By
Catherine Stephens

Dissertation

Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements
for the degree of DOCTOR OF PHILOSOPHY
in

Civil Engineering
May, 2013
Nashville, Tennessee

Approved:
Professor Florence Sanchez
Professor Prodyot K. Basu
Professor David S. Kosson
Professor Sankaran Mahadevan
Doctor Paul G. Allison

To my husband, family, and the people who have encouraged me along the way

## ACKNOWLEDGEMENTS

Firstly, I would like to thank my advisor, Dr. Florence Sanchez for her encouragement and patience during my PhD journey. Her work ethic and dedication is admirable. I would also like to thank my committee members, Dr. David S. Kosson, Dr. Prodyot K. Basu, Dr. Sankaran Mahadevan, and Dr. Paul G. Allison for their time and valuable suggestions.

This dissertation would not have been possible without the financial support from the Department of Civil and Environmental Engineering at Vanderbilt University, the National Science Foundation under NSF CAREER CMMI 0547024, and the SMART Scholarship Program funded by the Office of Secretary of Defense-Test and Evaluation, DefenseWide/PE0601120D8Z National Defense Education Program/BA-1, Basic Research, Grant Number N00244-09-1-0081.

I am especially thankful for the people that have met at Vanderbilt University and the Army Corps of Engineers Engineer Research and Development Center (ERDC) in Vicksburg, Mississippi, including too many to name, for their many conversations, suggestions, and collaboration. I especially want to recognize Lesa Brown, Dr. David Delapp, and Dr. Rossane Delapp for their advice and help with my experimental program at Vanderbilt, and Dr. Paul Allison, Bill Heard, and Dr. Robert Moser at ERDC for their friendship and mentorship throughout this process.

Lastly, I am infinitely thankful for my understanding and patient husband, Justin. I am also very thankful for the many years of support from my parents, Greg and Susan. Also, to my brother, Jacob, my family, and my friends thank you for encouraging me and challenging me to be myself.

## TABLE OF CONTENTS

## Page

DEDICATION ..... ii
ACKNOWLEDGEMENTS ..... iii
LIST OF TABLES ..... viii
LIST OF FIGURES ..... ix
NOMENCLATURE ..... xiv
Chapter

1. INTRODUCTION ..... 1
1.1. Overview ..... 1
1.2. Objectives and Approach ..... 3
1.3. Structure of the Dissertation ..... 4
2. LITERATURE REVIEW ..... 6
2.1. Overview ..... 6
2.2. Fiber Reinforced Cement-Based Composites ..... 6
2.3. CNTs/CNFs as Nanoreinforcement in Cement-Based Composites ..... 9
2.3.1. CNT/CNF Properties ..... 9
2.3.2. CNT/CNF dispersion ..... 10
2.3.3. Mechanical Properties of CNT/CNF Reinforced Cement-Based Composites ..... 12
2.4. Micromechanical Properties and Mineralogy/Microstructure of Cement-Based Composites ..... 13
2.5. Conclusions ..... 16
3. DISPERSION OF CNFS IN CEMENT-BASED COMPOSITES ..... 18
3.1. Overview ..... 18
3.2. Experimental Detail ..... 19
3.2.1. Materials ..... 19
3.2.2. Preparation of CNF Suspensions ..... 21
3.2.2.1. CNF Suspensions in "Mix Water" Solution ..... 21
3.2.2.2. CNF Suspensions in "Cement Pore Water" Solution ..... 22
3.2.3. Preparation of CNF/Cement-Based Composites ..... 23
3.2.3.1. Preliminary Study for Determining W/C Ratio ..... 23
3.2.3.2. CNF/Cement-Based Composites ..... 23
3.2.4. Characterization ..... 25
3.2.4.1. Visual Inspection ..... 25
3.2.4.2. Optical Microscopy ..... 26
3.2.4.3. SEM ..... 27
3.3. Results and Discussion ..... 28
3.3.1. Disaggregation and Dispersion of CNFs in "Mix Water" Solutions ..... 28
3.3.2. Disaggregation and Dispersion of CNFs in "Cement Pore Water" Solutions ..... 32
3.3.3. CNF Migration with Bleed Water and W/C Ratio. ..... 35
3.3.4. Dispersion and Distribution of CNFs in Cement-Based Composites ..... 36
3.4. Conclusions ..... 46
4. MICROMECHANICAL PROPERTIES OF CEMENT-BASED COMPOSITES WITH CNFS ..... 48
4.1. Overview ..... 48
4.2. Experimental Detail ..... 49
4.2.1. Materials ..... 49
4.2.2. Preparation of CNF/Cement-Based Composites ..... 49
4.2.3. Characterization ..... 52
4.2.3.1. Nanoindentation ..... 52
4.2.3.2. SEM/EDS ..... 56
4.3. Results and Discussion ..... 63
4.3.1. Effects of CNFs on the Distribution of Micromechanical Properties at the Local Level ..... 63
4.3.1.1. Indent Locations and Indentation Depths ..... 63
4.3.1.2. Micromechanical Properties ..... 66
4.3.2. Effects of CNFs on the Micromechanical Properties of Individual Cement Hydrates ..... 77
4.3.2.1. Indent Locations and Indentation Depths ..... 77
4.3.2.2. Micromechanical Properties ..... 79
4.3.3. Micromechanical Properties located in and around CNF Agglomerates ..... 86
4.3.3.1. Indent Locations ..... 86
4.3.3.2. Micromechanical Properties ..... 87
4.4. Conclusions ..... 92
5. MACROMECHANICAL PROPERTIES OF CEMENT-BASED COMPOSITES WITH CNFS ..... 93
5.1. Overview ..... 93
5.2. Experimental Detail ..... 94
5.2.1. Materials ..... 94
5.2.2. Preparation of Cement-Based Composites ..... 94
5.2.2.1. PC Paste Composites ..... 94
5.2.2.2. SF Paste Composites ..... 95
5.2.3. Characterization ..... 95
5.2.3.1. Macromechanical Testing ..... 95
5.2.3.2. Microstructural Analysis ..... 99
5.3. Results and Discussion ..... 100
5.3.1. Influence of CNF Dispersion on the Flexural Strength of PC Paste Composites ..... 100
5.3.2. Effect of CNF Loading on the Mechanical Properties of PC Paste Composites ..... 103
5.3.2.1. Compressive Properties ..... 103
5.3.2.2. Splitting Tensile Strength ..... 108
5.3.2.3. Flexural Properties ..... 110
5.3.3. Effect of CNF Addition on the Mechanical Properties of SF Paste Composites ..... 117
5.3.3.1. Compressive Properties ..... 117
5.3.3.2. Splitting Tensile Strength ..... 122
5.3.3.3. Flexural Properties ..... 125
5.4. Conclusions ..... 131
6. HYBRID CNF/CF CEMENT-BASED COMPOSITES ..... 134
6.1. Overview ..... 134
6.2. Experimental Detail ..... 135
6.2.1. Materials ..... 135
6.2.2. Preparation of Hybrid CNF/CF Cement-Based Composites ..... 135
6.2.3. Characterization ..... 136
6.2.3.1. Optical Microscopy ..... 136
6.2.3.2. SEM/EDS ..... 136
6.2.3.3. Nanoindentation ..... 137
6.2.3.4. Macromechanical Testing ..... 137
6.3. Results and Discussion ..... 138
6.3.1. Microstructure of the Hybrid CNF/CF Cement-Based Composites and CNF Dispersion State ..... 138
6.3.2. Micromechanical Properties of Hybrid CNF/CF Cement-Based Composites ..... 141
6.3.2.1. Effects of Hybrid Fiber Reinforcement on the Overall Distribution of Micromechanical Responses from Cement-Based Composite Constituents ..... 141
6.3.2.2. Effects of Hybrid CNF/CF Reinforcement on the Micromechanical Properties of Individual Cement Hydrates ..... 153
6.3.3. Macromechanical Properties of Hybrid CNF/CF Cement-Based Composites ..... 162
6.3.3.1. Compressive Properties ..... 162
6.3.3.2. Flexural Properties ..... 169
6.4. Conclusions ..... 177
7. SUMMARY AND FUTURE WORK ..... 179
7.1. Summary ..... 179
7.2. Future Work ..... 183
REFERENCES ..... 185
Appendix
A. DISPERSION IN SOLUTION DATA ..... 197
B. DISPERSION IN CEMENT DATA ..... 220
C. MICROMECHANICAL DATA ..... 253
D. MACROMECHANICAL DATA ..... 338

## LIST OF TABLES

Table Page
2.1. Elastic modulus and hardness of cement phases from nanoindentation ..... 14
3.1. Composition of the portland cement used ..... 21
4.1. Summary of mean modulus and hardness values of the C-S-H phases in PC and PC-CNF and their weights ..... 84
5.1. P-values and conclusions for the flexural strength of PC paste composites as a function of CNF dispersion method ..... 103
5.2. P-values and conclusions for the compressive properties of PC paste composites as a function of CNF loading ..... 107
5.3. P-values and conclusions for the splitting tensile strength of PC paste composites as a function of CNF loading ..... 110
5.4. P-values and conclusions for the flexural properties of PC paste composites as a function of CNF loading. ..... 116
5.5. P-values and conclusions for the compressive properties of SF paste composites as a function of CNF loading ..... 121
5.6. P-values and conclusions for the splitting tensile strength of SF paste composites as a function of CNF loading ..... 124
5.7. P -values and conclusions for the flexural properties of SF paste composites as a function of CNF loading. ..... 130
6.1. Summary of mean modulus and hardness values of the C-S-H phases in PC, PC-CNF, PC-CF, and PC-CNF-CF and their weights ..... 161
6.2. $\quad \mathrm{P}$-values and conclusions for the compressive properties of hybrid CNF/CF cement-based composites ..... 168
6.3. P-values and conclusions for the flexural properties of hybrid CNF/CF cement-based composites ..... 175

## LIST OF FIGURES

Figure Page
2.1. Mechanisms of fiber reinforcement modified from [68] ..... 7
2.2. Comparison of CNTs and CNFs ..... 10
3.1. Visual comparison of aqueous suspensions containing CNFs ..... 29
3.2. Optical micrographs and histograms showing the state of CNF dispersion in "mix water" solutions ..... 31
3.3. Visual comparison of suspensions containing CNFs in a solution made to simulate the pore solution of cement paste ..... 33
3.4. Optical micrographs showing the dispersion of CNFs in aqueous solution and simulated pore solution ..... 34
3.5. Cumulative area of CNFs and the maximum Feret's diameter of each CNF particle comparing P-HRWR/CNF and PW/P-HRWR/CNF ..... 35
3.6. Visual comparison of CNF migration in cement paste specimens with varying w/c ratios ..... 36
3.7. SEM images of the porous layer caused by CNF migration during curing ..... 36
3.8. SEM images showing the varying distribution of CNFs in cement-based composites ..... 37
3.9. Binary images of cement-based composite cross-sections containing CNFs dispersed by various methods and distributions of CNF agglomerates in the cross-section ..... 39
3.10. Binary images of CNF/cement-based composites showing CNF agglomerates with a density gradient of CNF agglomerates seen for $0.2 \mathrm{wt} \%$ and $0.5 \mathrm{wt} \%$ CNF loadings. ..... 40
3.11. Relative frequency histograms of maximum Feret's diameter of CNF agglomerates observed at the surface of the CNF/cement-based composite cross-sections ..... 41
3.12. Images of cement-based composites showing evidence of CNF migration only in the composites with P-HRWR ..... 44
3.13. SEM images showing the disordered structure of the microscale agglomerates ..... 45
4.1. Micrographs showing the different steps of the polishing process used to prepare cement-based composite specimens for nanoindentation. ..... 51
4.2. SEM image showing areas of a cement-based composite considered to have an acceptable and unacceptable polish for nanoindentation. ..... 51
4.3. Agilent Nanoindenter G200 Testing System at ERDC (Vicksburg, Mississippi) ..... 54
4.4. Example of force versus displacement curves from nanoindentation of a cement-based composite ..... 55
4.5. SEM images showing the location of a nanoindentation grid and the process to determine the constituents on which each indent is located ..... 59
4.6. Backscatter SEM image with false color showing the location of indents with respect to constituents and CNF agglomerates ..... 60
4.7. Example of EDS results that were spatially correlated with nanoindentation data of cement hydrates ..... 62
4.8. Pie charts showing the percentage distribution of indents located on various cement paste constituents, combinations of constituents, and indentation errors/invalid curves ..... 64
4.9. Pie charts showing the percentage distribution of indents located on hydrates, unhydrated cement particles, and flaws ..... 65
4.10. Spatial correlation of micromechanical properties of PC A Grid 1 ..... 67
4.11. Spatial correlation of micromechanical properties of PC B Grid 1 ..... 68
4.12. Spatial correlation of micromechanical properties of PC B Grid 2 ..... 69
4.13. Spatial correlation of micromechanical properties of PC-CNF A Grid 1 ..... 70
4.14. Spatial correlation of micromechanical properties of PC-CNF A Grid 2. ..... 71
4.15. Spatial correlation of micromechanical properties of PC-CNF B Grid 1 ..... 72
4.16. Histograms of the modulus values obtained by nanoindentation with scaled empirical distributions decomposed into hydrates, unhydrated cement, and flaws ..... 74
4.17. Histograms of the hardness values obtained by nanoindentation with scaled empirical distributions decomposed into hydrates, unhydrated cement, and flaws ..... 75
4.18. Pie charts showing the percentages of indents located on various cement hydration products ..... 78
4.19. Histograms of the modulus values of the cement hydration products with scaled empirical distributions decomposed into the cement hydration phases. ..... 80
4.20. Histograms of the hardness values of the cement hydration products with scaled empirical distributions decomposed into the cement hydration phases. ..... 81
4.21. Micromechanical property distributions of the C-S-H phase in cement-based composites as predicted by a Gaussian mixture model ..... 83
4.22. Micromechanical properties of the C-S-H phase in cement-based composites compared to the chemistry at the indent location ..... 85
4.23. Pie charts showing the percentages of indents located with respect to a CNF agglomerate ..... 87
4.24. Spatial correlation of micromechanical properties of PC-1\% Grid 1 ..... 88
4.25. Spatial correlation of micromechanical properties of PC-1\% Grid 2. ..... 89
4.26. Histograms of the micromechanical properties of the cement hydration products with scaled empirical distributions decomposed into the cement hydration phases ..... 91
5.1. Compressive test setup for testing cylinder specimens of cement-based composites ..... 97
5.2. Splitting tensile test setup for testing cylinder specimens of cement-based composites. ..... 98
5.3. Three-point bending setup for testing beam specimens of cement-based composites ..... 99
5.4. 7-day flexural strengths of PC paste composites with $0.2 \mathrm{wt} \%$ CNFs as a function of CNF dispersion method ..... 102
5.5. 7-day compressive properties of PC paste composites as a function of CNF loading ..... 105
5.6. 28-day compressive properties of PC paste composites as a function of CNF loading . ..... 106
5.7. Structural integrity of PC paste composites after 28-day compressive testing as a function of CNF loading ..... 108
5.8. 7-day splitting tensile strength of PC paste composites as a function of CNF loading. ..... 109
5.9. 28-day splitting tensile strength of PC paste composites as a function of CNF loading ..... 109
5.10. 7-day flexural properties of PC paste composites as a function of CNF loading ..... 114
5.11. 28-day flexural properties of PC paste composites as a function of CNF loading ..... 115
5.12. SEM images showing evidence of fiber pull-out on fracture surfaces of PC-0.5\% ..... 117
5.13. 7-day compressive properties of SF paste composites as a function of CNF loading ..... 119
5.14. 28-day compressive properties of SF paste composites as a function of CNF loading. ..... 120
5.15. Structural integrity of SF paste composites after 28-day compressive testing as a function of CNF loading ..... 122
5.16. 7-day splitting tensile strength of SF paste composites as a function of CNF loading ..... 123
5.17. 28-day splitting tensile strength of SF paste composites as a function of CNF loading ..... 123
5.18. 7-day flexural properties of SF paste composites as a function of CNF loading ..... 128
5.19. 28-day flexural properties of SF paste composites as a function of CNF loading ..... 129
5.20. Images of cement-based composite cross-sections showing the reduction of CNF migration with the bleed water with the addition of silica fume ..... 131
6.1. Compressive test setup for testing beam specimens of cement-based composites ..... 138
6.2. Representative SEM images of the hybrid CNF/CF cement-based composites showing the distribution and location of CNFs and CFs within the composites ..... 139
6.3. Binary images and histograms showing the distribution of CNFs within representative cross-sections of the cement-based composites ..... 140
6.4. Spatial correlation of micromechanical properties of PC-CF A Grid 1 ..... 142
6.5. Spatial correlation of micromechanical properties of PC-CF A Grid 2 ..... 143
6.6. Spatial correlation of micromechanical properties of PC-CF B Grid 1 ..... 144
6.7. Spatial correlation of micromechanical properties of PC-CNF-CF A Grid 1 ..... 145
6.8. Spatial correlation of micromechanical properties of PC-CNF-CF A Grid 2. ..... 146
6.9. Spatial correlation of micromechanical properties of PC-CNF-CF B Grid 1 ..... 147
6.10. Histograms of the modulus values with scaled empirical distributions decomposed into hydrates, unhydrated cement, and flaws ..... 149
6.11. Histograms of the hardness values with scaled empirical distributions decomposed into hydrates, unhydrated cement, and flaws ..... 151
6.12. Histograms of the modulus values of the cement hydration products with scaled empirical distributions decomposed into the cement hydration phases ..... 154
6.13. Histograms of the hardness values of the cement hydration products with scaled empirical distributions decomposed into the cement hydration phases ..... 157
6.14. Modulus and hardness distributions of the C-S-H phase in cement-based composites as predicted by a Gaussian mixture model ..... 160
6.15. 3-day compressive properties of hybrid CNF/CF cement-based composites ..... 163
6.16. 7-day compressive properties of hybrid CNF/CF cement-based composites ..... 164
6.17. 28-day compressive properties of hybrid CNF/CF cement-based composites ..... 165
6.18. Probability density functions of the 3-day compressive strength of the hybrid CNF/CF cement-based composites assuming normal distributions ..... 166
6.19. Probability density functions of the 7 -day compressive strength of the $\mathrm{CNF}, \mathrm{CF}$, and hybrid CNF/CF cement-based composites assuming normal distributions ..... 166
6.20. Probability density functions of the 28 -day compressive strength of the hybrid CNF/CF cement-based composites assuming normal distributions ..... 167
6.21. 3-day flexural properties of hybrid CNF/CF cement-based composites ..... 172
6.22. 7-day flexural properties of hybrid CNF/CF cement-based composites ..... 173
6.23. 28-day flexural properties of hybrid CNF/CF cement-based composites ..... 174
6.24. Probability density functions of the 3-day flexural strength of the hybrid CNF/CF cement-based composites assuming normal distributions ..... 176
6.25. Probability density functions of the 7-day flexural strength of the hybrid CNF/CF cement-based composites assuming normal distributions ..... 176
6.26. Probability density functions of the 28-day flexural strength of the hybrid CNF/CF cement-based composites assuming normal distributions ..... 177

## NOMENCLATURE

## Abbreviation/Symbol Description

| $\alpha$ | Degree of hydration |
| :--- | :--- |
| $\beta$ | Dimensionless correction factor for nanoindenter tip |
| $\gamma$ | Volume fraction of unhydrated cement |
| $\nu$ | Poisson's ratio |
| $v_{i}$ | Poisson's ratio of nanoindenter |
| $\rho_{\mathrm{c}}$ | Specific gravity of cement |
| $\mathrm{A}_{\mathrm{c}}$ | Area of contact |
| AE | Air entraining admixture |
| AFM | Atomic force microscopy |
| $\mathrm{C}_{2} \mathrm{~S}$ | Dicalcium silicate (2CaO $\left.\mathrm{SiO}_{2}\right)$ |
| $\mathrm{C}_{3} \mathrm{~A}$ | Tricalcium aluminate $\left(3 \mathrm{CaO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3}\right)$ |
| $\mathrm{C}_{3} \mathrm{~S}$ | Tricalcium silicate $\left(3 \mathrm{CaO} \cdot \mathrm{SiO}_{2}\right)$ |
| $\mathrm{C}_{4} \mathrm{AF}^{2}$ | Tetracalcium aluminoferrite $\left(4 \mathrm{CaO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{Fe}_{2} \mathrm{O}_{3}\right)$ |
| CaSO | Calcium sulfate hemihydrate |
| CFs | Carbon microfibers |
| CH | Calcium hydroxide |
| CNFs | Carbon nanofibers |
| CNTs | Carbon nanotubes |
| $\mathrm{C}-\mathrm{S}-\mathrm{H}$ | Calcium silicate hydrate |
| E | Elastic modulus |
| $\mathrm{E}_{\text {eff }}$ | Effective elastic modulus |
| $\mathrm{E}_{\mathrm{i}}$ | Elastic modulus of nanoindenter |
| EDS | Energy dispersive X-ray spectroscopy |
| ERDC | Army Corps of Engineers Engineer Research and Development |
|  | Center (Vicksburg, Mississippi) |
| FRC | Fiber reinforced concrete |
| H | Hardness |
| HNO | Nitric acid |
| HRWR | High-range water reducer |
| ITZ | Interfacial transition zone |
| KOH | Potassium hydroxide |
| MWCNTs | Multi-walled carbon nanotubes |
| NaOH | Sodium hydroxide |
| $\mathrm{N}-\mathrm{HRWR}$ | Sulfonated naphthalene condensate high-range water reducer |
| $\mathrm{P}-\mathrm{HRWR}$ | Polycarboxylate-based high-range water reducer |
| PC paste | Portland cement paste |
| $\mathrm{P}_{\text {max }}$ | Maximum nanoindentation force |
| S | Measured nanoindentation unloading stiffness |
| SEM | Scanning electron microscope/microscopy |
| SF paste | Portland cement and silica fume paste |
|  |  |


| SWCNTs | Single-walled carbon nanotubes |
| :--- | :--- |
| TEM | Transmittance electron microscopy |
| w/b | Water-to-binder |
| w/c | Water-to-cement |
| wt\% | Percent weight by weight of cement |
| XRF | X-ray fluorescence |

## Nomenclature for Suspensions (Chapter 3)

| Name | Description |
| :--- | :--- |
| AE/CNF | "As received" CNFs in water dispersed by AE |
| N-HRWR/CNF | "As received" CNFs in water dispersed by N-HRWR |
| P-HRWR/CNF | "As received" CNFs in water dispersed by P-HRWR |
| P-HRWR/T-CNF | CNFs surface treated with $\mathrm{HNO}_{3}$ in water dispersed with P-HRWR |
| PW/CNF | "As received" CNFs in simulated cement pore water |
| PW/AE/CNF | "As received" CNFs in simulated cement pore water dispersed by AE |
| PW/N-HRWR/CNF | "As received" CNFs in simulated cement pore water dispersed by |
|  | N-HRWR |
| PW/P-HRWR/CNF | "As received" CNFs in simulated cement pore water dispersed by |
| W/CNF | P-HRWR |
| W/T-CNF | "As received" CNFs in water |
|  | CNFs surface treated with $\mathrm{HNO}_{3}$ in water |

## Nomenclature for Composites (Dispersion Method - Chapters 3 and 5)

| Name | Description |
| :---: | :---: |
| PC-AE/CNF | PC paste ( $\mathrm{w} / \mathrm{c}=0.28$ ) with $0.2 \mathrm{wt} \%$ "as received" CNFs dispersed with AE |
| PC-AE/Control | PC paste ( $\mathrm{w} / \mathrm{c}=0.28$ ) control (no fibers) with AE |
| PC-N-HRWR/CNF | PC paste ( $\mathrm{w} / \mathrm{c}=0.28$ ) with $0.2 \mathrm{wt} \%$ "as received" CNFs dispersed with N-HRWR |
| PC-N-HRWR/Control | PC paste (w/c=0.28) control (no fibers) with N-HRWR |
| PC-P-HRWR/CNF | PC paste ( $\mathrm{w} / \mathrm{c}=0.28$ ) with $0.2 \mathrm{wt} \%$ "as received" CNFs dispersed with P-HRWR |
| PC-P-HRWR/Control | PC paste (w/c=0.28) control (no fibers) with P-HRWR |
| PC-P-HRWR/T-CNF | PC paste (w/c=0.28) with $0.2 \mathrm{wt} \% \mathrm{CNFs}$ surface treated with $\mathrm{HNO}_{3}$ dispersed with P-HRWR |
| PC-W/CNF | PC paste ( $\mathrm{w} / \mathrm{c}=0.28$ ) with $0.2 \mathrm{wt} \%$ "as received" CNFs and no dispersing agent |
| PC-W/Control | PC paste ( $\mathrm{w} / \mathrm{c}=0.28$ ) control (no fibers) with no dispersing agent |
| PC-W/T-CNF | PC paste ( $\mathrm{w} / \mathrm{c}=0.28$ ) with $0.2 \mathrm{wt} \% \mathrm{CNFs}$ surface treated with $\mathrm{HNO}_{3}$ and no dispersing agent |

Nomenclature for Composites (CNF Loading - Chapters 3 and 5)

| Name | Description |
| :---: | :---: |
| PC-0\% | PC paste ( $\mathrm{w} / \mathrm{c}=0.28$ ) control (no fibers) with P-HRWR |
| PC-0.02\% | PC paste ( $\mathrm{w} / \mathrm{c}=0.28$ ) with $0.02 \mathrm{wt} \%$ "as received" CNFs dispersed with P-HRWR |
| PC-0.08\% | PC paste ( $\mathrm{w} / \mathrm{c}=0.28$ ) with $0.08 \mathrm{wt} \%$ "as received" CNFs dispersed with P-HRWR |
| PC-0.2\% | PC paste ( $\mathrm{w} / \mathrm{c}=0.28$ ) with $0.2 \mathrm{wt} \%$ "as received" CNFs dispersed with P-HRWR |
| PC-0.5\% | PC paste ( $\mathrm{w} / \mathrm{c}=0.28$ ) with $0.5 \mathrm{wt} \%$ "as received" CNFs dispersed with P-HRWR |
| PC-1\% | PC paste ( $\mathrm{w} / \mathrm{c}=0.28$ ) with $1 \mathrm{wt} \%$ "as received" CNFs dispersed with P-HRWR |
| SF-0\% | SF paste (w/c=0.28) control (no fibers) with P-HRWR |
| SF-0.02\% | SF paste ( $\mathrm{w} / \mathrm{c}=0.28$ ) with $0.02 \mathrm{wt} \%$ "as received" CNFs dispersed with P-HRWR |
| SF-0.08\% | SF paste (w/c=0.28) with $0.08 \mathrm{wt} \%$ "as received" CNFs dispersed with P-HRWR |
| SF-0.2\% | SF paste ( $\mathrm{w} / \mathrm{c}=0.28$ ) with $0.2 \mathrm{wt} \%$ "as received" CNFs dispersed with P-HRWR |
| SF-0.5\% | SF paste ( $\mathrm{w} / \mathrm{c}=0.28$ ) with $0.5 \mathrm{wt} \%$ "as received" CNFs dispersed with P-HRWR |
| SF-1\% | SF paste (w/c=0.28) with $1 \mathrm{wt} \%$ "as received" CNFs dispersed with P-HRWR |

## Nomenclature for Composites (Hybrid Composites - Chapters 4 and 6)

## Name Description

PC<br>PC-CF<br>PC-CF-CNF<br>PC-CNF

## CHAPTER 1

## INTRODUCTION

### 1.1. Overview

According to the American Society of Civil Engineers, the United States' infrastructure is outdated and needs trillions of dollars in investment [1]. The National Academy of Engineering also recognizes restoring and improving urban infrastructure as one of the Grand Challenges for Engineering which are awaiting engineering solutions in the $21^{\text {st }}$ century [2]. An important aspect of improving infrastructure is improving and advancing construction materials.

Portland cement concrete is the most used construction material for civil infrastructure in the world [3]. Research has led to advanced cement-based composites for civil infrastructure that have properties such as the ability to stay clean while removing pollutants from the air [4, 5], transmit light through the material [6], or sense damage [7, 8]. The use of short, randomly distributed, discontinuous fibers in cement-based composites has led to increases in strength, toughness, impact and fatigue resistance, and durability as well as a decrease in plastic shrinkage cracking [3, 9-11]. Additionally short, randomly distributed, discontinuous fibers have been shown to provide multifunctional capabilities to cement-based composites such as strain, temperature, and damage sensing and thermal conductivity [12-30].

More recently, the use of hybrid discontinuous fiber reinforcement consisting of the combination of multiple fiber types and/or sizes that are randomly distributed within the material has been found to improve the mechanical properties beyond the sum of the improvements from each individual fiber size/type alone [31]. However, current hybrid fiber reinforced cement-
based composites mostly use only macroscale and microscale discontinuous fibers. Because cracking and flaws in cement-based composites exist from the nanoscale to the macroscale, the use of discontinuous fiber reinforcements implemented from the nanoscale to the macroscale could allow for novel, advanced cement-based composites with tailored properties and improved mechanical performance and durability.

Recent advances in nanotechnology have allowed for large-scale commercial production and characterization capabilities of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) [32]. CNTs/CNFs have properties such as large surface areas, high aspect ratios, good chemical resistance, electrical conductivity, and thermal conductivity, and extraordinary strength, which make them excellent candidates for nanoscale reinforcement in cement-based composites [3235]. However, CNTs and CNFs have a strong van der Waals self-attraction and high hydrophobicity, which cause the CNTs/CNFs to form bundles that create microscale agglomerates in the composite [35]. Most research efforts to date have been placed on dispersing CNTs/CNFs in cement-based composites [13-16, 26, 35-65] and the effect of CNTs/CNFs on the composite mechanical properties $[15-19,36,37,39-47,50,52,55-58,64,66,67]$. Despite these efforts, the dispersion state of CNTs/CNFs in cement-based materials is still not well understood and remains a major and on-going challenge. Additionally, results to date on the mechanical properties have been mixed with some studies showing significant improvements (up to $47 \%$ increase for the flexural strength [57] and over $100 \%$ increase for the tensile strength [19, 29]) even for small addition of CNTs/CNFs such as $0.05 \%$ by weight of cement ( $\mathrm{wt} \%$ ), while others have reported border line improvements to no improvement and in some cases deterioration of the composite mechanical properties [15-19, 29, 36, 37, 39-47, 50, 52, 55-58, 64, 66, 67].

### 1.2. Objectives and Approach

The objective of the research included in this dissertation was to investigate the inclusion of CNFs in cement paste for use as nanoreinforcement. In particular, this research focused on: (i) the dispersion and distribution of CNFs in cement pastes, (ii) the effect of CNFs on the microand macromechanical properties of the composite material, and (iii) the hybrid effect of CNFs and carbon microfibers (CFs) on the microstructure and multiscale mechanical properties of portland cement pastes. There are four specific objectives addressed in this dissertation including:

1. Determining the effect of dispersion methods and CNF loading on: (i) CNF disaggregation and dispersion in solutions and (ii) subsequent dispersion and distribution in cement pastes.
2. Investigating the micromechanical properties of hydrated cement pastes containing CNFs, including the effect of CNFs on the overall distribution of micromechanical properties at the local level and on representative major cement phases (i.e., C-S-H and CH ) and the micromechanical response at the local level in and around CNF agglomerates.
3. Determining the effect of CNFs on the macromechanical properties of cement pastes, including strength, modulus, and toughness in compression, splitting tension, and flexure.
4. Evaluating the hybrid effect of CNFs and CFs on the microstructure and multiscale mechanical properties of cement pastes.

An integrated multiscale experimental approach was used to better understand the capabilities of CNFs as nanoreinforcement. Cement-based composites were investigated using both traditional and state-of-the-art experimental methods for mechanical, physical, and chemical
characterization. Studies were conducted at both the micro- and macroscale levels to better understand the processing-microstructure-dispersion and dispersion-property relationships for these materials. State of the art experimental characterizations, including variable pressure scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDS), nanoindentation, optical microscopy, and traditional mechanical testing (i.e., three-point bending, splitting tension, and uniaxial compression) were integrated to convey the key aspects of CNF addition and dispersion in cement-based composites and the effects of CNFs on the mechanical properties (i.e., strengths, elastic moduli, and toughness values) of the composites.

### 1.3. Structure of the Dissertation

This dissertation is organized in seven chapters. Chapter 1 provides an overview of the dissertation, the overall and specific research objectives, and the structure of the dissertation. Chapter 2 contains a review of the literature pertaining to this dissertation. An overview of fiber reinforced cement-based composites, the use of CNTs/CNFs as nanoreinforcement in cementbased composites, and the micromechanical properties and mineralogy/microstructure of cementbased composites is given. Chapter 3 discusses the dispersion of CNFs. The dispersion of CNFs in solution and in cement-based composites is investigated including the migration of CNFs during cement curing. Chapter 4 discusses the micromechanical properties of cement-based composites containing CNFs. The overall distribution of micromechanical properties at the local level (i.e., cement-based composite constituents), the distribution of micromechanical properties of the cement hydration phases, and the micromechanical responses obtained in and around CNF agglomerates are determined. Chapter 5 discusses the macromechanical properties of cementbased composites containing CNFs. The effects of the CNF dispersion method and CNF loading
on the macromechanical properties are determined. Also, the effect of CNFs on the macromechanical properties of cement-based composites with the addition of silica fume is examined. Chapter 6 discusses the use of CNFs with CFs as a multiscale hybridization of fiber reinforcement for cement-based composites. The hybrid effect of CNFs and CFs on the microstructure and CNF dispersion and distribution, the micromechanical properties, and the macromechanical properties of cement-based composites is determined. Lastly, Chapter 7 summarizes the results of this research and includes recommendations for future work.

## CHAPTER 2

## LITERATURE REVIEW

### 2.1. Overview

This chapter provides a review of the literature. An overview of fiber reinforced cementbased composites including their properties, multifunctional capabilities, and ability to be tailored to specific needs and the use of hybrid fiber reinforcement is given. Also discussed, is the use of CNTs/CNFs as nanoreinforcement in cement-based composites including CNT/CNF properties and dispersion and the mechanical properties of cement-based composites containing CNTs/CNFs. Lastly, the micromechanical properties of individual cement phases and unhydrated cement particles determined by nanoindentation and the micromechanical, mineralogical, and microstructural differences seen in cement-based composites with fiber reinforcement including nanoscale fiber reinforcement are summarized.

### 2.2. Fiber Reinforced Cement-Based Composites

The use of relatively short, randomly distributed, discontinuous fibers including steel, polymeric, carbon, and glass in cement-based composites, known as fiber reinforced concrete (FRC), is of high interest because of the fibers' ability to improve post cracking load bearing capability by controlling the growth of cracks [3]. The mechanism of the fiber reinforcement is to transfer stresses across flaws and cracks (Figure 2.1), which can improve the strength, toughness, impact resistance, fatigue strength, and durability and reduce plastic shrinkage cracking of cement-based composites [3, 9-11, 68].


Figure 2.1. Mechanisms of fiber reinforcement modified from [68].

In addition to mechanical and durability improvements, randomly distributed, discontinuous fibers can give cement-based composites multifunctional capabilities. FRC containing carbon fibers has been shown to have self-sensing capabilities because of a determinable relationship that exists with the material's electrical resistivity and strain known as piezoresistivity [12-26]. In addition to strain sensing, the piezoresistive behavior of carbon FRC has also been shown to be useful for damage sensing, traffic monitoring, weighing in motion, and corrosion monitoring of rebar [23-25, 27, 28]. Carbon FRC has also been shown to be effective for protection from electromagnetic radiation such as radio waves produced by cell phones, which is important for sensitive electronic devices [18, 19, 29]. Furthermore, steel FRC has been shown to be effective for melting snow on roadways because of the material's thermal conductivity [30].

The characteristics of FRC including its mechanical performance, durability, or multifunctional capabilities can be affected by many variables including but not limited to the fiber type, fiber size, fiber distribution, and mix composition [9]. The many variables that influence the characteristics of FRC can make designing and reproducing composites challenging, but those same variables allow FRCs to be tailored for specific applications [9]. For example, steel fibers have been used in highway and airport runway overlay pavements to reduce the thickness of the slab and cracking [3]. In addition, FRCs have been tailored for airport runway pavements to be resistant to temperatures greater than $1500^{\circ} \mathrm{C}$ for the high temperature exhaust blasts [69].

More recently, using fibers in combination, called fiber hybridization, has become of interest [10, 31]. Hybrid fiber reinforcement can include multiple fiber types or multiple fiber sizes to improve multiple constitutive responses, control multiple size cracks, or provide multiple functions such as one fiber type/size for early age response and another for long-term mechanical properties [31]. The use of hybrid fiber reinforcement also has the potential to improve cementbased composites more than the use of fiber reinforcement of a single type/size by "synergy." Synergy refers to each fiber type/size improving the composites with the combination of the fiber types/sizes being more beneficial than the sum of the improvements from each fiber type/size alone [10, 31]. The work by Yao et al. [70] shows an example of synergy as the flexural behavior of a cement-based composite containing carbon and steel microfibers allowed for a flexural strength of over 12 MPa after the initial cracking of the matrix while the strength of the composite with only CFs at a similar deflection was less than 2 MPa and only steel fibers was $c a$. 5 MPa .

Several other instances of hybrid fiber reinforcement in cement-based composites have shown material improvements [71-77]. Cement-based composites containing three sizes of steel fibers from the micro- to macroscale were found to have a tensile strength of more than 20 MPa (typical cement-based composites have a tensile strength of $c a .7-11 \%$ of the compressive strength, i.e., $c a .2-4 \mathrm{MPa}$ [3]) in addition to improved fatigue behavior, ductility, strain capacity, and durability compared to traditional FRC [78-83]. Impact resistance has also been shown to be improved by the use of hybrid fiber reinforcement [84]. However, one study has shown decreased flexural toughness with steel and glass and steel and polyester hybrid microfiber reinforcements, compared to steel microfibers alone in cement-based composites [85]. More recently, cement-based composites containing microscale polyvinyl alcohol fibers and nanoscale CNFs together were shown to have increased flexural strength, modulus of elasticity, and toughness as compared to cement-based composites with no fibers or polyvinyl alcohol fibers or CNFs alone [49].

### 2.3. CNTs/CNFs as Nanoreinforcement in Cement-Based Composites

### 2.3.1. CNT/CNF Properties

The unique properties of CNTs and CNFs (also known as cup-stacked CNTs) such as high aspect ratios, strength to density ratios, thermal and electrical conductivities, and corrosion resistivity allow them to be excellent candidates for nanoscale material reinforcement [33-35]. CNTs and CNFs are both graphitic [34] and can be produced commercially using chemical vapor deposition [86]. CNTs are different from CNFs in that they are smaller in size [86, 87], are closed at both ends, and are available in two varieties: single-walled carbon nanotubes
(SWCNTs) and multi-walled carbon nanotubes (MWCNTs) [88]. The mechanical and electrochemical properties decrease from SWCNT to MWCNT to CNF, but the cost also decreases in the same order [86, 87]. SWCNTs have diameters of $0.3-2 \mathrm{~nm}$ and lengths of 200+ nm , MWCNTs have diameters of 10-50 nm and lengths of 1-50 $\mu \mathrm{m}$ [86], and CNFs have diameters of 50 to 200 nm and lengths up to a few hundred microns [87]. While SWCNTs and MWCNTs are closed continuous hollow tubes, CNFs are open at both ends and consist of multiple concentric tubes so that step-like edges exist at the termination of each tube (Figure 2.2) [86, 87]. The smooth graphitic structure of the CNTs does not allow for proper adhesion between the CNTs and the material matrix [55]. In contrast, the step-like edges of the CNFs are advantages for bonding with the material matrix [42].



MWCNT


CNF

Figure 2.2. Comparison of CNTs and CNFs.

### 2.3.2. CNT/CNF dispersion

CNTs and CNFs both possess a strong van der Waals self-attraction and high hydrophobicity that cause them to agglomerate and form bundles, hindering their dispersion [13-$19,26,32,35-45,47,50,53-60,64,66,89-91]$. A large amount of research has gone into dispersing CNTs and CNFs, especially in the area of polymer science [32, 90, 91]. Methods used to disperse CNTs/CNFs include covalent, non-covalent, and mechanical methods [90]. Covalent
methods involve using acid treatment to functionalize the surface of the CNTs/CNFs [90]. Noncovalent methods involve using a surfactant to wrap the CNTs/CNFs [90]. Mechanical methods include various methods of mixing and agitation such as high shear mixing and ultrasonication [90].

Each type of method, covalent, non-covalent, and mechanical, has been used both, individually and in combination, to aid in the dispersion of CNTs/CNFs in cement-based composites. Covalent methods that have been used to aid in dispersing CNTs/CNFs include mainly surface treatment with nitric acid $\left(\mathrm{HNO}_{3}\right)$ and/or sulfuric acid $[15,16,36-42]$. The many non-covalent methods that have been used to date to aid in the dispersion of CNTs/CNFs in cement-based composites include: cetylrimenthyl ammonium bromide [58], gum Arabic [36, 43], lignosulfonate salt [44], modified acrylic polymer high-range water reducer (HRWR) [40], polyacrylic acid polymer HRWR [36, 45], polycarboxylate-based HRWR (P-HRWR) [37, 38, 46-52], sodium deoxycholate [43], sodium dodecyl benzene sulfonate [43], sodium dodecyl sulfate [16], and solvents such as acetone, ethanol, and isopropanol [35, 41, 53, 54]. The most predominant mechanical method used is ultrasonication [13-15, 26, 35-38, 40, 41, 43, 45, 47, 50, 54-60]. Additional methods that have been used for dispersing CNTs/CNFs in cement-based composites with various levels of success include direct synthesis of the nanofilaments on the cement particles and silica fume particles [61-63] and adding silica fume to the cement mix [42, 50, 64].

A major issue with dispersing CNTs/CNFs in cement-based composites is that the method used to disperse the CNTs/CNFs must be compatible with the cement hydration process [65]. For example, lignosulfonate salts are known to slow the hydration reaction as they are often used as set retarding admixtures [3]. Solvents such as isopropanol and acetone also have a
negative effect on the cement hydration process as they are commonly used to stop the hydration reaction of cement for experimental purposes [92].

Another difficulty with the dispersion of CNTs/CNFs is that quantifying the dispersion in a material is challenging [90]. Optical microscopy can be used to visualize CNTs/CNFs in materials but mostly to see agglomerates on the microscale [90]. Methods such as light scattering, fluorescence, small angle neutron scattering, and Raman spectroscopy can also be used to evaluate dispersions of CNTs/CNFs [90, 93-96] but are not appropriate for dispersions of CNTs/CNFs in cement-based composites. SEM, transmittance electron microscopy (TEM), and atomic force microscopy (AFM) are techniques that have been shown to be useful for examining the dispersion of CNTs/CNFs in cement-based composites, though challenges exist with each one of these methods such as viewing too small of a sample size or a non-representative sample or requiring pretreatment that affects the sample [90].

### 2.3.3. Mechanical Properties of CNT/CNF Reinforced Cement-Based Composites

Several authors have presented strength values of cement-based composites containing CNTs/CNFs $[15-19,36,37,39-47,50,52,55-58,64,66,67]$. The studies vary by composite mix design, CNT/CNF loading rates, and dispersion method, and the results to date have been conflicting. CNT/CNF loadings have ranged from $0.006 \mathrm{wt} \%$ to $5 \mathrm{wt} \%$, but most results have been reported on CNT/CNF loadings up to $1 \mathrm{wt} \%[15-19,36,37,39-47,50,52,55-58,64,66$, 67]. Compressive strengths have been shown to increase by up to $70 \%$ when CNTs are used in cement-based foam concrete [44] while decreases of 6 times lower than the control specimens have been seen in cement mortars containing CNTs [40]. Similarly, compressive strengths have been shown to increase by up to $43 \%$ when CNFs were added to concrete [17] but decrease by
up to $30 \%$ when CNFs were added to cement pastes [18, 19]. Flexural strengths were shown to increase by up to $47 \%$ when cement-based composites contained CNTs [57], but no change in the flexural strength [45] and a decrease in flexural strength of up to 2.5 times that of the control [40,52] were also seen in different instances. No change in flexural strength was reported for CNFs in cement-based composites [67]. Tensile strengths for cement-based composites containing CNFs have ranged from no significant change to over a $100 \%$ increase in strength [18, 19, 41, 42, 46, 64].

Additional mechanical properties of cement-based composites with CNTs/CNFs have been reported in the literature, but are not as prevalent as the strength values. Like the strength values, conflicting results have been presented for the Young's modulus and compressive modulus of cement-based composites containing CNTs/CNFs [18, 19, 47, 50, 66]. However, composites with CNTs/CNFs have shown an increased failure strain and deformation ability [1719, 39]. CNTs have also been reported to increase the toughness of cement-based composites [57], and CNFs have been shown to improve the structural integrity of cement-based composites [41, 64].

### 2.4. Micromechanical Properties and Mineralogy/Microstructure of Cement-Based Composites

Although the macroscale properties, especially macromechanical properties, of cementbased composites are important for civil infrastructure applications, cement-based materials have a multiscale structure, and consideration of this structure is important for tailoring multiscale fiber reinforced cement-based composites. Nanoindentation paired with SEM/EDS, optical microscopy, or statistical methods has been used to determine the micromechanical properties of cement phases and unhydrated cement particles in cement-based materials (Table 2.1) [97-111].

Nanoindentation has revealed that the main building block of cement-based composites, calcium-silicate-hydrate (C-S-H), exists as a low stiffness and high stiffness form [100, 101, 103]. The technique has also shown the high stiffness form of C-S-H to be resultant of the presence of calcium hydroxide $(\mathrm{CH})$, another major phase of cement-based materials, between the C-S-H layers [108].

Table 2.1. Elastic modulus and hardness of cement phases as reported in the literature from nanoindentation.

|  | Modulus (GPa) | Hardness (GPa) | Reference |
| :---: | :---: | :---: | :---: |
| Unhydrated cement particles | $\begin{aligned} & 122.2 \pm 7.85 \\ & 141.1 \pm 34.8 \end{aligned}$ | $\begin{aligned} & 6.67 \pm 1.23 \\ & 9.12 \pm 0.90 \end{aligned}$ | Mondal, Shah, and Marks [104] Sorelli, et al. [107] |
| Tricalcium silicate, $3 \mathrm{CaO} \cdot \mathrm{SiO}_{2}$ $\left(\mathrm{C}_{3} \mathrm{~S}\right)$ | $\begin{aligned} & 135 \pm 7 \\ & 135 \pm 7 \end{aligned}$ | $\begin{aligned} & 8.7 \pm 0.5 \\ & 8.7 \pm 1 \end{aligned}$ | Velez, et al. [99] Acker [97, 98] |
| Dicalcium silicate, $2 \mathrm{CaO} \cdot \mathrm{SiO}_{2}$ $\left(\mathrm{C}_{2} \mathrm{~S}\right)$ | $\begin{aligned} & 130 \pm 20 \\ & 130 \pm 20 \end{aligned}$ | $\begin{aligned} & 8 \pm 1.0 \\ & 8 \pm 2 \end{aligned}$ | Velez, et al. [99] Acker [97, 98] |
| Tricalcium aluminate, $3 \mathrm{CaO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3}\left(\mathrm{C}_{3} \mathrm{~A}\right)$ | $\begin{aligned} & 145 \pm 10 \\ & 145 \pm 10 \end{aligned}$ | $\begin{aligned} & 10.8 \pm 0.7 \\ & 10.8 \pm 1.5 \end{aligned}$ | Velez, et al. [99] <br> Acker [97, 98] |
| Tetracalcium aluminoferrite, $4 \mathrm{CaO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{Fe}_{2} \mathrm{O}_{3}\left(\mathrm{C}_{4} \mathrm{AF}\right)$ | $\begin{aligned} & 125 \pm 25 \\ & 125 \pm 25 \end{aligned}$ | $\begin{aligned} & 9.5 \pm 1.4 \\ & 9.5 \pm 3 \end{aligned}$ | Velez, et al. [99] Acker [97, 98] |
| Alite | $125 \pm 7$ | $9.2 \pm 0.5$ | Velez, et al. [99] |
| Belite | $127 \pm 10$ | $8.8 \pm 1.0$ | Velez, et al. [99] |
| Calcium hydroxide, CH | $\begin{aligned} & 40.3 \pm 4.2 \\ & 36 \pm 3 \\ & 38 \pm 5 \end{aligned}$ | $\begin{aligned} & 1.31 \pm 0.23 \\ & 1.35 \pm 0.5 \end{aligned}$ | Constantinides and Ulm [103] Acker [97, 98] <br> Constantinides and Ulm [100] |
| Calcium silicate hydrate, $\mathrm{C}-\mathrm{S}-\mathrm{H}$ |  |  |  |
| High stiffness | $\begin{aligned} & 29.1 \pm 4.0 \\ & 31 \pm 4 \\ & 29.4 \pm 2.4 \\ & 38.0 \pm 5.6 \\ & 31.4 \pm 2.1 \\ & 31.0 \pm 4.0 \\ & 29.8 \pm 2.3 \\ & 28.5 \pm 2.6 \\ & 29.1 \pm 5.3 \\ & 34.2 \pm 5.0 \end{aligned}$ | $\begin{aligned} & 0.83 \pm 0.18 \\ & 0.9 \pm 0.3 \\ & \\ & 1.43 \pm 0.29 \\ & 1.27 \pm 0.18 \end{aligned}$ $1.36 \pm 0.35$ | Constantinides and Ulm [103] <br> Acker [97, 98] <br> Constantinides and Ulm [100] <br> Mondal, Shah, and Marks [104] <br> Zhu, et al. [105] <br> Jennings, et al. [106] <br> Sorelli, et al. [107] |
| Low stiffness | $\begin{aligned} & 18.2 \pm 4.2 \\ & 20 \pm 2 \\ & 21.7 \pm 2.2 \\ & 22.89 \pm 0.76 \\ & 23.4 \pm 3.4 \\ & 18.1 \pm 4.0 \\ & 17.8 \pm 4.3 \\ & 18.0 \pm 3.1 \\ & 18.3 \pm 3.8 \\ & 19.7 \pm 2.5 \end{aligned}$ | $\begin{aligned} & 0.45 \pm 0.14 \\ & 0.8 \pm 0.2 \\ & \\ & 0.93 \pm 0.11 \\ & 0.73 \pm 0.15 \end{aligned}$ $0.55 \pm 0.03$ | Constantinides and Ulm [103] Acker [97, 98] <br> Constantinides and Ulm[100] <br> Mondal, Shah, and Marks [104] <br> Zhu, et al. [105] <br> Jennings, et al. [106] <br> Sorelli, et al. [107] |

The micromechanical properties summarized in Table 2.1 were determined from many different cement-based composites including plain cement pastes with a water-to-cement (w/c) ratio of 0.5 [103] and ultra-high performance concretes with a w/c ratio below 0.2 [97]. Additionally, values were obtained from cement-based composites that had been heat treated during curing or had included alternative binders such as silica fume [106, 110]. The consistency in the micromechanical properties presented to date show that the values are intrinsic to the individual phases and, therefore, do not change from one cement-based composite to another [100, 106].

The micromechanical properties of the interfacial transition zone (ITZ) around inclusions including aggregates and steel microfibers have also been investigated [109-111]. Findings suggest that the ITZ can be tailored by changes in the w/c ratio and the addition of alternative binders such as silica fume [109]. In the cases where the ITZ was weaker than the bulk matrix, an increase in porosity was to blame [110, 111].

Recently, the micromechanical properties of cement-based composites containing CNTs have been reported [47, 66, 112-114]. An increased probability of high stiffness C-S-H at the expense of low stiffness C-S-H has been reported when CNTs were used as nanoreinforcement [47, 112, 113]. However, two separate studies have shown that changes in the micromechanical properties of CNT reinforced cement-based composites are dependent on the method of dispersion used [66, 114].

Besides the micromechanical properties, the mineralogy and microstructure of cementbased composites have been shown to be affected by the presence of fibers. When macroscale fibers with diameters ranging from 0.1 to 1.0 mm have been used, ITZ of up to $100 \mu \mathrm{~m}$ wide with high porosity and large CH crystal deposits have been reported [115]. The ITZ is thought to
be caused by the combination of bleeding of the hydration water and wall effects, which lead to the presence of water-filled space at the fiber-matrix interface and the development of less hydration products around the fibers [115]. In contrast, in the presence of microscale fibers, the ITZ has been shown to be significantly reduced. Because the size of the microfibers is similar to that of the cement grains, the wall effect around microscale fibers is reduced allowing the microstructure of the ITZ to be similar to that of the bulk cement matrix $[115,116]$. Additionally, the use of microscale metal fibers including steel, brass, and brass-coated steel fibers have shown to act as a preferential nucleation site for CH and C-S-H [117]. Furthermore, the interface between CFs and a cement-based matrix has been reported to be influenced by the presence of silica fume causing a change in failure mode from fiber pull-out to fiber fracture [118]. Smaller scale fibers, including CNTs and CNFs, have been shown to reduce the formation of CH and affect its crystallinity and size [37, 60], reduce the amount of tobermorite or change the C-S-H phase when functional groups are present [39, 40], and increase the degree of hydration by acting as nucleation sites [67]. Conversely, one study has indicated that CNTs had no chemical interaction with cement or fly ash and, therefore, no effect on the degree of hydration of cement/fly ash composites [56].

### 2.5. Conclusions

Literature pertaining to this dissertation was reviewed, and the following conclusions were made:

- Research to date on hybrid fiber reinforcement of cement-based composites has mostly included microscale and macroscale fibers. Because cement-based composites contain
flaws and cracks on the nanoscale, the addition of nanoscale fibers has great potential for further improving the properties of FRC and more research in this area is needed.
- The state of dispersion of CNTs/CNFs in cement-based composites is still not well understood. The literature mostly considers the dispersion state of CNTs/CNFs in aqueous solution prior to mixing with cement, and to date the connection between the dispersion state in solution and in the hydrated cement-based composites has not been made. As the overall dispersion state affects the efficiency of the CNTs/CNFs as nanoreinforcement in cement-based composites, this area needs to be further investigated.
- Most research to date on the mechanical properties of cement-based composites with nanoreinforcement has concentrated mainly on CNTs, and the results have been mixed. Research on the use of CNFs is still scarce, and the effects of CNFs on the mechanical properties of cement-based composites are still not well understood. Additionally, little is known concerning the effect of the state of CNF dispersion on the composite mechanical properties.
- Nanoindentation offers a unique opportunity to access the micromechanical signature of the elementary building blocks that constitute cement-based composites. While several studies have investigated the micromechanical properties of pure hydrated and unhydrated cement phases, fewer studies have been conducted to investigate the effect of inclusions. The addition of CNFs and any subsequent formation of microscale CNF agglomerates are expected to have a significant impact on the microscale properties of cement-based composites. Yet, the effect of CNFs and CNF microscale agglomerates on the micromechanical properties of cement-based composites has not been investigated.


## CHAPTER 3

## DISPERSION OF CNFS IN CEMENT-BASED COMPOSITES

### 3.1. Overview

CNFs have the potential to be excellent nanoscale reinforcement of cement-based composites due to their excellent properties including high aspect ratios and extraordinary strength (i.e., aspect ratios of about 1000:1 [87] and strengths of over 2.5 GPa [119]). However, CNFs are hydrophobic and possess a strong van der Waals self-attraction that causes them to form agglomerates. The objective of this chapter is to determine the effect of dispersion methods and CNF loading on: (i) CNF disaggregation and dispersion in solutions and (ii) subsequent dispersion and distribution in cement pastes.

The effect of dispersion methods, including covalent, non-covalent, and mechanical methods, and CNF loading on the CNF disaggregation and dispersion in solutions and the subsequent dispersion and distribution in cement pastes was determined using a multiscale experimental approach involving both qualitative and quantitative analysis. The dispersion of CNFs was examined in portland cement pastes and in two (2) types of solutions: (i) an aqueous solution typically as the mix water to make cement-based composites ("mix water" solution) and (ii) a solution that simulated the pore solution found in cement-based composites during the hydration process ("cement pore water" solution). Visual inspection was used to qualitatively evaluate the dispersion of the CNFs in the solutions and cement pastes on the macroscale, while optical microscopy was used on the microscale. In addition, SEM was used for qualitative evaluation on the microscale for the cement pastes. Quantitative analysis of the dispersion of

CNFs in the solutions and cement pastes was completed using image analysis of micrographs. In addition, a study to determine the effect of w/c ratio on potential CNF migration in cement pastes was performed.

### 3.2. Experimental Detail

### 3.2.1. Materials

Commercially available, vapor grown, Pyrograf®-III PR-19-XT-LHT CNFs (Applied Sciences, INC., Cedarville, OH, USA) were used for the study. As per the manufacturer, the CNFs ranged from 70-200 nm in diameter and 50,000 to 200,000 nm in length and had a density of $1.95 \mathrm{~g} / \mathrm{cm}^{3}$ and a surface area of $20-30 \mathrm{~m}^{2} / \mathrm{g}$. The CNFs were used "as received" or after surface treatment with $\mathrm{HNO}_{3}$. Surface treatment with $\mathrm{HNO}_{3}$ consisted of the immersion and ultrasonication of the CNFs in 67-70\% Trace Metal Grade $\mathrm{HNO}_{3}$ (Fisher Chemical, Waltham, MA, USA) using a liquid to solid ratio of $28.5 \mathrm{~mL} / \mathrm{g}$ for approximately three (3) hours [42, 120]. The resulting suspension was repeatedly washed in Milli-Q water and filtered using a vacuum filtration system and GHPolypro membrane filters (Pall Corporation, Ann Arbor, Michigan, USA) with $0.45 \mu \mathrm{~m}$ pores until the pH of the wash water was neutral. The filtered CNFs were dried in an oven at $105^{\circ} \mathrm{C}$ for 24 hours.

Three non-covalent dispersing agents, known to have minimal negative effects on cement hydration reactions [3], were evaluated: a sulfonated naphthalene condensate HRWR (N-HRWR)-Rheobuild® 1000 (BASF, Ludwigshafen, Germany), a P-HRWR-Glenium ${ }^{\circledR} 7500$ (BASF, Ludwigshafen, Germany), and an air-entraining admixture (AE)-MicroAir® (BASF, Ludwigshafen, Germany). HRWRs are frequently used in concrete technology to improve the
workability of fresh cement-based composites [3]. The N-HRWR works through electrostatic repulsion (i.e., providing particles with a highly negative surface charge by adsorption onto the particle surface so that the particles repel each other) [3]. The P-HRWR works through a dual mechanism: electrostatic repulsion and steric stabilization [3]. Steric stabilization is a mechanism in which the long molecules of the polymer wrap around the particles and inhibit them from approaching each other within the distance that the van der Waals forces are dominant [121]. Sterically stabilized dispersions are not significantly affected by the presence of electrolytes compared to electrostatically stabilized dispersions that are readily disrupted by electrolyte presence [121]. AEs are common practice in concrete technology to increase freeze-thaw and scaling resistances [3]. The AE used for the study is a modified resin acid compound-based anionic surfactant that lowers the surface tension of water allowing for easier dispersion of particles in aqueous solution [3].

The cement pastes were made with type I Portland cement (Holcim (US) Inc., Waltham, MA, USA). The cement composition as determined by X-ray fluorescence (XRF) performed by Lafarge North America Terminal Office (Nashville, TN, USA) and the Bogue equations [122] is given in Table 3.1. The specific surface area of the cement, determined by Lafarge using the Blaine air permeability test, was $423 \mathrm{~m}^{2} / \mathrm{kg}$.

Table 3.1. Composition of the portland cement used as determined by XRF and the Bogue equations (Lafarge North America Terminal Office, Nashville, TN, USA).

| Oxide | Percent Mass (\%) |  | Mineral |
| :--- | :--- | :--- | :--- |
| $\mathrm{SiO}_{2}$ | 20.27 | $\mathrm{C}_{3} \mathrm{~S}$ | 57.93 |
| $\mathrm{Al}_{2} \mathrm{O}_{3}$ | 5.03 | $\mathrm{C}_{2} \mathrm{~S}$ | 14.39 |
| $\mathrm{Fe}_{2} \mathrm{O}_{3}$ | 3.86 | $\mathrm{C}_{3} \mathrm{~A}$ | 6.8 |
| CaO | 63.86 | $\mathrm{C}_{4} \mathrm{AF}$ | 11.75 |
| MgO | 1.23 |  |  |
| SO | 3.03 |  |  |
| $\mathrm{Na}_{3} \mathrm{O}$ | 0.111 |  |  |
| $\mathrm{~K}_{2} \mathrm{O}$ | 0.471 |  |  |
| $\mathrm{Mn}_{2} \mathrm{O}_{3}$ | 0.034 |  |  |
| $\mathrm{TiO}_{2}$ | 0.289 |  |  |
| $\mathrm{P}_{2} \mathrm{O}_{5}$ | 0.192 |  |  |
| SrO | 0.087 |  |  |

### 3.2.2. Preparation of $C N F$ Suspensions

### 3.2.2.1. CNF Suspensions in "Mix Water" Solution

A total of six (6) aqueous suspensions were prepared with $7.2 \mathrm{~g} / \mathrm{L}$ of CNFs in various Milli-Q water-dispersing agent solutions. The dispersing agent-water weight ratio used was $3.6 \%$. All ratios for the suspensions were selected based on the mix water requirements to make a cement-based composite with $0.2 \mathrm{wt} \%$ CNFs (based on values found in the literature [35, 64, 113]), a w/c ratio of 0.28 (based on the study included in Section 3.3.3), and $1 \mathrm{wt} \%$ of dispersing agent (based on the manufacture's recommendations ). All suspensions were ultrasonicated in a bath sonicator (Aquasonic model 250D, VWR, West Chester, Pennsylvania, USA) for 30 minutes to aid in the disaggregation of the CNFs.

The following suspensions were prepared: (i) "as received" CNFs in water [W/CNF], (ii) surface treated CNFs in water [W/T-CNF], (iii) "as received" CNFs in water-N-HRWR solution [N-HRWR/CNF], (iv) "as received" CNFs in water-AE solution [AE/CNF], (v) surface treated

CNFs in water-P-HRWR solution [P-HRWR/T-CNF], and (vi) "as received" CNFs in water-PHRWR solution [P-HRWR/CNF].

### 3.2.2.2. CNF Suspensions in "Cement Pore Water" Solution

A total of four (4) suspensions were prepared in "cement pore water" solution. The "cement pore water" solution simulated the pore water of cement paste at an age of two (2) hours with a composition as reported in [123]. The solution was made with Milli-Q water and $20.2 \mathrm{~g} / \mathrm{L}$ potassium hydroxide $(\mathrm{KOH}), 1.16 \mathrm{~g} / \mathrm{L}$ sodium hydroxide $(\mathrm{NaOH})$, and $21.34 \mathrm{~g} / \mathrm{L}$ calcium sulfate hemihydrate $\left(\mathrm{CaSO}_{4} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}\right)$, resulting in a measured pH of $\sim 13.3$ and conductivity of $\sim 43.9$ $\mathrm{mS} / \mathrm{cm}$ and a calculated ionic strength of $0.977 \mathrm{~mol} / \mathrm{L}$. The solution was stirred with a magnetic stirrer for 1 hour and ultrasonicated for 30 minutes in a bath sonicator (Aquasonic model 250D, VWR, West Chester, Pennsylvania, USA) before addition to the CNFs and dispersing agents. A dispersing agent-Milli-Q water weight ratio of $3.6 \%$ and $7.2 \mathrm{~g} / \mathrm{L}$ of CNFs were used similar to the suspensions made with the "mix water" solution. After the "cement pore water" solution was added to the CNFs and dispersing agents, the suspensions were ultrasonicated for 30 minutes in the bath sonicator.

The following suspensions were prepared: (i) "as received" CNFs in "cement pore water" solution with no dispersing agent [PW/CNF], (ii) "as received" CNFs in "cement pore water"-N-HRWR solution [PW/N-HRWR/CNF], (iii) "as received" CNFs in "cement pore water"-AE solution [PW/AE/CNF], and (iv) "as received" CNFs in "cement pore water"-P-HRWR solution [PW/P-HRWR/CNF].

### 3.2.3. Preparation of CNF/Cement-Based Composites

### 3.2.3.1. Preliminary Study for Determining W/C Ratio

A preliminary study was performed to determine the w/c ratio to be used for the cement pastes in the study of CNF dispersion to limit excessive bleeding or segregation and in turn potential migration of CNFs. Six (6) cement-based composites were made each with a different $\mathrm{w} / \mathrm{c}$ ratio. The $\mathrm{w} / \mathrm{c}$ ratios evaluated were $0.25,0.28,0.30,0.43$, and 0.50 . CNFs were used at a loading of $0.2 \mathrm{wt} \%$ and were dispersed using $1 \mathrm{wt} \%$ of P-HRWR. The Milli-Q water, P-HRWR, and CNF suspensions were ultrasonicated in a bath sonicator (Aquasonic model 250D, VWR, West Chester, Pennsylvania, USA) for 30 minutes before mixing with the cement for 6 minutes using a variable-speed stand mixer (KitchenAid Artisan 5-quart, Whirlpool Corporation, Benton Charter Township, Michigan, USA). After mixing, the cement pastes were poured into $5.08 \mathrm{~cm} \times$ 10.16 cm (2 in. $\times 4$ in.) cylindrical molds and compacted by hand. The cylinders were observed during the first two (2) hours of curing and then cured at room temperature in $100 \%$ relative humidity for seven days before comparison. The molds were removed carefully by hand to ensure minimal disruption of the top surface of the specimens.

### 3.2.3.2. CNF/Cement-Based Composites

Cement pastes were prepared using the different "mix water" solutions discussed in Section 3.2.2.1 including: PC-W/CNF made with the W/CNF suspension, PC-W/T-CNF made with the W/T-CNF suspension, PC-N-HRWR/CNF made with the N-HRWR/CNF suspension, PC-AE/CNF made with the AE/CNF suspension, PC-P-HRWR/CNF (also referred to as PC$0.2 \%$ ) made with the P-HRWR/CNF suspension, and PC-P-HRWR/T-CNF made with P-

HRWR/T-CNF suspension. Additionally cement pastes with $0.02,0.08,0.5$, and $1 \mathrm{wt} \%$ loading of "as received" CNFs were prepared using only P-HRWR as the CNF dispersing agent (PC$0.02 \%$, PC- $0.08 \%$, PC- $0.5 \%$, and PC-1 $\%$ ). In addition, four (4) control composites containing no CNFs were made with the "mix water" solutions discussed in Section 3.2.2.1 including: PCW/Control made with water and no dispersing agent, PC-N-HRWR/Control made with water and N-HRWR, PC-AE/Control made with water and AE, and PC-P-HRWR/Control (also referred to as PC-0\%) made with water and P-HRWR. A w/c ratio of 0.28 was used for all composites to limit CNF migration in the cement pastes and prevent dispersion issues due to excessive bleeding or segregation. This w/c ratio was determined from the study discussed in Section 3.2.3.1 and Section 3.3.3. The dispersive agents were all used at $1 \mathrm{wt} \%$, the same ratio as in Section 3.2.2.1, which was chosen based on the manufacturer's recommendations.

To make the composites, the water, dispersing agent, and CNFs were first ultrasonicated in a bath sonicator (Aquasonic model 250D, VWR, West Chester, Pennsylvania, USA) for 30 minutes to disaggregate the CNFs. Then the water, dispersing agent, and CNF suspension were added to the cement and blended for 6 minutes in a variable-speed stand mixer (KitchenAid Artisan 5-quart, Whirlpool Corporation, Benton Charter Township, Michigan, USA). The cement-based composites were made into $5 \mathrm{~cm} \times 10.16 \mathrm{~cm}$ ( $2 \mathrm{in} . \times 4 \mathrm{in}$.) cylinders and $2.54 \mathrm{~cm} \times$ $2.54 \mathrm{~cm} \times 68.58 \mathrm{~cm}$ ( $1 \mathrm{in} . \times 1 \mathrm{in} . \times 27 \mathrm{in}$.) beams for mechanical testing. The cylinders and beams were compacted by hand to avoid reagglomeration of the CNFs that could occur during vibration. Samples were cured at room temperature in $100 \%$ relative humidity for 7 and 28 days prior to testing.

Representative cross-sections of each composite were cut for image mapping and analysis using a precision saw with oil to ensure further hydration of the cement-based
composites did not occur due to the specimen preparation procedure. The cross-sections were furthermore polished to at least $35 \mu \mathrm{~m}$ particle size using silicon carbide paper in an alcohol and ethylene/polypropylene glycol solution. Additionally, fracture surfaces of each composite were dried in acetone to stop the hydration reaction at the curing ages of 7 and 28 days for SEM observations. Before SEM observation, the fracture surfaces were sputter-coated with gold using a Cressington Sputter Coater 108 (Cressington Scientific Instruments Ltd., Watford, Hertfordshire, England) with a deposition time of 100 seconds and mounted on an aluminum stub using copper tape.

### 3.2.4. Characterization

### 3.2.4.1. Visual Inspection

CNF suspensions. Visual inspection of the CNF suspensions made with the "mix water" and "cement pore water" solutions was used to collect comparative data on the effectiveness of the dispersion methods to disaggregate and disperse CNFs in solution. The CNF suspensions were observed for a minimum of fifteen (15) days.

CNF migration in CNF/cement-based composites. The top surfaces of the cement-based composites with varying w/c ratios were visually examined for the presence of excessive CNFs due to CNF migration during curing. In addition, the composites were compared side-by-side to determine any physical differences in the composites or their top surfaces.

### 3.2.4.2. Optical Microscopy

CNF suspensions. Suspensions of CNFs in the "mix water" and "cement pore water" solutions were evaluated using an Zeiss Axiovert 200M motorized inverted microscope (Carl Zeiss MicroImaging, Inc., Thornwood, New York, USA) with Achroplan40x/0.60 Corr objective and a W-PL 10X/23 eyepiece. Drops of the suspensions were placed on a glass slide and covered with a cover glass for microscopic examination. Interference of moving particles due to Brownian motion was alleviated by allowing sufficient time for the particles to settle (i.e., 5-10 minutes) and by recording several images of each drop taken at different locations. For each suspension, a minimum of fifteen (15) representative drops was examined and ten (10) representative micrographs were collected for each drop. Images were taken at 400X magnification.

Quantitative data was obtained by analyzing the digital micrographs of the CNF suspensions obtained using ImageJ (National Institute of Health, Bethesda, Maryland, USA), a Java-based open source digital image processing software. A minimum of 150 images were analyzed for each CNF suspension. A similar cumulative area of the projected CNF particle system was used for all suspensions, resulting in an investigated total area of $c a .1 .2 \mathrm{~mm}^{2}$ per suspension type. A binary image was created from each micrograph by applying a threshold to the image that was set manually to an appropriate limit. The threshold limit was chosen so that all CNFs present in the image were captured and that background pixels were not converted to black and therefore interfering with the analysis. After conversion to a binary image, the images were cropped such that all images covered the same area and the interference from the reduced illumination around the edge of the images was eliminated. The state of CNF dispersion in each
"mix water" solution was then evaluated by plotting the number of CNF particles per $\mathrm{mm}^{2}$ areal coverage versus the area of the projected CNF particles of each area class. The CNF suspensions in "cement pore water" solution were evaluated by plotting the cumulative area of CNF particles versus the maximum Feret's diameter of each CNF particle.

CNF/cement-based composites. Several cross-sections from each composite were evaluated qualitatively for dispersion and distribution of CNF agglomerates using optical microscopy with 30X magnification such that a representative cross-section could be chosen for quantitative analysis. Image mapping of each specimen's representative cross-section (total surface area of $6.45 \mathrm{~cm}^{2}$ ) consisting of 1350 images, each $27.6 \times 20.6$ pixels, was completed using the image mapping system of a New Wave UP-213 Laser Ablation System (Electro Scientific Industries, Inc., Portland, Oregon, USA). A combination of thresholding techniques and visual inspection was used to create a binary image showing only agglomerates of CNFs in the cement pastes. ImageJ software was used to determine the size and shape properties of the CNF agglomerates, and histograms were used to evaluate the dispersion quantitatively. Only CNF agglomerates larger than $0.007 \mathrm{~mm}^{2}$ in size were evaluated because of limitations in the analysis due to the capabilities of the optical microscope.

### 3.2.4.3. SEM

The microstructure and morphology of fracture surfaces of the cement-based composites was evaluated using a Hitachi S4200 high resolution SEM (Hitachi Ltd., Chiyoda, Tokyo, Japan) equipped with a cold field emission electron gun and digital imaging. An accelerating voltage of 20 kV and a working distance of 15 mm were used.

### 3.3. Results and Discussion

### 3.3.1. Disaggregation and Dispersion of CNFs in "Mix Water" Solutions

Visual inspection of the macroscale dispersion showed the CNF suspensions made with the "mix water" solutions to be uniformly dispersed when a dispersing agent was used (AE/CNF, N-HRWR/CNF, P-HRWR/CNF, and P-HRWR/T-CNF). When a dispersing agent was not used (W/CNF and W/T-CNF), the CNFs either stayed mostly at the liquid air interface or precipitated out of the suspension (Figure 3.1). Although the disaggregation and dispersing ability of the dispersing agents (AE, N-HRWR, and P-HRWR) was better than surface treatment with $\mathrm{HNO}_{3}$ alone, the surface treatment did improve the dispersion of the CNFs compared to the W/CNF suspension. Surface treating the CNFs with $\mathrm{HNO}_{3}$ reduced the hydrophobicity of the CNFs allowing more of the CNFs to enter into the solution instead of staying at the liquid-air interface [124]. However, the W/T-CNF suspension showed overall a poor dispersion quality with large size agglomerates and poor content uniformity. While the AE/CNF, N-HRWR/CNF, PHRWR/CNF, and P-HRWR/T-CNF solutions showed good macroscopic dispersion, the dispersion quality of each solution could not be distinguished from the others from sole visual inspection, except for the presence of a thin film of CNF agglomerates observed at the surface of the N-HRWR assisted dispersion and a layer of foam with CNF agglomerates at the surface of the AE assisted dispersion.


Figure 3.1. Visual comparison of aqueous suspensions containing CNFs. From top left to bottom right: "as received" CNFs in Milli-Q water, surface treated CNFs in water, $\mathbf{N}$ HRWR assisted dispersion of "as received" CNFs, AE assisted dispersion of "as received" CNFs, P-HRWR assisted dispersion of "as received" CNFs, and P-HRWR assisted dispersion of surface treated CNFs.

Differences in the CNF dispersion state when the dispersing agents were used was revealed from optical microscopy investigations (Figure 3.2). The largest number of CNF particles per $\mathrm{mm}^{2}$ in the smallest size area class $\left(0-100 \mu \mathrm{~m}^{2}\right)$ was seen for the P-HRWR assisted dispersions, indicating a greater ability of the P-HRWR dispersing agent to break up a larger number of bigger particles into smaller particles than N-HRWR and AE. Surface treatment with $\mathrm{HNO}_{3}$ further improved the CNF dispersion in the water-P-HRWR solution as evidenced by the greater number of particles per $\mathrm{mm}^{2}$ in the smallest size area class (less than $100 \mu \mathrm{~m}^{2}$ ) compared to that with the "as received" CNFs. The N-HRWR assisted dispersion showed the highest frequency of relatively large size agglomerates $\left(>500 \mu \mathrm{~m}^{2}\right)$ and the lowest number of particles per $\mathrm{mm}^{2}$ in the smallest size area class $\left(0-100 \mu \mathrm{~m}^{2}\right)$, indicating that N-HRWR was not as effective in the disaggregation of large agglomerates as the other dispersing agents. The AE assisted dispersion decreased the CNF aggregative tendency in water but not as well as the P -

HRWR assisted dispersion. For all CNF suspensions, the number of particles in the smallest size area class $\left(0-100 \mu \mathrm{~m}^{2}\right)$ was at least one order of magnitude greater compared to the other size area classes. The largest agglomerate size was seen for the AE and N-HRWR assisted dispersions ( $\sim 25,000 \mu \mathrm{~m}^{2}$ ) and was twice as the maximum size seen for the P-HRWR assisted dispersions.


Figure 3.2. Optical micrographs (400X) and histograms of the number of CNF particles per $\mathbf{m m}^{2}$ areal coverage versus the area of the projected CNF particles of each area class showing the state of CNF dispersion in "mix water" solutions (raw data is included in Appendix A). From top to bottom: P-HRWR assisted dispersion of surface treated CNFs, P-HRWR assisted dispersion of "as received" CNFs, N-HRWR assisted dispersion of "as received" CNFs, and AE assisted dispersion of "as received" CNFs.

### 3.3.2. Disaggregation and Dispersion of CNFs in "Cement Pore Water" Solutions

Visual inspection showed all "cement pore water" CNF suspensions containing dispersing agents to be uniformly dispersed at the macroscale level immediately after ultrasonication (Figure 3.3). The "cement pore water" CNF suspension with no dispersing agent showed, however, a large layer of unwetted CNFs at the liquid-air interface. Thirty (30) minutes after ultrasonication, settling of the CNFs had occurred for all suspensions, independent of the dispersing agent used. The settling was least noticeable in the suspension that contained P HRWR with a large number of CNFs that were still suspended in the solution. Three (3) hours of resting after ultrasonication allowed the majority of the CNFs to fall out of the suspension when no dispersing agent, AE, or N-HRWR was used. (Note: the brown color of the solution that contained N-HRWR was resultant from the N-HRWR not the CNFs.) The suspension that contained P-HRWR still had enough CNFs suspended in the solution to make visibility of CNF settling difficult, but closer examination showed that the majority of the CNFs had settled out of the suspension. In contrast, the settling of the CNFs was not observed when the "mix water" solutions were used, even after 15 days indicating that the instability of the "cement pore water" suspensions was the result of the highly alkaline environment and increased ionic strength ( $\mathrm{pH} \approx$ 13.3 and conductivity $\approx 44 \mathrm{mS} / \mathrm{cm}$ ) of the simulated cement pore solution [121, 125]. The ions present in the "cement pore water" solution have been shown to increase the surface tension of aqueous solutions [126]. Therefore, it was believed that the decreased surface tension allowed by the AE was negated by the increases caused by the ions which negatively affected the dispersing ability of the AE. Additionally, the electrostatic boundary layer around the CNFs from the PHRWR and N-HRWR is reduced by the increased amount of electrolytes present in the solution allowing the CNFs to come into contact or within the distance in which the van der Waals forces
are dominant [121]. Thus, microscale CNF agglomerates were formed, and settling of the agglomerates occurred. In contrast, the steric hindrance of the P-HRWR was minimally affected by the increased amount of electrolytes allowing some CNFs to stay suspended.


Figure 3.3. Visual comparison of suspensions containing CNFs in a solution made to simulate the pore solution of cement paste during the early hours of curing. From left to right: immediately after ultrasonication, $\mathbf{3 0}$ minutes after ultrasonication, and $\mathbf{3}$ hours after ultrasonication. From top to bottom: "as received" CNFs with P-HRWR in "cement pore water" solution, "as received" CNFs with N-HRWR in "cement pore water" solution, "as received" CNFs with AE in "cement pore water" solution, and "as received" CNFs with no dispersing agent in "cement pore water" solution.

Further examination of the suspensions made with the "cement pore water" solution (PW/P-HRWR/CNF) using optical microscopy showed a decreased dispersion of the CNFs when compared to the "mix water" (P-HRWR/CNF) (Figure 3.4). CNFs were found in larger agglomerates in the PW/P-HRWR/CNF suspension than the P-HRWR/CNF suspension. In addition, overall there were less CNFs in the micrographs of the PW/P-HRWR/CNF suspension due to the sedimentation of the CNFs that was occurring. By plotting the cumulative area of CNFs as a function of the maximum Feret's diameter of each CNF particle, it can be noticed that a greater percentage of the area of CNFs are made up of particles with a larger diameter when the "cement pore water" solution was used than when the "mix water" solution was used (Figure
3.5).


Figure 3.4. Optical micrographs (400X) showing the dispersion of CNFs in a) aqueous solution ("mix water", P-HRWR/CNF) and b) simulated pore solution immediately after ultrasonication ("cement pore water", PW/P-HRWR/CNF).


Figure 3.5. Cumulative area of CNFs and the maximum Feret's diameter of each CNF particle comparing P-HRWR/CNF ("mix water") and PW/P-HRWR/CNF ("cement pore water").

### 3.3.3. CNF Migration with Bleed Water and W/C Ratio

Cylinders with w/c ratios ranging from 0.25 to 0.50 were compared to determine the effect of the w/c ratio on the CNF dispersion in cement pastes (Figure 3.6). The amount of CNFs present at the upper surface of the specimens and the color of each cylinder clearly varied as a function of the w/c ratio. All cylinders with a w/c ratio greater than or equal to 0.33 had a visible porous layer of CNFs intermixed with cement paste at the upper surface of the specimens. The layer became more friable and softer to the touch as the w/c ratio increased. The porous layer was resultant of the CNFs migrating with the bleed water during curing. A closer look at the porous layer showed a high amount of CNFs intermixed with cement phases (Figure 3.7). The results of this study were used to determine the w/c ratio used in all subsequent studies.


Figure 3.6. Visual comparison of CNF migration in cement paste specimens with varying w/c ratios.


Figure 3.7. SEM images of the porous layer caused by CNF migration during curing showing: a) clear separation between the porous layer and cement paste and $b$ ) the high density of CNFs present in the porous layer.

### 3.3.4. Dispersion and Distribution of CNFs in Cement-Based Composites

The dispersion state of the CNFs in the cement-based composites was evaluated on the micro- and macroscale. The state of CNF dispersion was dependent upon the scale of evaluation and was not homogenous throughout the specimens. Independent of the dispersion method used, the CNFs were not uniformly distributed in the cement-based composites with both individual and agglomerated CNFs being present. Furthermore, the distribution of individual CNFs (also independent of the dispersion method used) was not uniform within the composites with the
presence of CNF-rich and CNF-poor regions (Figure 3.8). The large size and clumping of cement grains have been reported to be responsible for the non-uniform dispersion of the CNFs by creating zones absent of CNFs even after hydration has progressed [52]. Additionally, the instability of CNF suspensions reported in Section 3.3.2 in a highly alkaline environment similar to what would be found in cement-based composites and the CNF migration with the bleed water during curing as discussed in Section 3.3.3 were expected to increase the probability of reagglomeration of CNFs during cement mixing and curing.


Figure 3.8. SEM images showing the varying distribution of CNFs in cement-based composites taken from a single, representative fracture surface using the same magnification (composite with 1 wt \% CNFs dispersed with P-HRWR).

The microscale CNF agglomerates were seen regardless of the initial degree of CNF dispersion in solution and became more prominent with increasing CNF loading (Figure 3.9 and Figure 3.10). (Note: CNF agglomerates less than $0.007 \mathrm{~mm}^{2}$ in size were not included in Figure 3.9 and Figure 3.10 due to limitations of the micrograph analysis method.) Larger size
agglomerates (as much as an order of magnitude greater) than what was observed in the CNF suspensions were seen in all composites, indicating secondary agglomeration of formerly dispersed CNFs after cement mixing. For the composites prepared with the P-HRWR, N-HRWR, and AE assisted dispersions, more than $40 \%$ of the CNF agglomerates observed at the surface of the composite cross-sections had a size area greater than the maximum size observed in the "mix water" suspensions. Secondary agglomeration occurred independent of the CNF loading and dispersing agent used. The high pH (i.e., 13.5-13.8 [127]) and ionic strength (i.e., $0.3-0.7 \mathrm{~mol} / \mathrm{L}$ [127]) occurring during cement mixing was thought to have caused the reagglomeration of the CNFs because of the instability of the electrostatic boundary layer in the presence of electrolytes for the P-HRWR and N-HRWR assisted dispersions [121] and the increase in the surface tension caused by the electrolytes [126] as was seen in the "cement pore water" study discussed in Section 3.3.2. Though electrosteric stabilized dispersions, as is found with the P-HRWR, are less sensitive to the presence of the electrolytes, the reagglomeration observed in the composite prepared with the P-HRWR assisted dispersion was believed to be the result of the complex interplay between electrostatic and steric effects and a potential decrease in the thickness of the sterically-stabilizing "hairy" layer on exposure to the cement solution and mechanical mixing [128]. Consequently, the steric hindrance imposed by the P-HRWR solution on CNFs became practically nonexistent. Surface treatment with $\mathrm{HNO}_{3}$ did not prevent secondary agglomeration.


Figure 3.9. Binary images of cement-based composite cross-sections containing 0.2 wt\% CNFs dispersed by various methods and distributions of CNF agglomerate sizes larger than $0.007 \mathrm{~mm}^{2}$ in the cross-section showing secondary agglomeration (raw data included in Appendix B). [From top to bottom: P-HRWR assisted dispersion of surface treated CNFs, P-HRWR assisted dispersion of "as received" CNFs, N-HRWR assisted dispersion of "as received" CNFs, and AE assisted dispersion of "as received" CNFs].


Figure 3.10. Binary images of the surface of cross-sections of CNF/cement-based composites prepared with the P-HRWR assisted dispersion showing CNF agglomerates of size area greater than $0.007 \mathrm{~mm}^{2}$ with a density gradient of CNF agglomerates seen for 0.2 wt \% and $0.5 \mathrm{wt} \%$ CNF loadings.

Composites prepared with the AE and N-HRWR assisted dispersions exhibited a greater relative frequency of large size agglomerates than that prepared with the P-HRWR assisted dispersion, as evidenced from the distribution of maximum Feret's diameters (Figure 3.11). For the composites prepared with the AE and N-HRWR assisted dispersions, as much as $79 \%$ and $64 \%$, respectively, of the CNF agglomerates observed at the surface of the representative composite cross-sections had a maximum Feret's diameter greater than $200 \mu \mathrm{~m}$ versus $58 \%$ for the composite prepared with the P-HRWR assisted dispersion and $56 \%$ for that prepared with surface treated CNFs suspended in water-P-HRWR solution. In comparison, the composites prepared with the W/CNF and W/T-CNF suspensions showed $62 \%$ and $76 \%$, respectively, of the CNF agglomerates with a maximum Feret's diameter greater than $200 \mu \mathrm{~m}$. Surface treatment alone favored large scale agglomeration of the CNFs in the cement-based composite. However, when used in combination with the P-HRWR dispersing agent, surface treatment did not affect the relative frequency of large size CNF agglomerates.

PC-P-HRWR/T-CNF (Prepared with P-HRWR/T-CNF)


PC-N-HRWR/CNF (Prepared with N-HRWR/CNF)


PC-W/T-CNF (Prepared with W/T-CNF)


PC-P-HRWR/CNF (Prepared with P-HRWR/CNF)


PC-AE/CNF (Prepared with AE/CNF)


PC-W/CNF (Prepared with W/CNF)


Figure 3.11. Relative frequency histograms of maximum Feret's diameter of CNF agglomerates observed at the surface of the CNF/cement-based composite cross-sections (composites with 0.2 wt \% CNF loading, raw data included in Appendix B).

These results clearly showed that the dispersion state of the CNFs in solution is not indicative of the final dispersion state in the hydrated cement paste. The final state of dispersion of the CNFs within the cement paste was the result of a competition between: (i) the tendency of CNFs to migrate towards each other or existing agglomerates due to Brownian motion and van der Waals interactions during cement mixing, (ii) the influence of the high ionic strength of the cement paste medium on altering the surface properties of the CNFs, resulting in greater propensity for loss of individual CNFs and rebundling, and (iii) the effect of mechanical mixing,
further increasing the probability of CNF agglomerates or individual CNFs to come in contact with each other. CNF agglomerate size was a balance of agglomerate growth and destruction.

Interestingly, the composites prepared with the P-HRWR assisted dispersion showed a density gradient of CNF agglomerates, with a higher density of CNF agglomerates at the top surface (as cured) of the specimens and a lower density at the bottom surface (Figure 3.10). Furthermore, smaller size CNF agglomerates were seen at the bottom than at the top surface of the specimens. Migration of the CNFs within the cement paste occurred with the bleed water during the initial stage of curing before hardening. This migration resulted additionally in a porous layer containing a large amount of CNF agglomerates observed at the upper surface of the specimens. The CNF agglomerates tended to locate themselves to minimize their surface tension, concentrating at the top surface of the specimens (i.e., air-liquid interface) during curing. The density gradient and layer of CNF agglomerates were predominant at CNF loadings less than or equal to $0.5 \mathrm{wt} \%$ but not present for a loading of $1 \mathrm{wt} \%$, most likely as a result of changes in paste rheology resulting in a lower water movement during curing. Migration of the CNFs within the cement paste was not observed for the other composites, including the composites prepared with N-HRWR and AE assisted dispersions and that prepared with CNFs in water likely due to the reduced workability of the fresh pastes compared to the fresh pastes containing P-HRWR (Figure 3.12). In addition, it can be seen in Figure 3.12 that surface treatment of the CNFs with $\mathrm{HNO}_{3}$ had minimal effect on the migration of the CNFs. The mechanism of CNF migration in the paste was related to the cement paste rheology which was affected by the CNF loading and type of dispersing agent used with a lower workability observed for the composites prepared with $1 \mathrm{wt} \%$ CNF loading, $\mathrm{N}-\mathrm{HRWR}$ and AE assisted dispersions, and that prepared with no dispersing agents, resulting in a lower water movement during curing.

For all cases, including that where a density gradient was observed, the distribution of the CNF agglomerates showed no difference at the edge of the composites compared to the center, indicating that edge and mold effects had no impact on the CNF agglomerate distribution.


Figure 3.12. Images of cement-based composites showing evidence of CNF migration only in the composites with P-HRWR.

Additional details of the structure of the microscale agglomerates and the curved morphology of the CNFs can be seen in Figure 3.13 from secondary SEM image of the $0.08 \mathrm{wt} \%$ CNF loading. The presence of the agglomerate in and around a void in Figure 3.13 showed that the edge of the agglomerate was well integrated with the cement matrix surrounding it. However, the microscale agglomerates were not found fully infiltrated by the cement phases. Closer examination showed the agglomerates consist of a loosely packed structure of a disordered network of entangled fibers and bundles.


Figure 3.13. SEM images showing the disordered structure of the microscale agglomerates (cement-based composites prepared with the P-HRWR assisted dispersion and $0.08 \mathrm{wt} \%$ CNF loading).

