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CHAPTER I 

 

INTRODUCTION 

 

Overview 

Diffusion tensor imaging (DTI) (Basser et al., 1994) is a relatively new MR technique to 

study the white matter structures of the brain non-invasively. In white matter tissues, 

axons are normally well myelinated and aligned. Consequently, the random walk of water 

molecules in white matter has a preferential orientation along fiber bundles. The 

measured orientation preference, or anisotropy, of the molecular diffusion can provide 

valuable information about the micro-structural organization of white matter fiber 

bundles. These white matter fiber bundles, as an analogy to the highway system between 

the cortical regions, play an important role in transferring information and mediating 

cognitive functions. Recently, DTI has been used to study white matter properties as 

related to reading abilities (Klingberg et al., 2000; Niogi and McCandliss, 2006; Catani et 

al., 2005). In other studies, a topological network is constructed with the help of DTI 

based tractography to map the connectivity of the brain (Hagmann et al., 2008).  

In this chapter, the following topics will be covered: (1) the basic principles of DTI; (2) 

the concepts and implications of brain connectivity; and (3) current research in regard to 

the relationship between reading abilities and functional or structural features of the brain, 

primarily focusing on studies involving imaging modalities. 
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Diffusion Tensor Imaging 

 

Water diffusion in biological samples 

Diffusion refers to the random translational motion of particles driven by thermal energy. 

Biological systems are comprised of an abundance of water. Under the assumption of 

Brownian motion, the displacement of a particular water molecule and the time,  , 

allowed for it to diffuse can be related through Einstein’s formula, 

         

where   is the root mean square displacement,   is the diffusion coefficient, and   is 

determined by dimensionality (i.e.,   = 2 for one dimensional scenario, 4 for two 

dimensional and 6 for three dimensional diffusion). In a biological sample, however, the 

measured diffusion coefficient is the ensemble average of all the water molecules within 

the voxel, so the averaged diffusivity is named apparent diffusivity, or apparent diffusion 

coefficient (ADC) to distinguish the measured value from the intrinsic diffusion 

coefficient of pure water. 

 

Diffusion weighted imaging 

The amount of Brownian motion during a given time period, characterized by the ADC, 

can be measured by diffusion weighted imaging techniques. The Pulsed Gradient Spin 

Echo (PGSE) experiment relates the MR signal drop to diffusion (Stejskal and Tanner, 

1965) (Figure 1), where the signal intensity of the spin echo,  , is attenuated with respect 

to the baseline signal without diffusion weighting,   , via the relation, 

 

  
          



3 
 

where      is the ADC, and             
 

 
  is the diffusion weighting factor, or b 

factor, as a function of gyromagnetic ratio  , the amplitude of the gradient pulse  , pulse 

duration  , and the time interval   between the de-phasing and refocusing gradient pulses.  

 

Figure 1. The PGSE paulse sequence diagram. 

A pair of identical diffusion sensitizing gradient pulses is applied along a 

prescribed direction before and after the 180
o
 RF pulse. Spins are phase-

encoded according to their initial positions due to the first gradient pulse, and 

then allowed to diffuse freely for a time interval  . After the 180
o
 RF pulse, the 

second gradient pulse of the same amplitude G and duration δ is aimed to cancel 

the position dependent phase if the spins remain stationary during the time 

interval  . 

 

Another aspect of diffusion is directionality. In an isotropic medium, such as in the 

cerebrospinal fluid (CSF) of the ventricular system (Basser and Pierpaoli, 1996), a water 

molecule has an equal chance to walk along any direction. The measured ADCs are 

identical when the diffusion sensitizing gradient is applied in different directions, and 

thus the ADC can be obtained from two measurements, i.e., one with diffusion weighting 

gradient pukes and one without. However, in other tissues like white matter fiber bundles, 

where axons are wrapped with relatively impermeable myelin and are normally 

coherently oriented, it exhibits higher apparent diffusivities parallel to the axons’ 

orientation than perpendicular to them (Moseley, et al., 1990; Pierpaoli and Basser, 1996). 
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The diffusion can no longer be characterized by a single scalar value of ADC, so a more 

complex model is needed to describe the anisotropic diffusion.  

 

Diffusion tensor imaging: what does it imply? 

With the assumption of Gaussian diffusion, the displacements of water molecules can be 

represented by a diffusion tensor (Basser et al., 1994), a 3x3 symmetric matrix, i.e., 

    

         

         

         

  

where the elements on the diagonals are the apparent diffusivities along the three 

orthogonal  axes of the (x, y, z) coordinate system, and the off diagonal elements are 

proportional to the covariance between molecular displacements in orthogonal directions.  

The eigenvalues of the tensor have physical meanings – the apparent diffusivities along 

the three principal axes of the diffusion tensor. The eigenvector corresponding to the 

largest eigenvalue    is termed the principal diffusion direction. The envelope of the 

tensor ellipsoid (Figure 2) depicts the isosurface of the probability density function (PDF) 

of a spin’s molecular displacements.  

 

Figure 2. Ellipsoidal representation of the diffusion tensor. 

The envelope of the tensor ellipsoid depicts the iso-surface of the probability 

density function (PDF) of a spin’s molecular displacements. As predicted by 

Einstein’s equation, the axes of the ellipsoid are scaled by the eigenvalues of the 

diffusion tensor. 
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The diffusion tensor provides important information about the microscopic composition, 

structure and organization of the tissue under study. Above all, fractional anisotropy (FA) 

(Basser and Pierpaoli, 1996; Beaulieu, 2002) is one of the most widely used scalar 

parameters derived from eigenvalues of a diffusion tensor to measure how much the 

diffusion envelope deviates from a sphere. For isotropic tissue samples, FA is close to 0, 

while for very anisotropic samples, the corresponding diffusion tensor will be stretched 

towards poles that are aligned along the fiber bundles, and the FA can approach 1. More 

often than not, a decreased FA is related to tissue damage or diseased status (Beaulieu et 

al., 1996). In addition, the principal diffusion direction is assumed to be consistent with 

the orientation of the underlying structure, which becomes the basis of the DTI-

tractography (Mori and van Zijl, 2002; Lori et al., 2002).  

 

 

Figure 3. Illustration of FA indicative of structural damage. 

On the left is the cartoon illustration of reduced anisotropy due to damage in 

axons and myelin that result in a loss of directional barriers to water diffusion. 

On the right, electron micrographs are adapted from normal and degenerated 

frog sciatic nerve (Beaulieu et al., 1996). 



6 
 

Brain Connectivity 

The human brain is a complex biological network. How the processing elements are 

interconnected makes individual brains distinct from each other. Brain connectivity is 

used to describe the intrinsic linkage between neuronal units that are remotely distributed. 

Functional connectivity, effective connectivity, structural connectivity, etc., reflect 

different aspects of the linkage. For structural connectivity, postmortem examinations can 

be carried out in ex-vivo samples, bio-tracers and imaging contrast agents can be used for 

in-vivo studies, DTI techniques are non-invasive alternatives to reconstruct the 

macroscopic pattern of tissue structures, and optical imaging methods are also emerging 

in this field. This work focuses on the structural connectivity obtained from DTI based 

tractography and how it is related to the functions it supports. 

