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CHAPTER 1

INTRODUCTION

1.1 Overview

Data-driven models (DDMs) map connections within a system without making assump-

tions about the physical behavior of the system. Hydrologists have expressed concerns

about the usefulness of models that mostly disregard hydrologic theory [2, 3], yet DDMs

have been widely used in hydrology due to their “unreasonable effectiveness” when ap-

plied to real-world problems [4, 5]. DDMs work because they approximate functions (e.g.,

a single-layer neural network is considered a “universal approximator” for a given range

[6]). This suggests that a DDM can recreate the functional relationships that hydrologists

have discovered through empirical research, physics, and mathematics.

For example, the specific energy (E) of frictionless channel flow of known specific

discharge (qw) and depth (h) can be obtained using the following equation (See Hornberger

et al., page 94, for more details [7]),

E =
q2

w
2gh2 +h, (1.1)

where g is the acceleration due to gravity (9.8ms−1). This relationship is an example of

hydrologic theory. Can a DDM discover the same relationship? Equation 1.1 was used to

generate 90 realizations of E based on 90 values of h ranging from 0.1-1 with qw set to

0.5m2s−1. The values for E and h were then used to train a simple neural network with

one hidden layer and 3 neurons (Figure 1.1, A). The model was able to learn the relation-

ship (Figure 1.1, B) without “knowing anything” about the physical processes described in

Equation 1.1. The calculated weights (written beside the lines connecting the neurons in

Figure 1.1, A) do not help us understand the dynamics of frictionless channel flow, but the
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Figure 1.1: [A] Learned weights of simple neural network model using a sigmoid activation
function with one hidden layer with 3 nodes. [B] Relationship between depth of frictionless
channel and specific energy estimated by neural network model and a known theoretical
relationship. Note, qw was set to 0.5m2s−1 across all depths.

DDM does provide a tool to predict E given h.

Hydrologic systems are not easily characterized by deterministic relationships between

variables. Outputs of interest are often the result of complex-hydrologic processes occur-

ring at various temporal and spatial scales. With sufficient data a DDM can learn abstract

representations of the connections between hydrologic inputs and outputs. Due to this ab-

straction, DDMs are often considered useful only for prediction. A recent synopsis article

by Vogel et al., 2015, however, lists “analyzing ‘Big Data’ using advances in the fields

of statistics, machine learning, signal processing, and data mining” as one of the most

important advances “needed to develop an in-depth understanding of the dynamics of the

connectedness between human and natural systems and to determine effective solutions to

resolve the complex water problems that the world faces today” [8]. How can we extend

the capacity of DDMs to include “in-depth understanding?”

Theory-guided data science is an emerging paradigm that integrates scientific under-

standing and data-driven methods [9]. This integration can occur at multiple steps within
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the DDM process and the resulting models are more generalizable and have greater physi-

cal interpretability than DDM models alone. Examples range from simple transformations

of the response variable, to constrained optimization and learning hybrid theory and DDMs

[9]. Leveraging the strength of both approaches can restrict the domain of possible models

to ones that are (1) physically consistent and (2) produce accurate predictions. The DDM

approach to predicting specific energy from the example above fails when applied to values

outside of the range of the training data (Figure 1.2). Theory could improve the model by

constraining predictions of E for depths greater than 1 meter to simply be 1:11.
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Figure 1.2: Extrapolation of neural network model outside of the range of data used to train
the weights results in poor predictions.

1.2 Organization

Improving the predictions of streamflow in ungaged basins has been an multi-decadal

objective for the international hydrologic community [10, 11, 12], but despite the rapid

advances from this effort, there are still many unexplored questions. Chapters two and three

of my dissertation are focused on improving hydrologic predictions in ungaged basins.
1This is obviously a toy example, because in reality we would just use Equation 1.1 directly across the

entire range of depths.
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Chapter four explores questions in sociohydrolgy–an emerging sub-discipline within the

hydrologic sciences that seeks to integrate the physical and social aspects of hydrologic

systems [13]. The broad research questions for these three chapters are the following,

1. Can machine-learning models improve predictions of a low streamflow statistic (7Q10)

in ungaged catchments compared to “baseline” methods?

2. Can multi-output neural networks estimate physically consistent flow duration curves

in ungaged catchments?

3. How do the drivers of municipal water use vary across the contiguous United States?

These research questions are explored using various data-driven methods. The second

chapter compares the ability of 8 machine-learning models and 4 baseline models to pre-

dict a lowflow statistic in ungaged catchments. The mean squared error is decomposed to

highlight the major-error components of each model. Additionally, weighted variable im-

portance and partial-dependence plots are used to analyze further the relationship between

variables and the hydrologic response. This work is published in Environmental Modeling

and Software [14]. The third chapter uses theory-driven multi-output neural networks to

estimate flow duration curves and daily streamflow in ungaged basins. The multi-output ar-

chitecture leverages covariance between multiple quantiles to generate flow duration curves

that ensure monotonicity for almost 100% of the estimates. This work is being prepared for

submission. The fourth chapter uses hierarchical Bayesian models to explore the drivers

of municipal water use across the U.S. The model-design is derived from socio-economic

theory and results in an increased understanding of a coupled human-hydrologic system.

This work is published in Water Resources Research [15].
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CHAPTER 2

IMPROVING PREDICTIONS OF HYDROLOGICAL LOW-FLOW INDICES IN

UNGAGED BASINS USING MACHINE LEARNING

2.1 Abstract

We compare the ability of eight machine-learning models (elastic net, gradient boost-

ing, kernel-K-nearest neighbors, two variants of support vector machines, M5-cubist, ran-

dom forest, and a meta-learning ensemble M5-cubist model) and four baseline models

(ordinary kriging, a unit area discharge model, and two variants of censored regression)

to generate estimates of the annual minimum 7-day mean streamflow with an annual ex-

ceedance probability of 90% (7Q10) at 224 unregulated sites in South Carolina, Georgia,

and Alabama, USA. The machine-learning models produced substantially lower cross vali-

dation errors compared to the baseline models. The meta-learning M5-cubist model had the

lowest root-mean-squared-error of 26.72 cubic feet per second. Partial dependence plots

show that 7Q10s are likely moderated by late summer and early fall precipitation and the

infiltration capacity of basin soils.

2.2 Introduction

Water managers rely on streamflow data to allocate water resources, define the dilution

potential of catchments, set ecological streamflow limits, and ensure sustainable watershed

planning [16, 17, 18]. However, many streams do not have observed streamflow data and

water managers must depend on the streamflow estimates from various prediction models

[19, 16, 20]. Improving the predictions of streamflow in ungaged basins has been a primary

objective for hydrologists for decades and international initiatives have resulted in rapid

advances in this field [10, 11, 12]. The two primary modeling strategies for predicting

streamflow response in ungaged basins are: (1) deterministic physically based models–

5



i.e. calculating streamflow based on distributed hydrologic parameters, and (2) statistical

regionalization–i.e. using regression models to transfer hydrologic information from gaged

to ungaged basins [16, 21]. This current paper focuses on the statistical regionalization

of a low streamflow statistic: the annual minimum 7-day mean streamflow with an annual

exceedance probability of 90% (7Q10).

A stream’s “low flow” refers to the amount of water flowing in a stream during pro-

longed periods of little to no rainfall during an average non-drought year. The low-flow

regime for a particular stream is controlled by the physical characteristics of its basin and

the local climate [22]. The 7Q10 statistic describes a basin’s expected low-flow and pro-

vides a way to compare directly the low-flow regimes of different basins. This statistic is

commonly used to determine permitted point-source pollutant levels in streams [23]. There

are a number of other important low-flow metrics not discussed in this paper; several ex-

amples are the 7Q10 for a particular season or month, the annual minimum 7-day mean

streamflow with an annual exceedance probability of 50% (7Q2), mean annual minimum,

median September streamflow, and ecologically derived values [17, 24, 25, 26]. The contri-

bution of this research is the comparison of statistical estimation techniques; the choice of

the specific response variable would not change the structure of the analysis but we cannot

conjecture how specific models would perform for a different target variable.

Low-flow regionalization methods attempt to predict low-flow metrics in ungaged basins

by leveraging the correlation between basin characteristics and streamflow at gaged basins

[16]. The primary goal of 7Q10 regionalization is accurate predictions and not mecha-

nistic explanations of what controls the 7Q10, and this distinction between prediction and

explanation should guide the statistical analysis [27]. Regardless of outcome goal or the

type of model used, all hydrologic models require assumptions. Deterministic models,

for example, assume that the physical relationships between parts of a hydrologic system

are adequately captured by a set of static functions and decision rules, while stochastic

models may depend on assumptions about the probabilistic constraints on parameters (i.e.
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“priors”), the choice of the likelihood and cost functions, the numerical methods used for

parameter estimation (e.g., gradient descent, maximum likelihood, numerical integration,

etc.), and choices about data preprocessing and transformation. Furthermore, hydrologic

models often assume some level of stationarity [28]. These assumptions can have signifi-

cant effects on the applicability of model results, and researchers must acknowledge how

their model design choices propagate into conclusions drawn from the model.

This paper evaluates the predictive performance of various association-based models

(e.g., linear regression models) that leverage the covariance structure between variables to

make inferences and predictions. Association-based models have proved to be a useful

engineering tool for predicting 7Q10s, and have become increasingly sophisticated in the

last 30 years [11]. Regression methods have evolved from simple ordinary least squares

[29, 30, 31] to time series weighted least squares [32], generalized least squares (GLS)

[33], censored regression [34], two step GLS-logistic regression [35], truncated models,

and catchment clustering methods [36]. There has also been an increased application of

geostatistical low-flow regionalization methods–primarily ordinary kriging, top kriging,

and physiographical space-based interpolation [37, 38].

Despite the recent methodological advances mentioned above, few studies have ex-

plored machine-learning methods to predict low-flow metrics in ungaged basins. [39] used

an ensemble of artificial neural networks for predicting various low-flow metrics in Canada,

[40] used regression trees to predict Q95s in Austria, [41] used model tree ensembles to

predict a complete flow-duration curve (FDC) for streams in Illinois and Texas, and [42]

used random forest models to predict several components of a FDC in New Zealand. These

studies contributed valuable baseline assessments of the applicability of machine learning

to streamflow-statistic estimation. Yet, however, they compare only 2-3 estimation tech-

niques, each using a unique data set–a practice that confounds direct comparison of model

performance between individual studies.

In this paper, twelve different modeling methods were applied to a publicly available
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data set [43], and the multi-model comparison approach presented by [44, 45] and [46] was

used to determine the predictive performance of the models using multiple assessment cri-

teria. Several machine-learning techniques were introduced–gradient boosting machines,

kernel-K-nearest-neighbors, and elastic net-that, to our knowledge, have not yet been used

to predict low-flow statistics. A meta-learning M5-Cubist model was also introduced that

minimizes the overall generalization error by combining the cross-validated predictions of

each machine-learning model. Finally, hydrologic insights to the physical controls of low

streamflow were explored through a discussion of the relative importance of predictor vari-

ables and their corresponding partial-dependence functions for each model. The novelty of

this contribution is the use of multiple machine-learning models, the introduction of meta-

modeling approaches for the regionalization of low-streamflow statistics, the comparison

with models historically used to estimate 7Q10s, and the large gains in predictive accuracy

over historical methods.

Research Objectives and Major Findings

This paper provides the 7Q10 prediction performance estimates of twelve statistical

estimation techniques–four “baseline” methods (type I Tobit regression, region of influence

type I Tobit regression, ordinary kriging, and an average unit-area discharge null model)

and eight machine-learning models: (1) M5-cubist regression trees, (2) gradient boosting

machines, (3) kernel-K-nearest neighbors, (4) random forests, (5) elastic net, support vector

machines with a (6) polynomial kernel and a (7) radial basis function kernel and an (8)

ensemble meta-learning M5-cubist model is also explored. The specific research objectives

are,

1. Use leave-one-out cross validation (LOO-CV) to simulate the prediction of 7Q10s at

ungaged sites in three states in the southeast U.S. using eleven estimation techniques.

2. Compare the predictive accuracy of each model using root mean squared error (RMSE),
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unit area root mean squared area (UA-RMSE), median percentage error (MPE), and

the Nash-Sutcliffe efficiency coefficient (NSE), and decompose the RMSE to exam-

ine what is controlling the error for each model.

3. Discuss the relative importance and partial dependence functions of predictor vari-

ables for each model.

We found that machine-learning methods can produce more accurate predictions of

7Q10s in ungaged basins than baseline models. Variable importance measures and partial

dependence plots suggest that 7Q10s are partially driven by landcover, late summer and

early fall precipitation, the infiltration rate of soils, and the variability of minimum and

maximum monthly temperatures.

Background of Machine Learning in Hydrology

Machine learning–also referred to as statistical learning, data-driven modeling, and

computational intelligence–refers to a set of statistical methods that are optimized for pre-

dictive performance through a cross-validated parameter tuning process [47, 48]. These

methods have been called black-box approaches and criticized for having little connec-

tion to the underlying physical processes being modeled (See references in [44] and [3]

for examples of these critiques in hydrology). Regardless, machine-learning techniques

have become prevalent in the hydrology literature. Artificial neural networks have been

used for predictions in hundreds of water-resource studies [49, 50, 51, 52]. Random for-

est models have been used to predict natural and altered streamflow regimes in ungaged

basins [53, 54, 55]; support vector machines have been used to forecast monthly stream-

flow [56, 57] and to downscale low-flow indices [58]; genetic algorithms have been used to

calibrate rainfall-runoff models [59]; Instance-based methods (e.g., K-nearest neighbors)

have been used to forecast daily streamflow [60]; and M5-cubist models have been used

for low-flow forecasting [61], flood forecasting [62], and monthly streamflow forecasting

9



[46, 63, 64]. Various ensemble methods have also been used for prediction in hydrology.

Two examples are artificial neural network ensembles applied in flood-frequency analysis

[65], and the prediction of monthly streamflow using ensemble methods for support vector

machine and regression trees [66]. Historically, machine-learning models have been best

suited for modeling tasks that are concerned with accurate predictions and not physical

interpretability [67]. However applied researchers are exploring new methods to extract

knowledge and gain domain-specific insights from data-driven models [68].

2.3 Material and methods

2.3.1 Study Site and Data

Models were developed using 7Q10 values from a total of 224 basins: 45 basins in

South Carolina [69, 70, 71, 72, 73], 68 basins in Georgia [74], and 111 basins in Alabama

[75] (Figure 2.1, Table 2.1). Predictions in this paper were based on 7Q10s calculated as

of 2015 and may not reflect updated or forecasted 7Q10 values.

Table 2.1: Summary statistics for the 7Q10 and several basin descriptors.

Variable [units] min mean max σ

7Q10 [ft3s−1] 0.0 42.7 807 95.3
basin area [km2] 10.3 1023.0 15400.0 1847.0
mean annual precip [cm] 119.0 140.7 194.4 15.7
mean annual temp [◦C] 12.15 16.3 19.65 1.57
mean elevation ASL [m] 14.4 195.90 885.7 147.8

The basins were selected from studies that estimated 7Q10 values for near-reference

conditions (i.e. basins unregulated and unlikely to be altered given associated measures

of development). Over 230 independent variables from the Gages II data set [43] were

originally considered as predictor variables. The full Gages II data set consists of basin

characteristics for 9,322 streams within the U.S. that have at least 20 years of complete

streamflow record since 1950 or streams that have been active since water year 2009. The
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Figure 2.1: Map of streamgages within study area where the size of the symbol represents
the 7Q10 value calculated for each gage.

U.S. Geological Survey (USGS) defines a water year as the 12-month period October 1, for

any given year through September 30, of the following year. Several of the variables rep-

resented measures of regulation in the upstream basins. The focus in this current analysis

was unregulated streamflow, so these variables were removed. The method to explore and

eliminate variables in this study closely follows that of [76], which left 125 variables for

our analysis. The selected variables are listed in [77], and are defined in the supplemental

material. Each of the independent variables were standardized by subtracting the mean of

the variable and dividing by the standard deviation of the variable prior to model develop-

ment. Values of 7Q10s can span several orders of magnitude and so the response variable

was also transformed:

yi = ln
(

7Q10i +0.001
DAi

)
, (2.1)
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where yi is the transformed response variable for site i, 7Q10i is the 7Q10 for site i, and

DAi is the drainage area for site i. Because 13 of the sites had 7Q10 values of zero, 0.001

was added to each 7Q10 value to avoid having infinite values. The predicted 7Q10 values

were converted back to natural space (cfs, cubic feet per second) by simple algebraic ma-

nipulation of Equation 2.1. The response variable transformation for the Tobit models was

slightly different than what is presented in equation 1, for reasons particular to censored

regression, and details are presented in Section 2.3.4.

2.3.2 Software/Data Availability

All of the analysis was done in the R Language and Environment for Statistical Com-

puting [78] and the required packages for each model are listed within the individual model

description section. The input data and R model archive can be accessed in [77].

2.3.3 Tuning Parameter Selection for Machine-Learning Models

A tuning parameter is any free parameter in a model that is provided by the user, and

tuning parameters are indicated by italics in the model descriptions below. Model tun-

ing, also referred to as hyperparameter optimization or model training, is the process of

searching for values of model parameters that optimize a predefined loss function (e.g., the

RMSE). The cross-validated RMSE was used for all tuning parameters for each model and

is an arbitrary design choice that ensured consistency between models. We took a two-step

model tuning approach for the machine-learning models: (1) 30 initial points were gen-

erated in hyperparameter and RMSE space using a simple random search across possible

values of hyperparameters, and (2) a Bayesian optimization of the hyperparameters was

conducted using a Gaussian process prior and initial points from the random search.