### 3.4. Conclusions

The dispersion of CNFs was investigated including their disaggregation and dispersion in a "mix water" solution and a "cement pore water" solution, and their subsequent dispersion and distribution in cement pastes. Three (3) different dispersing agents (P-HRWR, N-HRWR, and $\mathrm{AE})$ and surface treatment with $\mathrm{HNO}_{3}$ were investigated. The following conclusions were drawn:

- In "mix water" solutions, the dispersive ability of the three dispersing agents was not distinguishable at the macroscale level, but at the microscale level the P-HRWR improved the disaggregation of the CNFs the most.
- Surface treatment with $\mathrm{HNO}_{3}$ further improved the dispersion of the CNFs in the "mix water" solution containing P-HRWR. However, surface treatment with $\mathrm{HNO}_{3}$ alone was not as efficient at dispersing CNFs in "mix water" solutions as the dispersing agents.
- In "cement pore water" solutions, the use of dispersing agents in combination with ultrasonication showed the ability to disaggregate the CNFs, but the suspension was not stable with sedimentation occurring even for the solution containing P-HRWR.
- CNF migration with the bleed water occurred in cement pastes during the curing process resulting in a porous layer containing a high density of CNFs on the top-surface of the specimens. The porous layer was found to be dependent on the w/c ratio.
- At the microscale, the dispersion of CNFs in cement pastes was not uniform with the presence of individual and agglomerated CNFs. In addition, the distribution of the individual CNFs was not uniform within the cement pastes leading to CNF-rich and CNF-poor regions.
- Regardless of the dispersion method used, the CNFs reagglomerated during the mixing and/or curing process. However, cement-based composites made with P-HRWR showed
the fewest number of agglomerates larger than $200 \mu \mathrm{~m}$ in diameter.
- The final state of dispersion of the CNFs within the cement paste was the result of a competition between: (i) the tendency of CNFs to migrate towards each other or existing agglomerates due to Brownian motion and van der Waals interactions during cement mixing, (ii) the influence of the high pH and ionic strength of the cement paste medium on altering the surface properties of the CNFs, resulting in greater propensity for loss of individual CNFs and rebundling, and (iii) the effect of mechanical mixing, further increasing the probability of CNF agglomerates or individual CNFs to come in contact with each other.


## CHAPTER 4

## MICROMECHANICAL PROPERTIES OF CEMENT-BASED COMPOSITES WITH CNFS

### 4.1. Overview

The potential of CNFs as cement reinforcement is indicated by their high strength and aspect ratio (i.e., strengths of over 2.5 GPa [119] and aspect ratios of about 1000:1 [87]). Because it is now widely accepted that the macromechanical properties of cement-based materials originate from the mechanics of the material at lower scales (i.e., micro- and nanoscales) [129], the effects of CNFs on the micromechanical properties of that underlying structure are of interest. The objective of this chapter is to investigate the micromechanical properties of hydrated cement pastes containing CNFs, including the effect of CNFs on the overall distribution of micromechanical properties at the local level and on representative major cement phases (i.e., C-S-H and CH ) and the micromechanical response at the local level in and around CNF agglomerates.

Nanoindentation studies combined with SEM/EDS analyses of hydrated cement pastes with and without CNFs were performed to determine the effect of CNFs on the micromechanical properties, including modulus of elasticity and hardness, of representative major cement phases (i.e., C-S-H and CH ). In addition, nanoindentation studies of the area in and around CNF agglomerates were performed to determine the effect of CNF agglomerates on the micromechanical properties of cement-based composites at the local level.

### 4.2. Experimental Detail

### 4.2.1. Materials

The materials discussed in Section 3.2.1 were used in this study including "as received" CNFs, P-HRWR (Glenium® 7500), and type I portland cement. In addition, EpoFix epoxy (Struers, Cleveland, Ohio, USA) was used to support the cement specimens during polishing and testing.

### 4.2.2. Preparation of $C N F / C e m e n t-B a s e d ~ C o m p o s i t e s ~$

Three composites were examined, including a PC paste with no CNFs (PC), a PC paste with $0.5 \mathrm{wt} \%$ CNFs (PC-CNF), and a PC paste with $1 \mathrm{wt} \%$ CNFs (PC-1\%). PC and PC-CNF had a w/c ratio of 0.315 while PC- $1 \%$ had a w/c ratio of 0.28 . All composites contained $1 \mathrm{wt} \%$ of $\mathrm{P}-$ HRWR as a dispersing agent for the CNFs and were made in the same manner as in Section 3.2.3.2 using a bath sonicator to disaggregate the CNFs in the water and P-HRWR solution and a stand mixer to blend the CNF suspension with the cement.

After mixing the cement-based composites were made into $2.54 \mathrm{~cm} \times 2.54 \mathrm{~cm} \times 68.58$ cm ( $1 \mathrm{in} . \times 1 \mathrm{in} . \times 27 \mathrm{in}$.) beams, cured for 28 days in $100 \%$ humidity, and tested by standard macromechanical testing. After macromechanical testing, the beams were cured in a controlled laboratory environment at approximately $21^{\circ} \mathrm{C}\left(70^{\circ} \mathrm{F}\right)$ and $30 \%$ relative humidity for approximately one year before specimens, $1.27 \mathrm{~cm} \times 1.27 \mathrm{~cm} \times 2.54 \mathrm{~cm}(0.5 \mathrm{in} . \times 0.5 \mathrm{in} . \times 1 \mathrm{in}$.) in size, were cut from the beams using a precision saw with an oil lubricant so as to not cause further hydration of the cement. Specimens were then mounted in 3.175 cm ( 1.25 in .) diameter
disks of EpoFix epoxy such that the cement-based composites did not become impregnated with the epoxy.

Before nanoindentation, the specimens mounted in epoxy were polished in a four step process recommended by experts at Buehler (Lake Bluff, Illinois, USA). The polishing process began with a grinding step with 240 grit silicon carbide paper followed by polishing with $9 \mu \mathrm{~m}$ and $3 \mu \mathrm{~m}$ diamond pastes and 50 nm alumina powder suspension on specialized polishing pads. Specimens were ultrasonicated in a bath sonicator for 10 minutes after each polishing step to reduce contamination between steps, and optical microscopy was used during the polishing process after each step to ensure a proper polish (Figure 4.1). All polishing and cleaning between polishing steps was completed in an alcohol and ethylene glycol solution to prevent further hydration of the cement-based composite. The polishing process used was similar to that found in the literature for nanoindentation of cement-based composites and exceeded the lowest particle size used in those studies [100, 103, 108, 110, 130]. An example of an acceptable and unacceptable final polish can be seen in Figure 4.2.


Figure 4.1. Micrographs of various cement-based composites showing the different steps of the Buehler recommended polishing process used to prepare cement-based composite specimens for nanoindentation. a) Polish after 240 grit silicon carbide paper, b) polish after $9 \mu \mathrm{~m}$ diamond paste, c) polish after $\mathbf{3 \mu \mathrm { m }}$ diamond paste, and d) polish after 50 nm alumina powder.


Figure 4.2. SEM image showing areas of a cement-based composite considered to have an acceptable and unacceptable polish for nanoindentation.

### 4.2.3. Characterization

### 4.2.3.1. Nanoindentation

Nanoindentation was completed at the Army Corps of Engineers Engineer Research and Development Center (ERDC, Vicksburg, Mississippi) using an Agilent Nanoindenter G200 Testing System (Agilent Technologies, Santa Clara, California, USA) (Figure 4.3). The Agilent Nanoindenter G200 Testing System has a displacement resolution of less than 0.01 nm , up to 1000 times magnification for viewing specimens, and an accuracy of $1 \mu \mathrm{~m}$ for indentation positioning. Indentation was completed with a Berkovich tip made of diamond, which was calibrated using a second-order area function and a fused silica sample with known mechanical properties. A maximum force of 2 mN was applied with a targeted strain rate of $0.050 \mathrm{~s}^{-1}$. The maximum load was selected as 2 mN because it was in between the 0.5 mN suggested by [103] in order to have indentation depths of less than 300 nm to capture the individual response of C-SH and the 4 mN suggested by [108] to have indentation depths greater than 200 nm needed because of the surface roughness of polished cement-based composites. The maximum load was held for 15 seconds before a 10 second unloading period was completed. All indentation curves were evaluated before further analysis (Figure 4.4). Abnormal curves were discarded because they represented contact issues, cracking during testing, or the response of multiple constituents of the composite and interfered with the calculation of the micromechanical properties [103, 131]. Curves that were accepted after evaluation are referred to as "valid" curves, and curves that were discarded for irregularities are referred to as "invalid".

The elastic modulus (E) and hardness values (H) were calculated from the unloading portion of the force versus displacement (i.e., indentation depth) curve (Figure 4.4) using the

Oliver and Pharr method [132] in which the area of contact $\left(A_{C}\right)$ is estimated and the following relationships are used:

$$
E=\frac{(1-v)^{2}}{\frac{1}{E_{\text {eff }}}-\frac{\left(1-v_{i}\right)^{2}}{E_{i}}}
$$

Equation 4.1
where $v$ is the Poisson's ratio of the cement-based composite (assumed to be 0.3 ), $v_{i}$ is the Poisson's ratio of the indenter, $E_{i}$ is the elastic modulus of the indenter, and $E_{\text {eff }}$ is the effective elastic modulus defined by:

$$
E_{e f f}=\frac{\sqrt{\pi}}{2} \frac{s}{\beta \sqrt{A_{C}}}
$$

where $S$ is the measured unloading stiffness and $\beta$ is a dimensionless correction factor (i.e., 1.034 for Berkovich indenter) and

$$
H=\frac{P_{\max }}{A_{C}}
$$

where $P_{\text {mas }}$ is the maximum indentation force (Figure 4.4a). The theory of contact mechanics behind nanoindentation and its validity for cement-based materials are discussed elsewhere [101, 103, 108, 110, 130, 133-136].


Figure 4.3. Agilent Nanoindenter G200 Testing System at ERDC (Vicksburg, Mississippi). a) Full system including protective casing and computer control and b) isolation table, thermal insulation, sample tray, automated stage, indenter probe, and optical microscope objective (interchangeable 10X or 40X).
a)

b)


Figure 4.4. Example of force versus displacement curves from nanoindentation of a cement-based composite. a) "Valid" curves showing $P_{\text {max }}, h_{\text {max }}$, and $S$ and the loading, hold period, and unloading portions of the curve and b) "invalid" curves showing a sudden stiffening or jump in displacement from damage during testing.

Three (3) grids of 20 indents spaced $10 \mu \mathrm{~m}$ apart in the X -direction and 10 indents spaced $10 \mu \mathrm{~m}$ apart in the Y-direction were used for PC and PC-CNF while two (2) grids of the same number of indents and spacing were used for PC-1\%. Two (2) representative cross-sections from different specimens of each composite were used for PC (PC A and PC B) and PC-CNF (PCCNF A and PC-CNF B) with one grid on PC A and PC-CNF B and two on PC B and PC-CNF A in order to ensure that the results were similar across specimens of the same composite. The
location of the nanoindentation grids were selected at random in order to reduce bias, but the areas used were examined before testing with SEM in order to ensure that the polishing in the area was acceptable for nanoindentation, that there were not abnormalities in the cement paste within the area, and that the area was representative of the cement-based composite. Only one (1) cross-section was used for $\mathrm{PC}-1 \%$, and the two grids were located across one or more CNF agglomerates. Fiducial indents were placed at the beginning, middle, and end of each row of indents for every grid using a force of 100 mN so that the indentation grid could be located with the SEM and the precise location of the indents could be found for further SEM/EDS analysis.

The modulus and hardness values obtained from nanoindentation were plotted in a contour plot with respect to the indent grid location. All indent locations that resulted in an indentation error or an "invalid" force versus displacement curve was plotted as having a modulus and hardness value of zero (0). The modulus and hardness values for the area between indents were then interpolated. Additionally, the modulus and hardness values were plotted as histograms with the bin sizes selected based on recommendations from [137]. In addition to the histograms, empirical distributions scaled to correspond with the histograms were used for visualization of the data. Because the SEM/EDS data was available for each individual indent (similar to $[108,131]$ ) analysis of the data was not reliant on statistical methods to determine the cement phases as in [103], and the histograms were decomposed into the phases determined from the SEM/EDS studies.

### 4.2.3.2. SEM/EDS

An FEI Quanta FEG 650 SEM (FEI Company, Hillsboro, Oregon, USA) equipped with Schottky field emission, high vacuum, low vacuum and ESEM capabilities, digital imaging, and
an Oxford X-Max Silicon Drift Detector with a $20 \mathrm{~mm}^{2}$ active area (Oxford Instruments, Abingdon, Oxfordshire, England) was used to obtain secondary and backscattered electron images and semi-quantitative chemical data. A pressure of 130 Pa , a voltage of 15 kV , a working distance of 10 mm , and a spot size of 5 was used to collect all SEM images and EDS data. A voltage of 15 kV was used for EDS to allow for sufficient energy to meet the required K shell characteristic ionization energy of the typical elements found in cement-based materials (i.e., iron) [138], while maintaining the interaction volume of EDS (i.e., less than $2 \mu \mathrm{~m}$ [108]) similar to that of nanoindentation (i.e., less than $1.5 \mu \mathrm{~m}$ [108]). EDS was completed using point analysis at the locations of each indent with five (5) iterations and a livetime of 20 seconds. Calibrations were made with calcium carbonate, silicon dioxide, albite, magnesium oxide, aluminum oxide, gallium phosphide, iron sulphide, MAD-10 feldspar, wollastonite, manganese, and iron, and the XPP scheme, a Phi-Rho-Z method, was used for matrix corrections as analyzed by INCA Energy Software (Oxford Instruments, Abingdon, Oxfordshire, England) [139].

The backscatter and secondary SEM images were used to classify the location of the indents as flaw/hydrate combination, flaw/hydrate/unhydrated cement combination, flaw/unhydrated cement combination, hydrate, hydrate/unhydrated cement combination, or unhydrated cement (Figure 4.5). Gray scale analysis was completed on the backscatter image to assign false color such that the unhydrated cement, hydrates, and flaws were all identified (Figure 4.5 c ). Secondary images allowed the points of the fiducial indents to be located and assisted in placement of markers where each indent was located (the markers are exaggerated in size for viewing, Figure 4.5d). When the false color and accurate indentation locations were combined together, the locations of the indents could be easily classified. In addition, for PC-1\% the secondary SEM image was used to determine the location of the CNF agglomerates in
relationship to the indent locations (Figure 4.6). Indents were classified as being: (i) within the CNF agglomerate (which mostly consisted of a void with a tangled mass of CNFs and a few hydrates present), (ii) on the edge of the agglomerate (where many CNFs were still present but were mostly anchored in hydrated cement), or (iii) outside of the CNF agglomerate.


Figure 4.5. SEM images showing the location of a nanoindentation grid (PC-CNF A Grid 2) and the process to determine the constituents on which each indent is located. a)
Backscatter SEM image, b) secondary SEM image, c) backscatter SEM image with false color, d) secondary SEM image with enlarged markers showing the nanoindentation and fiducial grid, and e) nanoindentation and fiducial grid with markers enlarged transferred to false color image and enlargement of part of nanoindentation grid with indents labeled.


Figure 4.6. Backscatter SEM image of PC-1\% Grid 1 with false color showing the location of indents with respect to constituents (flaws, hydrates, and unhydrated cement) and with respect to CNF agglomerates (raw images included in Appendix C).

EDS data was used to determine the cement hydration product(s) present at indents that were located solely within the hydrated portion of the paste. The hydration products were identified as: (i) C-S-H, (ii) CH , (iii) a combination of C-S-H and CH mostly comprised of C-SH , (iv) a combination of C-S-H and CH mostly comprised of CH , and (v) Al-rich phases. Although EDS could be used to further study the unhydrated cement particles, the number of indents located on unhydrated cement particles was not sufficient to further separate the data set.

Identification of the hydrated phases was determined by comparing the $\mathrm{Si} / \mathrm{Ca}$ ratios with the $\mathrm{Al} / \mathrm{Ca}$ ratios with respect to the molecular weights (Figure 4.7). Typically, the atomic $\mathrm{Si} / \mathrm{Ca}$ ratios obtained from EDS are plotted compared to the atomic $\mathrm{Al} / \mathrm{Ca}$ ratios as in Figure 4.7 a with the intersecting lines representing theoretical atomic ratios of calcium, aluminum, and silicon for C-S-H, CH, monosulfoaluminate, and ettringite [140]. The Si/Ca ratio for C-S-H is typically
taken as $0.5-0.667$, while the $\mathrm{Al} / \mathrm{Ca}$ ratio is typically taken as 0.06 [140]. Because each indent located on hydrated cement phases needed to be classified, ranges of $\mathrm{Si} / \mathrm{Ca}$ ratios and $\mathrm{Al} / \mathrm{Ca}$ ratios were set for each cement phase (Figure 4.7b) allowing for a variation of 0.1 in the ratio to account for the mixture of phases. The ranges were chosen as follows:

- If the $\mathrm{Si} / \mathrm{Ca}$ ratio was greater than or equal to 0.4 and the $\mathrm{Al} / \mathrm{Ca}$ ratio was less than or equal to 0.16 , then the hydrate was considered to be C-S-H. A variance of -0.1 from the lowest $\mathrm{Si} / \mathrm{Ca}$ ratio (i.e., 0.5) and +0.1 from the highest $\mathrm{Al} / \mathrm{Ca}$ ratio (i.e. 0.06 ) typically considered to be $\mathrm{C}-\mathrm{S}-\mathrm{H}$ was allowed for minor impurity of the C -S-H phase.
- If both the $\mathrm{Si} / \mathrm{Ca}$ and $\mathrm{Al} / \mathrm{Ca}$ ratios were less than or equal to 0.1 , the hydrate was considered to be CH . Though pure CH has no Al and Si , a variance of +0.1 was allowed in the $\mathrm{Si} / \mathrm{Ca}$ and $\mathrm{Al} / \mathrm{Ca}$ ratios to account for some minor impurity of the CH phase.
- If the $\mathrm{Si} / \mathrm{Ca}$ ratio was between 0.1 and 0.4 and the $\mathrm{Al} / \mathrm{Ca}$ ratio was less than or equal to the values interpolated between those considered to be CH and $\mathrm{C}-\mathrm{S}-\mathrm{H}$, then the hydrate was considered to be a mixture between C-S-H and CH. The range of $\mathrm{Si} / \mathrm{Ca}$ ratios in this classification was further divided in half with the lower values of $\mathrm{Si} / \mathrm{Ca}$ ratios being considered mostly CH and the higher values being considered mostly C-S-H.
- All other hydrates were considered to be Al-rich.
a)

b)


Figure 4.7. Example of EDS results that were spatially correlated with nanoindentation data (PC B Grid 1) as determined by SEM to be cement hydrates (raw data included in Appendix C). a) Typical Al/Ca ratio versus $\mathrm{Si} / \mathrm{Ca}$ ratio plot with theoretical values for C-S$\mathrm{H}, \mathrm{CH}$, ettringite, and monosulfoaluminate and b) $\mathrm{Al} / \mathrm{Ca}$ versus $\mathrm{Si} / \mathrm{Ca}$ plot showing classifications of the ratio ranges used to correlate with nanoindentation data.

### 4.3. Results and Discussion

4.3.1. Effects of CNFs on the Distribution of Micromechanical Properties at the Local Level

The effects of CNFs on the micromechanical properties of cement pastes at the local level were investigated. The modulus and hardness of plain PC paste (PC) and PC paste with $0.5 \mathrm{wt} \%$ CNFs (PC-CNF) were compared.

### 4.3.1.1. Indent Locations and Indentation Depths

Indentation locations. Of the 600 indents analyzed for both PC and PC-CNF, over 35\%, equivalent to over 200 indents, were located solely on cement hydration products as determined by backscatter SEM image analysis (Figure 4.8), while $c a .1-2 \%$ and $c a .7-8 \%$ of indents were located solely on flaws and unhydrated cement particles, respectively. The rest of the indents were located on combinations of multiple cement paste constituents (i.e., cement hydrates, unhydrated cement particles, and flaws) or were discarded due to indenter error or "invalid" force versus displacement curves. Although PC-CNF had more indent locations that were indentation errors or force versus displacement curves that were considered "invalid" compared to PC (i.e., $c a .28 \%$ versus $c a .14 \%$ ), this was not thought to be caused by the presence of CNFs because one indentation grid (PC-CNF B Grid 1) was responsible for the majority (126 out of 165) of the indentation errors/"invalid" curves. The polish quality of PC-CNF B Grid 1 was equivalent to the other specimens (see secondary SEM images, APPENDIX C), the porosity or presence of flaws was not out of the ordinary compared to the other specimens (see backscatter SEM images, APPENDIX C), and only three (3) indents were classified as indentation errors, the large majority (i.e., 123 indents) being "invalid" curves. Because no issues could be found with
the specimen quality or testing procedure, the large number of indents considered indentation errors/"invalid" curves was thought to be caused by an increased number of indents on multiple cement paste constituents, (i.e., hydrates, unhydrated cement particles, and flaws). Composites have been shown to have a multiphase response when the interaction volume of the indent includes multiple material constituents [108, 131, 133, 141].


Figure 4.8. Pie charts showing the percentage distribution of indents located on various cement paste constituents (i.e., hydrates, unhydrated cement particles, and flaws), combinations of cement paste constituents, and indentation errors/invalid curves as analyzed by nanoindentation combined with SEM (raw data included in Appendix C). a) PC composite and b) PC-CNF composite.

Further treatment of the indentation data was performed to compare the results to the Power's model of hydration [142]. Indents corresponding to indentation errors/"invalid" curves were removed from the percentage distribution calculations, and indents that were located on a combination of multiple cement paste constituents were assumed to be composed of either $1 / 2$ or
$1 / 3$ of each constituent for a combination of two or three constituents. $C a .70 \%, c a .15 \%$, and $c a$.
$15 \%$ of indents were thus located on hydrates, unhydrated cement particles, and flaws, respectively (Figure 4.9). Using the Power's model [142], the degree of hydration ( $\alpha$ ) was calculated as:

$$
\begin{equation*}
\alpha=1-\gamma\left(\rho_{c} \cdot w / c+1\right) \tag{Equation 4.4}
\end{equation*}
$$

where, $\gamma$ is the volume fraction of unhydrated cement (i.e., $16.7 \%$ and $15.0 \%$ for PC and PC-
CNF respectively), $w / c$ is the $w / c$ ratio (i.e., 0.315 ), and $\rho_{c}$ is the specific gravity of cement, which was assumed to be 3.15 [108]. The theoretical degree of hydration calculated using the Power's model was 0.667 and 0.701 for PC and PC-CNF, respectively. The experimental degree of hydration (i.e., 0.662 and 0.685 for PC and PC-CNF, respectively) obtained from SEM analysis (Figure 4.9), was thus in good agreement with the Power's model.


Figure 4.9. Pie charts showing the percentage distribution of indents located on hydrates, unhydrated cement particles, and flaws as analyzed by nanoindentation combined with SEM (raw data included in Appendix C). a) PC composite and b) PC-CNF composite.

Indentation depths. The nanoindentation testing that was performed at a maximum load of 2 mN , resulted in indentation depths (i.e., contact depths measured by the nanoindenter) ranging from $c a .55 \mathrm{~nm}$ to $c a .790 \mathrm{~nm}$. The indentation depths mostly satisfied the requirements needed of an indentation depth of at least about 200 nm in order to be acceptable because of the surface roughness of polished cement specimens [108] with the majority of indents with an indentation depth of less than 200 nm being located on unhydrated cement particles or a mixture between unhydrated cement and hydration products.

### 4.3.1.2. Micromechanical Properties

Contour plots that spatially correlate the indent locations to the modulus and hardness data clearly showed the highest modulus and hardness values (i.e., greater than 60 GPa and 2 GPa, respectively) to correlate to unhydrated cement particles, as visually determined with backscatter SEM, while the lowest modulus and hardness values (i.e., less than 15 GPa and 0.25 GPa, respectively) corresponded to the highly porous areas of the cement-based composites (Figure 4.10-4.15). These modulus and hardness values were in agreement with the values found in the literature (Table 2.1) [97-100, 103-107].
a) Backscatter SEM

b) Modulus (GPa)

c) Hardness (GPa)


Figure 4.10. Spatial correlation of micromechanical properties of PC A Grid 1. Indents are located in a grid of 200 with 10 rows and 20 columns. a) Backscatter SEM image, b) contour plot of elastic modulus with linear interpolation between indents, c) contour plots of hardness with linear interpolation between indents.


Figure 4.11. Spatial correlation of micromechanical properties of PC B Grid 1 (raw data included in Appendix C). Indents are located in a grid of 200 with 10 rows and 20 columns. a) Backscatter SEM image, b) contour plot of elastic modulus with linear interpolation between indents, c) contour plots of hardness with linear interpolation between indents.


Figure 4.12. Spatial correlation of micromechanical properties of PC B Grid 2 (raw data included in Appendix C). Indents are located in a grid of 200 with 10 rows and 20 columns. a) Backscatter SEM image, b) contour plot of elastic modulus with linear interpolation between indents, c ) contour plots of hardness with linear interpolation between indents.
a) Backscatter SEM

b) Modulus (GPa)

c) Hardness (GPa)


Figure 4.13. Spatial correlation of micromechanical properties of PC-CNF A Grid 1 (raw data included in Appendix C). Indents are located in a grid of 200 with 10 rows and 20 columns. a) Backscatter SEM image, b) contour plot of elastic modulus with linear interpolation between indents, c) contour plots of hardness with linear interpolation between indents.


Figure 4.14. Spatial correlation of micromechanical properties of PC-CNF A Grid 2 (raw data included in Appendix C). Indents are located in a grid of 200 with 10 rows and 20 columns. a) Backscatter SEM image, b) contour plot of elastic modulus with linear interpolation between indents, c) contour plots of hardness with linear interpolation between indents.


Figure 4.15. Spatial correlation of micromechanical properties of PC-CNF B Grid 1 (raw data included in Appendix C). Indents are located in a grid of 200 with 10 rows and 20 columns. a) Backscatter SEM image, b) contour plot of elastic modulus with linear interpolation between indents, c) contour plots of hardness with linear interpolation between indents.

Nanoindentation of PC and PC-CNF resulted in elastic moduli ranging from ca. 8 GPa to $c a .210 \mathrm{GPa}$ and hardness values ranging from $c a .0 .1 \mathrm{GPa}$ to $c a .17 \mathrm{GPa}$. The relative frequency histogram of the elastic moduli for PC and PC-CNF is shown in Figure 4.16 for modulus values less than 160 GPa (only 3 indents resulted in an elastic modulus of over 160 GPa ). The relative frequency histogram of the hardness values is shown in Error! Reference source not found. for hardness values less than 10 GPa (only 10 indents resulted in a hardness of over 10 GPa ). In general, the modulus and hardness histograms showed one main peak ranging from 8-40 GPa and 0-1.6 GPa, respectively. In addition to the main peak, an intermediate shoulder could be seen in the range of modulus and hardness values slightly higher than the main peak, i.e., 40-48 GPa and 1.6-2.0 GPa, respectively. Lastly, minor peaks were seen at modulus values beyond 80 GPa and hardness values beyond 4 GPa . Decomposition of the histograms showed the major cement constituents that were indented as determined by spatial correlation of the micromechanical properties and backscatter SEM image analysis. The decomposition of the histogram showed the majority of the main peak and intermediate shoulder to be mostly composed of cement hydrates and the minor peaks to mostly be composed of unhydrated cement in agreement with the literature $[97-99,103,104,107,108]$ The main peak was found to correspond to the values typically associated with C-S-H in the literature [103, 108]. However, evidence of two distinct phases of C-S-H as reported in the literature (i.e., high stiffness C-S-H and low stiffness C-S-H [103]) could not be seen solely from examination of Figure 4.16 and Error! Reference source not found.. The values within the range of the intermediate shoulder have been associated with CH [103]. The values corresponding to the minor peaks were found to be mostly unhydrated cement, which was also in agreement with the literature [97-99, 104, 107].


Figure 4.16. Histograms of the modulus values obtained by nanoindentation with scaled empirical distributions decomposed into hydrates, unhydrated cement, and flaws for cement-based composites (raw data included in Appendix C). a) PC and b) PC-CNF.


Figure 4.17. Histograms of the hardness values obtained by nanoindentation with scaled empirical distributions decomposed into hydrates, unhydrated cement, and flaws for cement-based composites (raw data included in Appendix C). a) PC and b) PC-CNF.

Elastic modulus. The addition of CNFs resulted in a clear shift in the main peak of the elastic modulus histograms from the 16-24 GPa range for PC to 24-32 GPa range for PC-CNF (Figure 4.16). This observed shift was almost entirely the result of the majority of the hydrates having a higher elastic modulus when CNFs were present in the cement paste. A similar shift has
been reported by Shah, Konsta-Gdoutous, and Metaxa [47, 112, 113, 143-145] for CNTs in cement pastes (i.e., shift from 15-20 GPa to 20-25 GPa). Shah et al. [112] attributed the shift in elastic modulus to the ability of the CNTs to create more high stiffness C-S-H.

In addition to the shift in the main peak of the histogram of the elastic modulus, a reduction in the relative frequency of the modulus values less than 16 GPa , corresponding to a highly porous region dominated by capillary pores [103], was seen with the addition of CNFs. A similar reduction in the relative frequency of the modulus values less than 16 GPa has been reported for cement pastes with CNTs and was attributed to a decrease in the nanoporosity of the cement paste as a result of CNTs acting as filler [112].

Differences in the elastic modulus of the unhydrated cement particles were also seen between PC and PC-CNF with two clear peaks centered in the 88-96 GPa and 112-120 GPa ranges seen for PC but no clear peak observed for PC-CNF with data mostly evenly distributed between 80 and 144 GPa . The differences were attributed to the small data set of unhydrated particles indented (i.e., 51 values for PC and 40 values for PC-CNF) and the multiple phases that were captured in the data set (i.e., $\mathrm{C}_{3} \mathrm{~S}, \mathrm{C}_{2} \mathrm{~S}, \mathrm{C}_{4} \mathrm{AF}$, etc.).

Hardness. Overall, similar shapes of the histograms of the total hardness were observed for PC and PC-CNF (Figure 4.17). The main peak in the histogram was shifted from being equally distributed in the $0.4-0.8 \mathrm{GPa}$ and $0.8-1.2 \mathrm{GPa}$ ranges to having a higher relative frequency in the 0.4-0.8 GPa range with the addition of CNFs. From the decomposition of the histogram it could be seen that the shift was due to "valid" curves that were located on flaw/hydrate combination and was therefore not considered significant because of the effect of the flaws on the hardness values. Additionally, the portion of the histogram representing only
cement hydrates was nearly identical for PC and PC-CNF except for the second peak within the hydrate phase, centered in the 1.6-2.0 GPa range, which was more pronounced with the addition of CNFs. The range of 1.6-2.0 GPa was higher than the published range for CH (i.e. $1.31 \pm 0.23$ GPa). Similarly to the modulus values, differences could be seen in the portion of the histogram of hardness values associated with unhydrated cement particles (i.e., hardness values greater than $4 \mathrm{GPa})$ that were also attributed to the small sample size of unhydrated particles indented and the multiple phases with different hardness values that were included with the unhydrated cement particle data.

### 4.3.2. Effects of CNFs on the Micromechanical Properties of Individual Cement Hydrates

The micromechanical properties of specific individual cement hydrate phases were extracted by coupling the nanoindentation results with phase identification results from SEMEDS, and only that data is included in this section. The modulus and hardness values corresponding to the cement hydrate phases was mostly less than 60 GPa and 4 GPa , respectively (only 13 modulus values were greater than 60 GPa and only 11 hardness values were greater than 4 GPa ). The cement hydrate phases considered include: (i) C-S-H, (ii) CH , (iii) a combination of C-S-H and CH that is mostly C-S-H, (iv) a combination of C-S-H and CH that is mostly CH, and (v) Al-rich phases.

### 4.3.2.1. Indent Locations and Indentation Depths

Indent locations. The percentages of representative major cement hydration products indented are summarized in Figure 4.18. For both PC and PC-CNF, over 20\% of indents were located on Al-Rich phases while over 50\% of indents were located on C-S-H and less than 3\%
were located on CH . Compared to the typical phase distribution reported in the literature for a portland cement matrix (i.e., $50 \%$ C-S-H, $20-25 \% \mathrm{CH}, 10-15 \%$ Al-rich phases, and additional minor phases [3]), PC and PC-CNF were found to have more C-S-H (i.e., $c a .11 \%$ and $2 \%$, respectively) and Al -rich phases (i.e., $c a .11 \%$ and $8 \%$, respectively) and less CH (i.e., ca. $19 \%$ and $17 \%$, respectively). PC-CNF compared to PC had $115 \%$ more CH and $14 \%$ less Al-rich phases.


C-S-H
CH
Mostly C-S-H


Mostly CH
Al-Rich

Figure 4.18. Pie charts showing the percentages of indents located on various cement hydration products including C-S-H, CH , a combination of $\mathrm{C}-\mathrm{S}-\mathrm{H}$ and CH but mostly C-SH , a combination of C-S-H and CH but mostly CH, and Al-rich phases as analyzed by nanoindentation combined with SEM/EDS on cement-based composites including PC and PC-CNF (raw data included in Appendix C).

Indentation depths. The hydration products had indentation depths ranging from $c a$. 57 nm to $c a .620 \mathrm{~nm}$ (i.e., contact depths measured by the nanoindenter), and were mostly larger than the 200 nm required because of the surface roughness of polished cement [108]. Many of
the depths for indents that were considered to be solely located on C-S-H were larger than 300 nm , which is considered then too large to characterize C-S-H using statistical methods [103]. However, because EDS analysis was coupled with the nanoindentation data, the experimentally obtained micromechanical properties could be directly associated with the individual phases and no statistical treatment of the data was needed. The range of indentation depths for PC and PCCNF was, therefore, considered acceptable for characterization of the individual cement phases.

### 4.3.2.2. Micromechanical Properties

The modulus and hardness values of the cement hydrates for PC and PC-CNF are summarized in Figure 4.19 and Error! Reference source not found.. As discussed in Section 4.3.1, the major peak in the histogram of the hydration products (Figure 4.16, Figure 4.17, Figure 4.19, and Error! Reference source not found.) shifted to increased modulus values when CNFs were added to the cement paste. With the refined bin sizes allowed by the number of data points compared to the reduced range of the data, the shift occurred from the $20-25 \mathrm{GPa}$ range to the 25-30 GPa range. The decomposition of the modulus histogram into the major cement hydration products showed the shift to be from the response of the indents located solely on C-S-H.


Figure 4.19. Histograms of the modulus values of the cement hydration products with scaled empirical distributions decomposed into the cement hydration phases of $\mathrm{C}-\mathrm{S}-\mathrm{H}, \mathrm{CH}$, a combination of C-S-H and CH but mostly C-S-H, a combination of C-S-H and CH but mostly CH , and Al-rich phases for cement-based composites (raw data included in Appendix C). a) PC and b) PC-CNF.


Figure 4.20. Histograms of the hardness values of the cement hydration products with scaled empirical distributions decomposed into the cement hydration phases of $\mathrm{C}-\mathrm{S}-\mathrm{H}, \mathrm{CH}$, a combination of C-S-H and CH but mostly C-S-H, a combination of C-S-H and CH but mostly CH , and Al-rich phases for cement-based composites (raw data included in Appendix C). a) PC and b) PC-CNF.

If Gaussian distributions are assumed, the histograms of the modulus and hardness values from indents located solely on C-S-H visually appeared to support the theory that there was more than one C-S-H phase. The mean, standard deviation, and weight of the Gaussian distributions
within the total distribution were determined using an expectation maximization algorithm [146]. The modulus and hardness histograms for the C-S-H phase of PC and PC-CNF were best matched when three (3) Gaussian distributions were assumed as opposed to two (2). The use of four (4) Gaussian distributions was also examined, but it was determined that there was no benefit to using four (4) distributions as opposed to three (3) distributions. Figure 4.21 shows the distributions of modulus and hardness values as estimated by: (i) the Gaussian mixture model (i.e., summation of the estimated Gaussian distributions, red dash-dot line) with the Gaussian components (blue dashed lines) determined by the expectation maximization algorithm and (ii) for reference, a normal kernel function [147] with a bandwidth chosen such that the shape of the density estimate matched the shape of the histograms from Figure 4.19 and Error! Reference source not found. for the C-S-H phase (black solid line). The modulus and hardness values of each estimated Gaussian component and its weight are summarized in Table 4.1. The modulus and hardness values reported in Table 4.1 corresponded well to that found in the literature (Table 2.1). As can be seen from both the modulus and hardness values, the percentage of low stiffness C-S-H was decreased by $6 \%$ with the addition of CNFs compared to the control composite as determined by the Gaussian mixture model from the modulus values, suggesting the preferential formation of high stiffness C-S-H over low stiffness as reported in [47, 112, 113, 144, 145] with the addition of CNTs.


Figure 4.21. Micromechanical property distributions of the C-S-H phase in cement-based composites as predicted by a Gaussian mixture model and kernel density estimation and the Gaussian components of the Gaussian mixture model (raw data included in Appendix C). a) PC modulus values, b) PC hardness values, c) PC-CNF modulus values, and d) PCCNF hardness values.

Table 4.1. Summary of mean modulus and hardness values of the C-S-H phases in PC and PCCNF and their weights assuming three Gaussian distributions (raw data included in Appendix C).

|  |  | Modulus (GPa) | Hardness (GPa) |
| :---: | :---: | :---: | :---: |
| $\left\lvert\, \begin{aligned} & U \\ & A \end{aligned}\right.$ | Ultra-High Stiffness | $\begin{gathered} 44.4 \pm 1.7 \\ (6.0 \%) \end{gathered}$ | $\begin{gathered} 1.7 \pm 0.2 \\ (3.7 \%) \end{gathered}$ |
|  | High Stiffness | $\begin{gathered} 35.0 \pm 1.8 \\ (9.4 \%) \end{gathered}$ | $\begin{gathered} 1.1 \pm 0.3 \\ (7.6 \%) \end{gathered}$ |
|  | Low Stiffness | $\begin{gathered} 22.4 \pm 5.1 \\ (84.7 \%) \end{gathered}$ | $\begin{aligned} & 0.9 \pm 0.3 \\ & (88.7 \%) \end{aligned}$ |
|  | Ultra-High Stiffness | $\begin{gathered} 43.1 \pm 0.9 \\ (5.0 \%) \end{gathered}$ | $\begin{gathered} 1.7 \pm 0.1 \\ (7.7 \%) \end{gathered}$ |
|  | High Stiffness | $\begin{gathered} 33.4 \pm 4.3 \\ (15.4 \%) \end{gathered}$ | $\begin{gathered} 1.3 \pm 0.1 \\ (12.7 \%) \end{gathered}$ |
|  | Low Stiffness | $\begin{gathered} 25.0 \pm 4.2 \\ (79.6 \%) \end{gathered}$ | $\begin{aligned} & 0.8 \pm 0.2 \\ & (79.6 \%) \end{aligned}$ |

() Indicates \% weight of phase in total distribution.

The modulus and hardness values were compared to both the $\mathrm{Si} / \mathrm{Ca}$ and $\mathrm{Al} / \mathrm{Ca}$ ratios to determine if the $\mathrm{Si} / \mathrm{Ca}$ and $\mathrm{Al} / \mathrm{Ca}$ ratios of the $\mathrm{C}-\mathrm{S}-\mathrm{H}$ had an impact on the modulus and hardness values, but no correlation could be determined (Figure 4.22). The packing density of the C-S-H phase was, therefore, thought to be responsible for the changes seen in the percentages of the low and high stiffness C-S-H as was suggested in [103].


Figure 4.22. Micromechanical properties of the C-S-H phase in cement-based composites compared to the chemistry at the indent location (raw data included in Appendix C). a) Modulus values versus $\mathrm{Si} / \mathrm{Ca}$ ratios, b ) hardness values versus $\mathrm{Si} / \mathrm{Ca}$ ratios, $\mathbf{c}$ ) modulus values versus $\mathrm{Al} / \mathrm{Ca}$ ratios, and d ) hardness values versus $\mathrm{Al} / \mathrm{Ca}$ ratios.

The modulus values found for CH and mostly CH , ranged from 12 to 193 GPa with only $36 \%$ of indents on CH having a modulus greater than 33 GPa , compared to $38 \pm 5 \mathrm{GPa}$ [100] and $40.3 \pm 4.2 \mathrm{GPa}$ [103] which have been reported in the literature. Instead, the majority of values found in the 32-48 GPa bin of the histogram, which is typically associated with CH , were found to be from indents located on Al-rich phases and the multiphase C-S-H/CH combination that was mostly C-S-H as determined with nanoindentation coupled with SEM/EDS. C-S-H and CH have been reported in the literature to form nanocomposites that result in higher local mechanical
properties than the individual C-S-H and CH phases [108]. The low sampling of indents on CH could also be responsible for the discrepancy with the published values.

### 4.3.3. Micromechanical Properties located in and around CNF Agglomerates

The micromechanical properties at the local level of cement-based composites in and around CNF agglomerates were investigated using $1 \mathrm{wt} \%$ CNF loading.

### 4.3.3.1. Indent Locations

The locations of indents from nanoindentation with respect to a CNF agglomerate were examined for PC-1\% when the nanoindentation grid was purposefully located in the vicinity of one or more CNF agglomerates (Figure 4.23). Approximately 55\% of the indents examined were outside of the CNF agglomerates entirely, while $c a .45 \%$ of the indents were located inside of the CNF agglomerates. Of the indents located inside of an agglomerate, $c a .60 \%$ of the indents were classified as a part of the inner agglomerate (i.e., mostly entangled CNFs with little to no hydrates present), while $c a .40 \%$ of the indents were classified as a part of the outer agglomerate (i.e., mostly individual CNFs embedded in the cement hydration products on the outer edge of a agglomerate).


Figure 4.23. Pie charts showing the percentages of indents located with respect to a CNF agglomerate (i.e., inner agglomerate, outer agglomerate, or not agglomerate) as analyzed by nanoindentation combined with SEM/EDS on PC-1\% (raw data included in Appendix C).

### 4.3.3.2. Micromechanical Properties

Contour mapping of the modulus and hardness values compared to backscatter SEM images showed the CNF agglomerates to clearly be associated with the low modulus and hardness values, i.e., less than 15 GPa and less than 0.5 GPa , respectively (Figure 4.24 and Figure 4.25). While a few high modulus and hardness values were also found inside of the CNF agglomerates (Figure 4.25), the secondary SEM image of PC-1\% Grid 2 (Appendix C) showed that their location did not meet the contact requirements for nanoindentation and therefore those high modulus and hardness values were not considered valid.


Figure 4.24. Spatial correlation of micromechanical properties of PC-1\% Grid 1 (raw data included in Appendix C). Indents are located in a grid of 200 with 10 rows and 20 columns. a) Backscatter SEM image, b) contour plot of elastic modulus with linear interpolation between indents, c) contour plots of hardness with linear interpolation between indents.


Figure 4.25. Spatial correlation of micromechanical properties of PC-1\% Grid 2 (raw data included in Appendix C). Indents are located in a grid of 200 with 10 rows and 20 columns. a) Backscatter SEM image, b) contour plot of elastic modulus with linear interpolation between indents, c) contour plots of hardness with linear interpolation between indents.

Histograms decomposed by indent location with respect to the CNF agglomerates showed the elastic modulus and hardness to decrease when the indent was located on the inner or outer agglomerate (Figure 4.26). Although modulus and hardness values greater than 16 GPa and 1.2 GPa, respectively, were seen for indent locations inside of the agglomerates, those values were associated with the indent locations that were found to not meet the contact requirements of nanoindentation by the coupling of a contour map of the modulus values with a secondary SEM image. The high concentration of CNFs on the edge of the agglomerates where the CNFs were imbedded in the cement paste also caused a decrease in the micromechanical properties. The large number of indentation test results showing a decrease in the micromechanical properties supported the theory that the CNF agglomerates acted as flaws within the cement paste. Additionally, the majority of the data from the outer agglomerate having reduced micromechanical properties suggested that there was no reinforcing effect around the edge of the CNF agglomerates from the large quantity of CNFs embedded in the cement paste.


Figure 4.26. Histograms of the micromechanical properties of the cement hydration products indented on $\mathrm{PC}-1 \%$ with scaled empirical distributions decomposed into the cement hydration phases of C-S-H, CH, a combination of C-S-H and CH but mostly C-S-H, a combination of $\mathrm{C}-\mathrm{S}-\mathrm{H}$ and CH but mostly CH , and Al-rich phases (raw data included in Appendix C). a) Modulus and b) hardness.

### 4.4. Conclusions

The micromechanical properties of cement-based composites containing CNFs were determined, including the properties of the major cement hydration products and in and around CNF agglomerates. The following conclusions were made:

- CNFs caused a shift in the histograms of modulus values obtained from nanoindentation coupled with SEM/EDS towards higher modulus values for the C-S-H phase. The CNFs were found to cause the preferential formation of high stiffness C-S-H at the expense of low stiffness C-S-H with a $6 \%$ decrease in the percentage of low stiffness C-S-H present as determined by the Gaussian mixture model of the modulus values which was thought to be related to the packing density of the C-S-H.
- CNF agglomerates showed significantly lower modulus and hardness values than the rest of the cement paste, indicating that the CNF agglomerates acted as flaws. Additionally the edge of CNF agglomerates also had lower micromechanical properties indicating that there was no reinforcing effect around the edge of the CNF agglomerates.


## CHAPTER 5

## MACROMECHANICAL PROPERTIES OF CEMENT-BASED COMPOSITES WITH CNFS

### 5.1. Overview

CNFs have the potential to improve the macromechanical properties of cement-based materials as they have ultimate tensile strengths at least 5 times greater than steel [119] and their small size and large aspect ratio (i.e., diameters of 50-200 nm, lengths of $50-200 \mu \mathrm{~m}$, aspect ratios of about 1000:1 [87]) make them excellent candidates to slow the growth of cracks at the nanoscale. The objective of this chapter is to determine the effect of CNFs on the macromechanical properties of cement-based composites, including ultimate strength, modulus, and toughness during compression, splitting tension, and flexure.

Traditional macromechanical testing including uniaxial compression, splitting tension, and three-point bending were performed using modified versions of ASTM standards. In addition, SEM observations were used to obtain a further understanding of the macromechanical testing results. The macromechanical properties were determined with respect to the CNF dispersion state and loading. Composites with and without $10 \mathrm{wt} \%$ of silica fume (SF and PC pastes, respectively) were considered. Load and displacement data captured for each specimen during testing were used to plot the stress versus strain curves and determine the ultimate strength, modulus, toughness, and strain capacity. The relationships between CNF dispersion state, CNF loading, and macromechanical properties were investigated.

### 5.2. Experimental Detail

### 5.2.1. Materials

The materials discussed in Section 3.2.1 were used in this study including the CNFs with and without surface treatment with $\mathrm{HNO}_{3}$, the dispersing agents (Rheobuild ${ }^{\circledR} 1000$, Glenium ${ }^{\circledR}$ 7500, and MicroAir®), and the type I portland cement. In addition, dry, undensified silica fume (Norchem, Inc., Hauppauge, NY, USA) was used as an alternative binder. As per the manufacturer, the silica fume was the by-product from the production of silicon metal and had a bulk density of $192-320 \mathrm{~kg} / \mathrm{m}^{3}$. Also as per the manufacturer, the composition of the silica fume was $\sim 95 \%$ silicon dioxide, and $\sim 99 \%$ of its particles were retained on a $45 \mu \mathrm{~m}$ sieve.

### 5.2.2. Preparation of Cement-Based Composites

### 5.2.2.1. PC Paste Composites

PC paste composites were prepared as discussed in Section 3.2.3.2 and included: (i) PC pastes prepared using various dispersing agents and a CNF loading of $0.2 \%$ (PC-W/Control, PCW/CNF, PC-W/T-CNF, PC-AE/Control, PC-AE/CNF, PC-N-HRWR/Control, PC-NHRWR/CNF, PC-P-HRWR/Control, PC-P-HRWR/CNF, and PC-P-HRWR/T-CNF) and (ii) PC pastes prepared using the P-HRWR dispersing agent and various CNF loadings (PC-0\%, PC$0.02 \%$, PC- $0.08 \%$, PC-0.2\%, PC-0.5\%, and PC-1\%). (Note: The PC-P-HRWR/Control and PC$0 \%$ are the same composites and the PC-P-HRWR/CNF and PC- $0.2 \%$ are the same composites.) Cylinders for compressive testing were shaved to remove any edges that would cause seating issues during testing. The $2.54 \mathrm{~cm} \times 2.54 \mathrm{~cm} \times 68.58 \mathrm{~cm}(1 \mathrm{in} . \times 1 \mathrm{in} . \times 27 \mathrm{in}$.) beams were cut
into six (6) $2.54 \mathrm{~cm} \times 2.54 \mathrm{~cm} \times 11.43 \mathrm{~cm}$ ( $1 \mathrm{in} . \times 1 \mathrm{in} . \times 4.5 \mathrm{in}$.) beams for flexural testing. After flexural testing, the longer half of the tested beam was shaved to approximately $5.08 \mathrm{~cm}(2 \mathrm{in}$.$) in$ length to allow for the majority of the damage zone from flexural testing to be discarded for compressive testing. After all macromechanical testing was complete, fracture surfaces of each composite were prepared as described in Section 3.2.3.2 for SEM observations.

### 5.2.2.2. SF Paste Composites

SF paste composites were prepared using $10 \mathrm{wt} \%$ of silica fume and $0,0.02,0.08,0.2$, 0.5 , and $1 \mathrm{wt} \%$ CNFs loadings (SF-0\%, SF- $0.02 \%$, SF- $0.08 \%$, SF-0.2\%, SF-0.5\%, and SF-1\%). A water-to-binder (cement + silica fume, w/b) ratio of 0.28 (or w/c ratio of 0.308 ) was used. The CNFs were first dispersed in water using an equivalent of $1 \%$ of $\mathrm{P}-\mathrm{HRWR}$ by weight of binder and ultrasonication to prepare the CNF suspension as discussed in Section 3.2.2.1. The cement and silica fume were blended for three (3) minutes in a variable-speed stand mixer (KitchenAid Artisan 5-quart, Whirlpool Corporation, Benton Charter Township, Michigan, USA) before the CNF suspension was added. The mixture was then blended for six (6) minutes and poured into cylinders and beams as described in Section 3.2.3.2. The specimens were further prepared for macromechanical testing as described in Section 3.2.3.2.

### 5.2.3. Characterization

### 5.2.3.1. Macromechanical Testing

The mechanical performance of the composites was evaluated at 7 and 28 days by uniaxial compressive, splitting tensile, and three-point bending tests. The tests were performed
using a Tinius Olsen Super L $60 \mathrm{~K}(300 \mathrm{kN})$ universal testing machine (Tinius Olsen, Inc., Horsham, PA, USA). In all cases, testing was discontinued when the load had decreased to $75 \%$ of the maximum. A minimum of five (5) specimens per composite was tested for each test setup. For all tests, force and displacement data were recorded. The obtained mechanical properties were analyzed statistically to determine the median, $1^{\text {st }}$ quartile, $3^{\text {rd }}$ quartile, maximum, and minimum values as well as any outliers in the data set. Data points were considered outliers if they were outside of the $1^{\text {st }}$ and $3^{\text {rd }}$ quartile by 1.5 times the interquartile range. Data sets were analyzed using the Welch's t-test at $90 \%$ and $95 \%$ confidence to determine if the data sets were statistically different. Percent difference calculations were based on the median values of data sets as opposed to averages because of the robustness of the median and the small size of the data sets used.

Compressive testing. The compressive testing was completed on cylindrical specimens following a modification of ASTM C39. The test setup is shown in Figure 5.1. The cylinders were tested in displacement-controlled mode with a displacement rate of $0.3 \mathrm{~mm} / \mathrm{min}$. The load and displacement data from the testing on cylindrical specimens was used to determine the compressive strength, modulus, strain capacity at failure, and toughness. The displacement was measured as the crosshead displacement. The strength was taken as the ultimate strength, i.e. the maximum strength value during testing. The modulus was determined by using a linear fit to determine the slope of the portion of the stress versus strain plot before major cracking events occurred, and it was taken as the slope of the line when the $\mathrm{R}^{2}$-value of the linear fit was 0.999 . The strain capacity at failure was determined as the strain just before a strength loss greater than $20 \%$ in which the change in strain was less than $20 \%$. The compressive toughness was estimated
using the trapezoidal method for estimating the area under the curve. Compression on beam specimens was used to show the structural integrity after testing by visual inspection. The structural integrity was compared as a function of CNF loading.


Figure 5.1. Compressive test setup for testing cylinder specimens of cement-based composites. The cylinder has a diameter of 50.8 mm ( 2 in .) and height of 101.6 mm ( $\mathbf{4} \mathbf{~ i n}$.).

Splitting tensile testing. Splitting tensile testing was completed on cylindrical specimens following a modification of ASTM C496. The test setup is shown in Figure 5.2. The cylinders were tested in load-controlled mode with a loading rate of $51.2 \mathrm{kN} / \mathrm{min}$. The load and displacement data was used to determine the splitting tensile strength. The splitting tensile strength was defined as the maximum splitting tensile strength, and the displacement was determined by the crosshead displacement.


Figure 5.2. Splitting tensile test setup for testing cylinder specimens of cement-based composites. The cylinder has a diameter of 50.8 mm ( 2 in .) and height of 101.6 mm ( $\mathbf{4} \mathbf{~ i n}$.).

Flexural testing. Flexural testing was performed on beam specimens by three-point bending using a modification of ASTM C293. The test setup is shown in Figure 5.3. The span between supports was 76.2 mm ( 3 in ). The beams were tested in displacement-controlled mode with a displacement rate of $0.1 \mathrm{~mm} / \mathrm{min}$, and the values of applied displacement and resulting load were recorded until the beam fractured. The load and displacement data was used to determine the ultimate strength, flexural modulus, strain capacity at failure, and flexural toughness. The displacement data was recorded as the crosshead displacement. The ultimate flexural strength was determined from the peak load. The modulus was determined as the slope of the line from a linear fit with a $\mathrm{R}^{2}$-value of 0.995 . The strain capacity at failure was determined as the strain at the peak load. The toughness was estimated using the trapezoidal method for estimating the area under the stress versus strain curve. A few sets of flexural specimens (i.e., SF-0.5\% and SF-1\% at 7 days and SF-0\% and SF- $0.08 \%$ at 28 days) suffered a
crushing effect during testing due to a rough edge of the specimens' top surface, which affected the strain capacity and toughness results of these specimens. For the data sets that were affected by the crushing effect, the strain capacity and toughness values were estimated using the ultimate stress and flexural modulus values.


Figure 5.3. Three-point bending setup for testing beam specimens of cement-based composites. The beam has a height and width of $25.4 \mathrm{~mm}(1 \mathrm{in}$.) and length of 114.3 mm (4.5 in.).

### 5.2.3.2. Microstructural Analysis

The microstructure and morphology of the composites was evaluated using a Hitachi S4200 high resolution SEM (Hitachi Ltd., Chiyoda, Tokyo, Japan) equipped with a cold field emission electron gun and digital imaging. Fracture surfaces of the 7-day-cured PC paste composites were kept in acetone for at least 7 days to stop further hydration prior to being sputter
coated with gold and mounted on an aluminum stub using copper tape. For imaging, an accelerating voltage of $10-20 \mathrm{kV}$ and a working distance of 15 mm were employed.

### 5.3. Results and Discussion

### 5.3.1. Influence of CNF Dispersion on the Flexural Strength of PC Paste Composites

A strong coupling existed between the flexural response of the composites, the state of dispersion of the CNFs, and the interfacial interaction between the CNFs and the cement paste (Figure 5.4). Only the composites containing CNFs dispersed with the assistance of P-HRWR showed improvement in the 7-day flexural strength (Welch's t-test, Table 5.1). All of the other composites (i.e., PC-W/CNF, PC-W/T-CNF, PC-N-HRWR/CNF, and PC-AE/CNF) showed no statistically significant changes at the $95 \%$ confidence level in the 7 -day flexural strength with respect to their control (Table 5.1).

The increase in the median flexural strength of the PC-P-HRWR/CNF and PC-P-HRWR/T-CNF composites compared to the reference composite prepared without CNFs was modest with only about an $11 \%$ and $22 \%$ increase, respectively (Table 5.1). The greater improvement in flexural strength obtained when surface treatment with $\mathrm{HNO}_{3}$ was used in combination with the P-HRWR assisted dispersion was believed to be resultant from an improved interfacial bond between the CNFs and the cement matrix, since both composites showed similar relative frequency of large size CNF agglomerates (i.e., $58 \%$ and $56 \%$ with a maximum Feret's diameter > $200 \mu \mathrm{~m}$ for the P-HRWR/CNF and P-HRWR/T-CNF composites, respectively). The improved bond was believed to be due to chemical interactions between the
cement matrix and functional groups (i.e., most likely hydroxyl and carboxyl) present at the surface of the CNFs [36, 148].

The presence of CNF agglomerates resulting from non-dispersed primary agglomerates or secondary agglomerates formed during cement mixing/curing clearly hindered the ability of the CNFs to act as nanoreinforcement. The composite reinforcement was dominated by the collective behavior of the CNF agglomerates rather than the strength of the individual CNFs. The CNF agglomerates acted as flaws within the cement matrix (see Chapter 4), causing non-uniform stress distributions and high stresses near the agglomerates, which weakened the composites. This behavior was exacerbated when a significant number of larger size agglomerates was present in the paste (i.e., more than $60 \%$ with a maximum Feret's diameter greater than $200 \mu \mathrm{~m}$ ), as in the PC-W/CNF, PC-W/T-CNF, PC-N-HRWR/CNF, and PC-AE/CNF composites (see Chapter 3), causing the mechanical behavior of the agglomerates to completely outweigh the potential benefit of the individual CNFs.


Figure 5.4. 7-day flexural strengths of PC paste composites with $0.2 \mathrm{wt} \%$ CNFs as a function of CNF dispersion method (raw data included in Appendix D). a) Cement pastes made with no dispersing agent, b) cement pastes made with N-HRWR, c) cement pastes made with AE, and d) cement pastes made with P-HRWR.

Table 5.1. P-values (Welch's t-test) and conclusions at the $90 \%$ and $95 \%$ confidence levels for the 7-day flexural strength of PC paste composites with $0.2 \mathrm{wt} \%$ CNFs as a function of CNF dispersion method compared to the corresponding control composite (raw data included in Appendix D).

|  | P-value (compared to <br> corresponding control <br> composites) | Summary at the 90\% and 95\% <br> confidence levels |
| :--- | :---: | :--- |
| PC-W/CNF | 0.083 <br> $(13.7 \%)$ | Increase in 7-day ultimate strength. |
| PC-W/T-CNF | 0.312 |  |
| PC-N-HRWR/CNF | 0.910 |  |
| PC-AE/CNF | 0.077 <br> $(24.1 \%)$ | Increase in 7-day ultimate strength. |
| PC-P-HRWR/CNF | 0.039 <br> $(11.1 \%)$ | Increase in 7-day ultimate strength. |
| PC-P-HRWR/T-CNF | $2.6 \times 10^{-4}$ <br> $(21.7 \%)$ | Increase in 7-day ultimate strength. |

() Indicates \% difference compared to the control.

Indicates P-value less than or equal to 0.100 (significance at the $90 \%$ confidence level).
Indicates P-value less than or equal to 0.050 (significance at the $95 \%$ confidence level).
5.3.2. Effect of CNF Loading on the Mechanical Properties of PC Paste Composites

### 5.3.2.1. Compressive Properties

The compressive properties of the PC paste composites were mostly controlled by the cement matrix and not the fiber reinforcement. The addition of CNFs showed, in general, no statistically significant effect at the $95 \%$ confidence level (Welch's $t$-test) in the composite compressive strength for CNF loadings up to $0.5 \mathrm{wt} \%$ (Figure 5.5a, Figure 5.6a, and Table 5.2). Similarly, in most cases, no statistically significant differences with the control were seen at the $95 \%$ confidence level (Welch's t-test) for the compressive modulus, strain, and toughness of the composites up to $0.5 \mathrm{wt} \%$ CNF loading (Figure 5.5, Figure 5.6, and Table 5.2). When statistical
differences were noted with respect to the control, they were mainly the result of the inherent variable nature of the material and not due to the effect of the addition of CNFs (e.g., the 0.02 $\mathrm{wt} \% \mathrm{CNF}$ loading showed statistical differences with the control but not with the other composites).

The negative effects of the presence of CNF agglomerates on the compressive properties were seen for $1 \mathrm{wt} \%$ CNF loading with $c a .20 \%$ decrease at the $95 \%$ confidence level (Welch's t-test, Table 5.2) in the 7-day median compressive strength and $c a .15 \%$ decrease at the $95 \%$ confidence level (Welch's t-test, Table 5.2) in the 28-day median compressive modulus. The CNF agglomerates acted as randomly distributed defects in the cement matrix creating weak zones in the composite. During compression, the CNF agglomerates acted as voids, affecting the compressive properties similar to porosity (i.e., decreasing compressive properties with increasing porosity [3]). A decrease in the compressive strength was seen when a significant number of larger size CNF agglomerates was present in the cement matrix as was the case for the $1 \mathrm{wt} \%$ CNF loading (i.e., $3.9 \%$ of the cross-sectional area composed of CNF agglomerates of size area greater than $0.007 \mathrm{~mm}^{2}$ compared to $1.4 \%$ and $3.2 \%$ for the $0.2 \mathrm{wt} \%$ and $0.5 \mathrm{wt} \% \mathrm{CNF}$ loading, respectively).

Though the addition of CNFs had limited effect on the composite compressive properties, the presence of CNFs noticeably improved the structural integrity of the composites after compressive testing (Figure 5.7). It was believed that the network created by the CNFs inside of the agglomerates may have limited the propagation of cracks, allowing the cement matrix to hold together even after multiple cracking events and thus to remain quasi-intact after testing.


Figure 5.5. 7-day compressive properties of PC paste composites as a function of CNF loading ( $0-1 \mathrm{wt} \%$ CNFs dispersed by P-HRWR, raw data included in Appendix D). a) Ultimate strength, b) modulus, c) strain capacity at failure, and d) toughness.


Figure 5.6. 28-day compressive properties of PC paste composites as a function of CNF loading ( $0-1 \mathrm{wt} \%$ CNFs dispersed by P-HRWR, raw data included in Appendix D). a) Ultimate strength, b) modulus, c) strain capacity at failure, and d) toughness.

Table 5.2. P-values (Welch's t-test) and conclusions at the $90 \%$ and $95 \%$ confidence levels for the compressive properties of PC paste composites as a function of CNF loading ( $0.02-1 \mathrm{wt} \% \mathrm{CNFs}$ dispersed by P-HRWR) compared to the control (raw data included in Appendix D).

|  | P-value (compared to PC-0\%) |  |  |  |  |  |  |  | Summary at the $\mathbf{9 0 \%}$ and $95 \%$ confidence levels |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Strength |  | Modulus |  | Strain Capacity |  | Toughness |  |  |
|  | 7 days | 28 days |  |
| PC-0.02\% | 0.295 | $\begin{gathered} 0.046 \\ (-27.6 \%) \end{gathered}$ | $\begin{gathered} 0.023 \\ (-7.8 \%) \end{gathered}$ | 0.354 | 0.226 | $\begin{gathered} 0.007 \\ (-34.5 \%) \end{gathered}$ | 0.475 | 0.107 | Decrease in 28 -day ultimate strength, 7 -day modulus, and 28-day strain capacity at failure. |
| PC-0.08\% | 0.878 | 0.179 | 0.472 | 0.354 | 0.261 | 0.542 | 0.312 | 0.558 |  |
| PC-0.2\% | 0.200 | 0.156 | $\begin{gathered} 0.066 \\ (-8.4 \%) \end{gathered}$ | 0.520 | 0.294 | 0.750 | 0.235 | 0.541 | Decrease in 7-day modulus. |
| PC-0.5\% | 0.597 | 0.997 | 0.769 | 0.312 | 0.218 | 0.740 | 0.747 | 0.373 |  |
| PC-1\% | $\begin{gathered} 0.016 \\ (-20.2 \%) \end{gathered}$ | 0.256 | $\begin{gathered} 0.055 \\ (-6.2 \%) \end{gathered}$ | $\begin{gathered} 0.028 \\ (-15.2 \%) \end{gathered}$ | 0.111 | 0.375 | 0.972 | $\begin{gathered} 0.058 \\ (50.5 \%) \end{gathered}$ | Increase in 28-day strain capacity at failure. <br> Decrease in 7-day ultimate strength and 7 - and 28 -day modulus. |

() Indicates \% difference compared to PC-0\%.

Indicates P-value less than or equal to 0.100 (significance at the $90 \%$ confidence level).
Indicates P-value less than or equal to 0.050 (significance at the $95 \%$ confidence level).


Figure 5.7. Structural integrity of PC paste composites after 28-day compressive testing as a function of CNF loading ( $0-1 \mathbf{w t} \%$ CNFs dispersed by P-HRWR).

### 5.3.2.2. Splitting Tensile Strength

The addition of CNFs improved the 7-day splitting tensile strength of the PC paste composites but was not statistically conclusive for the splitting tensile strength at 28 days due to the high variability within each data set (i.e., standard deviations greater than 1 MPa ) (Figure 5.8 and Figure 5.9). The median 7-day splitting tensile strengths of the PC-0.08\%, PC-0.2\%, and PC$0.5 \%$ were about $35 \%, 70 \%$, and $18 \%$ higher, respectively, than in the control composite without CNFs. No statistically significant differences from the control composite were, however, noted in the 7-day splitting tensile strength at the $95 \%$ confidence level (Welch's T-test) for CNF loadings of $0.02 \mathrm{wt} \%$ and $1 \mathrm{wt} \%$ (Table 5.3). The inherent variability of the cement matrix in combination with air voids, poorly distributed CNFs, and the existence of randomly distributed large size CNF agglomerates within the cement pastes were believed to have dominated the splitting tensile properties of the composites.


Figure 5.8. 7-day splitting tensile strength of PC paste composites as a function of CNF loading (0-1 wt \% CNFs dispersed by P-HRWR, raw data included in Appendix D).


Figure 5.9. 28-day splitting tensile strength of PC paste composites as a function of CNF loading ( $0-1 \mathrm{wt} \%$ CNFs dispersed by P-HRWR, raw data included in Appendix D).

Table 5.3. P-values (Welch's t-test) and conclusions at the $90 \%$ and $95 \%$ confidence levels for the splitting tensile strength of PC paste composites as a function of CNF loading (0.02-1 wt\% CNFs dispersed by P-HRWR) compared to the control (raw data included in Appendix D).

|  | P-value (com | to PC-0\%) | Summary at the $\mathbf{9 0 \%}$ and $\mathbf{9 5 \%}$ confidence levels |
| :---: | :---: | :---: | :---: |
|  | Strength |  |  |
|  | 7 days | 28 days |  |
| PC-0.02\% | 0.181 | 0.653 |  |
| PC-0.08\% | $\begin{gathered} 0.036 \\ (35.0 \%) \\ \hline \end{gathered}$ | 0.592 | Increase in 7-day ultimate strength. |
| PC-0.2\% | $\begin{gathered} 0.005 \\ (70.5 \%) \\ \hline \end{gathered}$ | 0.913 | Increase in 7-day ultimate strength. |
| PC-0.5\% | $\begin{gathered} 0.027 \\ (17.6 \%) \end{gathered}$ | 0.919 | Increase in 7-day ultimate strength. |
| PC-1\% | $\begin{gathered} 0.086 \\ (36.0 \%) \end{gathered}$ | 0.144 | Increase in 7-day ultimate strength. |

() Indicates \% difference compared to PC-0\%. Indicates P-value less than or equal to 0.100 (significance at the $90 \%$ confidence level). Indicates P -value less than or equal to 0.050 (significance at the $95 \%$ confidence level).

### 5.3.2.3. Flexural Properties

Overall, the addition of CNFs improved the flexural properties of the PC paste composites with additional improvements seen with increasing CNF loading. In general, the CNFs increased the 7-day flexural strength, modulus, and toughness but not the strain capacity. In contrast, at 28 days, the strain capacity and flexural strength were increased but not the modulus for most cases (Figure 5.10 and Figure 5.11). These results showed that CNFs can improve the flexural properties of PC paste composites even when poorly distributed and agglomerated. The weak zones formed in the cement pastes by the CNFs contained in agglomerates or otherwise poorly distributed were thought to be partially counterbalanced by the presence of an effective fraction of CNFs.

Ultimate flexural strength. In general, an increasing trend in 7- and 28-day flexural strengths was observed with increasing CNF loading (Figure 5.10a and Figure 5.11a). While the increase in the 7-day flexural strength was only marginal for CNF loadings at and below $0.2 \mathrm{wt} \%$ (i.e., ca. $11 \%$ increase in the median flexural strength for $0.2 \mathrm{wt} \%$ CNFs at the $95 \%$ confidence level, Welch's t-test), the addition of $0.5 \mathrm{wt} \%$ and $1 \mathrm{wt} \% \mathrm{CNFs}$ resulted in $c a .35 \%$ and $c a .66 \%$ increase in the median peak stress at the $95 \%$ confidence level (Welch's t-test, Table 5.4), respectively. Further improvement in the flexural strength was seen at 28 days for the $0.02 \mathrm{wt} \%$ and $0.08 \mathrm{wt} \% \mathrm{CNF}$ loading (i.e., $c a .27 \%$ and $c a .31 \%$ increase in the median flexural strength over the control, respectively) but not for the other loadings.

Flexural modulus. The addition of CNFs had a limited effect on the composite flexural modulus (i.e., stiffness) (Figure 5.10b and Figure 5.11b). Though at 7 days, as much as $30 \%$ increase in the median flexural modulus was noted with the addition of $0.02 \mathrm{wt} \%, 0.2 \mathrm{wt} \%$, and $0.5 \mathrm{wt} \%$ CNFs, at 28 days, similar or lower flexural modulus values than the control were seen for most CNF loadings at the $95 \%$ confidence level (Welch's t-test, Table 5.4).

Strain capacity at failure. At 7 days, no significant effect on the strain capacity at the $95 \%$ confidence level was observed with CNF addition; however, at 28 days, the flexural strain capacity increased beyond that of the control at the $95 \%$ confidence level for $0.08 \mathrm{wt} \%$ and 0.2 $\mathrm{wt} \%$ CNFs and the $90 \%$ confidence for $0.5 \mathrm{wt} \%$ and $1 \mathrm{wt} \%$ CNFs with a maximum increase of ca. $92 \%$ based on the median value seen at $0.2 \mathrm{wt} \%$ CNF loading (Welch's t-test, Table 5.4).

Flexural toughness. The flexural toughness showed overall the same general increasing trend as the ultimate flexural strength (Figure 5.10 and Figure 5.11) upon CNF addition. At 7 days, the median flexural toughness was increased by as much as $41 \%$ and $124 \%$ upon addition of $0.5 \mathrm{wt} \%$ and $1 \mathrm{wt} \%$ CNFs, respectively but showed not statistical differences compared to the control at the $95 \%$ confidence level (Welch's t-test, Table 5.4) at lower CNF loadings (i.e., 0.02 $\mathrm{wt} \%, 0.08 \mathrm{wt} \%$, and $0.2 \mathrm{wt} \%)$. At 28 days, the median flexural toughness was increased by as much as $55 \%, 99 \%$, and $122 \%$ at the $95 \%$ confidence level (Welch's t-test, Table 5.4) upon addition of $0.08 \mathrm{wt} \%, 0.2 \mathrm{wt} \%$, and $1 \mathrm{wt} \% \mathrm{CNFs}$, respectively. The increasing trend in toughness with increasing CNF addition was the result of the combined increase in ultimate strength and strain capacity and not of a strain-hardening behavior.

The general increasing trend in 7 and 28-day flexural strength and toughness seen with increasing CNF loadings in spite of a greater proportion of CNF agglomerates (i.e., $1.4 \%, 3.2 \%$, and $3.9 \%$ areal coverage for $0.2 \mathrm{wt} \%, 0.5 \mathrm{wt} \%$, and $1 \mathrm{wt} \% \mathrm{CNFs}$ ) was indicative of the presence of a greater effective fraction of CNFs in the paste with increased CNF addition.

A closer inspection of the fracture surface (taken from compressive specimens after testing) of the composites revealed that the mechanism of CNF reinforcement was dominantly CNF pull-out. Upon failure most of the individual CNFs were pulled out from the other wall of the cement matrix rather than broken apart with no evidence of cement phases covering the surface of the protruding CNFs. Holes and groves left by fiber pull-out and CNFs pulled out from a microcrack can be seen in Figure 5.12. While some evidence of fiber breakage was observed, it was believed that the breakage most likely occurred during ultrasonication of the

CNFs and/or mixing of the cement pastes [149, 150]. The tensile stresses created during the mechanical testing slid the CNFs from the cement matrix without evidence of cement phases on the CNF surface, indicating that the interfacial interaction between the CNFs and the cement matrix was weaker than the cement matrix itself. As a result, the full potential reinforcing ability of the individual CNFs was not realized. The weak bond between CNFs and the cement matrix has been reported by others $[35,39]$.


Figure 5.10. 7-day flexural properties of PC paste composites as a function of CNF loading (0-1 wt \% CNFs dispersed by P-HRWR, raw data included in Appendix D). a) Ultimate strength, b) modulus, c) strain capacity at failure, and d) toughness.


Figure 5.11. 28-day flexural properties of PC paste composites as a function of CNF loading ( $0-1 \mathrm{wt} \%$ CNFs dispersed by P-HRWR, raw data included in Appendix D). a) Ultimate strength, b) modulus, c) strain capacity at failure, and d) toughness.

Table 5.4. P-values (Welch's t-test) and conclusions at the $90 \%$ and $95 \%$ confidence levels for the flexural properties of PC paste composites as a function of CNF loading ( $0.02-1 \mathrm{wt} \%$ CNFs dispersed by P-HRWR) compared to the control (raw data included in Appendix D).

|  | P-value (compared to PC-0\%) |  |  |  |  |  |  |  | Summary at the $\mathbf{9 0 \%}$ and $\mathbf{9 5 \%}$ confidence levels |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Strength |  | Modulus |  | Strain Capacity |  | Toughness |  |  |
|  | 7 days | 28 days |  |
| PC-0.02\% | $\begin{gathered} 0.057 \\ (12.1 \%) \end{gathered}$ | $\begin{gathered} 0.025 \\ (27.1 \%) \end{gathered}$ | $\begin{gathered} 0.034 \\ (30.4 \%) \end{gathered}$ | $\begin{gathered} 0.067 \\ (39.9 \%) \end{gathered}$ | 0.531 | 0.377 | 0.589 | $\begin{gathered} 0.070 \\ (47.3 \%) \end{gathered}$ | Increase in 7- and 28-day ultimate strength, 7- and 28-day modulus, and 28 -day toughness. |
| PC-0.08\% | $\begin{gathered} 0.061 \\ (6.7 \%) \end{gathered}$ | $\begin{gathered} 0.005 \\ (31.2 \%) \end{gathered}$ | 0.406 | $\begin{gathered} 0.001 \\ (41.2 \%) \end{gathered}$ | 0.336 | $\begin{gathered} 0.036 \\ (28.3 \%) \end{gathered}$ | $\begin{gathered} 0.084 \\ (19.5 \%) \end{gathered}$ | $\begin{gathered} 0.026 \\ (54.9 \%) \end{gathered}$ | Increase in 7- and 28-day ultimate strength, 28-day modulus, 28-day strain capacity at failure, and 7- and 28-day toughness. |
| PC-0.2\% | $\begin{gathered} \hline 0.039 \\ (11.1 \%) \end{gathered}$ | 0.438 | $\begin{gathered} 0.038 \\ (24.6 \%) \end{gathered}$ | $\begin{gathered} \hline 0.003 \\ (-17.8 \%) \end{gathered}$ | 0.277 | $\begin{gathered} \hline 0.006 \\ (92.1 \%) \end{gathered}$ | 0.657 | $\begin{gathered} 0.001 \\ (98.5 \%) \end{gathered}$ | Increase in 7-day ultimate strength, 7 - and 28 -day modulus, 28 -day strain capacity at failure, and 28-day toughness. |
| PC-0.5\% | $\begin{aligned} & 3.7 \times 10^{-6} \\ & (35.4 \%) \end{aligned}$ | $\begin{gathered} 0.033 \\ (23.9 \%) \end{gathered}$ | $\begin{gathered} \hline 0.019 \\ (29.5 \%) \end{gathered}$ | 0.560 | 0.912 | $\begin{gathered} \hline 0.088 \\ (26.0 \%) \end{gathered}$ | $\begin{gathered} 0.009 \\ (41.3 \%) \end{gathered}$ | $\begin{gathered} 0.058 \\ (44.0 \%) \end{gathered}$ | Increase in 7- and 28-day ultimate strength, 7 -day modulus, 28-day strain capacity at failure, and 7- and 28-day toughness. |
| PC-1\% | $\begin{aligned} & \hline 5.2 \times 10^{-8} \\ & (65.9 \%) \end{aligned}$ | $\begin{aligned} & \hline 4.8 \times 10^{-5} \\ & (61.7 \%) \end{aligned}$ | $\begin{gathered} 0.079 \\ (21.6 \%) \end{gathered}$ | 0.231 | $\begin{gathered} 0.079 \\ (10.7 \%) \end{gathered}$ | $\begin{gathered} 0.092 \\ (43.6 \%) \end{gathered}$ | $\begin{aligned} & 1.2 \times 10^{-4} \\ & (124 \%) \end{aligned}$ | $\begin{gathered} 0.011 \\ (122 \%) \end{gathered}$ | Increase in 7- and 28-day ultimate strength, 7 -day modulus, 7 - and 28day strain capacity at failure, and 7and 28 -day toughness. |

() Indicates \% difference compared to PC-0\%.

Indicates P-value less than or equal to 0.100 (significance at the $90 \%$ confidence level).
Indicates P-value less than or equal to 0.050 (significance at the $95 \%$ confidence level).


Figure 5.12. SEM images showing evidence of fiber pull-out on fracture surfaces of PC$0.5 \%$ ( 7 days) after compressive testing. a) Holes left by CNF pull-out (white circles), b) grooves from CNF pull-out, and c) CNFs pulled out from a microcrack.

### 5.3.3. Effect of CNF Addition on the Mechanical Properties of SF Paste Composites

### 5.3.3.1. Compressive Properties

In general, the compressive properties of SF paste composites were not affected by the addition of CNFs (Figure 5.13 and Figure 5.14). Like the PC paste composites, the compressive properties of the SF paste composites were mostly controlled by the cement matrix and not the fiber reinforcement. The addition of CNFs showed, in general, no statistically significant effect at the $95 \%$ confidence level for compressive strength, modulus, strain capacity, and toughness for all CNF loadings (Welch's t-test, Table 5.5) including the $1 \mathrm{wt} \%$ CNF loading that had
shown a negative effect on the compressive properties of the PC paste composites. The $1 \mathrm{wt} \%$ loading of CNFs was thought to have less of an impact on the SF pastes because silica fume particles have been shown to help in the disaggregation of CNF agglomerates [64] and silica fume has been shown to improve the interfacial bond between fibers and a cement-based matrix [151]. When statistical differences were noted with respect to the control (Welch's t-test, Table 5.5), they were mainly the result of the inherent variable nature of the material and not due to the effect of the addition of CNFs (e.g., the $0.2 \mathrm{wt} \%$ showing a difference at the $95 \%$ confidence level but higher and lower loadings showing no statistical difference).

Though the compressive properties of the SF paste composites were minimally affected by the addition of CNFs, the structural integrity of the composites was noticeably improved with increasing CNF loading. Similarly to the PC paste composites, it was believed that the CNF network inside the SF paste matrix may have limited the propagation of cracks, allowing the composite to remain relatively intact even after failure (Figure 5.15).


Figure 5.13. 7-day compressive properties of SF paste composites as a function of CNF loading (0-1 wt \% CNFs dispersed by P-HRWR, raw data included in Appendix D). a) Ultimate strength, b) modulus, c) strain capacity at failure, and d) toughness.


Figure 5.14. 28-day compressive properties of SF paste composites as a function of CNF loading ( $0-1 \mathrm{wt} \%$ CNFs dispersed by P-HRWR, raw data included in Appendix D). a) Ultimate strength, b) modulus, c) strain capacity at failure, and d) toughness.

Table 5.5. P-values (Welch's t-test) and conclusions at the $90 \%$ and $95 \%$ confidence levels for the compressive properties of SF paste composites as a function of CNF loading ( $0.02-1 \mathrm{wt} \%$ CNFs dispersed by P-HRWR) compared to the control (raw data included in Appendix D).

|  | P-value (compared to SF-0\%) |  |  |  |  |  |  |  | Summary at the $\mathbf{9 0 \%}$ and $\mathbf{9 5 \%}$ confidence levels |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Strength |  | Modulus |  | Strain Capacity |  | Toughness |  |  |
|  | 7 days | 28 days |  |
| SF-0.02\% | 0.615 | 0.396 | 0.609 | $\begin{gathered} 0.001 \\ (-13.9 \%) \end{gathered}$ | 0.402 | $\begin{gathered} 0.080 \\ (-31.6 \%) \end{gathered}$ | 0.514 | $\begin{gathered} 0.026 \\ (-36.5 \%) \end{gathered}$ | Decrease in 28-day modulus, 28-day strain capacity at failure, and 28-day toughness. |
| SF-0.08\% | 0.741 | 0.828 | 0.185 | $\begin{gathered} 0.098 \\ (-7.3 \%) \end{gathered}$ | 0.565 | 0.429 | 0.806 | 0.373 | Decrease in 28-day modulus. |
| SF-0.2\% | 0.309 | 0.935 | 0.405 | 0.112 | $\begin{gathered} 0.042 \\ (22.6 \%) \\ \hline \end{gathered}$ | 0.673 | 0.974 | 0.521 | Increase in 7-day strain capacity at failure. |
| SF-0.5\% | 0.809 | 0.396 | 0.301 | 0.604 | 0.576 | $\begin{gathered} 0.070 \\ (44.5 \%) \end{gathered}$ | 0.309 | 0.858 | Increase in 28-day strain capacity at failure. |
| SF-1\% | 0.185 | 0.204 | 0.993 | 0.228 | 0.500 | 0.126 | 0.537 | 0.419 |  |

() Indicates \% difference compared to SF-0\%.

Indicates P -value less than or equal to 0.100 (significance at the $90 \%$ confidence level).
Indicates P-value less than or equal to 0.050 (significance at the $95 \%$ confidence level).


Figure 5.15. Structural integrity of SF paste composites after 28-day compressive testing as a function of CNF loading (0-1 wt \% CNFs dispersed by P-HRWR).

### 5.3.3.2. Splitting Tensile Strength

The addition of CNFs had, in general no effect on 28-day splitting tensile strength of SF paste composites, but a decrease was seen for 0.08 and $0.2 \mathrm{wt} \%$ CNFs at 7 days (Figure 5.16 and Figure 5.17). The decrease in splitting tensile strength for SF- $0.08 \%$ and SF- $0.2 \%$ based on the median values compared to the control at the $95 \%$ confidence level was $26.5 \%$ and $23.5 \%$, respectively (Welch's t-test, Table 5.6). Similar to the PC paste composites, high variability in the splitting tensile strength of the SF paste composites was seen at all CNF loadings. The variability was, however, slightly less for the SF paste composites than that seen for the PC paste composites (i.e., standard deviations less than 1 MPa for the SF paste composites instead of greater than 1 MPa for the PC paste composites).


Figure 5.16. 7-day splitting tensile strength of SF paste composites as a function of CNF loading ( $0-1 \mathrm{wt} \%$ CNFs dispersed by P-HRWR, raw data included in Appendix D).


Figure 5.17. 28-day splitting tensile strength of SF paste composites as a function of CNF loading ( $0-1 \mathrm{wt} \%$ CNFs dispersed by P-HRWR, raw data included in Appendix D).

Table 5.6. P-values (Welch's $t$-test) and conclusions at the $90 \%$ and $95 \%$ confidence levels for the splitting tensile strength of SF paste composites as a function of CNF loading (0.02-1 wt \% CNFs dispersed by P-HRWR) compared to the control (raw data included in Appendix D).

|  | P-value (compared to SF-0\%) |  | Summary at the 90\% and 95\% <br> confidence levels |
| :--- | :---: | :---: | :--- |
| 7 days | 28 days |  |  |
| SF-0.02\% | 0.131 | 0.677 |  |
| SF-0.08\% | 0.002 <br> $(-26.5 \%)$ | 0.438 | Decrease in 7-day ultimate strength. |
| SF-0.2\% | 0.016 <br> $(-23.5 \%)$ | 0.621 | Decrease in 7-day ultimate strength. |
| SF-0.5\% | 0.780 | 0.191 |  |
| SF-1\% | 0.796 | 0.952 |  |

() Indicates \% difference compared to SF-0\%.

Indicates P -value less than or equal to 0.100 (significance at the $90 \%$ confidence level).
Indicates P-value less than or equal to 0.050 (significance at the $95 \%$ confidence level).

### 5.3.3.3. Flexural Properties

The flexural properties of the SF paste composites were, in general, impacted by the CNF loadings at 28 days but not at 7 days. At 7 days, only the $1 \mathrm{wt} \%$ CNF loading showed an effect on the flexural modulus, strain capacity, and toughness (Figure 5.18). In general, the 28-day flexural strength and modulus of the SF paste composites were increased with CNF addition while the 28-day strain capacity was decreased for all CNF loadings (Figure 5.19). Silica fume caused the strength gained by the addition of CNFs to be delayed from 7 to 28 days and allowed for an increase in the 28-day flexural modulus with CNF addition compared to the PC paste composites.

Ultimate flexural strength. The 7-day flexural strength of the SF paste composites was not affected by the inclusion of CNFs while the 28-day flexural strength was generally improved with increasing CNF loadings up to $1 \mathrm{wt} \%$ (Figure 5.18a and Figure 5.19a). The 28-day median ultimate flexural strength was increased by $21 \%, 18 \%, 48 \%$, and $43 \%$ for CNF loadings of 0.02 $\mathrm{wt} \%, 0.08 \mathrm{wt} \%, 0.5 \mathrm{wt} \%$, and $1 \mathrm{wt} \%$, respectively, at the $95 \%$ confidence level, but the $0.2 \mathrm{wt} \%$ CNF loading was not statistically different from the control at the $95 \%$ confidence level (Welch's t-test, Table 5.7).

Flexural modulus. The addition of CNFs in the SF paste composites had a substantial impact on the flexural modulus especially at 28 days (Figure 5.18b and Figure 5.19b). At 7 days, the flexural modulus of SF- $0.08 \%$ and SF- $0.2 \%$ increased by $c a .30 \%$ at the $90 \%$ and $95 \%$ confidence level, respectively, but the flexural modulus of SF-1\% decreased by $59 \%$ at the $95 \%$ confidence level (Welch's t-test, Table 5.7). At 28 days, the flexural modulus of all SF pastes
with CNF addition except SF- $0.08 \%$ was improved by at least $100 \%$ at the $95 \%$ confidence level (Welch's t-test, Table 5.7).

Strain capacity at failure. At 7 days, only SF-1\% showed a statistically significant difference in the flexural strain capacity with an increase of $c a .66 \%$ at the $95 \%$ confidence level compared to the control (Welch's t-test, Table 5.7). In contrast, at 28 days, SF-0.02\%, SF-0.2\%, and SF- $0.5 \%$ showed a statistically significant difference in the flexural strain capacity with decreases of up to $46 \%$ at the $95 \%$ confidence level (Welch's t-test, Table 5.7).

Flexural toughness. The flexural toughness of SF paste was improved at 7 days by over $100 \%$ at the $95 \%$ confidence level (Welch's t-test, Table 5.7) when $1 \mathrm{wt} \%$ CNFs were added to the composite. However, at 28 days, the addition of 0.02 and $0.2 \mathrm{wt} \%$ CNFs resulted in a decrease in the flexural toughness by over $40 \%$ at the $95 \%$ confidence level (Welch's t-test, Table 5.7). As with the PC paste composites, no strain hardening behavior was seen with the addition of CNFs. The flexural toughness was thus directly related to the other flexural properties: at 7 days, the increase in toughness seen for $\mathrm{SF}-1 \%$ was due to a decreased modulus and increased strain capacity while at 28 days, the decrease seen for SF- $0.02 \%$ and SF- $0.2 \%$ was due to an increased modulus and decreased strain capacity.

The lack of impact at 7 days with the addition of CNFs in the SF pastes and the changes seen compared to the PC pastes in the effect of the CNFs on the modulus, strain capacity, and toughness from 7 to 28 days was thought to be due to the delayed pozzolanic reaction that occurs with silica fume [3, 152]. By 28 days, the pozzolanic reaction of the silica fume had most likely
progressed enough for the CNFs to improve the flexural strength in the SF pastes similarly to the PC pastes. Additionally, the 28-day flexural strength of SF- $0.5 \%$ was improved more so than PC-0.5\%. It was believed that the greater improvement in flexural strength seen for SF-0.5\% compared to PC-0.5\% was the result of a greater effective fraction of CNFs because secondary agglomeration due to CNF migration in the bleed water was reduced by the decreased workability of SF pastes compared to the PC pastes (Figure 5.20). In addition, the improvements in strength for SF- $0.5 \%$ compared to PC- $0.5 \%$ could have resulted from an improved interfacial bond between the CNFs and the SF matrix. The use of silica fume has been shown to improve the interfacial bond between the cement matrix and CFs with diameters of $10 \mu \mathrm{~m}$ and $46 \mu \mathrm{~m}$ [151].

The improvements in the flexural modulus and reductions in the flexural strain capacity were also believed to be most likely due to an improved bond between the CNFs and the cement/silica fume matrix. Because of the silica fume refining the porous layer typically found at the fiber/matrix interface [151], it was thought that the CNFs had an increased ability to reduce the expansion of nanocracks compared to in PC pastes. The reduction in the expansion of nanocracking allowed the specimens to hold higher loads with less deformation, therefore increasing the flexural modulus. The strain capacity was, thus, reduced because as the composite reached higher strengths (which were not possible without the reduction of nanocracking), the flaws in the cement matrix larger than the CNFs in length expanded and caused the failure of the material at lower strains.

() Indicates values were approximated based on ultimate flexural strength and flexural modulus.

Figure 5.18. 7-day flexural properties of SF paste composites as a function of CNF loading (0-1 wt\% CNFs dispersed by P-HRWR, raw data included in Appendix D). a) Ultimate strength, b) modulus, c) strain capacity at failure, and d) toughness.

() Indicates values were approximated based on ultimate flexural strength and flexural modulus.

Figure 5.19. 28-day flexural properties of SF paste composites as a function of CNF loading (0-1 wt\% CNFs dispersed by P-HRWR, raw data included in Appendix D). a) Ultimate strength, b) modulus, c) strain capacity at failure, and d) toughness.

