
                    Temp_violations1=sum(-min(0,Temp_pred(wb)-Temp_limit(1)),2)./
                        → non_nan_count;
421
                 end
```

```
422
                 %Temp violations - upper
423
                 if isnan(Temp_limit(2))
424
                     Temp_violations2=zeros(size(Temp_pred{wb},1),1);
425
                 else
426
                     Temp_violations2=sum(max(0,Temp_pred{wb}-Temp_limit(2)),2)./
                         → non_nan_count;
427
                 end
428
                 Temp_violations=[max(0,Temp_violations1-Temp_slack) max(0,
                     → Temp_violations2-Temp_slack)];
429
430
                 c\{wb\} (setdiff([1:size(x{wb},1)],zeroRows4),3+(1+size(x{wb},2))
                     \leftrightarrow \star2+2+1:end)=1;
431
                 c\{wb\} (zeroRows4,3+(1+size(x{wb},2))*2+2+1:3+(1+size(x{wb},2))*2+2+2)
                     \hookrightarrow =Temp_violations;
432
433
                 zeroRows5=find(all(c{wb}<=tolerance,2));</pre>
434
                 x zeroRows5=x{wb}(zeroRows5,:);
435
                 Temp_pred{wb} (zeroRows4,:) = Temp_pred{wb};
436
                 Temp_pred{wb}=Temp_pred{wb} (zeroRows5,:);
437
                 if isempty(x_zeroRows5)
438
                     zeroRows_empty=1;
439
440
441
              end
442
           end
443
        end
444
        %If we haven't reached the last reservoir, update mainstem_inflows.t, remove
            \hookrightarrow NaN from mainstem_inflows.T and mainstem_inflows.DO, and update
            → zeroRows0
445
        if wb~=size(ic_elev,2) & zeroRows_empty~=1
446
           mainstem_inflows{wb+1}.t=t;
447
           %Remove Nan values and interpolate for T and DO
448
           for i=1:size(mainstem_inflows{wb+1}.T,1)
449
              extrap_index=~isnan(mainstem_inflows{wb+1}.T(i,:));
450
              [~,column]=find(extrap_index==1); extrap_index=column(end);
451
              mainstem_inflows{wb+1}.T(i,:)=...
452
                 interp1(t(1,~isnan(mainstem_inflows{wb+1}.T(i,:))),...
453
                 mainstem_inflows{wb+1}.T(i,~isnan(mainstem_inflows{wb+1}.T(i,:)))
454
                 t,'linear', mainstem_inflows{wb+1}.T(i, extrap_index));
              mainstem_inflows{wb+1}.DO(i,:)=...
455
456
                 interp1(t(1,~isnan(mainstem_inflows{wb+1}.DO(i,:))),...
457
                 mainstem_inflows{wb+1}.DO(i,~isnan(mainstem_inflows{wb+1}.DO(i,:)))
458
                 t,'linear', mainstem_inflows{wb+1}.DO(i,extrap_index));
459
              clearvars extrap_index column
460
461
           zeroRows0=find(all(c{wb}<=tolerance,2));</pre>
462
        end
463
464
    end
465
466
    %Update c_all with the values from c{wb}
467
    c_all=[c{:}];
```

penalty_fcn._inf.m

```
function [c_all,ceq]=penalty_fcn_inf(x_allwb,t,frequency,Q,ic_elev,...
turbine_discharge,ELWS_limit,max_hrly_unit_change,...
WQ,zero_gen_limit,xprev,ELWS_targets,tolerance,cache,Optimize_day_by_day)

modified penalty function that computes all constraints
modified penalty function that computes all constraints
```

```
% Calculates penalty violations, starting with the least expensive
   % computations and continuing on to the more expensive computations for
9
   % runs that are found to be feasible thus far
10
11
   % Inputs:
12
   % x_allwb - hourly turbine time series (as rows for vectorizing!),
   % integers between 0 and no_of_units for all waterbodies
13
   % t time series of JDAY values
15
   % frequency - frequency of predictions (hourly=1/24)
   % Q - all other inflows and outflows, interpolation settings,
16
17
   \ensuremath{\text{\%}} storage-elev curve, and tailwater curve
18
   % ic_elev - initial condition (meters)
19
   % turbine discharge - turbine discharge curve at fixed MW level, with
20
   % col 1 in meters and col 2 in cms
21
   % ELWS_limit - min and max elevation limits for constraints, in meters
   % max_hrly_unit_change - max number of units that can be changed per hour
   % (1 for OHL)
   % WQ - structure containing water quality constraints and NARX models
25
   % DO_narx - structure containing everything needed to make DO discharge
   % predictions, including:
27
   % turb_colum - column in exogenous variables with turb flows
   % spill_column - column in exogenous variables with spill flows
   % times - JDAY values used in training (not used)
30
   % inputDelays - delays for exogenous inputs
31
   % feedbackDelays - delays for prediction feedbacks
   % input_variables - 2 row cell containing variable names in first
   % row and column number in second. For example, 'MET_WB1'
   % contains multiple columns of data but only some may be used
35
   % for NARX predictions
36
   % bias - bias for each trained neural network
   \mbox{\ensuremath{\$}} weights - weights for each trained neural network (sum to 1)
37
   % narx_net_closed - neural networks
   % DO_limit - lower and upper DO limits (NaN means it doesn't exist)
40
   % DO_slack - relaxation from DO_limit (either upper or lower -
41
   % doesn't make sense to have both)
   % Temp_narx - structure containing everything needed to make temp discharge
43
   % predictions, including:
44
   % turb_colum - column in exogenous variables with turb flows
45
   % spill_column - column in exogenous variables with spill flows
   % times - JDAY values used in training (not used)
   % inputDelays - delays for exogenous inputs
48
   \mbox{\%} feedbackDelays - delays for prediction feedbacks
   % input_variables - 2 row cell containing variable names in first
49
   % row and column number in second. For example, 'MET_WB1'
   % contains multiple columns of data but only some may be used
   % for NARX predictions
   % bias - bias for each trained neural network
   % weights - weights for each trained neural network (sum to 1)
55
   % narx_net_closed - neural networks
   \mbox{\ensuremath{\$}} Temp_limit - lower and upper temp limits (NaN means it doesn't exist)
   % Temp_slack - relaxation from Temp_limit (either upper or lower -
   % doesn't make sense to have both)
   % zero_qen_limit - Zero generation hourly limit (can't go longer than
60
   % this with no turb flow)
61
   % xprev - vector of previous active turbine levels
   % ELWS_targets - 2 column matrix with JDAY in coll and elevation target
63
   % in col2
64
   % tolerance - penalty tolerance
   \mbox{\ensuremath{\$}} cache - water quality predictions provided by W2 simulations
65
66
   % Optimize_day_by_day - 1 if optimizing daily, 0 if optimizing all together
   % Outputs:
68
   % c_all inequality constraint output (n/a, so 0)
69
   % ceq - equality constraint output (=0 for feasible solution)
70
```

```
71
    %Name global variables to be used for function counts
    global funccount_cache_global funccount_tot_global
73
    funccount_tot_global=funccount_tot_global+size(x_allwb,1);
74
75
    x_allwb=round(x_allwb);
76
77
    %Equality constraint
78
    ceq=[];
79
80
    %Preallocate memory
81
    x{1, size(ic_elev, 2)}=[];
82
    xall{1, size(ic_elev, 2)}=[];
83
    turb_discharges{1, size(ic_elev, 2)}=[];
84
    HWs{1, size(ic_elev, 2)}=[];
85
    c_{all=zeros}(size(x{1},1),size(ic_{elev},2)*(3+(1+size(x{1},2))*2+2+2));
86
87
    %If using the cache, get list of cache indices here
88
    if ~isempty(cache)
89
        [~,~,tib]=intersect(t,cache.t);
90
        if Optimize_day_by_day==0 & size(ic_elev,2)==1 & ~isempty(cache.x)
91
           [ia,ib]=ismember(x_allwb,cache.x,'rows');
92
93
           index=find(cache.t==t(1)); %last index for previous operations
94
           if index==1 %first day
95
              [ia, ib] = ismember(x_allwb, cache.x(:,index:index+23),'rows');
96
           else
97
              [ia, ib] = ismember([repmat(xprev{1}(size(xprev{1},2)-tib(1)+2:end),...
98
                 size(x_allwb,1),1) x_allwb], cache.x(:,1:index+23),'rows'); %fix
                     → later to solve multi waterbody problems
99
           end
100
        end
101
        ia=find(ia==1); ib=ib(ib~=0);
102
        funccount_cache_global=funccount_cache_global+size(ia,1);
103
        if ~isempty(ia) fprintf(['Cached points here: ', num2str(ib'), '\n']); end
104
    else
105
       ia=[]; ib=[];
106
    end
107
108
    zeroRows_empty=0;
    zeroRows0=[1:size(x_allwb,1)]';
109
110
111
    for wb=1:size(ic_elev,2)
112
        %Split up rows of x to separate reservoirs
113
        x\{wb\}=x_allwb(:,wb*(size(t,2)-1)-(size(t,2)-2):wb*(size(t,2)-1));
        %Preallocate c, with columns representing: (1) change in active unit
114
           → violations, (2) zero gen hourly limit, (3) oscillations constraint,
           \hookrightarrow (4:28) ELWS lower violations, (29:53) ELWS upper violations, (54:55)
           \rightarrow mean lower and upper DO violations, (56:57) mean temp lower and upper
            \hookrightarrow violations
115
       c\{wb\}=zeros(size(x\{1\},1),3+(1+size(x\{1\},2))*2+2+2);
    end
116
117
    clearvars wb
118
119
    for wb=1:size(ic_elev,2)
120
121
       c\{wb\} (setdiff([1:size(x{wb},1)],zeroRows0),:)=Inf;
122
123
        %Check if all entries in x are infeasible due to previous reservoirs, and if
           \hookrightarrow so set the rest of c==1 and go to end
124
        if zeroRows_empty==1
125
           c\{wb\}(:)=Inf;
126
127
128
           %Break up WQ structure into separate variables
```

```
129
           DO_narx=WQ{wb}.DO_narx; DO_limit=WQ{wb}.DO_limit; DO_slack=WQ{wb}.DO_slack
               \hookrightarrow ;
130
           Temp_narx=WQ{wb}.Temp_narx; Temp_limit=WQ{wb}.Temp_limit; Temp_slack=WQ{wb
               → }.Temp_slack;
131
132
           %Stitch together xprev & x to check for feasibility wrt active unit viols,

→ zero generation hrly limit, and oscillations

133
           xall\{wb\}=[repmat(xprev\{wb\}, size(x\{wb\}, 1), 1) x\{wb\}];
134
135
           %Change in active unit violations
136
           if isempty(max_hrly_unit_change(wb))
137
              delta_sum=zeros(size(zeroRows0,1),1);
138
           else
139
              delta=abs(round(xall{wb}(zeroRows0,2:end))-...
140
                 round(xall{wb}(zeroRows0,1:end-1)));
141
              index=find(delta<=max_hrly_unit_change(wb));</pre>
142
              delta(index) = 0;
143
              delta_sum=sum(delta')';
144
           end
145
           %Zero generation hourly limit - can't go longer with no turb flow
146
147
           if isempty(zero_gen_limit{wb})
148
              zero_gen_viols_sum=zeros(size(zeroRows0,1),1);
149
           else
150
              zero_gen_viols=zeros(size(zeroRows0,1), size(xall{wb},2)-...
151
                  zero_gen_limit{wb}-1);
152
              x_trans=xall{wb} (zeroRows0,:)';
153
              for i=1:size(x_trans,1)-zero_gen_limit{wb}
154
                 a=sum(x_trans(i:i+zero_gen_limit{wb},:))';
155
                 zero_gen_viols(:,i) = (a==0);
156
              end
157
              clearvars i
158
              zero_gen_viols_sum=sum(zero_gen_viols')';
159
160
161
           %Oscillations constraint - violates whenever the number of turbines
               \hookrightarrow increases and then decreases within 3 hours, or vice versa
162
           osc_violations=zeros(size(zeroRows0,1), size(xall{wb},2)-2);
163
           xall_osc=xall{wb}(zeroRows0,:);
164
           for ii=1:size(xall_osc,1) %loop through each member of population
165
              for i=1:size(xall_osc,2)-2; %loop forward through time
166
                  if xall_osc(ii,i+1)>xall_osc(ii,i) & ...
167
                        xall_osc(ii,i+2)<xall_osc(ii,i+1)</pre>
168
                     osc_violations(ii,i)=1;
169
                 elseif xall_osc(ii,i+1)<xall_osc(ii,i) & ...</pre>
170
                        xall osc(ii,i+2)>xall osc(ii,i+1)
171
                     osc_violations(ii,i)=1;
172
                 elseif i~=1
173
                     if xall_osc(ii,i) == xall_osc(ii,i+1) % need 3 hrs btwn ramping up
                         \hookrightarrow and down
174
                        if xall_osc(ii,i-1) < xall_osc(ii,i) & ...</pre>
175
                               xall_osc(ii,i+1)>xall_osc(ii,i+2) %ramping up & back

→ down too quickly

176
                           osc_violations(ii,i)=1;
177
                        elseif xall_osc(ii,i-1)>xall_osc(ii,i) & ...
                               xall_osc(ii,i+1) < xall_osc(ii,i+2) % ramping down & back</pre>
178

→ up too quickly

179
                           osc_violations(ii,i)=1;
180
                        end
181
                     end
182
                 end
183
              end
184
           end
185
           clearvars i ii xall_osc
```

```
186
           osc_violations_sum=sum(osc_violations')';
187
188
           %Compile least expensive constraints
189
           c\{wb\} (zeroRows0,1:3)=...
190
              [delta_sum zero_gen_viols_sum osc_violations_sum];
191
192
           clearvars zeroRows1 zeroRows2 zeroRows3 zeroRows4 x zeroRows1 x zeroRows2