Bayesian optimization attempts to select optimal hyperparameters by treating the re-

lationship between hyperparameter values and the RMSE as an unknown function to be

minimized (i.e. the negative RMSE is used for maximization). A Gaussian process model
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describes this function by constructing a posterior distribution of functions. The poste-

rior distribution improves as the number of samples from the hyperparameter space grows,

and the algorithm becomes more certain of the regions in hyperparameter space that are

worth further exploration [79]. In this study, the Gaussian process model was updated

for 15 steps and the final model was selected based on the combination of parameters

that produced the smallest leave-one-out cross-validation (LOO-CV) RMSE value (Table

2.2). The hyperparameters were tuned using the rBayesianOptimization R package [80].

The optimization function was parameterized with the Matérn 5/2 kernel and the Expected

Improvement or Upper Confidence Bound acquisition functions based on the recommen-

dations in [79]. The only exception to this tuning process for the machine-learning models

was for the kernel-K-nearest neighbor (KKNN) model, where grid search was used instead

of Bayesian optimization because the latter required numeric hyperparameters and the ker-

nel hyperparameter of the KKNN model is a text string. Grid search involves an exhaustive

search through a user-defined subset of hyperparameter space [47].

The number of predictor variables used to build the models can also be considered a

free parameter. We did not explicitly tune the number of predictor variables, but allowed

the machine-learning models to potentially use all 125 variables. The hyper-parameter

tuning scheme will naturally avoid overfitting; i.e, the final model architecture is chosen

by selecting the combinations of hyperparameters that produce the lowest cross-validated

prediction error, thus rejecting model architectures that overfit to the training data. Tuning

of the baseline models is described separately in each section.

2.3.4 Baseline Models

We classified multivariate regression and geostatistical techniques as “baseline” mod-

els. This classification scheme was used as a way to compare groups of models and does

not reflect the complexity, accuracy, or robustness of the method. Four baseline models and

the tuning associated with each of those models is described below.
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Table 2.2: Tuning parameters for each model. GBM: gradient boosting machine, KKNN:
kernel-K-nearest neighbors, RF: random forest, SVMP: support vector machine with a
polynomial kernel, SVMPG: support vector machine with a Gaussian kernel, OK: ordinary
kriging, ROI-Tobit: region-of-influence Tobit.

Model Family Model Name Tuning Params. Param. Values

Regularized elastic net α

λ

0.0
1.374

Tree-based/
boosting

GBM shrinkage
interaction depth
min obs in node
ntree

0.067
15
14
439

Instance based KKNN neighbors
kernel
distance

5
triangular
0.25

Tree-based M5-cubist committees
neighbors

50
8

Tree-based/
bagging

RF mtry
ntree

116
500

Support Vectors SVMP cost
kernel
degree
scale

1
polynomial
2
0.0025

Support Vectors SVMG cost
kernel
sigma

1.51
gaussian
0.0044

Tree based meta-M5 cubist committees
neighbors

50
6

Gaussian process OK variogram spherical

Censored ROI-Tobit predictor number
number of sites

8
205

Censored full-Tobit predictor number 8
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Type I Tobit Model

A left-censored Tobit regression model (full Tobit) was used as the baseline 7Q10 pre-

diction [81, 34]. Left-censored regression is useful for situations where the response vari-

able cannot be observed below a certain value (possibly due to measurement sensitivity),

but the predictor variables are known for every observation. Tobit models are frequently

used to develop regionalization equations for low flow statistics when the streamflow statis-

tic can be equal to zero [82, 83, 84, 85]. The model can be written as,

ŷi =

 xT
i β + εi i f yi > y∗

y∗ i f yi =< y∗

 (2.2)

where yi is the response value for observation i, xi are the values of predictor variables

for observation i, β is a vector of regression parameters, εi is the unexplained variance

for a observation i, and y∗ is the censoring value. Basins with 7Q10 values equal to zero

(n=13) were set to 0.001, the response was transformed using the natural log, and ln(0.001)

was used as the censoring value. The natural log of the drainage area was then included

as a candidate predictor. We use this response transformation rather than the unit area

7Q10 (Equation 2.1) because it (1) provides a unique censoring value of ln(0.001), and (2)

produces better predictions for the Tobit models than Equation 2.1. A Tobit model has the

potential to overfit when a large number of predictor variables are included in the model.

To mitigate this, forward stepwise selection was used to select explanatory variables within

LOO-CV. The final model with the lowest RMSE included 8 predictor variables.

Region-of-Influence Tobit (ROI-Tobit)

The region-of-influence method builds a regression model for a particular site using

only a subset of the full data set [86, 87, 88, 36, 85]. In this study, the sites included in

the subset were selected based on their similarity to the site of interest, where similarity

was measured by Euclidean distances in predictor space. The optimal number of sites and
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predictor number designated as the region of influence was found using LOO-CV (Figure

2.2).
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Figure 2.2: Left: Example of the region of influence for a basin (red) where the lines
connect the basin to its 25 nearest neighbors (blue) calculated by the Euclidean distances
in predictor space. Right: Example of tuning the number of sites and predictor variables
using leave-one-out cross validation for the region-of-influence Type I Tobit model.

Ordinary Kriging

Ordinary kriging is a geostatistical tool that uses the distance between two points to

predict the semivariance of a dependent variable [89]. The inter-site semivariances of data

from a measured network can be used to create a system of linear equations predicting

the semivariance at an unmeasured site to be a weighted, linear sum of the semivariance

between all observed sites. For an unmonitored site, these same weights can be used to

estimate the unknown quantity on which the semivariances were based. If all the assump-

tions of ordinary kriging are valid, this tool provides the best linear unbiased estimate. In

this study, a spherical model was used to represent the semivariance between 7Q10s. Other

hydrologic applications [90, 91] have found success with spherical models, and we used

cross validation to confirm that the choice of a model form did not have a substantial impact

on the prediction, which is consistent with previous research [91].
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Null Model

A null prediction model was created where the 7Q10 prediction for a site was calculated

as the left-out mean of value of the unit 7Q10s multiplied by the drainage area for the site:

ŷi =

[
1
N

N

∑
j=1

7Q10 j

A j

]
×Ai (2.3)

where ŷi is the prediction for site i, 7Q10 j
A j

is the unit 7Q10 value for every site but the site of

interest, and Ai is the drainage area for the site of interest. Equation 2.3 can be rewritten as

a one parameter single variate regression model where drainage area is the only predictor.

ŷi = 0+βAi (2.4)

2.3.5 Machine-Learning Models

It is rarely possible to make meaningful a priori distinctions between learning algo-

rithms for a given data set [92]. Therefore, it is desirable to select a range of initial models

with distinct functional differences (ie. models from a range of “model families”) to in-

crease the likelihood of discovering a well-performing model. Each model in this study

was fit to the data, and the most promising models were further fine-tuned to achieve op-

timal performance. We include a brief section describing each model below. We begin

each section with a general description of how the model relates to the hydrologic task of

predicting 7Q10 values in ungaged basins. We then provide further details describing the

specific mechanics of each model.

Elastic Net

General overview: Elastic-net models address overfitting by preventing parameters from

inflating in response to a basin with an anomalously large 7Q10. From a hydrologic per-

spective, this results in out-of-sample predictions with reduced variance but potentially
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higher bias than a non-regularized regression model. This can lead to better predictions for

sites with large 7Q10 values.

Further details: Elastic-net models are produced by a regularized regression method that

combines the two penalties from least absolute shrinkage and selection operator (LASSO)

regression and ridge regression [93]. Regularized regression methods (also referred to as

shrinkage or penalized regression) provide a less complex model with better fit by includ-

ing a penalization parameter in the loss function of least squares that shrinks the slope

coefficients towards zero [47]. Ridge regression uses a squared penalty in the loss function,

which shrinks the parameter estimates towards zero, whereas LASSO regression uses an

absolute value penalty in the loss function, which results in some coefficients being set to

exactly zero. From a Bayesian perspective, ridge regression is equivalent to assigning a

zero-mean normally distributed prior distribution on the parameter vector, and LASSO re-

gression is equivalent to assigning a zero-mean Laplace prior distribution on the parameter

vector. Elastic-net is a blend between the two. The loss function for an elastic net model

can be written as,

β̂ = argmin
β

‖ y−Xβ ‖2 +λ
[
(1−α) ‖ β ‖2 /2+α ‖ β ‖

]
, (2.5)

where β̂ is the vector of regression coefficients, y is the response vector, X is the predictor

matrix, α is a hyperparameter that serves to “bridge the gap” between LASSO regression

and ridge regression, where α = 1 results in LASSO and α = 0 results in ridge regression,

and λ controls the overall strength of the penalty [47]. The elastic net model was fit using

the glmnet R package [94].

Gradient Boosting Machine (GBM)

General overview: The gradient boosting algorithm implemented here uses a regression

tree as a base learner. A regression tree is a simple rule-based method–basically a flow
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chart generated analytically to locate sites with similar basin characteristics. The model

then generates predictions by taking the average 7Q10 values of sites that fall within the

same nodes of a tree. Gradient boosting takes this a step further by using the model error

from a single regression tree to iteratively build models that make better predictions. For

example, if a site that falls within a node receives a poor prediction, the algorithm gener-

ates a secondary model that tries to predict the residual of the base regression tree. From a

physical perspective, this is a way to capture non-linear relationships between 7Q10s and

basin characteristics.

Further details: A gradient boosting algorithm uses the residuals (i.e. the gradient) from

a base model to subsequently fit new models that are then added to the base model [95].

A regression tree is often used as the base model. For example, a tree with a specified

number of terminal nodes (interaction depth) is fit to data, its residuals are calculated, and

a second tree is built using the residuals from the first tree as the response variable, and the

predictions from the second tree are added to the predictions from the first tree resulting in

a new model. This process is repeated a certain number of times specified by the user (the

number of trees). A shrinkage parameter (ranging between zero and one) can be used to

control the fraction of the new prediction added to the previous model. For regression trees,

there is also an additional parameter that restricts the minimum number of observations that

must be within each node (min obs in node), which can reduce the overall variance in the

model. In this study, the GBM model was fit using the gbm R package [96].

K-Nearest-Neighbors (KNN)

General overview: KNN models leverage the proximity of basins in predictor space to

predict 7Q10 values. That is, basins with more similar basin characteristics (predictor vari-

ables) are considered to be “near” each other. To predict a 7Q10 for a new basin, the

algorithm determines the K most-similar basins to the one of interest, and assigns the mean
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7Q10 for the K most-similar basins as the prediction at the site of interest [87]. A variant of

KNN was used in this study that involved transforming the predictor variables (via a kernel

function) to allow the discovery of non-linear relationships.

Further details: The distance between samples can be measured using the Minkowski

distances, which is calculated by,

(
p

∑
j=1
|xa j− xb j|q

) 1
q

(2.6)

where p is the number of predictors, xa j and xb j are observations in predictor space, and q is

passed to the model as a distance parameter. When q = 2, the Mikowski distance is simply

the Euclidean distance. The predicted value is the average value of the response for a given

number of nearest neighbors in predictor space. A kernel (referred to here as kernel-K-

nearest-neighbors, KKNN) can be used to transform the predictors prior to calculating the

distances, and has been shown to increase the prediction accuracy of the model [97]. The

KKNN model was fit using the kknn R package [98].

M5-Cubist

General overview: Similar to GBM, KNN, and region of influence regression models, cu-

bist models subset groups of basins (via a regression tree method) that have similar basin

characteristics and makes predictions based off the subset. Cubist models, however, have

two features that improve predictions: (1) they weight the out-of-sample predicted 7Q10

value for a particular basin by the in-sample model performance on basins that are close

to the basin of interest (i.e. close in a nearest-neighbor sense), and (2) they use a linear

regression in the terminal nodes of a tree rather than the mean to make predictions.

Further details: A M5-cubist model is a type of regression tree [99, 100]. The predictor

space is partitioned through a set of recursive binary splits and prediction of the target vari-
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able is based on values of the features contained within the partitions. The individual splits

are chosen based on a greedy algorithm that seeks to minimize prediction error of possible

subsets using only the branch of the subtree where the model is making a split. The major

difference between a simple regression tree and a M5-cubist model is how the models make

predictions within the nodes. A regression tree produces a single-value prediction for each

node, whereas a M5-cubist model produces a prediction using a linear regression model

[101]. The regression model in each node is built using only the predictor from the split

directly above the node. The final prediction from a single tree is based on the regression

model in the terminal node, but can be smoothed using a weighting scheme based on pre-

dictions from an arbitrary number of nodes within the subtree. The number of nodes used

in the smoothing process is referred to as neighbors. The predictions from single-tree M5-

cubist model can be improved using a boosting-like ensemble method where subsequent

trees are built using the residuals from the single tree. The number of trees used in the

ensemble is referred to as committees. In this study, the M5-cubist models were fit using

the Cubist R package [102].

Random Forest (RF)

General overview: RF models combine the results of multiple regression trees to predict

7Q10 values. RF models differ from other regression tree-based methods because they rely

on random sampling to describe persistent relationships between 7Q10s and basin charac-

teristics. For example, if a particular site’s 7Q10 is highly correlated with a certain basin

characteristic, but most of the other sites do not show the same level of correlation, then

an RF model will “sacrifice” a good prediction for that particular site to avoid overfitting.

This is accomplished by the repeated random sampling of 7Q10s and basin characteristics.

Further details: RF models aggregate individual regression trees to reduce variance and

improve prediction accuracy [103]. Observations are randomly sampled from the training
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set, a individual regression tree is built using the random sample, predictions are made for

the remaining observations (i.e. out-of-bag samples), and this process is repeated a certain

number of times (ntree). Randomness is further added by forcing each tree to consider

different randomly selected sets of predictor variables (mtry) at each split in order to reduce

overall variance by lessening the strength of correlation between trees. This results in a

bootstrapped aggregation of models (referred to as “bagging”) that is almost always more

accurate than its constituent models [47]. In this study, the random forest models were fit

using the randomForest R package [104].

Support Vector Machines (SVM)

General overview: The physical interpretation of an SVM is similar to the interpretation

for the elastic-net model, however, using a kernel function for the predictor variables allows

the SVM to discover non-linear relationships between 7Q10s and basin characteristics. The

“support vectors” are observations that have the most influence on the regression and are

given weight over other observations.

Further details: Support vector machine regression models fit a regression line using only

the data points (i.e. the “support vectors”) that fall outside of a user-defined threshold (de-

noted as ε). The residuals outside of the threshold contribute a linear-scaled amount to

the model fit and residuals within the threshold do not contribute to the model fit. Hence,

SVM regression is considered an ε-insensitive regression. The effect that the large residu-

als have on the regression is controlled by a cost parameter, which can be shown to have a

regularizing effect much like ridge regression. A kernel function is often used to extend an

SVM to nonlinear regression [105]. Different kernels have different effects on the model

predictions. In this study, two SVMs were built–one with a Gaussian kernel and one with

a polynomial kernel. For the polynomial kernel, the degree of the polynomial (degree) was

provided. An additional scale parameter can be provided that controls how close observa-
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tions are in kernel space. In this study, the support vector machine models were fit using

the kernlab R package [106].

2.3.6 Stack Generalization Model (meta-M5 cubist)

General overview: Meta models–also referred to as ensemble models–generate predictions

by combining the output of multiple-first-order models [107, 108]. First-order models are

referred to as level-0 and the meta-model is referred to as level-1.The models do not need

to have a similar structure. For example, imagine a linear regression model, a regression

tree, and a nearest neighbor model were used to independently predict the value of some

observation. A simple “meta-model prediction” could be calculated by taking the mean

prediction of the three level-0 models. We expand this idea by using a stacked-regression

model that uses regression to combine the predictions from the level-0 models.

Further details: The stacked-regression model employed here combines the LOO-CV pre-

dictions from all the level-0 models using a level-1 M5-cubist model (Figure 2.3), a tech-

nique similar to bagging used in RF models and boosting used in GBMs. Combining the

LOO-CV predictions from a suite of different models can reduce variance and increase pre-

diction accuracy [107, 108]. The level-0 models are the 7 machine learning and 4 baseline

models described above, and the level-1 model is the M5-cubist that uses only the predic-

tions from the level-0 models as predictor variables. Prior to building the level-1 M5-cubist

model, the mean and median predictions for each model were added as predictor variables

for the level-1 model. The stacked model used only the LOO-CV predictions from each

level-0 model and the unweighted mean and median predictions across each all models (i.e.

it does not use the basin characteristics).
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Figure 2.3: Schematic of the stacked generalization ensemble model used in this study.
GBM: gradient boosting machine, KKNN: kernel-K-nearest neighbors, RF: random forest,
SVMP: support vector machine with a polynomial kernel, SVMG: support vector machine
with a Gaussian kernel, OK: ordinary kriging, ROI Tobit: region-of-influence Tobit
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2.3.7 Error Metrics and Error Decomposition

The models were all evaluated using LOO-CV–an observation was removed from the

data set (i.e. left out), the model was built on n−1 observations, and the left-out observation

was predicted for each model. This was iteratively done for each observation. The LOO-

CV predictions from each model were evaluated using four error metrics: The root mean

squared area (RMSE),

RMSE =

√
1
N ∑(y− ŷ)2, (2.7)

the unit-area RMSE (UA-RMSE),

UA−RMSE =

√
1
N ∑(

y
DA
− ŷ

DA
)2, (2.8)

the median percent error,

MPE = median(|(ŷ− y)/y|)∗100, (2.9)

and the Nash-Sutcliffe efficiency coefficient (NSE),

NSE = 1− ∑(ŷ− y)2

∑(y− ȳ)2 . (2.10)

Where y are the observed values, ŷ are the estimated values, N is the total number of

sites, DA is the drainage area, and ȳ is the grand mean. For the MPE, y and ŷ are only

for sites where y > 0. The MPE, unit area RMSE, and NSE provide a measures of model

performance relative to the size of the observed value (MPE), the drainage area (unit area

RMSE), or the mean of the observed data (NSE). The RMSE can be decomposed following

derivations presented in [109] and [110]. If p is a subscript for the predicted 7Q10 values,

and o is a subscript for the observed 7Q10 values, then the RMSE can be decomposed into

three parts,
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RMSE2 = MSE = (µp−µo)
2 +(σp−σo)

2 +2σpσo(1− r), (2.11)

where r is the linear correlation coefficient between x0 and xp, µp and σp are the mean

and standard deviation of the predicted values, and µo and σo are the mean and standard

deviation of the observed values. If we designate A = (µp− µo)
2, B = (σp−σo)

2, and

C = 2σpσo(1− r) from Equation 2.11, then we can visualize the absolute contribution of

each component, A, B, and C. The first term (A) is a measure of model bias (i.e. the

difference in the means of the observed and predicted 7Q10s), the second term (B) is a

measure of how well the model matches the variance of the observed values and the third

term (C) is the remaining error and is largely controlled by the covariance or correlation of

the predicted and observed 7Q10s. Components A and B represent how well the model is

able to recreate the location and shape of target distribution while component C accounts

for the pairwise relationship between the predicted and observed values.

