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CHAPTER I

DECONSTRUCTING THE REPLISOME

Introduction

Since the discovery of the structure of DNA as an information-bearing molecule

of the cell in 1953 by Watson and Crick, considerable effort was directed towards

elucidating the mechanism by which DNA replication occurs. A simple and elegant

model immediately suggested a mechanism for DNA duplex replication. The seemingly

simple and straightforward mechanism for initiation of DNA replication proved to be

complicated by the number of factors that comprised a finely tuned replication machinery

whose elements engage in elaborate interactions and replace each other on a DNA

molecule for a successful and error-proof initiation of replication to ensue. Ten years

after the DNA structure was elucidated, Jacob, Brenner, and Cuzin proposed the

“replicon” hypothesis in which a defined unit of DNA (replicator) was envisioned

carrying out independent replication (Jacob et al. 1963).

The replicator, in turn, is recognized by an “initiator”—a

diffusible protein able to recognize the replicator (Figure

1). This model predicted the existence of origins of

replication proximal to the replicator, where initiation of

replication would begin, and an initiator protein that is

Figure 1. Replicon model as originally proposed by Jacob, Brenner and Cuzin in
1963
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able to open the DNA duplex. Indeed, the proposed model proved to be correct. Both

replicators and initiators were subsequently identified in all biological kingdoms: from

viruses and bacteria to humans. Many viral and bacterial origins were shown to be simple

well-defined single origin systems (Gilbert 2004). In higher-order organisms, however,

the situation has proven to be much more complex. Budding yeast origins termed

autonomously replicating sequences (ARSs) are fairly short, less than 200 bp, and contain

essential elements that contribute to their replication activity. Fission yeast origins are

much larger and demonstrate much more complex structure, covering around 750 bp and

containing more elusive and less experimentally defined elements. This trend continues

as the complexity of an organism increases. Some human origins (e.g. human b-globin or

hamster DHFR locus) stretch over tens of thousands of base-pairs and contain multiple

genetic and epigenetic elements, whose functions often remain elusive (Mendez and

Stillman 2003).

Despite the great diversity of replicators, initiators are conserved throughout the

phylogenetic tree, if not in identity, at least in function. Several initiator activities can be

defined: origin recognition, duplex melting, DNA unwinding, ssDNA protection,

torsional stress relief, RNA priming, and nascent strand elongation. A function in many

cases does not correspond to a single protein but rather a complex of proteins that interact

in a defined order and manner. Most homologues of proteins that carry out these

activities in model organisms have been identified today. They have been collectively

called a replisome (Baker and Bell 1998). The current model of eukaryotic replication

based on genetic studies in yeast, biochemical studies in Drosophila, Xenopus, and

several in vitro replication assays define the steps necessary for initiation of replication to
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ensue: pre-RC formation and its activation to pre-IC (Dutta and Bell 1997; Waga and

Stillman 1998; Bell and Dutta 2002; Nishitani and Lygerou 2002; Machida and Dutta

2005). Pre-replication complexes are formed in late M or early G1 phase of the cell cycle

when CDKs are inactive (Figure 2). Pre-RC formation, also termed origin licensing,

begins when a complex of six origin recognition proteins (ORCs) binds to origins of

replication and melts the DNA.

ORC then recruits Cdc6, an AAA+ family protein that is a putative helicase

loader. Multi-species sequence alignment of Cdc6, Orc1, and replication factor (RFC), a

known replication clamp loader, revealed considerable similarity over a wide region,

which helped to elucidate Cdc6 function in replication (Perkins and Diffley 1998). The

structure of archaeal Cdc6 was solved by x-ray crystallography and the results

corroborated homology of Cdc6 protein with clamp loader proteins (Liu et al. 2000).

With assistance from another initiation factor (Cdt1), Cdc6 is required for loading of the

MCM2-7 complex of proteins that forms a double hexamer on DNA. MCM2-7 has been

considered for a number of years as a putative helicase, but major helicase activity was

absent from the complex and only non-processive helicase activity was observed from a

MCM 4,6,7 double trimer. Recent studies provide strong evidence in support of a new

candidate for eukaryotic replicative helicase. A gene MCM8, not related to MCM2-7,

was identified in human cells that exhibits cellular activity reflective of replicative

helicase: its gene product is bound to chromatin in S phase of the cell cycle, it possesses

robust helicase activity in vitro, and it moves with replication forks (Gozuacik et al.

2003). This year’s investigation of a Xenopus homolog of human Mcm8 protein
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Figure 2. Two-step activation of a eukaryotic origin of replication. Multiple initiator
proteins assemble at the origins of replication during the cell cycle. In the post-RC (non-
competent) state, ORC is bound to the replicator sequences (darker boxes represent the
conserved A, B1, B2, B3 elements identified in well-characterized yeast origins of
replication; (Laskowski et al. 1996; Kelly and Brown 2000)). Origin licensing occurs
during a window of the cell cycle with little or no CDK activity when Cdc6, Cdt1, Noc3
and MCM proteins are incorporated and form a pre-RC structure. Upon activation of
CDKs and DDK, the pre-RC is changed to a pre-IC by the removal of Cdc6 and Cdt1 and
the successive incorporation of multiple initiators. The architecture of the pre-IC shown
is tentative. Formation of pre-ICs at the different origins follows a temporal program.
Pre-IC formation at late origins is prevented by the action of intra-S phase checkpoint
mechanisms. Adapted from Mendez and Stillman, 2003.
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confirmed previous results and provided further evidence for Mcm8’s function in the

elongation step of replication (Maiorano et al. 2005). Two other proteins, Noc3 and

Yph1, were shown to be essential for S-phase progression, the ability of Cdc6 to load

MCM2-7, and pre-RNA processing, but their biochemical function in DNA replication is

still elusive (Milkereit et al. 2001; Du and Stillman 2002; Zhang et al. 2002). Loading of

MCM2-7 complex at the origin marks the formation of pre-RC and licensing of the origin

for replication.

Even though origins are licensed at the G1/S transition, action of a number of

kinases including cyclin-dependent kinases (CDKs), Dbf4-dependent kinases (DDK),

Rad 53, Mec1, and the assembly of the second wave of initiation factors are required for

replication to begin. This step is termed pre-initiation complex (pre-IC) assembly and is

defined by dissociation of Cdc6 and Cdt1 from the chromatin (Bell and Dutta 2002;

Tanaka and Diffley 2002). A number of factors are required for the loading of

polymerases after an origin is activated. Among them are Mcm10 and Cdc45. Mcm10 is

an abundant protein that acts after MCM2-7 complex is loaded at the pre-IC and is

essential for Cdc45 and RPA recruitment in Xenopus system. Initial studies suggested

that S. cerevisiae Mcm10 is required for MCM2-7 recruitment to chromatin during G1,

suggesting an earlier step in Mcm10 function (Homesley et al. 2000). However, later

studies in budding, fission yeast, Xenopus, and human suggested a later step after pre-RC

formation and was shown to be required for Cdc45 association with chromatin and

polymerase stabilization (Wohlschlegel et al. 2002; Gregan et al. 2003; Izumi et al. 2004;

Ricke and Bielinsky 2004; Sawyer et al. 2004). Cdc45 was found to associate with the

origins upon the activation of CDK and DDK, it directly interacts with pre-IC
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components, and it is required for the elongation of nascent DNA (Zou and Stillman

1998; Aparicio et al. 1999; Tercero et al. 2000; Zou and Stillman 2000). At a later step,

another group of proteins interacts with the origins to promote the replicative activity of

polymerases. This group includes the Dpb1, Sld, Psf, and GINS proteins that were shown

to interact with polymerase e, Cdc45, and to be required for pol-prim association with

chromatin (Araki et al. 1995; Masumoto et al. 2000; Kamimura et al. 2001; Takayama et

al. 2003).

The presence of RPA on ssDNA is required for the further steps of cellular DNA

replication. Pol-prim complex that lacks processivity must be replaced by processive

polymerase d (pol d). Polymerase switching occurs during the synthesis of both leading

(Tsurimoto et al. 1990) and lagging strands (Waga and Stillman 1994). (Figure 3).

A short (~30 nt) chimeric RNA/DNA strand generated by pol-prim is termed

initiator DNA (iDNA) (Eliasson and Reichard 1978; Bullock et al. 1991). RFC

recognizes the 3’ end of iDNA and displaces pol-prim. Then, RFC triggers the formation

of the primer recognition complex, which includes proliferating cell nuclear antigen

(PCNA) recruitment followed by pol d. PCNA, a ring-shaped tether, increases

processivity of pol d to 5-10 kb or until it encounters a previously synthesized Okazaki

fragment (Matsumoto et al. 1990; Tsurimoto et al. 1990; Eki et al. 1992).RNA primers

are then excised by RNase HI and FEN1 nucleases, the gap is filled by pol e, and the nick

closed by DNA ligase I (Waga and Stillman 1998). (Figure 3).

Increased complexity of replication mechanism in the higher order eukaryotes

allows for a finer regulation potential of DNA replication and multiple failsafe

mechanisms in vivo. At the same time, the complexity delayed the use of higher
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Figure 3. Polymerase switching and maturation of Okazaki fragments on a lagging-
strand DNA template. Adapted from Waga and Stillman, 1998.
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eukaryotes as a model organism for the study of DNA replication (Laskey et al. 1977;

Coleman et al. 1996; Walter et al. 1998; Chesnokov et al. 1999). Therefore, the

development of a simple effective in vitro replication system was essential to

understanding the basic mechanism of replisome function (Challberg and Kelly 1989;

Stillman 1989; Waga and Stillman 1994). One of the best-studied systems used to

investigate initiation of DNA replication is Simian Virus 40 (SV40) in vitro assay.

Modus operandi of simian virus 40

The limitations of replication systems of higher eukaryotes can be overcome by

the use of a viral based replication system, in which one or several viral proteins are able

to recruit cellular replication components and initiate replication on the viral origin,

which is simple and well defined. A much greater level of understanding of the

replication factors and mechanisms is usually achieved for such a system. A wide range

of assays, reagents, and sometimes even structural data are available for a viral in vitro

system. One of the best-characterized and studied replication systems is simian virus 40

(SV40) (Fanning and Knippers 1992; Herendeen and Kelly 1996; Bullock 1997; Stenlund

2003; Simmons et al. 2004).

SV40 is indigenous to Asian macaques and infects several species

asymptomatically, but is able to transform rodents and human cell culture. SV40 is a

double-stranded circular DNA virus of approximately 5 kb that is assembled into a mini-

chromosome using cellular histones and possesses a well-defined single origin of

replication. The viral origin is a part of a control region that spans approximately 300 bp

and contains early and late transcriptional regulatory regions (Figure 4). The genes
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encoding the large T-antigen (Tag) and the small T-antigen are regulated by the early

promoter, while genes encoding structural proteins VP1, VP2, and VP3 are controlled by

the late one. Due to the early regulatory region’s similarities to human promoters, they do

not require viral proteins to initiate transcription. Large Tag contains a Nuclear

Localization Signal (NLS) and thus accumulates in the nucleus upon expression. There it

activates the late promoter and inhibits its own production through a feedback loop. One

of the major roles of Tag is to inhibit functions of the p53 and pRB family of tumor

suppressor proteins, thereby facilitating cell cycle entry, development of cellular

chromosomal aberrations, and genome instability. Small Tag activates cell proliferation

by binding to catalytic and regulatory subunits of protein phosphatase PP2A, which in

turn activates the b-catenin pathway

and allows infectivity. Since small

Tag is not involved in SV40 DNA

replication in vitro, it is of limited

interest for study of DNA

replication in higher eukaryotes and

will not be described further.

Figure 4. Diagram of the circular SV40 genome. Early and late mRNAs are depicted as
arrows pointing in the 5’ to 3’ direction. The regions encoding the early and late gene
products are depicted as thick arcs and labeled accordingly. The intron of the large T
antigen is shown as a thin arc connecting the T-encoding regions. The SV40 regulatory
element controlling transcription and replication is magnified above. The figure and the
legend are adapted from Herendeen and Kelly, 1996.
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The mechanism of viral DNA replication

The seemingly simple model of SV40 replication still presents a challenge to a

careful investigator who would like to know the inner workings of the viral replication

machinery. Although the protein components of the replisome are known and the general

order of their assembly on the viral origin has been determined, the nature of protein

interactions and molecular mechanisms of these proteins remain elusive. The commonly

accepted model of the viral initiation of replication is as follows. Upon entry into a cell,

the SV40 viral genome is released from the capsid as a mini-chromosome containing

cellular histones that make it indistinguishable from cellular chromosomes (for a review

see (Herendeen and Kelly 1996; Bullock 1997)). The early viral promoter is self-

sufficient and does not require viral gene products to initiate replication. Large Tag

mRNA is one of the first to be transcribed by the early promoter and the protein

orchestrates the progression of further events in the viral infection. Having a NLS, Tag

immediately localizes to the nucleus where it induces expression of a set of host genes to

drive the cell into S phase where viral replication is the most efficient. At the same time,

Tag sequesters cellular DNA damage response and cell cycle regulatory proteins such as

p53 to prevent cell-cycle arrest. Using its origin DNA binding activity, Tag assembles as

a double hexamer on the viral origin of replication, which serves two functions: inhibition

of the early and activation of the late promoter for the transcription of viral structural

proteins. Inhibition of its own transcription by Tag presumably optimizes Tag levels in

the nucleus. Binding of Tag to SV40 origin DNA also triggers recruitment of the cellular

replication machinery, such as replication protein A (RPA) and polymerase-a-primase

(pol-prim), and leads to initiation of viral genome replication.
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The three amigos of the monopolymerase assay

Taking advantage of a well-defined origin and the limited number of proteins that

are required for viral DNA replication, a simple assay was developed that utilizes Tag,

RPA, Topoisomerase I (Topo I), and pol-prim to study initiation of SV40 DNA

replication in vitro. In its original form, the assay utilized soluble extract from virus-

infected cells (Li and Kelly 1984). When Tag was added to the extract, viral DNA

replication ensued. Ten protein complexes were identified from a series of crude extract

fractionations and were shown to be necessary and sufficient for SV40 initiation

(Murakami et al. 1986; Ishimi et al. 1988; Wold et al. 1989; Weinberg et al. 1990; Eki et

al. 1992; Waga et al. 1994). These initiation proteins, their activity, and subunit

composition are listed in Table 1. An even simpler assay to measure initiation of

replication can be constructed that utilizes Tag, RPA, pol-prim, and Topo I to support

SV40 replication in vitro (Figure 5).
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Table 1: Cellular proteins required for SV40 DNA replication*

Protein                               Subunit Composition           Replication Activity

SV40 T antigen                     90 kDa                        Origin binding/unwinding,
                                                                                         helicase
Replication protein A         70, 32, 14 kDa                Single-stranded DNA binding
DNA polymerase a             180, 68, 58, 48 kDa      DNA polymerase, DNA
                                                                                        primase
DNA polymerase d           125, 66, 50, 12 kDa      DNA polymerase, 3’-5’
                                                                                         exonuclease
Proliferating Cell Nuclear
Antigen                                  37 kDa                          Pol d processivity factor

Replication factor C             140, 40, 38, 37, 36        PCNA clamp loader
Topoisomerase I                   100 kDa                         Relieves torsional stress in
                                                                                         DNA
Topoisomerase II                  140 kDa                        Unlinks daughter duplexes,
                                                                                         Relieves torsional stress in
                                                                                           DNA
RNase H1                             68 kDa                            Endonuclease specific for
                                                                                         RNA-DNA hybrid primers
FEN1                                     44 kDa                          5’-3’ flap exonuclease

DNA ligase 1                         125 kDa                            Joins Okazaki fragments
_____________________________________________________________________

*Adapted from Herendeen and Kelly, 1996; Frontiers in Molecular Biology
Hurwitz et al., 1990.  J. Biol Chem. 265:  18043-18046.
Waga and Stillman, 1998.  Annu. Rev. Biochem. 67:  721-751.
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Figure 5. A model for SV40 initiation. Initiation of SV40 replication can be divided
into four steps: recognition, melting, unwinding, and recruitment. All of these steps are
mediated by the viral initiator protein Tag.
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Large T antigen as a master of ceremonies in SV40 replication

SV40 Tag is a 708 amino acid peptide with a predicted molecular weight of 82

kDa. Several functional domains were identified in Tag and most were shown to be

required for Tag function in DNA replication (DePamphilis and Bradley 1986). The N-

terminal domain is usually defined from the initiation codon to the NLS (residues 1-125)

and the first 75 residues form a functional domain very similar to the J-domain motif.

This domain is dispensable for SV40 DNA replication in vitro (Tjian et al. 1980;

Klausing et al. 1989; Weisshart et al. 1996) but not in vivo (Pipas et al. 1983; Campbell et

al. 1997), and it contributes to the transforming function and carries out several mitogenic

activities of Tag (Bullock 1997). In particular, the N-terminal domain interacts with a

number of cell cycle regulatory and gene expression proteins of the host, such as Rb

family members, hsc70 family, and pol-prim (Fanning and Knippers 1992).

Tag/DNA interactions are mediated through Tag’s origin binding domain (OBD).

