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Chapter 1

Introduction

1.1 Time Domain Surveys

Astronomy has greatly benefited from the rate at which technology has been developing

in the last few decades. High-quality CCDs and increasing efficiency in digital storage and

processing have helped to usher in the era of big data. For observational astronomy, one

of the major impacts that this has had is the proliferation of time domain surveys, and

the number of objects and observations that each of these surveys can be comprised of.

The scope of these surveys will continue to increase as the technological limitations are

pushed back, and it is becoming increasingly important to understand the capability of

these surveys.

One of the largest such surveys currently under development is the Large Synoptic

Survey Telescope (LSST), which is currently under construction with a ten-year mission

beginning in 2020. LSST will produce light curves for approximately 1 billion objects in

a survey covering half the sky. LSST also brings with it an additional challenge; as LSST

will attempt to survey such a large area of sky, the light curves it generates will have a

very low cadence, particularly compared to most surveys that have been used previously

for understanding transient and variable sources. The lessons that can be learned with

LSST to find variables despite the low cadence will be directly applicable to other high-

precision sparsely-sampled data sets from other time domain surveys and play a key role in

maximizing the science output in the big data era.

1.2 Exoplanets

One of the science cases that has benefited greatly from the move toward big data in

astronomy is the search for exoplanets. The first exoplanets to be discovered came in at a
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slow rate as the field was pioneered in the 1990s and early 2000s, with the first confirmed

planets in 1992 [Wolszczan and Frail, 1992], the first planet around a main sequence star

in 1995 [Mayor and Queloz, 1995], and the first planet discovered through the transiting

method in 2003 [Konacki et al., 2003]. There are now almost 3,000 confirmed exoplanets

and the Kepler mission alone has provided another 2,500 planet candidates. However,

these planets have primarily been limited to relatively close to our location in the Milky

Way (Figure 1.1), with a large portion occurring in the direction of the Kepler field, as

shown in Figure 1.2.

Figure 1.1: A histogram generated by exoplanet.org depicting the distances to exoplanet
host stars. A ’distant’ peak reflects the distance to the Kepler field and the closer peak
represents the combined efforts of most other planet searches.

The limited populations of stars that have been searched for exoplanets has meant that

while the frequency of exoplanets is being constrained particularly for solar-type field stars,

many other stellar populations have not been as thoroughly examined. Red and white

dwarfs, stars in clusters, stars in the Galactic core, and stars in the Magellanic Clouds have

been comparatively unexplored, and understanding the planet frequencies for these stellar

populations will help shed light on the mechanics for exoplanet formation.
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Figure 1.2: The distribution of confirmed exoplanets throughout the sky, showing that a
large portion are from the Kepler field specifically, and that the full distribution of stars in
the galaxy is not reflected in the exoplanet distribution. Figure first released in Lund [2016]
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Chapter 2

Transiting Planets with LSST. I. Potential for LSST Exoplanet Detection

2.1 Introduction

The ongoing search for exoplanets has to date yielded a sample of some 1,500 planets,

primarily from the contributions of the Kepler mission [Batalha et al., 2013], ground-based

transit surveys, such as HATnet [Bakos et al., 2011], TrES [O’Donovan and Charbonneau,

2007], SuperWASP [Doyle et al., 2013], XO [Poleski et al., 2010], KELT [Pepper et al.,

2007], and RV surveys, such as the Anglo-Australian Planet Search [Tinney et al., 2001],

HARPS [Zechmeister et al., 2013], California and Carnegie Planet Search [Patel et al.,

2007], and the Lick Planet Search [Fischer et al., 2014]. However the current sample

predominantly comprises host stars that are F, G, and K dwarfs in the solar neighborhood.

Due to a variety of observational and selection biases, other populations have not been

examined as thoroughly, including late-type stars, evolved stars, stars outside the solar

neighborhood, young stars, stellar remnants, and others. As a consequence, while the

current sample of planets has allowed us to characterize exoplanet frequency as a function

of mass, radius, and period [Howard et al., 2012, Petigura et al., 2013, Youdin, 2011], the

current exoplanet sample does not include stellar hosts that are fully representative of all

possiblities.

In this paper1, we introduce an analytic- and simulation-based effort to explore the abil-

ity of the upcoming Large Synoptic Survey Telescope [LSST Science Collaboration et al.,

2009] to discover transiting exoplanets, specifically among distant stellar populations and

late-type stars. Since LSST was not specifically designed for this purpose, there are at least

two important difficulties involved. The two most prominent are: (1) The stars observed

by LSST are too faint for candidates to be confirmed as exoplanets through standard ob-

1This chapter was originally published as [Lund et al., 2015]
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servational methods, making it difficult to separate real exoplanets from the many types of

false positives, and (2) the cadence of LSST observations is much lower than current tran-

sit surveys, making robust detection of transit-like events against background noise more

difficult. On the other hand, LSST will observe exponentially more stars than prior sur-

veys, and it is prudent to examine just what kinds of exoplanets can be identified. Even

if it proves impractical to comfirm most LSST-identified exoplanet candidates via tradi-

tional followup observations, it may be possible to derive bulk statistical properties for this

exoplanet population.

This paper is the first in a series that will model the predicted properties of the LSST

data set to examine:

• What tools can be used to extract exoplanet transit candidates from the LSST light

curves?

• What will be the dominant types of false positives?

• How can the likelihood of detecting these false positives be mitigated, using either

the LSST data themselves or follow-up observations?

• What new populations of stars can be probed for planets with LSST that have not yet

been searched thoroughly?

• What do we predict will be the number and parameter distribution of exoplanets

detectable with the LSST?

This sort of inquiry has been partially addressed by other papers. The LSST Science Book

(LSST Science Collaboration et al. [2009], see Section 8.11), and separately Beatty and

Gaudi [2008], examine how many transiting planets might be detected by LSST. We intend

to build on these initial examinations by utilizing detailed LSST cadence and photometric

performance attributes applied to different types of stars, as well as incorporating updated

information about the intrinsic distribution of planet sizes and periods. In later papers

will will also include realistic models of stellar binarity and variability, as well as other

false positive sources, and investigate improvements to existing transit-detection algorithms
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customized for the LSST cadence and multiband data.

In this first paper, we present our statistical framework, and we demonstrate that certain

types of interesting transiting planets should be detectable in LSST data. We describe our

method for modeling LSST light curves in §2.2 and describe simple models for simulating

and recovering transiting exoplanets in the light curves (§2.3). In §2.4 we present the results

of this study, in which we demonstrate that a number of scientifically interesting planet/star

configurations should be readily detectable in LSST data, even with the use of standard

transit-search routines. We close by discussing the key challenges of this project in §2.5.

2.2 Assumed LSST Parameters

The Large Synoptic Survey Telescope (LSST) is an 8.4-meter telescope being con-

structed in Cerro Pachon, Chile, with first light planned in 2020 [Ivezic et al., 2008]. LSST

will survey approximately 30,000 square degrees of the sky repeatedly over the course of

10 years. Observation of a field will consist of two consecutive exposures of 15 seconds

each, hereafter refered to as ’visits’. For the majority of the sky, each field will have ∼ 1000

visits. This will result in approximately 1 billion light curves that are sparsely sampled over

time. LSST will also have a few selected fields that will be observed at a much higher fre-

quency, referred to as deep-drilling fields. Each of these fields will represent 1% of the

total number of LSST observations and will receive ∼ 10,000 visits over LSST’s scheduled

operation. For both cadences (regular cadence and deep-drilling), these observations will

be distributed among 6 different wavelength bands, ugrizy. LSST’s sensitivity will cover a

magnitude range from m ∼ 16 down to m ∼ 25. In this section we describe the cadence and

noise parameters that we adopt in our simulated light curves.

2.2.1 Cadence Model

The LSST team has developed the LSST Operations Simulator (OPSIM) software tool

that includes models of the hardware and software performance, site conditions, and ca-
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dence as a function of sky position [Delgado et al., 2014]. For our purposes, OPSIM

produces a list of observation times with field ID, band, and limiting magnitude. For this

paper we use the OPSIM v2.3.2, run 3.61 results2 for two fields — one representative of

a standard field, and one representative of a deep-drilling field — in order to examine the

effect of the two LSST cadences on the observed lightcurves.

In Figure 2.1, we show the time between consecutive exposures for both fields. In

both cases, we have excluded nine intervals that represent the gaps between seasons of

observing, which are on the order of 200 days. For the deep drilling field, it is worth noting

that because the observing schedules focus on hour-long blocks of constant observation,

there is a large peak at ∼ 35 seconds representing exposure time plus readout time for

consecutive observations of the same field. This then represents the minimum interval

between most observations.

Figure 2.1: Time between beginning of subsequent exposures for a given field, for both
regular cadence (left) and deep-drilling cadence (right). Note that a large fraction of the
deep-drilling observations are taken in immediate succession, resulting in the largest peak
at ∼ 34 seconds, corresponding to the combined LSST exposure and readout times.

2.2.2 Noise Model

The photometric noise in simulated LSST light curve comprises two components, a

systematic noise floor and random photon noise. LSST’s systems are designed to maintain
2Available at https://www.lsstcorp.org/?q=opsim/home
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low systematic error with σsys < 0.005 mag. For purposes of this paper, the systematic

error is treated conservatively as σsys = 0.005 mag. The random photon noise, dependent

on the band being used, varies with changes in atmospheric extinction, stellar magnitude,

and seeing conditions. Ivezic et al. [2008] define the random photometric error with the

following equation:

σ2
rand = (0.04−γ)x +γx2 [mag2] (2.1)

where γ is a band-specific parameter, and x = 10(m−m5). Here, m is the band-specific ap-

parent magnitude and m5 is the 5σ limiting magnitude for point sources. The quantity m5

includes both band-specific parameters and factors such as seeing conditions, air mass, and

exposure time. We can then express the total noise for a single visit:

σ2 = σ2
sys +σ2

rand [mag2] (2.2)

Figure 2.2 shows the total noise for a single LSST visit to any field at the zenith, adopting

m5 and γ from Ivezic et al. [2008]. As transits of large exoplanets frequently have depths

on the order of 0.01 mag, Figure 2.2 shows that for apparent magnitude ∼ 16 down to as far

as ∼ 20, for some bands the photometric noise is less than the depth that would be expected

of a transit event. This represents a much fainter apparent magnitude range with this level

of photometric precision than most previous transiting planet searches have explored.