2.3.8 Variable Importance and Partial Dependence Plots

The relative importance values from the top three predictor variables for each machine-

learning model were combined and rescaled. The SVMG model was omitted, but the

SVMP model was retained to keep a representative from each model family. The rela-

tive variable importance for each model was calculated using the varImp function from the

R caret package [111]. For the RF model, the mean squared error was computed on the

out-of-bag sample for each tree that was built using a random subset of the predictor vari-

ables. The differences in mean squared errors with and without certain predictor variables

was then used to determine the relative importance of each predictor. A similar approach

was taken for GBM but the relative importance was the sum of the importances from each

boosting iteration. The M5-cubist model returned the percentage of times a variable was

used for a condition or was used in a linear regression model. The elastic-net and SVM
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models returned the absolute value of the non-zero coefficients from the regression. For the

KKNN model–a technique without an obvious way to calculate the variable importance–a

filter method was used to compare R2 values for models fit with a certain predictor vari-

able compared to the R2 from a null model. The predictor variable that showed the largest

improvement in R2 values over the null was considered the most important predictor.

The top three most important predictor variables from each model were then selected

and the importance values were rescaled by dividing the sum of the importance value of

each predictor variable by six, the maximum possible sum. This provided a combined mea-

sure of variable importance from all of the machine-learning models. Partial dependence

plots (PDP) were created for the most important predictor variables from the RF, GBM,

SVMP, and M5-cubist models. These four models were chosen to show the effect of vary-

ing the most important covariates for models from several families. A PDP showed the

effect of varying a predictor variable of interest while accounting for the average effects of

all other variables [47], providing mechanistic insights from “black-box” algorithms. The

PDPs were created using the ICEbox R package [112].

2.4 Results

2.4.1 Prediction Errors and Error Decomposition

The machine-learning models outperformed the baseline models across almost all er-

ror metrics (Figure 2.4, Table 2.3). The exception was the ordinary kriging and the null

models both had a lower UA-RMSE than the elastic-net model. The full-Tobit model had

a lower RMSE than the ROI-Tobit model, but both had similar median percent errors. The

level-1 meta-M5 cubist model resulted in the lowest RMSE, highest NSE, lowest MPE,

and lowest unit-area RMSE. The machine-learning models generated predictions that more

closely matched the observed values than the baseline models (Figure 2.5). The error de-

composition revealed that although the Tobit models have the smallest bias errors, they had
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relatively large variance and covariance errors (Figure 2.6). The top performing (i.e., low-

ers RMSE) machine-learning models generally showed smaller overall covariance errors.
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Figure 2.4: Leave-one-out Root Mean Squared Error (RMSE) and Unit Area RMSE for
each model (residuals of each model were divided by the drainage area for the basin before
calculating the RMSE). The RMSE provides a measure of overall goodness of fit for each
model, and the unit area RMSE shows the error normalized by the size of the basin. From
right to left, (1) null: null model, (2) OK: ordinary kriging, (3) ROI Tobit: Type I Tobit
regression model using the region-of-influence method, (4) full Tobit: Type I Tobit regres-
sion model using the full data set, (5) elastic net: elastic-net regularized regression, (6) RF:
random forest, (7) GBM: gradient boosting machine, (8) SVMG: support vector machine
with Gaussian kernel, (9) KKNN: kernel-K-nearest neighbors, (10) SVMP: support vector
machine with a polynomial kernel, (11) M5-cubist, (12) meta-M5-cubist: stacked ensem-
ble M5-cubist model trained on the LOO-CV predictions from the other machine-learning
models.
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Table 2.3: Error metrics for each model sorted by RMSE value. The rank for each metric
and model is listed in square brackets to the right of the metric value. The values were
rounded to two decimal places for the table but the ranks were derived from seven decimal
places (which is why, for example, the RF model was given a better rank for the NSE over
the elastic net when it appears to be a tie in the table). Baseline models are indicated by
italics. KKNN: kernel-K-nearest neighbors, RF: random forest, SVMP: support vector ma-
chine with a polynomial kernel, SVMPG: support vector machine with a Gaussian kernel,
OK: ordinary kriging, ROI-Tobit: region-of-influence Type I Tobit.

Model RMSE Med % error NSE unit area RMSE

meta-M5 cubist 26.72 [1] 45.45 [1] 0.92 [1] 0.16 [1]
M5-cubist 33.00 [2] 55.00 [5] 0.88 [2] 0.18 [4]

SVMP 35.93 [3] 53.86 [4] 0.86 [3] 0.21 [7]
KKNN 36.42 [4] 52.08 [2] 0.85 [4] 0.17 [2]
SVMG 38.83 [5] 53.67 [3] 0.83 [5] 0.18 [3]

GBM 40.01 [6] 65.22 [7] 0.82 [6] 0.20 [6]
RF 46.45 [7] 60.30 [6] 0.76 [7] 0.19 [5]

elastic net 46.69 [8] 69.25 [8] 0.76 [8] 0.25 [10]
full-tobit 56.67 [9] 70.32 [9] 0.64 [9] 0.27 [11]

ROI-tobit 66.15 [10] 74.80 [11] 0.52 [10] 0.35 [12]
ordinary kriging 79.25 [11] 74.93 [10] 0.30 [11] 0.22 [8]

null 79.35 [12] 85.55 [12] 0.30 [12] 0.23 [9]
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Figure 2.5: Scatter plot of predicted vs observed 7Q10s for all of the models. The panels are
sorted by RMSE values from top left to bottom right. SVMP: support vector machine with
a polynomial kernel, KKNN: kernel-K-nearest neighbors, SVMG: support vector machine
with a Gaussian kernel, GBM: gradient boosting machine, RF: random forest, ROI-Tobit:
region-of-influence Type I Tobit, OK: ordinary kriging.
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Figure 2.6: Absolute contributions from the decomposed mean squared error (MSE) shown
in Equation 2.11. SVMP: support vector machine with a polynomial kernel, KKNN:
kernel-K-nearest neighbors, SVMG: support vector machine with a Gaussian kernel, GBM:
gradient boosting machine, RF: random forest, ROI-Tobit: region-of-influence Type I To-
bit, OK: ordinary kriging.
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2.4.2 Variable Importance

The overall variable importance value for percent wetlands was equal to one, which

indicated that percent wetlands was the most important predictor variable for each indi-

vidual machine-learning model (Figure 2.7). Unit 7Q10 values generally decrease with an

increase of percentage wetlands in a basin. The second most important predictor variable

was the percentage of soils in hydrologic soil group B (HGB, see [113] for more details

about the soil classes), which has moderate infiltration rates and is moderately coarse in

texture, and was in the top three most important predictor variables for all of the models

except elastic net and M5-cubist. Unit 7Q10 values tended to increase with an increase

of moderately well-drained soils. Other important predictor variables were the standard

deviations of the minimum and maximum temperatures for the basins, depth to the sea-

sonally high water table, mean August and November precipitation, and the percentage

of well-drained soils with a high gravel and sand content. Unit 7Q10s increased with a

greater amount of August and November precipitation, a higher amount of well-drained

soils, and greater variability in the minimum and maximum temperatures for a basin. The

results were mixed for the average depth to the water table (Figure 2.7). Further descrip-

tions of the variables can be found in the supplementary material. The most important

variables for the machine-learning models can be compared to the variables identified by

forward stepwise selection used for the Tobit models. LOO-CV resulted in 8 predictors for

both models. The 8 predictors in order of the absolute value of their coefficients are (1)

drainage area of the basin, (2) percent well-drained soils, (3) mean estimated March runoff

from 1951-2000, (4) percent forest in the basin, (5) percent wetlands in the basin, (6) per-

cent pasture in the basin, (7) percent moderately well-drained soils, and the (8) standard

deviation of the minimum temperature.
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Figure 2.7: [Left]: Relative importance of predictor variables for machine-learning models.
[Right]: Partial dependence plots for the predictor variables from the left panel. SVMP:
support vector machine with a polynomial kernel, RF: random forest, GBM: gradient boost-
ing machine. For the plot in the right panel, the numerical values on the axes are omitted as
the various predictors have unique ranges of values (for both the scaled predictor value and
the predicted value), which would require individual axis values for each the 10 separate
facets. Including the individual values clutters the plot and considerably shrinks the size of
the individual plots. Removing the axis values does detract from the purpose of the plot–to
observe how predictions change based of different values of different predictor variables.
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2.5 Discussion

2.5.1 Predictive performance and applications

Our results showed that machine-learning models can produce more accurate 7Q10

estimates for ungaged basins than traditional-statistical methods. The range of RMSEs also

indicated that exploring multiple methods is paramount for discovering well-performing

models. The relative accuracy of different models can provide additional insights into the

nature of the data. For example, the three most accurate level-0 models (M5-cubist, KKNN,

and SVMP) learn from data using different approaches. SVMP fits a robust regression

line in a kernel feature space, KKNN takes the average response value of sites that are

close together in kernel space, and M5-cubist extends tree-based methods. Although these

models belong to different families, they all performed well on the largest 7Q10 values

and did not exhibit any systematic bias (Figure 2.5). In contrast, the elastic-net model

accurately estimated the larger 7Q10 values but under predicted a majority of sites with

7Q10 values between 5-500 cfs. This suggests that the best performing models were able

to handle high leverage observations in the training set. The meta-M5 cubist model learned

from the LOO-CV errors produced by the level-0 models (Figure 2.3) and further increased

the accuracy of the predictions. However, the meta-M5 cubist model was unable to reduce

greatly the UA-RMSE, which suggests that the error relative to the size of the basin may

be near a threshold and is insensitive to small changes to absolute error (as represented by,

e.g., RMSE).

In practice, watershed management goals should guide the choice of the error metric

and the “best model” for a given task [46]. For example, if an aquatic ecological habitat

depends on a specific streamflow characteristic, then the model that results in the lowest

RMSE for that characteristic may provide the best information for managing the ecolog-

ical streamflow. Conversely, if the management goal is to determine basins with anoma-

lous flows relative to the size of the basin (e.g. predict where a large basin might have
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a small 7Q10), then the UA-RMSE performance of models is more relevant to that task

than the RMSE. Many states use the 7Q10 for design flows while other states have selected

other low-flow statistics that are more suited for a given objective. Our study-design is

dependent-variable agnostic–i.e., the data processing and choice of models are not specific

to 7Q10s. The same analysis could be rerun for a different statistic and a water man-

ager could select the model that performs best in their region, for their statistic, and their

purpose. The model could then be used to make predictions in ungaged locations. The

results presented in this paper demonstrate that machine learning methods, including meta-

modeling, are viable approaches for future low-streamflow statistic regionalization studies.

Comparable results in truly ungaged-basins can only be expected if the same set of ex-

planatory variables are available for ungaged locations, and to the authors knowledge, this

type of dataset does not yet exist. However, the 10 variables in Figure 7 (and drainage area)

provide a tractable starting place. Additionally, the models in this paper are built using

7Q10 data from 2015 and future models would benefit from updated 7Q10 estimates prior

to regionalization.

2.5.2 Error decomposition

The machine-learning models are optimized to minimize the overall prediction error

(RMSE), whereas Tobit and ordinary kriging are optimized to produce an unbiased estimate

with the smallest variance. Decomposing the overall error can lead to insights about model

behavior and allows us to examine what is driving the error for each model (Figure 2.6).

For example, the Tobit models were unbiased with low variance, but had a large amount of

unsystematic error, whereas the elastic-net model accepted higher bias to reduce variance

and decrease the overall error, which is a property of regularized regression [47]. The

ordinary kriging and null models had the same MSE, but the ordinary kriging error was

almost entirely composed of variance, which is likely the result of transformation bias

on a linearly weighted summation [114]. The meta-M5 cubist model was unbiased with
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minimal variance. This indicated that the mean and variance of meta-M5 cubist predictions

was equal to the mean and variance of the actual 7Q10s. The remaining error results are

from imperfect linear dependence between the predicted and the observed 7Q10 values.

Although we recognize the value of incorporating uncertainty into the model predic-

tions, we do not explicitly include uncertainty intervals here because real-world applica-

tions of 7Q10 predictions require a single 7Q10 prediction for an ungaged basin. We par-

tially explore uncertainty by a decomposition of the error terms for each model (Section

2.5.2), but a full exploration of the implications of predictive uncertainty are beyond the

scope of this work.

2.5.3 Physical controls of 7Q10s

The primary goal of estimating 7Q10 values in ungaged basins is predictive accuracy,

and simple interpretable functions rarely produce the most accurate predictions [67]. How-

ever, even when the objective is prediction, valuable mechanistic insights can be gained by

examining the effect of specific predictor variables [112]. This is often accomplished by

calculating the importance of each covariate used to fit a particular model, which although

useful, only accounts for the magnitude of the effect and not the direction (Figure 2.7, left

panel). In addition to variable importance, we explored the effect of each predictor in more

detail using partial dependence plots (Figure 2.7, right panel). In a review of low-flow

hydrology, [22] lists several factors that influence the low-flow regime of a basin: the dis-

tribution and infiltration characteristics of soils, the hydraulic characteristics and extent of

the aquifers, the rate, frequency and amount of recharge, the evapotranspiration rates from

the basin, distribution of vegetation types, topography and climate. Five of the seven fac-

tors mentioned by [22], including soils, aquifer characteristics, recharge, vegetation type,

and climate are reflected in the most important predictor variables identified here for the

machine-learning models (Figure 2.7).

The percentage of emergent wetlands was an important covariate for the machine-
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learning models, and wetlands have been shown to modulate streamflow [115]. As the

percent of emergent wetlands increases, the 7Q10/drainage area decreases 2.7. The dis-

tribution of emergent wetlands is heavily left-skewed where only a few basins have large

percentages of wetlands, and almost all of those sites are clustered in the Coastal Plain

of Georgia and South Carolina. Percent wetlands is negatively correlated with a shallow

depth to the water table (ρ=-0.82), November precipitation (ρ=-0.53), and moderately well-

drained soils (ρ=-0.45). This correlation suggests that wetlands, depth to water table, and

7Q10s are controlled by precipitation and local surface geology, and that the importance of

percent wetlands for predicting unit 7Q10s may simply reflect that they are both influenced

by similar processes. The PDP suggested that basins with very low standard deviations of

maximum and minimum monthly air temperature (min-max-temp) also tend to have low

unit 7Q10s. However, this trend quickly disappears after an increase in unit 7Q10. One pos-

sible explanation is that most basins with high standard deviations of min-max-temps are

located in the higher elevations of the Piedmont and Blue Ridge physiographic provinces,

which consist of a different geology than the Coastal Plain. As with the percent wetlands

predictor, it is difficult to infer whether there exists a mechanistic relationship between the

standard deviation of min-max-temps and unit 7Q10s, or if the trend is simply an artifact

of this particular data set.

2.5.4 Conclusions

Machine-learning methods can produce more accurate predictions of 7Q10s in ungaged

basins than historically relevant baseline models. M5-cubist models, kernel-K-nearest-

neighbor models, and polynomial kernel support vector machines show the greatest im-

provements in prediction accuracy over Type I Tobit models and ordinary kriging. The im-

proved prediction accuracy of the machine-learning models can be explained by how each

model treats the bias variance tradeoff. Multivariate regression and ordinary kriging are

both optimized to produce the best linear unbiased estimator, whereas machine-learning
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models minimize the overall prediction error by tuning hyperparameters using Bayesian

optimization or grid search. This tuning process commonly accepts bias to reduce variance

but generates optimal predictions.

Variable importance measures and partial dependence plots show that percent emergent

wetlands in the basin is the most important predictor variable for the machine-learning

models. We interpret this correlation as simply an indication that 7Q10s and percent

wetlands are likely controlled by similar factors–late summer and early fall precipita-

tion, the infiltration rate of soils, and the variability of minimum and maximum monthly

temperatures–which also emerge as some of the most important variables for predicting

7Q10s.