A crystal structure of full length Tag could not be determined due to the failure to obtain

crystals (Fanning and Knippers 1992), and a new approach to determine the structure of

Tag’s functional domains using NMR was utilized. Residues 131-259 were determined to

constitute the OBD (Arthur et al. 1988) and the structure presented a novel DNA

interaction fold (Luo et al. 1996).

The origin binding domain is considered central to Tag function and was

proposed to coordinate other domain activities (Lin et al. 1992). Indeed, the Tag-OBD is

sufficient to recognize and specifically bind to the SV40 replication origin (Peden and

Pipas 1985; Paucha et al. 1986; Arthur et al. 1988; McVey et al. 1989; Hoss et al. 1990;

Simmons et al. 1990b; Simmons et al. 1990a; Joo et al. 1997). It contains non-specific



15

dsDNA (Wun-Kim and Simmons 1990; Lin et al. 1992) and ssDNA binding activities

(Wu et al. 2001). Initial studies defined the minimal OBD domain, which consists of

residues 131-627 (Wun-Kim and Simmons 1990; Wu et al. 2001). However, structural

studies indicated that a peptide containing residues 251-627 possesses helicase activity

(Li et al. 2003). Tag is a hexameric helicase with a 3’Æ5’ activity and belongs to the

helicase superfamily III and is also a member of AAA+ proteins (Koonin 1993; Patel and

Picha 2000). The helicase domain can be further sub-divided into ATPase (residues 418-

616) (Giacherio and Hager 1979; Clark et al. 1983; Wun-Kim and Simmons 1990) and

nucleotide-binding (residues 418-528) (Bradley et al. 1987) domains. ATPase activity is

required for the initiation of DNA replication by Tag (Clark et al. 1983) and for the

oligomerization of individual subunits into a double hexamer (Mastrangelo et al. 1989;

Dean et al. 1992). Tag helicase activity does not require a free ssDNA tail to initiate

replication (Borowiec and Hurwitz 1988) (Figure 6). A small 38 amino acid

Figure 6. Cartoon representation of the known Tag domain structures. The amino
acid numbers are indicated at the bottom. The functional domains are represented by
open boxes and are labeled accordingly. The linkers between domains are represented by
thin lines. The C-terminal domain from residue 628 to 708, which contains the host-range
fragment (residues 682-708), is labeled HR (in yellow) for convenience. The HR domain
is thought to be unstructured. The figure and the legend were adapted from Gai et al.,
2004.



16

carboxyl-terminal domain of Tag is not required for DNA replication, but is important for

the viral particle assembly (Pipas 1985; Khalili et al. 1988; Stacy et al. 1989) (Figure 6).

To fulfill its function in DNA replication, Tag interacts with a number of cellular

replication proteins. Two pol-prim interaction sites were identified in Tag: a high-affinity

binding site at residues 272-517 and a weaker site located within the first 82 amino acids

(Smale and Tjian 1986; Gannon and Lane 1987; Schmieg and Simmons 1988; Dornreiter

et al. 1990; Dornreiter et al. 1993; Weisshart et al. 1996). Topo I also has two interaction

sites with Tag. One region resides between residues 82 and 246, while the other weaker

site is located after residue 246 (Simmons et al. 1996). The human RPA binding site has

been mapped to a region between residues 164-249, which overlaps with Tag-OBD

(Dornreiter et al. 1992; Weisshart et al. 1998).

Tag also interacts with a number of cell cycle control proteins, including p53, Rb,

and several Rb family proteins (Lane and Crawford 1979; Linzer and Levine 1979;

DeCaprio et al. 1988; Dyson et al. 1989). The ability of Tag to bind and sequester p53

and Rb is thought to be crucial for Tag-mediated transformation effectiveness (Levine

1993), but is not required for its DNA replication activity (Lin and Simmons 1991).

Transcription proteins are also regulated by interactions with Tag. This group

includes CREB binding protein (CBP) family members, such as CBP, p300, and p400,

transcription factors AP2, TATA-binding protein (TBP), TFIID, TFIIB, and

Transcription Enhancing Factor 1 (TEF-1) among other transcription regulatory elements

(Mitchell et al. 1987; Gruda et al. 1993; Dickmanns et al. 1994; Berger et al. 1996;

Johnston et al. 1996; Lill et al. 1997). Several other proteins with various functions were

shown to interact with Tag (e.g. hsc70) (Campbell et al. 1997).
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DNA polymerase a - primase

Pol-prim is a four-subunit complex that is unique among other DNA polymerases

for also possessing a primase activity, which enables pol-prim to generate nascent DNA

strands de novo. All four subunits of pol-prim are conserved in eukaryotes and are

necessary for yeast cell viability (Sugino 1995). The tetramer initiates DNA replication

by synthesizing short RNA primers on the leading and lagging strands and extending

them with deoxynucleotides to create RNA/DNA hybrid chains of approximately 35 bp

(Fioani et al. 1997; Waga and Stillman 1998; Arezi and Kuchta 2000; Hubscher et al.

2000).

The largest (180 kDa) subunit of pol-prim contains the DNA polymerase catalytic

center and elongates the 8-12 nucleotide-long RNA primers, which are generated by pol-

prim’s primase activity (Plevani et al. 1985). Primase activity is associated with the p48

subunit (Santocanale et al. 1993), which exists in a tight complex with p58 (Copeland and

Wang 1993). p58 might facilitate the primer synthesis of the primase and stabilize p48

association with the rest of the subunits, in particular p180 (Longhese et al. 1993). Some

studies suggest that p58 might regulate p48 expression and nuclear transport by a “piggy-

back” mechanism (Mizuno et al. 1996; Mizuno et al. 1998). No catalytic activity has

been found for the p68 subunit (also termed subunit B) (Collins et al. 1993; Foiani et al.

1994). It was proposed that p68 might function as a tether to pol-prim and Tag at the

origin of replication (Collins et al. 1993). Genetic studies in budding yeast suggest a role

for subunit B in the early steps of DNA replication before dNTP polymerization (Foiani

et al. 1994). A recent study, utilizing the SV40 in vitro replication system, placed the
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function of p68 at the priming step of initiation in the presence of RPA and Tag and

confirmed that it is required for primosome activity (Ott et al. 2002b).

Pol-prim mRNA levels remain constant during the cell cycle with only a slight

increase prior to cell entry into the S phase. Periodic transcription is not required for

DNA synthesis (Wahl et al. 1988; Falconi et al. 1993; Miyazawa et al. 1993). These

observations suggest that post-translational modifications regulate pol-prim activity

during the cell cycle. Indeed, both yeast and human pol-prim complexes are

phosphorylated by CDKs in a cell cycle dependent manner (Nasheuer et al. 1991; Foiani

et al. 1995; Ferrari et al. 1996). Phosphorylation of yeast p68 by CDKs was shown to

occur at the G1/S transition in yeast and human cells, and increases as cells progress to

G2/M (Nasheuer et al. 1991; Foiani et al. 1995; Ferrari et al. 1996; Voitenleitner et al.

1999; Dehde et al. 2001). Human p68 undergoes phosphorylation by Cyclin A/cdk2 and

associates with the kinase and a phosphatase in human cells (Dehde et al. 2001; Ott et al.

2002b). Interestingly, dephosphorylation of the complex occurs after exit from mitosis

and coincides with pre-RC formation (Diffley et al. 1994), while CDK phosphorylation

of pol-prim renders it unable to initiate primer synthesis in SV40 DNA replication (Ott et

al. 2002b).

The many hats of RPA

Replication protein A (RPA) was identified as a heterotrimeric single-stranded DNA

(ssDNA) binding protein required for replication of simian virus 40 (SV40) DNA in vitro

(reviews: (Borowiec et al. 1990; Fanning and Knippers 1992; Bullock 1997; Waga and

Stillman 1998; Simmons 2000; Stenlund 2003). RPA is now known to be essential for
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chromosomal DNA replication, repair, and recombination pathways in eukaryotic cells,

and new roles in DNA damage signaling and regulation of replication origin firing

frequency are emerging (Wold 1997; Iftode et al. 1999; Zou and Elledge 2003;

Bochkarev and Bochkareva 2004; Shechter et al. 2004; Stauffer and Chazin 2004). RPA

functions to protect ssDNA from nucleases and prevent hairpin formation in ssDNA that

would interfere with DNA processing, but it also appears to actively coordinate the

sequential assembly and disassembly of DNA processing proteins on ssDNA (Yuzhakov

et al. 1999b; Kowalczykowski 2000). The ability of RPA to guide DNA processing

depends on RPA interactions with other proteins in each pathway, but these mechanisms

are not well understood.

RPA contains four ssDNA binding domains of different affinities, three in the 70-

kDa subunit, connected to each other through flexible linkers, and one in the 32-kDa

subunit. RPA binds to ssDNA in three different modes characterized by the length of

ssDNA that it contacts (8-10, 19-23, and 28-30 nucleotides) and the number of ssDNA

binding domains involved (Bastin-Shanower and Brill 2001; Bochkareva et al. 2001).

Binding to ssDNA is thought to occur sequentially from 5’ to 3’, beginning with the

RPA70 domains A and B in an initial 10 nucleotide binding mode and progressing to the

high affinity 27-30 nucleotide binding mode involving all four ssDNA binding domains

(de Laat et al. 1998; Iftode and Borowiec 2000; Bochkareva et al. 2001; Bochkareva et al.

2002; Arunkumar et al. 2003; Wyka et al. 2003). The three ssDNA-binding modes of

heterotrimeric RPA imply that the protein could adopt three different structural

conformations. Indeed scanning transmission electron micrographs demonstrate RPA

molecules in compact and extended conformations on ssDNA (Blackwell et al. 1996).
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Structures for all six globular domains of RPA have been determined (reviewed by

(Bochkarev and Bochkareva 2004)).

The physical interactions of RPA with multiple DNA processing proteins have

been mapped and some of these have been shown to be functionally required in the

corresponding processing pathway. For example, human RPA70 residues 181-422 bind to

SV40 T antigen in a region that overlaps the T antigen origin DNA binding domain

(residues 164-249) (Dornreiter et al. 1992; Braun et al. 1997; Weisshart et al. 1998; Han

et al. 1999). An anti-T antigen monoclonal antibody whose epitope maps in the RPA-

binding domain specifically prevents physical interaction with RPA and inhibits SV40

DNA replication in vitro (Weisshart et al. 1998).  Consistent with an essential role for

specific interactions of human RPA with T antigen, yeast RPA fails to bind T antigen and

to support SV40 replication (Melendy and Stillman 1993), although yeast RPA, like a

number of other ssDNA-binding proteins, does support origin DNA unwinding (Kenny et

al. 1989). The next step in initiation, T antigen-mediated primer synthesis on RPA-coated

ssDNA by DNA polymerase a-primase (pol-prim), specifically requires human RPA,

suggesting that T antigen association with RPA facilitates priming (Melendy and

Stillman 1993; Wang et al. 2000). However, a detailed understanding of this process is

still lacking.

The C-terminal domain of RPA32 (RPA32C), a winged helix-loop-helix, interacts
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Figure 7. Schematic showing the RPA domain structure. Domains are presented as
boxes, their borders are indicated. Zn, zinc ribbon; P, unstructured, phosphorylated N-
terminus of subunit RPA32. Domains comprising the trimerization core are colored in
red, yellow and green (for DBD-C, DBD-D and RPA14, respectively). The regions of
subunit interaction are indicated by arrows. The figure and the legend were adapted from
Bochkareva et al., 2002.
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physically with the DNA repair and recombination proteins XPA, UDG2, and RAD52

(Mer et al. 2000b) (Figure 8). It is not yet known whether replication proteins also

interact with RPA32C, but initial analysis of the interacting domains suggests similarity

of the mechanisms (Arunkumar and Chazin, unpublished) (Figure 8). Multiple lines of

evidence implicate RPA32 in SV40 DNA replication. Antibodies against RPA32

specifically inhibit SV40 replication in vitro (Kenny et al. 1990; Erdile et al. 1991). In the

context of trimeric RPA, RPA32 can be directly cross-linked to nascent RNA-DNA

primers (Mass et al. 1998) and the RPA trimerization core alone (RPA70C-RPA32D-

RPA14) was recently shown to bind to a primer-template junction (Pestryakov et al.

2004). Binding of human RPA32 to T antigen has been reported (Lee and Kim 1995;

Wang et al. 2000), but not confirmed by others (Braun et al. 1997; Han et al. 1999; Loo

and Melendy 2004). Similarly, RPA mutants with deletions in the C-terminal domain of

RPA32 supported SV40 replication poorly in one study, but displayed nearly wild type

activity in another investigation (Lee and Kim 1995; Braun et al. 1997).

Due to discrepancy in RPA32C analysis, we decided to analyze the function of

RPA32C in in vitro SV40 replication assay using recombinant human and viral proteins.

We tested whether RPA32C is able to interact with Tag-OBD and what role, if any, these

interactions play in the initiation of SV40 replication. Affinity chromatography and NMR

studies allowed us to predict interacting domains of the two proteins and suggested the

target residues for mutagenic analysis. Mutants that failed to interact with Tag-OBD were

then tested in SV40 replication assays to assess their ability to support replication. A

model for the role of RPA32C in initiation of SV40 replication was proposed based on

the structural and biochemical data.
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Figure 8. RPA32C binding sites to Tag and repair enzymes. A ribbon model of
hRPA32C. Interacting residues are shown in red. Yellow helix represents interacting
domain of XPA, UNG2, Rad52.
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CHAPTER II

THE CARBOXYL-TERMINAL DOMAIN OF THE 32-KDA SUBUNIT OF
REPLICATION PROTEIN A IS REQUIRED FOR SV40 DNA REPLICATION1

Introduction

The fundamental biochemical steps in eukaryotic DNA replication were first elucidated

in studies of a simple but powerful model system, the cell-free replication of the simian

virus 40 (SV40) genome. A single viral protein, large T antigen (Tag), orchestrates the

entire replication process in primate cell extracts.  Tag directs the initiation of viral

replication by specifically binding to the SV40 origin of DNA replication, assembling

into a double hexameric helicase that unwinds the duplex DNA bidirectionally, and

recruiting cellular initiation proteins (Fanning and Knippers 1992; Bullock 1997;

Simmons 2000; Stenlund 2003).  The progression of SV40 replication requires a ssDNA-

binding protein, replication protein A (RPA), which binds to the free ssDNA generated

by the Tag helicase, and together with Tag, enables primer synthesis and extension by

DNA polymerase alpha-primase (pol-prim).  The host replication machinery carries out

all subsequent steps.

The molecular mechanism for the coordinated activities of Tag and human RPA

(hRPA) has yet to be elucidated.  Bacterial single-stranded DNA-binding (SSB) protein

and RPA from budding yeast can support SV40 origin-specific DNA unwinding by Tag,

but not primer synthesis and extension (Bullock 1997). The activity of hRPA in the
                                                  
1 Arunkumar, A*., Klimovich, V*., Jiang, X., Ott, R., Mizoue, L., Fanning, E., and Chazin, W. (2005). Structural and
functional insights into RPA32 C-terminal domain-mediated assembly of the simian virus 40 replisome. , Nat. Struc.
Mol. Biol., in press *These authors contributed equally to this work.
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initiation of viral DNA replication correlates well with its ability to interact physically

with Tag, while SSBs that support unwinding but not initiation bind poorly to Tag

(Collins and Kelly 1991; Dornreiter et al. 1992; Melendy and Stillman 1993). These

results and other genetic and biochemical data strongly suggest that direct physical

interactions between Tag and RPA are crucial for initiation of SV40 replication.

It has become increasingly apparent that DNA processing events involve modular

proteins that contain multiple structural/functional domains and have multiple points of

contact (Stauffer and Chazin 2004).  Tag and RPA are both modular proteins (Bullock

1997; Wold 1997; Iftode et al. 1999; Mer et al. 2000a; Bochkarev and Bochkareva 2004;

Gai et al. 2004; Weisshart et al. 2004) but mapping of their interaction sites is

incomplete. The Tag origin DNA-binding domain (Tag-OBD) has been identified as an

RPA interacting site (Weisshart et al. 1998), and the 70 kDa subunit of RPA was shown

to be involved in Tag interactions (Braun et al. 1997).  The C-terminal domain of the 32

kDa subunit (RPA32C), a winged helix-loop-helix, is a known protein interaction module

(Mer et al. 2000b), but its role in Tag interactions as well as in SV40 replication has been

controversial (Lee and Kim 1995; Braun et al. 1997).  Here, we demonstrate that

RPA32C does indeed interact with Tag and in fact, plays a critical role in stimulating the

initiation of SV40 replication.  These findings show that the interaction between Tag and

RPA involves multiple contact points, a critical feature that we incorporate into a refined

mechanistic model for primer synthesis during SV40 replication.
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Materials  and methods

Protein preparation

Human RPA32C was expressed and purified as described (Mer et al. 2000b), except the

final reversed phase high performance liquid chromatography (HPLC) step was replaced

by a gel filtration column using HiLoad 16/60 Superdex 75 (Amersham Pharmacia).

Yeast RPA32C domain was cloned into the same vector (pET15b), expressed in BL21

(DE3) cells, and purified in a similar manner as hRPA32C.  Point mutants were generated

by QuickChange (Stratagene) site-directed mutagenesis following vendor protocols,

including: RPA32C E252A, E252R, Y256A, S257A, T267A, D268A and D268R; Tag

R154A and R154E.