2.3 Simulated LSST Light Curves of Transits

2.3.1 Light Curve Construction

We create synthetic light curves to analyze the ability to detect transit signatures. In

§2.4 we define several star/planet configurations for simulated light curves, specifying for

each the stellar mass, planetary radius, orbital period, and distance from Earth. Stellar
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Figure 2.2: Noise model at zenith for LSST as a function of stellar magnitude in all ob-
served bands. From Ivezic et al. [2008]

masses are converted to spectral types by interpolating the relations from Allen and Cox

[2000]. Based on spectral type, we obtain absolute magnitudes in the ugriz bands from

Covey et al. [2007]. While there is still much uncertainty about the specific parameters of

the y-band filter that LSST will eventually use, for this work we use a y-band defined by

Hodgkin et al. [2009].

Light curve generation itself requires orbital period, as well as transit depth and duration

as determined by the geometry of the system, and the apparent magnitude of the host star

in all bands. Kepler has shown that while stars do have a wide range of intrinsic stellar

variability, most will have variability of less than 1% [Basri et al., 2011]. This intrinsic

noise will be smaller than both the noise present in the observations and the transit depths

we focus on, so we do not include that effect in these light curves. Transits are modeled

as boxcars and when applied to the apparent magnitude of the star, allow us to create a

noiseless light curve of the star that features the transit. We then add the photometric noise

to the light curve, modeled as Gaussian noise, and dependent on apparent magnitude and

band (See Figure 2.2) to create light curves similar to what LSST will observe.
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The resulting light curve can be represented in all six bands. Limb darkening is a

second-order effect that will tend to decrease the transit depth at blue wavelengths relative

to a simple box-shaped transit. However, to first order the transit depth will be independent

of wavelength, so in this initial exploration we treat the transits as achromatic boxcar events.

With this simplification we can median-subtract each light curve and combine them to

create one unified light curve for enhanced transit detection. An example of a six-band

light curve is shown in Figure 2.3. It is already noticeable in this case that the u-band will

have the largest noise for the stellar populations in which we are most interested.

Figure 2.3: A sample six-band light curve, demonstrating the ability to combine all bands
into a single phased light curve. The black line shows the binned data for the light curve.

The multiband nature of the observations will also provide additional information to

characterize the light curves. Since exoplanet transits would be expected to be the same

depth in all wavelengths, signals from eclipsing binary stars can be eliminated as planet

candidates if we observe transit depths that are dependent on wavelength. Our intention

in this paper is not to provide a rigorously developed number for expected exoplanet de-

tections, or to address distinguishing planetary transits from other signals, but rather to

demonstrate that exoplanets will be theoretically detectable, and that this is a worthwhile

10



consideration as the LSST project moves forward.

2.3.2 Period Recovery

We examine the recoverability of transits by searching for periodicity using the Box-

fitting Least Squares (BLS) algorithm [Kovacs et al., 2002]3. The BLS algorithm has been

shown to be extremely powerful for detecting transits in high cadence data sets [Enoch

et al., 2012]. While LSST will not be a high cadence survey, we use this algorithm as

an initial test of LSSTs capability for recovering transit signals. In order to examine the

significance of these detections, we also measure the liklihood of having a peak of equal

strength in the BLS periodogram by random chance, or due to some feature of the cadence,

to measure a false alarm probability (FAP). To carry out this check, for each light curve

we randomly rearrange the magnitude and time information, and then reapply BLS. We

conduct that operation 1000 times for each light curve, and record the highest BLS peak

in each case. The resulting data sets allows us to specify the 1% and 0.1% false alarm

probabilities for BLS.

2.4 Results: Examples of Simulated Light Curves for Different Types of Transits

We begin examining detectability by creating simulated light curves (§2.3) to examine

what exoplanet transits will look like for several different cases with stellar parameters out-

lined in Table 2.1. These are intended to exemplify well-studied populations of exoplanets

as well as some populations that could prove very interesting but have not been a focus of

planet searches thus far.

3We use the implementation of the BLS algorithm that is part of the VARTOOLS package[Hartman et al.,
2008]
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Table 2.1: Photometric Properties of Example Systems

Band
Scenario mu mg mr mi mz my

G-dwarf at 7000 pc
Apparent Magnitude 21.433 20.066 18.699 18.540 18.500 17.913

Standard Deviation 0.023 0.007 0.006 0.006 0.006 0.007

K-dwarf at 2000 pc
Apparent Magnitude 23.619 21.091 18.526 17.980 17.675 17.265

Standard Deviation 0.149 0.011 0.005 0.005 0.005 0.006

M-dwarf at 400 pc
Apparent Magnitude 24.424 21.466 18.530 17.150 16.428 15.704

Standard Deviation 0.286 0.013 0.005 0.005 0.005 0.005

G-dwarf at 50 kpc
Apparent Magnitude 25.658 24.334 22.968 22.807 22.770 22.183

Standard Deviation 1.029 0.109 0.043 0.068 0.122 0.214

Absolute magnitudes for ugriz bands from Covey et al. [2007] and y band from Hodgkin
et al. [2009], with corresponding photometric noise.

2.4.1 A Hot Jupiter Orbiting a G-dwarf in the Milky Way

The category of transiting exoplanets that have been studied most extensively are the

Hot Jupiters, Jovian-mass planets orbiting sun-like stars with periods on the order of days.

Here, we simulate a light curve for a 10.0 R⊕ planet orbiting at 4.43 days around a 1.0 M�

star. We have set the star at a distance of 7000 pc, chosen so that the apparent magnitude

of the host star is within the sensitivity range of LSST in all bands, while also representing

a distance inaccessible to most current exoplanet surveys. The resultant light curve is then

phase-folded on the input period in order to generate the phased light curve displayed in

Figure 2.4. In this case, there is a very noticeable drop in the star’s brightness of 0.009

mag, showing that LSST can at least detect such a transit strong enough in the six-band

lightcurve to be visually identifiable.

For the Hot Jupiter case, we provide the BLS periodograms for both a regular LSST

field and a deep-drilling field in Figure 2.5. We also mark the true period on the peri-

odogram, as well as the aliases at half and double the period. In both cases, the 4.43 day

period is the highest peak in the periodogram, providing a qualitative reassurance that that

the periods visible in Figure 2.4 could be recovered had the value not been known. We
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Figure 2.4: Light curve for a 10.0 R⊕ planet in a 4.43 day period around a 1.0 M� star at
7000 pc. The top two plots show a regular LSST field and the bottom two plots show an
LSST deep-drilling field. The plots on the left show the full phase, and the plots on the
right zoom in on the transit. Black lines are binned data of the light curve.

find that in 1000 light curves there are no peaks of equal or greater height, from which we

determine the false positive rates for Hot Jupiters at both cadences to be <0.1%.

2.4.2 A Hot Neptune Orbiting a K-dwarf in the Milky Way

Next we examine a Hot Neptune. Representing a regime between very large Jovian

planets and smaller terrestrial planets (radii 3-4 R⊕) that has been richly populated by Ke-

pler. Here we place a 4.0 R⊕ planet in a 7.3 day period around a 0.6 M� star at 2000

pc.

Ground-based observations are generally limited in sensitivity to transit depths on the

order of 1%, so we have used a slightly smaller host star such that a Neptune-sized planet
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Figure 2.5: BLS periodogram for a Hot Jupiter in a standard field on the left, and a deep
drilling field on the right. The lighter grey line marks the actual period of 4.43 days, while
the other two dashed lines mark twice and half the true period.

will still represent an approximately similar drop in brightness from the Hot Jupiter case.

The closer distance is to maintain the constraint that the star’s apparent magnitude in all

bands will be within the sensitivity range of LSST. As the transit events that we are exam-

ining will generally range between 3 mmag and 10 mmag in depth, we chose only to plot

bands where the standard deviation is less than 30 mmag. In this light curve the noise in the

u-band dominates the noise from the other bands, and we only plot the grizy points. These

light curves are shown in Figure 2.6.

The transit in Figure 2.6 is not as visible as in the case of a Hot Jupiter, but can be

discerned in the deep-drilling field where there are enough observations for the transit to

be seen despite the noise. We provide the BLS periodograms for both a regular LSST field

and a deep-drilling field in Figure 2.7, and indicate the true period. For the regular LSST

field BLS does not recover the period and there are no strong discernable features in the

periodogram that would correspond to the planet period. However, BLS does recover the

input period for the deep-drilling field. This peak is higher than all but one BLS period

from the 1000 permutated light curves, and a false positive rate of 0.1%.

14



Figure 2.6: A 4.0 R⊕ planet in a 7.36 day period around a 0.6 M� star at 2000 pc. The top
two plots show a regular LSST field and the bottom two plots show an LSST deep-drilling
field. The plots on the left show the full phase of the planet, and the plots on the right show
the transit in particular. Black lines are binned data of the light curve.

Figure 2.7: BLS periodogram for a Hot Neptune in a standard field on the left, and a deep
drilling field on the right. The lighter grey line marks the actual period of 7.36 days, while
the two dashed lines mark twice and half the true period.
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2.4.3 A Super-Earth Around an M-dwarf in the Milky Way

For our final Milky Way case, we pick a 2.0 R⊕ planet in a 5.37 day period around a 0.3

M� star at 400 pc. The distance has again been adjusted so that the apparent magnitude

of the red dwarf is approximately still within LSST’s sensitivity range. As in the previous

case, the u-band is omitted. In Figure 2.8 we show the light curves for the transit in both

a standard field and a regular field. While in the standard field the transit is not visually

detectable, in the deep-drilling field a small but slightly noticeable transit event is visible

in the 5 remaining bands. With what appears to be a detectable signal in the deep-drilling

field, we further explore a red dwarf host star with a Super-Earth in a larger period, moving

the planet out to a period of 24.37 days. Our motivation in choosing this period is that

for a red dwarf of this mass, a planet in a ∼25 day period will be in the habitable zone,

and this planet’s system environment would be similar to that calculated for some planets

in the Gliese 667C system [Gregory, 2012]. The light curve for this case is presented in

Figure 2.9.

Figure 2.10 shows the BLS periodograms for both the 5.37 and 24.37 day periods, and

at both cadences.

In both cases the input period corresponds to the highest peak in the periodogram4.