  

Tractography 

Tractography is the process of integrating voxelwise fiber orientations into a pathway that 

connects remote brain regions. It relies on the fundamental assumption that the water 

diffusion is least restricted along the axes of axons, if the neural fibers are coherently 

aligned along a common axis. Tractography algorithms can be local or global, 

deterministic or probabilistic, model based or model free; they can rely on simple (Mori 

et al., 1999) or complex (Parker and Alexander, 2003, 2007) representations of diffusion 

in white matter. This section briefly reviews DTI based fiber tracking techniques 

involved in this study, including streamline tractography (Mori et al., 1999) and 

probabilistic tractography. 
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The most intuitive and commonly used fiber tracking technique is streamline 

tractography. From the previous sections we know that on the voxel level, a principal 

diffusion direction can be estimated by DTI, which is assumed to be collinear with the 

neuronal fiber bundle axis. By starting at a proper seed point (i.e., in the middle of a well 

organized fiber bundle), a streamline representation of the bundle can be reconstructed by 

following the local vector information on a step-by-step basis. Since fiber tracking is an 

integration process, the reconstruction accuracy is very susceptible to errors in local 

vector estimates. To limit false positives, the algorithm is stopped when the front of the 

streamline steps into a local area where the directional uncertainty is above a preset 

threshold. This directional uncertainty corresponds to hypo-intensity in FA maps, which 

may be due to various reasons such as low SNR, partial volume effects at boundaries of 

white matter and gray matter or at the intersection of multiple fiber bundles, etc. Another 

criterion for a streamline to stop is high, because it is assumed that no sharp turns exist in 

deep white matter. The employment of spatial interpolation (Mori et al., 1999; Lazar and 

Alexander, 2003; Pajevic et al., 2002) can overcome, to some degree, the effects of noise 

in the local orientation estimates and improve the smoothness of reconstructed fiber tracts, 

but a simple streamline algorithm is still very vulnerable to error accumulation due to its 

deterministic nature. Probabilistic algorithms have recently been proposed to track 

through regions with high uncertainty. These will be discussed in later sections. 

 

Implications of brain connectivity 

Structural connectivity describes a physical network of connections, which correspond to 

fiber pathways or individual synapses.  DTI techniques cannot identify cellular synapses, 
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but they provide probabilistic macroscopic connection profiles which are non-invasive in-

vivo estimates of structural connectivity.   

From the connectivity point of view, cortical regions of the brain and thed fiber pathways 

connecting them can be conceptualized as nodes and edges of a network. The nodes 

perform various executive functions, and the edges serve as the highway for information 

transfer and mediate complex cognitive functions that require collaboration of multiple 

executive functions. The territory of a node can be determined by anatomical landmarks 

(Hagmann et al., 2007), the sites of activation in fMRI tasks, or cross-correlations 

between structure and function (Johansen-Berg et al., 2004). Depending on the specific 

purpose of the study, the edge can either be binary, representing existence or not, or carry 

a weight on them, such as distance or fiber density (Honey et al., 2007; Sporns et al., 

2007; Hagmann et al., 2008).  

Whether and how structural connectivity is related to brain function is a key question in 

the brain connectivity analysis. The results of Hagmann et al. (2008) (Figure 4) suggested 

that direct linkage by strong fiber pathways may be predictive of significant functional 

connections as well, while conversely, strong functional relations may also exist between 

structurally non-connected regions that are interacting via indirect pathways. Other 

studies provided supporting evidence that relates individual structural connectivity 

patterns to functional connectivity which may account for behavioral variations 

(Boorman et al., 2007). How structural connections determine functional connections was 

demonstrated by observations of functional connectivity in the brain of a patient before 

and after undergoing neurosurgery (Johnston et al., 2008). For a review of the various 

ways in which structural and functional connectivity are combined, see Rykhlevskaia et 
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al. (2008). Given these clues, it’s likely that a link between structural connectivity and 

brain function, however the detailed relations are still open for exploration. 

 

Figure 4. Whole-brain comparison of structural and functional connectivity. 

(a) Matrix of structural connections as estimated by diffusion imaging (left) and 

functional connections as estimated from resting state fMRI (right), averaged 

over the same group of five participants. Network nodes correspond to 66 

anatomical regions. (b) Rank-ordered distribution of structural connections (top) 

and comparison to functional connections displayed in the same order (bottom). 

Note that some strong functional connections exist in places where no 

corresponding structural connections are detected. (c) Scatter plot of the 

distance between all pairs of nodes and the strengths of their functional 

connections. Connections with a distance of zero represent intra-regional 

correlations on the main diagonal of the functional connectivity matrix shown in 

(a). Note the prevalence of strong functional connections between nodes that are 

topologically close. Distance is computed from the weighted structural 

connection matrix. (Hagmann et al., 2008) 

 

Given the knowledge that cortical regions are the primary sites of cognitive functions, the 

ability to extract cortico-cortical connection patterns is an important aspect of brain 

connectivity studies. One approach toward this goal is to explore gray matter thickness 
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correlations (He et al. 2007; Chen et al., 2008). While these studies map the entire human 

cortex and the data are highly consistent with previous findings, the method suffers from 

a few shortcomings such as less straightforward interpretation of connection patterns and 

the requirement of huge sample sizes. As will be discussed below, the work of this thesis 

takes advantage of the ability of probabilistic tractography to penetrate the white/gray 

matter boundaries, and thus is able to extract cortico-cortical connections specific to 

regions that are responsible for particular brain functions. 

 

Current Opinions in Reading and the Brain 

Cognitive tasks like reading need a set of distributed cortical areas that work together 

toward accomplishing a desired goal. Each neural unit has its own contribution; 

activation is synchronized across participating areas. In regard to reading ability, the 

neural network can be generally associated with neuroanatomical areas within the left 

perisylvian region. However, areas within this region have their own cognitive 

specialization and vary in their importance to reading ability (Shaywitz et al., 2004). 

 

Cortical regions important to reading 

Before neural imaging modalities such as PET and fMRI become widely utilized in 

studies of brain function, the knowledge on specific functions of an anatomical region is 

mostly gained from clinical cases where brain damage and functional deficits are 

consistently observed simultaneously. In terms of reading abilities, an abundant 

functional neuroimaging literature links individual variability in word recognition skills 

to variations in the neuronal functioning of three anatomical areas within the Perisylvian 
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network: occipito-temporal cortex (OTC), temporo-parietal cortex (TPC), and inferior 

frontal gyrus (IFG). Quite a few studies have consistently reported that in individuals 

with reading disability (RD), decreased activity was observed in the left OTC (Brunswick 

et al., 1999; Paulesu et al., 2001) and left TPC (Rumsey et al., 1997; Horwitz et al., 1998; 

Brunswick et al., 1999), while increased activity was observed in right TPC (Shaywitz 

and Shaywitz, 2003) region. However, children with RD who respond to reading 

intervention exhibit significantly increased activation of left hemisphere TPC and 

decreased activation of right hemisphere TPC as compared to pre-intervention profiles 

(Simos et al., 2002, 2006; Aylward et al., 2003; Shaywitz et al., 2004), indicating 

plasticity in the functional pattern across participating cortical regions.  