Table 5.7. P-values (Welch's t-test) and conclusions at the $90 \%$ and $95 \%$ confidence levels for the flexural properties of SF paste composites as a function of CNF loading ( $0.02-1 \mathrm{wt} \%$ CNFs dispersed by P-HRWR) compared to the control (raw data included in Appendix D).

|  | P-value | mpared to | F-0\%) |  |  |  |  |  | Summary at the $\mathbf{9 0 \%}$ and $95 \%$ confidence levels |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Strength |  | Modulus |  | Strain Capacity |  | Toughness |  |  |
|  | 7 days | 28 days |  |
| SF-0.02\% | 0.851 | $\begin{gathered} 0.013 \\ (20.7 \%) \end{gathered}$ | 0.234 | $\begin{gathered} 1.0 \times 10^{-4} \\ (147.4 \%) \end{gathered}$ | 0.297 | $\begin{gathered} 0.007 \\ (-46.8 \%) \end{gathered}$ | 0.375 | $\begin{gathered} 0.024 \\ (-40.7 \%) \end{gathered}$ | Increase in 28-day ultimate strength and 28-day modulus. <br> Decrease in 28-day strain capacity at failure and 28-day toughness. |
| SF-0.08\% | 0.653 | $\begin{gathered} 0.011 \\ (18.4 \%) \end{gathered}$ | $\begin{gathered} 0.076 \\ (33.8 \%) \end{gathered}$ | $\begin{gathered} 0.060 \\ (35.1 \%) \end{gathered}$ | 0.127 | 0.168 | $\begin{gathered} \hline 0.095 \\ (-18.7 \%) \end{gathered}$ | 0.588 | Increase in 28-day ultimate strength and 7- and 28-day modulus. Decrease in 7-day toughness. |
| SF-0.2\% | 0.449 | 0.144 | $\begin{gathered} 0.038 \\ (29.4 \%) \end{gathered}$ | $\begin{gathered} 3.3 \times 10^{-4} \\ (139.1 \%) \end{gathered}$ | $\begin{gathered} 0.078 \\ (-34.2 \%) \end{gathered}$ | $\begin{gathered} 0.006 \\ (-46.8 \%) \end{gathered}$ | 0.301 | $\begin{gathered} 0.011 \\ (-52.7 \%) \end{gathered}$ | Increase in 7 - and 28 -day modulus. Decrease in 7- and 28-day strain capacity at failure and 28-day toughness. |
| SF-0.5\% | 0.860 | $\begin{aligned} & 1.4 \times 10^{-5} \\ & (48.0 \%) \end{aligned}$ | 0.809 | $\begin{gathered} 9.5 \times 10^{-7} \\ (174.2 \%) \end{gathered}$ | $\begin{gathered} 0.070 \\ (-40.8) \end{gathered}$ | $\begin{gathered} 0.043 \\ (-24.3 \%) \end{gathered}$ | 0.484 | 0.193 | Increase in 28-day ultimate strength and 28-day modulus. <br> Decrease in 7- and 28-day strain capacity at failure. |
| SF-1\% | 0.869 | $\begin{aligned} & 1.8 \times 10^{-5} \\ & (42.6 \%) \end{aligned}$ | $\begin{gathered} \hline 0.002 \\ (-59.4 \%) \end{gathered}$ | $\begin{gathered} 3.1 \times 10^{-4} \\ (166.9 \%) \end{gathered}$ | $\begin{gathered} 0.019 \\ (66.3 \%) \end{gathered}$ | $\begin{gathered} 0.054 \\ (-28.8 \%) \end{gathered}$ | $\begin{gathered} 0.009 \\ (177.8 \%) \end{gathered}$ | 0.376 | Increase in 28-day ultimate strength, 28-day modulus, 7-day strain capacity at failure, and 7-day toughness. Decrease in 7-day modulus and 28day strain capacity at failure. |

() Indicates \% difference compared to SF- $0 \%$.

Indicates P-value less than or equal to 0.100 (significance at the $90 \%$ confidence level).
Indicates P-value less than or equal to 0.050 (significance at the $95 \%$ confidence level).


Figure 5.20. Images of cement-based composite cross-sections (PC-0.2\%, PC-0.5\%, PC-1\%, SF-0.2\%, SF-0.5\% and SF-1\%) showing the reduction of CNF migration with the bleed water with the addition of silica fume.

### 5.4. Conclusions

The macromechanical properties of PC and SF pastes containing CNFs were determined.
The effect of the CNF dispersion state and CNF loading on the macromechanical properties were investigated. The following conclusions were made:

- The CNF dispersion state impacted the 7-day flexural strength of PC paste composites with only the composites containing CNFs dispersed with the assistance of P-HRWR showing improvement. Improvements in 7-day flexural strength when surface treatment with $\mathrm{HNO}_{3}$ in addition to P-HRWR was used to disperse $0.2 \mathrm{wt} \%$ CNFs were 21.7\%,
while the same CNF loading dispersed with P-HRWR alone allowed improvements of $11.1 \%$ over the control composite. The surface treatment with $\mathrm{HNO}_{3}$ allowed an improved interfacial bond between the CNFs and the cement matrix as a result of chemical interactions between the cement matrix and functional groups present at the surface of the CNFs allowing for more strength gain. In contrast, dispersions of CNFs assisted by only surface treatment with $\mathrm{HNO}_{3}, \mathrm{~N}-\mathrm{HRWR}$, and AE did not improve the 7day flexural strength of PC paste composites due to the collective weakening behavior of the CNF agglomerates acting as flaws and dominating the strength of the individual CNFs.
- The effects of the addition of various loadings of CNFs dispersed with only P-HRWR on the mechanical properties of PC pastes were mostly revealed in flexure. However, improvements in the structural integrity of the PC pastes after compressive testing were seen with increasing CNF loadings because of the CNFs limiting the propagation of cracks, which allowed the cement matrix to hold together even after failure. Both the 7and 28-day flexural strength of the PC pastes improved with increasing CNF loadings with increases of over $60 \%$ seen for the $1 \mathrm{wt} \%$ CNF loading at both 7 and 28 days. Additionally, increases of over $20 \%$ in the 7-day flexural modulus were seen for most CNF loadings, and increases related to the increased flexural strength were seen in the 28-day flexural strain capacity and 7- and 28-day flexural toughness. All of the improvements in flexural properties were seen regardless of the presences of poorly distributed and agglomerated CNFs because the weak zones formed in the composites by the poorly distributed and agglomerated CNFs were thought to be partially counterbalanced by the presence of an effective fraction of CNFs.
- The addition of various loadings of CNFs dispersed by only P-HRWR in SF pastes allowed for a similar improvement in structural integrity after compressive testing compared to the CNFs in PC pastes, but the delayed pozzolanic reaction in the SF pastes allowed improvements in the flexural strength to be delayed such that they did not occur at 7 days but were seen at 28 days. The increases in flexural strength were over $40 \%$ for both the 0.5 and $1 \mathrm{wt} \%$ CNF loading in SF pastes at 28 days. Additionally, the 28-day flexural modulus was improved by over $100 \%$ for most CNF loadings while decreases of up to $52 \%$ were seen in the 28 -day strain capacity and toughness for several CNF loadings in SF pastes.


## CHAPTER 6

## HYBRID CNF/CF CEMENT-BASED COMPOSITES

### 6.1. Overview

The use of hybrid fiber reinforcement has the potential to improve cement-based materials beyond the sum of the improvements from each fiber alone [31]. Currently hybrid fiber reinforcement employs mostly micro- and macroscale fiber reinforcement [10, 31, 49, 70-85], but flaws and cracks exist in cement-based materials from the nano- to the macroscale $[49,153]$. Therefore, nano- to macrosized fibers may be beneficial for hybrid fiber reinforcement of cement-based materials. The objective of this chapter is to determine the hybrid effect of CNFs and CFs on the microstructure and mechanical properties of cement pastes.

CNFs and CFs were used together as hybrid fiber reinforcement to evaluate the hybrid effect of the fibers on the microstructure and mechanical properties of the cement-based composites. SEM and optical microscopy were used to examine the microstructure of hybrid CNF/CF cement-based composites and the dispersion and distribution of the CNFs in the composites. The mechanical properties were examined on the macro- and microscale. Nanoindentation was used to determine the micromechanical properties of the hybrid CNF/CF cement-based composites, and modified versions of standards for flexural and compressive testing were used to determine the macromechanical properties of the composites.

### 6.2. Experimental Detail

### 6.2.1. Materials

The materials discussed in Section 3.2.1 were used in this study, including CNFs, PHRWR (Glenium ${ }^{\circledR}$ 7500), and type I portland cement. In addition, Product 150 chopped polyacrylonitrile CFs (Toho Tenax America, Inc., Rockwood, TN, USA) were used. As per the manufacturer, the CFs ranged from 6-7 $\mu \mathrm{m}$ in diameter and were 3 mm in length. The manufacturer reported the CFs to have a density of $1.8 \mathrm{~g} / \mathrm{cm}^{3}$, a tensile strength greater than 3.45 GPa, and a tensile modulus greater than 207 GPa. The CNFs and CFs were used "as received" in the composites.

### 6.2.2. Preparation of Hybrid CNF/CF Cement-Based Composites

Cement paste composites were made with $0.5 \mathrm{wt} \%$ of CNFs, $0.5 \mathrm{wt} \%$ of CFs, and $1 \mathrm{wt} \%$ of P-HRWR. A w/c ratio of 0.315 , which was selected based on the workability of the fresh pastes, was used. Four different composites were made: (i) a plain cement paste ( PC - Control), (ii) a cement paste containing only CNFs (PC-CNF), (iii) a cement paste containing only CFs (PC-CF), and (iv) a cement paste containing both CNFs and CFs (PC-CNF-CF-Hybrid CNF/CF cement-based composite). PC and PC-CNF are also discussed in Section 4.2.2.

All four composites were made in the same manner as in Section 3.2.3.2, but when applicable, the CFs were blended with the dry cement mix before the water-P-HRWR solution or water-P-HRWR-CNF suspension was added. After mixing, the composites were cast in 2.54 cm $\times 2.54 \mathrm{~cm} \times 68.58 \mathrm{~cm}(1 \mathrm{in} \times 1 \mathrm{in} \times 27 \mathrm{in})$ beam molds. The beams were cured at room temperature in $100 \%$ relative humidity for 3,7 , or 28 days and then cut into 11.43 cm ( 4.5 in )
long specimens before flexural testing. Specimens for compressive testing, sized at $2.54 \mathrm{~cm} \times$ $2.54 \mathrm{~cm} \times 5.08 \mathrm{~cm}(1 \mathrm{in} \times 1 \mathrm{in} \times 2 \mathrm{in}$ ), were prepared from the flexural specimens after testing avoiding the damaged zone.

After macromechanical testing, fracture surfaces were mounted to an aluminum stub using carbon tape for SEM observations. Additionally cross-sections of each composite were cut with a precision saw and prepared for optical microscopy or micromechanical testing. For optical microscopy, the specimens were polished to $35 \mu \mathrm{~m}$ particle size. For micromechanical testing, the specimens were cast in epoxy and polished as described in Section 4.2.2.

### 6.2.3. Characterization

### 6.2.3.1. Optical Microscopy

Image mapping of polished cross-sections consisting of 165 images, each $114.3 \times 85.6$ pixels, was completed at ERDC (Vicksburg, Mississippi, USA) using a Zeiss Axio Imager.Z1 upright motorized microscope (Carl Zeiss MicroImaging, Inc., Thornwood, NY, USA) equipped with digital imaging and Extended Focus and MosiaX software packages (Carl Zeiss MicroImaging, Inc., Thornwood, NY, USA). Image analysis was then completed as described in Section 3.2.4.2.

### 6.2.3.2. SEM/EDS

The microstructure and morphology of fracture surfaces of the composites was evaluated at ERDC (Vicksburg, Mississippi, USA) using a FEI Nova NanoSEM (FEI Company, Hillsboro, Oregon, USA) equipped with a Schottky field emission gun, high vacuum and low vacuum
modes, and digital imaging. An accelerating voltage of 5 kV , a working distance of 7.1 mm , and a spot sized of 5 was used for imaging.

In addition, the FEI Quanta 650 FEG SEM and methods described in Section 4.2.3.2 were used to obtain secondary and backscatter electron images and semi-quantitative chemical data used in the analysis of the micromechanical testing.

### 6.2.3.3. Nanoindentation

Nanoindentation was completed at ERDC (Vicksburg, Mississippi, USA) using the equipment and methods described in Section 4.2.3.1.

### 6.2.3.4. Macromechanical Testing

The mechanical performance of the composites was evaluated at 3,7 , and 28 days by uniaxial compressive and three-point bending testing using a Tinius Olsen Super L 60 K (300 kN ) universal testing machine (Tinius Olsen, Inc., Horsham, PA, USA). Flexural testing was performed as described in Section 5.2.3.1. Compressive testing was performed in a method similar to the one described in Section 5.2.3.1, but the testing was completed on beam specimens with a test setup as shown in Figure 6.1. A minimum of six (6) specimens of each cement paste type were tested for each loading type, and the ultimate strength, strain capacity, modulus, and toughness values were calculated as discussed in Section 5.2.3.1.


Figure 6.1. Compressive test setup for testing beam specimens of cement-based composites. The beam has a length and width of 25.4 mm ( 1 in .) and height of 50.8 mm ( 2 in .).

### 6.3. Results and Discussion

6.3.1. Microstructure of the Hybrid CNF/CF Cement-Based Composites and CNF Dispersion State

SEM analysis showed CNFs to be present in the cement-based composites as individual fibers and agglomerated, whether or not CFs were present. As in Section 3.3.4, the distribution of individual CNFs was not homogenous throughout the cement-based composites with CNF-rich and CNF-poor regions. In addition, SEM analysis did not show the CNF agglomerates to have a tendency to be located either near or away from CFs (Figure 6.2). Evidence of CF pull-out and cement hydrates on the CF surfaces was present (Figure 6.2).


Figure 6.2. Representative SEM images of the hybrid CNF/CF cement-based composites showing the distribution and location of CNFs and CFs within the composites with evidence of CF pull-out and the presence of cement phases on the surface of the CFs.

Image analysis on micrographs from optical microscopy indicated a reduction in the areal coverage of CNF agglomerates sized $0.007 \mathrm{~mm}^{2}$ and above within the composite cross-sections when CFs were present (i.e., $2.6 \%$ for PC-CNF-CF compared to $3.6 \%$ for PC-CNF) (Figure 6.3). Visually evident from the binary images in Figure 6.3 was the influence of the CFs on the migration and reagglomeration of the CNFs at the upper surface of the cement-based composite. The CFs reduced the workability of the fresh cement paste, therefore, reducing the migration of the CNFs with the bleed water. The areal coverage of the CNFs within the upper 2 mm of the cement-based composite cross-section was $6.7 \%$ for PC-CNF compared to only $2.2 \%$ for PC-CNF-CF.

Although the total areal coverage of CNF agglomerates was reduced with the addition of CFs, the distribution of agglomerate sizes was adversely affected by the presence of the CFs. PC-CNF-CF had more agglomerates in all size categories greater than $0.01 \mathrm{~mm}^{2}$ (i.e., $0.01-0.02$ $\mathrm{mm}^{2}, 0.02-0.03 \mathrm{~mm}^{2}, 0.03-0.04 \mathrm{~mm}^{2}, 0.04-0.05 \mathrm{~mm}^{2}$, and greater than $0.05 \mathrm{~mm}^{2}$ ) than PC-CNF,
while PC-CNF had more agglomerates less than $0.01 \mathrm{~mm}^{2}$ indicating a preference for the CNFs to form larger agglomerates (greater than $0.01 \mathrm{~mm}^{2}$ in size) in the presence of CFs.

## PC-CNF




Areal Coverage: 3.6\%

## PC-CNF-CF




Areal Coverage: 2.6\%
Figure 6.3. Binary images and histograms showing the distribution of CNFs within representative cross-sections of the cement-based composite containing only CNFs and the hybrid CNF/CF cement-based composite (raw data included in Appendix B).

### 6.3.2. Micromechanical Properties of Hybrid CNF/CF Cement-Based Composites

6.3.2.1. Effects of Hybrid Fiber Reinforcement on the Overall Distribution of Micromechanical Responses from Cement-Based Composite Constituents

As in Section 4.3.1.2, the highest values for the modulus (i.e., greater than 60 GPa ) and hardness (greater than 2 GPa ) were seen for the unhydrated cement particles; modulus values of $c a .15-60 \mathrm{GPa}$ and hardness values of ca. $0.25 \mathrm{GPa}-2 \mathrm{GPa}$ were seen for the hydrated cement phases; and the lowest values for the modulus (i.e., less than 15 GPa ) and hardness (i.e., less than 0.25 GPa ) were observed for flaws (Figures 6.4-6.9). The majority of the CFs seen in the nanoindentation grids showed modulus and hardness values of less than 40 GPa and 1 GPa , respectively, which was thought to be invalid data as a result of the presence of the CFs at the surface of the composite creating a surface roughness that did not allow the required contact area for nanoindentation.
a) Backscatter SEM

b) Modulus (GPa)

c) Hardness (GPa)


Figure 6.4. Spatial correlation of micromechanical properties of PC-CF A Grid 1 (raw data included in Appendix C). Indents are located in a grid of 200 with 10 rows and 20 columns. a) Backscatter SEM image, b) contour plot of elastic modulus with linear interpolation between indents, $\mathbf{c}$ ) contour plots of hardness with linear interpolation between indents.


Figure 6.5. Spatial correlation of micromechanical properties of PC-CF A Grid 2 (raw data included in Appendix C). Indents are located in a grid of 200 with 10 rows and 20 columns. a) Backscatter SEM image, b) contour plot of elastic modulus with linear interpolation between indents, c) contour plots of hardness with linear interpolation between indents.


Figure 6.6. Spatial correlation of micromechanical properties of PC-CF B Grid 1 (raw data included in Appendix C). Indents are located in a grid of 200 with 10 rows and 20 columns. a) Backscatter SEM image, b) contour plot of elastic modulus with linear interpolation between indents, $c$ ) contour plots of hardness with linear interpolation between indents.
a) Backscatter SEM

b) Modulus (GPa)

c) Hardness (GPa)


Figure 6.7. Spatial correlation of micromechanical properties of PC-CNF-CF A Grid 1 (raw data included in Appendix C). Indents are located in a grid of 200 with 10 rows and 20 columns. a) Backscatter SEM image, b) contour plot of elastic modulus with linear interpolation between indents, c) contour plots of hardness with linear interpolation between indents.


Figure 6.8. Spatial correlation of micromechanical properties of PC-CNF-CF A Grid 2 (raw data included in Appendix C). Indents are located in a grid of 200 with 10 rows and 20 columns. a) Backscatter SEM image, b) contour plot of elastic modulus with linear interpolation between indents, c) contour plots of hardness with linear interpolation between indents.


Figure 6.9. Spatial correlation of micromechanical properties of PC-CNF-CF B Grid 1 (raw data included in Appendix C). Indents are located in a grid of 200 with 10 rows and 20 columns. a) Backscatter SEM image, b) contour plot of elastic modulus with linear interpolation between indents, c) contour plots of hardness with linear interpolation between indents.

The shape of the histograms of modulus and hardness values obtained by nanoindentation for both PC-CF and PC-CNF-CF was similar to the shape of the histograms for PC and PC-CNF (Figure 6.10 and Figure 6.11), which were discussed in detail in Section 4.3.1.2. Hybrid CNF/CF reinforcement caused a shift in the main peak of the modulus histogram from the 16-24 GPa range to being almost equally in the $16-24 \mathrm{GPa}$ and $24-32 \mathrm{GPa}$ ranges (Figure 6.10). A shift in the main peak was also seen for PC-CNF and PC-CF with the main peak of both PC-CNF and PC-CF being in the 24-32 GPa range. Decomposition of the histogram of modulus values obtained from nanoindentation coupled with backscatter SEM analysis showed the cement hydrates to be mostly responsible for the shift in the histogram of modulus values for each composite (i.e., PC-CNF, PC-CF, and PC-CNF-CF) suggesting that the CFs, like the CNFs, are influencing the modulus of the cement hydration products. Further examination of the influence of the CNFs and CFs on the modulus of the cement hydrates is included in Section 6.3.2.2. The overall main peak of the hardness histogram (Figure 6.11) was located: (i) in the $0.4-0.8 \mathrm{GPa}$ range for the hybrid CNF/CF cement-based composites and PC-CNF, (ii) equally in the 0.4-0.8 GPa and 0.8-1.2 GPa ranges for PC , and (iii) in the 0.8-1.2 GPa range for PC-CF. In contrast, the main peak of the histogram of hardness values for the cement hydrates as seen from the decomposition of the overall histogram determined by coupling the nanoindentation results with SEM/EDS showed no differences in location for all composites (Figure 6.11).


Figure 6.10. Histograms of the modulus values obtained from nanoindentation coupled with backscatter SEM analysis of cement-based composites; including PC, PC-CNF, PCCF, and PC-CNF-CF; with scaled empirical distributions decomposed into hydrates, unhydrated cement, and flaws (raw data included in Appendix C).


PC-CNF-CF


Figure 6.10. Continued


Figure 6.11. Histograms of the hardness values obtained from nanoindentation coupled with backscatter SEM analysis of cement-based composites; including PC, PC-CNF, PCCF, and PC-CNF-CF; with scaled empirical distributions decomposed into hydrates, unhydrated cement, and flaws (raw data included in Appendix C).


PC-CNF-CF


Figure 6.11. Continued

### 6.3.2.2. Effects of Hybrid CNF/CF Reinforcement on the Micromechanical Properties of

 Individual Cement HydratesHistograms of modulus values that were obtained from indents located solely on cement hydrates as determined by the spatial correlation of backscatter SEM image analysis and nanoindentation showed a shift in the main peak from the 20-25 GPa range, as seen in PC and PC-CF, to the 25-30 GPa range for PC-CNF-CF and PC-CNF (Figure 6.12). The bin sizes of the histograms in Figure 6.12 were refined compared to Figure 6.10, and the shift that was seen in the main peak of the histogram of the modulus values of cement hydrates in PC-CF in Figure 6.10 was no longer seen. Further decomposition of the histogram into the individual representative major cement hydrate phases from spatial correlation of the EDS data with the nanoindentation and SEM analysis showed the shift from the 20-25 GPa to the 25-30 GPa ranges for PC-CNF and PC-CNF-CF to be from the response of the indents located on the C-S-H phase. Though a shift from the $20-25 \mathrm{GPa}$ range to the $25-30 \mathrm{GPa}$ range in the peak of the histogram of modulus values for the C-S-H phase was not seen for PC-CF, the relative frequency of modulus values in the 25-30 GPa range for the C-S-H phase in PC-CF was higher than in PC indicating a likely but less dominant impact of the CFs on the distribution of modulus values compared to the CNFs.


Figure 6.12. Histograms of the modulus values of the cement hydration products with scaled empirical distributions decomposed into the cement hydration phases of C-S-H, CH, a combination of C-S-H and CH but mostly C-S-H, a combination of C-S-H and CH but mostly CH, and Al-rich phases obtained from nanoindentation coupled SEM/EDS on cement-based composites including PC, PC-CNF, PC-CF, and PC-CNF-CF (raw data included in Appendix C).


Figure 6.12. Continued

Histograms of the hardness values of indents located on cement hydrates as determined from nanoindentation coupled with SEM showed a shift in the main peak from the $0.8-1 \mathrm{GPa}$ range seen for PC and $\mathrm{PC}-\mathrm{CNF}$ to the $0.6-0.8 \mathrm{GPa}$ range for the hybrid CNF/CF composite as well as the PC-CF composite (Figure 6.13). Further decomposition of the histograms of hardness
values into the individual representative major cement phases using nanoindentation coupled with SEM and EDS showed the main peak of the C-S-H phase to be in the 0.8-1 GPa range for PC and PC-CNF. The histogram of hardness values for the C-S-H phase in PC-CF had two (2) main peaks, one in the $0.6-0.8 \mathrm{GPa}$ range and one in the $1-1.2 \mathrm{GPa}$ range. The histogram of hardness values for the C-S-H phase in hybrid CNF/CF cement-based composites did not, however, have two (2) main peaks, but instead, had one peak in the 0.6-0.8 GPa range.


Figure 6.13. Histograms of the hardness values of the cement hydration products with scaled empirical distributions decomposed into the cement hydration phases of C-S-H, CH, a combination of C-S-H and CH but mostly C-S-H, a combination of C-S-H and CH but mostly CH, and Al-rich phases obtained from nanoindentation coupled SEM/EDS on cement-based composites including PC, PC-CNF, PC-CF, and PC-CNF-CF (raw data included in Appendix C).


Figure 6.13. Continued

As explained in Section 4.3.2.2, the distributions of the modulus and hardness values were estimated by a Gaussian mixture model (Figure 6.14). The means and standard deviations from the Gaussian mixture model assuming three (3) Gaussian components for both the modulus and hardness along with their respective weight percentages are summarized in Table 6.1.

Although the shift in the main peak of the histogram of modulus values for the C-S-H phase only occurred for PC-CNF and PC-CNF-CF (Figure 6.12), each composite containing fibers (i.e., PCCNF, PC-CF, and PC-CNF-CF) showed an increased percentage of high stiffness C-S-H at the expense of low stiffness C-S-H. As was discussed in Section 4.3.2.2, it was believed that the CNFs were allowing an increased packing density of the C-S-H causing the increased percentage of high stiffness C-S-H. It was also believed that the CFs had a similar effect upon the C-S-H. The hybrid CNF/CF cement-based composite had the highest reduction in percentage of low stiffness C-S-H (i.e., $14 \%$ as determined by the Gaussian mixture model of the modulus values compared to $6 \%$ and $10 \%$ for PC-CNF and PC-CF, respectively) showing a hybrid effect of the CNFs and CFs on the percentage of high stiffness and low stiffness C-S-H present in the cementbased composite. Though a shift in the main peak of the histogram of modulus values for the C-S-H phase (Figure 6.12) was not seen for PC-CF as it was for PC-CNF and PC-CNF-CF, the CFs actually had more of an impact on the percentages of high stiffness and low stiffness C-S-H compared to the CNFs.


Figure 6.14. Modulus and hardness distributions of the C-S-H phase in cement-based composites as predicted by a Gaussian mixture model and kernel density estimation and the Gaussian components of the Gaussian mixture model for PC, PC-CNF, PC-CF, and PC-CNF-CF (raw data included in Appendix C).

Table 6.1. Summary of mean modulus and hardness values of the C-S-H phases in PC, PC-CNF, PC-CF, and PC-CNF-CF and their weights assuming three Gaussian distributions (raw data included in Appendix C).

|  |  | Modulus (GPa) | Hardness (GPa) |
| :---: | :---: | :---: | :---: |
| 2 | Ultra-High Stiffness | $\begin{gathered} 44.4 \pm 1.7 \\ (6.0 \%) \end{gathered}$ | $\begin{gathered} 1.7 \pm 0.2 \\ (3.7 \%) \end{gathered}$ |
|  | High Stiffness | $\begin{gathered} 35.0 \pm 1.8 \\ (9.4 \%) \end{gathered}$ | $\begin{gathered} 1.1 \pm 0.3 \\ (7.6 \%) \end{gathered}$ |
|  | Low Stiffness | $\begin{gathered} 22.4 \pm 5.1 \\ (84.7 \%) \end{gathered}$ | $\begin{gathered} 0.9 \pm 0.3 \\ (88.7 \%) \end{gathered}$ |
| $\begin{aligned} & \text { Y } \\ & \text { U } \\ & \text { U } \end{aligned}$ | Ultra-High Stiffness | $\begin{gathered} 43.1 \pm 0.9 \\ (5.0 \%) \end{gathered}$ | $\begin{gathered} 1.7 \pm 0.1 \\ (7.7 \%) \end{gathered}$ |
|  | High Stiffness | $\begin{gathered} 33.4 \pm 4.3 \\ (15.4 \%) \end{gathered}$ | $\begin{aligned} & 1.3 \pm 0.1 \\ & (12.7 \%) \end{aligned}$ |
|  | Low Stiffness | $\begin{gathered} 25.0 \pm 4.2 \\ (79.6 \%) \end{gathered}$ | $\begin{aligned} & 0.8 \pm 0.2 \\ & (79.6 \%) \end{aligned}$ |
| Uِ | Ultra-High Stiffness | $\begin{gathered} 37.5 \pm 3.9 \\ (6.3 \%) \end{gathered}$ | $\begin{gathered} 1.8 \pm 0.1 \\ (7.6 \%) \end{gathered}$ |
|  | High Stiffness | $\begin{gathered} 35.0 \pm 5.1 \\ (17.1 \%) \end{gathered}$ | $\begin{aligned} & 1.1 \pm 0.2 \\ & (18.0 \%) \end{aligned}$ |
|  | Low Stiffness | $\begin{gathered} 23.5 \pm 4.7 \\ (76.6 \%) \end{gathered}$ | $\begin{aligned} & 0.8 \pm 0.3 \\ & (74.4 \%) \end{aligned}$ |
|  | Ultra-High Stiffness | $\begin{gathered} 42.9 \pm 5.9 \\ (6.2 \%) \end{gathered}$ | $\begin{gathered} 1.8 \pm 0.1 \\ (3.7 \%) \end{gathered}$ |
|  | High Stiffness | $\begin{gathered} 32.9 \pm 8.6 \\ (21.2 \%) \end{gathered}$ | $\begin{aligned} & 1.2 \pm 0.2 \\ & (28.5 \%) \end{aligned}$ |
|  | Low Stiffness | $\begin{gathered} 24.8 \pm 6.1 \\ (72.6 \%) \end{gathered}$ | $\begin{aligned} & 0.7 \pm 0.2 \\ & (67.8 \%) \end{aligned}$ |

() Indicates \% weight of phase in total distribution.

### 6.3.3. Macromechanical Properties of Hybrid CNF/CF Cement-Based Composites

### 6.3.3.1. Compressive Properties

The 3-, 7-, and 28-day compressive properties of hybrid CNF/CF cement-based composites compared to composites with only one fiber type and a control composite are summarized in Figure 6.15, Figure 6.16, and Figure 6.17, respectively. In addition, the probability density functions for the 3-, 7-, and 28-day compressive strength results assuming Gaussian distributions are shown in Figure 6.18, Figure 6.19, and Figure 6.20, respectively.

An increase in the median compressive strength of up to $c a .44 \%$ was seen at 3,7 , and 28 days with the combined addition of CNFs and CFs at or above the $90 \%$ confidence level (Welch's t-test, Table 6.2). The hybrid CNF/CF reinforcement did not result, however, in an increase in compressive strength beyond that obtained with the use of CFs alone that was statistically significant at the $95 \%$ confidence level. The probability density functions (normal distributions) of the compressive strength of the composites (Figure 6.18, Figure 6.19, and Figure 6.20) clearly showed no influence of the CNFs on the compressive strength of the hybrid CNF/CF composite.

Additionally, the hybrid CNF/CF cement-based composites showed some improvements in the compressive modulus and toughness compared to the control, but the improvements were less than the difference seen for the CF reinforcement alone. The CNFs, therefore, did not positively influence the compressive modulus or toughness in the hybrid CNF/CF cement-based composites and all improvements were the effect of the CFs.


Figure 6.15. 3-day compressive properties of hybrid CNF/CF cement-based composites (raw data included in Appendix D). a) Ultimate strength, b) modulus, c) strain capacity at failure, and d) toughness.


Figure 6.16. 7-day compressive properties of hybrid CNF/CF cement-based composites (raw data included in Appendix D). a) Ultimate strength, b) modulus, $c$ ) strain capacity at failure, and d) toughness.


Figure 6.17. 28-day compressive properties of hybrid CNF/CF cement-based composites (raw data included in Appendix D). a) Ultimate strength, b) modulus, c) strain capacity at failure, and d) toughness.


Figure 6.18. Probability density functions of the 3-day compressive strength of the CNF, CF, and hybrid CNF/CF cement-based composites assuming normal distributions (raw data included in Appendix D).


Figure 6.19. Probability density functions of the 7-day compressive strength of the CNF, CF, and hybrid CNF/CF cement-based composites assuming normal distributions (raw data included in Appendix D).


Figure 6.20. Probability density functions of the 28-day compressive strength of the CNF, CF, and hybrid CNF/CF cement-based composites assuming normal distributions (raw data included in Appendix D).

Table 6.2. P-values (Welch's t-test) and conclusions at the $90 \%$ and $95 \%$ confidence levels for the compressive properties of hybrid CNF/CF cement-based composites compared to the control (raw data included in Appendix D).

|  | P-value (compared to PC) |  |  |  |  |  |  |  |  |  |  |  | Summary at the $\mathbf{9 0 \%}$ and $95 \%$ confidence levels |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Strength |  |  | Modulus |  |  | Strain Capacity |  |  | Toughness |  |  |  |
|  | 3 days | 7 days | 28 days | 3 days | 7 days | 28 days | 3 days | 7 days | 28 days | 3 days | 7 days | 28 days |  |
| PC-CNF | 0.230 | 0.374 | $\begin{gathered} 0.069 \\ (39.5 \%) \end{gathered}$ | 0.166 | 0.867 | 0.106 | $\begin{gathered} 0.090 \\ (-5.8 \%) \end{gathered}$ | 0.246 | 0.964 | 0.614 | 0.712 | 0.248 | Increase in 28-day ultimate strength. Decrease in 3-day strain capacity at failure. |
| PC-CF | $\begin{gathered} 0.054 \\ (32.6 \%) \end{gathered}$ | $\begin{gathered} 0.063 \\ (17.9 \%) \end{gathered}$ | $\begin{gathered} 0.024 \\ (52.9 \%) \end{gathered}$ | 0.947 | 0.149 | $\begin{gathered} 0.017 \\ (32.7 \%) \end{gathered}$ | 0.617 | 0.952 | 0.332 | $\begin{gathered} 0.005 \\ (96.2 \% \end{gathered}$ | $\begin{aligned} & 3.7 \times 10^{-4} \\ & (71.4 \%) \end{aligned}$ | $\begin{gathered} 0.031 \\ (96.8 \%) \end{gathered}$ | Increase in 3-, 7-, and 28day ultimate strength, 28day modulus, and 3-, 7-, and 28 -day toughness. |
| PC-CNF-CF | $\begin{gathered} 0.003 \\ (36.3 \%) \end{gathered}$ | $\begin{gathered} 0.089 \\ (18.6 \%) \end{gathered}$ | $\begin{gathered} 0.021 \\ (44.4 \%) \end{gathered}$ | 0.120 | 0.171 | $\begin{gathered} 0.018 \\ (26.1 \%) \end{gathered}$ | 0.519 | 0.244 | 0.213 | $\begin{gathered} 0.004 \\ (60.8 \%) \end{gathered}$ | 0.260 | $\begin{gathered} 0.066 \\ (51.5 \%) \end{gathered}$ | Increase in 3-, 7-, and 28day ultimate strength, 28day modulus, and 3- and 28-day toughness. |

() Indicates \% difference compared to PC.

Indicates P-value less than or equal to 0.100 (significance at the $90 \%$ confidence level).Indicates P-value less than or equal to 0.050 (significance at the $95 \%$ confidence level).

### 6.3.3.2. Flexural Properties

Hybrid CNF/CF cement-based composites had improved 3-, 7-, and 28-day flexural strength, strain capacity, and toughness compared to the control composite (Figure 6.21, Figure 6.22, and Figure 6.23). However, no evidence of fiber "synergy" could be seen from the hybrid CNF/CF cement-based composites as no additional improvements in flexural properties were seen over PC-CF at any curing age.

Ultimate strength. The hybrid CNF/CF cement-based composites showed improvements in 3-, 7-, and 28-day ultimate flexural strength of up to $100 \%$ based on the median value at the $95 \%$ confidence level (Welch's t-test, Table 6.3). However, the improvements in the flexural strength were not as large as the improvements seen with CFs alone, and therefore, there was no hybrid effect of the CNFs and CFs seen. Probability density functions of the flexural strength of hybrid CNF/CF cement-based composites compared to the control composite and composites with only one fiber type assuming a Gaussian distribution clearly showed the probable strength values of PC-CNF-CF to decrease compared to PC-CF (Figure 6.24, Figure 6.25, and Figure 6.26). The decrease in flexural strength of the hybrid CNF/CF cement-based composites compared to PC-CF was statistically significant at the $95 \%$ confidence level with p-values of $0.017,0.003$, and 0.050 , for 3,7 , and 28 days, respectively. The decrease was thought to be indicative of the detrimental effect of the CNF agglomerates on the flexural strength of the hybrid CNF/CF cement-based composites.

Modulus. The hybrid fiber reinforcement had no impact on the flexural modulus of cement-based composites at the $95 \%$ confidence level compared to the control composite
(Welch's t-test, Table 6.3). However, the CFs when used alone improved the flexural modulus of the cement-based composites by up to $18 \%$ at the $95 \%$ confidence level (Welch's t-test, Table 6.3).

Strain capacity. Hybrid CF/CNF reinforcement allowed for improvements of the strain capacity at failure of up to $83 \%$ based on the median value compared to the control composite at the $95 \%$ confidence level (Welch's t-test, Table 6.3). The strain capacity at failure of PC-CF was, however, improved by up to $107 \%$ based on the median compared to the control composite at the $95 \%$ confidence level (Welch's $t$-test, Table 6.3).

Toughness. Hybrid CF/CNF reinforcement allowed for increases in flexural toughness of over 2 times the toughness of the control composite at the $95 \%$ confidence level (Welch's t-test, Table 6.3), but the flexural toughness of the composite with only CF reinforcement was over 3 times the toughness of the control at the $95 \%$ confidence level (Welch's t-test, Table 6.3).

Although CNFs have been shown to improve the flexural properties of cement-based composites (Section 5.3.2.3, Figure 6.22, and Figure 6.23), the hybridization of CNFs with CFs does not further improve the flexural properties of cement-based composites beyond the improvements of composites with CFs alone. It was thought that at the ultimate strengths that the hybrid CNF/CF cement-based composites are failing, crack propagation had advanced beyond the length of the CNFs (i.e., $200 \mu \mathrm{~m}$ ) or at least beyond the point at which the embedment length of the CNFs was not sufficient for load transfer such that the reinforcing ability was not realized. It was also believed that the presence of the CNF agglomerates in the hybrid CNF/CF
composites lowered the ability of the CNFs to act as reinforcement because a large percentage of the $0.5 \mathrm{wt} \%$ of CNFs were located within CNF agglomerates and not individually dispersed throughout the composite for reinforcement of nanoscale cracks.


Figure 6.21. 3-day flexural properties of hybrid CNF/CF cement-based composites (raw data included in Appendix D). a) Ultimate strength, b) modulus, c) strain capacity at failure, and d) toughness.


Figure 6.22. 7-day flexural properties of hybrid CNF/CF cement-based composites (raw data included in Appendix D). a) Ultimate strength, b) modulus, c) strain capacity at failure, and d) toughness.


Figure 6.23. 28-day flexural properties of hybrid CNF/CF cement-based composites (raw data included in Appendix D). a) Ultimate strength, b) modulus, c) strain capacity at failure, and d) toughness.

Table 6.3. P-values (Welch's t-test) and conclusions at the $90 \%$ and $95 \%$ confidence levels for the flexural properties of hybrid CNF/CF cement-based composites compared to the control (raw data included in Appendix D).

|  | $\mathbf{P}$-value (compared to PC) |  |  |  |  |  |  |  |  |  |  |  | Summary at the $\mathbf{9 0 \%}$ and $95 \%$ confidence levels |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Strength |  |  | Modulus |  |  | Strain Capacity |  |  | Toughness |  |  |  |
|  | 3 days | 7 days | 28 days | 3 days | 7 days | 28 days | 3 days | 7 days | 28 days | 3 days | 7 days | 28 days |  |
| PC-CNF | 0.728 | $\begin{gathered} 0.073 \\ (11.9 \%) \end{gathered}$ | $\begin{aligned} & 2.1 \times 10^{-6} \\ & (39.8 \%) \end{aligned}$ | 0.732 | 0.880 | 0.348 | 0.438 | 0.164 | $\begin{gathered} 0.006 \\ (31.8 \%) \end{gathered}$ | 0.728 | $\begin{gathered} 0.062 \\ (31.6 \%) \end{gathered}$ | $\begin{aligned} & 4.3 \times 10^{-5} \\ & (81.2 \%) \end{aligned}$ | Increase in 7- and 28-day ultimate strength, 28-day strain capacity at failure, and 7 - and 28 -day toughness. |
| PC-CF | $\left\|\begin{array}{c} 2.7 \times 10^{-5} \\ (118.6 \%) \end{array}\right\|$ | $\left\|\begin{array}{c} 3.1 \times 10^{-9} \\ (146.3 \%) \end{array}\right\|$ | $\begin{array}{\|c\|} \hline 4.9 \times 10^{-5} \\ (126.2 \%) \end{array}$ | $\begin{gathered} 0.037 \\ (9.3 \%) \end{gathered}$ | $\begin{gathered} 0.028 \\ (18.5 \%) \end{gathered}$ | $\begin{gathered} 0.028 \\ (16.2 \%) \end{gathered}$ | $\begin{aligned} & 1.4 \times 10^{-5} \\ & (90.4 \%) \end{aligned}$ | $\begin{array}{\|c\|} \hline 4.2 \times 10^{-6} \\ (107.1 \%) \end{array}$ | $\begin{aligned} & 7.4 \times 10^{-6} \\ & (95.4 \%) \end{aligned}$ | $\begin{array}{\|c\|} \hline 4.4 \times 10^{-4} \\ (359.5 \%) \end{array}$ | $\begin{gathered} 1.5 \times 10^{-5} \\ (437.5 \%) \end{gathered}$ | $\begin{array}{\|c\|} \hline 3.0 \times 10^{-4} \\ (377.6 \%) \end{array}$ | Increase in 3-, 7-, and 28day ultimate strength, 3-, <br> 7- and 28-day modulus, 3-, <br> 7 - and 28 -day strain capacity at failure, and 3-, 7-, and 28-day toughness. |
| PC-CNF-CF | $\begin{array}{\|c\|} \hline 0.004 \\ (68.2 \%) \end{array}$ | $\begin{aligned} & 1.1 \times 10^{-4} \\ & (99.8 \%) \end{aligned}$ | $\begin{gathered} 0.002 \\ (75.2 \%) \end{gathered}$ | 0.259 | 0.243 | 0.446 | $\begin{aligned} & 2.4 \times 10^{-4} \\ & (80.6 \%) \end{aligned}$ | $\begin{gathered} 0.006 \\ (78.5 \%) \end{gathered}$ | $\begin{gathered} 0.007 \\ (83.2 \%) \end{gathered}$ | $\left\|\begin{array}{c} 2.1 \times 10^{-4} \\ (234.3 \%) \end{array}\right\|$ | $\begin{array}{\|c\|} \hline 0.001 \\ (289.9 \%) \end{array}$ | $\begin{array}{\|c\|} \hline 0.005 \\ (236.2 \%) \end{array}$ | Increase in 3-, 7-, and 28day ultimate strength, 3-, 7 - and 28 -day strain capacity at failure, and 3-, 7-, and 28-day toughness. |

() Indicates \% difference compared to PC.

Indicates P-value less than or equal to 0.100 (significance at the $90 \%$ confidence level).
Indicates P-value less than or equal to 0.050 (significance at the $95 \%$ confidence level).


Figure 6.24. Probability density functions of the 3-day flexural strength of the CNF, CF, and hybrid CNF/CF cement-based composites assuming normal distributions (raw data included in Appendix D).


Flexural Strength (MPa)
Figure 6.25. Probability density functions of the 7-day flexural strength of the CNF, CF, and hybrid CNF/CF cement-based composites assuming normal distributions (raw data included in Appendix D).


Figure 6.26. Probability density functions of the 28-day flexural strength of the CNF, CF, and hybrid CNF/CF cement-based composites assuming normal distributions (raw data included in Appendix D).

### 6.4. Conclusions

Hybrid CNF/CF cement-based composites were evaluated to determine the hybrid effects of CNFs and CFs on the microstructure and micro- and macromechanical properties of the composites. The following conclusions could be drawn:

- CNFs were found unequally distributed in the cement paste and as individual fibers and CNF agglomerates no matter if they were used alone or with CFs as hybrid fiber reinforcement.
- The total areal coverage of CNF agglomerates greater than $0.007 \mathrm{~mm}^{2}$ in size was reduced by nearly $28 \%$ in the presence CFs in cement-based composites. The reduction was especially noticed within the upper 2 mm of the cross-section because of a reduction in CNF movement with the bleed water during curing due to a reduced workability of the
fresh cement paste. Although the areal coverage was reduced with CFs, the CNFs had a tendency to form larger agglomerates in the presence of CFs.
- The hybridization of CNFs and CFs allowed a greater percentage of high stiffness C-S-H at the expense of low stiffness C-S-H compared to CNFs and CFs used alone in cementbased composites. A $14 \%$ reduction in the percentage of low stiffness C-S-H was seen when CNFs and CFs were used together as determined by the Gaussian mixture model of the modulus values compared to a $6 \%$ and $10 \%$ reduction when CNFs and CFs were used alone.
- In contrast with the micromechanical properties, no hybrid effect of the CNFs and CFs was found on the compressive or flexural properties of cement-based material. The hybrid CNF/CF reinforcement allowed for increases in the compressive strength and toughness over the control composite of up to $45 \%$ and $60 \%$, respectively, but greater increases were seen for the cement paste with CFs alone. Similarly, the flexural strength, strain capacity, and toughness of hybrid CNF/CF cement-based composites increased compared to the control composite by up to $100 \%, 83 \%$, and $290 \%$, respectively, but greater increases were seen for the cement paste with CFs alone.


## CHAPTER 7

# SUMMARY AND FUTURE WORK 

### 7.1. Summary

A summary of the findings of this dissertation by chapter is included below.

Chapter 3. CNF dispersing methods including various combinations of covalent, noncovalent, and mechanical methods were investigated in solution using visual inspection and optical microscopy and in cement-based composites using optical microscopy and SEM. It was found that the dispersion of CNFs in an aqueous solution was improved when dispersing agents including P-HRWR, N-HRWR, and AE were used, but was best improved when P-HRWR was used. The use of surface treatment with $\mathrm{HNO}_{3}$ with $\mathrm{P}-\mathrm{HRWR}$ further improved the dispersion of CNFs in aqueous solution, but the use of surface treatment with $\mathrm{HNO}_{3}$ alone was not as efficient at dispersing the CNFs as the dispersing agents. P-HRWR, N-HRWR, and AE were also found to improve the dispersion of CNFs in simulated cement pore water, but the suspension was not stable due to the high pH and ionic strength of the solution with settlement occurring within 30 minutes. CNF reagglomeration occurred in cement pastes during the mixing and curing process regardless of the dispersion method used. Therefore, the dispersion in aqueous solution was not indicative of the subsequent dispersion and distribution of CNFs in cement pastes. The final dispersion state of the CNFs in cement paste was the result of the competition between: (i) the tendency of CNFs to migrate towards each other or existing agglomerates due to Brownian motion and van der Waals interactions during cement mixing, (ii) the influence of the high pH
and ionic strength of the cement paste medium on altering the surface properties of the CNFs, resulting in a greater propensity for loss of individual CNFs and rebundling, and (iii) the effect of mechanical mixing, further increasing the probability of CNF agglomerates or individual CNFs to come in contact with each other.

Chapter 4. The micromechanical properties of cement pastes containing CNFs were investigated including the cement phases in and around CNF agglomerates using nanoindentation coupled with SEM/EDS. The main peak of the histogram of modulus values obtained from nanoindentation was shifted toward increased modulus values when CNFs were used in cement paste. The coupling of nanoindentation with SEM/EDS indicated an influence of the CNFs on the C-S-H phase of the cement was responsible for the shift in the main peak of the histogram of modulus values. By estimating the distribution of the modulus values of the C-S-H phase using a Gaussian mixture model with three (3) Gaussian components, it was determined that the CNFs were causing the formation of a higher percentage of high stiffness C-S-H at the expense of low stiffness C-S-H. The percentage of low stiffness C-S-H present in the cementbased composite with CNFs was found to be decreased by $6 \%$ as estimated by the Gaussian mixture model of the modulus values. The cement hydration products in and around CNF agglomerates were found to have significantly lower micromechanical properties than the hydration products throughout the paste indicating the CNF agglomerates acted as flaws in the paste. In addition, the edge of the CNF agglomerates had lower micromechanical properties than the cement matrix away from the agglomerate indicating that there was no reinforcing effect around the edge of the CNF agglomerates.

Chapter 5. Traditional testing methods including uniaxial compression, splitting tension, and three-point bending were used to determine the effect of dispersion state of CNFs and CNF loading on the macromechanical properties of cement-based composites including the strength, modulus, strain capacity, and toughness values. The dispersion state of the CNFs was found to impact the 7-day flexural strength of cement pastes with only the CNFs dispersed with P-HRWR showing improvements (increases of over $11 \%$ with $0.2 \mathrm{wt} \% \mathrm{CNFs}$ ). Surface treatment of the CNFs with $\mathrm{HNO}_{3}$ further increased the 7-day flexural strength with $0.2 \mathrm{wt} \%$ of CNFs increasing the 7-day flexural strength of cement paste by $22 \%$. The CNFs were found to influence the structural integrity of cement-based composites both with and without the addition of silica fume with increasing CNF loadings showing increased structural integrity. In addition, the 7- and 28day flexural strength of portland cement pastes showed improvements with increasing CNF loadings including an increase over $60 \%$ for the $1 \mathrm{wt} \% \mathrm{CNF}$ loading at both 7 - and 28-days. Portland cement pastes also showed increases of over $20 \%$ in the 7 -day flexural modulus and increases in the 28-day flexural strain capacity and 7- and 28-day flexural toughness for most CNF loadings. The addition of silica fume to cement pastes with CNFs caused increases in the flexural strength to not be realized at 7 days but be up to $48 \%$ at 28 days due to the delayed pozzolanic reaction of the silica fume. In cement pastes both with and without silica fume, the improvements in the flexural properties were seen regardless of the presence of poorly distributed and agglomerated CNFs because the weak zones formed in the composites by the poorly distributed and agglomerated CNFs were thought to be partially counterbalanced by the presence of an effective fraction of CNFs.

Chapter 6. The hybridization of CNFs and CFs in cement pastes was investigated. The dispersion and distribution of the CNFs in the cement paste was evaluated in relation to the CFs using optical microscopy, and the multiscale mechanical properties of the hybrid CNF/CF cement-based composites were determined using nanoindentation coupled with SEM/EDS and traditional macromechanical testing methods including uniaxial compression and three-point bending. The total areal coverage of CNF agglomerates at the surface of a representative crosssection of cement paste was reduced by nearly $28 \%$ with the addition of CFs especially in the upper 2 mm of the cross-section because of a reduction in the migration of the CNFs with the bleed water due to a reduced workability of the fresh cement paste when CFs were present. Although the total areal coverage of CNF agglomerates at the surface of a cross-section was reduced in the presence of CFs, the CNFs had a greater tendency to form larger size agglomerates. Estimation of the distribution of modulus values determined by nanoindentation coupled with SEM/EDS for the C-S-H phase in hybrid CNF/CF cement-based composites using a Gaussian mixture model with three (3) Gaussian components indicated that a hybrid effect of the CNFs and CFs were leading to the formation of a higher percentage of high stiffness C-S-H in the hybrid CNF/CF cement-based composite compared to the cement pastes with CNFs and CFs alone. The reduction in the percentage of low stiffness C-S-H present in the hybrid CNF/CF cement-based composites was $14 \%$ as determined by the Gaussian mixture model of the modulus values compared to $6 \%$ and $10 \%$ for the composites with CNFs and CFs alone, respectively. In contrast with results seen on the mechanical properties at the microscale, no evidence of a hybrid effect from the CNFs and CFs was found on the macroscale for the compressive or flexural properties. The hybrid CNF/CF reinforcement allowed for increases in the compressive strength and toughness over the control composite of up to $45 \%$ and $60 \%$, respectively, but greater
increases were seen for the cement paste with CFs alone. Similarly, the flexural strength, strain capacity, and toughness of hybrid CNF/CF cement-based composites increased compared to the control composite by up to $100 \%, 83 \%$, and $290 \%$, respectively, but greater increases were seen for the cement paste with CFs alone.

Conclusions. CNFs have been shown to have potential to be excellent nanoscale fiber reinforcement for cement-based composites. However, the dispersion of the CNFs in cementbased composites was found to be influenced by the high pH and ionic strength of the cement paste medium and the tendency of the CNFs to migrate towards each other or existing agglomerates during mixing and curing. Even with the presence of microscale CNF agglomerates, improvements in the mechanical properties of cement-based composites were realized on the micro- and macroscale. On the microscale, a higher percentage of high stiffness C-S-H at the expense of low stiffness C-S-H was seen when CNFs were present, while on the macroscale, the flexural properties and structural integrity after compressive testing of the cement-based composites were improved by CNFs. In hybrid CNF/CF cement-based composites, a hybrid effect of CNFs and CFs was found for the micromechanical properties of cement-based composites with a higher percentage of high stiffness C-S-H being formed at the expense of low stiffness C-S-H compared to composites with CNFs and CFs alone, but no hybrid effect of the CNFs and CFs was found for the macromechanical properties.

### 7.2. Future Work

Results from this research showed that the use of CNFs as nanoscale fiber reinforcement in cement-based composites is a promising avenue for improving cement-based composites. The
use of CNFs as nanoscale fiber reinforcement in cement-based composites could allow for cement-based materials that could be tailored for many applications including damage/strain sensing structural elements, in-motion traffic monitoring roadways, electromagnetic fieldshielding structural elements, and self-deicing pavements. However, many scientific questions need to be answered to make these applications possible. Questions that this research has led to include but are not limited to the following:

- How can the reagglomeration of CNFs in cement-based composites due to the mixing process and the high pH and ionic strength of the cement-based medium be mitigated/reduced?
- What is the relationship between the micromechanical properties of the cement phases and the macroscale mechanical properties of the composite? In particular, what is the effect of the percentages of high stiffness C-S-H and low stiffness C-S-H on the composite macromechanical properties?
- Can the percentage of CNFs be tailored to optimize the percentage of high stiffness C-S-H formed and what will the effects of this optimization mean for the macromechanical properties?
- Can mechanical improvements be realized with the hybridization of the CNFs with other fiber reinforcement such that fiber "synergy" is seen?
- Can the reinforcing ability of the CNFs be maintained in cement-based composites for the life of the structural elements (i.e., what is the long-term durability and performance of cement-based composites containing CNFs)?


## REFERENCES

[1] Report card for America's infrastructure, in: A.S.o.C. Engineers (Ed.), American Society of Civil Engineers, Reston, Virginia, 2009.
[2] Grand challenges for engineers, in: N.A.o. Engineering (Ed.), National Academy of Sciences, Washington, D.C., 2008.
[3] S. Mindess, J.F. Young, D. Darwin, Concrete, 2nd ed., Pearson Educational, Inc., Upper Saddle River, New Jersey, 2003.
[4] G. Hüsken, M. Hunger, H.J.H. Brouwers, Experimental study of photocatalytic concrete products for air purification, Building and Environment, 44 (2009) 2463-2474.
[5] M. Chen, J.-W. Chu, NOx photocatalytic degradation on active concrete road surface - from experiment to real-scale application, Journal of Cleaner Production, 19 (2011) 1266-1272.
[6] Z. Zhou, G. Ou, Y. Hang, G. Chen, J. Ou, Research and development of plastic optical fiber based smart transparent concrete, Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, ETATS-UNIS, 2009.
[7] B. Chen, J. Liu, Damage in carbon fiber-reinforced concrete, monitored by both electrical resistance measurement and acoustic emission analysis, Construction and Building Materials, 22 (2008) 2196-2201.
[8] D.D.L. Chung, Damage in cement-based materials, studied by electrical resistance measurement, Materials Science and Engineering: R: Reports, 42 (2003) 1-40.
[9] R.F. Zollo, Fiber-reinforced concrete: an overview after 30 years of development, Cement and Concrete Composites, 19 (1997) 107-122.
[10] S. Mindess, Thirty years of fibre reinforced concrete research at the UWM British Colombia, in: T.R.N. Rudolph N. Kraus, Peter Claisse, Sadeghi-Pouya (Ed.) International Conference on sustainable construction materials and technologies, UW Milwaukee CBU, Coventry, 2007, pp. 259-268.
[11] S.P. Shah, K.G. Kuder, B. Mu, Fiber-reinforced cement based composites: a forty year odyssey, in: M.d. Prisco, R. Felicetti, G.A. Plizzari (Eds.) 6th RILEM Symposium on FibreReinforced Concretes (FRC), RILEM Publications SARL, Varenna, Italy, 2004, pp. 28.
[12] D.D.L. Chung, Cement reinforced with short carbon fibers: a multifunctional material, Composites Part B: Engineering, 31 (2000) 511-526.
[13] S. Wansom, N.J. Kidner, L.Y. Woo, T.O. Mason, AC-impedance response of multi-walled carbon nanotube/cement composites, Cement and Concrete Composites, 28 (2006) 509-519.
[14] J. Luo, Z. Duan, The dispersivity of multi-walled carbon nanotubes (NMWTs) and pressuresensitive property of NMWTs reinforced cement composite, Advanced Materials Research, 6061 (2009) 475-479.
[15] G.Y. Li, P.M. Wang, X. Zhao, Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites, Cement and Concrete Composites, 29 (2007) 377-382.
[16] X. Yu, E. Kwon, A carbon nanotube/cement composite with piezoresistive properties, Smart Materials and Structures, 18 (2009) 055010.
[17] D. Gao, et al., Electrical resistance of carbon-nanofiber concrete, Smart Materials and Structures, 18 (2009) 095039.
[18] X. Fu, D.D.L. Chung, Submicron carbon filament cement-matrix composites for electromagnetic interference shielding, Cement and Concrete Research, 26 (1996) 1467-1472.
[19] X. Fu, D.D.L. Chung, Submicron-diameter-carbon-filament cement-matrix composites, Carbon, 36 (1998) 459-462.
[20] S. Wen, D.D.L. Chung, Carbon fiber-reinforced cement as a strain-sensing coating, Cement and Concrete Research, 31 (2001) 665-667.
[21] X. Fu, D.D.L. Chung, Self-monitoring of fatigue damage in carbon fiber reinforced cement, Cement and Concrete Research, 26 (1996) 15-20.
[22] M. Sun, Q. Liu, Z. Li, Y. Hu, A study of piezoelectric properties of carbon fiber reinforced concrete and plain cement paste during dynamic loading, Cement and Concrete Research, 30 (2000) 1593-1595.
[23] S. Wen, D.D.L. Chung, Self-sensing of flexural damage and strain in carbon fiber reinforced cement and effect of embedded steel reinforcing bars, Carbon, 44 (2006) 1496-1502.
[24] D.-M. Bontea, D.D.L. Chung, G.C. Lee, Damage in carbon fiber-reinforced concrete, monitored by electrical resistance measurement, Cement and Concrete Research, 30 (2000) 651659.
[25] P.-W. Chen, D.D.L. Chung, Carbon-fiber-reinforced concrete as an intrinsically smart concrete for damage assessment during dynamic loading, Journal of the American Ceramic Society, 78 (1995) 816-818.
[26] B. Han, X. Yu, E. Kwon, A self-sensing carbon nanotube/cement composite for traffic monitoring, Nanotechnology, 20 (2009) 445501.
[27] Z.-Q. Shi, D.D.L. Chung, Carbon fiber-reinforced concrete for traffic monitoring and weighing in motion, Cement and Concrete Research, 29 (1999) 435-439.
[28] L.X. Zheng, Z.Q. Li, X.H. Song, Corrosion monitoring of rebar by compression sensitivity of CFRC, Journal of Experimental Mechnics, 19 (2004) 206-210.
[29] D.D.L. Chung, Electromagnetic interference shielding effectiveness of carbon materials, Carbon, 39 (2001) 279-285.
[30] C.Y. Tuan, Implementation of concductive concrete for deicing (Roca Bridge), in, University of Nebraska-Lincoln, 2008, pp. 154.
[31] N. Banthia, R. Gupta, Hybrid fiber reinforced concrete (HyFRC): fiber synergy in high strength matrices, Materials and Structures, 37 (2004) 707-716.
[32] E.T. Thostenson, Z. Ren, T.-W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review, Composites Science and Technology, 61 (2001) 18991912.
[33] K.P. Chong, E.J. Garboczi, Smart and designer structural material systems, Progress in Structural Engineering and Materials, 4 (2002) 417-430.
[34] P.M. Ajayan, T.W. Ebbesen, Nanometre-size tubes of carbon, Reports on Progress in Physics, 60 (1997) 1025.
[35] J.M. Makar, J.J. Beaudoin, Carbon nanotubes and their application in the construction industry, in: 1st International Symposium on Nanotechnology in Construction, Paisley, Scotland, 2003, pp. 331-341.
[36] A. Cwirzen, K. Habermehl-Cwirzen, V. Penttala, Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites, Anglais, 20 (2008) 9.
[37] X. Jiang, T.L. Kowald, T. Staedler, R.H.F. Trettin, Carbon nanotubes as a new reinforcement material for modern cement-based binders, in: Y.d. Miguel, A. Porro, P.J.M. Bartos (Eds.) NICOM 2: 2nd International Symposium on Nanotechnology in Construction, RILEM Publications SARL, Bilbao, Spain, 2006, pp. 209-213.
[38] T. Kowald, Influence of surface-modified carbon nanotubes on ultra-high performance concrete, in: M. Schmidt, E. Fehling, C. Geisenhanslueke (Eds.) International Symposium on Ultra-High Performance Concrete, Kassel University Press GmbH, Kassel, Germany, 2004, pp. 868.
[39] G.Y. Li, P.M. Wang, X. Zhao, Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes, Carbon, 43 (2005) 1239-1245.
[40] S. Musso, J.-M. Tulliani, G. Ferro, A. Tagliaferro, Influence of carbon nanotubes structure on the mechanical behavior of cement composites, Composites Science and Technology, 69 (2009) 1985-1990.
[41] F. Sanchez, Carbon nanofibers/cement composites: challenges and promises as structural materials, [Special issue on Nanotechnology for Structural Materials; Guest Editors: MR Taha and M Al-Haik], 3 (2009) in press.
[42] F. Sanchez, L. Zhang, C. Ince, Multi-scale performance and durability of carbon nanofiber/cement composites, in: P.J.M.B. Zdeněk Bittnar, Jiří Němeček, Vít Šmilauer and Jan Zeman (Ed.) Nanotechnology in Construction 3, Springer Berlin Heidelberg, 2009, pp. 345-350.
[43] J. Luo, Z. Duan, H. Li, The influence of surfactants on the processing of multi-walled carbon nanotubes in reinforced cement matrix composites, physica status solidi (a), 206 (2009) 2783-2790.
[44] G. Yakovlev, J. Keriene, A. Gailius, I. Girniene, Cement based foam concrete reinforced by carbon nanotubes, Materials Science, 12 (2006) 147-151.
[45] A. Cwirzen, K. Habermehl-Cwirzen, A.G. Nasibulin, E.I. Kaupinen, P.R. Mudimela, V. Penttala, SEM/AFM studies of cementitious binder modified by MWCNT and nano-sized Fe needles, Materials Characterization, 60 (2009) 735-740.
[46] C. Gay, F. Sanchez, Performance of carbon nanofibers/cementitious composites with a highrange water-reducer, Transportation Research Record: Journal of the Transportation Research Board, 2 (2010) 109-113.
[47] M.S. Konsta-Gdoutos, Z.S. Metaxa, S.P. Shah, Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites, Cement and Concrete Composites, 32 (2010) 110-115.
[48] Z.S. Metaxa, M.S. Konsta-Gdoutos, S.P. Shah, Carbon nanofiber-reinforced cement-based materials, Transportation Research Record: Journal of the Transportation Research Board, 2 (2010) 114-118.
[49] Z.S. Metaxa, M.S. Konsta-Gdoutos, S.P. Shah, Mechanical properties and nanostructure of cement-based materials reinforced with carbon nanofibers and polyvinyl alcohol microfibers, in: ACI Special Publication, 2010, pp. 115-124.
[50] S.P. Shah, M.S. Konsta-Gdoutos, Z.S. Metaxa, P. Mondal, Nanoscale modification of cementitious materials, in: P.J.M.B. Zdeněk Bittnar, Jiří Němeček, Vít Šmilauer and Jan Zeman (Ed.) Nanotechnology in Construction 3, Springer Berlin Heidelberg, 2009, pp. 125-130.
[51] A. Yazdanbakhsh, Z. Grasley, B. Tyson, R. Al-Rub, Distribution of carbon nanofibers and nanotubes in cementitious composites, Transportation Research Record: Journal of the Transportation Research Board, 2 (2010) 89-95.
[52] B.M. Tyson, R.K. Abu Al-Rub, A. Yazdanbakhsh, Z. Grasley, Carbon nanotubes and carbon nanofibers for enhancing the mechanical properties of nanocomposite cementitious materials, J Mater Civ Eng, 23 (2011) 1028-1035.
[53] J.M. Makar, Carbon nanotube/cement composite materials, in: Carbon Nanotubes: Synthesis, Properties and Applications (Book Chapter), 2009.
[54] J. Makar, J. Margeson, J. Luh, Carbon nanotube/cement composites -- early results and potential applications, in: 3rd International Conference on Construction Materials: Performance, Innovations, and Structural Implications, Vancouver, B.C., 2005, pp. 1-10.
[55] I. Campillo, J. Dolado, A. Porro, High-performance nanostructured materials for construction, in: P. Bartos, J. Hughes, P. Trtik, W. Zhu (Eds.) 1st International Symposium on Nanotechnology in Construction, The Royal Society of Chemistry, Paisley, Scotland, 2003, pp. 215-225.
[56] A. Chaipanich, T. Nochaiya, W. Wongkeo, P. Torkittikul, Compressive strength and microstructure of carbon nanotubes-fly ash cement composites, Materials Science and Engineering: A, 527 (2010) 1063-1067.
[57] L.Y. Chan, B. Andrawes, Finite element analysis of carbon nanotube/cement composite with degraded bond strength, Computational Materials Science, 47 (2010) 994-1004.
[58] Z. Duan, J. Luo, Effect of multi-walled carbon nanotubes on the vibration-reduction behavior of cement, in: S. Du, J. Leng, A.K. Asundi (Eds.), SPIE, Harbin, China, 2007, pp. 64230R-64236.
[59] M.S. Konsta-Gdoutos, Z.S. Metaxa, S.P. Shah, Nanoimaging of highly dispersed carbon nanotube reinforced cement based materials, in: R. Gettu (Ed.) BEFIB 2008: 7th RILEM International Symposium on Fibre Reinforced Concrete, RILEM Publications SARL, Chennai, India, 2008, pp. 125-131.
[60] T. Kowald, R. Trettin, Improvement of cementitious binders by multi-walled carbon nanotubes, in: P.J.M.B. Zdeněk Bittnar, Jiří Němeček, Vít Šmilauer and Jan Zeman (Ed.) Nanotechnology in Construction 3, Springer Berlin Heidelberg, 2009, pp. 261-266.
[61] A. Cwirzen, K. Habermehl-Cwirzen, L.I. Nasibulina, S.D. Shandakov, A.G. Nasibulin, E.I. Kauppinen, P.R. Mudimela, V. Penttala, CHH cement composite, in: P.J.M.B. Zdeněk Bittnar, Jiří Němeček, Vít Šmilauer and Jan Zeman (Ed.) Nanotechnology in Construction 3, Springer Berlin Heidelberg, 2009, pp. 181-185.
[62] P.R. Mudimela, L.I. Nasibulina, A.G. Nasibulin, A. Cwirzen, M. Valkeapää, K. HabermehlCwirzen, J.E.M. Malm, M.J. Karppinen, V. Penttala, T.S. Koltsova, O.V. Tolochko, E.I.
Kauppinen, Synthesis of carbon nanotubes and nanofibers on silica and cement matrix materials, Journal of Nanomaterials, 2009 (2009) 4 pages.
[63] A.G. Nasibulin, et al., A novel cement-based hybrid material, New Journal of Physics, 11 (2009) 023013.
[64] F. Sanchez, C. Ince, Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fume cement composites, Composites Science and Technology, 69 (2009) 13101318.
[65] J. Makar, The effect of SWCNT and other nanomaterials on cement hydration and reinforcement in: K. Gopalakrishnan, B. Birgisson, P. Taylor, N.O. Attoh-Okine (Eds.) Nanotechnology in Civil Infrastructure, Springer Berlin Heidelberg, 2011, pp. 103-130.
[66] Y.S.d. Ibarra, J.J. Gaitero, E. Erkizia, I. Campillo, Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions, physica status solidi (a), 203 (2006) 1076-1081.
[67] J. Vera-Agullo, V. Chozas-Ligero, D. Portillo-Rico, M.J. García-Casas, A. GutiérrezMartínez, J.M. Mieres-Royo, J. Grávalos-Moreno, Mortar and concrete reinforced with nanomaterials, in: P.J.M.B. Zdeněk Bittnar, Jiří Němeček, Vít Šmilauer and Jan Zeman (Ed.) Nanotechnology in Construction 3, Springer Berlin Heidelberg, 2009, pp. 383-388.
[68] T.L. Anderson, Fracture Mechanics, CRC Press, Boca Raton, 1991.
[69] G.Y. Wu, Steel fiber reinforced heat resistant pavement, ACI SP 105, 105 (1987) 323-350.
[70] W. Yao, J. Li, K. Wu, Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction, Cement and Concrete Research, 33 (2003) 27-30.
[71] M. Hsie, C. Tu, P.S. Song, Mechanical properties of polypropylene hybrid fiber-reinforced concrete, Materials Science and Engineering: A, 494 (2008) 153-157.
[72] C. Qian, P. Stroeven, Fracture properties of concrete reinforced with steel-polypropylene hybrid fibres, Cement and Concrete Composites, 22 (2000) 343-351.
[73] N. Banthia, N. Nandakumar, Crack growth resistance of hybrid fiber reinforced cement composites, Cement and Concrete Composites, 25 (2003) 3-9.
[74] J.S. Lawler, D. Zampini, S.P. Shah, Microfiber and macrofiber hybrid fiber-reinforced concrete, ASCE, 2005.
[75] P.K. Nelson, V.C. Li, T. Kamada, Fracture toughness of microfiber reinforced cement composites, J Mater Civ Eng, 14 (2002) 384-391.
[76] E.T. Dawood, M. Ramli, High strength characteristics of cement mortar reinforced with hybrid fibres, Construction and Building Materials, 25 (2011) 2240-2247.
[77] J. Lawler, T. Wilhelm, D. Zampini, S. Shah, Fracture processes of hybrid fiber-reinforced mortar, Materials and Structures, 36 (2003) 197-208.
[78] E. Parant, R. Pierre, F.L. Maou, Durability of a multiscale fibre reinforced cement composite in aggressive environment under service load, Cement and Concrete Research, 37 (2007) 1106-1114.
[79] E. Parant, P. Rossi, C. Boulay, Fatigue behavior of a multi-scale cement composite, Cement and Concrete Research, 37 (2007) 264-269.
[80] P. Rossi, Development of new cement composite materials for construction, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 219 (2005) 67-74.
[81] P. Rossi, A. Arca, E. Parant, P. Fakhri, Bending and compressive behaviours of a new cement composite, Cement and Concrete Research, 35 (2005) 27-33.
[82] P. Rossi, High performance multi-modal fiber reinforced cement composite (HPMFRCC); the LCPC experience, ACI Materials Journal, 94 (1997) 478-483.
[83] C. Boulay, P. Rossi, J.L. Tailhan, Uniaxial tensile test on a new cement composite having a hardening behavior, in: Sixth RILEM Symposium on Fiber Reinforced Concrete (FRC) (BEFIB 2004), Varenna-Lecco, Italy, 2004.
[84] P.S. Song, J.C. Wu, S. Hwang, B.C. Sheu, Statistical analysis of impact strength and strength reliability of steel-polypropylene hybrid fiber-reinforced concrete, Construction and Building Materials, 19 (2005) 1-9.
[85] A. Sivakumar, M. Santhanam, Mechanical properties of high strength concrete reinforced with metallic and non-metallic fibres, Cement and Concrete Composites, 29 (2007) 603-608.
[86] I. Kang, Y.Y. Heung, J.H. Kim, J.W. Lee, R. Gollapudi, S. Subramaniam, S.
Narasimhadevara, D. Hurd, G.R. Kirikera, V. Shanov, M.J. Schulz, D. Shi, J. Boerio, S. Mall, M. Ruggles-Wren, Introduction to carbon nanotube and nanofiber smart materials, Composites Part B: Engineering, 37 (2006) 382-394.
[87] A comparison of carbon nanotubes and carbon nanofibers, in, Pyrograf Products, Inc.
[88] P.M. Ajayan, Nanotubes from carbon, Chemical Reviews, 99 (1999) 1787-1800.
[89] X. Gong, J. Liu, S. Baskaran, R.D. Voise, J.S. Young, Surfactant-assisted processing of carbon nanotube/polymer composites, Chemistry of Materials, 12 (2000) 1049-1052.
[90] L. Vaisman, H.D. Wagner, G. Marom, The role of surfactants in dispersion of carbon nanotubes, Advances in Colloid and Interface Science, 128-130 (2006) 37-46.
[91] X.-L. Xie, Y.-W. Mai, X.-P. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix: A review, Materials Science and Engineering: R: Reports, 49 (2005) 89-112.
[92] J.J. Beaudoin, P. Gu, J. Marchand, B. Tamtsia, R.E. Myers, Z. Liu, Solvent replacement studies of hydrated portland cement systems: the role of calcium hydroxide, Advanced Cement Based Materials, 8 (1998) 56-65.
[93] M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes, Physics Reports, 409 (2005) 47-99.
[94] D.A. Heller, P.W. Barone, J.P. Swanson, R.M. Mayrhofer, M.S. Strano, Using raman spectroscopy to elucidate the aggregation state of single-walled carbon nanotubes, The Journal of Physical Chemistry B, 108 (2004) 6905-6909.
[95] K. Yurekli, C.A. Mitchell, R. Krishnamoorti, Small-angle neutron scattering from surfactant-assisted aqueous dispersions of carbon nanotubes, Journal of the American Chemical Society, 126 (2004) 9902-9903.
[96] V.C. Moore, M.S. Strano, E.H. Haroz, R.H. Hauge, R.E. Smalley, J. Schmidt, Y. Talmon, Individually suspended single-walled carbon nanotubes in various surfactants, Nano Letters, 3 (2003) 1379-1382.
[97] P. Acker, Micromechanical analysis of creep and shrinkage mechanisms, in: F.-J. Ulm, Bažant, Z.P. and Wittmann F.H. (Ed.) Creep, Shrinkage, and Durability Mechanics of Concrete and Other Quasi-Brittle Materials, Elsevier, London, 2001, pp. 15-25.
[98] P. Acker, Swelling, shrinkage and creep: a mechanical approach to cement hydration, Materials and Structures, 37 (2004) 237-243.
[99] K. Velez, S. Maximilien, D. Damidot, G. Fantozzi, F. Sorrentino, Determination by nanoindentation of elastic modulus and hardness of pure constituents of portland cement clinker, Cement and Concrete Research, 31 (2001) 555-561.
[100] G. Constantinides, F.-J. Ulm, The effect of two types of C-S-H on the elasticity of cementbased materials: results from nanoindentation and micromechanical modeling, Cement and Concrete Research, 34 (2004) 67-80.
[101] G. Constantinides, F. Ulm, K. Van Vliet, On the use of nanoindentation for cementitious materials, Materials and Structures, 36 (2003) 191-196.
[102] J.J. Hughes, P. Trtik, Micro-mechanical properties of cement paste measured by depthsensing nanoindentation: a preliminary correlation of physical properties with phase type, Materials Characterization, 53 (2004) 223-231.
[103] G. Constantinides, F.-J. Ulm, The nanogranular nature of C-S-H, Journal of the Mechanics and Physics of Solids, 55 (2007) 64-90.
[104] P. Mondal, S.P. Shah, L. Marks, A reliable technique to determine the local mechanical properties at the nanoscale for cementitious materials, Cement and Concrete Research, 37 (2007) 1440-1444.
[105] W. Zhu, J.J. Hughes, N. Bicanic, C.J. Pearce, Nanoindentation mapping of mechanical properties of cement paste and natural rocks, Materials Characterization, 58 (2007) 1189-1198.
[106] H.M. Jennings, J.J. Thomas, J.S. Gevrenov, G. Constantinides, F.-J. Ulm, A multitechnique investigation of the nanoporosity of cement paste, Cement and Concrete Research, 37 (2007) 329-336.
[107] L. Sorelli, G. Constantinides, F.-J. Ulm, F. Toutlemonde, The nano-mechanical signature of Ultra High Performance Concrete by statistical nanoindentation techniques, Cement and Concrete Research, 38 (2008) 1447-1456.
[108] J.J. Chen, L. Sorelli, M. Vandamme, F.-J. Ulm, G. Chanvillard, A coupled nanoindentation/SEM-EDS study on low water/cement ratio portland cement paste: evidence for C-S-H/Ca(OH)2 nanocomposites, Journal of the American Ceramic Society, 93 (2010) 14841493.
[109] X.H. Wang, S. Jacobsen, J.Y. He, Z.L. Zhang, S.F. Lee, H.L. Lein, Application of nanoindentation testing to study of the interfacial transition zone in steel fiber reinforced mortar, Cement and Concrete Research, 39 (2009) 701-715.
[110] P. Mondal, Nanomechanical properties of cementitious materials, in: Civil and Environmental Engineering, Northwestern University, Evanston, IL, 2008, pp. 185.
[111] P. Mondal, S.P. Shah, L.D. Marks, Nanomechanical properties of interfacial transition zone, in: Z. Bittnar, P.J.M. Bartos, J. Němeček, V. Šmilauer, J. Zeman (Eds.) Concrete Nanotechnology in Construction 3, Springer Berlin Heidelberg, 2009, pp. 315-320.
[112] S.P. Shah, M.S. Konsta-Gdoutos, Z.S. Metaxa, P. Mondal, Nanoscale modification of cementitious materials, in: Z. Bittnar, P.J.M. Bartos, J. Němeček, V. Šmilauer, J. Zeman (Eds.) Nanotechnology in Construction 3, Springer Berlin Heidelberg, 2009, pp. 125-130.
[113] M.S. Konsta-Gdoutos, Z.S. Metaxa, S.P. Shah, Highly dispersed carbon nanotube reinforced cement based materials, Cement and Concrete Research, 40 (2010) 1052-1059.
[114] T. Kowald, R. Trettin, N. Dorbaum, T. Stadler, X. Jiang, Influence of carbon nanotubes on the micromechanical properties of a model system for ultra-high performance concrete, in: S. Sturwald (Ed.) Second International Symposium on Ultra High Performance Concrete, Kassel University Press GmbH, Kassel, Germany, 2008, pp. 129-134.
[115] A. Bentur, S.T. Wu, N. Banthia, R. Baggott, W. Hansen, A. Katz, C.K.Y. Leung, V.C. Li, B. Mobasher, A.E. Naaman, R. Robertson, P. Soroushian, H. Stang, L.R. Taerwe, Fiber-matrix interfaces in: A.E. Naaman, H.W. Reinhardt (Eds.) Second International Workshop on High Performance Fiber Reinforced Cement Composites, E\&FN Spon, University of Michigan and the University of Stuttgart, Ann Arbor, USA, 1995, pp. 149-191.
[116] A. Katz, A. Bentur, Effect of matrix composition on the aging of CFRC, Cement and Concrete Composites, 17 (1995) 87-97.
[117] T.J. Chu, R.E. Robertson, H. Najm, A.E. Naaman, Effects of polyvinyl alcohol on fiber cement interfaces. Part II: Microstructures, Advanced Cement Based Materials, 1 (1994) 122130.
[118] J.R. Linton, P.L. Berneburg, E.M. Gartner, A. Bentur, Carbon fiber reinforced cement and mortar, in: S. Mindess, J.P. Skalny (Eds.) Fiber Reinforced Cementitious Materials, Materials Research Society, Boston, MA, USA, 1991, pp. 255-264.
[119] T. Ozkan, M. Naraghi, A. Polycarpou, I. Chasiotis, Mechanical strength of pyrolytically stripped and functionalized heat treated vapor grown carbon nanofibers, in: Ith International Congress and Exposition, Society for Experimental Mechanics Inc., Orlando, Florida, 2008.
[120] X. Fu, W. Lu, D.D.L. Chung, Improving the bond strength between carbon fiber and cement by fiber surface treatment and polymer addition to cement mix, Cement and Concrete Research, 26 (1996) 1007-1012.
[121] P. Somasundaran, Encyclopedia of surface and colloid science, in, CRC Press, Boca Raton (FL), 2006, pp. 6675.
[122] R.H. Bogue, The chemistry of portland cement, 2nd ed., Reinhold Pub. Corp., New York, 1955.
[123] B. Lothenbach, F. Winnefeld, Thermodynamic modelling of the hydration of portland cement, Cement and Concrete Research, 36 (2006) 209-226.
[124] K.L. Klein, A.V. Melechko, T.E. McKnight, S.T. Retterer, P.D. Rack, J.D. Fowlkes, D.C. Joy, M.L. Simpson, Surface characterization and functionalization of carbon nanofibers, Journal of Applied Physics, 103 (2008) 061301-061326.
[125] A. Liu, T. Watanabe, I. Honma, J. Wang, H. Zhou, Effect of solution pH and ionic strength on the stability of poly(acrylic acid)-encapsulated multiwalled carbon nanotubes aqueous dispersion and its application for NADH sensor, Biosensors and Bioelectronics, 22 (2006) 694699.
[126] Y. Marcus, Surface tension of aqueous electrolytes and ions, Journal of Chemical \& Engineering Data, 55 (2010) 3641-3644.
[127] F. Hunkeler, The resistivity of pore water solution-a decisive parameter of rebar corrosion and repair methods, Construction and Building Materials, 10 (1996) 381-389.
[128] Y.F. Houst, P. Bowen, F. Perche, A. Kauppi, P. Borget, L. Galmiche, J.-F. Le Meins, F. Lafuma, R.J. Flatt, I. Schober, P.F.G. Banfill, D.S. Swift, B.O. Myrvold, B.G. Petersen, K. Reknes, Design and function of novel superplasticizers for more durable high performance concrete (superplast project), Cement and Concrete Research, 38 (2008) 1197-1209.
[129] F. Sanchez, K. Sobolev, Nanotechnology in concrete-a review, Construction and Building Materials, 24 (2010) 2060-2071.
[130] M. Miller, C. Bobko, M. Vandamme, F.J. Ulm, Surface roughness criteria for cement paste nanoindentation, Cement and Concrete Research, 38 (2008) 467-476.
[131] P. Allison, R. Moser, M. Chandler, T. Rushing, B. Williams, T. Cummins, Nanomechanical structure-property relations of dynamically loaded reactive powder concrete, Surface Effects and Contact Mechanics IX: Computational Methods and Experiments, 62 (2009) 287.
[132] W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology, Journal of Materials Research, 19 (2004) 3-20.
[133] P. Trtik, B. Münch, P. Lura, A critical examination of statistical nanoindentation on model materials and hardened cement pastes based on virtual experiments, Cement and Concrete Composites, 31 (2009) 705-714.
[134] F.J. Ulm, M. Vandamme, H.M. Jennings, J. Vanzo, M. Bentivegna, K.J. Krakowiak, G. Constantinides, C.P. Bobko, K.J. Van Vliet, Does microstructure matter for statistical nanoindentation techniques?, Cement and Concrete Composites, 32 (2010) 92-99.
[135] P. Lura, P. Trtik, B. Münch, Validity of recent approaches for statistical nanoindentation of cement pastes, Cement and Concrete Composites, 33 (2011) 457-465.
[136] G. Constantinides, Invariant mechanical properties of calcium-silicate-hydrates (CHS) in cement-based materials: instrumented nanoindentation and microporomechanical modeling, in, Massachusetts Institute of Technology, 2006.
[137] A. Haldar, S. Mahadevan, Probability, reliability, and statistical methods in engineering design, John Wiley, Chichester [England], 2000.
[138] J. Goldstein, D.E. Newbury, D.C. Joy, C.E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, J.R. Michael, Scanning electron microscopy and x-ray microanalysis, 3 ed., Springer, New York, 2003.
[139] J. Pouchou, F. Pichoir, A new model for quantitative x-ray microanalysis. I.--application to the analysis of homogeneous samples, Recherche Aerospatiale, (1984) 167-192.
[140] H.F.W. Taylor, Cement chemistry, Thomas Telford, London, 2004.
[141] D. Davydov, M. Jirásek, L. Kopecký, Critical aspects of nano-indentation technique in application to hardened cement paste, Cement and Concrete Research, 41 (2011) 20-29.
[142] T. Powers, T. Brownyard, Studies of the physical properties of hardened cement paste (nine parts), Journal of the American Concrete Institute, 43 (1946).
[143] Z. Metaxa, M. Konsta-Gdoutos, S. Shah, Carbon nanotubes reinforced concrete, 2009.
[144] Z.S. Metaxa, M.S. Konsta-Gdoutos, S.P. Shah, Crack free concrete made with nanofiber reinforcement, in: Developing a Research Agenda for Transportation Infrastructure Preservation and Renewal Conference, Washington, D.C., 2009.
[145] S. Shah, M. Konsta-Gdoutos, Z. Metaxa, Advanced cement based nanocomposites, in: E.E. Gdoutos, A.N. Kounadis (Eds.) Recent Advances in Mechanics, Springer, 2011, pp. 313-327.
[146] T.K. Moon, The expectation-maximization algorithm, Signal Processing Magazine, IEEE, 13 (1996) 47-60.
[147] B.W. Silverman, Density estimation for statistics and data analysis, Chapman \& Hall/CRC, 1986.
[148] L.I. Nasibulina, I.V. Anoshkin, A.G. Nasibulin, A. Cwirzen, V. Penttala, E.I. Kauppinen, Effect of carbon nanotube aqueous dispersion quality on mechanical properties of cement composite, Journal of Nanomaterials, 2012 (2012).
[149] K.L. Lu, R.M. Lago, Y.K. Chen, M.L.H. Green, P.J.F. Harris, S.C. Tsang, Mechanical damage of carbon nanotubes by ultrasound, Carbon, 34 (1996) 814-816.
[150] R. Andrews, D. Jacques, D. Qian, T. Rantell, Multiwall carbon nanotubes: synthesis and application, Accounts of Chemical Research, 35 (2002) 1008-1017.
[151] A. Katz, V.C. Li, A. Kazmer, Bond properties of carbon fibers in cementitious matrix, J Mater Civ Eng, 7 (1995) 125-128.
[152] D.D.L. Chung, Review: improving cement-based materials by using silica fume, Journal of Materials Science, 37 (2002) 673-682.
[153] L. Raki, J. Beaudoin, R. Alizadeh, J. Makar, T. Sato, Cement and concrete nanoscience and nanotechnology, Materials, 3 (2010) 918-942.

## APPENDIX A

## DISPERSION IN SOLUTION DATA

This appendix contains a summary of the data included in the micrograph analysis of the dispersion of CNFs in solution (Figure 3.2). Ten micrographs were analyzed for 15 drops of each solution. The number of particles (individual CNFs or bundles/agglomerates of CNFs) and the total area of CNFs found in each micrograph are given. In addition a summary for all micrographs for each solution is given.

