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CHAPTER I 

 

OVERVIEW OF THE DISSERTATION 

Introduction 

A Supply Network (SN) is defined as a collection of firms that maintain local autonomy and 

decision-making capability, but who interact with other firms to fulfill customer requirements by 

transforming raw materials into finished products (Simchi-Levi, et al. 2000). In the last five 

years, SN researchers have focused on the need to understand the reasons behind the diversity in 

the number and types of supply networks as well as, how these diverse networks interact, change 

and adapt over time (Choi, et al. 2001, Choi and Hong 2002, Harland, et al. 2002, Lee 2004). 

Events such as breaking down of SN’s (dot-com meltdown (Mandel 2000)), dramatic changes in 

SN topology (the data mining industry, (Barabâasi 2002)), failure of firms to force topological 

changes in their SN’s (Covisint effort, (Joachim and Moozakis 2001)), exit of established firms 

from SN’s (IBM’s exit from the pc industry, (Bulkeley 2004)), inefficiencies and losses between 

tiers in a SN ($15 billion per year losses between tiers in the construction industry, (NIST 1999)) 

and effects of uncertainty on the SN (Cohen, et al. 2003) have further justified the need to 

understand the dynamic forces controlling the growth of  these diverse types of  SN’s (Hendricks 

and Singhal 2003). This dissertation exclusively focuses on the dynamic growth aspect of SN’s. 

Based on the examples of dynamic effects just presented, the dissertation focuses on two 

fundamental questions: 

1. How do Supply Networks grow and emerge?  

2. Are there simple rules and conditions that control the growth and emergence process? 

 

By answering these two questions, the dissertation will contribute towards extending the current 

state of knowledge of SN’s as a dynamic system. The insights drawn from my research can aid 

managers/decision makers towards a better understanding of their SN’s. This in turn will help 

them in making informed policy decisions while setting up and managing SN’s. A classic 

example that illustrates the effect of policies on future evolution of a SN can be seen in the US 

Healthcare industry. In 1996 the US Congress passed the Healthcare Insurance Portability and 

Accountability Act (HIPAA) that mandated adoption of a set of regulations relating to standards 
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and requirements for the electronic submission of health information. HIPAA’s intent was to 

eliminate the wide variety of reporting requirements set by the multitude of healthcare providers 

and insurance payers. The expectation was that implementation of this act would eliminate the 

cost of the intermediators clearinghouses, which convert the diverse forms from one structure to 

another. HIPAA, while projecting significant long-term savings for the total healthcare system, 

completely ignored the fact that most local providers did not have the resources to implement the 

changes. Facing a significant danger to their livelihood, clearinghouses stepped in to provide a 

HIPAA compliant information standard for the healthcare providers. Thus, instead of eliminating 

the clearinghouses, the position of intermediaries in the supply chain was strengthened. The 

dissertation focuses on developing a framework that allows policy makers to capture such policy 

rules and observe their effect on the system evolution.    

 

To answer the research questions and develop a framework, the dissertation takes an inductive 

approach (Trochim 2001). It starts by making the observation that Supply Networks are dynamic 

emergent systems (Parunak and Vanderbok 1998) that have both structural and behavioral 

dynamics. Consistent with the inductive research methodology, the dissertation then proceeds to 

creating a modeling framework that can help in generating patterns of growth based on a 

fundamental theoretical framework, which then leads to tentative hypothesis that can be tested.  

 

To facilitate such a process, the dissertation creates a new theory-based unified model of supply 

network (now onwards called as UMSN) that incorporates four theoretical lenses, namely 

Industrial growth theory (Utterback 1994), Network growth theory (Barabasi, et al. 2000, 

Newman 2003), game theory and market structure theory (Osborne and Rubinstein 1994, Shy 

1995) and Complex Adaptive Systems theory (Holland 1995, Kauffman 1995, Schuster 2001), to 

provide a holistic framework for modeling growth and emergence in Supply Networks. A 

generic rule-based modeling framework and a simulation based computational framework has 

been developed to operationalize and implement the “unified model”. For preliminary validation 

of the model, the dissertation presents results from simulation using data from the US automobile 

industry over the last 80 years.  

 



 3

The results and analysis of the simulation experiments (presented in Chapter III, IV) clearly 

answers the two research questions raised previously. Firstly, we got similar trends in results as 

compared to empirically published data on the US automobile industry; both from network 

topology and population dynamics perspectives. The SN system grew and emerged as a Complex 

Adaptive System. Secondly, the dissertation presents statistically significant results that supply 

networks grow and emerge based on interactive effects of local decision-making rules and 

environmental conditions, and that there is an underlying order to the emergence process. This 

result effectively answers the second research question. The dissertation takes the research, one 

step forward by presenting novel analysis techniques for possibly predicting the SN system 

behavior over time and suggesting how such techniques can generate insights for policy makers 

and managers.  

 

Organization of the dissertation      

The dissertation is organized in a format with each chapter written as an essay on one aspect of 

dynamic SN. Each chapter contributes to the solution of the entire problem.  

 

Chapter II introduces the problem domain and lays the foundation for a new theoretical model by 

presenting the limitations of the existing models in the Supply Network literature. It then 

presents the UMSN and explains how each theoretical lens in the unified model plays an 

important role towards modeling a growth-oriented supply network. The chapter then justifies 

the need for a computational framework for investigating such a system.  

 

Chapter III presents the details of the generic rule modeling framework and the simulation 

framework for operationalizing the “unified model”. The chapter presents two fundamental 

entities in a SN system and the respective rule categories for modeling a generic supply network. 

An industry (US automobile industry) is taken as a sample industry and the rules are instantiated 

for the industry. The chapter presents simulation results that suggest that the modeling 

framework produces valid results that matches with the empirically published work of Utterback 

(with regards to industrial growth) (Utterback 1994), on the automobile industry. 
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After introducing the theoretical model and the generic rule-modeling framework, Chapter IV 

presents the detailed simulation results using data from the US automobile industry as an 

example. The paper formally answers the dissertation questions raised previously, by presenting 

rigorous statistical analysis of the observed simulation results and explaining the observed 

interactive effects seen in the system. It draws general conclusions for practicing managers and 

explains the ramifications of the observed results and analysis. The chapter establishes that SN’s 

are indeed CAS by nature that grow based on simple interaction of local behavioral rules.  

 

Chapter 5 introduces novel analysis techniques for analyzing the stability effects (evolution of 

SN structures into stable patterns) in the experiments performed using data from the US 

automobile industry. It draws general conclusions with regards to stability in any supply network 

and how mangers and decision makers can interpret such results and the potential benefits of 

doing so. The paper presents a novel analysis technique of predicting the emergence path of the 

entire supply network by utilizing standard chaos theory tool sets (Williams 1997) such as lag 

calculations using autocorrelation tests (Makridakis and Wheelwright 1989) and reconstructing 

the pseudo-phase space (attractors) of the system (Williams 1997). Based on the simulation 

results, the paper suggests the presence of periodic attractors (limit cycles) in SN systems. The 

paper also comments on the different values of lag in the system and its importance for 

practicing managers and decision-makers. 

  

The conclusion chapter summarizes the problem, the solution designed and presented in the 

dissertation and the important findings of this dissertation. The future work section outlines the 

direction in which research can be carried out. Specifically this dissertation proposes to further 

validate the unified model by simulating additional industries, both similar and dissimilar to the 

US automobile industries. The results from such experiments will eventually lead towards a 

general theory of Supply Networks. Generic rule-modeling framework needs to be extended to 

capture and model the growth of already existing networks. This will allow the research 

framework presented in the dissertation to model wide range of problems in SN’s and present 

robust solutions.  
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In order to do so, the computational framework needs to be extended. A new agent based 

framework that allows users to rapidly set up different types of SN’s and corresponding rules 

needs to be developed. Lastly, future research in this area should look into combining chaos 

theory techniques with statistical techniques for analyzing patterns of growth and providing more 

complex growth result parameters such as Lyapunov exponents (Williams 1997)for small sample 

sizes (that are typical in these studies) .  

 

Topic Index 

Table 1, provides a list of primary topics in the dissertation and indicates where they appear 

through out the dissertation. 

 

Table 1: Topic Index 

Serial 
Number 

Topic Chapter 

1. Theoretical framework for modeling growth oriented SN 2,3,4,5 
2. Generic Rule modeling framework 3,5 
3. Computational framework 2, Appendix (2, 3, and 4) 
4. Detailed rule modeling 5, Appendix 1,2 
5. Instantiation of the generic rule modeling framework: -Simulation of 

the US automobile Industry 
2, 3,4,5  

6. Macro results and analysis 2, 3 
7. Detailed Statistical Analysis of SN growth and emergence 4 
8. Predictive analysis of SN dynamics and growth 5 

 

 

 

 

 

 

 

 



 6

References 

Barabâasi, Albert-Laszlâo, Linked : the new science of networks, Perseus, Cambridge, Mass., 
2002. 
 
Barabasi, A. L., R. Albert and H. Jeong, "Scale-free characteristics of random networks: the 
topology of the World-Wide Web," Physica A, 281, 1-4 (2000), 69-77. 
 
Bulkeley, William M., "Less Is More: IBM Is Likely to Gain from a Sale of PC Unit," Wall 
Street Journal, (Dec 6, 2004 2004), C.1. 
 
Choi, Thomas Y., Kevin J. Dooley and Manus Rungtusanatham, "Supply networks and complex 
adaptive systems: control versus emergence," Journal of Operations Management, 19, 3 (2001), 
351-366. 
 
Choi, Thomas Y. and Yunsook Hong, "Unveiling the structure of supply networks: case studies 
in Honda, Acura, and DaimlerChrysler," Journal of Operations Management, 20, 5 (2002), 469-
493. 
 
Cohen, M, T Ho, J Ren and C Terwiesch, "Measuring imputed cost in the semiconductor 
equipment supply chain," Management Science, 49, Dec 2003 (2003), 1653-1670. 
 
Harland, C.M, R.C Lamming, J Zheng and T.E Johnsen, "A taxonomy of supply networks," 
IEEE Engineering Management Review, 30, 4 (2002),  
 
Hendricks, K and V Singhal, "The effect of supply chain glitches on shareholder wealth," 
Journal of Operations Management, 21, (2003), 501-522. 
 
Holland, John Henry, Hidden order : how adaptation builds complexity, Addison-Wesley, 
Reading, Mass., 1995. 
 
Joachim, David and Chuck Moozakis, "Can Covisint Find Its Way?," (2001),  
Kauffman, Stuart A., At home in the universe : the search for laws of self-organization and 
complexity, Oxford University Press, New York, 1995. 
 
Lee, Hau, "The Triple: A supply chain," Harvard Business review, 82, 10 (2004),  
Makridakis, Spyros and Steven C. Wheelwright, Forecasting methods for management, Wiley, 
New York, 1989. 
 
Mandel, M J, The coming Internet Depression – why the high-tech boom will go bust, why 
the crash will be worse than you think, and how to prosper afterwards, Financial Times/Prentice 
Hall, London, 2000. 
 
Newman, M. E. J., "The structure and function of complex networks," Siam Review, 45, 2 
(2003), 167-256. 
 



 7

NIST, "Planning Report: Interoperability Cost Analysis of the U.S. Automotive supply Chain,," 
99-1, 1999. 
 
Osborne, Martin J. and Ariel Rubinstein, A course in game theory, MIT Press, Cambridge, 
Mass., 1994. 
 
Parunak, Van and Ray Vanderbok, "Modeling the extended supply network," (1998),  
Schuster, H.G., Complex Adaptive Systems, Scator Verlag, 2001. 
 
Shy, Oz, Industrial organization : theory and applications, MIT Press, Cambridge, Mass., 1995. 
 
Simchi-Levi, David, Philip Kaminsky and Edith Simchi-Levi, Designing and managing the 
supply chain : concepts, strategies, and case studies, Irwin/McGraw-Hill, Boston, 2000. 
 
Trochim, William, The Research Methods Knowledge Base, Atomic Dog Publishing, 2001. 
 
Utterback, James M., Mastering the dynamics of innovation : how companies can seize 
opportunities in the face of technological change, Harvard Business School Press, Boston, 
Mass., 1994. 
 
Williams, Garnett P., Chaos theory tamed, Joseph Henry Press, Washington, D.C., 1997. 
 



 8

CHAPTER II 

 

GROWTH, EVOLUTION AND EMERGENCE OF SUPPLY NETWORKS 

Abstract 

Over last two decades, study of emergence has been actively carried out for biological, physical 

and chemical systems. In more recent times researchers have tried to apply the lessons learned 

from these studies towards the investigation of non-orthodox systems such as large organizations 

and management systems. In this chapter attention is drawn towards one such system that forms 

the backbone of any industry; i.e., Supply Networks (network of firms transforming raw material 

into finished products). To the best of our knowledge, no comprehensive Supply Network model 

exists that can model emergence dynamics of Supply Networks. The chapter presents a UMSN 

using concepts from Complex Adaptive System Theory, Industrial Growth Theory, Game 

Theory, Industrial Organization Theory and Network Growth Theory of Supply Networks. We 

suggest how the UMSN can be used for investigating the growth and emergence dynamics of 

supply networks. Such an understanding of the supply network system behavior would allow 

policy makers and managers to better understand the evolution of their supply networks.    
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Introduction 

“December 2nd, 2004, IBM Corporation announced its decision to sell its personal computer (PC) 

business to Lenovo Corporation of China” (Bulkeley 2004).  In 1980, when IBM started the US 

PC industry, no one would have envisioned such an outcome. Yet within a short span of 25 

years, technology advancement, falling prices, birth of new firms like Dell Corporation, coupled 

with IBM’s internal policy decision to subcontract to Intel and Microsoft probably resulted in 

IBM’s and exit from the industry. Could this outcome have been predicted? 

 

The IBM example clearly highlights the dynamic, emergent nature of the industrial landscape 

and the corresponding network of firms (known as Supply Networks) residing in that landscape. 

A Supply Network (SN) is defined as a collection of firms (or nodes) that maintain local 

autonomy and decision-making capability, but who interact with other firms to fulfill customer 

requirements (demand) by transforming raw materials into finished products (Simchi-Levi, et al. 

2000). One of the classical properties of emergent systems as has been shown in numerous 

models, such as the sand cone model (Per Bak, et al. 1988), Eigen’s prebiotic evolution model 

(M.Eigen 1971), and Holland’s Genetic algorithm models (Holland 1995), flock of flying birds 

(Reynolds 1987), gene regulatory network (Kauffman 1971), artificial markets (Arthur 1999) 

and the Internet (Albert, et al. 1999), is that the emergent behavior is driven by interaction of 

simple rules and conditions. This interaction results in self-organization, adaptation and 

evolution in such systems. SN’s show these same characteristics (Ashby 2004, Choi, et al. 2001). 

So possibly IBM’s outcome could have been predicted if there was a way to understand the 

effect of “simple rules” (IBM policies) on the system and identifying the underlying order. How 

then can we study, investigate and manage such an emergent system, i.e., a SN? And identify 

any underlying order? 

 

A major difficulty encountered in the study of emergent systems is the non-determinism and 

non-linear dynamics (Parunak, et al. 1998) present in SN’s. The problem is compounded further 

due to the diversity in the number and types of supply networks and a lack of understanding as to 

how these diverse networks interact, adapt, and emerge over time (Lee 2004). For example, the 

automotive industry follows a classic hierarchical supply network formation: a formal set of 

tiered suppliers, with each sub-tier supplying a higher tier, up to the final assembler, who then 
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distributes the finished vehicles to dealers. Contrast this SN to that found in the construction 

industry where there is no single assembly facility, rather, every town has a host of contractors, 

architects, and builders. This heterogeneity of SNs becomes more of a problem when a variety of 

SN’s must be managed simultaneously by a customer, such as in healthcare where a hospital 

must deal with pharmaceutical suppliers, medical equipment manufacturers, and general medical 

supplies of medical specialists, each of which has a different SN structure. Thus, in order to 

answer the questions and issues raised above, we present a systematic research effort in this 

paper. 

 

We begin by formally raising the following two fundamental questions: 

1. How do supply networks emerge? 

2. Are there certain simple rules/conditions that drive the growth and emergence process in 

such systems? 

 

Past efforts in SN research has typically focused on research models, which present centralized 

static networks (Beamon 1998), with a focus on flow of materials, money or information using a 

logistical or operational efficiency perspective (Parunak and Vanderbok 1998). They are unable 

to capture the structural and behavioral dynamics of a SN. Network growth theory and emergent 

system research (Newman 2003) on the other hand are unable to address the issue of modeling 

rules for SN.   

 

This paper introduces a Unified Model of Supply Network (UMSN) that borrows from four 

different theoretical lenses, namely, Industrial growth theory (Utterback 1994), Network growth 

theory (Newman 2003), market structure theory (Shy 1995), (Tirole 1989), game theory 

(Osborne and Rubinstein 1994) and complex adaptive systems theory (Schuster 2001), 

(Kauffman 1995), (Holland 1995), to build a holistic framework. This framework helps in 

capturing the structural and behavioral dynamics and provides a way to study chaos, complexity, 

order, and emergence in a supply network. Along with the theoretical model we also argue for 

the need of a simulation based computational framework that can provide a “what if” analysis 

platform for performing scenario analysis. Only by taking computational modeling approaches as 

has been increasingly recommended by social and organizational scientists (Anderson 1999), 
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(Kamps and Masuch 1997) and performing multiple scenario analysis can a knowledge base be 

created and insights can be gained on how complex supply networks self-organize. Such 

knowledge in turn will lead to better understanding of how to manage these networks.  

 

Finding a growth oriented Supply Network model: Past and existing Literature 

Why develop a new theoretical model of Supply Networks? Because, there is no comprehensive 

supply network model that allows modelers to model SN rules, policies and investigate the 

dynamics in SN’s.  

 

Past Supply Network modeling approaches  

In the past, researchers have employed a variety of modeling techniques for analyzing supply 

networks. Most of these approaches analyze inventory oscillation issues, demand amplification 

(bullwhip effect) and other flow (material/money and information) related issues. Table 2 

summarizes the past efforts. 

 

Table 2: Past modeling and analysis techniques 

Area Sample Articles Remarks 
System Dynamics and Continuous 
time differential equation modeling 

Forrester (1961), Towill et.al (1991), 
Simon (1952) 

 

Analyzing flow in supply chains 
using first order and second order 

differential equations 
Discrete time differential equation 

modeling 
Porter and Taylor (1972), Porter 
Bradshaw (1974), Bradshaw and 

Daintith (1976) 

Modeling supply chains using 
discrete time differential equation 

model 
Discrete event simulation Ho and Cao (1992), Cao (1991) Event based analysis of supply chain 

interactions 
Operation Research Techniques Pyke and Cohen (1993), Altiok and 

Raghav (1995) 
Analysis of operational aspects of a 
supply chain, such as stock levels 

etc. 
Agent Based Techniques Parunak (1998), Kohn et.al (2000), 

Lin and Lin (2002) 
Analysis and optimization of supply 
network flow of material money and 
information using software agents 

 

 

These approaches typically assume a static supply network structure and focus on optimizing the 

flow within the network; hence they are unable to model the evolving structural dynamics of a 

supply network, which is essential for understanding growth phenomenon. This inherent 
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assumption of a static network structure is limiting when studying evolutionary dynamics of 

supply networks (Parunak and Vanderbok 1998) as, in actual supply networks, the number of 

firms and the linkages between firms do not remain constant. 

 

Dynamic Supply Network Models 

More recently researchers have suggested dynamic models of supply networks (Choi, et al. 

2001), (Harland, et al. 2002). These models take a deductive approach to identify the reasons 

behind the SN dynamics. Since the emergence phenomenon in any system actually is non-

deterministic, a deductive approach is limited in its ability to efficiently explore the entire range 

of possibilities driving the emergence dynamics of SN’s.  

 

The dynamic models also do not define growth in a SN. In order to investigate growth and 

evolutionary dynamics in SN, a clear definition of growth is needed, both from a SN topology 

perspective and the perspective of an individual firm in the SN. As we define in subsequent 

sections, this research considers how the population of firms and the corresponding SN topology 

grows with time as a measure of growth in SN systems.   

 

Emergent System Models   

Researchers from such diverse disciplines as physics (Per Bak, et al. 1988), computer science 

(Holland 1995), network growth theory (Newman 2003), economics (Arthur 1999), and biology 

(Kauffman 1971), (M.Eigen 1971), (Neumann 1949) have suggested growth models to explain 

the diverse emergence phenomena in real world systems. These models suggest that real world 

systems are not static and these systems constantly grow and evolve over time. The growth and 

emergence process is governed by simple interaction rules between the entities in the system. 

Unfortunately none of these models can help with the actual rule modeling process in SN’s the 

growth rules are more strategic and Darwinian in nature, being composed of 1) birth and death of 

firms, 2) growth of capacity and fitness of a firm to play a specific role in the SN, 3) creation and 

deletion of linkages between firms in the SN, and 4) reconfiguration of the existing linkages as 

the environment changes. Since the rules in a SN depict behavior of firms and a market, they are 
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multi-dimensional. A fundamental economic theory driven approach is required in conjunction 

with the basic concepts of network growth theory to capture the growth rules of a SN.   

 

The Theoretical Framework: Unified Model of Supply Network (UMSN) 

The unified model of SN (UMSN) (Figure 1) addresses the limitations presented in the previous 

section and builds a holistic framework for modeling growth oriented SN’s. The UMSN starts by 

defining growth and evolution in SN at a macro level using the Industrial growth theory lens 

(Utterback 1994). It then highlights what this lens cannot provide and moves over to the next 

lens, i.e., Network growth theory. Subsequently the model highlights how each of the lenses 

contributes a missing piece of the whole puzzle to provide a comprehensive platform.  

 

Unified
Supply Network

(SN)
Model

Industrial 
Growth 
Theory

Exact 
representation 
of SN Growth, 
Evolution and 

emergence

Exact 
representation 
of SN Growth, 
Evolution and 

emergence

Manifestation of 
the preferential 
attachment (PA) 

rules for SNs

Manifestation of 
the preferential 
attachment (PA) 

rules for SNs

•Structural 
dynamics
•Co-evolution 

•Structural 
dynamics
•Co-evolution 

Defines at a Macro Level

•Growth and Evolution

•Emergence 

Defines at a Macro Level

•Growth and Evolution

•Emergence 

Network
Growth
Theory 

•Mathematical representation 

as bi-directional graph

•Macro framework for node-to-node 

interaction rules, i.e. 

Preferential attachment (PA)

Market/
Game Theory

Exact manifestation of PA 

•Types of markets, competitions

•Type of game 

•Cost set up rules  

Complex
Adaptive
System

Modeling structural dynamics

•Environment Birth and Death

•Co-evolution of the links in the 

network 

 

Figure 1: Unified model of supply network (UMSN) 
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1. Industrial Growth Theory: 

Growth and evolution in supply networks involves both the birth and death of firms, and the 

creation and dissolution of links between these firms. Underlying rules and conditions for 

defining node-to-node and node-to-market interactions may drive both of these conditions. The 

industrial growth model (Utterback 1994) provides a theory for modeling growth. According to 

this model, as new industries emerge; SNs also grow, with new relationships being formed 

between firms to work collectively to satisfy demand. The Industrial Growth (IG) model 

considers that at industry inception, entry barriers for firms are low and there is no clearly 

defined market structure (Utterback and Suarez 1993, Utterback 1994). At this stage there are a 

number of relatively identical new entrants, with each firm attempting to establish itself as a 

leader. In this early phase, there are many unsolved issues and unproven assumptions. However, 

over time, as the problems become solved or proven, growth in the number of firms can become 

nearly exponential. The next phase in the IG model is of the emergence of a clearly defined 

market structure with firms focusing on economies of scale and network externalities. Not all 

firms are successful, and the unsuccessful firms are shaken out of the market. As time progresses 

and the industry stabilizes, the number of new market entrants rapidly decline as empty market 

niches become filled. In addition, as the primary market tier becomes saturated, firms learn to 

play specialized roles in sub-tier levels of the network. Therefore, in the beginning of an 

industry, most firms are generalists but, as time progresses and a few firms become dominate, 

other firms must adapt into specialized roles or leave the network.  

 

This behavior is illustrated by the automobile industry. In the early 1900’s, “buggy” and 

“bicycle” makers were making cars. As time progressed only a few “generalist” firms (i.e., 

assemblers such as Ford and General Motors) remained, and other firms either died (e.g., 

Deloren and AMC) or they learned to play a “specific” supplier role (e.g., Firestone and AC-

Delco). Interesting, this industry has undergone a new revolution in SN, with two of the major 

domestic automotive firms simultaneously converting their parts divisions into stand-alone 

supply firms (i.e., GM spinning off Dephi Automotive Systems and Ford spinning off Visteon) 

and joining together to create virtual supply market (e.g., Covisint). 
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While the IG model is useful, it captures evolution of an industry only with respect to the number 

of firms entering or exiting the market (Suarez and Utterback 1995). An additional dimension 

that must be captured while studying emergent systems is the internal growth of an individual 

entity in the system (Barabâasi 2002, Barabasi, et al. 2000). We use individual capacity of a firm 

in a SN as a surrogate for size in this research (rationale is that the quantity a firm can produce is 

directly proportional to how big the firm is). With this kind of a representation then growth in 

size can have two possible growth scenarios. In one possible scenario, as market size increases 

with time, there is differential growth in firms, with some firms expanding capacity to dominate 

the industry. An alternative scenario is where a subset of firms does not grow to dominate the 

industry and the resulting market is composed of a large number of limited capacity firms. An 

example of the first scenario is the automobile industry, and the second the construction industry. 