Machine-learning approaches show much promise for improving predictions of low

streamflow in ungaged catchments. Additionally, combining the predictions of multiple

first order machine-learning models via a global meta-model is a novel yet practical ad-

vancement for hydrologic-regionalization studies.
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CHAPTER 3

PREDICTING FLOW DURATION CURVES IN UNGAGED BASINS USING

L-MOMENTS AND THEORY-INFORMED NEURAL NETWORKS

3.1 Abstract

We develop theory-driven neural network models to predict flow duration curves (FDCs)

in ungaged locations. The model architecture contains multiple response variables in the

output layer that correspond to either individual quantiles or L-moments. During training,

predictions are made for each response variable and a combined loss function is used for

back propagation and parameter updating. The combined loss function accounts for the co-

variance between the response variables and generates physically-consistent outputs (e.g.,

monotonically increasing quantiles with increasing nonexceedance probabilities). We com-

pare a model that predicts directly 27 quantiles simultaneously (referred to as direct multi-

output neural network, DMNN), a model that predicts 27 quantiles independently (referred

to as direct single-output neural network, DSNN), and a model that simultaneously pre-

dicts four L-moments that are used to parameterize a 4-parameter Asymmetric Exponential

Power Distribution (referred to as L-moment multi-output neural network, LMNN). All the

predictions are made using a 10-fold cross validation framework. The multi-output neural

network model results in realistic flow duration curves. We show that the DMNN model

produces more physically-consistent and accurate predictions than the DSNN model. The

DMNN model also outperforms the LMNN model over the 27 quantiles. We also show how

neural network dropout can be used to generate posterior predictive distributions for FDCs.

Finally, we demonstrate how estimating FDCs can be used to estimate daily streamflow in

ungaged catchments.
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3.2 Introduction

Streamflow at a catchment outlet can be statistically summarized by a flow duration

curve (FDC). An FDC maps streamflow values to their corresponding exceedance proba-

bilities [116]. The unique shape of an FDC for a given basin and time period is the result

of multiple-hydrologic processes interacting at various temporal and spatial scales [117].

The physical characteristics of a basin (e.g., mean temperature, soil type, potential evap-

otranspiration, elevation, landuse, etc) filter precipitation into the different components of

streamflow [118, 119, 120, 121, 122, 123]. The shape of an FDC is therefore controlled by

both basin characteristics and precipitation.

Estimating FDCs is relevant to predicting streamflow in ungaged catchments [124,

76], quantifying streamflow alteration [125, 126], exploring spatial and temporal trends in

streamflow [127, 128], and for predicting the frequency of floods or low streamflow [14].

A physically-based approach involves using a rainfall-runoff model to generate streamflow

and a corresponding FDC based of the estimated values [118]. A benefit of the physically-

based method is that an FDC can be estimated in any location provided the data needed to

force the model and calibrate the parameters are available. It also insures that the result-

ing FDC will have flows that always increase with increasing quantiles (i.e., monotonic-

ity). Physically-based models, however, often do a poor job of recreating the distributional

properties of streamflow and statistical models are preferred for generating FDCs [21].

Common statistical methods include (1) regression-based methods that estimate quantiles

independently using basin characteristics [76, 129, 130], (2) distributional methods that

estimate statistical moments using basin characteristics and fit an analytical distribution to

the moments [131, 132], (3) streamflow index-based methods [117], and (4) geostatistical

methods [133, 134]. Recent research has improved on each of these methods.

Even though statistical methods tend to produce better estimates, they often require

significant post-processing to account for physical implausibility in the results. For ex-

ample, direct estimation of quantiles is one of the most accurate methods but produces
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non-monotonic FDCs (Figure 3.1). This is usually mitigated by interpolating a value to

replace the violating quantile. Distributional methods ensure monotonicity but can lead to

poor fits in the tails of the distribution. Can we improve on these methods by incorporating

what we know about the physical system into the statistical framework? Recent work by

Poncelet et el., [135] introduced a method that leverages the physical relationship between

quantiles and basin characteristics to ensure quantile solidarity. Their method improves

prediction accuracy and results in hydrologically-consistent models, however, it requires

significant preprocessing of the explanatory variables and involves multiple models that

are independently fit and combined.

Figure 3.1: Two common problems with (A) regression-based methods and (B) distribu-
tional methods.

We propose a multi-output neural-network (NN) model to predict each quantile simul-

taneously (referred to as direct multi-output neural network, DMNN). The network param-

eters are determined by a weighted-loss function that accounts for the prediction accuracy

of each output, which greatly reduces the number of non-monotonic predictions. Addition-

ally, the model requires minimal preprocessing of the data. We also use a multi-output NN

to predict 4 statistical moments and parameterize a 4-parameter Asymmetric Exponential

Power (AEP) distribution (referred to as L-moment multi-output neural network, LMNN).

The DMNN and LMNN models are compared to single-output NNs that predict each quan-

tile independently (referred to as direct single-output neural network, DSNN). We also use
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a variant of the QPPQ [136, 137, 129] (“Q” refers to discharge and “p” refers to exceedance

(or non-exceedance) probability. More details can be found in Section 3.3.6) to estimate

daily streamflow for an example site using the estimated FDC.

3.3 Methods

3.3.1 Streamflow Data

The streamflow data was downloaded from the USGS National Water Information Sys-

tem (NWIS). Daily streamflow data was downloaded for 1,379 sites and 423 sites were

removed that contained greater than 1% negative flows, consisted of provisional data, were

located outside of our study area, had less than 10 years of data, or did not have data be-

tween 1950-2010 (Figure 3.3). The remaining 956 sites were used for further analysis

(Figure 3.2). The daily streamflow was grouped into 6 decades, 1950-1959, 1960-1969,...,

2000-2009, and flow statistics were calculated per decade (Table 3.1). This was done to

provide a greater number of observations for regionalization and to partially addressed the

non-stationarity in FDCs. The final streamflow dataset contained 2,807 site-decade com-

binations. The flow statistics include the following 27 quantiles, 0.0002, 0.0005, 0.0010,

0.0020, 0.0050, 0.0100, 0.0200, 0.0500, 0.1000, 0.2000, 0.2500, 0.3000, 0.4000, 0.5000,

0.6000, 0.7000, 0.7500, 0.8000, 0.9000, 0.9500, 0.9800, 0.9900, 0.9950, 0.9980, 0.9990,

0.9995, 0.9998, and L-moments, L1, T2, T3, and T4 (for more information on L-moments

see Section 3.3.3).

Table 3.1: Number of sites per decade.

Decade Number of sites
1950 362
1960 487
1970 484
1980 455
1990 455
2000 564
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Figure 3.2: Study area location and streamgages.

3.3.2 Basin Characteristics

All basin characteristics were obtained from the USGS data release [138] and are pub-

licly available (https://doi.org/10.5066/F7765D7V) (Table 3.2). Basin characteristics that

can potentially evolve through time, e.g., land use, precipitation, reservoir storage, etc,

were aggregated by decade and are referred to here as “mutable” variables. Basin charac-

teristics that are generally considered to be fixed through time, e.g., elevation, soil type,

physiographic province, etc, did not change by decade and are referred to here as “im-

mutable” variables. The basin characteristics are spatially aggregated by the NHDPlus ver-

sion 2 catchments and linked to NWIS stream gages and 12-digit Hydrologic Unit Codes

(HUC12s) by a unique identifier [138]. Two spatial components were used for aggrega-

tion, (1) by reach catchment, which characterizes data at the local scale, or (2) accumulated

through the river networks, which characterizes cumulative upstream conditions. The ac-
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Sites that were removed are colored in orange and those that were retained are colored in
blue. Note that data prior to 1950 was not used due to the lack of reliable basin descriptor
data pre-1950.
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cumulation method followed NHDPlus version 2 flowlines upstream until it reached the

first divergence.

Table 3.2: The 44 Basin characteristics used for regression models. Two spatial compo-
nents were used for spatial aggregation, (1) reach catchments (CAT), which characterizes
data at the local scale, or (2) through the river network (NET), which characterizes cumu-
lative upstream conditions.

Mutable Description Unit
precip decadal mean and stdev of mean annual precip NET
temp decadal mean and stdev of mean annual temp NET
runoff (Q) decadal mean and stdev of mean annual Q from WBMa NET
housing density decadal housing units per km2 NET
dams decadal total number of dams NET
major damsb decadal total number of major dams NET
dam storage decadal dam normal and total storage volume NET
LULC decadal percent landcover land use for 12 classes NET
Immutable Description Scale
lon longitude of gage CAT
lat latitude of gage CAT
elevation min, max, and mean elevation NET
basin area upstream basin area NET
baseflow index ratio of long-term baseflow to total stream flow NET
TWI Topographic wetness index NET
basin slope average slope NET
road crossings number of roads crossing stream NET
sinuosity stream length/straightline distance of s CAT
stream density stream density in basin CAT
permeability permeability of streambed material CAT
aquifer primary aquifer code CAT
HLR hydrologic landscape region CAT
ecol3 level III ecoregion CAT
physio physiographic province CAT
soil type primary soil type CAT
aWater balance model
bdams 50 feet or more in height, dams with a normal storage capacity ≥ 5,000
acre-feet, and dams with a maximum storage capacity ≥ 25,000 acre-feet

3.3.3 L-moments

L-moments are calculated as linear combinations of order statistics and are widely used

in regional frequency analysis in favor of product moments (i.e., standard deviation, skew,
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etc) [139, 140, 141]. L-moments have both theoretical and practical advantages compared

to conventional moments; they are more robust on small datasets and in the presence of

outliers, they are less subject to bias, and can characterize a wider range of distributions.

Many sources in the literature aptly describe the history and theory of L-moments in hy-

drology [139, 141, 142, 143] and we only briefly describe the calculations here. Given the

product weighted moments [144],

β0 =
1
n

n

∑
j=1

x j (3.1)

β1 =
1
n

n

∑
j=2

x j[( j−1)/(n−1)] (3.2)

β2 =
1
n

n

∑
j=3

x j[( j−1)( j−2)]/[(n−1)/(n−2)] (3.3)

β3 =
1
n

n

∑
j=3

x j[( j−1)( j−2)( j−3)]/[(n−1)/(n−2)(n−3)], (3.4)

and if r is the order of the L-moment, the first 4 L-moments (λr) and 3 L-moments ratios

(τr), along with their product moment analogs, are calculated as,

λ1 = β0 = µ (3.5)

λ2 = 2β1−β0 = σ (3.6)

λ3 = 6β2−6β1 +β0 (3.7)

λ4 = 20β3−30β2 +12β1−β0 (3.8)

τ2 = λ2/λ1 = coe f f icent o f variation (3.9)

τ3 = λ3/λ2 = skew (3.10)

τ4 = λ4/λ2 = kurtosis. (3.11)
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For our purposes, we only need λ1, τ2, τ3, and τ4 to estimate the parameters of the 4-

parameter Asymmetric Exponential Power Distribution (see Section 3.3.4) using the “method

of L-moments”: a parameter estimation technique analogous to the well-known method of

moments. The method provides parameter estimates by choosing (analytically or through

numerical methods) the parameters of a probability distribution so as to equate the theo-

retical L-moments of the distribution to the sample L-moments. The conceptual basis is

that the sample L-moments succinctly quantify the distributional geometry of the sample.

Every distribution with finite mean is defined by its theoretical L-moments, which can be

computed for a given set of parameters. The method of L-moments simply sets the sample

and theoretical L-moments as equalities [145].

3.3.4 The 4-parameter Asymmetric Exponential Power Distribution

The regionalized L-moments were used to generate 4-parameter Asymmetric Exponen-

tial Power (AEP) distributions that were used to approximate FDCs. The AEP distribution

was introduced by [146] and the theoretical L-moments were first derived by [147]. A de-

tailed description of the AEP and it’s L-moments can be found in [145]. The distribution

functions of the AEP having parameters ξ (location), α (scale, α > 0), κ (shape1, κ > 0),

h (shape2, h > 0) for probability density f , nonexceedance probability F , and quantile x

(−∞ < x < ∞) are
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f (x) =
κ h

α(1+κ2)Γ(1/h)
exp[−(κsign(x−ξ ) ( |x−ξ |/α))h], (3.12)

F(x) =


[κ2/(1+κ2)] γ([(ξ − x)/(ακ)]h, 1/h) for x < ξ ,

1− [1/(1+κ2)] γ([κ(x−ξ )/α]h, 1/h) for x≥ ξ , and
(3.13)

x(F) =


ξ −ακ[γ(−1)([1+κ2]F/κ2, 1/h)]1/h for F < F(ξ ),

ξ +(α/κ)[γ(−1)([1+κ2](1−F), 1/h)]1/h for F ≥ F(ξ ) ,
(3.14)

where Γ(a) is the complete gamma function, and is defined as,

Γ(a) =
∫

∞

0
ya−1 exp(−y) dy, (3.15)

and where γ(Z,a) is the upper tail of the incomplete gamma function,

γ(Z,a) =
∫

∞

Z ya−1 exp(−y) dy
Γ(a)

, (3.16)

and where γ(−1)(Z,a) is the inverse of the upper tail of the incomplete gamma function.

The AEP subsumes the Normal (κ = 1, h= 2) as well as the Laplace or Double Exponential

(κ = h = 1) distributions. The theoretical quantile function is analogous to a FDC (Figure

3.4).

3.3.5 Neural network model

Neural networks (NNs) rely on multiple layers (“hidden layers”) of nonlinear process-

ing units (i.e., “neurons”, “nodes”) to learn associations from data [47, 48]. “Deep learn-

ing” refers to neural networks with many hidden layers [148, 149, 150]. NNs have been

used extensively in hydrology for predicting water resource variables [49, 50, 51, 52] while

deep learning has only recently been proposed for hydrologic inference [151]. Among
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Figure 3.4: AEP quantile function with varying scale parameters.

other advantages, deep NNs learn features at varying levels of abstraction and tend to gen-

eralize better to new data than do shallower NNs [152]. Despite the recent success of deep

learning in the fields of natural language processing [153, 154], image recognition [155],

and beating humans at games [156], there is not consensus that deep learning is necessary

or more accurate for most learning tasks [157, 158, 159, 160]. There is also not consensus

about how many hidden layers are needed before a NN is considered “deep”, but [161]

suggest that two or more hidden layers constitutes a deep NN (DNN).

3.3.5.1 Description of basic Neural Network

Nodes in a NN receive inputs and compute outputs. Each input has an associated weight

(w) that describes its relative importance compared to other inputs in the same layer (Figure

3.5). The node executes a nonlinear function to the weighted sum of its inputs. This non-

linear function is referred to as the activation function and allows neural network models to
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Figure 3.5: Basic neural network structure for the prediction of a single observation, i. The
blue nodes are the biases, x1 and x2 are the inputs, w(2)
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the weights from the first layer, w(3)
10 , w(3)
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a(2)1 , a(2)2 , and a(3)1 are the activation functions, and ŷi is the predicted output for observation
i.

be considered universal approximators [6]. The activation function takes a single number

input and performs a predefined mathematical operation to it. Several common activation

functions are sigmoid: σ(x) = 1/(1+ exp(−x), tanh: tanh(x) = 2σ(2x)−1, and rectified

linear unit (ReLU): f (x) = max(0,x) [161] (Figure 3.6). Each node also has an associated

bias (Figure 3.5) that shifts the activation function left and right (Figure 3.7).

Initial training of the network involves assigning random weights and completing a for-

ward pass to compute a prediction. A forward pass simply involves multiplying the weights

by their inputs, summing them up, passing the result through an activation function, and

pushing the value forward to the nodes in the following layer. Using a sigmoid activation

function and the parameter notation in [162]. the activation for each hidden node j in layer

l can be written as,

a(l)j = σ

(
∑
k
(w(l)

jk a(l−1)
k )+b(l)j

)
(3.17)

50



−1.0

−0.5

0.0

0.5

1.0

−5.0 −2.5 0.0 2.5 5.0
x

f(x
)

activation
relu

sigmoid

tanh

Figure 3.6: Common activation functions computed over the domain x=seq(3,-3,by=0.01).

0.00

0.25

0.50

0.75

1.00

−10 −5 0 5 10
x

f(x
)

varying bias
sigmoid(x−2)

sigmoid(x+0)

sigmoid(x+2)

Figure 3.7: Varying bias for sigmoid function computed over the domain x=seq(10,-
10,by=0.01).

51



where σ is the sigmoid activation function, w(l)
jk is the weight from the kth node in the

(l−1)th layer to the jth node in the lth layer. The sum in Equation 3.17 is the dot product

between the outgoing weights from layer l and the activation of layer l,

∑
k
(w(l)

jk a(l−1)
k ) =

[
w(l)

jk

]T [
a(l−1)

k

]
(3.18)

For example, using a sigmoid activation function, the calculation for the output node in

Figure 3.5 is,

a(3)1 = σ

(
w(3)

11 a(2)1 +w(3)
12 a(2)2 +w(3)

10 b(2)0

)
(3.19)

The output of the activation function for the hidden layer becomes the the input to the

activation function of the output layer. The output layer provides a predicted value for one

observation ŷi. The squared error of the prediction,ŷi, can be calculated for as,

δ
(3)
i = (yi− ŷi)

2. (3.20)

where yi is the actual value of observation i. The error is referred to as the cost, and is

represented as C. The error can then be back-propagated through the network using the

chain rule [163]. Using the notation above the partial derivative (i.e, the gradient) can be

written as,

∂C

∂w(l)
jk

= a(l)k δ
(l+1)
j . (3.21)

The partial derivative in Equation 3.21 describes the change in weight w(l)
jk associated with

a change in the cost function. Training a network using back propagation involves finding

values of the weights that minimize C via a gradient descent optimization algorithm, such

as RMSprop [164].

The network shown in Figure 3.5 is only for one observation. When doing regression
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with many observations, a cost function is chosen that averages the costs for each observa-

tion. A common choice is the mean squared error (MSE),

C =
n

∑
i=1

(yi− ŷi)
2. (3.22)

The weights can be rewritten in matrix form to simplify the weight-updating process. A

weight matrix Θ(l) is defined for each layer l where the entries correspond to the indexing

described in Equation 3.17, where the entry in Θ(l) for jth row and kth column is w(l)
jk . So

in matrix form, the activation for layer l can be written as,

a(l) = σ(w(l)a(l−1)+b(l)) (3.23)

and the associated error for each node j of layer l is,

δ
(l)
j =

∂C

∂ ∑k(w
(l)
jk a(l−1)

k )+b(l)j

. (3.24)

The weights are updated for a set number of iterations, referred to as an epoch. The number

of epochs is chosen based on when the MSE on the validation set stops improving.