## P-HRWR/T-CNF

Total number of CNF particles: 125211.
Total area covered by CNFs: $1.199 \mathrm{~mm}^{2}$.
Total number of particles per $\mathrm{mm}^{2}$ of area covered by CNFs: 104400 .
Drop 1

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm ${ }^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 853 | 0.00597 | 142766 |
| 2 | 558 | 0.00260 | 214982 |
| 3 | 890 | 0.00716 | 124386 |
| 4 | 840 | 0.00359 | 234271 |
| 5 | 808 | 0.00494 | 163603 |
| 6 | 973 | 0.00890 | 109350 |
| 7 | 587 | 0.01424 | 41211 |
| 8 | 801 | 0.00401 | 199973 |
| 9 | 906 | 0.00555 | 163345 |
| 10 | 955 | 0.00362 | 264160 |

Drop 2

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm ${ }^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 996 | 0.00500 | 199057 |
| 2 | 1044 | 0.00932 | 112024 |
| 3 | 1119 | 0.01153 | 97087 |
| 4 | 1151 | 0.01034 | 111269 |
| 5 | 1228 | 0.00852 | 144057 |
| 6 | 1348 | 0.01215 | 110933 |
| 7 | 1186 | 0.01120 | 105880 |
| 8 | 1321 | 0.01157 | 114127 |
| 9 | 1443 | 0.01050 | 137450 |
| 10 | 1357 | 0.01071 | 126672 |

Drop 3

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm <br> of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 961 | 0.00495 | 194147 |
| 2 | 806 | 0.00574 | 140495 |
| 3 | 927 | 0.00685 | 135244 |
| 4 | 1059 | 0.00480 | 220689 |
| 5 | 975 | 0.00540 | 180481 |
| 6 | 856 | 0.00641 | 133588 |
| 7 | 1049 | 0.00909 | 115436 |
| 8 | 1052 | 0.01080 | 97415 |
| 9 | 750 | 0.00859 | 87347 |
| 10 | 953 | 0.01006 | 94751 |

Drop 4

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm ${ }^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 821 | 0.00808 | 101553 |
| 2 | 995 | 0.00884 | 112547 |
| 3 | 682 | 0.00482 | 141349 |
| 4 | 858 | 0.00553 | 155242 |
| 5 | 1097 | 0.00896 | 122394 |
| 6 | 1077 | 0.00903 | 119307 |
| 7 | 1030 | 0.00923 | 111577 |
| 8 | 1048 | 0.00919 | 114078 |
| 9 | 1012 | 0.00942 | 107387 |
| 10 | 1079 | 0.00574 | 187892 |

Drop 5

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm ${ }^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 646 | 0.01155 | 55922 |
| 2 | 413 | 0.00655 | 63100 |
| 3 | 662 | 0.01179 | 56139 |
| 4 | 570 | 0.01062 | 53661 |
| 5 | 556 | 0.00867 | 64155 |
| 6 | 550 | 0.01044 | 52683 |
| 7 | 412 | 0.00874 | 47125 |
| 8 | 495 | 0.01263 | 39184 |
| 9 | 513 | 0.01239 | 41401 |
| 10 | 529 | 0.01213 | 43606 |

Drop 6

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm ${ }^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 552 | 0.00831 | 66428 |
| 2 | 661 | 0.00830 | 79647 |
| 3 | 695 | 0.00948 | 73335 |
| 4 | 640 | 0.00517 | 123703 |
| 5 | 739 | 0.00649 | 113789 |
| 6 | 553 | 0.00910 | 60780 |
| 7 | 611 | 0.01034 | 59068 |
| 8 | 713 | 0.01299 | 54872 |
| 9 | 661 | 0.01079 | 61265 |
| 10 | 520 | 0.00853 | 60990 |

Drop 7

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm ${ }^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 532 | 0.00637 | 83472 |
| 2 | 323 | 0.01108 | 29149 |
| 3 | 492 | 0.00780 | 63059 |
| 4 | 492 | 0.01055 | 46614 |
| 5 | 465 | 0.00228 | 203720 |
| 6 | 597 | 0.00821 | 72712 |
| 7 | 560 | 0.00999 | 56084 |
| 8 | 567 | 0.00809 | 70046 |
| 9 | 474 | 0.00352 | 134788 |
| 10 | 583 | 0.00419 | 139121 |

Drop 8

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per $\mathrm{mm}^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 494 | 0.00479 | 103125 |
| 2 | 496 | 0.00649 | 76422 |
| 3 | 527 | 0.00789 | 66765 |
| 4 | 537 | 0.01021 | 52570 |
| 5 | 482 | 0.00350 | 137692 |
| 6 | 558 | 0.00575 | 96999 |
| 7 | 546 | 0.00599 | 91211 |
| 8 | 392 | 0.01426 | 27499 |
| 9 | 564 | 0.00882 | 63932 |
| 10 | 560 | 0.00633 | 88508 |

Drop 9

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm ${ }^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 999 | 0.00679 | 147230 |
| 2 | 885 | 0.00664 | 133185 |
| 3 | 939 | 0.00600 | 156377 |
| 4 | 823 | 0.00968 | 84979 |
| 5 | 942 | 0.00973 | 96804 |
| 6 | 946 | 0.00719 | 131546 |
| 7 | 798 | 0.00741 | 107705 |
| 8 | 852 | 0.00905 | 94139 |
| 9 | 1011 | 0.00793 | 127528 |
| 10 | 761 | 0.01156 | 65831 |

Drop 10

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm ${ }^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 898 | 0.01192 | 75357 |
| 2 | 644 | 0.01542 | 41753 |
| 3 | 970 | 0.01105 | 87762 |
| 4 | 848 | 0.00649 | 130668 |
| 5 | 1176 | 0.00936 | 125662 |
| 6 | 931 | 0.00593 | 156942 |
| 7 | 974 | 0.00957 | 101752 |
| 8 | 1217 | 0.00888 | 137014 |
| 9 | 1219 | 0.00837 | 145599 |
| 10 | 1195 | 0.00847 | 141048 |

Drop 11

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm ${ }^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 815 | 0.00573 | 142119 |
| 2 | 990 | 0.00638 | 155292 |
| 3 | 714 | 0.00336 | 212196 |
| 4 | 873 | 0.00742 | 117687 |
| 5 | 933 | 0.01065 | 87623 |
| 6 | 1109 | 0.00743 | 149184 |
| 7 | 985 | 0.01072 | 91894 |
| 8 | 1083 | 0.00972 | 111420 |
| 9 | 808 | 0.00627 | 128775 |
| 10 | 725 | 0.00917 | 79102 |

Drop 12

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 853 | 0.01654 | 51577 |
| 2 | 929 | 0.00624 | 148907 |
| 3 | 819 | 0.00520 | 157483 |
| 4 | 786 | 0.00836 | 94046 |
| 5 | 887 | 0.00677 | 131077 |
| 6 | 704 | 0.00804 | 87548 |
| 7 | 830 | 0.00390 | 212881 |
| 8 | 854 | 0.00519 | 164661 |
| 9 | 439 | 0.00786 | 55836 |
| 10 | 946 | 0.00765 | 123676 |

Drop 13

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm ${ }^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 788 | 0.02044 | 38544 |
| 2 | 885 | 0.00478 | 185155 |
| 3 | 1005 | 0.00727 | 138275 |
| 4 | 1267 | 0.00819 | 154627 |
| 5 | 1119 | 0.00673 | 166252 |
| 6 | 1168 | 0.01302 | 89684 |
| 7 | 945 | 0.01463 | 64595 |
| 8 | 564 | 0.00486 | 116007 |
| 9 | 1180 | 0.00848 | 139105 |
| 10 | 1015 | 0.00673 | 150925 |

Drop 14

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm <br> of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 1134 | 0.00541 | 209763 |
| 2 | 1222 | 0.00703 | 173801 |
| 3 | 804 | 0.00675 | 119118 |
| 4 | 806 | 0.00355 | 227335 |
| 5 | 941 | 0.00413 | 227850 |
| 6 | 725 | 0.01021 | 71042 |
| 7 | 783 | 0.00672 | 116480 |
| 8 | 698 | 0.00459 | 152060 |
| 9 | 990 | 0.00756 | 131027 |
| 10 | 788 | 0.00440 | 178922 |

Drop 15

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm ${ }^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 726 | 0.00346 | 210022 |
| 2 | 868 | 0.00373 | 232696 |
| 3 | 814 | 0.00293 | 277509 |
| 4 | 832 | 0.00382 | 217994 |
| 5 | 1121 | 0.00728 | 154076 |
| 6 | 996 | 0.00733 | 135835 |
| 7 | 527 | 0.01105 | 47699 |
| 8 | 923 | 0.00659 | 140137 |
| 9 | 1068 | 0.00791 | 134967 |
| 10 | 1016 | 0.00561 | 180945 |

## P-HRWR/CNF

Total number of CNF particles: 116929.
Total area covered by CNFs: $1.244 \mathrm{~mm}^{2}$.
Total number of particles per $\mathrm{mm}^{2}$ of area covered by CNFs: 94027.
Drop 1

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm ${ }^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 565 | 0.00470 | 120170 |
| 2 | 660 | 0.00463 | 142466 |
| 3 | 712 | 0.00619 | 114988 |
| 4 | 674 | 0.00517 | 130449 |
| 5 | 698 | 0.00475 | 146952 |
| 6 | 589 | 0.00419 | 140581 |
| 7 | 614 | 0.00528 | 116342 |
| 8 | 600 | 0.00463 | 129685 |
| 9 | 528 | 0.00542 | 97498 |
| 10 | 574 | 0.00364 | 157505 |

Drop 2

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm ${ }^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 831 | 0.00930 | 89360 |
| 2 | 719 | 0.00939 | 76595 |
| 3 | 673 | 0.00761 | 88488 |
| 4 | 655 | 0.00830 | 78921 |
| 5 | 497 | 0.00619 | 80244 |
| 6 | 798 | 0.00918 | 86899 |
| 7 | 793 | 0.00803 | 98797 |
| 8 | 722 | 0.00856 | 84369 |
| 9 | 784 | 0.01008 | 77790 |
| 10 | 760 | 0.00928 | 81896 |

Drop 3

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 828 | 0.00871 | 95054 |
| 2 | 682 | 0.01044 | 65349 |
| 3 | 984 | 0.00885 | 111247 |
| 4 | 901 | 0.00866 | 104047 |
| 5 | 976 | 0.00803 | 121504 |
| 6 | 1017 | 0.00809 | 125706 |
| 7 | 1051 | 0.00642 | 163638 |
| 8 | 927 | 0.00830 | 111735 |
| 9 | 951 | 0.00567 | 167821 |
| 10 | 809 | 0.00685 | 118066 |

Drop 4

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm <br> of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 867 | 0.00878 | 98740 |
| 2 | 938 | 0.00751 | 124956 |
| 3 | 733 | 0.00682 | 107509 |
| 4 | 733 | 0.00807 | 90857 |
| 5 | 880 | 0.00645 | 136531 |
| 6 | 1110 | 0.00741 | 149843 |
| 7 | 819 | 0.00668 | 122619 |
| 8 | 610 | 0.00492 | 124069 |
| 9 | 539 | 0.00399 | 135012 |
| 10 | 705 | 0.00484 | 145581 |

Drop 5

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm <br> of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 1196 | 0.00685 | 174715 |
| 2 | 895 | 0.00810 | 110535 |
| 3 | 989 | 0.01083 | 91300 |
| 4 | 985 | 0.00988 | 99713 |
| 5 | 954 | 0.01298 | 73499 |
| 6 | 1162 | 0.01110 | 104719 |
| 7 | 1122 | 0.00964 | 116345 |
| 8 | 951 | 0.01069 | 89001 |
| 9 | 901 | 0.00786 | 114589 |
| 10 | 1034 | 0.01373 | 75308 |

Drop 6

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm <br> of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 1120 | 0.01026 | 109175 |
| 2 | 1152 | 0.01084 | 106282 |
| 3 | 1064 | 0.01206 | 88219 |
| 4 | 1250 | 0.01034 | 120940 |
| 5 | 1231 | 0.01171 | 105159 |
| 6 | 1078 | 0.01081 | 99718 |
| 7 | 957 | 0.00571 | 167707 |
| 8 | 1057 | 0.00641 | 164885 |
| 9 | 1003 | 0.00551 | 182125 |
| 10 | 1029 | 0.00772 | 133224 |

Drop 7

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm ${ }^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 829 | 0.01088 | 76212 |
| 2 | 882 | 0.01113 | 79246 |
| 3 | 975 | 0.01023 | 95327 |
| 4 | 922 | 0.01070 | 86157 |
| 5 | 1017 | 0.01093 | 93059 |
| 6 | 1038 | 0.00935 | 110982 |
| 7 | 902 | 0.01026 | 87949 |
| 8 | 932 | 0.00855 | 108990 |
| 9 | 917 | 0.01152 | 79613 |
| 10 | 1110 | 0.00842 | 131882 |

Drop 8

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm ${ }^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 581 | 0.01238 | 46946 |
| 2 | 608 | 0.01136 | 53511 |
| 3 | 447 | 0.01504 | 29717 |
| 4 | 882 | 0.00892 | 98892 |
| 5 | 520 | 0.01264 | 41125 |
| 6 | 622 | 0.01297 | 47970 |
| 7 | 489 | 0.01197 | 40868 |
| 8 | 418 | 0.01405 | 29742 |
| 9 | 477 | 0.00929 | 51335 |
| 10 | 523 | 0.01077 | 48563 |

Drop 9

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm ${ }^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 523 | 0.01022 | 51165 |
| 2 | 842 | 0.01413 | 59569 |
| 3 | 814 | 0.01023 | 79588 |
| 4 | 332 | 0.01175 | 28249 |
| 5 | 698 | 0.01085 | 64356 |
| 6 | 813 | 0.01403 | 57956 |
| 7 | 768 | 0.01551 | 49526 |
| 8 | 613 | 0.02026 | 30250 |
| 9 | 741 | 0.01631 | 45432 |
| 10 | 543 | 0.02015 | 26945 |

Drop 10

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per ${ }^{\mathrm{mm} 2}$ of Area Covered <br> by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 361 | 0.00692 | 52143 |
| 2 | 395 | 0.00412 | 95785 |
| 3 | 230 | 0.00414 | 55620 |
| 4 | 268 | 0.00495 | 54152 |
| 5 | 368 | 0.00390 | 94346 |
| 6 | 362 | 0.00776 | 46621 |
| 7 | 460 | 0.01029 | 44701 |
| 8 | 380 | 0.00852 | 44581 |
| 9 | 513 | 0.00766 | 66985 |
| 10 | 397 | 0.00842 | 47170 |

Drop 11

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm ${ }^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 570 | 0.00902 | 63186 |
| 2 | 611 | 0.00982 | 62217 |
| 3 | 546 | 0.00908 | 60165 |
| 4 | 505 | 0.01119 | 45117 |
| 5 | 612 | 0.01208 | 50663 |
| 6 | 622 | 0.00899 | 69209 |
| 7 | 670 | 0.01159 | 57815 |
| 8 | 517 | 0.01020 | 50663 |
| 9 | 618 | 0.01336 | 46257 |
| 10 | 804 | 0.00739 | 108861 |

Drop 12

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm <br> of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 852 | 0.00487 | 174777 |
| 2 | 994 | 0.00613 | 162163 |
| 3 | 944 | 0.00582 | 162247 |
| 4 | 557 | 0.00444 | 125422 |
| 5 | 862 | 0.00404 | 213504 |
| 6 | 1070 | 0.00449 | 238497 |
| 7 | 706 | 0.00460 | 153524 |
| 8 | 900 | 0.00534 | 168447 |
| 9 | 989 | 0.00599 | 165230 |
| 10 | 1032 | 0.00513 | 201282 |

Drop 13

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm ${ }^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 644 | 0.00334 | 192645 |
| 2 | 411 | 0.00266 | 154650 |
| 3 | 673 | 0.00260 | 258681 |
| 4 | 687 | 0.00631 | 108832 |
| 5 | 844 | 0.00498 | 169372 |
| 6 | 986 | 0.00696 | 141574 |
| 7 | 881 | 0.00601 | 146482 |
| 8 | 975 | 0.00447 | 217955 |
| 9 | 932 | 0.00700 | 133117 |
| 10 | 991 | 0.00680 | 145682 |

Drop 14

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm <br> of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 744 | 0.00899 | 82802 |
| 2 | 1080 | 0.00878 | 122975 |
| 3 | 863 | 0.00643 | 134147 |
| 4 | 853 | 0.00660 | 129270 |
| 5 | 800 | 0.00456 | 175562 |
| 6 | 941 | 0.00681 | 138146 |
| 7 | 539 | 0.00555 | 97183 |
| 8 | 879 | 0.00740 | 118713 |
| 9 | 819 | 0.00733 | 111742 |
| 10 | 933 | 0.01067 | 87475 |

Drop 15

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per $\mathrm{mm}^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 637 | 0.00394 | 161862 |
| 2 | 933 | 0.00565 | 165129 |
| 3 | 857 | 0.00337 | 253942 |
| 4 | 1024 | 0.00714 | 143320 |
| 5 | 609 | 0.00336 | 181453 |
| 6 | 966 | 0.00522 | 185128 |
| 7 | 1034 | 0.00578 | 178857 |
| 8 | 862 | 0.00420 | 205360 |
| 9 | 560 | 0.01565 | 35780 |
| 10 | 843 | 0.00697 | 120989 |

## N-HRWR/CNF

Total number of CNF particles: 15361.
Total area covered by CNFs: $1.265 \mathrm{~mm}^{2}$.
Total number of particles per $\mathrm{mm}^{2}$ of area covered by CNFs: 12146.
Drop 1

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm <br> Cof Area <br> Coved by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 211 | 0.00723 | 29197 |
| 2 | 169 | 0.00698 | 24196 |
| 3 | 203 | 0.00320 | 63410 |
| 4 | 194 | 0.00384 | 50490 |
| 5 | 181 | 0.00648 | 27943 |
| 6 | 97 | 0.00939 | 10325 |
| 7 | 197 | 0.00867 | 22729 |
| 8 | 152 | 0.00713 | 21306 |
| 9 | 238 | 0.00628 | 37909 |
| 10 | 210 | 0.01229 | 17091 |

Drop 2

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm ${ }^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 166 | 0.01028 | 16147 |
| 2 | 245 | 0.00802 | 30543 |
| 3 | 216 | 0.00659 | 32792 |
| 4 | 178 | 0.00914 | 19482 |
| 5 | 219 | 0.00877 | 24980 |
| 6 | 127 | 0.00905 | 14026 |
| 7 | 98 | 0.01227 | 7988 |
| 8 | 84 | 0.00749 | 11219 |
| 9 | 99 | 0.01251 | 7915 |
| 10 | 137 | 0.01094 | 12523 |

Drop 3

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm <br> of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 55 | 0.01474 | 3732 |
| 2 | 95 | 0.00863 | 11005 |
| 3 | 144 | 0.00888 | 16217 |
| 4 | 199 | 0.00591 | 33691 |
| 5 | 44 | 0.00753 | 5842 |
| 6 | 43 | 0.01707 | 2518 |
| 7 | 59 | 0.00608 | 9701 |
| 8 | 39 | 0.00970 | 4021 |
| 9 | 26 | 0.01374 | 1892 |
| 10 | 52 | 0.01136 | 4578 |

Drop 4

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm <br> of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 183 | 0.00335 | 54584 |
| 2 | 111 | 0.00941 | 11799 |
| 3 | 160 | 0.00465 | 34387 |
| 4 | 154 | 0.00427 | 36067 |
| 5 | 142 | 0.00243 | 58319 |
| 6 | 131 | 0.00508 | 25808 |
| 7 | 69 | 0.00860 | 8021 |
| 8 | 123 | 0.00513 | 23981 |
| 9 | 153 | 0.00418 | 36644 |
| 10 | 217 | 0.00426 | 50928 |

Drop 5

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per $\mathrm{mm}^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 254 | 0.00758 | 33515 |
| 2 | 293 | 0.01069 | 27421 |
| 3 | 266 | 0.00898 | 29620 |
| 4 | 225 | 0.01205 | 18669 |
| 5 | 323 | 0.00916 | 35250 |
| 6 | 120 | 0.01038 | 11557 |
| 7 | 142 | 0.00955 | 14873 |
| 8 | 130 | 0.00697 | 18662 |
| 9 | 123 | 0.00634 | 19390 |
| 10 | 83 | 0.00387 | 21424 |

Drop 6

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm ${ }^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 37 | 0.01675 | 2209 |
| 2 | 51 | 0.01490 | 3423 |
| 3 | 50 | 0.01646 | 3038 |
| 4 | 67 | 0.00345 | 19427 |
| 5 | 174 | 0.00119 | 145875 |
| 6 | 71 | 0.00086 | 82975 |
| 7 | 173 | 0.00266 | 64988 |
| 8 | 18 | 0.02589 | 695 |
| 9 | 14 | 0.01649 | 849 |
| 10 | 27 | 0.00304 | 8891 |

Drop 7

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm ${ }^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 61 | 0.00808 | 7550 |
| 2 | 57 | 0.00929 | 6134 |
| 3 | 73 | 0.00670 | 10904 |
| 4 | 57 | 0.00310 | 18389 |
| 5 | 189 | 0.00177 | 106741 |
| 6 | 92 | 0.01352 | 6802 |
| 7 | 143 | 0.00441 | 32443 |
| 8 | 83 | 0.01818 | 4564 |
| 9 | 53 | 0.00764 | 6940 |
| 10 | 65 | 0.00840 | 7742 |

Drop 8

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm ${ }^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 79 | 0.01000 | 7901 |
| 2 | 102 | 0.01125 | 9068 |
| 3 | 78 | 0.00347 | 22449 |
| 4 | 79 | 0.00582 | 13564 |
| 5 | 79 | 0.00561 | 14079 |
| 6 | 82 | 0.00361 | 22687 |
| 7 | 75 | 0.00506 | 14818 |
| 8 | 36 | 0.00712 | 5060 |
| 9 | 50 | 0.01710 | 2924 |
| 10 | 29 | 0.00714 | 4060 |

Drop 9

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm ${ }^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 31 | 0.00893 | 3473 |
| 2 | 96 | 0.01215 | 7904 |
| 3 | 138 | 0.00852 | 16205 |
| 4 | 30 | 0.00960 | 3124 |
| 5 | 48 | 0.00891 | 5389 |
| 6 | 40 | 0.02381 | 1680 |
| 7 | 63 | 0.00489 | 12885 |
| 8 | 45 | 0.01107 | 4065 |
| 9 | 31 | 0.00846 | 3664 |
| 10 | 15 | 0.00493 | 3043 |

Drop 10

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm ${ }^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 32 | 0.00643 | 4979 |
| 2 | 71 | 0.00231 | 30722 |
| 3 | 88 | 0.00515 | 17094 |
| 4 | 97 | 0.00479 | 20254 |
| 5 | 91 | 0.00402 | 22657 |
| 6 | 37 | 0.00517 | 7153 |
| 7 | 54 | 0.00812 | 6647 |
| 8 | 32 | 0.00787 | 4065 |
| 9 | 57 | 0.00684 | 8330 |
| 10 | 107 | 0.00630 | 16998 |

Drop 11

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 86 | 0.00359 | 23940 |
| 2 | 107 | 0.00904 | 11842 |
| 3 | 161 | 0.01598 | 10077 |
| 4 | 119 | 0.01113 | 10687 |
| 5 | 96 | 0.00959 | 10014 |
| 6 | 122 | 0.01102 | 11066 |
| 7 | 139 | 0.00609 | 22810 |
| 8 | 110 | 0.01367 | 8050 |
| 9 | 113 | 0.00998 | 11326 |
| 10 | 139 | 0.00692 | 20087 |

Drop 12

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 27 | 0.00493 | 5476 |
| 2 | 26 | 0.00690 | 3769 |
| 3 | 16 | 0.00507 | 3159 |
| 4 | 20 | 0.00609 | 3286 |
| 5 | 13 | 0.01141 | 1139 |
| 6 | 21 | 0.01297 | 1619 |
| 7 | 29 | 0.01202 | 2413 |
| 8 | 22 | 0.00513 | 4288 |
| 9 | 27 | 0.01557 | 1735 |
| 10 | 22 | 0.01895 | 1161 |

Drop 13

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm ${ }^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 115 | 0.00459 | 25063 |
| 2 | 51 | 0.00390 | 13075 |
| 3 | 50 | 0.00514 | 9726 |
| 4 | 60 | 0.00797 | 7526 |
| 5 | 82 | 0.00242 | 33904 |
| 6 | 84 | 0.01154 | 7278 |
| 7 | 65 | 0.00903 | 7199 |
| 8 | 50 | 0.01604 | 3117 |
| 9 | 32 | 0.01505 | 2127 |
| 10 | 57 | 0.01203 | 4737 |

Drop 14

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm ${ }^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 72 | 0.00679 | 10596 |
| 2 | 65 | 0.00929 | 6996 |
| 3 | 49 | 0.00672 | 7294 |
| 4 | 72 | 0.01471 | 4894 |
| 5 | 85 | 0.00984 | 8638 |
| 6 | 160 | 0.00786 | 20360 |
| 7 | 101 | 0.00839 | 12040 |
| 8 | 83 | 0.00657 | 12627 |
| 9 | 169 | 0.00842 | 20069 |
| 10 | 119 | 0.00571 | 20836 |

Drop 15

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 137 | 0.00770 | 17798 |
| 2 | 227 | 0.01079 | 21041 |
| 3 | 198 | 0.00395 | 50132 |
| 4 | 92 | 0.00857 | 10732 |
| 5 | 110 | 0.01044 | 10534 |
| 6 | 120 | 0.00762 | 15753 |
| 7 | 134 | 0.00600 | 22333 |
| 8 | 140 | 0.00569 | 24584 |
| 9 | 78 | 0.00389 | 20048 |
| 10 | 63 | 0.00761 | 8274 |

## AE/CNF

Total number of CNF particles: 60243.
Total area covered by CNFs: $1.160 \mathrm{~mm}^{2}$.
Total number of particles per $\mathrm{mm}^{2}$ of area covered by CNFs: 51915.
Drop 1

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm ${ }^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 962 | 0.00904 | 106368 |
| 2 | 955 | 0.00589 | 162207 |
| 3 | 660 | 0.00461 | 143142 |
| 4 | 1007 | 0.00330 | 304768 |
| 5 | 734 | 0.00728 | 100843 |
| 6 | 186 | 0.00776 | 23961 |
| 7 | 335 | 0.00790 | 42421 |
| 8 | 324 | 0.00635 | 51051 |
| 9 | 852 | 0.00636 | 134065 |
| 10 | 789 | 0.00839 | 94050 |

Drop 2

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm <br> of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 692 | 0.00708 | 97728 |
| 2 | 471 | 0.00730 | 64489 |
| 3 | 747 | 0.00580 | 128842 |
| 4 | 783 | 0.00410 | 191118 |
| 5 | 289 | 0.00668 | 43238 |
| 6 | 394 | 0.00328 | 120191 |
| 7 | 260 | 0.00596 | 43611 |
| 8 | 624 | 0.00585 | 106588 |
| 9 | 608 | 0.01329 | 45754 |
| 10 | 319 | 0.00396 | 80463 |

Drop 3

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm ${ }^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 62 | 0.00247 | 25114 |
| 2 | 751 | 0.00632 | 118908 |
| 3 | 589 | 0.00652 | 90331 |
| 4 | 453 | 0.00781 | 58021 |
| 5 | 979 | 0.00559 | 174995 |
| 6 | 162 | 0.00300 | 53915 |
| 7 | 155 | 0.00453 | 34250 |
| 8 | 548 | 0.00606 | 90456 |
| 9 | 944 | 0.01011 | 93401 |
| 10 | 348 | 0.00613 | 56760 |

Drop 4

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm ${ }^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 500 | 0.00876 | 57070 |
| 2 | 561 | 0.00687 | 81681 |
| 3 | 837 | 0.01664 | 50299 |
| 4 | 1274 | 0.00718 | 177457 |
| 5 | 1157 | 0.00993 | 116465 |
| 6 | 1239 | 0.00700 | 177098 |
| 7 | 554 | 0.00605 | 91535 |
| 8 | 124 | 0.00460 | 26953 |
| 9 | 244 | 0.01919 | 12712 |
| 10 | 664 | 0.01517 | 43778 |

Drop 5

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm ${ }^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 394 | 0.00729 | 54034 |
| 2 | 317 | 0.00520 | 60932 |
| 3 | 197 | 0.00493 | 39974 |
| 4 | 183 | 0.00493 | 37141 |
| 5 | 900 | 0.01222 | 73620 |
| 6 | 466 | 0.01010 | 46139 |
| 7 | 491 | 0.00763 | 64357 |
| 8 | 382 | 0.00503 | 75870 |
| 9 | 328 | 0.00547 | 59911 |
| 10 | 203 | 0.00450 | 45161 |

Drop 6

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm ${ }^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 577 | 0.01135 | 50839 |
| 2 | 614 | 0.01083 | 56689 |
| 3 | 661 | 0.01338 | 49420 |
| 4 | 447 | 0.00566 | 78981 |
| 5 | 547 | 0.00531 | 102992 |
| 6 | 538 | 0.00544 | 98884 |
| 7 | 709 | 0.01508 | 47017 |
| 8 | 481 | 0.01477 | 32575 |
| 9 | 497 | 0.01743 | 28518 |
| 10 | 705 | 0.01149 | 61335 |

Drop 7

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm ${ }^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 449 | 0.00495 | 90694 |
| 2 | 122 | 0.01678 | 7270 |
| 3 | 140 | 0.00687 | 20364 |
| 4 | 269 | 0.00475 | 56686 |
| 5 | 188 | 0.00496 | 37879 |
| 6 | 218 | 0.00413 | 52817 |
| 7 | 328 | 0.01173 | 27954 |
| 8 | 712 | 0.00822 | 86586 |
| 9 | 819 | 0.01460 | 56105 |
| 10 | 711 | 0.01878 | 37860 |

Drop 8

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm ${ }^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 228 | 0.00727 | 31381 |
| 2 | 195 | 0.00770 | 25315 |
| 3 | 157 | 0.00129 | 121286 |
| 4 | 183 | 0.00340 | 53872 |
| 5 | 555 | 0.00573 | 96813 |
| 6 | 288 | 0.00373 | 77179 |
| 7 | 30 | 0.02901 | 1034 |
| 8 | 283 | 0.00288 | 98120 |
| 9 | 271 | 0.00335 | 80852 |
| 10 | 173 | 0.00432 | 40060 |

Drop 9

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per $\mathrm{mm}^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 377 | 0.00421 | 89608 |
| 2 | 238 | 0.00574 | 41438 |
| 3 | 401 | 0.00605 | 66264 |
| 4 | 182 | 0.01184 | 15375 |
| 5 | 562 | 0.00367 | 153015 |
| 6 | 210 | 0.00681 | 30840 |
| 7 | 531 | 0.00492 | 107977 |
| 8 | 258 | 0.00371 | 69563 |
| 9 | 309 | 0.00791 | 39066 |
| 10 | 465 | 0.00905 | 51407 |

Drop 10

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm <br> of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 198 | 0.00696 | 28459 |
| 2 | 301 | 0.00881 | 34156 |
| 3 | 229 | 0.00881 | 25990 |
| 4 | 304 | 0.01184 | 25678 |
| 5 | 254 | 0.01216 | 20896 |
| 6 | 404 | 0.01164 | 34722 |
| 7 | 151 | 0.02768 | 5454 |
| 8 | 705 | 0.00940 | 75004 |
| 9 | 353 | 0.00914 | 38618 |
| 10 | 171 | 0.00710 | 24073 |

Drop 11

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm ${ }^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 295 | 0.00586 | 50371 |
| 2 | 337 | 0.01313 | 25671 |
| 3 | 336 | 0.00764 | 43969 |
| 4 | 374 | 0.01180 | 31708 |
| 5 | 488 | 0.00864 | 56491 |
| 6 | 392 | 0.01042 | 37624 |
| 7 | 232 | 0.01274 | 18215 |
| 8 | 270 | 0.00983 | 27460 |
| 9 | 285 | 0.01428 | 19952 |
| 10 | 456 | 0.01316 | 34652 |

Drop 12

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm <br> of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 581 | 0.00470 | 123632 |
| 2 | 468 | 0.00483 | 96941 |
| 3 | 202 | 0.02175 | 9288 |
| 4 | 585 | 0.00447 | 130967 |
| 5 | 401 | 0.00335 | 119677 |
| 6 | 122 | 0.01597 | 7641 |
| 7 | 185 | 0.00238 | 77720 |
| 8 | 347 | 0.00276 | 125644 |
| 9 | 443 | 0.00472 | 93863 |
| 10 | 482 | 0.00305 | 158284 |

Drop 13

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 67 | 0.01296 | 5171 |
| 2 | 269 | 0.00332 | 81134 |
| 3 | 85 | 0.00286 | 29687 |
| 4 | 81 | 0.00718 | 11280 |
| 5 | 65 | 0.00555 | 11714 |
| 6 | 62 | 0.00360 | 17242 |
| 7 | 325 | 0.00250 | 129741 |
| 8 | 289 | 0.00578 | 50014 |
| 9 | 238 | 0.00505 | 47138 |
| 10 | 428 | 0.00558 | 76652 |

Drop 14

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm ${ }^{2}$ of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 254 | 0.00412 | 61655 |
| 2 | 279 | 0.00621 | 44938 |
| 3 | 305 | 0.00247 | 123436 |
| 4 | 387 | 0.00323 | 119674 |
| 5 | 247 | 0.01232 | 20056 |
| 6 | 553 | 0.00675 | 81951 |
| 7 | 343 | 0.00653 | 52527 |
| 8 | 316 | 0.00404 | 78290 |
| 9 | 315 | 0.00373 | 84352 |
| 10 | 387 | 0.00613 | 63090 |

Drop 15

| Image | Number of <br> Particles | Total Area of <br> CNFs $\left(\mathrm{mm}^{2}\right)$ | Number of Particles <br> Per mm <br> of Area <br> Covered by CNFs |
| :---: | :---: | :---: | :---: |
| 1 | 74 | 0.00407 | 18170 |
| 2 | 83 | 0.00551 | 15070 |
| 3 | 79 | 0.00541 | 14608 |
| 4 | 117 | 0.00563 | 20773 |
| 5 | 143 | 0.00467 | 30595 |
| 6 | 144 | 0.00759 | 18972 |
| 7 | 77 | 0.00612 | 12572 |
| 8 | 70 | 0.00686 | 10208 |
| 9 | 109 | 0.01236 | 8818 |
| 10 | 76 | 0.00676 | 11239 |

## APPENDIX B

## DISPERSION IN CEMENT DATA

This appendix contains a summary of the data included in the micrograph analysis of the dispersion of CNFs in cement-based composites (Figure 3.9, Figure 3.11, and Figure 6.3). A summary of the composites analyzed is included below. A micrograph of a representative crosssection for each cement-based composite was analyzed to determine the size of each CNF agglomerate greater than $0.007 \mathrm{~mm}^{2}$ in area. A summary is given for each composite, and the area and maximum Feret's diameter of each agglomerate greater than $0.007 \mathrm{~mm}^{2}$ in area is given.

Summary of Composites

| Composite | Figure(s) Analyzed In | Description |
| :---: | :---: | :---: |
| PC-P-HRWR/T-CNF | Figures 3.9 and 3.11 | PC paste (w/c=0.28) with $0.2 \mathrm{wt} \%$ CNFs surface treated with $\mathrm{HNO}_{3}$ and dispersed with P-HRWR |
| PC-P-HRWR/CNF | Figures 3.9 and 3.11 | PC paste ( $\mathrm{w} / \mathrm{c}=0.28$ ) with $0.2 \mathrm{wt} \%$ "as received" CNFs and dispersed with P HRWR |
| PC-N-HRWR/CNF | Figures 3.9 and 3.11 | PC paste (w/c=0.28) with $0.2 \mathrm{wt} \%$ "as received" CNFs and dispersed with N HRWR |
| PC-AE/CNF | Figures 3.9 and 3.11 | PC paste ( $\mathrm{w} / \mathrm{c}=0.28$ ) with $0.2 \mathrm{wt} \%$ "as received" CNFs and dispersed with AE |
| PC-W/T-CNF | Figure 3.11 | PC paste ( $\mathrm{w} / \mathrm{c}=0.28$ ) with $0.2 \mathrm{wt} \% \mathrm{CNFs}$ surface treated with $\mathrm{HNO}_{3}$ and no dispersing agent |
| PC-W/CNF | Figure 3.11 | PC paste ( $\mathrm{w} / \mathrm{c}=0.28$ ) with $0.2 \mathrm{wt} \%$ "as received" CNFs and no dispersing agent |
| PC-CNF | Figure 6.3 | PC paste (w/c=0.315) with $0.5 \mathrm{wt} \%$ "as received" CNFs and dispersed with P HRWR |
| PC-CF-CNF | Figure 6.3 | PC paste (w/c=0.315) with $0.5 \mathrm{wt} \%$ "as received" CNFs, $0.5 \%$ CFs, and dispersed with P-HRWR |

## PC-P-HRWR/T-CNF

Number of CNF agglomerates greater than $0.007 \mathrm{~mm}^{2}: 233$.
Cumulative area of CNFs agglomerates greater than $0.007 \mathrm{~mm}^{2}: 8.143 \mathrm{~mm}^{2}$.
Area fraction of CNF agglomerates greater than $0.007 \mathrm{~mm}^{2}: 1.1 \%$.

| Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter $(\mathrm{mm})$ | Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.023 | 0.256 | 39 | 0.064 | 0.387 |
| 2 | 0.033 | 0.417 | 40 | 0.016 | 0.209 |
| 3 | 0.022 | 0.362 | 41 | 0.016 | 0.237 |
| 4 | 0.012 | 0.200 | 42 | 0.016 | 0.248 |
| 5 | 0.018 | 0.201 | 43 | 0.008 | 0.124 |
| 6 | 0.109 | 0.937 | 44 | 0.020 | 0.242 |
| 7 | 0.088 | 0.454 | 45 | 0.027 | 0.268 |
| 8 | 0.067 | 0.410 | 46 | 0.029 | 0.315 |
| 9 | 0.015 | 0.181 | 47 | 0.012 | 0.154 |
| 10 | 0.077 | 0.633 | 48 | 0.012 | 0.162 |
| 11 | 0.204 | 0.693 | 49 | 0.013 | 0.181 |
| 12 | 0.178 | 0.802 | 50 | 0.115 | 0.493 |
| 13 | 0.051 | 0.384 | 51 | 0.010 | 0.196 |
| 14 | 0.019 | 0.190 | 52 | 0.183 | 0.600 |
| 15 | 0.175 | 0.603 | 53 | 0.049 | 0.674 |
| 16 | 0.341 | 0.973 | 54 | 0.013 | 0.196 |
| 17 | 0.035 | 0.323 | 55 | 0.009 | 0.136 |
| 18 | 0.031 | 0.266 | 56 | 0.067 | 0.390 |
| 19 | 0.010 | 0.166 | 57 | 0.016 | 0.181 |
| 20 | 0.023 | 0.218 | 58 | 0.009 | 0.136 |
| 21 | 0.040 | 0.424 | 59 | 0.008 | 0.153 |
| 22 | 0.029 | 0.229 | 60 | 0.018 | 0.182 |
| 23 | 0.104 | 0.576 | 61 | 0.011 | 0.200 |
| 24 | 0.054 | 0.441 | 62 | 0.014 | 0.190 |
| 25 | 0.014 | 0.162 | 63 | 0.015 | 0.181 |
| 26 | 0.048 | 0.295 | 64 | 0.035 | 0.295 |
| 27 | 0.019 | 0.196 | 65 | 0.022 | 0.209 |
| 28 | 0.007 | 0.124 | 66 | 0.067 | 0.389 |
| 29 | 0.219 | 0.774 | 67 | 0.007 | 0.134 |
| 30 | 0.044 | 0.306 | 68 | 0.029 | 0.258 |
| 31 | 0.018 | 0.201 | 69 | 0.059 | 0.423 |
| 32 | 0.120 | 0.592 | 70 | 0.031 | 0.242 |
| 33 | 0.052 | 0.356 | 71 | 0.049 | 0.455 |
| 34 | 0.015 | 0.237 | 72 | 0.008 | 0.181 |
| 35 | 0.027 | 0.331 | 73 | 0.023 | 0.266 |
| 36 | 0.205 | 0.659 | 74 | 0.013 | 0.190 |
| 37 | 0.017 | 0.262 | 75 | 0.011 | 0.153 |
| 38 | 0.051 | 0.345 | 76 | 0.009 | 0.182 |


| Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter $(\mathrm{mm})$ | Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 77 | 0.033 | 0.315 | 120 | 0.011 | 0.171 |
| 78 | 0.009 | 0.142 | 121 | 0.146 | 0.608 |
| 79 | 0.011 | 0.175 | 122 | 0.011 | 0.175 |
| 80 | 0.096 | 0.576 | 123 | 0.020 | 0.285 |
| 81 | 0.022 | 0.237 | 124 | 0.019 | 0.288 |
| 82 | 0.018 | 0.201 | 125 | 0.009 | 0.134 |
| 83 | 0.016 | 0.266 | 126 | 0.014 | 0.196 |
| 84 | 0.035 | 0.295 | 127 | 0.012 | 0.201 |
| 85 | 0.011 | 0.154 | 128 | 0.011 | 0.154 |
| 86 | 0.008 | 0.124 | 129 | 0.069 | 0.437 |
| 87 | 0.111 | 0.530 | 130 | 0.008 | 0.136 |
| 88 | 0.196 | 0.731 | 131 | 0.127 | 0.824 |
| 89 | 0.082 | 0.429 | 132 | 0.134 | 0.666 |
| 90 | 0.009 | 0.136 | 133 | 0.026 | 0.237 |
| 91 | 0.013 | 0.153 | 134 | 0.012 | 0.162 |
| 92 | 0.011 | 0.153 | 135 | 0.008 | 0.162 |
| 93 | 0.009 | 0.142 | 136 | 0.110 | 0.703 |
| 94 | 0.008 | 0.124 | 137 | 0.049 | 0.342 |
| 95 | 0.018 | 0.362 | 138 | 0.094 | 0.630 |
| 96 | 0.008 | 0.124 | 139 | 0.023 | 0.242 |
| 97 | 0.058 | 0.343 | 140 | 0.021 | 0.248 |
| 98 | 0.021 | 0.304 | 141 | 0.074 | 0.579 |
| 99 | 0.010 | 0.154 | 142 | 0.010 | 0.190 |
| 100 | 0.016 | 0.221 | 143 | 0.023 | 0.237 |
| 101 | 0.082 | 0.390 | 144 | 0.066 | 0.365 |
| 102 | 0.009 | 0.171 | 145 | 0.012 | 0.196 |
| 103 | 0.011 | 0.166 | 146 | 0.016 | 0.175 |
| 104 | 0.011 | 0.153 | 147 | 0.018 | 0.268 |
| 105 | 0.009 | 0.180 | 148 | 0.011 | 0.150 |
| 106 | 0.008 | 0.142 | 149 | 0.013 | 0.196 |
| 107 | 0.009 | 0.153 | 150 | 0.010 | 0.201 |
| 108 | 0.014 | 0.162 | 151 | 0.015 | 0.213 |
| 109 | 0.008 | 0.136 | 152 | 0.007 | 0.150 |
| 110 | 0.008 | 0.154 | 153 | 0.086 | 0.446 |
| 111 | 0.050 | 0.370 | 154 | 0.027 | 0.248 |
| 112 | 0.007 | 0.129 | 155 | 0.013 | 0.196 |
| 113 | 0.041 | 0.429 | 156 | 0.016 | 0.382 |
| 114 | 0.009 | 0.175 | 157 | 0.013 | 0.212 |
| 115 | 0.007 | 0.154 | 158 | 0.013 | 0.229 |
| 116 | 0.020 | 0.229 | 159 | 0.008 | 0.124 |
| 117 | 0.009 | 0.162 | 160 | 0.018 | 0.221 |
| 118 | 0.009 | 0.181 | 161 | 0.018 | 0.228 |
| 119 | 0.018 | 0.209 | 162 | 0.033 | 0.283 |


| Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) | Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | $\begin{gathered} \text { Maximum } \\ \text { Feret's Diameter } \\ (\mathrm{mm}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 163 | 0.116 | 0.459 | 199 | 0.027 | 0.212 |
| 164 | 0.065 | 0.387 | 200 | 0.020 | 0.212 |
| 165 | 0.008 | 0.153 | 201 | 0.012 | 0.171 |
| 166 | 0.007 | 0.171 | 202 | 0.010 | 0.166 |
| 167 | 0.019 | 0.283 | 203 | 0.018 | 0.228 |
| 168 | 0.012 | 0.201 | 204 | 0.010 | 0.171 |
| 169 | 0.012 | 0.181 | 205 | 0.018 | 0.237 |
| 170 | 0.047 | 0.324 | 206 | 0.007 | 0.142 |
| 171 | 0.019 | 0.201 | 207 | 0.076 | 0.541 |
| 172 | 0.023 | 0.247 | 208 | 0.040 | 0.345 |
| 173 | 0.009 | 0.153 | 209 | 0.011 | 0.142 |
| 174 | 0.090 | 0.496 | 210 | 0.008 | 0.153 |
| 175 | 0.015 | 0.171 | 211 | 0.018 | 0.201 |
| 176 | 0.144 | 0.679 | 212 | 0.023 | 0.218 |
| 177 | 0.015 | 0.181 | 213 | 0.026 | 0.285 |
| 178 | 0.031 | 0.229 | 214 | 0.018 | 0.225 |
| 179 | 0.102 | 0.547 | 215 | 0.015 | 0.196 |
| 180 | 0.015 | 0.209 | 216 | 0.014 | 0.171 |
| 181 | 0.011 | 0.182 | 217 | 0.008 | 0.166 |
| 182 | 0.018 | 0.190 | 218 | 0.012 | 0.171 |
| 183 | 0.018 | 0.196 | 219 | 0.013 | 0.182 |
| 184 | 0.038 | 0.276 | 220 | 0.021 | 0.295 |
| 185 | 0.012 | 0.162 | 221 | 0.026 | 0.268 |
| 186 | 0.009 | 0.162 | 222 | 0.045 | 0.342 |
| 187 | 0.025 | 0.218 | 223 | 0.015 | 0.190 |
| 188 | 0.025 | 0.237 | 224 | 0.018 | 0.221 |
| 189 | 0.059 | 0.469 | 225 | 0.017 | 0.218 |
| 190 | 0.010 | 0.324 | 226 | 0.034 | 0.324 |
| 191 | 0.009 | 0.166 | 227 | 0.029 | 0.242 |
| 192 | 0.009 | 0.142 | 228 | 0.013 | 0.171 |
| 193 | 0.026 | 0.259 | 229 | 0.017 | 0.212 |
| 194 | 0.007 | 0.124 | 230 | 0.009 | 0.142 |
| 195 | 0.017 | 0.190 | 231 | 0.010 | 0.162 |
| 196 | 0.018 | 0.218 | 232 | 0.027 | 0.276 |
| 197 | 0.009 | 0.162 | 233 | 0.007 | 0.153 |

## PC-P-HRWR/CNF

Number of CNF agglomerates greater than $0.007 \mathrm{~mm}^{2}: 301$.
Cumulative area of CNFs agglomerates greater than $0.007 \mathrm{~mm}^{2}: 10.403 \mathrm{~mm}^{2}$.
Area fraction of CNF agglomerates greater than $0.007 \mathrm{~mm}^{2}: 1.4 \%$.
$\begin{array}{ccccccc}\hline \text { Agglomerate } & \begin{array}{c}\text { Area } \\ \left(\mathrm{mm}^{2}\right)\end{array} & \begin{array}{c}\text { Maximum } \\ \text { Feret's } \\ \text { Diameter (mm) }\end{array} & & \text { Agglomerate } & & \begin{array}{c}\text { Area } \\ \left(\mathrm{mm}^{2}\right)\end{array}\end{array} \begin{array}{c}\text { Maximum } \\$\cline { 5 - 6 } $\left.\begin{array}{c}\text { Feret's }\end{array} \\ \text { Diameter (mm) }\end{array}\right)$
$\left.\begin{array}{ccccccc}\hline \text { Agglomerate } & \begin{array}{c}\text { Area } \\ \left(\mathrm{mm}^{2}\right)\end{array} & \begin{array}{c}\text { Maximum } \\ \text { Feret's } \\ \text { Diameter (mm) }\end{array} & & \text { Agglomerate } & & \begin{array}{c}\text { Area } \\ \left(\mathrm{mm}^{2}\right)\end{array}\end{array} \begin{array}{c}\text { Maximum } \\ \text { Feret's }\end{array}\right)$

| Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) | Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 163 | 0.010 | 0.171 | 206 | 0.016 | 0.190 |
| 164 | 0.023 | 0.272 | 207 | 0.017 | 0.196 |
| 165 | 0.030 | 0.242 | 208 | 0.034 | 0.288 |
| 166 | 0.009 | 0.142 | 209 | 0.102 | 0.582 |
| 167 | 0.025 | 0.276 | 210 | 0.020 | 0.196 |
| 168 | 0.012 | 0.218 | 211 | 0.015 | 0.200 |
| 169 | 0.007 | 0.124 | 212 | 0.008 | 0.162 |
| 170 | 0.011 | 0.210 | 213 | 0.074 | 0.474 |
| 171 | 0.023 | 0.259 | 214 | 0.229 | 0.769 |
| 172 | 0.013 | 0.209 | 215 | 0.015 | 0.306 |
| 173 | 0.022 | 0.201 | 216 | 0.018 | 0.248 |
| 174 | 0.033 | 0.268 | 217 | 0.040 | 0.362 |
| 175 | 0.063 | 0.329 | 218 | 0.109 | 0.471 |
| 176 | 0.012 | 0.162 | 219 | 0.009 | 0.136 |
| 177 | 0.022 | 0.247 | 220 | 0.022 | 0.288 |
| 178 | 0.007 | 0.124 | 221 | 0.008 | 0.124 |
| 179 | 0.017 | 0.181 | 222 | 0.009 | 0.142 |
| 180 | 0.018 | 0.218 | 223 | 0.034 | 0.323 |
| 181 | 0.041 | 0.309 | 224 | 0.019 | 0.229 |
| 182 | 0.077 | 0.379 | 225 | 0.157 | 0.653 |
| 183 | 0.019 | 0.225 | 226 | 0.008 | 0.182 |
| 184 | 0.011 | 0.200 | 227 | 0.014 | 0.242 |
| 185 | 0.009 | 0.237 | 228 | 0.018 | 0.276 |
| 186 | 0.059 | 0.417 | 229 | 0.015 | 0.315 |
| 187 | 0.126 | 0.645 | 230 | 0.030 | 0.295 |
| 188 | 0.008 | 0.150 | 231 | 0.044 | 0.371 |
| 189 | 0.014 | 0.190 | 232 | 0.029 | 0.247 |
| 190 | 0.009 | 0.162 | 233 | 0.028 | 0.242 |
| 191 | 0.055 | 0.447 | 234 | 0.007 | 0.136 |
| 192 | 0.020 | 0.218 | 235 | 0.019 | 0.225 |
| 193 | 0.009 | 0.134 | 236 | 0.008 | 0.180 |
| 194 | 0.073 | 0.437 | 237 | 0.010 | 0.192 |
| 195 | 0.010 | 0.175 | 238 | 0.045 | 0.335 |
| 196 | 0.007 | 0.142 | 239 | 0.021 | 0.200 |
| 197 | 0.017 | 0.229 | 240 | 0.040 | 0.370 |
| 198 | 0.013 | 0.196 | 241 | 0.007 | 0.142 |
| 199 | 0.018 | 0.181 | 242 | 0.031 | 0.318 |
| 200 | 0.015 | 0.171 | 243 | 0.011 | 0.201 |
| 201 | 0.021 | 0.229 | 244 | 0.008 | 0.134 |
| 202 | 0.027 | 0.335 | 245 | 0.008 | 0.124 |
| 203 | 0.016 | 0.182 | 246 | 0.011 | 0.175 |
| 204 | 0.098 | 0.531 | 247 | 0.009 | 0.136 |
| 205 | 0.019 | 0.196 | 248 | 0.075 | 0.395 |


| Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) | Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 249 | 0.020 | 0.218 | 276 | 0.007 | 0.142 |
| 250 | 0.008 | 0.134 | 277 | 0.009 | 0.175 |
| 251 | 0.011 | 0.154 | 278 | 0.013 | 0.218 |
| 252 | 0.028 | 0.229 | 279 | 0.018 | 0.190 |
| 253 | 0.013 | 0.209 | 280 | 0.018 | 0.266 |
| 254 | 0.026 | 0.259 | 281 | 0.033 | 0.266 |
| 255 | 0.009 | 0.162 | 282 | 0.015 | 0.229 |
| 256 | 0.030 | 0.301 | 283 | 0.015 | 0.209 |
| 257 | 0.007 | 0.134 | 284 | 0.014 | 0.166 |
| 258 | 0.009 | 0.134 | 285 | 0.011 | 0.153 |
| 259 | 0.058 | 0.324 | 286 | 0.009 | 0.142 |
| 260 | 0.011 | 0.171 | 287 | 0.025 | 0.301 |
| 261 | 0.008 | 0.136 | 288 | 0.017 | 0.181 |
| 262 | 0.011 | 0.150 | 289 | 0.010 | 0.142 |
| 263 | 0.020 | 0.266 | 290 | 0.015 | 0.181 |
| 264 | 0.013 | 0.162 | 291 | 0.007 | 0.124 |
| 265 | 0.026 | 0.242 | 292 | 0.009 | 0.136 |
| 266 | 0.007 | 0.120 | 293 | 0.008 | 0.134 |
| 267 | 0.010 | 0.181 | 294 | 0.017 | 0.266 |
| 268 | 0.018 | 0.229 | 295 | 0.012 | 0.181 |
| 269 | 0.014 | 0.201 | 296 | 0.012 | 0.154 |
| 270 | 0.018 | 0.200 | 297 | 0.013 | 0.166 |
| 271 | 0.014 | 0.190 | 298 | 0.016 | 0.247 |
| 272 | 0.070 | 0.532 | 299 | 0.012 | 0.182 |
| 273 | 0.012 | 0.153 | 300 | 0.007 | 0.114 |
| 274 | 0.009 | 0.196 | 301 | 0.008 | 0.150 |

## PC-N-HRWR/CNF

Number of CNF agglomerates greater than $0.007 \mathrm{~mm}^{2}: 108$.
Cumulative area of CNFs agglomerates greater than $0.007 \mathrm{~mm}^{2}: 6.152 \mathrm{~mm}^{2}$.
Area fraction of CNF agglomerates greater than $0.007 \mathrm{~mm}^{2}: 0.9 \%$.

| Agglomerate | Area <br> $\left(\mathrm{mm}^{2}\right)$ | Maximum <br> Feret's <br> Diameter (mm) |  | Agglomerate | Area <br> $\left(\mathrm{mm}^{2}\right)$ | Maximum <br> Feret's |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Diameter (mm) |  |  |  |  |  |  |
| 1 | 0.024 | 0.266 |  | 7 | 0.009 | 0.154 |
| 2 | 0.044 | 0.408 |  | 8 | 0.052 | 0.437 |
| 3 | 0.040 | 0.382 |  | 9 | 0.106 | 0.437 |
| 4 | 0.072 | 0.455 |  | 10 | 0.039 | 0.407 |
| 5 | 0.019 | 0.242 |  | 11 | 0.040 | 0.362 |
| 6 | 0.038 | 0.304 | 12 | 0.030 | 0.259 |  |


| Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) | Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 13 | 0.036 | 0.272 | 56 | 0.013 | 0.190 |
| 14 | 0.061 | 0.453 | 57 | 0.011 | 0.154 |
| 15 | 0.097 | 0.412 | 58 | 0.055 | 0.324 |
| 16 | 0.008 | 0.209 | 59 | 0.019 | 0.256 |
| 17 | 0.007 | 0.212 | 60 | 0.027 | 0.242 |
| 18 | 0.009 | 0.153 | 61 | 0.018 | 0.200 |
| 19 | 0.041 | 0.315 | 62 | 0.007 | 0.153 |
| 20 | 0.061 | 0.342 | 63 | 0.013 | 0.166 |
| 21 | 0.111 | 0.490 | 64 | 0.022 | 0.255 |
| 22 | 0.008 | 0.134 | 65 | 0.010 | 0.134 |
| 23 | 0.021 | 0.209 | 66 | 0.008 | 0.171 |
| 24 | 0.034 | 0.407 | 67 | 0.023 | 0.268 |
| 25 | 0.035 | 0.391 | 68 | 0.017 | 0.181 |
| 26 | 0.012 | 0.171 | 69 | 0.022 | 0.379 |
| 27 | 0.011 | 0.171 | 70 | 0.016 | 0.171 |
| 28 | 0.027 | 0.304 | 71 | 0.050 | 0.382 |
| 29 | 0.022 | 0.237 | 72 | 0.012 | 0.162 |
| 30 | 0.046 | 0.433 | 73 | 0.032 | 0.318 |
| 31 | 0.237 | 0.676 | 74 | 0.008 | 0.136 |
| 32 | 0.013 | 0.200 | 75 | 0.029 | 0.229 |
| 33 | 0.017 | 0.216 | 76 | 0.071 | 0.485 |
| 34 | 0.214 | 0.808 | 77 | 0.026 | 0.348 |
| 35 | 0.010 | 0.180 | 78 | 0.007 | 0.154 |
| 36 | 0.018 | 0.200 | 79 | 0.035 | 0.285 |
| 37 | 0.029 | 0.350 | 80 | 0.016 | 0.306 |
| 38 | 0.022 | 0.266 | 81 | 0.080 | 0.537 |
| 39 | 0.014 | 0.342 | 82 | 0.008 | 0.124 |
| 40 | 0.009 | 0.229 | 83 | 0.013 | 0.247 |
| 41 | 0.026 | 0.382 | 84 | 0.015 | 0.365 |
| 42 | 0.010 | 0.259 | 85 | 0.094 | 0.471 |
| 43 | 0.008 | 0.166 | 86 | 0.040 | 0.387 |
| 44 | 0.026 | 0.335 | 87 | 0.041 | 0.288 |
| 45 | 0.009 | 0.153 | 88 | 0.009 | 0.142 |
| 46 | 0.012 | 0.162 | 89 | 0.020 | 0.196 |
| 47 | 0.012 | 0.196 | 90 | 0.024 | 0.242 |
| 48 | 0.028 | 0.324 | 91 | 0.081 | 0.619 |
| 49 | 0.018 | 0.255 | 92 | 0.007 | 0.134 |
| 50 | 0.053 | 0.477 | 93 | 0.009 | 0.134 |
| 51 | 0.008 | 0.142 | 94 | 0.010 | 0.162 |
| 52 | 0.008 | 0.142 | 95 | 0.021 | 0.288 |
| 53 | 0.008 | 0.134 | 96 | 0.041 | 0.405 |
| 54 | 0.008 | 0.134 | 97 | 0.028 | 0.255 |
| 55 | 0.022 | 0.427 | 98 | 0.234 | 0.721 |


| Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) | Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 99 | 0.009 | 0.134 | 141 | 0.030 | 0.247 |
| 100 | 0.079 | 0.391 | 142 | 0.069 | 0.370 |
| 101 | 0.025 | 0.237 | 143 | 0.131 | 0.911 |
| 102 | 0.007 | 0.136 | 144 | 0.015 | 0.256 |
| 103 | 0.009 | 0.142 | 145 | 0.008 | 0.134 |
| 104 | 0.014 | 0.221 | 146 | 0.014 | 0.285 |
| 105 | 0.008 | 0.242 | 147 | 0.075 | 0.485 |
| 106 | 0.009 | 0.153 | 148 | 0.020 | 0.221 |
| 107 | 0.013 | 0.201 | 149 | 0.021 | 0.200 |
| 108 | 0.008 | 0.162 | 150 | 0.009 | 0.154 |
| 109 | 0.027 | 0.454 | 151 | 0.025 | 0.237 |
| 110 | 0.013 | 0.180 | 152 | 0.033 | 0.266 |
| 111 | 0.013 | 0.162 | 153 | 0.057 | 0.423 |
| 112 | 0.205 | 0.577 | 154 | 0.216 | 0.918 |
| 113 | 0.021 | 0.256 | 155 | 0.014 | 0.190 |
| 114 | 0.013 | 0.162 | 156 | 0.014 | 0.209 |
| 115 | 0.015 | 0.182 | 157 | 0.032 | 0.276 |
| 116 | 0.023 | 0.229 | 158 | 0.007 | 0.153 |
| 117 | 0.011 | 0.331 | 159 | 0.008 | 0.171 |
| 118 | 0.009 | 0.136 | 160 | 0.026 | 0.435 |
| 119 | 0.018 | 0.210 | 161 | 0.020 | 0.196 |
| 120 | 0.016 | 0.196 | 162 | 0.022 | 0.288 |
| 121 | 0.069 | 0.343 | 163 | 0.048 | 0.335 |
| 122 | 0.013 | 0.218 | 164 | 0.036 | 0.272 |
| 123 | 0.018 | 0.181 | 165 | 0.010 | 0.329 |
| 124 | 0.092 | 0.511 | 166 | 0.018 | 0.248 |
| 125 | 0.016 | 0.350 | 167 | 0.058 | 0.427 |
| 126 | 0.048 | 0.379 | 168 | 0.009 | 0.142 |
| 127 | 0.017 | 0.196 | 169 | 0.013 | 0.181 |
| 128 | 0.024 | 0.266 | 170 | 0.021 | 0.306 |
| 129 | 0.021 | 0.242 | 171 | 0.009 | 0.136 |
| 130 | 0.022 | 0.228 | 172 | 0.058 | 0.315 |
| 131 | 0.079 | 0.469 | 173 | 0.008 | 0.142 |
| 132 | 0.008 | 0.142 | 174 | 0.010 | 0.175 |
| 133 | 0.018 | 0.182 | 175 | 0.014 | 0.268 |
| 134 | 0.011 | 0.153 | 176 | 0.090 | 0.478 |
| 135 | 0.025 | 0.295 | 177 | 0.017 | 0.240 |
| 136 | 0.130 | 0.641 | 178 | 0.007 | 0.114 |
| 137 | 0.128 | 0.585 | 179 | 0.017 | 0.200 |
| 138 | 0.138 | 0.638 | 180 | 0.015 | 0.190 |

## PC-AE/CNF

Number of CNF agglomerates greater than $0.007 \mathrm{~mm}^{2}: 200$.
Cumulative area of CNFs agglomerates greater than $0.007 \mathrm{~mm}^{2}: 8.446 \mathrm{~mm}^{2}$.
Area fraction of CNF agglomerates greater than $0.007 \mathrm{~mm}^{2}: 1.1 \%$.

| Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) | Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.007 | 0.162 | 39 | 0.024 | 0.221 |
| 2 | 0.009 | 0.134 | 40 | 0.009 | 0.162 |
| 3 | 0.131 | 0.577 | 41 | 0.039 | 0.412 |
| 4 | 0.045 | 0.469 | 42 | 0.021 | 0.221 |
| 5 | 0.016 | 0.228 | 43 | 0.048 | 0.371 |
| 6 | 0.037 | 0.285 | 44 | 0.018 | 0.285 |
| 7 | 0.052 | 0.465 | 45 | 0.013 | 0.201 |
| 8 | 0.012 | 0.171 | 46 | 0.007 | 0.212 |
| 9 | 0.060 | 0.342 | 47 | 0.019 | 0.200 |
| 10 | 0.047 | 0.565 | 48 | 0.020 | 0.304 |
| 11 | 0.227 | 0.806 | 49 | 0.008 | 0.142 |
| 12 | 0.077 | 0.544 | 50 | 0.036 | 0.288 |
| 13 | 0.011 | 0.171 | 51 | 0.020 | 0.210 |
| 14 | 0.008 | 0.166 | 52 | 0.093 | 0.531 |
| 15 | 0.007 | 0.124 | 53 | 0.031 | 0.279 |
| 16 | 0.020 | 0.242 | 54 | 0.134 | 0.594 |
| 17 | 0.021 | 0.221 | 55 | 0.018 | 0.255 |
| 18 | 0.011 | 0.154 | 56 | 0.083 | 0.711 |
| 19 | 0.010 | 0.209 | 57 | 0.011 | 0.166 |
| 20 | 0.054 | 0.412 | 58 | 0.018 | 0.342 |
| 21 | 0.054 | 0.363 | 59 | 0.023 | 0.449 |
| 22 | 0.016 | 0.190 | 60 | 0.008 | 0.124 |
| 23 | 0.011 | 0.162 | 61 | 0.045 | 0.304 |
| 24 | 0.013 | 0.162 | 62 | 0.033 | 0.321 |
| 25 | 0.010 | 0.142 | 63 | 0.058 | 0.315 |
| 26 | 0.017 | 0.272 | 64 | 0.011 | 0.175 |
| 27 | 0.017 | 0.209 | 65 | 0.046 | 0.295 |
| 28 | 0.013 | 0.209 | 66 | 0.087 | 0.771 |
| 29 | 0.204 | 0.729 | 67 | 0.020 | 0.237 |
| 30 | 0.008 | 0.150 | 68 | 0.020 | 0.259 |
| 31 | 0.015 | 0.209 | 69 | 0.015 | 0.229 |
| 32 | 0.095 | 0.617 | 70 | 0.116 | 0.441 |
| 33 | 0.043 | 0.384 | 71 | 0.032 | 0.304 |
| 34 | 0.104 | 0.481 | 72 | 0.012 | 0.256 |
| 35 | 0.105 | 0.449 | 73 | 0.099 | 0.450 |
| 36 | 0.040 | 0.345 | 74 | 0.018 | 0.295 |
| 37 | 0.028 | 0.242 | 75 | 0.013 | 0.182 |
| 38 | 0.334 | 0.831 | 76 | 0.013 | 0.237 |


| Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) | Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 77 | 0.028 | 0.229 | 120 | 0.105 | 0.435 |
| 78 | 0.015 | 0.212 | 121 | 0.226 | 0.661 |
| 79 | 0.009 | 0.154 | 122 | 0.076 | 0.429 |
| 80 | 0.128 | 0.541 | 123 | 0.020 | 0.212 |
| 81 | 0.033 | 0.285 | 124 | 0.041 | 0.331 |
| 82 | 0.017 | 0.298 | 125 | 0.051 | 0.451 |
| 83 | 0.040 | 0.304 | 126 | 0.027 | 0.255 |
| 84 | 0.035 | 0.350 | 127 | 0.039 | 0.446 |
| 85 | 0.034 | 0.427 | 128 | 0.009 | 0.154 |
| 86 | 0.011 | 0.175 | 129 | 0.011 | 0.166 |
| 87 | 0.027 | 0.266 | 130 | 0.034 | 0.283 |
| 88 | 0.008 | 0.124 | 131 | 0.028 | 0.335 |
| 89 | 0.054 | 0.484 | 132 | 0.025 | 0.268 |
| 90 | 0.113 | 0.474 | 133 | 0.008 | 0.136 |
| 91 | 0.027 | 0.276 | 134 | 0.077 | 0.447 |
| 92 | 0.051 | 0.390 | 135 | 0.019 | 0.182 |
| 93 | 0.035 | 0.285 | 136 | 0.027 | 0.255 |
| 94 | 0.091 | 0.503 | 137 | 0.060 | 0.484 |
| 95 | 0.015 | 0.221 | 138 | 0.099 | 0.459 |
| 96 | 0.120 | 0.501 | 139 | 0.015 | 0.237 |
| 97 | 0.017 | 0.221 | 140 | 0.011 | 0.171 |
| 98 | 0.010 | 0.190 | 141 | 0.023 | 0.242 |
| 99 | 0.054 | 0.504 | 142 | 0.011 | 0.190 |
| 100 | 0.017 | 0.196 | 143 | 0.014 | 0.213 |
| 101 | 0.011 | 0.153 | 144 | 0.046 | 0.370 |
| 102 | 0.040 | 0.449 | 145 | 0.016 | 0.272 |
| 103 | 0.027 | 0.331 | 146 | 0.058 | 0.361 |
| 104 | 0.096 | 0.454 | 147 | 0.009 | 0.166 |
| 105 | 0.082 | 0.454 | 148 | 0.178 | 0.725 |
| 106 | 0.075 | 0.395 | 149 | 0.022 | 0.228 |
| 107 | 0.020 | 0.248 | 150 | 0.013 | 0.212 |
| 108 | 0.036 | 0.295 | 151 | 0.013 | 0.237 |
| 109 | 0.115 | 0.537 | 152 | 0.014 | 0.237 |
| 110 | 0.029 | 0.258 | 153 | 0.010 | 0.166 |
| 111 | 0.015 | 0.196 | 154 | 0.020 | 0.209 |
| 112 | 0.010 | 0.171 | 155 | 0.065 | 0.471 |
| 113 | 0.008 | 0.180 | 156 | 0.013 | 0.182 |
| 114 | 0.026 | 0.247 | 157 | 0.013 | 0.229 |
| 115 | 0.088 | 0.495 | 158 | 0.026 | 0.323 |
| 116 | 0.008 | 0.136 | 159 | 0.022 | 0.228 |
| 117 | 0.007 | 0.136 | 160 | 0.008 | 0.142 |
| 118 | 0.011 | 0.166 | 161 | 0.035 | 0.304 |
| 119 | 0.100 | 0.467 | 162 | 0.049 | 0.343 |


| Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) | Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 163 | 0.068 | 0.376 | 182 | 0.051 | 0.361 |
| 164 | 0.065 | 0.365 | 183 | 0.011 | 0.153 |
| 165 | 0.018 | 0.285 | 184 | 0.107 | 0.459 |
| 166 | 0.042 | 0.348 | 185 | 0.049 | 0.405 |
| 167 | 0.031 | 0.288 | 186 | 0.031 | 0.268 |
| 168 | 0.156 | 0.679 | 187 | 0.016 | 0.182 |
| 169 | 0.071 | 0.490 | 188 | 0.036 | 0.335 |
| 170 | 0.029 | 0.309 | 189 | 0.034 | 0.268 |
| 171 | 0.013 | 0.216 | 190 | 0.021 | 0.259 |
| 172 | 0.021 | 0.295 | 191 | 0.055 | 0.335 |
| 173 | 0.026 | 0.242 | 192 | 0.021 | 0.212 |
| 174 | 0.022 | 0.209 | 193 | 0.018 | 0.229 |
| 175 | 0.057 | 0.362 | 194 | 0.118 | 0.685 |
| 176 | 0.035 | 0.285 | 195 | 0.013 | 0.166 |
| 177 | 0.010 | 0.136 | 196 | 0.124 | 0.744 |
| 178 | 0.030 | 0.270 | 197 | 0.067 | 0.408 |
| 179 | 0.013 | 0.216 | 198 | 0.026 | 0.295 |
| 180 | 0.031 | 0.248 | 199 | 0.044 | 0.295 |
| 181 | 0.051 | 0.345 | 200 | 0.012 | 0.209 |

## PC-W/T-CNF

Number of CNF agglomerates greater than $0.007 \mathrm{~mm}^{2}: 129$.
Cumulative area of CNFs agglomerates greater than $0.007 \mathrm{~mm}^{2}: 5.664 \mathrm{~mm}^{2}$.
Area fraction of CNF agglomerates greater than $0.007 \mathrm{~mm}^{2}: 0.8 \%$.
$\left.\left.\begin{array}{ccccccc}\hline \text { Agglomerate } & \begin{array}{c}\text { Area } \\ \left(\mathrm{mm}^{2}\right)\end{array} & \begin{array}{c}\text { Maximum } \\ \text { Feret's } \\ \text { Diameter (mm) }\end{array} & & \text { Agglomerate } & & \begin{array}{c}\text { Area } \\ \left(\mathrm{mm}^{2}\right)\end{array}\end{array} \begin{array}{c}\text { Maximum } \\ \text { Feret's }\end{array}\right] \begin{array}{ccccc}\text { Diameter (mm) }\end{array}\right]$

| Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) | Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 27 | 0.057 | 0.348 | 70 | 0.034 | 0.279 |
| 28 | 0.016 | 0.259 | 71 | 0.010 | 0.182 |
| 29 | 0.249 | 0.671 | 72 | 0.138 | 0.590 |
| 30 | 0.023 | 0.266 | 73 | 0.036 | 0.288 |
| 31 | 0.021 | 0.266 | 74 | 0.070 | 0.437 |
| 32 | 0.019 | 0.228 | 75 | 0.098 | 0.721 |
| 33 | 0.010 | 0.162 | 76 | 0.009 | 0.175 |
| 34 | 0.180 | 0.618 | 77 | 0.009 | 0.153 |
| 35 | 0.101 | 0.724 | 78 | 0.117 | 0.618 |
| 36 | 0.011 | 0.201 | 79 | 0.008 | 0.136 |
| 37 | 0.040 | 0.288 | 80 | 0.029 | 0.279 |
| 38 | 0.018 | 0.321 | 81 | 0.014 | 0.182 |
| 39 | 0.012 | 0.228 | 82 | 0.074 | 0.542 |
| 40 | 0.051 | 0.342 | 83 | 0.053 | 0.469 |
| 41 | 0.029 | 0.342 | 84 | 0.037 | 0.363 |
| 42 | 0.047 | 0.410 | 85 | 0.019 | 0.221 |
| 43 | 0.072 | 0.429 | 86 | 0.024 | 0.229 |
| 44 | 0.052 | 0.402 | 87 | 0.098 | 0.455 |
| 45 | 0.022 | 0.212 | 88 | 0.047 | 0.348 |
| 46 | 0.012 | 0.182 | 89 | 0.028 | 0.313 |
| 47 | 0.007 | 0.142 | 90 | 0.022 | 0.276 |
| 48 | 0.020 | 0.221 | 91 | 0.024 | 0.248 |
| 49 | 0.053 | 0.345 | 92 | 0.022 | 0.259 |
| 50 | 0.018 | 0.259 | 93 | 0.018 | 0.276 |
| 51 | 0.020 | 0.201 | 94 | 0.020 | 0.242 |
| 52 | 0.040 | 0.324 | 95 | 0.080 | 0.496 |
| 53 | 0.016 | 0.225 | 96 | 0.054 | 0.300 |
| 54 | 0.014 | 0.181 | 97 | 0.152 | 0.562 |
| 55 | 0.018 | 0.212 | 98 | 0.072 | 0.488 |
| 56 | 0.024 | 0.272 | 99 | 0.059 | 0.571 |
| 57 | 0.024 | 0.361 | 100 | 0.027 | 0.288 |
| 58 | 0.010 | 0.154 | 101 | 0.008 | 0.154 |
| 59 | 0.103 | 0.495 | 102 | 0.018 | 0.247 |
| 60 | 0.009 | 0.154 | 103 | 0.015 | 0.166 |
| 61 | 0.081 | 0.382 | 104 | 0.080 | 0.433 |
| 62 | 0.053 | 0.405 | 105 | 0.009 | 0.136 |
| 63 | 0.008 | 0.162 | 106 | 0.072 | 0.363 |
| 64 | 0.013 | 0.182 | 107 | 0.008 | 0.124 |
| 65 | 0.012 | 0.196 | 108 | 0.072 | 0.477 |
| 66 | 0.018 | 0.200 | 109 | 0.029 | 0.288 |
| 67 | 0.192 | 0.785 | 110 | 0.009 | 0.162 |
| 68 | 0.011 | 0.212 | 111 | 0.027 | 0.229 |
| 69 | 0.012 | 0.171 | 112 | 0.008 | 0.150 |

$\begin{array}{ccccccc}\hline \text { Agglomerate } & \begin{array}{c}\text { Area } \\ \left(\mathrm{mm}^{2}\right)\end{array} & \begin{array}{c}\text { Maximum } \\ \text { Feret's } \\ \text { Diameter (mm) }\end{array} & & \text { Agglomerate } & \begin{array}{c}\text { Area } \\ \left(\mathrm{mm}^{2}\right)\end{array} & \begin{array}{c}\text { Maximum } \\ \text { Feret's }\end{array} \\$\cline { 5 - 6 } \& Diameter (mm)\end{array}$]$

## PC-W/CNF

Number of CNF agglomerates greater than $0.007 \mathrm{~mm}^{2}: 152$.
Cumulative area of CNFs agglomerates greater than $0.007 \mathrm{~mm}^{2}: 5.403 \mathrm{~mm}^{2}$.
Area fraction of CNF agglomerates greater than $0.007 \mathrm{~mm}^{2}: 0.7 \%$.
$\left.\begin{array}{ccccccc}\hline \text { Agglomerate } & \begin{array}{c}\text { Area } \\ \left(\mathrm{mm}^{2}\right)\end{array} & \begin{array}{c}\text { Maximum } \\ \text { Feret's } \\ \text { Diameter (mm) }\end{array} & & \text { Agglomerate } & & \begin{array}{c}\text { Area } \\ \left(\mathrm{mm}^{2}\right)\end{array} \\ \hline \hline & 0.015 & 0.162 & & \begin{array}{c}\text { Maximum } \\ \text { Feret's }\end{array} \\ \text { Diameter (mm) }\end{array}\right]$

| Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) | Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 49 | 0.069 | 0.481 | 92 | 0.036 | 0.348 |
| 50 | 0.007 | 0.142 | 93 | 0.023 | 0.259 |
| 51 | 0.023 | 0.417 | 94 | 0.049 | 0.318 |
| 52 | 0.158 | 0.594 | 95 | 0.015 | 0.181 |
| 53 | 0.008 | 0.124 | 96 | 0.012 | 0.171 |
| 54 | 0.016 | 0.190 | 97 | 0.049 | 0.348 |
| 55 | 0.038 | 0.324 | 98 | 0.060 | 0.417 |
| 56 | 0.010 | 0.171 | 99 | 0.024 | 0.268 |
| 57 | 0.017 | 0.200 | 100 | 0.016 | 0.228 |
| 58 | 0.064 | 0.361 | 101 | 0.017 | 0.192 |
| 59 | 0.018 | 0.329 | 102 | 0.011 | 0.182 |
| 60 | 0.013 | 0.196 | 103 | 0.153 | 0.607 |
| 61 | 0.049 | 0.398 | 104 | 0.009 | 0.221 |
| 62 | 0.013 | 0.196 | 105 | 0.008 | 0.154 |
| 63 | 0.013 | 0.182 | 106 | 0.008 | 0.154 |
| 64 | 0.019 | 0.237 | 107 | 0.035 | 0.342 |
| 65 | 0.042 | 0.488 | 108 | 0.013 | 0.321 |
| 66 | 0.053 | 0.353 | 109 | 0.011 | 0.181 |
| 67 | 0.024 | 0.221 | 110 | 0.107 | 0.571 |
| 68 | 0.011 | 0.209 | 111 | 0.007 | 0.124 |
| 69 | 0.015 | 0.180 | 112 | 0.022 | 0.345 |
| 70 | 0.009 | 0.153 | 113 | 0.043 | 0.345 |
| 71 | 0.012 | 0.162 | 114 | 0.027 | 0.301 |
| 72 | 0.020 | 0.209 | 115 | 0.009 | 0.153 |
| 73 | 0.010 | 0.142 | 116 | 0.008 | 0.166 |
| 74 | 0.050 | 0.306 | 117 | 0.016 | 0.248 |
| 75 | 0.010 | 0.182 | 118 | 0.027 | 0.405 |
| 76 | 0.019 | 0.212 | 119 | 0.046 | 0.315 |
| 77 | 0.018 | 0.242 | 120 | 0.117 | 0.615 |
| 78 | 0.015 | 0.256 | 121 | 0.015 | 0.200 |
| 79 | 0.426 | 0.911 | 122 | 0.011 | 0.181 |
| 80 | 0.017 | 0.266 | 123 | 0.021 | 0.259 |
| 81 | 0.013 | 0.212 | 124 | 0.020 | 0.200 |
| 82 | 0.017 | 0.209 | 125 | 0.018 | 0.324 |
| 83 | 0.011 | 0.225 | 126 | 0.023 | 0.259 |
| 84 | 0.014 | 0.200 | 127 | 0.008 | 0.153 |
| 85 | 0.013 | 0.196 | 128 | 0.049 | 0.331 |
| 86 | 0.130 | 0.493 | 129 | 0.018 | 0.218 |
| 87 | 0.018 | 0.229 | 130 | 0.013 | 0.182 |
| 88 | 0.013 | 0.225 | 131 | 0.020 | 0.242 |
| 89 | 0.128 | 0.649 | 132 | 0.009 | 0.150 |
| 90 | 0.024 | 0.283 | 133 | 0.020 | 0.200 |
| 91 | 0.012 | 0.200 | 134 | 0.008 | 0.154 |


| Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) | Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 135 | 0.008 | 0.114 | 144 | 0.015 | 0.216 |
| 136 | 0.024 | 0.256 | 145 | 0.027 | 0.268 |
| 137 | 0.009 | 0.136 | 146 | 0.030 | 0.387 |
| 138 | 0.009 | 0.201 | 147 | 0.046 | 0.335 |
| 139 | 0.135 | 0.541 | 148 | 0.054 | 0.313 |
| 140 | 0.035 | 0.270 | 149 | 0.013 | 0.221 |
| 141 | 0.018 | 0.262 | 150 | 0.028 | 0.353 |
| 142 | 0.012 | 0.182 | 151 | 0.038 | 0.335 |
| 143 | 0.136 | 0.603 | 152 | 0.012 | 0.216 |

## PC-CNF

Number of CNF agglomerates greater than $0.007 \mathrm{~mm}^{2}: 700$.
Cumulative area of CNFs agglomerates greater than $0.007 \mathrm{~mm}^{2}: 23.917 \mathrm{~mm}^{2}$.
Area fraction of CNF agglomerates greater than $0.007 \mathrm{~mm}^{2}: 3.5 \%$.

| Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) | Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.137 | 0.626 | 24 | 0.009 | 0.146 |
| 2 | 0.255 | 0.747 | 25 | 0.017 | 0.236 |
| 3 | 0.009 | 0.171 | 26 | 0.010 | 0.146 |
| 4 | 0.076 | 0.477 | 27 | 0.009 | 0.188 |
| 5 | 0.088 | 0.419 | 28 | 0.008 | 0.166 |
| 6 | 0.051 | 0.473 | 29 | 0.023 | 0.270 |
| 7 | 0.046 | 0.528 | 30 | 0.010 | 0.166 |
| 8 | 0.033 | 0.343 | 31 | 0.137 | 0.728 |
| 9 | 0.144 | 0.564 | 32 | 0.061 | 0.472 |
| 10 | 0.034 | 0.289 | 33 | 0.010 | 0.146 |
| 11 | 0.079 | 0.419 | 34 | 0.036 | 0.367 |
| 12 | 0.090 | 0.501 | 35 | 0.011 | 0.188 |
| 13 | 0.209 | 0.804 | 36 | 0.009 | 0.171 |
| 14 | 0.092 | 0.407 | 37 | 0.015 | 0.171 |
| 15 | 0.114 | 0.477 | 38 | 0.047 | 0.394 |
| 16 | 0.010 | 0.178 | 39 | 0.025 | 0.316 |
| 17 | 0.051 | 0.342 | 40 | 0.068 | 0.419 |
| 18 | 0.015 | 0.197 | 41 | 0.081 | 0.473 |
| 19 | 0.170 | 0.598 | 42 | 0.075 | 0.447 |
| 20 | 0.040 | 0.306 | 43 | 0.017 | 0.197 |
| 21 | 0.014 | 0.171 | 44 | 0.017 | 0.188 |
| 22 | 0.060 | 0.408 | 45 | 0.014 | 0.197 |
| 23 | 0.129 | 0.586 | 46 | 0.019 | 0.188 |


| Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) | Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 47 | 0.044 | 0.416 | 90 | 0.010 | 0.158 |
| 48 | 0.014 | 0.211 | 91 | 0.022 | 0.229 |
| 49 | 0.008 | 0.131 | 92 | 0.014 | 0.197 |
| 50 | 0.009 | 0.158 | 93 | 0.024 | 0.316 |
| 51 | 0.024 | 0.276 | 94 | 0.015 | 0.188 |
| 52 | 0.019 | 0.270 | 95 | 0.084 | 0.408 |
| 53 | 0.018 | 0.334 | 96 | 0.009 | 0.185 |
| 54 | 0.068 | 0.394 | 97 | 0.010 | 0.242 |
| 55 | 0.011 | 0.252 | 98 | 0.098 | 0.512 |
| 56 | 0.018 | 0.294 | 99 | 0.020 | 0.276 |
| 57 | 0.130 | 0.512 | 100 | 0.054 | 0.373 |
| 58 | 0.123 | 0.540 | 101 | 0.025 | 0.278 |
| 59 | 0.012 | 0.171 | 102 | 0.028 | 0.299 |
| 60 | 0.275 | 1.032 | 103 | 0.051 | 0.356 |
| 61 | 0.015 | 0.188 | 104 | 0.011 | 0.197 |
| 62 | 0.015 | 0.236 | 105 | 0.033 | 0.252 |
| 63 | 0.022 | 0.334 | 106 | 0.060 | 0.382 |
| 64 | 0.065 | 0.742 | 107 | 0.053 | 0.553 |
| 65 | 0.027 | 0.252 | 108 | 0.015 | 0.328 |
| 66 | 0.091 | 0.473 | 109 | 0.027 | 0.270 |
| 67 | 0.050 | 0.427 | 110 | 0.012 | 0.158 |
| 68 | 0.027 | 0.262 | 111 | 0.009 | 0.171 |
| 69 | 0.014 | 0.223 | 112 | 0.015 | 0.223 |
| 70 | 0.037 | 0.328 | 113 | 0.077 | 0.560 |
| 71 | 0.080 | 0.463 | 114 | 0.018 | 0.171 |
| 72 | 0.027 | 0.293 | 115 | 0.023 | 0.252 |
| 73 | 0.013 | 0.171 | 116 | 0.053 | 0.334 |
| 74 | 0.021 | 0.223 | 117 | 0.015 | 0.270 |
| 75 | 0.121 | 0.676 | 118 | 0.009 | 0.158 |
| 76 | 0.069 | 0.473 | 119 | 0.009 | 0.146 |
| 77 | 0.025 | 0.262 | 120 | 0.009 | 0.131 |
| 78 | 0.009 | 0.158 | 121 | 0.174 | 0.593 |
| 79 | 0.049 | 0.531 | 122 | 0.014 | 0.242 |
| 80 | 0.009 | 0.146 | 123 | 0.011 | 0.188 |
| 81 | 0.009 | 0.131 | 124 | 0.016 | 0.185 |
| 82 | 0.185 | 0.715 | 125 | 0.012 | 0.171 |
| 83 | 0.118 | 0.545 | 126 | 0.009 | 0.223 |
| 84 | 0.025 | 0.270 | 127 | 0.084 | 0.463 |
| 85 | 0.027 | 0.236 | 128 | 0.175 | 0.735 |
| 86 | 0.076 | 0.416 | 129 | 0.027 | 0.328 |
| 87 | 0.219 | 0.691 | 130 | 0.036 | 0.302 |
| 88 | 0.121 | 0.604 | 131 | 0.008 | 0.146 |
| 89 | 0.190 | 0.564 | 132 | 0.012 | 0.223 |


| Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) | Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 133 | 0.025 | 0.270 | 176 | 0.009 | 0.185 |
| 134 | 0.048 | 0.463 | 177 | 0.101 | 0.483 |
| 135 | 0.112 | 0.463 | 178 | 0.009 | 0.213 |
| 136 | 0.008 | 0.131 | 179 | 0.009 | 0.158 |
| 137 | 0.021 | 0.276 | 180 | 0.008 | 0.188 |
| 138 | 0.065 | 0.398 | 181 | 0.015 | 0.229 |
| 139 | 0.071 | 0.524 | 182 | 0.013 | 0.185 |
| 140 | 0.013 | 0.197 | 183 | 0.010 | 0.211 |
| 141 | 0.009 | 0.166 | 184 | 0.015 | 0.270 |
| 142 | 0.009 | 0.158 | 185 | 0.045 | 0.316 |
| 143 | 0.009 | 0.171 | 186 | 0.012 | 0.249 |
| 144 | 0.023 | 0.293 | 187 | 0.021 | 0.223 |
| 145 | 0.019 | 0.278 | 188 | 0.020 | 0.229 |
| 146 | 0.015 | 0.250 | 189 | 0.008 | 0.131 |
| 147 | 0.009 | 0.197 | 190 | 0.020 | 0.278 |
| 148 | 0.009 | 0.158 | 191 | 0.110 | 0.610 |
| 149 | 0.017 | 0.188 | 192 | 0.035 | 0.270 |
| 150 | 0.185 | 0.827 | 193 | 0.018 | 0.270 |
| 151 | 0.076 | 0.485 | 194 | 0.009 | 0.213 |
| 152 | 0.008 | 0.188 | 195 | 0.074 | 0.427 |
| 153 | 0.041 | 0.302 | 196 | 0.015 | 0.249 |
| 154 | 0.051 | 0.302 | 197 | 0.018 | 0.242 |
| 155 | 0.032 | 0.252 | 198 | 0.010 | 0.146 |
| 156 | 0.009 | 0.131 | 199 | 0.021 | 0.265 |
| 157 | 0.012 | 0.171 | 200 | 0.020 | 0.289 |
| 158 | 0.009 | 0.146 | 201 | 0.038 | 0.443 |
| 159 | 0.009 | 0.158 | 202 | 0.021 | 0.278 |
| 160 | 0.057 | 0.398 | 203 | 0.014 | 0.188 |
| 161 | 0.011 | 0.146 | 204 | 0.008 | 0.185 |
| 162 | 0.024 | 0.294 | 205 | 0.032 | 0.252 |
| 163 | 0.121 | 0.593 | 206 | 0.010 | 0.171 |
| 164 | 0.010 | 0.158 | 207 | 0.028 | 0.252 |
| 165 | 0.016 | 0.211 | 208 | 0.041 | 0.306 |
| 166 | 0.009 | 0.211 | 209 | 0.009 | 0.158 |
| 167 | 0.032 | 0.334 | 210 | 0.013 | 0.270 |
| 168 | 0.009 | 0.197 | 211 | 0.009 | 0.146 |
| 169 | 0.089 | 0.483 | 212 | 0.029 | 0.270 |
| 170 | 0.025 | 0.334 | 213 | 0.021 | 0.213 |
| 171 | 0.123 | 0.501 | 214 | 0.065 | 0.398 |
| 172 | 0.012 | 0.242 | 215 | 0.008 | 0.131 |
| 173 | 0.088 | 0.564 | 216 | 0.009 | 0.131 |
| 174 | 0.033 | 0.473 | 217 | 0.042 | 0.353 |
| 175 | 0.008 | 0.131 | 218 | 0.011 | 0.197 |


| Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) | Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 219 | 0.009 | 0.166 | 262 | 0.015 | 0.185 |
| 220 | 0.009 | 0.171 | 263 | 0.038 | 0.317 |
| 221 | 0.013 | 0.207 | 264 | 0.015 | 0.213 |
| 222 | 0.046 | 0.382 | 265 | 0.060 | 0.455 |
| 223 | 0.026 | 0.270 | 266 | 0.023 | 0.229 |
| 224 | 0.062 | 0.353 | 267 | 0.009 | 0.188 |
| 225 | 0.028 | 0.236 | 268 | 0.016 | 0.207 |
| 226 | 0.023 | 0.250 | 269 | 0.015 | 0.188 |
| 227 | 0.058 | 0.535 | 270 | 0.019 | 0.270 |
| 228 | 0.111 | 0.480 | 271 | 0.031 | 0.353 |
| 229 | 0.025 | 0.223 | 272 | 0.029 | 0.411 |
| 230 | 0.009 | 0.146 | 273 | 0.020 | 0.188 |
| 231 | 0.017 | 0.293 | 274 | 0.038 | 0.290 |
| 232 | 0.032 | 0.407 | 275 | 0.009 | 0.146 |
| 233 | 0.020 | 0.270 | 276 | 0.011 | 0.211 |
| 234 | 0.056 | 0.375 | 277 | 0.017 | 0.188 |
| 235 | 0.042 | 0.528 | 278 | 0.010 | 0.171 |
| 236 | 0.009 | 0.146 | 279 | 0.072 | 0.472 |
| 237 | 0.066 | 0.419 | 280 | 0.071 | 0.446 |
| 238 | 0.034 | 0.316 | 281 | 0.009 | 0.171 |
| 239 | 0.014 | 0.185 | 282 | 0.024 | 0.270 |
| 240 | 0.070 | 0.398 | 283 | 0.071 | 0.414 |
| 241 | 0.022 | 0.197 | 284 | 0.025 | 0.262 |
| 242 | 0.010 | 0.197 | 285 | 0.017 | 0.343 |
| 243 | 0.056 | 0.358 | 286 | 0.078 | 0.483 |
| 244 | 0.027 | 0.252 | 287 | 0.008 | 0.131 |
| 245 | 0.053 | 0.328 | 288 | 0.028 | 0.642 |
| 246 | 0.018 | 0.213 | 289 | 0.011 | 0.171 |
| 247 | 0.022 | 0.229 | 290 | 0.010 | 0.229 |
| 248 | 0.019 | 0.211 | 291 | 0.012 | 0.242 |
| 249 | 0.071 | 0.419 | 292 | 0.082 | 0.547 |
| 250 | 0.066 | 0.371 | 293 | 0.008 | 0.131 |
| 251 | 0.049 | 0.343 | 294 | 0.023 | 0.276 |
| 252 | 0.009 | 0.146 | 295 | 0.052 | 0.398 |
| 253 | 0.022 | 0.229 | 296 | 0.026 | 0.299 |
| 254 | 0.022 | 0.276 | 297 | 0.016 | 0.317 |
| 255 | 0.023 | 0.213 | 298 | 0.014 | 0.223 |
| 256 | 0.015 | 0.211 | 299 | 0.009 | 0.171 |
| 257 | 0.013 | 0.188 | 300 | 0.010 | 0.158 |
| 258 | 0.055 | 0.472 | 301 | 0.009 | 0.146 |
| 259 | 0.017 | 0.197 | 302 | 0.008 | 0.146 |
| 260 | 0.011 | 0.158 | 303 | 0.012 | 0.207 |
| 261 | 0.015 | 0.185 | 304 | 0.027 | 0.293 |


| Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) | Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 305 | 0.015 | 0.188 | 348 | 0.009 | 0.158 |
| 306 | 0.058 | 0.382 | 349 | 0.029 | 0.278 |
| 307 | 0.041 | 0.362 | 350 | 0.093 | 0.621 |
| 308 | 0.009 | 0.185 | 351 | 0.017 | 0.197 |
| 309 | 0.037 | 0.276 | 352 | 0.012 | 0.185 |
| 310 | 0.014 | 0.207 | 353 | 0.020 | 0.242 |
| 311 | 0.102 | 0.491 | 354 | 0.012 | 0.166 |
| 312 | 0.014 | 0.197 | 355 | 0.036 | 0.276 |
| 313 | 0.009 | 0.146 | 356 | 0.011 | 0.236 |
| 314 | 0.027 | 0.252 | 357 | 0.009 | 0.149 |
| 315 | 0.022 | 0.311 | 358 | 0.014 | 0.185 |
| 316 | 0.027 | 0.293 | 359 | 0.009 | 0.197 |
| 317 | 0.038 | 0.328 | 360 | 0.153 | 0.556 |
| 318 | 0.016 | 0.213 | 361 | 0.034 | 0.306 |
| 319 | 0.011 | 0.171 | 362 | 0.010 | 0.171 |
| 320 | 0.088 | 0.447 | 363 | 0.008 | 0.131 |
| 321 | 0.035 | 0.262 | 364 | 0.009 | 0.131 |
| 322 | 0.008 | 0.146 | 365 | 0.009 | 0.166 |
| 323 | 0.021 | 0.223 | 366 | 0.025 | 0.250 |
| 324 | 0.008 | 0.158 | 367 | 0.009 | 0.149 |
| 325 | 0.010 | 0.166 | 368 | 0.012 | 0.211 |
| 326 | 0.053 | 0.362 | 369 | 0.027 | 0.294 |
| 327 | 0.008 | 0.131 | 370 | 0.015 | 0.229 |
| 328 | 0.039 | 0.342 | 371 | 0.015 | 0.262 |
| 329 | 0.071 | 0.433 | 372 | 0.021 | 0.262 |
| 330 | 0.011 | 0.188 | 373 | 0.013 | 0.185 |
| 331 | 0.058 | 0.414 | 374 | 0.009 | 0.131 |
| 332 | 0.088 | 0.480 | 375 | 0.021 | 0.229 |
| 333 | 0.028 | 0.276 | 376 | 0.008 | 0.131 |
| 334 | 0.100 | 0.528 | 377 | 0.033 | 0.265 |
| 335 | 0.018 | 0.229 | 378 | 0.009 | 0.146 |
| 336 | 0.009 | 0.158 | 379 | 0.010 | 0.197 |
| 337 | 0.057 | 0.436 | 380 | 0.015 | 0.213 |
| 338 | 0.008 | 0.197 | 381 | 0.112 | 0.621 |
| 339 | 0.025 | 0.293 | 382 | 0.015 | 0.211 |
| 340 | 0.027 | 0.252 | 383 | 0.027 | 0.236 |
| 341 | 0.041 | 0.317 | 384 | 0.008 | 0.158 |
| 342 | 0.009 | 0.171 | 385 | 0.082 | 0.446 |
| 343 | 0.010 | 0.146 | 386 | 0.015 | 0.171 |
| 344 | 0.020 | 0.278 | 387 | 0.017 | 0.207 |
| 345 | 0.035 | 0.306 | 388 | 0.085 | 0.569 |
| 346 | 0.015 | 0.171 | 389 | 0.020 | 0.211 |
| 347 | 0.015 | 0.252 | 390 | 0.018 | 0.252 |


| Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) | Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 391 | 0.021 | 0.270 | 434 | 0.070 | 0.391 |
| 392 | 0.044 | 0.311 | 435 | 0.092 | 0.642 |
| 393 | 0.020 | 0.302 | 436 | 0.010 | 0.146 |
| 394 | 0.009 | 0.146 | 437 | 0.033 | 0.381 |
| 395 | 0.025 | 0.250 | 438 | 0.010 | 0.131 |
| 396 | 0.011 | 0.158 | 439 | 0.010 | 0.146 |
| 397 | 0.016 | 0.211 | 440 | 0.027 | 0.252 |
| 398 | 0.010 | 0.146 | 441 | 0.025 | 0.289 |
| 399 | 0.010 | 0.185 | 442 | 0.051 | 0.356 |
| 400 | 0.023 | 0.236 | 443 | 0.015 | 0.213 |
| 401 | 0.037 | 0.278 | 444 | 0.022 | 0.262 |
| 402 | 0.022 | 0.252 | 445 | 0.237 | 0.910 |
| 403 | 0.013 | 0.171 | 446 | 0.015 | 0.270 |
| 404 | 0.039 | 0.317 | 447 | 0.014 | 0.223 |
| 405 | 0.022 | 0.229 | 448 | 0.018 | 0.197 |
| 406 | 0.009 | 0.185 | 449 | 0.030 | 0.306 |
| 407 | 0.016 | 0.223 | 450 | 0.012 | 0.171 |
| 408 | 0.016 | 0.197 | 451 | 0.015 | 0.211 |
| 409 | 0.015 | 0.171 | 452 | 0.009 | 0.171 |
| 410 | 0.157 | 0.715 | 453 | 0.013 | 0.197 |
| 411 | 0.011 | 0.188 | 454 | 0.022 | 0.262 |
| 412 | 0.009 | 0.185 | 455 | 0.018 | 0.211 |
| 413 | 0.021 | 0.316 | 456 | 0.009 | 0.146 |
| 414 | 0.015 | 0.188 | 457 | 0.078 | 0.535 |
| 415 | 0.032 | 0.276 | 458 | 0.042 | 0.472 |
| 416 | 0.009 | 0.185 | 459 | 0.009 | 0.146 |
| 417 | 0.010 | 0.213 | 460 | 0.008 | 0.149 |
| 418 | 0.014 | 0.188 | 461 | 0.008 | 0.171 |
| 419 | 0.009 | 0.166 | 462 | 0.008 | 0.158 |
| 420 | 0.012 | 0.158 | 463 | 0.022 | 0.447 |
| 421 | 0.016 | 0.236 | 464 | 0.197 | 0.741 |
| 422 | 0.009 | 0.146 | 465 | 0.014 | 0.302 |
| 423 | 0.030 | 0.293 | 466 | 0.015 | 0.250 |
| 424 | 0.025 | 0.211 | 467 | 0.012 | 0.262 |
| 425 | 0.072 | 0.499 | 468 | 0.013 | 0.188 |
| 426 | 0.103 | 0.439 | 469 | 0.008 | 0.188 |
| 427 | 0.051 | 0.398 | 470 | 0.123 | 0.576 |
| 428 | 0.015 | 0.171 | 471 | 0.022 | 0.211 |
| 429 | 0.010 | 0.188 | 472 | 0.010 | 0.166 |
| 430 | 0.009 | 0.211 | 473 | 0.009 | 0.146 |
| 431 | 0.009 | 0.131 | 474 | 0.012 | 0.158 |
| 432 | 0.038 | 0.398 | 475 | 0.010 | 0.158 |
| 433 | 0.036 | 0.270 | 476 | 0.016 | 0.211 |


| Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) | Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 477 | 0.056 | 0.540 | 520 | 0.017 | 0.213 |
| 478 | 0.009 | 0.188 | 521 | 0.008 | 0.131 |
| 479 | 0.028 | 0.262 | 522 | 0.032 | 0.328 |
| 480 | 0.018 | 0.185 | 523 | 0.016 | 0.207 |
| 481 | 0.008 | 0.236 | 524 | 0.077 | 0.381 |
| 482 | 0.058 | 0.512 | 525 | 0.018 | 0.211 |
| 483 | 0.017 | 0.213 | 526 | 0.012 | 0.171 |
| 484 | 0.017 | 0.207 | 527 | 0.034 | 0.407 |
| 485 | 0.008 | 0.131 | 528 | 0.029 | 0.293 |
| 486 | 0.047 | 0.316 | 529 | 0.009 | 0.146 |
| 487 | 0.008 | 0.171 | 530 | 0.011 | 0.188 |
| 488 | 0.024 | 0.317 | 531 | 0.015 | 0.171 |
| 489 | 0.019 | 0.223 | 532 | 0.095 | 0.512 |
| 490 | 0.010 | 0.211 | 533 | 0.039 | 0.448 |
| 491 | 0.009 | 0.185 | 534 | 0.008 | 0.188 |
| 492 | 0.083 | 0.501 | 535 | 0.027 | 0.252 |
| 493 | 0.045 | 0.317 | 536 | 0.032 | 0.375 |
| 494 | 0.021 | 0.252 | 537 | 0.010 | 0.149 |
| 495 | 0.036 | 0.316 | 538 | 0.024 | 0.242 |
| 496 | 0.020 | 0.270 | 539 | 0.008 | 0.171 |
| 497 | 0.032 | 0.299 | 540 | 0.032 | 0.270 |
| 498 | 0.021 | 0.229 | 541 | 0.010 | 0.171 |
| 499 | 0.066 | 0.423 | 542 | 0.008 | 0.124 |
| 500 | 0.014 | 0.185 | 543 | 0.010 | 0.211 |
| 501 | 0.010 | 0.171 | 544 | 0.012 | 0.158 |
| 502 | 0.012 | 0.171 | 545 | 0.012 | 0.213 |
| 503 | 0.009 | 0.149 | 546 | 0.013 | 0.166 |
| 504 | 0.015 | 0.250 | 547 | 0.011 | 0.166 |
| 505 | 0.017 | 0.197 | 548 | 0.055 | 0.331 |
| 506 | 0.009 | 0.211 | 549 | 0.008 | 0.211 |
| 507 | 0.066 | 0.512 | 550 | 0.009 | 0.131 |
| 508 | 0.012 | 0.185 | 551 | 0.031 | 0.236 |
| 509 | 0.011 | 0.171 | 552 | 0.154 | 0.696 |
| 510 | 0.008 | 0.124 | 553 | 0.010 | 0.242 |
| 511 | 0.021 | 0.242 | 554 | 0.017 | 0.236 |
| 512 | 0.027 | 0.262 | 555 | 0.029 | 0.375 |
| 513 | 0.011 | 0.171 | 556 | 0.013 | 0.158 |
| 514 | 0.021 | 0.223 | 557 | 0.021 | 0.302 |
| 515 | 0.049 | 0.342 | 558 | 0.043 | 0.302 |
| 516 | 0.008 | 0.131 | 559 | 0.013 | 0.158 |
| 517 | 0.013 | 0.211 | 560 | 0.077 | 0.499 |
| 518 | 0.012 | 0.197 | 561 | 0.043 | 0.317 |
| 519 | 0.068 | 0.446 | 562 | 0.009 | 0.158 |


| Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) | Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 563 | 0.009 | 0.171 | 606 | 0.018 | 0.316 |
| 564 | 0.009 | 0.197 | 607 | 0.010 | 0.213 |
| 565 | 0.066 | 0.393 | 608 | 0.014 | 0.188 |
| 566 | 0.009 | 0.158 | 609 | 0.051 | 0.391 |
| 567 | 0.167 | 0.632 | 610 | 0.021 | 0.236 |
| 568 | 0.015 | 0.252 | 611 | 0.032 | 0.276 |
| 569 | 0.017 | 0.278 | 612 | 0.051 | 0.477 |
| 570 | 0.033 | 0.398 | 613 | 0.009 | 0.131 |
| 571 | 0.021 | 0.229 | 614 | 0.008 | 0.131 |
| 572 | 0.011 | 0.171 | 615 | 0.008 | 0.171 |
| 573 | 0.109 | 0.498 | 616 | 0.021 | 0.293 |
| 574 | 0.028 | 0.538 | 617 | 0.152 | 0.610 |
| 575 | 0.144 | 0.725 | 618 | 0.008 | 0.171 |
| 576 | 0.054 | 0.448 | 619 | 0.018 | 0.197 |
| 577 | 0.190 | 0.610 | 620 | 0.009 | 0.197 |
| 578 | 0.008 | 0.171 | 621 | 0.010 | 0.166 |
| 579 | 0.046 | 0.427 | 622 | 0.011 | 0.211 |
| 580 | 0.013 | 0.207 | 623 | 0.015 | 0.188 |
| 581 | 0.041 | 0.391 | 624 | 0.017 | 0.223 |
| 582 | 0.017 | 0.207 | 625 | 0.092 | 0.433 |
| 583 | 0.045 | 0.381 | 626 | 0.076 | 0.436 |
| 584 | 0.079 | 0.423 | 627 | 0.051 | 0.317 |
| 585 | 0.009 | 0.158 | 628 | 0.040 | 0.293 |
| 586 | 0.148 | 0.539 | 629 | 0.076 | 0.566 |
| 587 | 0.099 | 0.483 | 630 | 0.056 | 0.455 |
| 588 | 0.070 | 0.373 | 631 | 0.011 | 0.146 |
| 589 | 0.044 | 0.289 | 632 | 0.009 | 0.146 |
| 590 | 0.155 | 0.676 | 633 | 0.009 | 0.171 |
| 591 | 0.010 | 0.197 | 634 | 0.011 | 0.276 |
| 592 | 0.022 | 0.250 | 635 | 0.009 | 0.236 |
| 593 | 0.028 | 0.306 | 636 | 0.009 | 0.131 |
| 594 | 0.012 | 0.166 | 637 | 0.032 | 0.382 |
| 595 | 0.148 | 0.540 | 638 | 0.027 | 0.236 |
| 596 | 0.014 | 0.188 | 639 | 0.108 | 0.512 |
| 597 | 0.009 | 0.211 | 640 | 0.014 | 0.213 |
| 598 | 0.014 | 0.188 | 641 | 0.030 | 0.250 |
| 599 | 0.070 | 0.354 | 642 | 0.009 | 0.158 |
| 600 | 0.008 | 0.211 | 643 | 0.033 | 0.328 |
| 601 | 0.011 | 0.171 | 644 | 0.021 | 0.211 |
| 602 | 0.118 | 0.556 | 645 | 0.021 | 0.242 |
| 603 | 0.022 | 0.223 | 646 | 0.020 | 0.213 |
| 604 | 0.173 | 0.696 | 647 | 0.008 | 0.149 |
| 605 | 0.009 | 0.188 | 648 | 0.063 | 0.408 |


| Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) | Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 649 | 0.008 | 0.131 | 676 | 0.035 | 0.311 |
| 650 | 0.019 | 0.262 | 677 | 0.009 | 0.146 |
| 651 | 0.008 | 0.131 | 678 | 0.027 | 0.242 |
| 652 | 0.112 | 0.621 | 679 | 0.015 | 0.207 |
| 653 | 0.008 | 0.158 | 680 | 0.021 | 0.229 |
| 654 | 0.016 | 0.211 | 681 | 0.009 | 0.146 |
| 655 | 0.027 | 0.242 | 682 | 0.017 | 0.207 |
| 656 | 0.014 | 0.188 | 683 | 0.018 | 0.236 |
| 657 | 0.047 | 0.391 | 684 | 0.015 | 0.197 |
| 658 | 0.009 | 0.158 | 685 | 0.017 | 0.236 |
| 659 | 0.071 | 0.447 | 686 | 0.013 | 0.249 |
| 660 | 0.058 | 0.604 | 687 | 0.047 | 0.342 |
| 661 | 0.040 | 0.278 | 688 | 0.024 | 0.229 |
| 662 | 0.008 | 0.131 | 689 | 0.043 | 0.354 |
| 663 | 0.021 | 0.242 | 690 | 0.009 | 0.166 |
| 664 | 0.067 | 0.408 | 691 | 0.009 | 0.171 |
| 665 | 0.026 | 0.299 | 692 | 0.009 | 0.146 |
| 666 | 0.009 | 0.146 | 693 | 0.012 | 0.185 |
| 667 | 0.036 | 0.306 | 694 | 0.021 | 0.236 |
| 668 | 0.009 | 0.171 | 695 | 0.015 | 0.356 |
| 669 | 0.014 | 0.185 | 696 | 0.009 | 0.146 |
| 670 | 0.040 | 0.416 | 697 | 0.014 | 0.197 |
| 671 | 0.027 | 0.249 | 698 | 0.008 | 0.131 |
| 672 | 0.017 | 0.250 | 699 | 0.010 | 0.211 |
| 673 | 0.015 | 0.229 | 700 | 0.010 | 0.188 |

## PC-CNF-CF

Number of CNF agglomerates greater than $0.007 \mathrm{~mm}^{2}: 627$.
Cumulative area of CNFs agglomerates greater than $0.007 \mathrm{~mm}^{2}: 29.805 \mathrm{~mm}^{2}$.
Area fraction of CNF agglomerates greater than $0.007 \mathrm{~mm}^{2}: 2.6 \%$.
$\left.\begin{array}{ccccccc}\hline \text { Agglomerate } & \begin{array}{c}\text { Area } \\ \left(\mathrm{mm}^{2}\right)\end{array} & \begin{array}{c}\text { Maximum } \\ \text { Feret's } \\ \text { Diameter (mm) }\end{array} & & \text { Agglomerate } & & \begin{array}{c}\text { Area } \\ \left(\mathrm{mm}^{2}\right)\end{array}\end{array} \begin{array}{c}\text { Maximum } \\ \text { Feret's } \\ \text { Diameter (mm) }\end{array}\right)$
$\left.\left.\begin{array}{ccccccc}\hline \text { Agglomerate } & \begin{array}{c}\text { Area } \\ \left(\mathrm{mm}^{2}\right)\end{array} & \begin{array}{c}\text { Maximum } \\ \text { Feret's } \\ \text { Diameter (mm) }\end{array} & & \text { Agglomerate } & & \begin{array}{c}\text { Area } \\ \left(\mathrm{mm}^{2}\right)\end{array}\end{array} \begin{array}{c}\text { Maximum } \\ \text { Feret's }\end{array}\right] \begin{array}{ccccc}\text { Diameter (mm) }\end{array}\right]$
$\left.\begin{array}{ccccccc}\hline \text { Agglomerate } & \begin{array}{c}\text { Area } \\ \left(\mathrm{mm}^{2}\right)\end{array} & \begin{array}{c}\text { Maximum } \\ \text { Feret's } \\ \text { Diameter }(\mathrm{mm})\end{array} & & \text { Agglomerate } & & \begin{array}{c}\text { Area } \\ \left(\mathrm{mm}^{2}\right)\end{array} \\ & & & \begin{array}{c}\text { Maximum } \\ \text { Feret's }\end{array} \\ \text { Diameter (mm) }\end{array}\right]$

| Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) | Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 183 | 0.028 | 0.236 | 226 | 0.042 | 0.408 |
| 184 | 0.013 | 0.188 | 227 | 0.102 | 0.528 |
| 185 | 0.028 | 0.250 | 228 | 0.015 | 0.211 |
| 186 | 0.014 | 0.278 | 229 | 0.185 | 1.008 |
| 187 | 0.016 | 0.252 | 230 | 0.041 | 0.531 |
| 188 | 0.016 | 0.294 | 231 | 0.014 | 0.197 |
| 189 | 0.027 | 0.477 | 232 | 0.015 | 0.185 |
| 190 | 0.015 | 0.316 | 233 | 0.335 | 0.936 |
| 191 | 0.013 | 0.211 | 234 | 0.039 | 0.358 |
| 192 | 0.041 | 0.519 | 235 | 0.013 | 0.171 |
| 193 | 0.020 | 0.223 | 236 | 0.014 | 0.188 |
| 194 | 0.022 | 0.236 | 237 | 0.021 | 0.252 |
| 195 | 0.013 | 0.236 | 238 | 0.008 | 0.131 |
| 196 | 0.025 | 0.289 | 239 | 0.101 | 0.564 |
| 197 | 0.015 | 0.223 | 240 | 0.019 | 0.197 |
| 198 | 0.016 | 0.223 | 241 | 0.023 | 0.276 |
| 199 | 0.020 | 0.317 | 242 | 0.023 | 0.250 |
| 200 | 0.288 | 0.945 | 243 | 0.027 | 0.328 |
| 201 | 0.034 | 0.393 | 244 | 0.041 | 0.276 |
| 202 | 0.063 | 0.463 | 245 | 0.015 | 0.213 |
| 203 | 0.125 | 0.684 | 246 | 0.014 | 0.197 |
| 204 | 0.078 | 0.569 | 247 | 0.177 | 0.742 |
| 205 | 0.021 | 0.328 | 248 | 0.061 | 0.874 |
| 206 | 0.146 | 0.603 | 249 | 0.015 | 0.249 |
| 207 | 0.130 | 0.627 | 250 | 0.016 | 0.236 |
| 208 | 0.026 | 0.391 | 251 | 0.014 | 0.171 |
| 209 | 0.026 | 0.242 | 252 | 0.019 | 0.252 |
| 210 | 0.031 | 0.381 | 253 | 0.021 | 0.252 |
| 211 | 0.015 | 0.276 | 254 | 0.017 | 0.213 |
| 212 | 0.042 | 0.531 | 255 | 0.016 | 0.270 |
| 213 | 0.180 | 0.725 | 256 | 0.027 | 0.328 |
| 214 | 0.013 | 0.223 | 257 | 0.015 | 0.185 |
| 215 | 0.017 | 0.262 | 258 | 0.030 | 0.311 |
| 216 | 0.015 | 0.270 | 259 | 0.122 | 0.556 |
| 217 | 0.051 | 0.419 | 260 | 0.154 | 0.681 |
| 218 | 0.013 | 0.197 | 261 | 0.030 | 0.353 |
| 219 | 0.031 | 0.306 | 262 | 0.019 | 0.276 |
| 220 | 0.012 | 0.229 | 263 | 0.014 | 0.270 |
| 221 | 0.015 | 0.207 | 264 | 0.028 | 0.398 |
| 222 | 0.015 | 0.236 | 265 | 0.013 | 0.250 |
| 223 | 0.013 | 0.213 | 266 | 0.043 | 0.311 |
| 224 | 0.039 | 0.302 | 267 | 0.028 | 0.316 |
| 225 | 0.060 | 0.463 | 268 | 0.037 | 0.436 |

$\begin{array}{ccccccc}\hline \text { Agglomerate } & \begin{array}{c}\text { Area } \\ \left(\mathrm{mm}^{2}\right)\end{array} & \begin{array}{c}\text { Maximum } \\ \text { Feret's } \\ \text { Diameter (mm) }\end{array} & & \text { Agglomerate } & & \begin{array}{c}\text { Area } \\ \left(\mathrm{mm}^{2}\right)\end{array} \\$\cline { 5 - 6 } \cline { 5 - 6 } \& 0.284 \& 0.810 \& \& $\left.\begin{array}{c}\text { Maximum } \\ \text { Feret's }\end{array} \\ \text { Diameter (mm) }\end{array}\right]$

| Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) | Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 355 | 0.135 | 0.715 | 398 | 0.199 | 0.881 |
| 356 | 0.016 | 0.223 | 399 | 0.033 | 0.447 |
| 357 | 0.017 | 0.306 | 400 | 0.015 | 0.213 |
| 358 | 0.045 | 0.362 | 401 | 0.021 | 0.229 |
| 359 | 0.016 | 0.213 | 402 | 0.013 | 0.213 |
| 360 | 0.137 | 0.788 | 403 | 0.019 | 0.185 |
| 361 | 0.023 | 0.367 | 404 | 0.024 | 0.213 |
| 362 | 0.019 | 0.276 | 405 | 0.038 | 0.381 |
| 363 | 0.013 | 0.188 | 406 | 0.014 | 0.197 |
| 364 | 0.022 | 0.262 | 407 | 0.062 | 0.382 |
| 365 | 0.029 | 0.358 | 408 | 0.035 | 0.334 |
| 366 | 0.076 | 0.566 | 409 | 0.018 | 0.252 |
| 367 | 0.015 | 0.242 | 410 | 0.016 | 0.362 |
| 368 | 0.014 | 0.250 | 411 | 0.015 | 0.171 |
| 369 | 0.020 | 0.236 | 412 | 0.235 | 0.866 |
| 370 | 0.027 | 0.371 | 413 | 0.017 | 0.252 |
| 371 | 0.031 | 0.270 | 414 | 0.014 | 0.188 |
| 372 | 0.017 | 0.223 | 415 | 0.155 | 0.564 |
| 373 | 0.016 | 0.229 | 416 | 0.159 | 0.694 |
| 374 | 0.070 | 0.658 | 417 | 0.035 | 0.262 |
| 375 | 0.019 | 0.223 | 418 | 0.017 | 0.289 |
| 376 | 0.021 | 0.236 | 419 | 0.056 | 0.473 |
| 377 | 0.013 | 0.223 | 420 | 0.022 | 0.328 |
| 378 | 0.092 | 0.436 | 421 | 0.013 | 0.211 |
| 379 | 0.021 | 0.289 | 422 | 0.033 | 0.407 |
| 380 | 0.019 | 0.270 | 423 | 0.097 | 0.724 |
| 381 | 0.035 | 0.354 | 424 | 0.020 | 0.250 |
| 382 | 0.013 | 0.171 | 425 | 0.008 | 0.146 |
| 383 | 0.039 | 0.354 | 426 | 0.013 | 0.223 |
| 384 | 0.021 | 0.316 | 427 | 0.029 | 0.249 |
| 385 | 0.275 | 0.741 | 428 | 0.089 | 0.414 |
| 386 | 0.157 | 0.686 | 429 | 0.031 | 0.317 |
| 387 | 0.249 | 1.167 | 430 | 0.049 | 0.391 |
| 388 | 0.027 | 0.436 | 431 | 0.021 | 0.276 |
| 389 | 0.028 | 0.317 | 432 | 0.055 | 0.334 |
| 390 | 0.018 | 0.250 | 433 | 0.088 | 0.416 |
| 391 | 0.014 | 0.185 | 434 | 0.061 | 0.414 |
| 392 | 0.146 | 0.512 | 435 | 0.038 | 0.416 |
| 393 | 0.059 | 0.436 | 436 | 0.088 | 0.488 |
| 394 | 0.015 | 0.188 | 437 | 0.031 | 0.293 |
| 395 | 0.021 | 0.250 | 438 | 0.027 | 0.328 |
| 396 | 0.029 | 0.353 | 439 | 0.053 | 0.398 |
| 397 | 0.013 | 0.207 | 440 | 0.017 | 0.188 |


| Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) | Agglomerate | $\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$ | Maximum Feret's Diameter (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 441 | 0.028 | 0.317 | 484 | 0.013 | 0.223 |
| 442 | 0.013 | 0.197 | 485 | 0.031 | 0.299 |
| 443 | 0.015 | 0.223 | 486 | 0.021 | 0.289 |
| 444 | 0.021 | 0.270 | 487 | 0.070 | 0.618 |
| 445 | 0.014 | 0.252 | 488 | 0.232 | 0.984 |
| 446 | 0.013 | 0.171 | 489 | 0.033 | 0.343 |
| 447 | 0.015 | 0.252 | 490 | 0.072 | 0.560 |
| 448 | 0.130 | 0.488 | 491 | 0.021 | 0.252 |
| 449 | 0.080 | 0.463 | 492 | 0.019 | 0.236 |
| 450 | 0.082 | 0.560 | 493 | 0.019 | 0.316 |
| 451 | 0.017 | 0.252 | 494 | 0.182 | 0.708 |
| 452 | 0.013 | 0.306 | 495 | 0.020 | 0.223 |
| 453 | 0.037 | 0.306 | 496 | 0.023 | 0.302 |
| 454 | 0.020 | 0.270 | 497 | 0.044 | 0.382 |
| 455 | 0.015 | 0.171 | 498 | 0.012 | 0.242 |
| 456 | 0.082 | 0.463 | 499 | 0.104 | 0.545 |
| 457 | 0.010 | 0.197 | 500 | 0.020 | 0.306 |
| 458 | 0.013 | 0.171 | 501 | 0.027 | 0.276 |
| 459 | 0.120 | 0.610 | 502 | 0.090 | 0.540 |
| 460 | 0.024 | 0.289 | 503 | 0.100 | 0.427 |
| 461 | 0.024 | 0.250 | 504 | 0.015 | 0.213 |
| 462 | 0.052 | 0.342 | 505 | 0.021 | 0.328 |
| 463 | 0.033 | 0.302 | 506 | 0.017 | 0.299 |
| 464 | 0.020 | 0.265 | 507 | 0.018 | 0.236 |
| 465 | 0.015 | 0.302 | 508 | 0.013 | 0.252 |
| 466 | 0.023 | 0.306 | 509 | 0.328 | 0.868 |
| 467 | 0.087 | 0.459 | 510 | 0.013 | 0.242 |
| 468 | 0.015 | 0.223 | 511 | 0.021 | 0.211 |
| 469 | 0.051 | 0.375 | 512 | 0.015 | 0.276 |
| 470 | 0.361 | 0.904 | 513 | 0.016 | 0.185 |
| 471 | 0.112 | 0.623 | 514 | 0.027 | 0.229 |
| 472 | 0.021 | 0.289 | 515 | 0.015 | 0.197 |
| 473 | 0.015 | 0.250 | 516 | 0.016 | 0.223 |
| 474 | 0.019 | 0.302 | 517 | 0.045 | 0.293 |
| 475 | 0.096 | 0.459 | 518 | 0.048 | 0.302 |
| 476 | 0.021 | 0.393 | 519 | 0.013 | 0.207 |
| 477 | 0.021 | 0.328 | 520 | 0.013 | 0.197 |
| 478 | 0.016 | 0.223 | 521 | 0.519 | 1.342 |
| 479 | 0.027 | 0.316 | 522 | 0.015 | 0.211 |
| 480 | 0.100 | 0.709 | 523 | 0.018 | 0.236 |
| 481 | 0.087 | 0.463 | 524 | 0.016 | 0.252 |
| 482 | 0.016 | 0.185 | 525 | 0.017 | 0.236 |
| 483 | 0.022 | 0.270 | 526 | 0.039 | 0.382 |

$\left.\begin{array}{ccccccc}\hline \text { Agglomerate } & \begin{array}{c}\text { Area } \\ \left(\mathrm{mm}^{2}\right)\end{array} & \begin{array}{c}\text { Maximum } \\ \text { Feret's } \\ \text { Diameter }(\mathrm{mm})\end{array} & & \text { Agglomerate } & & \begin{array}{c}\text { Area } \\ \left(\mathrm{mm}^{2}\right)\end{array} \\ & & \begin{array}{c}\text { Maximum } \\ \text { Feret's }\end{array} \\ \text { Diameter (mm) }\end{array}\right]$

| Agglomerate | Area <br> $\left(\mathrm{mm}^{2}\right)$ | Maximum <br> Feret’s <br> Diameter (mm) |
| :---: | :---: | :---: |
| 613 | 0.036 | 0.334 |
| 614 | 0.026 | 0.371 |
| 615 | 0.019 | 0.270 |
| 616 | 0.015 | 0.213 |
| 617 | 0.112 | 0.535 |
| 618 | 0.132 | 0.725 |
| 619 | 0.015 | 0.213 |
| 620 | 0.033 | 0.328 |
| 621 | 0.017 | 0.185 |
| 622 | 0.015 | 0.188 |
| 623 | 0.017 | 0.185 |
| 624 | 0.020 | 0.299 |
| 625 | 0.053 | 0.373 |
| 626 | 0.020 | 0.270 |
| 627 | 0.028 | 0.250 |

## APPENDIX C

## MICROMECHANICAL DATA

This appendix contains the SEM images and a summary of the data used in the study of the micromechanical properties of cement-based composites with CNFs (Chapter 4 and Section 6.3.2). A backscatter and secondary SEM image; a backscatter SEM image with false color and indentation locations imposed; the location of each indent (i.e., flaw, hydrate, unhydrated particle, etc.) as determined using the false color image; the modulus, hardness, and contact displacement values obtained by nanoindentation; and the $\mathrm{Si} / \mathrm{Ca}$ and $\mathrm{Al} / \mathrm{Ca}$ ratios obtained from EDS are included for each nanoindentation grid. Calibrations for the $\mathrm{Si} / \mathrm{Ca}$ and $\mathrm{Al} / \mathrm{Ca}$ ratios were made with calcium carbonate, silicon dioxide, albite, magnesium oxide, aluminum oxide, gallium phosphide, iron sulphide, MAD-10 feldspar, wollastonite, manganese, and iron, and the XPP scheme, a Phi-Rho-Z method, was used for matrix corrections as analyzed by INCA Energy Software (Oxford Instruments, Abingdon, Oxfordshire, England) [139].

## PC-A Grid 1



| Indent | Type* $^{*}$ | Modulus <br> $(\mathrm{GPa})$ | Hardness <br> $(\mathrm{GPa})$ | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | h | 10.765 | 0.275 | 544.088 | 0.275 | 0.051 |
| 2 | f | 21.974 | 0.818 | 313.738 | 0.228 | 0.106 |
| 3 | $\mathrm{~h} / \mathrm{u}$ | 100.021 | 14.151 | 71.95 | 0.056 | 1.190 |
| 4 | $\mathrm{f} / \mathrm{h}$ | 11.583 | 0.259 | 561.308 | 0.512 | 0.104 |
| 5 | $\mathrm{f} / \mathrm{h}$ | error | error | error | 0.600 | 0.078 |
| 6 | u | 105.235 | 7.485 | 100.679 | 0.578 | 0.033 |
| 7 | $\mathrm{~h} / \mathrm{u}$ | "invalid" "invalid" | "invalid" | 0.536 | 0.086 |  |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \\ & \hline \end{aligned}$ | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | h/u | "invalid" | "invalid" | "invalid" | 0.493 | 0.172 |
| 9 | h/u | "invalid" | "invalid" | "invalid" | 0.056 | 0.014 |
| 10 | $\mathrm{f} / \mathrm{h}$ | error | error | error | 0.334 | 0.137 |
| 11 | h | 17.756 | 0.740 | 329.723 | 0.450 | 0.092 |
| 12 | h | "invalid" | "invalid" | "invalid" | 0.546 | 0.125 |
| 13 | $\mathrm{f} / \mathrm{h}$ | 127.784 | 13.012 | 75.308 | 0.284 | 0.443 |
| 14 | h | 21.126 | 0.718 | 334.843 | 0.583 | 0.104 |
| 15 | h | 19.420 | 0.798 | 317.342 | 0.601 | 0.082 |
| 16 | $\mathrm{f} / \mathrm{h}$ | 15.531 | 0.538 | 387.772 | 0.406 | 0.195 |
| 17 | h | 26.954 | 1.131 | 266 | 0.483 | 0.199 |
| 18 | $\mathrm{f} / \mathrm{h}$ | 90.052 | 5.380 | 119.517 | 0.355 | 0.298 |
| 19 | h | 14.069 | 0.476 | 412.299 | 0.623 | 0.095 |
| 20 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.583 | 0.079 |
| 21 | h/u | 88.522 | 7.251 | 102.36 | 0.366 | 0.226 |
| 22 | h | 21.007 | 0.644 | 353.964 | 0.460 | 0.212 |
| 23 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.506 | 0.136 |
| 24 | h | 22.045 | 0.742 | 329.597 | 0.409 | 0.314 |
| 25 | h | error | error | error | 0.374 | 0.229 |
| 26 | h | 23.465 | 1.215 | 256.372 | 0.536 | 0.072 |
| 27 | h | error | error | error | 0.506 | 0.153 |
| 28 | f | "invalid" | "invalid" | "invalid" | 0.196 | 0.036 |
| 29 | f | "invalid" | "invalid" | "invalid" | 0.255 | 0.036 |
| 30 | f/h | "invalid" | "invalid" | "invalid" | 0.528 | 0.146 |
| 31 | f/h | "invalid" | "invalid" | "invalid" | 0.327 | 0.123 |
| 32 | $\mathrm{f} / \mathrm{h}$ | 31.303 | 0.832 | 310.915 | 0.170 | 0.440 |
| 33 | f/h/u | 45.024 | 1.383 | 240.091 | 0.358 | 0.142 |
| 34 | f | "invalid" | "invalid" | "invalid" | 0.506 | 0.396 |
| 35 | f/h/u | 21.901 | 0.850 | 307.387 | 0.499 | 0.217 |
| 36 | h | 13.909 | 0.619 | 361.351 | 0.454 | 0.229 |
| 37 | h | 21.783 | 0.988 | 284.94 | 0.602 | 0.108 |
| 38 | f/h/u | 20.741 | 1.011 | 281.643 | 0.428 | 0.203 |
| 39 | h | "invalid" | "invalid" | "invalid" | 0.685 | 0.107 |
| 40 | h/u | 45.814 | 4.195 | 136.067 | 0.459 | 0.162 |
| 41 | h | 27.568 | 0.750 | 327.928 | 0.565 | 0.046 |
| 42 | h/u | "invalid" | "invalid" | "invalid" | 0.540 | 0.056 |
| 43 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.397 | 0.253 |
| 44 | h | 21.503 | 0.791 | 318.912 | 0.583 | 0.095 |
| 45 | $\mathrm{f} / \mathrm{h}$ | 26.773 | 0.994 | 284.129 | 0.567 | 0.131 |
| 46 | u | 80.093 | 7.319 | 101.818 | 0.547 | 0.108 |
| 47 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.333 | 0.412 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 48 | h | 17.189 | 0.514 | 396.495 | 0.623 | 0.083 |
| 49 | h | "invalid" | "invalid" | "invalid" | 0.583 | 0.134 |
| 50 | h | 22.137 | 0.705 | 338.21 | 0.630 | 0.095 |
| 51 | h | 16.264 | 0.536 | 388.254 | 0.498 | 0.091 |
| 52 | h | 29.317 | 1.441 | 235.195 | 0.586 | 0.099 |
| 53 | u | "invalid" | "invalid" | "invalid" | 0.152 | 0.523 |
| 54 | h | 24.010 | 0.982 | 285.813 | 0.448 | 0.217 |
| 55 | h | 18.915 | 0.789 | 319.554 | 0.576 | 0.140 |
| 56 | h/u | 19.923 | 0.701 | 339.275 | 0.393 | 0.287 |
| 57 | h | 76.771 | 5.614 | 116.939 | 0.606 | 0.099 |
| 58 | h | 17.928 | 0.651 | 351.816 | 0.560 | 0.178 |
| 59 | $\mathrm{f} / \mathrm{h}$ | 22.624 | 0.651 | 352 | 0.417 | 0.055 |
| 60 | h | 29.458 | 1.473 | 232.416 | 0.642 | 0.073 |
| 61 | h | 35.610 | 5.574 | 117.334 | 0.634 | 0.111 |
| 62 | f/h | 15.617 | 0.429 | 435.088 | 0.545 | 0.107 |
| 63 | $\mathrm{f} / \mathrm{h}$ | 9.288 | 0.300 | 520.456 | 0.501 | 0.202 |
| 64 | $\mathrm{f} / \mathrm{h}$ | 20.960 | 0.757 | 326.099 | 0.403 | 0.092 |
| 65 | $\mathrm{f} / \mathrm{h}$ | 23.682 | 0.767 | 324.106 | 0.634 | 0.075 |
| 66 | $\mathrm{f} / \mathrm{h}$ | 25.504 | 0.836 | 310.22 | 0.645 | 0.076 |
| 67 | f | 59.602 | 3.693 | 145.179 | 0.496 | 0.087 |
| 68 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.642 | 0.096 |
| 69 | h/u | "invalid" | "invalid" | "invalid" | 0.582 | 0.241 |
| 70 | f/h | "invalid" | "invalid" | "invalid" | 0.578 | 0.203 |
| 71 | u | 90.702 | 9.237 | 90.122 | 0.210 | 0.326 |
| 72 | f | 25.541 | 0.972 | 287.343 | 0.537 | 0.137 |
| 73 | $\mathrm{f} / \mathrm{h} / \mathrm{u}$ | 89.383 | 9.869 | 87.043 | 0.154 | 0.539 |
| 74 | $\mathrm{f} / \mathrm{h}$ | 27.590 | 1.091 | 270.943 | 0.493 | 0.177 |
| 75 | $\mathrm{f} / \mathrm{h}$ | 17.673 | 0.645 | 353.653 | 0.669 | 0.085 |
| 76 | h | 23.932 | 0.832 | 310.919 | 0.460 | 0.221 |
| 77 | u | 88.377 | 6.790 | 105.87 | 0.450 | 0.079 |
| 78 | f | "invalid" | "invalid" | "invalid" | 0.522 | 0.255 |
| 79 | f/h | 56.941 | 1.474 | 232.372 | 0.143 | 0.575 |
| 80 | h | 14.939 | 0.450 | 424.572 | 0.608 | 0.083 |
| 81 | h | 33.637 | 2.605 | 173.73 | 0.497 | 0.074 |
| 82 | f/h | "invalid" | "invalid" | "invalid" | 0.436 | 0.143 |
| 83 | f | "invalid" | "invalid" | "invalid" | 0.475 | 0.200 |
| 84 | h | 29.281 | 1.263 | 251.543 | 0.590 | 0.088 |
| 85 | $\mathrm{f} / \mathrm{h} / \mathrm{u}$ | 33.522 | 1.401 | 238.422 | 0.565 | 0.078 |
| 86 | $\mathrm{f} / \mathrm{h}$ | 21.634 | 0.758 | 325.899 | 0.532 | 0.115 |
| 87 | u | error | error | error | 0.152 | 0.456 |


| Indent | Type* | $\begin{gathered} \hline \text { Modulus } \\ (\mathrm{GPa}) \end{gathered}$ | Hardness (GPa) | Maximum <br> Displacement (nm) | $\begin{aligned} & \hline \mathrm{Si} / \mathrm{Ca} \\ & \text { Ratio } \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \mathrm{Al} / \mathrm{Ca} \\ & \text { Ratio } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 88 | h/u | 82.302 | 8.563 | 93.83 | 0.177 | 0.448 |
| 89 | $\mathrm{f} / \mathrm{h}$ | 73.633 | 5.315 | 120.33 | 0.212 | 0.494 |
| 90 | h | 21.760 | 0.724 | 333.497 | 0.592 | 0.099 |
| 91 | h | 13.772 | 0.679 | 344.564 | 0.490 | 0.067 |
| 92 | h | 21.699 | 0.801 | 316.798 | 0.492 | 0.187 |
| 93 | h | 19.561 | 0.759 | 325.695 | 0.660 | 0.079 |
| 94 | h/u | 41.184 | 1.385 | 240.02 | 0.374 | 0.257 |
| 95 | $\mathrm{f} / \mathrm{h}$ | 21.630 | 0.716 | 335.447 | 0.541 | 0.118 |
| 96 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.556 | 0.088 |
| 97 | h | 64.908 | 5.874 | 114.206 | 0.218 | 0.376 |
| 98 | $\mathrm{f} / \mathrm{h}$ | 15.912 | 0.496 | 404.171 | 0.354 | 0.240 |
| 99 | h | 28.485 | 1.04 | 277.415 | 0.546 | 0.110 |
| 100 | h | 41.261 | 3.169 | 157.073 | 0.427 | 0.200 |
| 101 | h | 15.358 | 0.367 | 470.083 | 0.633 | 0.121 |
| 102 | $\mathrm{f} / \mathrm{h}$ | 17.582 | 0.623 | 359.999 | 0.510 | 0.120 |
| 103 | $\mathrm{f} / \mathrm{h}$ | 32.549 | 0.929 | 294.089 | 0.248 | 0.413 |
| 104 | h | 27.139 | 1.027 | 279.339 | 0.603 | 0.099 |
| 105 | $\mathrm{f} / \mathrm{h}$ | 19.681 | 0.636 | 356.146 | 0.650 | 0.152 |
| 106 | h | 19.561 | 0.625 | 359.177 | 0.506 | 0.070 |
| 107 | h | 24.716 | 1.004 | 282.39 | 0.563 | 0.073 |
| 108 | h | 13.420 | 0.480 | 410.637 | 0.613 | 0.066 |
| 109 | $\mathrm{f} / \mathrm{h}$ | 13.735 | 0.518 | 395.243 | 0.334 | 0.308 |
| 110 | h | 21.197 | 0.735 | 331.104 | 0.529 | 0.105 |
| 111 | h | 15.767 | 0.493 | 404.874 | 0.496 | 0.101 |
| 112 | h | 47.299 | 2.451 | 179.189 | 0.372 | 0.150 |
| 113 | $\mathrm{f} / \mathrm{h}$ | 24.174 | 0.828 | 311.525 | 0.567 | 0.123 |
| 114 | h/u | 49.277 | 2.999 | 161.543 | 0.469 | 0.185 |
| 115 | f/h | 21.461 | 0.903 | 298.158 | 0.575 | 0.144 |
| 116 | h/u | 38.764 | 2.652 | 172.022 | 0.506 | 0.108 |
| 117 | h | "invalid" | "invalid" | "invalid" | 0.468 | 0.252 |
| 118 | $\mathrm{f} / \mathrm{h}$ | 24.511 | 1.454 | 233.952 | 0.243 | 0.226 |
| 119 | f | 15.460 | 0.316 | 507.404 | 0.626 | 0.108 |
| 120 | f | 14.210 | 0.626 | 359.011 | 0.573 | 0.072 |
| 121 | u | 119.724 | 11.214 | 81.367 | 0.501 | 0.141 |
| 122 | u | 133.276 | 11.753 | 79.434 | 0.261 | 0.196 |
| 123 | u | 145.433 | 13.237 | 74.601 | 0.401 | 0.046 |
| 124 | $\mathrm{f} / \mathrm{h}$ | 22.696 | 0.843 | 308.816 | 0.295 | 0.363 |
| 125 | h | 27.446 | 1.312 | 246.661 | 0.609 | 0.081 |
| 126 | h | 22.142 | 0.955 | 289.848 | 0.495 | 0.155 |
| 127 | $\mathrm{f} / \mathrm{h}$ | 21.031 | 0.817 | 313.919 | 0.599 | 0.091 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 128 | h/u | "invalid" | "invalid" | "invalid" | 0.664 | 0.076 |
| 129 | f | 10.898 | 0.358 | 476.2 | 0.475 | 0.119 |
| 130 | f/h | "invalid" | "invalid" | "invalid" | 0.565 | 0.136 |
| 131 | h | 16.523 | 0.441 | 428.537 | 0.554 | 0.096 |
| 132 | f | "invalid" | "invalid" | "invalid" | 0.530 | 0.128 |
| 133 | f/h/u | "invalid" | "invalid" | "invalid" | 0.194 | 0.154 |
| 134 | $\mathrm{f} / \mathrm{h}$ | 32.086 | 1.473 | 232.595 | 0.372 | 0.074 |
| 135 | h | 34.763 | 1.162 | 262.237 | 0.406 | 0.038 |
| 136 | h | 20.271 | 0.739 | 329.821 | 0.516 | 0.113 |
| 137 | h | 32.275 | 2.070 | 195.472 | 0.428 | 0.223 |
| 138 | $\mathrm{f} / \mathrm{h}$ | 23.906 | 0.814 | 314.407 | 0.404 | 0.088 |
| 139 | f/h | 18.102 | 0.582 | 372.772 | 0.668 | 0.078 |
| 140 | f/h | 19.246 | 1.122 | 267.042 | 0.683 | 0.094 |
| 141 | $\mathrm{f} / \mathrm{h}$ | 19.054 | 0.602 | 366.377 | 0.547 | 0.172 |
| 142 | h | 30.833 | 1.336 | 244.469 | 0.534 | 0.092 |
| 143 | h/u | "invalid" | "invalid" | "invalid" | 0.533 | 0.131 |
| 144 | $\mathrm{f} / \mathrm{h}$ | 18.128 | 0.648 | 352.658 | 0.441 | 0.101 |
| 145 | h | 17.788 | 0.569 | 377.051 | 0.349 | 0.324 |
| 146 | h | 19.784 | 0.943 | 291.721 | 0.623 | 0.079 |
| 147 | f | 19.117 | 0.482 | 409.812 | 0.432 | 0.043 |
| 148 | f | 10.717 | 0.298 | 522.596 | 0.628 | 0.092 |
| 149 | h | 15.497 | 0.48 | 410.623 | 0.592 | 0.081 |
| 150 | h | 13.635 | 0.367 | 470.282 | 0.553 | 0.099 |
| 151 | h | 22.953 | 0.743 | 329.244 | 0.615 | 0.084 |
| 152 | h/u | 18.720 | 0.665 | 348.112 | 0.252 | 0.758 |
| 153 | h | "invalid" | "invalid" | "invalid" | 0.659 | 0.079 |
| 154 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.563 | 0.136 |
| 155 | h | 21.308 | 0.874 | 303.312 | 0.600 | 0.063 |
| 156 | f/h | 18.083 | 0.653 | 351.445 | 0.676 | 0.086 |
| 157 | $\mathrm{f} / \mathrm{h}$ | 16.727 | 0.624 | 359.646 | 0.546 | 0.126 |
| 158 | h | "invalid" | "invalid" | "invalid" | 0.495 | 0.187 |
| 159 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.599 | 0.099 |
| 160 | f/h | 18.106 | 0.673 | 346.099 | 0.420 | 0.033 |
| 161 | f/h | 45.908 | 1.506 | 229.862 | 0.589 | 0.065 |
| 162 | h | "invalid" | "invalid" | "invalid" | 0.187 | 0.503 |
| 163 | h | 28.866 | 0.879 | 302.293 | 0.551 | 0.052 |
| 164 | $\mathrm{f} / \mathrm{h}$ | 20.191 | 0.570 | 376.59 | 0.515 | 0.066 |
| 165 | h/u | 31.213 | 2.023 | 197.782 | 0.280 | 0.450 |
| 166 | f/h | 6.857 | 0.252 | 568.97 | 0.298 | 0.075 |
| 167 | f/h | 22.002 | 0.900 | 298.767 | 0.640 | 0.094 |


| Indent | Type* | Modulus <br> (GPa) | Hardness <br> (GPa) | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | Al/Ca <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 168 | h/u | 71.440 | 6.509 | 108.273 | 0.484 | 0.117 |
| 169 | h | 44.514 | 1.361 | 242.084 | 0.192 | 0.586 |
| 170 | f/h/u | 41.159 | 2.292 | 185.55 | 0.569 | 0.057 |
| 171 | h | 18.243 | 0.558 | 380.665 | 0.661 | 0.100 |
| 172 | f/h | 11.246 | 0.308 | 513.472 | 0.570 | 0.420 |
| 173 | f/h/u | "invalid" | "invalid" | "invalid" | 0.458 | 0.192 |
| 174 | f/h | "invalid"" "invalid" | "invalid" | 0.456 | 0.165 |  |
| 175 | f/h | 28.521 | 1.159 | 262.615 | 0.619 | 0.101 |
| 176 | h | 17.639 | 0.507 | 399.077 | 0.609 | 0.077 |
| 177 | h/u | 20.090 | 0.438 | 430.216 | 0.613 | 0.162 |
| 178 | h | 16.980 | 0.537 | 388.05 | 0.515 | 0.194 |
| 179 | h | 24.237 | 1.170 | 261.344 | 0.568 | 0.103 |
| 180 | f/h | "invalid" | "invalid" | "invalid" | 0.195 | 0.569 |
| 181 | f/h | "invalid" | "invalid" | "invalid" | 0.387 | 0.141 |
| 182 | f/h | "invalid" | "invalid" | "invalid" | 0.511 | 0.124 |
| 183 | f | "invalid" | "invalid" | "invalid" | 0.602 | 0.140 |
| 184 | h | "invalid"" "invalid" | "invalid" | 0.209 | 0.552 |  |
| 185 | h | 13.131 | 0.716 | 335.341 | 0.467 | 0.702 |
| 186 | h | 9.544 | 0.356 | 477.611 | 0.596 | 0.150 |
| 187 | h/u | 20.295 | 1.155 | 263.165 | 0.414 | 0.120 |
| 188 | h | 43.606 | 1.022 | 279.916 | 0.420 | 0.074 |
| 189 | u | 102.681 | 5.098 | 122.928 | 0.190 | 0.496 |
| 190 | u | 94.100 | 5.712 | 115.851 | 0.417 | 0.040 |
| 191 | u | 90.803 | 8.056 | 96.795 | 0.401 | 0.033 |
| 192 | u | 93.438 | 8.671 | 93.209 | 0.588 | 0.076 |
| 193 | h/u | 39.212 | 3.910 | 141.056 | 0.560 | 0.119 |
| 194 | h/u | 22.540 | 1.257 | 251.963 | 0.555 | 0.228 |
| 195 | f/h | 24.732 | 0.661 | 349.462 | 0.487 | 0.073 |
| 196 | h | 20.802 | 1.106 | 269.123 | 0.645 | 0.074 |
| 197 | f/h | 12.977 | 0.378 | 463.319 | 0.647 | 0.084 |
| 198 | f/h | 16.458 | 0.575 | 374.812 | 0.567 | 0.154 |
| 199 | f | 12.653 | 0.326 | 499.669 | 0.377 | 0.079 |
| 200 | f/h | 43.541 | 1.654 | 219.148 | 0.622 | 0.101 |

*Type: $\mathrm{f}=\mathrm{flaw}, \mathrm{h}=$ hydrate, $\mathrm{u}=$ unhydrated particle, $\mathrm{f} / \mathrm{h}=\mathrm{flaw}$ and hydrate combination, $\mathrm{f} / \mathrm{u}=\mathrm{flaw}$ and unhydrated particle combination, $\mathrm{f} / \mathrm{h} / \mathrm{u}=\mathrm{flaw}$, hydrate, and unhydrated particle combination, and $\mathrm{h} / \mathrm{u}=$ hydrate and unhydrated particle combination.

## PC-B Grid 1



| Indent | Type* | Modulus <br> $(\mathrm{GPa})$ | Hardness <br> $(\mathrm{GPa})$ | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | h | 26.168 | 0.964 | 288.431 | 0.623 | 0.107 |
| 2 | $\mathrm{~h} / \mathrm{u}$ | 20.015 | 0.798 | 317.248 | 0.186 | 0.492 |
| 3 | $\mathrm{f} / \mathrm{h}$ | 10.690 | 0.214 | 616.897 | 0.475 | 0.141 |
| 4 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.492 | 0.217 |
| 5 | $\mathrm{f} / \mathrm{h}$ | error | error | error | 0.191 | 0.401 |
| 6 | $\mathrm{~h} / \mathrm{u}$ | 30.189 | 1.482 | 231.673 | 0.199 | 0.430 |
| 7 | h | 40.098 | 1.158 | 263.003 | 0.463 | 0.164 |
| 8 | $\mathrm{~h} / \mathrm{u}$ | 13.350 | 0.401 | 449.221 | 0.490 | 0.245 |


| Indent | Type* | $\begin{gathered} \hline \text { Modulus } \\ (\mathrm{GPa}) \end{gathered}$ | Hardness (GPa) | Maximum <br> Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \end{aligned}$ | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | h | 19.737 | 0.842 | 308.84 | 0.523 | 0.115 |
| 10 | h | 15.330 | 0.522 | 393.516 | 0.300 | 0.295 |
| 11 | h | 22.376 | 0.886 | 300.91 | 0.550 | 0.088 |
| 12 | $\mathrm{f} / \mathrm{h}$ | 16.180 | 0.247 | 573.629 | 0.492 | 0.073 |
| 13 | $\mathrm{f} / \mathrm{h}$ | 23.130 | 0.655 | 350.727 | 0.348 | 0.073 |
| 14 | h/u | 32.480 | 0.669 | 347.084 | 0.106 | 0.335 |
| 15 | f/h/u | "invalid" | "invalid" | "invalid" | 0.543 | 0.102 |
| 16 | h | 22.182 | 0.786 | 319.584 | 0.550 | 0.154 |
| 17 | h | 36.134 | 1.178 | 260.351 | 0.497 | 0.094 |
| 18 | h/u | 49.213 | 2.084 | 194.557 | 0.446 | 0.151 |
| 19 | h | 30.175 | 1.013 | 281.037 | 0.530 | 0.052 |
| 20 | h | 31.835 | 1.200 | 257.924 | 0.557 | 0.067 |
| 21 | f/h | 17.282 | 0.511 | 397.849 | 0.434 | 0.042 |
| 22 | $\mathrm{f} / \mathrm{h}$ | 24.037 | 0.574 | 375.052 | 0.332 | 0.311 |
| 23 | h | 18.169 | 0.548 | 383.857 | 0.567 | 0.062 |
| 24 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.502 | 0.074 |
| 25 | $\mathrm{f} / \mathrm{h}$ | 21.795 | 0.517 | 395.759 | 0.583 | 0.116 |
| 26 | f/h/u | 37.260 | 0.900 | 298.853 | 0.403 | 0.143 |
| 27 | f | 66.746 | 5.250 | 120.966 | 0.419 | 0.192 |
| 28 | $\mathrm{f} / \mathrm{h}$ | 79.760 | 5.462 | 118.461 | 0.305 | 0.083 |
| 29 | h | 26.158 | 1.013 | 281.102 | 0.477 | 0.131 |
| 30 | h | 17.569 | 0.764 | 324.479 | 0.399 | 0.038 |
| 31 | $\mathrm{f} / \mathrm{h}$ | 14.521 | 0.432 | 432.839 | 0.307 | 0.029 |
| 32 | h | 24.043 | 0.617 | 361.796 | 0.549 | 0.099 |
| 33 | h | "invalid" | "invalid" | "invalid" | 0.525 | 0.055 |
| 34 | h | 70.845 | 3.362 | 152.411 | 0.551 | 0.078 |
| 35 | h | 21.249 | 0.637 | 355.814 | 0.503 | 0.076 |
| 36 | f/h | 25.019 | 0.735 | 330.747 | 0.568 | 0.029 |
| 37 | h | 27.227 | 0.799 | 317.205 | 0.506 | 0.220 |
| 38 | h | 35.875 | 1.298 | 247.963 | 0.512 | 0.180 |
| 39 | f/h | 29.512 | 1.183 | 259.979 | 0.580 | 0.098 |
| 40 | $\mathrm{f} / \mathrm{h}$ | 23.361 | 0.766 | 324.066 | 0.592 | 0.078 |
| 41 | f | 27.789 | 0.757 | 325.909 | 0.362 | 0.269 |
| 42 | h | 21.732 | 0.648 | 352.627 | 0.410 | 0.031 |
| 43 | $\mathrm{f} / \mathrm{h}$ | 25.922 | 0.978 | 286.515 | 0.625 | 0.068 |
| 44 | h | 19.188 | 0.273 | 546.119 | 0.547 | 0.094 |
| 45 | h | 14.814 | 0.235 | 588.089 | 0.514 | 0.097 |
| 46 | h | 59.168 | 3.641 | 146.195 | 0.496 | 0.096 |
| 47 | h | 59.772 | 5.582 | 117.176 | 0.382 | 0.172 |
| 48 | h/u | 106.077 | 4.449 | 131.83 | 0.577 | 0.079 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \end{aligned}$ | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 49 | u | 105.594 | 5.795 | 114.943 | 0.426 | 0.148 |
| 50 | $\mathrm{f} / \mathrm{h}$ | 26.555 | 0.725 | 333.083 | 0.526 | 0.062 |
| 51 | h | 13.464 | 0.371 | 467.831 | 0.569 | 0.102 |
| 52 | h/u | 59.239 | 3.244 | 155.182 | 0.468 | 0.133 |
| 53 | f/h | 21.237 | 0.804 | 316.03 | 0.295 | 0.483 |
| 54 | u | 123.004 | 9.114 | 90.774 | 0.345 | 0.258 |
| 55 | h/u | 38.384 | 1.489 | 231.225 | 0.544 | 0.127 |
| 56 | h | 21.187 | 0.914 | 296.195 | 0.623 | 0.072 |
| 57 | h | 26.017 | 0.811 | 314.809 | 0.436 | 0.254 |
| 58 | h | 29.362 | 1.013 | 281.086 | 0.353 | 0.084 |
| 59 | u | 47.684 | 1.850 | 207.125 | 0.236 | 0.364 |
| 60 | f/h | 31.129 | 0.816 | 313.784 | 0.545 | 0.018 |
| 61 | $\mathrm{f} / \mathrm{h}$ | 22.654 | 0.616 | 361.699 | 0.313 | 0.219 |
| 62 | h | 24.335 | 0.823 | 312.528 | 0.116 | 0.430 |
| 63 | f/h | 20.377 | 0.683 | 343.377 | 0.533 | 0.066 |
| 64 | h | 23.730 | 0.945 | 291.382 | 0.137 | 0.023 |
| 65 | $\mathrm{f} / \mathrm{h}$ | 15.442 | 0.778 | 321.401 | 0.306 | 0.046 |
| 66 | h | 25.643 | 0.916 | 295.731 | 0.318 | 0.249 |
| 67 | u | 113.008 | 7.725 | 98.899 | 0.491 | 0.096 |
| 68 | u | 135.922 | 6.229 | 110.715 | 0.115 | 0.119 |
| 69 | h | 30.440 | 0.950 | 290.563 | 0.143 | 0.587 |
| 70 | u | 160.060 | 12.407 | 77.17 | 0.478 | 0.212 |
| 71 | $\mathrm{f} / \mathrm{h}$ | 21.414 | 0.823 | 312.35 | 0.536 | 0.072 |
| 72 | f/h | 15.651 | 0.601 | 366.358 | 0.300 | 0.259 |
| 73 | $\mathrm{f} / \mathrm{h}$ | 17.635 | 0.387 | 457.531 | 0.502 | 0.136 |
| 74 | f/h/u | 169.267 | 11.534 | 80.199 | 0.526 | 0.059 |
| 75 | h | 26.574 | 0.790 | 319.151 | 0.631 | 0.074 |
| 76 | $\mathrm{f} / \mathrm{h}$ | 58.453 | 3.120 | 158.332 | 0.630 | 0.085 |
| 77 | u | 102.606 | 7.306 | 101.905 | 0.276 | 0.035 |
| 78 | u | 121.304 | 10.459 | 84.4 | 0.580 | 0.156 |
| 79 | f/h | 24.815 | 0.753 | 326.711 | 0.535 | 0.072 |
| 80 | $\mathrm{f} / \mathrm{h}$ | 57.550 | 1.692 | 216.537 | 0.440 | 0.083 |
| 81 | h | 21.889 | 0.794 | 317.949 | 0.130 | 0.518 |
| 82 | h | 25.299 | 0.894 | 299.897 | 0.561 | 0.067 |
| 83 | h | 12.995 | 0.284 | 535.103 | 0.537 | 0.051 |
| 84 | u | 66.763 | 4.409 | 132.509 | 0.524 | 0.064 |
| 85 | u | 71.536 | 10.168 | 85.727 | 0.522 | 0.071 |
| 86 | h | 16.009 | 0.267 | 551.801 | 0.566 | 0.083 |
| 87 | u | 141.607 | 12.941 | 75.42 | 0.426 | 0.121 |
| 88 | h | 26.728 | 0.916 | 295.852 | 0.483 | 0.169 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 89 | f/h | 17.845 | 0.489 | 406.703 | 0.409 | 0.050 |
| 90 | u | 99.244 | 4.545 | 130.444 | 0.550 | 0.093 |
| 91 | f/h | 31.094 | 1.036 | 277.927 | 0.319 | 0.052 |
| 92 | f/h | 10.250 | 0.224 | 602.909 | 0.515 | 0.113 |
| 93 | f/h/u | 72.799 | 6.728 | 106.387 | 0.455 | 0.196 |
| 94 | $\mathrm{f} / \mathrm{h}$ | 23.535 | 0.733 | 331.303 | 0.618 | 0.088 |
| 95 | h | 36.107 | 0.912 | 296.491 | 0.553 | 0.110 |
| 96 | h | 39.425 | 1.553 | 226.358 | 0.389 | 0.158 |
| 97 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.553 | 0.066 |
| 98 | u | "invalid" | "invalid" | "invalid" | 0.573 | 0.080 |
| 99 | h | 24.717 | 0.537 | 388.093 | 0.288 | 0.415 |
| 100 | $\mathrm{f} / \mathrm{h}$ | 22.761 | 0.731 | 331.716 | 0.350 | 0.064 |
| 101 | $\mathrm{f} / \mathrm{h}$ | 33.943 | 1.445 | 234.595 | 0.487 | 0.157 |
| 102 | h | 33.980 | 1.336 | 244.368 | 0.461 | 0.075 |
| 103 | h | 16.758 | 0.572 | 375.519 | 0.153 | 0.034 |
| 104 | h | 11.935 | 0.383 | 459.827 | 0.060 | 0.014 |
| 105 | h | "invalid" | "invalid" | "invalid" | 0.436 | 0.064 |
| 106 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.397 | 0.042 |
| 107 | h | 193.278 | 13.198 | 74.649 | 0.173 | 0.026 |
| 108 | h | 20.946 | 0.643 | 354.026 | 0.495 | 0.243 |
| 109 | h | 43.744 | 1.337 | 244.209 | 0.388 | 0.204 |
| 110 | h | 26.527 | 0.825 | 312.05 | 0.484 | 0.167 |
| 111 | h/u | 18.839 | 0.577 | 374.216 | 0.461 | 0.148 |
| 112 | $\mathrm{h} / \mathrm{u}$ | "invalid" | "invalid" | "invalid" | 0.512 | 0.058 |
| 113 | f | 22.088 | 0.745 | 328.53 | 0.574 | 0.060 |
| 114 | f/h | 23.467 | 0.767 | 323.864 | 0.447 | 0.134 |
| 115 | $\mathrm{f} / \mathrm{h}$ | 25.947 | 0.788 | 319.424 | 0.408 | 0.205 |
| 116 | h | 27.779 | 1.044 | 276.794 | 0.269 | 0.089 |
| 117 | f/h/u | 20.625 | 0.641 | 354.818 | 0.471 | 0.149 |
| 118 | $\mathrm{f} / \mathrm{h}$ | 30.573 | 0.543 | 385.754 | 0.477 | 0.111 |
| 119 | f/h | 29.818 | 0.423 | 437.763 | 0.395 | 0.050 |
| 120 | $\mathrm{f} / \mathrm{h}$ | 34.602 | 2.644 | 172.319 | 0.424 | 0.149 |
| 121 | h | 24.148 | 0.708 | 337.176 | 0.502 | 0.170 |
| 122 | f/h | 24.413 | 1.008 | 282.027 | 0.521 | 0.082 |
| 123 | h | 34.172 | 1.704 | 215.706 | 0.271 | 0.083 |
| 124 | h/u | 74.798 | 7.222 | 102.468 | 0.042 | 0.008 |
| 125 | h | 19.245 | 0.508 | 398.879 | 0.170 | 0.070 |
| 126 | f/h | 21.386 | 0.702 | 338.707 | 0.157 | 0.085 |
| 127 | $\mathrm{f} / \mathrm{h}$ | 25.130 | 0.888 | 300.787 | 0.525 | 0.071 |
| 128 | h | 26.972 | 1.145 | 264.288 | 0.583 | 0.061 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 129 | h/u | 127.140 | 5.875 | 114.146 | 0.520 | 0.085 |
| 130 | f/h/u | 22.689 | 0.957 | 289.548 | 0.517 | 0.117 |
| 131 | h | 19.489 | 0.935 | 292.78 | 0.173 | 0.526 |
| 132 | h/u | 25.707 | 0.731 | 331.669 | 0.373 | 0.073 |
| 133 | h | 41.215 | 1.368 | 241.345 | 0.478 | 0.206 |
| 134 | h/u | 16.729 | 0.537 | 387.912 | 0.468 | 0.112 |
| 135 | h | 38.062 | 1.936 | 202.289 | 0.436 | 0.110 |
| 136 | h/u | 54.711 | 3.266 | 154.662 | 0.161 | 0.036 |
| 137 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.457 | 0.095 |
| 138 | $\mathrm{f} / \mathrm{h}$ | 16.581 | 0.682 | 343.288 | 0.516 | 0.066 |
| 139 | h/u | 17.989 | 0.247 | 574.86 | 0.233 | 0.050 |
| 140 | $\mathrm{f} / \mathrm{h}$ | 25.336 | 1.030 | 278.812 | 0.496 | 0.147 |
| 141 | h | 23.800 | 0.944 | 291.509 | 0.496 | 0.078 |
| 142 | h/u | 70.683 | 4.515 | 130.711 | 0.290 | 0.328 |
| 143 | h | 29.871 | 1.287 | 248.849 | 0.478 | 0.172 |
| 144 | h | 20.712 | 0.573 | 374.977 | 0.115 | 0.124 |
| 145 | $\mathrm{f} / \mathrm{h}$ | 24.641 | 0.819 | 313.306 | 0.093 | 0.076 |
| 146 | h | 25.638 | 0.807 | 315.373 | 0.531 | 0.145 |
| 147 | h | 21.865 | 0.713 | 336.114 | 0.522 | 0.114 |
| 148 | h | 44.723 | 1.460 | 233.599 | 0.499 | 0.101 |
| 149 | f/h | 20.942 | 0.842 | 308.996 | 0.347 | 0.221 |
| 150 | h/u | 106.570 | 7.975 | 97.299 | 0.111 | 0.539 |
| 151 | h | 17.440 | 0.814 | 314.228 | 0.114 | 0.596 |
| 152 | h | "invalid" | "invalid" | "invalid" | 0.427 | 0.231 |
| 153 | h/u | 64.110 | 4.305 | 134.021 | 0.487 | 0.225 |
| 154 | h | 48.599 | 2.270 | 186.44 | 0.439 | 0.171 |
| 155 | h | 74.412 | 2.003 | 198.633 | 0.428 | 0.074 |
| 156 | h | 18.823 | 0.592 | 369.277 | 0.167 | 0.438 |
| 157 | f/h/u | 23.180 | 0.397 | 451.968 | 0.566 | 0.071 |
| 158 | $\mathrm{f} / \mathrm{h}$ | 31.157 | 0.752 | 327.273 | 0.518 | 0.228 |
| 159 | f/h | 11.980 | 0.309 | 513.301 | 0.499 | 0.079 |
| 160 | $\mathrm{f} / \mathrm{h}$ | 22.714 | 0.663 | 348.479 | 0.437 | 0.140 |
| 161 | h | "invalid" | "invalid" | "invalid" | 0.440 | 0.161 |
| 162 | h | 20.344 | 0.674 | 345.887 | 0.557 | 0.107 |
| 163 | h | "invalid" | "invalid" | "invalid" | 0.514 | 0.189 |
| 164 | h | 23.968 | 0.674 | 345.83 | 0.094 | 0.016 |
| 165 | h | 22.273 | 0.662 | 348.755 | 0.557 | 0.070 |
| 166 | f/h | 72.759 | 5.099 | 122.756 | 0.553 | 0.069 |
| 167 | u | 124.847 | 6.470 | 108.665 | 0.532 | 0.039 |
| 168 | u | "invalid" | "invalid" | "invalid" | 0.419 | 0.199 |


| Indent | Type* | $\begin{gathered} \hline \text { Modulus } \\ (\mathrm{GPa}) \\ \hline \end{gathered}$ | Hardness (GPa) | Maximum Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \mathrm{Al} / \mathrm{Ca} \\ & \text { Ratio } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 169 | h | 35.399 | 1.377 | 240.711 | 0.408 | 0.140 |
| 170 | f/h | 32.268 | 1.454 | 233.909 | 0.274 | 0.178 |
| 171 | f/h | "invalid" | "invalid" | "invalid" | 0.286 | 0.129 |
| 172 | f/h | 25.675 | 0.757 | 325.754 | 0.232 | 0.337 |
| 173 | h | 25.437 | 0.783 | 320.489 | 0.321 | 0.142 |
| 174 | h | 19.517 | 0.788 | 319.373 | 0.429 | 0.129 |
| 175 | h | 22.698 | 0.814 | 314.136 | 0.563 | 0.081 |
| 176 | $\mathrm{f} / \mathrm{h}$ | 101.364 | 8.634 | 93.323 | 0.252 | 0.033 |
| 177 | h/u | 41.850 | 1.097 | 269.802 | 0.563 | 0.057 |
| 178 | u | 80.036 | 9.377 | 89.4 | 0.448 | 0.104 |
| 179 | h | 28.478 | 1.289 | 248.894 | 0.540 | 0.051 |
| 180 | $\mathrm{f} / \mathrm{h}$ | 16.744 | 0.658 | 349.996 | 0.213 | 0.032 |
| 181 | h | 16.138 | 0.307 | 514.331 | 0.188 | 0.049 |
| 182 | $\mathrm{f} / \mathrm{h}$ | 24.235 | 0.699 | 339.182 | 0.175 | 0.026 |
| 183 | h/u | 16.692 | 0.546 | 384.906 | 0.217 | 0.480 |
| 184 | h/u | 44.099 | 1.539 | 227.253 | 0.538 | 0.122 |
| 185 | h | 234.620 | 15.575 | 68.433 | 0.389 | 0.028 |
| 186 | u | error | error | error | 0.402 | 0.049 |
| 187 | u | error | error | error | 0.400 | 0.156 |
| 188 | u | 192.055 | 8.639 | 93.356 | 0.471 | 0.134 |
| 189 | $\mathrm{h} / \mathrm{u}$ | 88.614 | 9.092 | 90.93 | 0.621 | 0.077 |
| 190 | h | 33.920 | 1.389 | 239.514 | 0.413 | 0.216 |
| 191 | h | 24.417 | 1.009 | 281.614 | 0.517 | 0.062 |
| 192 | h | 38.353 | 0.677 | 345.21 | 0.290 | 0.075 |
| 193 | h | 23.856 | 0.723 | 333.65 | 0.246 | 0.502 |
| 194 | $\mathrm{f} / \mathrm{h}$ | 26.761 | 0.984 | 285.494 | 0.432 | 0.070 |
| 195 | h | 28.343 | 0.671 | 346.755 | 0.224 | 0.030 |
| 196 | u | error | error | error | 0.375 | 0.221 |
| 197 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.496 | 0.089 |
| 198 | $\mathrm{f} / \mathrm{h}$ | 23.938 | 0.835 | 310.26 | 0.487 | 0.168 |
| 199 | h | 49.391 | 2.323 | 184.071 | 0.511 | 0.090 |
| 200 | $\mathrm{f} / \mathrm{h}$ | 25.071 | 0.841 | 309.174 | 0.392 | 0.072 |

*Type: f=flaw, $\mathrm{h}=$ hydrate, $\mathrm{u}=$ unhydrated particle, $\mathrm{f} / \mathrm{h}=$ flaw and hydrate combination, $\mathrm{f} / \mathrm{u}=\mathrm{flaw}$ and unhydrated particle combination, $\mathrm{f} / \mathrm{h} / \mathrm{u}=\mathrm{flaw}$, hydrate, and unhydrated particle combination, and $\mathrm{h} / \mathrm{u}=$ hydrate and unhydrated particle combination.

## PC-B Grid 2



| Indent | Type* $^{*}$ | Modulus <br> $(\mathrm{GPa})$ | Hardness <br> $(\mathrm{GPa})$ | Maximum <br> Displacement $(\mathrm{nm})$ | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathrm{f} / \mathrm{h}$ | 23.220 | 1.137 | 265.179 | 0.442 | 0.170 |
| 2 | $\mathrm{f} / \mathrm{h}$ | 47.147 | 2.545 | 175.667 | 0.333 | 0.112 |
| 3 | $\mathrm{~h} / \mathrm{u}$ | 73.199 | 7.899 | 97.802 | 0.158 | 0.587 |
| 4 | h | 26.827 | 0.911 | 296.624 | 0.493 | 0.136 |
| 5 | h | 38.236 | 1.271 | 250.691 | 0.276 | 0.426 |
| 6 | h | 21.365 | 1.010 | 281.726 | 0.665 | 0.122 |
| 7 | h | 78.551 | 8.110 | 96.455 | 0.407 | 0.148 |
| 8 | $\mathrm{~h} / \mathrm{u}$ | 30.207 | 1.789 | 210.525 | 0.623 | 0.122 |


| Indent | Type* | $\begin{gathered} \hline \text { Modulus } \\ (\mathrm{GPa}) \end{gathered}$ | Hardness (GPa) | Maximum <br> Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \end{aligned}$ | $\begin{aligned} & \hline \mathrm{Al} / \mathrm{Ca} \\ & \text { Ratio } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | h | 21.808 | 0.882 | 301.345 | 0.415 | 0.144 |
| 10 | h | 29.556 | 1.066 | 273.981 | 0.494 | 0.171 |
| 11 | f | 43.634 | 2.949 | 162.862 | 0.359 | 0.153 |
| 12 | $\mathrm{f} / \mathrm{h}$ | 25.995 | 1.360 | 242.155 | 0.573 | 0.093 |
| 13 | f | "invalid" | "invalid" | "invalid" | 0.268 | 0.087 |
| 14 | u | error | error | error | 0.509 | 0.050 |
| 15 | h/u | "invalid" | "invalid" | "invalid" | 0.490 | 0.078 |
| 16 | u | 186.293 | 19.135 | 61.264 | 0.426 | 0.109 |
| 17 | h | 25.820 | 1.243 | 253.385 | 0.552 | 0.088 |
| 18 | h | 43.843 | 1.745 | 213.346 | 0.564 | 0.096 |
| 19 | u | 96.743 | 5.604 | 117.025 | 0.412 | 0.029 |
| 20 | h/u | 30.875 | 2.343 | 183.289 | 0.498 | 0.081 |
| 21 | h | error | error | error | 0.489 | 0.053 |
| 22 | h | 52.142 | 1.377 | 240.501 | 0.413 | 0.112 |
| 23 | h | "invalid" | "invalid" | "invalid" | 0.549 | 0.166 |
| 24 | h | 32.506 | 1.664 | 218.419 | 0.521 | 0.079 |
| 25 | h | 25.645 | 1.148 | 263.761 | 0.534 | 0.116 |
| 26 | h | 47.350 | 2.138 | 192.263 | 0.545 | 0.093 |
| 27 | h/u | 38.869 | 3.365 | 152.22 | 0.538 | 0.094 |
| 28 | h | 22.061 | 0.916 | 295.773 | 0.407 | 0.106 |
| 29 | h | 19.425 | 0.804 | 316.279 | 0.538 | 0.084 |
| 30 | h/u | 166.308 | 10.535 | 84.124 | 0.496 | 0.144 |
| 31 | h | 41.398 | 1.533 | 227.823 | 0.563 | 0.108 |
| 32 | h | 24.422 | 1.020 | 280.087 | 0.552 | 0.123 |
| 33 | h | 14.929 | 0.828 | 311.776 | 0.575 | 0.085 |
| 34 | h | 25.811 | 0.952 | 290.148 | 0.507 | 0.131 |
| 35 | h/u | 35.993 | 1.210 | 256.866 | 0.403 | 0.152 |
| 36 | h | 19.437 | 1.090 | 270.756 | 0.245 | 0.326 |
| 37 | h | 29.595 | 1.614 | 221.723 | 0.515 | 0.173 |
| 38 | $\mathrm{f} / \mathrm{h}$ | 47.900 | 1.696 | 216.348 | 0.553 | 0.060 |
| 39 | u | 112.977 | 5.344 | 119.906 | 0.402 | 0.033 |
| 40 | u | 115.103 | 5.761 | 115.257 | 0.424 | 0.067 |
| 41 | h | 138.883 | 18.046 | 63.239 | 1.153 | 0.118 |
| 42 | h | 122.982 | 21.508 | 57.578 | 0.580 | 0.110 |
| 43 | h/u | "invalid" | "invalid" | "invalid" | 0.371 | 0.155 |
| 44 | h | error | error | error | 0.386 | 0.098 |
| 45 | $\mathrm{f} / \mathrm{h}$ | 40.641 | 1.212 | 256.639 | 0.374 | 0.248 |
| 46 | h | 32.479 | 2.478 | 178.22 | 0.449 | 0.081 |
| 47 | h | 36.839 | 1.249 | 252.652 | 0.416 | 0.029 |
| 48 | u | 125.474 | 6.291 | 110.084 | 0.415 | 0.040 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 49 | u | 64.466 | 1.845 | 207.187 | 0.605 | 0.076 |
| 50 | h | 48.162 | 1.790 | 210.301 | 0.283 | 0.242 |
| 51 | f/h | 28.153 | 0.947 | 290.838 | 0.541 | 0.123 |
| 52 | $\mathrm{f} / \mathrm{h}$ | 35.776 | 2.442 | 179.416 | 0.465 | 0.143 |
| 53 | $\mathrm{h} / \mathrm{u}$ | 21.710 | 1.359 | 242.352 | 0.554 | 0.114 |
| 54 | h | 26.179 | 1.272 | 250.443 | 0.338 | 0.357 |
| 55 | h | 24.640 | 0.849 | 307.381 | 0.312 | 0.291 |
| 56 | h | 23.952 | 1.037 | 277.835 | 0.504 | 0.148 |
| 57 | h/u | 50.507 | 4.100 | 137.502 | 0.210 | 0.439 |
| 58 | f/h/u | 22.014 | 1.161 | 262.154 | 0.581 | 0.065 |
| 59 | u | error | error | error | 0.421 | 0.039 |
| 60 | u | 116.023 | 5.560 | 117.482 | 0.405 | 0.045 |
| 61 | h | error | error | error | 20.746 | 0.484 |
| 62 | f/h | 112.086 | 12.518 | 76.845 | 0.552 | 0.051 |
| 63 | u | 84.873 | 3.585 | 147.394 | 0.561 | 0.068 |
| 64 | h/u | 84.056 | 4.939 | 124.943 | 0.505 | 0.099 |
| 65 | h | 24.494 | 1.006 | 282.211 | 0.418 | 0.111 |
| 66 | $\mathrm{f} / \mathrm{h}$ | 44.547 | 1.980 | 199.962 | 0.641 | 0.142 |
| 67 | h | 30.400 | 0.688 | 342.441 | 0.427 | 0.058 |
| 68 | u | error | error | error | 0.421 | 0.164 |
| 69 | f/h/u | 59.018 | 2.637 | 172.677 | 0.330 | 0.081 |
| 70 | h | 22.165 | 1.135 | 265.377 | 0.354 | 0.057 |
| 71 | h | 21.101 | 0.830 | 311.076 | 0.518 | 0.067 |
| 72 | h | 21.242 | 0.884 | 301.265 | 0.601 | 0.075 |
| 73 | $\mathrm{f} / \mathrm{h}$ | 23.947 | 0.812 | 314.693 | 0.432 | 0.222 |
| 74 | h | 51.290 | 4.635 | 128.913 | 0.560 | 0.078 |
| 75 | u | 98.414 | 6.085 | 112.028 | 0.597 | 0.155 |
| 76 | h | error | error | error | 0.625 | 0.119 |
| 77 | h | 26.574 | 1.454 | 233.759 | 0.442 | 0.381 |
| 78 | f/h/u | 48.162 | 1.932 | 202.303 | 0.407 | 0.185 |
| 79 | u | 103.355 | 4.574 | 129.984 | 0.409 | 0.086 |
| 80 | u | 117.382 | 4.856 | 126.086 | 0.535 | 0.367 |
| 81 | $\mathrm{f} / \mathrm{h}$ | 95.957 | 14.161 | 71.929 | 0.573 | 0.074 |
| 82 | h | 20.723 | 0.945 | 291.274 | 0.573 | 0.041 |
| 83 | u | 91.818 | 5.590 | 117.123 | 0.540 | 0.049 |
| 84 | u | 113.719 | 7.873 | 98.042 | 0.424 | 0.185 |
| 85 | h/u | 49.031 | 3.941 | 140.243 | 0.543 | 0.135 |
| 86 | h | 46.491 | 2.072 | 195.304 | 0.571 | 0.080 |
| 87 | h | 37.004 | 1.619 | 221.541 | 0.530 | 0.067 |
| 88 | h | 33.933 | 1.322 | 245.539 | 0.555 | 0.118 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 89 | h | 13.359 | 0.529 | 390.727 | 0.173 | 0.223 |
| 90 | h | 19.171 | 0.951 | 290.238 | 0.329 | 0.170 |
| 91 | f/h | 17.357 | 0.599 | 366.939 | 0.411 | 0.130 |
| 92 | f/h | 13.180 | 0.699 | 339.387 | 0.534 | 0.067 |
| 93 | u | 99.949 | 5.795 | 114.912 | 0.580 | 0.088 |
| 94 | h/u | 63.954 | 5.082 | 123.07 | 0.494 | 0.138 |
| 95 | h | 34.239 | 1.686 | 216.968 | 0.419 | 0.126 |
| 96 | $\mathrm{f} / \mathrm{h}$ | 28.380 | 1.467 | 232.87 | 0.581 | 0.107 |
| 97 | f/h/u | 43.427 | 1.204 | 257.649 | 0.613 | 0.074 |
| 98 | h | 21.355 | 1.064 | 274.394 | 0.585 | 0.075 |
| 99 | h | 27.326 | 0.883 | 301.543 | 0.190 | 0.536 |
| 100 | h/u | 164.118 | 5.212 | 121.563 | 0.325 | 0.109 |
| 101 | f/h | 156.191 | 23.507 | 54.845 | 0.167 | 0.555 |
| 102 | u | 110.319 | 13.620 | 73.438 | 0.541 | 0.074 |
| 103 | u | "invalid" | "invalid" | "invalid" | 0.584 | 0.194 |
| 104 | f/h/u | 156.913 | 7.079 | 103.641 | 0.340 | 0.274 |
| 105 | h | 22.358 | 0.768 | 323.635 | 0.467 | 0.122 |
| 106 | h | 23.528 | 0.928 | 293.806 | 0.431 | 0.152 |
| 107 | h | 27.415 | 0.970 | 287.423 | 0.461 | 0.103 |
| 108 | h | 25.186 | 1.052 | 275.774 | 0.331 | 0.187 |
| 109 | u | 139.368 | 11.605 | 79.911 | 0.161 | 0.603 |
| 110 | $\mathrm{h} / \mathrm{u}$ | 210.241 | 16.384 | 66.595 | 0.079 | 0.142 |
| 111 | h | 57.510 | 1.705 | 215.749 | 0.361 | 0.311 |
| 112 | h | 41.483 | 1.858 | 206.327 | 0.357 | 0.237 |
| 113 | h | 60.416 | 1.894 | 204.507 | 0.315 | 0.084 |
| 114 | h | 59.721 | 4.867 | 125.799 | 0.503 | 0.082 |
| 115 | h | 22.839 | 0.919 | 295.428 | 0.580 | 0.130 |
| 116 | h | 25.343 | 1.003 | 282.592 | 0.361 | 0.194 |
| 117 | h | 16.587 | 0.898 | 298.813 | 0.576 | 0.138 |
| 118 | h | error | error | error | 0.295 | 0.142 |
| 119 | f/h | 39.110 | 1.909 | 203.582 | 0.426 | 0.133 |
| 120 | $\mathrm{f} / \mathrm{h}$ | 70.324 | 3.130 | 158.006 | 0.256 | 0.052 |
| 121 | h | 13.974 | 0.544 | 385.209 | 0.492 | 0.143 |
| 122 | h | "invalid" | "invalid" | "invalid" | 0.407 | 0.148 |
| 123 | f/h/u | 108.362 | 13.833 | 72.807 | 0.507 | 0.099 |
| 124 | h/u | 28.946 | 1.218 | 255.944 | 0.238 | 0.062 |
| 125 | $\mathrm{f} / \mathrm{h}$ | 29.548 | 2.475 | 178.35 | 0.305 | 0.137 |
| 126 | f/h | 48.300 | 1.882 | 205.124 | 0.420 | 0.093 |
| 127 | h/u | error | error | error | 0.425 | 0.241 |
| 128 | h | 21.842 | 0.830 | 311.08 | 0.474 | 0.113 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \\ & \hline \end{aligned}$ | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 129 | h | 43.472 | 1.160 | 262.505 | 0.516 | 0.075 |
| 130 | h | 30.931 | 1.090 | 270.896 | 0.454 | 0.074 |
| 131 | h | 26.629 | 0.919 | 295.301 | 0.443 | 0.079 |
| 132 | h | 35.001 | 1.616 | 221.643 | 0.209 | 0.100 |
| 133 | h | 25.947 | 0.931 | 293.329 | 0.076 | 0.098 |
| 134 | h | 21.228 | 0.757 | 325.853 | 0.337 | 0.108 |
| 135 | h | 25.766 | 0.895 | 299.38 | 0.440 | 0.222 |
| 136 | f/h | "invalid" | "invalid" | "invalid" | 0.221 | 0.064 |
| 137 | h | 32.862 | 1.197 | 258.28 | 0.504 | 0.093 |
| 138 | h | 27.175 | 1.237 | 253.93 | 0.552 | 0.103 |
| 139 | $\mathrm{f} / \mathrm{h}$ | 37.342 | 2.071 | 195.366 | 0.352 | 0.167 |
| 140 | f/h | 31.274 | 1.089 | 270.941 | 0.540 | 0.318 |
| 141 | f/h | 30.479 | 1.729 | 214.325 | 0.291 | 0.096 |
| 142 | $\mathrm{f} / \mathrm{h}$ | 9.019 | 0.272 | 547.133 | 0.502 | 0.171 |
| 143 | h | 23.910 | 1.054 | 275.423 | 0.258 | 0.108 |
| 144 | h | 30.381 | 1.095 | 270.329 | 0.476 | 0.161 |
| 145 | h | 31.237 | 1.246 | 253.112 | 0.406 | 0.145 |
| 146 | h | 21.186 | 0.960 | 289.012 | 0.493 | 0.062 |
| 147 | $\mathrm{f} / \mathrm{h}$ | 19.095 | 0.716 | 335.229 | 0.118 | 0.031 |
| 148 | h/u | 25.130 | 0.787 | 319.516 | 0.174 | 0.038 |
| 149 | u | 88.456 | 3.310 | 153.464 | 0.383 | 0.054 |
| 150 | h | 36.371 | 1.560 | 225.593 | 0.258 | 0.031 |
| 151 | u | 101.532 | 6.139 | 111.493 | 0.449 | 0.337 |
| 152 | u | 116.226 | 6.057 | 112.292 | 0.568 | 0.196 |
| 153 | h/u | 48.155 | 1.297 | 248.001 | 0.516 | 0.084 |
| 154 | f/h | 32.898 | 1.162 | 262.277 | 0.523 | 0.123 |
| 155 | f/h | 28.449 | 0.898 | 298.853 | 0.607 | 0.034 |
| 156 | $\mathrm{f} / \mathrm{h}$ | 35.511 | 1.886 | 204.834 | 0.386 | 0.124 |
| 157 | h/u | 43.622 | 2.455 | 179.022 | 0.262 | 0.445 |
| 158 | f/h | 32.516 | 1.229 | 254.93 | 0.572 | 0.134 |
| 159 | f/h | 56.789 | 1.650 | 219.461 | 0.176 | 0.457 |
| 160 | $\mathrm{f} / \mathrm{h}$ | 38.314 | 1.340 | 243.873 | 0.639 | 0.119 |
| 161 | h | 45.967 | 2.271 | 186.256 | 0.207 | 0.069 |
| 162 | h/u | "invalid" | "invalid" | "invalid" | 0.529 | 0.173 |
| 163 | f/h/u | 120.695 | 8.510 | 94.103 | 0.440 | 0.038 |
| 164 | h | error | error | error | 0.672 | 0.113 |
| 165 | h/u | 86.762 | 4.907 | 125.328 | 0.543 | 0.088 |
| 166 | h | 34.550 | 1.803 | 209.572 | 0.385 | 0.039 |
| 167 | h | 24.498 | 0.839 | 309.446 | 0.542 | 0.048 |
| 168 | u | 95.182 | 4.229 | 135.24 | 0.535 | 0.087 |


| Indent | Type* | Modulus <br> $(\mathrm{GPa})$ | Hardness <br> $(\mathrm{GPa})$ | Maximum <br> Displacement $(\mathrm{nm})$ | Si/Ca <br> Ratio | Al/Ca <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 169 | u | 95.389 | 6.073 | 112.225 | 0.520 | 0.059 |
| 170 | h | 28.306 | 1.186 | 259.551 | 0.577 | 0.059 |
| 171 | h | 29.643 | 1.081 | 271.916 | 0.269 | 0.323 |
| 172 | h | 35.572 | 1.467 | 232.937 | 0.367 | 0.100 |
| 173 | f/h | 42.333 | 1.302 | 247.371 | 0.529 | 0.051 |
| 174 | f/h/u | 117.517 | 9.695 | 87.887 | 0.496 | 0.089 |
| 175 | h | 26.644 | 0.895 | 299.301 | 0.491 | 0.088 |
| 176 | h | 26.414 | 0.792 | 318.613 | 0.544 | 0.061 |
| 177 | h | 16.855 | 0.796 | 317.707 | 0.514 | 0.079 |
| 178 | u | 67.936 | 6.376 | 109.331 | 0.493 | 0.073 |
| 179 | h | 24.437 | 0.843 | 308.802 | 0.559 | 0.093 |
| 180 | f/h | 24.745 | 1.080 | 272.148 | 0.586 | 0.138 |
| 181 | h | 23.515 | 0.629 | 357.78 | 0.515 | 0.113 |
| 182 | u | 118.778 | 5.746 | 115.44 | 0.476 | 0.116 |
| 183 | f/h | 37.200 | 1.480 | 231.814 | 0.544 | 0.049 |
| 184 | h | 21.580 | 0.672 | 346.084 | 0.309 | 0.290 |
| 185 | u | 92.429 | 7.327 | 101.794 | 0.483 | 0.122 |
| 186 | u | 114.835 | 17.763 | 63.773 | 0.557 | 0.088 |
| 187 | h | 23.832 | 1.010 | 281.523 | 0.535 | 0.080 |
| 188 | f/h/u | 20.373 | 0.894 | 299.65 | 0.395 | 0.181 |
| 189 | h | 44.240 | 2.832 | 166.303 | 0.523 | 0.081 |
| 190 | f/h | "invalid" | "invalid" | "invalid" | 0.515 | 0.139 |
| 191 | h | 20.659 | 0.573 | 375.134 | 0.298 | 0.116 |
| 192 | h | 32.718 | 1.132 | 265.783 | 0.330 | 0.085 |
| 193 | h | 56.400 | 3.050 | 160.182 | 0.521 | 0.130 |
| 194 | h | 22.222 | 0.923 | 294.873 | 0.307 | 0.067 |
| 195 | h | 20.51 | 1.020 | 280.086 | 0.517 | 0.044 |
| 196 | h | 21.664 | 1.280 | 249.684 | 0.219 | 0.267 |
| 197 | h/u | 48.562 | 3.633 | 146.269 | 0.290 | 0.355 |
| 198 | h | 51.004 | 3.395 | 151.503 | 0.506 | 0.070 |
| 199 | h | 31.471 | 1.029 | 278.942 | 0.349 | 0.236 |
| 200 | f/h | 35.803 | 1.748 | 213.007 | 0.508 | 0.105 |

*Type: $\mathrm{f}=\mathrm{flaw}, \mathrm{h}=$ hydrate, $\mathrm{u}=$ unhydrated particle, $\mathrm{f} / \mathrm{h}=\mathrm{flaw}$ and hydrate combination, $\mathrm{f} / \mathrm{u}=\mathrm{flaw}$ and unhydrated particle combination, $\mathrm{f} / \mathrm{h} / \mathrm{u}=\mathrm{flaw}$, hydrate, and unhydrated particle combination, and $\mathrm{h} / \mathrm{u}=$ hydrate and unhydrated particle combination.