Thus, the unified model defines growth in a SN from the perspective of both the number and size 

of firms. 

 

2. Network Growth Theory  

SN’s are more than a collection of firms: they are also the linkages among the firms. A graph 

representation of SNs consists of nodes (representing firms) and edges (representing linkages 

between firms). Erdos and Ren�i (Erdos and Renyi 1960) suggest a random-graph model of a 

network in which, the number of nodes is fixed but the interconnections among nodes are 

dynamic. The random graph model is thus not appropriate for SN, as the number of firms is not 

fixed. Recently, Barabasi et.al (Albert, et al. 1999, Albert, et al. 2000, Barabasi, et al. 2000) have 

suggested a network model that specifically addresses the issue of growth and evolution by 

taking into account dynamic population of nodes and dynamic linkages between nodes. Barabasi 

and Albert (Barabasi, et al. 2000) found that many real world networks such as, social networks 

(Scott 2000, Wasserman and Faust 1994) , the citation index network, the World Wide Web, 

electric power grid network, and biological networks (Kauffman 1971, Newman 2003) are 

essentially dynamic graphs that grow based on rules such as “preferential attachment” (Barabâasi 

2002) where new nodes entering the network link to existing nodes based on the number of links 

and the fitness of the incumbent nodes.  
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SN literature clearly shows that nodes in a SN link with each other based on parameters such as 

price, quantity, etc (Chopra and Meindl 2003, Simchi-Levi, et al. 2000). In other words nodes in 

a SN seem to follow the idea of preferential attachment (PA). However, the interconnection rules 

are more strategic in nature, dealing with material, money, and information flow (Parunak and 

Vanderbok 1998). So an example manifestation of a PA rule would be the decision of a node to 

subcontract to a supplier, which quotes the lowest price. Another example can be the decision of 

a supplier node to supply only if the incoming demand is above a certain threshold level, such 

that it is a profitable deal for the firm.  

 

The existing network growth models (including Barabassi’s model) do not consider the dynamic 

reconfiguration of existing linkages between the edges in the graph. So, while network formation 

models are a step toward describing growth in supply networks (structural aspect), they are not 

sufficient to describe other aspects of growth (driving forces); they need to be extended to 

account for the competitive /cooperative nature of the interaction process or for death of existing 

nodes. 

 

The mathematical representation of SNs as a graph helps us handle the growth issues that IG 

model did not address but it raises a new problem in the form of defining node interaction rules. 

Preferential attachment is a general concept in network growth theory but the exact manifestation 

of the rules is derived from market structure and game theory as presented next. 

 

3. Market structure theory 

Industrial Organization/ microeconomic theory (Shy 1995, Tirole 1989, Varian 1990) and game 

theory (Osborne and Rubinstein 1994) provide the theoretical base for characterizing behavioral 

rules that may be used in SNs by nodes. The environment in which firms reside can be 

characterized based on Market Structure Theory (Shy 1995, Tirole 1989) which is a description 

of the firm’s behavior in a given industry or market. In any industry, there are specifics of firm 

behavior which include: 1) the actions available to each firm, (e.g., choosing a price, setting 

production capacity, etc.); 2) a firm’s expectation of the actions available to competing firms, 

and how the competing firms will respond to each firm's action; 3) the number of firms in the 

industry, and whether this number is fixed or whether free entry of new firms is allowed and 4) a 
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firm’s expectation about the number of potential entrant firms. Using these behaviors specifying 

a market structure is similar to specifying the rules of the game or rules for interaction between 

existing and potentially entering new firms (Shy 1995). Two other theories provide a basis for 

rules in an industry. Game theory literature (Osborne and Rubinstein 1994) provides a strong 

theoretical base for defining a meaningful set of rules. Microeconomic theory (Varian 1990) 

contributed towards setting up cost rules for individual firms, as well as rules that aid in defining 

a firms operational behavior such as production rules, capacity expansion and contraction rules. 

The market structure, microeconomic and game theory lens helps characterize behavioral rules 

for the nodes and the environments, effectively allowing interactions between the respective 

components.  

 

4. Complex Adaptive Systems (CASs):  

If the interaction between firms is driven by simple rules and conditions, this may give rise to 

non-linear dynamics in SNs (Choi, et al. 2001). Because rule-based interactions and non-linear 

structural and behavioral dynamics lead to evolution of systems, the fourth lens of UMSN is 

complex adaptive systems (Holland 1995, Kauffman 1995, Schuster 2001). This approach is well 

suited for modeling systems with structural and behavioral dynamics such as found in SNs. CAS 

allow the network emerges over time without any singular entity controlling or managing the 

global structure or node interactions (Choi, et al. 2001, Choi and Hong 2002). CAS can be 

characterized by three important components; namely, 1) environment that the network exists 

within, 2) internal mechanisms (deals with agents schemas (defines rules), connectivity 

(describes the interaction between agents) and dimensionality (ability of an agent to connect with 

multiple nodes in a flexible way), and 3) co-evolution (quasi equilibrium and state changes, non-

linear changes, and non-random future).  

 

UMSN Summary: The four lenses provide the basic theoretical components of the model. 

Industrial Growth theorizes the cause of birth and death of nodes in a SN, and for causes of 

varying roles that emerge in a network. Network theory theorizes that SNs can be represented as 

bidirectional graphs that grow based on preferential attachment rules, i.e., rich nodes (i.e., those 

with the largest number of links) get richer (i.e., differentially gain additional links). The actual 

rules of behavior for firms in a market have been studied in market structure theory and game 
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theory. Finally, complex adaptive systems theory provides a method to model dynamic evolution 

of locally autonomous nodes into SNs. We integrate these four lenses into a unified modeling 

framework, which is capable of defining markets and firms in a SN, capturing their behavioral 

rules, and analyzing the temporal growth and evolution process. 

 

The Computational Framework 

The “unified model” by itself can only provide an abstract modeling framework for SN’s, but to 

actually understand how the behavioral rules and conditions interact to drive the emergence 

process, a computational platform is needed. An ideal computational platform should allow a 

modeler to specify rules and conditions for a supply network. It should then be able to support a 

flexible temporal evolution process during which the local entities in the system driven by the 

behavioral rules interact amongst themselves. Simulation based methods can provide such a 

platform (Zeigler, et al. 2000). As shown in Figure 2, a simulation-based approach can allow a 

modeler to capture the interaction process and record the resulting emergent behavior of the 

supply network system, i.e., the evolution of the SN topology. A causal relationship can be 

established between the input rules/conditions and the output parameters. This causal 

relationship increases the modeler’s general knowledge about the system, generates insights and 

helps in policy decisions. Simulation based techniques can allow the modeler to discover and 

increase general knowledge by allowing him/her to perform repeated multiple scenario analysis. 

Such a possibility does not exist with analytical techniques for emergent systems, as there is no 

close form equation for the system that can be analyzed (Parunak, et al. 1998).  
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Figure 2:  Need for a computational framework 
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We propose a simulation based computational platform to complement our theoretical model. In 

a SN system, there are two fundamental entities, i.e., the firms that participate in the network 

formation process and the environment/market in which the firms operate. We have developed a 

multi-paradigm discrete-time (Zeigler, et al. 2000), discrete-event (Cassandras 1993) simulation 

platform to seamlessly capture the hybrid nature of the system. Some of the components, such as 

the environment, fit a discrete time modeling (DTS) paradigm. On the other hand individual 

node behavior is both event and time driven, and best captured by a hybrid, discrete event-

discrete time formalism (DEVS-DTS).  

 

Furthermore, since firms in a SN display a complex goal directed behavior, software agents 

(Ferber 1999) are used to implement this feature. Agent based modeling techniques have been 

successfully used for modeling supply networks in the past (Kohn, et al. 2000, Lin, et al. 2002, 

Strader, et al. 1998, Swaminathan, et al. 1997). Using a message passing protocol, agents can 

effectively simulate node-to-node interactions (effectively forming the graph linkages). Also as 

the software agent architecture supports, group and role modeling, it allows for the development 

of a range of rich and robust studies, such as studying group behavior of firms in a market, 

development of specialized roles or role adaptation process of each individual firm. 

 

To implement the advanced multi-paradigm simulator, we have developed a tool suite called 

CAS-SIM (Complex Adaptive Supply Networks Simulator) (Pathak and Dilts 2004). This suite 

is built using multi-agent-based techniques discussed earlier to capture dynamic interactions 

between nodes and the changing configuration of the network for each demand cycle. CAS-SIM 

uses MadKit (Multi agent development kit) (a Java based agent package) (Ferber 2004) as the 

agent platform. MadKit provides a bare bone agent infrastructure where the modeler has to write 

the behavioral description of the agents in Java. MadKit uses a CORBA (Common Object 

Request Broker Architecture) based platform for implementing a message based communication 

infrastructure. 
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Emergence in Supply Networks 

This section demonstrates how the unified model in conjunction with the computational 

framework can model and simulate growth patterns for a real life SN. Subsequently we provide 

an example on building insights for policy makers and managers based on the simulation results. 

The simulation also achieves the goal of validating the unified model and computational 

framework against empirically published results on the chosen industry. 

 

We used data from a very well structured industry (the US automobile industry) for simulation 

purposes. The industrial growth theory lens and the market structure/game theory lens in the 

UMSN were used for setting the rules and conditions for the simulation experiments. For 

example the automobile industry was set up as a free entry market (Shy 1995) where firms play 

an n-person Bertrand’s pricing game (Edgeworth 1925). Based on Utterback’s work (Utterback 

1994) initial number of firms in the market, individual firms ability to expand/contract its 

capacity, ability to learn and adapt, and the type of environment (easy to live or harsh) were 

selected as the input rule parameters. The details of the rule setting and the generic rule-modeling 

framework are presented in Chapter III and IV.  For different combinations of these parameters 

with respect to type of structures formed (connectivity of the network) and the population 

dynamics (Survivability), preliminary analysis illustrates classic CAS behavior such as 

perturbation effects and emergence of various patterns indicated similar the growth trends with 

respect to population dynamics of the automobile industry.  

 

Emergence of Structural patterns in the Automobile industry  

A commonly accepted fact about the US automobile industry supply network is that it has a 

deeply hierarchical structure with multiple tiers of suppliers (Parunak and Vanderbok 1998). The 

computational platform successfully grew such a structure using few simple “rules” mentioned 

earlier. What was more remarkable, and something that is often overlooked was that an hourglass 

structure is not the only structure that can be formed based on these rules. During the temporal 

evolution process we observed numerous patterns as shown in Figure 3, such as the star shaped 

network, linear networks, shallow hierarchical networks apart from the deeply hierarchical 

structure form over a period of time. These patterns of network topologies observed during the 
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simulation fits the classic definition of emergence (Goldstein 1999) (thus confirming that SN’s 

are indeed CAS that emerge with time). The temporal emergence of these structures was 

governed by the ordered interaction of the input rules used in the simulation (for detailed 

statistical analysis, see Chapter IV). For example, hierarchical structures were only formed in a 

high threshold environment (harsh) were firms were willing to learn specialized roles in order to 

survive. Thus the simulation not only yielded results that matched the current state of the 

industry under certain conditions it also suggested the possible path the industry took in order to 

emerge into its current state. 

 

 

Figure 3:  Emergence patterns in supply networks (CCU: central console unit, WA: Wheel 
assembly, FS: Fuel system, PT: Power Train) 

 

Emergence of SN population in the US Automobile industry 

Utterback’s work (Utterback 1994) on different industries, clearly identifies the growth of the 

population of firms in a SN as another outcome parameter that emerges with time. We compared 

our results on the mortality profile (growth of population dynamics during the simulation) with 



 22

those of Utterback’s (Utterback 1994), empirical work on industrial growth cycle of the 

automobile industry. It was observed from the experiments that the mortality profile was always 

a skewed, near bell shaped curve (Utterback’s ideal growth curve is bell shaped, but actual data 

on the auto industry is a skewed bell shape curve), indicating that initially number of firms enter 

the market, but as the market matures, few firms dominate and the number of entries reduce with 

time (Figure 4). 
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Figure 4:  Skewed bell shaped mortality profile for the automobile industry 
 

 

Thus the macro results with respect to emergence of structures (Figure 3) and emergence of 

population (Figure 4) showed similar trends with the existing empirical results. Some of the 

simulation results illustrated the characteristic deep hierarchical SN topology of the current US 

Automobile industry under certain conditions as well as the bell shaped population dynamics 

growth curve.  
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SN’s are CAS: Rule based emergence 

Next we examine if the emergence process may be driven by simple rules and even slight 

changes in certain simple rule alters the emergence course for the SN. This is a classic property 

of a CAS, and would establish and answer the first question: SN’s are CAS. 

 

By varying rule setting for an individual node’s capacity expansion parameter (for detailed 

experimental setting, please see chapter III), sensitivity analysis test for the SN system was 

carried out. Four different settings of capacity expansion (ranging from slow �CE= 6, i.e., fast 

contraction hence slow expansion (shrink capacity after every 6 negative demand cycles), to 

fast� CE= 12, i.e., slow contraction hence fast expansion) were used in the simulation. The 

resultant population dynamics curve for each setting is shown in Figure 5. 
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Figure 5:  Population dynamics curve for sensitivity analysis 

 

Slight change made to a single parameter in the system (CE in this case), results in the system 

behavior changing dramatically. The population curve starts showing significant bimodalities. 

Such kind of behavior truly suggests that SN’s are indeed Complex Adaptive by nature. 
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An example of providing insights from simulation results 

Preliminary analysis of the results presented in Figure 5 revealed that a combination of 

environmental effects such as perturbations in the market and individual node behavior (rate of 

capacity expansion) contributed towards such dynamic behavior. In a slow capacity expansion 

condition (CE�6) a single firm does not dominate the market as every node grows their fitness 

slowly. Hence over time a group of firms grow into a position of strength and share the profits. 

Unfit nodes are eliminated (explains the bell shaped curve). In such environments even when 

there are perturbations such as drop in demand (for example drop in demand in the US 

automobile industry after word war II), the shock is shared equally between all incumbent nodes. 

But under fast CE conditions (CE�12) typically one or two firms were observed to grow their 

capacity and fitness at a much faster rate than other firms in the market. Essentially the “rich gets 

richer” condition was observed (increasing returns to scale). This result in a slow fitness growth 

for the other incumbents and under perturbations such as drop in demands many incumbent 

nodes die. This reduces the cumulative capacity of the entire SN, there is unfulfilled demand in 

the market and newer firms enter the market (such behavior in SN, enforces a limiting constraint 

on the “rich gets richer” phenomenon).  

 

An important lesson for practicing managers and policy makers: if you don’t manage your SN 

according to the market you are in, it can have disastrous results. If a firm does not expand its 

capacity fast enough in a market where other firms are responding fast, it can be left behind and 

new firms can take their spot. Automotive industry is a classic example where only a handful of 

the initial starters made it big, rest were either eliminated or were reduced to the role of playing 

bottom tier suppliers. On the other hand if you are in an industry were fast growth is not 

required, such as the florist industry (having the biggest collection of flowers not necessarily 

means you are better off) it can result in losses and inefficiencies and eventual bankruptcy. 

Another example is the “Google Effect”. Inktomi corporation dominated the internet search 

engine market till year 2000. Once Google entered the market, Inktomi failed to adapt to the 

changing market and was wiped out. 
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Conclusion  

Supply Networks are dynamic networks that grow and evolve over time. Past research has been 

inadequate in addressing this problem. This paper clearly identifies the need for a new model of 

supply networks that can capture the structural and behavioral dynamics. A new theory-based 

unified model: UMSN is presented that provides a platform for modeling growth oriented SN’s. 

The paper justifies the need for a computational framework that can operationalize the unified 

model of supply network.  

 

A high level simulation using data from the US automobile industry and analysis illustrated that 

SN’s are truly CAS that emerges over time. A high-level sensitivity analysis suggested how such 

a research framework could be utilized for helping policy or decision makers analyze and build 

insights. The present version of the model and the framework has established a core set of 

fundamentals on which we expect to build on. Quoting Choi and Hong (2002), “if we are to truly 

practice management of supply networks, we need to understand the structure of supply networks 

and be able to build theories of supply networks”. In this paper we have taken a step further 

towards that endeavor.   
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CHAPTER III 

 

UNDERSTANDING THE GROWTH AND EVOLUTION OF SUPPLY NETWORKS 

Abstract 

Little is known about how supply networks grow, evolve and adapt. To study this complex 

phenomenon we utilize a theory-based modeling framework that combines aspects of industrial 

growth theory, network theory, market structure, game theory, and complex adaptive systems 

theory for modeling the growth of supply networks. Specifically a generic rule-modeling 

framework is introduced in this chapter that specifies categories of rules describing behavior of 

the fundamental components of a complex adaptive supply networks, i.e., the environment and 

the firm. The framework is implemented as a multi-paradigm simulation that utilizes software 

agents and combines discrete time-discrete event formalisms. This allows us to simulate different 

network structures in order to evaluate the possible causes behind the evolution of different 

topologies. We have developed a simulation model using data and parameters from the US 

automobile industry. Our analysis suggests that the generated industrial growth curve is similar 

to that of published empirical results, validating the generic rule-modeling framework. 

Interestingly, these results illustrate complex adaptive system properties such as perturbation 

effects and possible chaos. We discuss the possible use of these results for understanding policy 

implications for a Supply Network system such as the effect of not increasing a firm’s internal 

capacity fast enough in a dynamic environment. 
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Introduction 

Many different forms of supply networks exist supporting a variety of industries, but there is a 

dearth of research that provides explanations for the observed diversity in the network structures, 

and the processes that govern the emergence, growth, and evolution of these over time (Harland, 

et al. 2002). For example, what were the conditions or “rules” that led to the growth of a flat, 

shallow florist industry supply network as compared to a deep, structured, hierarchical 

automobile industry supply network1? Policy makers often create laws and regulations with a 

vision that such rules will lead to the evolution of certain types of stable supply network 

structures. However, unanticipated changes in market forces faced by most supply networks 

often negate such intentions. From a policy maker/strategist’s point of view, the impact of these 

dynamic forces on the growth and evolution structure of networks is interesting and challenging 

(Choi and Hong 2002). Unfortunately it has been extremely difficult to forecast with any degree 

of certainty the implications of such rules or how industry/supply network structures will evolve 

given these policies (Choi, et al. 2001).  

 

For example, in 1996 the US Congress passed the Healthcare Insurance Portability and 

Accountability Act (HIPAA) that mandated adoption of a set of regulations relating to standards 

and requirements for the electronic submission of health information. One of the intents of 

HIPAA was to eliminate the wide variety of reporting requirements set by the multitude of 

healthcare providers and insurance payers. The expectation was that implementation of this act 

would eliminate the cost of the intermediators clearinghouses, which convert the diverse forms 

from one structure to another. HIPAA, while projecting significant long-term savings for the 

total healthcare system, completely ignored the fact that most local providers did not have the 

resources to implement the changes. Facing a significant danger to their livelihood, 

                                                 
1 In USA, florist industry has a vast number of retail outlets; each assembling and selling flower arrangements with a 

correspondingly vast number of suppliers. Their supply network is primarily composed of three tiers: outlet-

distributor-grower. The automotive industry, on the other hand, is composed of a few major assembly plants, many 

direct suppliers, and a multitude of lower-tiered suppliers. Some researchers may argue that the two industries are 

quite different: one primarily behaving as a distribution industry, and the other more as a provisioning industry 

dealing with completely different products and conditions surrounding the product. But the issue of interest for our 

work is not the exact nature of the industries but the “rules” behind why the networks evolved the manners they did. 
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clearinghouses stepped in to provide a HIPAA compliant information standard for the healthcare 

providers. Thus, instead of eliminating the clearinghouses, the position of intermediaries in the 

supply chain was strengthened (WebMD 2004).  

 

There are other examples where tiers in a supply network have dramatically changed the “rules” 

of the network. The classic example of this is the effect of Microsoft and Intel on the IBM 

personal computer supply network, where the suppliers went form a low power position to  

dominating the supply network. A more recent example is the logic products industry (Lewis 

2000). It was predicted that given the regulations and state of the industry, logic-products (used 

for designing circuits) would die out and that the industry would vanish. What has happened is 

completely the opposite: with the adoption of new strategies to reduce logic device prices to less 

than 25 cents, the industry has never been healthier. In fact, due to limited supplies, now 

suppliers control delivery, forcing customers to experience extended lead times, Controlled 

Order Entry (COE), and higher prices.  In other words, a network tier that was written off as 

“dead” changed a “rule” and, as a result, has dominated the supply network.  

 

The previous examples show the need to understand growth mechanisms in supply network to 

understand the possible evolutionary path a supply network may take. The fundamental concept 

of a supply network is that of a group of firms engaged in activities toward a shared goal 

(Ganeshan 1999, Simchi-Levi, et al. 2000). While such firms may have a shared goal, there may 

be (and typically are) different levels of rewards allocated to each member in the supply network 

because each member is an autonomous unit, allowed to make independent decisions. Hence, 

firm behavior in such a market (Kotler 1997) is driven by individual policies and strategies, 

while the overall market may be constrained by governmental regulations or industrial norms. 

Thus any study related to the growth and evolution of supply networks must capture the 

individual firm’s behavioral dynamics as well as the structural dynamics of the linkages between 

individual firms, while keeping in mind the influence of the environmental conditions.  

 

While the outcome of every decision cannot be known in advance with certainty, an approach 

where different policy scenarios can be modeled and simulated over time for different conditions 

may reveal important characteristics of the dynamics of the network structure. What is needed is 
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a framework to understand the evolutionary mechanisms of an emergent network of firms by: 1) 

capturing rules (policies, strategies), 2) modeling such rules within a framework that is capable 

of evolving, and 3) simulating such systems over time to observe what structures evolve for a 

given set of rules/conditions.  

 

Our paper introduces a generic rule-modeling framework based on a unified model of supply 

network (UMSN, see Chapter II for details). This framework aids in capturing the structural as 

well as the behavioral dynamics of supply networks in order to provide a way to study chaos, 

complexity, order, and emergence (Schuster 2001). We simulate the time variant behavior of 

supply networks in order to demonstrate that complex networks can emerge from simple rules 

(policies/strategies). As an investigative example, we simulate SN growth using data and 

parameters from the US automobile industry over the last 80 years and identify the fundamental 

set of “rules” that led to the growth and evolution in supply network structures. Through our 

experiment, we show that the growth and evolution of such networks can be a function of 

environmental policies and strategies, as well as each firm’s individual characteristics. Based on 

the network evolution patterns we then suggest possible implications for practicing managers. 

 

The remainder of the paper is organized as follows. Section II provides a review of past 

modeling and analysis techniques and their limitations in addressing the research questions. It 

then introduces the UMSN. Section III presents the conceptual framework and the corresponding 

rule-based computational model for supply networks. Section IV presents the research 

methodology, i.e., a multi-paradigm simulation approach for implementing the framework with 

an overview of the software agent technology used to operationalize the framework. Section V 

presents experiments completed on the simulator. Section VI presents the experimental results. 

Finally, Section VII summarizes results and outlines future research. 

 

Modeling Growth Dynamics of Supply Networks 

Supply networks are complex and bi-directional, having parallel and lateral links, loops, bi-

directional exchanges of materials, money, and information (Harland, et al. 2002).  Historically 

supply networks have been viewed as centralized static networks (Parunak and Vanderbok 
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1998), where research has focused on simplified, linear flow of materials, money and 

information using a more logistical or operational perspective (Choi, et al. 2002, Choi and Liker 

2002, Heragu, et al. 2002, Parunak, et al. 1998). In the past, supply network research has 

employed modeling techniques that analyze inventory oscillation issues, demand amplification 

(bullwhip effect) and other flow (material/money and information) related issues. Table 3 

summarizes the past efforts. 

 

Table 3: Past modeling and analysis techniques (also in Chapter II) 

Area Sample Articles Remarks 
System Dynamics and Continuous 
time differential equation modeling 

Forrester (1961), Towill et.al (1991) Analyzing flow in supply chains 
using first order and second order 

differential equations 
Discrete time differential equation 

modeling 
Porter and Taylor (1972), Porter 

Bradshaw (1974), Porter and 
Daintith (1976) 

Modeling supply chains using 
discrete time differential equation 

model 
Discrete event simulation Ho and Cao (1992), Cao (1991) Event based analysis of supply chain 

interactions 
Operation Research Techniques Pyke and Cohen (1993), Altiok and 

Raghav (1995) 
Analysis of operational aspects of a 
supply chain, such as stock levels 

etc. 
Agent Based Techniques Parunak (1998), Kohn et.al (2000), 

Lin and Lin (2002) 
Analysis and optimization of supply 
network flow of material money and 
information using software agents 

 

 

These approaches typically assume a static supply network structure and focus on optimizing the 

flow within the network. This inherent assumption of a static network structure is limiting when 

studying evolutionary dynamics of supply networks, such as growth and evolution phenomenon 

of both node and network structures (Parunak and Vanderbok 1998). In actual supply networks, 

the number of firms and the linkages between firms do not remain constant. Our model addresses 

these limitations. 

