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CHAPTER I

INTRODUCTION

Residuated lattices are algebraic structures with strong connections to mathematical

logic. This thesis studies properties of a number of collections of residuated lattices. The

algebras under investigation combine the fundamental notions of multiplication, order and

residuation, and include many well-studied ordered algebraic structures.

Residuated lattices were first considered, albeit in a more restrictive setting than the one

we adopt here, by M. Ward and R. P. Dilworth in the 1930’s. Their investigation stemmed

from attempts to generalize properties of the lattice of ideals of a ring. On the other hand,

work on residuation, a concept closely related to the notions of categorical adjunction and of

Galois connection, was undertaken in algebra, with emphasis on multiplication, and in logic,

with emphasis on implication, but without substantial communication between the fields.

During relatively recent years, studies in relevant logic, linear logic and substructural logic

as well as on the algebraic side draw attention to and establish strong connections between

the fields. See, for example, [OK], [BvA], [RvA] and [JT].

The generality in the definition of residuated lattices is due to K. Blount and C. Tsinakis

(see [BT]) who first developed a structure theory for these algebras. This thesis relies on

their results and concentrates on subvarieties of residuated lattices.

After discussing, in Chapter II, the background needed for reading this thesis, in Chapter

III we give the definition of residuated lattices and an extensive list of examples and construc-

tions on residuated lattices. Also, we give a short overview of the description of congruence

relations, presented in [BT], comment on the case of a finite residuated lattice and give two

easy corollaries of the general theory. Furthermore, we define a number of interesting subva-

rieties of residuated lattices and discuss properties of the subvariety lattice. In particular, we

establish a correspondence between positive universal formulas in the language of residuated

lattices and residuated-lattice varieties and apply it to show, among other things, that the

join of two finitely based commutative varieties of residuated lattices is also finitely based.

We give a brief exposition of the fact that residuated lattices provide algebraic semantics

for the full Lambek calculus, and review how this implies the decidability of the equational

theory of residuated lattices, a fact proved in [JT]. Finally, we investigate the limitations of

lexicographic orders on semidirect products, a useful tool for lattice-ordered groups, in the

case of residuated lattices.

Chapter IV contains results to appear in [BCGJT]. In particular, we note that the class

of residuated lattices with a cancellative monoid reduct is a variety, and we give a number
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of equational bases for the varieties of lattice-ordered groups and their negative cones and

illuminate the connections between the two varieties.

In Chapter V we undertake an investigation of the atomic layer in the subvariety lattice

of residuated lattices. We show that there exist only two cancellative atoms and provide

a countably infinite list of commutative atoms. Moreover, we construct a continuum of

atomic varieties that have an idempotent monoid reduct and are generated by totally ordered

residuated lattices. We note that there are only two idempotent commutative atoms.

Chapter VI focuses on residuated lattices with a distributive lattice reduct. We mention

that the variety of distributive residuated lattices has an undecidable quasi-equational theory,

see [Ga], and remark that the same variety has a decidable equational theory, see [GR].

Moreover, we establish a Priestley-type duality for the category of distributive residuated

bounded-lattices.

The collections of MV-algebras, lattice-ordered groups and their negative cones are gen-

eralized to the variety of GMV-algebras, in Chapter VII. We prove that a GMV-algebra

decomposes into the Cartesian product of a lattice-ordered group and a nucleus-retraction

on the negative cone of a lattice-ordered group. Moreover, we show that a GMV-algebra

is the image of a monotone, idempotent map on a lattice ordered group. These character-

izations and known results regarding lattice-ordered groups imply the decidability of the

equational theory of GMV-algebras. Finally, we establish an equivalence between the cate-

gory of GMV-algebras and a category of pairs of lattice-ordered groups and certain maps on

them. We conclude our study with a list of open problems, in Chapter VIII.

An effort has been made so that the exposition can be understood by the non-specialist.