3.3.5.2 Multiple Outputs and Dropout

Multiple-output regression involves predicting several response variables using the same

set of explanatory variables [165]. The goal is to leverage correlations between the response

variables to improve the predictive accuracy rather than relying on separate regressions that

ignore the relationships between individual response variables [166]. This is straightfor-

ward to implement in a neural network model. For each epoch, the MSE is calculated for

each desired output, and the weighted-average MSE is used to update the weights [164].

The weights assigned to the average MSE are defined based on the range of the output

variables and which output should have the most control on the weights.

Dropout is a regularization method where a fraction of randomly selected nodes, along
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with their connections, are removed from a network during training [167]. The nodes

are removed at a pre-specified rate for each layer given by probability p(l) (Figure 3.9).

Removing nodes forces the network to learn more robust weights that are less prone to

overfit by preventing hidden nodes from learning complicated features of the training data

that are not present in the test set [168]. Predictions on the test set are made by scaling the

weights of retained units in layer l by p(l), which ensures that the expected output from

the “thinned network” is maintained at test time. This procedure of scaling the weights

has been shown to be a computationally cheap form of model averaging and is similar to

bagging used in tree-based methods and naive Bayes used in classification [168].

Dropout can also be used to capture model uncertainty and [169] showed that dropout

is mathematically equivalent to a Bayesian approximation (i.e., probabilistic deep Gaussian

process marginalized over its covariance function parameters). A predictive-posterior dis-

tribution can be obtained by using running multiple forward passes through a network with

dropout. This process is referred to as Monte-Carlo dropout [167, 169]. Yet recent work by

[170] argues that dropout results in ill-posed Bayesian inference. Regardless of the math-

ematical equivalence to Bayesian approaches, dropout can be used to estimate uncertainty
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Figure 3.9: Neural network with dropout where the blue hatched nodes illustrate randomly
removed nodes and connections during training. p is 0.50 for the first layer, 0.66 for the
second layer, and 0.75 for the third layer. Note: the bias nodes and weights are excluded
for clarity.

from NNs.

3.3.5.3 Neural networks used in this study

Three different NN architectures were used in this study. Each NN had an input later

with 44 units, one unit for each basin characteristic. The DMNN and DSNN models had

two hidden layers where the first hidden layer had 40 units with a 10% dropout rate and the

second layer had 30 units with a 10% dropout rate. The DMNN had 27 units in the output

layer corresponding to the 27 quantiles. The DSNN has one unit in the output layer. The

LMNN had one hidden later with 40 units with no dropout and 4 units in the output layer

corresponding to the 4 L-moments. ReLU activation functions were used for each of the

hidden layers and the output layer. ReLU was used for the output later instead of a linear

activation because the outputs have to be ≥ 0. All models were fit using Keras 2.1.3 [171]

with a tensorflow backend. Predicting L-moments and quantiles for ungaged locations was

simulated by a 10-fold cross-validation approach [164].
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3.3.6 Selecting reference sites

We use a variant of the QrPrPxQx (referred to as simply “QPPQ”) [136, 137, 129] to

estimate daily streamflow for an example site using the estimated FDC. QPPQ uses stream-

flow at gaged-reference locations (Qr) to calculate a time series of exceedance probabilities

(Pr) that are used to map probabilities (Px) back to streamflow (Qx) at ungaged locations

(Figure 3.10). Where Q refers to streamflow, P refers to exceedance probabilities, subscript

r is reference sites and subscript x is the site of interest.

Figure 3.10: Schematic of the QPPQ method. The black hydrograph (Qr) and FDC (Pr)
represent the reference gage and the blue FDC (Px) and hydrograph (Qx) represent the
estimated site.

The final step in QPPQ is selecting a reference site to donate daily exceedance prob-

abilities (EPs) to the estimated FDC at the ungaged location. The FDC at the ungaged

location can then be used to convert EPs to streamflow. The assumption is that the EP for

the reference site, Pr, on a given date is equal to the EP for the ungaged site, Px, on the same

date. It is important to note that the streamflow for the reference site, Qr, is only used to

select EPs and is not directly used to calculate the streamflow at the ungaged site Qx. The
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Desiderata for choosing reference gages include the following,

1. The two sites must be close enough geographically to capture the same storm events.

This is particularly important for estimating sub-weekly streamflow.

2. The basin characteristics of the reference gage must be similar to the basin charac-

teristics for the ungaged location. This should ensure similar hydrologic responses.

3. The method used to select reference gages must not directly depend on measured

streamflow as this data will not be available when estimating flow for ungaged loca-

tions.

Multiple methods have been proposed to choose a reference site [136, 137, 129]. We

propose a simple two-step method. (1) Subset candidate reference sites for each decade

by selecting all sites within 150 km radius of the site of interest (i.e, the ungaged site),

and then (2) use Euclidean distances in the 40 dimensions of predictor space to select a

final reference site from among those subsetted sites in step 1. These steps are executed

per decade to account for differences in active streamgages and changes in mutable basin

characteristics (Figure 3.11). This method does not require streamflow information (i.e.,

it is unsupervised) and can be used to locate reference sites for ungaged locations. The

estimated FDC at the target site maps the donated probability from the reference site to a

discharge value. A local regression model (LOESS) is used to predict discharge values for

quantiles other than the 27 that were directly predicted.

3.4 Results

3.4.1 Monotonic Violations

The number of monotonic violations were calculated for each decade by,

εmon =
n

∑
i=1

[
m

∑
k=1

(cummax(ŷk) 6= ŷk)

]
i

(3.25)
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Figure 3.11: Example of two-step method to select reference sites per decade for site num-
ber USGS-08023080.

where i is the number of site, k is the number of quantiles, and ŷk is the predicted quantiles.

This definition of monotonic violations accounts for each quantile for site and decade com-

bination rather than only adjacent quantiles. The predictions are first sorted and then each

is checked against the cumulative max, where each quantile should be equal to the cumu-

lative max. This means that if the first 5 quantiles were 1.5, 3.0, 1.4, 1.8, 2.5 f t3s−1, there

would be a total of 3 monotonic violations because 1.4, 1.8, and 2.5 are not the cumulative

max (because 3 f t3s−1 comes previously) although they are increasing monotonically. The

DMNN model produces substantially lower monotonic violations than the DSNN model

(Figure 3.12). Most of the violations for the DMNN model are due to very small differ-

ences. For example, for site number 07343500 in 1970 the DMNN predicted 0.18 f t3s−1

for the 0.02 quantile and 0.17 f t3s−1 for the 0.05 quantile. The largest absolute difference

is for site number 07348500 in 1950, where the DMNN predicted 507,974 f t3s−1 for the

99.95 quantile and 483,460 f t3s−1 for the 99.98 quantile. By definition, the LMNN-AEP

model never violates monotonicity. The DSNN model is not used for further analysis.

58



0%

10%

20%

30%

1950 1960 1970 1980 1990 2000
decade

Pe
rc

en
t m

on
ot

on
ic

 v
io

la
tio

ns

100

10000

0 25 50 75 100
non−exceedance probability

Q

Estimate Individual NN Multioutput NN Observed

Figure 3.12: [Top] Percent of monotonic violations per decade for the DMNN and the
DSNN. The number of sites change per decade (Table 3.1) but the average number is ∼
470. There are 26 possible violations (number of quantiles -1) per site, meaning there
are around 26*470 = 12,220 possible violations each decade. [Bottom] Example quantiles
predicted by both the DMNN an the DSNN.
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3.4.2 Comparing FDC predictions

The LMNN model is used to predict the L-moments (Figure 3.13) that parameterize an

AEP distribution, and the non-exceedance AEP probability function is used to predict the

27 quantiles. The AEP predictions are compared to the DMNN model. On average, The

DMNN model tends to perform better towards the tail of the distribution while the AEP

model performs better in the middle of the distribution (Figures 3.14 and 3.15). The AEP

predicted a large number of negative values that were set to zero, and the effect of this

can be seen in the lower tail of the predictions sharply dropping to zero. This can also be

seen the in the 100% median percent errors for the the smaller nonexceedance probabilities

for the AEP (middle row, Figure 3.15). The DMNN model describes over 70% of the

variance for all quantiles and decades, often describing over 90% of the variance. The

AEP model describes over 50% of the variation for all quantiles and decades, and also

often describes over 90%, but shows a greater range in it’s correlations over nonexceedance

probabilities (top row, Figure 3.15). The normalized RMSE (n-RMSE) shows a similar

trend to the median percent error. The predicted lower tail for AEP model is over 3x smaller

than the actual values (the exponent in the RMSE calculation causes only positive RMSE

values while the actual difference can be positive or negative). Both models have smaller

n-RMSE values moving towards larger non-exceedance probabilities. The results for the

non-zero estimates show that for small nonexceedance probabilities, the AEP overpredicts

and the DMNN underpredicts (Figure 3.16). The AEP model also overpredicts the larger

nonexceedance probabilities while there is less bias in the DMNN model. There is not an

obvious spatial trend to the error for the 50th percentile estimates (Figure 3.17).

3.4.3 Dropout uncertainty intervals

Multiple iterations of dropout can be used to generate uncertainty intervals for predic-

tions (Figure 3.18). The width of the interval is a measure of how certain the model was
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Figure 3.13: Predicted vs observed L-moments from the LMNN model.

in it’s predictions. If the interval is small, e.g., site numbers 08047000 and 08091000, then

the predictions are robust to stochastic perturbations in the model architecture. If the in-

terval is large, e.g., site numbers 0233100 and 0243800, the model learns very different

weights, and therefore makes very different predictions, depending on which hidden units

are present.

3.4.4 Streamflow predictions

Although predicting streamflow is not the focus of this study, we provide one exam-

ple estimation for a full period of record (Figure 3.19). The estimated streamflow over-

predicts the observed streamflow on average (mean Q estimated: 1,331 f t3s−1 and mean Q

observed:1,040 f t3s−1), has a higher standard deviation (standard deviation Q estimated:

2,083 f t3s−1, standard deviation Q observed: 1,780 f t3s−1), but similar ranges (range Q
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Figure 3.14: Observed quantiles vs predicted quantiles for both the direct multi-output NN
the AEP distribution parameterized by the multi-output NN estimated L-moments. The
sites were randomly selected. Each panel is for a specific site and decade.
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Figure 3.16: Relative percent errors for each non-exceedance probability and model. Zero
values were removed for the plot. Positive percent errors greater than 100% were set to
100%.
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estimated: 6-32,776 f t3s−1, range Q observed: 17-34,300 f t3s−1).

3.5 Discussion

Multioutput neural networks produce improved predictions when there are consistent

relationships between multiple response variables for each observation [164]. This can be

seen when comparing the output of the DSNN, which predicts each quantile independently,

and the DMNN model, which predicts all 27 quantiles simultaneously (Figure 3.12). The

quantiles for a FDC for given stream both covary and are monotonic. Knowing something

about one quantile provides significant information about other quantiles. A single-output

model ignores this relationship and learns model weights and biases (i.e, parameters) that

minimize a loss function for each quantile independently. Whereas the multi-output model

shares information between all the inputs and outputs to find parameters that minimize a

combined loss function. For the DMNN model used in this study, each quantile in the

output layer shares parameters with every other quantile in the output layer. The only

non-shared parameters are the last connections between each unit in the last hidden layer

and the output layer. Parameter-sharing between the outputs helps to estimate smooth and

internally consistent FDCs.

Theoretical probability functions, such as the 4-parameter Asymmetric Exponential

Power distribution (AEP) used in this study [145], also produce realistic FDCs and only

require regionalizing 3-4 statistical moments rather than a large number of individual quan-

tiles. Additionally, after the distribution is parameterized it can generate streamflow values

for any nonexceedance probability without the need of an interpolation technique (like the

LOESS model for the DMNN). It can also extrapolate into the tails of the distribution,

whereas a direct quantile-estimation approach is constrained within the range of quantiles

used in the regression (although it is possible to extrapolate beyond the range, it is not

advised [135]). However, theoretical distributions also have their drawbacks. There are

theoretical constraints on their L-moments that can be violated when the L-moments are
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regionalized. A distribution cannot be fit to the moments when this occurs [131]. Due to

this type of violation we were unable to produce AEP estimates for 3.8% (n=107) of the

2,807 site-decade combinations. Theoretical distributions tend to result in less accurate

representations of FDCs at ungaged sites than Direct-quantile estimation methods [134]

(Figures 3.16 and 3.14).

Monte-Carlo neural network dropout offers a simple and rigorous method for calcu-

lating a posterior-predictive distribution for each quantile [169]. Back propagating the

error after randomly dropping a number of hidden units prevents the active units from co-

learning relationships unique to the training set. This resistance to overfitting leads to more

generalizable models. The range of predicted values provide additional information about

the confidence of the model for a given observation. A large range indicates that small

changes to the internal architecture of the network leads to large changes in the predictions.

The range may also change along the FDC, suggesting that the model is robust to dropout

for some quantiles and is more sensitive for others. The width of the prediction intervals

indicate how certain the model is about the predictions, yet this does not ensure that the

predictions are actually closer to the observed value. It may also be that predicted FDCs

near the tails of the posterior distribution are closer to the observed FDC (e.g., site number

02438000 and 02369800 in Figure 3.18).

Predicting streamflow was not an objective of this study but we included an example

of how to complete the QPPQ process. Nonexceedance probabilities from reference sites

can be used to generate streamflow predictions using the estimated FDCs at ungaged sites

(10-fold cross validation was used to simulate ungaged sites in this study). The reference

sites can be chosen using many different methods [172, 90, 76], and the best method is

dependent on the goal of the study. The method used in this study leveraged both spatial

and covariate proximity to select a reference site each decade (Figure 3.11). This method

could be improved in several ways. First, sites with small Euclidean distances in predictor

space do not necessarily have similar daily nonexceedance probabilities. A method that
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accounts for the relationship between predictors and FDC similarity would likely provide a

better mapping between the reference FDC and the target FDC. For example, Ganora et al.,

[173] used the pairwise similarity between dimensionless FDCs and related the distances

to basin descriptors. Second, our method uses the raw probability from the reference site

directly without accounting for the decaying relationship between sites due to distance

(both geographical and covariate distance). Copula-based methods would offer a rigorous

treatment of this relationship [174].

Data-driven models can be improved by integrating domain knowledge into model de-

velopment [9]. In this study we show that multi-output neural networks that directly predict

a number of quantiles can estimate FDCs that obey monotonicity between increasing quan-

tiles nonexceedance probabilities. Physically-consistent FDCs can also be generated using

distributional methods. The simplicity and flexibility of the distributional methods make

them useful models, although the directly estimated FDCs are more accurate across quan-

tiles than distributional methods. Regardless, multi-output neural networks offer signifi-

cant advantages over other regression modes when regionalizing L-moments or individual

quantiles.
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CHAPTER 4

EXPLORING THE DRIVERS OF PUBLIC-SUPPLY WATER USE USING

HIERARCHICAL-BAYESIAN MODELS

4.1 Abstract

This study explores the relationship between municipal water-use and an array of cli-

mate, economic, behavioral, and policy variables across the contiguous U.S. The relation-

ship is explored using Bayesian-hierarchical regression models for over 2,500 counties, 18

covariates, and three higher-level grouping variables. Additionally, a second analysis is

included for 83 cities where water price and water conservation policy information is avail-

able. A hierarchical model using the nine climate regions (product of National Oceanic and

Atmospheric Administration) as the higher level groups results in the best out-of-sample

performance, as estimated by the Widely Available Information Criterion, compared to

counties grouped by urban continuum classification or primary economic activity. The

regression coefficients indicate that the controls on water use are not uniform across the

nation: e.g., counties in the Northeast and Northwest climate regions are more sensitive to

social variables, whereas counties in the Southwest and East North Central climate regions

are more sensitive to environmental variables. For the national city-level model, it appears

that arid cities with a high cost of living and relatively low water bills sell more water per

customer, but as with the county-level model, the effect of each variable depends heavily

on where a city is located.

4.2 Introduction

There are growing concerns that population growth in many regions is leading to un-

sustainable demands on water supply systems [175, 176], particularly in locations likely to

face reduced availability due to changing climate [177, 178, 179, 180]. In the United States,
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withdrawal projections suggest that 70% of counties could experience increased water sup-

ply risks in the next 50-100 years [177, 178]. Others argue that attempts to reduce CO2

emissions and stem climate change could result in greater stress on U.S. water systems

than the stress caused by climate change itself, e.g., increased water requirements to grow

biofuels [181]. Regardless, the impacts of future climate and population growth on water

supply security can only be determined if examined in conjunction with other controls of

domestic water use. This paper explores the spatial variability in national public-supply wa-

ter use by assessing the relationship between water use and an array of climate, economic,

behavioral, and policy variables and how these relationships vary across the contiguous U.S

(CONUS).

More than 280,000,000 people in the U.S. are served by some 150,000 utilities, 80%

of which are classified as small (population served < 3,500 people [182]). The 2010 US

Geological Survey’s national water-use compilation indicates that total municipal water-

supply withdrawals in the United States have decreased by 5% between 2005 and 2010

despite a growing population [183], which seems to reflect at least a partial decoupling of

withdrawals and population.

The national picture is not uniform for all regions, with domestic withdrawals varying

from 55 gpcd to 167 gpcd (gallons per capita per day) across states [183]. Despite this

wide variation, per capita water consumption in the U.S. is high relative to absolute needs.