→ x_zeroRows3 x_zeroRows4

193
           x_zeroRows1=[];
194
           x_zeroRows2=[];
195
           x_zeroRows3=[];
196
           x zeroRows4=[];
197
           %Only compute expensive constraints if all others pass
198
           zeroRows1=zeroRows0;
199
           x_zeroRows1=x{wb} (zeroRows1,:);
200
           if isempty(x_zeroRows1)
201
              c{wb} (:, 4:end) = Inf;
202
              zeroRows_empty=1;
203
          end
204
205
          if zeroRows_empty~=1
206
207
              %Calculate headwater elevs for constraints
208
              if wh==1
209
                 %Preallocate mainstem_inflows for following wbs
210
                 mainstem_inflows=cell(1:size(ic_elev,2));
211
                 for i=1:size(ic_elev,2)
212
                    mainstem_inflows{i}.t=[];
213
                    mainstem_inflows{i}.Q=[];
214
                    mainstem_inflows{i}.T=[];
215
                    mainstem_inflows{i}.DO=[];
216
                 end
217
                 clearvars i
218
                 %Check to see if any cached rows can be skipped by elev calcs
                 if ~isempty(ia)
219
220
                    [HWcalcrows, b] = setdiff(zeroRows1, ia);
221
                    x_HWcalcrows=x{wb} (HWcalcrows,:);
2.2.2.
                    [turb_discharges{wb}(b,:),spill_discharges{wb}(b,:),HWs{wb}(b,:)
                        → , ~, ~] = ...
223
                       activeunits_to_discharges(x_HWcalcrows,t,...
224
                        frequency,Q{wb},ic_elev{wb},turbine_discharge{wb},...
225
                       ELWS_targets{wb},[],[],Optimize_day_by_day);
226
                     [~,bb]=ismember(x_zeroRows1,cache.x,'rows'); bb=nonzeros(bb);
227
                    HWs{wb} (setdiff(1:size(zeroRows1,1),b),:)=...
228
                       cache. HWs (bb, tib);
229
                 else
230
                     [turb_discharges{wb}, spill_discharges{wb}, HWs{wb}, ~,~] = ...
231
                       activeunits_to_discharges(x_zeroRows1,t,...
232
                        frequency,Q{wb},ic_elev{wb},turbine_discharge{wb},...
233
                       ELWS_targets{wb},[],[],Optimize_day_by_day);
234
                 end
235
              else
236
                 [turb_discharges{wb}, spill_discharges{wb}, HWs{wb}, ~,~] = ...
237
                    activeunits_to_discharges(x_zeroRows1,t,...
238
                    frequency,Q{wb},ic_elev{wb},turbine_discharge{wb},...
239
                    ELWS_targets{wb}, mainstem_inflows{wb}.t,...
240
                    mainstem_inflows{wb}.Q(zeroRows1,:),Optimize_day_by_day);
241
              end
242
              %If we haven't reached the last reservoir, update mainstem_inflows.Q (
                  → include both turbine + spill incoming!)
243
              if wb~=size(ic_elev,2)
244
                 mainstem_inflows{wb+1}.Q(zeroRows1,:)=...
245
                    bsxfun(@plus,turb_discharges{wb},spill_discharges{wb});
246
              end
```

```
247
              %Inequality constraints:
248
              %Elevation violations - lower
249
              if isnan(ELWS_limit{wb}(1))
250
                 deductions1=zeros(size(HWs{wb}(:,1:end)));
251
              6196
252
                 deductions1=-min(0,HWs{wb}(:,1:end)-ELWS_limit{wb}(1));
253
254
              %Elevation violations - upper
255
              if isnan(ELWS_limit{wb}(2))
256
                 deductions2=zeros(size(HWs{wb}(:,1:end)));
257
              else
258
                 deductions2=max(0,HWs{wb}(:,1:end)-ELWS_limit{wb}(2));
259
260
261
              c{wb} (setdiff([1:size(x{wb},1)],zeroRows1),4:end)=Inf;
262
              c\{wb\}(zeroRows1,4:3+(1+size(x\{wb\},2))*2)=[deductions1 deductions2];
263
264
              zeroRows2=zeroRows0;
265
              x_zeroRows2=x{wb} (zeroRows2,:);
266
              if isempty(x_zeroRows2)
267
                 c\{wb\}(:, 3+(1+size(x\{wb\}, 2))*2+1:end)=Inf;
268
                 zeroRows_empty=1;
269
              end
270
271
              turb\_discharges2=zeros(size(x{wb},1),size(x{wb},2)+1);
272
              spill_discharges2=zeros(size(spill_discharges{wb}));
273
              if ~isempty(ia)
2.74
                 turb_discharges2(HWcalcrows,:)=turb_discharges{wb}(b,:);
275
                 spill_discharges2(HWcalcrows,:) = spill_discharges{wb}(b,:);
276
              else
277
                 turb_discharges2(zeroRows1,:)=turb_discharges{wb};
278
                 spill_discharges2(zeroRows1,:)=spill_discharges{wb};
279
280
              %-->need to reset this with zero rows back in
281
              turb_discharges{wb}=turb_discharges2;
282
              spill_discharges{wb}=spill_discharges2;
283
              clearvars spill_discharges2 turb_discharges2 x_HWcalcrows HWcalcrows
284
           end
285
286
           %Continue on and calculate discharge DO if still feasible, if DO_narx is
               → provided and a limit exists
287
           if zeroRows_empty~=1 & ~isempty(DO_narx) & (wb~=size(ic_elev,2) | any(
              → DO_limit))
288
289
              %Discharge DO constraint
290
              if wb==1
291
                 %Check to see if any cached rows can be skipped by DO calcs
292
                 if ~isempty(ia)
293
                    [DOcalcrows, b] = setdiff(zeroRows2, ia);
294
                    x_DOcalcrows=x{wb} (DOcalcrows,:);
295
                    DO_pred{wb} (b,:) = narx_predictions (DO_narx,...
296
                        frequency,t,Q{wb},x_DOcalcrows,...
297
                       turb_discharges{wb} (DOcalcrows,:),...
298
                       spill_discharges{wb} (DOcalcrows,:),[],...
299
                       Q{wb}.CWO,'do',Optimize_day_by_day);
300
                    [",bb]=ismember(x_zeroRows2,cache.x,'rows'); bb=nonzeros(bb);
301
                    DO_pred{wb} (setdiff(1:size(zeroRows2,1),b),:)=...
302
                       cache.DO(bb,tib(1:end-1));
303
                    clearvars DOcalcrows x_DOcalcrows b
304
                 else
305
                    DO_pred{wb}=narx_predictions(DO_narx,...
306
                        frequency,t,Q{wb},x_zeroRows2,...
307
                       turb_discharges{wb}(zeroRows2,:),...
308
                       spill_discharges{wb} (zeroRows2,:),[],...
```

```
309
                        Q{wb}.CWO, 'do', Optimize_day_by_day);
310
                 end
311
              else
312
                 mainstem_inflows_zeroRows2{wb}.Q=...
313
                    mainstem_inflows{wb}.Q(zeroRows2,:);
314
                 mainstem_inflows_zeroRows2{wb}.T=...
315
                    mainstem_inflows{wb}.T(zeroRows2,:);
316
                 mainstem_inflows_zeroRows2{wb}.DO=...
317
                    mainstem_inflows{wb}.DO(zeroRows2,:);
318
                 DO_pred{wb}=narx_predictions(DO_narx,...
319
                    frequency,t,Q{wb},x_zeroRows2,...
320
                    turb_discharges{wb} (zeroRows2,:),...
321
                    spill_discharges{wb} (zeroRows2,:),...
322
                    mainstem_inflows_zeroRows2{wb},Q{wb}.CWO,'do',Optimize_day_by_day
                        \hookrightarrow );
323
              end
324
              %If we haven't reached the last reservoir, update mainstem_inflows.DO
325
              if wb~=size(ic_elev,2)
326
                 mainstem_inflows{wb+1}.DO(zeroRows2,1)=...
327
                    interp1(Q{wb}.CWO(:,1),Q{wb}.CWO(:,2),t(1));
328
                 mainstem_inflows{wb+1}.DO(zeroRows2,2:size(DO_pred{wb},2)+1)=...
329
                    DO_pred{wb};
330
331
              non_nan_count=sum(~isnan(DO_pred{wb}),2);
332
              %DO violations - lower
333
              if isnan(DO_limit(1))
334
                 DO_violations1=zeros(size(DO_pred{wb},1),1);
335
              else
336
                 DO_violations1=sum(-min(0,DO_pred{wb}-DO_limit(1)),2)./non_nan_count
337
              end
338
              %DO violations - upper
339
              if isnan(DO_limit(2))
340
                 DO_violations2=zeros(size(DO_pred{wb},1),1);
341
              else
342
                 DO_violations2=sum(max(0,DO_pred{wb}-DO_limit(2)),2)./non_nan_count;
343
              end
344
              DO_violations=[max(0,DO_violations1-DO_slack) max(0,DO_violations2-
                  → DO_slack)];
345
346
              c\{wb\} (setdiff([1:size(x{wb},1)],zeroRows2),3+(1+size(x{wb},2))*2+1:end)
347
              c\{wb\}(zeroRows2, 3+(1+size(x\{wb\}, 2))*2+1:3+(1+size(x\{wb\}, 2))*2+2)=
                  → DO_violations;
348
              clearvars DO_violations1 DO_violations2 Last_values
349
350
              zeroRows3=zeroRows0;
351
              x_zeroRows3=x{wb} (zeroRows3,:);
352
              DO_pred{wb} (zeroRows2,:)=DO_pred{wb};
353
              DO_pred{wb}=DO_pred{wb} (zeroRows3,:);
354
              if isempty(x_zeroRows3)
355
                 c\{wb\}(:, 3+(1+size(x\{wb\}, 2))*2+2+1:end)=Inf;
356
                 zeroRows_empty=1;
357
              end
358
359
           end
360
361
           Continue on and calculate discharge temp if still feasible
362
           if zeroRows_empty~=1 & ~isempty(Temp_narx) & (wb~=size(ic_elev,2) | any(
               → Temp_limit))
363
              zeroRows4=zeroRows0;
364
              x_zeroRows4=x{wb} (zeroRows4,:);
365
              if isempty(x_zeroRows4)
366
                 c\{wb\}(:, 3+(1+size(x\{wb\}, 2))*2+2+1:end)=Inf;
```

```
367
                 zeroRows_empty=1;
368
              end
369
370
              if zeroRows_empty~=1
371
                 %Discharge Temp constraint
372
                 if wb==1
373
                    %Check to see if any cached rows can be skipped by temp calcs
374
                    if ~isempty(ia)
375
                       [Tcalcrows, b] = setdiff(zeroRows4, ia);
376
                        x_Tcalcrows=x{wb} (Tcalcrows,:);
377
                       Temp_pred{wb} (b,:)=...
378
                           narx_predictions(Temp_narx,...
379
                           frequency, t, Q{wb}, x_Tcalcrows, ...
380
                           turb_discharges{wb} (Tcalcrows,:),...
381
                           spill_discharges{wb} (Tcalcrows,:),[],...
382
                           Q{wb}.TWO,'temp',Optimize_day_by_day);
383
                        [~,bb]=ismember(x_zeroRows4,cache.x,'rows'); bb=nonzeros(bb);
384
                        Temp_pred{wb} (setdiff(1:size(zeroRows4,1),b),:)=...
385
                           cache.T(bb, tib(1:end-1));
386
                       clearvars Tcalcrows x_Tcalcrows b
387
                    else
388
                        Temp_pred{wb}=...
389
                           narx_predictions (Temp_narx, ...
390
                           frequency,t,Q{wb},x_zeroRows4,...
391
                           turb_discharges{wb} (zeroRows4,:),...
392
                           spill_discharges{wb} (zeroRows4,:),[],...
393
                           Q{wb}.TWO, 'temp', Optimize_day_by_day);
394
                    end
395
                 else
396
                    mainstem_inflows_zeroRows4{wb}.Q=...
397
                       mainstem_inflows{wb}.Q(zeroRows4,:);
398
                    mainstem_inflows_zeroRows4{wb}.T=...
399
                       mainstem_inflows{wb}.T(zeroRows4,:);
400
                    mainstem_inflows_zeroRows4{wb}.DO=...
401
                       mainstem_inflows{wb}.DO(zeroRows4,:);
402
                    Temp_pred{wb}=...
403
                       narx_predictions(Temp_narx,...
404
                        frequency, t, Q{wb}, x_zeroRows4, ...
405
                       turb_discharges{wb} (zeroRows4,:),...
406
                       spill_discharges{wb} (zeroRows4,:),...
407
                       mainstem_inflows_zeroRows4{wb},...
408
                       Q{wb}.TWO,'temp',Optimize_day_by_day);
409
410
                 %If we haven't reached the last reservoir, update mainstem_inflows.T
411
                 if wb~=size(ic_elev,2)
412
                    mainstem_inflows{wb+1}.T(zeroRows3,1)=...
413
                        interp1(Q{wb}.TWO(:,1),Q{wb}.TWO(:,2),t(1));
414
                    mainstem_inflows{wb+1}.T(zeroRows3,2:size(Temp_pred{wb},2)+1)=...
415
                       Temp_pred{wb};
416
                 end
417
                 non_nan_count=sum(~isnan(Temp_pred{wb}),2);
418
                 %Temp violations - lower
419
                 if isnan(Temp_limit(1))
420
                    Temp_violations1=zeros(size(Temp_pred{wb},1),1);
421
                 else
422
                    Temp_violations1=sum(-min(0,Temp_pred(wb)-Temp_limit(1)),2)./
                        → non_nan_count;
423
424
                 %Temp violations - upper
425
                 if isnan(Temp_limit(2))
426
                    Temp_violations2=zeros(size(Temp_pred{wb},1),1);
427
428
                    Temp_violations2=sum(max(0,Temp_pred{wb}-Temp_limit(2)),2)./
                        → non_nan_count;
```

```
429
                  end
430
                  Temp_violations=[max(0,Temp_violations1-Temp_slack) max(0,
                      → Temp_violations2-Temp_slack)];
431
432
                  c\{wb\} (setdiff([1:size(x{wb},1)],zeroRows4),3+(1+size(x{wb},2))
                      \leftrightarrow *2+2+1:end)=Inf;
433
                  c\{wb\}(zeroRows4,3+(1+size(x\{wb\},2))*2+2+1:3+(1+size(x\{wb\},2))*2+2+2)
                      → =Temp_violations;
434
435
                  zeroRows5=zeroRows0;
436
                 x_zeroRows5=x{wb} (zeroRows5,:);
437
                  Temp_pred{wb} (zeroRows4,:) = Temp_pred{wb};
438
                  Temp_pred{wb}=Temp_pred{wb} (zeroRows5,:);
439
                  if isempty(x_zeroRows5)
440
                     zeroRows_empty=1;
441
                  end
442
443
              end
444
           end
445
        end
446
        %If we haven't reached the last reservoir, update mainstem_inflows.t, remove
            \hookrightarrow NaN from mainstem_inflows.T and mainstem_inflows.DO, and update
            → zeroRows0
447
        if wb~=size(ic_elev,2) & zeroRows_empty~=1
448
           mainstem_inflows{wb+1}.t=t;
449
           %Remove Nan values and interpolate for T and DO
450
           for i=1:size(mainstem_inflows{wb+1}.T,1)
451
              extrap_index=~isnan(mainstem_inflows{wb+1}.T(i,:));
452
               [~,column]=find(extrap_index==1); extrap_index=column(end);
453
              mainstem_inflows\{wb+1\}.T(i,:)=...
454
                  interp1(t(1,~isnan(mainstem_inflows{wb+1}.T(i,:))),...
455
                 mainstem_inflows{wb+1}.T(i,~isnan(mainstem_inflows{wb+1}.T(i,:)))
                      \hookrightarrow , . . .
                  t,'linear', mainstem_inflows{wb+1}.T(i,extrap_index));
456
457
              mainstem\_inflows\{wb+1\}.DO(i,:)=...
458
                  interp1(t(1, ~isnan(mainstem_inflows{wb+1}.DO(i,:))),...
459
                 mainstem_inflows{wb+1}.DO(i, isnan(mainstem_inflows{wb+1}.DO(i,:)))
                      \hookrightarrow , . . .
460
                  t,'linear', mainstem_inflows{wb+1}.DO(i,extrap_index));
461
              clearvars extrap_index column
462
463
           zeroRows0=find(all(c{wb}<=tolerance,2));</pre>
464
        end
465
466
    end
467
468
    %Update c_all with the values from c{wb}
469
    c_all=[c{:}];
```

runW2trainingpop.m