 

Unified model of Supply Networks (UMSN) 

UMSN takes an inductive approach (See Chapter II) and suggests that growth and evolution in 

SN’s are governed by simple fundamental rules that can give rise to patterns of emergent 

behavior. The rules are Darwinian in nature (survival of the fittest), with the growth and 
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evolution process being composed of 1) birth and death of firms, that are governed by the 

capacity and fitness of firms to play specific roles in the SN, 2) creation and deletion of linkages 

between firms in the SN that are based on environmental conditions and individual node 

behavioral rules, and 3) node driving dynamic reconfiguration of the existing linkages as the 

environment changes. The model draws from four existing theoretical frameworks (See  

Table 4). 

 

Table 4: UMSN Theoretical Lenses 

Theory Lenses Characteristics of the SN model 
 

Issues not addressed 
 

Reference 
Industrial growth 
theory (IG) 

Defines at a macro level: 
• Growth & Evolution 
• Emergence 
 

• Exact representation of 
SN growth, evolution and 
emergence 

• Individual behavior of 
nodes 

(Utterback and Suarez 
1993, Utterback 1994) 

Network growth 
theory 
 
 

Exact mathematical 
representation as bi-directional 
graph 
 
Macro framework for node-to-
node interaction rules, i.e. 
Preferential attachment (PA) 

• Manifestation of the 
preferential attachment 
(PA) rules for SNs  

 
 

(Barabasi, et al. 2000, 
Newman 2003) 

Market structure, 
microeconomic and 
game theory 
 

Exact manifestation of PA  
Types of markets, competitions 
Type of game  
Cost set up rules 

• Structural dynamics 
• Co-evolution 
 
 

(Osborne and Rubinstein 
1994, Shy 1995, Tirole 
1989) 

Complex Adaptive    
Systems theory 
(CAS) 
 

Modeling structural dynamics 
Environment Birth and Death 
Co-evolution of the links in the 
network 

• NA 
 

(Holland 1995, Kauffman 
1995, Schuster 2001) 

 

 

1. Industrial Growth theory (Utterback and Suarez 1993, Utterback 1994) defines growth at 

a macro level. It specifically addresses how a population of firms in an evolving Supply 

Network dynamically changes with time going through periodic birth and death cycles. 

IG theory also defines how firms evolve their role-playing capability in a SN, but it does 

not suggest an exact representation that can be used in a computational model.  

2. Network Growth theory (Albert, et al. 1999, Albert, et al. 2000, Barabâasi 2002, 

Barabasi, et al. 2000, Newman 2003), fulfills this void by allowing the representation of a 

supply network as a bi-directional graph, with vertices representing firms in the graph 
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and the links representing relationships between firms. Network growth theory also 

suggests the concept of “preferential attachment rules (PA) (Barabâasi 2002) that governs 

how nodes in a network link to other nodes. The actual rules differ from domain to 

domain, and for the SN domain being studied we use market structure and game theory to 

manifest the concept of preferential attachment. 

3. Market Structure and Game theory (Osborne and Rubinstein 1994, Shy 1995, Tirole 

1989), defines the type of market, type of competition, internal node behavioral rules, 

such as bidding rules, subcontracting rules, and cost set up rules.  

4. Complex Adaptive System (CAS) theory (Holland 1995, Kauffman 1995, Schuster 2001) 

theory defines SN as a system comprising of simple entities, driven by the PA rules that 

evolves and emerges over time. By representing the SN as a CAS we can utilize the vast 

array of modeling and analysis techniques (Williams 1997) for investigating dynamic 

network growth. 

 

Research Model: Complex Adaptive Supply Networks 

Conceptual Model  

Environment
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N
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N
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Figure 6:  Conceptual Research Model 
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The unified model provides the conceptual structure (Figure 6) for representing a supply network 

as a system consisting of an environment i.e., the market or an industry in which firms (nodes) 

reside and interact to fulfill global market demands. Stochastic environmental conditions, 

individual node decision-making rules, and differential fitness growth of nodes, all contribute to 

structural and behavioral dynamics in the resulting SN, ultimately leading to growth and 

evolution of both nodes and links between nodes.  

 

In order to evolve, nodes must be fit for their environment. Each node in the environment has a 

notion of fitness, and nodes must be evaluated with regard to their fitness in the environment. In 

practice, fitness is multi-dimensional and extremely difficult to quantify (Kauffman 1995). In the 

absence of any agreed upon measure of firm-fitness in supply network literature, we borrow the 

concept of fitness from CAS and network theory, where researchers consider fitness as the 

ability of an entity to live and thrive in an environment. Kauffman (1971) has used such an idea 

in his work on the study of biological networks, where each gene in the genetic network has an 

associated absolute fitness value that changes over time, influencing the evolution process. 

Similarly, others (Barabâasi 2002, Barabasi, et al. 2000, Kauffman 1971) have used the notion of 

absolute fitness of a node to describe the growth behavior in complex real world networks like 

the Internet.  

 

Generic rule-modeling framework for supply networks   

One of the fundamental tenets of the unified model is that supply networks evolve over time 

driven by intra-firm and government level policies. The conceptual model can then be further 

expanded into a detailed “rule-based” modeling framework as shown in Figure 7 to formally 

capture such rules and policies. 
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Figure 7:  Rule modeling framework 

 

There are three primary constructs: 1) the environment in which the nodes interact, 2) the 

internal mechanisms used by nodes to make decisions, and 3) the co-evolution of these two 

constructs into various types of SNs.  

 

Environment: is where the supply network entities (nodes) reside As shown in Figure 2, the 

environment is characterized by conditions which can be divided into two parts: (i) Parameters, 

which specify the demand, timing, number of firms and cost related information, and (ii) 

Operational rules, which specify government regulation and policies, or business rules imposed 

on the system. Specifically from the UMSN we suggest five basic rule categories (see Figure 7) 

that help in modeling a wide range of supply network environments.  

 

1. Type of market  

Industrial organization theory (Shy 1995) typically considers two types of markets. A market can 

be regulated, in which case a regulatory body (like the government) decides how many firms 
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enter the market (e.g., Telecommunication Industry). On the other hand a market can have free 

entry where firms can decide whether they wish to enter the market or not. 

 

2. Type of market structure and competition 

Market structures2 can be classified into two principal categories: competitive and imperfectly 

competitive. The competitive market structure assumes that each firm set is its production 

quantity, while taking the market price as given, where the market price is determined by the 

intersection of the market demand curve and the industry's aggregate supply curve. In imperfect 

competition, firms follow a price setting behavior and the market can be set up as a 

monopoly/duopoly/oligopoly (Shy 1995).  

 

3. Birth and entry process of firms 

The birth function modeling is done based on classical microeconomic theory, such that 

whenever there is unfulfilled demand in the market, the market attracts new firms, who can join 

it and make profit (Mueller 2003, Tirole 1989, Varian 1990). Firms’ continue entering the 

market until unfulfilled demand in the market has been fulfilled and the market is cleared 

(Mueller 2003). The entry of a firm into the market can either be a “free entry” (firms decide 

when to enter and whether to enter at all) (Tirole 1989) or a regulated one (entry of firms is 

regulated by the government, or a regulator body, e.g. the telecommunication market) (Laffont 

and Tirole 2000). In case of a regulated entry the nodes generated by the evaluator start 

participating in the supply network. In case of a free market entry, the nodes decide whether to 

enter the market at all by taking into consideration the entry barrier (Tirole 1989, Weizsacker 

1980) of a market. 

 

4. Death of firms 

Firms that do not make sufficient profits over time have a steady decrease in their fitness value. 

If fitness falls below the environmental fitness threshold the nodes exit the environment (dies).   

The environment sets a global fitness threshold value that is independent of any individual node 

                                                 
2 Market structure is not the topology of the supply network. Rather it is the characteristics of the market place or 

industry the firms compete in. 
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fitness. It specifies the minimum fitness necessary for a node to survive in the environment. For 

example, if a firm receives no orders, it will eventually run out of cash and declare bankruptcy, 

i.e., it “dies”.  

 

To summarize, Environment E can be formally defined as the 4-tuple: 

 nullETVE ≠µζ= },,,,{  

where: 

   V is represented as the 3-tuple: 

   },,|,,{ RvnpvnpV ll ∈=  

    p  is product price  

    nl  is number of firms 

    v  is demand volume (v>0) 

  T is the environmental fitness threshold (evaluation criterion for nodes) 

� represents the evaluator in the environment (computational component). 

� is a k-tuple ={m1, m2,.. mk} 

      mk represents environment operational rules. 

 

Node Internal Mechanisms: Nodes (agents/firms/entities) represent goal-driven firms in an 

environment.  Every node has a pool of strategies it can use in making decisions to achieve their 

individual goals. Rules, which operationalize these strategies, are driven by objectives and 

constraints. An example of a simple objective and constraint for a node is to be a low cost 

producer while interacting with only one higher-level node. Generally, nodes make two types of 

decisions, (i) whom to communicate with in the environment (also partly driven by market rules) 

and (ii) how to strategically decide node specific factors, such as capacity and product price. For 

example, in the automobile industry assemblers and their suppliers have learned to communicate, 

and they are driven by internal strategies/policies such as just-in-time or lean manufacturing. 

These policies dictate the firm’s behavior in the supply network and result in connectivity 

between nodes. Nodes have a fair degree of autonomy in selecting strategies. Decision-making 

rules used in our research are based on previously described market structure (Shy 1995, Tirole 

1989) and Game Theory literature (Osborne and Rubinstein 1994).  

Thus an individual node ni can be represented by a four-tuple  
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ni = <O, C, S, F> 

where: 

O = {O1, O2, …Ok} represents a finite set of node objectives 

C = {C1, C2, …Ck} represents a finite set of node constraints 

S = {S1, S2, …Sk} represents a finite set of node strategies 

f = ~N [�f,0.8] represents the node fitness value (�f represents average fitness of 

incumbent nodes).  

f is initialized to a random value selected from a Normal distribution with mean value set to the 

average fitness of the incumbent nodes and a standard deviation (arbitrarily set to 0.8), thus 

accounting for the birth of both strong and weak firms. Individual node fitness is subsequently 

updated over time based on a fitness-updating rule built into each node (described later). 

 

In our model, each firm starts with a random selection of fitness value. While this may seem 

strange, as Utterback (Utterback 1994) points out, in a newly developing industry there is little 

certainty in determining what is fit and what is not. Hence, we use the surrogate of a random 

beginning fitness value.   

 

A node is born with an initial fitness and capacity as described by the environment birth rules. 

The following set of generic rules helps define the behavior of a node (Figure 2).  

 

1. Cost setting rule 

According to Industrial Organization theory (Shy 1995), when a node (firm) enters a market, it 

enters with a certain  production capacity (marginal capacity Q) and an associated internal cost 

structure (marginal cost of production). It has an associated sunk cost (Tirole 1989) (an amount a 

firm has to invest so as to set up its production capability). The marginal cost of production is 

typically modeled such that a firm has a certain cost up to its initial plant capacity and if it has to 

expand beyond that then it incurs a short-term expansion fixed cost (Tirole 1989).  

 

The cost curves can be of different shapes and some examples are shown in Figure 8 below. The 

curve on the left hand side for example indicates that, up to the marginal capacity Q the firm’s 

marginal cost of production decreases with increased demand (the marginal cost is for fulfilling 
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an incoming demand). But if the incoming demand is greater than Q, then the firm faces a 

monotonically increasing expansion cost. The right hand side cost structure on the other hand 

indicates that beyond the marginal capacity Q a firm faces an infinite increase in its expansion 

cost.    

 

Figure 8:  Possible Marginal Cost Structures of a node 

 

2. Bidding Rule 

How a node bids depends on two aspects, namely, what role it is playing in the network at that 

time and the underlying game. As mentioned by Utterback (Utterback 1994), firms in a market 

develop specialized roles over time. Thus when a node receives a request for proposal (RFP), it 

only responds to it if it is currently playing that role. A node potentially may play more than one 

role. The bidding strategy depends on what type of game the node is participating in. For 

example if, a node is playing a Edgeworth’s version of Bertrand’s pricing game (Edgeworth 

1925), it will try to bid with a price such that it is the lowest bid amongst all supplier bids.    

 

3. Production Rule 

As a node receives a demand it decides how much to produce. If the incoming demand is less 

than a node’s capacity, then it poses no problem and the demand is fulfilled. If the demand is 

greater than the node’s capacity then a node can either 1) expand on a short-term basis (it has 

some fixed costs associated with expansion) subcontract or it can 2) choose to partially fulfill a 

demand and face the unfulfilled demand penalty (set heuristically in our simulation). The firm, 

depending on whichever decision leads to greater profits/lower losses, makes the choice. The 

decision tree representation as shown in Figure 9 depicts a node’s response to an incoming 

demand. 
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d > c d < c G1
G2

Gn

Distribute demand
Edgeworth’s  version of
Bertrand’s pricing game

Evaluate Supplier quotes

Ac < Sc Ac > Sc

pn > pr pn < pr

Sub-contract

Manufacture c Temporary expansion

Manufacture d

Evaluate 
expansion

[Demand]

Evaluate Capacity

Quotes

pn Penalty of not completing an order 
pr Expected profit after fulfilling the demand 
AC Assembly cost 
SC Subcontracting cost 
D Demand 
C Current Capacity 

 

Figure 9:  Decision tree representation of a node’s production rule 

 

4. Subcontracting Rule 

The sub-contracting rule a node follows depends on the market structure setting. The 

characteristic of the underlying game is used for defining the node’s subcontracting rules.  The 

actual subcontracting rules will vary from industry to industry, depending on the market type, 

type of competition, and the type of product. Figure 10, shows the decision tree representation 

for this rule. As a firm gets an incoming demand it sends out a request for proposal (RFP). The 

exact nature of the RFP is decided by the underlying game and market. For example, in a 

perfectly completive market structure with n-player cournot oligopoly, a node can request for 

quantity bids and subcontract to the bidder (single supplier subcontracting) who quotes the 

highest quantity (at a price fixed by the sub contracting node). 
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Subcontract to 
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Figure 10: Decision tree for subcontracting rule 

 

 

5. Capacity expansion/contraction Rule 

A unique aspect of the research model is the notion of firm growing in size. This occurs through 

the process of expansion and contraction of a firm’s production capacity (akin to increasing plant 

size or constructing a new plant). As a firm improves its fitness over time and/or has been doing 

consecutive short-term expansion, then it may decide to expand its current capacity permanently. 

To do so it has to make a capital investment that results in a sunk cost. If a node has over 

capacity (or unused capacity) for successive periods, then it makes loses due to the presence of 

fixed asset costs such as maintaining an inventory, rent, labor etc. Under such circumstances, a 

node may want to downsize its current capacity. All capacity decisions impact node fitness. 

 

6. Learning Rules 

Firms learn as they interact in a supply network and adapt to the dynamism of the system all the 

time (Utterback 1994). For adapting to their environments and evolving, firms learn from their 

interactions with the environment and other firms.  To capture such ideas, learning mechanisms 

are embedded in the behavioral description of each node. Firms in a supply network generally 

learn from: 

1. Changes taking place in the supply network environment (environmental conditions) 

2. Effectiveness of the strategies used for supplier selection, bidding etc (node 

decisions). 
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A variety of learning models have been suggested, from the fields of artificial intelligence 

(Mitchell, 1997), computer science (Narendra and Thatcher 1995) and economics literature 

(Karandikar, et al. 1998, Roth and Erev 1995, Selten 1991). Depending on the industry and the 

supply network environment, particular learning models can be implemented for defining node 

behavior. For example, in a growing industry where firms are attempting to establish themselves, 

firms’ start off with generalized roles, typically making everything with internal capacity. Over a 

period of time, firms’ learn the roles they are good at playing and a Roth-Erev reinforcement-

learning model (Roth and Erev 1995) can adequately capture such a behavior, where the node 

associates a propensity with each role it can play. These propensity values then lead to a 

probability of playing a particular role. As a node grows in fitness while playing a particular role 

the propensity, and in turn the probability of playing that role, increases. Correspondingly the 

probability of playing other role diminishes over time. 

Fitness  

Over time, the fitness value of each node is evaluated and updated based on a fitness function 

defined for each node. If a node’s fitness value falls below the environmental fitness threshold, it 

dies, and it is removed from the environment. The initial fitness function created is based on 

simple profit and loss functions, i.e., in a given period; demand unfulfilled by a node is 

multiplied with a penalty margin (represents the penalty cost) and is subtracted from any profit 

the node made (demand fulfilled *profit margin). The fitness function also takes into account any 

inventory and other fixed costs incurred (such as rent, electricity), which is deduced from 

revenues. Thus, 

Ft = Ft-1 + �f, where �f is change in fitness in every demand cycle.  

�f = Df * (Pr – Mb) – (Du* Mp) – Mf  

  where: 

   Df is the amount of demand fulfilled 

   Pr is the price for each unit of demand filled 

   Mb is the cost per unit 

   Du is the amount of unfulfilled demand 

Mp is the penalty cost per of unfulfilled demand  

Mf is fixed cost (is directly proportional to the inventory capacity) 
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Due to the lack of any existing fitness model, we use a systematic approach by first considering a 

fixed fitness threshold for the entire duration of the study. In the future, the evolution of the 

fitness threshold itself should be studied.   

 

Co-evolution: is the result of the interaction of the other two constructs in the model; it is the 

network that forms as a result of the interaction between the environment and the internal 

mechanisms used by the nodes to adapt in this environment over time. The result of such co-

evolution, the SN structure, can be viewed as a bi-directional graph, G, with nodes representing 

the vertices and the edges defining the relationships between nodes. 

G can be defined as a two-tuple {n, R} such that: 

  n = {n1, n2, … nk} ^ ni = {nodes}, ni � null 

  R ⊆  n � n = {r1, r2, …, rj} ^ rs = <nx, ny> 

  Such that, (nx, ny ∈  n) ^ nx � ny  

 

R (relationship set) in the graph representation of a supply network captures the pair-wise links 

between all nodes. It begins as a null set, i.e., no supply network. As linkages between firms in 

the supply network emerge over time, thus populating the set R. R may also change due to 

reconfiguration of existing links between nodes. In every demand cycle a new configuration of 

the network is possible. We do not consider historical relationships between nodes but this 

should be studied in future research projects. 

 

Based on Utterback’s work on industrial growth parameters we are primarily interested in two 

network growth parameters for commenting on growth phenomenon of SN’s. As shown in 

Figure 4, connectivity in the network provides the information on supply network topologies 

formed during the growth process. We are interested in both period specific topologies and a 

time series of the evolution path of the connectivity patterns.  

 

The other macro output parameter we are interested is persistence of individual nodes during the 

network formation process. By knowing the birth and death time series for node’s in an 

environment we can derive a total mortality profile similar to Utterback’s industrial growth 

curves (Utterback 1994). 
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Research Methodology 

To study the factors affecting the origin, growth and time dependent emergence of supply 

network structures we have created a simulation model to operationalize the rule framework. 

Simulation is a widely accepted methodology for studying time varying properties of a system 

(Zeigler, et al. 2000) and we use simulation to capture node interactions in the supply network 

over extended periods of time. Output parameters, such as connectivity (network structure) and 

persistence (population dynamics) computed over time, can then be analyzed in terms of the 

chosen input parameters.  

 

Structure of simulation algorithm 

Figure 11 illustrates the process flow of the simulation. The simulation begins with the 

environment initializing itself and setting the external system parameters such as the start time of 

the simulation clock, creating a demand function, activating the evaluator component, and 

assigning values to all other operational conditions. After this initialization period, an initial 

number of nodes is generated (birth). The environment then starts a new demand cycle and the 

evaluator distributes the demand between all the nodes based on node decisions and the market 

structure settings specified in the environment.  
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Figure 11:  Typical simulation run 

 

The nodes interact amongst themselves driven by their internal mechanisms to fulfill the period’s 

demand. Finished goods are delivered upstream from subcontracting nodes. After profits and 

losses are calculated for individual nodes, each node updates its fitness value based on its 

specific fitness function. The evaluator periodically checks the fitness of all nodes in the current 

population and removes the unfit ones, i.e., those that have fallen below the environmental 

fitness threshold. Depending on the birth function, new nodes are inducted into the environment. 

The number of simulation demand cycles is set during the environment initialization process.  If 

the current demand cycle is less than the specified number of demand cycles for the simulation 

run, the environment continues generating demand. 
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Since we wish to study the long-term temporal behavior of a system that has both continuous 

(e.g., demand) and discrete (e.g., node interactions) features, building a multi-paradigm discrete-

time (Zeigler, et al. 2000), discrete-event (Cassandras 1993) simulation platform was a logical 

choice.  

 

The environment generates demand at regular time intervals of 1 demand cycle (discrete unit of 

time). It also carries out evaluation of existing nodes in the network at a periodic time interval (of 

say 12 demand cycles). Thus the environment is modeled as a discrete time component. Nodes 

have a hybrid nature and exhibit both discrete time and discrete event behavior. Inter-node 

interactions are event driven while fulfilling a demand order; but nodes periodically respond to 

environmental triggers, such as reporting their fitness (evaluation), or responding to periodic 

demands. 

 

Operationalization: The CAS-SIM tool suite 

To implement the multi-paradigm simulator, we have developed a tool suite called CAS-SIM 

(Complex Adaptive Supply Networks Simulator) (Pathak and Dilts 2004, Pathak, et al. 2004). 

This suite adopts an agent-based approach (Ferber 1999) to generate and capture dynamic 

interactions between nodes and the changing configuration of the network for each demand 

cycle. Parunak (Parunak, et al. 1998), Kohn et.al (Kohn, et al. 2000), Tesfatsion et.al 

(McFadzean and Tesfatsion 1999) and some other researchers (Lin, et al. 2002, Zhao and Jin 

2000) have successfully used such techniques for other problems. Each node in the model 

displays a goal directed behavior, and software agents (Ferber 1999) are used to implement this 

feature. Using a message passing protocol, agents can effectively simulate node-to-node 

interactions (effectively forming the graph linkages). Also, the software agent architecture 

supports, group and role modeling. This allows for the development of a range of rich and robust 

studies, such as studying group behavior of firms in a market, development of specialized roles 

or role adaptation process of individual firms. The implementation details of CAS-SIM have 

been discussed in details in (Pathak and Dilts 2004, Pathak, et al. 2004). 
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Simulating SN growth using data and parameters from the US automobile industry 

To demonstrate the capability of the model in aiding decision makers/managers understand 

supply network growth dynamics, we present the simulation of an actual industry. Utterback 

(Utterback 1994) has recorded the growth phenomenon of numerous 20th century industries in 

the US such as the automobile, television, and typewriter industry. For investigating the growth 

phenomenon in supply networks we have selected the well-documented US automobile industry 

in the 20th century. In the beginning of the century there were about 5-10 automobile 

manufacturers (Utterback 1994). The entry barrier to the car market was low and the market 

itself was not clearly defined. Over time, certain firms developed special roles in the form of 

assemblers (GM, Ford) and some developed supplier roles (Firestone, Delphi). Today there are 

few major domestic automobile manufacturers in US, but a large number of supplier firms 

organized in a multi-level tiered supply network structure. The automobile market grew into a 

deep hierarchical structure over time.  

 

By illustrating that the simulation results can match reality, the basic validity of the research 

model will be established. The rule framework can then be used for studying supply networks of 

different industries. By investigating the effect of different types of “rules” on supply network 

structures, we hope to shed light on reasons behind the diversity in structure of different real 

world supply networks around us.  

 

We will test if the origin, growth and emergence of supply networks are due to an interactive 

effect between environmental conditions and individual node’s decision-making rules.  

 

Environment Rules and Conditions for the Automobile Industry 

To simulate this industry we need to first identify the basic rules and conditions that drives this 

industry.  

1. Product setting 

We use the simplified product architecture for a passenger car shown in Figure 12. The 

information has been derived from Ford motor company’s website. We assume that the three raw 

materials combine in a fixed proportion to give rise to various parts of a car. Associated with 
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each part is a marginal cost (that includes the assembly cost). Raw material cost is set up as a 

uniform distribution, thus each firm has a different raw material price and hence marginal costs 

(see Appendix 7 for actual settings for cost).  

 

 

Figure 12:  Product Architecture used in the simulation 

 

2. Defining Rules 

The rule instantiation for the automobile industry based on the framework is presented in Table 

5, Table 6, Table 7 below.  

 

Table 5: Automobile Industry experiment, rule set up 

Rule Set Up 
Environment Node 

• Free Entry Market  
• Imperfect 

Competition  
• Oligopoly  

 

• Non-linear Cost Structure 
• Role based Bidding  
• Bertrand’s pricing game  
• Production (based on sunk cost and penalty)  
• Fitness based capacity expansion and contraction  
• Learning  

• Aspiration based Price learning  
• Propensity based Role Learning 
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Table 6: Automobile Industry experiment, parameter settings 

Parameter Settings 
Factors Levels Values Remarks 
Initial Number of Nodes 
(N) 

2 5,10 Based on Utterback’s work, the US 
Automobile industry started with firms 
between the numbers 5, 10 

Environmental Fitness 
Threshold (T) 

2  
(Low, 
High) 

0.25, 3.0 Due to the lack of an established measure we 
are assuming a low and high fitness threshold 

Capacity Expansion (CE) 2 
(Slow, 
Fast) 

6 demand cycles 
(expansion rate)/6 demand 
cycles (contraction rate), 
6 demand cycles 
(expansion rate)/12 
demand cycles 
(contraction rate) 

Firms expand their capacity based on their 
performance in successive demand cycles. 
Thus 6/6 indicates, that a firm will expand its 
current capacity by a fixed margin if it had 
made profits in previous 6 demand cycles and 
so on. Again the values are essentially 
heuristics.  