The minimum drinking water requirement for human survival is less than 1 gpcd [184].

The requirement is closer to 15 gpcd if the water needed for sanitation, bathing, and food

preparation is included [185]. Actual indoor water use in the U.S. is a factor of four higher

than the minimum requirements (about 60 gpcd [186]), while current per capita domestic

water withdrawals are estimated to be 89 gpcd [183] and has remained greater than 60 gpcd

throughout twentieth century [187, 188]. Clearly the per capita use in the U.S. reflects an

aggregate of complicated environmental, social, financial, and motivational influences on

decisions of end users [189].
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A substantial amount of research has been dedicated to exploring the controls on water

use. Increased water use is often associated with higher temperatures and lower precipi-

tation [190, 191]. This is mainly attributed to the increased summertime lawn and garden

irrigation and the need to replace evaporated water in pools [192, 193, 194]. Household

age is generally thought to be associated with increased water use due to older fixtures and

a higher propensity for older pipes to leak [195, 194], but other studies suggest that neither

efficient water use appliances nor the age of households have a substantive effect on over-

all use [196, 197]. The effect of household income is also unclear [198]. Households with

more disposable income often have larger lawns and are less sensitive to water price, which

can lead to greater water use [199, 200]. Alternatively, income and education are often pos-

itively correlated, and education level tends to be associated with environmental awareness

[201], which in turn, can lead to conservative water-use habits [202, 203, 204, 205]. Low

density housing (e.g., suburban and rural) tends to be associated with higher per-capita

withdrawals than high density housing (e.g., urban apartments), primarily due to outdoor

water use [206]. Water-use restrictions, rebates, water conservation education, and behav-

ioral factors–beliefs about the environment, institutional trust, etc–are generally thought to

reduce water use [207, 208].

The price of water also affects use, although water prices are set well below the long

term marginal cost of water supply [209]. Price elasticities for domestic water use have

been estimated to be in the range of -0.45 and -0.14. [210, 211, 194]. These elasticities can

vary widely depending on both pricing structure and household preferences. For example,

increasing block tariffs leads to nonlinear price elasticities as households are asked to pay

more for the marginal price of water as the volume purchased increases [212], and end

user preferences, such as the percent of outdoor water use, result in different elasticities for

different homes [209].

Recent research by [202] examined the change in county-level water use efficiency

across the U.S. by climate region between 1985 and 2010. This was one of the first studies
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to examine trends in efficiency and their underlying drivers on a national scale. They

attribute much of the temporal variability in efficiency to state-level North-South gradients

and county-level difference in rural vs. urban areas, education levels, and income. They use

climate regions as the main spatial unit of aggregation for analysis. Despite the important

contribution of [202], there remain several open questions: Are climate regions the most

logical unit of analysis for water-use efficiency? What other grouping variables might be

important? Do the negative effects of income and education persist after controlling for

other explanatory variables? Do urban areas still show greater water-use efficiency after

controlling for inter-county water transfers (i.e., counties buying and selling water across

county borders [213])? Are drivers of water use consistent if the data are aggregated for

cities rather than counties?

This paper builds on the work in [202] to explore the controls on municipal water with-

drawals in the CONUS by considering how they are related to climate, economic measures,

demographics, policies, and behavior variables. We address the specific questions above by

exploring two methods of controlling for inter-county water transfers, leveraging a hierar-

chical model that allows information sharing between higher-level groups, exploring three

grouping variables, including multiple predictor variables in addition to income and educa-

tion, and considering two separate modeling exercises using county-level withdrawals and

city-level demand for the CONUS. We consider different sets of proxies for climatic, eco-

nomic, social, and policy conditions as covariates for the county and city models, subject

to data availability. The county-level and city-level models are built on independent but re-

lated datasets, which provides a unique opportunity to test the robustness and scalability of

conclusions regarding the primary controls on public water use. We find that precipitation

and temperature, partisan voting behavior, the number of people per household, the median

age of the structures in a county, and the average water price are variables that explain the

most variability in water withdrawals and water deliveries.
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4.3 Methods

4.3.1 County-level data

Models of 2010 county-level water withdrawals were constructed using 18 explanatory

variables (Table 4.1) for over 2,500 counties. To represent local climate, we used county

precipitation, temperature, and overall water yield. Water yield accounts for soils, vegeta-

tion cover, wind speed, and other landscape factors in addition to precipitation and tempera-

ture [214]. As proxies for economic and behavioral information we included demographic

measures of income, the Gini index (measure of income disparity), college attainment,

Cook Partisan Voting Index (measures local Republican vs Democratic voting proportions

for presidential elections relative to national average), median age, rural to urban class, and

rent vs own proportions. The county-level water use data were taken from the 2010 US

Geological Survey (USGS) water use compilation [183] (description of dependent vari-

ables are provided below). The covariate data was primarily taken from publicly available

datasets (Table 4.1). If two predictors were highly correlated (ρ > 0.4), then one of the

predictors was removed from the dataset and is not shown in (Table 4.1). For example, the

correlation coefficient between the percentage of a county below the poverty line (ppoverty)

and the Gini index is 0.57, and so ppoverty was removed from the analysis. The full water-

use dataset for the contiguous U.S. included 3,109 counties and county equivalents (e.g.,

Louisiana parishes). When the water-use data were merged with the explanatory variable

dataset, 110 counties were dropped because explanatory variables were unavailable. The

full dataset for our analyses consisted of data for 2,999 counties and county equivalents.

For the national county-level model, direct information on water price, household behavior,

fraction of outdoor use, inter-county water transfers, and water conservation policy was not

available. Therefore, we conducted an extended analysis for 83 cities where policy, trans-

fers, and price variables were available (Table 4.1). Descriptions of the city-level covariates

are in Section 4.3.4.
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The full datasets and the R scripts used to process that data are available in a USGS data

release [1]. Further information can be obtained by contacting the corresponding author.

4.3.2 Grouping variables and hierarchical-Bayesian models

Fixed-effects models were compared to hierarchical models (also commonly referred

to as multilevel models, partially-pooled models, random-effects models, varying-effects

models, or adaptively-regularizing models [217, 218, 219, 220]), both of which were esti-

mated in a Bayesian framework. The primary difference between these models relates to

how they handle possible clustering in the observations that define unique water-use set-

tings. Fixed-effects models address possible clustering in one of two ways. In a ”fully

pooled” fixed-effects model, any clustering by group is ignored, and a single, fixed esti-

mate of the coefficient for each covariate is developed using all of the observations. Con-

versely, in an unpooled fixed-effects model, separate coefficient estimates are developed

only using the observations in each group. A hierarchical model provides a compromise

between these two extremes. Hierarchical models extend single-level regression to data

with a nested structure, whereby the model parameters vary at different levels in the model,

including a lower level that describes the actual data and an upper level that influences the

values taken by parameters in the lower level. Here, observations indexed by i = 1, ...,n are

clustered within two or more groups, j = 2, ...,J, that define unique water use settings and

the variation in lower-level parameters by group is of interest. The structural dependency

of lower-level parameters across groups is defined by prior distributions that characterize

their joint parameter space, and these prior distributions have their own parameters (called

hyperparameters) that exist in the upper level of the model. Both upper and lower-level pa-

rameters are estimated jointly, thereby sharing information between levels of the model and

partially pooling parameter estimates across groups [221]. Hierarchical-Bayesian models

are very similar to random-effects models (multi-level models fit by using some form of

maximum likelihood estimation) but are more flexible in terms of their ability to propagate
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Table 4.1: Explanatory and grouping variables considered in this study. More infor-
mation detailing the data sources for each variable can be found in [1]. Abbreviations
used in the table: max=maximum, T=temperature, P = precipitation, pop=population,
cons=conservation, ◦C=degrees Celsius, and mm = millimeters.

County covariate Description Data source
pgrowth proportion population growth from 2000-2010 censusa

prop sw fraction of withdrawals from surface water USGSb

Qmm daily water yield [214]
tmax 40 mean annual max T, 1970-2010 PRISMc

tmax diff 2005-2010 mean annual max T - tmax 40 PRISM
ppt 40 mean annual P, 1970-2010 PRISM
ppt diff 2005-2010 mean annual P - ppt 40 PRISM
med income median household income ACSd

Gini Gini index ACS
pcollege proportion of county with some college education ACS
house dens houses per square mile ACS
ppl house average number of people per household ACS
med age struc median age of household structures ACS
prent fraction of pop that rents residence ACS
psfh fraction of single family homes ACS
papt fraction of apartments (10+ units) ACS
cook pvi Cook Partisan Voting Index this papere

rur2urbi rural to urban (1-9) index USDA f

City covariate Description Source
water price price of water AWWAg

bill type bill structure (decreasing, uniform, or increasing) AWWA
reb number of rebate oriented water cons. policies [215]
req number of requirement oriented water cons. policies [215]
aridity P/(T +33) with P in mm and T in ◦C this paperh

rpp regional price parity BEAi

Grouping variable Description j Source

climate region nine climate regions that groups states by climate NOAAk

rur2urb nine urban continuum codes USDA
econdep six non-overlapping categories of economic dependence USDA
aCensus data: https://www.census.gov/data/developers/data-sets.html
bUSGS data: http://water.usgs.gov/watuse/data/2010/usco2010.txt
cParameter-elevation Relationships on Independent Slopes Model (PRISM) data:
http://www.prism.oregonstate.edu/documents/PRISM datasets.pdf
dAmerican Community Survey (ACS) data: https://www.census.gov/data/developers/data-sets.html
ePositive % = more Democratic than national average for 2004 and 2008 presidential elections.
f 2003 U.S. Department of Agriculture (USDA) data:
https://www.ers.usda.gov/data-products/rural-urban-continuum-codes/
gAmerican Water Works Association (AWWA) Water and Wastewater Rate Survey data:
https://www.awwa.org/store/productdetail.aspx?productid=61841567
hKöppen aridity index, more details can be found here [216]
iBureau of Economic Analysis (BEA): https://www.bea.gov/regional/downloadzip.cfm
j See Figures 4.12, 4.13, and 4.14
kNational Oceanic and Atmospheric Administration (NOAA) data:
https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php

77



uncertainty through complex model structures [222].

Importantly, it is not clear a priori whether to partially pool, and if so, across what

grouping variables. Therefore several grouping variables were explored for the hierarchical

models in this study (Table 4.1). Climate regions were included because it allows for the

comparison of parameters after partially controlling for long term climate of an area (Figure

4.12). The rural-to-urban gradient was included because it was reported as a major driver

of water use in [202] (Figure 4.13). The primary economic dependency of a county was

included to explore possible effects of end users purchasing water in each county (Figure

4.14). There are multiple structures that can be used for the varying effects determined

by these grouping variables: the intercepts can be partially pooled with fixed slopes, the

slopes can be partially pooled with fixed intercepts, or both the intercepts and slopes can

be partially pooled. We compare each of these structures. To avoid confusion between

the various model names, for the remainder of this paper we refer to fixed effects models

as ”fully pooled” (ignores higher level groups) or ”unpooled” (separate models for each

higher-level group) and hierarchical models as ”partially pooled” (estimates coefficients

for each higher-level group while sharing information between groups via a joint prior).

4.3.3 County-level analysis

When developing the county-level regression, it is essential to control for undocu-

mented inter-county water transfers–an important confounding factor when data is aggre-

gated to scales larger than the footprint of the supply system [213]. For example, if a rural

county with a small population is exporting water to an urban county with a large pop-

ulation, the per-capita water withdrawal will suggest high usage in the rural county and

low usage in the urban county, when in fact the values are just artifacts of the water trans-

fers. Furthermore, dividing by population in counties where water is being either exported

or imported can greatly over-estimate the actual per-capita water use in the county with

a small population and only slightly under-estimate the per-capita water use for a county

78



with a large population. Additionally, the covariates associated with a county selling water

are partially exported to a county buying water (i.e., an increase in water price for a county

importing water may decrease withdrawals in the county exporting it), and for regression

modeling, this results in having the rows of the design matrix not always corresponding

with the correct rows of the response variable. This will hinder the interpretation of re-

gression coefficients. Lacking an up-to-date database of inter-county water transfers for

the U.S., we address this issue using two different modeling strategies: (A) drop counties

with values outside of a threshold taken from the literature and model only the remain-

ing counties using a linear regression model, and (B) use the expected national per-capita

withdrawal value to classify counties with a binary response variable (greater or less than

expected) and model each county outcome using a logistic regression model.

4.3.3.1 Linear regression model for county-level water withdrawals

The response variable, wh, for the county-level linear regression model is the annual

gallons of public supply freshwater withdrawn (column “PS-WFrTo” in [183]) per unit

household in a given county (Figure 4.1). The number of households served in each county

was calculated as: (popserved/poptotal) ∗ housestotal where population served (popserved)

and total population (poptotal) for a county was obtained from the USGS water use dataset,

and total number of houses per county (housestotal) was obtained from the American Com-

munity Survey. Due to undocumented inter-county water trading, only counties with wh

values of 50,000 < wh < 300,000 were retained for the analysis (dropped 453 counties) us-

ing the linear regression model. These thresholds are consistent with a range of values for

eleven municipalities across the U.S. [223, 224]. A manual inspection of specific counties

suggests that this method accurately removes counties with known transfers. For example,

the counties in the Catskills in NY provide water to New York City and are removed, coun-

ties in Western MA that provide water to Boston are removed, and counties surrounding

Atlanta GA and large metro areas in Texas are removed. However, this approach does not
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remove every county with known water transfers, such as Los Angeles county in CA.

The regression coefficients were estimated using Bayesian regression models with a

Gaussian likelihood function:

whi ∼ Normal(µi,σ) (4.1)

µi = Xiβ j[i] f or i = 1...,N & j = 1...,J (4.2)

σ ∼ Hal fCauchy(0,1e6) (4.3)

where i is the county index, j is the group index, N is the number of counties, J is the

number of groups, X is the design matrix, β is the vector of coefficients, µi is the within

group means, and σ is the within group prior standard deviation. A normal distribution was

assumed for the response variable wh. A Half-Cauchy distribution was chosen as a prior

for the standard deviation because it is constrained to only positive values (standard devi-

ations are only positive) and offers weak regularization for large standard deviation values

[225]. The scale parameter for the Half-Cauchy prior was selected by cross validation. This

model is developed for each grouping variable (climate region, urban gradient, economic

dependency) to compare how model estimation and prediction change based on the group-

ing structure. We also developed a fully-pooled and unpooled models, where J = 1 and β

for each covariate was assigned an independent N(0,1e5) prior distribution and α was as-

signed a N(0,1e6) prior distribution (where α is the intercept and is estimated by assigning

a vector of ones in the first column of the design matrix). The choice for these priors was

based on cross validation and these priors are weakly regularizing. The coefficients that

describe µi in Equation 4.2 are drawn from a Multivariate-Normal (MVN) distribution,

β j ∼MV N(ν ,Σ) f or j = 1...,J, (4.4)

where ν is the vector of parameter means, and Σ is the parameter covariance matrix. The
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multivariate normal prior in Equation 4.4 was vectorized using non-centered parameter-

ization to allow for more efficient Markov chain Monte Carlo (MCMC) sampling. The

covariance matrix was defined as a quadratic function of a correlation matrix, Ω, and a

vector of coefficient standard deviations, τ , each with their own priors:

τ ∼ Hal fCauchy(0,1e6) (4.5)

Ω∼ LKJ(2) (4.6)

The prior for τ is the same prior that was used for σ and is described above. The correlation

matrix Ω was assigned a weakly regularizing LKJ prior over the correlations [226]. All

covariates were converted to z-scores before building the models.

4.3.3.2 Logistic regression model for water-withdrawal classification

The response variable used in the county-level logistic regression model, dw, is calcu-

lated as the difference between a county’s actual withdrawal and the national population

normalized withdrawal expectation:

dwi = wi−
[

∑wi

∑ popi
∗ popi

]
, f or i = 1...,N, (4.7)

where ∑wi/∑ popi is the national population normalized withdrawal expectation, and dwi,

popi, and wi are the withdrawal departures, population, and raw withdrawals for the ith

county, respectively. dw was then converted to a binomial response variable (Figure 4.2)

by:

dwi class =

 0 i f dwi ≤ 0 (county withdrew less than expected)

1 i f dwi > 0 (county withdrew more than expected)

 . (4.8)
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The use of a binary response variable provides another way to reduce the effects of

inter-basin transfers on model inference and provides some advantages over the screen-

ing approach taken for the linear regression model. Representing water use as a departure

from the national average allows population to still be used for normalization while remov-

ing the non-linear effect of normalizing by counties with different population sizes. The

resulting classification better reflects water transfers than the raw wh calculation, which

can be seen in counties such as Davidson (pop=626,681, withdrawals=136.38 mgd) and

Williamson (pop=183,182, withdrawals=1.81 mgd) Counties TN. Davidson County sells

water to several surrounding counties, including 14 mgd to Williamson County [personal

communication], and this is reflected in dwclass variable, whereas Williamson County is

dropped from the wh analysis. Water transfers are better represented in dw because even

small transfers from a county with a large population will result in a departure from the

national average that will be on the same scale as the departure for a county with a smaller

population. The downside of the binomial approach is a loss of information due to dis-

cretization of counties with highly anomalous water withdrawals that might be caused by

large anomalies in covariates.

The regression coefficients were estimated using hierarchical Bayesian regression mod-

els with a binomial likelihood function and a logit link. The model for each county’s dw

is:

dwi ∼ Bernoulli(pi) (4.9)

pi = logit(Xiβ j[i]), f or i = 1...,N (4.10)

β j ∼MV N(ν ,Σ) f or j = 1...,J (4.11)

where pi is the probability that dw for the ith county is equal to one, ν is the vector of pa-

rameter means, and Σ is the parameter covariance matrix. The multivariate varying effects
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prior in Equation 4.11 was re-parameterized to use a non-centered parameterization. All

covariates were converted to z-scores before building the models.