In the 1000 permutations of the simulated habitable Super-Earth light curve in a deep-

drilling field, we find that there are 390 higher peaks, corresponding to a false positive rate

of 19.5%. Looking at these periodograms, however, that there is still potentially useful

information present in the BLS results. While there appears to be no compelling features

in the two lefthand figures that represent the two periods in regular fields, there are notable

features in the deep-drilling fields on the right. For the 5.37 day period, the two highest

peaks are the initial period and half the period. Similarly, for the 24.37 day period the

4We note that in this case, the BLS SN statistic identified the top peak as being one of the secondary peaks
in the periodogram (Fig. 2.10) even though it is clear that the input period does coincide with the highest peak
in the periodogram. We will examine the relevant differences between the various peak identification statistics
and the BLS periodogram in a future paper.
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Figure 2.8: A 2.0 R⊕ planet in a 5.37 day period around a 0.3 M� star at 400 pc. The top
two plots show a regular LSST field and the bottom two plots show an LSST deep-drilling
field. The plots on the left show the full phase of the planet, and the plots on the right show
the transit in particular. Black lines are binned data of the light curve.

initial period is one of the highest peaks, and there is a notable peak at half the period as

well. While these period recoveries lack the rigor of being the top peak recovered by BLS,

this does provide an indication that the transits could still be more reliably recovered in

deep-drilling fields with the application of additional methods.

2.4.4 A Hot Jupiter in the Large Magellanic Cloud

LSST will also provide a unique opportunity to look for exoplanets outside of the Milky

Way. Fields that have been proposed for LSST to observe at higher cadence include the

Large Magellanic Cloud [Szkody et al., 2011]. Based on the faintness that LSST will

be capable of observing, we demonstrate here that LSST should have the potential to be
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Figure 2.9: A 2.0 R⊕ planet in a 24.37 day period around a 0.3 M� star at 400 pc. The top
two plots show a regular LSST field and the bottom two plots show an LSST deep-drilling
field. The plots on the left show the full phase of the planet, and the plots on the right show
the transit in particular. Black lines are binned data of the light curve.

sensitive to Hot Jupiters transiting stars located in the Large Magellanic Cloud. For this

example, we look at a slightly larger Hot Jupiter than before, here a 13 R⊕ planet with a 4.4

day period orbiting a 1.0 M� star at 50,000 parsecs from Earth in Figure 2.11. As in the

previous two examples, the u-band data has been omitted, but at this faintness the noise is

sufficiently large that we also ignore the gzy-bands and only plot the ri-bands. While we

are unable to detect the transit in the regular cadence light curve, we can detect it in the

deep drilling light curve, as shown in Figure 2.12.

The entire set of deep-drilling fields has yet to be chosen, although the first four deep-

drilling fields to be selected from LSST white papers have been intended for observations of

distant galaxies [Gawiser et al., 2011, Ferguson, 2011]. However, other deep-drilling fields
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Figure 2.10: BLS periodograms for a Super-Earth in a regular field on the left and in a
deep-drilling field on the right. The 5.37-day period is on the top and the 24.37-day period
is the bottom. The lighter grey line marks the actual period for each scenario.

have also been suggested with the intention of focusing on the Large and Small Magellanic

Clouds [Szkody et al., 2011]. These fields for the LMC and SMC would have an observing

schedule which limits the filters used, and is proposed to only use gr band observations.

This would be consistent with the limitations on photometric precision in the final light

curves, which do not include several bands that we omitted due to large noise, and may

result in light curves with much better photometric precision.

For a Hot Jupiter in the Large Magellanic Cloud, we provide the BLS periodograms for

both a regular LSST field and a deep-drilling field in Figure 2.12. BLS does not recover the

period in a regular field, nor do there seem to be any notable features in the periodogram,

however we do recover the period in the deep-drilling field with a peak height that indicates

a false positive rate of less than 0.1%. This result demonstrates that LSST could conceiv-
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Figure 2.11: A 13.0 R⊕ planet in a 4.43 day period around a 1.0 M� star at 50,000 pc. The
top two plots show a regular LSST field and the bottom two plots show an LSST deep-
drilling field. The plots on the left show the full phase of the planet, and the plots on the
right show the transit in particular. Black lines are binned data of the light curve.

ably detect a planet candidate outside the Milky Way. While it is worth noting that at the

distance of the LMC it would be very difficult to confirm an exoplanetary candidate, this

would certainly be a novel discovery and give some broader indication of planet formation

processes in other environments.

2.5 Discussion

We have demonstrated that using existing algorithms, LSST will have the sensitivity to

detect exoplanet transits for an array of exoplanets and host stars, and at varying distances.

These results are summarized in Table 2.2. However, these capabilities will be greatly

shaped by the selection process for the remaining deep drilling fields, as the selection of the
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Figure 2.12: BLS periodogram for a Hot Jupiter orbiting a star in the LMC in a regular
field on the left and a deep-drilling field on the right. The lighter grey line marks the actual
period.

LMC or SMC for deep drilling will greatly increase the ability to get visually identifiable

transits in those light curves.

Table 2.2: Scenario Detection

Scenario
G-dwarf at 7000 pc K-dwarf at 2000 pc M-dwarf at 400 pc M-dwarf at 400 pc G-dwarf at 50 kpc

Cadence Hot Jupiter Hot Neptune Super-Earth (4.4 d) Super-Earth (25.3 d) Hot Jupiter
Standard Yes No No No No

False Positive Probability < 10−3 – – – –
Deep-Drilling Yes Yes No No Yes

False Positive Probability < 10−3 10−3 – – < 10−3

Table 2.2 lists whether or not the best period from VARTOOLS BLS algorithm is consistent with
the input period for each of the scenarios described in §2.4 (and listed at the top of each column).
The rows represent a standard cadence field and a deep-drilling field. Also included is the false

positive rate when the period was correctly recovered by BLS.

For the case of Hot Jupiters, specifically, we can make a very preliminary approximation

of the number of planets that could be recovered by LSST. Restricting our focus to the

g-band, we find the number of stars between 16th and 22nd magnitude in a one-square-

degree field at around 1800 stars, according to TRILEGAL 1.65. There will, additionally,

be around 30,000 square degrees observed, for a total of 54 million stars. Of these, we
5Available at http://stev.oapd.inaf.it/cgi-bin/trilegal
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would expect around 0.5% of dwarf stars to host Hot Jupiters, and the likleihood of a Hot

Jupiter to transit its host star is ∼ 10%. This would result in 27000 transiting Hot Jupiters,

and recovering just 5% of these Hot Jupiters would result in over 1000 new Hot Jupiters

discovered. While these are very approximate numbers, they do indicate the large potential

that LSST possesses.

Through our work thus far, we have treated host stars as having no intrinsic variability,

however a more sophisticated model of stellar light curves will be needed going forward.

Stellar variation from rotation, pulsation, flaring, and eclipses will need to be included

to better synthesize the kinds of light curves that will likely be observed by LSST, and

these variations will complicate recovering the signal caused by a transiting planet and be

a source of false negatives. Additionally, we will need to incorporate these light curve

features into the light curves of stars in the field without planets in order to properly model

false positives.

A greater difficulty will be developing methods that can more rigorously detect and

recover these transits, and determine the difference between likely exoplanetary candidates

and false positives, astrophysical or otherwise. Due to the low cadence of the data, standard

methods used for finding periodic signals in light curves are potentially not sufficient to

find transits in all circumstances, and newer algorithms will need to be implemented with

these constraints in mind. The efficiency of these algorithms will be an important question,

both to quantify the usefulness that LSST will have in detecting extrasolar planets, and in

determining the best way to structure a search for transiting planets in the LSST data once

observations begin in 2020.

There will also be a need to expand this study from the discrete example cases we

have set forth here, and apply similar analysis to a more diverse set of systems. That will

include expanding our synthetic light curves to represent a distribution of stellar masses

and exoplanet radii and periods, as well as factoring in the likelihood that a planet will

transit. This will allow our results to look not just at the likelihood for a given planet to be
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detected, but also to determine how many exoplanets could reasonably be detected among

stellar populations such as field stars and star clusters, and will also characterize the variety

of planet types that will be detectable using the LSST data.

While we have discussed potential opportunities for exoplanet detection specifically

from LSST, these same methods can be applied to other surveys that have a large number

of observations over relatively long baselines, but with similarly sparsely-sampled data that

will make extracting exoplanetary transits difficult without implementing more novel algo-

rithms. Surveys that would warrant such consideration may include Pan-STARRS [Kaiser,

2004], the Catalina Real-Time Sky Survey [Djorgovski et al., 2011], the Palomar Transient

Factory [Rau et al., 2009], and GAIA [Jordi and Carrasco, 2006]. Once our procedures

for stellar and exoplanetary population simulation, light curve creation, and application of

detection algorithms have been developed for LSST, we will then be able to apply these

same techniques to these other surveys to greatly increase the data available to search for

exoplanets in varied situations.
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Chapter 3

Metrics for Optimization of Large Synoptic Survey Telescope Observations of Stellar

Variables and Transients

3.1 Introduction

The Large Synoptic Survey Telescope (LSST) is expected to provide time-domain pho-

tometric monitoring of billions of stars, over a period of ∼ 10 yr and with unprecedented

breadth and depth. This will in turn permit an unprecedented ability to identify and char-

acterize a variety of stellar variability and transient phenomena, from non-recurring novae

and supernovae to periodic variables such as eclipsing binaries. It will also more generally

probe a very broad array of stellar types and populations.

To more fully capitalize on the potential of the LSST to contribute to a broad range of

astronomical interests, the LSST team has publicly released data and tools so that the wider

community can contribute to discussions of how to optimize the potential of LSST for any

science outside of LSST’s stated goals. The first of these tools is the LSST Operations

Simulator (OpSim) which models the hardware and software performance, site conditions,

and cadence as a function of sky position [Delgado et al., 2014]. The other tool that has

been provided by the LSST team is the Metric Analysis Framework (MAF)1[Connolly

et al., 2014]. The objective of the MAF is to allow the comparison of different simulated

LSST data sets by reducing the properties for each field or position in the sky to a single

number which can then be mapped.

In this paper2, we introduce three MAF metrics3 for use with LSST. These metrics are

intended to address three questions:

1Source code at https://github.com/lsst/sims maf. Full installation guide at https://confluence.lsstcorp.
org/display/SIM/MAF+documentation

2This chapter was originally published as [Lund et al., 2016b]
3Available at https://github.com/LSST-nonproject/sims maf contrib
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• How well can a given observing plan detect transient photometric phenomena with

constant equatorial coordinates?

• With what level of completeness and precision can a given observing plan detect

periodic photometric phenomena with constant equatorial coordinates?

• How many main sequence stars in the Milky Way will be detected in each specific

LSST observing field, and what will be the range of their masses?

In §3.2 we summarize the basic LSST specifications and simulation tools that we use.

In §3.3 we present the three metrics and describe how they can be used to characterize a

given observing plan (cadence, coverage, depth) toward optimization for various science

applications. Then in §3.4 we review the combined usefulness of the metrics presented

here and describe how the development of further metrics can enhance the science yield of

the LSST.