Role Learning (R) 2 
(Low, 
High) 

0.40, 0.15 Again we use heuristics for selecting low and 
High values. We essentially use a Roth-Erev 
propensity based learning model for modeling 
Role learning in individual firms and closely 
spaced propensity values for different roles 
result in High role learning. 

Demand NA Normal distribution with 
increasing mean (Ward’s 
automotive report, 2002) 

We use actual demand data from last 80 years 
in the US automobile industry. 

Periodicity of evaluation NA Every 12 demand cycles Annual evaluations, each demand cycle 
corresponds to a month 
 

Individual Node Fitness NA To begin with mean is set 
to 0.5 with a arbitrarily 
high standard deviation of 
0.8 

Sampled from a Normal distribution with 
average fitness of incumbent nodes as the 
mean.  
 

Total time of simulation NA 960 demand cycles Corresponds to 80 years (12 months *80 
years= 960 demand cycles) 
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Table 7: Automobile Industry experiment, List of experiments 

List of Experiments 

1. a. Initial number of nodes N=10   
 

b. Environmental threshold (T)=0.25 (Low), 3.0 (High),  
 

c. Capacity Expansion (CE) 
Slow (expansion after 6 positive growth cycle and contraction of 
capacity after 7 negative growth cycles)   
Fast (expansion after 6 positive growth cycle and contraction of 
capacity after 12 negative growth cycles) 

 
d. Role learning propensity ( R ) 

Low (difference between manufacturer role propensity and 
supplier role propensity initially set to 0.15: heuristics) 
High (difference between manufacturer role propensity and 
supplier role propensity initially set to 0.4: heuristics) 

 

Full Factorial Design: 8 
experiments (30 samples each) 

2. a. Initial number of nodes N=10   
 

b. Environmental threshold (T)=0.25 (Low)  
 

c. Capacity Expansion (CE) 
Uniformly vary from Slow to Fast:  6/6, 6/9, 6/11, 6/12 

 
d. Role learning propensity (R) 

High (difference between manufacturer role propensity and 
supplier role propensity initially set to 0.4: heuristics) 

Sensitivity analysis 

 

3. Output Parameters 

The primary parameters that will be recorded during the simulation experiments are node 

mortality, the demand profile and the node capacities over time (persistence parameters) along 

with structural growth of the SN (connectivity time series).   

4. Experiments 

Based on Utterback’s work on the automobile industry (Utterback 1994) we selected four 

factors: two environmental settings (initial number of nodes, Environmental threshold) and two 

node behavioral rules (Capacity expansion of individual nodes, Role learning) that are assumed 

to have affected the growth process in the automobile industry significantly. As shown in Table 

5, Table 6, Table 7 each factor has two levels thus giving rise to 16 possible experiments. Initial 

experimentations with initial number of nodes (5/10) did not yield any significantly different 

system behavior. In subsequent experiments we started with 10 initial nodes. This reduced the 
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number of experiments to 8 (collecting 30 samples for each experiment). In this paper we present 

results from these set of experiments (240 samples in total) (shown in Table 5). We further 

experimented with the sensitivity of the capacity expansion (CE) parameter on the overall system 

behavior.   

 

Results and discussion 

We observed similar growth trends in our SN simulations as Utterback’s empirical results on the 

automobile industry. We observed the following results: 

 

Connectivity Patterns (Supply Network Topologies) 

We use a novel categorization scheme based on network theory, graph theory and SN literature 

to come up with a classification scheme for SN structures as shown in Table 8. 

 

Table 8: Categories of SN structure 

Same as hierarchical except usually such 
a network deals with a very dissimilar set 
of products usually a group of them 
(Film Production)

Tree/ directed acyclic graphs 
(DAG)

6- Starburst

Every firm plays a dual role of 
manufacturer and supplier (Hoteling SN)

Ring topology5- Federated

Manufacturers and multiple tiers 
assembling one common product 
(Automotive Industry)

Tree/ directed acyclic graphs 
(DAG)

4- Hierarchical

Multiple manufacturers multiple supplier 
SN, with depth of 1 (Florist)

Tree/ directed acyclic graphs 
(DAG), with max depth of 1

3- Heterogeneous

Multiple tiers exist but every firm has 
exactly one supplier below it (Petroleum 
Industry).

Maximum in and out degree of 1 
for any node in the graph

2- Linear

No tiers exist, every firm is a 
manufacturer
(Dell)

Maximum depth of 11- Star

No SN is formed as no firms are willing 
to play the role of a manufacturer 

No edges are formed in the graph0- No Structure

SN Structure descriptionGraph Theory classificationSN Structure category

Same as hierarchical except usually such 
a network deals with a very dissimilar set 
of products usually a group of them 
(Film Production)

Tree/ directed acyclic graphs 
(DAG)

6- Starburst

Every firm plays a dual role of 
manufacturer and supplier (Hoteling SN)

Ring topology5- Federated

Manufacturers and multiple tiers 
assembling one common product 
(Automotive Industry)

Tree/ directed acyclic graphs 
(DAG)

4- Hierarchical

Multiple manufacturers multiple supplier 
SN, with depth of 1 (Florist)

Tree/ directed acyclic graphs 
(DAG), with max depth of 1

3- Heterogeneous

Multiple tiers exist but every firm has 
exactly one supplier below it (Petroleum 
Industry).

Maximum in and out degree of 1 
for any node in the graph

2- Linear

No tiers exist, every firm is a 
manufacturer
(Dell)

Maximum depth of 11- Star

No SN is formed as no firms are willing 
to play the role of a manufacturer 

No edges are formed in the graph0- No Structure

SN Structure descriptionGraph Theory classificationSN Structure category
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We observed the three types of structure for the supply network that is so widely accepted in the 

literature. But along with the hierarchical structure we also observed two different types of 

network topologies; namely, star shaped (One single manufacturer/consumer and a single tier of 

suppliers) and linear supply network topologies (multiple tiers in the network but maximum out 

degree of the graph is 1) (See Figure 3 in Chapter II).  

 

We went a step further and plotted a categorical time series that illustrates the evolution of the 

topologies for different values of capacity expansion parameters (sensitivity analysis). We 

observed that the capacity expansion and contraction rate changed for individual firms the 

topology evolution pattern changed (Figure 13). When firms were allowed to expand fast and 

contract slowly, the network quickly settled into a star shaped structure and remained there (time 

series in Figure 13 with CE =6). This made sense because as the market demand grew, existing 

firms matched demand resulting in a stable supply network. But as the expansion rate slowed, 

some firms could not grow their capacity (time series in Figure 13 with CE =9, 11 and 12), 

which in turn reduced their fitness in the role of a manufacturer and finally forced them to start 

adapting to other roles (due to the role learning effect). This resulted in the formation of both 

linear and hierarchical topologies. Linear and hierarchical networks were more prone to market 

demand which leads to the topology changing with time as shown by the oscillatory patterns 

(Figure 13). 
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Figure 13:  Connectivity Time series (Network Topology evolution) 

 

The research implications of these results definitely suggest that Supply Networks are Complex 

Adaptive Systems (CAS) as the network evolves based on underlying interaction of rules and 

conditions. The evolution path changes according to changing conditions (for example the 

varying of capacity expansion parameter) in a non-deterministic yet ordered manner. As a 

manager, having such information about the sensitive dependence of your network on underlying 

parameters can be important. For example, by knowing the effect of changing capacity 

expansion/contraction on the network topology a manager can choose whether to expand or 

contract, and if so how fast or slow should the firm proceed.  

 

The other interesting aspect of the topology evolution results are that it shows which kind of SN 

structure is suited for a particular set of conditions. Such kind of knowledge can be immensely 

beneficial as has been shown by companies like Dell Computers (Dell operates on a star 

topology) (Simchi-Levi, et al. 2000). Before Dell came in the market the PC industry was much 

more hierarchical. Dell came in with a star topology and the change worked very well. On the 

other hand some topologies may be best suited for the current conditions and that it should not be 

changed. The US automotive industries (COVISINT) effort of changing from a hierarchical to 

star like topology is a classic example of a failed design effort (Joachim and Moozakis 2001). 
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Analysis of the 240 samples with respect to the type of structures formed yielded some 

interesting observations. Figure 14 clearly suggests the effects of the three independent variables. 

For example, under low environmental threshold conditions, 48% of network topologies formed 

are star shaped networks. The same number drops down to a mere 2.5% when the environmental 

threshold is high. The explanation for this observation is intuitive as low environmental 

thresholds create an easier environment for firms to survive and establish themselves. In the 

process, they can achieve higher profits by in-house development and, hence use less 

subcontracting.  

 

When the environment threshold is higher (indicating a tougher environment to survive in), firms 

are willing to experiment with newer roles, and, in the process, subcontracting occurs and tiers in 

the network are formed. This is the reason for 53% of the structures formed under higher 

environmental threshold condition having hierarchal topologies.  

 

We also observed that in some simulations no supply networks were formed, as no single firm 

was willing to play the role of an assembler. This usually resulted in many firms playing the 

suppliers role in the environment but no one actually getting the incoming demand, which is for 

cars and not for sub-parts. While one may argue that such a condition may never happen in the 

real world, as some firm will always step in to play the role of an assembler, a simulation 

environment illustrates the dynamic landscape through which a supply network evolves. From a 

policy makers perspective, having such knowledge that the current conditions in the environment 

may lead to periods with no clearly defined leader may be beneficial information for establishing 

dominance and capturing the market.     
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Figure 14: Types of topologies observed for all the 240 samples 3 
 

Persistence Patterns (Total mortality) 

We plotted the total number of nodes present in the network over the entire duration of the 

simulation. The resulting plot was similar to the skewed bell shaped curve as predicted by 

Utterback (Figure 15). Thus we observed the classical pattern of entry of numerous firms during 

the initial growth phase of the market, but as the market stabilized, firms that did not adapt their 

roles and increase their fitness, were eliminated. As time passed, existing firms grew their 

capacities to meet the market demand and fewer firms entered the market to become part of the 

supplier network.  

 

                                                 
3 There were no category 3 (heterogeneous) structures were observed, hence the figure has category o, 1, 2 and 4 
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Figure 15:  Supply Network Growth Curve comparison with Utterback’s ideal growth curve 

 

Bimodality of SN growth curve 

Surprisingly, the sensitivity analysis experiments (see Table 5) showed that SN’s are very 

sensitive systems as seen from the resultant plot of the population dynamic curves (Figure 16). 

As the Capacity Expansion (CE) parameter was systematically changed the population dynamic 

curve (shown by the black line) significantly showed different evolving pattern and modes. 

Unimodality of the growth curve was no more a foregone conclusion; there were multi-

modalities.  
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Figure 16:  Node Mortality Profiles (also presented in Chapter II) 

 

Looking at Utterback’s data (Figure 15) confirmed that multi-modalities were not an artifact of 

the simulation. Utterback’s raw data actually shows a mode at around the year 1950 right after 

the World War II period. We further investigated our simulation results paying close attention to 

the actual growth process. The answer lay in the capacity expansion/contraction of individual 

firms. We found out that if an existing incumbent in the market dies and the remaining 

incumbent firms do not expand fast enough to fulfill that demand, then new firms join the 

market, giving rise to multiple modes over periods of time. This is akin to saying that if Daimler 

Chrysler went broke today and GM and FORD do not step in to fulfill the demand then newer, 

smaller firms would enter the US automotive markets to capture the demand. 

 

The managerial implications of this result are significant. Utterback presents his data for a period 

of about 60 years. We have simulated SN growth using data and parameters from the US 

automobile industry for an 80-year simulation time frame. Some of the dramatic increase in the 

number of firms towards the end of the simulation as shown in Figure 16 (Capacity Expansion 

factor CE=11), implies that long-term behavior of supply network systems can be dramatic and 

very sensitive to parameter changes. Assuming static network structures without understanding 
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the effects of individual factors and their combined effect on the resulting supply network, can 

lead to misleading results.  

Predicting system evolution trajectory 

One of the benefits of the unified model is the possibility of using established analysis tool sets 

from CAS and Network theory for analyzing and predicting growth behavior of supply networks. 

One such analysis technique is the reconstruction of attractors (Schuster 2001) in a system. 

Attractors can be reconstructed (Williams 1997) by plotting the number of nodes present in one 

time cycle with respect to number of nodes present in the next time cycle. We reconstructed the 

attractors for the four sensitivity analysis experiments (see Table 5). Figure 17 clearly shows an 

attractor for all the cases, as the plots seem to follow an oscillatory and cyclic pattern. For 

example with CE =11, it is clearly visible that the system trajectory oscillates around a fixed 

attractor. Such kind of analysis can show a manager the possible evolutionary path of the supply 

network system. A manager can utilize such knowledge to make strategic long-term decisions as 

to whether to enter a new market or exit a market.      
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Figure 17:  Attractor reconstruction as a predictive tool aiding in policy decisions 
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Getting back to our original research question, we have been able to show that growth in SN is 

not due to just environmental factors or the decision making process of individual nodes alone; 

both combine and thus growth is a co-evolving process.  

 

Conclusion and Future Work 

In this new era of fast changing technology and complex market dynamics, it is becoming more 

and more evident that managers are not adequately informed about the systems (SN) they 

manage (Lee 2004). We have taken a novel approach of looking at SN’s from a growth 

perspective and use UMSN. We present a rule based implementation framework based on the 

unified model that can capture real life supply networks. We use an agent based simulation 

model to capture the growth dynamics and helps in creating an investigative framework that will 

allow decision makers/policy makers to capture rules governing their system and study the 

impact of these various rules and conditions over an extended period of time. We have not only 

been able to match the existing industry structure and growth characteristic but also been able to 

provide insight on how these systems grow based on the co-evolution process of both 

environmental factors as well as local decision-making rules. 

 

In future, we will be characterizing multiple industries. We are currently in the process of 

statistical characterization of the full factorial design experiment on the automobile industry 

experiment data and hope to add formal chaos theory analysis so as to make our model 

predictive.  
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CHAPTER IV 

 

ANALYZING THE EMERGENCE OF COMPLEX ADAPTIVE SUPPLY NETWORKS 

Abstract 

Lately researchers have acknowledged the need to research supply networks in order to find out 

how they grow and evolve as a complex adaptive network with time. This paper uses the unified 

model of supply network in conjunction with the generic rule-modeling framework (see Chapters 

II, III) for investigating the growth dynamics in SN’s using data and parameters from the US 

automobile industry over the last 80 years. The approach taken is inductive in nature where in we 

use a simulation-based environment to grow supply networks over time, observing patterns of 

emergence. Using rigorous statistical analysis on the simulation result data, we show how an 

industrial supply network grows and emerges. The paper reports our simulation findings 

presenting evidence for SN’s complex adaptive system nature. Significant ordered interactions 

between local behavioral rules and conditions were observed to be present in supply networks, 

which seem to control the growth in such system. Especially parameters such as capacity 

expansion of individual firms, the type of environment (easy to live/harsh) and ability of a node 

to learn new roles, showed significant ordered interactive effects, while affecting the type of SN 

structure formed as well as the population dynamics over time. The paper discusses the 

ramifications of the simulation results in the general context of managing a supply network and 

provides insights for managers and decision makers.    

 

 

 

 

 

 

 

 



 68

Introduction 

The recent rise of firms like Google (Barabâasi 2002) and Dell (Simchi-Levi, et al. 2000) in the 

last decade, the dotcom meltdown (Joachim and Moozakis 2001), and the most recent exit of 

IBM from the PC industry (Bulkeley 2004) all hint at underlying dynamics of an ever-changing 

industrial environment. Supply Networks (SN) form the backbone of any industry (Simchi-Levi, 

et al. 2000) and hence are equally affected by the dynamic events occurring in the environment. 

In this paper we address one of the most important questions with regards to SN dynamics and 

emergence that has been focused on lately in the Supply Network (SN) literature, i.e., how do 

supply networks grow with time? We present detailed simulation based computational 

experiments and analysis that helps in identifying the factors controlling the growth process in 

supply networks. We discovered that SN’s grow based on an ordered interaction of a very few 

local behavioral rules in the system. There are clear benefits of having information on what these 

rules are and in what order do they combine, from a practicing managers/decision maker’s point 

of view; such information would allow them to manage critical parameters and be more efficient 

while managing their Supply Networks, (Harland, et al. 2002).    

 

Past research in the area of supply network has largely focused on issues of supply chain design, 

purchasing, buyer-supplier relationship, and use of information technology for inter-firm dyadic 

relationships (See (Choi and Liker 2002) for an overview of these areas). More recently, 

researchers have acknowledged the need for investigating supply network as a system (Choi, et 

al. 2001, Choi and Hong 2002) comprising of complex bi-directed networks, having parallel and 

lateral links, loops, bi-directional exchanges of materials money and information. A system level 

view of supply networks encompasses a “broad strategic view of resource acquisition, 

development, management and transformation” (Harland, et al. 2002) and helps in understanding 

how these different components interact to give rise to an overall SN system behavior.  

 

Our previous research developed a unified model of supply networks (see Chapter II) that 

borrows from four different theoretical lenses, namely, Industrial growth theory (Utterback 

1994), classical network theory (Newman 2003), market structure theory (Shy 1995), (Tirole 

1989), game theory (Osborne and Rubinstein 1994) and complex adaptive systems theory 

(Schuster 2001), (Kauffman 1995), (Holland 1995). The model encompasses a system view, and 
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provides a framework for investigating and understanding the structural and behavioral dynamics 

of SN systems.  

 

The focus of this paper is to present the analysis of the dynamic emergence process that can be 

observed during the simulation of an industry such as the US automobile industry (presented in 

Chapter II). We use statistical techniques such as linear multivariate analysis, and multivariate 

analysis for categorical data (Agresti 2002) to look for interactive effects and factors controlling 

growth and emergence in the SN systems. We draw general conclusions from these analysis 

results and show how SN’s emerge.   

 

Background 

We start this section by presenting the general research approaches that have been used for 

investigating dynamics in SN’s arguing for the need to take a different research approach to 

study growth in SN’s. Based on this discussion we highlight the limitations of existing SN 

models and motivate the need for a new theoretically grounded model of growth oriented SN’s.   

 

Deductive versus Inductive research methodology 

Most of the recent research in the area of dynamic SN models, have taken a deductive approach 

(Choi, et al. 2001, Choi and Hong 2002, Harland, et al. 2002). Usually this approach starts by 

suggesting a theory, building hypotheses, making observations and confirming the observations 

by various statistical and logical analyses (Trochim 2001). For example, Choi et.al (Choi, et al. 

2001), use Complex Adaptive System theory (Schuster 2001) to represent SN as a dynamically 

emergent system. They then suggest propositions on how individual firm’s behave based on this 

theoretical framework. Subsequently they follow up with an empirical study in the automobile 

industry and try to confirm their hypothesis. One of the fundamental issues with such an 

approach is that the hypothesis building is meaningful only when the underlying domain is well 

known. Since the emergence (dynamic growth of patterns) phenomenon in any system is actually 

non-deterministic, we feel a deductive approach is limited in its ability to efficiently explore the 

entire range of possibilities driving the emergence dynamics of SN’s.  
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We suggest an inductive approach towards finding a solution to the research questions (Trochim 

2001). We start by making observations and identifying patterns of system behavior (in this case 

the dynamic emergence process of SN). We then build tentative hypothesis, which can lead 

toward theory development. For example, in this paper we present our simulation results 

(observations and patterns) using data from the US automobile industry. We then suggest 

possible propositions based on these results and build logical inferences to explain possible 

system behavior.  Such an approach is inherently well suited for a problem of this class, where 

the underlying information about the domain is sparse. This inductive approach allows for the 

systematic investigation of the actual process driving growth in SN’s. 

 

Existing SN Models 

Static models 

Historically supply networks have been viewed as centralized static networks (Parunak, 1998) 

and most work done in this area (Burns and Sivazlian 1978, Forrester 1961, Ho and Cao 1991, 

Pyke and Cohen 1993, Riddalls, et al. 2000, Towill 1991) has focused on simplified, linear flow 

models of material, money and information (Harland, et al. 2002). These approaches typically 

assume a static supply network structure and concentrate on optimizing the flow within the 

network; hence they are unable to model the evolving structural dynamics of a supply network, 

which are essential for understanding the growth and evolution phenomenon. More recent 

approaches using agent-based modeling of SN’s also make this same assumption (Kohn, et al. 

2000, Lin, et al. 2002, Swaminathan, et al. 1997, Zee and Vorst 2005). This inherent assumption 

of a static network structure is limiting when studying evolutionary dynamics of supply 

networks, when the number of firms and the linkages between firms do not remain constant over 

time. 

 

Dynamic Models 

More recently Choi, Dooley and Rungtusanatham (2001) suggested a conceptual model of 

supply network as a complex adaptive system. Their model of supply network as a CAS 

considers firms in a supply network as agents driven by simple operating rules and fitness 
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criterion. The agents interact between themselves to co-evolve into emerging supply network 

structures. 

 

 The Choi model, though a right step forward towards developing a system-oriented model of 

supply networks is a very high level model, as it does not specify how the behavioral rules for 

the agents can be modeled. It is not clear how to exactly characterize different environments for 

a wide range of supply networks.  

 

Follow up studies by Choi and Hong (Choi and Hong 2002) and Harland et.al (Harland, et al. 

2002) have taken the deductive approach to identify key factors driving the dynamics of SN’s in 

the US automobile industry and the telecommunication industry in UK. These studies have 

essentially suggested that there are interactive effects in a SN environment that affects the 

growth process. But these studies suffer from the same problem that any deductive approach may 

have: Since the information about the underlying domain is sparse to begin with, results obtained 

from these models may not be representative for a general SN. Yet we think that the fundamental 

concept behind these models (considering a completely dynamic system) is a sound approach 

and we later suggest an alternate way of solving the problem.  

 

Emergent System Models 

A third body of research that does not directly deals with SN’s yet is important to consider is the 

emergent system research. Researchers from diverse disciplines as physics (Per Bak, Tang et al. 

1988), computer science (Holland 1995), network growth theory ((Newman 2003), for an 

excellent review), economics (Arthur 1999), and biology (Kauffman 1971), (M.Eigen 1971), 

(Neumann 1949) have suggested growth models to explain the diverse emergence phenomena in 

real world systems. These models suggest that real world systems are non-static, constantly 

growing and evolving over time. The growth and emergence process is governed by simple 

interaction rules between the entities in the system. Unfortunately none of these models can help 

with the actual rule modeling process in SN’s. The primary difference between these emergent 

systems and SN’s are that the SN rules are much more strategic and Darwinian in nature, with 

the growth and evolution process being composed of 1) birth and death of firms, 2) growth of 
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capacity and fitness of a firm to play a specific role in the SN, 3) creation and deletion of 

linkages between firms in the SN, and 4) reconfiguration of the existing linkages as the 

environment changes.   

 

So briefly summarizing, we observe that past SN modeling approaches are limited due to their 

static or their deductive nature, whereas the emergent system models cannot help with modeling 

rules and conditions associated with SN’s. The next section thus discusses the, unified model of 

supply network that borrows from some of these past works and presents a holistic and 

comprehensive platform that can help us in addressing the research questions.  

 

Modeling Emergence in Complex Adaptive Supply Networks 

The unified model of supply network (UMSN) suggests that growth and evolution in SNs, are 

governed by simple fundamental rules, that can give rise to patterns of emergent behavior. The 

UMSN combines four existing theory bases to provide a theory-based platform for modeling 

growth oriented supply networks (see Chapter II for detailed description). Industrial growth (IG) 

theory (Utterback 1994) helps in defining growth by specifying how firms are born and how they 

die in an evolving industrial landscape. The IG theory does not suggest an exact representation 

such that it can be used in a computational model. Network growth theory, fulfills this void by 

representing a supply network as a bi-directional graph, with vertices representing firms in the 

graph and the links representing relationships between firms. Network growth theory also 

suggests the general concept of preferential attachment rules (PA) (Barabâasi 2002), by which 

nodes in a dynamic network link to other nodes. For the SN domain we use a market structure 

theory and game theory lens to manifest PA. Market structure and game theory (Osborne and 

Rubinstein 1994, Shy 1995), defines the type of market, type of competition, internal node 

behavioral rules such as bidding rules, subcontracting rules and cost set up rules. But this lens 

does not specify how the SN as a system evolves and emerges with time. Complex Adaptive 

System (CAS) theory (Holland 1995, Kauffman 1995, Schuster 2001) lens defines SN as a 

system comprising of simple entities, driven by the PA rules. By representing SN as a CAS we 

can utilize the vast array of modeling and analysis techniques in chaos theory and other emergent 

systems research (Williams 1997) for investigating dynamic network growth. 
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Conceptual Model 

Conceptually (Figure 6) we model a supply network as a system consisting of two fundamental 

components: (1) an environment or a market in which (2) a group of firms (nodes) reside and 

interact to fulfill global demand. Stochastic environmental conditions such as a variable demand 

pattern, firm decision-making (subcontracting, bidding), and differential growth of firms (growth 

in capacity, fitness of firms etc), all contribute towards structural as well as behavioral dynamics 

in the resulting supply network (see Chapter III for detailed description). 