```
copyfile(CFG{wb}.w2inputDir,directory)
3
   %Open control file and modify TMEND
   fid=fopen([directory '/w2_con.npt']);
5
   i=1; A{i}=fgetl(fid);
6
   while ischar(A{i}) i=i+1; A{i}=fgetl(fid); end
   fclose(fid); A{28}(22:24)=num2str(t_all(end));
8
   fid=fopen([directory '/w2_con.npt'],'w');
9
   for i=1:numel(A)
10
      fprintf(fid,'%s\r\n', A{i});
      if A{i+1} ==-1
11
12
         break
```

```
13
       end
14
    end
15
    fclose(fid); clearvars A i fid
16
17
    %Open qot_br1.npt and modify turb and spill columns
   fid=fopen([directory '/qot_br1.npt']);
18
19
   i=1; A{i}=fgetl(fid);
20
   while ischar(A{i})
21
       i=i+1; A{i}=fgetl(fid);
22
       if i>3
23
          if str2double(A{i}(1:8))>=t_all(1)
24
             A(end) = []; break
25
26
       end
27
   end
28
    fclose(fid);
    if strcmp(CFG{wb}.TurbSpillOrder,'1')
30
       replacements{wb}=[Qtrainingpop{trindex}{wb}.QOT_BR1_T(Qtrainingpop{trindex}{
           \hookrightarrow wb}.QOT_BR1_T(:,1)>=t_all(1),:) ...
31
          Qtrainingpop{trindex}{wb}.QOT_BR1_S(Qtrainingpop{trindex}{wb}.QOT_BR1_S
              \hookrightarrow (:,1)>=t_all(1),2)];
    elseif strcmp(CFG{wb}.TurbSpillOrder,'0')
33
       replacements {wb} = [Qtrainingpop{trindex} {wb}.QOT_BR1_S(Qtrainingpop{trindex} {
           \hookrightarrow wb}.QOT_BR1_S(:,1)>=t_all(1),:) ...
34
          Qtrainingpop{trindex}{wb}.QOT_BR1_T(Qtrainingpop{trindex}{wb}.QOT_BR1_T
              \hookrightarrow (:,1)>=t_all(1),2)];
36
    for i=1:size(replacements{wb},1)
37
       A\{\text{numel}(A)+1\}=\text{sprintf}('\%8.3f\%8.3f\%8.3f', \text{replacements}\{\text{wb}\}(i,:));
38
39
    fid=fopen([directory '/got_br1.npt'],'w');
40
    for i=1:numel(A)
41
       fprintf(fid,'%s\r\n', A{i});
42
43
   fclose(fid); clearvars A i fid
45
   %Run executable w2.exe
46
   cd(directory)
47
    clearvars binarydecimalguide
48
    [","] = system(['w2.exe &']); %the & means execute in the background
49
    cd ../..
50
51
    clearvars a ia ib DO_noNAN T_noNAN flowout turbs spills HWs
```

runW2trainingpop_part2.m

```
cd(directory)
 1
   delete('w2.exe'); delete('pre.exe');
3
   cd ../..
   %Read in results from two and cwo files (assume DO is last col in cwo)
   T{trindex}=[]; DO{trindex}=[];
   d=dir([directory '/two*.opt']);
   fid=fopen([directory '/' d(end).name]);
   C=textscan(fid,[repmat('%8f', 1, 50) '%*[^\n]'],10^8,...
10
      'headerLines', 3,'collectoutput', true); %50 & 10^8 are arbitrary big numbers
11
   T\{trindex\}=C\{1\}; T\{trindex\}(:,isnan(T\{trindex\}(1,:)))=[];
12
   fclose(fid);
13
   d=dir([directory '/cwo*.opt']);
   fid=fopen([directory '/' d(end).name]);
14
   C=textscan(fid,[repmat('%8f', 1, 50) '%*[^\n]'],10^8,...
15
      'headerLines', 3,'collectoutput', true); %50 & 10^8 are arbitrary big numbers
16
17 | DO{trindex}=C{1}; DO{trindex}(:,isnan(DO{trindex}(1,:)))=[];
```

```
18 | DO{trindex}=[DO{trindex}(:,1) DO{trindex}(:,end)];
19
   fclose(fid);
20
   clearvars d C fid
21
   %Reset 0 values to nan
22
   T\{trindex\}(T\{trindex\}(:,2)==0,2)=nan;
23
   DO\{trindex\}\ (DO\{trindex\}\ (:,2)==0,2)=nan;
25
   %% Update cache
26
   if size(CFG, 2) == 1
27
       cache.x=[cache.x; trainingpop(trindex,:)];
28
       [~,~,HWs,~,~] = active units_to_discharges (training pop (trindex,:),...
29
          t, frequency, Qtrainingpop{trindex}{1},ic_elev{1},...
30
          turbine_discharge{1},ELWS_targets{1},[],[],Optimize_day_by_day);
31
       cache.HWs=[cache.HWs; HWs];
32
       DO_noNAN=interp1(DO{trindex}(~isnan(DO{trindex}(:,2)),1),...
33
          DO{trindex}(~isnan(DO{trindex}(:,2)),2),t_all(2:end));
       T_noNAN=interp1(T{trindex}(~isnan(T{trindex}(:,2)),1),...
34
35
          T{trindex}(~isnan(T{trindex}(:,2)),2),t_all(2:end));
36
       %Fill in Nans at the end
37
       a=DO_noNAN(~isnan(DO_noNAN)); DO_noNAN(isnan(DO_noNAN)) = a (end);
38
       a=T_noNAN(~isnan(T_noNAN)); T_noNAN(isnan(T_noNAN)) = a (end);
39
       turbs=interp1(Qtrainingpop{trindex}{1}.QOT_BR1_T(:,1),Qtrainingpop{trindex
           → }{1}.QOT_BR1_T(:,2),t_all);
40
       spills=interp1(Qtrainingpop{trindex}{1}.QOT_BR1_S(:,1),Qtrainingpop{trindex
          → }{1}.QOT_BR1_S(:,2),t_all);
41
       flowout=turbs(2:end)+spills(2:end);
42
       DO_noNAN(flowout==0)=nan; T_noNAN(flowout==0)=nan;
43
       cache.DO=[cache.DO; DO_noNAN]; cache.T=[cache.T; T_noNAN];
44
   end
45
   clearvars a ia ib DO_noNAN T_noNAN flowout turbs spills HWs directory
```

update_cache.m

```
% Add solution and W2 outputs to cache
3
   % if Optimize_day_by_day==0 & size(CFG,2)==1
 4
   if size(CFG, 2) == 1
 5
       if ~isempty(cache.x)
 6
       %If using the cache, get list of cache indices here
 7
          [~,ia,ib]=intersect(x_final_all{end},cache.x,'rows');
8
       else
 9
          ia=[];
10
      end
11
       if isempty(ia)
          cache.x=[cache.x; x_final_all{end}];
12
13
          cache.HWs=[cache.HWs; HWs{wb}];
14
          DO_noNAN=interp1(W2validation{1}.DO(~isnan(W2validation{1}.DO(:,2)),1),...
             W2validation{1}.DO(~isnan(W2validation{1}.DO(:,2)),2),t_all(2:end));
15
          T_noNAN=interp1(W2validation{1}.T(~isnan(W2validation{1}.T(:,2)),1),...
16
17
             W2validation{1}.T(~isnan(W2validation{1}.T(:,2)),2),t_all(2:end));
18
          %Fill in Nans at the end
19
          a=DO_noNAN(~isnan(DO_noNAN)); DO_noNAN(isnan(DO_noNAN)) = a (end);
20
          a=T_noNAN(~isnan(T_noNAN)); T_noNAN(isnan(T_noNAN)) = a (end);
21
          turbs=interp1(Q{1}.QOT_BR1_T(:,1),Q{1}.QOT_BR1_T(:,2),t_all);
22.
          spills=interp1(Q{1}.QOT_BR1_S(:,1),Q{1}.QOT_BR1_S(:,2),t_all);
23
          flowout=turbs(2:end)+spills(2:end);
24
          DO_noNAN(flowout==0)=nan; T_noNAN(flowout==0)=nan;
25
          cache.DO=[cache.DO; DO_noNAN]; cache.T=[cache.T; T_noNAN];
26
       end
27
   end
   clearvars a ia ib DO_noNAN T_noNAN flowout turbs spills
```

updateQ.m

```
function Q=updateQ(Q,CFG,x_final,t,frequency,ic_elev,turbine_discharge,...
      WQ, xprev, ELWS_targets, cache, Optimize_day_by_day)
   % Updates the structure Q with ELWS, discharge flows, and discharge WQ
5
   % based on previous days optimized
6
7
   % Inputs:
   % Q - all other inflows and outflows, interpolation settings, and
   % storage-elev curve
10
   % CFG - structure containing field values from config files
   % x_final - vector containing timeseries of active turbine levels for all
11
12
   % waterbodies
   % t time series of JDAY values
   % frequency - prediction frequency (ex: 0.25=1/4 day=6 hours)
15
   % ic_elev - initial elevation condition (meters)
16
   % turbine_discharge - turbine discharge curve at fixed MW level, with
17
   \mbox{\%} col 1 in meters and col 2 in cms
   % WQ - structure containing water quality constraints and NARX models
19
   % DO_narx - structure containing everything needed to make DO discharge
20
   % predictions, including:
   % turb_colum - column in exogenous variables with turb flows
2.1
   % spill_column - column in exogenous variables with spill flows
   % times - JDAY values used in training (not used)
   % inputDelays - delays for exogenous inputs
   \mbox{\%} feedbackDelays - delays for prediction feedbacks
   % input_variables - 2 row cell containing variable names in first
27
   % row and column number in second. For example, 'MET_WB1'
   % contains multiple columns of data but only some may be used
   % for NARX predictions
30
   % bias - bias for each trained neural network
31
   % weights - weights for each trained neural network (sum to 1)
   % narx_net_closed - neural networks
   % DO_limit - lower and upper DO limits (NaN means it doesn't exist)
34
   % DO_slack - relaxation from DO_limit (either upper or lower -
35
   % doesn't make sense to have both)
36
   % Temp_narx - structure containing everything needed to make temp discharge
   % predictions, including:
   % turb_colum - column in exogenous variables with turb flows
   % spill_column - column in exogenous variables with spill flows
40
   % times - JDAY values used in training (not used)
41
   % inputDelays - delays for exogenous inputs
   % feedbackDelays - delays for prediction feedbacks
43
   % input_variables - 2 row cell containing variable names in first
   % row and column number in second. For example, 'MET_WB1'
45
   % contains multiple columns of data but only some may be used
46
   % for NARX predictions
   % bias - bias for each trained neural network
   % weights - weights for each trained neural network (sum to 1)
48
   % narx_net_closed - neural networks
   % Temp_limit - lower and upper temp limits (NaN means it doesn't exist)
   % Temp_slack - relaxation from Temp_limit (either upper or lower -
   % doesn't make sense to have both)
   % ELWS_targets - 2 column matrix with JDAY in coll and elevation target
53
54
   % in col2
55
   % cache - water quality predictions provided by W2 simulations
   % Optimize_day_by_day - 1 if optimizing daily, 0 if optimizing all together
57
   % Outputs:
58
   % Q - all other inflows and outflows, interpolation settings,
59
   % storage-elev curve, and tailwater curve (all in meters)
60
61
   for wb=1:size(CFG,2)
      clearvars incoming_flow
```

```
63
       %If wb==1, update ELWS, QOT_BR1_T, CWO, TWO
        %If wb~=1, update ELWS, QOT_BR1_T, CWO, TWO, QIN_BR1, CIN_BR1, TIN_BR1 (CWO &
64
           → TWO may not update for last reservoir if NARX models aren't provided)
65
       x=x_{final\{wb\}}(size(x_{final\{wb\},2)}-size(t,2)+2:end);
66
       if wb==1
           if isempty(cache)
67
68
              ia=[]; ib=[];
 69
           else
 70
              %If using the cache, get list of cache indices here
71
              [~,~,tib]=intersect(t,cache.t);
 72
              if Optimize_day_by_day==0 & size(CFG,2)==1 & ~isempty(cache.x)
 73
                 [ia, ib] = ismember(x, cache.x, 'rows');
 74
75
                 index=find(cache.t==t(1)); %last index for previous operations
 76
                 [ia,ib]=ismember(x,cache.x(:,index:index+23),'rows'); %fix later to
                     → solve multi waterbody problems
 77
              end
 78
              ia=find(ia==1); ib=ib(ib~=0);
 79
          end
 80
 81
           [turb_discharges{wb}, spill_discharges{wb}, HWs{wb}, ~,~] = ...
82
              activeunits_to_discharges(x,t,frequency,...
83
              Q{wb},ic_elev{wb},turbine_discharge{wb},ELWS_targets{wb},...
84
              [],[],Optimize_day_by_day);
85
           %Check to see if HWs is cached, and replace if it is
86
           if ~isempty(ia)
87
             HWs {wb} = cache. HWs (ib, tib);
88
           end
89
          Q{wb}.ELWS=[Q{wb}.ELWS(Q{wb}.ELWS(:,1)<t(1),:); t' HWs{wb}'];
90
          Q\{wb\}.QOT_BR1_T = [Q\{wb\}.QOT_BR1_T(Q\{wb\}.QOT_BR1_T(:,1) < t(1),:);...
              t' turb_discharges{wb}'];
91
92
           if Optimize_day_by_day==1
93
              Q\{wb\}.QOT_BR1_S = [Q\{wb\}.QOT_BR1_S(Q\{wb\}.QOT_BR1_S(:,1) < t(1),:);...
94
                 t' ones(size(t,2),1)*spill_discharges{wb}];
95
          else
 96
              for ii=1:size(spill_discharges{wb},2)
97
                 spill_values(1, (1/frequency)*(ii-1)+1: (1/frequency)*(ii)+1)=...
98
                    spill_discharges{wb}(1,ii);
99
100
              Q\{wb\}.QOT_BR1_S = [Q\{wb\}.QOT_BR1_S(Q\{wb\}.QOT_BR1_S(:,1) < t(1),:);...
101
                 t' spill_values'];
102
             clearvars ii spill_values
103
104
           if isempty(ia)
105
             106
                 turb_discharges{wb}, spill_discharges{wb}, [], Q{wb}.CWO, 'do',
                     → Optimize_day_by_day);
107
              Temp_pred{wb}=narx_predictions(WQ{wb}.Temp_narx,frequency,t,Q{wb},x,...
108
                 turb_discharges{wb}, spill_discharges{wb},[],Q{wb}.TWO,'temp',
                    → Optimize_day_by_day);
109
          else
110
              DO_pred{wb}=cache.DO(ib,tib(1:end-1)); Temp_pred{wb}=cache.T(ib,tib(1:
                  \hookrightarrow end-1));
111
           end
112
           Remove NaNs from DO_pred and Temp_pred!
113
           outgoing_DO{wb}=[t(2:end)' DO_pred{wb}'];
114
           outgoing_DO{wb}=outgoing_DO{wb}(~isnan(outgoing_DO{wb}(:,2)),:);
115
           outgoing_Temp{wb}=[t(2:end)' Temp_pred{wb}'];
116
           outgoing_Temp{wb} = outgoing_Temp{wb}(~isnan(outgoing_Temp{wb}(:,2)),:);
117
           %If last values in WQ predictions are NaN, need to add last row to
               → outgoing_DO and outgoing_Temp
118
           if outgoing_Temp{wb} (end, 1) <t (end)</pre>
119
              outgoing_Temp{wb}=[outgoing_Temp{wb}; t(end) outgoing_Temp{wb}(end,2)];
120
              outgoing_DO{wb}=[outgoing_DO{wb}; t(end) outgoing_DO{wb}(end,2)];
```