3.2 Basic LSST Specifications and Tools Used

The Large Synoptic Survey Telescope will collect ten years of photometric observa-

tions in six bands over more than half the sky, scheduled to begin observations in 2020.

LSST has the capability to contribute greatly to many areas of science, but there are four

goals explicitly stated: Taking an Inventory of the Solar System, Mapping the Milky Way,

Exploring the Transient Optical Sky, and Probing Dark Energy and Dark Matter [LSST

Science Collaboration et al., 2009]. The LSST system design has been dictated by these

goals, and hardware specifications have already been established. The need to be able to

survey the entire visible sky with relatively short (less than thirty seconds) exposures has

resulted in a telescope with a relatively large field of view of 9.6 square degrees.

The observing schedule that will be used has not yet been finalized, however, and is

in many ways still open to suggestions for how to best optimize the survey. At this point,

LSST observations can be quantized as individual ’visits’, consisting of two consecutive
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15-second exposures in the same band and location, but this could be changed if a com-

pelling science case was presented. The survey can broadly be divided into a few distinct

subsurveys, with the primary ’deep-fast-wide’ survey being what we refer to in this paper

as regular cadence fields. These fields will have ∼1000 observations over the 10 years of

LSST’s mission in 6 bands. The other large component we discuss is the ’narrow and deep’

survey, or what we refer to as the deep-drilling fields. These will be ∼10 fields that will

each be observed ∼10,000 times in 6 bands, primarily consisting of 40 one-hour block ob-

servations for each field. The LSST survey also includes subsurveys that will focus on the

galactic plane, polar cap, and the North Ecliptic Spur.

In this paper we utilize two tools made available by the LSST team: The Operations

Simulator (OpSim) and the Metrics Analysis Framework (MAF). For our purposes, Op-

Sim produces a list of observation times with field ID, band, and limiting magnitude. For

this paper we use two OpSim data sets; opsimblitz2 1060 (also referred to as ob2 1060)

consists of several subsurveys and has been introduced as a potential reference run, and

ops2 1078 only consists of the ’deep-fast-wide’ regular cadence fields, but with different

cadence parameters4. The number of observations for both fields are shown in Figure 3.1.

Figure 3.1 is the output produced by the MAF for a simple metric that calculates the

number of observations per field. The LSST team has already provided several sample

metrics as part of the initial MAF package. However, third parties can also create indepen-

dent metrics. This capability allows for the community to provide new metrics to address

properties of the survey tied to the observability of a myriad of scientifically interesting

objects. In what follows, we use the LSST MAF to demonstrate three new metrics that

permit quantitative analysis of the performance of different OpSim designs for the survey

cadence and coverage, specifically focused on optimizing LSST’s coverage of different

stellar populations, variables, and transients.

4Available at https://confluence.lsstcorp.org/display/SIM/
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Figure 3.1: An example of a metric as displayed by the Metric Analysis Framework, the
total number of observations per field. Opsimblitz2 1060 on the top, and ops2 1078 on the
bottom. Opsimblitz2 1060 shows the primary survey, in addition to the deep-drilling fields
and additional subsurveys. Ops2 1078 only features the primary survey.

3.3 New Metrics for Stellar Populations, Variables, and Transients

3.3.1 Observation Triplets: Nonrecurring stellar transients

A basic concern for LSST centers on its ability to detect transient events. However,

many of the metrics that have already been produced for the Metric Analysis Framework27



focus on coadded images rather than considering how to detect time-dependent photometric

variability. This broad category of potential transient events ranges from asteroid collisions

to stellar novae and stellar mergers. As all these events require observations during a fixed

time interval, an important question for LSST will be how survey cadences will impact

LSST’s ability to detect events that may take place on timescales from hours to days.

For LSST to suitably detect transient events, we need to define the time resolution nec-

essary to detect a given event. Here, we consider an event that consists of a relatively

constant baseline flux, followed by a change to a different flux which remains relatively

constant for a period of time. An example of such a transient event is a nova that bright-

ens after a long time of constant brightness, without any simple periodicity. In order to

consider this a detection, we require one observation prior to the event, a second observa-

tion at the start of the event showing the change in brightness, and a third observation that

confirms that the change in brightness wasn’t due to noise in a single data point. From

these three data points, the magnitude change can be measured and the time of the event

can be constrained between the first and second observations, allowing for basic detec-

tion and characterization. We can then quantify the ability of a given LSST field to detect

non-periodic events by counting the number of these ”observation triplets” that occur.

To provide an example, we look at the case of detecting a nova. In Figure 3.2, we show

a simplified light curve of the nova SS Cyg based on AAVSO observations [Kafka, 2015].

The vertical line, T2, marks an ideal time for the middle observation of the observation

triplet, shortly after the brightness has increased. We then require that the interval between

the first and second, and second and third, observations to fall somewhere between ∆min

and ∆max, and these regions are shaded in red in the figure. Two potential observations

are depicted by the vertical lines T1 and T3, with ∆12 and ∆23 being the time differences

between the first and second, and second and third observations, respectively. We can also

put limits on the ratio of these two time intervals.

This metric is written so that ∆min, ∆max, and the maximum ratio of ∆12 and ∆23 are
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Figure 3.2: An illustration of a basic light curve of a non-periodic brightening. T1, T2, T3
represent a set of observations that would satisfy our criteria to detect this event. Using T2
as our reference point, T1 and T3 could fall anywhere within the regions shaded in red that
are bounded by a minimum and maxmium time interval.

parameters of the metric. For our example, we set the minimum time interval between

observations at 9 days, the maximum at 11 days, and the two time intervals must be within

10% of one another. In essence, this asks how many opportunities LSST will have to

observe non-repeating brightening or dimming events that occur on various timescales.

Note that the nova example is intended to be illustrative only; the point here is to have a

metric that captures the sensitivity to transient behavior on various timescales, which the

user can modify as needed for the timescale(s) and behavior(s) of interest. We also require

that the observations of a given triplet all be made in the same band.

Figure 3.3 shows the results we get for two different OpSim runs. In the first OpSim
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run the deep drilling fields show up strongly with the number of observation triplets in

these fields exceeding 100,000. Additionally, the subsurvey that covers the North Ecliptic

Spur, a 4,000 degree area along the ecliptic in the northern hemisphere that has larger

airmasses than the main survey observations, also has more observation triplets than the

primary deep-wide-fast survey, as do portions of the galactic plane. In the second OpSim,

the different cadence results in the number of observation triplets in the main survey being

slightly higher, although gaining less than an order of magnitude per field. For the purposes

of detecting the novae in this example case, the cadences used in the deep drilling fields,

North Ecliptic Spur, and portions of the galactic plane will be far more effective than the

cadence of the main survey. The majority of the sky will be surveyed at the regular ’deep-

wide-fast’ cadence, however, and in the main survey the cadence that is used in OpSim

results ops2 1078 is slightly more beneficial for detecting novae; in ops2 1078 the mean

number of observation triplets per field is 5.3, compared to an average of 3.0 observation

triplets for the ’deep-wide-fast’ cadence fields in opsimblitz2 1060.

While we have not explored it in this paper, the Metric Analysis Framework does also

allow for analyzing the survey using positions in the sky rather than individual fields. This

method would allow for areas of the sky where fields overlap to be counted multiple times,

and may be particularly useful at timescales that are on the order of an hour or less. Indi-

vidual fields will generally not be observed closer than one hour apart, but overlap regions

may be observed more frequently.

3.3.2 Periodogram Purity Function: Detectability of Periodic Variability

A basic question for LSST is how robustly it can detect periodic behavior. In particular,

choosing a cadence for this sort of detection requires some special consideration as the

ideal cadence will be one that minimizes the effect of aliasing. To address this, we directly

investigate aliasing as caused by the LSST cadence.

LSST will observe numerous kinds of transient periodic objects, such as variable stars,
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Figure 3.3: The number of observation triplets on an example time scale, with opsim-
blitz2 1060 on the top, and ops2 1078 on the bottom. The observation triplets are more
numerous in fields in the North Elliptic Spur and deep-drilling fields shown in opsim-
blitz2 1060.

eclipsing binaries, and transiting exoplanets. While each of these kinds of events will

have their own unique characteristics, we opt to establish a metric that examines the com-

pleteness of phase coverage for a range of periodic timescales, as a way of quantifying
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LSST’s relative likelihood to permit detection of any given periodic variable. Specifically,

the metric calculates the Fourier power spectral window function of each field [Roberts

et al., 1987]. The spectral window function provides a measure of how the finite and dis-

crete cadence and sampling of a real light curve result in the Fourier periodogram power

getting distributed across multiple alias and beat frequencies. For any real light curve, the

resulting Fourier periodogram is a combination of the idealized, “pure” periodogram (i.e., a

delta function at one frequency in the case of simple sinusoidal variations) and the spectral

window function which “leaks” that pure power into many other periodogram peaks, de-

creasing the power of the true frequencies and decreasing the “purity” of the overall power

spectrum.

To create our periodogram purity function metric, we calculate the Fourier spectral

window function , Fw, for a given light curve sampling pattern, and we then define the

periodogram purity function as 1−Fw. In the ideal case with no gaps in observation, the

spectral window function can be represented as a normalized Kronecker delta centered at

0 and having a height of 1, meaning that all the Fourier power is contained precisely at

the correct period and no power is leaked to other frequencies. The periodogram purity

function would in this ideal case equal 1 at all nonzero frequencies. As phase coverage

is reduced from the ideal case to the real case of finite and discrete data, signal strength

will be transferred to other frequencies, creating greater structure in the periodogram. In

order to quantify the amount of signal being lost for a given set of observations as a sin-

gle number for the LSST MAF, we look for the smallest value of the periodogram purity

function away from the true frequency. Under that convention, this means that two sets of

observations could be compared where the smaller the minimum value of the periodogram

purity function is, the more power that has been lost from the actual period. That is, the

less “pure” is the periodogram at frequencies away from the true frequency.

To demonstrate the value of the periodogram purity function when reduced to a single

value, we create two sample light curves. In both cases, we begin with a sine curve with
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a period of 4.5 days, and shown in Figure 3.4. To choose our observing times, we set

1000 evenly spaced observations over the course of ten years. We then add a random

number to each observation time in order to have some variation in observing time intervals;

in one case we add random values between 0 and 1 days (referred to hereafter as our

wide distribution), and in the other case we add random values between 0 and 0.001 days

(referred to hereafter as our narrow distribution). In the wide distribution, the time between

observations ranges from less than 3 to over 4.5 days. In the narrow distribution, the time

between observations ranges only from 3.645 to 3.665.

Figure 3.4: We use a standard sine function of the equation y = 0.1 ∗ sin(x ∗ 2 ∗π/4.5) + 1
for our light curves that we analyze in Figure 3.5 and 3.6.