 

In addition to this, we model the notion of “fitness”. Firm fitness is similar to the idea of fitness 

of genes in a gene pool as suggested by Kauffman (Kauffman 1971). Fitness of a firm can be a 

multi-dimensional parameter. We model initial fitness as a uniform random value that a node in 

our model starts with and subsequently the change in fitness is a two dimensional function of 

profit and capacity. A firm in our model can increase its fitness by making more profit and can 

lose fitness by either suffering a financial loss or due to short term/long term expansion in their 

current capacity (akin to sunk cost). The fitness value of a node is evaluated and updated based 

on a fitness function defined for each node. The fitness function is based on simple profit and 

loss functions. In a given period, demand unfulfilled by a node is multiplied with a penalty 

margin (represents the penalty cost) and is subtracted from any profit the node made (demand 

fulfilled *profit margin). The fitness function also takes into account any inventory and other 

fixed costs incurred (such as rent, labor) and subtracts it from the overall profit. The fixed cost in 

the current model is operationalized by making it directly proportional to a node’s current 

inventory level.  
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Thus, 

Ft = Ft-1 + �f, where �f is change in fitness in every demand cycle (can be negative).  

�f = Df * (Pr – Mb) – (Du* Mp) – Mf  

  where: 

   Df is the amount of demand fulfilled 

   Pr is the price for each unit of demand filled 

   Mb is the cost per unit 

   Du is the amount of unfulfilled demand 

Mp is the penalty cost per of unfulfilled demand  

Mf is fixed cost (directly proportional to a node’s inventory level) 

 

Due to the lack of an existing fitness model, we take a systematic approach by first considering a 

fixed fitness threshold for the entire duration of the study. In the future, the evolution of the 

fitness threshold itself should be studied. If a node’s fitness value falls below the environmental 

fitness threshold, it is removed from the environment; it dies just like in an actual supply network 

where, if a supplier cannot meet financial obligations, they cease to exist. 

 

Generic Rule Modeling Framework 

The fundamental approach of any CAS based research is to identify the simple set of rules and 

conditions that interact to give rise to dynamic system behavior (Kauffman 1995). The UMSN 

builds around two fundamental entities; i.e., environment and the firm. We have developed a 

generic rule-modeling framework that can be used for characterizing the behavior of these two 

entities in a generic SN system. We provide a brief outline of the fundamental rule categories for 

these two entities in this paper. For details on the definition and implementation please see 

Chapter III and Appendix A.     

 

Environment: is where firms in a supply network reside. Based on Industrial growth theory 

((Utterback 1994) and market structure, game theory (Osborne and Rubinstein 1994, Shy 1995, 

Tirole 1989), there are five basic rule categories that help us to model a wide range of supply 

network environments: 
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Rule 1-- Type of market: - Whether a firm’s entry into the market is controlled by a 

regulatory body (regulated market) or is an internal decision of the firm (free market). 

Rule 2-- Type of competition: - Whether firms compete on quantity (perfectly 

competitive market) or price (imperfectly competitive market). 

Rule 3-- Type of market structure: - Whether the market is set up as a monopoly, 

duopoly or a oligopoly. In case of an oligopoly, whether the market is a cooperative 

or non-cooperative one. 

Rule 4-- Birth/Entry of firms into market: - How new nodes are born over time? Driven 

by fundamental microeconomic theory, if there is unfulfilled demand in the market 

new firms enter the market. 

Rule 5-- Death of incumbent firms: - How incumbent nodes die? Driven by CAS 

theory, if node’s fitness falls below environmental threshold then it is eliminated from 

the SN. 

 

Firms: Firms are goal-driven entities in a SN environment.  Every firm has a pool of strategies to 

use in making decisions to achieve their individual goals. Rules, operationalize these strategies. 

Behavioral rules for individual firms are based on previously described market structure (Shy 

1995, Tirole 1989) and Game Theory lens (Osborne and Rubinstein 1994). There are six 

fundamental rule categories for firms (for details see Chapter III, V and Appendix 1):  

Rule 1-- Internal cost set up: - This rule sets the internal cost structure of a firm. A firm 

has a marginal cost of production and a fixed cost for expansion.  

Rule 2-- Bidding: - This rule defines how a node bids. For example, if a node is in a 

perfectly competitive market playing a n person cournot oligopoly, then it bids with 

the highest quantity (based on Cournot’s quantity setting game), it can produce. 

Rule 3-- Production: - This rule defines how a node behaves when faced with an 

incoming demand. An example of a production rule can be, that a firm produces upto 

its marginal capacity and subcontracts the rest to a supplier. 

Rule 4-- Subcontracting: - This rule defines how a node subcontracts an incoming 

demand to its suppliers. Subcontracting rule is again driven by the underlying game 

being played by the node. For example, in the cournot oligopoly mentioned above, a 
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subcontracting node can subcontract the demand to a supplier and set a price 

depending on the quantity being supplied. 

Rule 5--  Capacity growth: - This rule defines how a node increases its internal 

capacity. We implement a simple “sense and respond” mechanism. A node monitors 

its fitness growth over time. If the node increases its fitness for a predetermined 

number of demand cycles then it expands the current capacity. Conversely, if the 

node does poorly for a predetermined number of demand cycles it contracts its 

capacity in order to reduce fitness loss due to fixed costs. 

Rule 6-- Learning Rules: - This rule defines how nodes in our model learn and adapt 

over time. Nodes learn primarily on two fundamental aspects (as identified by 

Utterback’s work) currently. They learn how to adaptively price their product and 

they learn which role to play in the current environment. We use an aspiration 

satisficing based price learning mechanism (Karandikar, et al. 1998) and a 

reinforcement learning mechanism (Roth and Erev 1995) for learning roles (see 

chapter III for a detailed discussion on why these learning models are suitable for this 

purpose).  

 

Research Methodology 

While it would have been ideal to actually observe a SN grow and emerge over time such a live 

testing is not possible due to limitations in terms of cost, and time. Simulation is a widely 

accepted methodology for studying such systems (Anderson 1999, Kamps and Masuch 1997, 

Zeigler, et al. 2000). Simulation provides insight, focuses efforts, eliminates large areas of the 

possible solution space, and helps in analyzing the system behavior.  

 

Since we wish to study the long-term temporal behavior of a system that has both continuous 

(e.g. demand) and discrete (e.g. node interactions) features, building a multi-paradigm discrete-

time (Zeigler, et al. 2000), discrete-event (Cassandras 1993) simulation platform was a logical 

choice. In the multi-paradigm architecture, some of the components of the model, such as the 

environment, fit a discrete time modeling (DTS) paradigm since the environment generates 

demand at regular time intervals of 1 demand cycle (discrete unit of time). The environment also 
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carries out evaluation of existing nodes in the network at a periodic time interval (of say 12 

demand cycles). Thus environment is modeled as a discrete time component. Nodes have a 

hybrid nature and exhibit both discrete time and discrete event behavior. Inter-node interactions 

are event driven while fulfilling a demand order; but firms periodically respond to environmental 

triggers, such as reporting their fitness (evaluation), or responding to periodic demands.  

 

Furthermore, because each node in the operational model displays a complex goal directed 

behavior, software agents (Ferber 1999) are used to implement this feature. Agent based 

modeling techniques have been successfully used for modeling supply networks in the past 

(Kohn, et al. 2000, Lin, et al. 2002, Swaminathan, et al. 1997). To implement the advanced 

multi-paradigm simulator, we have developed a tool suite called CAS-SIM (Complex Adaptive 

Supply Networks Simulator) (Pathak and Dilts 2004).  

 

Simulating Emergent Behavior  

For investigating the interactive effects of local node and environmental rules on the growth of 

supply networks we use data and parameters from the US automobile industry in the 20th 

century. The primary reason for selecting this industry was its very well known emergence 

pattern over the last 80 years (Utterback 1994).  

 

In the beginning of the century there were about 5-10 automobile manufacturers (Utterback, 

1994). The entry barrier to the car market was low and the market itself was not clearly defined. 

Over time some firms developed special roles in the form of assemblers (GM, Ford) and some 

developed supplier roles (Firestone, Delphi). Today there are few major domestic automobile 

manufacturers in US, but a large number of supplier firms organized in a multi-level tiered 

supply network structure (Parunak and Vanderbok 1998). The automobile market grew into a 

very deeply hierarchical structure over time.  

 

We used a simplified product architecture (see Figure 12 in Chapter III) for a passenger car with 

information derived from Ford motor company’s website. For details on the product architecture 

design and associated marginal cost settings, please see Chapter III and Appendix G.  
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Instantiating the Rule Framework for the US Automobile Industry 

Table 9 and Table 10 summarize the rule instantiation of the generic rule-modeling framework. 

We use the same basic rule categories described in the previous section. The settings are derived 

from Utterback’s empirical research on the US automobile industry in the 20th century 

(Utterback and Suarez 1993, Utterback 1994).   

 

Table 9: Rules/condition Instantiation for Environment 

Environment rules Rule Setting  
Type of market • Free Entry  

Type of Competition • Imperfect competition  

Type of market 
structure 

• Non-cooperative simultaneous Bertrand’s pricing game (Edgeworth’s 
version, with capacitated firms)  

Birth/Entry into market • If there is unfulfilled demand in the environment, new firms are born. Firms 
enter the market if they have a higher fitness than the weakest incumbent 
node after initial sunk cost adjustments (see Chapter V for details on this 
rule). 

Death/Exit from market • Firms die if over a period of time they cannot grow their fitness above the 
required environmental threshold. We use two different settings for 
threshold. High threshold (Harsh environment) and low threshold (easy to 
live environment).  
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Table 10: Rule Instantiation for firm’s behavior 

Firm rule 
categories 

Rule Settings  

Cost Set up • Marginal cost of production + fixed cost for expansion (step function). 
• The marginal cost of production is drawn form a uniform distribution and hence is 

different for each firm within a certain range. (See Appendix 7 for actual values used 
in the simulation) 

Bidding • Firms bid with their lowest cost they are willing to fulfill the demand for. This is the 
marginal cost of production and a profit margin that a firm charges on top of that. 

Production • If a firm cannot fulfill the entire demand then it incurs a penalty cost. Where as if a 
firm has to stretch beyond its marginal capacity, then it incurs a short-term expansion 
cost. A firm decides how much to produce depending on which of the two (penalty or 
the expansion) cost brings a higher return on investment (fitness growth) 

Subcontracting • Firms request for quotes for all the sub-parts from suppliers in the environment.  
• They then compare the in-house assembly cost with the in-house manufacturing cost. 

Whichever is less, decides whether they produce in-house or subcontract it. 
• The lowest price bidder is selected and awarded the demand. Subcontracting firm 

awards only up to the quantity a supplier firm bid for. If a single supplier cannot 
fulfill the demand, the subcontracting firm awards the remaining demand to other 
suppliers (based on their bid price).  

Capacity growth • Firm expands its capacity if it has a predetermined number of positive fitness growth 
cycles. 

• Firm similarly contracts its capacity if it has it has a predetermined number of 
negative fitness growth cycles.  

Learning • Price Learning: - Aspiration-satisficing based. If the actual fitness growth by playing 
a pricing strategy exceeds the expected growth level then the probability of playing 
that strategy is increased. Conversely if a pricing strategy fails to get a positive 
fitness growth, then its probability is reduced. 

• Role Learning: - Each role has an associated propensity. The 
Assemblers/manufacturers role (Car) has the highest propensity to begin with 
(consistent with Utterback’s observation of the automobile industry). As a firm 
increases its fitness while playing a role it increases the propensity value. Conversely 
if a firm loses fitness while playing a certain role it decreases its propensity to play 
that role. A firm always plays a role with the highest propensity value. Thus if a firm 
reaches a stage where the propensity value of a suppliers role is higher than of a 
assemblers role, then it switches roles.   

 

Design of Experiments 

Based on Utterback’s work (Utterback and Suarez 1993, Utterback 1994) we picked three 

independent variables that affected the growth in the US automobile industry. We use the ability 

of a node to learn (R), the rate at which a firm grows in capacity (CE) and the nature of the 

environment  (Th) as the independent variables.  
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Operationalizing Role Learning (R) 

As described earlier, role learning is implemented as a propensity based learning model (Roth 

and Erev 1995) in every firm’s behavioral description. Associated with every role is a propensity 

to play that role. As a firm successfully plays a role the propensity to play that role increases. 

Conversely if a firm loses fitness while playing a certain role it decreases its propensity to play 

that role. Every firm can play an assemblers role (starts of as generalist) and if the propensity of 

that role decrease and other roles (suppliers) increases, role switching may occur. How fast this 

switching occurs depends on the difference between the propensity value of an assembler’s role 

and supplier’s role. Role learning was set as a bi-level parameter (assumption) with a low and 

high setting. For low role learning setting we use a difference value of 0.4 (simulation 

assumptions) between the initial starting propensities of playing an assembler’s role and 

suppliers role. For high role learning this difference between the propensities of playing an 

assembler’s role and suppliers role is reduced to 0.15. Reduced difference indicates that the role 

switch over will happen faster.  

Operationalizing Capacity Expansion (CE) 

CE is operationalized as a ratio of number of positive fitness growth cycle (represented by the 

variable m) required for expansion to number of negative fitness growth cycle required for 

contraction (represented by variable n). For these simulations, we again select CE as a bi-level 

parameter (assumption). The m value is kept constant and the setting of n decides whether CE is 

set to fast or slow setting. So for example m=6, n=7, indicates that a firm is contracting much 

faster as compared to m=6, n=12. Thus fast contraction equates to slow capacity expansion and 

slow contraction equates to fast capacity expansion. 

 

Operationalizing Environment Threshold 

Environment threshold was also assumed to be a bi-level parameter. Essentially, a low 

environmental threshold (0.25) indicated an easy to survive environment. Conversely a high 

threshold environment (3.0) indicated a harsh environment. 

 

For the three independent variables just discussed, we were interested in observing two 

dependent variables, namely, the patterns of emergence in the SN structures (connectivity of the 
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network) over time and the survivability. These were the two most important parameters 

highlighted by Utterback (Utterback and Suarez 1993, Utterback 1994) and also in Choi and 

Hong’s study of the automotive industry (Choi and Hong 2002). 

 

Dependent Variable: - Type of Structure at end of simulation (EndStruc) 

Four basic topologies of Supply Network structures were used for categorizing the end result of 

the simulation. They are:  

• Hourglass Structure (Category 4):  With a central assembler and multiple tiers of suppliers 

(the current automobile industry structure). 

• Linear Structure (Category 2): Vertically integrated structure (IBM’s SN before 1980) 

• Star (Category 1):  This is the classic hub and spoke structure. It has a central node that acts a 

s a hub and a single tier of suppliers (spokes) (Dell Computers SN) 

• No Structure (Category 0): This is a unique case when no existing node is willing to play the 

assemblers role resulting in a unique situation were there are lot of suppliers but no one to 

initiate the demand flow between the tiers (essentially a assemblers job). Hence no SN is 

formed. 

 

Dependent Variable: - Survivability (Surv) 

Survivability is operationalized as the ratio of total number of nodes alive at the end of the 

simulation to the total number of births that took place during the entire simulation. 

Rest of the attributes of the model such as demand, cost structure, price learning were all set as 

static parameter settings for the simulation experiments (same through out all experiments). 

Table 11 shows the settings.  
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Table 11: Important parameter settings for the Automobile Industry Simulation 

Parameter Setting Based On 

Demand (passenger cars) Normal distribution with increasing 
mean 

(Ward 2002) 

Initial number of nodes 10 (Utterback 1994) 
Periodicity of Evaluation Every 12 demand cycles (annual 

evaluations, each demand cycle 
corresponds to a month) 

(Timmons 1999) 
 

Firm’s starting fitness Sampled from a Normal distribution 
with average fitness of incumbent nodes 
as the mean and 0.8 std deviation. To 
begin with mean is set to 0.5 

(Utterback 1994) 

Total simulation time 960 demand cycles (corresponds to 80 
years) 

(Utterback 1994, Ward 2002) 

 

 

We hoped to see interactive effects between the independent variables with respect to the 

dependant variables, which in turn would allow us to draw logical inferences on the emergence 

process and answer the two fundamental questions raised previously. In total, there were 

(2*2*2=8) possible full factorial design experiments.  

 

The simulations were completed on a high performance parallel computing cluster (ACCRE 

2005). The ACCRE grid is a heterogeneous Beowulf cluster, with 600 computing nodes, each of 

which is a dual processor based system. Significantly enhanced computing power on the grid 

allowed us to increase the scalability of our computational model. The high performance grid 

infrastructure also allowed us to replicate our results and increase our throughput. Each 

experiment on the grid ran for 8 hrs. 30 samples per experimental condition (240 samples in 

total) were collected.   

 

Results 

As illustrated in our previous work (see Chapter II and Chapter III), the modeling framework 

was able to generate industrial growth results using the Automobile industry data indicating that 

the observed structures and population dynamics follows growth trends similar to empirically 

published results. We successfully grew a deep hierarchical structure under high environmental 

threshold conditions. Interestingly it was also observed that during the temporal evolution 
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process we observed numerous patterns (Figure 3 in Chapter II), such as the star, linear, shallow 

hierarchical topologies apart from the deeply hierarchical structure form over a period of time 

(emerge). This evolving behavior in the network topology fits the classic definition of emergence 

(Goldstein 1999), thus confirming further that SN’s are indeed emergent networks. We also 

observed that the population dynamics growth curve was a skewed bell shaped curve (same as 

Utterback’s, see Figure 18), indicating that initially number of firms enter the market, but as the 

market matures, few firms dominate and the number of entries reduce with time. 
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Figure 18:  Population Dynamics 

 

Thus we were able to answer the first research question raised previously: Supply network 

patterns emerge due to the complex adaptive nature of such systems. In order to specifically 

answer the second research question, we performed a rigorous statistical analysis testing for 

interactive effects in the system behavior. 

 

Possible Interactive effects in the system 

Figure 19, shows an overall picture of the different types of structures (refer to Table 8, in 

Chapter III for a detailed categorization) formed under different experimental conditions. For 
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example, for a low environmental threshold, fast capacity expansion and low role learning 

experimental condition, most of the structures formed and the end of the simulation were either 

star or linear structures (~ 90%). Negligibly small number of hierarchal structures (category 4) 

was formed (<7%).  
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Figure 19:  Types of structures observed across all experiments (Same as Figure 14)4 

 

Summarizing the Figure 19, the following observations could be made. Low environmental 

thresholds promote the growth of more star shaped and linear shaped network topologies. Higher 

environmental thresholds promote more hierarchies. Linear structures are prevalent under all 

conditions. But on an average faster CE seems to be driving more linear topology formation. 

And “No structure” conditions are observed under higher threshold conditions (harsher 

environments). “No structure” indicates that none of the firms in the market were willing to play 

the role of an assembler. 

 

                                                 
4 There were no category 3 (heterogeneous) structures were observed, hence the figure has category o, 1, 2 and 4 
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The summary results definitely indicate that there are interactive effects between the independent 

variables with regards to the emergence of SN structure. The next section presents the detailed 

statistical analysis that confirmed the proposition made in this section   

 

Statistical Analysis  

To confirm presence of interactions in the SN system, a detailed statistical analysis was 

performed on the data from the 240 samples collected.  

 

Categorical Data Analysis for Type of Structures Observed 

EndStruc variable (Types of structure) is a nominal variable with 4 different categories (the 

categories were compiled from the SN examples in the literature). We used categorical data 

analysis (Agresti 2002) and �2 testing (Kotz, et al. 2000) in SPSS (Statistical package for Social 

Sciences, version 14) for testing for significant interactions between the independent variables. 

The first step in the analysis was to build a contingency table (Agresti 2002) for all three 

independent variables taken together and recording the observed count of EndStruc for each of 

the combinations. Next the expected counts (marginal) were calculated from the individual bin 

frequencies. A �2 test for all single, two way and three way interaction conditions using the 

observed and expected value was performed. The underlying distribution for �2 testing was 

selected to be a Poisson distribution (consistent with the outcome variable). An � value of 0.05 

was used (as is usual in traditional statistical analysis).  

, summarizes the results from the �2 tests. 

 

We also ran a linear multivariate analysis for survivability (a scale variable) with respect to the 

independent variables to test for possible interaction effects. The results are summarized in Table 

12. 

. 
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Table 12: Chi-square test results for interactive effects 

Explanatory Variables Response Variable  
Type of Structure 

(p value) 

Response 
Variable 

Survivability 
(p value) 

Capacity Expansion 0.013 0.008 
Environmental Threshold 0.000 0.087 

Role Learning 0.932 0.427 
Capacity Expansion * Environmental 

Threshold 
Th (high) 

0.230 
Th (low) 

0.022 
Environmental Threshold * Capacity 

Expansion 
CE (Fast) 

0.000 
CE (Slow) 

0.000 

0.174 

Capacity Expansion * Role Learning R (high) 
0.375 

R (low) 
0.018 

Role Learning * Capacity Expansion CE (Fast) 
0.855 

CE (Slow) 
0.524 

0.949 

Role Learning * Environmental Threshold Th (high) 
0.372 

Th (low) 
0.924 

Environmental Threshold * Role Learning R (high) 
0.000 

R (low) 
0.000 

0.189 

 

 

Thus, the statistical analysis shows that rules (independent variables) interact in an ordered way 

in a SN to affect the emergence of SN topologies. In the Discussion section, we next attempt to 

explain the results presented in Figure 13, using the interactive effects analysis results.  

  

Discussion 

Low Th, Fast CE experiments 

The results in Figure 14 clearly show that majority of the structures are either Star shaped 

networks (48.33 %) or linear networks (43.335 %). There are almost no hierarchical structures (5 

%). Fast Capacity expansion in these experiments ensured that the initial firms that the 

simulation started with grew their fitness fast. Since it was a low threshold easy to live 

environment, individual firms persisted longer. Fewer firms died and hence fewer numbers of 

new firms were born. As explained in the role learning model, since firms were growing their 

fitness under the current role of an assembler (every firm starts of as generalist) their propensity 

for playing that role became so high that none of the firms switched roles and became a supplier.  
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Reduced role switching, in turn resulted in almost no hierarchical structures, and mostly Star 

shaped networks or linear networks with maximum depth of 1 were formed. Hence Role learning 

did not seem to have any effect for the two experiments due to the fast build up of propensity, 

low propensity decay (slow reduction in propensity value for a role) and low mortality of nodes. 

Whether the end structure was linear with depth 1 (essentially a monopoly) or Star with a high 

degree distribution (order of 5-7, still with a single tier) depended on initial growth in fitness and 

capacity of nodes. If a single node started growing much faster than the other nodes then the 

outcome was a linear structure. Where as uniform growth of all incumbent firms resulted in star 

structures.  

 

Thus the interaction of the capacity expansion (CE) parameter and the environmental threshold 

seem to strongly control the structure formation in these experiments. The primary effect of CE 

on Survivability also makes sense. How fast a firm grows actually decides how well it survives 

in an environment? The faster is the capacity growth, faster is the fitness growth as a firm can 

produce more, and longer the firm survives. And this precisely leads to the propensity build up 

which in turn makes the role learning parameter insignificant in these experiments. This result 

then explains, why there are no primary effects of Role Learning on type of structure or 

survivability.  

 

Low Th, Slow CE experiments 

The results in this also show that majority of the structures are either star shaped networks (48.57 

%) or linear networks (24 %). There were a few hierarchical structures 10 %) and some “no 

structure” situations (17%). Slow Capacity expansion results in slow fitness growth of firms. 

Because of a low threshold easy to live environment, individual firms persisted longer but 

mortality increased as compared to the previous experimental conditions (Fast CE). Hence more 

new firms enter the market place. Due to slower fitness growth, the propensity build up effect is 

not fast enough as compared to the previous experiments (Fast CE), especially for the new 

entrant nodes. Hence some amount of role switching occurs, which in turn resulted in few 

hierarchical (10%) and no structures (13%). Still mostly star shaped networks or linear networks 

with maximum depth of 1 are formed as the low threshold environment makes it easier for nodes 
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to survive tough times and eventually grow their fitness and propensity to play an assemblers 

role (a role the nodes started with). 

 

Same as in the explanation of the previous group of experiments, the primary effect of CE and 

Th on the dependent variables makes sense. CE seems to control the fitness growth, which in 

turn directly affects survivability. The low threshold clearly results in nodes surviving longer, 

leading to the propensity build up and formation of star or linear structures.   

 

High Th, Fast CE Learning experiments 

The results (Figure 14) clearly show that there are more hierarchies (21%) as compared to the 

previous experiments. Almost no star shaped topologies were observed (3.33 %). Again fast CE 

ensured that the initial firms that we started the simulation with grew their fitness fast. But since 

the environment was harsher, nodes persisted for lesser periods of time. Only a few firms did 

well and build up their fitness and grew their propensities to play the role of a manufacturer. 