## PC-CNF-A Grid 1



| Indent | Type* | Modulus <br> $(\mathrm{GPa})$ | Hardness <br> $(\mathrm{GPa})$ | Maximum <br> Displacement $(\mathrm{nm})$ | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | h | 46.616 | 1.737 | 214.224 | 0.483 | 0.197 |
| 2 | $\mathrm{f} / \mathrm{h}$ | 30.008 | 0.856 | 306.815 | 0.368 | 0.110 |
| 3 | h | 26.176 | 1.274 | 250.993 | 0.345 | 0.114 |
| 4 | h | 20.869 | 0.918 | 295.882 | 0.415 | 0.065 |
| 5 | h | 28.943 | 0.898 | 299.418 | 0.460 | 0.072 |
| 6 | h | 26.165 | 0.861 | 305.771 | 0.451 | 0.099 |
| 7 | h | 79.140 | 5.687 | 116.614 | 0.522 | 0.070 |
| 8 | h | 35.318 | 1.441 | 235.442 | 0.371 | 0.043 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \\ & \hline \end{aligned}$ | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | u | 124.437 | 9.406 | 89.79 | 0.400 | 0.033 |
| 10 | u | 142.227 | 9.754 | 88.144 | 0.430 | 0.038 |
| 11 | f/h | 30.444 | 1.265 | 251.775 | 0.566 | 0.072 |
| 12 | h | 21.268 | 0.850 | 308.015 | 0.437 | 0.064 |
| 13 | f/h | 26.726 | 0.621 | 360.999 | 0.204 | 0.039 |
| 14 | f/h | 29.779 | 0.779 | 321.865 | 0.329 | 0.292 |
| 15 | u | 95.114 | 4.312 | 134.523 | 0.557 | 0.081 |
| 16 | h | 81.352 | 3.362 | 152.932 | 0.510 | 0.092 |
| 17 | h | 32.230 | 1.023 | 280.38 | 0.438 | 0.050 |
| 18 | h | 38.892 | 1.447 | 235.13 | 0.360 | 0.028 |
| 19 | u | 126.459 | 8.368 | 95.467 | 0.492 | 0.038 |
| 20 | u | 122.729 | 9.765 | 88.097 | 0.499 | 0.066 |
| 21 | h | 47.060 | 1.467 | 233.512 | 0.498 | 0.073 |
| 22 | f/h | 26.745 | 0.815 | 314.459 | 0.460 | 0.048 |
| 23 | $\mathrm{f} / \mathrm{h}$ | 29.326 | 1.093 | 271.146 | 0.322 | 0.063 |
| 24 | h | "invalid" | "invalid" | "invalid" | 0.507 | 0.092 |
| 25 | $\mathrm{f} / \mathrm{h}$ | 30.491 | 0.906 | 298.146 | 0.491 | 0.057 |
| 26 | h | "invalid" | "invalid" | "invalid" | 0.375 | 0.039 |
| 27 | $\mathrm{f} / \mathrm{h}$ | 42.966 | 1.501 | 230.8 | 0.371 | 0.023 |
| 28 | h | 149.040 | 9.202 | 90.788 | 0.398 | 0.026 |
| 29 | u | 125.801 | 8.139 | 96.809 | 0.416 | 0.026 |
| 30 | u | 122.658 | 9.412 | 89.74 | 0.568 | 0.057 |
| 31 | h | 70.699 | 5.412 | 119.683 | 0.606 | 0.070 |
| 32 | h | 25.232 | 0.797 | 318.19 | 0.517 | 0.056 |
| 33 | h | 21.722 | 0.699 | 339.842 | 0.569 | 0.063 |
| 34 | $\mathrm{f} / \mathrm{h}$ | 25.414 | 0.789 | 319.734 | 0.552 | 0.043 |
| 35 | f/h/u | error | error | error | 0.376 | 0.063 |
| 36 | h | 29.592 | 0.999 | 283.653 | 0.510 | 0.045 |
| 37 | h | 28.178 | 0.992 | 284.949 | 0.401 | 0.027 |
| 38 | h | 25.353 | 0.776 | 322.49 | 0.410 | 0.164 |
| 39 | h | 66.845 | 2.020 | 198.347 | 0.157 | 0.026 |
| 40 | h | 33.928 | 1.086 | 272.006 | 0.554 | 0.101 |
| 41 | f | 14.043 | 0.909 | 297.875 | 0.478 | 0.092 |
| 42 | f/h | 26.661 | 0.846 | 308.675 | 0.471 | 0.141 |
| 43 | h/u | 65.864 | 7.233 | 102.974 | 0.296 | 0.139 |
| 44 | f/h | 75.638 | 5.962 | 113.793 | 0.418 | 0.049 |
| 45 | f | 36.044 | 1.031 | 279.541 | 0.513 | 0.099 |
| 46 | f/h | 27.290 | 0.623 | 360.365 | 0.308 | 0.029 |
| 47 | h | 28.561 | 0.886 | 301.49 | 0.372 | 0.028 |
| 48 | u | error | error | error | 0.479 | 0.033 |


| Indent | Type* | $\begin{gathered} \hline \text { Modulus } \\ (\mathrm{GPa}) \end{gathered}$ | Hardness (GPa) | Maximum Displacement $(\mathrm{nm})$ | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \\ & \hline \end{aligned}$ | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 49 | u | 111.706 | 9.423 | 89.666 | 0.472 | 0.041 |
| 50 | u | 116.885 | 8.516 | 94.557 | 0.234 | 0.258 |
| 51 | h | 35.996 | 1.432 | 236.461 | 0.478 | 0.056 |
| 52 | f/h | 20.400 | 0.705 | 338.646 | 0.519 | 0.206 |
| 53 | f/h | 22.565 | 0.676 | 345.83 | 0.449 | 0.057 |
| 54 | f/h | 21.906 | 0.641 | 355.112 | 0.095 | 0.059 |
| 55 | f/h/u | 49.098 | 2.408 | 181.34 | 0.509 | 0.063 |
| 56 | $\mathrm{f} / \mathrm{h}$ | 32.855 | 0.999 | 283.941 | 0.481 | 0.045 |
| 57 | h | 39.599 | 1.668 | 218.696 | 0.403 | 0.129 |
| 58 | u | 103.607 | 8.762 | 93.162 | 0.548 | 0.070 |
| 59 | u | 90.939 | 5.778 | 115.676 | 0.397 | 0.165 |
| 60 | $\mathrm{f} / \mathrm{h}$ | 24.720 | 0.728 | 332.952 | 0.498 | 0.068 |
| 61 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.554 | 0.063 |
| 62 | h/u | "invalid" | "invalid" | "invalid" | 0.611 | 0.073 |
| 63 | u | 35.331 | 2.033 | 197.654 | 0.158 | 0.301 |
| 64 | f/h | 24.976 | 0.512 | 397.649 | 0.605 | 0.079 |
| 65 | $\mathrm{f} / \mathrm{h}$ | 33.426 | 0.904 | 298.558 | 0.532 | 0.049 |
| 66 | h | 25.361 | 0.869 | 304.638 | 0.515 | 0.063 |
| 67 | f/h | 30.258 | 0.885 | 301.801 | 0.242 | 0.053 |
| 68 | h/u | 81.603 | 5.458 | 119.074 | 0.545 | 0.068 |
| 69 | h/u | 65.456 | 4.587 | 130.375 | 0.397 | 0.068 |
| 70 | h | 53.287 | 1.658 | 219.413 | 0.403 | 0.161 |
| 71 | h/u | 31.548 | 1.596 | 223.683 | 0.481 | 0.044 |
| 72 | h | 29.936 | 1.654 | 219.548 | 0.309 | 0.110 |
| 73 | h | 28.722 | 1.049 | 276.832 | 0.030 | 0.013 |
| 74 | h | 30.105 | 0.849 | 308.087 | 0.087 | 0.021 |
| 75 | h | 20.175 | 0.728 | 332.992 | 0.374 | 0.090 |
| 76 | h | 41.357 | 1.712 | 215.799 | 0.361 | 0.058 |
| 77 | h | 34.963 | 1.294 | 248.803 | 0.303 | 0.052 |
| 78 | h | 31.861 | 1.345 | 244.015 | 0.518 | 0.073 |
| 79 | h | 25.206 | 0.731 | 332.488 | 0.526 | 0.098 |
| 80 | h | 23.783 | 0.718 | 335.356 | 0.536 | 0.092 |
| 81 | $\mathrm{f} / \mathrm{h} / \mathrm{u}$ | 118.857 | 11.842 | 79.629 | 0.383 | 0.048 |
| 82 | $\mathrm{f} / \mathrm{h}$ | 33.500 | 0.992 | 284.926 | 0.542 | 0.078 |
| 83 | h | "invalid" | "invalid" | "invalid" | 0.578 | 0.091 |
| 84 | $\mathrm{f} / \mathrm{h}$ | error | error | error | 0.538 | 0.056 |
| 85 | h | 26.317 | 0.876 | 303.331 | 0.527 | 0.079 |
| 86 | h | "invalid" | "invalid" | "invalid" | 0.234 | 0.032 |
| 87 | h/u | 60.697 | 5.474 | 118.873 | 0.157 | 0.447 |
| 88 | $\mathrm{f} / \mathrm{h}$ | 22.453 | 0.579 | 373.898 | 0.144 | 0.547 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 89 | h/u | 97.676 | 8.342 | 95.604 | 0.423 | 0.149 |
| 90 | h | 43.355 | 1.282 | 249.917 | 0.411 | 0.100 |
| 91 | f/h | 26.114 | 1.055 | 275.906 | 0.168 | 0.042 |
| 92 | h | 24.645 | 0.791 | 319.4 | 0.066 | 0.461 |
| 93 | h | 21.170 | 0.949 | 291.34 | 0.074 | 0.494 |
| 94 | h | 42.930 | 1.927 | 203.285 | 0.349 | 0.205 |
| 95 | h | 72.165 | 3.306 | 154.27 | 0.503 | 0.122 |
| 96 | h | 174.057 | 15.446 | 69.203 | 0.179 | 0.381 |
| 97 | h | 24.292 | 0.900 | 299.191 | 0.487 | 0.108 |
| 98 | h | 23.587 | 0.733 | 332.039 | 0.552 | 0.043 |
| 99 | h | 21.397 | 0.851 | 307.707 | 0.530 | 0.049 |
| 100 | h | "invalid" | "invalid" | "invalid" | 0.408 | 0.148 |
| 101 | h | 36.522 | 1.235 | 254.93 | 0.548 | 0.051 |
| 102 | h | "invalid" | "invalid" | "invalid" | 0.509 | 0.068 |
| 103 | h | 208.876 | 15.623 | 68.849 | 0.115 | 0.560 |
| 104 | u | 144.027 | 12.064 | 78.835 | 0.094 | 0.066 |
| 105 | u | 109.291 | 7.436 | 101.466 | 0.368 | 0.094 |
| 106 | h | "invalid" | "invalid" | "invalid" | 0.206 | 0.258 |
| 107 | $\mathrm{f} / \mathrm{h}$ | 22.690 | 0.833 | 311.322 | 0.274 | 0.290 |
| 108 | h | 33.922 | 1.340 | 244.46 | 0.118 | 0.024 |
| 109 | u | 64.360 | 2.794 | 168.04 | 0.493 | 0.052 |
| 110 | $\mathrm{h} / \mathrm{u}$ | 131.157 | 13.666 | 73.792 | 0.496 | 0.086 |
| 111 | h | 16.575 | 0.351 | 481.371 | 0.382 | 0.160 |
| 112 | h | "invalid" | "invalid" | "invalid" | 0.359 | 0.048 |
| 113 | h | 22.988 | 0.933 | 293.803 | 0.314 | 0.247 |
| 114 | u | 88.332 | 7.816 | 98.855 | 0.437 | 0.072 |
| 115 | f/h | 119.008 | 8.320 | 95.726 | 0.238 | 0.067 |
| 116 | h/u | "invalid" | "invalid" | "invalid" | 0.233 | 0.307 |
| 117 | u | 26.484 | 1.244 | 253.771 | 0.533 | 0.049 |
| 118 | f | "invalid" | "invalid" | "invalid" | 0.494 | 0.066 |
| 119 | h | 194.063 | 12.226 | 78.331 | 0.577 | 0.053 |
| 120 | u | error | error | error | 0.400 | 0.136 |
| 121 | f/h | 23.586 | 0.914 | 296.97 | 0.305 | 0.318 |
| 122 | f/h | 22.672 | 0.711 | 337.151 | 0.514 | 0.052 |
| 123 | h/u | 146.957 | 10.547 | 84.558 | 0.525 | 0.078 |
| 124 | h/u | 93.263 | 6.839 | 106.022 | 0.495 | 0.127 |
| 125 | u | 132.239 | 6.734 | 106.854 | 0.437 | 0.038 |
| 126 | h | 28.038 | 1.030 | 279.268 | 0.058 | 0.015 |
| 127 | h | 23.039 | 1.001 | 283.517 | 0.368 | 0.079 |
| 128 | h | 40.936 | 1.662 | 219.026 | 0.432 | 0.050 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 129 | h/u | 42.725 | 2.121 | 193.476 | 0.289 | 0.068 |
| 130 | h | 33.416 | 1.594 | 223.692 | 0.499 | 0.066 |
| 131 | h | 28.213 | 0.793 | 319.008 | 0.155 | 0.031 |
| 132 | h | 32.555 | 1.422 | 237.241 | 0.408 | 0.140 |
| 133 | h | 24.716 | 0.765 | 324.93 | 0.553 | 0.050 |
| 134 | h | 94.046 | 4.570 | 130.678 | 0.103 | 0.018 |
| 135 | h | 81.582 | 6.026 | 113.149 | 0.344 | 0.189 |
| 136 | h/u | 80.315 | 5.627 | 117.299 | 0.402 | 0.093 |
| 137 | h | 42.306 | 1.778 | 211.641 | 0.490 | 0.048 |
| 138 | h | 34.767 | 0.899 | 299.445 | 0.396 | 0.030 |
| 139 | h | 25.631 | 0.799 | 317.711 | 0.509 | 0.170 |
| 140 | h | error | error | error | 0.447 | 0.069 |
| 141 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.432 | 0.146 |
| 142 | h | 28.008 | 0.814 | 314.842 | 0.396 | 0.156 |
| 143 | h | 113.425 | 8.452 | 94.889 | 0.157 | 0.116 |
| 144 | $\mathrm{f} / \mathrm{h}$ | 151.495 | 17.079 | 65.674 | 0.390 | 0.062 |
| 145 | h | 30.797 | 0.924 | 295.42 | 0.119 | 0.021 |
| 146 | f | 11.417 | 0.313 | 510.17 | 0.033 | 0.006 |
| 147 | f/h | 23.073 | 0.560 | 380.497 | 0.159 | 0.025 |
| 148 | h | 55.411 | 1.874 | 206.14 | 0.176 | 0.029 |
| 149 | h | "invalid" | "invalid" | "invalid" | 0.387 | 0.129 |
| 150 | h | 42.438 | 1.951 | 201.986 | 0.559 | 0.091 |
| 151 | h | 33.462 | 1.265 | 251.759 | 0.476 | 0.070 |
| 152 | f/h/u | "invalid" | "invalid" | "invalid" | 0.323 | 0.233 |
| 153 | h | 28.754 | 1.156 | 263.726 | 0.399 | 0.103 |
| 154 | h | 25.168 | 0.904 | 298.424 | 0.478 | 0.071 |
| 155 | h | 59.904 | 3.095 | 159.52 | 0.402 | 0.056 |
| 156 | h | 22.064 | 0.651 | 352.284 | 0.170 | 0.046 |
| 157 | h | 29.677 | 1.271 | 251.079 | 0.420 | 0.046 |
| 158 | h/u | "invalid" | "invalid" | "invalid" | 0.380 | 0.027 |
| 159 | h | 23.488 | 0.676 | 345.765 | 0.539 | 0.068 |
| 160 | h | 32.295 | 1.100 | 270.256 | 0.118 | 0.166 |
| 161 | f/h | "invalid" | "invalid" | "invalid" | 0.377 | 0.290 |
| 162 | f/h | 21.671 | 0.528 | 391.799 | 0.420 | 0.211 |
| 163 | h | 27.782 | 1.120 | 267.826 | 0.398 | 0.234 |
| 164 | h | 41.441 | 1.565 | 225.807 | 0.339 | 0.154 |
| 165 | h/u | "invalid" | "invalid" | "invalid" | 0.037 | 0.009 |
| 166 | h | 33.865 | 1.685 | 217.585 | 0.030 | 0.007 |
| 167 | h | "invalid" | "invalid" | "invalid" | 0.251 | 0.040 |
| 168 | h/u | "invalid" | "invalid" | "invalid" | 0.336 | 0.053 |


| Indent | Type* | $\begin{gathered} \hline \text { Modulus } \\ (\mathrm{GPa}) \\ \hline \end{gathered}$ | Hardness (GPa) | Maximum Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \mathrm{Al} / \mathrm{Ca} \\ & \text { Ratio } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 169 | h | "invalid" | "invalid" | "invalid" | 0.562 | 0.087 |
| 170 | h/u | "invalid" | "invalid" | "invalid" | 0.412 | 0.052 |
| 171 | h | 28.069 | 1.014 | 281.56 | 0.463 | 0.072 |
| 172 | $\mathrm{f} / \mathrm{h}$ | 24.510 | 0.687 | 343.226 | 0.527 | 0.090 |
| 173 | h | 26.084 | 0.971 | 287.932 | 0.516 | 0.074 |
| 174 | h | 28.737 | 1.166 | 262.432 | 0.372 | 0.182 |
| 175 | h/u | "invalid" | "invalid" | "invalid" | 0.433 | 0.108 |
| 176 | h/u | 63.037 | 4.348 | 133.958 | 0.364 | 0.041 |
| 177 | h | 31.066 | 0.715 | 336.174 | 0.426 | 0.091 |
| 178 | h | 49.253 | 1.679 | 218.011 | 0.252 | 0.038 |
| 179 | $\mathrm{f} / \mathrm{h}$ | 25.722 | 0.539 | 387.479 | 0.514 | 0.106 |
| 180 | $\mathrm{f} / \mathrm{h}$ | 17.306 | 0.456 | 421.657 | 0.509 | 0.134 |
| 181 | $\mathrm{f} / \mathrm{h}$ | 24.541 | 0.766 | 324.735 | 0.420 | 0.200 |
| 182 | h | 74.647 | 5.774 | 115.715 | 0.485 | 0.156 |
| 183 | h | 24.042 | 1.182 | 260.458 | 0.475 | 0.075 |
| 184 | f/h | 23.830 | 0.596 | 368.777 | 0.038 | 0.011 |
| 185 | $\mathrm{f} / \mathrm{h}$ | 24.260 | 0.828 | 311.996 | 0.036 | 0.008 |
| 186 | h | 28.088 | 0.819 | 313.595 | 0.033 | 0.008 |
| 187 | h/u | "invalid" | "invalid" | "invalid" | 0.269 | 0.030 |
| 188 | h | "invalid" | "invalid" | "invalid" | 0.496 | 0.101 |
| 189 | h | "invalid" | "invalid" | "invalid" | 0.229 | 0.040 |
| 190 | h | 32.111 | 0.965 | 288.617 | 0.482 | 0.079 |
| 191 | u | error | error | error | 0.522 | 0.084 |
| 192 | h | 27.259 | 1.185 | 260.151 | 0.482 | 0.098 |
| 193 | $\mathrm{f} / \mathrm{h}$ | 12.948 | 0.351 | 480.845 | 0.519 | 0.063 |
| 194 | h | 20.505 | 0.831 | 311.531 | 0.473 | 0.122 |
| 195 | h | 25.983 | 0.946 | 291.832 | 0.284 | 0.317 |
| 196 | $\mathrm{f} / \mathrm{h}$ | 27.647 | 0.939 | 292.834 | 0.496 | 0.092 |
| 197 | h | 26.073 | 0.719 | 335.212 | 0.443 | 0.056 |
| 198 | u | 97.293 | 7.409 | 101.661 | 0.506 | 0.143 |
| 199 | h | 24.447 | 0.832 | 311.195 | 0.338 | 0.106 |
| 200 | h | 26.662 | 0.879 | 302.696 | 0.454 | 0.078 |

*Type: $\mathrm{f}=\mathrm{flaw}, \mathrm{h}=\mathrm{hydrate}, \mathrm{u}=$ unhydrated particle, $\mathrm{f} / \mathrm{h}=\mathrm{flaw}$ and hydrate combination, $\mathrm{f} / \mathrm{u}=\mathrm{flaw}$ and unhydrated particle combination, $\mathrm{f} / \mathrm{h} / \mathrm{u}=\mathrm{flaw}$, hydrate, and unhydrated particle combination, and $\mathrm{h} / \mathrm{u}=$ hydrate and unhydrated particle combination.

## PC-CNF-A Grid 2



| Indent | Type* $^{*}$ | Modulus <br> $(\mathrm{GPa})$ | Hardness <br> $(\mathrm{GPa})$ | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | h | 23.606 | 0.709 | 337.787 | 0.322 | 0.115 |
| 2 | h | 19.491 | 0.458 | 421.186 | 0.405 | 0.087 |
| 3 | h | 29.267 | 0.844 | 308.93 | 0.507 | 0.055 |
| 4 | u | 111.119 | 8.983 | 91.978 | 0.381 | 0.024 |
| 5 | u | 72.484 | 7.464 | 101.318 | 0.395 | 0.028 |
| 6 | h | 24.727 | 0.917 | 296.527 | 0.418 | 0.172 |
| 7 | $\mathrm{~h} / \mathrm{u}$ | 14.022 | 0.508 | 399.843 | 0.140 | 0.238 |
| 8 | $\mathrm{f} / \mathrm{h} / \mathrm{u}$ | 32.233 | 1.062 | 274.866 | 0.426 | 0.149 |
|  |  |  |  | 278 |  |  |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | h | 28.190 | 1.102 | 270.02 | 0.393 | 0.088 |
| 10 | u | 58.792 | 3.166 | 157.679 | 0.364 | 0.137 |
| 11 | f/h | 34.996 | 1.136 | 265.826 | 0.353 | 0.055 |
| 12 | h/u | 27.839 | 0.860 | 306.198 | 0.238 | 0.169 |
| 13 | f/h | 18.905 | 0.638 | 356.075 | 0.442 | 0.087 |
| 14 | f/h | 13.071 | 0.219 | 612.166 | 0.409 | 0.205 |
| 15 | h | 10.718 | 0.213 | 619.218 | 0.343 | 0.116 |
| 16 | f | 9.762 | 0.206 | 629.117 | 0.423 | 0.125 |
| 17 | f/h | 16.008 | 0.456 | 421.719 | 0.394 | 0.186 |
| 18 | f/h/u | 26.268 | 1.779 | 211.738 | 0.374 | 0.090 |
| 19 | h | 26.809 | 1.273 | 250.915 | 0.548 | 0.072 |
| 20 | $\mathrm{f} / \mathrm{h}$ | 43.187 | 1.405 | 238.707 | 0.366 | 0.195 |
| 21 | h | 24.632 | 0.888 | 301.314 | 0.355 | 0.065 |
| 22 | $\mathrm{f} / \mathrm{h}$ | 17.897 | 0.380 | 462.724 | 0.399 | 0.113 |
| 23 | h | 22.519 | 0.688 | 342.887 | 0.408 | 0.165 |
| 24 | $\mathrm{f} / \mathrm{h}$ | 32.858 | 1.443 | 235.52 | 0.466 | 0.068 |
| 25 | h | 35.920 | 1.290 | 249.359 | 0.367 | 0.036 |
| 26 | f/h | 23.437 | 0.619 | 361.93 | 0.427 | 0.109 |
| 27 | $\mathrm{f} / \mathrm{h}$ | 19.810 | 0.517 | 396.167 | 0.417 | 0.160 |
| 28 | h | 26.670 | 1.065 | 274.752 | 0.400 | 0.099 |
| 29 | h | 24.764 | 0.925 | 295.21 | 0.487 | 0.098 |
| 30 | h | 28.023 | 0.665 | 348.859 | 0.504 | 0.098 |
| 31 | $\mathrm{f} / \mathrm{h}$ | 23.400 | 0.411 | 444.584 | 0.210 | 0.076 |
| 32 | h/u | 22.854 | 0.810 | 315.617 | 0.249 | 0.266 |
| 33 | f | 16.960 | 0.393 | 454.75 | 0.465 | 0.096 |
| 34 | u | 71.200 | 6.463 | 109.185 | 0.411 | 0.201 |
| 35 | u | 119.793 | 10.638 | 84.214 | 0.261 | 0.336 |
| 36 | $\mathrm{f} / \mathrm{h}$ | 27.944 | 0.731 | 332.54 | 0.456 | 0.108 |
| 37 | h | 19.425 | 0.481 | 410.437 | 0.432 | 0.148 |
| 38 | $\mathrm{f} / \mathrm{h}$ | 31.872 | 0.564 | 379.359 | 0.333 | 0.067 |
| 39 | f/h | 14.379 | 0.370 | 468.716 | 0.168 | 0.038 |
| 40 | h | 28.454 | 1.107 | 269.348 | 0.252 | 0.450 |
| 41 | f/h | 24.772 | 0.957 | 290.021 | 0.075 | 0.024 |
| 42 | h | 21.987 | 0.957 | 290.035 | 0.263 | 0.236 |
| 43 | f/h | 21.036 | 0.569 | 377.299 | 0.459 | 0.078 |
| 44 | f/h | 38.812 | 0.935 | 293.643 | 0.501 | 0.068 |
| 45 | f/h | 41.597 | 1.933 | 202.892 | 0.463 | 0.068 |
| 46 | u | 121.344 | 9.289 | 90.397 | 0.543 | 0.075 |
| 47 | h | 72.393 | 5.708 | 116.404 | 0.360 | 0.243 |
| 48 | f/h | 12.294 | 0.205 | 632.205 | 0.425 | 0.188 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 49 | h | 21.242 | 0.821 | 313.592 | 0.321 | 0.243 |
| 50 | h | "invalid" | "invalid" | "invalid" | 0.432 | 0.330 |
| 51 | h | 22.773 | 0.677 | 345.643 | 0.320 | 0.256 |
| 52 | h/u | 31.413 | 1.041 | 278.043 | 0.379 | 0.168 |
| 53 | f/u | 24.604 | 0.671 | 347.436 | 0.449 | 0.154 |
| 54 | h | 31.632 | 0.671 | 347.28 | 0.427 | 0.182 |
| 55 | $\mathrm{f} / \mathrm{h}$ | 38.699 | 0.750 | 328.045 | 0.526 | 0.057 |
| 56 | h | 22.707 | 0.590 | 370.441 | 0.276 | 0.259 |
| 57 | h/u | "invalid" | "invalid" | "invalid" | 0.510 | 0.111 |
| 58 | f/h/u | 17.566 | 0.341 | 488.771 | 0.408 | 0.136 |
| 59 | $\mathrm{f} / \mathrm{h}$ | 24.838 | 0.452 | 423.941 | 0.407 | 0.118 |
| 60 | f/h | 40.134 | 2.484 | 178.536 | 0.292 | 0.193 |
| 61 | f/h | 36.842 | 1.842 | 208.048 | 0.498 | 0.077 |
| 62 | $\mathrm{f} / \mathrm{h}$ | 30.132 | 1.214 | 257.023 | 0.223 | 0.403 |
| 63 | h | 29.468 | 1.178 | 261.026 | 0.284 | 0.182 |
| 64 | $\mathrm{f} / \mathrm{h} / \mathrm{u}$ | 36.461 | 2.548 | 176.214 | 0.361 | 0.061 |
| 65 | h | 43.477 | 1.368 | 241.985 | 0.453 | 0.095 |
| 66 | h | 22.702 | 0.540 | 387.11 | 0.512 | 0.053 |
| 67 | f/h/u | "invalid" | "invalid" | "invalid" | 0.531 | 0.045 |
| 68 | h | 26.410 | 0.812 | 315.17 | 0.487 | 0.123 |
| 69 | h/u | 23.977 | 0.967 | 288.759 | 0.553 | 0.057 |
| 70 | h | 24.840 | 0.719 | 335.281 | 0.439 | 0.113 |
| 71 | h | 15.123 | 0.478 | 412.141 | 0.424 | 0.100 |
| 72 | h | 21.241 | 0.576 | 374.889 | 0.314 | 0.071 |
| 73 | $\mathrm{f} / \mathrm{h}$ | 63.104 | 3.542 | 148.841 | 0.420 | 0.086 |
| 74 | h | 24.284 | 0.701 | 339.62 | 0.233 | 0.362 |
| 75 | h | 27.212 | 0.887 | 301.286 | 0.306 | 0.106 |
| 76 | h | 20.832 | 0.638 | 356.092 | 0.332 | 0.271 |
| 77 | h | 26.231 | 0.620 | 362.009 | 0.288 | 0.102 |
| 78 | h | 14.422 | 0.288 | 531.794 | 0.499 | 0.103 |
| 79 | h | 24.200 | 0.765 | 324.973 | 0.456 | 0.077 |
| 80 | f/h | 30.441 | 1.114 | 268.554 | 0.283 | 0.093 |
| 81 | $\mathrm{f} / \mathrm{h}$ | 45.294 | 1.902 | 204.717 | 0.440 | 0.059 |
| 82 | h | 38.069 | 1.711 | 216.068 | 0.493 | 0.128 |
| 83 | h | 18.866 | 0.647 | 353.642 | 0.566 | 0.049 |
| 84 | f/h | 31.763 | 1.734 | 214.393 | 0.521 | 0.271 |
| 85 | h/u | 39.124 | 2.532 | 176.701 | 0.237 | 0.177 |
| 86 | $\mathrm{f} / \mathrm{h}$ | 26.479 | 1.015 | 281.276 | 0.293 | 0.120 |
| 87 | h | 33.417 | 1.357 | 242.811 | 0.415 | 0.111 |
| 88 | h | 30.136 | 1.658 | 219.349 | 0.426 | 0.073 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 89 | f/h | 22.883 | 0.654 | 351.759 | 0.728 | 0.105 |
| 90 | h/u | 92.046 | 10.352 | 85.461 | 0.735 | 0.052 |
| 91 | f/h/u | 17.112 | 0.704 | 338.867 | 0.500 | 0.227 |
| 92 | h | 24.167 | 0.510 | 398.869 | 0.479 | 0.034 |
| 93 | h | 16.420 | 0.264 | 556.058 | 0.380 | 0.079 |
| 94 | h | 22.431 | 0.629 | 358.522 | 0.479 | 0.391 |
| 95 | f/h | 13.827 | 0.508 | 399.442 | 0.355 | 0.097 |
| 96 | h | 24.408 | 0.513 | 397.507 | 0.375 | 0.073 |
| 97 | h | 51.429 | 3.753 | 144.442 | 0.239 | 0.094 |
| 98 | f/h | 25.662 | 0.444 | 427.95 | 0.198 | 0.011 |
| 99 | h | 27.985 | 0.968 | 288.371 | 0.317 | 0.184 |
| 100 | f/h | 19.114 | 0.599 | 367.823 | 0.296 | 0.061 |
| 101 | f/h | 49.811 | 3.741 | 144.747 | 0.364 | 0.049 |
| 102 | $\mathrm{f} / \mathrm{h}$ | 19.369 | 0.804 | 316.791 | 0.438 | 0.059 |
| 103 | h | 22.088 | 0.782 | 321.143 | 0.293 | 0.055 |
| 104 | $\mathrm{f} / \mathrm{h}$ | 19.114 | 0.482 | 410.277 | 0.461 | 0.408 |
| 105 | h | 35.782 | 1.026 | 279.856 | 0.368 | 0.054 |
| 106 | $\mathrm{f} / \mathrm{h}$ | 23.721 | 0.593 | 369.301 | 0.590 | 0.084 |
| 107 | h | 26.338 | 0.661 | 349.577 | 0.269 | 0.239 |
| 108 | h | "invalid" | "invalid" | "invalid" | 0.328 | 0.070 |
| 109 | h | 26.871 | 0.865 | 305.266 | 0.366 | 0.168 |
| 110 | h | 21.793 | 0.675 | 346.184 | 0.567 | 0.060 |
| 111 | $\mathrm{f} / \mathrm{h} / \mathrm{u}$ | 23.569 | 1.092 | 271.349 | 0.426 | 0.123 |
| 112 | $\mathrm{f} / \mathrm{h}$ | 25.569 | 0.561 | 379.884 | 0.403 | 0.134 |
| 113 | h | 25.892 | 0.808 | 315.974 | 0.240 | 0.222 |
| 114 | h | 21.857 | 0.487 | 408.715 | 0.485 | 0.161 |
| 115 | h | 26.354 | 0.834 | 311.034 | 0.513 | 0.070 |
| 116 | $\mathrm{f} / \mathrm{h}$ | 20.300 | 0.367 | 470.551 | 0.508 | 0.083 |
| 117 | h | 27.008 | 0.909 | 297.86 | 0.464 | 0.163 |
| 118 | h | 27.888 | 0.840 | 310.093 | 0.037 | 0.014 |
| 119 | h | 31.347 | 1.212 | 257.278 | 0.463 | 0.104 |
| 120 | f/h | 14.977 | 0.311 | 511.987 | 0.461 | 0.058 |
| 121 | f/h | 20.622 | 0.712 | 336.923 | 0.150 | 0.536 |
| 122 | h | 21.100 | 0.602 | 366.823 | 0.238 | 0.387 |
| 123 | f/h | 16.610 | 0.567 | 378.188 | 0.509 | 0.069 |
| 124 | h/u | 28.077 | 1.343 | 244.397 | 0.329 | 0.106 |
| 125 | u | 110.937 | 8.683 | 93.604 | 0.534 | 0.081 |
| 126 | h/u | 47.494 | 1.807 | 210 | 0.355 | 0.201 |
| 127 | h | 20.166 | 0.667 | 348.557 | 0.463 | 0.072 |
| 128 | h | 37.665 | 1.075 | 273.627 | 0.132 | 0.086 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 129 | h | 26.970 | 1.027 | 279.772 | 0.504 | 0.072 |
| 130 | u | 137.710 | 9.906 | 87.366 | 0.429 | 0.211 |
| 131 | h/u | 158.736 | 15.199 | 69.825 | 0.457 | 0.125 |
| 132 | h/u | 73.116 | 6.835 | 106.028 | 0.469 | 0.081 |
| 133 | h | 23.269 | 0.640 | 355.489 | 0.124 | 0.027 |
| 134 | $\mathrm{f} / \mathrm{h}$ | 26.615 | 0.727 | 333.655 | 0.426 | 0.141 |
| 135 | f/h | 35.552 | 0.590 | 370.45 | 0.463 | 0.130 |
| 136 | h/u | 45.540 | 1.057 | 275.909 | 0.191 | 0.033 |
| 137 | h | 21.223 | 0.882 | 302.224 | 0.532 | 0.105 |
| 138 | h/u | 44.072 | 4.321 | 134.382 | 0.436 | 0.071 |
| 139 | f | 23.577 | 0.659 | 350.356 | 0.123 | 0.076 |
| 140 | $\mathrm{f} / \mathrm{h}$ | 28.080 | 0.928 | 294.743 | 0.338 | 0.304 |
| 141 | f/h | 37.492 | 0.924 | 295.434 | 0.495 | 0.077 |
| 142 | u | 85.092 | 7.190 | 103.244 | 0.471 | 0.107 |
| 143 | h | 27.717 | 0.842 | 309.476 | 0.257 | 0.388 |
| 144 | h | 19.930 | 0.615 | 363.206 | 0.512 | 0.142 |
| 145 | $\mathrm{f} / \mathrm{h}$ | 79.242 | 6.496 | 108.912 | 0.418 | 0.068 |
| 146 | h/u | 59.760 | 5.962 | 113.873 | 0.168 | 0.442 |
| 147 | h | 24.062 | 0.751 | 327.93 | 0.342 | 0.251 |
| 148 | h | 20.022 | 0.763 | 325.41 | 0.461 | 0.095 |
| 149 | h | 23.329 | 0.579 | 374.008 | 0.365 | 0.059 |
| 150 | $\mathrm{h} / \mathrm{u}$ | 40.134 | 1.925 | 203.241 | 0.179 | 0.476 |
| 151 | f/h/u | 17.519 | 0.392 | 455.465 | 0.518 | 0.120 |
| 152 | h | 31.614 | 1.193 | 259.247 | 0.483 | 0.112 |
| 153 | f/h | 22.014 | 0.752 | 327.777 | 0.503 | 0.064 |
| 154 | $\mathrm{f} / \mathrm{h}$ | 28.203 | 0.593 | 370.051 | 0.441 | 0.110 |
| 155 | h | 42.226 | 1.776 | 211.901 | 0.478 | 0.160 |
| 156 | f | 25.683 | 0.475 | 413.2 | 0.169 | 0.186 |
| 157 | h | 21.109 | 0.602 | 366.517 | 0.442 | 0.104 |
| 158 | h | 25.081 | 1.033 | 278.873 | 0.550 | 0.042 |
| 159 | h | 26.314 | 1.069 | 273.998 | 0.423 | 0.131 |
| 160 | f/h | 30.701 | 1.490 | 231.527 | 0.487 | 0.105 |
| 161 | f/h | "invalid" | "invalid" | "invalid" | 0.480 | 0.080 |
| 162 | h | 27.516 | 0.995 | 284.459 | 0.303 | 0.100 |
| 163 | h | 25.979 | 1.092 | 271.226 | 0.555 | 0.081 |
| 164 | f/h | 24.575 | 0.736 | 331.166 | 0.503 | 0.091 |
| 165 | h | 27.908 | 0.848 | 308.231 | 0.514 | 0.061 |
| 166 | f/h/u | 22.829 | 0.777 | 322.367 | 0.299 | 0.049 |
| 167 | $\mathrm{f} / \mathrm{h}$ | 22.037 | 0.663 | 348.977 | 0.497 | 0.068 |
| 168 | u | 84.105 | 10.343 | 85.443 | 0.404 | 0.131 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \\ & \hline \end{aligned}$ | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 169 | h/u | 44.397 | 2.314 | 185.188 | 0.564 | 0.071 |
| 170 | u | 89.040 | 7.434 | 101.575 | 0.307 | 0.060 |
| 171 | h | 25.613 | 0.501 | 402.431 | 0.399 | 0.107 |
| 172 | h | 22.266 | 0.669 | 348.184 | 0.357 | 0.158 |
| 173 | f/h | 26.468 | 0.850 | 308.095 | 0.441 | 0.180 |
| 174 | f/h | 18.828 | 0.574 | 375.439 | 0.121 | 0.029 |
| 175 | h | 26.401 | 0.886 | 301.696 | 0.300 | 0.279 |
| 176 | h/u | 83.499 | 2.893 | 165.173 | 0.333 | 0.070 |
| 177 | $\mathrm{f} / \mathrm{h}$ | 25.715 | 0.715 | 336.167 | 0.326 | 0.047 |
| 178 | h | 16.775 | 0.419 | 440.393 | 0.290 | 0.044 |
| 179 | h | 22.381 | 0.818 | 314.187 | 0.438 | 0.069 |
| 180 | $\mathrm{f} / \mathrm{h}$ | 21.308 | 0.463 | 418.661 | 0.491 | 0.111 |
| 181 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.498 | 0.085 |
| 182 | h | 24.222 | 0.788 | 319.851 | 0.370 | 0.155 |
| 183 | $\mathrm{f} / \mathrm{h}$ | 26.251 | 0.848 | 308.386 | 0.494 | 0.131 |
| 184 | $\mathrm{f} / \mathrm{h}$ | 37.333 | 1.124 | 267.158 | 0.485 | 0.105 |
| 185 | h | 33.052 | 1.262 | 252.158 | 0.438 | 0.055 |
| 186 | h | 41.846 | 2.879 | 165.512 | 0.384 | 0.034 |
| 187 | h | 32.032 | 1.327 | 245.559 | 0.392 | 0.142 |
| 188 | f/h | 22.681 | 0.689 | 342.711 | 0.518 | 0.070 |
| 189 | f/h | 25.586 | 1.911 | 204.096 | 0.368 | 0.253 |
| 190 | h/u | 58.739 | 3.069 | 160.275 | 0.278 | 0.297 |
| 191 | f/h | 19.074 | 0.725 | 333.632 | 0.163 | 0.240 |
| 192 | f/h | 32.227 | 0.857 | 306.826 | 0.300 | 0.053 |
| 193 | $\mathrm{f} / \mathrm{h}$ | 23.817 | 0.390 | 456.813 | 0.340 | 0.053 |
| 194 | h | 24.948 | 0.707 | 337.95 | 0.383 | 0.081 |
| 195 | h | 29.208 | 0.935 | 293.365 | 0.325 | 0.059 |
| 196 | h | 20.642 | 0.551 | 384.002 | 0.528 | 0.057 |
| 197 | $\mathrm{h} / \mathrm{u}$ | 61.649 | 3.412 | 151.746 | 0.446 | 0.164 |
| 198 | h | 30.959 | 1.167 | 262.209 | 0.504 | 0.061 |
| 199 | u | "invalid" | "invalid" | "invalid" | 0.465 | 0.105 |
| 200 | $\mathrm{f} / \mathrm{h}$ | 29.157 | 1.452 | 234.592 | 0.516 | 0.087 |

*Type: $\mathrm{f}=\mathrm{flaw}, \mathrm{h}=$ hydrate, $\mathrm{u}=$ unhydrated particle, $\mathrm{f} / \mathrm{h}=$ flaw and hydrate combination, $\mathrm{f} / \mathrm{u}=\mathrm{flaw}$ and unhydrated particle combination, $\mathrm{f} / \mathrm{h} / \mathrm{u}=\mathrm{flaw}$, hydrate, and unhydrated particle combination, and $\mathrm{h} / \mathrm{u}=$ hydrate and unhydrated particle combination.

## PC-CNF-B Grid 1



| Indent | Type* | Modulus <br> (GPa) | Hardness <br> $(\mathrm{GPa})$ | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | h | "invalid" | "invalid" | "invalid" | 0.486 | 0.201 |
| 2 | h | 27.127 | 0.908 | 297.87 | 0.454 | 0.113 |
| 3 | $\mathrm{f} / \mathrm{h}$ | 27.842 | 0.930 | 294.298 | 0.525 | 0.055 |
| 4 | $\mathrm{~h} / \mathrm{u}$ | "invalid" "invalid" | "invalid" | 0.525 | 0.073 |  |
| 5 | h | 23.904 | 0.842 | 309.43 | 0.421 | 0.058 |
| 6 | f/h | 20.035 | 0.450 | 425.05 | 0.560 | 0.046 |
| 7 | f/h | "invalid"" "invalid" | "invalid" | 0.478 | 0.066 |  |
| 8 | h | "invalid" "invalid" | "invalid" | 0.463 | 0.078 |  |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | Al/Ca <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | h | 22.913 | 0.755 | 326.915 | 0.329 | 0.342 |
| 10 | h/u | "invalid" | "invalid" | "invalid" | 0.644 | 0.082 |
| 11 | f | "invalid" | "invalid" | "invalid" | 0.435 | 0.222 |
| 12 | f/h | 18.897 | 0.461 | 419.412 | 0.118 | 0.386 |
| 13 | f/h | "invalid" | "invalid" | "invalid" | 0.476 | 0.065 |
| 14 | h | "invalid" | "invalid" | "invalid" | 0.427 | 0.039 |
| 15 | f/h | "invalid" | "invalid" | "invalid" | 0.403 | 0.125 |
| 16 | f/h | "invalid" | "invalid" | "invalid" | 0.212 | 0.103 |
| 17 | $\mathrm{f} / \mathrm{h}$ | 23.060 | 0.793 | 319.112 | 0.494 | 0.068 |
| 18 | f/h | "invalid" | "invalid" | "invalid" | 0.412 | 0.095 |
| 19 | f/h | 18.175 | 0.557 | 381.812 | 0.542 | 0.117 |
| 20 | f/h | "invalid" | "invalid" | "invalid" | 0.387 | 0.325 |
| 21 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.494 | 0.123 |
| 22 | h | 23.213 | 0.623 | 360.66 | 0.584 | 0.087 |
| 23 | h/u | 59.303 | 3.052 | 160.677 | 0.428 | 0.208 |
| 24 | h | 26.347 | 0.819 | 313.799 | 0.443 | 0.118 |
| 25 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.381 | 0.062 |
| 26 | h | 28.815 | 1.075 | 273.467 | 0.298 | 0.054 |
| 27 | h | 24.082 | 0.911 | 297.503 | 0.239 | 0.060 |
| 28 | $\mathrm{f} / \mathrm{h} / \mathrm{u}$ | 16.873 | 0.496 | 404.847 | 0.528 | 0.089 |
| 29 | h | "invalid" | "invalid" | "invalid" | 0.604 | 0.061 |
| 30 | h | 37.878 | 1.340 | 244.499 | 0.428 | 0.196 |
| 31 | u | "invalid" | "invalid" | "invalid" | 0.495 | 0.126 |
| 32 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.295 | 0.369 |
| 33 | h | 18.380 | 0.572 | 376.314 | 0.256 | 0.046 |
| 34 | h | "invalid" | "invalid" | "invalid" | 0.159 | 0.051 |
| 35 | u | "invalid" | "invalid" | "invalid" | 0.333 | 0.246 |
| 36 | u | 82.179 | 6.851 | 105.938 | 0.587 | 0.082 |
| 37 | h | "invalid" | "invalid" | "invalid" | 0.273 | 0.091 |
| 38 | $\mathrm{f} / \mathrm{h} / \mathrm{u}$ | "invalid" | "invalid" | "invalid" | 0.400 | 0.129 |
| 39 | $\mathrm{f} / \mathrm{h} / \mathrm{u}$ | 96.954 | 7.944 | 98.086 | 0.528 | 0.220 |
| 40 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.302 | 0.106 |
| 41 | u | "invalid" | "invalid" | "invalid" | 0.532 | 0.095 |
| 42 | h | "invalid" | "invalid" | "invalid" | 0.463 | 0.101 |
| 43 | h | "invalid" | "invalid" | "invalid" | 0.559 | 0.096 |
| 44 | h | "invalid" | "invalid" | "invalid" | 0.463 | 0.060 |
| 45 | h | 29.590 | 1.338 | 244.835 | 0.501 | 0.089 |
| 46 | u | "invalid" | "invalid" | "invalid" | 0.579 | 0.084 |
| 47 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.371 | 0.052 |
| 48 | h | 22.971 | 0.744 | 329.895 | 0.481 | 0.171 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 49 | h | "invalid" | "invalid" | "invalid" | 0.163 | 0.506 |
| 50 | h | 28.426 | 0.857 | 306.913 | 0.614 | 0.094 |
| 51 | h | 21.002 | 0.587 | 371.336 | 0.428 | 0.082 |
| 52 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.465 | 0.269 |
| 53 | h | "invalid" | "invalid" | "invalid" | 0.320 | 0.109 |
| 54 | f/h/u | "invalid" | "invalid" | "invalid" | 0.367 | 0.273 |
| 55 | h/u | 17.559 | 0.696 | 340.756 | 0.443 | 0.073 |
| 56 | h | "invalid" | "invalid" | "invalid" | 0.526 | 0.090 |
| 57 | h/u | 37.803 | 3.818 | 143.263 | 0.399 | 0.173 |
| 58 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.554 | 0.082 |
| 59 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.533 | 0.184 |
| 60 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.286 | 0.132 |
| 61 | u | error | error | "invalid" | 0.117 | 0.027 |
| 62 | f/h/u | 21.024 | 0.474 | 414.329 | 0.551 | 0.064 |
| 63 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.544 | 0.088 |
| 64 | h/u | "invalid" | "invalid" | "invalid" | 0.576 | 0.082 |
| 65 | u | 85.918 | 4.228 | 135.918 | 0.560 | 0.089 |
| 66 | h | 34.930 | 1.214 | 257.126 | 0.654 | 0.076 |
| 67 | h | "invalid" | "invalid" | "invalid" | 0.526 | 0.062 |
| 68 | h/u | "invalid" | "invalid" | "invalid" | 0.585 | 0.019 |
| 69 | f | "invalid" | "invalid" | "invalid" | 0.403 | 0.109 |
| 70 | $\mathrm{f} / \mathrm{h}$ | 22.717 | 0.543 | 386.586 | 0.340 | 0.089 |
| 71 | h/u | 22.743 | 0.576 | 375.189 | 0.591 | 0.081 |
| 72 | h | "invalid" | "invalid" | "invalid" | 0.550 | 0.078 |
| 73 | $\mathrm{f} / \mathrm{h}$ | 18.080 | 0.396 | 453.587 | 0.517 | 0.098 |
| 74 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.276 | 0.073 |
| 75 | u | "invalid" | "invalid" | "invalid" | 0.463 | 0.124 |
| 76 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.401 | 0.234 |
| 77 | h | 21.726 | 0.699 | 340.04 | 0.511 | 0.094 |
| 78 | $\mathrm{f} / \mathrm{h}$ | 13.217 | 0.672 | 346.828 | 0.451 | 0.118 |
| 79 | h | "invalid" | "invalid" | "invalid" | 0.402 | 0.070 |
| 80 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.386 | 0.049 |
| 81 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.562 | 0.095 |
| 82 | h/u | "invalid" | "invalid" | "invalid" | 0.072 | 0.021 |
| 83 | h/u | "invalid" | "invalid" | "invalid" | 0.557 | 0.030 |
| 84 | $\mathrm{f} / \mathrm{h}$ | 29.654 | 0.873 | 304.001 | 0.348 | 0.193 |
| 85 | h | 16.044 | 0.236 | 588.127 | 0.505 | 0.109 |
| 86 | h/u | 22.202 | 0.597 | 368.519 | 0.325 | 0.129 |
| 87 | $\mathrm{f} / \mathrm{h}$ | 46.927 | 1.898 | 204.785 | 0.123 | 0.173 |
| 88 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.245 | 0.333 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \\ & \hline \end{aligned}$ | Al/Ca <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 89 | h/u | 87.139 | 7.971 | 97.892 | 0.489 | 0.288 |
| 90 | u | "invalid" | "invalid" | "invalid" | 0.320 | 0.274 |
| 91 | h | 18.113 | 0.339 | 489.979 | 0.553 | 0.052 |
| 92 | h/u | 15.765 | 0.254 | 567.513 | 0.510 | 0.048 |
| 93 | f/h | "invalid" | "invalid" | "invalid" | 0.478 | 0.091 |
| 94 | h/u | "invalid" | "invalid" | "invalid" | 0.283 | 0.102 |
| 95 | h/u | "invalid" | "invalid" | "invalid" | 0.121 | 0.538 |
| 96 | f/h | "invalid" | "invalid" | "invalid" | 0.373 | 0.143 |
| 97 | f/h | "invalid" | "invalid" | "invalid" | 0.573 | 0.119 |
| 98 | f/h | "invalid" | "invalid" | "invalid" | 0.238 | 0.044 |
| 99 | f/h | "invalid" | "invalid" | "invalid" | 0.502 | 0.074 |
| 100 | f/h | "invalid" | "invalid" | "invalid" | 0.472 | 0.081 |
| 101 | $\mathrm{f} / \mathrm{h}$ | 24.978 | 0.855 | 307.371 | 0.138 | 0.481 |
| 102 | h | "invalid" | "invalid" | "invalid" | 0.481 | 0.127 |
| 103 | h/u | 16.215 | 0.462 | 419.223 | 0.582 | 0.040 |
| 104 | f/h | "invalid" | "invalid" | "invalid" | 0.317 | 0.073 |
| 105 | u | 112.515 | 6.800 | 106.372 | 0.584 | 0.075 |
| 106 | h | 33.520 | 1.094 | 271.034 | 0.469 | 0.137 |
| 107 | h | 29.757 | 1.050 | 276.656 | 0.558 | 0.123 |
| 108 | h | 26.109 | 0.589 | 370.935 | 0.536 | 0.103 |
| 109 | f/h | 8.639 | 0.132 | 789.424 | 0.594 | 0.069 |
| 110 | f/h | 17.968 | 0.458 | 421.045 | 0.165 | 0.543 |
| 111 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.131 | 0.090 |
| 112 | u | "invalid" | "invalid" | "invalid" | 0.492 | 0.075 |
| 113 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.538 | 0.128 |
| 114 | h | "invalid" | "invalid" | "invalid" | 0.346 | 0.074 |
| 115 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.351 | 0.339 |
| 116 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.229 | 0.417 |
| 117 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.203 | 0.428 |
| 118 | h/u | "invalid" | "invalid" | "invalid" | 0.392 | 0.064 |
| 119 | h | "invalid" | "invalid" | "invalid" | 0.345 | 0.136 |
| 120 | f/h | "invalid" | "invalid" | "invalid" | 0.387 | 0.032 |
| 121 | h | "invalid" | "invalid" | "invalid" | 0.580 | 0.035 |
| 122 | h/u | "invalid" | "invalid" | "invalid" | 0.601 | 0.055 |
| 123 | u | "invalid" | "invalid" | "invalid" | 0.318 | 0.132 |
| 124 | h | "invalid" | "invalid" | "invalid" | 0.471 | 0.074 |
| 125 | u | 74.617 | 3.873 | 142.136 | 0.489 | 0.045 |
| 126 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.486 | 0.081 |
| 127 | h | 30.880 | 1.114 | 268.466 | 0.370 | 0.045 |
| 128 | u | "invalid" | "invalid" | "invalid" | 0.472 | 0.163 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | Al/Ca <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 129 | h | 27.296 | 0.886 | 301.728 | 0.484 | 0.087 |
| 130 | h | "invalid" | "invalid" | "invalid" | 0.577 | 0.073 |
| 131 | h | "invalid" | "invalid" | "invalid" | 0.486 | 0.062 |
| 132 | h | 52.950 | 1.478 | 232.695 | 0.405 | 0.047 |
| 133 | h | "invalid" | "invalid" | "invalid" | 0.416 | 0.260 |
| 134 | h | "invalid" | "invalid" | "invalid" | 0.376 | 0.154 |
| 135 | h/u | "invalid" | "invalid" | "invalid" | 0.408 | 0.236 |
| 136 | h/u | "invalid" | "invalid" | "invalid" | 0.276 | 0.234 |
| 137 | h | error | error | error | 0.368 | 0.146 |
| 138 | f/h | 16.357 | 0.620 | 361.26 | 0.527 | 0.099 |
| 139 | h/u | "invalid" | "invalid" | "invalid" | 0.355 | 0.047 |
| 140 | f/h | "invalid" | "invalid" | "invalid" | 0.386 | 0.028 |
| 141 | h | 25.941 | 0.777 | 322.59 | 0.569 | 0.030 |
| 142 | h | 19.154 | 0.362 | 474.445 | 0.539 | 0.043 |
| 143 | u | "invalid" | "invalid" | "invalid" | 0.521 | 0.104 |
| 144 | u | 141.489 | 7.999 | 97.762 | 0.546 | 0.079 |
| 145 | h/u | "invalid" | "invalid" | "invalid" | 0.510 | 0.113 |
| 146 | h | "invalid" | "invalid" | "invalid" | 0.510 | 0.210 |
| 147 | h | 28.317 | 0.919 | 296.08 | 0.557 | 0.063 |
| 148 | h | "invalid" | "invalid" | "invalid" | 0.434 | 0.087 |
| 149 | $\mathrm{f} / \mathrm{h}$ | 27.030 | 0.783 | 320.941 | 0.198 | 0.299 |
| 150 | u | 99.272 | 8.090 | 97.203 | 0.154 | 0.558 |
| 151 | h | "invalid" | "invalid" | "invalid" | 0.330 | 0.190 |
| 152 | h/u | "invalid" | "invalid" | "invalid" | 0.382 | 0.090 |
| 153 | h | "invalid" | "invalid" | "invalid" | 0.358 | 0.053 |
| 154 | u | 102.066 | 6.623 | 107.807 | 0.286 | 0.074 |
| 155 | h | "invalid" | "invalid" | "invalid" | 0.249 | 0.059 |
| 156 | f/h | "invalid" | "invalid" | "invalid" | 0.125 | 0.025 |
| 157 | $\mathrm{f} / \mathrm{h}$ | 21.645 | 0.397 | 452.437 | 0.498 | 0.084 |
| 158 | $\mathrm{f} / \mathrm{h}$ | 18.151 | 0.358 | 477.311 | 0.463 | 0.062 |
| 159 | f/h | "invalid" | "invalid" | "invalid" | 0.134 | 0.473 |
| 160 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.381 | 0.083 |
| 161 | h | "invalid" | "invalid" | "invalid" | 0.350 | 0.085 |
| 162 | h | error | error | error | 0.516 | 0.097 |
| 163 | u | 113.663 | 8.766 | 93.245 | 0.578 | 0.095 |
| 164 | u | 138.566 | 7.950 | 98.051 | 0.577 | 0.071 |
| 165 | h/u | 130.661 | 9.684 | 88.463 | 0.412 | 0.068 |
| 166 | f/h | 23.305 | 0.896 | 300.182 | 0.402 | 0.030 |
| 167 | h | 25.853 | 0.951 | 291.195 | 0.445 | 0.147 |
| 168 | h | "invalid" | "invalid" | "invalid" | 0.566 | 0.058 |


| Indent | Type* | $\begin{gathered} \hline \text { Modulus } \\ (\mathrm{GPa}) \\ \hline \end{gathered}$ | Hardness (GPa) | Maximum <br> Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \\ & \hline \end{aligned}$ | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 169 | u | "invalid" | "invalid" | "invalid" | 0.513 | 0.060 |
| 170 | h | "invalid" | "invalid" | "invalid" | 0.170 | 0.527 |
| 171 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.236 | 0.407 |
| 172 | h | "invalid" | "invalid" | "invalid" | 0.482 | 0.158 |
| 173 | u | 138.172 | 9.883 | 87.498 | 0.462 | 0.092 |
| 174 | h/u | 116.441 | 8.943 | 92.266 | 0.303 | 0.297 |
| 175 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.312 | 0.320 |
| 176 | h | "invalid" | "invalid" | "invalid" | 0.444 | 0.137 |
| 177 | h/u | "invalid" | "invalid" | "invalid" | 0.417 | 0.254 |
| 178 | h | "invalid" | "invalid" | "invalid" | 0.409 | 0.121 |
| 179 | h | 69.904 | 3.627 | 147.168 | 0.589 | 0.014 |
| 180 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.350 | 0.290 |
| 181 | h | "invalid" | "invalid" | "invalid" | 0.144 | 0.458 |
| 182 | h | "invalid" | "invalid" | "invalid" | 0.536 | 0.115 |
| 183 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.436 | 0.160 |
| 184 | h | 44.277 | 1.131 | 266.611 | 0.582 | 0.080 |
| 185 | h | "invalid" | "invalid" | "invalid" | 0.547 | 0.092 |
| 186 | $\mathrm{f} / \mathrm{h}$ | 25.054 | 0.566 | 378.151 | 0.497 | 0.111 |
| 187 | h | "invalid" | "invalid" | "invalid" | 0.422 | 0.105 |
| 188 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.490 | 0.056 |
| 189 | h | "invalid" | "invalid" | "invalid" | 0.534 | 0.132 |
| 190 | h | "invalid" | "invalid" | "invalid" | 0.503 | 0.045 |
| 191 | h | "invalid" | "invalid" | "invalid" | 0.486 | 0.061 |
| 192 | h | "invalid" | "invalid" | "invalid" | 0.418 | 0.189 |
| 193 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.135 | 0.074 |
| 194 | h | 23.003 | 0.852 | 307.815 | 0.457 | 0.106 |
| 195 | h | 25.312 | 0.651 | 352.794 | 0.488 | 0.073 |
| 196 | h | "invalid" | "invalid" | "invalid" | 0.477 | 0.077 |
| 197 | h | 22.209 | 0.580 | 373.835 | 0.369 | 0.234 |
| 198 | f/h | "invalid" | "invalid" | "invalid" | 0.492 | 0.089 |
| 199 | h | "invalid" | "invalid" | "invalid" | 0.564 | 0.029 |
| 200 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.350 | 0.234 |

*Type: $\mathrm{f}=\mathrm{flaw}, \mathrm{h}=$ hydrate, $\mathrm{u}=$ unhydrated particle, $\mathrm{f} / \mathrm{h}=\mathrm{flaw}$ and hydrate combination, $\mathrm{f} / \mathrm{u}=\mathrm{flaw}$ and unhydrated particle combination, $\mathrm{f} / \mathrm{h} / \mathrm{u}=\mathrm{flaw}$, hydrate, and unhydrated particle combination, and $\mathrm{h} / \mathrm{u}=$ hydrate and unhydrated particle combination.

## PC-CF-A Grid 1


$11,12 \quad 13,14,15,16,17,18 \quad 19,20,1$

$81,82,83,84,85 \cdot 86,87,88,89 \cdot 90,91,92,93 \cdot 94,95 \quad 96 \quad 97,98,99100$
 1011021031041051061071081091101111121131141151,16117118119120 $121,122,123,124125$, $126,127,128129130131,132,133,134185,136137,138,139140$ NA A A A A A A A A A A A A A A A A A A A $141,142143144145,146147148149,150151152,153,154,155,156157,158,159160$,
A A A A A A A A A A A A A A A A A A A A
$\uparrow 161162163164,165,166167,168169,170,171172173174175176177178,179180$
E A A A A A A A A A A A A A A A A M, A M M A
$181182183184,185186187,188189190191,192,193,194195,196197198,199,200$

| Hydrates | Unhydrated Cement |
| :---: | :---: |
| Flaws | Indentation Location |


| Indent | Type* | Modulus <br> $(\mathrm{GPa})$ | Hardness <br> $(\mathrm{GPa})$ | Maximum <br> Displacement $(\mathrm{nm})$ | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | h | 33.368 | 1.313 | 247.423 | 0.503 | 0.068 |
| 2 | h | 28.250 | 1.126 | 267.326 | 0.460 | 0.194 |
| 3 | h | 33.487 | 1.619 | 222.475 | 0.355 | 0.182 |
| 4 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.231 | 0.038 |
| 5 | h | 31.049 | 2.400 | 181.996 | 0.300 | 0.137 |
| 6 | h | error | error | error | 0.307 | 0.127 |
| 7 | h | 75.267 | 6.970 | 105.368 | 0.349 | 0.244 |
| 8 | u | 24.622 | 1.235 | 255.119 | 0.397 | 0.149 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | h/u | 28.423 | 1.488 | 232.058 | 0.554 | 0.130 |
| 10 | f/h | 27.539 | 1.172 | 261.938 | 0.443 | 0.148 |
| 11 | $\mathrm{f} / \mathrm{h}$ | 28.738 | 0.904 | 298.619 | 0.515 | 0.109 |
| 12 | h | 19.962 | 0.526 | 392.94 | 0.589 | 0.101 |
| 13 | h | 26.364 | 1.456 | 234.645 | 0.455 | 0.071 |
| 14 | h | 33.595 | 0.897 | 299.958 | 0.409 | 0.047 |
| 15 | h/u | 41.433 | 1.753 | 213.582 | 0.572 | 0.111 |
| 16 | f/h | error | error | error | 0.593 | 0.119 |
| 17 | h/u | 41.594 | 1.616 | 222.545 | 0.214 | 0.265 |
| 18 | u | 90.958 | 9.239 | 90.968 | 0.195 | 0.235 |
| 19 | u | 27.896 | 1.189 | 259.992 | 0.558 | 0.109 |
| 20 | h | 20.693 | 0.702 | 339.786 | 0.447 | 0.099 |
| 21 | h | 25.315 | 0.993 | 285.025 | 0.560 | 0.097 |
| 22 | $\mathrm{f} / \mathrm{h}$ | 26.500 | 1.143 | 265.408 | 0.512 | 0.120 |
| 23 | h/u | 41.006 | 1.466 | 234.021 | 0.416 | 0.152 |
| 24 | h/u | 51.327 | 3.735 | 145.229 | 0.377 | 0.119 |
| 25 | h | 20.261 | 1.023 | 280.641 | 0.548 | 0.117 |
| 26 | h/u | 85.500 | 7.860 | 98.987 | 0.517 | 0.197 |
| 27 | h/u | 9.496 | 0.428 | 435.035 | 0.555 | 0.079 |
| 28 | f/h | "invalid" | "invalid" | "invalid" | 0.397 | 0.099 |
| 29 | f/h | 57.467 | 8.016 | 97.971 | 0.296 | 0.343 |
| 30 | $\mathrm{f} / \mathrm{h}$ | 33.057 | 1.123 | 267.691 | 0.120 | 0.513 |
| 31 | h | 26.896 | 1.339 | 244.657 | 0.525 | 0.142 |
| 32 | $\mathrm{f} / \mathrm{h}$ | 24.106 | 0.994 | 284.55 | 0.365 | 0.118 |
| 33 | h | 22.177 | 1.103 | 270.083 | 0.372 | 0.159 |
| 34 | $\mathrm{f} / \mathrm{h}$ | 6.941 | 0.127 | 803.289 | 0.453 | 0.116 |
| 35 | h | 20.836 | 0.864 | 305.565 | 0.431 | 0.151 |
| 36 | h/u | 24.170 | 0.601 | 367.139 | 0.498 | 0.124 |
| 37 | h | 36.061 | 1.675 | 218.774 | 0.571 | 0.029 |
| 38 | h/u | "invalid" | "invalid" | "invalid" | 0.416 | 0.182 |
| 39 | h | 26.810 | 1.101 | 270.418 | 0.555 | 0.127 |
| 40 | h | 25.508 | 1.249 | 253.748 | 0.127 | 0.036 |
| 41 | h | 26.344 | 1.009 | 282.583 | 0.430 | 0.066 |
| 42 | h | 27.138 | 0.821 | 313.987 | 0.402 | 0.110 |
| 43 | h | 12.785 | 0.220 | 609.758 | 0.324 | 0.296 |
| 44 | h | 38.720 | 1.296 | 249.121 | 0.499 | 0.099 |
| 45 | h | 24.853 | 0.809 | 315.97 | 0.587 | 0.143 |
| 46 | h | 39.231 | 1.777 | 212.072 | 0.446 | 0.143 |
| 47 | h | 39.966 | 2.106 | 194.652 | 0.351 | 0.149 |
| 48 | f | 13.198 | 0.343 | 487.95 | 0.410 | 0.260 |


| Indent | Type* | $\begin{gathered} \hline \text { Modulus } \\ (\mathrm{GPa}) \end{gathered}$ | Hardness (GPa) | Maximum <br> Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \end{aligned}$ | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 49 | f/h | 30.075 | 1.149 | 264.966 | 0.441 | 0.125 |
| 50 | h | 14.700 | 0.324 | 501.856 | 0.234 | 0.108 |
| 51 | f/h | 35.519 | 1.442 | 235.861 | 0.559 | 0.094 |
| 52 | f/h | 36.312 | 1.858 | 207.479 | 0.504 | 0.104 |
| 53 | u | 115.378 | 7.265 | 103.077 | 0.476 | 0.164 |
| 54 | h | 20.412 | 0.662 | 349.831 | 0.467 | 0.100 |
| 55 | f | 21.860 | 1.069 | 274.47 | 0.170 | 0.366 |
| 56 | h | 30.604 | 1.347 | 244.245 | 0.457 | 0.131 |
| 57 | h | 28.838 | 1.032 | 279.436 | 0.506 | 0.113 |
| 58 | h | 26.097 | 0.950 | 291.334 | 0.448 | 0.222 |
| 59 | u | "invalid" | "invalid" | "invalid" | 0.550 | 0.136 |
| 60 | u | "invalid" | "invalid" | "invalid" | 0.306 | 0.098 |
| 61 | h | 26.487 | 1.126 | 267.426 | 0.553 | 0.062 |
| 62 | h | 23.505 | 0.961 | 289.727 | 0.525 | 0.147 |
| 63 | h | 40.053 | 1.607 | 223.119 | 0.353 | 0.125 |
| 64 | h | 20.569 | 0.646 | 353.985 | 0.223 | 0.336 |
| 65 | h | 25.865 | 0.922 | 295.632 | 0.550 | 0.126 |
| 66 | f/h | 36.751 | 0.932 | 294.466 | 0.358 | 0.166 |
| 67 | f/h | 26.770 | 0.960 | 289.814 | 0.219 | 0.131 |
| 68 | $\mathrm{f} / \mathrm{h}$ | 32.330 | 1.181 | 260.982 | 0.310 | 0.203 |
| 69 | f/h | 17.795 | 0.455 | 422.839 | 0.331 | 0.129 |
| 70 | h | 36.221 | 1.286 | 249.865 | 0.372 | 0.256 |
| 71 | h | 20.948 | 0.898 | 299.716 | 0.490 | 0.162 |
| 72 | h | 30.049 | 1.152 | 264.333 | 0.378 | 0.090 |
| 73 | h | 41.086 | 1.278 | 250.919 | 0.495 | 0.104 |
| 74 | h | 23.477 | 0.986 | 285.994 | 0.366 | 0.164 |
| 75 | f/h | 29.910 | 1.604 | 223.342 | 0.487 | 0.121 |
| 76 | h | 93.459 | 5.784 | 116.023 | 0.346 | 0.144 |
| 77 | h | 26.752 | 1.127 | 267.039 | 0.537 | 0.133 |
| 78 | h | 28.262 | 1.272 | 251.321 | 0.511 | 0.091 |
| 79 | u | "invalid" | "invalid" | "invalid" | 0.368 | 0.186 |
| 80 | u | 75.872 | 2.623 | 173.881 | 0.503 | 0.129 |
| 81 | h | 26.836 | 1.373 | 241.892 | 0.456 | 0.099 |
| 82 | h | 23.003 | 1.046 | 277.761 | 0.502 | 0.128 |
| 83 | h | 32.565 | 1.294 | 249.233 | 0.227 | 0.202 |
| 84 | $\mathrm{f} / \mathrm{h}$ | 22.752 | 1.018 | 281.201 | 0.525 | 0.113 |
| 85 | h | 21.174 | 0.845 | 309.182 | 0.455 | 0.186 |
| 86 | h/u | 61.268 | 2.932 | 164.253 | 0.371 | 0.143 |
| 87 | h/u | 38.253 | 2.348 | 184.099 | 0.457 | 0.133 |
| 88 | h | 28.464 | 1.281 | 250.575 | 0.401 | 0.108 |


| Indent | Type* | $\begin{gathered} \hline \text { Modulus } \\ (\mathrm{GPa}) \end{gathered}$ | Hardness (GPa) | Maximum <br> Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \end{aligned}$ | $\begin{aligned} & \hline \mathrm{Al} / \mathrm{Ca} \\ & \text { Ratio } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 89 | h | 24.156 | 0.908 | 298.377 | 0.563 | 0.141 |
| 90 | h | 25.151 | 1.027 | 280.214 | 0.414 | 0.144 |
| 91 | h | 21.380 | 0.570 | 377.288 | 0.134 | 0.589 |
| 92 | h | 27.201 | 1.221 | 256.437 | 0.481 | 0.097 |
| 93 | h | 49.566 | 2.479 | 179.122 | 0.374 | 0.110 |
| 94 | $\mathrm{f} / \mathrm{h}$ | 27.553 | 1.040 | 278.498 | 0.433 | 0.159 |
| 95 | h | 27.576 | 1.199 | 259.046 | 0.580 | 0.066 |
| 96 | u | 63.297 | 2.046 | 197.54 | 0.383 | 0.143 |
| 97 | $\mathrm{f} / \mathrm{h}$ | 58.390 | 2.918 | 164.639 | 0.578 | 0.029 |
| 98 | h | "invalid" | "invalid" | "invalid" | 0.541 | 0.064 |
| 99 | u | 110.984 | 5.125 | 123.401 | 0.516 | 0.158 |
| 100 | h | 54.692 | 3.095 | 159.968 | 0.488 | 0.096 |
| 101 | $\mathrm{f} / \mathrm{h}$ | 93.425 | 9.579 | 89.317 | 0.594 | 0.074 |
| 102 | h | 27.556 | 1.243 | 254.307 | 0.404 | 0.220 |
| 103 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.266 | 0.291 |
| 104 | h/u | 18.851 | 0.933 | 293.977 | 0.460 | 0.108 |
| 105 | h | 21.654 | 0.844 | 309.12 | 0.367 | 0.267 |
| 106 | h | 28.475 | 1.081 | 272.927 | 0.287 | 0.293 |
| 107 | u | "invalid" | "invalid" | "invalid" | 0.573 | 0.067 |
| 108 | h/u | 35.384 | 1.152 | 264.372 | 0.473 | 0.084 |
| 109 | h | 23.376 | 0.750 | 328.405 | 0.416 | 0.064 |
| 110 | h/u | 20.767 | 0.584 | 372.733 | 0.538 | 0.101 |
| 111 | h | 16.707 | 0.612 | 363.748 | 0.130 | 0.537 |
| 112 | h | "invalid" | "invalid" | "invalid" | 0.321 | 0.079 |
| 113 | h | 22.240 | 0.907 | 298.313 | 0.116 | 0.557 |
| 114 | f/h/u | 61.178 | 2.225 | 189.178 | 0.442 | 0.173 |
| 115 | h | 44.724 | 2.231 | 188.878 | 0.565 | 0.118 |
| 116 | h | 36.395 | 1.326 | 246.11 | 0.492 | 0.108 |
| 117 | $\mathrm{f} / \mathrm{h}$ | 24.769 | 0.974 | 287.759 | 0.258 | 0.413 |
| 118 | $\mathrm{f} / \mathrm{h}$ | 32.350 | 1.611 | 223.038 | 0.403 | 0.220 |
| 119 | h/u | 18.503 | 0.413 | 443.839 | 0.386 | 0.232 |
| 120 | h | 26.356 | 0.971 | 288.283 | 0.339 | 0.165 |
| 121 | h | 35.753 | 1.638 | 221.161 | 0.601 | 0.111 |
| 122 | h | 24.413 | 1.127 | 267.156 | 0.465 | 0.140 |
| 123 | h | 40.000 | 1.794 | 211.046 | 0.170 | 0.376 |
| 124 | $\mathrm{f} / \mathrm{h} / \mathrm{u}$ | 60.966 | 1.798 | 211.019 | 0.389 | 0.172 |
| 125 | h | 38.199 | 2.043 | 197.504 | 0.557 | 0.114 |
| 126 | h | error | error | error | 0.526 | 0.104 |
| 127 | $\mathrm{f} / \mathrm{h}$ | 29.848 | 1.387 | 240.562 | 0.462 | 0.114 |
| 128 | h | 23.414 | 0.706 | 339.005 | 0.414 | 0.144 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 129 | h | 35.842 | 2.068 | 196.425 | 0.384 | 0.071 |
| 130 | h/u | 31.035 | 1.371 | 241.922 | 0.356 | 0.071 |
| 131 | h | 26.638 | 1.170 | 262.23 | 0.419 | 0.161 |
| 132 | h | 36.312 | 1.843 | 208.162 | 0.455 | 0.063 |
| 133 | h | 36.419 | 2.290 | 186.366 | 0.556 | 0.074 |
| 134 | h/u | 98.155 | 3.819 | 143.559 | 0.566 | 0.088 |
| 135 | h | 10.677 | 0.179 | 676.719 | 0.474 | 0.190 |
| 136 | h | 23.501 | 1.343 | 244.583 | 0.433 | 0.236 |
| 137 | h/u | error | error | error | 0.505 | 0.103 |
| 138 | h | 30.084 | 1.317 | 247.046 | 0.398 | 0.188 |
| 139 | h | 26.842 | 0.909 | 297.994 | 0.310 | 0.359 |
| 140 | h | 30.362 | 1.280 | 250.704 | 0.240 | 0.465 |
| 141 | h | 28.503 | 0.616 | 362.88 | 0.598 | 0.089 |
| 142 | f | 27.520 | 1.390 | 240.379 | 0.531 | 0.125 |
| 143 | h/u | 35.350 | 1.792 | 211.065 | 0.606 | 0.082 |
| 144 | h | 27.670 | 0.705 | 338.836 | 0.331 | 0.270 |
| 145 | f | 64.978 | 3.425 | 151.719 | 0.482 | 0.188 |
| 146 | u | 77.460 | 4.071 | 138.903 | 0.585 | 0.080 |
| 147 | h | 31.887 | 1.186 | 260.232 | 0.383 | 0.086 |
| 148 | $\mathrm{f} / \mathrm{h}$ | 58.075 | 2.138 | 193.24 | 0.479 | 0.184 |
| 149 | h/u | 30.523 | 1.384 | 240.916 | 0.521 | 0.102 |
| 150 | h | 34.521 | 1.835 | 208.644 | 0.512 | 0.093 |
| 151 | $\mathrm{f} / \mathrm{h}$ | 17.586 | 0.417 | 441.868 | 0.360 | 0.169 |
| 152 | h | 27.179 | 0.915 | 297.025 | 0.599 | 0.043 |
| 153 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.151 | 0.505 |
| 154 | h/u | 26.058 | 1.019 | 281.371 | 0.369 | 0.184 |
| 155 | $\mathrm{f} / \mathrm{h}$ | 83.302 | 5.403 | 120.111 | 0.540 | 0.081 |
| 156 | $\mathrm{f} / \mathrm{h}$ | 37.828 | 1.498 | 231.457 | 0.472 | 0.143 |
| 157 | h | 69.799 | 2.899 | 165.262 | 0.353 | 0.102 |
| 158 | h | 16.707 | 0.478 | 412.4 | 0.276 | 0.116 |
| 159 | h | error | error | error | 0.265 | 0.326 |
| 160 | h | 28.118 | 0.809 | 316.063 | 0.382 | 0.097 |
| 161 | h/u | 41.695 | 1.659 | 219.709 | 0.430 | 0.204 |
| 162 | h/u | 39.671 | 2.347 | 184.234 | 0.255 | 0.076 |
| 163 | $\mathrm{f} / \mathrm{h}$ | 31.911 | 1.470 | 233.304 | 0.530 | 0.151 |
| 164 | $\mathrm{f} / \mathrm{h}$ | 31.764 | 1.384 | 240.864 | 0.386 | 0.085 |
| 165 | h | 95.274 | 6.449 | 109.642 | 0.310 | 0.266 |
| 166 | h | 31.640 | 1.392 | 240.157 | 0.295 | 0.081 |
| 167 | h | 24.047 | 0.799 | 318.116 | 0.484 | 0.168 |
| 168 | h/u | 30.339 | 1.062 | 275.205 | 0.575 | 0.081 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 169 | h/u | 40.928 | 2.502 | 178.256 | 0.485 | 0.122 |
| 170 | h | 28.432 | 1.072 | 274.272 | 0.497 | 0.113 |
| 171 | $\mathrm{f} / \mathrm{h}$ | 23.162 | 0.837 | 310.392 | 0.537 | 0.057 |
| 172 | h/u | 47.116 | 3.032 | 161.485 | 0.409 | 0.112 |
| 173 | h | 34.595 | 1.465 | 233.974 | 0.377 | 0.129 |
| 174 | $\mathrm{f} / \mathrm{h}$ | 65.728 | 6.081 | 112.975 | 0.480 | 0.119 |
| 175 | f/h | 25.411 | 1.019 | 281.136 | 0.534 | 0.080 |
| 176 | f | 21.956 | 0.812 | 315.559 | 0.550 | 0.077 |
| 177 | $\mathrm{f} / \mathrm{h}$ | 23.775 | 0.933 | 293.921 | 0.435 | 0.098 |
| 178 | h | 23.808 | 0.772 | 323.5 | 0.409 | 0.090 |
| 179 | f | 19.123 | 0.986 | 286.069 | 0.478 | 0.188 |
| 180 | h | error | error | error | 0.470 | 0.103 |
| 181 | h | 22.676 | 1.383 | 241.051 | 0.477 | 0.195 |
| 182 | h | "invalid" | "invalid" | "invalid" | 0.257 | 0.324 |
| 183 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.261 | 0.348 |
| 184 | h | 64.558 | 2.827 | 167.378 | 0.506 | 0.133 |
| 185 | h/u | 25.323 | 0.884 | 302.05 | 0.474 | 0.154 |
| 186 | h/u | 26.541 | 1.322 | 246.529 | 0.489 | 0.125 |
| 187 | h/u | 92.743 | 3.633 | 147.226 | 0.440 | 0.169 |
| 188 | h/u | 59.933 | 2.025 | 198.442 | 0.500 | 0.134 |
| 189 | h/u | "invalid" | "invalid" | "invalid" | 0.190 | 0.438 |
| 190 | h | 22.619 | 0.820 | 313.956 | 0.314 | 0.301 |
| 191 | h | 35.995 | 0.989 | 285.585 | 0.146 | 0.563 |
| 192 | h | 57.739 | 2.818 | 167.631 | 0.285 | 0.348 |
| 193 | h/u | "invalid" | "invalid" | "invalid" | 0.564 | 0.077 |
| 194 | h/u | "invalid" | "invalid" | "invalid" | 0.511 | 0.084 |
| 195 | h | 22.267 | 0.815 | 314.906 | 0.476 | 0.068 |
| 196 | h | 50.792 | 2.674 | 172.222 | 0.542 | 0.088 |
| 197 | h | 28.102 | 1.417 | 237.953 | 0.466 | 0.090 |
| 198 | h | 37.999 | 2.181 | 191.207 | 0.459 | 0.117 |
| 199 | u | 45.662 | 2.145 | 192.694 | 0.482 | 0.185 |
| 200 | $\mathrm{f} / \mathrm{h}$ | 145.460 | 7.603 | 100.768 | 0.432 | 0.135 |

*Type: $\mathrm{f}=\mathrm{flaw}, \mathrm{h}=\mathrm{hydrate}, \mathrm{u}=$ unhydrated particle, $\mathrm{f} / \mathrm{h}=$ flaw and hydrate combination, $\mathrm{f} / \mathrm{u}=\mathrm{flaw}$ and unhydrated particle combination, $\mathrm{f} / \mathrm{h} / \mathrm{u}=\mathrm{flaw}$, hydrate, and unhydrated particle combination, and $\mathrm{h} / \mathrm{u}=$ hydrate and unhydrated particle combination.