To compare these two light curves, we calculate the Lomb-Scargle periodogram[Lomb,

1976, Scargle, 1982] and the corresponding periodogram purity function, and these are

displayed in Figure 3.5. The periodogram for the narrow distribution shows numerous

peaks of comparable power, with 13 peaks within 1% of the strength of the top peak. In

contrast, for the wide distribution the highest peak correctly corresponds to the period of

the sine curve we added to the light curve. Qualitatively speaking in this case, the wide

distribution appears to be much better at determining the period of the light curve. When

we compare the periodogram purity function, we see that for the narrow distribution that

poorly recovered the period, the lowest peak at nonzero frequency shift is less than 0.02.

The wide distribution that does recover the period correctly has its lowest peak at just

over 0.91, demonstrating that the light curve that was able to more definitively identify
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the period and have greater phase coverage was also the one with the periodogram purity

function value much closer to 1. These periodogram purity function values are agnostic

with respect to the nature of the periodic signal we are interested in. An important note is

that the spectral window function, and in turn the periodogram purity function, represents

how power is distributed to other frequencies from the true period. Changes to the periodic

function we are interested in, such as variations in the amplitude or different functional

forms, will impact the power that is present; however, the redistribution of this power can

be represented by the same term for a fixed set of observation times.

Figure 3.5: The top row shows the Lomb-Scargle periodograms for the two sample light
curves described in §3.3.2. In the periodogram, the peaks represent potential periods of
the light curve, including aliases. The bottom row shows the corresponding periodogram
purity functions. In an ideally-sampled light curve, the periodogram purity function would
be 0 at 0 frequency and 1 at all other values.

We can build upon the sample cadences in Figure 3.5 by looking at two actual cadences

from the OpSim results. We choose a regular field consisting of on the left in Figure 3.6,
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Figure 3.6: The top row shows the Lomb-Scargle periodograms for two fields from the
OpSim results; on the left is a regular field and on the right is a deep-drilling field. The
bottom row shows the corresponding periodogram purity functions.

and a deep-drilling field on the right. It is worthwhile to note that for the metric we take the

lowest value at a non-zero frequency for the value of the periodogram purity function, and

there is very little difference in this value between a regular field and a deep-drilling field.

However, unlike our initial test cases, there is interesting non-uniform structure found in

the periodogram purity functions, with the deep-drilling fields having more scatter at lower

frequency shifts, indicating that there is more loss at small changes in frequency, and we

can expect to see broader peaks in the periodogram due to this.

Using the Metric Analysis Framework, we then look at the minimum value (at a non-

zero frequency shift) of the periodogram purity function for every field in two observing

simulations in Figure 3.7. A general characteristic that appears is that in the overall survey,

each subsurvey represents a different regime of phase coverage. These results are depen-
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Figure 3.7: Periodogram purity function minimum values (at non-zero frequency shift) for
each field in two simulated observing runs, opsimblitz2 1060 on the top, and ops2 1078 on
the bottom. An ideal time sampling would have a periodogram purity function value of 1;
this function is only dependent on the times of observation.

dent only on the observing schedule and are not dependent on any input signal. For the first

OpSim result, we see that the main survey has the best phase coverage, and the other sub-

surveys will have worse phase coverage. In the second OpSim result, the adapted cadence

has approximately the same phase coverage for the main survey (a median periodogram
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purity function value of 0.45 for the main survey in opsimblitz2 1060 and a median of 0.41

in ops2 1078).

For any observations that will require high quality phase coverage, we see that the south

celestial pole and galactic plane do not provide any significant phase coverage. Addition-

ally, the North Ecliptic Spur and the deep-drilling fields will have phase coverage equal

to the main survey fields. The current metric we provide for use with the Metric Analysis

Framework provides some insight, however there may be further benefit in an increased

study of the structures shown in the periodogram in Figure 3.6 to develop a more sophis-

ticated understanding of what phases LSST will be able to best recover, particularly in the

deep-drilling fields.

3.3.3 Field Star Counts

There are two principal components that will need to be considered to understand the

total yield of any transient object. The first component is the cadence, which is measured in

the metrics presented in Sections 3.3.1 and 3.3.2. The other important factor is the number

of potential sources in a given field, which for stellar sources would represent the number

of stars that would be observed with sufficient signal to noise to be useful, while also being

faint enough that the LSST detector will not saturate. In order to address this concern, we

develop a metric to determine the number of stars in a given field that satisfy some set of

observation parameters.

LSST will be able to observe a very wide range of stars with relatively low noise,

including stars as small as red dwarfs, and distances ranging from within ∼100 parsecs out

to over 10,000 parsecs, including the LMC. This will be, in part, due to the multiple bands

that LSST will observe in. We show this wide range in Figure 3.8, where we examine

how many bands main sequence stars would be observable in. For our bright limit we

use the apparent magnitude of 16 as a saturation point. For our faint limit, we required

the photometric noise of a single visit to be less than 0.03 mag, a value that we used as a
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cutoff for the maximum noise while still being able to detect a transiting planet in Lund

et al. [2015], or an approximately 1% drop in brightness during transit. We convert from

stellar masses to spectral types by interpolating the relations from Allen and Cox [2000].

Based on spectral type, we obtain absolute magnitudes in the ugriz bands from Covey et al.

[2007]. While there is still much uncertainty about the specific parameters of the y-band

filter that LSST will eventually use, for this work we use a y-band defined by Hodgkin et al.

[2009]. This allows us to convert a set of stellar masses into a set of absolute magnitudes.

The present version of the Field Star Counts metric does not employ any model to account

for dust.

There are a few notable features of Figure 3.8. There are two excluded regions of mag-

nitude/distance where LSST would not be sensitive at the specified thresholds. The empty

upper left corner shows that all stars more massive than ∼ 1.5M� and closer than 1 kpc are

saturated in all LSST bands. The lower right corner shows that all stars less massive than

∼ 0.7M� and more distant than 10 kpc will not be detected with the specified photometric

precision for exoplanet transit detection in any LSST band. Running diagonally through

the Figure, there is a very large range in stellar masses and distances where stars will be

measured with sufficient sensitivity to detect small variations such as transiting planets.

Stars with masses below 0.5 M� are observable within ∼4000 parsecs in several bands, and

as close as ∼100 parsecs. Solar-mass stars are observable in at least 5 bands from ∼2000 to

∼20,000 parsecs, a distance range that includes the galactic bulge. Stars slightly larger than

one solar mass that are in the Magellanic Clouds, at ∼50,000 parsecs, would be observed

within the specified constraints. Co-added images will allow the bottom right of this figure

to be observed within this noise threshold, but without the time resolution that would be

critical for short timescale variations in brightness.

As the range of observable stellar masses is extremely broad, there is a great benefit

in determining the number of stars that satisfy these parameters for a given type of event.

LSST covers a large region of sky, and so the method we use is designed to not be computa-
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tionally intensive, or to rely on a more thorough and complex method such as the simulation

process that is conducted by TRILEGAL [Girardi et al., 2005]. Instead, we only calculate

the number of stars within a volume based on stellar density, rather than attempt to create

a simulated population of stars.

Figure 3.8: Number of bands in which a main sequence star will be observable between a
saturation-limited upper brightness and a noise-limited lower brightness for a single visit.

The basic version of this metric calculates the number of stars within a given field and

within a particular distance range. We accomplish this by treating each field as a truncated

cone spanning two distances. We then break this cone into sections of equal volume and

assign a stellar density for each volume as a function of the galactic coordinates of the

center of that section. This begins with the analytical equation for the density of stars in the

Galaxy, as a combination of the thin disk, thick disk, and halo, as presented in Jurić et al.

[2008]. As Jurić et al. [2008] had focused only on the local portion of the Milky Way, that

equation does not include a contribution from the galactic bulge, and so we include a term
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for the galactic bulge from Jackson et al. [2002]. Without applying any brightness cut, we

determine a stellar count in each field (integrated from 100 to 1000 pc as a demonstration)

as shown in Figure 3.9.

Figure 3.9: Stellar count per field between 100 and 1000 parsecs

To look at specific stellar masses, we define a mass range of interest. This set of stellar

masses is then converted into a set of absolute magnitudes. Combining those values, the

noise model, and the apparent magnitude limit, we can determine a distance range over

which these stars would be within LSST’s sensitivity for a set of stellar mass bins. We then

calculate the total star count in the distance range that corresponds to each stellar mass bin,

and then select only the stars with masses in that stellar mass bin by applying a standard

Salpeter IMF. We demonstrate this technique with two example mass ranges, with stars

between 0.4 and 0.5 solar masses in the g band in Figure 3.10, and stars between 0.9 and

1.0 solar masses in the u band in Figure 3.11. The Field Star Count metric can be used in

conjunction with metrics that are developed for stellar observations, as a field that performs
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well in a given metric may not be useful if there are many stars in that particular field.

Figure 3.10: Star count per field for the 0.4-0.5 solar mass range and noise less than 0.03
mag. Observations in the g-band.

3.4 Summary

In this paper we have introduced three new metrics to help compare LSST observing

strategies in advance of the start of LSST’s mission in 2020. The Observation Triplets pro-

vide a tool to study any transient event that could be sufficiently discovered or characterized

by an observation at a baseline brightness and two observations detecting and confirming

the event. The tool can be adapted for a range of timescales, however we provide the

specific example of a ten-day timescale that would be suitable for stellar novae. For this

example, the deep-drilling fields and the North Ecliptic Spur would be the cadences that
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Figure 3.11: Star count per field for the 0.9-1.0 solar mass range and noise less than 0.03
mag. Observations in the u-band.

are most useful for finding stellar novae.

The Periodogram Purity Function metric is a tool to probe the phase coverage of the

LSST fields. The South Celestrial Pole and the galactic plane subsurveys both have very

poor phase coverage and would have very limited usage for studying periodic variables.

The Periodogram Purity Function metric currently only uses a single value from the Pe-

riodogram Purity Function, and there may be some benefit in an effort to try to better

characterize the periodogram purity function by using different criteria to pick this single

value. Additionally, while a larger periodogram purity function value should result in the

period being easier to detect and characterize correctly, it is not readily apparent to what

extent an increase in this value will result in an increased likelihood of detection.
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In the Field Star Count metric, we provide a tool to quantify the number of stellar

sources that will be present in LSST fields. We look at a few limited mass ranges in

particular bands, but it provides indications that we can reasonably expect the number of

stars around which planets could be detected (not saturated but sufficiently low noise) is a

number in the tens of thousands per field for red dwarfs, and for solar-mass stars exceeds

100,000 stars per field in the direction of the galactic bulge. To use the example of transiting

planets where hot Jupiters occur around 1% of stars, and around 10% of hot Jupiters transit,

this represents around 10 transiting hot Jupiters around red dwarfs per field (30,000 total),

and exceeding 100 transiting hot Jupiters on 0.9-1.0 M� stars per field in the direction of

the galactic bulge. This doesn’t include detection efficiencies or other regimes of planets,

but provides a good example of the information that can be gained from considering the

number of stellar sources in LSST.