```
121
           end
122
           Q\{wb\}.CWO = [Q\{wb\}.CWO(Q\{wb\}.CWO(:,1) < t(2),:); outgoing_DO\{wb\}];
123
           Q\{wb\}.TWO=[Q\{wb\}.TWO(Q\{wb\}.TWO(:,1)<(2),:); outgoing_Temp\{wb\}];
124
        else
125
           incoming_flow=turb_discharges{wb-1}+spill_discharges{wb-1};
126
           [turb_discharges{wb}, spill_discharges{wb}, HWs{wb}, ~,~] = ...
127
              activeunits_to_discharges(x,t,frequency,...
128
              Q{wb},ic_elev{wb},turbine_discharge{wb},ELWS_targets{wb},...
129
              t, incoming_flow, Optimize_day_by_day);
130
           Q\{wb\}.ELWS=[Q\{wb\}.ELWS(Q\{wb\}.ELWS(:,1)<t(1),:); t' HWs\{wb\}'];
131
           Q\{wb\}.QOT_BR1_T = [Q\{wb\}.QOT_BR1_T(Q\{wb\}.QOT_BR1_T(:,1) < t(1),:);...
132
              t' turb_discharges{wb}'];
133
           Q\{wb\}.QOT_BR1_S = [Q\{wb\}.QOT_BR1_S(Q\{wb\}.QOT_BR1_S(:,1) < t(1),:);...
134
              t' ones(size(t,2),1)*spill_discharges{wb}];
135
           %Qin contains both spill and turbine
136
           Q\{wb\}.QIN\_BR1 = [Q\{wb\}.QIN\_BR1(Q\{wb\}.QIN\_BR1(:,1) < t(1),:);...
137
              t' incoming_flow'];
138
           Q\{wb\}.CIN_BR1 = [Q\{wb\}.CIN_BR1(Q\{wb\}.CIN_BR1(:,1) < t(2),:);...
139
               outgoing_DO{wb-1}];
140
           Q\{wb\}.TIN_BR1 = [Q\{wb\}.TIN_BR1 (Q\{wb\}.TIN_BR1 (:,1) < t(2),:);...
141
               outgoing_Temp{wb-1}];
142
           %May not have WQ calculations for final reservoir's discharge (depends on
               → problem definition) so check for these
143
           if ~isempty(WQ{wb}.DO_narx)
144
              DO_pred{wb}=narx_predictions(WQ{wb}.DO_narx, frequency, t, ...
145
                  Q{wb},x,turb_discharges{wb},spill_discharges{wb},[],Q{wb}.CWO,'do');
146
               Remove NaNs from DO_pred and Temp_pred!
147
              outgoing_DO{wb}=[t(2:end)' DO_pred{wb}'];
148
              outgoing_DO{wb}=outgoing_DO{wb}(~isnan(outgoing_DO{wb}(:,2)),:);
149
               %If last values in WQ predictions are NaN, need to add last row to
                  → outgoing_DO and outgoing_Temp
150
               if outgoing_DO{wb} (end, 1) <t (end)</pre>
151
                  outgoing_DO{wb}=[outgoing_DO{wb}; t(end) outgoing_DO{wb}(end,2)];
152
               end
153
              Q\{wb\}.CWO=[Q\{wb\}.CWO(Q\{wb\}.CWO(:,1)<t(1),:); outgoing_DO\{wb\}];
154
           end
155
           if ~isempty(WQ{wb}.Temp_narx)
156
               Temp_pred(wb)=narx_predictions(WQ(wb).Temp_narx,frequency,t,...
157
                  Q{wb},x,turb_discharges{wb},spill_discharges{wb},[],Q{wb}.TWO,'temp'
                      \hookrightarrow );
158
               %Remove NaNs from DO_pred and Temp_pred!
159
              outgoing_Temp{wb}=[t(2:end)' Temp_pred{wb}'];
160
              outgoing_Temp{wb}=...
161
                  outgoing_Temp{wb}(~isnan(outgoing_Temp{wb}(:,2)),:);
162
               %If last values in WQ predictions are NaN, need to add last row to
                  → outgoing_DO and outgoing_Temp
163
               if outgoing_Temp{wb} (end, 1) <t (end)</pre>
164
                  outgoing_Temp{wb} = [outgoing_Temp{wb}; t(end) outgoing_Temp{wb} (end
                      \hookrightarrow ,2)1;
165
166
              Q\{wb\}.TWO=[Q\{wb\}.TWO(Q\{wb\}.TWO(:,1)< t(1),:); outgoing_Temp\{wb\}];
167
168
        end
169
    end
170
171
    clearvars outgoing_DO outgoing_Temp
```

REFERENCES

- Adams, W. R., E. L. Thackston, and R. E. Speece (1997), Modeling CSO impacts from Nashville using EPA's demonstration approach, *Journal of Environmental Engineering*, *123*(2), 126–133, doi:10.1061/(ASCE)0733-9372(1997)123:2(126).
- Afshar, A., H. Kazemi, and M. Saadatpour (2011), Particle swarm optimization for automatic calibration of large scale water quality model (CE-QUAL-W2): Application to Karkheh Reservoir, Iran, *Water Resources Management*, 25(10), 2613–2632, doi:10.1007/s11269-011-9829-7.
- Aguilar, J., S. Van Andel, M. Werner, and D. P. Solomatine (2014), Hydrodynamic and water quality surrogate modeling for reservoir operation, in *11th International Conference on Hydroinformatics*, New York City, New York, Aug 1, 2014.
- Ahmed, J. A., and A. K. Sarma (2005), Genetic algorithm for optimal operating policy of a multipurpose reservoir, *Water Resources Management*, 19(2), 145–161, doi:10.1007/s11269-005-2704-7.
- ALGLIB (2014), Inverse distance weighting interpolation/fitting, \(\http://www.alglib.net/\) interpolation/inversedistanceweighting.php\(\http://www.alglib.net/\) accessed January 21 2014.
- Alley, W. M. (1986), Regression approximations for transport model constraint sets in combined aquifer simulation-optimization studies, *Water Resources Research*, 22(4), 581–586, doi: 10.1029/Wr022i004p00581.
- Aly, A. H., and P. C. Peralta (1999), Comparison of a genetic algorithm and mathematical programming to the design of groundwater cleanup systems, *Water Resources Research*, *35*(8), 2415–2425, doi:10.1029/1998wr900128.
- Anderson, M. A. (2010), Influence of pumped-storage hydroelectric plant operation on a shallow polymictic lake: Predictions from 3-D hydrodynamic modeling, *Lake and Reservoir Management*, 26(1), 1–13, doi:10.1080/10402380903479102.
- Andrews, V. L. (2014), FWS 2008-B-0075; Final Biological Opinion on the Wolf Creek Dam/Lake Cumberland Return to Historical Pool Level Operations, Russell County, Kentucky, *Report*, Kentucky Ecological Services Field Office, Fish and Wildlife Service, U.S. Department of the Interior, March 24, 2014.
- Annear, R. L., and S. A. Wells (2002), The Bull Run River-Reservoir system model, in 2nd Federal Interagency Hydrologic Modeling Conference, Las Vegas, Nevada, July 28–August 1, 2002.
- Arnold, E., P. Tatjewski, and P. Wolochowicz (1994), Two methods for large-scale nonlinear optimization and their comparison on a case-study of hydropower optimization, *Journal of Optimization Theory and Applications*, 81(2), 221–248, doi:10.1007/Bf02191662.
- Azamathulla, H. M., F. C. Wu, A. Ab Ghani, S. M. Narulkar, N. A. Zakaria, and C. K. Chang (2008), Comparison between genetic algorithm and linear programming approach for real time operation, *Journal of Hydro-Environment Research*, 2(3), 172–181, doi:10.1016/j.jher.2008.10.001.
- Barros, M. T. L., F. T. C. Tsai, S. L. Yang, J. E. G. Lopes, and W. W. G. Yeh (2003), Optimization of large-scale hydropower system operations, *Journal of Water Resources Planning and Management*, *129*(3), 178–188, doi:10.1061/(ASCE)0733-9496(2003)129:3(178).

- Bartholow, J., R. B. Hanna, L. Saito, D. Lieberman, and M. Horn (2001), Simulated limnological effects of the Shasta Lake temperature control device, *Environmental Management*, 27(4), 609–626, doi:10.1007/S0026702324.
- Basudhar, A., C. Dribusch, S. Lacaze, and S. Missoum (2012), Constrained efficient global optimization with support vector machines, *Structural and Multidisciplinary Optimization*, 46(2), 201–221, doi:10.1007/s00158-011-0745-5.
- Batick, B. M. (2011), Modeling temperature and dissolved oxygen in the Cheatham Reservoir with CE-QUAL-W2, Masters thesis, Department of Environmental Engineering, Vanderbilt University.
- Berger, C. J., and S. A. Wells (2008), Modeling the effects of macrophytes on hydrodynamics, *Journal of Environmental Engineering*, 134(9), 778–788, doi:10.1061/(ASCE)0733-9372(2008) 134:9(778).
- Bichon, B. J., M. S. Eldred, S. Mahadevan, and J. M. McFarland (2013), Efficient global surrogate modeling for reliability-based design optimization, *Journal of Mechanical Design*, 135(1), doi: 10.1115/1.4022999.
- Biddle, S. H. (2001), Optimizing the TVA reservoir system using RiverWare, in *World Water and Environmental Resources Congress*, Orlando, FL, May 20–24, 2001.
- Bisschop, J. (2018), AIMMS Optimization Modelling, 306 pp.
- Blanning, R. W. (1975), Construction and implementation of metamodels, *Simulation*, 24(6), 177–184, doi:10.1177/003754977502400606.
- Bliznyuk, N., D. Ruppert, C. Shoemaker, R. Regis, S. Wild, and P. Mugunthan (2008), Bayesian calibration and uncertainty analysis for computationally expensive models using optimization and radial basis function approximation, *Journal of Computational and Graphical Statistics*, 17(2), 270–294, doi:10.1198/106186008x320681.
- Bloss, S., R. Lehfeldt, and J. C. Patterson (1988), Modeling turbulent transport in stratified estuary, *Journal of Hydraulic Engineering*, 114(9), 1115–1133.
- Blumensaat, F., J. Seydel, P. Krebs, and P. A. Vanrolleghem (2014), Model structure sensitivity of river water quality models for urban drainage impact assessment, in *7th International Congress on Environmental Modelling and Software*, San Diego, CA, June 15–19, 2014.
- Bonalumi, M., F. S. Anselmetti, A. Wuest, and M. Schmid (2012), Modeling of temperature and turbidity in a natural lake and a reservoir connected by pumped-storage operations, *Water Resources Research*, 48(8), doi:10.1029/2012wr011844.
- Bos, M. F. M. (2011), The morphological effects of sediment diversions on the Lower Mississippi River, Masters thesis, Department of Hydraulic Engineering, Delft University of Technology, Delft, Netherlands.
- Boukouvala, F., and M. G. Ierapetritou (2013), Surrogate-based optimization of expensive flowsheet modeling for continuous pharmaceutical manufacturing, *Journal of Pharmaceutical Innovation*, 8(2), 131–145, doi:10.1007/s12247-013-9154-1.

- Bowen, J. D., and J. W. Hieronymus (2003), A CE-QUAL-W2 model of Neuse Estuary for total maximum daily load development, *Journal of Water Resources Planning and Management*, 129(4), 283–294, doi:10.1061/(ASCE)0733-9496(2003)129:4(283).
- Box, G. E. P., and K. B. Wilson (1951), On the experimental attainment of optimum conditions, *Journal of the Royal Statistical Society Series*, *13*, 1–45.
- Broad, D. R., G. C. Dandy, and H. R. Maier (2005), Water distribution system optimization using metamodels, *Journal of Water Resources Planning and Management*, *131*(3), 172–180, doi:10. 1061/(ASCE)0733-9496(2005)131:3(172).
- Brown, L. C., and T. O. Barnwell (1987), The Enhanced Stream Water Quality Models QUAL2E and QUAL2E-UNCAS: Documentation and User Manual, *Report EPA/600/3-87/007*, Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency.
- Caliskan, A., and S. Elci (2009), Effects of selective withdrawal on hydrodynamics of a stratified reservoir, *Water Resources Management*, 23(7), 1257–1273, doi:10.1007/s11269-008-9325-x.
- Camp, J. V. S. (2009), Design and implementation of an advanced spill management information system for surface waters, PhD dissertation, Department of Environmental Engineering, Vanderbilt University, Nashville, TN.
- Castelletti, A., D. de Rigo, A. E. Rizzoli, R. Soncini-Sessa, and E. Weber (2007), Neuro-dynamic programming for designing water reservoir network management policies, *Control Engineering Practice*, *15*(8), 1031–1038, doi:10.1016/j.conengprac.2006.02.011.
- Castelletti, A., F. Pianosi, R. Soncini-Sessa, and J. P. Antenucci (2010), A multiobjective response surface approach for improved water quality planning in lakes and reservoirs, *Water Resources Research*, 46, doi:10.1029/2009wr008389.
- Castelletti, A., S. Galelli, M. Ratto, R. Soncini-Sessa, and P. C. Young (2012), A general framework for dynamic emulation modelling in environmental problems, *Environmental Modelling & Software*, *34*, 5–18, doi:10.1016/j.envsoft.2012.01.002.
- Castelletti, A., H. Yajima, M. Giuliani, R. Soncini-Sessa, and E. Weber (2014), Planning the optimal operation of a multioutlet water reservoir with water quality and quantity targets, *Journal of Water Resources Planning and Management*, *140*(4), 496–510, doi:10.1061/(Asce)Wr.1943-5452. 0000348.
- Center for Advanced Decision Support for Water and Environmental Systems (CADSWES) (2015), RiverWare, (http://cadswes.colorado.edu/creative-works/riverware), accessed October 12 2015.
- Chang, L. C., and F. J. Chang (2001), Intelligent control for modelling of real-time reservoir operation, *Hydrological Processes*, *15*(9), 1621–1634, doi:10.1002/Hyp.226.
- Chapra, S. C. (1997), Surface Water-Quality Modeling, 844 pp., McGraw-Hill, New York.
- Chaves, P., and T. Kojiri (2007), Conceptual fuzzy neural network model for water quality simulation, *Hydrological Processes*, 21(5), 634–646, doi:10.1002/Hyp.6279.
- Chen, D., A. S. Leon, N. L. Gibson, and P. Hosseini (2016), Dimension reduction of decision variables for multireservoir operation: A spectral optimization model, *Water Resources Research*, 52(1), 36–51, doi:10.1002/2015wr017756.

- Chen, L. L., C. Liao, W. B. Lin, L. Chang, and X. M. Zhong (2012), Hybrid-surrogate-model-based efficient global optimization for high-dimensional antenna design, *Progress in Electromagnetics Research-Pier*, 124, 85–100, doi:10.2528/Pier11121203.
- Cheng, B., and D. M. Titterington (1994), Neural networks: A review from a statistical perspective, *Statistical Science*, 9(1), 2–30, doi:10.1214/ss/1177010638.
- Cheng, C. T., W. C. Wang, D. M. Xu, and K. W. Chau (2008), Optimizing hydropower reservoir operation using hybrid genetic algorithm and chaos, *Water Resources Management*, 22(7), 895–909, doi:10.1007/s11269-007-9200-1.
- Cheng, Y., Y. Li, F. Ji, and Y. Wang (2018), Global sensitivity analysis of a water quality model in the Three Gorges Reservoir, *Water*, 10(2), 153, doi:10.3390/w10020153.
- Chiu, Y. C., L. C. Chang, and F. J. Chang (2007), Using a hybrid genetic algorithm-simulated annealing algorithm for fuzzy programming of reservoir operation, *Hydrological Processes*, 21(23), 3162–3172, doi:10.1002/Hyp.6539.