Recombinant RPA heterotrimers were expressed in E. coli and purified as

described (Henricksen et al. 1994). Single amino acid substitutions in RPA32 of the

hRPA heterotrimer were introduced by QuikChange.

Construction of the RPA chimera hRPAy32C

The amino terminal coding sequence of the human RPA32 subunit in pET11d-

tRPA was amplified by PCR using the primers 5’-GGAACAGTGGATTCGAAAGC-3’

and 5’-TTTGCTTAGTACCATGTGTG-3’. The carboxyl terminus of the budding yeast

RPA32 subunit was amplified in a separate PCR reaction using the primers 5’-

A C A C A T G G T A C T A A G C A A A T G T C A T T C C A T A G - 3 ’  a n d  5 ’ -

CGTAGGTACCTCATAGGGCAAAGAAGTTATTC-3’. The products from each PCR

reaction were analyzed by agarose gel electrophoresis and the appropriate DNA products

were excised and purified using the Qiagen (Valencia, CA) PCR purification kit. The
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purified DNA products were then used as templates for the final PCR reaction with the

p r i m e r s  5 ’ - G G A A C A G T G G A T T C G A A A G C - 3 ’  a n d  5 ’ -

CGTAGGTACCTCATAGGGCAAAGAAGTTATTC-3’. The PCR products were

analyzed by agarose gel electrophoresis and the appropriate DNA products were excised

and purified using the Qiagen PCR purification kit. The plasmid pET11d-tRPA encoding

the three subunits of human RPA was simultaneously digested with Dra III/Kpn I. The

PCR products were also digested in parallel with the same enzymes. The digest products

were analyzed by agarose gel electrophoresis and the appropriate bands were purified as

described above. The Dra III/ Kpn I vector fragment and the Dra III/ Kpn I PCR product

were ligated and the reaction products were transformed into competent HB101 E. coli

cells. Ampicillin-resistant clones were analyzed by restriction enzyme digestion and by

DNA sequencing with the primer 5’-GCAGAGAAGGCTCCAACCAAC-3’. The RPA

chimera protein, containing yeast residues 173-273 in place of human residues 172-270,

was expressed and purified from E. coli as described (Henricksen et al. 1994).

Construction of the S257P mutant of hRPA32

An 881-bp Kpn I fragment containing the RPA32 coding sequence from nt 8382

to nt 9263 was excised from the hRPA expression plasmid pET11d-tRPA (Henricksen et

al. 1994) and cloned into the Kpn I site of pBluescript KS II+ plasmid. The resulting

plasmid DNA was used as the template for site-directed mutagenesis (QuikChange,

Stratagene, La Jolla, CA) according to the manufacturer’s protocol with the primers 5’-

G G G G C A C A T C T A T C C T A C T G T G G A T G A T G A C C - 3 ’  a n d  5 ’ -

GGTCATCCACAGTAGGATAGATGTGCCCC-3’. The mutant fragment was
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completely sequenced and then cloned back into the Kpn I site of pET11d-tRPA for

protein expression as described for hRPA.

SV40 Tag, topoisomerase I, and pol-prim were purified as described (Ott et al.

2002a).

Tag131-259 (Tag-OBD) was cloned into an in-house pSV278 expression vector,

which contains a 6x His tag followed by an N-terminal MBP fusion and a thrombin

cleavage site before the insert.  The fusion protein was purified over Ni-NTA.  After

thrombin cleavage and another passage over Ni-NTA, the protein was further purified

over MonoS 10/10 and HiLoad 16/60 Superdex 75 (Amersham Pharmacia).

Uniformly enriched 15N and 13C,15N samples were prepared in minimal medium

containing 1 g/L 15NH4Cl (CIL, Inc.) and 2 g/L unlabeled or [13C6] glucose (CIL, Inc.),

respectively.  The DNA duplex [d(GCAGAGGCCGA).d(TCGATTCTTGC)] was

purchased from Midland Certified Co. and used without further purification.

NMR spectroscopy

All NMR samples were concentrated to 100 mM in a buffer containing 2 mM DTT, 5

mM MgCl2, and 20 mM Tris-d11 at pH 7.0. NMR experiments were performed at 25 ºC

using a Bruker AVANCE 600 MHz NMR spectrometer equipped with a single axis z-

gradient Cryoprobe. Two-dimensional, gradient-enhanced 15N-1H HSQC and TROSY-

HSQC spectra were recorded with 4K complex data points in the 1H and 200 complex

points in 15N dimension. The 13C-1H HSQC spectra were acquired with 4096 x 600

complex data points.  Attempts to obtain NOE distance constraints for the intermolecular

interface by acquiring 13C,1H-filter, edited spectra were unsuccessful, presumably due to
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the intrinsically low sensitivity of the experiments and the relatively short lifetime of the

complex. Residual dipolar couplings (DNH) were measured using the strain-induced gel

alignment procedure (Sass et al. 2000; Tycko et al. 2000).  Briefly, a 4% polyacrylamide

gel with an inner diameter of 6 mm was soaked with a solution of the complex containing

15N-enriched RPA32C or Tag-OBD with unlabeled partner protein at a molar ratio of 1:3

(labeled:unlabeled).  After soaking for 24 hours at 4o C, the sample was stretched into the

NMR tube using the funnel like device described by Bax (Bax 2003).  Residual dipolar

couplings were determined from the difference between one bond 15N-1H splittings (1JNH

+ 1DNH) measured in the absence and presence of alignment media. The splittings were

measured using a combination of HSQC and TROSY spectra. A total of 65 useable 1DNH

values were obtained, 28 from RPA32C and 37 from Tag-OBD.  Back-calculation of

residual dipolar couplings from the structure of the complex was carried out using the

program PALES (Zweckstetter and Bax 2000). NMR data were processed using

XWINMR (Bruker) and analyzed using either FELIX2000 (Accelrys, Inc.) or Sparky

(Goddard and Kneller). To determine Kd for the interaction between RPA32C and Tag-

OBD, a series of spectra were acquired after addition of unlabeled RPA32C into a 100

mM solution of 15N-labeled Tag- OBD.  Additions were made such that 8 to 12 HSQC

spectra were recorded starting with a molar ratio of 1:0 (labeled:unlabeled) up to a ratio

of 1:10. The pH of the sample after each addition was monitored and corrected if

necessary. Changes in amide proton and amide nitrogen chemical shifts of T199 and

H203 were fit to a standard single-site binding equation as described previously

(Arunkumar et al. 2003).
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Structure calculations

The structure of the complex was modeled using HADDOCK (Dominguez et al. 2003)

run on a home-built Linux cluster.  The chemical shift perturbation data along with the

solvent accessibility of the interacting side chains (calculated using the program

NACCES; http://wolf.bms.umist.ac.uk/naccess) was used to obtain a set of ambiguous

interaction restraints (AIRs) as described in the HADDOCK manual.  The target distance

of these constraints was set to 3.0 Å and all other parameters were set to the default

values. A rigid body docking procedure was used to obtain 1500 conformers of the

RPA32C-Tag complex using only the AIRs, van der Waal’s energy and electrostatic

terms using the program CNS (Brunger et al. 1998). The 200 best conformers based on

the intermolecular energy were subsequently used for semi-flexible simulated annealing

followed by refinement using explicit water. Residues 249-257, 259-262 and 266-270 of

RPA32C, and 152-156, 181-182, 199-204 and 255-258 of Tag-OBD were allowed to be

flexible in all stages of the docking procedure. Cluster analysis using an RMSD cut-off of

1.5 Å revealed two clusters, with 189 conformers in one and only 4 conformers in the

other. The structure of the complex is represented by an ensemble of 20 conformers with

lowest energy. The single representative structure (with the lowest energy) was used to

back calculate 1DNH for comparison to the experimental values.  Structures were

visualized and figures were generated using MOLMOL (Koradi et al. 1996).

SV40 DNA replication (monopolymerase) assay

 A published protocol (Matsumoto et al. 1990)  was modified as follows: reaction

mixtures (20 µl) contained 250 ng of supercoiled pUC-HS plasmid DNA (2.8 kb)
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containing the complete SV40 origin (Ott et al. 2002a), 200 ng of RPA, 300 ng of

topoisomerase I, 100 to 400 ng of pol-prim as indicated in the figure legends, and 250-

750 ng of Tag in initiation buffer (30 mM Hepes-KOH (pH 7.9), 7 mM magnesium

acetate, 10 mM ZnCl2, 1 mM DTT, 4 mM ATP, 0.2 mM each GTP, UTP, and CTP, 0.1

mM each dGTP, dATP, and dCTP, 0.02 mM dTTP, 40 mM creatine phosphate, 40 mg/ml

of creatine kinase supplemented with 3 µCi of [a-32P] dTTP (3,000 Ci/mmol; Dupont

NEN, Boston, MA). Reactions were carried out and results evaluated as described

previously (Ott et al. 2002a). Primer synthesis reactions were identical except that 20 µCi

of [a-32P] CTP (3,000 Ci/mmol; Dupont NEN) was the labeled nucleotide and the dNTPs

and the ATP regenerating system were omitted. Products were analyzed as described (Ott

et al. 2002a).

T antigen-dependent primer synthesis and extension assays on ssDNA

The reaction mixture was identical to that in the SV40 monopolymerase assay except that

the template was generally 100 ng of M13mp18 ssDNA (USB Corp., Cleveland, OH) that

had been pre-incubated for 20 min on ice with a saturating amount of RPA. After the pre-

incubation, the remaining components were added and the assay was completed as

described for the monopolymerase assay. Singly primed template ssDNA was prepared

by mixing 4.2 pmol each of M13mp18 and a 17-mer sequencing primer (-40 primer, USB

Corp.), heating at 60 oC for 2 min and annealing at room temperature. The product was

purified by 1% agarose gel electrophoresis and extracted from the gel using a kit

(Qiagen). The primer extension reaction was carried out as described above, except that
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the singly primed ssDNA was substituted for unprimed ssDNA in the pre-incubation with

RPA, and that ribonucleotides, Tag, creatine phosphate, and creatine kinase were omitted.

Results

An RPA32C antibody inhibits initiation of SV40 replication

Our studies were initiated based on the observation that an antibody against RPA32

(Ab34A) specifically inhibited SV40 DNA replication in crude extracts in vitro (Kenny et

al. 1990).  Ab34A has little effect on the ssDNA binding activity of RPA, its ability to

support origin DNA unwinding, or to stimulate DNA polymerase delta activity, but it

does inhibit RPA stimulation of DNA polymerase alpha activity (Kenny et al. 1990).  To

map the epitope recognized by Ab34A, we purified human and yeast RPA (hRPA and

yRPA), as well as hRPA carrying mutations in RPA32 (Figure 9a, b), and tested for their

recognition by Ab34A in western blots (Figure 9c). Ab34A detected hRPA32 (Figure 9c,

lane 1), but not yRPA32 (lane 2). Human RPA32C alone (residues 172-270) was

sufficient to bind Ab34A (lane 3), but an hRPA chimera with hRPA32C substituted by

the yeast domain (hRPAy32C) did not bind Ab34A (lane 4).  Moreover, deletions of 33

or 48 residues from the C-terminus of hRPA32, which are predicted to destroy the

globular structural domain of RPA32C, also prevented binding of Ab34A (lanes 5, 6).

These data suggest that the antibody recognizes an epitope in the winged helix-loop-helix

domain of RPA32.
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Figure 9. Monoclonal antibody 34A recognizes hRPA32C. (a) RPA subunits and
mutant proteins used in this study are depicted schematically. Amino acid residue
numbers are listed below each construct. OB, oligonucleotide-oligosaccharide binding
folds, including the ssDNA binding domains A, B, C, and D; WH, winged helix-loop-
helix domain. (b) Purified recombinant RPA proteins were analyzed by 15% SDS-PAGE
and Coomassie staining. M, protein markers of the indicated mass in kDa. (c) Western
blot assay of the proteins shown in panel b, probed with 34A monoclonal antibody and
visualized by chemiluminescence.

A B COB

D OB

RPA70
1

RPA32WH RPA14

Linker

D hRPA32D223

D hRPA32D238

D hRPAy32C

616

1 1270 120

1

1

1

237

222

270172
WH

D WH hRPA32C
270172

His

75
37
25
20

15

10

75

37
25
20

15

10

RPA70

RPA32

RPA14
hRPA32C

kDa

hRPA32

hRPA32C

1 2 3 4 5 6M

a

b

c



34

To confirm that Ab34A inhibits initiation of SV40 DNA replication,

monopolymerase reaction assays (Matsumoto et al. 1990) were performed using purified

proteins.  In this assay, synthesis of radiolabeled DNA depends on Tag assembly on the

SV40 origin DNA, unwinding of the duplex, and synthesis of RNA primers that can then

be extended.  Radiolabeled products were analyzed by denaturing gel electrophoresis,

followed by autoradiography panel a. Robust DNA replication occurred in a positive

control reaction carried out in the absence of antibody (Figure 10a, lane 12). Negative

control reactions yielded no detectable products (Figure 10, lanes 4, 5 and 9-11).

Addition of Ab34A inhibited initiation in a dose-dependent manner, but the presence of a

non-immune control antibody had no effect (Figure 10a, compare lanes 1-3 with 6-8).

Quantified data of a typical reaction is presented in Figure 10b.

Previous studies with Ab34A indicated that the antibody did not interfere with

origin DNA unwinding (Kenny et al. 1990), suggesting that it might inhibit the

subsequent primer synthesis and elongation steps in initiation.  To determine if RPA32C

is required for these processes, ssDNA saturated with hRPA was used as a template for

synthesis of unlabeled primers and extension into radiolabeled DNA products by pol-

prim. Priming is inhibited on ssDNA saturated with RPA, but in the presence of Tag, pol-

prim assembles into a functional primosome capable of primer synthesis on the RPA-

ssDNA template (Matsumoto et al. 1990; Collins and Kelly 1991; Melendy and Stillman

1993). As expected, robust primer synthesis and elongation was observed on naked

ssDNA template (Figure 10c, lane 1), but when the ssDNA was saturated with RPA, little

synthesis was detected (lanes 3, 4, 7, 8). Addition of Tag stimulated priming
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Figure 10. Anti-RPA32 monoclonal antibody inhibits SV40 replication. (a) Ab34A
IgG or non-immune mouse IgG was titrated into SV40 monopolymerase assays
reconstituted with purified recombinant proteins. Products were resolved by alkaline
agarose gel electrophoresis and visualized by autoradiography. Lanes 1-3 and 6-8,
reactions containing 100, 300, or 500 ng of the indicated antibody. Control reactions
carried out in the presence of 500 ng of antibody and in the absence of T antigen or pol-
prim are indicated (-). M, DNA size marker of the indicated length in nucleotides (nt). (b)
Quantification of the reaction in panel a by scintillation counting. DNA synthesis is
expressed in counts per minute (cpm.) (c) Primer synthesis and extension on M13mp18
ssDNA (25 ng) pre-incubated with 500 ng (lanes 3, 5, 7, 9) or 750 ng (lanes 2, 4, 6, 8, 10)
of RPA was tested in the presence of 250 ng pol-prim and 500 ng of either non-immune
IgG (lanes 3-6) or Ab34A (lanes 7-10). Control reactions with pol-prim alone (lane 1)
and in the absence of pol-prim (lane 2) are indicated (-).
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and elongation in the presence of the non-immune control antibody (compare lanes 5/6

with 3/4). However, in the presence of Ab34A, Tag failed to stimulate priming and

elongation (compare lanes 9/10 with 5/6). Hence, Ab34A interferes with the ability of

Tag to mediate priming and elongation by pol-prim.  Together, these data suggest a

possible physical interaction between Tag and hRPA32C that facilitates priming and

extension.

RPA mutants truncated at RPA32 C-terminus are defective in SV40 replication

The ability of Ab34A to inhibit SV40 replication suggested a functional importance of

this domain in the ability of RPA to support replication. In order to further assess this

observation, a truncation mutant lacking 43 residues at the extreme C-terminus was

generated (Figure 9a) and was shown to be severely defective in SV40 replication (Figure

11). As expected, human RPA vigorously supported Tag-stimulated DNA synthesis in

the SV40 monopolymerase reaction (Figure 11a, lanes 1-4). On the contrary, the deletion

mutant exhibited a severe defect in this reaction (lanes 5-8). The results support the

hypothesis that RPA32C is necessary for Tag-mediated nascent DNA synthesis.

Quantification of the results by scintillation counting is presented in Figure 11b.

The SV40 monopolymerase reaction does not differentiate whether the mutant-

induced defect occurs at origin unwinding or at primer synthesis and elongation.