New firms entering the market, now did not have the fast propensity build up effect due to the 

less time the nodes got to settle down in a harsh environment. Thus role switching occurred at a 

much more frequent rate than the previous four experiments. This resulted in increased 

hierarchies in the SN topology (from 5 % to 21 %).  It also resulted in No structure situations, as 

incumbent nodes sometimes also switched roles, especially under high role learning conditions 

(40 %). Almost no Star shaped networks are observed probably due to the role learning effect 

(3.33 %) (Since nodes switch roles, tiers are formed in the SN, essentially eliminating the 

possibility of a star network). Linear networks are still observed but now with maximum depth of 

2 or 3 (35 %). 

 

The explanation for primary effects, are exactly same as before. Clearly, for example 

Environmental threshold (Th) seems to be affecting type of structure formed as observed in the 

statistical analysis. Exactly what structure is formed is then governed by the interactive effect 

between Environmental threshold (Th) and the remaining two independent variables, i.e., Role 

Learning (R) and Capacity Expansion (CE).   
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High Th, Slow CE experiments 

These experimental conditions represent the harshest conditions out of all the experiments due to 

slow capacity expansion and high environmental thresholds. Surprisingly this results in the most 

number of hierarchical structures at the end of the simulation (30 %). Slow Capacity expansion 

in these experiments resulted in slow fitness growth for individual nodes. This resulted in shorter 

persistence of firms and hence even lesser propensity build up effect as compared to all other 

experiments. Thus both incumbent nodes and new entrants switched roles resulting in maximum 

number of hierarchical topologies observed across all the experiments (30 %). The No structure 

condition was highest (45 %) probably due to the harsh environment coupled with role learning 

effects (firms constantly try to improve their fitness by trying new ventures).   

 

The role learning (R) seems to have an effect on the type of structure formed under the high 

environmental threshold (Th) and slow capacity expansion (CE) conditions. The role learning 

(R) parameter seems to moderate the effect of capacity expansion (CE) and environmental 

threshold (Th) on the type of structure formed. 

 

Process of Emergence in SN 

From our results, analysis and discussion so far, we can definitely say that Supply Networks, 

emerge with time into different types of structures. The temporal evolution process of the entire 

network topologies was visible. The interactive effects we observed in our simulation clearly 

highlight that such emergence dynamics in SN systems are governed by interaction between 

local behavioral rules and conditions driving the fundamental entities of the SN system. We 

clearly have been able to answer both the questions we raised in the beginning of the chapter.  

 

We would like to discuss what these results mean to a decision maker managing such a system. 

The directional 2-way interactive affects in the system highlight the fact that the interactions in 

SN systems are not random or chaotic. There is an underlying order. This is one of the 

fundamental tenets of a CAS. This also supports the propositions of Choi et.al (Choi, et al. 

2001), that in SN systems it is important for managers to know which parameters to control and 

which parameters should not be controlled for efficient management.  
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For example in our simulation using the automotive industry data, it was clear that a firm’s 

capacity is the most valuable asset and should be looked into carefully under all circumstances. 

Yet on the other hand depending on the type of environment a firm may be operating in, 

switching roles may or may not be a good option, or in fact may not have any effect at all. This 

was observed clearly for the low environmental threshold and high environmental threshold 

environments. Under low environmental threshold, role learning did not have an effect where as 

role learning significantly affected the hierarchical topology formations in conjunction with the 

high threshold environments.  

 

Bottom line from the above discussion is that a practicing manager utilizing the wrong strategy, 

i.e., focusing excessively on creating a niche space in the market (trying to learn a specialized 

role) while competing in a generalist market can actually lead the company towards 

inefficiencies and losses. On the other hand the same strategy can be a life saving in a harsh 

environment, where it is all about creating niches. Looking at the US automobile industry itself 

can confirm such happenings in the past. Companies such as   Deloren and Magna International, 

in a harsh environment learned that they needed to find a niche, as they were unable to compete 

at the assemblers tier. On the other hand if we look at a low threshold environment industry such 

as the florist business in US, one hardly sees florists that just deal in roses. Usually flowers are 

treated as a general commodity (a generalist market).  

 

Conclusion and Future Work 

The paper focused on discussing how Supply Networks (SN) grow and emerge using the unified 

supply network as a modeling framework. The simulation results and the statistical analysis 

using the US automobile industry data indicates that the three behavior rules in this industry 

interacted in an ordered way to directly affect the dynamics with respect to survivability and the 

type of structure formed Figure 20. 
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Figure 20:  Interaction effects observed in the system 

 

The important contribution in the domain of SN is at multiple levels. The generic rule-modeling 

framework suggests a basic set of rules that can model different types of supply network 

systems. We instantiated this framework with the US automobile industry example and showed 

through statistical analysis that we were able to generate differing behavior using the modeling 

framework. The same framework can be applied to other industries. The generic rule categories 

would need to be reconfigured and the simulation framework can then simulate the dynamics of 

the new SN’s.  

 

At another level, we would expect that if we use another industry, which has similar 

characteristics to the automotive industry, we should see similar results. This in turn would not 

only validate our model further but it will help in establishing the generality of the entire 

framework. Also lessons learned from one industry can then be applied in similar domains, 

saving time and money.    

 

The future of this work looks promising. Now that we have answered the fundamental research 

question on how supply networks grow and emerge, our immediate task is to use the same 

modeling framework on another well structured industry and increase the validity of the 

research. Also we intend to take a different kind of SN industry such as the healthcare industry, 

and simulate the growth dynamics. By doing so, we would be able to discover and build a 

general knowledge base about SN dynamics and eventually move towards a general theory of 

Supply Network.   
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CHAPTER V 

 

PREDICTING SUPPLY NETWORKS DYNAMICS 

Abstract 

Our recent research has illustrated that supply networks (SN) may be complex adaptive systems 

that grow and emerge due to an ordered interaction of local behavioral rules and conditions. This 

paper builds on our previous research presenting a novel set of analysis techniques that can 

investigate the effects of these behavioral rules on stability and emergence of SN topologies. 

Specifically the result data from the US automobile industry simulation (see chapter IV) are used 

for analysis in this chapter. Proportional analysis of time series data (using SAS) is utilized to 

identify statistically significant patterns of instability during the entire simulation time period. 

The analysis shows that certain parameters like the “type of environment” plays an important 

role in affecting the stability of the entire SN topology. We utilize chaos theory analysis tools for 

predicting the SN system’s path of emergence. The results from attractor reconstruction analysis 

suggest presence of periodic attractors in SN environment, which in turn indicates that 

meaningful trends can be generated for managers with regards to issue of dynamism in the 

environment. The paper builds such insights from the analysis results and discusses how such 

insights may help managers/policy makers make better-informed decisions.   
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Introduction 

Before the year 2000, the Internet search engine supply network looked as shown in Figure 21 

(Barabâasi 2002). Inktomi Corporation provided the web search engine for all the major players 

(Yahoo and Microsoft). Inktomi was in a very comfortable position within a stable environment. 

The company had no idea that all that was about to change with the advent of a new firm: 

Google. Google came in the year 2000 with its superior data sources and web services in turn 

single-handedly eliminating Inktomi Corporation from the market while taking its position in the 

Supply Network.  

 

How could such an event occur in a stable environment? Could Inktomi have prevented this by 

having a prior knowledge of the dynamic properties of a stable supply network environment? 

Switching focus to Google, the company has continued its meteoric rise.  Infact Google has 

become a first tier provider (as opposed to a second tier in year 2000) forcing a topological 

change. This in turn has forced incumbent nodes such as Yahoo and Microsoft to switch gears 

and the underlying rules of the game have changed. Do any of these firms know how the search 

engine market will emerge over time? 

 

Yahoo Microsoft
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Yahoo Microsoft
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Information seekers

Yahoo Microsoft
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Figure 21:  Internet Search Engine Supply Network 

 

This paper presents a novel set of analysis techniques for analyzing stability patterns and future 

emergence path of Supply Network topologies. Stability of a SN topology and the evolutionary 

path have been identified as the key parameters that can help managers and practitioners make 

long term strategic decisions (Choi, et al. 2001, Choi and Hong 2002).       
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Recent studies have clearly emphasized the need for studying supply network dynamics from a 

network topology perspective (Choi and Hong 2002, Randall and Ulrich 2001, Zhang and Dilts 

2004). We consider evolution of entire network topologies and look for stability and emergence 

patterns over time. One of the primary difficulties in investigating SN dynamics is the lack of 

knowledge regarding how SN’s grow and adapt (Forrester 2003, Lee 2004). Recent research (see 

Chapter III and Chapter IV) has illustrated that supply networks (SN) may be complex adaptive 

systems that grow due to the ordered interaction of local behavioral rules of participating firms 

and the environment. Utilizing results from this research, statistically significant inferences are 

drawn with respect to stability and emergence of SN topologies over time. 

 

Previous result (see Chapter IV) from simulating SN growth using the US automobile industry 

data over the last 80 years is used for analysis in this paper. Proportional time series analysis 

(Log linear modeling) is carried out using the SAS package (version 9) for evaluating stability of 

network topology evolution with time. �2 tests (Kotz, et al. 2000) are used to investigate which 

system parameters (independent variables/local rules) affect the stability of SN evolution.  

 

Next, attractor reconstruction techniques are used (Williams 1997) to recreate the pseudo-phase 

space (signature of the system behavior with time) (Williams 1997) and identifying trends. 

Specifically autocorrelation tests (Makridakis and Wheelwright 1989) are used to calculate 

system lag and drawing inferences about the dynamic nature of the entire SN system. We then 

combine our findings from these analyses with our previous findings on interactive effects in SN 

(see Chapter IV) and suggest insights for policy-makers/managers. 

 

Background 

The simulation platform used for simulating SN growth is built on the unified model of supply 

network (UMSN, see Chapter II). Based on the unified model, we conceptually (see Figure 6 in 

Chapter II) model a supply network as a system consisting of two fundamental components: (1) 

an environment or a market in which (2) a group of firms (nodes) reside and interact to fulfill 

global demand. Stochastic environmental conditions such as a variable demand pattern, firm 

decision-making (subcontracting, bidding), and differential growth of firms (growth in capacity, 
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fitness of firms etc), all contribute towards structural as well as behavioral dynamics in the 

resulting supply network. The same fitness model as introduced in Chapter III is used. 

 

Generic Rule Modeling Framework and the Computational Framework 

A generic rule-modeling framework has been developed in our prior work (see Chapter III and 

IV) that can be used for characterizing the behavior of the two fundamental entities of the 

UMSN, namely, environment and the node. We used the same framework for our SN growth 

simulations using data and parameters from the US automobile industry. Analysis was presented 

in Chapter IV that showed capacity of a firm as the primary driving force in the simulations. 

Thus in this paper we focus in details on the Environment and Node rules, where capacity of a 

firm plays an important role. We present example implementation of two such rules. 

 

Birth/market entry rule for inducting new firms in the market  

The birth function modeling is done based on classical microeconomics (Varian 1990) and 

industrial organization theory (Shy 1995). According to classical microeconomics theory, 

whenever there is unfulfilled demand in the market, the market attracts new firms, who can join 

it and make profit (Mueller 2003, Tirole 1989, Varian 1990). Firms’ keep entering the market till 

the unfulfilled demand in the market has been fulfilled and the market is cleared (Mueller 2003). 

Figure 22 present’s flowchart of actions that represent the birth function algorithm.  

 

1. At simulation start if there is unfulfilled demand, the environment generates a new firm 

(node). The new node is born with a fitness value that is calculated as follows: 

i. The average fitness of incumbent nodes are taken (favg) 

ii. The initial fitness (fi) of the new node is then sampled from a N~( favg , 0.8).  

iii. Entering firms in a market can be both large and small firms.  

 

2. The initial capacity Q is set for the new node as follows: 

A node’s start up capacity is proportional to the ratio of its starting fitness and the average 

incumbent node fitness. Thus the fitter a node is as compared to the average incumbent 

population; higher will be its starting capacity.  
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This ensures that a new entering firm has capacity proportional to its starting fitness. The fitter 

the firm is, higher is the starting capacity. Based on fundamental microeconomic theory principle 

of unfulfilled demand attracting new firms, the environment keeps on generating nodes till it has 

cleared the market. Depending on whether it’s a free or regulated market, a firm may/may not 

decide to enter (based on market entry rule).   

 

Market Entry Rule for potential firms  

The entry into the market can either be a “free entry” (firms decide when to enter and whether to 

enter at all) (Tirole 1989) or a regulated one (entry of firms is regulated by the government, or a 

regulator body, e.g. the telecommunication market) (Laffont and Tirole 2000). In case of a 

regulated entry the nodes generated by the evaluator start participating in the supply network. In 

case of a free market entry, the nodes decide whether to enter the market at all by taking into 

consideration the “entry barrier” of a market. There are two primary definitions of “entry 

barrier” that are used in the marketing and economic literature (Bain 1956, Weizsacker 1980). 

We use the Weizsacker’s definition that defines “barrier to entry as the cost of producing that 

has to be born by entrant firms but not the incumbents”. This definition also ties up with (Tirole 

1989) definition of sunk cost. The marketing literature has also identified sunk cost and capital 

investment requirements as a credible entry barrier (Karakaya and Stahl 1989). Thus sunk cost is 

used in the model as an “entry barrier decision parameter” by the entering firms. 

The sunk cost in the supply network model is made proportional to the initial node fitness.  

 df (Loss in initial fitness due to sunk cost )= r*fi ,                                                          (2) 
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Thus higher the nodes initial capacity and fitness, higher are its sunk cost. If the adjusted node 

fitness value is greater than the weakest incumbent node, then it decides to enter the market. The 

rational here is that a new entrant firm has to be atleast as strong as the weakest incumbent to 

have a chance of surviving. 
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Figure 22:  Birth function modeling flowchart 

 

Production Rule for an individual node 

As a node receives a demand it has certain decisions to make and the decision path is shown in 

the flowchart in Figure 23.  
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Figure 23:  Expansion/Contraction rule 

 

If the incoming demand is less than its capacity, then it poses no problem and the demand is 

fulfilled. If the demand is greater than the node’s capacity then a node has two options. It can 

either expand on a short-term basis (it has some fixed costs associated with expansion as shown 

in Figure 24) or it can choose to partially fulfill a demand and face the unfulfilled demand 

penalty. The marginal cost structure (Figure 24) indicates that the firm faces a cost of �i upto its 

marginal production capacity Q. Subsequently if it has to expand then the cost increases to a 

fixed amount �j where �i< �j. 

 

Figure 24:  An example of a marginal cost structure used in the production rule of a node 
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The firm, depending on whichever decision leads to greater profits/lower losses, makes the 

choice. The penalty function can differ from supply network to supply network and can be a 

function of numerous parameters such as importance of that unfulfilled demand, relationship 

between two firms etc. The above process can be represented in a quantitative form as follows: 
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In order to operationalize the generic rule-modeling platform, an agent based discrete event 

discrete time simulation methodology is utilized. Firms and the environment are represented as 

software agents that interact amongst themselves while facing a demand, driven by simple 

behavioral rules discussed earlier (see Chapter III and Appendix 2, 3, 4, 5 for details on 

simulation platform). 

 

Simulation  

For demonstrating stability and emergence analysis of supply networks results data from our 

previous simulation of a well-structured industry, using data and parameters from the US 

automobile industry (see Chapter III and Chapter IV). The simulation used simplified product 

architecture for a passenger car as shown in the architecture diagram (see Figure 12 in Chapter 

III and Appendix 7). The information has been derived from Ford motor company’s website. 

Table 9 (Chapter IV), and Table 10 (Chapter IV) summarize the rule instantiation of the generic 
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rule-modeling framework, for the simulation experiments. Based on Utterback’s work (Utterback 

and Suarez 1993, Utterback 1994) three independent variables that were thought to affect the 

growth in the US automobile industry over the last 80 years were picked as independent 

variables. We used the ability of a node to learn (R) (High/Low), the rate at which a firm grows 

in capacity (CE) (Fast/Slow) and the nature of the environment (High threshold/low threshold 

environment) (Th) as the independent variables. We were primarily interested in two dependent 

variables, namely, the patterns of emergence in the SN structures (connectivity of the network) 

over time and correspondingly how the population dynamics evolved (survivability/persistence 

of firms). In total, (2*2*2=8) possible full factorial design experiments were run on a high 

performance parallel computing cluster (ACCRE 2005). Each experiment ran for 8 hrs. 30 

samples per experimental condition (240 samples in total) were collected.  

 

Results and Analysis 

Our previous work (see Chapter IV) has illustrated that SN’s may be CAS. They are driven by 

local behavioral rules of participating entities, and emerge based on ordered interaction between 

the rules and conditions of the environment. In this section we discuss the results of our stability 

analysis and predictive analysis for emergent system behavior with regards to the population 

dynamics. 

 

Investigating the stability patterns 

We operationalize stability as the phenomenon of the SN structure not changing its topology 

between successive time periods during the simulation process. The stability evolution process is 

encoded with a simple binary mechanism. ‘0’ represents stability and ‘1’ represents instability. 

Entire time series (960 simulation cycles or 80 years) is divided into 8 time points (driven by 

data collection limitations during the simulation process) (each representing 120 simulation 

cycles or 10 years). Each time point is encoded as Time 1, Time 2 and so on up to Time 8. 

Successive time points are compared for structural changes. For example in Figure 25, between 

Time 1 and Time 2, the SN structure was a category 4 (we use the same 4 categories for 

describing the SN topologies as used in Chapter IV) hence it was encoded as ‘0’, indicating 
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between time 1 and time 2 the topology evolution was stable. But as we move from Time 2 to 

Time 3 the structure changes from a category 4 to category 1, and hence we encode it as ‘1’, 

indicating the topology changed and there was instability. The overall picture of the 0’s and 1’s 

then give a broad picture of stability for each type of experimental condition. From a decision-

maker’s perspective, it would be important to know, that given the current conditions and rules, 

are there any particular portions on the time series where there is instability (presence of 1’s 

indicating topological changes).  
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Figure 25:  Stability analysis results 

 

Next we performed a complete statistical analysis (all the 8 experiments, 240 samples) looking 

for any significant interaction effects between the explanatory variables (Capacity Expansion� 

CE, Role Learning� R, Environmental Threshold� Th) and the response variable (patterns of 

1’s between successive time periods. We are interested in instability; stability is mutually 

exclusive and exhaustive and hence only one response variable is sufficient). We used 

proportional time series analysis and Chi square testing (Kotz, et al. 2000) using the SAS 

package (version 9) for checking for interactive effects between the independent variables  in 

conjunction with Time (the entire time series data for all the 240 samples� operationalized as 

the variable Time) with respect to instability patterns on the time series. Summary of the results 

are provided in Table 13.     
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Table 13: Statistically significance interactive effects for stability in SN’s 

Interactions Statistical Significance (� < 0.05) 
Time .0001 

Role Learning*Time .6886 
Environmental Threshold*Time .0001 

Capacity Expansion*Time .7859 
Role Learning * Capacity Expansion *Time .9610 

Role Learning * Environmental Threshold *Time .5213 
Environmental Threshold * Capacity Expansion *Time .3281 
Role Learning * Environmental Threshold * Capacity 

Expansion *Time 
.3031 

 

We observe that only environmental threshold has a significant effect in conjunction with the 

Time variable on the overall instability. The ‘type of environment (easy to live or harsh)’ 

affected whether the topologies changed frequently or not between successive time points. This 

result was consistent with the interaction effects result presented in Chapter IV. There we 

observed that the type of structures formed under high and low threshold condition was 

significantly affected by the type of environment (low thresholds resulted in more star topologies 

and high thresholds resulted in hierarchical). We next drilled even deeper, by checking for each 

level of Environmental threshold, Th (high and low) with respect to instability between 

successive pairs of time points (Table 14). For example there was instability between Time 

point1 and 2 and Time point 2 and 3.   

 

Table 14: Statistical effect of Environmental Threshold (Th) on time periods  

Successive Time Period 
Comparisons 

Statistical Significance  
(� < 0.05) 
Th = Low 

Statistical Significance  
(� < 0.05) 
Th = High  

Time 1-Time 2 �� Time 2-Time 3 .0699 .0001 
Time 2-Time 3 �� Time 3-Time 4 .4328 .6407 
Time 3-Time 4 �� Time 4-Time 5 .0001 .0497 
Time 4-Time 5 �� Time 5-Time 6 .1506 .2687 
Time 5-Time 6 �� Time 6-Time 7 .0001 .3722 
Time 6-Time 7 �� Time 7-Time 8 .0001 .2386 

 

Table 14 shows the portion of the time series where there was statistically significant instability 

present with respect to each level of Th (Environmental threshold). For example, for Th=low, 

time point pair (3,4) and (4,5) show significant instability. In other words for low threshold 

conditions between time period 30-50 years seem to show instability. It was surprising to find 

out that under both the conditions a completely different portion of the time series was 
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significantly affected for different levels of Environmental thresholds. Under high thresholds the 

instability was observed early on the evolution process where as low threshold environments 

showed instability towards the end of the simulation. We discuss the ramifications of this finding 

in the next section. 

Predicting the emergence path of SN system: - Population dynamics analysis 

The other important aspect presented in this paper is the prediction of the emergence path for an 

SN, especially with respect to the population growth over time and the dynamic nature of the 

environment. From our previous results in Chapter IV, we have seen that having knowledge 

about the nature of the market (type of environment) can dictate how you should manage your 

system.   

 

We use time series analysis and attractor reconstruction techniques for predicting the growth 

path of an SN. The growth of population (of firms) during the simulation is essentially a time 

series with 80 time points. For each experimental condition 30 samples were collected, 

essentially providing with 30 different time series. The population dynamics analysis was started 

by first plotting an average time series curve for each of the experimental plots as shown in 

Figure 26.  
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Figure 26: Average Industrial growth curves (average time series plot for all 240 experiments) 

 

It was observed that Experiment 8 did not show the same trend as the rest of the experiments and 

we wanted to test if it was ok to further test the time series for other emergence properties. We 

compared all the 30 samples for each experiment within the group at each time period (for all the 

80 data points), by comparing the standard deviation at each time point on the time series. 

Essentially this involved comparing each point on the 30 curves with each other (e.g., at time t1 

compare all the 30 points and so on). We took a logarithmic transform of the standard deviation 
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to eliminate outliers and plotted the group wise results for each experiment for all the 80 data 

points as shown in Figure 27. 
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Figure 27: Standard deviation plot for each time point on the entire time series across all the 
experiments 

 

The standard deviation comparisons (using a threshold of 2) also confirmed our previous 

observation. Experiment 8 did not follow the same trend as rest of the experiments (much higher 

standard deviation as compared to the rest). Experiment 8 was discarded for rest of the 

population dynamics analysis. For the remaining 7 experiments, a formal time series analysis 

was carried out, looking for trends, patterns and attractors (Williams 1997).  

 

For each experiment, we took the average time series data of the population (total number of 

firms at each time step during the entire simulation). The standard practice in chaos theory time 

series analysis is to check for autocorrelation in the time series (Williams 1997). Autocorrelation 

is defined as the ratio of auto covariance and variance given by (Salas, et al. 1980) (Chapter V) 

for a given lag value (Makridakis and Wheelwright 1989). The lag value essentially compares 

the main time series to its own sub-series to see if there is a correlation between them. The 

autocorrelations are calculated for up to lag values, where the autocorrelation factor drops to 0, 
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or up to N/4 (standard practice, (Williams 1997), (Salas, et al. 1980)), where N is the total 

number of time steps (in our case 20).  

tionautocorelafor  compared being is series timefor which  lag  theis m
steps  timeofnumber   total theis N where

(1)                                               
)xx(

)xx(*)xx(
 tion Autocorela N

1i

2
meant

mN

1i
meanmtmeant

� −

� −−
=

=

−

=
+

 

 

Then the lag values for each experiment are plotted with the corresponding correlations factors 

yielding the correlograms (Williams 1997) as shown in Figure 28. The correlograms indicate any 

trends if present in the data. If there is a regular pattern such as a sinusoidal wave, then it means 

that the data needs to be uncorrelated before any further analysis. Also if the correlograms never 

approaches zero even after N/4 plots the no judgments can be made on such time series and data 

from these experiments are unusable for reconstructing attractors in the system. 

-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

0 5 10 15 20 25

Lag

A
ut

oc
or

re
la

tio
n

Exp1
Exp2
Exp3
Exp4
Exp5
Exp6
Exp7

 

Figure 28: Correlogram plots for Experiments 1 to7 

 

Table 15 summarizes the lag values for each experiment where the correlograms approaches near 

0. The correlogram plot of Figure 28, clearly shows that Experiment 5 and Experiment 7 never 

approach zero even after 20 lag plots. Thus experiment 5 and experiment 7 data cannot be used 

for reconstructing possible attractor’s in the system. We are thus in the end left with five 

experiments that we attempt to reconstruct the attractors for.  
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Table 15: Lag values at which the time series data is uncorrelated for each experiment 

Experiment Number Lag at which correlogram goes to zero 

1 10 

2 15 

3 6 

4 15 

5 NA 

6 8 

7 NA 

 

   

An attractor in a CAS is defined as a point on the system phase space (Williams 1997) where the 

system behavior returns again and again, over a period of time (Schuster 2001). The previous 

steps are essential for attractor reconstruction, in order to eliminate any in built trends and 

repetitions in the data (Williams 1997). After that the attractors can be visually constructed by 

plotting the pseudo phase space plots (plot of Xt � Xt+m where X represents number of firms) 

(Williams 1997) where m is the lag value at which the correlogram approaches 0. The pseudo 

phase space plots for each experiment is shown in Figure 29. 