- Cho, J. H., and S. R. Ha (2010), Parameter optimization of the QUAL2K model for a multiple-reach river using an influence coefficient algorithm, *Science of the Total Environment*, 408(8), 1985–1991, doi:10.1016/j.scitotenv.2010.01.025.
- Choi, J. H., S. A. Jeong, and S. S. Park (2007), Longitudinal-vertical hydrodynamic and turbidity simulations for prediction of dam reconstruction effects in Asian monsoon area, *Journal of the American Water Resources Association*, 43(6), 1444–1454, doi:10.1111/j.1752-1688.2007. 00120.x.
- Chung, S. W., and R. R. Gu (2009), Prediction of the fate and transport processes of atrazine in a reservoir, *Environmental Management*, 44(1), 46–61, doi:10.1007/s00267-009-9312-x.
- Chung, S. W., and J. K. Oh (2006), Calibration of CE-QUAL-W2 for a monomictic reservoir in a monsoon climate area, *Water Science and Technology*, *54*(11-12), 29–37, doi:10.2166/Wst.2006. 841.
- Cole, T. M., and S. A. Wells (2007), *CE-QUAL-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 3.5 User Manual*, 681 pp., Department of Civil and Environmental Engineering, Portland State University.
- Conn, A. R., N. Gould, and P. L. Toint (1997), A globally convergent Lagrangian barrier algorithm for optimization with general inequality constraints and simple bounds, *Mathematics of Computation*, 66(217), 261–&, doi:10.1090/S0025-5718-97-00777-1.
- Cooper, G. S., R. C. Peralta, and J. J. Kaluarachchi (1998), Optimizing separate phase light hydrocarbon recovery from contaminated unconfined aquifers, *Advances in Water Resources*, 21(5), 339–350, doi:10.1016/S0309-1708(97)00005-5.
- Covich, A. (1993), Water and ecosystems, in *Water in Crisis*, edited by P. Gleick, pp. 40–55, Oxford University Press, New York.
- Cox, B. A. (2003), A review of currently available in-stream water-quality models and their applicability for simulating dissolved oxygen in lowland rivers, *Science of the Total Environment*, *314*, 335–377, doi:10.1016/S0048-9697(03)00063-9.

- Crawley, P. D., and G. C. Dandy (1993), Optimal operation of multiple-reservoir system, *Journal of Water Resources Planning and Management*, 119(1), 1–17, doi:10.1061/(ASCE) 0733-9496(1993)119:1(1).
- Cristea, N., and G. J. Pelletier (2005), Wenatchee River Temperature Total Maximum Daily Load Study, *Report 05-03-011*, Environmental Assessment Program, Washington State Department of Ecology.
- Crowder, D. W., and P. Diplas (2006), Applying spatial hydraulic principles to quantify stream habitat, *River Research and Applications*, 22(1), 79–89, doi:10.1002/rra.893.
- Dai, T. W., and J. W. Labadie (2001), River basin network model for integrated water quantity/quality management, *Journal of Water Resources Planning and Management*, *127*(5), 295–305, doi: 10.1061/(ASCE)0733-9496(2001)127:5(295).
- Dariane, A. B., and Z. Farahmandfar (2013), A comparative study of marriage in honey bees optimisation (MBO) algorithm in multi-reservoir system optimisation, *Water SA*, 39(2), 327–334, doi:10.4314/Wsa.V39i2.17.
- de Azevedo, L. G. T., T. K. Gates, D. G. Fontane, J. W. Labadie, and R. L. Porto (2000), Integration of water quantity and quality in strategic river basin planning, *Journal of Water Resources Planning and Management*, 126(2), 85–97.
- Debele, B., R. Srinivasan, and J.-Y. Parlange (2008), Coupling upland watershed and downstream waterbody hydrodynamic and water quality models (SWAT and CE-QUAL-W2) for better water resources management in complex river basins, *Environmental Modeling & Assessment*, 13(1), 135–153, doi:10.1007/s10666-006-9075-1.
- Deliman, P. N., and J. A. Gerald (2002), Application of the two-dimensional hydrothermal and water quality model, CE-QUAL-W2, to the Chesapeake Bay Conowingo Reservoir, *Lake and Reservoir Management*, 18(1), 10–19, doi:10.1080/07438140209353925.
- Deltares (2015), Delft3D Functional Specifications, Report Version 2.20.
- Dhar, A., and B. Datta (2008), Optimal operation of reservoirs for downstream water quality control using linked simulation optimization, *Hydrological Processes*, 22(6), 842–853, doi:10.1002/Hyp. 6651.
- di Pierro, F., S. T. Khu, D. Savic, and L. Berardi (2009), Efficient multi-objective optimal design of water distribution networks on a budget of simulations using hybrid algorithms, *Environmental Modelling & Software*, 24(2), 202–213, doi:10.1016/j.envsoft.2008.06.008.
- Dissanayake, D. M. P. K., R. Ranasinghe, and J. A. Roelvink (2012), The morphological response of large tidal inlet/basin systems to relative sea level rise, *Climatic Change*, *113*(2), 253–276, doi:10.1007/s10584-012-0402-z.
- Donnell, B. P., J. V. Letter, W. H. McAnally, and W. A. Thomas (2006), Users Guide for RMA2 WES Version 4.5, *Report*, U.S. Army Engineer Research and Development Center, Waterways Experiment Station, Coastal and Hydraulics Laboratory.
- Dorigo, M., and T. Stützle (2004), Ant Colony Optimization, 305 pp., MIT Press, Cambridge, Mass.

- Dortch, M. S. (1997), Water quality considerations in reservoir management, *Journal of Contemporary Water Resources and Education*, pp. 32–42.
- Draper, A. J., M. W. Jenkins, K. W. Kirby, J. R. Lund, and R. E. Howitt (2003), Economic-engineering optimization for California water management, *Journal of Water Resources Planning and Management*, *129*(3), 155–164, doi:10.1061/(ASCE)0733-9496(2003)129:3(155).
- Draper, A. J., A. Munevar, S. K. Arora, E. Reyes, N. L. Parker, F. I. Chung, and L. E. Peterson (2004), CalSim: Generalized model for reservoir system analysis, *Journal of Water Resources Planning and Management*, 130(6), 480–489, doi:10.1061/(ASCE)0733-9496(2004)130:6(480).
- Eberhart, R. C., and J. Kennedy (1995), A new optimizer using particle swarm theory, in *6th Symposium on Micro Machine and Human Science*, pp. 39–43, IEEE, Nagoya, Japan, October 4-6, 1995.
- Edmonds, D. A., and R. L. Slingerland (2008), Stability of delta distributary networks and their bifurcations, *Water Resources Research*, 44(9), doi:10.1029/2008wr006992.
- Ejaz, M. S., and R. C. Peralta (1995), Modeling for optimal management of agricultural and domestic waste-water loading to streams, *Water Resources Research*, 31(4), 1087–1096, doi: 10.1029/94wr02980.
- El-Awar, F. A., J. W. Labadie, and T. B. M. J. Ouarda (1998), Stochastic differential dynamic programming for multi-reservoir system control, *Stochastic Hydrology and Hydraulics*, *12*(4), 247–266, doi:10.1007/s004770050020.
- El Serafy, G. Y. H., and A. E. Mynett (2008), Improving the operational forecasting system of the stratified flow in Osaka Bay using an ensemble Kalman filter-based steady state Kalman filter, *Water Resources Research*, 44(6), doi:10.1029/2006wr005412.
- Elsayed, K., D. Vucinic, R. d'Ippolito, and C. Lacor (2012), Comparison between RBF and kriging surrogates in design optimization of high dimensional problems, in *3rd International Conference on Engineering Optimization*, Rio de Janeiro, Brazil, July 1–5, 2012.
- Esat, V., and M. J. Hall (1994), Water resources system optimization using genetic algorithms, in *First International Conference on Hydroinformatics*, vol. 1, pp. 225–231, Delft, Netherlands, September 19–23, 1994.
- Eschenbach, E. A., T. H. Magee, E. Zagona, M. Goranflo, and R. Shane (2001), Goal programming decision support system for multiobjective operation of reservoir systems, *Journal of Water Resources Planning and Management*, *127*(2), 108–120, doi:10.1061/(ASCE)0733-9496(2001) 127:2(108).
- Eslick, J. C., B. Ng, Q. W. Gao, C. H. Tong, N. V. Sahinidis, and D. C. Miller (2014), A framework for optimization and quantification of uncertainty and sensitivity for developing carbon capture systems, *Energy Procedia*, 63, 1055–1063, doi:10.1016/j.egypro.2014.11.113.
- Faber, B. A., and J. J. Harou (2006), Multiobjective optimization with HEC Res-PRM Application to the Upper Mississippi Reservoir System, in *Operating Reservoirs in Changing Conditions: Proceedings of the Operations Management 2006 Conference*, pp. 215–224, American Society of Civil Engineers, Sacramento, CA, August 14-16, 2006.

- Fasshauer, G. E. (2007), *Meshfree Approximation Methods with MATLAB*, Interdisciplinary Mathematical Sciences, 500 pp., World Scientific, Singapore; Hackensack, N.J.
- Fen, C. S., C. C. Chan, and H. C. Cheng (2009), Assessing a response surface-based optimization approach for soil vapor extraction system design, *Journal of Water Resources Planning and Management*, 135(3), 198–207, doi:10.1061/(ASCE)0733-9496(2009)135:3(198).
- Ferreira, A. R., and R. S. V. Teegavarapu (2012), Optimal and adaptive operation of a hydropower system with unit commitment and water quality constraints, *Water Resources Management*, 26(3), 707–732, doi:10.1007/s11269-011-9940-9.
- Finardi, E. C., and M. R. Scuzziato (2013), Hydro unit commitment and loading problem for dayahead operation planning problem, *International Journal of Electrical Power & Energy Systems*, 44(1), 7–16, doi:10.1016/j.ijepes.2012.07.023.
- Finardi, E. C., E. L. da Silva, and C. Sagastizabal (2005), Solving the unit commitment problem of hydropower plants via lagrangian relaxation and sequential quadratic programming, *Computational & Applied Mathematics*, 24(3), 317–341.
- Fontane, D. G., T. K. Gates, and E. Moncada (1997), Planning reservoir operations with imprecise objectives, *Journal of Water Resources Planning and Management*, *123*(3), 154–162, doi:10. 1061/(ASCE)0733-9496(1997)123:3(154).
- Forrester, A. I. J., and A. J. Keane (2009), Recent advances in surrogate-based optimization, *Progress in Aerospace Sciences*, 45(1-3), 50–79, doi:10.1016/j.paerosci.2008.11.001.
- Forrester, A. I. J., A. Sóbester, and A. J. Keane (2008), *Engineering Design via Surrogate Modelling: A Practical Guide*, 210 pp., J. Wiley, Chichester, West Sussex, England; Hoboken, NJ.
- Franke, R., and G. Nielson (1980), Smooth interpolation of large sets of scattered data, *International Journal for Numerical Methods in Engineering*, 15(11), 1691–1704, doi:10.1002/nme. 1620151110.
- Friedl, G., and A. Wuest (2002), Disrupting biogeochemical cycles Consequences of damming, *Aquatic Sciences*, 64(1), 55–65, doi:10.1007/S00027-002-8054-0.
- Garvey, E., J. E. Tobiason, M. Hayes, E. Wolfram, D. A. Reckhow, and J. W. Male (1998), Coliform transport in a pristine reservoir: Modeling and field studies, *Water Science and Technology*, *37*(2), 137–144, doi:10.1016/S0273-1223(98)00048-1.
- Gastelum, J. R., and C. Cullom (2013), Application of the Colorado River Simulation System model to evaluate water shortage conditions in the Central Arizona Project, *Water Resources Management*, 27(7), 2369–2389, doi:10.1007/s11269-013-0292-5.
- Georgakakos, A. P., H. M. Yao, and Y. Q. Yu (1997), Control models for hydroelectric energy optimization, *Water Resources Research*, *33*(10), 2367–2379, doi:10.1029/97wr01714.
- Gorelick, S. M., C. I. Voss, P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright (1984), Aquifer reclamation design: The use of contaminant transport simulation combined with nonlinear-programming, *Water Resources Research*, 20(4), 415–427, doi:10.1029/Wr020i004p00415.

- Gotshall, S., B. Rylander, V. Esat, and M. J. Hall (2002), Optimal population size and the genetic algorithm, in *World Scientific and Engineering Academy and Society (WSEAS) International Conference on Soft Computing, Optimization, Simulation, and Manufacturing Systems (SOSM 2002)*, Cancun, Mexico, May 12–16, 2002.
- Graf, W. L. (2005), Geomorphology and American dams: The scientific, social, and economic context, *Geomorphology*, 71(1-2), 3–26, doi:10.1016/j.geomorph.2004.05.005.
- Gramacy, R. B., M. Taddy, and S. M. Wild (2013), Variable selection and sensitivity analysis using dynamic trees, with an application to computer code performance tuning, *Annals of Applied Statistics*, 7(1), 51–80, doi:10.1214/12-Aoas590.
- Grefenstette, J. J. (1992), Genetic algorithms for changing environments, *Parallel Problem Solving from Nature* 2, pp. 137–144.
- Grenney, W. J., M. C. Teuscher, and L. S. Dixon (1978), Characteristics of the solution algorithms for the QUAL II river model, *Journal (Water Pollution Control Federation)*, 50(1), 151–157.
- Grygier, J. C., and J. R. Stedinger (1985), Algorithms for optimizing hydropower system operation, *Water Resources Research*, 21(1), 1–10, doi:10.1029/Wr021i001p00001.
- Gunduz, O., S. Soyupak, and C. Yurteri (1998), Development of water quality management strategies for the proposed Isikli reservoir, *Water Science and Technology*, *37*(2), 369–376, doi: 10.1016/S0273-1223(98)00045-6.
- Gutmann, H. M. (2001), A radial basis function method for global optimization, *Journal of Global Optimization*, 19(3), 201–227, doi:10.1023/A:1011255519438.
- Haddad, O. B., A. Afshar, and M. A. Marino (2006), Honey-bees mating optimization (HBMO) algorithm: A new heuristic approach for water resources optimization, *Water Resources Management*, 20(5), 661–680, doi:10.1007/s11269-005-9001-3.
- Hall, W. A., W. S. Butcher, and A. Esogbue (1968), Optimization of operation of a multiple-purpose reservoir by dynamic programming, *Water Resources Research*, 4(3), 471–477, doi: 10.1029/Wr004i003p00471.
- Hamrick, J. M. (1996), User's Manual for the Environmental Fluid Dynamics Computer Code, *Report No. 331*, Department of Physical Sciences, School of Marine Science, Virginia Institute of Marine Science, The College of William and Mary.