Additional insight into distinguishing these possibilities could be gained by using an

M13-derived ssDNA-based replication assay. This system does not involve Tag origin

binding and unwinding. The results (Figure 11c) suggest that the observed defect occurs
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Figure 11. RPA with a deletion in RPA32 C-terminus is defective in SV40 DNA
replication. (a) Monopolymerase reaction using 100 to 400 ng of pol-prim was
conducted, DNA products were resolved on alkaline agarose gel and visualized by
autoradiography. Negative control in the absence of Tag or pol-prim are indicated (-).
DNA size markers are indicated (M). (b) Quantification of the results shown in panel a
using scintillation counter. (c) Primer synthesis and elongation was assayed using M13
ssDNA and 100 to 300 ng of pol-prim. The DNA products were resolved and visualized
as in panel a. (d) Quantification of the results in panel c using scintillation counter.
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at the primer synthesis step of the initiation of DNA replication. Pol-prim was not able to

initiate primer synthesis and elongation on ssDNA coated with saturating amounts of wt

or mutant RPA (lanes 5 and 10). No product was generated in the absence of pol-prim

(lanes 4, 9, 11), while abundant nascent DNA was produced on non-coated ssDNA in the

presence of pol-prim (lane 12). Upon addition of increasing amounts of wt Tag, the RPA

induced inhibition of replication was reversed in a dose dependent manner in the case of

wt RPA (lanes 1-3), but not mutant RPA (lanes 6-8). These data strongly argue for a

possible interaction between Tag and RPA32C in order to initiate primer synthesis and

elongation.

Biochemical characterization of hRPAy32C in SV40 replication

The inability of RPA truncation mutants to support replication could be attributed

to misfolding of the C-terminus of the protein due to disruption of important structural

domains by the mutation. Since yRPA can support origin unwinding but not replication

and has an overall similar domain structure like that of human RPA, we decided to create

a mutant in which human RPA32C is replaced with a yeast sequence (Figure 9). The

protein was expressed stably, and biochemical analysis revealed that it interacted with

ssDNA and Tag with efficiency similar to wt hRPA (Figure 12). Despite its wt activity of

ssDNA and Tag interaction, the chimeric protein had a severe defect in supporting SV40

replication (more detail in Figure 24 and Figure 25).
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Figure 12. Characterization of the hRPA32C and hRPAy32C mutant proteins. (a)
The indicated amounts of hRPA or hRPAy32C were incubated with 2.5 pmol of 32P-end-
labeled oligo(dT)30 and  bound DNA was quantified by filter-binding and scintillation
counting. Diamonds, hRPA; filled squares, hRPAy32C. (b) The indicated amounts of
purified hRPA or hRPAy32C were incubated with or without (-) Tag bound to Pab101-
coupled Sepharose beads for 30 min at 4oC. After washing, proteins bound to the beads
were analyzed by SDS-PAGE and western blotting with antibody against RPA70 (top
panel) or Tag (bottom panel). Lanes 1, 7, 8: samples of the input proteins. (c) Initiation
activity was tested as in Figure 4b except that the amount of hRPA or hRPAy32C was
varied as indicated and 200 ng of pol-prim was present in each reaction. Acid-insoluble
radiolabeled products in 4 ml of each reaction mix were quantified by scintillation
counting. Diamonds, hRPA; filled squares, hRPAy32C. (Data in Figure 12 is from X.
Jiang, Fanning lab.)
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A point mutation in RPA32C affects its activity

Comparative analysis of human and yeast amino acid sequences provided an opportunity

for the generation of mutants in which non-conserved human residues were replaced with

yeast sequences (Figure 13a). We hypothesized that RPA32C/Tag interaction is

compromised in the deletion mutants; therefore several mutants were created and

analyzed for their ability to interact with Tag-OBD in a Far-Western assay (Figure 13b).

A single point mutant S257P showed a marked defect in its ability to interact with Tag

and was chosen for further analysis. We speculated that introducing a proline residue

might create a slight shift in overall C-terminal domain orientation of RPA and affect its

replication activity. As expected, the mutants exhibited a mild defect in SV40 replication

compared to the wild type (Figure 13c, compare lanes 1-4 to 5-8). Due to the nature of

serine to proline mutation that could cause misfolding of peptide, a circular dichroism

analysis was conducted to verify the proper folding of this mutant (data not shown).

Quantification of the autoradiograph in panel c is shown in panel d. On average the

mutant had ~84% activity of the wild type (Figure 13e).

RPA32C interacts specifically with the Tag-OBD

In order to test for direct interaction between Tag and hRPA32C, affinity

chromatography experiments were performed.  Initial experiments suggested an

interaction with the Tag-OBD.  To confirm this observation, the Tag-OBD was passed
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Figure 13. A single point mutation affecting Tag interaction exhibits a defect in
SV40 DNA replication. (a) Multispecies alignment of RPA32C amino acid sequence.
Human residue and yeast counterpart that replaced it in the mutant are indicated. (b) Far-
Western analysis of selected mutants in RPA32C that substitute human sequences with
the corresponding yeast residues indicated inability of S257P mutant to interact with Tag.
The mutants of RPA32C were expressed as His-RPA32C protein, resolved on 15% SDS-
PAGE, transferred onto nitrocellulose membrane, and overlaid with Tag. After extensive
wash, the interacting proteins were probed with a-Tag polyclonal rabbit Ab and
visualized by chemiluminescence. (c) SV40 monopolymerase reaction was conducted
with 100-400 ng of pol-prim. The reaction products were resolved on alkaline agarose gel
and visualized by autoradiography. Negative controls lacking Tag or pol-prim are
indicated (-). DNA marker is labeled (M). (d) Quantification of results in panel c as
assessed by scintillation counting. (e) Activity of S257P in SV40 replication was plotted
to wt activity in the same experiment. Results represent at least two independent
experiments.
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over columns (I, II, III) containing increasing amounts of hRPA32C attached to the

stationary phase (Figure 14a).  After vigorous washing, the eluted fractions were

collected and separated on SDS-PAGE.  As seen in the figure, eluates from the hRPA32C

column contained increasing amounts of Tag-OBD as the amount of RPA32C attached to

the beads was increased (lanes 2, 4, 6). To further characterize the interaction, a series of

15N-1H heteronuclear single quantum correlation (HSQC) NMR spectra were acquired

for a sample of 15N-enriched Tag-OBD as unlabeled hRPA32C was titrated into the

solution. Figure 14b shows binding isotherms for two residues, derived from chemical

shift changes induced in the Tag-OBD spectra upon addition of increasing amounts of

hRPA32C.  The curves were fit to a standard single-site binding equation using the

approach described previously (Arunkumar et al. 2003).  An average dissociation

constant (Kd) of 60 ± 18 mM was obtained from all available data.  This binding constant

is similar to, but weaker than the Kd of 5-10 mM estimated for the interaction of

hRPA32C with peptide fragments from the binding regions of the DNA repair factors

XPA and UNG2 (Mer et al. 2000b).

Structural model of the complex

The structures of free Tag-OBD (Luo et al. 1996) and hRPA32C (Mer et al. 2000b) have

been determined previously.  These were used together with NMR chemical shift

perturbations to identify the binding sites of the two proteins.  Reciprocal titration

experiments were carried out using 15N-enriched RPA32C and 15N-enriched Tag-OBD

with addition of unlabeled partner protein, and these were used to map the binding
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Figure 14. The interaction of RPA32C with Tag-OBD. (a) Tag-OBD affinity
chromatography.  Lanes, from left to right: I, column input; FT and E are the flow-
through and elution fractions from the control column; 1 and 2 are flow-through and
elution fractions from column I; 3 and 4 are flow-through and elution fractions from
column II, 5 and 6 are flow-through and elution fractions from column III.  (b) NMR 15N
chemical shift titration curves for the binding of RPA32C to 15N-labeled Tag-OBD.  The
changes in amide nitrogen chemical shifts of T199 (circles) and H203 (squares) in Tag
are plotted against the ratio of Tag-OBD to RPA32C.  The line through each curve
represents a best fit to the standard single site binding equation.
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surface on each molecule (Figure 15 and Figure 16).  To determine the structure of the

complex, the chemical shift perturbations were used as input to guide a computational

docking of the two molecules.  The experimental data were sufficient to define a unique

relative orientation for the two domains, and multiple refinements converged to an

ensemble of conformers with a mean backbone root-mean-square deviation (RMSD) of

0.91 ± 0.17 Å (Error! Reference source not found.).  The quality of this ensemble is

reflected in the backbone dihedral angles, >99% of which are within the allowed regions

of the Ramachandran plot. The 20 lowest energy conformers are presented in Figure 17a.

The side chains occupying the inter-molecular interface are shown in Figure 17b.

In order to validate and refine the structural model, 15N-1H residual dipolar

couplings (1DN-H) were measured by partially aligning the samples in strained

polyacrylamide gels.  The observed 1DN-H values varied from -3 to 5 Hz for RPA32C and

from -5 to 7 Hz for Tag-OBD.

The range was sufficiently large for both molecules to enable an accurate

assessment versus 1DN-H values back-calculated from the structure of the complex derived

from the chemical shift perturbation data.  There was a good fit between experimental

and back-calculated data: the RMSD for the representative structure over all 65 dipolar

couplings was only 0.81 Hz (Figure 17c).

Tag and DNA repair factors bind to the same site on RPA32C

In the model of the Tag-OBD/RPA32C complex, the binding surface of RPA32C
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Table 2.  Structural Statistics of the 20 best RPA32C/Tag-OBD model structuresa

No. of residues used in chemical shift perturbation restraints
  From RPA32C 8

  From Tag-OBD 8

Ramachandran analysisb

  Residues in the favored region (%) 83
  Residues in other allowed regions (%) 16.5

Backbone rmsd (Å) with respect to mean

   All backbone 0.91 ± 0.17

Backbone rmsd (Å) with respect to starting structure
   NMR structure of RPA32C 0.64 ± 0.12

   NMR structure of Tag-OBD 0.48 ± 0.13

Surface area buried at the inter-molecular interface (Å2) 1151 ± 93

aStructural statistics of the 20 best structures of RPA32C/Tag-OBD complex obtained

after flexible docking with HADDOCK followed by refinement in explicit water using

ambiguous interaction restraints derived from chemical shift perturbation data.  Cluster

analysis of the structures was carried out as described in the HADDOCK manual (see

Methods section).

bRamachandran analysis was carried out using PROCHECK-NMR (Laskowski et

al. 1996).
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Figure 15. Mapping the Tag-OBD binding site of RPA32C. (a) 15N-1H HSQC spectra
of RPA32C in the absence (black) and presence (red) of 2 molar equivalents of Tag-
OBD.  (b) Bar diagram showing the average chemical shift change (combined amide
nitrogen and amide proton) upon addition of 2 molar equivalents of Tag-OBD versus the
sequence of RPA32C. The lower bar represents the mean of the data and the upper bar
represents the mean plus one standard deviation of the data. (c,d) Chemical shift
perturbations mapped on the structure of RPA32C shown as a ribbon and a CPK model,
respectively. Red coloring indicates those residues that show changes above the mean
plus one standard deviation. Magenta represents changes above the mean, but below the
mean plus one standard deviation.
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Figure 16. Mapping the RPA32C binding site of Tag-OBD. (a) 15N-1H HSQC spectra
of Tag-OBD in the absence (black) and presence (red) of 2 molar equivalents of
RPA32C.  (b) Bar diagram showing the average chemical shift change (combined amide
nitrogen and amide proton) upon addition of 2 molar equivalents of RPA32C versus the
sequence of Tag-OBD.  The lower bar represents the mean and the upper bar represents
the mean plus one standard deviation.  (c,d) Chemical shift perturbations mapped on the
structure of Tag-OBD shown as a ribbon and a CPK model, respectively. Red highlights
those residues that show changes above the mean plus one standard deviation, and
magenta represents changes above the mean, but below the mean plus one standard
deviation.
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Figure 17. Docking analysis of Tag-OBD and RPA32C complex. (a) Ensemble of 20
lowest energy conformers of the complex of Tag (blue) and RPA32C (red).  (b) Side
chains in the binding interface of the representative Tag-OBD/RPA32C structure.  Tag-
OBD is blue and RPA32C is red. (c) Correlation between the experimentally measured
1DNH dipolar couplings (RPA32C, blue circles; Tag-OBD, green squares) versus the
values back-calculated from the representative structure.
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includes b-strand II, b-strand III and the loop connecting helix III and b-strand II.  There

is a striking similarity between the RPA32C complex with Tag-OBD and that with the N-

terminal binding region of the base excision repair factor UNG2 (Mer et al. 2000b).

Y256 is of particular note because it is a critical residue in the UNG2/RPA32C interface.

The participation of Y256 in the Tag complex is clearly evident in 13C-1H HSQC NMR

experiments, which reveal significant perturbations of the aromatic protons of Y256 upon

binding to Tag-OBD (Figure 18a).  Thus, the similarity between the Tag-OBD and

UNG2 complexes appears to extend to the specific details at the binding interface.

Although the structures of RPA32C in these complexes are so similar, the

structure of the RPA32C-interacting region of Tag-OBD is distinct from those of the

DNA repair factors.  In particular, UNG2, XPA and RAD52 all interact with RPA32C

through a single helix, whereas the Tag-OBD utilizes a compound surface composed of

extended loops (Figure 17b).  In addition to R154, R202, R204, N258, and P259, two

histidines (H201 and H203) in Tag-OBD are in close contact with RPA32C.  There is

direct experimental evidence of the presence of the His residues in the binding interface:

the resonances of the H201 and H203 side chains in the 13C-1H HSQC NMR spectrum are

significantly perturbed upon addition of RPA32C to a solution of Tag-OBD (Figure 18b).

The distinctive character of the Tag-OBD binding site is reflected clearly in the absence

of histidine residues in the RPA32C-binding sites of UNG2, XPA and Rad52 (Mer et al.

2000b).
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Figure 18. Side chains at the intermolecular interface. (a) Chemical shift changes in
the tyrosine side chain of RPA32C in the aromatic region of the 13C/1H HSQC spectrum.
(b) Chemical shift changes in the histidine side chain of Tag-OBD in the aromatic region
of the 13C/1H HSQC spectra.
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RPA32C binds to the same site on Tag-OBD as origin DNA

Detailed analysis of the structure of the complex revealed a significant overlap between

the RPA32C-binding surface of Tag-OBD and the previously determined binding site for

origin DNA. Three 5-residue regions of the Tag-OBD (F151-T155), (F183-H187) and

(H203-A207) have been shown to be essential for origin DNA-specific recognition

(Simmons et al. 1990b; Wun-Kim et al. 1993; Luo et al. 1996; Bradshaw et al. 2004).

The first indication of similarity between the RPA32C and origin DNA binding sites was

from the analysis of chemical shift perturbations, which showed that residues in these

three regions of Tag-OBD shift upon addition of RPA32C.  Inspection of the model of

the Tag-OBD/RPA32C complex reveals that the proposed binding site for RPA32C

extends over the top of the deep DNA binding site.

To further confirm the overlap of the Tag-OBD and origin DNA binding sites, a

competitive binding experiment was performed on the complex of 15N-enriched RPA32C

and unlabeled Tag-OBD.  A duplex DNA oligomer containing the SV40 penta-nucleotide

origin sequence recognized by Tag, d(GCAGAGGCCGA)·d(TCGGCCTCTGC), was

titrated into this solution to see if the DNA would compete RPA32C off of the OBD.  As

can be seen by comparing Figure 19a and Figure 19b, the RPA32C signals revert back to

the position of free RPA32C upon addition of a stoichiometric amount of DNA.  This

experiment also shows that origin DNA binds more tightly to Tag than RPA32C,

consistent with the reported Kd values for origin DNA (Titolo et al. 2003; Bradshaw et al.

2004) and that noted above for RPA32C.
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Figure 19. Effects of DNA binding and mutations on the interaction between
RPA32C and Tag-OBD.  Comparison of the binding of Tag-OBD to RPA32C in the
absence (a) and presence (b) of origin DNA.  Unlabeled Tag-OBD was titrated into a 100
mM solution of 15N-enriched RPA32C and a series of 15N,1H HSQC NMR spectra were
acquired.  An overlay of a small region from these spectra is shown in panel a. A
stoichiometric amount of origin DNA duplex was then titrated into the solution and an
additional spectrum was acquired, as shown in panel b.  Arrows are drawn to facilitate
following the change in the location of the NMR signal.
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Mutations in the binding interface inhibit interaction of Tag-OBD and RPA32C

In order to test the importance of the interaction between the RPA32C domain and the

Tag-OBD in SV40 replication, point mutations in RPA32C and Tag-OBD were designed

based on the structure of the complex.  Inspection of the surfaces of RPA32C and Tag-

OBD reveals a significant electrostatic complementarity in their binding surfaces (Figure

20).  The RPA32C surface has an acidic character, contributed primarily by E252, D261,

D262 and D268.  Tag-OBD has three arginine residues (R154, R202, R204) contributing

to a complementary basic surface. Salt bridges are found in the binding interface,

including the R154 and R204 guanidino groups of Tag-OBD with the carboxylate groups

of E252 and D268 of RPA32C, respectively (Figure 17b).  The strong electrostatic

component of the interaction was confirmed by a salt titration, which revealed that the

complex was completely dissociated in 250 mM NaCl (Arunkumar and Chazin, personal

communication).  Consequently, the design of mutations was based on perturbing

electrostatic interactions.