 

The role of white matter in reading behavior 

Reading is a complex cognitive behavior, which requires the collaboration of different 

cortical regions. As a string of letters appears in the retina, the visual cortex in the 

occipital lobe is activated (Puce et al., 1996; Dehaene et al., 2002). The letterbox in the 

brain located in the occipital-temporal regions recognizes the pattern as related to 

language. The phonological processing centers quickly decode the letters into phonemes 

(Rumsey et al., 1997; Nittrouer, 1999; Temple et al., 2001), and probably at the same 

time the meaning of the word is recalled which is thought to involve inferior frontal 

regions (Mesulam, 1990; Perry et al., 2007). Normally, it takes approximately one fifth of 

a second for brains to finish the whole process and recognize a word (Tarkiainen et al., 

2002). Given that reading relies so much on efficient and accurate information transfer 
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between cortical regions, how white matter properties affect reading performance 

becomes a key question in reading studies.  

Current research supports the hypothesis that white matter structure variations in 

individuals are behaviorally relevant and that they can be studied in vivo with diffusion 

MRI. In fact, differences in white matter have been shown in several studies comparing 

children with reading difficulty to normal readers (Klingberg et al., 2000; Beaulieu et al., 

2005; Deutsch et al., 2005; Niogi and McCandliss, 2006), where significant differences in 

white matter integrity were reported in temporal-parietal regions. Lower FA in the left 

corona radiata is consistently reported, and was considered to be relevant to poor reading 

performance. Although a precise prediction of functional and behavioral consequences 

that result from white matter changes is still hard to make, more and more evidence 

suggests that white matter properties such as myelination, packing density, and fiber 

coherence might affect behavior by modulating information transfer across the brain 

network. Specific to reading, how strongly the cortical regions within the Perisylvian 

territories are connected to each other appears to be associated with reading ability.  

 

Goal of This Study 

As learned from previous sections, by measuring the spatial distribution of response in 

cortical regions to stimuli, functional brain activity studies can map cortical involvement 

in tasks, but are insufficient to identify the physical mechanisms that underlie variance in 

the level of involvement, i.e., whether reduced activation is due to retarded cortical units 

or due to impaired synchronization among them. On the other hand, comparisons of local 

properties identify differences in white matter structures between good and poor readers, 
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which is suggestive of a communication problem. However, standing in the middle of the 

brain, it’s difficult to tell how the difference at that focal site contributes to behavioral 

differences as related to communication efficiency across many cortical units that are 

interconnected to each other. The brain functions like a network, each node of which 

plays a unique role and information is exchanged through the edges connecting them. 

Which connection in the network becomes the limiting factor of information transfer and 

finally leads to behavioral deficits is not clear. The goal of this work is to study the 

relationship between brain connectivity and responsiveness to intervention (RTI, as a 

measure of children’s reading abilities) (IDEA, 2004), and explore whether a correlation 

exists between brain structural connectivity and RTI performance. 
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CHAPTER II 

 

METHOD 

 

Participants for this study were recruited from first graders. The participants were 

screened for handedness, IQ, brain injuries, and other physical disabilities. Reading 

intervention was administered based on their performance in the classroom. Information 

on each participant’s reading skills was obtained throughout the intervention process and 

structural MRI and DTI scans were acquired at the end of the intervention. High 

resolution structural MR images were then used to identify anatomical regions. A 

connectivity analysis focused on cortical and sub-cortical regions of interest (ROI) that 

were identified in previous studies as related to reading skills. Probabilistic tractography 

was performed between pairs of ROIs to calculate the connectivity strength between 

brain regions. The outcome from connectivity analysis was correlated with participant’s 

reading scores to explore the relationship between white matter properties and reading 

abilities.  

 

Participants and Behavioral Measures 

The variation in reading skills is due to a combined effect of variations in brain 

architecture, education and environment. As age increases, the experience of reading 

drives the brain to form compensatory mechanisms to offset the deficits, if any, in brain 

function that are normally employed in reading. This will possibly lead to a complicated 

situation, where the physical variation exists in the brains, but the behavioral variation 
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does not in reading performance – plasticity of the brain shadows it. This may raise 

difficulties in identifying anatomical features that are characteristic of specific skills. 

Hence, abnormality in children’s reading ability as related to brain features is of 

particular interest, since the gaining of reading experience is just started and the diverse 

complementary approaches throughout the population may not yet dominate individual 

differences in brain structure. 

 

Recruitment and grouping criteria  

Fifteen first graders (mean age ± STD = 7.5 ± .43 year old) were recruited for this study. 

The participants were from a sample of children in Nashville participating in a federally 

funded randomized control trial (RCT).  The RCT explores the effectiveness of response 

to intervention (RTI) as a means of identifying and preventing RD. All participants, 

including control participants, were screened and determined to be at-risk for reading 

difficulties at the beginning of first grade. Children with brain injury, other physical 

disabilities, severe emotional problems, uncorrected sensory disorders, ADHD, or an IQ 

< 80 were excluded during recruitment for this neuroimaging portion of the project. No 

child had limited proficiency in English. No restriction was made for gender, ethnicity, or 

socioeconomic status. This study was approved by the Vanderbilt University Institutional 

Review Board. Written informed consent was obtained from the children’s guardians.  

Written assent was obtained from the children. 

Of the fifteen datasets, four were not included due to severe head motion in the 

neuroimaging session that rendered the tractography data unreliable.  The remaining 11 

participants were placed into groups based upon RCT categorization (described in 
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Behavioral Measures and Responsiveness section, below). As such, classroom controls 

(CNT; n=5) were defined as children who were initially identified as at risk in the fall of 

first grade but benefited from classroom-based tier 1 instruction and therefore did not 

qualify for small-group tier 2 reading intervention. Treatment responders (R; n=2) were 

defined as children who did not benefit from tier 1 instruction, were eligible for small-

group tier 2 reading intervention, and achieved adequate results on behavioral measures 

indicating response to intervention. Treatment non-responders (NR; n=4) were children 

who did not benefit from tier 1 instruction, were eligible for small-group tier 2 reading 

intervention, and did not achieve adequate results on behavioral measures, indicating a 

failure to respond to intervention.  

 

Behavioral measures and responsiveness 

Within the RCT, children’s response to the instruction was estimated with a measure of 

word identification fluency (WIF; Compton et al., 2010; Fuchs et al., 2004), which was 

administered weekly. Growth modeling of WIF over six weeks at the beginning of the 

school year indicated each child’s responsiveness to the general classroom instruction 

(prior to small-group tier 2 intervention). Children identified as unresponsive to general 

classroom instruction were assigned to small-group tier 2 intervention (tier 2), in which 

trained research assistants provided a prescribed reading intervention three days per week 

for 17 weeks.  For participants receiving tier 2 intervention, weekly progress monitoring 

using WIF continued throughout the course of intervention. Upon conclusion of the 

intervention, responsiveness was determined using WIF intercept and slope over the 

duration of the intervention. It is important to note that for the imaging study, limitations 
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in sample size necessitated ranking participants by WIF intercept and slope and dividing 

participants to designate equal groups of responders and non-responders. These 

designations of responders and non-responders were used in all subsequent analyses. 