- Hayes, D. F., J. W. Labadie, T. G. Sanders, and J. K. Brown (1998), Enhancing water quality in hydropower system operations, *Water Resources Research*, *34*(3), 471–483, doi:10.1029/97wr03038.
- Hegazy, T., and R. Rashedi (2013), Large-scale asset renewal optimization using genetic algorithms plus segmentation, *Journal of Computing in Civil Engineering*, 27(4), 419–426, doi:10.1061/(Asce)Cp.1943-5487.0000249.
- Henderson-Sellers, B. (1988), Sensitivity of thermal stratification models to changing boundary conditions, *Applied Mathematical Modelling*, *12*(1), 31–43, doi:10.1016/0307-904x(88)90021-2.
- Hiew, K. (1987), Optimization algorithms for large-scale multireservoir hydropower systems, PhD dissertation, Department of Civil Engineering, Colorado State University, Fort Collins, CO.

- Higgins, J. M., and W. G. Brock (1999), Overview of reservoir release improvements at 20 TVA dams, *Journal of Energy Engineering*, 125(1), 1–17, doi:10.1061/(ASCE)0733-9402(1999)125: 1(1).
- Holland, J. H. (1975), Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, 183 pp., University of Michigan Press, Ann Arbor.
- Horowitz, B., L. J. D. Guimaraes, V. Dantas, and S. M. B. Afonso (2010), A concurrent efficient global optimization algorithm applied to polymer injection strategies, *Journal of Petroleum Science and Engineering*, 71(3-4), 195–204, doi:10.1016/j.petrol.2010.02.002.
- Huang, D., T. T. Allen, W. I. Notz, and R. A. Miller (2006), Sequential kriging optimization using multiple-fidelity evaluations, *Structural and Multidisciplinary Optimization*, *32*(5), 369–382, doi: 10.1007/s00158-005-0587-0.
- Huang, Y. T., and L. Liu (2010), Multiobjective water quality model calibration using a hybrid genetic algorithm and neural network-based approach, *Journal of Environmental Engineering*, 136(10), 1020–1031, doi:10.1061/(ASCE)Ee.1943-7870.0000237.
- Ilich, N., and S. P. Simonovic (2001), An evolution program for non-linear transportation problems, *Journal of Heuristics*, 7(2), 145–168, doi:10.1023/A:1009609820093.
- Jager, H. I., and B. T. Smith (2008), Sustainable reservoir operation: Can we generate hydropower and preserve ecosystem values?, *River Research and Applications*, 24(3), 340–352, doi:10.1002/Rra.1069.
- Jalali, M. R., A. Afshar, and M. A. Marino (2007), Multi-colony ant algorithm for continuous multi-reservoir operation optimization problem, *Water Resources Management*, 21(9), 1429–1447, doi: 10.1007/s11269-006-9092-5.
- James, R. T., J. Martin, T. Wool, and P. F. Wang (1997), A sediment resuspension and water quality model of Lake Okeechobee, *Journal of the American Water Resources Association*, *33*(3), 661–680, doi:10.1111/j.1752-1688.1997.tb03540.x.
- Jenkins, M. W., J. R. Lund, R. E. Howitt, A. J. Draper, S. M. Msangi, S. K. Tanaka, R. S. Ritzema, and G. F. Marques (2004), Optimization of California's water supply system: Results and insights, *Journal of Water Resources Planning and Management*, *130*(4), 271–280, doi:10.1061/(ASCE)0733-9496(2004)130:4(271).
- Ji, Z. G., J. H. Hamrick, and J. Pagenkopf (2002), Sediment and metals modeling in shallow river, *Journal of Environmental Engineering*, 128(2), 105–119, doi:10.1061/(Asce)0733-9372(2002) 128:2(105).
- Jin, K. R., Z. G. Ji, and J. H. Hamrick (2002a), Modeling winter circulation in Lake Okeechobee, Florida, *Journal of Waterway Port Coastal and Ocean Engineering*, 128(3), 114–125, doi:10. 1061/(Asce)0733-950x(2002)128;3(114).
- Jin, Y. (2005), A comprehensive survey of fitness approximation in evolutionary computation, *Soft Computing*, *9*(1), 3–12, doi:10.1007/s00500-003-0328-5.

- Jin, Y. C., M. Olhofer, and B. Sendhoff (2002b), A framework for evolutionary optimization with approximate fitness functions, *IEEE Transactions on Evolutionary Computation*, *6*(5), 481–494, doi:10.1109/Tevc.2002.800884.
- Johnson, V. M., and L. L. Rogers (2000), Accuracy of neural network approximators in simulation-optimization, *Journal of Water Resources Planning and Management*, 126(2), 48–56, doi:10. 1061/(ASCE)0733-9496(2000)126:2(48).
- Jones, D. R. (2001), A taxonomy of global optimization methods based on response surfaces, *Journal of Global Optimization*, 21(4), 345–383, doi:10.1023/A:1012771025575.
- Jones, D. R., M. Schonlau, and W. J. Welch (1998), Efficient global optimization of expensive black-box functions, *Journal of Global Optimization*, *13*(4), 455–492, doi:10.1023/A:1008306431147.
- Kacikoc, M., and M. Beyhan (2014), Hydrodynamic and water quality modeling of Lake Egirdir, *Clean-Soil Air Water*, 42(11), 1573–1582, doi:10.1002/clen.201300455.
- Kannel, P. R., S. Lee, Y. S. Lee, S. R. Kanel, and G. J. Pelletier (2007), Application of automated QUAL2Kw for water quality modeling and management in the Bagmati River, Nepal, *Ecological Modelling*, 202(3-4), 503–517, doi:10.1016/j.ecolmodel.2006.12.033.
- Kannel, P. R., S. R. Kanel, S. Lee, Y. S. Lee, and T. Y. Gan (2011), A review of public domain water quality models for simulating dissolved oxygen in rivers and streams, *Environmental Modeling & Assessment*, 16(2), 183–204, doi:10.1007/s10666-010-9235-1.
- Karamouz, M., B. Zahraie, and S. Araghinejad (2005), Decision support system for monthly operation of hydropower reservoirs: A case study, *Journal of Computing in Civil Engineering*, 19(2), 194–207, doi:10.1061/(ASCE)0887-3801(2005)19:2(194).
- Kennedy, R. H., and R. F. Gaugush (1988), Assessment of water quality in Corps of Engineers reservoirs, *Lake and Reservoir Management*, 4(2), 253–260.
- Kerachian, R., and M. Karamouz (2007), A stochastic conflict resolution model for water quality management in reservoir-river systems, *Advances in Water Resources*, *30*(4), 866–882, doi:10. 1016/j.advwatres.2006.07.005.
- Khu, S. T., and M. G. F. Werner (2003), Reduction of Monte-Carlo simulation runs for uncertainty estimation in hydrological modelling, *Hydrology and Earth System Sciences*, 7(5), 680–692.
- Khu, S. T., D. Savic, Y. Liu, and H. Madsen (2004), A fast evolutionary-based meta-modelling approach for the calibration of a rainfall-runoff model, in *First Biennial Meeting of the International Environmental Modelling Software Society*, Osnabruck, Germany.
- Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi (1983), Optimization by simulated annealing, *Science*, 220(4598), 671–680, doi:10.1126/science.220.4598.671.
- Knowles, J. (2006), Parego: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems, *IEEE Transactions on Evolutionary Computation*, 10(1), 50–66, doi:10.1109/Tevc.2005.851274.
- Krige, D. G. (1951), A statistical approach to some basic mine valuation problems on the witwater-srand, *Journal of the Chemical*, *Metallurgical and Mining Engineering Society of South Africa*, 52(6), 119–139.

- Kumar, D. N., and M. J. Reddy (2006), Ant colony optimization for multi-purpose reservoir operation, *Water Resources Management*, 20(6), 879–898, doi:10.1007/s11269-005-9012-0.
- Kumar, D. N., and M. J. Reddy (2007), Multipurpose reservoir operation using particle swarm optimization, *Journal of Water Resources Planning and Management*, 133(3), 192–201, doi:10. 1061/(ASCE)0733-9496(2007)133:3(192).
- Kuo, J. T., W. C. Liu, R. T. Lin, W. S. Lung, M. D. Yang, C. P. Yang, and S. C. Chu (2003), Water quality modeling for the Feitsui Reservoir in northern Taiwan, *Journal of the American Water Resources Association*, 39(3), 671–687, doi:10.1111/j.1752-1688.2003.tb03684.x.
- Kuo, J. T., W. S. Lung, C. P. Yang, W. C. Liu, M. D. Yang, and T. S. Tang (2006), Eutrophication modelling of reservoirs in Taiwan, *Environmental Modelling & Software*, 21(6), 829–844, doi: 10.1016/j.envsoft.2005.03.006.
- Kurup, R. G., D. P. Hamilton, and R. L. Phillips (2000), Comparison of two 2-dimensional, laterally averaged hydrodynamic model applications to the Swan River Estuary, *Mathematics and Computers in Simulation*, *51*(6), 627–638, doi:10.1016/S0378-4754(99)00146-9.
- Labadie, J. W. (2004), Optimal operation of multireservoir systems: State-of-the-art review, *Journal of Water Resources Planning and Management*, *130*(2), 93–111, doi:10.1061/(ASCE) 0733-9496(2004)130:2(93).
- Labadie, J. W., and R. Larson (2007), *MODSIM 8.1: River Basin Management Decision Support System: User Manual and Documentation*, 123 pp., Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO.
- Lee, C., and G. Foster (2013), Assessing the potential of reservoir outflow management to reduce sedimentation using continuous turbidity monitoring and reservoir modelling, *Hydrological Processes*, 27(10), 1426–1439, doi:10.1002/Hyp.9284.
- Lee, J. H. W., and B. Qu (2004), Hydrodynamic tracking of the massive spring 1998 red tide in Hong Kong, *Journal of Environmental Engineering*, 130(5), 535–550, doi:10.1061/(Asce) 0733-9372(2004)130:5(535).
- Lee, Y., S.-K. Kim, and I. H. Ko (2006), Two-stage stochastic linear programming model for coordinated multi-reservoir operation, in *Operations Management Conference 2006*, ASCE, Sacramento, California, August 14–16, 2006.
- Lefkoff, L. J., and S. M. Gorelick (1990), Simulating physical processes and economic-behavior in saline, irrigated agriculture model development, *Water Resources Research*, 26(7), 1359–1369, doi:10.1029/Wr026i007p01359.
- Letter, J. V., G. L. Brown, and B. P. Donnell (2011), Users Guide for RMA4 WES Version 4.5, *Report*, U.S. Army Engineer Research and Development Center, Waterways Experiment Station, Coastal and Hydraulics Laboratory.
- Li, X. G., and X. Wei (2008), An improved genetic algorithm-simulated annealing hybrid algorithm for the optimization of multiple reservoirs, *Water Resources Management*, 22(8), 1031–1049, doi:10.1007/s11269-007-9209-5.
- Lin, T. N., B. G. Horne, P. Tino, and C. L. Giles (1996), Learning long-term dependencies in NARX recurrent neural networks, *IEEE Transactions on Neural Networks*, *7*(6), 1329–1338.

- Liong, S. Y., S. T. Khu, and W. T. Chan (2001), Derivation of Pareto front with genetic algorithm and neural network, *Journal of Hydrologic Engineering*, 6(1), 52–61, doi:10.1061/(ASCE) 1084-0699(2001)6:1(52).
- Liu, X. Y., S. L. Guo, P. Liu, L. Chen, and X. A. Li (2011), Deriving optimal refill rules for multi-purpose reservoir operation, *Water Resources Management*, 25(2), 431–448, doi: 10.1007/s11269-010-9707-8.
- Loftis, B., J. W. Labadie, and D. G. Fontane (1985), Optimal operation of a system of lakes for quality and quantity, in *Computer Applications in Water Resources*, pp. 693–702, Buffalo, New York, June 10–12, 1985.
- Lund, J. R., and I. Ferreira (1996), Operating rule optimization for Missouri River reservoir system, *Journal of Water Resources Planning and Management*, 122(4), 287–295, doi:10.1061/(ASCE) 0733-9496(1996)122:4(287).
- Lung, W. S., and S. Bai (2003), A water quality model for the Patuxent Estuary: Current conditions and predictions under changing land-use scenarios, *Estuaries*, 26(2A), 267–279, doi:10.1007/Bf02695966.
- MacQueen, J. (1967), Some methods for classification and analysis of multivariate observations, in *Fifth Berkeley Symposium on Mathematical Statistics and Probability*, vol. 1, pp. 281–297, University of California Press, Berkeley, CA, June 21–July 18, 1965.
- Madadgar, S., and A. Afshar (2009), An improved continuous ant algorithm for optimization of water resources problems, *Water Resources Management*, 23(10), 2119–2139, doi:10.1007/s11269-008-9373-2.
- Magee, T. H. (2015), System optimization of operations with TDG, in *Enhancing Water Quality in Hydropower System Operations: A Workshop to Review Advances, Challenges, and Identify Opportunities*, Nashville, TN, August 19, 2015.
- Martin, J. L. (1988), Application of two-dimensional water-quality model, *Journal of Environmental Engineering*, 114(2), 317–336, doi:10.1061/(ASCE)0733-9372(1988)114:2(317).
- Martin, Q. W. (1983), Optimal operation of multiple reservoir systems, *Journal of Water Resources Planning and Management*, 109(1), 58–74.
- Martin, Q. W. (1995), Optimal reservoir control for hydropower on Colorado River, Texas, *Journal of Water Resources Planning and Management*, *121*(6), 438–446, doi:10.1061/(Asce) 0733-9496(1995)121:6(438).
- McCartney, M. (2009), Living with dams: Managing the environmental impacts, *Water Policy*, 11(1), 121–139, doi:10.2166/Wp.2009.108.
- Micchelli, C. A. (1986), Interpolation of scattered data distance matrices and conditionally positive definite functions, *Constructive Approximation*, 2(1), 11–22, doi:10.1007/Bf01893414.
- Mobley, M. H., and W. G. Brock (1995), Widespread oxygen bubbles to improve reservoir releases, *Lake and Reservoir Management*, 11(2), 231–234, doi:10.1080/07438149509354204.

- Mooij, W. M., D. Trolle, E. Jeppesen, G. Arhonditsis, P. V. Belolipetsky, D. B. R. Chitamwebwa, A. G. Degermendzhy, D. L. DeAngelis, L. N. D. Domis, A. S. Downing, J. A. Elliott, C. R. Fragoso, U. Gaedke, S. N. Genova, R. D. Gulati, L. Hakanson, D. P. Hamilton, M. R. Hipsey, J. 't Hoen, S. Hulsmann, F. H. Los, V. Makler-Pick, T. Petzoldt, I. G. Prokopkin, K. Rinke, S. A. Schep, K. Tominaga, A. A. Van Dam, E. H. Van Nes, S. A. Wells, and J. H. Janse (2010), Challenges and opportunities for integrating lake ecosystem modelling approaches, *Aquatic Ecology*, 44(3), 633–667, doi:10.1007/s10452-010-9339-3.