A further test of the proposed importance of electrostatic complementarity

between Tag-OBD and hRPA32C involved examining the interaction of Tag-OBD with

yRPA32C, which lacks several acidic residues in the hRPA32C binding site for Tag-

OBD (Figure 21).  The effects of mutations were first assayed by biophysical methods to

verify the stability, structural integrity, and binding properties of the mutant RPA32C

proteins. Characterization of alanine substitutions of RPA32C residues E252, Y256 and

D268 showed that each mutant retained the structure of the wild-type protein, but the

effect on affinity for Tag-OBD was only very modest. We reasoned that charge
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Figure 20. Electrostatic surfaces of the two molecules in the Tag-OBD/RPA32C
complex.  Red and blue colors correspond to negative and positive charge, respectively.
Key residues in the binding interface are labeled.

a b
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Figure 21. Comparative analysis of human and yeast RPA32C. Electrostatic surface
representation of human (a) and yeast (b) RPA32C, generated using hRPA32C
coordinates (PDB accession no: 1DPU). Negatively charged residues are red, positively
charged—blue. The molecules are in the same orientation. Blue ovals mark the
negatively charged patches on human RPA32C surface. Approximate location of the
residues used to create charge-reversal point mutants investigated in this study is labeled
accordingly. (c) Comparison of the primary sequences of the RPA32C domain from
human and yeast.  Residues that are important for the interaction with Tag-OBD are
shown in boxes.

a b

c
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neutralization was insufficient because electrostatic interactions are long-range and not

highly directional, so the overall effect could be dispersed through the binding interface.

A much more drastic effect was anticipated for charge reversal mutants that place an

opposite charge in RPA32C’s acidic electrostatic field, and indeed, both E252R and

D268R exhibited a more significant effect on Tag-OBD binding.  As shown in Figure 22,

the binding curves obtained from NMR for E252R and D268R demonstrate 5- to 10-fold

weaker binding compared to the wild-type RPA32C (Kd ~500 mM versus 60 mM).

Titration of yRPA32C into Tag-OBD revealed a substantially lower affinity than even the

most perturbing of the hRPA32C charge reversal mutations (Figure 22).  Indeed, binding

was so weak that the Kd could not be determined, consistent with the considerably lower

negative charge of the Tag-OBD binding surface (Figure 21). RPA32C results were

confirmed by similar charge neutralization and charge reversal mutations in Tag-OBD: a

modest reduction in affinity for hRPA32C was observed for R154A but a much stronger

effect for R154E (Figure 23).

RPA32C is required for initiation of SV40 DNA replication

To further assess the functional importance of the proposed Tag-OBD interaction with

hRPA32C, hRPA heterotrimers with mutations in RPA32C were tested in SV40 DNA

replication assays using the monopolymerase assay (Matsumoto et al. 1990) (Figure 24).

Human RPA, used as a positive control in all assays, supported initiation (e.g. Figure 24a,

lanes 1, 2). Yeast RPA is unable to support SV40 replication (Melendy and Stillman

1993).
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Figure 22. NMR 1H chemical shift titration curves for the binding of wild type and
point mutants of RPA32C to 15N-labeled Tag-OBD. Wild type (squares), E252R
(triangles), E268R (filled circles) and yeast (open circles) RPA32C are also labeled to the
right.  The changes in amide proton chemical shifts of T199 are plotted against the ratio
of Tag-OBD to RPA32C.  The line through each curve represents a best fit to the
standard single site binding equation.
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Figure 23. NMR Chemical shift analysis of the interaction of wild type and mutant
Tag-OBD with RPA32C.  (a) Expanded region of the 15N, 1H HSQC NMR spectra of
wild-type Tag-OBD in free (black) and in complex with 4 molar excess of RPA32C
(red). (b) Expanded region of the 15N, 1H HSQC spectra of R154A mutant in free (black)
and in complex with 4 molar excess of RPA32C (red). (c) Expanded region of the 15N, 1H
HSQC spectra of R154E mutant in free (black) and in complex with 4 molar excess of
RPA32C (red).
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 A human-yeast chimera hRPAy32C containing the winged-helix-loop-helix

domain from yeast RPA in place of the human domain retained ssDNA binding activity

and its RPA70 subunit was active in binding to Tag (Figure 12). However, the initiation

activity of hRPAy32C was diminished by an order of magnitude relative to that of hRPA

in the same experiment (Figure 24a, compare lanes 1-4 and 5-8), correlating with the

weak interaction of yRPA32C with Tag-OBD observed by NMR. Initiation activity

increased dramatically in proportion to the amount of hRPA present in the reaction, while

the corresponding amounts of hRPAy32C did not stimulate replication (Figure 12c). The

E252R mutation in RPA32C caused a modest reduction (~20%) in activity relative to

wild type hRPA, whereas the D268R mutation substantially impaired initiation activity

(~50%) (Figure 24b, c; compare lanes 1-4 and 5-8; Figure 26a-d), consistent with

reduced binding of Tag-OBD to the corresponding RPA32C mutants. The results

demonstrate that hRPA32C serves an important function in initiation of SV40 DNA

replication, and provide strong support for the structural model of the Tag-OBD/RPA32C

complex (Figure 17).

RPA32C interaction with Tag promotes primer synthesis

To test if the Tag-RPA32C interaction is also needed for primer synthesis at a later step

after origin DNA unwinding, ssDNA pre-saturated with hRPA, hRPAy32C chimera, or a

point mutant was used as the template for priming and elongation (Figure 25a-c). In the

presence of hRPA, Tag stimulated primer synthesis and extension into labeled DNA

products (lanes 1-3), while little or no product was detected in the presence
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Figure 24. Mutations in RPA32C
that weaken the interaction with
Tag are defective in initiation of
SV40 DNA replication.  (a-c)
Initiation of replication was tested in
monopolymerase reactions containing
200 ng of the indicated RPA and 100
to 400 ng of pol-prim as indicated.
Control reactions contained hRPA but
lacked either pol-prim or Tag as
indicated (-). The products were
resolved by alkaline agarose gel
electrophoresis and visualized by
autoradiography. DNA size markers
are indicated (M).
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of any of the mutant RPAs (lanes 6-8). Abundant products were detected in the positive

controls without RPA (lanes 12), and little or no products were observed in the absence

of pol-prim (lanes 4, 9, 11) or Tag (lanes 5, 10). Quantification of primer synthesis and

extension is shown in Figure 24e-h. We conclude that the interaction of Tag with

hRPA32C, independent of origin DNA unwinding, is required for its ability to stimulate

primer synthesis and elongation on RPA-coated ssDNA.

Previous studies (Bullock 1997), as well as the results presented in Figure 9,

suggest that the Tag interaction with RPA is crucial for primer synthesis in initiation and

in Okazaki fragment synthesis.  To ask if primer synthesis requires the Tag-RPA32C

interaction, we first measured the ability of Tag to stimulate the synthesis of radiolabeled

RNA primers (8-10 nt) in the SV40 monopolymerase reaction (Matsumoto et al. 1990) in

the presenceof wild type or mutant hRPA (Figure 27a).  Tag stimulated primer synthesis

in the presence of hRPA (lanes 3-5) but not chimeric RPA (lanes 6-8). Similar results

were obtained with the E252R and D268R mutants (Figure 27c and d). Control reactions

in the absence of Tag or pol-prim (lanes 1-2) yielded no primers. Quantifications of gels

were done by phosphorimager analysis and presented in panels d-f. Consistent with SV40

monopolymerase results, the E25R mutant exhibited ~70% of wild type activity, while

the D268R mutant retained less than 55% wild type activity (Figure 27g). The results

indicate that Tag interaction with hRPA32C promotes priming during initiation.

Additional insights into primer formation were gained by conducting the primer

synthesis assay on ssDNA. The reaction was set up in a similar way as described in
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Figure 25. RPA32C is needed for
primosome activity. (a-c) Primer
synthesis and extension was assayed on
100 ng M13 ssDNA pre-coated with
600 ng of hRPA or mutant RPA as
indicated. Reactions contained 250 ng
of pol-prim and 250 to 750 ng of Tag as
indicated. Control reactions lacked
RPA, pol-prim, or Tag as indicated (-).
Radiolabeled DNA products were
resolved by alkaline agarose gel
electrophoresis and visualized by
autoradiography. M, DNA size markers
as indicated.



63

Figure 26. Quantitative comparison of wild type and mutant RPA in replication
assays. (a-c) Quantification of typical SV40 monopolymerase assays as in Figure 24
(cpm, counts per minute determined by scintillation counting). White bars, wild type
hRPA; black bars, mutant activity; gray bars, controls. (d) Mean results of at least two
independent monopolymerase experiments showing mutant activity as a percentage of the
wild type activity in the same experiment. Brackets represent standard error. (e-g)
Quantification of typical primosome assays as in Figure 25. White, wild type; black,
mutant; gray, controls (h) Mean results of at least two experiments showing primosome
activity with mutant RPA as a percentage of the wild type activity in the same
experiment.
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Figure 27. RPA32C mutants are defective in primer synthesis. (a-c) SV40
monopolymerase reactions containing radiolabeled CTP were carried out in the presence
of 200 ng of the indicated RPAs, 250 ng of pol-prim, and 250 to 750 ng of Tag as
indicated. Control reactions lacking Tag, RPA, or pol-prim are indicated (-).
Radiolabeled RNA products were resolved by electrophoresis on a polyacrylamide gel
containing 20% urea and visualized by autoradiography. M, radiolabeled oligonucleotide
size marker dT 4-22. (d-f) Quantification of the reactions using Phosphorimager analysis of
the corresponding reactions on the left. (g) Primer synthesis in the monopolymerase
reaction was quantified by densitometry using IP Lab GelTM software and expressed as a
percentage of wild type activity. At least two reactions were used for quantification of
each mutant. Brackets represent standard error.
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Figure 28. hRPAy32C mutant does not support Tag-mediated primer synthesis on
RPA-coated M13 ssDNA. Reaction was conducted as in Figure 25 except CTP was the
radiolabeled nucleotide, and ATP regeneration system and dNTPs were omitted. The
reaction products were processed as in Figure 27.
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Figure 29. RPA32 C-terminus is not necessary for primer extension. (a) Singly
primed ssDNA (100 ng) pre-coated with 1000 ng of the indicated human or yeast RPA
was incubated with purified pol-prim (100, 150, and 250 ng) as indicated (+). Negative
control reactions were performed without pol-prim (lanes 4, 9) or with unprimed template
(lanes 5, 10). Primer extension in the absence of RPA is shown in lane 11. (b) This
reaction was done similar to the one described for panel a, but using wt or hRPA32C
proteins. (c) Quantification of the reaction in panel b as assessed by scintillation
counting.
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Figure 27, except RPA-saturated M13 ssDNA was used as a template for the reaction

(Figure 28). As expected, reactions containing wt RPA yielded abundant primer products

(lanes 1-3), as well as positive control lacking RPA (lane 12), while reactions with

HRPA32C chimera produced no product (lanes 6-8). Negative control reactions without

pol-prim (lanes 4, 9, and 11) or Tag (lanes 5, 10) contained no product. Single point

mutants were not tested in this assay,

The data above do not distinguish whether hRPA32C is required only for primer

synthesis in the presence of Tag and pol-prim, or also for primer extension, which

requires only pol-prim (Bullock 1997; Yuzhakov et al. 1999b). This question was

addressed by examining the activity of pol-prim on a pre-primed ssDNA template

saturated with either the yeast RPA, chimera hRPAy32C or hRPA (Figure 29a, b). The

primer elongation activity in the presence of human, yeast or chimeric RPA was nearly

identical (lanes 1-3, 6-8). Primer extension was not detected in the absence of pol-prim or

when unprimed DNA template was coated with the same amount of mutant RPA (lanes

4, 5, 9, 10). Primer elongation in the absence of RPA yielded products of smaller size

(lane 11), consistent with previous evidence that RPA enhances the processivity of DNA

synthesis (Kenny et al. 1990; Matsumoto et al. 1990; Dornreiter et al. 1992; Melendy and

Stillman 1993). We conclude that all three RPAs are capable of facilitating primer

elongation by pol-prim.

Discussion

Taken together with the known interaction of Tag with RPA70 (Braun et al. 1997; Wold

1997; Weisshart et al. 1998; Iftode et al. 1999), the new evidence presented here suggests
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that each RPA heterotrimer has two binding surfaces for Tag, one in RPA70 and a

weaker one in RPA32C. Although the interaction of RPA32C with Tag-OBD is of

moderate affinity, characterization of the complex by NMR enabled modeling of the

structure at sufficient resolution to identify critical residues involved in the binding

interface. The physical interaction of RPA32C with Tag-OBD is species specific. Despite

strong homology between yRPA and hRPA, yRPA32C does not bind Tag-OBD or

support SV40 DNA replication. Mutational analysis of hRPA32C strongly suggests that

hRPA32C interaction with Tag-OBD allows pol-prim to gain access to hRPA-coated

ssDNA for primer synthesis. The reduced replication activity of hRPA32C mutants is

easily detectable as the amount of RPA is raised (Figure 12), but might not be obvious

with lower amounts, providing an explanation for differences with observations reported

previously (Lee and Kim 1995; Braun et al. 1997). Other differences include the use of

purified pol-prim and the monopolymerase and primosome assays, rather than the RPA-

depleted human cell extracts used previously (Lee and Kim 1995; Braun et al. 1997).

Since RPA is highly abundant in vivo, our results suggest that protein interactions of

RPA32C with Tag are physiologically relevant. Interestingly, a conditional RPA32

mutant of yeast that lacks the RPA32C domain displays slow progression through S

phase, synthetic lethality with a conditional pol-prim mutant at permissive temperature,

and is nonviable at non-permissive temperature (Santocanale et al. 1995). These

phenotypes imply that one or more steps in chromosomal replication may also depend on

RPA32C interaction with protein partners.

RPA32C uses a common binding site to interact with Tag-OBD and DNA repair

factors (Mer et al. 2000b). Like Tag, XPA and Rad52 have an additional binding site in
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RPA70 (Jackson et al. 2002; Daughdrill et al. 2003), although the relative importance of

these contact points in DNA repair is not known. Notably, the RPA32C deletion mutant

of yeast displays a mutator and hyper-recombination phenotype, which does suggest a

role for RPA32C in DNA repair (Santocanale et al. 1995). One of the common functions

of RPA in these different DNA processing pathways lies in its ability to facilitate the

exchange of proteins on ssDNA (“hand-off”) (Kowalczykowski 2000; Mer et al. 2000b;

Stauffer and Chazin 2004) as the pathway proceeds. The promiscuity of RPA32C in

binding DNA processing proteins, while maintaining modest affinity for its binding

partner, suggests that it serves as a facilitator in the hand-off mechanism.

Characterization of structural mechanisms such as hand-off presents a significant

challenge, but one which must be overcome in order to better understand fundamental

DNA processing events such as replication.

How does hRPA32C promote T antigen-mediated primer synthesis?

Primer synthesis but not primer elongation on RPA-saturated ssDNA requires Tag

(Matsumoto et al. 1990; Collins and Kelly 1991; Melendy and Stillman 1993; Yuzhakov

et al. 1999b). The ability of Tag to mediate priming by pol-prim correlates with its ability

to interact physically with the RPA bound to the template, strongly suggesting that

physical interactions of Tag with RPA facilitate priming (Melendy and Stillman 1993;

Weisshart et al. 1998).  The data presented in this report and previously (Lee and Kim

1995) point to a functional role for RPA32C in Tag-mediated priming.