More broadly, the Metric Analysis Framework that was created for LSST can be used

for other surveys with a suitable OpSim file. The Observational Triplets and Periodogram

Purity Function metrics are writen with only a consideration for the time of observation and

the band observed, neither of which are parameters unique to LSST and so these metrics

can be applied directly to other surveys using MAF. The Field Star Count metric can, in

principle, also be applied to any other survey that MAF can be used with. The current

writing of this metric, however, does use an LSST specific field size and noise model, so

these would need to be adapted to use the Field Star Count metric with a different survey.

As the metric code is all publicly accessable, this would be a relatively simple adjustment

to be compatable with a new survey. This adaptability for MAF allows for these metrics to

be used in cadence analysis for other surveys in development beyond LSST.
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Chapter 4

The Stability of F-star Brightness on Century Timescales

4.1 Introduction

KIC 8462852 (TYC 3162-665-1, and eponymously nicknamed “Boyajian’s Star”) is an

F3 V/IV star in the Kepler field. It was discovered to undergo aperiodic, irregular dimming

events, with reductions in flux as large as 20% [Boyajian et al., 2016]. The star does not

have any apparent infrared excess that would indicate the presence of a large amount of

circumstellar dust [Marengo et al., 2015, Thompson et al., 2016]. Thus, one explanation

that has been put forward is a family of comets orbiting the star [Boyajian et al., 2016,

Bodman and Quillen, 2016]. More exotic solutions have also been proposed, such as that

KIC 8462852 is host to a Dyson swarm [Wright et al., 2015], and SETI observations have

produced null results in searches for signals in optical and radio wavelengths [Schuetz et al.,

2016, Harp et al., 2016].

The time baseline provided by Kepler was expanded greatly by the incorporation of

DASCH (Digital Access to a Sky Century@Harvard) archival data over the past century

in an initial analysis carried out by Schaefer [2016]. That analysis provided comparisons

between the light curve of KIC 8462852 and those of two similar stars in close proxim-

ity to KIC 8462852 in the photographic plates. Schaefer [2016] finds that KIC 8462852

has steadily dimmed at a rate of 0.165 mag/century over the entire DASCH light curve,

which could favor alternatives to the comet hypothesis. In contrast, a follow-up analysis by

Hippke et al. [2016], which used a larger sample of ∼50 DASCH comparison stars, finds

that KIC 8462852 is not unique and that many DASCH stars show apparent long-term

trends in their light curves. Those authors suggest that many of the stars experience struc-

tural breaks in their light curves, likely due to systematics, and are better modeled using

two linear trends with a discontinuity at some year. In particular, the so-called “Menzel
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gap” in the 1950s and 1960s during which few observations were obtained, may coincide

with a systematic offset in the full set of DASCH light curves that is responsible for the

apparent long-term trends in the light curves of KIC 8462852 and many other stars.

In this paper1, we aim to more comprehensively assess the stability of brightness on

century timescales for a large sample of F stars in order to understand the phenomenon

of long-timescale variations generally as well as to specifically fully assess the DASCH

photometry for KIC 8462852 to determine the significance of any long-term trends. In

Section 2, we present the DASCH photometry and the large set of comparison stars we

have identified. In Section 3, we examine the long-term trend of KIC 8462852 as well as

several hundred other comparable stars to establish the degree to which KIC 8462852 is

typical of DASCH stars in terms of the apparent long-timescale trend in its light curve. We

also examine if a systematic break at a single year can reduce the number of stars whose

light curves appear to have significant long-term trends. Finally, in Section 4, we highlight a

sample of stars that may have real long-term trends in their light curves after the likelihood

of such trends have been ruled out for KIC 8462852 and for most other comparable stars.

We conclude in Section 5 with a summary of our conclusions.

4.2 Data and Methods

4.2.1 Digital Access to a Sky Century@Harvard (DASCH) project Light Curves

The Digital Access to a Sky Century@Harvard (DASCH) project is on ongoing project

to digitize ∼500,000 glass photographic plates at Harvard College Observatory from ob-

servations with several telescopes from 1880 to 1985. For details of the image digitation

and photometric extraction process, including parameters for measuring the stellar images,

telescope image scale, etc., we refer the reader to prior DASCH publications [Simcoe et al.,

2006, Grindlay et al., 2009, Laycock et al., 2010, Grindlay et al., 2012, Tang et al., 2013a].

1This chapter was originally published as [Lund et al., 2016a]
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Briefly, these plates are scanned, and a data reduction pipeline is used to identify

sources, calibrate each plate, generate light curves, and flag any potentially bad data points

[Laycock et al., 2010]. To calculate magnitudes, source stars are compared to catalog

stars, and DASCH has used three different stellar catalogs for this purpose. For a thorough

overview of the process that DASCH implemented for photometric calibration, including

performance relative to standard stars, see Laycock et al. [2010]. The initial photometry

was done by using the Hubble Guide Star catalogue (GSC2.3) B-band magnitudes to cal-

ibrate the photometry, with precision of ±0.2 mag over a century [Grindlay et al., 2012].

This is being improved by also using the all-sky APASS CCD survey, which allows for

improved photometry and color-corrections, improving the precision to ± 0.1 mag over a

century [Grindlay et al., 2012]. Currently these light curves are available for all sources

with galactic latitudes greater than 30. Additionally, the DASCH team has released light

curves for the Kepler field, calibrating this data using the Kepler Input Catalog (KIC) g-

magnitudes. The light curves produced for the Kepler field have a precision of ∼0.1 mag

[Tang et al., 2013a].

We have collected light curves from the DASCH website (http://dasch.rc.fas.harvard.

edu/)2 . To maintain high data quality, from every light curve we remove all points that

a non-zero value for AFLAGS (defined by the DASCH interface as “‘fatal’ photometry

pipeline errors”), and only analyze light curves that have at least 100 points after this clean-

ing of the data. This criterion for removing poor quality data is the same that was used by

the DASCH team in Tang et al. [2013b]. We use light curves from both the APASS B-band

and KIC g-band calibrations.

2Different formats for obtaining light curves from the DASCH web site can result in variations in the light
curve that is returned, and so we outline the procedure for obtaining the light curves here. The DASCH light
curves are accessible through http://dasch.rc.fas.harvard.edu/lightcurve.php. Stars were queried in batches
of 10, using the default settings for minimum number of measurements (1), distance in arcseconds (5), and
using a frame format. From the upper-left frame of the next window, we then selected “Download all points
in table form.” This provides a list of the results for all sources in the query. The downloaded files are the
short form Starbase (tab-delimited ASCII) tables, also listed as option ’A’ for each source.
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4.2.2 Selection of F-Star Study Sample

We selected two samples of F-type stars based on the properties of KIC 8462842. From

the Tycho-2 Spectral Type Catalog [Wright et al., 2003], we selected all F3 IV and V stars

that are also included in the DASCH main data releases. The resulting list has 967 stars for

which we gathered light curves from the DASCH database. These stars are predominantly

between 9th and 11th magnitude and calibrated to the APASS B-band. KIC 8462852, for

instance, is B = 12.8.

The second sample of stars was chosen from the Kepler field based on the Kepler Input

Catalog [Brown et al., 2011]. We selected stars that were similar to KIC 8462852, and so

limited the sample to KIC stars with effective temperatures within 100K of KIC 8462852,

as well as within 5% in stellar radius and 10% in log(g). The KIC lists KIC 8462852 as

having a temperature of 6584K, a log(g) of 4.124, and a stellar radius of 1.699 R�. The

resulting list has 559 stars, and we gathered light curves for them the DASCH database,

calibrated to the KIC g-band.

For all stars from both catalogs we apply the cuts to the light curves discussed in §4.2.1.

We then apply a final cut to our lists of stars, requiring all stars to have at least 100 remain-

ing data points, and are left with 337 stars from the APASS calibration, and 307 stars from

the KIC calibration, for a total of 644 light curves.

4.3 Characterizing Long-Term Trends in the Light Curves

In this section, we describe the statistical tests that we employ in our analysis of long-

term trends in the light curves, with particular attention to assessing potential abrupt sys-

tematics (“structural breaks”) in the light curves. It has been proposed [Hippke et al., 2016]

that many DASCH light curves exhibit structural breaks at a given point in time due to a

gap in observations. This occurs during the so-called Menzel gap in the 1950s and 1960s,

during which few observations were obtained, and appears in all light curves. We examine
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that claim in more detail in the section, and apply several statistical tests to further evaluate

that claim by examining the light curves we have from both the APASS calibrated and KIC

calibrated stars.

If we presume that the light curves of stars in the sample are on average flat over a

century of observations, then we should expect that the t-statistics for the slopes follow a

normal distribution. In other words, we expect that just by the nature of noise in the data,

we should find ∼ 200 stars (of over 600 stars examined) with slopes greater than 1 σ from

0, ∼ 30 stars with slopes greater than 2 σ from 0, and only 1 or 2 stars with slopes greater

than 3 σ from 0. However, a systematic structural break in the light curves will cause many

more apparent outliers than these expectation values. In contrast to those expecations, in

our data set there are 189 stars with slopes greater than 3 σ from 0, 50 of which are greater

than 5 σ from 0. In this section, we try three different statistical approaches to test for a

systematic break in the data.

4.3.1 Statistical Search for Systematic Break

We begin our hypothesis with the possibility of a systematic structural break in the data,

such that at some year the best-fit lines for all the stars is discontinuous. To determine the

best year to place this break, we iterate over 1902 thrugh 1987; for each year, we split

every light curve at that year, fit each of the segments to a line, and calculate the z-score for

the significance of the slopes. (This approach was taken to explicitly test for any possible

common points for the break, rather than automatically assuming the break happens at

the Menzel gap.) If the true slope for every line is near zero, then the z-scores would

follow a normal distribution. We then use a Pearson’s χ2 test [Pearson, 1900] to compare

the distribution of the z-score of the slopes to a normal distribution with the intention of

finding the year where the z-scores are closest to a normal distribution. This was done by

calculating the reduced χ2 for this distribution, shown in Fig 4.1 and treating the Tycho and

KIC stellar samples independently. The binned data for the full light curves and for the
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pre-1970 light curves are both shown in Fig 4.2.