4.3.4 City-level data and analysis

A second dataset was compiled that included water price and conservation measures for

83 cities (Figure 4.3). Transfers are not present in the city dataset as the dependent variable,

gal, is the water demand rather than the withdrawals for a given city. The demand is cal-

culated as the annual gallons sold (domestic, commercial, and industrial) by a municipality

per account for a given city. The covariates included in the city analysis are the average

residential monthly water bill (i.e., ”water price”) across all volumes for a 5/8 inch meter,

the bill type, the number of requirement oriented water conservation policies, the number

of rebate oriented conservation policies, the Köppen aridity index [216], and the regional

price parity. The bill types were converted into a dummy variable, where decreasing block

rates were coded as a one, and uniform and increasing block rates were coded as a zero.

This choice was made prior to the analysis based on inspection of the response variable dis-

tribution per bill type. The city-level water use and price related variables (water price and

bill type) were taken from the 2010 AWWA water and wastewater survey dataset [227]. Ex-

planations of the rebate and requirement oriented water-conservation policies are detailed

in the appendices of [215]. The regional price parity, an index which compares the cost

of living for an area relative to the national average, was taken from the Bureau of Eco-

nomic Analysis (www.bea.gov). The city-level data was also analyzed using a Bayesian

hierarchical model with a Gaussian likelihood. Only climate regions were explored as a

grouping variable for the city-level analysis, because the other grouping variables could

not be applied to the city-level data (all cities are classified as urban and most of the eco-

nomic dependence measures would not apply to cities, e.g., farming, mining...etc). Other

potentially interesting ways to group the city-level data (by states, demographic indices,

etc) could be explored in future work. The model structure mirrored Section 4.3.3.1 and
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the range of values for gal and wh were similar.

4.3.5 Parameter estimation and fit metrics

We performed all regressions using Hamiltonian Monte-Carlo sampling with the Stan

modeling language and functions from the rstan and rethinking R packages [228, 229, 230].

For each model, we ran 2 chains for 4,000 iterations where the first 1000 iterations of each

chain were used for warm-up and parameter tuning and the remaining 3000 were sampled

to calculate posterior distributions of the parameters. Sampling convergence was confirmed

by calculating the Gelman-Rubin statistic and the visual inspection of trace plots [231].

The county-level models were compared using the widely applicable information criterion

(WAIC) which is derived from the log pointwise predictive density of the models and can

be shown to approximate out-of-sample predictive performance [232, 233]. The WAIC

additionally provides a measure of model performance while accounting for the effective

number of parameters used in each model.

4.3.6 Interpreting β parameters

We assessed the significance and magnitude of each regression coefficient (β ) to char-

acterize how each covariate affects water use. However, the interpretation of these coef-

ficients is different between the linear and logistic regressions. For the linear regression

models with mean centered and scaled covariates, a unit change in the response variable

is associated with a one standard deviation change in the explanatory variable (Table 4.2).

For example, if a β parameter is equal to -5000 for water price with a standard deviation

of $20, then the interpretation is that a $20 increase in water price corresponds to decrease

of 5000 in the units of the response variable (e.g., gal/household/year). For the logistic re-

gression models, the upper bound of the predictive difference in probability of the response

equaling one is approximated by dividing the β coefficient by four. This approximation is

equal to the maximum of the first derivative of the logistic curve [219]. For example, if the

86



N
o

rt
h

w
e

s
t
 

•
Eu

ge
ne

eg
as

 

W
e

s
t
 

Sa
n 

Di
eg

o 

W
e

s
t
 N

o
rt

h
 C

e
n

t
ra

l 

Sa
l 

La
ke

 C
i,�

-
-

-
-

--F
ffl

-6f
lff+t9

�
 

•
 •
 Pr
ov

o 

Ph
oe

ni
x 

•
 

Tu
es

 n
 

•
 

•
 

Bo
ul

de
r •

. De
nv

er
 

S
o

u
t
h

w
e

s
t
 

S
o

u
t
h

 

W
ic

hi
ta

•
 

Arn
a 

110
•

 
0 Br

ow
ns

vi l
le

 

E
a

s
t
 N

o
rt

h
 C

e
n

t
ra

l 

g
 

N
o

rt
h

e
a

s
t
 

C
e

n
t
ra

l 

Er
ie

 
Pi

tts
 u

rg
h 

Al
le

nt
ow

 
•
 

•

L
a

n
c

a
s
te

r
e

 Vi
rg

in
ia

 B
ea

ch
 

p
 

S
o

u
t
h

e
a

s
t
 

D.
C
.

Fi
gu

re
4.

3:
M

ap
sh

ow
in

g
th

e
83

ci
tie

s
(b

y
N

O
A

A
C

lim
at

e
re

gi
on

)u
se

d
in

th
e

ci
ty

-l
ev

el
an

al
ys

is
re

gr
es

si
on

m
od

el
.

87



β parameter is equal to -0.6 for water price, then a standard-deviation change in water price

is associated with a ∼ -0.6/4 = 15% decrease in the probability that the response variable

is equal to one.

The statistical significance of a parameter is determined by examining whether its pos-

terior distribution overlaps zero. It is also helpful to observe the predictive accuracy of

the model in a region when interpreting coefficient estimates. For the county-level models

we can additionally check consistency between the linear and logistic regression models to

gain additional insights. Consistent signs of parameters between the models indicate that

the effect of the predictor variable is insensitive to the absolute magnitude of withdrawals.

The continuous wh variable allows for a large range of values while the binary dw variable

just reveals if a county’s withdrawals are greater or less than the national average based on

its population; if the signs are consistent, then we have added confidence in the directional

effect of the predictor. If the signs are inconsistent we conclude that the actual effect of the

predictor is too nuanced to be fully understood by this analysis.

4.3.6.1 Calculating variable-type importance for county-level models

In order to summarize the parameter estimates by climate region from both county-level

models the parameters were grouped by climate region and model type (linear or logistic),

each variable was ranked by the absolute value of the mean of posterior parameter estimate

and then divided by the total sum for each model and group to create a weight for each

parameter. The top 5 ranked variables were retained for each climate region and model,

and the weights were then summed by climate region and variable type (environmental or

social) to create an overall weight for each region and variable type. The weights for the

environmental variables were divided by the total weight for each climate region.

88



Table 4.2: Mean and standard deviation of the response (wh) and explanatory variables
used to construct models of county-level and city-level water use in the CONUS

County variable Mean Standard deviation
wh 126,770.80 gal/year 51,999.20 gal/year
pgrowth 0.05 0.13
prop sw 0.37 0.42
Qmm 339.57 mm 245.73 mm
tmax 40 29.63 ◦C 3.07 ◦C
tmax diff 0.21 ◦C 0.33 ◦C
ppt 40 92.78 cm 32.73 cm
ppt diff 0.74 cm 10.10 cm
med income $22,434.83 $4,760.81
Gini 0.43 0.04
pcollege 0.19 0.04
house dens 68.86 house/mile2 244.58 house/mile2

ppl house 2.17 people/house 0.33 people/house
med age struc 37.93 years 11.14 years
prent 0.22 0.07
psfh 0.74 0.09
papt 0.04 0.05
cook pvi -10.39 12.70
rur2urbi 4.90 2.59
City variable Mean Standard deviation
gal 187,055.78 gal/account 87,603.94 gal/account
water price $32.74 $11.57
bill type categorical categorical
reb 3.24 policies 3.42 policies
req 6.40 policies 5.95 policies
aridity 19.99 7.20
rpp 97.68 8.03
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4.4 Results

4.4.1 County-level analysis

4.4.1.1 Model comparison

Nine different linear regression models were built for wh and compared using WAIC

(Table 4.3). Climate regions explained more variation in wh when used as a grouping

variable than either Economic dependency or Urban gradient. Therefore, partial pooling

by climate region was employed for both the linear and logistic models to allow comparison

of coefficients between the models. Partially pooled varying-intercept and slope models,

where the parameters varied by climate region but shared information via a shared prior

distribution, resulted in the best out-of-sample performance as estimated by WAIC. The

partial pooling greatly increased the performance of the models compared to the unpooled

climate region model (i.e., no information shared between regions) and the fully-pooled

model (i.e., ignoring differences between regions).

Table 4.3: Comparing performance for the household normalized water withdrawal models
(wh linear regression models). Based on the results from the wh model, climate region was
the only grouping variable considered for the logistic regression and city-level model so
the results could be compared directly.

Grouping variable Model ∆WAICa Parametersb Rank
Urban gradient varying αc only, partially pooled 751.1 8.3 9
Econ dependency varying α only, partially pooled 706.2 8.0 8
Climate region varying α only, partially pooled 452.1 11.4 7
No group fixed α and β , fully pooled 195.5 23.4 6
Econ dependency varying α and β , partially pooled 166.3 79.5 5
Urban gradient varying α and β , partially pooled 152.4 92.9 4
Climate region varying α and fixed β , partially pooled 114.4 32.2 3
Climate region varying α and β , unpooled 60.3 163.8 2
Climate region varying α and β , partially pooled 0 106.2 1
aDifference in WAIC value from top ranked model
bEffective parameters = sum of variance of log-likelihood of yi for each sample from posterior
cα is the intercept.
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4.4.1.2 Environmental variables

The sign of the β parameters for environmental variables (i.e., sign of the mean of

posteriors) switches zero times between the linear and logistic fully pooled models (Fig-

ure 4.4), and 7 times out of 45 pairs for the partially pooled models (Figures 4.5, 4.6, and

4.7), indicating fairly good agreement on the effect of each environmental parameter for

each climate region. The 40-year precipitation is the largest fixed effect predictor for each

model and indicates that an increase of 32 cm of average annual rainfall is associated with

a decrease of 13,000 gallons of water withdrawn per year for the linear model and a 14%

decrease in the probability that a county’s population normalized withdrawals is greater

than the national average for the logistic model, after controlling for the effect of all other

parameters. However, the effect of average precipitation is not uniform for all regions. The

relationship is three times stronger for the Southwest than the national average as repre-

sented by the fully-pooled model but is nearly zero for the South, Southeast, Northeast,

Northwest, and the Central regions. The 40-year average maximum temperature is associ-

ated with an increase in withdrawals for the fully pooled models (stronger for the logistic

model) but has a much smaller effect for most of the regions in the partially pooled mod-

els. For the Southeast and East North Central regions, an increase of 3 °C in maximum

temperature is associated with a water-use increase of 10,000-15,000 gal/household and a

25-35% increase in the probability that dw is greater than the national average for a partic-

ular county. Departures from the 40-year average precipitation (ppt diff) and temperature

(tmax diff) have smaller effects than estimates of average conditions, suggesting that inter-

annual climate fluctuations are less important than the average conditions, at least when

comparing water withdrawals across regions.

4.4.1.3 Social variables

The sign of the social β parameters switches 2 times out of 5 pairs between the linear

and logistic fully pooled models (Figure 4.4) and 33 times out of 45 pairs for the partially
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pooled models (Figures 4.5, 4.6, and 4.7), indicating fairly poor agreement on the effect

of each social parameter for each climate region. For the fully pooled linear model, an

increase of one person per household is associated with an increase of 4,000 gal/household

but is zero for the logistic regression model. The relationship holds for the West North

Central, West, Southwest, South, Northeast, and Central climate regions. For the partially

pooled logistic regression model, a 42% increase in surface-water fraction of the overall

supply portfolio corresponds to a 12.9% increase in the probability that a county withdraws

more than the national expected value. A 13% increase in the Cook PVI (more Democratic

votes in presidential elections) is associated with a 7,500 gal/household decrease in water

use for the national model and a decrease of more than 10,000 gal/household in the West

North Central, West, Southwest, and Northwest climate regions. Cook PVI has a smaller

but mostly negative effect for the binomial model. An increase of 7% in the proportion of

renters in the South, Southwest, and Northwest corresponds to an increase of over 5,000

gal/household and 5% in the probability that a county withdraws more than the national

expected value for the binomial model.

Figure 4.4: 1) Fully-pooled fixed β -parameter estimates for the [left] logistic regression
(dw) and [right] linear regression (wh) models. The thick lines represent the 50th percentile
interval of the posterior distribution. The thin lines represent the 80th percentile interval of
the posterior distribution, and the white diamonds represent the mean (µ) of the posterior
distribution.
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Figure 4.5: Partially pooled β parameter estimates for the linear regression (wh) model
grouped by climate regions. The thick lines represent the 50th percentile interval of the
posterior distribution. The thin lines represent the 80th percentile interval of the posterior
distribution, and the white diamonds represent the mean (µ) of the posterior distribution.
The most significant covariates are indicated by dashed horizontal lines.

93



Figure 4.6: Partially pooled β parameter estimates for the logistic regression (dw) model.
The thick lines represent the 50th percentile interval of the posterior distribution. The thin
lines represent the 80th percentile interval of the posterior distribution, and the white dia-
monds represent the mean (µ) of the posterior distribution. The most significant covariates
are indicated by dashed horizontal lines.
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Figure 4.7: Change in signs of the mean of posterior distribution in the pair-wise compari-
son between the county-level linear and logistic regression models.
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4.4.1.4 Ranked and scaled variable-type importance

The Northwest, Northeast, and Central regions show the strongest correlation with so-

cial variables. The Southwest, East North Central, West North Central, and the Southeast

show the strongest correlation with environmental variables. The West and South regions

are influenced equally by both environmental and social variables (Figure 4.8).

Figure 4.8: Relative influence of environmental and social variables from both of the
county-level models.

4.4.1.5 County-level predictions

The most accurate predictions for the linear model were for counties in the West region,

where the model explained 66% of the variation in water withdrawals (Figure 4.9). The

county-level linear model produced the worst predictions of household water use in the

Central region. The logistic model produced the most accurate predictions for counties in

the Southwest Region, where the difference in average probability that dw = 1 was 0.25.

The logistic model produced the worst predictions for the counties located in the South

region.
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Figure 4.9: [left] Predicted and observed household water use and r2 values calculated us-
ing the mean of the posterior predictive distribution for the partially-pooled linear regres-
sion model (wh). [right] Distributions of predicted probabilities from the partially-pooled
logistic regression model (dw). The y axis of the right plot is the distribution of predicted
probabilities (µ of posterior distribution) that the difference between a county’s actual with-
drawal and the national population normalized withdrawal expectation is greater than zero
(Equation 4.8) for each climate region. The lower line of the point range extends to the
10% quantile, the point is the mean, and the upper line of the point range extends to the
90% quantile. The number above each line connecting the pointranges is the difference in
average probability that dw = 1 for each climate region and dw class.
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4.4.2 City-level analysis

The city-level analysis resulted in better overall predictions than the county-level model.

Two exceptions were Houston, TX and St. Louis, MO, both of which sold significantly

more water per customer than anticipated by the model (Figure 4.10). The fully pooled

and partially-pooled models had similar WAIC values, although the partially pooled model

resulted in a better r2 (Figure 4.10). The largest differences between the models relate to

the coefficient estimates for regional price parity and water price. For the fully-pooled city

model, an increase of $8 in the regional price parity was associated with an annual increase

of 39,000 gal/customer, whereas an $11 increase of the average water price was associated

with an annual decrease of 28,000 gal/customer (Figure 4.11). Overall, the fully pooled

model suggested that cities located in humid climates (i.e., higher aridity index) that have a

high water price and a low price parity tend to, on average, use less water per account than

other cities. For the partially-pooled models, an $8 increase in regional price parity was as-

sociated with an annual increase in 88,500 gal/customer in the South region. For the West

and Southwest regions, an $11 increase of the average water price was associated with an

annual decrease of 35,000 gal/customer (Figure 4.11). The bill type had the largest effect in

the Southeast region. Water conservation policies had the largest effect in the West, South,

and Central regions.
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Figure 4.10: Predictions from the partially-pooled and fully-pooled city-level models.
Posterior-predictive distributions were generated using 1,000 combinations of parameter
values sampled from the posterior parameter distribution. The points and lines are the
means and 50th percentile of the posterior-predictive distribution, respectively. The point
ranges with the black asterisks were generated using the fully-pooled model and the point
ranges with the white diamonds using the partially-pooled model. The partially-pooled
model explains significantly more variation in water withdrawals than the fully-pooled
model.
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Figure 4.11: β parameter estimates for the city-level models. The partially-pooled esti-
mates are represented by the thick black lines (the 50th percentile interval of the partially-
pooled posterior distribution), the thin black lines (the 80th percentile interval of the
partially-pooled posterior distribution), and the white diamonds (the mean of the partially-
pooled posterior distribution). Fully-pooled estimates are represented by the black asterisks
(the mean of the fully-pooled posterior distribution). To avoid cluttering the graph we do
not show the percentile intervals for the fully-pooled model. By definition, the fully-pooled
estimate is the same for every climate region and is shown to highlight how the climate-
region-level estimates vary from the national estimates.
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4.5 Discussion

Here we synthesize our results to address the questions laid out at the end of the Intro-

duction.

4.5.1 Climate Regions as a Grouping Variable

Our results demonstrate that the regional “water use context” of a municipal water sup-

plier largely modulates both the volume of water withdrawn and the level of correlation

between water use and associated explanatory variables. The regional “water-use context”

is defined here by a suite of 18 environmental and social variables grouped into the nine cli-

mate regions specified by NOAA (Figures 4.8 and 4.12). The climate regions are identified

based on similarities in long term climate histories [234] and are found to explain more vari-

ation in water withdrawals compared to several other potential grouping variables (Table

4.3). Climate regions are useful for county-level analyses as the regions align with political

boundaries and therefore each county is assigned to a unique climate region (necessary for

aggregating social variables). The out-of-sample performance of the models–as estimated

by the WAIC–demonstrates that accounting for regional variation is crucial for understand-

ing the relationship between water use and specific covariates. Models that allow partial

sharing of information between regions outperform models that estimate parameters that

ignore nationally consistent traits. This suggests, for example, that although there is a real

difference between the water use context in the Southeastern and the Southwestern U.S.,

there is also sufficient similarity to warrant allowing information learned in the Southeast

to at least partially inform our understanding of water use in the Southwest and vice versa.