- Mousavi, S. J., K. S. Moghaddam, and A. Seifi (2004), Application of an interior-point algorithm for optimization of a large-scale reservoir system, *Water Resources Management*, *18*(6), 519–540, doi:10.1007/s11269-004-1075-9.
- Mugunthan, P., and C. A. Shoemaker (2006), Assessing the impacts of parameter uncertainty for computationally expensive groundwater models, *Water Resources Research*, 42(10), doi:10.1029/2005wr004640.
- Mugunthan, P., C. A. Shoemaker, and R. G. Regis (2005), Comparison of function approximation, heuristic, and derivative-based methods for automatic calibration of computationally expensive groundwater bioremediation models, *Water Resources Research*, *41*(11), 1–17, doi: 10.1029/2005wr004134.
- Muñoz-Carpena, R., Z. Zajac, and Y. M. Kuo (2007), Global sensitivity and uncertainty analyses of the water quality model VFSMOD-W, *Transactions of the American Society of Agricultural and Biological Engineers*, 50(5), 1719–1732.
- Naresh, R., and J. Sharma (2002), Short term hydro scheduling using two-phase neural network, *International Journal of Electrical Power & Energy Systems*, 24(7), 583–590, doi: 10.1016/S0142-0615(01)00069-2.
- Needham, J. T., D. W. Watkins, J. R. Lund, and S. K. Nanda (2000), Linear programming for flood control in the Iowa and Des Moines Rivers, *Journal of Water Resources Planning and Management*, 126(3), 118–127, doi:10.1061/(ASCE)0733-9496(2000)126:3(118).
- Neelakantan, T. R., and N. V. Pundarikanthan (1999), Hedging rule optimisation for water supply reservoirs system, *Water Resources Management*, *13*(6), 409–426, doi:10.1023/A: 1008157316584.
- Nestler, J. M., R. A. Goodwin, T. M. Cole, D. Degan, and D. Dennerline (2002), Simulating movement patterns of blueback herring in a stratified southern impoundment, *Transactions of the American Fisheries Society*, 131(1), 55–69, doi:10.1577/1548-8659(2002)131\(0055: Smpobh\)2.0.Co;2.
- Nikolaidis, N. P., A. P. Karageorgis, V. Kapsimalis, G. Marconis, P. Drakopoulou, H. Kontoyiannis, E. Krasakopoulou, A. Pavlidou, and K. Pagou (2006), Circulation and nutrient modeling of Thermaikos Gulf, Greece, *Journal of Marine Systems*, 60(1-2), 51–62, doi:10.1016/j.jmarsys.2005. 11.007.
- Norton, G. E., and A. Bradford (2009), Comparison of two stream temperature models and evaluation of potential management alternatives for the Speed River, Southern Ontario, *Journal of Environmental Management*, 90(2), 866–878, doi:10.1016/j.jenvman.2008.02.002.

- O'Connor, D. J. (1960), Oxygen balance of an estuary, *Journal of the Sanitary Engineering Division*, 86(SA3), 35–55.
- O'Hagan, A. (2006), Bayesian analysis of computer code outputs: A tutorial, *Reliability Engineering & System Safety*, 91(10-11), 1290–1300, doi:10.1016/j.ress.2005.11.025.
- Oliveira, R., and D. P. Loucks (1997), Operating rules for multireservoir systems, *Water Resources Research*, *33*(4), 839–852, doi:10.1029/96wr03745.
- Ostfeld, A., and S. Salomons (2005), A hybrid genetic-instance based learning algorithm for CE-QUAL-W2 calibration, *Journal of Hydrology*, 310(1-4), 122–142, doi:10.1016/j.jhydrol.2004.12. 004.
- Padula, S. L., C. R. Gumbert, and W. Li (2006), Aerospace applications of optimization under uncertainty, *Optimization and Engineering*, 7(3), 317–328, doi:10.1007/s11081-006-9974-7.
- Park, J. Y., and S. J. Kim (2014), Potential impacts of climate change on the reliability of water and hydropower supply from a multipurpose dam in South Korea, *Journal of the American Water Resources Association*, 50(5), 1273–1288, doi:10.1111/jawr.12190.
- Park, S. S., and Y. S. Lee (2002), A water quality modeling study of the Nakdong River, Korea, *Ecological Modelling*, *152*(1), 65–75, doi:10.1016/S0304-3800(01)00489-6.
- Piman, T., T. A. Cochrane, M. E. Arias, A. Green, and N. D. Dat (2013), Assessment of flow changes from hydropower development and operations in Sekong, Sesan, and Srepok Rivers of the Mekong Basin, *Journal of Water Resources Planning and Management*, *139*(6), 723–732, doi:10.1061/(Asce)Wr.1943-5452.0000286.
- Poff, N. L., and J. C. Schmidt (2016), How dams can go with the flow, *Science*, *353*(6304), 1099–1100, doi:10.1126/science.aah4926.
- Ponnambalam, K., A. Vannelli, and T. E. Unny (1989), An application of Karmarkar's interior-point linear-programming algorithm for multi-reservoir operations optimization, *Stochastic Hydrology* and *Hydraulics*, *3*(1), 17–29, doi:10.1007/Bf01543425.
- Ponweiser, W., T. Wagner, D. Biermann, and M. Vincze (2008), Multiobjective optimization on a limited budget of evaluations using model-assisted s-metric selection, in *Parallel Problem Solving from Nature PPSN X, Lecture Notes in Computer Science*, vol. 5199, edited by G. Rudolph, T. Jansen, S. Lucas, C. Poloni, and N. Beume, book section 78, pp. 784–794, Springer Berlin Heidelberg, doi:10.1007/978-3-540-87700-4_78.
- Portland State University (2007), CE-QUAL-W2 Hydrodynamic and Water Quality Model, Application by Country, Water Quality Research Group, (http://www.ce.pdx.edu/w2/applications_new. html), accessed December 12 2013.
- Price, R. E., and E. B. Meyer (1992), Water Quality Management for Reservoirs and Tailwaters: Report 2, Operational and Structural Water Quality Techniques, *Report E-89-1*, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Queipo, N. V., A. J. Verde, J. Canelon, and S. Pintos (2002), Efficient global optimization for hydraulic fracturing treatment design, *Journal of Petroleum Science and Engineering*, *35*(3-4), 151–166, doi:10.1016/S0920-4105(02)00237-1.

- Queipo, N. V., R. T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and P. K. Tucker (2005), Surrogate-based analysis and optimization, *Progress in Aerospace Sciences*, 41(1), 1–28, doi:10.1016/j. paerosci.2005.02.001.
- Raman, H., and V. Chandramouli (1996), Deriving a general operating policy for reservoirs using neural network, *Journal of Water Resources Planning and Management*, 122(5), 342–347, doi: 10.1061/(ASCE)0733-9496(1996)122:5(342).
- Rangel-Peraza, J. G., J. De Anda, F. A. Gonzalez-Farias, and M. Rode (2016), Sensitivity and uncertainty analysis on water quality modelling of Aguamilpa reservoir, *Journal of Limnology*, 75, 81–92, doi:10.4081/jlimnol.2016.1391.
- Rani, D., and M. M. Moreira (2010), Simulation-optimization modeling: A survey and potential application in reservoir systems operation, *Water Resources Management*, 24(6), 1107–1138, doi:10.1007/s11269-009-9488-0.
- Razavi, S., B. A. Tolson, and D. H. Burn (2012a), Review of surrogate modeling in water resources, *Water Resources Research*, 48(7), doi:10.1029/2011wr011527.
- Razavi, S., B. A. Tolson, and D. H. Burn (2012b), Numerical assessment of metamodelling strategies in computationally intensive optimization, *Environmental Modelling & Software*, *34*, 67–86, doi:10.1016/j.envsoft.2011.09.010.
- Reed, P., B. Minsker, and D. E. Goldberg (2000), Designing a competent simple genetic algorithm for search and optimization, *Water Resources Research*, *36*(12), 3757–3761, doi: 10.1029/2000wr900231.
- Regis, R. G., and C. A. Shoemaker (2004), Local function approximation in evolutionary algorithms for the optimization of costly functions, *IEEE Transactions on Evolutionary Computation*, 8(5), 490–505, doi:10.1109/Tevc.2004.835247.
- Reichert, P., and P. Vanrolleghem (2001), Identifiability and uncertainty analysis of the River Water Quality Model No. 1 (RWQM1), *Water Science and Technology*, 43(7), 329–338.
- Reis, J., T. B. Culver, M. McCartney, J. Lautze, and S. Kibret (2011), Water resources implications of integrating malaria control into the operation of an Ethiopian dam, *Water Resources Research*, 47, doi:10.1029/2010wr010166.
- Renka, R. J. (1988), Multivariate interpolation of large sets of scattered data, *ACM Transactions on Mathematical Software*, *14*(2), 139–148, doi:10.1145/45054.45055.
- Rizzo, D. M., and D. E. Dougherty (1994), Characterization of aquifer properties using artificial neural networks neural kriging, *Water Resources Research*, 30(2), 483–497, doi: 10.1029/93wr02477.
- Rygwelski, K. R., W. L. Richardson, and D. D. Endicott (1999), A screening-level model evaluation of atrazine in the Lake Michigan basin, *Journal of Great Lakes Research*, 25(1), 94–106.
- Saad, M., A. Turgeon, P. Bigras, and R. Duquette (1994), Learning disaggregation technique for the operation of long-term hydroelectric power-systems, *Water Resources Research*, 30(11), 3195–3202, doi:10.1029/94wr01731.

- Saad, M., P. Bigras, A. Turgeon, and R. Duquette (1996), Fuzzy learning decomposition for the scheduling of hydroelectric power systems, *Water Resources Research*, 32(1), 179–186, doi:10.1029/95wr02971.
- Saadatpour, M., and A. Afshar (2013), Multi objective simulation-optimization approach in pollution spill response management model in reservoirs, *Water Resources Management*, 27(6), 1851–1865, doi:10.1007/s11269-012-0230-y.
- Saito, L., B. M. Johnson, J. Bartholow, and R. B. Hanna (2001), Assessing ecosystem effects of reservoir operations using food web-energy transfer and water quality models, *Ecosystems*, 4(2), 105–125, doi:10.1007/s100210000062.
- Sale, M. J., E. D. Brill, and E. E. Herricks (1982), An approach to optimizing reservoir operation for downstream aquatic resources, *Water Resources Research*, 18(4), 705–712, doi: 10.1029/Wr018i004p00705.
- Saloranta, T. M. (2006), Highlighting the model code selection and application process in policy-relevant water quality modelling, *Ecological Modelling*, 194(1-3), 316–327, doi:10.1016/j. ecolmodel.2005.10.031.
- Seifi, A., and K. W. Hipel (2001), Interior-point method for reservoir operation with stochastic inflows, *Journal of Water Resources Planning and Management*, 127(1), 48–57, doi:10.1061/(ASCE)0733-9496(2001)127:1(48).
- Shaw, A. R., H. Smith Sawyer, E. J. LeBoeuf, and M. P. McDonald (2013), Surrogate model development for a large-scale controlled reservoir system, in *Hydrovision International*, Denver, CO, July 23–26, 2013.
- Shaw, A. R., H. Smith Sawyer, E. J. LeBoeuf, and M. P. McDonald (2015), High-fidelity reservoir water quality model emulation by artificial neural network, in *Hydrovision International*, Portland, OR, July 14–17, 2015.
- Shaw, A. R., H. Smith Sawyer, E. J. LeBoeuf, and M. P. McDonald (2016), Generation optimization for linked riverine reservoir systems with constraints on water quality, in *Hydrovision International*, Minneapolis, MN, July 26–29, 2016.
- Shaw, A. R., H. S. Sawyer, E. J. LeBoeuf, M. P. McDonald, and B. Hadjerioua (2017), Hydropower optimization using artificial neural network surrogate models of a high-fidelity hydrodynamics and water quality model, *Water Resources Research*, 53(11), 9444–9461, doi: 10.1002/2017wr021039.
- Shepard, D. (1968), A two-dimensional interpolation function for irregularly-spaced data, in 23rd ACM National Conference (ACM '68), pp. 517–524.
- Shinkyu, J., and S. Obayashi (2005), Efficient global optimization (EGO) for multi-objective problem and data mining, in 2005 IEEE Congress on Evolutionary Computation, vol. 3, pp. 2138–2145, doi:10.1109/CEC.2005.1554959, September 2–5, 2005.
- Shirangi, E., R. Kerachian, and M. S. Bajestan (2008), A simplified model for reservoir operation considering the water quality issues: Application of the Young conflict resolution theory, *Environmental Monitoring and Assessment*, 146(1-3), 77–89, doi:10.1007/s10661-007-0061-0.

- Shoemaker, C. A., R. G. Regis, and R. C. Fleming (2007), Watershed calibration using multistart local optimization and evolutionary optimization with radial basis function approximation, *Hydrological Sciences Journal-Journal Des Sciences Hydrologiques*, 52(3), 450–465, doi: 10.1623/hysj.52.3.450.
- Shourian, M., S. J. Mousavi, and A. Tahershamsi (2008), Basin-wide water resources planning by integrating PSO algorithm and MODSIM, *Water Resources Management*, 22(10), 1347–1366, doi:10.1007/s11269-007-9229-1.
- Shrestha, D. L., N. Kayastha, and D. P. Solomatine (2009), A novel approach to parameter uncertainty analysis of hydrological models using neural networks, *Hydrology and Earth System Sciences*, 13(7), 1235–1248.
- Simpson, T. W., J. D. Peplinski, P. N. Koch, and J. K. Allen (2001), Metamodels for computer-based engineering design: Survey and recommendations, *Engineering with Computers*, 17(2), 129–150, doi:10.1007/Pl00007198.
- Sincock, A. M., H. S. Wheater, and P. G. Whitehead (2003), Calibration and sensitivity analysis of a river water quality model under unsteady flow conditions, *Journal of Hydrology*, 277(3-4), 214–229, doi:10.1016/S0022-1694(03)00127-6.
- Singleton, V. L., B. Jacob, M. T. Feeney, and J. C. Little (2013), Modeling a proposed quarry reservoir for raw water storage in Atlanta, Georgia, *Journal of Environmental Engineering*, *139*(1), 70–78, doi:10.1061/(ASCE)Ee.1943-7870.0000582.
- Smith Sawyer, H., A. R. Shaw, E. J. LeBoeuf, and M. P. McDonald (2013), A novel approach to optimization of power production in a large-scale controlled reservoir system, in *Hydrovision International*, Denver, CO, July 23–26, 2013.
- Sóbester, A. (2003), Enhancements to global design optimization techniques, PhD dissertation, Department of Mechanical Engineering, University of Southampton, Southampton, UK.
- Sóbester, A., S. J. Leary, and A. J. Keane (2005), On the design of optimization strategies based on global response surface approximation models, *Journal of Global Optimization*, *33*(1), 31–59, doi:10.1007/s10898-004-6733-1.