We find that the optimal break using the light curves based on the APASS calibration

is 1954, and the optimal break using the light curves based on the KIC calibration is 1971.

More significantly, however, we see that in both figures the region where the reduced χ2 is

near its minimum is approximately the same time frame, and this roughly corresponds to

the Menzel gap, which spans 1953 to 1969 [Schaefer, 2016]. One prefers the early edge of

the Menzel gap while the other prefers the late edge, but because it is a gap in the data these

are essentially equivalent choices. Therefore, we use 1970 as a break year going forward

for both sets of stars.

Fig 4.2 makes it readily apparent that by splitting the light curves at 1970 and fitting

the segments before and after this year independently, we have a distribution that is much

more consistent with most stars having slopes of 0 and that many of the large slopes also

have large uncertainties on the slopes and do not represent significant detections of non-zero

slopes. Note that while the slopes derived from the post-1970 data have larger uncertainties

in units of magnitude relative to the pre-1970 data because of the smaller time baseline

(∼18-y versus ∼70-y baseline), the z-score histograms account for this by presenting the

comparison in sigma units.

4.3.2 Magnitude Changes Before and After Menzel Gap

We can also take a complementary approach by examining each light curve at three

time intervals: 1920-1925, 1945-1950, and 1970-1975. We use a Two Sample Weighted

T-Test to compare the two 5-year intervals; the Two Sample Weighted T-Test is used to

test the null hypothesis that two samples are drawn from the same underlying distribution

[Welch, 1947]. If a star has the same underlying brightness in each 5-year interval that

we examined, then our expectation is that the values for the Two Sample Weighted T-Test

should not be significantly different for the two intervals.

We find that the distribution of p-values for the second interval (comparing 1945-1950
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Figure 4.1: Reduced χ2 values of the t-statistic of the slope as compared to a normal distri-
bution and as a function of the year at which the light curves are split. The red points are
the comparison to a normal distribution only for slopes prior to the break, the green points
are only slopes after the break, and the blue points are the reduced χ2 for the slopes before
and after the break jointly. The Tycho catalog (top) reaches a minimum in 1954, and the
KIC (bottom) reaches a minimum in 1971. The Menzel gap is generally defined as being
from 1953 to 1969.

and 1970-1975) is overall higher than the distribution for the first interval (comparing 1920-

1925 and 1945-1950), as shown in Fig 4.3, and according to a k-sample Anderson-Darling

test we can reject the hypothesis that the distribution of p-values are the same with 92%

significance [Anderson and Darling, 1954]. This indicates that data from immediately
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Figure 4.2: Histograms of the z-scores for the slopes of all stars in the Tycho catalog (top)
and KIC (bottom). The black line marks the histogram of a normal distribution. The blue
line is the distribution of z-scores of the slopes when we fit the entire light curve at once.
The red line is the distribution of the z-scores of the slopes when we split each light curve
in two pieces at 1970 before fitting lines to the light curves.

before and after the Menzel gap are less similar than data separated by a similar interval

but part of the continuous pre-Menzel Gap data.
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Figure 4.3: Welch’s t-test distributions for light curves. The red line represents the first
interval (comparing 1920-1925 and 1945-1950), and the blue line represents the second
interval (comparing 1945-1950 and 1970-1975).

4.3.3 Slope changes Before and After Menzel Gap

Finally, we used a Kendall tau test [Kendall, 1938] to assess the likelihood of slope

changes in the data before and after the Menzel gap. The Kendall tau test is a non paramet-

ric test that compares the ordinal association in two quantities. For this case, we compared

the slopes of the light curves before and after 1970. If single lines are suitable fits to the

data across the full time span, there should be a high correlation in the slopes of the light

curves. In other words, the stars with the highest slopes before 1970 should also have the

highest slopes after 1970, and vice versa. In the Kendall tau test, a tau statistic value of

1 represents perfect correlation, 0 represents no correlation, and -1 represents perfect anti-

correlation. For the APASS calibrated light curves we find a tau statistic of -0.058, and for

the KIC calibrated light curves, we find a tau statistic of -0.060. This again suggests that

the data before and after the Menzel gap cannot be combined by fitting a single line, since

these results are close to 0 rather than 1.
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4.3.4 Assessing Structural Breaks in the Light Curves: The Menzel Gap

In this section, we have approached the existence of a structural break through multiple

methods. We have found that the year range that is most indicative of a systematic break

is coincident with the Menzel Gap. As an ensemble, the light curves also undergo more

significant changes before and after the Menzel Gap than they did over a similar time span

earlier in the light curves. Finally, there’s no correlation between the slopes before 1970

and the slopes after 1970, as would be expected if the data could best be fit by a single line.

These considerations all suggest that the data possess a systematic break during the Menzel

Gap, which includes the year 1970. We thus assess all of the light curves in our following

analysis with this consideration in mind, and by using only pre-1970 data.

4.4 Results: Analysis of Long-term Photometric Trends

4.4.1 F Stars

We start with the two lists of stars we discussed in §4.2.2. We calculate the slope of

a line using the method of weighted least squares for the light curves of all 644 stars, as

shown in Fig 4.4. Since there is no astrophysical reason to expect that long-term brightness

changes would be present as a function of apparent magnitude for a set of dwarf stars, the

trends towards brightening that we see for both bright (≤ 9) stars and faint (≥ 13.5) stars are

likely indicative of systematics at the bright and faint limits of the calibration, respectively.

Within these magnitude limits, KIC 8462852 is not unique in having a significant slope,

and a large number of stars show slopes that deviate from a flat slope by at least 1 σ. Even

at approximately the same magnitude, there are several stars with more significant slopes,

either dimming or brightening.

We reassess the distribution of slopes as a function of magnitude in Fig 4.5, where we

have now only used the pre-1970 data in the weighted least-squares linear fit. The typical

errors of the slope values are slightly larger, but the brightening trends seen for bright and
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Figure 4.4: Century-long slopes as a function of magnitude for all stellar twins of KIC
8462852. Cyan circles represent light curves using the Tycho catalog calibrated to the
APASS B-band. Green circles represent light curves using the KIC calibrated to the g-
band. The dark blue and dark green star symbols are KIC 8462852 calibrated to the APASS
B-band and KIC g-band, respectively. The red dotted line highlights the slope value of the
light curve of KIC 8462852 from the KIC calibration.

faint stars are less noticeable, since the median of the ensemble of slopes is closer to 0, and

the scatter at the bright and faint ends is no longer as asymmetric. Additionally, the values

for KIC 8462852 are now consistent with a slope of 0 (the slopes for the post-1970 data in

KIC 8462852 are also displayed in Fig 4.6).

4.4.2 KIC 8462852

We first examine two light curves for KIC 8462852, one for each of the calibration

catalogs that we use. The APASS B-band calibrated light curve consists of 1887 points,
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Figure 4.5: Slopes as a function of magnitude for all stellar twins of KIC 8462852, using
only the pre-1970 light curves. Cyan circles represent light curves using the Tycho cata-
log calibrated to the APASS B-band. Green circles represent light curves using the KIC
calibrated to the g-band. The dark blue and dark green star symbols are KIC 8462852 cali-
brated to the APASS B-band and KIC g-band, respectively. The red dotted line highlights
the slope value of the light curve of KIC 8462852 from the KIC g-band for the full data set.

which is reduced to 781 points by our quality controls discussed in §4.2.1. The KIC g-band

calibrated light curve consists of 1252 points, which is reduced to 575 points by our quality

controls. In both cases, we use the method of weighted least squares to fit a single line to

the full light curves, shown in Fig 4.6. In both cases, we find that fitting a single line to

the entire data results in a non-zero slope with at least 3 σ significance, with the slope of

the APASS calibrated light curve equal to 0.129 ± 0.026 mag/century, and the slope of the

KIC calibrated light curve equal to 0.171 ± 0.047 mag/century.

We also break the light curves into two segments that we fit independently, before and
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Figure 4.6: KIC 8462852 light curves in the APASS B-band calibration (top) and KIC g-
band calibration (bottom), with data cuts as described in §4.2.1. A linear fit to the entire
light curve results in a dimming trend significant to at least 3 sigma. When the light curves
are divided into two segments, before and after 1970, the linear fits for both segments are
consistent with no slope.

after 1970; this choice of year explained in §4.3. When the light curves are broken at this

year and using a critical p-value of 0.05, we cannot reject the hypothesis that the data is a

flat line for any of the line segments. For both of the light curves we have also used a Two
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Sample Weighted T-Test to test if the magnitudes before and after 1970 are drawn from the

same population. We are able to reject the hypothesis that pre-1970 and post-1970 data are

drawn from the same distribution with a critical p-value of 0.05. These results suggest that

the century-long slope we observe is a result of an abrupt change in the magnitude around

1970 rather than a gradual and consistent dimming over the course of a century.

4.5 Discussion

The DASCH light curves for KIC 8462852, when examined on their own and with a

single linear fit, suggest that the star has undergone a century-long dimming event that

would be particularly noteworthy given the events in the Kepler light curve that were an-

nounced by Boyajian et al. [2016]. Trends in the DASCH light curve of KIC 8462852,

however, can also be explained by a structural break in an otherwise flat light curve. When

light curves of a set of stars with physical properties similar to KIC 8462852 are split at

1970, we find that the t-statistics of the slopes are much closer to a normal distribution, as

would be expected if all light curves were truly flat.

We do still find an excess of stars with significant slopes, with 9 stars from the APASS

B-band calibration and 2 stars from the KIC g-band calibration having slopes that are non-

zero to greater than 5 σ. All of these stars are listed in Table 4.1, and the light curves are

included in Appendix A. These stars can be accounted for with three possible explana-

tions: (1) there are additional structural breaks beyond the Menzel Gap that have not been

accounted for; (2) systematics such as slightly incorrect error estimations result in under-

estimating the error in the slope; and (3) some of these stars may actually have changed

brightness over the last century.