Pre and post test behavioral measures were administered to all participants receiving tier 

2 intervention.  As stated above, the WIF growth was used to identify the participants’ 

group membership. The pre- and post test measures listed below were correlated with 

imaging data.  

 Word Identification Fluency (WIF). WIF consists of single-page lists of 100 high-

frequency words randomly sampled from the Dolch pre-primer, primer, and first-

grade level lists (Fuchs et al., 2004). The task is to read as many words as possible 

in 1 min.  

 Untimed word identification skill. The Woodcock Reading Mastery Test – R/NU: 

Word Identification (WRMT-R: WID, Woodcock, 1998) is a norm-referenced test 

in which subjects read individual words ordered in difficulty until six sequential 

incorrect responses occur.  

 Untimed decoding skill. The Woodcock Reading Mastery Test – R/NU: Word 

Attack (WRMT-R: WAT, Woodcock, 1998) is a norm-referenced test that 

requires subjects to pronounce decodable pseudowords presented in ordered 

difficulty until a ceiling of six sequential incorrect responses is reached.  

 Sight word reading efficiency. The Test of Sight Word Reading Efficiency 

(TOWRE: SWE, Torgesen et al., 1997) is a norm-referenced measure of sight 

word reading accuracy and fluency in which participants read a list of words of 

increasing difficulty for 45 sec.  
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 Phonemic decoding efficiency. The Test of Phonemic Decoding Efficiency 

(TOWRE: PDE, Torgesen et al., 1997) is a norm-referenced measure of decoding 

accuracy and fluency that requires participants to read a list of decodable 

pseudowords of increasing difficulty for 45 sec. 

As part of the intake procedure, letters were sent to the parents of children who had 

successfully completed the RCT research protocol (including R, NR, and C participants) 

and met our recruitment criteria.  All participants attended a single imaging session, in 

which each child was acclimated to the lab and received a child-oriented explanation of 

the study procedures. A play tunnel and a mock scanner were used to practice the tasks 

and prepare the child for the scanning environment.  

 

Imaging Data Acquisition and Image Processing 

On the imaging side, both high resolution anatomical images and diffusion weighted 

images were acquired for each participant. The imaging data were passed through a 

processing pipeline (Figure 5). The first step was brain parcellation using T1-weighted 

images. For the diffusion weighted images, eddy current artifacts were corrected by 

linearly registering the diffusion weighted images to the non-diffusion weighted image. 

After EPI distortion correction using field maps, T1-weigted images and diffusion 

weighted images were co-registered, and the ROI masks obtained in T1 space were 

aligned in DTI space to get ready for fiber tracking. 
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Figure 5. Image processing pipeline. 

Diffusion weighted images were corrected for image distortions due to both eddy 

current and EPI artifacts, the latter using the acquired field maps and FSL 

software.  Cortical reconstruction and volumetric segmentation were performed 

with the Freesurfer image analysis suite to identify the cortical and subcortical 

gray matter regions of interest on the T1-weighted structural scan. Then T1-

weighted images were aligned with diffusion weighted images to prepare for the 

fiber tracking in future steps. 

 

Data acquisition 

All imaging was performed on a research-dedicated Philips Achieva 3T MR scanner.   

1. Structural imaging 

High resolution 3D T1-weighted anatomical images were acquired (in a sagittal 

orientation) in just under 6 min. This was an inversion-prepared turbo field echo 

sequence (IR-TFE) with TI=916ms, TR=7.9ms, TE=3.6ms, SENSE acceleration factor of 

2, matrix size 256x256x170, and FOV 170x256x256 mm
3
 for isotropic 1mm resolution. 

These images were used for subsequent scan prescription and for cortical parcellation.  

2. Diffusion weighted imaging 
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To measure brain tissue microstructure, we acquired high angular resolution diffusion 

images using a pulsed-gradient spin echo, echo planar imaging (single shot EPI) pulse 

sequence to image the entire brain at 2.5 mm isotropic resolution (50 slices, 96x96 matrix, 

TE = 65 ms, TR = 8.5 s, SENSE acceleration factor 2). We acquired 10 non-diffusion 

weighted and 92 diffusion weighted image volumes (92 directions at b=1600 s/mm
2
).  

3. Field map 

To correct for EPI distortions, we acquired a field map (1.875 x 1.875 x 4.934 mm voxels, 

TE = 2.9 and 3.9 ms, TR = 173 ms, scan time 28 s), with a magnitude volume and a 

phase accumulation volume.   

 

DTI artifacts correction 

1. Eddy current correction  

Eddy currents are the electric currents induced in conducting surfaces near the gradient 

coils by a changing magnetic field. Eddy currents can cause artifacts in diffusion 

weighted images such as stretching and shearing, which can mostly be corrected in post-

processing by affine registration (Netsch and van Muiswinkel, 2004). The eddy current 

influence on gradient fields becomes more significant farther from the center of the 

magnet, and thus the worst distortion occurs at the outer border of the brain. In brain FA 

maps, FA values will normally range from 0 to 1. However in the presence of eddy 

current artifacts, one or more of the eigenvalues derived from the diffusion tensor can be 

negative as a result of the misalignment of the images corresponding to different 

diffusion weighting gradients, and consequently the FA value can be greater than 1. 

Usually the eddy current artifacts will appear as a ring of hyper-intense voxels on the 



21 
 

border of the brain in FA maps (Figure 6). We can count the number of voxels exceeding 

the physically reasonable range of FA values (0 to 1) and use it to compare the 

performance of different affine registration tools in eddy current correction. 

 

Figure 6. Eddy current artifacts as shown in gray scale FA maps.  

From left to right are axial, coronal and sagittal views of a typical FA map with 

eddy current artifacts. The red dots label the voxels where the FA value is greater 

than 1. At the border of the brain, the diffusion anisotropy should not have been 

high. The hyper-intensity in the border voxels is due to misalignment of the 

diffusion weighted images corresponding to different diffusion weighting 

gradients. 

 

A few software tools are available for affine registration, including the FMRIB's 

diffusion toolbox (FDT) (Jenkinson and Smith, 2001) provided by FMRIB's software 

library (FSL) (Smith et al., 2004; Woolrich et al., 2009), the slice by slice affine 

registration tool in the in-house Matlab scripts package (vuTools) prepared by the 

Vanderbilt University Institute of Imaging Science, and the affine registration tool in the 

Philips Research Imaging Development Environment (PRIDE). In the present study, the 

performance of these tools was compared (see result section), and PRIDE was finally 

selected for the image processing pipeline. 

2. EPI distortion correction using field maps 

Different tissues have different magnetic susceptibilities when placed in the magnet. 

Tissues with dissimilar susceptibilities, such as air-bone or air-tissue interfaces in the 
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sinuses, interact differently with the local magnetic fields, and lead to inhomogeneities in 

the magnetic field. The EPI sequence is sensitive to such field inhomogeneities, and thus 

DTI data acquired using EPI sequences can be distorted, especially in the inferior frontal 

and temporal regions. However, the inhomogeneous magnetic field can be measured. 