How might the physical interaction of Tag with RPA32C facilitate primer

synthesis? We postulate that Tag interacts with RPA to facilitate its partial dissociation
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from ssDNA, thereby creating a short region of ssDNA accessible for primer synthesis

(Figure 30). Based on all available evidence (Wold 1997; de Laat et al. 1998; Iftode et al.,

1999; Yuzhakov et al. 1999b; Iftode and Borowiec 2000; Bastin-Shanower and Brill

2001; Ott et al. 2002a; Arunkumar et al. 2003; Bochkarev and Bochkareva 2004), we

propose that a dual interaction of Tag with RPA32C and RPA70 allows it to remodel the

structure of ssDNA-bound RPA, transiently shifting it from the high affinity, extended

binding mode to a weaker, more compact binding mode (Figure 30a, b). RPA binds to

ssDNA with the high affinity DNA binding domains A and B at the 5’ end of the

occluded ssDNA, followed by the weaker binding domains C and D at the 3’ end.  This

implies that the 3’ ssDNA would be transiently accessible simply due to the lower

affinity of RPA domains C and D for ssDNA. Binding of Tag to RPA32C might prolong

the time window in which the 3’ site is accessible. Since Tag binds to pol-prim through

its helicase domain, a single Tag hexamer may bind concurrently to RPA and pol-prim

(Fanning and Knippers 1992; Bullock 1997; Weisshart et al. 1998; Simmons 2000;

Stenlund 2003). Given that Tag binding to both proteins is essential for priming

(Weisshart et al. 1998), we propose that a Tag hexamer transiently associated with both

RPA and pol-prim is poised to load pol-prim onto the accessible region of ssDNA (Figure

28b,c). Primase would thereby gain access to the free ssDNA template, permitting primer

synthesis and leading to dissociation of a remodeled RPA molecule and Tag. Subsequent

primer extension on RPA-ssDNA by pol-prim does not require Tag (Figure 30d). The

model proposed in Figure 30 is consistent with our results and a large body of published

evidence, but much work remains to assess its validity.
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Figure 30. Model for SV40 primosome activity on RPA-coated ssDNA. (a) RPA
(blue) is schematically depicted in the high affinity 28-30 nt binding mode with all four
ssDNA binding domains (A-D) bound to ssDNA. RPA14 is omitted for simplicity. The
helicase domain (HEL) of a Tag hexamer (green) can associate with a pol-prim
heterotetramer (Koradi et al. 1996; Bullock 1997). Antibodies against Tag that
specifically inhibit either RPA binding to Tag-OBD or pol-prim binding to the helicase
domain prevent primer synthesis (Weisshart et al. 1998). (b) We suggest that primosome
assembly begins when Tag-OBD associates first with RPA32C and then with RPA70AB,
transiently creating a short stretch of unbound ssDNA. (c) In concert with this RPA
remodeling, pol-prim associated with the Tag hexamer would be poised to access the free
ssDNA and begin primer synthesis. (d) Primer extension by pol-prim is likely coupled
with RPA and Tag dissociation, and followed by the RFC/PCNA-mediated switch to
DNA polymerase delta (Huang et al. 1998) (not shown).
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In order to better understand the role(s) of RPA32C, it will be necessary to

complete the analysis of Tag-RPA interactions.  To this end, ongoing studies are focused

on mapping the interaction sites of RPA70AB to determine how interactions of both Tag-

interacting regions of RPA are coordinated, and regulated through their interactions with

DNA and pol-prim, during the initiation of SV40 DNA replication.  The increasingly

detailed knowledge of the mode of action of modular, multi-functional proteins, such as

our studies of the SV40 replisome, are of considerable value because they will develop a

deeper understanding of the fundamental molecular mechanisms of DNA processing

machinery and the role of RPA in guiding the succession of proteins in each pathway.
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CHAPTER III

REQUIREMENTS FOR HCDC6 PHOSPHORYLATION IN INITIATION OF
MAMMALIAN DNA REPLICATION AND NUCLEAR EXPORT

Introduction

DNA replication is a complex and tightly regulated process essential for cell cycle

progression. Pre-replication complex (pre-RC) formation constitutes the initial step in

committing a cell to enter S phase. Several gene products were identified that are

required for pre-RC formation. Human Cdc6 (hCdc6) is a key regulator of pre-RC

formation. hCdc6 is recruited to chromatin by the origin recognition complex (ORC) as

cells transit from mitosis to G1 (for review see (Bell and Dutta 2002; Pelizon 2003;

Oehlmann et al. 2004; Machida and Dutta 2005)). Studies in yeast and Xenopus indicate

that hCdc6 together with Cdt1 loads MCM complex, a putative helicase (Fujita 1999;

Nishitani et al. 2000). The current model proposes that Cdc6 is phosphorylated by CDKs,

exported from the nucleus or degraded through a ubiquitin-dependent pathway after

loading MCM2-7 (Figure 31a). However, sub-cellular localization of hCdc6 in cells

synchronized with aphidicolin or hydroxyurea/thymidine suggests that MCM loading by

hCdc6 is not sufficient for its nuclear export in human cells. As reported in several

studies, human Cdc6 localizes to the nucleus in cells blocked with aphidicolin and to the

cytoplasm in cells treated with hydroxyurea/thymidine (Saha et al. 1998; Jiang et al.

1999; Petersen et al. 1999). Aphidicolin blocks replicative polymerases, threreby stalling

the replication forks Figure 31b. The drug uncouples the polymerase and primase
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activities of the polymerase-a-primase. Thus, the aphidicolin treated polymerase lays

primers, but cannot replicate DNA. The aphidicolin blocked pre-replicative complex is

fully formed and contains replicative polymerases. According to the current model,

hCdc6 should be exported from the nucleus at this point in initiation since the MCM 2-7

complex has already been loaded by hCdc6. However, under these conditions, hCdc6

remains in the nucleus and is presumably chromatin-bound. Hydroxyurea and thymidine

elicit a replication block in the cell cycle by inhibiting the action of the ribonucleotide

reductase enzyme. Cells entering S phase are able to lay primers and replicate short

fragments of DNA when propagated in hydroxyurea/thymidine-containing medium, but

replication stops due to ribonucleotide reductase inhibition and the resulting depletion of

dNTP substrates (Figure 31b). These data might indicate that replication initiation is

required for hCdc6 nuclear export.

Human cells synchronized with pharmaceutical agents that block cells at the G1/S

transition demonstrate that hCdc6 is nuclear in G1 and is gradually exported from the

nucleus as cells progress into S phase (Saha et al. 1998; Jiang et al. 1999; Petersen et al.

1999). Cyclin dependent kinase phosphorylation of hCdc6 promotes its nuclear export

after MCM loading (Herbig et al., 2000). hCdc6 possesses nucleotide binding motifs

designated Walker A and Walker B, and Sensor I and Sensor II motifs that distinguish

ADP from ATP bound states (Figure 32) (Perkins and Diffley 1998; Liu et al. 2000;

Schepers and Diffley 2001). Studies in the Xenopus cell-free system indicate that Walker

A and Walker B motifs are required for hCdc6’s proper function in loading MCMs on

chromatin (Frolova et al. 2002). Similar requirements exist in budding yeast (Takahashi

et al. 2002) and humans (Herbig et al. 1999). Sequence analysis of Cdc6 revealed
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Figure 31. A current model of the initiation of DNA replication, the role and timing
of Cdc6 activity. (a) Current model of initiation of DNA replication, based primarily on
the studies in Xenopus (right) and yeast (left). Adapted from Bell and Dutta, Annu. Rev.
Biochem., 2002. (b) A model demonstrating the specific time during cell cycle when
aphidicolin or thymidine/hydroxyurea exert its action.
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Figure 32. A model showing known functional motifs of hCdc6. The mutated residues
are in bold. Phosphorylation sites (yellow lines) S45, S54, T67, S74, and S106 are
located at the N-terminus; a potential phosphorylation site S419 is also labeled.
Approximate position of NLS (grey ovals) and NES (red rectangle) are shown as
proposed by Delmolino et al., JBC, 2001.

N C
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several nucleotide-interacting domains characteristic of AAA+ family of proteins:

Walker A, Walker B, Sensor I, and Sensor II. Genetic (Perkins and Diffley 1998;

Schepers and Diffley 2001), structural (Liu et al. 2000), and biochemical (Herbig et al.

1999; Frolova et al. 2002) analyses of these motifs allowed the determination of the role

of some of these domains in regulating Cdc6 action. The Walker A motif is necessary to

bind ATP, while the Walker B motif is required for Cdc6 to hydrolyze the nucleotide

(Herbig et al. 1999; Frolova et al. 2002). The Sensor I motif was speculated to allow the

protein to distinguish whether the ADP or ATP form of the nucleotide was bound.

Expressed alone, the sensor I motif mutants were shown to be dominant-negative in yeast

(Schepers and Diffley 2001) and human cells (Griffith, 1999, Honors thesis). The Sensor

II mutations are lethal and the motif’s exact function is still enigmatic (Schepers and

Diffley 2001).

Preliminary studies suggest that phosphorylation of hCdc6 in human cells is

required for replication and that phosphorylation-defective mutants exhibit dominant-

negative phenotypes (Jiang et al. 1999; Herbig et al. 2000). In the yeast model,

phosphorylation is not required for replication, but phosphorylation induces

ubiquitination and proteolysis after initiation of replication (Wolf et al. 1999; Calzada et

al. 2000; Jang et al. 2001). Similar findings were reported in the Xenopus system, in

which phosphorylation of Cdc6 is not essential for replication, but it facilitates the

protein’s chromatin dissociation after initiation of replication (Coleman et al. 1996;

Mendez and Stillman 2000; Pelizon et al. 2000; Gillespie et al. 2001). In these model

systems, phosphorylation of Cdc6 prevents re-initiation of replication. However, little is

known in human cells about the role of hCdc6 phosphorylation in DNA replication, the
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sequence of events leading to DNA replication, and the exact mechanism of Cdc6 export

from the nucleus.

To address hCdc6 function in human DNA replication, we utilized GFP-tagged

human Cdc6 protein with mutations in phosphorylation and nucleotide interacting

domains for sub-cellular localization, replication kinetics, and ability to replicate DNA in

synchronized HeLa cells. Our findings suggest that functions of both nucleotide-binding

and Sensor domains are required for hCdc6 ability to function and exit the nucleus.

Moreover, phosphorylation alone is not sufficient for hCdc6 nuclear export, and hCdc6

export from the nucleus occurs gradually over time in S phase. Our studies also suggest

the existence of a secondary mechanism required for hCdc6 nuclear export, possibly

involving prolyl bond isomerization by human Pin1 or another prolyl isomerase.

Materials  and methods

Cdc6 mutant construction

Cdc6 mutants were generated according to the QuikChangeTM Site-Directed Mutagenesis

protocol (Stratagene). Mutant DNA was generated using GST-hCdc6 in pBS KS II +

(Herbig et al. 1999) as a template and the following primers: S45D forward 5'-

CCAAACCGTAACCTGTGATCCTCGTGTAAAAGCC-3' and reverse 5'-

GGCTTTTACACGAGGATCACAGGTTACGGTTTGG-3', S54D forward 5'-

GTAAAAGCCCTGCCTCTCGACCCCAGGAAACGTCTGGG-3' and reverse 5'-

CCCAGACGTTTCCTGGGGTCGAGAGGCAGGGCTTTTAC-3', T67D forward 5'-
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GACAACCTATGCAACGATCCCCATTTACCTCC-3'  and reverse 5 '-

GGAGGTAAATGGGGATCGTTGCATAGGTTGTC-3', S74D forward 5'-

CCATTTACCTCCTTGTGATCCACCAAAGCAAGGC-3' and reverse 5'-

GCCTTGCTTTGGTGGATCACAAGGAGGTAAATGG-3', S106D forward 5'-

CAGCTGACAATTAAGGATCCTAGCAAAAGAG-3'  and reverse 5 '-

CTCTTTTGCTAGGATCCTTAATTGTCAGCTG-3', Walker A forward 5'-

C C T G G A A C T G G A G C A A C T G C C T G C - 3 '  a n d  r e v e r s e  5 ' -

GCAGGCAGTTGCTCCAGTTCCAGG-3 ' ,  Walker  B forward  5 ' -

G G T A T T G G A C G C G A T G G A T C A A C T G G - 3 '  a n d  r e v e r s e  5 ' -

CCAGTTGATCCATCGCGTCCAATACC-3'. The mutations were generated using 50

ng template DNA, 125 ng of each primer, and 10 mM dNTP mix in 50 ml reaction

volume. Polymerization was performed by PfuTurbo polymerase (Stratagene) in 1X Pfu

buffer for 18 cycles in a Perkin Elmer 480 thermal cycler (95°C for 30 sec, 55°C for 1

min, and 68°C for 11 min). GFP fusion constructs were produced by digesting

pBluescript KS II+ plasmid containing Cdc6 mutants with BstUI for 1 hr at 60°C.

pEGFP-C2 (Clontech) vector was digested with SmaI for 1 hr at 25°C. Both the vector

and the insert were gel-purified and ligated overnight at 16°C by T7 ligase (Clontech) in

its buffer. DNA plasmids were propagated in HB101 competent cells. Introduction of all

mutations was verified by DNA sequencing.

 Cell culture and cell synchronization

HeLa cells were grown in a monolayer in Dulbecco's Modified Eagle Medium (DMEM;

Life Technologies, Gaithersburg, MD) supplemented with an antibiotic cocktail
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(streptomycin, kanamycin, and strepticillin), L-glutamine and 10% fetal bovine serum

(FBS; Atlanta Biologicals, Atlanta, GA) in humidified incubator at 37° C and 5% CO2.

Exponentially growing HeLa cells at approximately 70% confluency were blocked in

G2/M for 18-20 hrs with 50 ng/ml nocodazole (Sigma). Cells were then harvested by

mitotic shake-off and released into G1 by washing two times with fresh media. Released

cells were plated on cover glass in 35 mm cell culture dish (Corning Inc.) for

microinjection.

Microinjection

Cells for microinjection were incubated for 4-6 hr following the release from nocodazole

block to allow them re-attach to the matrix. DNA plasmids for microinjection were

diluted in 0.2 µm filtered microinjection buffer (25 mM HEPES-KOH, pH7.5 and 50 mM

NaCl) to a final concentration of 100 ng/ml. At least 2 hrs of incubation after injections

were allowed for the protein to be expressed before the cells were fixed. All samples for

microinjection were centrifuged for 60 min at 14,000X g. Microinjections were

accomplished using a microinjector (model 5246; Eppendorf Scientific, Madison, WI)

and a manipulator (model 5171; Eppendorf Scientific, Madison, WI). Cells in the Petri

dishes for microinjection were mounted and observed on an inverted microscope (model

IM35; Zeiss, Oberkochen, Germany). Needles were pulled from borosilicate glass

capillaries (Clark Electromedical Instruments, Reading, UK) on an automatic DMZ-

Universal Puller (Zeitz Instruments, Augsburg, Germany).
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BrdU incorporation

In order to monitor DNA replication, media was supplemented with 10 mM

bromodeoxyuridine (BrdU; Sigma) two hours before fixation. Cells were fixed as

follows: washed 3 times in ice-cold phosphate buffered saline (PBS), incubated 20 min in

3% paraformaldehyde in PBS, washed 3 times with PBS, permeabilized for 20 min with

0.2% Triton-X100, washed 3 times with PBS, and incubated for 45 min in PBS

supplemented with 10% FBS. Mouse a-BrdU antibody (Amersham, Arlington Heights,

IL) at a 1:10 dilution supplemented with 10 units of Benzonase (Novagen) was incubated

with the cells for two hours followed by 3 washes with PBS and 3 washes of 5 min each

with PBS. Cells were then incubated with a-mouse Cy-3 conjugated secondary antibody

at a dilution 1:100 (Jackson ImmunoResearch Laboratory, Inc.) for one hour, followed by

the same washing protocol as for a-BrdU antibody. DNA was stained by 10 min

incubation with 2 mg/ml Hoechst dye in PBS, followed by three washes with PBS. Cover

glasses with cells were dried overnight and mounted with a ProLong antifade kit

(Molecular Probes). Fluorescence was observed using an inverted fluorescent microscope

(model Axiovert 135, Carl Zeiss, Oberkochen, Germany). Digital pictures were obtained

with an RT Monochrome camera, power supply, and manufacturer's software SpotTM

3.0.5 (Diagnostic Instruments, Inc, Sterling Heights, MI).

Expression and purification of recombinant hCdc6 protein

Wild type and mutant GST-hCdc6 proteins were expressed from baculovirus vectors in

Hi5 insect cells and purified according to the protocol previously described by Herbig et

al., (1999).
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Partial tryptic digest of GST-hCdc6 protein

Freshly purified GST-hCdc6 protein bound to glutathione-agarose resin (Sigma) was

washed 2X with PBS, equilibrated by washing 2X with buffer D (20 mM Tris-HCl (pH

7.5), 0.5 mM EDTA, 2 mM DTT, and 8 mM MgCl2), and digested for 10 min at 37°C in

a total reaction volume of 20 ml. The reactions contained 0.5 mg GST-hCdc6 protein and

either no nucleotide or 2 mM ATP, ATPgS, ADP, or UTP in buffer D. The amount of

trypsin necessary for digestion was empirically determined by titration in each case. The

reactions were stopped by addition of SDS sample buffer and boiled for 5 min at 95°C.

The proteolytic products were resolved on 10% SDS-PAGE and visualized by a silver

staining kit (Bio-Rad) according to the manufacturer’s protocol.

Results

ADP-bound Sensor I mutant loses its ability to resist digest by trypsin

ATP hydrolysis by human GST-hCdc6 WT induces a conformational change as assayed

by partial tryptic digest (Herbig et al. 1999). GST-hCdc6 WT bound to ATP, ATPgS, or

UTP was completely digested by trypsin, while ADP inhibited trypsin digestion (Figure

33a). Herbig et al. (1999) report that the Walker A mutant of hCdc6 was unable to be

stabilized by nucleotide binding (Figure 33b). The Walker B mutant, however, was

stabilized against trypsin action by binding to ATP, ATPgS, and ADP (Herbig et al.

1999) (Figure 33c), indicating that the mutation locked hCdc6 in a conformation
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resembling post ATP hydrolysis of the wild type protein. ADP release might be necessary

for hCdc6 return to the original conformation.

The Sensor I motif allows proteins to distinguish ATP from ADP binding (Liu et

al. 2000). Since ATP hydrolysis is required for each MCM loading event by hCdc6

(Frolova et al. 2002), we can speculate that upon hydrolysis, hCdc6 undergoes a

conformational change, mediated by the Sensor I motif that signals completion of its

action and possibly unmasks the nuclear export signal. To evaluate the ability of the

Sensor I mutant to undergo a conformational change, we employed a partial tryptic digest

assay (Herbig et al. 1999).

Substituting negatively charged amino acids for serine or threonine residues that

undergo phosphorylation in vivo can mimic the phosphorylated form of the protein.