## PC-CF-A Grid 2



| Indent | Type* $^{*}$ | Modulus <br> $(\mathrm{GPa})$ | Hardness <br> $(\mathrm{GPa})$ | Maximum <br> Displacement $(\mathrm{nm})$ | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathrm{f} / \mathrm{h}$ | 155.739 | 11.305 | 81.918 | 0.451 | 0.320 |
| 2 | h | 250.272 | 24.864 | 54.087 | 0.527 | 0.120 |
| 3 | $\mathrm{f} / \mathrm{h}$ | 18.798 | 0.546 | 385.644 | 0.521 | 0.070 |
| 4 | u | 72.344 | 2.472 | 179.358 | 0.403 | 0.051 |
| 5 | $\mathrm{f} / \mathrm{h}$ | 35.290 | 1.144 | 265.313 | 0.664 | 0.075 |
| 6 | f | 16.268 | 0.609 | 364.716 | 0.563 | 0.096 |
| 7 | h | 18.431 | 0.689 | 342.697 | 0.586 | 0.078 |
| 8 | h | 32.981 | 1.333 | 245.461 | 0.245 | 0.459 |


| Indent | Type* | $\begin{gathered} \hline \text { Modulus } \\ (\mathrm{GPa}) \end{gathered}$ | Hardness (GPa) | Maximum <br> Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \end{aligned}$ | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | f/h | 93.777 | 3.146 | 158.448 | 0.292 | 0.349 |
| 10 | h | error | error | error | 0.139 | 0.599 |
| 11 | u | 26.220 | 0.818 | 314.451 | 0.657 | 0.088 |
| 12 | f | 31.721 | 6.569 | 108.528 | 0.384 | 0.193 |
| 13 | f/h | "invalid" | "invalid" | "invalid" | 0.182 | 0.168 |
| 14 | f/h | "invalid" | "invalid" | "invalid" | 0.374 | 0.202 |
| 15 | f/h | 19.412 | 0.853 | 307.811 | 0.302 | 0.092 |
| 16 | u | 41.839 | 2.349 | 184.001 | 0.361 | 0.216 |
| 17 | $\mathrm{f} / \mathrm{h}$ | 27.647 | 1.218 | 257.019 | 0.341 | 0.181 |
| 18 | f | 233.925 | 33.539 | 46.126 | 0.365 | 0.142 |
| 19 | h | 11.689 | 0.488 | 407.725 | 0.627 | 0.108 |
| 20 | f/h | 13.065 | 0.435 | 432.029 | 0.394 | 0.114 |
| 21 | f/h | 131.678 | 8.951 | 92.55 | 0.623 | 0.210 |
| 22 | $\mathrm{f} / \mathrm{h}$ | 20.629 | 0.971 | 288.217 | 0.595 | 0.113 |
| 23 | h | "invalid" | "invalid" | "invalid" | 0.179 | 0.086 |
| 24 | h | 20.152 | 0.637 | 356.459 | 0.377 | 0.068 |
| 25 | h | 23.430 | 0.800 | 317.861 | 0.661 | 0.076 |
| 26 | h | 24.438 | 1.008 | 282.685 | 0.453 | 0.172 |
| 27 | h | 29.788 | 1.199 | 259.054 | 0.504 | 0.078 |
| 28 | h | 53.914 | 2.473 | 179.309 | 0.485 | 0.175 |
| 29 | h | 23.812 | 0.931 | 294.178 | 0.538 | 0.080 |
| 30 | h | 20.187 | 0.639 | 356.092 | 0.646 | 0.084 |
| 31 | h | 24.284 | 1.255 | 252.991 | 0.506 | 0.125 |
| 32 | h | 21.612 | 0.783 | 321.432 | 0.586 | 0.088 |
| 33 | f/h/u | 13.830 | 0.554 | 382.765 | 0.440 | 0.103 |
| 34 | h | 14.673 | 0.530 | 391.509 | 0.337 | 0.138 |
| 35 | f/h | "invalid" | "invalid" | "invalid" | 0.260 | 0.285 |
| 36 | h | 27.634 | 1.058 | 275.876 | 0.580 | 0.050 |
| 37 | h/u | 34.086 | 1.049 | 277.3 | 0.662 | 0.067 |
| 38 | f/h | 28.186 | 1.769 | 212.485 | 0.496 | 0.074 |
| 39 | f/h | 10.218 | 0.313 | 510.343 | 0.361 | 0.259 |
| 40 | $\mathrm{f} / \mathrm{h}$ | 15.013 | 0.377 | 464.508 | 0.520 | 0.220 |
| 41 | h | 27.258 | 0.931 | 294.336 | 0.657 | 0.103 |
| 42 | h | "invalid" | "invalid" | "invalid" | 0.604 | 0.099 |
| 43 | h/u | 28.896 | 1.314 | 247.28 | 0.286 | 0.429 |
| 44 | h | 21.801 | 0.829 | 311.963 | 0.491 | 0.240 |
| 45 | h | 16.940 | 0.689 | 342.694 | 0.418 | 0.131 |
| 46 | $\mathrm{f} / \mathrm{h}$ | 14.282 | 0.440 | 429.877 | 0.416 | 0.172 |
| 47 | f/h/u | error | error | error | 0.634 | 0.077 |
| 48 | h | 20.655 | 1.091 | 271.617 | 0.499 | 0.091 |


| Indent | Type* | $\begin{gathered} \hline \text { Modulus } \\ (\mathrm{GPa}) \end{gathered}$ | Hardness (GPa) | Maximum <br> Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \end{aligned}$ | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 49 | h | 41.073 | 1.225 | 256.001 | 0.515 | 0.046 |
| 50 | u | 90.760 | 7.710 | 99.956 | 0.572 | 0.057 |
| 51 | f | "invalid" | "invalid" | "invalid" | 0.571 | 0.174 |
| 52 | f/h | "invalid" | "invalid" | "invalid" | 0.503 | 0.198 |
| 53 | h | 31.120 | 2.174 | 191.428 | 0.519 | 0.147 |
| 54 | h | "invalid" | "invalid" | "invalid" | 0.296 | 0.067 |
| 55 | h | 39.441 | 1.942 | 202.685 | 0.543 | 0.045 |
| 56 | h | 21.780 | 0.855 | 307.594 | 0.631 | 0.118 |
| 57 | h | 22.161 | 0.838 | 310.358 | 0.571 | 0.094 |
| 58 | $\mathrm{f} / \mathrm{h}$ | 15.418 | 0.407 | 447.055 | 0.276 | 0.158 |
| 59 | h/u | "invalid" | "invalid" | "invalid" | 0.523 | 0.126 |
| 60 | h | 38.243 | 1.407 | 238.834 | 0.428 | 0.194 |
| 61 | $\mathrm{f} / \mathrm{h}$ | 15.567 | 0.568 | 378.035 | 0.570 | 0.092 |
| 62 | h/u | 48.715 | 2.474 | 179.263 | 0.324 | 0.254 |
| 63 | h/u | 53.366 | 1.378 | 241.316 | 0.580 | 0.077 |
| 64 | h/u | 33.946 | 1.104 | 269.928 | 0.597 | 0.044 |
| 65 | h | 20.890 | 1.031 | 279.698 | 0.503 | 0.081 |
| 66 | h | 7.805 | 0.205 | 630.169 | 0.493 | 0.089 |
| 67 | f/h | 33.603 | 1.808 | 210.21 | 0.296 | 0.317 |
| 68 | h | 23.344 | 0.879 | 303.041 | 0.553 | 0.071 |
| 69 | h | 35.793 | 1.050 | 277.078 | 0.557 | 0.054 |
| 70 | h/u | 36.220 | 0.925 | 295.565 | 0.460 | 0.189 |
| 71 | h/u | 16.983 | 0.571 | 376.943 | 0.304 | 0.237 |
| 72 | h | 16.601 | 0.648 | 353.706 | 0.358 | 0.249 |
| 73 | h | 21.466 | 1.005 | 283.182 | 0.420 | 0.109 |
| 74 | h | 40.371 | 3.061 | 160.811 | 0.346 | 0.080 |
| 75 | h/u | 107.537 | 6.714 | 107.414 | 0.266 | 0.125 |
| 76 | h | 17.949 | 0.462 | 419.291 | 0.522 | 0.075 |
| 77 | h | 13.323 | 0.530 | 391.177 | 0.396 | 0.143 |
| 78 | h | "invalid" | "invalid" | "invalid" | 0.440 | 0.156 |
| 79 | $\mathrm{f} / \mathrm{h}$ | 17.834 | 0.232 | 593.015 | 0.646 | 0.122 |
| 80 | h | 26.327 | 0.968 | 288.489 | 0.261 | 0.325 |
| 81 | h | 20.288 | 0.776 | 322.967 | 0.341 | 0.100 |
| 82 | h | "invalid" | "invalid" | "invalid" | 0.435 | 0.092 |
| 83 | h/u | 38.931 | 1.593 | 224.423 | 0.605 | 0.055 |
| 84 | $\mathrm{f} / \mathrm{h}$ | 32.536 | 1.058 | 276.003 | 0.324 | 0.074 |
| 85 | h | 18.574 | 0.854 | 307.368 | 0.332 | 0.145 |
| 86 | h | 28.395 | 1.157 | 263.738 | 0.710 | 0.103 |
| 87 | $\mathrm{f} / \mathrm{h}$ | 97.087 | 10.809 | 83.88 | 0.501 | 0.033 |
| 88 | h/u | 57.243 | 2.517 | 177.726 | 0.304 | 0.037 |


| Indent | Type* | $\begin{gathered} \hline \text { Modulus } \\ (\mathrm{GPa}) \end{gathered}$ | Hardness (GPa) | Maximum <br> Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \end{aligned}$ | $\begin{aligned} & \hline \mathrm{Al} / \mathrm{Ca} \\ & \text { Ratio } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 89 | h | 27.698 | 0.784 | 321.196 | 0.487 | 0.087 |
| 90 | h | 22.662 | 0.749 | 328.497 | 0.276 | 0.161 |
| 91 | h | "invalid" | "invalid" | "invalid" | 0.671 | 0.176 |
| 92 | f | "invalid" | "invalid" | "invalid" | 0.747 | 0.328 |
| 93 | u | 58.053 | 2.684 | 172.023 | 0.432 | 0.103 |
| 94 | h | 29.385 | 1.482 | 232.636 | 0.298 | 0.114 |
| 95 | u | 68.884 | 4.792 | 127.825 | 0.493 | 0.078 |
| 96 | $\mathrm{f} / \mathrm{h}$ | 85.554 | 7.115 | 104.209 | 0.460 | 0.100 |
| 97 | f/h | 43.992 | 1.687 | 217.837 | 0.336 | 0.082 |
| 98 | f/h | error | error | error | 0.308 | 0.247 |
| 99 | $\mathrm{f} / \mathrm{h}$ | 24.798 | 1.516 | 229.797 | 0.659 | 0.309 |
| 100 | h | "invalid" | "invalid" | "invalid" | 0.407 | 0.090 |
| 101 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.461 | 0.081 |
| 102 | h | 17.037 | 0.590 | 370.73 | 0.645 | 0.097 |
| 103 | f/h/u | 66.771 | 1.852 | 207.671 | 0.269 | 0.176 |
| 104 | h/u | 61.076 | 1.804 | 210.42 | 0.307 | 0.078 |
| 105 | h | 36.565 | 1.240 | 254.432 | 0.421 | 0.187 |
| 106 | h | 20.997 | 0.761 | 326.173 | 0.820 | 0.150 |
| 107 | h | 62.715 | 2.107 | 194.571 | 0.498 | 0.060 |
| 108 | h | 24.149 | 0.602 | 367.233 | 0.521 | 0.082 |
| 109 | h | 52.162 | 5.033 | 124.625 | 0.145 | 0.084 |
| 110 | h | 24.653 | 1.055 | 276.356 | 0.312 | 0.368 |
| 111 | h | 103.434 | 8.090 | 97.469 | 0.619 | 0.086 |
| 112 | h | 106.100 | 5.937 | 114.414 | 0.563 | 0.120 |
| 113 | f/h | "invalid" | "invalid" | "invalid" | 0.479 | 0.142 |
| 114 | $\mathrm{f} / \mathrm{h}$ | 10.908 | 0.242 | 580.386 | 0.490 | 0.125 |
| 115 | f/h/u | 21.947 | 1.818 | 209.676 | 0.493 | 0.188 |
| 116 | $\mathrm{f} / \mathrm{h}$ | 16.720 | 0.611 | 363.817 | 0.364 | 0.328 |
| 117 | h | 23.104 | 1.075 | 273.564 | 0.431 | 0.115 |
| 118 | h/u | 21.165 | 0.724 | 334.453 | 0.290 | 0.135 |
| 119 | h | 15.241 | 0.954 | 290.796 | 0.111 | 0.075 |
| 120 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.223 | 0.085 |
| 121 | $\mathrm{f} / \mathrm{h}$ | 17.296 | 0.456 | 422.335 | 0.118 | 0.438 |
| 122 | h/u | 23.718 | 1.427 | 237.121 | 0.587 | 0.113 |
| 123 | f/h | 59.096 | 4.983 | 125.23 | 0.508 | 0.086 |
| 124 | f/h | 25.725 | 0.986 | 286.139 | 0.641 | 0.098 |
| 125 | f/h | 25.690 | 1.384 | 240.751 | 0.379 | 0.088 |
| 126 | $\mathrm{f} / \mathrm{h}$ | 19.412 | 0.553 | 382.986 | 0.511 | 0.195 |
| 127 | h | 21.900 | 0.794 | 319.081 | 0.389 | 0.149 |
| 128 | $\mathrm{f} / \mathrm{h}$ | 17.550 | 0.538 | 388.409 | 0.547 | 0.072 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 129 | h | "invalid" | "invalid" | "invalid" | 0.225 | 0.071 |
| 130 | f/h | "invalid" | "invalid" | "invalid" | 0.473 | 0.079 |
| 131 | h | 32.142 | 1.695 | 217.095 | 0.494 | 0.094 |
| 132 | h/u | 32.827 | 1.449 | 235.108 | 0.606 | 0.081 |
| 133 | h | 23.196 | 1.053 | 276.565 | 0.573 | 0.066 |
| 134 | $\mathrm{f} / \mathrm{h}$ | 20.645 | 0.667 | 348.319 | 0.556 | 0.056 |
| 135 | f/h | 20.740 | 0.867 | 305.243 | 0.403 | 0.048 |
| 136 | $\mathrm{f} / \mathrm{h}$ | 26.107 | 1.127 | 267.256 | 0.402 | 0.045 |
| 137 | $\mathrm{f} / \mathrm{h}$ | 17.776 | 0.701 | 339.874 | 0.552 | 0.052 |
| 138 | h | 32.476 | 1.394 | 240.017 | 0.295 | 0.213 |
| 139 | $\mathrm{f} / \mathrm{h}$ | 10.869 | 0.624 | 359.993 | 0.427 | 0.098 |
| 140 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.344 | 0.116 |
| 141 | h/u | "invalid" | "invalid" | "invalid" | 0.355 | 0.147 |
| 142 | $\mathrm{f} / \mathrm{h}$ | 19.736 | 0.511 | 398.763 | 0.455 | 0.153 |
| 143 | h | 22.732 | 0.791 | 319.707 | 0.572 | 0.080 |
| 144 | h | 165.838 | 14.771 | 71.207 | 0.244 | 0.372 |
| 145 | h | 27.407 | 0.790 | 319.965 | 0.496 | 0.161 |
| 146 | h/u | 24.023 | 0.702 | 339.414 | 0.406 | 0.092 |
| 147 | $\mathrm{f} / \mathrm{h}$ | 22.787 | 0.988 | 285.477 | 0.631 | 0.079 |
| 148 | h | "invalid" | "invalid" | "invalid" | 0.609 | 0.070 |
| 149 | $\mathrm{f} / \mathrm{h}$ | 13.412 | 0.390 | 456.645 | 0.564 | 0.161 |
| 150 | h | "invalid" | "invalid" | "invalid" | 0.604 | 0.124 |
| 151 | $\mathrm{f} / \mathrm{h}$ | 15.446 | 0.298 | 523.842 | 0.643 | 0.076 |
| 152 | f/h | 29.324 | 1.311 | 247.576 | 0.517 | 0.103 |
| 153 | h | 25.190 | 0.919 | 296.341 | 0.421 | 0.162 |
| 154 | f/h | 30.073 | 0.971 | 288.397 | 0.612 | 0.064 |
| 155 | $\mathrm{f} / \mathrm{h}$ | 33.014 | 2.111 | 194.26 | 0.420 | 0.059 |
| 156 | u | 85.998 | 2.771 | 169.16 | 0.403 | 0.042 |
| 157 | h/u | 33.816 | 1.339 | 244.824 | 0.390 | 0.110 |
| 158 | f | 15.191 | 0.315 | 508.763 | 0.400 | 0.110 |
| 159 | h | 15.939 | 0.717 | 335.823 | 0.297 | 0.213 |
| 160 | f/h | error | error | error | 0.321 | 0.252 |
| 161 | f/h | 37.278 | 2.873 | 165.995 | 0.453 | 0.082 |
| 162 | h/u | 22.764 | 0.856 | 307.288 | 0.644 | 0.089 |
| 163 | h | 40.472 | 0.940 | 293.017 | 0.491 | 0.142 |
| 164 | f/h | 65.397 | 1.375 | 241.661 | 0.314 | 0.067 |
| 165 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.294 | 0.083 |
| 166 | $\mathrm{f} / \mathrm{h}$ | 25.079 | 1.025 | 280.422 | 0.492 | 0.102 |
| 167 | h | 19.175 | 0.606 | 365.73 | 0.400 | 0.273 |
| 168 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.547 | 0.084 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \\ & \hline \end{aligned}$ | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 169 | $\mathrm{f} / \mathrm{h}$ | 30.223 | 1.626 | 222.125 | 0.471 | 0.139 |
| 170 | f/h | 23.352 | 0.472 | 414.809 | 0.254 | 0.320 |
| 171 | h | 17.735 | 0.373 | 467.36 | 0.503 | 0.102 |
| 172 | f/h | 13.450 | 0.325 | 501.011 | 0.528 | 0.050 |
| 173 | h | 23.078 | 0.714 | 336.537 | 0.149 | 0.652 |
| 174 | $\mathrm{f} / \mathrm{h} / \mathrm{u}$ | 29.758 | 1.180 | 261.238 | 0.567 | 0.066 |
| 175 | f/h/u | 54.038 | 3.374 | 152.925 | 0.400 | 0.060 |
| 176 | u | 76.016 | 2.159 | 192.123 | 0.630 | 0.092 |
| 177 | $\mathrm{f} / \mathrm{h}$ | 19.716 | 0.519 | 395.321 | 0.513 | 0.112 |
| 178 | h | 23.873 | 0.854 | 307.539 | 0.311 | 0.154 |
| 179 | h | 14.336 | 0.801 | 317.588 | 0.558 | 0.056 |
| 180 | $\mathrm{f} / \mathrm{h}$ | 21.677 | 0.603 | 366.598 | 0.401 | 0.125 |
| 181 | $\mathrm{f} / \mathrm{h}$ | 27.554 | 1.233 | 255.358 | 0.360 | 0.236 |
| 182 | h | 24.303 | 0.810 | 315.804 | 0.606 | 0.111 |
| 183 | h/u | 35.711 | 1.949 | 202.34 | 0.352 | 0.287 |
| 184 | h/u | error | error | error | 0.484 | 0.236 |
| 185 | f | 32.181 | 0.697 | 340.859 | 0.495 | 0.180 |
| 186 | h/u | 113.216 | 8.811 | 93.23 | 0.490 | 0.087 |
| 187 | $\mathrm{f} / \mathrm{h}$ | 26.959 | 0.697 | 341.083 | 0.346 | 0.384 |
| 188 | h | "invalid" | "invalid" | "invalid" | 0.420 | 0.118 |
| 189 | $\mathrm{f} / \mathrm{h}$ | 15.155 | 0.487 | 408.391 | 0.291 | 0.343 |
| 190 | h | 17.463 | 0.615 | 362.887 | 0.516 | 0.150 |
| 191 | h | 16.573 | 0.624 | 360.5 | 0.531 | 0.106 |
| 192 | h | 23.393 | 0.979 | 286.75 | 0.448 | 0.085 |
| 193 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.514 | 0.106 |
| 194 | h/u | 41.236 | 1.527 | 229.28 | 0.496 | 0.086 |
| 195 | h/u | 116.114 | 3.700 | 145.966 | 0.440 | 0.078 |
| 196 | f/h | 29.204 | 0.812 | 315.326 | 0.526 | 0.116 |
| 197 | h | 23.136 | 0.830 | 312.172 | 0.438 | 0.181 |
| 198 | h | 23.972 | 1.047 | 277.424 | 0.532 | 0.122 |
| 199 | h/u | 31.521 | 0.928 | 294.975 | 0.603 | 0.089 |
| 200 | $\mathrm{h} / \mathrm{u}$ | 75.794 | 2.307 | 185.853 | 0.629 | 0.125 |

*Type: $\mathrm{f}=\mathrm{flaw}, \mathrm{h}=\mathrm{hydrate}, \mathrm{u}=$ unhydrated particle, $\mathrm{f} / \mathrm{h}=$ flaw and hydrate combination, $\mathrm{f} / \mathrm{u}=\mathrm{flaw}$ and unhydrated particle combination, $\mathrm{f} / \mathrm{h} / \mathrm{u}=\mathrm{flaw}$, hydrate, and unhydrated particle combination, and $\mathrm{h} / \mathrm{u}=$ hydrate and unhydrated particle combination.

## PC-CF-B Grid 1



| Indent | Type* | Modulus <br> $(\mathrm{GPa})$ | Hardness <br> $(\mathrm{GPa})$ | Maximum <br> Displacement $(\mathrm{nm})$ | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathrm{f} / \mathrm{h}$ | 16.752 | 0.441 | 429.461 | 0.524 | 0.100 |
| 2 | u | 56.280 | 3.331 | 154.098 | 0.175 | 0.509 |
| 3 | h | 24.943 | 0.790 | 320.272 | 0.603 | 0.150 |
| 4 | $\mathrm{~h} / \mathrm{u}$ | 16.717 | 0.569 | 377.47 | 0.344 | 0.331 |
| 5 | $\mathrm{f} / \mathrm{h}$ | 16.918 | 0.491 | 407.379 | 0.612 | 0.107 |
| 6 | u | 91.864 | 10.448 | 85.351 | 0.297 | 0.326 |
| 7 | u | 35.334 | 2.207 | 189.942 | 0.441 | 0.110 |
| 8 | h | 24.429 | 0.855 | 307.431 | 0.361 | 0.126 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | $\mathrm{f} / \mathrm{h}$ | 22.761 | 0.589 | 371.352 | 0.417 | 0.292 |
| 10 | h | 21.945 | 0.878 | 303.2 | 0.567 | 0.127 |
| 11 | f/h | 26.830 | 0.607 | 365.577 | 0.593 | 0.103 |
| 12 | h | 26.848 | 0.621 | 361.766 | 0.486 | 0.071 |
| 13 | f/h | 17.808 | 0.496 | 405.072 | 0.277 | 0.411 |
| 14 | h | 19.010 | 0.609 | 364.705 | 0.438 | 0.202 |
| 15 | h | 25.590 | 0.726 | 334.135 | 0.530 | 0.089 |
| 16 | h/u | 195.364 | 16.531 | 67.195 | 0.293 | 0.356 |
| 17 | h/u | 21.846 | 0.866 | 305.348 | 0.563 | 0.121 |
| 18 | h | 31.296 | 0.832 | 311.712 | 0.553 | 0.085 |
| 19 | h | "invalid" | "invalid" | "invalid" | 0.571 | 0.195 |
| 20 | $\mathrm{f} / \mathrm{h}$ | 14.377 | 0.328 | 498.587 | 0.449 | 0.129 |
| 21 | h | 19.156 | 0.726 | 334.057 | 0.505 | 0.161 |
| 22 | h | "invalid" | "invalid" | "invalid" | 0.448 | 0.168 |
| 23 | h | 12.670 | 0.387 | 458.725 | 0.594 | 0.603 |
| 24 | h/u | 18.377 | 0.449 | 425.507 | 0.498 | 0.160 |
| 25 | h/u | "invalid" | "invalid" | "invalid" | 0.564 | 0.122 |
| 26 | f/h | 22.207 | 0.549 | 384.473 | 0.378 | 0.102 |
| 27 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.446 | 0.172 |
| 28 | h/u | 17.422 | 0.393 | 454.98 | 0.425 | 0.150 |
| 29 | $\mathrm{f} / \mathrm{h}$ | error | error | error | 0.499 | 0.205 |
| 30 | h/u | 37.586 | 1.698 | 217.143 | 0.245 | 0.236 |
| 31 | h | 23.380 | 0.591 | 370.592 | 0.614 | 0.029 |
| 32 | h | "invalid" | "invalid" | "invalid" | 0.615 | 0.100 |
| 33 | $\mathrm{f} / \mathrm{h}$ | 24.411 | 0.593 | 370.149 | 0.583 | 0.137 |
| 34 | h | 35.294 | 1.386 | 240.604 | 0.585 | 0.082 |
| 35 | u | 94.862 | 4.651 | 129.776 | 0.383 | 0.189 |
| 36 | u | 111.297 | 11.992 | 79.474 | 0.440 | 0.191 |
| 37 | h | 22.456 | 0.596 | 369.609 | 0.418 | 0.095 |
| 38 | h | 18.238 | 0.598 | 368.188 | 0.538 | 0.304 |
| 39 | h | "invalid" | "invalid" | "invalid" | 0.246 | 0.610 |
| 40 | h | 31.951 | 1.163 | 263.438 | 0.520 | 0.141 |
| 41 | $\mathrm{f} / \mathrm{h}$ | 17.519 | 0.518 | 395.921 | 0.529 | 0.101 |
| 42 | f/h | 16.838 | 0.560 | 380.99 | 0.525 | 0.112 |
| 43 | h | 24.694 | 0.692 | 342.155 | 0.570 | 0.134 |
| 44 | f/h | "invalid" | "invalid" | "invalid" | 0.377 | 0.191 |
| 45 | f/h | 15.850 | 0.330 | 497.532 | 0.393 | 0.078 |
| 46 | f/h | 17.937 | 0.395 | 454.386 | 0.210 | 0.073 |
| 47 | f | 73.389 | 11.718 | 80.393 | 0.498 | 0.223 |
| 48 | f/h | 22.651 | 0.357 | 477.561 | 0.292 | 0.253 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 49 | f | "invalid" | "invalid" | "invalid" | 0.439 | 0.092 |
| 50 | $\mathrm{f} / \mathrm{h}$ | 18.613 | 0.463 | 419.281 | 0.493 | 0.078 |
| 51 | h | 28.488 | 0.965 | 289.351 | 0.441 | 0.155 |
| 52 | f/h/u | "invalid" | "invalid" | "invalid" | 0.446 | 0.113 |
| 53 | h | 36.312 | 1.099 | 270.793 | 0.617 | 0.074 |
| 54 | f/h/u | 38.816 | 1.561 | 226.581 | 0.216 | 0.304 |
| 55 | u | 90.746 | 5.334 | 120.87 | 0.138 | 0.579 |
| 56 | h | 32.506 | 1.115 | 268.875 | 0.572 | 0.132 |
| 57 | h | 26.920 | 0.716 | 336.864 | 0.580 | 0.097 |
| 58 | h | 13.289 | 0.506 | 400.737 | 0.423 | 0.608 |
| 59 | f | error | error | error | 0.251 | 0.776 |
| 60 | $\mathrm{f} / \mathrm{h}$ | 15.144 | 0.546 | 385.713 | 0.330 | 0.266 |
| 61 | h | 24.784 | 0.740 | 331.307 | 0.595 | 0.098 |
| 62 | h | 18.189 | 0.437 | 431.521 | 0.538 | 0.142 |
| 63 | f/h | 18.753 | 0.442 | 429.28 | 0.145 | 0.082 |
| 64 | f/h | 19.724 | 0.425 | 437.487 | 0.508 | 0.233 |
| 65 | $\mathrm{f} / \mathrm{h}$ | 18.745 | 0.357 | 477.527 | 0.103 | 0.187 |
| 66 | f | 19.198 | 0.606 | 366.124 | 0.575 | 0.241 |
| 67 | $\mathrm{f} / \mathrm{h}$ | 22.317 | 3.218 | 156.784 | 0.450 | 0.098 |
| 68 | h | 35.797 | 4.425 | 133.074 | 0.542 | 0.113 |
| 69 | u | 44.414 | 1.654 | 219.952 | 0.587 | 0.118 |
| 70 | h | 87.024 | 2.843 | 166.911 | 0.482 | 0.066 |
| 71 | h | "invalid" | "invalid" | "invalid" | 0.184 | 0.445 |
| 72 | h | 21.981 | 0.440 | 430.673 | 0.522 | 0.058 |
| 73 | f | 19.946 | 0.518 | 396.208 | 0.459 | 0.044 |
| 74 | u | 23.984 | 0.350 | 483.023 | 0.406 | 0.033 |
| 75 | h/u | 94.887 | 4.112 | 138.262 | 0.156 | 0.593 |
| 76 | $\mathrm{f} / \mathrm{h}$ | 19.289 | 0.465 | 418.277 | 0.403 | 0.116 |
| 77 | f/h/u | "invalid" | "invalid" | "invalid" | 0.448 | 0.144 |
| 78 | $\mathrm{f} / \mathrm{h}$ | 20.040 | 0.126 | 813.867 | 0.550 | 0.236 |
| 79 | f/h | error | error | error | 0.339 | 0.150 |
| 80 | h | 21.184 | 0.487 | 409.042 | 0.417 | 0.350 |
| 81 | $f$ | 18.938 | 0.485 | 409.737 | 0.606 | 0.098 |
| 82 | f/h | 22.781 | 0.677 | 345.858 | 0.591 | 0.170 |
| 83 | h | 46.459 | 3.264 | 155.529 | 0.161 | 0.096 |
| 84 | u | 19.272 | 0.681 | 345.029 | 0.482 | 0.146 |
| 85 | h | "invalid" | "invalid" | "invalid" | 0.164 | 0.097 |
| 86 | h | 22.720 | 0.805 | 316.828 | 0.362 | 0.140 |
| 87 | h | 127.530 | 10.860 | 83.667 | 0.294 | 0.123 |
| 88 | u | 143.865 | 11.645 | 80.713 | 0.538 | 0.086 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 89 | u | 83.291 | 5.082 | 123.995 | 0.557 | 0.080 |
| 90 | u | "invalid" | "invalid" | "invalid" | 0.552 | 0.083 |
| 91 | f/h | "invalid" | "invalid" | "invalid" | 0.510 | 0.068 |
| 92 | h/u | 40.158 | 1.424 | 237.487 | 0.529 | 0.084 |
| 93 | h/u | 29.003 | 0.397 | 453.062 | 0.421 | 0.032 |
| 94 | h/u | 16.961 | 0.241 | 582.29 | 0.448 | 0.048 |
| 95 | $\mathrm{f} / \mathrm{h}$ | 21.343 | 0.707 | 338.577 | 0.467 | 0.067 |
| 96 | h | 40.795 | 2.392 | 182.427 | 0.364 | 0.107 |
| 97 | h | 24.063 | 0.635 | 357.692 | 0.559 | 0.126 |
| 98 | $\mathrm{f} / \mathrm{h}$ | 21.849 | 0.991 | 285.409 | 0.542 | 0.165 |
| 99 | h | 17.793 | 0.692 | 342.194 | 0.360 | 0.116 |
| 100 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.370 | 0.270 |
| 101 | h/u | 23.126 | 0.572 | 377.19 | 0.620 | 0.096 |
| 102 | u | 88.213 | 4.172 | 137.295 | 0.592 | 0.130 |
| 103 | $\mathrm{f} / \mathrm{h}$ | 96.881 | 4.729 | 128.647 | 0.308 | 0.246 |
| 104 | $\mathrm{f} / \mathrm{h}$ | 35.361 | 0.630 | 359.239 | 0.489 | 0.142 |
| 105 | $\mathrm{f} / \mathrm{h}$ | 30.561 | 0.678 | 345.972 | 0.369 | 0.207 |
| 106 | h | 26.133 | 0.495 | 405.388 | 0.279 | 0.081 |
| 107 | h | 22.909 | 0.664 | 349.546 | 0.238 | 0.146 |
| 108 | h | 27.369 | 0.761 | 326.075 | 0.485 | 0.162 |
| 109 | h | 34.148 | 1.146 | 265.086 | 0.417 | 0.085 |
| 110 | h | 36.203 | 1.019 | 281.41 | 0.571 | 0.064 |
| 111 | h | 17.392 | 0.354 | 479.974 | 0.584 | 0.064 |
| 112 | f | 15.195 | 0.495 | 405.6 | 0.571 | 0.071 |
| 113 | h | 19.492 | 0.394 | 454.633 | 0.422 | 0.039 |
| 114 | h/u | 35.155 | 1.663 | 219.359 | 0.560 | 0.065 |
| 115 | $\mathrm{f} / \mathrm{h}$ | 56.269 | 3.006 | 162.334 | 0.523 | 0.102 |
| 116 | h | 20.712 | 0.567 | 378.559 | 0.431 | 0.211 |
| 117 | h | 26.791 | 0.602 | 367.094 | 0.571 | 0.127 |
| 118 | $\mathrm{f} / \mathrm{h}$ | 39.836 | 1.582 | 225.123 | 0.622 | 0.127 |
| 119 | h | 22.437 | 0.506 | 400.808 | 0.535 | 0.090 |
| 120 | h | 21.465 | 0.706 | 338.501 | 0.176 | 0.066 |
| 121 | h | 24.011 | 0.699 | 340.809 | 0.312 | 0.162 |
| 122 | h | 19.318 | 0.443 | 428.676 | 0.536 | 0.175 |
| 123 | f/h | 49.904 | 1.911 | 204.531 | 0.418 | 0.282 |
| 124 | f/h | 24.282 | 0.971 | 288.296 | 0.469 | 0.099 |
| 125 | h | 16.787 | 0.481 | 411.465 | 0.249 | 0.176 |
| 126 | f/h | 30.717 | 0.922 | 295.997 | 0.043 | 0.017 |
| 127 | h | "invalid" | "invalid" | "invalid" | 0.204 | 0.098 |
| 128 | $\mathrm{f} / \mathrm{h} / \mathrm{u}$ | 34.158 | 0.947 | 292.17 | 0.595 | 0.128 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \\ & \hline \end{aligned}$ | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 129 | $\mathrm{f} / \mathrm{h}$ | 18.927 | 0.557 | 381.983 | 0.550 | 0.064 |
| 130 | h | 45.800 | 1.200 | 258.896 | 0.484 | 0.063 |
| 131 | h/u | 19.303 | 0.379 | 463.902 | 0.509 | 0.057 |
| 132 | f/h | 12.920 | 0.244 | 579.291 | 0.430 | 0.048 |
| 133 | h | 21.383 | 0.572 | 377.001 | 0.451 | 0.040 |
| 134 | h | 48.232 | 2.603 | 174.672 | 0.604 | 0.077 |
| 135 | u | 55.322 | 2.771 | 169.235 | 0.570 | 0.110 |
| 136 | h/u | 21.359 | 0.766 | 324.798 | 0.638 | 0.107 |
| 137 | h | 21.532 | 0.329 | 497.581 | 0.599 | 0.157 |
| 138 | $\mathrm{f} / \mathrm{h} / \mathrm{u}$ | 26.819 | 1.326 | 246.032 | 0.549 | 0.041 |
| 139 | h/u | 36.700 | 1.944 | 202.742 | 0.598 | 0.084 |
| 140 | h/u | 18.083 | 0.814 | 315.42 | 0.437 | 0.125 |
| 141 | h | 19.270 | 0.509 | 399.439 | 0.455 | 0.139 |
| 142 | h/u | 12.420 | 0.331 | 496.153 | 0.581 | 0.091 |
| 143 | f/h | 46.172 | 3.253 | 155.77 | 0.187 | 0.122 |
| 144 | $\mathrm{f} / \mathrm{h}$ | 23.281 | 0.829 | 312.402 | 0.427 | 0.118 |
| 145 | $\mathrm{f} / \mathrm{h}$ | 24.804 | 0.768 | 324.776 | 0.464 | 0.114 |
| 146 | h | "invalid" | "invalid" | "invalid" | 0.491 | 0.114 |
| 147 | h | 25.080 | 1.089 | 271.92 | 0.623 | 0.128 |
| 148 | f | 41.053 | 1.948 | 202.431 | 0.575 | 0.083 |
| 149 | $\mathrm{f} / \mathrm{h}$ | error | error | error | 0.384 | 0.056 |
| 150 | h | 20.840 | 0.746 | 329.398 | 0.326 | 0.243 |
| 151 | h | 14.247 | 0.380 | 462.962 | 0.364 | 0.242 |
| 152 | $\mathrm{f} / \mathrm{h}$ | 25.045 | 0.865 | 305.762 | 0.464 | 0.049 |
| 153 | $\mathrm{f} / \mathrm{h}$ | 21.285 | 0.570 | 377.523 | 0.405 | 0.034 |
| 154 | h/u | "invalid" | "invalid" | "invalid" | 0.469 | 0.101 |
| 155 | h | 37.954 | 1.851 | 207.852 | 0.605 | 0.091 |
| 156 | u | 97.315 | 10.986 | 83.166 | 0.569 | 0.085 |
| 157 | h | 82.270 | 7.727 | 99.833 | 0.416 | 0.256 |
| 158 | $\mathrm{f} / \mathrm{h}$ | 21.187 | 0.739 | 331.361 | 0.482 | 0.077 |
| 159 | h/u | 29.749 | 0.822 | 313.521 | 0.391 | 0.058 |
| 160 | h/u | 30.381 | 2.775 | 169.094 | 0.408 | 0.039 |
| 161 | h | 24.297 | 0.644 | 355.078 | 0.630 | 0.107 |
| 162 | f/h | 37.148 | 0.665 | 348.903 | 0.375 | 0.126 |
| 163 | f/h | 27.044 | 1.270 | 251.588 | 0.475 | 0.162 |
| 164 | h/u | 22.431 | 0.959 | 289.996 | 0.397 | 0.161 |
| 165 | h | 23.585 | 0.930 | 294.786 | 1.295 | 0.152 |
| 166 | h | 19.466 | 0.679 | 345.566 | 0.514 | 0.068 |
| 167 | h | 9.653 | 0.408 | 446.156 | 0.559 | 0.074 |
| 168 | h/u | error | error | error | 0.454 | 0.189 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \\ & \hline \end{aligned}$ | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 169 | f | 14.426 | 5.111 | 123.596 | 0.625 | 0.078 |
| 170 | f | 15.998 | 0.591 | 370.604 | 0.346 | 0.089 |
| 171 | h | 19.472 | 0.807 | 316.639 | 0.539 | 0.088 |
| 172 | h | 20.416 | 0.525 | 393.535 | 0.569 | 0.082 |
| 173 | f | 25.399 | 0.995 | 284.958 | 0.387 | 0.116 |
| 174 | f/h | 14.381 | 0.581 | 373.463 | 0.536 | 0.103 |
| 175 | f/h | 21.688 | 0.685 | 344.273 | 0.374 | 0.165 |
| 176 | f/h | 19.859 | 0.537 | 389 | 0.670 | 0.289 |
| 177 | $\mathrm{f} / \mathrm{h}$ | 27.583 | 0.775 | 323.402 | 0.629 | 0.101 |
| 178 | h | 29.753 | 0.984 | 286.341 | 0.601 | 0.126 |
| 179 | $\mathrm{f} / \mathrm{h}$ | 32.809 | 0.836 | 310.915 | 0.377 | 0.058 |
| 180 | h/u | 48.927 | 2.191 | 190.694 | 0.034 | 0.036 |
| 181 | f/h | "invalid" | "invalid" | "invalid" | 0.447 | 0.171 |
| 182 | f/h | 18.704 | 0.450 | 425.461 | 0.542 | 0.188 |
| 183 | f/h | 19.659 | 0.628 | 359.628 | 0.725 | 0.252 |
| 184 | $\mathrm{f} / \mathrm{h}$ | 18.306 | 0.593 | 369.637 | 0.570 | 0.117 |
| 185 | f/h | 26.826 | 0.946 | 292.244 | 0.359 | 0.213 |
| 186 | $\mathrm{f} / \mathrm{h}$ | 21.203 | 0.562 | 380.569 | 0.266 | 0.044 |
| 187 | f/h | 12.889 | 0.415 | 442.825 | 0.031 | 0.044 |
| 188 | $\mathrm{f} / \mathrm{h}$ | 15.159 | 0.608 | 365.657 | 0.771 | 0.053 |
| 189 | $\mathrm{f} / \mathrm{h}$ | 10.891 | 0.291 | 529.261 | 0.609 | 0.091 |
| 190 | h | 30.849 | 2.461 | 179.867 | 0.497 | 0.070 |
| 191 | h | 14.478 | 0.461 | 420.049 | 0.472 | 0.210 |
| 192 | h | 24.044 | 0.958 | 290.233 | 0.602 | 0.085 |
| 193 | h | 20.920 | 0.554 | 382.972 | 0.347 | 0.065 |
| 194 | h/u | 24.691 | 0.828 | 312.421 | 0.447 | 0.074 |
| 195 | h/u | 51.120 | 8.489 | 95.138 | 0.542 | 0.128 |
| 196 | f/h | 17.780 | 0.497 | 404.473 | 0.468 | 0.159 |
| 197 | f/h | 12.991 | 0.323 | 502.174 | 0.529 | 0.094 |
| 198 | $\mathrm{f} / \mathrm{h}$ | 24.664 | 0.713 | 337.055 | 0.367 | 0.158 |
| 199 | h | 18.806 | 0.479 | 412.204 | 0.451 | 0.284 |
| 200 | $\mathrm{h} / \mathrm{u}$ | 30.741 | 0.904 | 298.946 | 0.556 | 0.079 |

[^0]
## PC-CNF-CF-A Grid 1



| Indent | Type* | Modulus <br> $(\mathrm{GPa})$ | Hardness <br> $(\mathrm{GPa})$ | Maximum <br> Displacement $(\mathrm{nm})$ | Si/Ca <br> Ratio | Al/Ca <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | h | 52.474 | 1.983 | 200.892 | 0.439 | 0.064 |
| 2 | u | "invalid" | "invalid" | "invalid" | 0.182 | 0.497 |
| 3 | h | 89.986 | 4.871 | 126.921 | 0.399 | 0.043 |
| 4 | u | 42.303 | 2.810 | 168.2 | 0.494 | 0.078 |
| 5 | $\mathrm{f} / \mathrm{h}$ | 1.547 | 0.618 | 362.593 | 0.558 | 0.067 |
| 6 | $\mathrm{~h} / \mathrm{u}$ | 0.980 | 0.337 | 492.435 | 0.139 | 0.034 |
| 7 | $\mathrm{~h} / \mathrm{u}$ | 1.166 | 0.432 | 434.306 | 0.544 | 0.112 |
| 8 | $\mathrm{f} / \mathrm{h}$ | 17.899 | 0.372 | 468.052 | 0.416 | 0.140 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \\ & \hline \end{aligned}$ | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | h | 20.206 | 0.879 | 303.454 | 0.492 | 0.228 |
| 10 | h/u | 26.211 | 0.821 | 314.108 | 0.563 | 0.072 |
| 11 | h/u | 18.377 | 0.351 | 482.416 | 0.353 | 0.045 |
| 12 | h/u | "invalid" | "invalid" | "invalid" | 0.182 | 0.496 |
| 13 | f/h | 25.889 | 0.895 | 300.502 | 0.583 | 0.068 |
| 14 | f/h | "invalid" | "invalid" | "invalid" | 0.499 | 0.072 |
| 15 | u | 89.960 | 4.585 | 130.903 | 0.559 | 0.046 |
| 16 | $\mathrm{f} / \mathrm{h}$ | 39.016 | 0.951 | 291.59 | 0.388 | 0.160 |
| 17 | h/u | 18.485 | 0.396 | 453.566 | 0.564 | 0.113 |
| 18 | f/h | 20.691 | 0.462 | 419.561 | 0.481 | 0.073 |
| 19 | h/u | 32.825 | 1.454 | 235.257 | 0.482 | 0.107 |
| 20 | u | 107.149 | 8.993 | 92.583 | 0.403 | 0.036 |
| 21 | $\mathrm{f} / \mathrm{h}$ | 15.407 | 0.381 | 462.314 | 0.267 | 0.063 |
| 22 | f/h/u | 106.179 | 10.219 | 86.534 | 0.134 | 0.508 |
| 23 | $\mathrm{f} / \mathrm{h}$ | 25.756 | 0.966 | 288.99 | 0.489 | 0.082 |
| 24 | h/u | 28.662 | 6.718 | 107.637 | 0.504 | 0.085 |
| 25 | h | error | error | error | 0.467 | 0.103 |
| 26 | f | error | error | error | 0.467 | 0.111 |
| 27 | h/u | 3.201 | 0.802 | 317.785 | 0.263 | 0.122 |
| 28 | f/h | "invalid" | "invalid" | "invalid" | 0.314 | 0.309 |
| 29 | $\mathrm{f} / \mathrm{h}$ | 40.693 | 1.205 | 258.711 | 0.126 | 0.059 |
| 30 | u | 41.850 | 3.815 | 143.769 | 0.457 | 0.064 |
| 31 | u | 81.933 | 7.265 | 103.377 | 0.587 | 0.067 |
| 32 | h | 19.274 | 0.554 | 382.89 | 0.254 | 0.170 |
| 33 | h | 23.161 | 0.583 | 373.325 | 0.451 | 0.097 |
| 34 | h/u | 28.731 | 1.188 | 260.356 | 0.405 | 0.085 |
| 35 | h | "invalid" | "invalid" | "invalid" | 0.532 | 0.048 |
| 36 | h/u | 12.220 | 0.228 | 598.842 | 0.564 | 0.068 |
| 37 | h | 21.075 | 0.829 | 312.386 | 0.161 | 0.473 |
| 38 | h | "invalid" | "invalid" | "invalid" | 0.317 | 0.162 |
| 39 | h | 18.637 | 0.635 | 357.363 | 0.629 | 0.102 |
| 40 | h | 25.324 | 0.851 | 308.316 | 0.390 | 0.037 |
| 41 | f/h | "invalid" | "invalid" | "invalid" | 0.614 | 0.085 |
| 42 | h/u | "invalid" | "invalid" | "invalid" | 0.069 | 0.043 |
| 43 | h/u | 31.002 | 6.695 | 107.755 | 0.384 | 0.110 |
| 44 | f/h | error | error | error | 0.094 | 0.025 |
| 45 | f | error | error | error | 0.586 | 0.097 |
| 46 | f | 13.807 | 4.495 | 132.218 | 0.574 | 0.193 |
| 47 | f/h/u | 22.311 | 1.255 | 253.259 | 0.181 | 0.089 |
| 48 | u | 84.426 | 5.758 | 116.485 | 0.189 | 0.048 |


| Indent | Type* | $\begin{gathered} \hline \text { Modulus } \\ (\mathrm{GPa}) \end{gathered}$ | Hardness (GPa) | Maximum <br> Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \end{aligned}$ | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 49 | h | 55.938 | 3.419 | 152.184 | 0.585 | 0.126 |
| 50 | h/u | 26.918 | 0.509 | 399.764 | 0.350 | 0.059 |
| 51 | h/u | "invalid" | "invalid" | "invalid" | 0.525 | 0.094 |
| 52 | h/u | 19.400 | 0.755 | 327.894 | 0.569 | 0.108 |
| 53 | h/u | 98.338 | 8.113 | 97.608 | 0.309 | 0.259 |
| 54 | u | 92.088 | 5.969 | 114.393 | 0.610 | 0.066 |
| 55 | h | 24.996 | 0.749 | 329.017 | 0.493 | 0.099 |
| 56 | h | 20.155 | 0.560 | 380.873 | 0.425 | 0.110 |
| 57 | h | 22.221 | 0.829 | 312.521 | 0.518 | 0.159 |
| 58 | h | 17.527 | 0.604 | 366.669 | 0.253 | 0.372 |
| 59 | h | 23.142 | 0.754 | 327.97 | 0.419 | 0.163 |
| 60 | h | 21.814 | 0.754 | 327.792 | 0.610 | 0.091 |
| 61 | h | 41.090 | 1.217 | 257.364 | 0.604 | 0.090 |
| 62 | u | 29.991 | 7.300 | 103.07 | 0.202 | 0.256 |
| 63 | f | 31.917 | 6.663 | 108.072 | 0.515 | 0.123 |
| 64 | f | 36.889 | 7.994 | 98.349 | 0.545 | 0.115 |
| 65 | f/h | 37.014 | 8.336 | 96.267 | 0.513 | 0.179 |
| 66 | h | 76.033 | 6.175 | 112.343 | 0.468 | 0.217 |
| 67 | h/u | 68.123 | 3.357 | 153.619 | 0.077 | 0.035 |
| 68 | h | 29.193 | 1.472 | 233.698 | 0.576 | 0.053 |
| 69 | f | 112.548 | 10.082 | 87.171 | 0.530 | 0.045 |
| 70 | h | 386.517 | 28.852 | 50.204 | 0.591 | 0.103 |
| 71 | $\mathrm{f} / \mathrm{h}$ | 67.899 | 9.785 | 88.531 | 0.340 | 0.267 |
| 72 | h | 30.727 | 1.049 | 277.438 | 0.515 | 0.180 |
| 73 | h | 27.384 | 0.804 | 317.421 | 0.561 | 0.073 |
| 74 | h/u | 26.510 | 0.959 | 290.265 | 0.374 | 0.031 |
| 75 | h/u | 24.063 | 1.147 | 265.009 | 0.372 | 0.032 |
| 76 | f/h/u | 23.787 | 0.474 | 414.666 | 0.556 | 0.077 |
| 77 | h | 24.513 | 0.704 | 339.241 | 0.589 | 0.081 |
| 78 | h | 25.110 | 0.786 | 321.128 | 0.598 | 0.091 |
| 79 | h | 19.981 | 0.470 | 416.067 | 0.481 | 0.091 |
| 80 | f/h | 19.923 | 0.358 | 477.502 | 0.485 | 0.165 |
| 81 | $\mathrm{f} / \mathrm{h}$ | 10.860 | 0.237 | 587.185 | 0.277 | 0.272 |
| 82 | h/u | 41.152 | 6.315 | 111.071 | 0.321 | 0.070 |
| 83 | f | error | error | error | 0.382 | 0.223 |
| 84 | h/u | 43.511 | 12.618 | 77.586 | 0.338 | 0.121 |
| 85 | h | 27.999 | 0.840 | 310.517 | 0.186 | 0.044 |
| 86 | $\mathrm{f} / \mathrm{h}$ | 17.357 | 0.239 | 585.217 | 0.391 | 0.060 |
| 87 | h/u | "invalid" | "invalid" | "invalid" | 0.584 | 0.010 |
| 88 | u | 143.881 | 10.452 | 85.58 | 0.532 | 0.083 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \\ & \hline \end{aligned}$ | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 89 | u | 153.982 | 12.357 | 78.483 | 0.475 | 0.148 |
| 90 | u | 142.139 | 10.071 | 87.286 | 0.137 | 0.562 |
| 91 | h | 25.602 | 1.074 | 274.112 | 0.532 | 0.089 |
| 92 | u | 45.374 | 2.446 | 180.556 | 0.547 | 0.119 |
| 93 | u | 148.198 | 12.291 | 78.651 | 0.512 | 0.074 |
| 94 | u | 95.356 | 8.387 | 96.037 | 0.537 | 0.145 |
| 95 | u | "invalid" | "invalid" | "invalid" | 0.449 | 0.174 |
| 96 | f | "invalid" | "invalid" | "invalid" | 0.641 | 0.082 |
| 97 | u | 95.888 | 8.293 | 96.529 | 0.219 | 0.361 |
| 98 | u | 90.517 | 7.081 | 104.734 | 0.553 | 0.142 |
| 99 | h | 18.742 | 0.516 | 397.044 | 0.561 | 0.106 |
| 100 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.419 | 0.174 |
| 101 | h | 33.157 | 1.048 | 277.667 | 0.559 | 0.151 |
| 102 | h | 29.067 | 0.697 | 341.249 | 0.471 | 0.126 |
| 103 | h | 36.569 | 8.576 | 94.791 | 0.162 | 0.036 |
| 104 | h/u | 112.474 | 8.791 | 93.617 | 0.253 | 0.072 |
| 105 | h | 35.049 | 1.048 | 277.469 | 0.575 | 0.093 |
| 106 | h | 28.654 | 0.774 | 323.265 | 0.568 | 0.076 |
| 107 | h/u | 21.605 | 0.747 | 329.477 | 0.484 | 0.067 |
| 108 | h | "invalid" | "invalid" | "invalid" | 0.511 | 0.075 |
| 109 | h | 400.261 | 35.114 | 45.191 | 0.093 | 0.495 |
| 110 | u | 25.417 | 1.626 | 222.107 | 0.110 | 0.479 |
| 111 | h | 29.946 | 0.728 | 333.983 | 0.406 | 0.170 |
| 112 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.453 | 0.060 |
| 113 | $\mathrm{f} / \mathrm{h}$ | 164.527 | 13.313 | 75.447 | 0.373 | 0.056 |
| 114 | h | "invalid" | "invalid" | "invalid" | 0.379 | 0.070 |
| 115 | h | 26.836 | 0.808 | 316.816 | 0.384 | 0.238 |
| 116 | $\mathrm{f} / \mathrm{h}$ | 67.267 | 8.513 | 95.213 | 0.484 | 0.171 |
| 117 | h | 13.459 | 0.370 | 469.018 | 0.359 | 0.091 |
| 118 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.511 | 0.169 |
| 119 | h/u | 15.402 | 0.246 | 576.882 | 0.449 | 0.290 |
| 120 | $\mathrm{f} / \mathrm{h}$ | 16.317 | 0.226 | 601.688 | 0.338 | 0.280 |
| 121 | h | 34.615 | 1.033 | 279.781 | 0.536 | 0.065 |
| 122 | $\mathrm{f} / \mathrm{h}$ | 45.150 | 1.324 | 246.575 | 0.543 | 0.065 |
| 123 | h | 39.521 | 1.050 | 277.2 | 0.516 | 0.060 |
| 124 | u | 113.849 | 4.484 | 132.393 | 0.508 | 0.050 |
| 125 | h | 54.959 | 1.410 | 238.857 | 0.505 | 0.217 |
| 126 | h | 27.789 | 0.668 | 348.258 | 0.452 | 0.063 |
| 127 | $\mathrm{f} / \mathrm{h}$ | 90.390 | 5.924 | 114.862 | 0.605 | 0.074 |
| 128 | $\mathrm{f} / \mathrm{h}$ | 13.368 | 0.255 | 567.075 | 0.321 | 0.099 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 129 | h | 30.649 | 1.197 | 259.651 | 0.488 | 0.077 |
| 130 | h | 26.828 | 0.893 | 300.948 | 0.545 | 0.072 |
| 131 | $\mathrm{f} / \mathrm{h}$ | 192.320 | 22.554 | 57.22 | 0.403 | 0.238 |
| 132 | h/u | "invalid" | "invalid" | "invalid" | 0.433 | 0.053 |
| 133 | h/u | 52.565 | 4.182 | 137.402 | 0.343 | 0.141 |
| 134 | f/h | 20.912 | 0.677 | 346.131 | 0.528 | 0.085 |
| 135 | f/h | "invalid" | "invalid" | "invalid" | 0.541 | 0.074 |
| 136 | h | "invalid" | "invalid" | "invalid" | 0.503 | 0.105 |
| 137 | h | 16.468 | 0.465 | 418.676 | 0.502 | 0.207 |
| 138 | $\mathrm{f} / \mathrm{h}$ | 22.100 | 0.694 | 341.923 | 0.395 | 0.192 |
| 139 | h/u | 13.189 | 0.270 | 550.246 | 0.541 | 0.123 |
| 140 | $\mathrm{f} / \mathrm{h}$ | 14.081 | 0.394 | 455.108 | 0.372 | 0.161 |
| 141 | u | 44.285 | 2.646 | 173.459 | 0.536 | 0.058 |
| 142 | u | 234.388 | 13.219 | 75.749 | 0.473 | 0.048 |
| 143 | u | 111.153 | 8.416 | 95.728 | 0.411 | 0.049 |
| 144 | h | 48.173 | 1.345 | 244.586 | 0.470 | 0.038 |
| 145 | h | 41.997 | 1.085 | 272.813 | 0.400 | 0.024 |
| 146 | h | 29.516 | 1.231 | 255.681 | 0.465 | 0.041 |
| 147 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.523 | 0.067 |
| 148 | h | 19.212 | 0.700 | 340.386 | 0.513 | 0.079 |
| 149 | $\mathrm{f} / \mathrm{h}$ | 15.535 | 0.401 | 450.489 | 0.566 | 0.068 |
| 150 | h/u | 27.121 | 1.066 | 275.161 | 0.472 | 0.125 |
| 151 | f/h/u | 66.978 | 8.696 | 94.152 | 0.319 | 0.225 |
| 152 | h | 11.562 | 0.221 | 609.148 | 0.495 | 0.090 |
| 153 | h/u | 23.161 | 0.705 | 339.256 | 0.490 | 0.141 |
| 154 | h | 14.953 | 0.470 | 416.196 | 0.106 | 0.041 |
| 155 | $\mathrm{f} / \mathrm{h} / \mathrm{u}$ | 21.767 | 0.898 | 299.979 | 0.239 | 0.055 |
| 156 | h | 23.171 | 0.823 | 313.76 | 0.395 | 0.175 |
| 157 | u | 99.206 | 9.289 | 90.982 | 0.461 | 0.200 |
| 158 | u | 93.941 | 9.617 | 89.399 | 0.441 | 0.073 |
| 159 | h | 22.823 | 0.612 | 364.54 | 0.289 | 0.066 |
| 160 | h | 22.458 | 0.641 | 355.877 | 0.067 | 0.019 |
| 161 | h | 39.587 | 1.183 | 261.047 | 0.532 | 0.073 |
| 162 | u | 126.260 | 8.754 | 93.785 | 0.205 | 0.425 |
| 163 | h/u | 71.956 | 1.768 | 213.019 | 0.404 | 0.025 |
| 164 | h | "invalid" | "invalid" | "invalid" | 0.447 | 0.046 |
| 165 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.530 | 0.071 |
| 166 | h | 25.641 | 0.962 | 289.833 | 0.408 | 0.198 |
| 167 | $\mathrm{f} / \mathrm{h}$ | 17.276 | 0.491 | 407.277 | 0.457 | 0.070 |
| 168 | f/h/u | 17.079 | 0.406 | 448.095 | 0.417 | 0.150 |


| Indent | Type* | $\begin{gathered} \hline \text { Modulus } \\ (\mathrm{GPa}) \\ \hline \end{gathered}$ | Hardness (GPa) | Maximum <br> Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \\ & \hline \end{aligned}$ | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 169 | h | 11.577 | 0.315 | 509.146 | 0.420 | 0.203 |
| 170 | h | 10.534 | 0.287 | 533.676 | 0.366 | 0.133 |
| 171 | $\mathrm{f} / \mathrm{h}$ | 33.769 | 1.160 | 263.739 | 0.121 | 0.050 |
| 172 | h | 18.937 | 0.611 | 364.491 | 0.429 | 0.125 |
| 173 | h | 29.116 | 1.097 | 271.292 | 0.467 | 0.076 |
| 174 | h | 20.942 | 0.833 | 311.904 | 0.541 | 0.086 |
| 175 | h | "invalid" | "invalid" | "invalid" | 0.502 | 0.107 |
| 176 | h/u | 25.109 | 0.804 | 317.386 | 0.474 | 0.195 |
| 177 | h | "invalid" | "invalid" | "invalid" | 0.525 | 0.067 |
| 178 | h | 54.149 | 1.886 | 206.099 | 0.380 | 0.039 |
| 179 | h | 36.578 | 1.380 | 241.557 | 0.379 | 0.038 |
| 180 | h | 27.066 | 0.801 | 318.126 | 0.475 | 0.120 |
| 181 | h | 40.188 | 1.242 | 254.603 | 0.521 | 0.055 |
| 182 | u | 109.880 | 6.872 | 106.334 | 0.483 | 0.039 |
| 183 | h | 56.569 | 1.340 | 245.084 | 0.397 | 0.025 |
| 184 | h | 23.236 | 0.751 | 328.571 | 0.463 | 0.060 |
| 185 | f/h | 24.256 | 1.026 | 280.453 | 0.492 | 0.071 |
| 186 | u | 48.699 | 4.967 | 125.668 | 0.502 | 0.150 |
| 187 | $\mathrm{f} / \mathrm{h}$ | 84.016 | 11.172 | 82.667 | 0.492 | 0.120 |
| 188 | h | 19.292 | 0.320 | 505.531 | 0.474 | 0.125 |
| 189 | $\mathrm{f} / \mathrm{h}$ | 15.133 | 0.367 | 471.442 | 0.348 | 0.209 |
| 190 | $\mathrm{h} / \mathrm{u}$ | "invalid" | "invalid" | "invalid" | 0.373 | 0.210 |
| 191 | $\mathrm{h} / \mathrm{u}$ | 64.116 | 3.120 | 159.386 | 0.335 | 0.185 |
| 192 | h | 20.904 | 0.605 | 366.295 | 0.553 | 0.130 |
| 193 | h | 20.532 | 0.449 | 426.299 | 0.120 | 0.568 |
| 194 | $\mathrm{f} / \mathrm{h}$ | 18.323 | 0.457 | 422.205 | 0.480 | 0.120 |
| 195 | h/u | 22.304 | 0.429 | 435.851 | 0.425 | 0.202 |
| 196 | h/u | 35.595 | 0.706 | 339.129 | 0.434 | 0.112 |
| 197 | h | 37.804 | 1.394 | 240.366 | 0.130 | 0.505 |
| 198 | u | 115.929 | 10.474 | 85.492 | 0.152 | 0.510 |
| 199 | u | 88.898 | 7.111 | 104.503 | 0.598 | 0.033 |
| 200 | h | 33.008 | 2.352 | 184.245 | 0.540 | 0.102 |

*Type: $\mathrm{f}=\mathrm{flaw}, \mathrm{h}=$ hydrate, $\mathrm{u}=$ unhydrated particle, $\mathrm{f} / \mathrm{h}=\mathrm{flaw}$ and hydrate combination, $\mathrm{f} / \mathrm{u}=\mathrm{flaw}$ and unhydrated particle combination, $\mathrm{f} / \mathrm{h} / \mathrm{u}=\mathrm{flaw}$, hydrate, and unhydrated particle combination, and $\mathrm{h} / \mathrm{u}=$ hydrate and unhydrated particle combination.

## PC-CNF-CF-A Grid 2



| Indent | Type* $^{*}$ | Modulus <br> (GPa) | Hardness <br> $(\mathrm{GPa})$ | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | f | "invalid"" "invalid" | "invalid" | 0.079 | 0.047 |  |
| 2 | h | error | error | error | 0.370 | 0.185 |
| 3 | $\mathrm{f} / \mathrm{h}$ | 34.291 | 1.136 | 266.421 | 0.518 | 0.074 |
| 4 | $\mathrm{f} / \mathrm{h}$ | 15.340 | 0.448 | 426.364 | 0.555 | 0.082 |
| 5 | h | 23.437 | 0.779 | 322.512 | 0.489 | 0.140 |
| 6 | h | 27.044 | 0.838 | 310.73 | 0.509 | 0.111 |
| 7 | h | 27.347 | 0.623 | 360.897 | 0.515 | 0.073 |
| 8 | u | 105.623 | 9.985 | 87.673 | 0.396 | 0.031 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | h | 52.242 | 1.685 | 218.22 | 0.394 | 0.031 |
| 10 | f/h | 17.870 | 0.475 | 414.059 | 0.518 | 0.111 |
| 11 | f/h | 22.179 | 0.698 | 340.959 | 0.116 | 0.052 |
| 12 | f | error | error | error | 0.189 | 0.044 |
| 13 | f/h | 11.248 | 0.861 | 306.764 | 0.486 | 0.223 |
| 14 | h/u | 28.551 | 0.798 | 318.791 | 0.534 | 0.096 |
| 15 | h | 41.582 | 1.904 | 205.195 | 0.323 | 0.276 |
| 16 | h | 21.466 | 0.714 | 337.121 | 0.419 | 0.236 |
| 17 | h | 30.346 | 0.909 | 298.415 | 0.228 | 0.035 |
| 18 | h/u | 23.802 | 1.940 | 203.212 | 0.378 | 0.093 |
| 19 | h | 50.113 | 2.716 | 171.199 | 0.427 | 0.169 |
| 20 | h/u | "invalid" | "invalid" | "invalid" | 0.307 | 0.192 |
| 21 | f/h | 8.062 | 0.180 | 674.967 | 0.572 | 0.085 |
| 22 | h | 24.101 | 0.620 | 362.317 | 0.477 | 0.095 |
| 23 | h | 31.084 | 1.167 | 263.055 | 0.422 | 0.230 |
| 24 | h/u | error | error | error | 0.359 | 0.110 |
| 25 | h | 32.630 | 1.237 | 255.336 | 0.469 | 0.128 |
| 26 | h | 14.720 | 0.509 | 399.865 | 0.506 | 0.155 |
| 27 | u | 113.806 | 10.945 | 83.618 | 0.382 | 0.029 |
| 28 | u | 114.493 | 7.493 | 101.802 | 0.400 | 0.038 |
| 29 | u | 137.096 | 10.638 | 84.812 | 0.410 | 0.034 |
| 30 | $\mathrm{f} / \mathrm{h}$ | error | error | error | 0.560 | 0.068 |
| 31 | f | 13.611 | 0.406 | 448.582 | 0.133 | 0.140 |
| 32 | f | 6.265 | 0.195 | 647.587 | 0.485 | 0.264 |
| 33 | f/h | 9.183 | 0.245 | 577.495 | 0.516 | 0.155 |
| 34 | h | 67.761 | 3.152 | 158.676 | 0.330 | 0.156 |
| 35 | h/u | 15.315 | 0.455 | 422.708 | 0.334 | 0.102 |
| 36 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.571 | 0.085 |
| 37 | h | "invalid" | "invalid" | "invalid" | 0.538 | 0.128 |
| 38 | h | 29.659 | 0.838 | 310.965 | 0.380 | 0.138 |
| 39 | h | 18.250 | 0.763 | 326.006 | 0.534 | 0.117 |
| 40 | h | 20.884 | 0.445 | 427.69 | 0.552 | 0.150 |
| 41 | f/h | 16.741 | 0.634 | 357.805 | 0.529 | 0.076 |
| 42 | u | 102.608 | 8.758 | 93.802 | 0.370 | 0.062 |
| 43 | h | 26.698 | 0.991 | 285.528 | 0.400 | 0.037 |
| 44 | f/h | 16.831 | 0.520 | 395.405 | 0.238 | 0.361 |
| 45 | u | 60.898 | 7.069 | 104.772 | 0.454 | 0.159 |
| 46 | h | 24.521 | 0.784 | 321.455 | 0.466 | 0.075 |
| 47 | u | 85.007 | 7.366 | 102.622 | 0.382 | 0.027 |
| 48 | u | 116.090 | 9.796 | 88.492 | 0.407 | 0.038 |


| Indent | Type* | $\begin{gathered} \hline \text { Modulus } \\ (\mathrm{GPa}) \end{gathered}$ | Hardness (GPa) | Maximum <br> Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \end{aligned}$ | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 49 | u | 113.390 | 11.126 | 82.85 | 0.503 | 0.069 |
| 50 | h | 27.611 | 0.809 | 316.433 | 0.388 | 0.624 |
| 51 | h/u | 20.186 | 0.713 | 337.385 | 0.512 | 0.169 |
| 52 | f/h | error | error | error | 0.381 | 0.176 |
| 53 | $\mathrm{f} / \mathrm{h}$ | 15.163 | 0.344 | 487.311 | 0.348 | 0.201 |
| 54 | h/u | 68.531 | 4.182 | 137.322 | 0.500 | 0.093 |
| 55 | h/u | 52.659 | 4.158 | 137.769 | 0.511 | 0.033 |
| 56 | u | 107.120 | 8.171 | 97.248 | 0.554 | 0.027 |
| 57 | h | 26.913 | 0.724 | 334.724 | 0.545 | 0.099 |
| 58 | h | 29.226 | 0.913 | 297.785 | 0.383 | 0.233 |
| 59 | u | 42.219 | 3.295 | 155.22 | 0.581 | 0.095 |
| 60 | h | 18.758 | 0.526 | 393.393 | 0.563 | 0.094 |
| 61 | f/h | 15.195 | 0.268 | 552.405 | 0.355 | 0.157 |
| 62 | u | 101.681 | 10.898 | 83.746 | 0.367 | 0.120 |
| 63 | h | 25.447 | 0.769 | 324.616 | 0.133 | 0.433 |
| 64 | h/u | 28.116 | 0.780 | 322.235 | 0.570 | 0.081 |
| 65 | u | 144.768 | 9.856 | 88.276 | 0.220 | 0.290 |
| 66 | u | 99.720 | 4.857 | 127.098 | 0.341 | 0.157 |
| 67 | h | 30.737 | 1.028 | 280.337 | 0.455 | 0.111 |
| 68 | h/u | 78.690 | 7.061 | 104.898 | 0.487 | 0.233 |
| 69 | f/h | 20.081 | 0.941 | 293.164 | 0.533 | 0.149 |
| 70 | h | 19.624 | 0.779 | 322.681 | 0.456 | 0.237 |
| 71 | $\mathrm{f} / \mathrm{h}$ | 10.034 | 0.273 | 546.808 | 0.264 | 0.876 |
| 72 | $\mathrm{f} / \mathrm{h}$ | 15.338 | 0.641 | 355.871 | 0.469 | 0.115 |
| 73 | h | 17.782 | 0.606 | 366.302 | 0.471 | 0.125 |
| 74 | h/u | 60.723 | 2.341 | 184.736 | 0.581 | 0.023 |
| 75 | f | 22.276 | 0.522 | 394.755 | 0.492 | 0.127 |
| 76 | u | 105.830 | 7.531 | 101.464 | 0.527 | 0.112 |
| 77 | $\mathrm{f} / \mathrm{h}$ | 28.011 | 0.864 | 305.944 | 0.525 | 0.132 |
| 78 | h | 21.732 | 0.894 | 300.95 | 0.439 | 0.162 |
| 79 | h/u | 16.272 | 1.138 | 266.232 | 0.556 | 0.085 |
| 80 | $\mathrm{f} / \mathrm{h}$ | 17.205 | 0.482 | 411.248 | 0.504 | 0.082 |
| 81 | $\mathrm{h} / \mathrm{u}$ | "invalid" | "invalid" | "invalid" | 0.399 | 0.049 |
| 82 | $\mathrm{f} / \mathrm{h} / \mathrm{u}$ | "invalid" | "invalid" | "invalid" | 0.497 | 0.134 |
| 83 | f/h/u | 13.770 | 0.368 | 470.764 | 0.516 | 0.049 |
| 84 | h | 19.491 | 0.564 | 379.495 | 0.552 | 0.102 |
| 85 | h | 33.841 | 1.407 | 239.041 | 0.493 | 0.058 |
| 86 | h | 28.774 | 0.953 | 291.181 | 0.536 | 0.078 |
| 87 | $\mathrm{f} / \mathrm{h}$ | 12.458 | 0.269 | 551.039 | 0.156 | 0.615 |
| 88 | $\mathrm{f} / \mathrm{h}$ | 35.615 | 2.207 | 190.205 | 0.534 | 0.509 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 89 | h | 16.527 | 0.588 | 372.013 | 0.370 | 0.236 |
| 90 | h | 13.904 | 0.358 | 477.877 | 0.360 | 0.268 |
| 91 | f | 13.222 | 0.584 | 373.125 | 0.244 | 0.134 |
| 92 | h | error | error | error | 0.592 | 0.364 |
| 93 | h | 24.561 | 0.694 | 342.076 | 0.162 | 0.433 |
| 94 | u | error | error | error | 0.301 | 0.312 |
| 95 | h/u | 23.012 | 0.781 | 322.143 | 0.590 | 0.068 |
| 96 | h | 31.053 | 0.743 | 330.301 | 0.425 | 0.142 |
| 97 | f | "invalid" | "invalid" | "invalid" | 0.506 | 0.366 |
| 98 | $\mathrm{f} / \mathrm{h} / \mathrm{u}$ | 26.160 | 0.922 | 296.624 | 0.406 | 0.193 |
| 99 | h | 18.683 | 0.593 | 370.079 | 0.488 | 0.090 |
| 100 | h | 20.425 | 0.945 | 292.45 | 0.498 | 0.129 |
| 101 | $\mathrm{f} / \mathrm{h}$ | 9.333 | 0.217 | 614.02 | 0.340 | 0.096 |
| 102 | f/h/u | 57.754 | 4.969 | 125.685 | 0.339 | 0.121 |
| 103 | u | 99.277 | 7.127 | 104.333 | 0.462 | 0.211 |
| 104 | u | 77.420 | 4.771 | 128.351 | 0.564 | 0.058 |
| 105 | h | 30.485 | 0.915 | 297.591 | 0.509 | 0.120 |
| 106 | h | 20.286 | 0.638 | 357.265 | 0.284 | 0.300 |
| 107 | u | error | error | error | 0.604 | 0.151 |
| 108 | h | 17.321 | 1.023 | 280.911 | 0.441 | 0.211 |
| 109 | h | 12.859 | 0.481 | 411.352 | 0.597 | 0.120 |
| 110 | $\mathrm{h} / \mathrm{u}$ | error | error | error | 0.712 | 0.135 |
| 111 | h | "invalid" | "invalid" | "invalid" | 0.591 | 0.166 |
| 112 | $\mathrm{f} / \mathrm{h}$ | 20.429 | 0.459 | 422.166 | 0.196 | 0.036 |
| 113 | h/u | 47.747 | 4.986 | 125.449 | 0.416 | 0.208 |
| 114 | $\mathrm{f} / \mathrm{h}$ | 55.356 | 2.091 | 195.631 | 0.413 | 0.132 |
| 115 | h | 19.934 | 0.617 | 362.747 | 0.156 | 0.512 |
| 116 | h | "invalid" | "invalid" | "invalid" | 0.478 | 0.151 |
| 117 | u | error | error | error | 0.393 | 0.035 |
| 118 | h | 24.153 | 0.798 | 318.666 | 0.427 | 0.186 |
| 119 | $\mathrm{f} / \mathrm{h}$ | 63.993 | 4.953 | 125.845 | 0.555 | 0.116 |
| 120 | $\mathrm{f} / \mathrm{h}$ | 18.901 | 0.828 | 312.836 | 0.354 | 0.189 |
| 121 | h | 18.973 | 0.740 | 330.842 | 0.354 | 0.132 |
| 122 | h/u | error | error | error | 0.364 | 0.136 |
| 123 | h/u | 45.108 | 3.137 | 159.085 | 0.347 | 0.289 |
| 124 | h | "invalid" | "invalid" | "invalid" | 0.571 | 0.012 |
| 125 | h/u | 81.126 | 5.985 | 114.167 | 0.571 | 0.026 |
| 126 | h | 23.553 | 0.932 | 294.382 | 0.519 | 0.052 |
| 127 | h/u | 80.939 | 9.639 | 89.234 | 0.533 | 0.101 |
| 128 | f/h | 32.164 | 0.927 | 295.409 | 0.394 | 0.372 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 129 | h/u | 10.130 | 0.216 | 615.44 | 0.584 | 0.178 |
| 130 | h | 14.081 | 0.416 | 443.253 | 0.564 | 0.113 |
| 131 | h | "invalid" | "invalid" | "invalid" | 0.530 | 0.167 |
| 132 | f | "invalid" | "invalid" | "invalid" | 0.482 | 0.222 |
| 133 | h | error | error | Error | 0.553 | 0.074 |
| 134 | f/h | 67.751 | 3.315 | 154.652 | 0.564 | 0.110 |
| 135 | u | 88.388 | 6.700 | 107.679 | 0.387 | 0.093 |
| 136 | h | "invalid" | "invalid" | "invalid" | 0.561 | 0.079 |
| 137 | u | 96.471 | 9.101 | 91.997 | 0.421 | 0.040 |
| 138 | h | 35.302 | 0.786 | 321.114 | 0.393 | 0.037 |
| 139 | h | 19.224 | 0.477 | 413.293 | 0.533 | 0.086 |
| 140 | h/u | "invalid" | "invalid" | "invalid" | 0.506 | 0.067 |
| 141 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.294 | 0.082 |
| 142 | f/h | "invalid" | "invalid" | "invalid" | 0.448 | 0.212 |
| 143 | f/h | 34.425 | 5.165 | 123.142 | 0.529 | 0.074 |
| 144 | u | 109.533 | 8.011 | 98.215 | 0.518 | 0.101 |
| 145 | u | 119.044 | 8.231 | 96.883 | 0.267 | 0.117 |
| 146 | h | 25.378 | 0.838 | 310.904 | 0.337 | 0.256 |
| 147 | $\mathrm{f} / \mathrm{h}$ | 21.735 | 0.672 | 347.372 | 0.384 | 0.079 |
| 148 | $\mathrm{f} / \mathrm{h}$ | 17.639 | 0.338 | 492.163 | 0.540 | 0.064 |
| 149 | h | 19.950 | 0.630 | 359.128 | 0.443 | 0.051 |
| 150 | $\mathrm{f} / \mathrm{h}$ | 14.724 | 0.392 | 456.566 | 0.435 | 0.161 |
| 151 | f/h | 23.817 | 0.653 | 352.86 | 0.574 | 0.205 |
| 152 | h | 17.078 | 0.661 | 350.24 | 0.574 | 0.108 |
| 153 | h | 17.136 | 0.599 | 368.124 | 0.485 | 0.170 |
| 154 | h | 33.915 | 0.693 | 342.315 | 0.218 | 0.445 |
| 155 | f/h | 21.063 | 0.594 | 370.075 | 0.446 | 0.160 |
| 156 | u | "invalid" | "invalid" | "invalid" | 0.494 | 0.080 |
| 157 | h | 28.666 | 0.754 | 327.861 | 0.558 | 0.029 |
| 158 | u | "invalid" | "invalid" | "invalid" | 0.519 | 0.106 |
| 159 | u | 103.915 | 8.134 | 97.455 | 0.156 | 0.073 |
| 160 | h | "invalid" | "invalid" | "invalid" | 0.360 | 0.170 |
| 161 | f/h/u | "invalid" | "invalid" | "invalid" | 0.390 | 0.206 |
| 162 | h/u | error | error | error | 0.387 | 0.165 |
| 163 | h | 11.199 | 0.587 | 371.753 | 0.405 | 0.105 |
| 164 | f/h/u | "invalid" | "invalid" | "invalid" | 0.478 | 0.178 |
| 165 | h/u | 31.320 | 1.946 | 202.889 | 0.570 | 0.125 |
| 166 | $\mathrm{f} / \mathrm{h}$ | 12.088 | 0.243 | 579.937 | 0.488 | 0.160 |
| 167 | h/u | error | error | error | 0.556 | 0.082 |
| 168 | f/h | "invalid" | "invalid" | "invalid" | 0.391 | 0.082 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 169 | $\mathrm{f} / \mathrm{h}$ | 41.128 | 1.253 | 253.601 | 0.514 | 0.051 |
| 170 | h/u | 49.395 | 1.331 | 246.034 | 0.452 | 0.181 |
| 171 | f/h | 64.407 | 3.701 | 146.319 | 0.471 | 0.176 |
| 172 | f/h | "invalid" | "invalid" | "invalid" | 0.492 | 0.129 |
| 173 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.450 | 0.130 |
| 174 | h | 18.993 | 0.739 | 331.594 | 0.402 | 0.209 |
| 175 | h | 16.988 | 0.423 | 438.919 | 0.379 | 0.348 |
| 176 | h | 20.000 | 0.543 | 386.705 | 0.520 | 0.058 |
| 177 | u | 83.678 | 5.005 | 125.217 | 0.479 | 0.079 |
| 178 | u | 68.148 | 4.430 | 133.371 | 0.548 | 0.083 |
| 179 | u | 28.029 | 0.811 | 315.847 | 0.518 | 0.146 |
| 180 | h | 26.486 | 0.907 | 298.53 | 0.125 | 0.454 |
| 181 | $\mathrm{f} / \mathrm{h}$ | 19.749 | 2.964 | 163.679 | 0.617 | 0.266 |
| 182 | h/u | "invalid" | "invalid" | "invalid" | 0.408 | 0.269 |
| 183 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.519 | 0.142 |
| 184 | $\mathrm{f} / \mathrm{h}$ | 12.662 | 0.404 | 449.27 | 0.557 | 0.084 |
| 185 | u | 31.185 | 4.698 | 129.363 | 0.544 | 0.083 |
| 186 | $\mathrm{f} / \mathrm{h}$ | 11.087 | 0.363 | 474.298 | 0.518 | 0.113 |
| 187 | f | "invalid" | "invalid" | "invalid" | 0.539 | 0.090 |
| 188 | h | 42.667 | 1.309 | 248.053 | 0.498 | 0.054 |
| 189 | u | 133.598 | 11.360 | 82.005 | 0.143 | 0.510 |
| 190 | u | error | error | error | 0.576 | 0.095 |
| 191 | h | 18.899 | 0.435 | 433.096 | 0.508 | 0.113 |
| 192 | h | 14.626 | 0.374 | 467.157 | 0.548 | 0.112 |
| 193 | f | "invalid" | "invalid" | "invalid" | 0.264 | 0.076 |
| 194 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.462 | 0.129 |
| 195 | h/u | "invalid" | "invalid" | "invalid" | 0.471 | 0.152 |
| 196 | $\mathrm{h} / \mathrm{u}$ | "invalid" | "invalid" | "invalid" | 0.540 | 0.110 |
| 197 | h | 71.792 | 3.263 | 155.888 | 0.446 | 0.095 |
| 198 | u | error | error | error | 0.536 | 0.104 |
| 199 | $\mathrm{f} / \mathrm{h}$ | 20.643 | 0.691 | 342.922 | 0.471 | 0.158 |
| 200 | h | "invalid" | "invalid" | "invalid" | 0.480 | 0.124 |

*Type: $\mathrm{f}=\mathrm{flaw}, \mathrm{h}=$ hydrate, $\mathrm{u}=$ unhydrated particle, $\mathrm{f} / \mathrm{h}=\mathrm{flaw}$ and hydrate combination, $\mathrm{f} / \mathrm{u}=\mathrm{flaw}$ and unhydrated particle combination, $\mathrm{f} / \mathrm{h} / \mathrm{u}=\mathrm{flaw}$, hydrate, and unhydrated particle combination, and $\mathrm{h} / \mathrm{u}=$ hydrate and unhydrated particle combination.

## PC-CNF-CF-B Grid 1



| Indent | Type* $^{2}$ | Modulus <br> $(\mathrm{GPa})$ | Hardness <br> $(\mathrm{GPa})$ | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | h | 32.376 | 1.099 | 271.046 | 0.306 | 0.090 |
| 2 | u | 104.940 | 8.502 | 95.354 | 0.378 | 0.024 |
| 3 | u | 105.503 | 9.563 | 89.678 | 0.375 | 0.030 |
| 4 | $\mathrm{~h} / \mathrm{u}$ | 66.341 | 8.848 | 93.285 | 0.457 | 0.116 |
| 5 | $\mathrm{~h} / \mathrm{u}$ | "invalid" | "invalid" | "invalid" | 0.152 | 0.102 |
| 6 | $\mathrm{f} / \mathrm{h}$ | 159.360 | 15.936 | 68.75 | 0.297 | 0.209 |
| 7 | $\mathrm{f} / \mathrm{h}$ | 32.288 | 1.209 | 258.238 | 0.419 | 0.142 |
| 8 | f/h | "invalid" | "invalid" | "invalid" | 0.063 | 0.019 |


| Indent | Type* | $\begin{gathered} \hline \text { Modulus } \\ (\mathrm{GPa}) \end{gathered}$ | Hardness (GPa) | Maximum <br> Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \end{aligned}$ | $\begin{aligned} & \hline \mathrm{Al} / \mathrm{Ca} \\ & \text { Ratio } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | f | 8.907 | 0.232 | 593.319 | 0.288 | 0.066 |
| 10 | h | 14.749 | 0.695 | 341.692 | 0.167 | 0.041 |
| 11 | $\mathrm{f} / \mathrm{h}$ | 30.402 | 1.428 | 237.397 | 0.170 | 0.050 |
| 12 | h | 19.839 | 0.608 | 365.22 | 0.314 | 0.090 |
| 13 | $\mathrm{f} / \mathrm{h} / \mathrm{u}$ | 52.366 | 2.481 | 179.273 | 0.325 | 0.189 |
| 14 | h | 30.604 | 0.978 | 287.501 | 0.388 | 0.192 |
| 15 | h | "invalid" | "invalid" | "invalid" | 0.452 | 0.129 |
| 16 | $\mathrm{f} / \mathrm{h}$ | 35.555 | 1.321 | 246.913 | 0.522 | 0.236 |
| 17 | h | 22.311 | 0.912 | 297.846 | 0.537 | 0.094 |
| 18 | h | 14.521 | 0.669 | 348.161 | 0.427 | 0.162 |
| 19 | h | error | error | error | 0.144 | 0.028 |
| 20 | $\mathrm{f} / \mathrm{h}$ | 80.293 | 7.524 | 101.514 | 0.258 | 0.079 |
| 21 | h | 37.839 | 1.317 | 247.243 | 0.391 | 0.029 |
| 22 | h | 35.196 | 1.161 | 263.544 | 0.510 | 0.046 |
| 23 | h | 36.126 | 1.434 | 236.864 | 0.432 | 0.044 |
| 24 | h | 39.450 | 1.998 | 200.101 | 0.359 | 0.096 |
| 25 | h | 28.622 | 0.857 | 307.141 | 0.273 | 0.037 |
| 26 | h | "invalid" | "invalid" | "invalid" | 0.140 | 0.482 |
| 27 | h | 28.810 | 0.939 | 293.424 | 0.244 | 0.330 |
| 28 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.384 | 0.231 |
| 29 | h/u | 43.396 | 1.579 | 225.503 | 0.195 | 0.046 |
| 30 | $\mathrm{f} / \mathrm{h}$ | 16.332 | 6.545 | 109.004 | 0.313 | 0.093 |
| 31 | f | 27.872 | 6.475 | 109.634 | 0.087 | 0.030 |
| 32 | f | 23.297 | 3.831 | 143.571 | 0.061 | 0.026 |
| 33 | $\mathrm{f} / \mathrm{h}$ | 89.260 | 12.502 | 77.983 | 0.132 | 0.531 |
| 34 | $\mathrm{f} / \mathrm{h}$ | 107.447 | 14.883 | 71.175 | 0.504 | 0.068 |
| 35 | u | 107.380 | 8.878 | 93.134 | 0.530 | 0.060 |
| 36 | h | 25.692 | 0.925 | 295.615 | 0.442 | 0.124 |
| 37 | $\mathrm{f} / \mathrm{h}$ | 20.435 | 0.837 | 310.895 | 0.361 | 0.152 |
| 38 | u | "invalid" | "invalid" | "invalid" | 0.355 | 0.090 |
| 39 | $\mathrm{f} / \mathrm{h}$ | 47.285 | 10.334 | 86.1 | 0.188 | 0.494 |
| 40 | h | 75.667 | 7.004 | 105.301 | 0.212 | 0.092 |
| 41 | $\mathrm{f} / \mathrm{h}$ | 97.386 | 14.762 | 71.465 | 0.195 | 0.032 |
| 42 | $\mathrm{f} / \mathrm{h}$ | 18.701 | 0.757 | 327.273 | 0.368 | 0.083 |
| 43 | h | 36.523 | 1.824 | 209.608 | 0.506 | 0.103 |
| 44 | h | 29.722 | 0.944 | 292.536 | 0.535 | 0.048 |
| 45 | h | 32.542 | 1.550 | 227.604 | 0.151 | 0.038 |
| 46 | h | 37.856 | 1.462 | 234.513 | 0.462 | 0.135 |
| 47 | h/u | 125.262 | 9.217 | 91.367 | 0.141 | 0.528 |
| 48 | h/u | 48.750 | 1.368 | 242.511 | 0.399 | 0.189 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \\ & \hline \end{aligned}$ | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 49 | $\mathrm{f} / \mathrm{h}$ | 29.667 | 0.772 | 324.021 | 0.222 | 0.107 |
| 50 | f/h/u | 23.434 | 0.905 | 299.071 | 0.355 | 0.413 |
| 51 | h | error | error | error | 0.341 | 0.136 |
| 52 | f/h | "invalid" | "invalid" | "invalid" | 0.352 | 0.156 |
| 53 | u | 123.321 | 9.653 | 89.141 | 0.091 | 0.027 |
| 54 | h | 18.995 | 0.741 | 330.81 | 0.408 | 0.147 |
| 55 | h | 17.004 | 1.241 | 254.789 | 0.430 | 0.291 |
| 56 | h | "invalid" | "invalid" | "invalid" | 0.329 | 0.096 |
| 57 | h | 65.467 | 4.901 | 126.541 | 0.330 | 0.126 |
| 58 | h | 34.986 | 1.134 | 266.687 | 0.404 | 0.048 |
| 59 | h | 29.064 | 1.672 | 219.101 | 0.215 | 0.043 |
| 60 | $\mathrm{f} / \mathrm{h}$ | 68.300 | 6.635 | 108.336 | 0.284 | 0.056 |
| 61 | h | 38.239 | 2.015 | 199.192 | 0.144 | 0.576 |
| 62 | h | 28.568 | 1.336 | 245.469 | 0.433 | 0.465 |
| 63 | h/u | 25.109 | 0.754 | 327.814 | 0.142 | 0.238 |
| 64 | f | 94.658 | 11.101 | 82.974 | 0.370 | 0.185 |
| 65 | u | 151.633 | 17.405 | 65.576 | 0.216 | 0.032 |
| 66 | h | 29.218 | 0.989 | 285.759 | 0.486 | 0.053 |
| 67 | h | 54.641 | 1.840 | 208.623 | 0.431 | 0.122 |
| 68 | $\mathrm{f} / \mathrm{h}$ | 52.986 | 1.385 | 241.058 | 0.372 | 0.102 |
| 69 | h | 23.705 | 0.785 | 321.364 | 0.249 | 0.191 |
| 70 | $\mathrm{f} / \mathrm{h}$ | 18.537 | 0.698 | 340.838 | 0.331 | 0.203 |
| 71 | h/u | 67.522 | 6.359 | 110.715 | 0.571 | 0.142 |
| 72 | h/u | 61.317 | 4.840 | 127.354 | 0.384 | 0.193 |
| 73 | u | 121.964 | 9.815 | 88.392 | 0.368 | 0.231 |
| 74 | $\mathrm{f} / \mathrm{h}$ | 49.919 | 4.101 | 138.678 | 0.480 | 0.162 |
| 75 | f/h | "invalid" | "invalid" | "invalid" | 0.367 | 0.130 |
| 76 | $\mathrm{f} / \mathrm{h}$ | 158.752 | 13.770 | 74.15 | 0.442 | 0.081 |
| 77 | h/u | 31.265 | 1.245 | 254.275 | 0.308 | 0.260 |
| 78 | $\mathrm{f} / \mathrm{h}$ | 33.169 | 1.251 | 253.874 | 0.120 | 0.237 |
| 79 | $\mathrm{f} / \mathrm{h}$ | 27.587 | 1.207 | 258.368 | 0.290 | 0.169 |
| 80 | f/h/u | "invalid" | "invalid" | "invalid" | 0.560 | 0.087 |
| 81 | h | 38.900 | 1.238 | 255.232 | 0.263 | 0.096 |
| 82 | h/u | 106.923 | 10.082 | 87.234 | 0.442 | 0.090 |
| 83 | h | 144.856 | 14.556 | 72.018 | 0.233 | 0.397 |
| 84 | h | 58.272 | 3.305 | 154.81 | 0.125 | 0.489 |
| 85 | h/u | 42.095 | 2.023 | 198.798 | 0.423 | 0.055 |
| 86 | u | 103.876 | 6.626 | 108.307 | 0.166 | 0.444 |
| 87 | h/u | "invalid" | "invalid" | "invalid" | 0.427 | 0.128 |
| 88 | f | 30.401 | 0.850 | 308.806 | 0.146 | 0.029 |


| Indent | Type* | $\begin{gathered} \hline \text { Modulus } \\ (\mathrm{GPa}) \end{gathered}$ | Hardness (GPa) | Maximum <br> Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \end{aligned}$ | $\begin{aligned} & \hline \mathrm{Al} / \mathrm{Ca} \\ & \text { Ratio } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 89 | h | 25.514 | 0.984 | 286.523 | 0.226 | 0.071 |
| 90 | $\mathrm{f} / \mathrm{h}$ | 42.192 | 1.175 | 262.094 | 0.363 | 0.440 |
| 91 | h | 24.612 | 0.884 | 302.309 | 0.533 | 0.093 |
| 92 | h | 32.820 | 1.339 | 245.27 | 0.508 | 0.158 |
| 93 | h | 25.610 | 1.165 | 263.158 | 0.248 | 0.248 |
| 94 | h | 20.205 | 0.600 | 368.154 | 0.494 | 0.072 |
| 95 | u | 87.200 | 9.923 | 87.875 | 0.478 | 0.115 |
| 96 | h | 33.343 | 1.317 | 247.244 | 0.249 | 0.262 |
| 97 | h | 35.102 | 1.406 | 239.033 | 0.138 | 0.127 |
| 98 | h | 49.954 | 1.077 | 273.759 | 0.425 | 0.077 |
| 99 | $\mathrm{f} / \mathrm{h}$ | "invalid" | "invalid" | "invalid" | 0.406 | 0.109 |
| 100 | h | 33.507 | 1.962 | 202.085 | 0.467 | 0.087 |
| 101 | f/h | 87.290 | 7.856 | 99.246 | 0.506 | 0.108 |
| 102 | $\mathrm{f} / \mathrm{h}$ | 71.263 | 3.202 | 157.425 | 0.536 | 0.049 |
| 103 | h | 33.897 | 1.445 | 235.945 | 0.415 | 0.161 |
| 104 | h | 57.246 | 1.555 | 227.402 | 0.550 | 0.085 |
| 105 | h | error | error | error | 0.417 | 0.057 |
| 106 | h | 43.088 | 1.365 | 242.727 | 0.145 | 0.049 |
| 107 | h/u | 51.990 | 2.796 | 168.621 | 0.533 | 0.150 |
| 108 | h | 30.094 | 1.309 | 248.099 | 0.400 | 0.058 |
| 109 | h | 34.554 | 1.423 | 237.688 | 0.460 | 0.164 |
| 110 | h | 29.303 | 1.134 | 266.579 | 0.263 | 0.366 |
| 111 | h | 22.970 | 0.801 | 318.073 | 0.485 | 0.069 |
| 112 | h | 43.985 | 1.684 | 218.25 | 0.486 | 0.060 |
| 113 | h | 43.290 | 1.695 | 217.464 | 0.528 | 0.058 |
| 114 | h | 25.462 | 0.716 | 336.644 | 0.463 | 0.121 |
| 115 | h | 41.986 | 1.105 | 270.282 | 0.307 | 0.248 |
| 116 | h | 36.933 | 1.748 | 214.23 | 0.427 | 0.053 |
| 117 | f/h | 21.776 | 0.781 | 322.27 | 0.470 | 0.148 |
| 118 | h/u | 123.928 | 5.379 | 120.63 | 0.485 | 0.110 |
| 119 | f/h | 41.972 | 1.299 | 249.094 | 0.363 | 0.097 |
| 120 | h | 19.706 | 0.592 | 370.215 | 0.214 | 0.080 |
| 121 | $\mathrm{f} / \mathrm{h}$ | 51.025 | 3.913 | 142.08 | 0.372 | 0.066 |
| 122 | h | 48.289 | 1.511 | 230.602 | 0.524 | 0.047 |
| 123 | h | 34.918 | 1.103 | 270.478 | 0.330 | 0.271 |
| 124 | u | 90.446 | 9.429 | 90.284 | 0.538 | 0.045 |
| 125 | $\mathrm{f} / \mathrm{h}$ | 23.997 | 0.656 | 351.782 | 0.422 | 0.065 |
| 126 | h | 29.033 | 1.019 | 281.716 | 0.521 | 0.057 |
| 127 | f/h | 41.609 | 1.280 | 250.877 | 0.330 | 0.044 |
| 128 | $\mathrm{f} / \mathrm{h}$ | 25.033 | 0.668 | 348.5 | 0.158 | 0.032 |


| Indent | Type* | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 129 | u | 93.218 | 9.671 | 89.111 | 0.538 | 0.057 |
| 130 | h/u | 69.781 | 2.590 | 175.371 | 0.450 | 0.057 |
| 131 | h | 43.314 | 1.495 | 231.795 | 0.379 | 0.110 |
| 132 | f/h | 22.572 | 0.771 | 324.15 | 0.433 | 0.092 |
| 133 | h | 23.285 | 0.957 | 290.72 | 0.333 | 0.148 |
| 134 | h | 23.171 | 1.050 | 277.286 | 0.559 | 0.075 |
| 135 | h | 25.286 | 0.797 | 318.63 | 0.382 | 0.277 |
| 136 | h | 30.270 | 0.915 | 297.191 | 0.483 | 0.070 |
| 137 | h | 28.355 | 0.950 | 291.668 | 0.529 | 0.082 |
| 138 | h | 32.158 | 0.844 | 309.757 | 0.415 | 0.151 |
| 139 | h/u | 31.652 | 1.781 | 212.128 | 0.489 | 0.093 |
| 140 | h | 26.118 | 1.440 | 236.193 | 0.346 | 0.306 |
| 141 | h/u | 65.848 | 1.880 | 206.359 | 0.520 | 0.130 |
| 142 | f/h | 35.854 | 0.985 | 286.487 | 0.334 | 0.289 |
| 143 | $\mathrm{f} / \mathrm{h}$ | 32.707 | 1.242 | 254.898 | 0.330 | 0.161 |
| 144 | $\mathrm{f} / \mathrm{h}$ | 17.403 | 0.493 | 406.134 | 0.499 | 0.049 |
| 145 | h | 23.415 | 0.815 | 315.279 | 0.536 | 0.077 |
| 146 | h | 37.680 | 2.138 | 193.231 | 0.314 | 0.063 |
| 147 | h | 28.627 | 0.955 | 290.902 | 0.478 | 0.130 |
| 148 | h | error | error | error | 0.497 | 0.086 |
| 149 | u | 78.844 | 8.474 | 95.39 | 0.262 | 0.218 |
| 150 | u | 90.565 | 10.505 | 85.316 | 0.513 | 0.047 |
| 151 | h | 87.058 | 4.528 | 131.843 | 0.522 | 0.052 |
| 152 | h | 24.052 | 0.975 | 287.795 | 0.560 | 0.089 |
| 153 | h | 27.478 | 0.832 | 311.929 | 0.490 | 0.075 |
| 154 | h | error | error | error | 0.420 | 0.158 |
| 155 | f/h | 66.277 | 2.017 | 199.149 | 0.557 | 0.072 |
| 156 | h | 25.580 | 0.760 | 326.46 | 0.469 | 0.099 |
| 157 | h/u | 73.152 | 4.587 | 130.923 | 0.513 | 0.089 |
| 158 | u | 93.276 | 6.315 | 111.061 | 0.502 | 0.098 |
| 159 | f/h | 39.741 | 1.219 | 257.118 | 0.226 | 0.063 |
| 160 | h | 212.151 | 21.275 | 58.962 | 0.496 | 0.097 |
| 161 | f/h | 92.343 | 6.559 | 108.891 | 0.509 | 0.150 |
| 162 | f/h | 25.098 | 0.937 | 293.72 | 0.536 | 0.057 |
| 163 | h | 39.695 | 1.412 | 238.718 | 0.531 | 0.066 |
| 164 | h | 29.422 | 0.920 | 296.567 | 0.514 | 0.092 |
| 165 | h | 25.229 | 0.873 | 304.578 | 0.564 | 0.069 |
| 166 | h | 25.574 | 0.878 | 303.388 | 0.157 | 0.023 |
| 167 | h | 33.167 | 1.011 | 282.676 | 0.492 | 0.091 |
| 168 | h | 37.137 | 1.860 | 207.478 | 0.198 | 0.058 |


| Indent | Type* | $\begin{gathered} \hline \text { Modulus } \\ (\mathrm{GPa}) \\ \hline \end{gathered}$ | Hardness (GPa) | Maximum <br> Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \\ & \hline \end{aligned}$ | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 169 | f/h | 20.039 | 0.514 | 397.945 | 0.457 | 0.041 |
| 170 | h | "invalid" | "invalid" | "invalid" | 0.372 | 0.046 |
| 171 | h | 28.968 | 1.147 | 265.246 | 0.371 | 0.036 |
| 172 | $\mathrm{f} / \mathrm{h} / \mathrm{u}$ | 71.284 | 5.707 | 117.02 | 0.380 | 0.133 |
| 173 | h | 28.254 | 1.114 | 269.115 | 0.409 | 0.210 |
| 174 | h/u | 210.782 | 26.387 | 52.649 | 0.294 | 0.395 |
| 175 | h | 38.161 | 1.420 | 237.833 | 0.314 | 0.377 |
| 176 | h/u | "invalid" | "invalid" | "invalid" | 0.553 | 0.104 |
| 177 | h/u | 59.307 | 3.923 | 141.858 | 0.221 | 0.310 |
| 178 | u | 161.927 | 11.140 | 82.78 | 0.537 | 0.090 |
| 179 | $\mathrm{f} / \mathrm{h}$ | 51.232 | 1.540 | 228.418 | 0.317 | 0.064 |
| 180 | h | 25.657 | 0.782 | 321.725 | 0.151 | 0.371 |
| 181 | h | 26.816 | 0.921 | 296.428 | 0.375 | 0.121 |
| 182 | h | 27.137 | 0.800 | 318.231 | 0.203 | 0.054 |
| 183 | h | 28.718 | 1.086 | 272.563 | 0.175 | 0.028 |
| 184 | f/h | 16.937 | 0.354 | 479.657 | 0.462 | 0.054 |
| 185 | u | 91.017 | 5.669 | 117.396 | 0.465 | 0.105 |
| 186 | h | 59.507 | 1.345 | 244.678 | 0.302 | 0.201 |
| 187 | h | 28.773 | 1.185 | 261.044 | 0.503 | 0.074 |
| 188 | h | 18.480 | 0.442 | 429.244 | 0.583 | 0.108 |
| 189 | $\mathrm{f} / \mathrm{h}$ | error | error | error | 0.517 | 0.059 |
| 190 | u | 112.995 | 7.021 | 105.204 | 0.356 | 0.114 |
| 191 | $\mathrm{h} / \mathrm{u}$ | 92.451 | 5.628 | 117.882 | 0.521 | 0.079 |
| 192 | h/u | 83.239 | 7.626 | 100.768 | 0.382 | 0.032 |
| 193 | h | 17.191 | 0.476 | 413.68 | 0.388 | 0.188 |
| 194 | h | 37.046 | 1.477 | 233.393 | 0.162 | 0.493 |
| 195 | h | 44.578 | 1.358 | 243.441 | 0.288 | 0.042 |
| 196 | h | 26.857 | 0.982 | 286.779 | 0.387 | 0.192 |
| 197 | $\mathrm{f} / \mathrm{h}$ | 40.664 | 1.034 | 279.42 | 0.435 | 0.067 |
| 198 | h | 31.761 | 1.040 | 278.651 | 0.538 | 0.036 |
| 199 | h | 36.616 | 1.002 | 283.834 | 0.524 | 0.089 |
| 200 | $\mathrm{h} / \mathrm{u}$ | 28.775 | 0.965 | 289.526 | 0.178 | 0.305 |

*Type: $\mathrm{f}=\mathrm{flaw}, \mathrm{h}=$ hydrate, $\mathrm{u}=$ unhydrated particle, $\mathrm{f} / \mathrm{h}=\mathrm{flaw}$ and hydrate combination, $\mathrm{f} / \mathrm{u}=\mathrm{flaw}$ and unhydrated particle combination, $\mathrm{f} / \mathrm{h} / \mathrm{u}=\mathrm{flaw}$, hydrate, and unhydrated particle combination, and $\mathrm{h} / \mathrm{u}=$ hydrate and unhydrated particle combination.