 

All five plots clearly illustrate a cyclic pattern, where the number of firms over time passes 

through a cyclic variation. Such kind of an attractor is called as a periodic attractor or a limit 

cycle (Williams 1997). For example as shown in Figure 29, for experiment 1 the firm population 

in the SN evolution process starts with 10 firms increases up to 85 and returns back to around 10 

to trace a complete cycle in the clockwise direction. All the other pseudo phase space plots can 

be explained on similar lines. This concludes the last step in the emergence analysis of 

population data.  
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Figure 29: Reconstructing attractors by drawing the Pseudo phase space signature 
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Discussion 

The growth and evolution patterns observed during the simulation clearly indicate that SN’s can 

be CAS that emerges based on ordered interaction of local rules and conditions. One of the key 

ramifications of such a finding is that policy makers and decision makers should know which 

parameter/aspect of their SN is important and should be controlled and which ones should be left 

alone. For example in our previous work (Chapter III and IV), simulation results using 

automobile industry data has implied that role learning by itself is not an important factor that 

controls structural emergence. Rather more attention should be paid to what type of environment 

is the firm operating in and how fast should it grow? 

 

Switching our focus on to population emergence, we observed the familiar bell shaped curve that 

Utterback’s model suggests under specific conditions. But the interesting aspect that we 

observed was the presence of multiple modes in the growth time series. Utterback’s ideal model 

suggests a unimodal bell shaped curve (Utterback 1994). But the raw data plot for the US 

automobile industry shows a small mode near the year 1950. Also Utterback shows data for only 

60 years (Utterback 1994). We simulated it for 20 years longer and especially for low threshold 

environments the mode start forming towards the end of the simulation frame.  

 

We feel that multiple modes in a SN population growth curve are not artifacts and should not be 

smoothed out. In fact they may be appearing because of the periodic attractors (limit cycles) 

present in the system (as seen from the attractor reconstruction analysis results, see Figure 29). 

One of the classical properties of a CAS with a periodic attractor is that, when such a system is 

perturbed, it returns to its original behavior in as soon as possible due to presence of a limit cycle 

(periodic attractor) (Williams 1997). A perturbation in a SN may be an event like sudden drop in 

demand. In fact 1950 was right after World War II and the demand data shows a dramatic drop. 

Such an event may have caused a number of firms to die and new firms entering the market. This 

shows up as second mode growth on the time series. In fact in all our simulations wherever we 

observed multi-modality, the cause was due to the death of firms, causing a void in the 

cumulative capacity of the entire system, which in turn attracts newer firms to enter the market. 

In other words, if Ford motor company goes out of business today, and General Motors doesn’t 

step into fulfill the demand then it will attract other firms to step in and grab a share of the pie.  
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From a manager/decision-makers perspective, this is important information to have as it 

highlights the dynamic nature of the SN system. If not monitored properly, it may result in a 

firm’s exit from the market. IBM’s recent exit from the PC industry (Bulkeley 2004) suggests a 

similar story line. IBM did set up the PC market in US in the year 1980 but could not capture the 

market fast enough. That gave an opening to firms like Dell computers, which then has emerged 

as the market leader. 

 

Stability of SN 

Low threshold environments (easy to live environment) seem to develop instability later in the 

growth life cycle. That makes sense as the firms get a chance to build up their fitness and grow 

for a longer time due to low survival threshold. It takes the environment a long time to weed out 

the unfit firms. But once unfit firms are eliminated, room is created for newer firms to possibly 

join the market. Under such conditions if new firms are able to establish dominance, the SN 

dynamics changes and there is a possibility of structural evolution and growth dynamics. An 

example of this was the entry of Google in the Internet search engine market. Before Google, the 

search engine market was completely different, with Inktomi being the leader in the market 

(Barabâasi 2002). The search engine market was a low threshold environment. With the entry of 

Google in the fray, things changed. Google grew very fast and practically drove Inktomi out. 

Now the market is no more a low threshold environment, the increasing service based fierce 

competition between firms like Google and Yahoo is a standing proof of such an environment 

change.  

 

In case of a higher threshold environment (harsher environment), the instability is in the 

beginning of the life cycle and early mid life cycle (fitting very well with Utterback’s description 

of firms entering market). Early on, unfit firms are quickly weeded out; new firms keep entering 

until equilibrium is reached. By that time, incumbent firms establish themselves strongly in their 

respective roles and newer firms find it hard to enter the market, unless there is a major 

perturbation in the system and the cumulative capacity of the system reduces drastically 

(observed in Experiments 5, 6, 7). The automobile industry is a very good representative 

example. 
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From a manager’s perspective what should you do with such information? The answer depends 

on whether you are an incumbent firm or you are a new entrant. The strategies will significantly 

differ. We suggest a few scenarios and insights: - 

 

Easy environment (low threshold): - Results illustrate that expanding the capacity may be the 

best way to go in such a situation. Grow as fast as you can, keeping overheads low, and try to 

capture as much of the market as possible. Experimental results have shown that role learning 

and other factors may not matter. If you are new entrant, then you will have a tough time, and the 

only solution may be to grow faster than the incumbents. Though we did not test this, we feel 

that looking at the Google example, the growth may not be just in size but also in the quality of 

service and issues like that.  

 

Harsh environment (high threshold): - Here if you are an incumbent firm, you should try to 

capitalize on the initial instability present in any harsh environment. You should grow to a 

position of security (again the automobile example is a classic one). On the other hand if you are 

a new entrant, then strategy is completely different. A firm should then try to find a niche in the 

market and establish it there. Simulation results show that in harsh environment, role learning 

becomes an important moderating variable. 

 

Dynamism of a SN environment 

How do policy-maker’s decide on what time frame is important to consider while taking long-

term decisions? Or in other words, how dynamic is the SN environment? Is the environment 

extremely dynamic such that, the actions of this year will affect the growth and emergence 

process next year or is the environment a long-term one, where decisions taken today will only 

affect the system behavior over a longer time range (like 10-15 years). Use of chaos theory 

analysis tools allows us the freedom to develop novel operationalization for measuring such kind 

of dynamism in a SN environment. We use the system lag value at which the population 

dynamic time series is uncorrelated. The logic is, that the lag represents dependency between 

successive time-period under a particular set of conditions (experiments in our case), for which 

the system behavior changes significantly (in our experiments it was the number of firms 
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existing at any given time). So for example, a firm in experiment 2 should consider strategic 

planning from a long-term perspective (lag value of 15), as compared to a firm in experiment 3 

(lag value of 6). Such kind of analysis information has strong policy implications for large firms 

like IBM Corporation, or the US Government planning on healthcare issues.  

 

Conclusion and Future work 

This paper addresses a very important problem: Can the dynamics in a SN with respect to 

stability and emergence of firm population, be predicted? We present novel analysis of structural 

and population emergence in SN using statistical and time series analysis, with respect to 

stability and evolution of system behavior. The key findings, suggest that its is extremely 

important to know what type of a SN system a firm is operating in from a managers perspective, 

in order to make meaningful decisions, that would keep costs down and allow for efficient 

management. Insights are presented on how having knowledge of ordered interaction of rules in 

a SN environment can help managers/policy makers decide accordingly. With the help of chaos 

theory toolsets, possible emergence paths are reconstructed for an SN system. We suggest how 

properties such as limit cycle attractors may account for dynamic behavior and multiple modes 

observed in the industrial growth curve. We also suggest that, having a prior knowledge of such 

possibilities can help firms strategize appropriately by taking corrective measures. 

 

The results and insights presented in this paper though based on the simulation of a well-

structured industry are relatively generic. The research uses a generic rule-modeling framework 

and a theory base to derive “rules for the system”. Other industries and environment can be 

easily instantiated with this framework. Also, analysis techniques presented are very generic and 

we should be able to apply for any other industry. Hence, the contributions from this paper are at 

three different levels; it suggests how to use a novel SN modeling framework, to investigate 

growth and dynamism, it suggests how to analyze such dynamic behavior and make logical 

inferences and present insights and thirdly, it highlights the classic scenario analysis benefits that 

decision makers can benefit from. 
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We have laid a foundation for investigating growth oriented SN’s. In future we are planning to 

model other industries within our framework. We are in the process of developing the capability 

of modeling existing networks (whose growth and dynamism we want to study) rather than 

always start from scratch. Also, from an analysis point of view, we are working on setting up 

formal experiments to test the effect of attractors on the number of modes of an industrial growth 

curve. Our ultimate goal is inline with the current focus of the research community: to move 

towards a general theory of Supply Network’s.   
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CHAPTER VI 

 

SUMMARY, CONCLUSION AND FUTRE WORK 

 

Dynamism in today’s industrial landscape has directly affected the way Supply Networks (SNs) 

grow, evolve, and are managed. Recently there were numerous cases were an ineffective strategy 

led to failures and losses (IBM, Inktomi) and effective supply network management led towards 

success (Dell, Google). What drives this kind of dynamism and growth in Supply Networks? 

 

The focus of this dissertation was to answer the two fundamental research questions of Supply 

Networks: -  

1. How do Supply Networks grow and emerge?  

2. Are there simple rules and conditions that control the growth and emergence process? 

 

The dissertation explored existing SN literature and the emergent system literature for an 

appropriate model for modeling growth oriented Supply Network’s. One of the limitations of the 

existing models in SN literature was that they only investigated at static structures (see Chapter 

II and III for a detailed discussion). The ones that viewed dynamic structures took a deductive 

empirical approach, which limited the scope of the models with respect to generality. Emergent 

system models characterized growth in dynamic networks with a graph representation, but were 

found lacking in suggesting how the exact manifestation of fundamental growth principle occurs 

in Supply Networks. 

 

This dissertation took an inductive approach towards answering the research questions. The 

dissertation presented a new unified model of supply network (UMSN), which formed the basis 

for development of a platform for observing growth patterns in SN. Specifically, the dissertation 

contributed a generic rule-modeling framework and an agent based simulation (computational) 

framework that can be used for modeling Supply Network dynamics. The simulation using data 

and parameters from the US automobile industry over the last 80 years served as a investigation 

basis for the research.  
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Results and analysis from the simulation experiments revealed that the SN’s in our setting are 

Complex Adaptive Systems by nature. They grow and emerge based on certain simple rules and 

conditions. These rules and conditions drive the local behavior of individual firms and the 

market. The rules interact in an ordered way (non-chaotic) to give rise to emergence patterns. 

The presence of such a phenomenon in SN systems in fact can possibly explain the presence of 

diverse types of SN’s around us.   

 

The dissertation takes the research one step forward by suggesting novel analysis techniques for 

predicting the SN system behavior over time and showing how such techniques can generate 

strategic insights for policy makers and managers. 

 

Contributions 

There are two fundamental contributions of this dissertation. First, the dissertation presents a 

new scientific approach towards solving a complex interdisciplinary problem of investigating 

growth phenomenon in Supply Networks. Specifically, UMSN, a new theory based framework 

for modeling growth rules was developed for the first time. UMSN takes a holistic approach and 

combines four diverse disciplines to solve the growth and evolution problem of SN’s. Based on 

the UMSN, the dissertation proposes a fundamental subset of rules that can model a multitude of 

growth oriented supply networks across multiple industries. Both the UMSN and the rule-

modeling framework extend the current SN literature. In order to operationalize the UMSN a 

corresponding computational framework was developed for observing growth phenomenon. 

Using software agents and learning models the dissertation presents a simulation framework that 

can simulate real life SN’s. The simulation outcome that was analyzed in this dissertation was 

essentially evolving network topologies. The dissertation then suggests the use of novel analysis 

tools such as chaos theory analysis and statistical analysis for generating inferences and insights 

for policy makers. Such kind of analysis has never been done before in the SN literature for 

investigating SN dynamics. 

 

The contribution of this dissertation exists in another dimension also. The modeling platform, the 

computational framework and the analysis toolsets developed in this dissertation can also be 
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applied for investigating network growth problems in other domains that have characteristics 

similar to the supply network domain. Once the underlying rules are fed into the framework, 

similar kind of computation and analysis can yield domain specific results that can help 

researchers understand how their system grows. Example domains include creation of dynamic 

wi-fi networks, development of computational grid networks and cellular networks (biology). 

 

Future Work 

Specifically this dissertation breaks up the future work in terms of five fundamental categories as 

follows: - 

1. “Unified Supply Network model” validation and towards a general theory of Supply 

Networks 

Model validation is the key issue that needs to be addressed in future work. The dissertation 

illustrated an instance of how rules can be modeled for using a real life industry (automotive 

industry). The results from the simulation illustrate general trends matching the current state of 

the industry. Yet results such as formation of no SN structures and a lower percentage of 

Hierarchical structures, indicates additional research must be conducted. It may be a possibility 

for example that the simple bi-level parameter settings for role learning, capacity expansion and 

environmental threshold may not be adequate. A detailed and careful investigation of the generic 

rule framework and the model parameters is required. In order to do so, more industries need to 

be simulated and analyzed. Specifically, I plan to investigate three industries in the near future; 

i.e., the healthcare industry in US, the pharmaceutical industry, the florist industry and the 

aircraft industry. Only by doing so, can an underlying pattern that has a strong statistical 

significance can be “un-earthed” which then will eventually lead towards a “General Theory of 

Supply Networks”. 

 

2. Generic rule-modeling framework 

The existing computational framework supports the simulation of SNs from the inception of the 

industry. The behavioral architecture of the fundamental components of the simulation model, 

i.e., environment, evaluator and node implements this in the form of hard coded rules. To be able 
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to model both pre-existing networks and networks from their inception, a new node modeling 

and network structure modeling framework needs to be added to the computational platform. 

  

3. Node modeling framework.  

Simulation of pre-existing networks will require some fundamental changes in the existing 

computational framework. In a pre-existing network, there may be a number of different types of 

nodes that play different roles. For example to simulate the current automobile industry, there 

will be assembler nodes, tier one supplier nodes, tier-two, and tier-three nodes. Currently, only 

generic node definitions are available, i.e., all nodes start with a randomly generated fitness 

value, no existing linkages, and a set of other node attributes defined at the outset of the 

simulation. For a pre-existing network a modeler would need to define specialized nodes with 

predefined roles, fitness values, capacities, cost structure etc. I will extend the current node 

component by providing two types of nodes a modeler can capture: generic nodes (as currently 

implemented) and specialized nodes (to be implemented in future).  

 

a. Network Structure modeling framework.  

Apart from the capability of defining specialized node in the network, a modeler would need to 

specify the existing structure by specifying the pair-wise linkages between all the nodes in the 

network. I plan to develop a network structure-modeling framework as shown in Figure 4. 
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Figure 4: Network Structure Modeling Framework 

 

While specifying a pre-existing network, a modeler will first describe all the specialized nodes in 

the network. The modeler then uses the configuration utility to specify the pair-wise linkages, 

with the links describing the role of the supplier. The information is then transformed into the 

environment’s behavioral representation code by a generator program. The environment utilizes 

the source and destination information to distribute the demand initiating at the upstream of the 

supply network. I believe that this framework will seamlessly integrate with the existing one, as 

it would still allow the birth of generic nodes if demand remains unfulfilled. The only difference 

would be that the list of firms who remain in contention for getting the demand would have both 

the pre-existing firms specified by the modeler and any new firms born over time. 

 

4. Simulation based computational framework 

The current computational framework is limited in its capability to capture such a wide range of 

rules. In this study the rules were hard coded into the node, environment and the evaluator 

components. To be able to efficiently simulate multiple industries a generic rule-modeling 

environment must be developed. The rule modeler will contain generic methods to specify 

market and node configurations. As currently envisioned, once a modeler selects a set of rules 
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for the current simulation, a rule translator will transform these rule specifications into 

behavioral states for the nodes and the environment. Figure 30 shows the corresponding 

Statechart (Harel and Politi 1998) representation of the node behavior as translated by the rule 

translator. While implementing a code generator will generate java code to represent the 

Statechart. 

 

 
 

Figure 30: State Chart Translation 

 

5. Analysis of emergence dynamics 

The dissertation presented some initial stability analysis techniques from a very macro 

perspective of the entire system. Using stability criterion analysis from classical cellular 

automata theory (Cassandras 1993) and chaos theory (Schuster 2001) can extend the stability 

analysis and a formal analysis framework can be developed for determining whether the network 

structure is stable/marginally stable or unstable (Williams 1997). I further plan to establish a 

grading scale for the type of stability based on the five levels of stability as described in cellular 

automata theory (Zeigler, et al. 2000). 

  

Recently network theorists have shown that the degree distribution of some networks can follow 

a power law. Such networks are called scale-free networks (Barabasi, et al. 2000). I propose to 

develop a tool that will determine the degree distribution of a stable supply network. Knowing 

the degree distribution can be of immense use to a policy maker as a scale free network has some 

very robust and interesting properties. For example, a scale free network is highly robust and 

does not break down easily even if some nodes die out. 
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APPENDIX A 

Fundamental Rule categories 

 

Rule Number Environment 
rules/condition 

Description 

Rule1 Type of market This condition defines what type of market it is. 
• Regulated: - regulatory body (like the government) decides how 

many firms enter the market (Telecommunication Industry).  

• Free Entry: - firms can decide whether they want to enter the market 
or not.  

Rule 2 Type of 
Competition 

This condition defines what type of competition it is. 
• Competitive market: - Each firm set is its production quantity, while 

taking the market price as given, where the market price is 
determined by the intersection of the market demand curve and the 
industry's aggregate supply curve.  

• Imperfect competition: - Firms follow a price setting behavior. A sub-
contracting body (may be a manufacturer or some regulatory body) 
decides the quantity that each firm will produce. Various types of 
market structures such as Monopoly, duopoly and oligopolies may 
exist for an imperfectly competitive market.  

Rule 3 Type of market 
structure 

This condition defines what type of market structure it is. 
• Monopoly market structures.  

• The duopoly (two sellers) and the oligopoly (more than two sellers) 
market structures can be classified as cooperative and non-
cooperative.  

1. “Cooperative behavior is defined by firm’s colluding by 
agreeing to produce in total the monopoly's profit-maximizing output 
level, or to charge the monopoly's price.  

2. A non-cooperative behavior can be modeled either using 
simultaneous games where all firms choose their strategic variables 
(quantity produced or price) once and at the same time, or 
dynamically, where the firms move in sequence”. Finally, repeated 
interaction of a simultaneous-move oligopoly game is such that in 
each period, each firm chooses its action from the same action set 
after observing what actions have been chosen in earlier periods. 

Rule 4 Birth/Entry into 
market 

This rule defines how new firms are born in the SN environment. 
• If there is unfulfilled demand in the environment, new firms are born. 

Firms enter the market depending on the type of market and the sunk 
cost involved for entering the market (with respect to initial start up 
capacity and fitness). 

Rule 5 Death/Exit 
from market 

This rule defines how incumbent firm’s die/exit the SN environment. 
• Firms die if over a period of time they cannot grow their fitness 

above the required environmental threshold. 
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Rule Number Firm rule 
categories 

Description 

Rule 1 Cost Set up This rule category sets up the internal cost structure of a firm  
• Marginal cost of production + fixed cost for expansion. 
• The cost set up curves can be of different shapes, both linear and non-

linear depending on the type of environment 
Rule 2 Bidding This rule category defines how a firm bids.  

• Depends on the type of market structure and competition. For 
example in an oligopolistic market with imperfect competition (firms 
playing essentially a Bertrand’s pricing game), bidding rules will 
involve bidding the lowest price to win the contract. 

Rule 3 Subcontracting This rule category defines how a firm subcontracts.  

• Depends on the market structure setting. The characteristic of the 
underlying game is used for defining the node’s subcontracting rules.  
The actual subcontracting rules will be varying for industry to 
industry, depending on the market type, type of competition, and the 
type of product. 

Rule 4 Production This rule category defines how a firm handles an incoming demand. 
• The final strategy for production depends from environment to 

environment. For example one strategy can be to produce only up to 
the marginal capacity and subcontract the rest to a supplier. 

Rule 5 Capacity 
growth 

This rule category defines how a firm grows its capacity with time. 
• Depending on the fitness growth, or its need to expand on short time 

basis (and incurring higher fixed costs) firms can expand their 
capacities over the time. The capacity expansion is made proportional 
to the fitness growth (assuming that positive fitness growth means 
availability of more capital for investment purposes). The same 
reason holds true in the other direction for contracting existing 
capacities (if losses due to fixed asset costs are too high). 

Rule 6 Learning This rule category defines how a firm learns and adapts with time. 
• Firms learn on various aspects through out their lifetime. They learn 

about how to price optimally, how much capacity to expand, and 
what role to play in the supply network.  

• The actual learning process is dependent on the underlying industry 
we simulate. For example for the US automobile industry, we use a 
aspiration satisficing based price learning model (Karandikar, 
Mookherjee, Ray, & Vega-Redondo, 1998) for each firm and a 
reinforcement learning (Roth & Erev, 1995) based role learning 
model for learning which role to play (assembler, tier 1 supplier, tier 
2 supplier etc).  
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APPENDIX B 

Simulation model architecture  

 

Figure 31 shows the multi-paradigm simulation architecture used in the research framework. The 

Environment agent acts as the root coordinator and is a coupled model. Evaluator, Visual 

Manager and Timekeeper are children, which the environment launches and controls. The 

environment runs on a simulated clock. Evaluator acts as a coupled DEVS coordinator as it 

owns all the nodes and communicates with them using a message passing protocol. The 

evaluator launches all the nodes and sends them demand information and other messages. At the 

end of a fixed number of demand cycles it also evaluates all the nodes and kills the unfit ones. 

Nodes are atomic DEVS models and are owned and coordinated by the evaluator.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31: Multi-paradigm Simulator Architecture 
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APPENDIX C 

Agent Based Simulation of Supply Networks 

To capture the dynamic notion of the simulator components, agent-based technique (Ferber, 

1999) was used for implementation purposes. Parunak (1998), Kohn et.al (2000), Tesfatsion 

et.al, (1999) and others (Lin Fu-Ren et.al, 1998; Zhao and Jin, 2000) have successfully used 

agent-based techniques for similar work.  

 

The research framework uses Ferber’s (1999) definition of an agent: “a physical or virtual entity, 

which is capable of acting in an environment. It can communicate directly with other agents, 

which is driven by a set of tendencies (goals). It also possesses resources of its own and is 

capable of perceiving its environment”. 

 

Node Architecture  

Based on this definition of an agent,  

 

Figure 32 shows the node architecture used in the research framework. Each node consists of 

sensors, a decision-making unit (DMU), an information processor unit, and an external interface. 

The node utilizes the sensors to monitor the external world and receive signals from the 

environment and other nodes. For example, nodes pick up demand information, product 

information etc, which the information processor unit processes all the incoming signals and 

handles the routine tasks such as reporting its fitness to the environment etc, and requests the 

DMU to perform the decision-making tasks such as supplier selection. Then, the DMU takes the 

processed information and evaluates the information based on the strategies encoded within the 

node and provides the best response selection. There is “to and fro” communication between the 

DMU and the processor unit. Once agreement is reached, the processor unit responds to the 

incoming signals by sending responses with the help of the node external interface. 

 

 

 



 131

 

 

 

 

 

 

 

 

Figure 32: Node Architecture 

 

Node Intelligence 

The node architecture allows us to consider  two different types of nodes within the research 

framework: non-intelligent and intelligent. Non-Intelligent nodes do not utilize strategic decision 

making rules. Their DMU lies dormant and the entire behavior is dictated by the encoded rules in 

the processor unit. Their sensory capabilities are also limited, as they cannot differentiate 

between what is good and what is bad for them. For example, every node has a capacity 

constraint and before accepting a contract, a node should check on its internal capacity and 

decide on its ability to satisfy the demand based on their current fitness level. Non-Intelligent 

nodes do not perform such a check and, hence they can suffer in an environment of demand 

munificence but capacity limitations, because they may repeatedly underprice bids and accept 

orders they cannot fulfill, which results in a reduction in their fitness values.  

 

Realistically, firms participating in an a supply network should act more “intelligently” by 

evaluating the “goodness” of their actions based on the payoffs they receive from the 

environment. Intelligent adaptive nodes have active DMU’s, scan for feedback information from 

the environment and other nodes, learn from their previous interactions, and continuously adapt 

to the dynamism of the system over time. To capture the notion of learning and adaptation by 
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firms in the research model, learning mechanisms have to be embedded in the behavioral 

description of each node. Firms in a supply network generally learn about the following 

occurring in the system: 

• Changes taking place in the supply network environment (environmental conditions) 

• Effectiveness of the strategies used for supplier selection, bidding etc. 