The first order effect of climate is accounted for by the varying intercepts in the hi-

erarchal model. The β s associated with precipitation and temperature covariates in each

climate region indicate how additional variations in climate across the counties in each re-

gion affect water use. For example, the intercept for the Northeast region is smaller than
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the intercepts in other regions, ( e.g., the West and Southwest), indicating that the North-

east region has lower water use than other regions of the country, possibly linked to its

wet and cool climate. However, in the Northeast region, the posterior distribution of the

β coefficient for precipitation contains zero. This insignificant β value indicates that ad-

ditional precipitation fluctuations within the region do not seem to have much impact on

water use. This is not the case in the West, for example, where the regression coefficient

for precipitation is positive, which likely is the result of outdoor water use [192, 193], and

even slight variations in rainfall can greatly affect lawn irrigation needs. These results may

indicate a non-linear response of water use to climate, where conditions need to surpass a

threshold of aridity before smaller climate variations affect water use. Thus, if locations

in the Northeast became significantly more arid, water use may respond to intra-regional

variations in climate more strongly.

The regression coefficients indicate that regions vary in their sensitivity to social and

environmental explanatory variables. This is most evident when comparing the weighted

influence of the top 5 ranked variables from each model for each region (Figure 4.8). The

Northeast region is the most sensitive to social variables such as the people per house-

hold, proportion of surface-water supply, income disparity, and the age of structures in a

county, while the Southwest region is most sensitive to the 40-year precipitation (Figures

4.5 and 4.6). Additionally, the prediction accuracy of the models should be considered

when interpreting the regression coefficients. For example, both models for the Southwest

region produce relatively good predictions and indicate that, on average, counties in the

Southwest that receive more rainfall, vote more Democrat in the presidential election, have

younger median age of structures, and have fewer people per household tend to use less

water. This region is expected to experience a decreased rainfall in the 21st century [179],

which could lead to water shortages if the current relationship between rainfall and water

use holds; however, a higher Cook PVI is associated with an increase in water conservation

policies in the Southwest region [235], and an increase in water conservation policies could
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help to offset increased water withdrawals under a changing climate. The predictions for

the logistic model in the Central and East North Central regions are much better than the

predictions for the linear model in the same regions. This indicates that the explanatory

variables included in this analysis are useful for predicting a binary estimate of high or low

withdrawals in these regions but cannot accurately detect a signal in a continuous measure

of withdrawals. Finally, we also note that per-capita withdrawals can be predicted with

high accuracy in each county based upon water-use values from the 2005 USGS compi-

lation [236], indicating a high degree of memory in water use (not shown). However, a

regression using previous water-use values provides little insight regarding the drivers of

water use.

4.5.2 Effects of Income and Education

We do not see a strong negative association between water use and either income or

education. The fully pooled model actually suggests a positive association (Figure 4.4)

between both income and water use and education and water use. For the partially pooled

model, the mean posterior parameter value for income is negative for four climate regions

for the linear model and one climate region for the logistic model. The mean posterior pa-

rameter value for education (measured by percent of population in county with any college

education) is negative for six climate regions for the linear model and three climate regions

for the logistic model (Figures 4.5 and 4.6). The 80th percentile interval overlaps zero for

both variables and models for each climate region. The difference between our findings

and those in [202] is likely due to the added information from other variables in this study.

For example, the association between income, education, and water use is dampened or

reversed after accounting for the effect of the number of people per household and the age

of the structures in a county. The partial pooling will pull parameter estimates closer to

zero as it accounts for not only the information provided within each climate region but

also the joint distribution shared among climate regions.
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4.5.3 Effect of Urban to Rural Gradients

The results presented here do not suggest that urban counties use water more efficiently

than rural counties, another major conclusion of [202]. Our models indicate there may be

a small effect for the fully pooled model (Figure 4.4) but the effect basically disappears for

the partially pooled model (Figures 4.5 and 4.6). Why does this discrepancy exist? One

explanation is that the rural to urban continuum was treated differently for each analysis. In

our study, we treated the discrete codes as a continuous variable that progresses from most

rural (code=1) to most urban (code=9). The analysis in [202] classified codes 1-4 as rural

and 5-9 as urban. Another possible explanation is undocumented inter-county transfers.

Without controlling for transfers, situations where rural counties with small populations are

exporting water to urban counties with large populations would be incorrectly interpreted

as a rural to urban gradient in water use efficiency. As with education and income, the

effect of rural to urban gradients is likely influenced by the addition of the other variables

used in this analysis.

4.5.4 City-level Analysis

The city level analysis accounts for water price, conservation policies, and water transfers–

variables that were omitted in the county-level analysis due to a lack of data. We also in-

cluded an environmental variable (aridity) and a socio-economic variable (regional price

parity, RPP) to further add to the context for each city. For the fully pooled national

model, it appears that arid cities with a high cost of living sell more water per customer.

This roughly corresponds to the county-level analysis, where decreased precipitation and a

higher median household income are, on average, associated with higher withdrawals per

household (Figure 4.11). The fully pooled city-level results reveal a strong relationship

between price and water use, where an $11 increase of the average water price is associ-

ated with an annual decrease of 28,000 gal/customer (Figure 4.11). The price elasticity
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(βwater bill/α , when water bill is mean centered) of water is roughly calculated to be be-

tween -0.2 and -0.15 based on the city-level analysis, which is consistent with the lower-end

of values from previous estimates [194]. The effect of conservation policies is smaller than

the effect of the water price, with much of the posterior distribution overlapping zero, but it

does appear that an increase in rebate-related policies is associated with a greater reduction

in water use than a change in requirement-related policies. The effect of bill type suggests

areas with a decreasing block rate tend to have greater use per customer (although like

conservation policy parameters much of the posterior is overlapping zero). A decreasing

block rate is effectively a volumetric rebate for using more water, so it is sensible that it is

associated with a higher water use.

The partially pooled city-level model generates more accurate predictions (Figure 4.10)

and indicates that the effects of each predictor strongly depend on where a city is located.

The effect of RPP is four times larger than the effect of other variables in the South climate

region, which is primarily driven by the large RPP and high water use in Houston and Dal-

las relative to other cities in the South (Figure 4.11). The South climate region also shows

the strongest negative correlation between rebate oriented water conservation policies and

water use. This is due to cities like Austin and San Antonio that have a large number of

conservation policies and relatively low water use. The parameter estimates are similar for

each variable in the Southeast and Northeast, with the exception of the bill type, where a

decreasing block rate is associated with an increase in water use in the Southeast and a

decrease in water use for the Northeast (Figure 4.11). The Northeast also shows a positive

association between water conservation policies and water use, as New York City has the

highest relative water use and over 20 rebate and requirement policies, whereas other cities

in the Northeast have less than 10 combined policies. One possible explanation for this

relates to how a municipality accounts for water provided to apartment buildings. If an

apartment building is considered a single account, then locations like New York City with

a relatively large number of apartment buildings would seem to have high per capita water
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use and the parameter estimates for conservation policies would be difficult to interpret.

Regardless, it is important to note that we cannot determine the efficacy of water conser-

vation policies from this study as we do not have temporal data describing when certain

policies were implemented and the subsequent change in water use. For example, places

like New York City may have had exceptionally high water use and began implementing

policies to reduce end user demand, and this analysis simply reflects that positive associa-

tion but does not indicate that increasing conservation policies increases water use or vice

versa.

4.6 Conclusion

The social and environmental controls on water use are not uniform across the CONUS,

and national-scale water-use assessments must account for regional variability in order to

understand the present drivers of water use and project likely changes into the future. Hi-

erarchical Bayesian regression models offer one way to explicitly account for spatial vari-

ability by using higher-level grouping variables. It is also important for large-scale water-

use studies to account for a large number of social and environmental variables to avoid

over-interpreting the effect of spurious correlations. Finally, our analysis demonstrates the

importance of water transfers among public suppliers and the potential of such transfers to

confound analyses of per capita water use and its drivers. Absent a national quality-assured

database of water transfers and pricing information, large-scale analyses of per-capita water

use will continue to be plagued by avoidable but unaccounted error.
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4.7 Appendix

4.7.1 Groups for hierarchical models

Table 4.4: Description of urban continuum codes. More information:
https://www.ers.usda.gov/data-products/rural-urban-continuum-codes/documentation/

Urban code Description
metro large metro with county population >1,000,000
metro med metro with county population 250,000-1,000,000
metro small metro with county population < 250,000
urb large adj urban with county population ≥ 20,000, adjacent to metro area
urb large det urban with county population ≥ 20,000, detached from metro area
urb small adj urban with county population 2,500-19,999, adjacent to metro area
urb large det urban with county population 2,500-19,999, detached from metro area
rural adj rural with county population < 2,500, adjacent to metro area
rural det rural with county population < 2,500, detached from metro area
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CHAPTER 5

SYNTHESIS

Data-driven methods are often extolled as alternatives to theory-driven methods. In

hydrology, this can be seen in the juxtaposition of stochastic and conceptual hydrologic

models [21]. Some argue that the scientific method is becoming obsolete with the rise of

bigger data and better data-mining algorithms [237]. The argument is that with sufficient

data we don’t need hypotheses or conceptual models. We don’t need the “old ways” of do-

ing science when “...huge amounts of data, along with the statistical tools to crunch these

numbers, offers a whole new way of understanding the world. Correlation supersedes cau-

sation, and science can advance even without coherent models, unified theories, or really

any mechanistic explanation at all” [237]1. Advocates for a data-driven future often cite

examples like Google’s ability to match ads with content without relying on conceptual

models that describe how humans react to advertisements. Google simply lets an algorithm

explore petabytes of data to decide what ad should be associated with what content based

of previous click-rates. How does this relate to the “old ways” of doing science?

The The Fourth Paradigm: Data-Intensive Scientific Discovery [238], a book that of-

fers one perspective on evolution of science, suggests that science has gone through three

major paradigm transitions and is entering a fourth. (1) Science was originally empiri-

cal. For example, Aristotle developed biological theories based off observations he made

while dissecting fish. (2) Science became theoretical. For example, Newton wrote math-

ematical equations that describe physical laws. (3) Science then became computational.

For example, hydrologists modeled groundwater systems by solving flow equations using

finite-element methods. (4) Science is becoming data driven. For example, earth scientist

can mine massive amounts of satellite data to generate new hypotheses about land-use tran-

1The article was written to be provocative [http://norvig.com/fact-check.html]. It presents the caricature
of an idea with the hopes of stimulating conversation.
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sitions. The idea is that data-driven methods will continue to outpace mental conceptual

models, basic theories, and simulations.

These “transitions” describe the evolution of the tools that scientists use rather than the

scientific method itself. It is not clear how having access to large amounts of data moves

the conversation past the traditional framework of deduction, induction, and abduction–the

pillars of logical inference (Figure 5.1). For example, the inductive process describes both

Aristotle’s attempt to understand fish biology and a modern-day researcher mining massive

datasets looking for associations between inputs and outputs. Both start with observations,

examine possible connections, and generalize rules. Each of the four paradigms described

above can be placed somewhere on the gradient of logical inference. The introduction of

“huge amounts of data, along with the statistical tools to crunch these numbers” offers a

new way to discover relationships and make inferences, while the “ways of understanding

the world”, remain unchanged. Thus I argue that integrating data-driven methods and do-

main theory is not a change in paradigm (at least not in the Khunian sense [239]), but rather

an extension and improvement in the process of inference and discovery. The remainder

of this synthesis involves tracing the path of each dissertation chapter through the various

stages of logical inference and describing how data-driven models augment that path.

Figure 5.1: Schematic of logical inference using an example from Chapter 4.
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Training machine-learning models is an inductive task. Starting with specific training

observations, associations are discovered and are encoded as general rules that can be used

to make predictions for new observations. The predictive step is a form of deduction as the

general rules learned in the training step are used to deduce outcomes for new observations.

Chapter 2, Improving predictions of hydrological low-flow indices in ungaged basins using

machine learning, is an example of applying induction to build rules (models) followed by

deduction to make predictions. The variable importance and partial dependence analysis

are examples of abduction (Figure 2.7), and it is in this step where theory guides how we

interpret model results. We examine the changes in 7Q10s associated with different values

of particular explanatory variables (conditioned on the mean of all the other explanatory

variables). We see that 7Q10’s generally decrease as the percent of emergent wetlands

increases. If we observe a small 7Q10 for a new basin, it is possible that the 7Q10 is small

because the basin has a large amount of wetlands. Can we improve our understanding of

the cause given additional information (e.g., knowledge of region, hydrologic theory, other

associations in the dataset)? We know that the basins with the most wetlands are clustered

in the Coastal plain of Georgia and South Carolina, a region with shallow groundwater

tables that can support wetlands. We also know that evapotranspiration from wetlands

during periods of low streamflow can lead to less water being available for the stream.

Therefore, we can abduce that the wetlands are using the water that would otherwise be

available to support streamflow during dry periods.

The above example illustrates how theory might inform the interpretation of model pre-

dictions. Chapter 3, Predicting flow duration curves in ungaged basins using L-moments

and theory-informed neural networks, involves integrating of theory into a different level of

the model. We know that quantiles always increase with increasing nonexceedance prob-

abilities for a given observation. A model that learns each quantile independently often

violates this “rule of monotonicity”. We can greatly reduce the number of violations by

constructing a data-driven model that learns each quantile simultaneously, thus leveraging
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the covariance between quantiles. All data-driven models are a form of constrained in-

duction, i.e., the general rules (parameters and how they are combined) of the model are

conditional on explanatory variables. A multiple-output model is another layer of con-

straint where the outputs are conditioned on both the explanatory variables and the values

of the other outputs. In this sense we are just narrowing the subset of possible models to

ones that are more consistent with the system we are attempting to model [240].

Chapter 4, Exploring the drivers of public-supply water use using hierarchical-Bayesian

models, is an explicit example of how data-driven methods can be used to aid abductive

reasoning2. The hierarchical model design is based on the premise that water use can be

described on two levels; a lower level that describes the actual data and an upper level that

influences the values taken by parameters in the lower level. The grouping variable, cli-

mate regions, and final model design, a two-level hierarchical model, were selected using

approximate out-of-sample performance of the posterior-predictive distribution. This type

of model selection uses the empirical content in the posterior distributions (i.e., the induc-

tive content) to reject alternative hypotheses (i.e., other models) using “deduction within a

model”, a concept closely related to the idea of Popperian falsification [242, 243]. After

a model has been selected, the conditional posterior distributions of each parameter in the

model provides rigorous means to abduce likely casual links between water use and ex-

planatory variables. For example, the intercept for the Northeast region is smaller than the

intercepts in other regions, ( e.g., the West and Southwest), indicating that the Northeast

region has lower water use than other regions of the country, possibly linked to its wet and

cool climate (Figure 4.5). However, in the Northeast region, the posterior distribution of

the β coefficient for precipitation contains zero. This insignificant β value indicates that

additional precipitation fluctuations within the region do not seem to have much impact on

water use. This is not the case in the West, for example, where the regression coefficient

for precipitation is positive, which likely is the result of outdoor water use [192, 193], and

2For an excellent discussion of abduction and Bayesian inference see Romeijn 2013 [241]
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even slight variations in rainfall can greatly affect lawn irrigation needs. These results may

indicate a non-linear response of water use to climate, where conditions need to surpass a

threshold of aridity before smaller climate variations affect water use.

Data-driven methods are changing how science is done rather than what science does.

Surprising associations found in large datasets can generate novel hypotheses that might

not be imaginable to the researcher at the time of discovery. These new hypotheses can

be further refined through traditional deductive methods and data exploration. Data-driven

methods can lead to new scientific understandings, which in turn can be used to augment

new inductive models. The feedback between data analysis and establishing theory is con-

nate to scientific progress.
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[12] Günter Blöschl. Predictions in ungauged basins–where do we stand? Proc. IAHS,

373:57–60, 2016.

[13] Murugesu Sivapalan, Hubert HG Savenije, and Günter Blöschl. Socio-hydrology: A
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[151] Jean Marçais and Jean-Raynald de Dreuzy. Prospective interest of deep learning for

hydrological inference. Groundwater, 55(5):688–692, 2017.

[152] Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural net-

works. In Conference on Learning Theory, pages 907–940, 2016.

[153] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. Re-

cent trends in deep learning based natural language processing. arXiv preprint

arXiv:1708.02709, 2017.

[154] Sercan O Arik, Mike Chrzanowski, Adam Coates, Gregory Diamos, Andrew Gib-

iansky, Yongguo Kang, Xian Li, John Miller, Jonathan Raiman, Shubho Sengupta,

133



et al. Deep voice: Real-time neural text-to-speech. arXiv preprint arXiv:1702.07825,

2017.

[155] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going

deeper with convolutions. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 1–9, 2015.

[156] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks and

tree search. Nature, 529(7587):484–489, 2016.

[157] Gary Marcus. Deep learning: A critical appraisal. arXiv preprint arXiv:1801.00631,

2018.

[158] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily

fooled: High confidence predictions for unrecognizable images. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pages 427–436,

2015.

[159] Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Advances in

neural information processing systems, pages 2654–2662, 2014.

[160] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,

Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv

preprint arXiv:1312.6199, 2013.
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