PC-1\% Grid 1


| Indent | Type* | Location** | Modulus <br> (GPa) | Hardness <br> (GPa) | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | Al/Ca <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathrm{f} / \mathrm{h}$ | n | 22.112 | 0.982 | 286.946 | 0.206 | 0.450 |
| 2 | $\mathrm{~h} / \mathrm{u}$ | o | "invalid" | "invalid" | "invalid" | 0.365 | 0.182 |
| 3 | $\mathrm{f} / \mathrm{h}$ | i | "invalid" | "invalid" | "invalid" | 0.624 | 0.196 |
| 4 | $\mathrm{f} / \mathrm{h}$ | i | "invalid" | "invalid" | "invalid" | 0.829 | 0.208 |
| 5 | $\mathrm{f} / \mathrm{h}$ | i | error | error | error | 0.268 | 0.407 |
| 6 | $\mathrm{f} / \mathrm{h}$ | o | 13.386 | 1.024 | 280.689 | 0.413 | 0.247 |
| 7 | $\mathrm{~h} / \mathrm{u}$ | n | error | error | error | 0.438 | 0.137 |
| 8 | $\mathrm{~h} / \mathrm{u}$ | n | 26.519 | 1.159 | 263.922 | 0.586 | 0.170 |


| Indent | Type* | Location** | $\begin{gathered} \hline \text { Modulus } \\ (\mathrm{GPa}) \end{gathered}$ | Hardness (GPa) | Maximum Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \end{aligned}$ | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | h | n | 32.192 | 1.722 | 215.762 | 0.507 | 0.129 |
| 10 | h | n | 29.985 | 1.132 | 266.961 | 0.573 | 0.152 |
| 11 | h | n | "invalid" | "invalid" | "invalid" | 0.601 | 0.279 |
| 12 | h/u | n | 16.489 | 0.538 | 388.604 | 0.446 | 0.278 |
| 13 | h | n | 12.300 | 0.816 | 315.011 | 0.386 | 0.200 |
| 14 | $\mathrm{f} / \mathrm{h}$ | n | 7.452 | 0.313 | 510.723 | 0.363 | 0.186 |
| 15 | f | n | 9.517 | 0.425 | 437.624 | 0.509 | 0.181 |
| 16 | $\mathrm{f} / \mathrm{h}$ | n | "invalid" | "invalid" | "invalid" | 0.395 | 0.121 |
| 17 | h | n | 51.125 | 1.943 | 202.946 | 0.548 | 0.107 |
| 18 | h | n | 27.392 | 1.178 | 261.645 | 0.476 | 0.087 |
| 19 | h | n | 22.858 | 1.125 | 267.923 | 0.625 | 0.093 |
| 20 | $\mathrm{f} / \mathrm{h}$ | n | 18.882 | 0.549 | 385.119 | 0.546 | 0.121 |
| 21 | h | n | 62.664 | 4.064 | 139.306 | 0.543 | 0.059 |
| 22 | h | o | error | error | error | 0.357 | 0.129 |
| 23 | f | i | 5.926 | 0.168 | 698.631 | 0.464 | 0.109 |
| 24 | f | i | "invalid" | "invalid" | "invalid" | 0.418 | 0.117 |
| 25 | $\mathrm{f} / \mathrm{h}$ | o | 5.712 | 0.205 | 630.587 | 0.427 | 0.181 |
| 26 | f | o | 11.440 | 0.618 | 362.346 | 0.581 | 0.254 |
| 27 | h | n | 19.249 | 1.042 | 278.355 | 0.643 | 0.104 |
| 28 | h | O | 113.901 | 13.201 | 75.773 | 0.371 | 0.195 |
| 29 | h | n | 30.356 | 2.256 | 188.023 | 0.182 | 0.058 |
| 30 | $\mathrm{f} / \mathrm{h}$ | n | 39.633 | 1.849 | 208.124 | 0.378 | 0.215 |
| 31 | h | n | 25.860 | 2.033 | 198.332 | 0.584 | 0.087 |
| 32 | h | n | 13.320 | 0.799 | 318.374 | 0.273 | 0.158 |
| 33 | $\mathrm{f} / \mathrm{h}$ | o | "invalid" | "invalid" | "invalid" | 0.690 | 0.236 |
| 34 | f/h | o | 4.574 | 0.130 | 794.739 | 0.566 | 0.163 |
| 35 | $\mathrm{f} / \mathrm{h}$ | o | "invalid" | "invalid" | "invalid" | 0.296 | 0.100 |
| 36 | f/h | o | 8.859 | 0.493 | 406.286 | 0.567 | 0.139 |
| 37 | h | n | "invalid" | "invalid" | "invalid" | 0.395 | 0.153 |
| 38 | h | n | 33.998 | 1.900 | 205.335 | 0.417 | 0.052 |
| 39 | h | n | error | error | error | 0.332 | 0.098 |
| 40 | $\mathrm{f} / \mathrm{h}$ | n | 29.125 | 2.105 | 194.834 | 0.526 | 0.116 |
| 41 | f/h | O | 9.492 | 0.399 | 452.262 | 0.442 | 0.424 |
| 42 | h | o | 8.431 | 0.419 | 440.88 | 0.433 | 0.209 |
| 43 | f | i | "invalid" | "invalid" | "invalid" | 0.607 | 0.145 |
| 44 | h | o | 2.640 | 0.092 | 946.43 | 0.504 | 0.208 |
| 45 | h | 1 | "invalid" | "invalid" | "invalid" | 0.411 | 0.210 |
| 46 | f | o | 29.910 | 1.942 | 202.955 | 0.555 | 0.217 |
| 47 | h | n | error | error | error | 0.568 | 0.147 |
| 48 | f/h | 0 | 16.174 | 1.129 | 267.284 | 0.567 | 0.139 |


| Indent | Type* | Location** | $\begin{gathered} \hline \text { Modulus } \\ (\mathrm{GPa}) \end{gathered}$ | Hardness (GPa) | Maximum <br> Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \\ & \hline \end{aligned}$ | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 49 | h | o | "invalid" | "invalid" | "invalid" | 0.582 | 0.172 |
| 50 | h | o | 24.160 | 2.409 | 181.97 | 0.476 | 0.159 |
| 51 | f/h | n | 8.259 | 0.439 | 431.004 | 0.401 | 0.093 |
| 52 | f/h | o | 3.151 | 0.084 | 987.111 | 0.525 | 0.160 |
| 53 | f | i | 6.261 | 0.390 | 457.556 | 0.506 | 0.264 |
| 54 | f | i | 5.304 | 0.204 | 633.784 | 0.393 | 0.184 |
| 55 | f/h | 1 | "invalid" | "invalid" | "invalid" | 0.283 | 0.067 |
| 56 | f | 1 | error | error | error | 0.455 | 0.334 |
| 57 | h | o | 43.237 | 2.787 | 168.829 | 0.198 | 0.291 |
| 58 | h | o | 42.683 | 2.866 | 166.44 | 0.544 | 0.120 |
| 59 | f | o | 35.023 | 3.122 | 159.424 | 0.400 | 0.125 |
| 60 | f | o | "invalid" | "invalid" | "invalid" | 0.340 | 0.271 |
| 61 | $\mathrm{f} / \mathrm{h}$ | o | 7.140 | 0.235 | 590.135 | 0.373 | 0.253 |
| 62 | f/h | o | "invalid" | "invalid" | "invalid" | 0.347 | 0.193 |
| 63 | f/h | o | "invalid" | "invalid" | "invalid" | 0.500 | 0.182 |
| 64 | h | o | "invalid" | "invalid" | "invalid" | 0.637 | 0.152 |
| 65 | f | o | 12.901 | 0.936 | 293.852 | 0.394 | 0.217 |
| 66 | $\mathrm{f} / \mathrm{h}$ | o | 18.042 | 1.618 | 222.7 | 0.436 | 0.133 |
| 67 | h | n | error | error | error | 0.382 | 0.270 |
| 68 | h | o | 30.652 | 1.407 | 239.221 | 0.445 | 0.144 |
| 69 | $\mathrm{f} / \mathrm{h}$ | o | "invalid" | "invalid" | "invalid" | 0.398 | 0.229 |
| 70 | f/h | o | 7.150 | 0.383 | 461.458 | 0.409 | 0.088 |
| 71 | $\mathrm{f} / \mathrm{h}$ | o | 7.871 | 0.438 | 431.364 | 0.478 | 0.096 |
| 72 | f | i | error | error | error | 0.567 | 0.123 |
| 73 | f | i | "invalid" | "invalid" | "invalid" | 0.634 | 0.164 |
| 74 | $\mathrm{f} / \mathrm{h}$ | i | "invalid" | "invalid" | "invalid" | 0.607 | 0.275 |
| 75 | f | i | "invalid" | "invalid" | "invalid" | 0.433 | 0.527 |
| 76 | $\mathrm{f} / \mathrm{h}$ | o | 3.097 | 0.061 | 1160.07 | 0.324 | 0.106 |
| 77 | h | o | 22.493 | 0.841 | 310.125 | 0.438 | 0.164 |
| 78 | f/h | o | 45.436 | 2.836 | 167.49 | 0.483 | 0.126 |
| 79 | f/h | o | error | error | error | 0.521 | 0.053 |
| 80 | f | i | "invalid" | "invalid" | "invalid" | 0.463 | 0.155 |
| 81 | f/h | o | 5.408 | 0.223 | 605.51 | 0.430 | 0.169 |
| 82 | f/h | o | 5.963 | 0.276 | 544.29 | 0.492 | 0.220 |
| 83 | f/h | o | "invalid" | "invalid" | "invalid" | 0.556 | 0.273 |
| 84 | h | o | 13.036 | 0.706 | 338.95 | 0.571 | 0.139 |
| 85 | $\mathrm{f} / \mathrm{h}$ | n | "invalid" | "invalid" | "invalid" | 0.196 | 0.069 |
| 86 | h | n | "invalid" | "invalid" | "invalid" | 0.502 | 0.197 |
| 87 | h | n | 25.616 | 1.677 | 218.73 | 0.355 | 0.173 |
| 88 | h | o | "invalid" | "invalid" | "invalid" | 0.412 | 0.238 |


| Indent | Type* | Location** | $\begin{gathered} \hline \text { Modulus } \\ (\mathrm{GPa}) \end{gathered}$ | Hardness (GPa) | Maximum <br> Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \\ & \hline \end{aligned}$ | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 89 | f/h | o | 7.510 | 0.345 | 486.352 | 0.517 | 0.131 |
| 90 | f/h | o | 7.318 | 0.387 | 459.329 | 0.431 | 0.259 |
| 91 | f/h | i | 3.982 | 0.196 | 645.76 | 0.544 | 0.115 |
| 92 | f/h | i | 4.362 | 0.167 | 700.389 | 0.503 | 0.348 |
| 93 | f | i | 3.201 | 0.077 | 1035.13 | 0.493 | 0.407 |
| 94 | $\mathrm{f} / \mathrm{h}$ | i | 2.788 | 0.047 | 1326.38 | 0.447 | 0.391 |
| 95 | f | i | error | error | error | 0.506 | 0.210 |
| 96 | $\mathrm{f} / \mathrm{h}$ | i | error | error | error | 0.457 | 0.178 |
| 97 | f/h | o | "invalid" | "invalid" | "invalid" | 0.456 | 0.075 |
| 98 | $\mathrm{f} / \mathrm{h}$ | o | error | error | error | 0.405 | 0.036 |
| 99 | $\mathrm{f} / \mathrm{h}$ | o | 5.058 | 0.197 | 644.08 | 0.545 | 0.132 |
| 100 | f | i | "invalid" | "invalid" | "invalid" | 0.482 | 0.146 |
| 101 | $\mathrm{f} / \mathrm{h}$ | o | 8.049 | 0.361 | 475.715 | 0.379 | 0.135 |
| 102 | h | n | 9.324 | 0.357 | 477.934 | 0.317 | 0.102 |
| 103 | f | n | "invalid" | "invalid" | "invalid" | 0.536 | 0.143 |
| 104 | h | n | 143.094 | 10.453 | 85.589 | 0.527 | 0.265 |
| 105 | u | n | 100.732 | 8.431 | 95.629 | 0.138 | 0.526 |
| 106 | h | n | "invalid" | "invalid" | "invalid" | 0.649 | 0.144 |
| 107 | h/u | n | 30.782 | 5.388 | 120.476 | 0.221 | 0.428 |
| 108 | h/u | n | 96.902 | 10.050 | 87.297 | 0.482 | 0.190 |
| 109 | $\mathrm{f} / \mathrm{h}$ | o | "invalid" | "invalid" | "invalid" | 0.438 | 0.143 |
| 110 | f/h | o | 6.616 | 0.269 | 551.418 | 0.619 | 0.194 |
| 111 | $\mathrm{f} / \mathrm{h}$ | i | "invalid" | "invalid" | "invalid" | 0.660 | 0.098 |
| 112 | $\mathrm{f} / \mathrm{h}$ | i | error | error | error | 0.301 | 0.160 |
| 113 | f/h | i | 5.867 | 0.348 | 484.495 | 0.544 | 0.328 |
| 114 | f | i | 3.637 | 0.128 | 799.707 | 0.425 | 0.275 |
| 115 | f | i | 2.874 | 0.072 | 1071.04 | 0.395 | 0.271 |
| 116 | f/h | i | 4.445 | 0.144 | 756.532 | 0.599 | 0.154 |
| 117 | f/h | o | "invalid" | "invalid" | "invalid" | 0.623 | 0.088 |
| 118 | f/h | o | 10.791 | 0.507 | 400.749 | 0.298 | 0.263 |
| 119 | f/h | 1 | 2.106 | 0.085 | 983.676 | 0.534 | 0.127 |
| 120 | f | 1 | error | error | error | 0.496 | 0.092 |
| 121 | $\mathrm{h} / \mathrm{u}$ | n | 63.909 | 4.689 | 129.357 | 0.492 | 0.186 |
| 122 | $\mathrm{h} / \mathrm{u}$ | n | 63.284 | 4.599 | 130.761 | 0.453 | 0.040 |
| 123 | h | n | 25.226 | 0.947 | 292.101 | 0.542 | 0.033 |
| 124 | u | n | 83.175 | 6.377 | 110.525 | 0.521 | 0.087 |
| 125 | u | n | 38.872 | 1.604 | 223.743 | 0.511 | 0.042 |
| 126 | h | n | 28.553 | 1.166 | 262.962 | 0.544 | 0.101 |
| 127 | h | n | 29.424 | 1.322 | 246.801 | 0.395 | 0.224 |
| 128 | h | n | 48.831 | 2.919 | 165.066 | 0.408 | 0.185 |


| Indent | Type* | Location** | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \mathrm{Al} / \mathrm{Ca} \\ & \text { Ratio } \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 129 | $\mathrm{f} / \mathrm{h}$ | n | 15.628 | 0.699 | 340.621 | 0.532 | 0.062 |
| 130 | $\mathrm{f} / \mathrm{h} / \mathrm{u}$ | o | "invalid" | "invalid" | "invalid" | 0.372 | 0.202 |
| 131 | $\mathrm{f} / \mathrm{h}$ | o | 5.597 | 0.278 | 542.088 | 0.504 | 0.098 |
| 132 | f | i | 5.626 | 0.212 | 620.815 | 0.546 | 0.144 |
| 133 | f | i | 4.939 | 0.172 | 689.946 | 0.497 | 0.234 |
| 134 | f | i | "invalid" | "invalid" | "invalid" | 0.479 | 0.109 |
| 135 | f/h | i | error | error | error | 0.387 | 0.159 |
| 136 | f | o | 7.544 | 0.708 | 338.243 | 0.564 | 0.131 |
| 137 | $\mathrm{f} / \mathrm{h}$ | o | "invalid" | "invalid" | "invalid" | 0.123 | 0.469 |
| 138 | $\mathrm{f} / \mathrm{h}$ | o | error | error | error | 0.402 | 0.209 |
| 139 | f | i | "invalid" | "invalid" | "invalid" | 0.481 | 0.090 |
| 140 | $\mathrm{f} / \mathrm{h}$ | o | error | error | error | 0.263 | 0.091 |
| 141 | h/u | n | 74.182 | 5.383 | 120.617 | 0.455 | 0.121 |
| 142 | u | n | 82.980 | 7.860 | 99.169 | 0.440 | 0.043 |
| 143 | $\mathrm{f} / \mathrm{h}$ | n | 17.731 | 0.360 | 475.821 | 0.493 | 0.042 |
| 144 | h | n | 25.821 | 1.337 | 245.325 | 0.471 | 0.176 |
| 145 | h/u | n | 32.879 | 1.502 | 231.328 | 0.595 | 0.078 |
| 146 | u | n | 102.125 | 8.713 | 94.013 | 0.601 | 0.065 |
| 147 | h | n | 23.904 | 1.229 | 256.051 | 0.376 | 0.038 |
| 148 | h | n | 38.034 | 1.257 | 253.149 | 0.615 | 0.063 |
| 149 | $\mathrm{f} / \mathrm{h}$ | n | "invalid" | "invalid" | "invalid" | 0.366 | 0.121 |
| 150 | h | n | error | error | error | 0.437 | 0.175 |
| 151 | $\mathrm{f} / \mathrm{h}$ | o | "invalid" | "invalid" | "invalid" | 0.498 | 0.188 |
| 152 | f/h | o | 4.459 | 0.165 | 703.669 | 0.468 | 0.124 |
| 153 | f/h | i | "invalid" | "invalid" | "invalid" | 0.313 | 0.197 |
| 154 | h | o | "invalid" | "invalid" | "invalid" | 0.302 | 0.196 |
| 155 | h | o | "invalid" | "invalid" | "invalid" | 0.314 | 0.088 |
| 156 | h | o | 23.192 | 1.441 | 236.297 | 0.447 | 0.229 |
| 157 | $\mathrm{f} / \mathrm{h}$ | o | 35.260 | 2.409 | 181.906 | 0.560 | 0.220 |
| 158 | h | n | 6.995 | 0.408 | 447.694 | 0.493 | 0.212 |
| 159 | $\mathrm{f} / \mathrm{h}$ | n | 9.815 | 0.876 | 303.864 | 0.464 | 0.092 |
| 160 | h | n | 43.526 | 2.592 | 175.284 | 0.483 | 0.110 |
| 161 | u | n | 113.914 | 8.782 | 93.636 | 0.370 | 0.031 |
| 162 | h | n | 35.814 | 1.335 | 245.464 | 0.364 | 0.029 |
| 163 | h | n | "invalid" | "invalid" | "invalid" | 0.346 | 0.157 |
| 164 | $\mathrm{f} / \mathrm{h}$ | n | 42.550 | 2.055 | 197.343 | 0.476 | 0.074 |
| 165 | h | n | 28.566 | 1.310 | 247.833 | 0.472 | 0.087 |
| 166 | h | n | 24.143 | 1.315 | 247.446 | 0.552 | 0.096 |
| 167 | f | n | 53.368 | 2.855 | 166.812 | 0.648 | 0.103 |
| 168 | h/u | n | 32.658 | 1.346 | 244.623 | 0.435 | 0.148 |


| Indent | Type* | Location** | $\begin{gathered} \hline \text { Modulus } \\ (\mathrm{GPa}) \\ \hline \end{gathered}$ | Hardness (GPa) | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 169 | h | n | 29.010 | 1.541 | 228.362 | 0.615 | 0.095 |
| 170 | u | n | 84.101 | 9.292 | 90.993 | 0.500 | 0.055 |
| 171 | h | n | 32.525 | 2.089 | 195.572 | 0.440 | 0.042 |
| 172 | h/u | n | "invalid" | "invalid" | "invalid" | 0.463 | 0.171 |
| 173 | $\mathrm{f} / \mathrm{h}$ | O | 14.577 | 0.578 | 375.186 | 0.460 | 0.128 |
| 174 | h | O | "invalid" | "invalid" | "invalid" | 0.481 | 0.255 |
| 175 | h | n | 29.569 | 1.732 | 215.197 | 0.519 | 0.086 |
| 176 | h/u | n | 68.680 | 3.475 | 150.977 | 0.480 | 0.161 |
| 177 | h/u | n | 72.620 | 8.610 | 94.629 | 0.488 | 0.063 |
| 178 | h | n | 18.660 | 1.056 | 276.433 | 0.371 | 0.109 |
| 179 | h | n | 13.492 | 0.513 | 397.886 | 0.325 | 0.236 |
| 180 | $\mathrm{f} / \mathrm{h}$ | n | "invalid" | "invalid" | "invalid" | 0.464 | 0.174 |
| 181 | u | n | 120.452 | 9.135 | 91.818 | 0.265 | 0.263 |
| 182 | $\mathrm{f} / \mathrm{h}$ | n | 20.502 | 0.625 | 360.741 | 0.324 | 0.143 |
| 183 | h | n | 12.555 | 0.601 | 367.542 | 0.588 | 0.089 |
| 184 | $\mathrm{f} / \mathrm{h}$ | n | 10.343 | 0.481 | 411.305 | 0.654 | 0.085 |
| 185 | h | n | "invalid" | "invalid" | "invalid" | 0.284 | 0.172 |
| 186 | h | n | 29.890 | 0.925 | 295.742 | 0.434 | 0.090 |
| 187 | $\mathrm{h} / \mathrm{u}$ | n | 57.817 | 3.247 | 156.249 | 0.380 | 0.028 |
| 188 | h | n | "invalid" | "invalid" | "invalid" | 0.481 | 0.184 |
| 189 | h | n | 15.458 | 0.680 | 345.318 | 0.593 | 0.078 |
| 190 | h/u | n | 87.843 | 9.123 | 91.946 | 0.542 | 0.083 |
| 191 | h/u | n | 65.443 | 3.443 | 151.669 | 0.614 | 0.105 |
| 192 | $\mathrm{f} / \mathrm{h}$ | n | 12.611 | 0.362 | 474.701 | 0.227 | 0.381 |
| 193 | h | n | 25.091 | 1.519 | 230.06 | 0.533 | 0.084 |
| 194 | $\mathrm{f} / \mathrm{h}$ | n | "invalid" | "invalid" | "invalid" | 0.468 | 0.124 |
| 195 | h | n | 21.979 | 0.849 | 308.768 | 0.522 | 0.104 |
| 196 | h | n | 27.878 | 1.290 | 250.05 | 0.572 | 0.094 |
| 197 | h | n | 19.398 | 0.987 | 286.13 | 0.453 | 0.094 |
| 198 | h | n | 17.629 | 1.256 | 253.253 | 0.535 | 0.089 |
| 199 | f/h | n | 21.817 | 0.955 | 290.831 | 0.448 | 0.178 |
| 200 | $\mathrm{f} / \mathrm{h}$ | n | error | error | error | 0.508 | 0.076 |

[^1]PC-1\% Grid 2


| Indent | Type* | Location** | Modulus <br> $(\mathrm{GPa})$ | Hardness <br> $(\mathrm{GPa})$ | Maximum <br> Displacement (nm) | Si/Ca <br> Ratio | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | h | i | 36.269 | 0.928 | 295.686 | 0.349 | 0.217 |
| 2 | $\mathrm{f} / \mathrm{h}$ | i | 60.418 | 6.147 | 112.625 | 0.430 | 0.324 |
| 3 | $\mathrm{~h} / \mathrm{u}$ | i | "invalid" | "invalid" | 1072.85 | 0.368 | 0.255 |
| 4 | $\mathrm{f} / \mathrm{h}$ | i | "invalid" | "invalid" | 250.601 | 0.268 | 0.228 |
| 5 | $\mathrm{f} / \mathrm{h}$ | i | error | error | error | 0.259 | 0.169 |
| 6 | h | o | 88.548 | 7.820 | 99.47 | 0.339 | 0.127 |
| 7 | h | n | 47.488 | 4.841 | 127.364 | 0.460 | 0.179 |
| 8 | h | n | error | error | error | 0.442 | 0.132 |


| Indent | Type* | Location** | Modulus (GPa) | Hardness (GPa) | Maximum Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \\ & \hline \end{aligned}$ | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | h | n | 22.055 | 1.589 | 224.648 | 0.489 | 0.127 |
| 10 | h | n | 54.101 | 3.867 | 142.926 | 0.443 | 0.205 |
| 11 | h | n | 31.017 | 1.099 | 271.143 | 0.390 | 0.041 |
| 12 | h | n | "invalid" | "invalid" | "invalid" | 0.384 | 0.204 |
| 13 | u | n | error | error | error | 0.089 | 0.449 |
| 14 | u | n | 138.101 | 10.876 | 83.789 | 0.371 | 0.030 |
| 15 | h | n | 22.281 | 1.019 | 281.51 | 0.468 | 0.065 |
| 16 | $\mathrm{f} / \mathrm{h}$ | n | 14.375 | 0.638 | 356.613 | 0.406 | 0.119 |
| 17 | h | n | 18.164 | 0.846 | 309.272 | 0.437 | 0.246 |
| 18 | h | n | "invalid" | "invalid" | "invalid" | 0.183 | 0.258 |
| 19 | h | n | "invalid" | "invalid" | "invalid" | 0.464 | 0.111 |
| 20 | h | n | 43.199 | 2.467 | 179.719 | 0.438 | 0.147 |
| 21 | h | i | 21.403 | 1.207 | 258.42 | 0.410 | 0.208 |
| 22 | f | i | "invalid" | "invalid" | "invalid" | 0.441 | 0.165 |
| 23 | f/h | i | 14.973 | 0.365 | 473.277 | 0.775 | 0.306 |
| 24 | $\mathrm{f} / \mathrm{h}$ | i | 17.399 | 1.140 | 266.429 | 0.392 | 0.465 |
| 25 | $\mathrm{f} / \mathrm{h}$ | i | "invalid" | "invalid" | "invalid" | 0.602 | 0.499 |
| 26 | h | i | error | error | error | 0.550 | 0.306 |
| 27 | u | o | "invalid" | "invalid" | "invalid" | 0.250 | 0.159 |
| 28 | u | o | 7.734 | 0.135 | 780.355 | 0.318 | 0.187 |
| 29 | u | o | "invalid" | "invalid" | "invalid" | 0.251 | 0.153 |
| 30 | h/u | o | "invalid" | "invalid" | "invalid" | 0.252 | 0.203 |
| 31 | h | o | "invalid" | "invalid" | "invalid" | 0.376 | 0.227 |
| 32 | u | o | "invalid" | "invalid" | "invalid" | 0.321 | 0.292 |
| 33 | u | n | 228.266 | 20.275 | 60.518 | 0.084 | 0.413 |
| 34 | u | n | 187.639 | 13.871 | 73.832 | 0.360 | 0.029 |
| 35 | h | n | 22.695 | 0.876 | 303.836 | 0.540 | 0.087 |
| 36 | h | n | 148.033 | 13.627 | 74.494 | 0.234 | 0.234 |
| 37 | $\mathrm{f} / \mathrm{h}$ | n | 17.635 | 0.502 | 402.339 | 0.284 | 0.112 |
| 38 | h/u | n | 34.083 | 2.221 | 189.637 | 0.892 | 0.038 |
| 39 | h | n | 18.393 | 0.840 | 310.367 | 0.407 | 0.311 |
| 40 | $\mathrm{f} / \mathrm{h}$ | n | "invalid" | "invalid" | "invalid" | 0.436 | 0.080 |
| 41 | $\mathrm{f} / \mathrm{h}$ | i | "invalid" | "invalid" | "invalid" | 0.477 | 0.453 |
| 42 | f | i | 10.444 | 0.422 | 439.443 | 0.351 | 0.302 |
| 43 | f | i | "invalid" | "invalid" | "invalid" | 0.314 | 0.403 |
| 44 | $\mathrm{f} / \mathrm{h}$ | 1 | "invalid" | "invalid" | "invalid" | 0.297 | 0.350 |
| 45 | f | 1 | 18.530 | 1.395 | 240.332 | 0.458 | 0.237 |
| 46 | f | 1 | 22.813 | 2.157 | 192.331 | 0.423 | 0.277 |
| 47 | f/h | 1 | 14.090 | 0.468 | 417.216 | 0.612 | 0.331 |
| 48 | f/h | 1 | 21.401 | 1.155 | 264.304 | 0.436 | 0.199 |


| Indent | Type* | Location** | Modulus (GPa) | Hardness (GPa) | Maximum Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \end{aligned}$ | $\begin{aligned} & \hline \mathrm{Al} / \mathrm{Ca} \\ & \text { Ratio } \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 49 | f/h | i | 11.843 | 0.525 | 393.639 | 0.327 | 0.256 |
| 50 | $\mathrm{f} / \mathrm{h}$ | i | error | error | error | 0.349 | 0.290 |
| 51 | h/u | i | error | error | error | 0.223 | 0.291 |
| 52 | f/h | i | "invalid" | "invalid" | "invalid" | 0.181 | 0.151 |
| 53 | $\mathrm{f} / \mathrm{h}$ | o | 386.635 | 19.604 | 61.586 | 0.261 | 0.120 |
| 54 | h | n | 34.922 | 1.546 | 227.947 | 0.659 | 0.091 |
| 55 | h | n | error | error | error | 0.431 | 0.141 |
| 56 | h | n | 55.326 | 1.948 | 202.736 | 0.259 | 0.342 |
| 57 | $\mathrm{f} / \mathrm{h}$ | n | 19.949 | 1.115 | 268.957 | 0.312 | 0.282 |
| 58 | h | n | 30.378 | 1.809 | 210.543 | 0.462 | 0.162 |
| 59 | h | n | 14.869 | 0.710 | 338.127 | 0.477 | 0.155 |
| 60 | h | n | 21.785 | 1.001 | 283.934 | 0.519 | 0.066 |
| 61 | f | i | "invalid" | "invalid" | "invalid" | 0.408 | 0.547 |
| 62 | f | i | 32.287 | 2.665 | 172.847 | 0.380 | 0.445 |
| 63 | f | i | "invalid" | "invalid" | "invalid" | 0.392 | 0.623 |
| 64 | $\mathrm{f} / \mathrm{h}$ | i | "invalid" | "invalid" | "invalid" | 0.278 | 0.422 |
| 65 | f | i | 7.663 | 0.152 | 735.279 | 0.263 | 0.347 |
| 66 | f/h | i | 61.260 | 3.320 | 154.563 | 0.336 | 0.366 |
| 67 | f/h | i | 152.542 | 19.252 | 62.189 | 0.229 | 0.276 |
| 68 | f | i | "invalid" | "invalid" | "invalid" | 0.345 | 0.358 |
| 69 | $\mathrm{f} / \mathrm{h}$ | i | "invalid" | "invalid" | "invalid" | 0.379 | 0.246 |
| 70 | f | i | "invalid" | "invalid" | "invalid" | 0.616 | 0.260 |
| 71 | h | i | "invalid" | "invalid" | "invalid" | 0.640 | 0.261 |
| 72 | h/u | i | "invalid" | "invalid" | "invalid" | 0.518 | 0.298 |
| 73 | f/h | i | "invalid" | "invalid" | "invalid" | 0.258 | 0.158 |
| 74 | h | n | "invalid" | "invalid" | "invalid" | 0.351 | 0.148 |
| 75 | h | n | 44.065 | 2.158 | 192.405 | 0.388 | 0.204 |
| 76 | u | n | 111.895 | 6.745 | 107.334 | 0.372 | 0.041 |
| 77 | h | n | 26.899 | 1.278 | 251.053 | 0.575 | 0.096 |
| 78 | h | n | 26.030 | 1.115 | 269.04 | 0.503 | 0.205 |
| 79 | h | n | 20.909 | 1.026 | 280.584 | 0.408 | 0.138 |
| 80 | h | n | "invalid" | "invalid" | "invalid" | 0.291 | 0.222 |
| 81 | f | i | 26.035 | 2.686 | 172.122 | 0.481 | 0.886 |
| 82 | f | i | 33.662 | 2.542 | 176.959 | 0.486 | 0.902 |
| 83 | f | i | "invalid" | "invalid" | "invalid" | 0.405 | 0.859 |
| 84 | f | i | 54.067 | 3.499 | 150.422 | 0.384 | 0.906 |
| 85 | f/h | i | "invalid" | "invalid" | "invalid" | 0.352 | 0.647 |
| 86 | f | i | "invalid" | "invalid" | "invalid" | 0.333 | 0.480 |
| 87 | f/h | i | 178.401 | 21.289 | 58.974 | 0.278 | 0.302 |
| 88 | f | i | 20.323 | 1.350 | 244.221 | 0.202 | 0.189 |


| Indent | Type* | Location** | Modulus (GPa) | Hardness (GPa) | Maximum Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \\ & \hline \end{aligned}$ | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 89 | f/h | i | error | error | error | 0.248 | 0.218 |
| 90 | $\mathrm{f} / \mathrm{h}$ | i | "invalid" | "invalid" | "invalid" | 0.307 | 0.165 |
| 91 | $\mathrm{f} / \mathrm{h}$ | i | error | error | error | 0.470 | 0.228 |
| 92 | h | i | "invalid" | "invalid" | "invalid" | 0.504 | 0.234 |
| 93 | h/u | o | error | error | error | 0.553 | 0.095 |
| 94 | h | n | error | error | error | 0.436 | 0.124 |
| 95 | h | n | 20.941 | 0.969 | 288.852 | 0.485 | 0.137 |
| 96 | h | n | 27.865 | 1.530 | 229.177 | 0.544 | 0.083 |
| 97 | u | n | 140.097 | 9.942 | 87.786 | 0.336 | 0.067 |
| 98 | u | n | 117.955 | 9.844 | 88.246 | 0.363 | 0.033 |
| 99 | h | n | 27.304 | 1.121 | 268.181 | 0.534 | 0.091 |
| 100 | $\mathrm{f} / \mathrm{h}$ | n | 10.454 | 0.334 | 494.55 | 0.357 | 0.094 |
| 101 | f | i | 29.474 | 3.596 | 148.334 | 0.296 | 0.841 |
| 102 | f | i | 29.948 | 2.776 | 169.244 | 0.250 | 0.715 |
| 103 | f | i | "invalid" | "invalid" | "invalid" | 0.221 | 0.601 |
| 104 | $\mathrm{f} / \mathrm{h}$ | i | 32.563 | 2.653 | 173.235 | 0.413 | 1.249 |
| 105 | f | i | 20.564 | 0.976 | 287.661 | 0.367 | 0.814 |
| 106 | f/h | i | 52.319 | 3.048 | 161.277 | 0.340 | 0.656 |
| 107 | $\mathrm{f} / \mathrm{h}$ | i | 154.945 | 16.793 | 66.82 | 0.325 | 0.610 |
| 108 | f/h | i | "invalid" | "invalid" | "invalid" | 0.246 | 0.368 |
| 109 | f | i | "invalid" | "invalid" | "invalid" | 0.247 | 0.294 |
| 110 | f | i | "invalid" | "invalid" | "invalid" | 0.182 | 0.117 |
| 111 | f | i | 4.166 | 0.104 | 887.885 | 0.248 | 0.124 |
| 112 | h | i | "invalid" | "invalid" | "invalid" | 0.527 | 0.219 |
| 113 | h | o | 18.971 | 1.261 | 252.849 | 0.384 | 0.232 |
| 114 | $\mathrm{f} / \mathrm{h}$ | o | 19.611 | 0.991 | 285.611 | 0.153 | 0.110 |
| 115 | h | n | 31.442 | 1.831 | 209.239 | 0.449 | 0.145 |
| 116 | h | n | 14.028 | 0.684 | 344.556 | 0.511 | 0.111 |
| 117 | h | n | "invalid" | "invalid" | "invalid" | 0.478 | 0.098 |
| 118 | u | n | 121.385 | 8.731 | 93.951 | 0.366 | 0.037 |
| 119 | h | n | 31.455 | 1.122 | 268.117 | 0.581 | 0.085 |
| 120 | h/u | n | 63.900 | 3.365 | 153.399 | 0.175 | 0.275 |
| 121 | $\mathrm{f} / \mathrm{h}$ | i | 34.602 | 5.558 | 118.543 | 0.446 | 1.274 |
| 122 | f | i | 31.077 | 3.071 | 160.775 | 0.419 | 1.193 |
| 123 | f | i | "invalid" | "invalid" | "invalid" | 0.315 | 1.036 |
| 124 | $\mathrm{f} / \mathrm{h}$ | i | 33.130 | 2.573 | 175.868 | 0.208 | 0.729 |
| 125 | f | 1 | error | error | error | 0.334 | 1.000 |
| 126 | f/h | i | 52.189 | 3.384 | 152.922 | 0.336 | 0.840 |
| 127 | $\mathrm{f} / \mathrm{h}$ | 1 | "invalid" | "invalid" | "invalid" | 0.364 | 0.719 |
| 128 | f | i | 33.212 | 2.753 | 170.048 | 0.358 | 0.570 |


| Indent | Type* | Location** | Modulus (GPa) | Hardness (GPa) | Maximum <br> Displacement (nm) | $\begin{aligned} & \hline \text { Si/Ca } \\ & \text { Ratio } \\ & \hline \end{aligned}$ | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 129 | f/h | i | error | error | error | 0.376 | 0.484 |
| 130 | $\mathrm{f} / \mathrm{h}$ | i | "invalid" | "invalid" | "invalid" | 0.246 | 0.214 |
| 131 | f | i | error | error | error | 0.183 | 0.113 |
| 132 | h | i | 3.558 | 0.095 | 931.708 | 0.360 | 0.145 |
| 133 | $\mathrm{f} / \mathrm{h}$ | i | error | error | error | 0.304 | 0.220 |
| 134 | h | o | error | error | error | 0.290 | 0.147 |
| 135 | h | n | 42.352 | 5.197 | 122.827 | 0.401 | 0.134 |
| 136 | h/u | n | 95.863 | 7.890 | 99.024 | 0.194 | 0.420 |
| 137 | h | n | "invalid" | "invalid" | "invalid" | 0.510 | 0.097 |
| 138 | h | n | 29.022 | 1.656 | 220.047 | 0.560 | 0.075 |
| 139 | h | n | 23.093 | 0.963 | 289.799 | 0.484 | 0.125 |
| 140 | h | n | 20.103 | 1.261 | 252.653 | 0.496 | 0.079 |
| 141 | f | i | 36.699 | 5.042 | 124.662 | 0.164 | 0.477 |
| 142 | f/h | i | 37.422 | 3.720 | 145.685 | 0.395 | 1.487 |
| 143 | f/h | i | 13.334 | 0.511 | 399.349 | 0.427 | 1.946 |
| 144 | $\mathrm{f} / \mathrm{h}$ | i | 26.813 | 1.796 | 211.343 | 0.375 | 1.322 |
| 145 | $\mathrm{f} / \mathrm{h}$ | i | 22.341 | 1.114 | 269.208 | 0.316 | 0.994 |
| 146 | f | i | 46.484 | 2.603 | 175.058 | 0.400 | 1.173 |
| 147 | $\mathrm{f} / \mathrm{h}$ | i | "invalid" | "invalid" | "invalid" | 0.337 | 0.766 |
| 148 | f/h | i | "invalid" | "invalid" | "invalid" | 0.395 | 0.673 |
| 149 | $\mathrm{f} / \mathrm{h}$ | i | 18.173 | 0.560 | 381.547 | 0.372 | 0.432 |
| 150 | f/h | i | "invalid" | "invalid" | "invalid" | 0.393 | 0.397 |
| 151 | f/h | i | "invalid" | "invalid" | "invalid" | 0.168 | 0.127 |
| 152 | f/h | i | 6.682 | 0.366 | 471.701 | 0.368 | 0.152 |
| 153 | f/h | i | 19.009 | 1.348 | 244.473 | 0.424 | 0.164 |
| 154 | h | o | "invalid" | "invalid" | "invalid" | 0.407 | 0.224 |
| 155 | $\mathrm{f} / \mathrm{h}$ | o | "invalid" | "invalid" | "invalid" | 0.280 | 0.167 |
| 156 | h | n | 26.721 | 1.615 | 222.962 | 0.538 | 0.109 |
| 157 | h | n | 28.489 | 1.609 | 223.467 | 0.503 | 0.109 |
| 158 | h | n | 32.300 | 0.853 | 308.198 | 0.443 | 0.047 |
| 159 | h | n | 38.174 | 2.360 | 183.799 | 0.364 | 0.142 |
| 160 | h | n | 29.217 | 1.396 | 240.17 | 0.251 | 0.146 |
| 161 | $\mathrm{f} / \mathrm{h}$ | i | "invalid" | "invalid" | "invalid" | 0.379 | 1.122 |
| 162 | f/h | i | "invalid" | "invalid" | "invalid" | 0.350 | 1.234 |
| 163 | f/h | i | 17.076 | 0.835 | 311.502 | 0.319 | 1.438 |
| 164 | $\mathrm{f} / \mathrm{h}$ | i | 28.373 | 1.994 | 200.317 | 0.326 | 1.167 |
| 165 | $\mathrm{f} / \mathrm{h}$ | i | error | error | error | 0.402 | 1.599 |
| 166 | f | i | 28.162 | 1.319 | 247.055 | 0.238 | 0.693 |
| 167 | $\mathrm{f} / \mathrm{h}$ | i | "invalid" | "invalid" | "invalid" | 0.304 | 0.733 |
| 168 | f | i | "invalid" | "invalid" | "invalid" | 0.356 | 0.752 |


| Indent | Type* | Location** | $\begin{gathered} \hline \text { Modulus } \\ (\mathrm{GPa}) \end{gathered}$ | Hardness (GPa) | Maximum <br> Displacement (nm) | $\begin{aligned} & \hline \mathrm{Si} / \mathrm{Ca} \\ & \text { Ratio } \\ & \hline \end{aligned}$ | $\mathrm{Al} / \mathrm{Ca}$ <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 169 | f | i | error | error | error | 0.333 | 0.352 |
| 170 | f/h | i | "invalid" | "invalid" | "invalid" | 0.319 | 0.339 |
| 171 | f/h | i | error | error | error | 0.275 | 0.284 |
| 172 | f | i | error | error | error | 0.454 | 0.295 |
| 173 | f/h | i | error | error | error | 0.296 | 0.200 |
| 174 | f/h | o | error | error | error | 0.451 | 0.142 |
| 175 | f/h | o | error | error | error | 0.448 | 0.211 |
| 176 | f/h | o | "invalid" | "invalid" | "invalid" | 0.409 | 0.310 |
| 177 | $\mathrm{f} / \mathrm{h}$ | o | "invalid" | "invalid" | "invalid" | 0.264 | 0.198 |
| 178 | h | n | 21.500 | 1.015 | 282.017 | 0.433 | 0.198 |
| 179 | h | n | 17.391 | 0.650 | 353.419 | 0.519 | 0.097 |
| 180 | h/u | n | 86.350 | 6.424 | 110.079 | 0.372 | 0.059 |
| 181 | f | i | error | error | error | 0.395 | 1.674 |
| 182 | f | i | "invalid" | "invalid" | "invalid" | 0.358 | 1.487 |
| 183 | f | i | "invalid" | "invalid" | "invalid" | 0.392 | 1.747 |
| 184 | f | i | "invalid" | "invalid" | "invalid" | 0.405 | 1.807 |
| 185 | f/h | i | "invalid" | "invalid" | "invalid" | 0.416 | 1.688 |
| 186 | f | i | 29.891 | 1.144 | 265.826 | 0.325 | 1.080 |
| 187 | f/u | i | "invalid" | "invalid" | "invalid" | 0.333 | 0.976 |
| 188 | $\mathrm{f} / \mathrm{h}$ | i | "invalid" | "invalid" | "invalid" | 0.325 | 0.730 |
| 189 | $\mathrm{f} / \mathrm{h}$ | i | "invalid" | "invalid" | "invalid" | 0.263 | 0.458 |
| 190 | h/u | i | 4.506 | 0.150 | 739.41 | 0.319 | 0.415 |
| 191 | $\mathrm{f} / \mathrm{h}$ | i | 6.791 | 0.220 | 610.777 | 0.372 | 0.430 |
| 192 | f/h | i | "invalid" | "invalid" | "invalid" | 0.464 | 0.338 |
| 193 | $\mathrm{f} / \mathrm{h}$ | i | 9.313 | 0.482 | 410.876 | 0.409 | 0.410 |
| 194 | f/h | o | "invalid" | "invalid" | "invalid" | 0.413 | 0.219 |
| 195 | f/h | o | "invalid" | "invalid" | "invalid" | 0.348 | 0.181 |
| 196 | h | n | "invalid" | "invalid" | "invalid" | 0.476 | 0.083 |
| 197 | u | n | 77.302 | 4.023 | 140.126 | 0.464 | 0.047 |
| 198 | h | n | 26.376 | 1.445 | 235.855 | 0.620 | 0.089 |
| 199 | h | n | "invalid" | "invalid" | "invalid" | 0.480 | 0.097 |
| 200 | h | n | 39.347 | 4.818 | 127.703 | 0.768 | 0.121 |

[^2]
## APPENDIX D

## MACROMECHANICAL DATA

This appendix contains the data used to study the macromechanical properties of cementbased materials containing CNFs (Chapter 5 and Section 0). Three different sets of macromechanical data are included: dispersion method (Section 5.3.1), CNF loading (Section 5.3.2 and Section 5.3.3), and hybrid composites (Section 0). The force displacement curves for each specimen are given as well as the specimen mass and size.

## Dispersion Method

Testing method: flexural (three-point bending).
Beam length: ca. 114.3 mm .
Beam span: 76.2 mm .

## PC-W/Control (7 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 154.3 | 25.9 | 24.3 |
| B | 148.4 | 25.5 | 24.3 |
| C | 146.6 | 25.2 | 24.3 |
| D | 146.8 | 25.2 | 24.4 |
| E | 144.9 | 25.1 | 24.4 |
| F | 148.1 | 25.1 | 24.6 |



PC-W/CNF (7 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 144.1 | 24.9 | 24.2 |
| B | 140.0 | 24.7 | 24.2 |
| C | 140.3 | 24.4 | 24.5 |
| D | 141.4 | 24.2 | 24.7 |
| E | 141.0 | 24.1 | 24.7 |
| F | 143.6 | 24.3 | 24.8 |



PC-W/T-CNF (7 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 157.8 | 26.8 | 25.0 |
| B | 149.4 | 25.5 | 24.8 |
| C | 148.8 | 25.1 | 24.9 |
| D | 144.7 | 24.4 | 25.0 |
| E | 144.5 | 24.5 | 25.0 |
| F | 155.3 | 24.9 | 24.8 |



## PC-N-HRWR/Control (7 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 155.6 | 27.1 | 25.8 |
| B | 111.2 | 26.7 | 25.8 |
| C | 153.1 | 27.2 | 26.3 |
| D | 154.7 | 27.5 | 26.6 |
| E | 157.1 | 28.0 | 27.3 |
| F | 162.5 | 28.1 | 27.5 |



PC-N-HRWR/CNF (7 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | Discarded | Discarded | Discarded |
| B | 155.1 | 26.4 | 25.8 |
| C | 154.5 | 26.3 | 25.6 |
| D | 155.0 | 26.3 | 26.2 |
| E | 158.0 | 26.7 | 27.4 |
| F | 161.1 | 27.3 | 26.2 |



## PC-AE/Control (7 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 156.0 | 26.7 | 26.3 |
| B | 156.8 | 26.9 | 26.6 |
| C | 154.2 | 27.1 | 26.8 |
| D | 158.4 | 26.8 | 26.4 |
| E | 152.5 | 26.3 | 26.3 |
| F | 161.4 | 26.1 | 26.1 |



## PC-AE/CNF (7 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 137.9 | 24.5 | 24.4 |
| B | 136.3 | 24.7 | 24.3 |
| C | 135.5 | 24.7 | 24.6 |
| D | 136.4 | 24.2 | 24.8 |
| E | 137.1 | 24.4 | 24.8 |
| F | 138.7 | 24.5 | 24.9 |



## PC-P-HRWR/Control (7 days)

| Sample | Mass $(\mathrm{g})$ | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 138.9 | 23.6 | 24.1 |
| B | 133.4 | 23.4 | 24.0 |
| C | 136.3 | 23.3 | 24.2 |
| D | 135.9 | 23.1 | 24.4 |
| E | 135.9 | 23.0 | 24.5 |
| F | 139.1 | 22.9 | 24.8 |



## PC-P-HRWR/CNF (7 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 145.7 | 25.1 | 24.7 |
| B | 148.0 | 25.1 | 24.7 |
| C | 146.8 | 25.1 | 24.6 |
| D | 148.7 | 25.3 | 24.6 |
| E | 148.0 | 25.3 | 24.5 |
| F | 153.7 | 25.5 | 24.5 |



PC-P-HRWR/T-CNF (7 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 145.2 | 25.1 | 24.3 |
| B | 141.6 | 24.7 | 24.3 |
| C | 140.9 | 24.3 | 24.5 |
| D | 142.1 | 24.0 | 24.7 |
| E | 140.0 | 23.8 | 24.8 |
| F | 148.2 | 23.8 | 24.9 |



## CNF Loading

Testing method: compression (uniaxial on cylinders), splitting tensile, and flexural (three-point bending).

## Compression

PC-0\% (7 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 396.2 | 50.6 | 93.5 |
| B | 395.8 | 50.4 | 92.8 |
| C | 396.4 | 50.5 | 93.8 |
| D | 397.4 | 50.6 | 93.8 |
| E | 399.6 | 50.6 | 93.6 |



PC-0\% (28 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 397.2 | 50.5 | 93.3 |
| B | 393.4 | 50.6 | 92.9 |
| C | 402.7 | 50.5 | 94.3 |
| D | 402.6 | 50.5 | 94.2 |
| E | 397.6 | 50.4 | 93.9 |



PC-0.02\% (7 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 400.7 | 50.5 | 93.7 |
| B | 400.9 | 50.6 | 93.8 |
| C | 396.1 | 50.5 | 92.4 |
| D | 399.5 | 50.7 | 93.5 |
| E | 399.0 | 50.5 | 93.6 |



PC- $\mathbf{0 . 0 2 \%}$ (28 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 405.7 | 50.4 | 94.4 |
| B | 406.1 | 50.6 | 94.9 |
| C | 400.5 | 50.6 | 93.3 |
| D | 399.9 | 50.6 | 94.1 |
| E | 400.2 | 50.5 | 93.5 |



PC-0.08\% (7 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 397.0 | 50.6 | 92.4 |
| B | 401.5 | 50.5 | 93.0 |
| C | 399.8 | 50.6 | 93.3 |
| D | 388.9 | 50.7 | 90.7 |
| E | 401.5 | 50.6 | 93.7 |



PC-0.08\% (28 days)

| Sample | Mass (g) | Diameter (mm) | Average Height (mm) |
| :---: | :---: | :---: | :---: |
| A | 405.7 | 50.5 | 94.3 |
| B | 404.6 | 50.7 | 94.5 |
| C | 406.2 | 50.5 | 94.3 |
| D | 411.3 | 50.5 | 95.2 |
| E | 402.0 | 50.6 | 93.3 |



PC- $0.2 \%$ ( 7 days)

| Sample | Mass (g) | Diameter (mm) | Average Height (mm) |
| :---: | :---: | :---: | :---: |
| A | 400.2 | 50.7 | 92.9 |
| B | 399.7 | 50.7 | 92.4 |
| C | 408.4 | 50.6 | 93.9 |
| D | 404.7 | 50.6 | 93.6 |
| E | 400.6 | 50.6 | 92.6 |



PC-0.2\% ( 28 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 400.2 | 50.5 | 92.4 |
| B | 396.9 | 50.6 | 91.6 |
| C | 409.9 | 50.5 | 93.9 |
| D | 400.7 | 50.6 | 93.1 |
| E | 403.8 | 50.5 | 93.2 |



PC- $0.5 \%$ ( 7 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 400.9 | 50.5 | 94.4 |
| B | 396.9 | 50.5 | 92.6 |
| C | 410.8 | 50.5 | 94.8 |
| D | 402.9 | 50.3 | 93.6 |
| E | 403.2 | 50.6 | 93.3 |



PC-0.5\% ( 28 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 409.6 | 50.5 | 93.6 |
| B | 396.2 | 50.3 | 93.6 |
| C | 398.9 | 50.5 | 93.9 |
| D | 399.4 | 50.3 | 94.1 |
| E | 396.8 | 50.4 | 93.3 |



PC-1\% (7 days)

| Sample | Mass (g) | Diameter (mm) | Average Height (mm) |
| :---: | :---: | :---: | :---: |
| A | 384.7 | 50.5 | 94.2 |
| B | 370.5 | 50.3 | 92.3 |
| C | 377.0 | 50.4 | 93.5 |
| D | 382.2 | 50.4 | 93.5 |
| E | 375.1 | 50.5 | 93.2 |



PC-1\% (28 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 377.0 | 50.5 | 92.7 |
| B | Discarded | Discarded | Discarded |
| C | 376.8 | 50.5 | 93.9 |
| D | 369.5 | 50.5 | 90.8 |
| E | 371.1 | 50.4 | 92.0 |



SF-0\% (7 days)

| Sample | Mass (g) | Diameter (mm) | Average Height (mm) |
| :---: | :---: | :---: | :---: |
| A | 387.3 | 50.2 | 93.6 |
| B | 385.8 | 50.4 | 94.3 |
| C | 370.5 | 50.3 | 90.3 |
| D | 384.6 | 50.2 | 94.0 |
| E | 386.3 | 50.2 | 94.1 |



SF-0\% (28 days)

| Sample | Mass (g) | Diameter (mm) | Average Height (mm) |
| :---: | :---: | :---: | :---: |
| A | 381.4 | 50.2 | 92.8 |
| B | 386.0 | 50.4 | 93.8 |
| C | 379.8 | 50.6 | 91.9 |
| D | 385.7 | 50.5 | 93.9 |
| E | 381.3 | 50.6 | 93.3 |



SF-0.02\% (7 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 383.9 | 50.3 | 93.2 |
| B | 373.4 | 50.4 | 90.8 |
| C | 389.4 | 50.4 | 94.5 |
| D | 386.4 | 50.1 | 94.0 |
| E | 387.0 | 50.4 | 93.5 |



SF-0.02\% (28 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 374.2 | 50.5 | 90.3 |
| B | 385.2 | 50.6 | 93.6 |
| C | 382.8 | 50.4 | 93.2 |
| D | 384.7 | 50.7 | 93.6 |
| E | 387.1 | 50.5 | 94.0 |



SF-0.08\% (7 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 378.0 | 50.4 | 92.9 |
| B | 377.5 | 50.4 | 92.6 |
| C | 395.5 | 50.4 | 95.1 |
| D | 382.0 | 50.4 | 93.5 |
| E | 388.9 | 50.3 | 94.1 |



SF-0.08\% (28 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 393.0 | 50.6 | 94.4 |
| B | 384.1 | 50.5 | 92.0 |
| C | 384.7 | 50.3 | 93.1 |
| D | 386.4 | 50.5 | 94.5 |
| E | 390.9 | 50.7 | 93.2 |



SF-0.2\% (7 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 383.0 | 50.3 | 93.1 |
| B | 385.4 | 50.2 | 93.4 |
| C | 386.6 | 50.3 | 93.4 |
| D | 385.6 | 50.4 | 93.3 |
| E | 385.5 | 50.4 | 92.9 |



SF-0.2\% (28 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 381.5 | 50.2 | 92.6 |
| B | 385.4 | 50.3 | 92.6 |
| C | 381.7 | 50.2 | 92.9 |
| D | 379.0 | 50.3 | 92.4 |
| E | 382.8 | 50.4 | 93.1 |



SF-0.5\% (7 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 377.6 | 50.2 | 92.7 |
| B | 388.7 | 50.4 | 95.0 |
| C | 381.0 | 50.3 | 93.3 |
| D | 381.9 | 50.1 | 92.1 |
| E | 382.5 | 50.3 | 93.7 |



SF-0.5\% (28 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 376.0 | 50.5 | 92.3 |
| B | 382.7 | 50.3 | 93.2 |
| C | 377.2 | 50.4 | 92.6 |
| D | 379.8 | 50.6 | 92.4 |
| E | 384.7 | 50.4 | 92.9 |



SF-1\% (7 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 371.8 | 50.3 | 92.4 |
| B | 369.8 | 50.2 | 92.7 |
| C | 375.9 | 50.3 | 92.7 |
| D | 368.3 | 50.4 | 91.5 |
| E | 379.9 | 50.3 | 94.0 |



SF-1\% (28 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 378.8 | 50.4 | 93.0 |
| B | 373.2 | 50.5 | 92.4 |
| C | 374.6 | 50.6 | 93.1 |
| D | 380.3 | 50.4 | 95.0 |
| E | 375.3 | 50.5 | 91.3 |



## Splitting Tensile

PC-0\% (7 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 420.4 | 50.6 | 99.4 |
| B | 416.1 | 50.6 | 98.8 |
| C | 403.1 | 50.6 | 96.2 |
| D | 416.2 | 50.5 | 98.8 |
| E | 406.1 | 50.6 | 103.0 |



PC-0\% (28 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 395.0 | 50.5 | 92.6 |
| B | 413.7 | 50.6 | 97.7 |
| C | 405.3 | 50.5 | 95.5 |
| D | 388.0 | 50.5 | 91.8 |
| E | 415.3 | 50.6 | 98.8 |



PC-0.02\% (7 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 399.4 | 50.7 | 94.1 |
| B | 419.9 | 50.7 | 99.1 |
| C | 411.4 | 50.7 | 98.0 |
| D | 403.0 | 50.6 | 94.9 |
| E | 410.4 | 50.7 | 96.9 |



PC- $0.02 \%$ ( 28 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 407.4 | 50.7 | 96.2 |
| B | 415.2 | 50.5 | 97.9 |
| C | 399.4 | 50.6 | 93.8 |
| D | 402.9 | 50.5 | 95.7 |
| E | 396.6 | 50.5 | 93.8 |



PC- $0.08 \%$ ( 7 days)

| Sample | Mass (g) | Diameter (mm) | Average Height (mm) |
| :---: | :---: | :---: | :---: |
| A | 418.2 | 50.7 | 98.0 |
| B | 418.8 | 50.7 | 98.4 |
| C | 402.3 | 50.7 | 94.8 |
| D | 427.5 | 50.5 | 100.8 |
| E | 407.8 | 50.7 | 96.0 |



PC- $\mathbf{0 . 0 8 \%}$ (28 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 413.8 | 50.6 | 97.5 |
| B | 424.9 | 50.6 | 99.6 |
| C | 403.7 | 50.6 | 95.3 |
| D | 419.8 | 50.6 | 98.8 |
| E | 414.2 | 50.5 | 97.5 |



PC- $0.2 \%$ ( 7 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 403.6 | 50.7 | 93.8 |
| B | 412.9 | 50.7 | 96.9 |
| C | 413.6 | 50.5 | 96.9 |
| D | 404.4 | 50.8 | 95.4 |
| E | 423.4 | 50.7 | 98.9 |



PC-0.2\% ( 28 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 416.5 | 50.6 | 98.9 |
| B | 422.0 | 50.7 | 99.5 |
| C | 418.3 | 50.6 | 98.3 |
| D | 407.8 | 50.6 | 96.8 |
| E | 410.5 | 50.6 | 96.6 |



PC- $0.5 \%$ ( 7 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 414.1 | 50.6 | 98.1 |
| B | 423.0 | 50.5 | 99.5 |
| C | 415.7 | 50.5 | 98.5 |
| D | 412.0 | 50.6 | 97.8 |
| E | 409.3 | 50.6 | 96.6 |



PC-0.5\% ( 28 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 410.5 | 50.5 | 97.9 |
| B | 410.9 | 50.6 | 96.0 |
| C | 420.3 | 50.4 | 99.9 |
| D | 413.5 | 50.6 | 99.2 |
| E | 408.7 | 50.4 | 98.6 |



PC-1\% (7 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 394.3 | 50.4 | 99.5 |
| B | 394.0 | 50.3 | 97.3 |
| C | 397.2 | 50.4 | 99.3 |
| D | 403.5 | 50.4 | 100.3 |
| E | 394.7 | 50.5 | 98.7 |



PC-1\% (28 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 402.1 | 50.5 | 99.8 |
| B | 406.6 | 50.6 | 101.0 |
| C | 392.1 | 50.4 | 97.9 |
| D | 399.6 | 50.5 | 98.6 |
| E | 396.5 | 50.6 | 97.6 |



SF-0\% (7 days)

| Sample | Mass (g) | Diameter (mm) | Average Height (mm) |
| :---: | :---: | :---: | :---: |
| A | 397.2 | 50.4 | 97.2 |
| B | 415.0 | 50.4 | 100.9 |
| C | 400.3 | 50.2 | 98.8 |
| D | 379.6 | 50.4 | 92.4 |
| E | 400.7 | 50.3 | 99.2 |



SF-0\% (28 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 393.8 | 50.3 | 96.5 |
| B | 400.4 | 50.4 | 98.5 |
| C | 392.7 | 50.6 | 97.7 |
| D | 401.7 | 50.4 | 98.5 |
| E | 395.4 | 50.4 | 97.1 |



SF-0.02\% (7 days)

| Sample | Mass (g) | Diameter (mm) | Average Height (mm) |
| :---: | :---: | :---: | :---: |
| A | 387.7 | 50.5 | 95.5 |
| B | 390.2 | 50.6 | 96.1 |
| C | 395.3 | 50.2 | 96.9 |
| D | 390.6 | 50.4 | 96.3 |
| E | 402.2 | 50.3 | 98.7 |



SF-0.02\% (28 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 386.3 | 50.4 | 95.3 |
| B | 395.1 | 50.5 | 97.3 |
| C | 398.8 | 50.5 | 97.2 |
| D | 390.3 | 50.5 | 96.1 |
| E | 398.8 | 50.4 | 97.3 |



SF-0.08\% (7 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 401.3 | 50.3 | 99.1 |
| B | 399.1 | 50.3 | 97.4 |
| C | 392.0 | 50.4 | 97.9 |
| D | 406.6 | 50.3 | 101.1 |
| E | 393.2 | 50.4 | 95.8 |



SF-0.08\% (28 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 392.2 | 50.6 | 96.5 |
| B | 392.6 | 50.1 | 96.2 |
| C | 401.7 | 50.5 | 99.5 |
| D | 384.0 | 50.4 | 96.1 |
| E | 389.9 | 50.5 | 97.2 |



SF-0.2\% (7 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 399.9 | 50.6 | 97.9 |
| B | 401.6 | 50.2 | 98.0 |
| C | 411.4 | 50.5 | 98.8 |
| D | 400.1 | 50.4 | 98.2 |
| E | 400.1 | 50.5 | 97.6 |



SF-0.2\% (28 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 417.5 | 50.4 | 102.2 |
| B | 396.7 | 50.4 | 97.3 |
| C | 410.6 | 50.5 | 99.5 |
| D | 410.7 | 50.4 | 99.9 |
| E | 404.0 | 50.5 | 98.8 |



SF-0.5\% (7 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 397.3 | 50.6 | 99.0 |
| B | 409.8 | 50.3 | 99.8 |
| C | 407.6 | 50.2 | 100.2 |
| D | 404.6 | 50.5 | 100.0 |
| E | 400.3 | 50.5 | 98.0 |



SF-0.5\% (28 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 403.0 | 50.5 | 99.2 |
| B | 411.6 | 50.5 | 100.2 |
| C | 397.0 | 50.5 | 98.7 |
| D | 400.2 | 50.7 | 98.8 |
| E | 399.3 | 50.5 | 98.3 |



SF-1\% (7 days)

| Sample | Mass (g) | Diameter (mm) | Average Height (mm) |
| :---: | :---: | :---: | :---: |
| A | 393.4 | 50.4 | 98.4 |
| B | 397.6 | 50.5 | 97.2 |
| C | 392.2 | 50.3 | 97.8 |
| D | 387.1 | 50.4 | 97.4 |
| E | 401.0 | 50.6 | 99.5 |



SF-1\% (28 days)

| Sample | Mass $(\mathrm{g})$ | Diameter $(\mathrm{mm})$ | Average Height $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| A | 382.8 | 50.5 | 95.0 |
| B | 397.2 | 50.4 | 97.5 |
| C | 404.0 | 50.5 | 100.3 |
| D | 389.3 | 50.5 | 97.7 |
| E | 390.6 | 50.5 | 97.9 |



## Flexural

Beam length: ca. 114.3 mm .
Beam span: 76.2 mm .
PC-0\% (7 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 138.9 | 23.6 | 24.1 |
| B | 133.4 | 23.4 | 24.0 |
| C | 136.3 | 23.3 | 24.2 |
| D | 135.9 | 23.1 | 24.4 |
| E | 135.9 | 23.0 | 24.5 |
| F | 139.1 | 22.9 | 24.8 |



PC-0\% (28 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 144.3 | 24.9 | 24.5 |
| B | 145.0 | 24.9 | 24.5 |
| C | 145.3 | 25.1 | 24.4 |
| D | 145.6 | 25.3 | 24.3 |
| E | 147.3 | 25.4 | 24.3 |
| F | 152.5 | 25.5 | 24.5 |



PC- $0.02 \%$ ( 7 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 147.4 | 25.1 | 24.6 |
| B | 145.7 | 25.1 | 24.6 |
| C | 148.9 | 25.1 | 24.5 |
| D | 148.6 | 25.1 | 24.4 |
| E | 149.9 | 25.3 | 24.4 |
| F | 155.8 | 25.4 | 24.4 |



PC-0.02\% (28 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 145.6 | 25.0 | 24.4 |
| B | 145.8 | 25.1 | 24.6 |
| C | 147.2 | 25.0 | 24.8 |
| D | 144.8 | 24.6 | 25.0 |
| E | 144.2 | 24.7 | 25.0 |
| F | 151.7 | 24.7 | 25.1 |



PC- $0.08 \%$ ( 7 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 143.6 | 24.9 | 24.7 |
| B | 145.2 | 24.9 | 24.6 |
| C | 146.6 | 25.0 | 24.6 |
| D | 146.1 | 25.1 | 24.5 |
| E | 146.3 | 25.2 | 24.4 |
| F | 152.3 | 25.4 | 24.4 |



PC-0.08\% (28 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 142.7 | 24.6 | 24.4 |
| B | 144.6 | 24.5 | 24.5 |
| C | 147.4 | 24.6 | 24.8 |
| D | 147.7 | 24.5 | 25.0 |
| E | 145.7 | 24.4 | 25.0 |
| F | 150.8 | 24.3 | 25.0 |



PC-0.2\% (7 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 145.7 | 24.7 | 25.1 |
| B | 148.0 | 24.7 | 25.1 |
| C | 146.8 | 24.6 | 25.1 |
| D | 148.7 | 24.6 | 25.3 |
| E | 148.0 | 24.5 | 25.3 |
| F | 153.7 | 24.5 | 25.5 |



PC-0.2\% (28 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 142.6 | 24.7 | 24.3 |
| B | 142.3 | 24.8 | 24.6 |
| C | 144.6 | 24.6 | 24.8 |
| D | 143.1 | 24.4 | 25.0 |
| E | 146.0 | 24.3 | 25.1 |
| F | 148.8 | 24.2 | 25.1 |



PC-0.5\% (7 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 149.5 | 25.6 | 24.3 |
| B | 148.9 | 25.5 | 24.4 |
| C | 148.5 | 25.3 | 24.7 |
| D | 149.5 | 25.0 | 25.0 |
| E | 149.6 | 25.0 | 25.1 |
| F | 152.7 | 25.3 | 25.1 |



PC-0.5\% (28 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 149.9 | 25.3 | 25.0 |
| B | 150.1 | 25.3 | 24.7 |
| C | 151.5 | 25.7 | 24.6 |
| D | 151.0 | 25.6 | 24.5 |
| E | 151.5 | 26.0 | 24.5 |
| F | 154.8 | 26.4 | 24.6 |



PC-1\% (7 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 145.4 | 25.2 | 24.5 |
| B | 142.0 | 24.8 | 24.3 |
| C | 141.1 | 24.6 | 24.3 |
| D | 141.9 | 24.3 | 24.5 |
| E | 141.3 | 24.3 | 24.7 |
| F | 153.1 | 24.4 | 24.7 |



PC-1\% (28 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 148.0 | 25.2 | 24.7 |
| B | 147.2 | 25.0 | 24.8 |
| C | 148.3 | 25.4 | 24.8 |
| D | 148.2 | 25.3 | 24.7 |
| E | 150.2 | 25.5 | 24.6 |
| F | 155.1 | 25.8 | 24.5 |



SF-0\% (7 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 139.8 | 25.5 | 24.2 |
| B | 133.5 | 25.0 | 23.9 |
| C | 130.4 | 24.8 | 24.0 |
| D | 135.2 | 24.6 | 24.2 |
| E | 137.6 | 24.8 | 24.4 |
| F | 146.1 | 25.1 | 24.7 |



SF-0\% (28 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 132.3 | 24.3 | 24.2 |
| B | 127.3 | 24.2 | 24.3 |
| C | 131.1 | 24.0 | 24.4 |
| D | 132.9 | 23.9 | 24.6 |
| E | 132.3 | 23.9 | 24.7 |
| F | 136.3 | 23.7 | 24.8 |



SF-0.02\% (7 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 144.8 | 26.2 | 24.4 |
| B | 139.9 | 26.1 | 24.4 |
| C | 144.2 | 25.9 | 24.3 |
| D | 144.8 | 25.6 | 24.6 |
| E | 139.9 | 25.4 | 24.7 |
| F | 149.7 | 25.3 | 24.7 |



SF-0.02\% (28 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 138.0 | 24.7 | 24.2 |
| B | 135.2 | 24.6 | 24.1 |
| C | 137.8 | 24.4 | 24.2 |
| D | 135.5 | 24.2 | 24.4 |
| E | 135.6 | 24.3 | 24.5 |
| F | 142.9 | 24.4 | 24.7 |



SF-0.08\% (7 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 141.3 | 25.3 | 24.4 |
| B | 140.1 | 25.2 | 24.3 |
| C | 137.8 | 25.5 | 24.2 |
| D | 139.9 | 25.5 | 24.1 |
| E | 140.2 | 25.6 | 24.1 |
| F | 146.5 | 25.7 | 24.1 |



SF-0.08\% (28 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 136.5 | 24.4 | 24.1 |
| B | 134.8 | 24.2 | 24.1 |
| C | 133.1 | 24.0 | 24.3 |
| D | 131.3 | 23.6 | 24.5 |
| E | 133.0 | 23.5 | 24.6 |
| F | 135.1 | 23.7 | 24.8 |



SF-0.2\% (7 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 142.2 | 25.5 | 24.3 |
| B | 144.5 | 25.3 | 24.3 |
| C | 144.1 | 25.2 | 24.5 |
| D | 142.8 | 24.9 | 24.6 |
| E | 141.4 | 24.7 | 24.7 |
| F | 147.1 | 24.8 | 24.7 |



SF-0.2\% (28 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 142.7 | 24.3 | 24.8 |
| B | 136.5 | 24.1 | 24.7 |
| C | 135.5 | 24.1 | 24.6 |
| D | 136.4 | 24.1 | 24.4 |
| E | 136.1 | 24.2 | 24.1 |
| F | 137.8 | 24.4 | 24.2 |



SF-0.5\% (7 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 141.5 | 24.7 | 24.1 |
| B | 134.6 | 24.3 | 23.9 |
| C | 135.8 | 24.2 | 24.0 |
| D | 136.3 | 23.9 | 24.3 |
| E | 138.0 | 24.0 | 24.5 |
| F | 139.9 | 24.1 | 24.6 |



SF-0.5\% (28 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 143.8 | 25.5 | 24.2 |
| B | 140.8 | 25.4 | 24.0 |
| C | 140.7 | 25.2 | 24.3 |
| D | 143.4 | 25.1 | 24.5 |
| E | 141.8 | 25.1 | 25.0 |
| F | 147.5 | 25.3 | 25.8 |



SF-1\% (7 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 136.8 | 25.0 | 24.5 |
| B | 133.9 | 24.6 | 24.4 |
| C | 136.4 | 24.7 | 24.4 |
| D | 136.6 | 24.4 | 24.4 |
| E | 135.8 | 24.8 | 24.3 |
| F | 143.8 | 25.1 | 24.3 |



SF-1\% (28 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 144.3 | 25.5 | 24.5 |
| B | 141.7 | 25.3 | 24.5 |
| C | 143.8 | 25.2 | 24.9 |
| D | 143.2 | 25.1 | 25.0 |
| E | 144.8 | 25.0 | 25.1 |
| F | 145.8 | 25.0 | 25.0 |



Hybrid Composites
Testing method: compression (uniaxial on prisms) and flexural (three-point bending).

## Compression

Prism Height: 50.8 mm .
PC (3 days)

| Sample | Mass (g) | Average Width (mm) | Average Depth (mm) |
| :---: | :---: | :---: | :---: |
| A | 63.6 | 25.0 | 25.0 |
| B | 63.7 | 25.3 | 24.6 |
| C | 61.6 | 25.5 | 24.5 |
| D | 61.5 | 25.4 | 24.4 |
| E | 62.3 | 25.3 | 24.3 |
| F | 60.8 | 25.2 | 24.5 |



PC ( 7 days)

| Sample | Mass (g) | Average Width (mm) | Average Depth (mm) |
| :---: | :---: | :---: | :---: |
| A | 69.0 | 26.0 | 26.3 |
| B | 69.0 | 26.0 | 25.9 |
| C | 68.4 | 26.0 | 25.9 |
| D | 68.4 | 26.2 | 25.8 |
| E | 69.6 | 26.1 | 25.8 |
| F | 69.5 | 26.1 | 25.8 |



PC (28 days)

| Sample | Mass (g) | Average Width (mm) | Average Depth (mm) |
| :---: | :---: | :---: | :---: |
| A | 68.2 | 25.8 | 25.4 |
| B | 68.1 | 25.7 | 25.4 |
| C | 69.0 | 25.5 | 25.4 |
| D | 67.7 | 25.4 | 25.2 |
| E | 67.9 | 25.4 | 25.1 |
| F | 67.3 | 25.4 | 25.1 |



| Sample | Mass (g) | Average Width (mm) | Average Depth (mm) |
| :---: | :---: | :---: | :---: |
| A | 68.6 | 25.5 | 25.3 |
| B | 67.9 | 25.6 | 25.5 |
| C | 68.0 | 25.5 | 25.5 |
| D | 67.6 | 25.6 | 25.8 |
| E | 70.9 | 25.8 | 26.0 |
| F | 69.3 | 25.8 | 26.1 |



## PC-CNF (7 days)

| Sample | Mass (g) | Average Width (mm) | Average Depth (mm) |
| :---: | :---: | :---: | :---: |
| A | 64.7 | 24.6 | 25.4 |
| B | 64.7 | 24.6 | 25.0 |
| C | 62.9 | 24.7 | 25.0 |
| D | 62.8 | 24.6 | 24.6 |
| E $^{*}$ | 62.5 | 24.7 | 24.2 |
| F | 63.0 | 25.0 | 24.3 |

*Software froze while saving data.


## PC-CNF (28 days)

| Sample | Mass (g) | Average Width (mm) | Average Depth (mm) |
| :---: | :---: | :---: | :---: |
| A | 71.2 | 25.5 | 25.8 |
| B | 71.8 | 25.4 | 25.7 |
| C | 71.0 | 25.2 | 25.7 |
| D | 69.9 | 25.0 | 25.7 |
| E | 70.6 | 25.0 | 25.6 |
| F | 69.0 | 25.3 | 25.5 |



## PC-CF (3 days)

| Sample | Mass (g) | Average Width (mm) | Average Depth (mm) |
| :---: | :---: | :---: | :---: |
| A | 58.8 | 24.5 | 24.7 |
| B | 59.4 | 24.6 | 24.6 |
| C | 59.8 | 24.6 | 24.4 |
| D | 59.8 | 24.6 | 24.6 |
| E | 59.3 | 24.6 | 24.6 |
| F | 61.0 | 24.6 | 24.6 |



## PC-CF (7 days)

| Sample | Mass (g) | Average Width (mm) | Average Depth (mm) |
| :---: | :---: | :---: | :---: |
| A | 68.2 | 26.4 | 26.3 |
| B | 68.3 | 26.1 | 26.4 |
| C | 67.3 | 26.3 | 26.2 |
| D | 69.0 | 26.1 | 26.2 |
| E | 68.1 | 26.1 | 26.2 |
| F | 68.6 | 26.1 | 26.4 |



## PC-CF (28 days)

| Sample | Mass (g) | Average Width (mm) | Average Depth (mm) |
| :---: | :---: | :---: | :---: |
| A | 61.6 | 24.4 | 24.8 |
| B | 62.1 | 24.3 | 24.6 |
| C | 61.7 | 24.2 | 24.7 |
| D | 61.6 | 24.2 | 24.8 |
| E | 62.0 | 24.2 | 24.9 |
| F | 63.8 | 24.4 | 25.0 |



## PC-CNF-CF (3 days)

| Sample | Mass (g) | Average Width (mm) | Average Depth (mm) |
| :---: | :---: | :---: | :---: |
| A | 65.1 | 25.9 | 24.8 |
| B | 65.5 | 25.9 | 24.9 |
| C | 67.0 | 25.7 | 25.1 |
| D | 68.0 | 25.7 | 25.3 |
| E | 66.6 | 25.5 | 25.2 |
| F | 68.1 | 25.8 | 25.4 |



## PC-CNF-CF (7 days)

| Sample | Mass (g) | Average Width (mm) | Average Depth (mm) |
| :---: | :---: | :---: | :---: |
| A | 69.2 | 25.5 | 26.9 |
| B | 68.2 | 25.5 | 26.5 |
| C | 68.8 | 25.6 | 26.0 |
| D | 67.3 | 25.6 | 25.6 |
| E | 67.5 | 25.6 | 25.2 |
| F | 67.3 | 25.7 | 24.9 |



## PC-CNF-CF (28 days)

| Sample | Mass (g) | Average Width (mm) | Average Depth (mm) |
| :---: | :---: | :---: | :---: |
| A | 71.3 | 25.6 | 26.5 |
| B | 69.1 | 25.3 | 26.3 |
| C | 69.1 | 25.3 | 26.1 |
| D | 68.8 | 25.4 | 25.9 |
| E | 68.7 | 25.6 | 25.7 |
| F | 69.6 | 25.6 | 25.7 |



Flexural
Beam length: ca. 114.3 mm .
Beam span: 76.2 mm .
PC (3 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 139.4 | 25.1 | 25.2 |
| B | 139.6 | 24.8 | 25.2 |
| C | 137.9 | 24.6 | 25.4 |
| D | 137.2 | 24.4 | 25.4 |
| E | 136.9 | 24.3 | 25.3 |
| F | 144.5 | 24.4 | 25.2 |



PC ( 7 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 156.8 | 26.1 | 26.0 |
| B | 152.1 | 26.0 | 26.0 |
| C | 153.8 | 25.8 | 26.0 |
| D | 152.6 | 25.8 | 26.0 |
| E | 152.0 | 25.7 | 26.0 |
| F | 153.2 | 25.7 | 26.0 |



PC (28 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 154.0 | 25.6 | 25.9 |
| B | 152.0 | 25.5 | 25.7 |
| C | 151.2 | 25.3 | 25.6 |
| D | 147.9 | 25.2 | 25.5 |
| E | 149.0 | 25.1 | 25.5 |
| F | 147.8 | 25.2 | 25.4 |



PC-CNF (3 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 152.2 | 25.4 | 25.4 |
| B | 150.9 | 25.5 | 25.5 |
| C | 150.4 | 25.5 | 25.5 |
| D | 151.4 | 25.8 | 25.6 |
| E | 154.7 | 25.9 | 25.7 |
| F | 154.8 | 26.1 | 25.8 |



## PC-CNF (7 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 146.8 | 25.5 | 24.7 |
| B | 140.7 | 25.1 | 24.5 |
| C | 139.8 | 24.8 | 24.6 |
| D | 139.4 | 24.5 | 24.6 |
| E | 137.8 | 24.2 | 24.7 |
| F | 142.2 | 24.3 | 24.9 |



## PC-CNF (28 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 162.4 | 26.0 | 25.6 |
| B | 158.6 | 25.8 | 25.4 |
| C | 155.0 | 25.8 | 25.2 |
| D | 153.6 | 25.9 | 24.9 |
| E | 155.3 | 25.7 | 25.3 |
| F | 153.3 | 25.6 | 25.4 |



## PC-CF (3 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 134.2 | 24.6 | 24.5 |
| B | 129.9 | 24.5 | 24.6 |
| C | 131.4 | 24.5 | 24.6 |
| D | 133.4 | 24.5 | 24.6 |
| E | 131.3 | 24.5 | 24.5 |
| F | 140.6 | 24.7 | 24.6 |



## PC-CF (7 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 157.0 | 26.2 | 26.2 |
| B | 150.5 | 26.2 | 26.0 |
| C | 151.0 | 26.2 | 26.2 |
| D | 151.0 | 26.1 | 26.0 |
| E | 152.7 | 26.2 | 25.9 |
| F | 154.7 | 26.4 | 26.1 |



## PC-CF (28 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 137.6 | 24.7 | 24.5 |
| B | 135.7 | 24.7 | 24.4 |
| C | 136.0 | 24.7 | 24.3 |
| D | 136.4 | 24.8 | 24.3 |
| E | 138.2 | 24.9 | 24.4 |
| F | 142.2 | 25.0 | 24.5 |



## PC-CNF-CF (3 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 148.2 | 25.0 | 25.9 |
| B | 144.1 | 25.0 | 25.8 |
| C | 146.3 | 25.2 | 25.7 |
| D | 147.5 | 25.5 | 25.7 |
| E | 144.9 | 25.4 | 25.5 |
| F | 155.2 | 25.5 | 25.8 |



## PC-CNF-CF (7 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 157.6 | 26.9 | 25.5 |
| B | 153.5 | 26.4 | 25.5 |
| C | 150.8 | 25.8 | 25.7 |
| D | 146.2 | 25.5 | 25.6 |
| E | 146.7 | 25.1 | 25.6 |
| F | 147.9 | 24.9 | 25.8 |



## PC-CNF-CF (28 days)

| Sample | Mass (g) | Average Height (mm) | Average Width (mm) |
| :---: | :---: | :---: | :---: |
| A | 159.5 | 26.6 | 25.9 |
| B | 153.4 | 26.4 | 25.5 |
| C | 153.3 | 26.2 | 25.3 |
| D | 152.5 | 25.9 | 25.4 |
| E | 152.4 | 25.8 | 25.7 |
| F | 152.8 | 25.6 | 25.7 |




[^0]:    *Type: $\mathrm{f}=\mathrm{flaw}, \mathrm{h}=\mathrm{hydrate}, \mathrm{u}=$ unhydrated particle, $\mathrm{f} / \mathrm{h}=\mathrm{flaw}$ and hydrate combination, $\mathrm{f} / \mathrm{u}=\mathrm{flaw}$ and unhydrated particle combination, $\mathrm{f} / \mathrm{h} / \mathrm{u}=\mathrm{flaw}$, hydrate, and unhydrated particle combination, and $\mathrm{h} / \mathrm{u}=$ hydrate and unhydrated particle combination.

[^1]:    *Type: $\mathrm{f}=\mathrm{flaw}, \mathrm{h}=\mathrm{hydrate}, \mathrm{u}=$ unhydrated particle, $\mathrm{f} / \mathrm{h}=\mathrm{flaw}$ and hydrate combination, $\mathrm{f} / \mathrm{u}=\mathrm{flaw}$ and unhydrated particle combination, $\mathrm{f} / \mathrm{h} / \mathrm{u}=\mathrm{flaw}$, hydrate, and unhydrated particle combination, and $\mathrm{h} / \mathrm{u}=$ hydrate and unhydrated particle combination.
    **Location in relation to CNF agglomerate: i=inner CNF agglomerate, n=not in CNF agglomerate, and o=outer CNF agglomerate (around CNF agglomerate edge).

[^2]:    *Type: $\mathrm{f}=\mathrm{flaw}, \mathrm{h}=\mathrm{hydrate}, \mathrm{u}=$ unhydrated particle, $\mathrm{f} / \mathrm{h}=\mathrm{flaw}$ and hydrate combination, $\mathrm{f} / \mathrm{u}=\mathrm{flaw}$ and unhydrated particle combination, $\mathrm{f} / \mathrm{h} / \mathrm{u}=\mathrm{flaw}$, hydrate, and unhydrated particle combination, and $\mathrm{h} / \mathrm{u}=$ hydrate and unhydrated particle combination.
    ** Location in relation to CNF agglomerate: $i=$ inner CNF agglomerate, n=not in CNF agglomerate, and o=outer CNF agglomerate (around CNF agglomerate edge).