- Solomatine, D. P., and L. A. Avila Torres (1996), Neural network approximation of a hydrodynamic model in optimizing reservoir operation, in *2nd International Conference on Hydroinformatics*, pp. 201–206, Zurich, Switzerland, Sept 1996.
- Spear, R. C., and G. M. Hornberger (1980), Eutrophication in Peel Inlet II. Identification of critical uncertainties via generalized sensitivity analysis, *Water Research*, *14*(1), 43–49, doi:10.1016/0043-1354(80)90040-8.
- Srdjevic, B., Y. D. P. Medeiros, and A. S. Faria (2004), An objective multi-criteria evaluation of water management scenarios, *Water Resources Management*, *18*(1), 35–54, doi:10.1023/B:Warm. 0000015348.88832.52.
- Srivastava, A., K. Hacker, K. Lewis, and T. W. Simpson (2004), A method for using legacy data for metamodel-based design of large-scale systems, *Structural and Multidisciplinary Optimization*, 28(2-3), 146–155, doi:10.1007/s00158-004-0438-4.

- Stansbury, J., and D. M. Admiraal (2004), Modeling to evaluate macrophyte induced impacts to dissolved oxygen in a tailwater reservoir, *Journal of the American Water Resources Association*, 40(6), 1483–1497, doi:10.1111/j.1752-1688.2004.tb01600.x.
- Stedinger, J. R., B. F. Sule, and D. P. Loucks (1984), Stochastic dynamic-programming models for reservoir operation optimization, *Water Resources Research*, 20(11), 1499–1505, doi:10.1029/Wr020i011p01499.
- Stewart, G., R. Anderson, and E. Wohl (2005), Two-dimensional modelling of habitat suitability as a function of discharge on two Colorado rivers, *River Research and Applications*, 21(10), 1061–1074, doi:10.1002/rra.868.
- Streeter, H. W., and E. B. Phelps (1925), A study of the pollution and natural purification of the Ohio River, *Report*, United States Public Health Service, U.S. Department of Health, Education, and Welfare.
- Suiadee, W., and T. Tingsanchali (2007), A combined simulation-genetic algorithm optimization model for optimal rule curves of a reservoir: A case study of the Nam Oon Irrigation Project, Thailand, *Hydrological Processes*, 21(23), 3211–3225, doi:10.1002/Hyp.6528.
- Sulis, A., and G. M. Sechi (2013), Comparison of generic simulation models for water resource systems, *Environmental Modelling & Software*, 40, 214–225, doi:10.1016/j.envsoft.2012.09.012.
- Sullivan, A. B., H. I. Jager, and R. Myers (2003), Modeling white sturgeon movement in a reservoir: The effect of water quality and sturgeon density, *Ecological Modelling*, *167*(1-2), 97–114, doi: 10.1016/S0304-3800(03)00169-8.
- Tamura, S., and M. Tateishi (1997), Capabilities of a four-layered feedforward neural network: Four layers versus three, *IEEE Transactions on Neural Networks*, 8(2), 251–255, doi:10.1109/72.557662.
- Teegavarapu, R. S. V., and S. P. Simonovic (2000), Short-term operation model for coupled hydropower reservoirs, *Journal of Water Resources Planning and Management*, 126(2), 98–106, doi:10.1061/(ASCE)0733-9496(2000)126:2(98).
- Teegavarapu, R. S. V., and S. P. Simonovic (2002), Optimal operation of reservoir systems using simulated annealing, *Water Resources Management*, 16(5), 401–428, doi:10.1023/A: 1021993222371.
- Teegavarapu, R. S. V., A. R. Ferreira, and S. P. Simonovic (2013), Fuzzy multiobjective models for optimal operation of a hydropower system, *Water Resources Research*, 49(6), 3180–3193, doi:10.1002/Wrcr.20224.
- Tejada-Guibert, J. A., J. R. Stedinger, and K. Staschus (1990), Optimization of the value of CVP's hydropower production, *Journal of Water Resources Planning and Management*, 116(1), 52–70.
- Thacker, W. I., J. W. Zhang, L. T. Watson, J. B. Birch, M. A. Iyer, and M. W. Berry (2010), Algorithm 905: SHEPPACK: Modified Shepard algorithm for interpolation of scattered multivariate data, *ACM Transactions on Mathematical Software*, *37*(3), doi:10.1145/1824801.1824812.
- The Organisation for Economic Co-operation and Development (OECD) (2018), Members and Partners, (http://www.oecd.org/about/membersandpartners), accessed February 21 2018.

- Thomann, R. V. (1963), Mathematical model for dissolved oxygen, *Journal of the Sanitary Engineering Division*, 89(5), 1–32.
- Tinos, R., and S. X. Yang (2007), A self-organizing random immigrants genetic algorithm for dynamic optimization problems, *Genetic Programming and Evolvable Machines*, 8(3), 255–286, doi:10.1007/s10710-007-9024-z.
- Tospornsampan, J., I. Kita, M. Ishii, and Y. Kitamura (2005), Optimization of a multiple reservoir system using a simulated annealing-A case study in the Mae Klong system, Thailand, *Paddy and Water Environment*, *3*(3), 137–147, doi:10.1007/s10333-005-0010-x.
- Tufford, D. L., and H. N. McKellar (1999), Spatial and temporal hydrodynamic and water quality modeling analysis of a large reservoir on the South Carolina (USA) coastal plain, *Ecological Modelling*, 114(2-3), 137–173, doi:10.1016/S0304-3800(98)00122-7.
- Turner, D. F., G. J. Pelletier, and B. Kasper (2009), Dissolved oxygen and pH modeling of a periphyton dominated, nutrient enriched river, *Journal of Environmental Engineering*, *135*(8), 645–652, doi:10.1061/(Asce)0733-9372(2009)135:8(645).
- Unver, O. I., and L. W. Mays (1990), Model for real-time optimal flood control operation of a reservoir system, *Water Resources Management*, 4(1), 21–46, doi:10.1007/BF00429923.
- U.S. Army Corps of Engineers (1998), Cumberland River Basin Master Water Control Plan, *Report*, Nashville District.
- U.S. Army Corps of Engineers (2003a), HEC-PRM Prescriptive Reservoir Model User's Manual, *Report CPD-95*, Hydrologic Engineering Center.
- U.S. Army Corps of Engineers (2003b), Application of the HEC Prescriptive Reservoir Model in the Columbia River System, *Report TP-146*, Hydrologic Engineering Center.
- U.S. Army Corps of Engineers (2013a), National Inventory of Dams, NID National, (http://geo.usace.army.mil/pgis/f?p=397:5:0::NO), accessed December 5 2013.
- U.S. Army Corps of Engineers (2013b), HEC-ResSim Reservoir System Simulation User's Manual, Version 3.1, *Report CPD-82*, Hydrologic Engineering Center.
- U.S. Department of Energy (2015), 2014 Hydropower Market Report, Report, Wind and Water Technologies Office, Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy.
- U.S. Department of Energy (2016a), International Energy Outlook 2016, *Report DOE/EIA-0484*(2016), Energy Information Administration (EIA), U.S. Department of Energy.
- U.S. Department of Energy (2016b), Hydropower Vision: A New Chapter for America's 1st Renewable Electricity Source, *Report DOE/GO-102016-4869*.
- U.S. Environmental Protection Agency (2016), Cooling Water Intakes, (https://www.epa.gov/cooling-water-intakes), accessed October 18 2016.
- Valerio, A., H. Rajaram, and E. Zagona (2010), Incorporating groundwater-surface water interaction into river management models, *Ground Water*, 48(5), 661–673, doi:10.1111/j.1745-6584.2010. 00702.x.

- van der Linden, L., R. I. Daly, and M. D. Burch (2015), Suitability of a coupled hydrodynamic water quality model to predict changes in water quality from altered meteorological boundary conditions, *Water*, 7(1), 348–361, doi:10.3390/w7010348.
- Viana, F. A. C., and R. T. Haftka (2008), Using multiple surrogates for metamodeling, in 7th ASMO-UK/ISSMO International Conference on Engineering Design Optimization, Bath, UK, July 7–8, 2008.
- Viana, F. A. C., V. Picheny, and R. T. Haftka (2010), Using cross validation to design conservative surrogates, *AIAA Journal*, 48(10), 2286–2298, doi:10.2514/1.J050327.
- Viana, F. A. C., T. W. Simpson, V. Balabanov, and V. Toropov (2014), Metamodeling in multidisciplinary design optimization: How far have we really come?, *AIAA Journal*, *52*(4), 670–690, doi:10.2514/1.J052375.
- Wang, J. Z., H. B. Yin, and F. Chung (2011), Isolated and integrated effects of sea level rise, seasonal runoff shifts, and annual runoff volume on California's largest water supply, *Journal of Hydrology*, 405(1-2), 83–92, doi:10.1016/j.jhydrol.2011.05.012.
- Wang, X. X., and W. H. Yang (2008), Modelling potential impacts of coalbed methane development on stream water quality in an American watershed, *Hydrological Processes*, 22(1), 87–103, doi: 10.1002/Hyp.6647.
- Wang, Y. C., J. Yoshitani, and K. Fukami (2005), Stochastic multiobjective optimization of reservoirs in parallel, *Hydrological Processes*, *19*(18), 3551–3567, doi:10.1002/Hyp.5845.
- Wardlaw, R., and K. Bhaktikul (2004), Comparison of genetic algorithm and linear programming approaches for lateral canal scheduling, *Journal of Irrigation and Drainage Engineering*, *130*(4), 311–317, doi:10.1061/(Asce)0733-9437(2004)130:4(311).
- Wardlaw, R., and M. Sharif (1999), Evaluation of genetic algorithms for optimal reservoir system operation, *Journal of Water Resources Planning and Management*, 125(1), 25–33, doi:10.1061/(Asce)0733-9496(1999)125:1(25).
- Watkins, D. W., and D. A. Moser (2006), Economic-based optimization of Panama Canal system operations, *Journal of Water Resources Planning and Management*, *132*(6), 503–512, doi:10. 1061/(ASCE)0733-9496(2006)132:6(503).
- Witt, A., T. Magee, K. Stewart, B. Hadjerioua, D. Neumann, E. Zagona, and M. Politano (2017), Development and implementation of an optimization model for hydropower and total dissolved gas in the Mid-Columbia River System, *Journal of Water Resources Planning and Management*, 143(10), doi:10.1061/(Asce)Wr.1943-5452.0000827.
- Wolff, P. J., C. W. Almquist, R. J. Dorman, G. E. Hauser, D. F. McGinnis, M. H. Mobley, R. J. Ruane, and A. Sawyer (2013), Identifying the least cost approach for aeration strategies of new small hydro projects, in *Hydrovision International*, Denver, CO, July 23–26, 2013.
- Wool, T. A., R. B. Ambrose, J. L. Martin, and E. A. Comer (2002), *Water Quality Analysis Simulation Program (WASP)*, *User's Manual, Version 6.0*, 267 pp., USEPA Environmental Research Laboratory.

- Wool, T. A., S. R. Davie, and H. N. Rodriguez (2003), Development of three-dimensional hydrodynamic and water quality models to support total maximum daily load decision process for the Neuse River Estuary, North Carolina, *Journal of Water Resources Planning and Management*, 129(4), 295–306, doi:10.1061/(Asce)0733-9496(2003)129:4(295).
- Wurbs, R. A. (2005), Comparative evaluation of generalized river/reservoir system models, *Report TR-282*, Texas Water Resouces Institute, Texas A&M University.
- Xia, M., P. M. Craig, B. Schaeffer, A. Stoddard, Z. J. Liu, M. C. Peng, H. Y. Zhang, C. M. Wallen, N. Bailey, and J. Mandrup-Poulsenl (2010), Influence of physical forcing on bottom-water dissolved oxygen within Caloosahatchee River Estuary, Florida, *Journal of Environmental Engineering*, 136(10), 1032–1044, doi:10.1061/(Asce)Ee.1943-7870.0000239.
- Xu, Z., A. N. Godrej, and T. J. Grizzard (2007), The hydrological calibration and validation of a complexly-linked watershed-reservoir model for the Occoquan watershed, Virginia, *Journal of Hydrology*, *345*(3-4), 167–183, doi:10.1016/j.jhydrol.2007.07.015.
- Xu, Z. X., H. L. Yin, and Y. J. Yao (2008), Prediction of water quality of Huangpu River using a tidal river network model, *Environmental Engineering Science*, 25(10), 1463–1475, doi:10.1089/ees.2007.0219.
- Yan, S. Q., and B. Minsker (2006), Optimal groundwater remediation design using an adaptive neural network genetic algorithm, *Water Resources Research*, 42(5), doi:10.1029/2005wr004303.
- Yan, S. Q., and B. Minsker (2011), Applying dynamic surrogate models in noisy genetic algorithms to optimize groundwater remediation designs, *Journal of Water Resources Planning and Management*, 137(3), 284–292, doi:10.1061/(ASCE)Wr.1943-5452.0000106.
- Yi, J., J. W. Labadie, and S. Stitt (2003), Dynamic optimal unit commitment and loading in hydropower systems, *Journal of Water Resources Planning and Management*, 129(5), 388–398, doi:10.1061/(ASCE)0733-9496(2003)129:5(388).
- Yurtal, R., G. Seckin, and M. Ardiclioglu (2005), Hydropower optimization for the Lower Seyhan System in Turkey using dynamic programming, *Water International*, *30*(4), 522–529.
- Zagona, E. A., T. J. Fulp, R. Shane, Y. Magee, and H. M. Goranflo (2001), RiverWare: A generalized tool for complex reservoir system modeling, *Journal of the American Water Resources Association*, *37*(4), 913–929, doi:10.1111/j.1752-1688.2001.tb05522.x.
- Zhang, R., J. Z. Zhou, S. Ouyang, X. M. Wang, and H. F. Zhang (2013), Optimal operation of multi-reservoir system by multi-elite guide particle swarm optimization, *International Journal of Electrical Power & Energy Systems*, 48, 58–68, doi:10.1016/j.ijepes.2012.11.031.
- Zhang, X. S., R. Srinivasan, and M. Van Liew (2009), Approximating SWAT model using artificial neural network and support vector machine, *Journal of the American Water Resources Association*, 45(2), 460–474, doi:10.1111/j.1752-1688.2009.00302.x.
- Zhao, T. T. G., J. S. Zhao, and D. W. Yang (2014), Improved dynamic programming for hydropower reservoir operation, *Journal of Water Resources Planning and Management*, *140*(3), 365–374, doi:10.1061/(Asce)Wr.1943-5452.0000343.

- Ziaei, M., L. T. Shui, and E. Goodarzi (2012), Optimization and simulation modelling for operation of the Zayandeh Rud Reservoir, *Water International*, *37*(3), 305–318, doi:10.1080/02508060. 2012.688189.
- Zou, R., W. S. Lung, and J. Wu (2007), An adaptive neural network embedded genetic algorithm approach for inverse water quality modeling, *Water Resources Research*, 43(8), doi:10.1029/2006wr005158.