With the information in a field map, the geometric distortion and signal loss can be 

calculated, and then used to compensate for EPI distortion artifacts (Jezzard and Balaban, 

1995). 

The field map is 3D-unwrapped using a Phase Region Expanding Labeler for 

Unwrapping Discrete Estimates (PRELUDE) in FSL before it is used for EPI unwarping 

(Jenkinson, 2003). The EPI distortion correction is carried out using FMRIB's Utility for 

Geometrically Unwarping EPIs (FUGUE) in FSL (Jenkinson, 2001, 2004). In general, 

the processing starts from calculating forward EPI warps using the field map, based on 

the assumption that the field maps (both anatomic and real field maps) are not susceptible 

to the EPI sequence distortion. The calculated (forward) warps are applied to the 

anatomic image in the field map, before the non-diffusion weighted image is registered to 

it. The transformation is then inverted to convert the EPI unwarping map from field map 

space to DTI space. Finally, this unwarping map is applied to diffusion weighted images 

to correct for non-linear EPI distortions. 

 

Brain parcellation using structural images 

Whole brain cortical parcellation is done under the framework of FreeSurfer (Fischl, 

2002, 2004), using high resolution T1-weighted MR images. The process starts from 

motion correction through an affine transformation with 12 degrees of freedom to the 
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Talairach coordinate system, followed by non-uniform intensity normalization to correct 

for spatial intensity inhomogeneity (Sled et al., 1998). The skull was stripped from the 

image (Segonne et al., 2004), and the mean intensity of the remaining brain image 

volume was normalized to match the atlas intensity scale built in FreeSurfer. Then the 

atlas brain is nonlinearly warped to each participant’s brain for the atlas-based tissue 

segmentation, which labels the brain volume in the individual space with subcortical 

structures, brain stem, cerebellum, and cerebral cortex. The next step in FreeSurfer is to 

generate topologically correct cortical surface mapping for each hemisphere. The cortical 

surface is the tissue interface between white matter and gray matter or between gray 

matter and CSF. For each hemisphere in the brain, the gyri and sulci are unfolded, 

inflated to the surface of a unit hemisphere, and projected to a standard spherical 

coordinate system. The surface inflation conforms to minimal metric distortion. The 

parcellation process also takes the steps of topology correction (Fischl et al., 2001; 

Segonne et al., 2007) and surface based warping to align anatomically homologous points. 

The result is a complete labeling of cortical sulci and gyri. The surface mapping is then 

extended to gray matter volume parcellation, resulting in segmented regional cortical 

volumes. 

 

Registration between anatomical and diffusion weighted images 

The anatomical regions identified in T1 space need to be transformed into DTI space to 

prepare for tractography. Since a previous step has corrected for the nonlinear EPI 

distortion in diffusion weighted images, the alignment between diffusion weighted and 

T1-weighted images is carried out using FMRIB's linear image registration tool (FLIRT) 
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(Jenkinson and Smith, 2001). The first step is to register the lower resolution non-

diffusion weighted image in the DTI scan to the higher resolution T1-weighted image 

with 12 degrees of freedom and trilinear interpolation. As the registration is inter-modal, 

the normalized mutual information is selected as the cost function. The transformation is 

then inverted and applied to the cortical labeling in T1 space. In order to preserve the 

regional volumes, trilinear interpolation is dropped and voxels located at regional 

boundaries are assigned to their nearest neighbors. At this point, every voxel in the 

diffusion weighted image volume has a label that corresponds to a specific anatomical 

region. 

 

 

Structural Brain Connectivity 

Structural connectivity measurements aim to reveal the physical connections that underlie 

the communications between cortical neuronal units. With the help of DTI techniques, 

deterministic streamline tractography has been used to quantify structural connectivity 

(Hagmann et al., 2007), but harsh stopping criteria are used in deterministic streamline 

algorithms to avoid false positives, which render low sensitivity in detecting fibers 

penetrating though white/gray matter boundaries. The connectivity index employed in 

this work is calculated under the framework of probabilistic tractography, which is able 

to track through low FA locations and provides the possibility to map cortico-cortical 

connections that originate from and enter gray matter. 
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Regions of interest  

To investigate the relationship between WM connectivity and responsiveness to 

instruction, we selected nine cortical ROIs that have strong theoretical justification for 

playing a part in reading skill (Table 1). Each region is involved in several different 

behavioral processes; we list in Table 1 only the behaviors of interest to the current study. 

This study will focus on these regions, and the connectivity strength will be calculated 

pair-wise manner among them. 

 

Table 1. Regions of interest 

Anatomical Name Acronym Behavior of interest 

Angular Gyrus ANG active during numerous verbal and 

written tasks 

Fusiform FUS related to the automatic recognition of 

written words 

Inferior Frontal Sulcus IFS active during naming tasks 

Insular Cortex INS supports phonological processing, 

particularly sublexical spelling to sound 

translation 

Pars Opercularis OPE subregion of Broca’s Area mainly related 

to phonological processing but also 

syntactic processing 

Planum Temporale PLA integration of orthographic with 

phonological and lexical features of 

printed words 

Superior Temporal 

Cortex 

STC associated with linking letters to 

corresponding phonemes 

Thalamus THA related to reading words out of context 

Pars Triangularis TRI subregion of Broca’s Area mainly related 

to syntactic but also semantic and 

phonological processing  
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Probabilistic fiber tracking 

1. Local diffusion parameters estimation 

The local diffusion parameters are estimated using the BEDPOSTX (Bayesian Estimation 

of Diffusion Parameters Obtained using Sampling Techniques allowing for crossing 

fibers) (Behrens et al., 2003a, 2007) tool implemented in FSL. Instead of modeling 

crossing fibers directly, BEDPOSTX employs a Bayesian method called automatic 

relevance determination (ARD), so that multiple directions are resolved where and only 

where they are supported by the data. The ARD process starts from a complex model 

with a prior initialization of the diffusion parameters, such as volume fractions and fiber 

orientations, and then runs Metropolis Hastings Markov Chain Monte Carlo (MCMC) to 

sample the diffusion parameters at each voxel. If the prediction resulting from the 

diffusion parameter sample is supported by actual data, it has a positive weight for this 

particular set of parameters and will contribute to the posterior distribution; otherwise, it 

is unlikely that this set of parameters are representative of the real structures we are 

trying to probe, and thus ARD will force it to zero. The result is that, for each parameter, 

the posterior likelihood distribution will have at least one peak at zero (reflecting the 

probability of the simpler model), and other peak(s), if any, at other relatively probable 

value(s) (reflecting the probability of the corresponding complex model). Given the 

posterior probability distribution on every parameter in the model, including the 

orientation and volume fractions from each fiber population, a local estimate can be 

obtained by sampling from the distribution.  
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2. Probabilistic tractography 

Probabilistic tracking (probtrackx) repetitively samples from the distributions of voxel-

wise principal diffusion directions, each time computing a streamline through these 

sampled local estimates to generate a sample of the true streamlines. By taking many 

such samples, the posterior distribution of the streamline or the connectivity distribution 

at the location can be built up. The pattern of the streamline distribution carries integrity 

information of the territories involved, for high directional uncertainty will cause the 

streamlines to disperse faster. In this case, the distribution is thus broad and consequently 

the probability for streamlines to pass coherently beyond this region decrease. Conversely, 

the streamline distribution due to well organized fiber bundles will show a more 

congruent and compact pattern. 