Pseudo-phosphorylated human GST-hCdc6 mutant proteins were assayed for their ability

to undergo an ADP-induced conformational change. Recombinant proteins with primary

phosphorylation sites at positions S54, S74, and S106 (3XD) mutated to aspartic acid as

well as mutant proteins with all putative phosphorylation sites (Figure 32) replaced with

aspartic acid do not lose their ability to undergo conformational change upon ADP

binding in this assay. These mutants do not exhibit trypsin digest protection when bound

to ATP, ATPgS, or UTP. As expected, Sensor I mutants were unable to exhibit protection

from trypsin action when incubated with ADP (Figure 34).
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Figure 33. Partial tryptic digest analysis of wild type and mutants of GST-hCdc6.
(a) Partial tryptic digest of human GST-hCdc6 wild type and the Walker motif mutants.
Wild type hCdc6 is stabilized against digest by trypsin when incubated with ADP, but not
ATP, ATPgS, or UTP. (b) The Walker A (K208A) mutant fails to exhibit such protection
by ADP binding, while (c) the Walker B (E285Q) mutant of human GST-Cdc6 is
protected by binding of either ATP, ATPgS, or ADP, but not UTP. Figure adapted from
Herbig et al., 1999.
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Figure 34. A partial tryptic digest of wild type, pseudophosphorylated, and Sensor I
GST-hCdc6. Wild type and pseudophosphorylated mutants of GST-hCdc6 are stabilized
against tryptic digest by incubation with ADP, but not ATP, ATPgS, or UTP. Sensor I
motif mutant protein, however, is unable to be stabilized by any of the nucleotides
present in the reaction mixture.
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HCdc6 is gradually exported from the nucleus in the S phase of cell cycle

A current model (Figure 31a) of initiation of DNA replication predicts that hCdc6 export

occurs en masse immediately after the MCM loading, but before unwinding, priming, or

DNA synthesis. Previous studies reported that hCdc6 localized to the nucleus in human

cells synchronized with aphidicolin (Saha et al. 1998), which blocks DNA synthesis by

inhibiting the replicative polymerase, but not the primase activity of polymerase-a-

primase. Human cells that were blocked with thymidine or hydroxyurea exhibited

cytoplasmic localization of the hCdc6 protein. Replication forks are quickly stalled by the

absence of deoxyribonucleotides. Described methods describe only a static picture of

hCdc6 localization at a specific time point of the cell cycle, leaving open the question of

kinetics of hCdc6 nuclear export. To address the question of whether hCdc6 is gradually

released during S phase or exits en mass as cells transition from G1 to S, we decided to

monitor the sub-cellular localization of hCdc6 in HeLa cells as they enter the cell cycle

after a mitotic block. To assay the kinetics of sub-cellular location of human Cdc6, we

created an N-terminal GFP fusion of the protein and observed its location as cells

progressed through S phase of the cell cycle.

In order to validate the GFP-tagged human Cdc6 as a system to assay its sub-

cellular location we tested its location under conditions used previously with untagged

Cdc6. Earlier studies revealed that wt Cdc6 localizes to the nucleus in G1 and to the

cytoplasm in S phase of the cell cycle. In addition, Cdc6 was found in the nucleus of cells

blocked with aphidicolin, but the protein was cytoplasmic in cells blocked with

hydroxyurea or thymidine (Saha et al. 1998; Jiang et al. 1999; Petersen et al. 1999).

Electroporation of asynchronous U2OS cells and injection of exponentially growing
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HeLa cells were used to show that GFP-hCdc6 WT did display cellular localization

pattern similar to endogenous protein (results not shown). In addition, GFP-hCdc6

localized in cells blocked with aphidicolin and thymidine to the same cellular

compartment as reported previously (results not shown). Thus, we concluded that

microinjection of GFP-tagged Cdc6 is a valid system to monitor its sub-cellular

localization.

BrdU incorporation establishes the time of S phase beginning in HeLa cells as

they are released from a nocodazole block. Nocodazole is a microtubule inhibitor and

synchronizes cells in G2/M. Previous studies by Herbig et al. (1999) reported that HeLa

cells released from a nocodazole block, began S phase at 10 hr post-release as assayed by

flow cytometry (Figure 35a). In agreement with these results, HeLa cells began BrdU

incorporation after 10 hr following release from a nocodazole block (Figure 35b). Since

BrdU incorporation was monitored during 2 hr pulses, the percentage of cells positive for

BrdU reflects cells actively replicating at a given time point.

Kinetic analysis of hCdc6 export from the nucleus was conducted by injecting

plasmid DNA encoding GFP-hCdc6 into HeLa cells synchronized with nocodazole at 5

to 8 hr after release from nocodazole block. After injection, BrdU was added to the

medium. GFP fusion protein was detected in the nucleus by fluorescent microscopy

analysis at 2 hr after injection (data not shown). At 10 hrs after nocodazole release, the

number of cells with hCdc6 in the cytoplasm gradually increased, while the population of

cells with hCdc6 found in the nucleus was reduced (Figure 36b).
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Figure 35. Kinetics of GFP-hCdc6 nuclear export in synchronized HeLa cells. (a)
Cell cycle analysis of DNA content of HeLa-S3 cells blocked by nocodazole and released
into drug free media as assayed by flow cytometry (Adapted from Herbig et al., 1999).
(b) Kinetic analysis of non-injected HeLa cells synchronized at G2/M with nocodazole
and released into G1. DNA replication was assessed by BrdU incorporation in 2 hr
pulses.
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Figure 36. Kinetic analysis of GFP-hCdc6 WT sub-cellular localization and DNA
replication in synchronized HeLa cells. (a) GFP-hCdc6 WT protein does not inhibit
DNA replication when localized to the cytoplasm. BrdU incorporation was conducted in
2 hr pulses. GFP-fused human Cdc6 protein was injected in early G1 into synchronized
HeLa cells. (b) GFP-hCdc6 WT plasmid DNA was injected into HeLa cells in early G1.
GFP positive cells were assayed for sub-cellular localization of protein at indicated time
points (N-nuclear, C-cytoplasmic, N+C-protein is present in both nucleus and
cytoplasm). The results represent four independent experiments with an average number
of cells at each time point ranging from 49 to 90.
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Concomitant staining with BrdU indicates that cells containing cytoplasmic GFP-

hCdc6 were able to replicate DNA, but a small population of GFP-hCdc6 that localized

to the nucleus in S phase constitutively inhibited DNA replication (Figure 36a).

GFP-hCdc6 Walker B mutant delays S phase and blocks DNA replication

Herbig et al. (1999) reported that the Walker B mutant of hCdc6 impaired or inhibited

DNA replication when GST-hCdc6 Walker B recombinant protein was microinjected into

synchronized HeLa cells in early G1. We tested the GFP-hCdc6 Walker B mutant to

verify that it retains the dominant-negative phenotype of the GST-hCdc6 Walker B

mutant in DNA replication from 10 to 20 hrs after release from nocodazole block,

consistent with the failure of the cell to undergo DNA replication. The protein was found

constitutively in the nucleus even at 20 hr after release from nocodazole (Figure 37b). To

test the ability of GFP-hCdc6 Walker B mutant protein to inhibit DNA synthesis in HeLa

cells, as shown before for the GST fused protein, DNA replication was assessed by BrdU

incorporation assay. Fluorescence microscopy revealed strong inhibition of DNA

replication by GFP-hCdc6 Walker B mutant protein in microinjected cells (Figure 37a).

These results argue that the GFP mutant protein, like the GST mutant protein, had a

dominant-negative phenotype in human cells.

Human GFP-Cdc6 Sensor I mutant behaves like Walker B mutant

Schepers et al. (2001) in their analysis of the Sensor domain mutants of Cdc6

reported that the phenotypes of Walker B and Sensor I mutants in yeast Cdc6 were
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Figure 37. GFP-hCdc6 Walker B is constitutively nuclear and unable to function in
DNA replication. (a) The GFP-hCdc6 Walker B mutant was assessed for its ability to
participate in DNA replication. Analysis was conducted under the same conditions as the
kinetic quantification experiment except that BrdU was added for 2 hrs at 18 and 20 hr
time points. Non-injected cells undergoing replication at these time points averaged 70%.
(b) Kinetic analysis of GFP-hCdc6 Walker B localization in synchronized HeLa cells.
GFP positive cells were assayed for sub-cellular localization (N-nuclear, C-cytoplasmic,
N+C-protein is present in both nucleus and cytoplasm). The results represent three
independent experiments with the number of cells analyzed at each time point ranging
from 24 to 70.
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indistinguishable. Both mutants exhibited a dominant negative phenotype, delayed S

phase progression, and were unable to efficiently load MCM or initiate DNA replication.

Importantly, Sensor I mutants were shown to be more stable than the wild type protein.

Having verified that the GFP-fused Walker B mutant of human Cdc6 behaves

similarly in its ability to delay S phase progression and inhibit DNA replication, we

analyzed the GFP-hCdc6 Sensor I mutant protein for the same properties. As expected,

the GFP-fused Sensor I mutant of human Cdc6 was exclusively nuclear in S phase of the

cell cycle (Figure 38b). In addition, the GFP-hCdc6 mutant efficiently inhibited

replication when over-expressed in human cells (Figure 38a).

Phosphorylation alone is not sufficient for hCdc6 nuclear export

It has been reported that phosphorylation of Cdc6 is required for its export from Xenopus

nuclei replicating in egg extracts (Pelizon et al. 2000) and from human nuclei (Jiang et al.

1999; Petersen et al. 1999). However, it has not been conclusively established that

phosphorylation alone is sufficient for Cdc6 export in either system. Several groups

reported that pseudo-phosphorylated Cdc6, in which three or four serine phosphorylation

sites were replaced with aspartic acid, was found predominantly in the cytoplasm of

exponentially growing cells (Jiang et al. 1999; Petersen et al. 1999; Delmolino et al.

2001). The possibility that pseudo-phosphorylated mutants cannot be imported into the

nucleus was ruled out. None of the groups analyzed the mutants with all phosphorylation

sites mutated to aspartic acid.

We analyzed sub-cellular localization of the 5XD (S45D, S54D, T67D, S74D,
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Figure 38. The Sensor I mutant of hCdc6 is found constitutively in the nucleus and
inhibits cellular DNA replication. (a) The GFP-hCdc6 Sensor I mutant inhibits cellular
DNA replication. Replicating cells were determined by incubating HeLa cells for 2 hr in
BrdU containing medium. (b) Kinetic analysis of the GFP-hCdc6 Sensor I mutant. GFP
positive cells were assessed for sub-cellular localization of the protein (N-nuclear, C-
cytoplasmic, N+C-protein is present in both nucleus and cytoplasm). The results
represent two independent experiments with an average number of cells analyzed at each
time point ranging from 27 to 109.
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S106D) mutant, expressed in G1 as a GFP fusion protein as cells progress from G1 to S.

Under these conditions, 5XD mutant protein remained nuclear even at 20 hrs post-

nocodazole release, indicating an inability of the protein to exit the nucleus in S phase

(Figure 39a). Cells that expressed the 5XD mutant protein in the nucleus were BrdU

negative, indicating an inability to replicate DNA. These data allow us to conclude that

cells expressing wt or mutant GFP-Cdc6 in the nucleus are unable to support replication,

therefore Cdc6 export from the nucleus is required for the initiation of chromosomal

replication. Results of this study as well as previous studies suggest that nuclear export

depends on phosphorylation of Cdc6. Since ATP hydrolysis has been shown to be

required for MCM loading by Cdc6 and the Sensor I motif might mediate a

conformational change resulting from this catalytic activity, we speculated that a

conformational change together with the phosphorylation of Cdc6 are required for the

protein’s export from the nucleus. However, when the Sensor I mutation was combined

with the pseudophosphorylated 5XD or 3XD mutations, the GFP fusion proteins were

found constitutively in the cytoplasm (Figure 39b,c)

Sensor I/Pseudophosphorylated mutants of HCdc6 are unable to enter the nucleus

Since the pseudophosphorylated/Sensor I double mutant proteins were constitutively

found in the cytoplasm, both in G1 and S, it is possible that they enter the nucleus and

shuttle quickly to the cytoplasm. Alternatively, the double mutant proteins may not be

imported into the nucleus because their nuclear localization signal is masked or
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Figure 39. Mutants of GFP-
hCdc6 exhibit defects in sub-
cellular localization. (a )
Kinetic analysis of GFP-hCdc6
5XD mutant. The mutant
protein is consitutively found in
the nucleus when expressed in
human cells in S phase. The
resu l t s  represen t  two
independent experiments with a
number of cells analyzed at
each time point ranging from
19 to 130. (b) Kinetic analysis
of GFP-hCdc6 5XD/Sensor I
double mutant. GFP positive
cells were assessed for sub-
cellular localization of the
protein (N-nuclear ,  C-
cytoplasmic, N+C-protein is
present in both nucleus and
cytoplasm). The results
represent two independent
experiments with a number of
cells analyzed at each time
point ranging from 27 to 106.
(c) Kinetic analysis of GFP-
hCdc6 3XD/Sensor I double
mutant. GFP positive cells were
assessed for sub-cellular
localization of the protein (N-
nuclear, C-cytoplasmic, N+C-
protein is present in both
nucleus and cytoplasm). The
resu l t s  r epresen t  one
experiment with a number of
cells analyzed at each time
point ranging from 50 to 117.
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inactivated by the mutations. To determine whether the proteins are able to enter the

nucleus, we have employed a specific Crm1-inhibiting agent Leptomycin B (LMB). This

cytotoxin disrupts the formation of the Ran (GTP)-Crm1 transport complex, thus

blocking Crm1-mediated export from the nucleus to the cytoplasm (Nishi et al. 1994).

hCdc6 export from the nucleus in human cells has been shown to be mediated through

the Crm1 pathway (Jiang et al. 1999) and was blocked by LMB.

GFP-hCdc6 WT was used as a control to establish the protocol. HeLa cells were

blocked with nocodazole and released into the cell cycle. At 4-5 hours after release, cells

were injected. Seven hours after nocodazole release, cells were harvested to determine

the localization of GFP-hCdc6 WT. Concurrently Leptomycin B was added to the other

dishes, which were then incubated until 20 hrs after nocodazole release, when cells were

expected to be in S phase or G2. At seven hours after release, cells were still in G1 and

the majority of cells showed that GFP-hCdc6 was in the nucleus (Figure 40a). At 20 hrs

post-release the majority of cells had GFP-hCdc6 in the cytoplasm (Figure 40a).

However, in LMB treated cells, the overwhelming majority of cells showed GFP-hCdc6

in the nucleus at 20 hr time point, indicating that a block to Crm1-mediated nuclear

export had occurred (Figure 40a). When the sub-cellular location of GFP fusion proteins

containing the 3XD/Sensor I and 5XD/Sensor I double mutations was tested in the

presence of LMB as described above, all of the cells contained exclusively cytoplasmic

GFP fusion proteins (Figure 40b). This result indicates that these mutants were not able

to enter the nucleus.
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Figure 40. The pseudo-phosphorylated Sensor I double mutants of hCdc6 are
unable to enter the nucleus. (a) GFP-hCdc6 WT was injected into synchronized HeLa
cells in early G1. Cells were fixed and analyzed at 7 hrs post release, when cells are in G1
and at 20 hr, when cells are finishing S phase. LMB was added to the 20 hr sample at 7
hrs post nocodazole release. (b) Analysis of 3XD/Sensor I and 5XD/Sensor I mutants of
GFP-hCdc6 under the same protocol as in panel a.
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T67-P68 mutation causes a defect in hCdc6 sub-cellular localization

Previous analysis of 3X ((Saha et al. 1998) and 4X (Delmolino et al. 2001)

phosphorylation mutants of hCdc6 indicated no functional difference between these

mutants in sub-cellular localization. Non-phosphorylatable alanine mutants were

consistently found in the nucleus of transfected cells, while pseudo-phoshorylated

aspartic acid mutants localized predominantly to the cytoplasm. Putative posphorylation

site T67 was omitted from analysis in both 3X and 4X mutants in those studies. However,

comparing the localization pattern of 3XD/4XD and 5XD mutants of hCdc6 reveals a

significant difference elicited by a mutation at threonine in the position 67 (compare the

data in Delmolino et al. to Figure 39). A number of studies have suggested that certain

prolylic bonds might undergo isomerization, which plays a role in regulation of protein

function (Schutkowski et al. 1998; Fischer 2000). These studies also indicate that

isomerization is dependent upon phosphorylation of the threonine preceding proline in

the primary structure. Chemical properties of serine are distinct from those of threonine,

making the latter a better substrate for isomerase action (Ranganathan et al. 1997; Fischer

2000; Wintjens et al. 2001). We speculated that mutating T67 to alanine might have

affected the integrity of the prolylic bond necessary for isomerization reaction. Thus, we

decided to investigate a possibility that the T67-P68 peptide bond might play a role in the

regulation of hCdc6 function and/or localization by mutating proline P68.

A mutant of hCdc6 was created in which proline in position 68 was replaced with

alanine, while T67 was retained. The mutant was analyzed as a GFP fusion protein for its
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Figure 41. The GFP-hCdc6 P68A mutant is located predominantly in the nucleus
and fails to replicate DNA. (a) The GFP-hCdc6 P68A mutant inhibits cellular DNA
replication in synchronized HeLa cells at time points corresponding to late S phase. (b)
The GFP-hCdc6 P68A mutant is nuclear even at 20 hr after HeLa cells were released
after nocodazole block. The results represent two independent experiments with 42 to
116 cells analyzed at each time point.
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sub-cellular localization during G1 and S phase as described above. Results indicate that

GFP-hCdc6 P68A mutant was found constitutively nuclear in this assay (Figure 41b). In

addition, this mutant blocked cellular DNA replication when expressed in HeLa cells in

G1 (Figure 41a).