If any of these trends are real astrophysical signals, it would indicate that a small frac-

tion of all F stars can vary on century-long timescales. However it would need to be de-

termined that the brightening or dimming is coming from the observed stars, and not from

other nearby stars.
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Table 4.1: Stars with Significant (5σ) Long-term Photometric Trends

Star Full Slope Pre-1970 Slope Post-1970 Slope
TYC-6727-00524-1 0.121±0.017 0.150±0.025 0.076±0.258
TYC-6174-00949-1 -0.215±0.020 -0.138±0.024 -0.264±0.340
TYC-5531-01038-1 -0.169±0.016 -0.144±0.021 -0.321±0.270
TYC-5554-01593-1 -0.023±0.019 -0.161±0.031 0.120±0.263
TYC-6178-00821-1 -0.088±0.020 -0.178±0.028 -0.213±0.277
TYC-6749-00508-1 0.126±0.021 0.141±0.025 0.108±0.411
TYC-6160-00274-1 0.111±0.017 0.124±0.022 0.158±0.325
TYC-5554-01017-1 -0.022±0.017 -0.130±0.026 0.603±0.275
TYC-6165-01434-1 0.096±0.021 0.149±0.027 -0.198±0.409
K3868420 -0.571±0.051 -0.481±0.061 1.101±1.422
K11802860 0.452±0.055 1.090±0.180 -1.282±0.487

4.6 Conclusion

The DASCH survey is extremely useful for looking for large changes in flux that have

taken place with a century-baseline for a range of sources, including long-period eclipsing

binaries [Rodriguez et al., 2016], large-amplitude variation in K giants [Tang et al., 2010],

and quasars/blazars [Grindlay et al., 2012]. There are, however, limitations resulting from

the lowest photometric errors still being on the order of 0.1 mag, and this results in circum-

stances that allow for systematics to be mistaken for astrophysical signals. The analysis

carried out here indicates that KIC 8462852 is such a case, and that KIC 8462852 itself has

not undergone any long-term trends in brightness.

We do find that there are more stars with significant slopes than would be expected if

F stars maintained constant luminosity. We include this list of stars to allow for further

investigation to determine if systematics may explain these slopes, or if these stars are un-

dergoing significant and unexpected changes in magnitude on long time scales. Examining

the high-precision light curves of these stars that may become available with TESS and

possibly other surveys, may prove particularly valuable.
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Chapter 5

Future Work

5.1 Work in Progress

In this section I briefly outline the current work that is being undertaken as part of

improving the characterization of LSST, particularly with a focus on exoplanets. The initial

work discussed in Chapter 2 has been expanded to focus on the Large Magellanic Cloud

(LMC) specifically, as discussed in 5.1.1. This work will be particularly relevant as the

observing cadence for the LMC has yet to be decided, and there is currently a push to have

the Magellanic Clouds observed at the high cadence of a deep-drilling field [Szkody et al.,

2011]. The second work under development is a compilation of additional metrics that have

been developed since the publication of the first set of LSST metrics (Chapter 3). One of

these metrics, a metric applied for microlensing with the particular interest of examining

LSST’s ability to be used for detection of microlensing events, is discussed in 5.1.2.

5.1.1 Transiting Planets in the Large Magellanic Cloud

One of the particularly unique stellar populations that LSST will be able to observe

is approximately stellar-mass stars in the LMC, and discoveries of transiting planets here

allow not just for the discovery of potentially the first extragalactic planets, but also provide

some insight into how the exoplanet occurrence rate varies between stellar populations,

particularly as a function of metalicity. We have previously demonstrated the ability of

BLS to correctly recover the period of transiting exoplanets at the LMC, however only in

the context of deep-drilling fields, and so we only work with the deep-drilling cadence here

[Lund et al., 2015].

We begin with a stellar population of 500,000 stars that are of approximately solar-mass

(0.9 to 1.1 M�) with a distribution consistent with a standard Salpeter IMF. We then popu-
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late each of these planets using the frequency of planets as a function of radius and period

that has been calculated using the Kepler sample [Youdin, 2011], and then calculating the

geometric probability that each planet transits its host star. From our initial population

of stars, we are left with approximately 20,000 transiting planets. We then simulate the

six-band light curves for all host stars with transiting planets, and subsequently search for

periods using the BLS algorithm. We consider any period within 0.1% of the input period

of a transiting planet to be consistent with recovering the transiting planet signal. We pro-

vide one such example of a Hot Jupiter at approximately 20 R⊕ that we successfully recover

in Figure 5.1. In this figure, we see that the transiting event is visible by eye when we plot

Figure 5.1: A simulated light curve of a transiting Hot Jupiter around a solar-like star at the
distance of the Large Magellanic Cloud.

the phased light curve for the star and bin this data. If we look at the entire population

of transiting planets, we find that there are a substantial number of planets whose periods

are successfully recovered, as shown by the red points in Figure 5.2. These recoveries oc-

cur in two regimes; the first regime is that we see a large portion of Hot Jupiters (planets

with radii greater than 10 R⊕ and periods under 10 days), and represent what we believe
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Figure 5.2: All transiting planets in the LMC simulations are shown in blue with those
planets whose periods are accurately recovered using BLS shown in red (left). The figure
at right zooms in specifically on the Hot Jupiter regieme, which is where non-spurious
recoveries are concentrated.

to be robust period recoveries. The second area where we see planets that are recovered

are of exoplanets that are of approximately earth radius, and it is important to note that

the smallest planets are also expected to be the most common, and so the exoplanet period

recoveries at small periods should be interpreted as spurious recoveries where the top BLS

period happened to be consistent with the input period of a planet, rather than actual detec-

tions of exoplanet signals. It should also be noted that while there is insight provided by

determining which exoplanets could be properly recovered, the true goal will be to calcu-

late the number of exoplanets that we can detect (i.e. what number of exoplanets could be

found without a priori knowledge of their input periods).

This work is still undergoing a more rigorous analysis before it will be complete, how-

ever we can provide an optimistic rough estimate based off the initial simulations. If we can

effectively separate out all Hot Jupiters that we are correctly able to recover the periods of

from any statistical false positives that may occur, then based off of our period recoverabil-

ity work and a planet occurrence rate similar to the Kepler field, then we would expect to

find 1 transiting planet per 10,000 solar-type stars in the LMC. This may be interpreted as

an overly optimistic characterization, however it also provides an initial hypothesis. Testing
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this hypothesis wil allow us to see how planet formation rates actually differ in the LMC,

provided that LSST does choose to observe the LMC at the deep-drilling cadence.

5.1.2 Microlensing Metric for LSST

LSST’s application toward microlensing events can be, broadly, categorized into two

different approaches. The first approach is to attempt to use LSST to provide a solution

for a microlensing event as an independent set of observations, and this will be challenging

given the sparse nature of the data. The second approach, however, is to use LSST alerts as

triggers for microlensing follow-up observations by dedicated microlensing telescopes, in

much the same way that microlensing searches such as OGLE and MOA already work. in

this latter case, the interest is simply to have a microlensing event be observed early enough

by LSST that most of the event can be thoroughly characterized by follow-up observations.

To examine how well LSST will be able to provide these alerts, we introduce a simple

metric towards this goal.

To define this metric, we set up a simplified set of criteria for detecting a microlensing

event. We require that we have three LSST observations (presently, with no band restric-

tions) that all occur within some maximum window of time, and where subsequent events

are separated by some minimum window of time. The precise values of these intervals will

depend on the characteristic time scale of the event we are interested in, and so for now

we examine the signals that we would expect for a lone planetary microlensing event as

well as for a standard stellar microlensing event. The metric itself displays what fraction of

time a microlensing event would then trigger additional followup under this criteria. For a

planetary signal, we require that the observations have a minimum spacing of 1 hour and all

occur over a 2-day window, and the results are shown in Figure 5.3. We see in these results

that for planetary microlensing, the cadence is very poorly suited to this, with the exception

of the deep-drilling fields at high cadence. The time scales of stellar microlensing events

is longer, and so here we require observations that are separated by at least 2 days, but all
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Figure 5.3: Microlensing metric results for a short timescale event consistent with a plane-
tary microlensing signal.

take place in a 7-day window, with results in Figure 5.4. In general, these events are more

Figure 5.4: Microlensing metric results for a medium timescale event consistent with a
stellar microlensing signal.
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likely to fit our criteria to trigger an alert. More interestingly, however, is the initial obser-

vation that the LSST cadence is actually more favorable to detecting stellar microlensing

events outside the plane than in it. This may be rather concerning, as the plane and Glactic

Bulge are precisely where these events are most likely to occur, and suggests that it will be

worth considering changes to the cadence to improve performance in the Galactic Plane.

An important caveat in interpretting these metric results is that while this metric is return-

ing the fraction of time where a microlensing event could occur and be detected, a more

thorough assessment of LSST’s microlensing capability should combine this metric with

the frequency of a microlensing event occurring as a function of area of the sky, and that

parameter of microlensing frequency is not in any currently existing metric.

5.2 Conclusion

To understand the scientific contributions that can be made by any survey, there is a

need to also understand the limitations and characteristics of that survey. Much of the

focus in this work has been specifically working with LSST, and even more specifically, the

contributions that LSST can make to exoplanet science by discovering exoplanets around

host stars in various stellar populations. The simple capacity for LSST to observe transit

events from exoplanets is demonstrated in Lund et al. [2015], and this framework was also

used by Jacklin et al. [2015]. Currently in development is additional work on exoplanet

yields for the Large Magellanic Cloud, which will provide better constraints on the number

of extragalactic planets that may be obtained with LSST. Additional future work will be

calculating transiting exoplanet yields for additional stellar populations within LSST, and

expanding this search to include exoplanets that can be detected using microlensing, or in

combination with other surveys. In the process, this work has also involved developing

tools to help characterize LSST by providing metrics to the community, particularly for

exploring how LSST will perform for variable sources [Lund et al., 2016b].

These questions with LSST, however, speak to a more general need to understand the
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limitations of surveys. As future work with LSST will, no doubt, require better understand-

ing of the sparsely-sampled nature of the data, the lessons that are learned to find planets in

LSST will also be applicable to other instruments that are providing similarly-sparse light

curves, such as Hipparcos or Gaia. The most fundamental questions, such as understanding

the limits in interpreting the data, also applies to archival data sets that don’t represent on-

going surveys, such as the work in Lund et al. [2016a]. The era of big data provides a rich

opportunity for new science to be conducted, but to have confidence in these results it will

be important to understand not just the strengths but also the weaknesses and limitations of

the myriad of surveys that have been or will be conducted.
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Appendix A

Stars with Significant Slopes

In the analysis in this paper, we examined over 600 stars, and we fit over 1200 lines

to the light curves after the data is split at 1970. If the non-zero slopes of these lines are

purely a result of statistical noise in flat light curves, the chance of having even one slope

that is significant by more than 5 σ is extremely small. Instead, we find 11 light curves that

exceed this threshold. These stars may simply be indicative of further systematics that we

have not addressed, but we present them here in Figures A.1 and A.2 in the case that these

may also represent astrophysical behavior.
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Figure A.1: Stars showing slopes greater than 5 σ from 0 either pre-1970 or post-1970.
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Figure A.2: Stars showing slopes greater than 5 σ from 0 either pre-1970 or post-1970.

81