For this work, the goal is to explore the cortico-cortical connections by taking advantage 

of probabilistic tractography’s robustness in surviving high uncertainty locations such as 

gray matter white matter boundaries. The seed masks are specified as one of the 18 ROIs 

(both right and left hemispheres) as mentioned in the parcellation section. For each 

individual fiber tracking task, one of the other 17 ROIs serves as a termination mask. In 

the mean time, whiter matter is used as a waypoint mask and the thalamus is used as an 

exclusion mask. In other words, any of the surviving fibers would satisfy the following 

conditions: (1) it originates from one of the voxels within the seed region, and reaches the 

termination region; (2) it travels through at least one voxel of the white matter region; (3) 

it does not touch any of the voxels within the thalamus region, and thus indirect 

connection through the relay station of the thalamus is excluded from the analysis.  
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The connectivity matrix 

For each pairing of seed and target regions in the fiber tracking step, the number of 

connecting streamlines was counted. The number of streamlines from seed      to target 

     , divided by the number of voxels in the seed region, was used to quantify the one-

way connection ratio,       . The connectivity, or connection strength, between regions 

     and       was defined as the symmetrized connection ratio, 

                            

Notice that, the connectivity defined in this way is the weighted average of number of 

connecting streamlines found forward and backward, and the weighting is the inverse of 

the seed region volume.  

 

Correlation between Behavior and Brain Connectivity 

We hypothesized that we would replicate previous findings of differences in WM related 

to reading skill. In addition, we anticipated that children’s responsiveness to reading 

intervention would provide additional information. To test the hypothesis, multiple linear 

regression was performed between connectivity indices and standardized test scores of 

reading proficiency to explore if a correlation exists. For each element in the connectivity 

matrix, among the connectivity values across participants, an individual value that 

deviated from the original sample mean by two standard deviations or more was defined 

as an outlier and removed from the associated correlation analysis. Given that the 

regional volumes vary across participants, we also calculated the correlation between 

region volume and the different behavioral measures. In addition, we also investigated 

age and gender influences on the behavioral and imaging results.  
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CHAPTER III 

 

RESULTS 

 

Results of both image processing steps and correlation analysis are presented below. 

 

Image Processing 

 

DTI artifacts correction  

1. Eddy current correction  

Diffusion weighted images were registered to the non-diffusion image to correct for 

stretching and shearing. The performance of the linear registration tool in FSL, affine 

registration tool in the vuTools package and the affine registration tool in PRIDE are 

compared in terms of number of FA values falling outside the physically reasonable 

range. A histogram of FA values after eddy current correction (ECC) using each tool was 

constructed (Figure 7). Fractional anisotropy greater than 1 is considered to be due to 

imperfect artifact correction. The histograms show that the affine registration tool 

implemented in PRIDE gives the best performance in terms of total number of FA values 

falling outside the physically reasonable range. 
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Figure 7. Comparison of eddy current correction using different tools.  

The number of FA values falling outside the physically reasonable range is a 

reflection of misalignment between image volumes, and hence was used to 

compare the performance in eddy current correction of different tools, including 

the FDT tool in FSL (a), the in-house built Matlab scripts in the vuTools 

package (b), and the affine registration tool in PRIDE (c). The histogram shows 

that PRIDE gives the best performance in eddy current correction in terms of the 

number of FA values greater than 1. 
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2. EPI distortion correction using field maps 

The field map is 3D-unwrapped using Phase Region Expanding Labeler for Unwrapping 

discrete estimates (PRELUDE) in FSL (Figure 8). A binary mask of the brain is created 

using the magnitude image and is then used to mask off the background of the phase map. 

Notice the discontinuity in the skull (white arrow) due to phase wrapping is filled up after 

unwrapping.  

 

Figure 8. Phase map unwrapping.  

The discontinuities in the original phase map (upper panel) are due to phase 

wrapping. A binary mask of the brain is created using the magnitude image and 

is then used to mask off the background of the phase map. Notice that using 

PRELUDE, the discontinuity in the skull due to phase wrapping is evened out 

after unwrapping (lower panel). 
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The result of EPI distortion correction using a field map is shown in Figure 9. The top 

row is the field map which is free of EPI distortion; the middle and bottom rows are the 

distorted DTI images, respectively. Notice the distortion in posterior brain is corrected 

after unwarping according to the field map. 

 

 

Undistorted 

field map 

 

Distorted 

DTI images 

 

Unwarped 

DTI images 

Figure 9. EPI distortion correction using a field map.  

The top row is the field map without EPI distortion; the middle and bottom rows are DTI 

images collected using the EPI sequence. The distortions in the posterior regions are 

corrected by nonlinear warping. Notice the distortion in the posterior brain is recovered 

after unwarping according to the field map. 
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Brain parcellation using structural images 

Cortical parcellation is done in FreeSurfer. This uses an atlas-based cortical surface 

mapping, which requires non-linear registration. It takes approximately 24 hours to 

process an individual participant, and Figure 10 shows a typical set of parcellation results 

in a participant. Each color depicted on the reconstructed surface of the brain represents a 

specific anatomical region. 

 

 

Figure 10. Cortical parcellation results from FreeSurfer.  

The left hemisphere of the parcellation for a typical participant is shown. Each 

color depicted on the reconstructed surface of the brain represents a specific 

anatomical region. 

 

 

Connectivity Matrices 

 

Regions of interest  

As described in the methods section, nine regions in each hemisphere of the brain are 

selected as ROI for this study. Shown in figure 11 is how these regions are distributed in 

the brain. Eighteen ROIs identified in this paper are labeled in the following manner: a 
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prefix for cerebral hemisphere (L = left hemisphere, R = right hemisphere), a dot 

following the prefix, and the acronym of an anatomical region.  

 

Figure 11. Regions of interest.  

Shown in the left column are lateral and inferior views of ROIs rendered on the inflated 

surface of a left hemispherical brain. In the right column is a transverse slice of brain 

showing THA. 18 ROIs identified in this paper are labeled in the following manner: a 

prefix for cerebral hemisphere (L = left hemisphere, R = right hemisphere), a dot 

following the prefix, and one of the designators: ANG = Angular Gyrus, FUS = 

Fusiform, IFS = Inferior Frontal Sulcus, INS = Insular Cortex, OPE = Pars Opercularis, 

PLA = Planum Temporale, STC = Superior Temporal Gyrus, THA = Thalamus, TRI = 

Pars Triangularis. 

 

The statistics of regional volumes across participants are shown in Figure 12, with the 

cross indicating the mean and the error bar showing standard deviation. The same 

anatomical regions on either side of the brain have similar volumes and larger regions 

show higher variations across subjects, which is partially due to their bigger surface areas. 
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Linear regression between regional volumes and behavioral scores was performed, and 

no significant correlations were found. 