Discussion

A number of studies have conclusively shown that Cdc6 is exported to the cytoplasm

apparently after its function is completed (Saha et al. 1998; Jiang et al. 1999; Petersen et

al. 1999). These studies were conducted by blocking cells at different points in the cell

cycle using pharmaceutical agents. However, this approach did not shed light on the

kinetics of this export.

Results of this study suggest that hCdc6 is being gradually exported from the

nucleus (Figure 35b). These data might suggest that hCdc6 export depends on firing of a

particular origin. As origins fire during S phase, Cdc6 is released starting from the early

origins to late ones, which would explain gradual release of hCdc6 from the nucleus. One

of the predictions of this hypothesis would be an observation that hCdc6 should be

present on chromatin at a late origin while absent at an early origin after an early origin

fires. This hypothesis still needs to be addressed in future studies, possibly by conducting

chromatin immunoprecipitation assays, comparing hCdc6 presence at an early and a late

origin as a cell progresses through S phase.

Phosphorylation is required for hCdc6 export. In this study, however, we

established that the pseudo-phosphorylated mutant of hCdc6 with aspartate replacing all

five putative phosphorylation sites fails to be exported from the nucleus, while the 4XD
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mutant, in which T67 residue is unaffected by a mutation, can be exported from the

nucleus. The present study, therefore, suggests that in order to be exported, hCdc6 must

not only be phosphorylated, but should also receive a secondary signal indicating that its

function is complete. Several explanations could be offered concerning the nature of such

a signal. A number of studies including this one indicated that the Sensor I motif is

required for the proper functioning of hCdc6 (Schepers and Diffley 2001; Takahashi et al.

2002). Since Sensor I allows hCdc6 to distinguish ADP from ATP bound forms of

nucleotide, we hypothesize that upon MCM loading, hCdc6 hydrolyzes ATP and

consequently changes its conformation. Such a conformational change might lead to the

exposure of the nuclear export signal. This conformational change is evident from

analysis of partial tryptic digests of the wild type protein bound to ADP ((Herbig et al.

1999). Conversely, the Sensor I mutant is unable to undergo this conformational change

and provide the secondary signal for hCdc6 export. Inability to change conformation

would explain the failure of the Sensor I mutant protein to exit the nucleus in S phase.

An additional explanation for hCdc6 translocation control can be based on

possible prolylic bond isomerization as suggested by the analysis of the P68A mutant.

We propose that upon completion of its primary function, hCdc6 is phosphorylated on

threonine 67 and consequently acted upon by a threonine-proline isomerase, for example

human Pin1 (Lu 2004; Lim and Ping Lu 2005). Conformational changes elicited by the

action of this hypothetical isomerase would unmask the nuclear export signal, possibly

near the Sensor I motif, which contains a putative nuclear export signal (Figure 32).

Phosphopeptide mapping indicated that only S54, S74, and S106 are stably

phosphorylated in vivo (Jiang et al. 1999; Petersen et al. 1999). However, the analyses in
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those experiments were done on asynchronous cell populations. Our proposed

mechanism would suggest a very precise timing of phosphorylation and its possibly

transient nature. Therefore, such phosphorylation might not be detected in an

asynchronous pool of cells. In order to investigate our hypothesis further, more direct

involvement of an isomerase needs to be established. This hypothesis would explain the

failure of the 5XD mutant to exit the nucleus. Analysis of Pin1 interaction with

phosphorylated and pseudo-phosphorylated substrates indicated that aspartic acid

substitution to mimic the phosphorylated state of a protein provides a poor substrate to

the isomerase, since it provides only a single anionic charge. True phosphorylation

provides di-anionic charge, which may be required for the proper interaction with the

Pin1 isomerase (Fischer 2000).

Cyclin dependent kinases (CDKs) were implicated in the phosphorylation of

hCdc6 (Petersen et al. 1999; Herbig et al. 2000; Coverley et al. 2002). Cyclin A/CDK2

and Cyclin E/Cdk2 complexes were able to phosphorylate hCdc6 in vitro (Herbig et al.

2000). We speculate that another kinase, acting later in the cell cycle than CDKs, could

transiently phosphorylate hCdc6. One of the candidates to consider can be the Cdc7/Dbf4

complex that acts after CDK action but before Cdc45 loading on chromatin. There is,

however, a discrepancy in the sequence of CDK and Cdc7/Dbf4 action, which needs to

be resolved (Bell and Dutta 2002). Alternatively, another yet not identified kinase might

perform the phosphorylation.

We, therefore, propose a model (Figure 42) in which mammalian Cdc6 is

recruited to chromatin by ORC subunits and together with Cdt1 load the MCM 2-7

complex onto chromatin. In order to complete its function of loading the MCM 2-7
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Pre-RC assembly

Figure 42. A suggested model for the timing and role of phosphorylation and ATP
hydrolysis of human Cdc6 protein in initiation of DNA replication.
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Figure 43. A putative model suggesting possible mechanism of human Cdc6 export
from the nucleus and the role of human Cdc6 in initiation of DNA replication. Not
all the components of cellular machinery are presented in the model, but only those
relevant for the proposed mechanism of action. The sequence of phosphorylation of
human Cdc6 and ATP hydrolysis has not been conclusively established. Thus, the
sequence of these events is tentative.
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complex, Cdc6 hydrolyzes ATP to ADP which remains tightly bound (Liu et al. 2000).

The ADP-bound Cdc6 undergoes a conformational change, mediated by the Sensor

domains. However, mammalian Cdc6 stays in the nucleus and is phosphorylated by

CDK. Phosphorylation alone is not sufficient for the export from the nucleus.

Mammalian Cdc6 might later be transiently phosphorylated at T67 and undergo an

additional conformational change around the P68 prolylic bond due to the action of an

isomerase, which provides the release signal for Cdc6 export from the nucleus (Figure

43). Due to the lack of data, the sequence of events is tentative and could be modified as

more information becomes available.
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CHAPTER IV

SUMMARY AND CONCLUSION

The field of DNA replication has experienced a renaissance in the recent years. Since the

structure of DNA molecule was deciphered, some of the greatest minds of the scientific

world have tried to unravel the molecular mechanism of DNA replication. Different

approaches and study systems were employed through the years to identify replication

factors and their function in chromosome doubling. Much progress was made through

utilization of cell-free systems from Xenopus, genetic manipulation in yeast, and

biochemical dissection of in vitro replication assays. However, renewed interest was

prompted by discovery of apparent links among DNA replication, recombination, and

DNA repair. The focus of the research has also shifted from identifying and

characterizing the components of the replisome to determining the network of

interactions among the replication factors and visualizing the workings of replication

engines on the atomic level through structure determination (O'Donnell et al. 2001;

Fletcher et al. 2003; Li et al. 2003; Bowman et al. 2004; Gai et al. 2004; Sclafani et al.

2004; Stauffer and Chazin 2004; Bowman et al. 2005).

Taking into consideration the emerging complexity of the initiation of DNA

replication, a great emphasis has been placed on using in vitro reconstituted reactions.

Though very useful, the limitation of these systems lies in the cluttering due to the

number of purified recombinant proteins involved. Investigation of interactions in the
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primosome, thus, should be limited to as few factors as possible. Our study utilizes such a

simplified model using either dsDNA plasmid containing SV40 origin or ssDNA

molecule derived from the M13 virus. This approach requires only one viral protein

(Tag), three cellular initiators pol-prim, RPA, and Topo I and allows an in depth view

into the mechanism of viral replication and functional interactions among these proteins.

RPA in SV40 replication

Initiation of replication in SV40 monopolymerase system begins when Tag recognizes

the four pentanucleotide repeats of the SV40 origin and assembles into a double hexamer

on the dsDNA (Herendeen and Kelly 1996; Bullock 1997). The DNA is melted at the

region proximal to the origin and helicase activity of Tag generates single-stranded DNA

fragments that become immediately coated with RPA to prevent strand re-annealing. The

mechanism of RPA binding to ssDNA is unclear, but initial data from the Fanning group

and EM studies suggest that RPA is actively loaded by Tag (Hysinger, et al., in

preparation; J.M. Carazo, Madrid, personal communication). The loading of RPA is

apparently mediated by Tag interaction with a linker region of RPA70 that connects

domains A and B. RPA blocks replication protein access to ssDNA and thus must be

removed before pol-prim can start priming. We propose that this action is accomplished

by Tag through its interaction with the C-terminus of RPA32 (Figure 30).
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Replication juggler

Mounting evidence suggests that the cellular machinery does not exist as a set of pre-

formed holocomplexes that are employed when necessary, but rather that a dynamic

“hand off” mechanism is used for cell metabolism and chromatin maintenance

(Kowalczykowski 2000; Essers et al. 2002; Rademakers et al. 2003; Stauffer and Chazin

2004). The hand off mechanism assumes the existence of a regulatory protein that in turn

recruits other gene products as necessary depending on the demand and task at hand,

replacing them on the DNA molecule (Yuzhakov et al. 1999a). One of the prominent

examples of such “trading places on DNA” is the polymerase switching in eukaryotic

DNA replication (Davey and O'Donnell 2000).  Pol-prim, which initiates replication, is

not a processive polymerase and needs to be replaced by a more processive pol d. A

sliding clamp PCNA protein is loaded by replication factor C, a clamp loader, which

allows processive DNA synthesis by pol d. Loading of PCNA leads to pol-prim

displacement on the DNA molecule. Every step of the polymerase switch is mediated by

interactions with RPA (Yuzhakov et al. 1999b). In order to achieve the dynamics of

proteins trading places on DNA, their interactions should be rather weak and possibly

transient in nature. Our model for Tag acting on RPA in SV40 replication suggests this

kind of binding. The affinity of Tag, though detectable, is weak and could be functional

only in conjunction with another binding site. This hypothesis is supported by the fact

that Tag binds to intact RPA in an ELISA based assay, but not to individual subunits,

suggesting that interactions with any single subunit were not strong enough to be detected

by the assay, but the combined effect of RPA70 and RPA32 binding sites was sufficient

(Dornreiter et al. 1992). The linker region that connects OBD A and OBD B of RPA70 is
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an excellent candidate for this role. Preliminary results obtained by E. Hysinger in

Fanning lab indicate that RPA with a charge-reversal point mutation in the linker region

is defective in SV40 DNA replication. RPA70 has shown that it interacts with Tag-OBD

through the region overlapping with the linker region (Iftode et al.,1999). Unpublished

results from the Chazin group corroborate this observation using NMR and indicate that

RPA70/Tag interactions are weak, but stronger than RPA32C/Tag, and are electrostatic

in nature.

Another mechanism that utilizes RPA as a mediator of protein complex hand off

is the eukaryotic nucleotide excision repair (NER) mechanism (Riedl et al. 2003).  After

the DNA damage is recognized by XPC/hHR23B/Centrin 2 heterotrimer and dsDNA is

unwound by XPB/XPD dimer helicase, XPA and RPA interaction leads to the

recruitment of a cascade of downstream repair factors, such as ERCC1 and XPG. After

excision repair is complete, RPA remains on DNA to facilitate recruitment of replicative

factors RFC, PCNA, pol d, and DNA ligase, which mediate gap filling.

Recent data indicates that RPA plays an active role in the recruitment of a number

of proteins to DNA to sense DNA damage as well as mediating a DNA repair mechanism

(Zou and Elledge 2003). Replication stress and DNA damage is recognized by ataxia-

telangiectasia mutated and Rad3-related (ATR)—ATR-interacting protein (ATRIP)

complex. Studies have shown that this complex is specifically recruited by RPA to the

sites of DNA damage and requires RPA for the complex association with ssDNA (Zou

and Elledge 2003). Curiously, E. coli SSB is unable to recruit ATRIP to DNA, arguing

for specific interactions of human RPA and ATRIP.
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An analogous function of RPA was observed in somatic hypermutation (SHM)

and class switch recombination, mediated through the action of activation-induced

cytidine deaminase (AID). For a number of years the mechanism of AID’s targeting to

the sites with SHM motifs was not clear. Last year an elegant study revealed that

recruitment of AID is mediated by RPA (Chaudhuri et al. 2004). Curiously, the

interaction of AID with RPA was mediated through RPA32C.

The carboxyl-terminal domain of RPA was also implicated in interaction with a

number of repair proteins (Mer et al. 2000b). Structural analysis of RPA32C revealed the

presence of winged helix-loop-helix fold, which is a domain implicated in protein-protein

interactions. Several repair proteins, UNG2, XPA, and RAD52, were shown to

specifically interact with carboxyl terminus of RPA. Of particular interest was an

observation that repair proteins interacted with winged helix motif in a very similar

mode, suggesting a universal mode of RPA interaction with replication and repair

proteins.

The model can be extended further to include other single-strand DNA binding

factors. Analysis of Pot1 protein that binds ssDNA comprising telomeres was shown to

regulate telomerase activity in budding yeast and human cells (Smogorzewska and de

Lange 2004). Interestingly, Pot1 negatively regulates telomerase activity in vitro when

telomeres are coated with Pot1 due to inability of telomerase to get access to DNA

(Kelleher et al. 2005). However, in vivo Pot1 acts as a positive regulator of telomerase

(Colgin et al. 2003). It is reasonable to speculate that the discrepancy between in vivo and

in vitro scenario can easily be explained by an action of an accessory protein that would

remove Pot1 from telomere to allow telomerase access. The emerging mechanism is very
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similar to the interaction of RPA, Tag, and pol-prim in a viral replication model. The

striking similarity between RPA and Pot1 apparent action provides strong support for

universal mode of action for ssDNA binding proteins: coating ssDNA to prevent

degradation by cellular nucleases and serving as a landing pad for enzymatic factors. The

identity of a factor that would remove Pot1 from DNA and facilitate telomerase action is

not clear, but Pot1 was shown to interact with several telomere-maintenance factors.

Several candidates could include PIP1 and PTOP. Both proteins interact with Pot1 and

assist in its recruitment to telomeres (Liu et al. 2004; Ye et al. 2004). It is also possible

that the actions of more than one protein would be necessary to remove Pot1 from

ssDNA.

Abundance of RPA in vivo guarantees that emerging ssDNA is immediately

coated with RPA to prevent strand re-annealing and nuclease degradation. However,

single-stranded DNA cannot exist in such a state for extended periods of time in a cell

since persistent RPA-ssDNA or E. coli SSB-ssDNA will signal DNA damage, indicating

that ssDNA “hand off” to the next replication factor failed. The presence of RPA serves

as a signal for appropriate cellular factors to bind DNA and elicit their action. It is still

unclear how RPA differentiates recruitment of replication, repair, or recombination

factors. We can speculate that presence of additional determinants--other DNA and

damage recognition proteins or dsDNA—can serve as fine-tune signals to specify the

type of action necessary. Alternatively, a particular default algorithm of primosome

assembly and hand off might exist and only if it fails, repair factors are recruited to

ssDNA.
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These data, combined with findings of this work, provide a basis to speculate that

the carboxyl-terminus of RPA serves a function of a molecular “landing pad” for

specialized repair or recombination complexes.

RPA as a landing pad in cellular replication

In vitro models can provide considerable insight into the mechanism and nature of inter-

primosome interactions. Viral models can offer some in vivo interaction in transformed

cells as in SV40 case and a great advantage of these systems lies in the fact that one or

more viral proteins mediate viral genome replication. Therefore, use of viral proteins,

such as Tag, allows to bypass multiple interactions required in vivo and focus on the

interactions of interest. In addition, we can speculate on the nature of in vivo interactions

among replication factors, based on the interactions observed in viral replication system.

The main question that still remains is whether the mechanisms revealed in

studies of viral replication apply to the players of eukaryotic replication and if so how do

they operate? The initiation of DNA replication begins when ORC hexamer assembles

onto the replication origins (Bell 2002). The ORC complex is then required for Cdc6

recruitment to the origin. Recent data indicate that Cdc6 presence on chromatin is

required for Cdt1 association with the complex (Tsuyama et al. 2005). Cooperative action

of Cdc6 and Cdt1 is necessary for the recruitment of MCM2-7 complex. The function of

MCM is not completely understood, but it is required for further steps of DNA

replication. Since MCM2-7 sub-complexes, such as 4,6,7 exhibited weak helicase

activity, we can speculate that it can be involved in non-processive dsDNA unwinding

and upon fulfilling its action, is replaced by a processive helicase MCM8 (Maiorano et
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al., 2005). In the SV40 system all the steps of early initiation are mediated and

accomplished by Tag. When first ssDNA is generated, probably by MCM2-7, it is

immediately occupied by RPA to prevent strand re-annealing. Data from the Fanning lab

suggests that RPA is being actively loaded onto ssDNA through interactions with Tag.

We can then envision a scenario in which MCM2-7 interactions with RPA are required

for RPA association with chromatin. It is also possible that the replicative helicase

MCM8 lacks this interaction and therefore MCM2-7 action is required for initiation of

DNA replication. Since polymerase switch is mediated by RPA we can also assume its

action in the helicase switch.

Data obtained from SV40 in vitro replication system, combined with structural

analysis allowed us to gain considerable insights into primosome assembly and function.

Though a lot is still unclear about DNA metabolism, emerging mechanism suggests

major regulatory role performed by single-strand binding proteins in DNA replication,

repair, somatic hypermutation, chromosome recombination, and telomere maintenance.
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