 

Variety of learning models have been suggested in the literature, from the fields of computer 

science (machine learning), artificial intelligence (Mitchell, 1997) to psychology and economics 

literature (Roth and Erev, 1995, Simon, 1957, Selten, 1991, Karandikar et.al 1998). Since 

decision makers in a supply network are humans, we use human interaction-based learning 

models described in the psychology literature to structure the learning models. There are 

principally two classes; forward-looking learning models (when subjects have a reasonably good 

idea of the underlying situation and the corresponding payoffs at stake) and backward looking 

learning models (when subjects learn based on their previous interactions and results of those 

interactions) (Shor 2003). Forward-looking models generally forecast based on present 

conditions what would be the best solution, given conditions remain more or less same within the 

forecasting period. Since nodes in the research framework do not have a good idea about the 

environment or the corresponding payoffs while responding with bids, forward-looking models 

are not suitable. In the category of backward looking models, there are a number of well-studied 

heuristic approaches, such as the single parameter reinforcement learning Roth and Erev model 

(Roth, Erev, 1995), aspiration models (Selten, 1991) such as satisficing (Karandikar et.al, 1998) 

and evolving aspirations (Borgers and Sarin, 2000). Additionally, there are other models, such as 

reinforcement learning with reference points, world resetting and responsive learning automata; 

all these models have been described and dealt with in great detail in Shor (2003).   

 

The supply network scenario presented in this paper has a high degree of uncertainty with 

regards to the information about the environment that is available to each node. Aspiration 

models are well suited for such scenarios, where what is a good and what is a bad strategy is not 

known with certainty; hence they are the models selected for CAS-SIM  
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Aspiration Models 

In light of the little information about the environment and its attainable payoffs (by playing a 

particular strategy), people/firms may develop aspirations. A strategy is played more often if the 

resulting payoff from an interaction exceeds the aspiration level and less often otherwise (Shor, 

2003). Karandikar, et al. (1998) proposed a model in which players repeat a strategy as long as 

payoffs exceed aspirations. If payoffs fall below the aspiration level, the probability of repeating 

the strategy decreases in proportion to the difference between the aspiration and received payoff.  

 

When a realized payoff falls short of the aspiration level, probability updating is governed by 

equation 2 below (if strategy i played at time t, p is the probability of playing each strategy and � 

is the factor that determines speed of learning): 
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Thus, the probability of the unsuccessful strategy (represented by i) is reduced by a factor 

governed by the denominator in 2. On the other hand, probability of all other strategies in the 

strategy space is increased proportionately. 

 

When the learner is satisfied, having received a payoff exceeding his/her aspiration level, the 

satisficing model is used.  

 

Satisficing 

Karandikar, et al. (1998), suggested the revising of probabilities only in the case of 

disappointment. If payoffs are above aspirations, one simply repeats the previous action that the 
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player is said to be “satisficed” with the outcome of the interaction. Equation 3 below governs 

the probability updating mechanism of each strategy in the strategy space.  
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Now that the research model (Figure 1 and Figure 2) has been introduced and the theoretical 

foundations have been laid down, the next section introduces CAS-SIM as a multi-paradigm 

agent based simulation tool that incorporates all the features of the research model. 
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APPENDIX D 

CAS-SIM (Complex Adaptive Supply Network Simulation)  

To implement the multi-paradigm simulator described above, we have developed a tool suite 

called CAS-SIM (Complex Adaptive Supply Networks Simulator).  
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Figure 33: CAS-SIM Architecture 

 

 

The CAS-SIM architecture is shown above in Figure 33. It consists of a Graphical front-end 

called the configuration manager. The configuration manager allows a modeler to configure the 

simulation parameters such as demand range, number of nodes etc. The parameters are then 

stored in a persistent database. A code generator program then reads from the database and 

generates the agent code. The agent code is run on the agent platform and simulations output in 

the form of Supply Networks are stored in another persistent database. Evaluation and 
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Visualization Engines then read from these databases and analyzes and reports the results of the 

simulation. 

 

The CAS-SIM simulation toolkit has been developed by integrating a number of tool suites into 

a single framework. The heart of the framework is the MadKit platform (2003). MadKit (Multi-

agent Development Kit) is a versatile; java based agent development platform that can be used 

for cross-platform multi-agent system development. MadKit platform allows us to model the 

nodes and the environment as java agents, thus capturing all the nuances described in the 

simulation model. It uses the node architecture described in the background section and each of 

the components in the architecture is implemented as java code. The configuration manager is 

implemented using a Visual Basic front end that captures all the relevant information from the 

modeler and stores it in a excel database. This allows the storing of initial conditions used in the 

simulation for future analysis. A code generator written in Visual Basic then reads the startup 

simulation parameters from the excel database and generates the java agent code for MadKit 

kernel. An evaluation engine and visualization engine has been developed so that the growth 

structures that are generated during the simulation can be recorded and analyzed as well as 

observed. Table 16 provides a summary of the various tools used in CAS-SIM. 

 

Table 16: Tool Selection for CAS-SIM architecture 

Components Tools 

Configuration Manager Visual Basic 

Model Database Microsoft Excel 

Code Generator Visual Basic 

Agent Platform MadKit, Java 

SCN Info Database Microsoft Excel 

Evaluation Engine Visual Basic 

Visualization Engine GraphViz (AT&T), Visual Basic 
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APPENDIX E 

Behavioral Modeling of key simulation components 

The detailed behavior of some of the components in the simulation model can be shown using a 

state chart representation. The environment in the model is used for defining the market settings 

and generating demand patterns and hence has a simple state chart representation as shown in 

Figure 34.  

 

 

Figure 34: State chart representation of environment 
 

The environment is the first to start in the simulation and initializes itself. It then launches the 

evaluator, the support agents (visual manager and timekeeper) and goes to its run state. In its run 

state it first starts the global clock and transitions to the next state to check if it is time to evaluate 

for unfit nodes. In the first run, the flag is not set and the environment generates a stochastic 

demand and sends it to the evaluator. The environment keeps generating these demands 

asynchronously. The evaluator and the nodes have a multi-threaded implementation to enable 

parallel processing of these demands. This corrects the earlier problems the earlier model had 
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with synchronization and inefficient simulations due to tying up of the nodes to the global clock. 

When the “time to evaluate” flag is set, the environment stops the global clock and requests the 

evaluator to evaluate all the unfit nodes.   

 

Figure 35 shows the state chart representation for the evaluator. The evaluator, upon receiving 

the launch message, goes into the Start state, initializes it, and launches the initial number of 

nodes set in the environment. It then waits for a demand from the environment. Once it gets the 

first demand it goes into the run state and distributes demand based on the game theoretic and 

market structure rules. It then returns and waits for further demand messages from the 

environment. When it receives a evaluate message from the environment, it first broadcasts a 

pause message to all nodes so that it can flag all the unfit nodes that are below the environmental 

threshold level, such that they cannot get any new orders. It then removes all the nodes from the 

simulation that have been previously flagged.  The evaluator also responds to other messages 

from nodes, such as the node fitness report, and so on. 

 

Figure 35: State chart representation of evaluator 

 

Figure 36 represents a high-level state chart representation for node behavior. A node is 

completely event driven. When the evaluator first launches it, start state is entered and the node 

initializes itself. It then transitions to its run state. In its run state it waits for incoming messages. 



 139

A node fundamentally responds to seven basic messages or events. We use decision tree 

diagrams to illustrate node behavior in response to some of the important messages.  

Pause 

After every 12 demand cycles (equivalent to a “month” in simulated time), the evaluator 

evaluates the nodes. During this time no transactions take place in the environment and to 

facilitate this the evaluator sends a “Pause” message to all nodes. Upon receiving this message a 

node suspends all its activities.  

Report 

Node responds to this message by sending back its current fitness value to the evaluator. 

 

Figure 36: State chart representation of nodes 
 

Flag 

This message sets the death flag in a node. This tells the node that it will be removed from the 

environment in the next cycle and it does not get any new orders. The node cannot control this 

flag. 
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Demand 

Figure 37 describes the decision tree representing the behavior of the Fulfill demand state that is 

triggered due to this event. Once a node is awarded an order, it sends out a RFP (Request for 

Proposal) and waits for a fixed amount of time for the bids to arrive. It then compares its internal 

assembly cost with respect to the sub-contracting cost. If the internal cost is lower and the 

demand is less than the current capacity then the entire demand is manufactured and shipped. If 

the demand is greater then node capacity, it can either decide to accept the penalty of not meeting 

the demand and produce up to capacity or else undergo a temporary expansion, especially if it 

improves the profit margin. If the node sub-contracts, then as described in case of the evaluator it 

follows Edgeworth’s version of Bertrand’s pricing game (1925) and distributes the demand 

between the responding bidders. 
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Evaluate Capacity

Quotes

 
 

Figure 37: Decision tree embedded in the fulfill demand state 

 

Request for Proposal (RFP) 

When a node receives a request for proposal, it responds based on its role propensities. Every 

role a node can play has an associated propensity value. Every node also has an associated 

“available to promise” (ATP) capacity by role. Bidding is based partially on role propensity and 

role ATP. If a node receives a RFP (due to a new demand in the environment)  while it is still 
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processing a current demand, it uses the ATP capacity to bid on the new demand and thus tries to 

ensure that it doesn’t remain idle in the near future (see Figure 38).   

 

 

 

Figure 38: Parallel response to multiple demands 

 

Time 

A node requests a separate timekeeper agent for waiting on bids. When time is up the node 

receives this message. 

Update Fitness 

Figure 39 represents the Learn state behavior. Upon receiving this message, a node activates its 

learning module and adapts its behavior according to its performance in the current demand 

cycle. If it results in a positive change in fitness then it updates the propensity of playing that 

role. It then checks if the immediate history of demand cycles (number of demand cycles are 

heuristically fixed) has yielded a positive growth. If yes, then it expands its current capacity 

under that role, else it stays at the current capacity. If it experienced a negative fitness growth 

then it decreases the propensity of playing the role and checks if the immediate history of 

demand cycles has yielded negative growth. If yes then it shrinks its current capacity associated 

with that role, else it remains at its current level. At the end of both of these growth cycles a node 

updates the probability of playing its current pricing strategy once again. If the change in fitness 

(δf) is greater than the aspiration level (a), then it increases the probability, else decreases it. The 

aspiration level indicates what a node thinks is a successful outcome. From time to time a node 
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excites (modifies) the aspiration level, so as to experiment around the strategy space (Karandikar 

et al. 1998). 
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Figure 39: Decision tree embedded in the learning state 
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APPENDIX F 

Details of statistical Analysis  

Capacity Expansion 

 

Crosstab

39 29 26 24 118
32.4 29.9 36.3 19.4 118.0

33.1% 24.6% 22.0% 20.3% 100.0%
60.0% 48.3% 35.6% 61.5% 49.8%

1.2 -.2 -1.7 1.0
26 31 47 15 119

32.6 30.1 36.7 19.6 119.0
21.8% 26.1% 39.5% 12.6% 100.0%
40.0% 51.7% 64.4% 38.5% 50.2%

-1.2 .2 1.7 -1.0
65 60 73 39 237

65.0 60.0 73.0 39.0 237.0
27.4% 25.3% 30.8% 16.5% 100.0%

100.0% 100.0% 100.0% 100.0% 100.0%

Count
Expected Count
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Expected Count
% within CE
% within EndStruc
Std. Residual
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Expected Count
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% within EndStruc
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CE

Total

0 1 2 4
EndStruc
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Chi-Square Tests

10.781a 3 .013
10.903 3 .012

237

Pearson Chi-Square
Likelihood Ratio
N of Valid Cases

Value df
Asymp. Sig.

(2-sided)

0 cells (.0%) have expected count less than 5. The
minimum expected count is 19.42.

a. 
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Role Learning 

 

Crosstab

34 28 37 20 119
32.6 30.1 36.7 19.6 119.0

28.6% 23.5% 31.1% 16.8% 100.0%
52.3% 46.7% 50.7% 51.3% 50.2%
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Count
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R
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Chi-Square Tests

.440a 3 .932

.440 3 .932
237

Pearson Chi-Square
Likelihood Ratio
N of Valid Cases

Value df
Asymp. Sig.

(2-sided)

0 cells (.0%) have expected count less than 5. The
minimum expected count is 19.42.

a. 
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Environmental Threshold 

 

Crosstab

54 3 33 29 119
32.6 30.1 36.7 19.6 119.0

45.4% 2.5% 27.7% 24.4% 100.0%
83.1% 5.0% 45.2% 74.4% 50.2%

3.7 -4.9 -.6 2.1
11 57 40 10 118

32.4 29.9 36.3 19.4 118.0
9.3% 48.3% 33.9% 8.5% 100.0%

16.9% 95.0% 54.8% 25.6% 49.8%
-3.8 5.0 .6 -2.1

65 60 73 39 237
65.0 60.0 73.0 39.0 237.0

27.4% 25.3% 30.8% 16.5% 100.0%
100.0% 100.0% 100.0% 100.0% 100.0%
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Chi-Square Tests

86.971a 3 .000
100.689 3 .000

237

Pearson Chi-Square
Likelihood Ratio
N of Valid Cases

Value df
Asymp. Sig.

(2-sided)

0 cells (.0%) have expected count less than 5. The
minimum expected count is 19.42.

a. 
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Capacity Expansion Versus Role Learning 

 

CE * EndStruc * R Crosstabulation

20 12 16 12 60
17.1 14.1 18.7 10.1 60.0

33.3% 20.0% 26.7% 20.0% 100.0%
58.8% 42.9% 43.2% 60.0% 50.4%
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23.7% 27.1% 35.6% 13.6% 100.0%
41.2% 57.1% 56.8% 40.0% 49.6%

-.7 .6 .6 -.6
34 28 37 20 119
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Expected Count
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Chi-Square Tests

3.098a 3 .377
3.113 3 .375

119
10.102b 3 .018
10.383 3 .016

118

Pearson Chi-Square
Likelihood Ratio
N of Valid Cases
Pearson Chi-Square
Likelihood Ratio
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R
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Asymp. Sig.

(2-sided)

0 cells (.0%) have expected count less than 5. The minimum
expected count is 9.92.

a. 

0 cells (.0%) have expected count less than 5. The minimum
expected count is 9.34.

b. 
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 Role Learning Versus Capacity Expansion 

R * EndStruc * CE Crosstabulation

20 12 16 12 60
19.8 14.7 13.2 12.2 60.0

33.3% 20.0% 26.7% 20.0% 100.0%
51.3% 41.4% 61.5% 50.0% 50.8%
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Chi-Square Tests

2.239a 3 .524
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0 cells (.0%) have expected count less than 5. The minimum
expected count is 11.80.

a. 

0 cells (.0%) have expected count less than 5. The minimum
expected count is 7.44.

b. 
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Capacity Expansion Versus Environmental threshold 

CE * EndStruc * Th Crosstabulation

30 1 12 17 60
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55.6% 33.3% 36.4% 58.6% 50.4%

.5 -.4 -1.1 .6
24 2 21 12 59

26.8 1.5 16.4 14.4 59.0
40.7% 3.4% 35.6% 20.3% 100.0%
44.4% 66.7% 63.6% 41.4% 49.6%

-.5 .4 1.1 -.6
54 3 33 29 119

54.0 3.0 33.0 29.0 119.0
45.4% 2.5% 27.7% 24.4% 100.0%

100.0% 100.0% 100.0% 100.0% 100.0%
9 28 14 7 58

5.4 28.0 19.7 4.9 58.0
15.5% 48.3% 24.1% 12.1% 100.0%
81.8% 49.1% 35.0% 70.0% 49.2%

1.5 .0 -1.3 .9
2 29 26 3 60

5.6 29.0 20.3 5.1 60.0
3.3% 48.3% 43.3% 5.0% 100.0%

18.2% 50.9% 65.0% 30.0% 50.8%
-1.5 .0 1.3 -.9

11 57 40 10 118
11.0 57.0 40.0 10.0 118.0

9.3% 48.3% 33.9% 8.5% 100.0%
100.0% 100.0% 100.0% 100.0% 100.0%

Count
Expected Count
% within CE
% within EndStruc
Std. Residual
Count
Expected Count
% within CE
% within EndStruc
Std. Residual
Count
Expected Count
% within CE
% within EndStruc
Count
Expected Count
% within CE
% within EndStruc
Std. Residual
Count
Expected Count
% within CE
% within EndStruc
Std. Residual
Count
Expected Count
% within CE
% within EndStruc

Fast

Slow

CE

Total

Fast

Slow

CE

Total

Th
High

Low

0 1 2 4
EndStruc

Total

 

Chi-Square Tests

4.309a 3 .230
4.352 3 .226

119
9.641b 3 .022

10.104 3 .018
118

Pearson Chi-Square
Likelihood Ratio
N of Valid Cases
Pearson Chi-Square
Likelihood Ratio
N of Valid Cases

Th
High

Low

Value df
Asymp. Sig.

(2-sided)

2 cells (25.0%) have expected count less than 5. The minimum
expected count is 1.49.

a. 

1 cells (12.5%) have expected count less than 5. The minimum
expected count is 4.92.

b. 
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Environmental threshold Versus Capacity Expansion 

Th * EndStruc * CE Crosstabulation

30 1 12 17 60
19.8 14.7 13.2 12.2 60.0

50.0% 1.7% 20.0% 28.3% 100.0%
76.9% 3.4% 46.2% 70.8% 50.8%

2.3 -3.6 -.3 1.4
9 28 14 7 58

19.2 14.3 12.8 11.8 58.0
15.5% 48.3% 24.1% 12.1% 100.0%
23.1% 96.6% 53.8% 29.2% 49.2%

-2.3 3.6 .3 -1.4
39 29 26 24 118

39.0 29.0 26.0 24.0 118.0
33.1% 24.6% 22.0% 20.3% 100.0%

100.0% 100.0% 100.0% 100.0% 100.0%
24 2 21 12 59

12.9 15.4 23.3 7.4 59.0
40.7% 3.4% 35.6% 20.3% 100.0%
92.3% 6.5% 44.7% 80.0% 49.6%

3.1 -3.4 -.5 1.7
2 29 26 3 60

13.1 15.6 23.7 7.6 60.0
3.3% 48.3% 43.3% 5.0% 100.0%
7.7% 93.5% 55.3% 20.0% 50.4%
-3.1 3.4 .5 -1.7

26 31 47 15 119
26.0 31.0 47.0 15.0 119.0

21.8% 26.1% 39.5% 12.6% 100.0%
100.0% 100.0% 100.0% 100.0% 100.0%

Count
Expected Count
% within Th
% within EndStruc
Std. Residual
Count
Expected Count
% within Th
% within EndStruc
Std. Residual
Count
Expected Count
% within Th
% within EndStruc
Count
Expected Count
% within Th
% within EndStruc
Std. Residual
Count
Expected Count
% within Th
% within EndStruc
Std. Residual
Count
Expected Count
% within Th
% within EndStruc

High

Low

Th

Total

High

Low

Th

Total

CE
Fast

Slow

0 1 2 4
EndStruc

Total

 

Chi-Square Tests

40.744a 3 .000
47.849 3 .000

118
48.058b 3 .000
56.392 3 .000

119

Pearson Chi-Square
Likelihood Ratio
N of Valid Cases
Pearson Chi-Square
Likelihood Ratio
N of Valid Cases

CE
Fast

Slow

Value df
Asymp. Sig.

(2-sided)

0 cells (.0%) have expected count less than 5. The minimum
expected count is 11.80.

a. 

0 cells (.0%) have expected count less than 5. The minimum
expected count is 7.44.

b. 

 

Environmental threshold Versus Role Learning 
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Th * EndStruc * R Crosstabulation

28 0 17 14 59
16.9 13.9 18.3 9.9 59.0

47.5% .0% 28.8% 23.7% 100.0%
82.4% .0% 45.9% 70.0% 49.6%

2.7 -3.7 -.3 1.3
6 28 20 6 60

17.1 14.1 18.7 10.1 60.0
10.0% 46.7% 33.3% 10.0% 100.0%
17.6% 100.0% 54.1% 30.0% 50.4%

-2.7 3.7 .3 -1.3
34 28 37 20 119

34.0 28.0 37.0 20.0 119.0
28.6% 23.5% 31.1% 16.8% 100.0%

100.0% 100.0% 100.0% 100.0% 100.0%
26 3 16 15 60

15.8 16.3 18.3 9.7 60.0
43.3% 5.0% 26.7% 25.0% 100.0%
83.9% 9.4% 44.4% 78.9% 50.8%

2.6 -3.3 -.5 1.7
5 29 20 4 58

15.2 15.7 17.7 9.3 58.0
8.6% 50.0% 34.5% 6.9% 100.0%

16.1% 90.6% 55.6% 21.1% 49.2%
-2.6 3.3 .5 -1.7

31 32 36 19 118
31.0 32.0 36.0 19.0 118.0

26.3% 27.1% 30.5% 16.1% 100.0%
100.0% 100.0% 100.0% 100.0% 100.0%

Count
Expected Count
% within Th
% within EndStruc
Std. Residual
Count
Expected Count
% within Th
% within EndStruc
Std. Residual
Count
Expected Count
% within Th
% within EndStruc
Count
Expected Count
% within Th
% within EndStruc
Std. Residual
Count
Expected Count
% within Th
% within EndStruc
Std. Residual
Count
Expected Count
% within Th
% within EndStruc

High

Low

Th

Total

High

Low

Th

Total

R
High

Low

0 1 2 4
EndStruc

Total

 

Chi-Square Tests

45.673a 3 .000
57.789 3 .000

119
42.142b 3 .000
47.227 3 .000

118

Pearson Chi-Square
Likelihood Ratio
N of Valid Cases
Pearson Chi-Square
Likelihood Ratio
N of Valid Cases

R
High

Low

Value df
Asymp. Sig.

(2-sided)

0 cells (.0%) have expected count less than 5. The minimum
expected count is 9.92.

a. 

0 cells (.0%) have expected count less than 5. The minimum
expected count is 9.34.

b. 
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Role Learning Versus Environmental threshold 

R * EndStruc * Th Crosstabulation

28 0 17 14 59
26.8 1.5 16.4 14.4 59.0

47.5% .0% 28.8% 23.7% 100.0%
51.9% .0% 51.5% 48.3% 49.6%

.2 -1.2 .2 -.1
26 3 16 15 60

27.2 1.5 16.6 14.6 60.0
43.3% 5.0% 26.7% 25.0% 100.0%
48.1% 100.0% 48.5% 51.7% 50.4%

-.2 1.2 -.2 .1
54 3 33 29 119

54.0 3.0 33.0 29.0 119.0
45.4% 2.5% 27.7% 24.4% 100.0%

100.0% 100.0% 100.0% 100.0% 100.0%
6 28 20 6 60

5.6 29.0 20.3 5.1 60.0
10.0% 46.7% 33.3% 10.0% 100.0%
54.5% 49.1% 50.0% 60.0% 50.8%

.2 -.2 -.1 .4
5 29 20 4 58

5.4 28.0 19.7 4.9 58.0
8.6% 50.0% 34.5% 6.9% 100.0%

45.5% 50.9% 50.0% 40.0% 49.2%
-.2 .2 .1 -.4
11 57 40 10 118

11.0 57.0 40.0 10.0 118.0
9.3% 48.3% 33.9% 8.5% 100.0%

100.0% 100.0% 100.0% 100.0% 100.0%

Count
Expected Count
% within R
% within EndStruc
Std. Residual
Count
Expected Count
% within R
% within EndStruc
Std. Residual
Count
Expected Count
% within R
% within EndStruc
Count
Expected Count
% within R
% within EndStruc
Std. Residual
Count
Expected Count
% within R
% within EndStruc
Std. Residual
Count
Expected Count
% within R
% within EndStruc

High

Low

R

Total

High

Low

R

Total

Th
High

Low

0 1 2 4
EndStruc

Total

 

Chi-Square Tests

3.131a 3 .372
4.289 3 .232

119
.475b 3 .924
.477 3 .924
118

Pearson Chi-Square
Likelihood Ratio
N of Valid Cases
Pearson Chi-Square
Likelihood Ratio
N of Valid Cases

Th
High

Low

Value df
Asymp. Sig.

(2-sided)

2 cells (25.0%) have expected count less than 5. The minimum
expected count is 1.49.

a. 

1 cells (12.5%) have expected count less than 5. The minimum
expected count is 4.92.

b. 

 



 152

Linear multivariate analysis results for Survivability 

Tests of Between-Subjects Effects

Dependent Variable: Surv

.593a 7 .085 2.063 .048 .059
21.105 1 21.105 514.018 .000 .692

.295 1 .295 7.194 .008 .030

.121 1 .121 2.952 .087 .013

.026 1 .026 .632 .427 .003

.000 1 .000 .004 .949 .000

.076 1 .076 1.863 .174 .008

.071 1 .071 1.736 .189 .008

.001 1 .001 .025 .875 .000
9.402 229 .041

31.082 237
9.995 236

Source
Corrected Model
Intercept
CE
R
Th
CE * R
CE * Th
R * Th
CE * R * Th
Error
Total
Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

Partial Eta
Squared

R Squared = .059 (Adjusted R Squared = .031)a. 
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Stability results from SAS 
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APPENDIX G 

Cost set up for Automobile 

 

Car

4700-8100+200

Body

1300-2300+75

PowerTrain
1200-2000+70

TransAxel

1900-3300+100

CCU

300-500+150

BodyFrame
600-1000+75

Wheel Assembly
700-1300+10

Engine
600-1000+150

Fuel System
600-1000+50

Brake System

700-1300+10

Gear System
600-1000+50

Chasis
600-1000+100

Rubber
[100,300]

Steel
[600,1000]

Plastic
[300,500]

 
 