 

Figure 12. Regional volume statistics.  

The regional volumes across subjects are listed, upper panel for the left 

hemisphere and lower panel for the right. The same anatomical regions on either 

side of the brain have similar volumes. Larger regions show higher variations 

across subjects, which is partially due to bigger surface areas. Linear regression 

between regional volumes and behavioral scores were performed, and the PDE 

subtest of the TOWRE is the only test that correlates with regional volume. 
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Local diffusion parameters estimation for probabilistic tractography 

The local diffusion parameters were estimated in FSL using BEDPOSTX. The results are 

displayed in Figure 13 following Behrens’ method (Behrens et al., 2007). In the axial 

slice (a), the binary mask overlaid on the gray scale FA map shows regions where more 

than a single fiber orientation was supported by data (thresholded at f2 ≥ 0.1 after ARD-

based estimation). In the outlined region (b), the mean vectors of the posterior 

distribution samples on fiber orientations are denoted by short bars, with dominant fiber 

bundle in red and second in blue. Samples from the posterior distributions on the first two 

fiber orientations in a voxel (green dot in a, white arrow in b) were displayed on a unit 

sphere (c) where the lateral motor projections (red) cross the superior longitudinal 

fasciculus (SLF) projections (blue). The right hand-side is a 90° rotation of the left. 
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Figure 13. Local diffusion parameters estimation.  

In the axial slice (a), the binary mask overlaid on the gray scale FA map shows 

regions where more than a single fiber orientation was supported by data 

(thresholded at f2≥0.1 after ARD-based estimation). In the circled region (b), the 

mean vectors of the posterior distribution samples on fiber orientations are 

denoted by short bars, with dominant fiber bundle in red and second in blue. 

Samples from the posterior distributions on the first two fiber orientations in a 

voxel (green dot in a, white arrow in b) were displayed on a unit sphere (c) 

where the lateral motor projections (red) cross the superior longitudinal 

fasciculus (SLF) projections (blue). The right hand-side is a 90° rotation of the 

left. 

 

  

c 

a b 
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The connectivity matrix 

Connectivity      was calculated for each of the possible 72 pairs of regions (within-

hemisphere).  Figure 14 shows the result of these steps, a connectivity matrix, for one of 

the control participants in the study.  This is a symmetric matrix, with left hemispheric 

connectivity displayed in the lower left triangle, and right hemispheric in the upper right. 

 

 

Figure 14. The connectivity matrix.  

The matrix of connectivity between all intra-hemispherical pairs of n = 18 ROIs. 

The pairings within left-hemisphere are displayed in the lower left half, parings 

within right-hemisphere in the upper right half. All connectivity strengths are 

displayed with a logarithmic (log10) grayscale map. 
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Correlation Analysis 

 

Figure 15 is a visual representation of the correlations between participants’ connectivity 

estimates and their performance on each of the standardized measures. Similar to the 

connectivity matrices, within the correlation matrices, left hemisphere connections are in 

the bottom triangle and right hemisphere connections are in the top triangle.  The gray 

scale denotes significance level (p value of correlation analysis, uncorrected for multiple 

comparisons), with brighter gray indicating more significant correlations. Correlations at 

the p < 0.05 level are identified as significant and labeled with a star.  We also 

investigated age and gender influences on the behavioral and imaging results using two 

separate one way ANOVAs.  Results showed a single significant effect:  The left TRI to 

IFS pathway had a significant gender effect, in which girls had a significantly greater 

number of white matter fibers connecting these regions. In addition, we correlated 

participant’s performance on the behavioral tasks with the volume of each region. We 

found a positive correlation between the PDE subtest of the TOWRE and the left planum 

temporale (p = .02) and the left superior temporal cortex (p = .03).  
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Figure 15. Correlation matrices.  

Matrix of correlations between intra-hemispheric pairs of gray matter regions. 

Connectivity between each pair of ROIs is correlated with Phonological Decoding 

Efficiency (A), Sight Word Efficiency (B), Word Attack (C), and Word Identification 

(D), and the significance level of the correlation is displayed on a logarithmic scale. 

Significant correlations were marked by a star (*p<0.05, uncorrected). 

 

  



41 
 

To facilitate interpretation of the significant connections, scatter plots for each finding are 

shown in Figure 16 and 17.  These scatter plots also represent the relationship with 

response to instruction.  In these plots, the NR participants are red, R participants are blue, 

and CNT participants are green. 

  



42 
 

 

 

Figure 16. Angular gyrus to insular cortex scatter plots.  

Correlation scatter plots for L.INS and L.ANG. (A) - (D) scatter plots showing detailed 

relationship between connectivity and specific test performance. (E) locations of L.INS 

and L.ANG.  A single NR participant was identified as an outlier and excluded from this 

analysis. 
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Figure 17. Remaining significant correlations.  

Scatter plots showing correlations between connectivity and behavioral test performance. 

Each scatter plot corresponds to one pair of gray matter regions: (A) L.TRI and L.IFS, 

(B) L.THA and L.STC, (C) R.STC and R.TRI, (D) R.THA and R.TRI. Locations of these 

regions are illustrated in (E). 
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As shown in Figure 16, increased reading score on each of the reading measures is related 

to greater connectivity between the left ANG and INS; the NR participants generally 

have lower connectivity than R and CNT participants. Similarly, performance on the 

WAT subtest correlated positively with connectivity values between TRI to STC (Figure 

17). Scatter plots of this correlation showed that NR participants had lower connectivity 

than R and CNT participants (although only one R dataset survived outlier rejection). 

Alternatively, three negative correlations were found in which poorer readers, and more 

particularly, NR participants, had a greater magnitude of connectivity between brain 

regions than the other two groups.  Two correlations involve connections to the THAL, 

yet in different hemispheres of the brain: the first was right THAL to right TRI and the 

second was left THAL to left STC. The third remaining region was also in the left 

hemisphere - TRI to IFS. 
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CHAPTER IV 

 

DISCUSSION 

 

Discussion of the Results 

 

Reading performance requires the involvement of a network of neuronal units that are 

distributed remotely across the brain. Each neuronal unit has a specific role in modulating 

brain functions, and only when these units collaborate, can reading behavior be 

performed. Previous DTI studies have consistently found FA differences between normal 

readers and poor readers (Beaulieu et al., 2005; Deutsch et al., 2005; Klingberg et al., 

2000; Niogi and McCandliss, 2006; Rimrodt et al., 2010), which is suggestive of 

structural differences in white matter. Given the white matter’s role of information 

transfer, the FA differences, if linked to differences in reading skills, might be a 

reflection of connectivity variation among individuals. This work is aimed at 

reconstructing brain connectivity directly and exploring its contribution to reading 

behaviors via cortico-cortical communication. 

Correlation analysis was used to investigate the potential relationship between brain 

connectivity and reading skills in first graders. The results indicate that eight connectivity 

estimates correlated with participants’ reading skills. Group t-tests were done to show 

that the correlation was not attributable to differences in gender; we are also confident 

that the correlation does not arise from age variation. A correlation between brain 

regional volumes and participants’ reading scores was found; however the particular 
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regions were not involved in the significant connectivity findings. The connectivity 

results extend the previous findings of white matter differences related to reading skill to 

identify specific connections between gray matter regions. Furthermore, of the eight 

significant correlations, four were found in the connections between left angular gyrus 

and left insular cortex. Regarding the previously reported white matter differences in 

temporo-pariental regions (Beaulieu et al., 2005; Deutsch et al., 2005; Klingberg et al., 

2000; Niogi and McCandliss, 2006; Rimrodt et al., 2010), the results are largely 

consistent with our findings. 

In particular, connectivity between insular cortex and angular gyrus in the left 

hemisphere correlated with all four reading tasks, indicating that better readers in general 

had higher connectivity estimates between these two brain regions on both timed and 

untimed reading tasks. Compared to the other two groups, non-responders had the fewest 

probabilistic streamlines connecting these two regions.  Although the small group sizes 

limit our statistical power to prove, in a single correlation, the separation of groups with 

respect to brain connectivity and reading skills, the reoccurrence of the trend across 

different reading skills is promising.  

Nevertheless, interpretation of the findings is challenging, as the insular and the angular 

gyrus have very different roles.  On the one hand, functional activation occurs in the left 

insular cortex during language, speech, working memory, and attention tasks; in 

cognition, the left insular cortex also plays an integrative role between purely cognitive 

and other systems, including sensorimotor, social-emotional, and olfacto-gustatory 

systems (Chen et al., 2007; Dolan, 2002; Frith and Singer, 2008; Johansen-Berg and 

Matthews, 2002). On the other hand, the left angular gyrus is important for lexical 
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processes involved when reading words (Binder et al., 2009), and evidence exists that the 

angular gyrus is involved in phonological processing, especially at an early age, as 

inferior parietal lobe is often associated with mapping phonological representations to 

their orthographic representations (Pugh et al., 2000). These results may indicate that 

connectivity between these two brain regions is a crucial part of the neural network that 

supports word recognition skills. 

 

Discussion of the Methods  

 

Variation in reading skills is due to a combined effect of variations in brain architecture, 

education, and environment. As age increased, the experience of reading sculpts the brain 

to form various structural or functional compensations for deficits. Hence, abnormality in 

children’s reading ability as related to brain features is of particular interest, since the 

gaining of reading experience is just started and the diverse complementary approaches 

found in the adult population have not been established. This study focuses on brain 

connectivity in children, and endeavors to identify anatomical features that are 

characteristic of reading skills. 

The employment of probabilistic tractography to estimate the strength of brain 

connectivity provides the capability to map connections originated from and terminated 

in gray matter regions directly. In contrast to deterministic tractography, probabilistic 

tractography is able to trace through locations where the uncertainty in primary diffusion 

direction estimates is high. On the other hand, due to its high sensitivity to any possible 

underlying structures, it may give rise to false positive (FP) estimates of streamlines, i.e., 
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joining local estimates belonging to different neuronal fiber tracts. Hence, multiple 

strategies were taken to lower the impact of false positive streamlines on the connectivity 

estimates, including the utilization of white matter as inclusion masks and cortical 

regions as termination masks and exclusion masks. 

In particular, the thalamus is used as an exclusion mask in all the fiber tracking except for 

when the tracking is between a region of interest and the thalamus directly. The thalamus 

is comprised of mixture of white matter and gray matter, and functions as a processing 

core in the central nervous system. Evidence exists that the thalamus has projections onto 

the whole cortical surface (Behrens et al., 2003b), and thus any two cortical regions can 

be connected via the thalamus. However in the scenario of DTI tractography, the 

tractability of thalamic connections is much higher than that of cortico-cortical 

connections. For probabilistic fiber tracking algorithms, the number of streamlines 

detected via the thalamus outweighs the direct cortico-cortical connections, and the 

analysis will be severely biased towards the thalamic projection distribution consequently. 

In order to elucidate the contribution of each connection explicitly, the streamlines 

passing though thalamus are excluded from the statistics. On the other hand, it is possible 

that the cortico-cortical communication is modulated by the thalamus and the thalamus is 

indeed believed to be important for reading, so the thalamus is selected as one of the 

independent regions of interest, and any direct connections between cortical regions and 

the thalamus is analyzed in the same manner as other cortico-cortical connections (i.e., 

any relay connections between cortical regions are modeled as two distinct direct 

connections between the cortical region and the thalamus). Related to this, given the 

integrative role of the insular cortex, it is highly probable that it serves as a relay station 



49 
 

between nearby neuronal units, but the current study design does not afford the flexibility 

to keep track of continuing connections explicitly. While the inference is still valid that 

the direct connections with insular cortex play a key role, interpretation of the role of 

insular cortex should be made with caution. 

This work has several limitations. First of all, a pre-intervention scan was not acquired. 

Without this information, it is difficult to determine whether the group differences found 

in this study cause or result from participants’ responsiveness to instruction. Future 

studies would benefit from a longitudinal design, where imaging data are acquired both 

before and after intervention. Second, at our current level of understanding, it is not 

possible to determine the causal relationship between gray and white matter deficits. It is 

possible that fiber pathways are abnormal in reading disability due to a deficit in the 

number of neurons in one reading-related region projecting along the fiber to other 

regions. On the other hand, deficits in myelination along a fiber can also impact the 

efficiency and timing of information transfer between regions, which would cause 

reductions in activation. A more comprehensive design with functional, structural and 

diffusion data would be beneficial to study this issue. Third, the regions identified in the 

current study are parcellated according to anatomically distinguishable landmarks. Some 

of them are as large as 10 cm
3
 in volume. Given that many regions are reported to be 

responsible for multiple cognitive functions in the previous literature, especially for those 

strip-shaped regions whose anterior tip and posterior tip have different adjacencies, 

whether the sub-regions bear identical connectivity remains unclear. With refined brain 

segmentation using anatomical landmarks or smart topological strategies, further 

exploration of connectivity patterns within each ROI in current study would be fruitful. 
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Last but not least, due to the limited number of participants in this study, the statistical 

power available does not allow us to correct for multiple comparisons. A future 

replication study with an expanded sample size would provide more statistical power and 

enable more refined analysis of the data.  
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CHAPTER V 

 

CONCLUSION 

 

This study demonstrates a relationship between brain connectivity and children’s reading 

abilities. Among all the cortical and sub-cortical regions segmented using high resolution 

structural images, nine regions in each brain hemisphere were selected as important for 

reading. The probabilistic streamlines connecting each pairing of the nine regions were 

calculated and used to estimate brain connectivity. The estimates were then used to 

correlate with children’s reading measures.  

Eight significant correlations were found, four of which were connections between the 

insular cortex and angular gyrus. Other correlations involve the connections between the 

thalamus, triangularis, inferior frontal gyrus and superior temporal cortex. The results are 

largely consistent with previously reported findings, and are suggestive of a key role of 

connection between insular cortex and angular gyrus in mediating reading behavior. In 

spite of the limited sample size, the redundancy in the spread of group clusters among 

correlation tests is indicative of a relation between brain connectivity and children’s 

responsiveness to intervention. 
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