Toward this goal we have tried to present proofs in full detail.
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CHAPTER II

PRELIMINARIES

We assume familiarity with basic concepts from set theory, mathematical logic, topology

and category theory. If h is a map from A to B and C ⊆ A, D ⊆ B, we set h[C] = {h(c) |c ∈
C} and h−1[D] = {a ∈ A | h(a) ∈ D}. In what follows, we give the basic notions and results

that will be needed for the presentation of this thesis, organized according to three subject

areas.

Universal algebra

We start with some basic definitions from universal algebra. For a detailed exposition of

notions and results of the fields, the reader is referred to [MMT] and [BS].

An (algebraic) language, signature, or (similarity) type F is an indexed set of symbols

F together with a map σ : F → N, called the arity map. An operation on a set A of arity

n is a map from An to A. An algebra A of type F consists of a set A and an indexed set

〈fA〉f∈F of operations fA : Aσ(f) → A on A of arity σ(f). The set A is called the underlying

set or the universe of A and the maps fA are called the fundamental operations of A. We

will be dealing with algebras over a finite similarity type. Such algebras will be denoted

by A = 〈A, fA
1 , fA

2 , . . . , fA
n 〉, and most of the times we will omit the superscript A. Two

algebras that have the same similarity type are called similar.

A subuniverse of an algebra A is a subset B of A that is closed under the fundamental

operations, i.e., fA(b1, b2, . . . , bσ(f)) ∈ B, for all b1, . . . bσ(f) ∈ B. If B is a subuniverse of

of an algebra A = 〈A, f1, f2, . . . , fn〉, then the algebra B = 〈B, f1|B, f2|B, . . . , fn|B〉, where

fi|B is the restriction of fA
i to Bσ(f), is called a subalgebra of A.

If F is a similarity type and G is a subset of F , the G-reduct of an algebra A with

underlying set A, similarity type F and fundamental operations fA, f ∈ F is the algebra

AG with underlying set A and fundamental operations fA, f ∈ G. A G-subreduct is a

subalgebra of a G-reduct.

A homomorphism between two algebras A and B of the same similarity type F is a map

h : A→ B, that commutes with all the fundamental operations, i.e., h(fA(a1, a2, . . . , aσ(f))) =

fB(h(a1), h(a2), . . . , h(aσ(f))), for all a1, a2, . . . , aσ(f) ∈ A and for all f ∈ F . If h is an onto

homomorphism form A to B, then we say that B is a homomorphic image of A. The kernel

of a homomorphism h : A→ B is defined to be the set Ker(h) = {(x, y) ∈ A2 |h(x) = h(y)}.
If A = {Ai | i ∈ I} is an indexed set of algebras of a given similarity type F , then the
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product of the algebras of A is the algebra P =
∏

i∈I Ai with underlying set the Cartesian

product of the underlying sets of the algebras in A, similarity type F and fundamental

operations fP, f ∈ F , defined by fP(〈ai1〉i∈I , . . . , 〈aiσ(f)〉i∈I) = 〈fAi(ai1, · · · , aiσ(f))〉i∈I , for

all Ai ∈ A, aij ∈ Ai, i ∈ I and j ∈ {1, . . . , σ(f)}.
A congruence relation on an algebra A of type F is an equivalence relation θ that is

compatible with the fundamental operations of A, i.e., for every fundamental operation

fA, f ∈ F , and a1, a2, . . . , aσ(f), b1, b2, . . . , bσ(f) ∈ A, if a1 θ b1, a2 θ b2, . . . , aσ(f) θ bσ(f) then

f(a1, a2, . . . , aσ(f)) θ f(b1, b2, . . . , bσ(f)). It is easy to see that the congruence relations on

an algebra coincide with the kernels of homomorphisms on the algebra. The congruence

generated by a set X of pairs of elements from an algebra A is the least congruence relation

Cg(X) containing X. The congruence generated by a singleton is called principal. The

collection of all congruences on an algebra A forms a lattice, see definition below, denoted

by L(A). Every non-trivial algebra has at least two congruences; the universal congruence

A2 and the diagonal congruence {(a, a) | a ∈ A}. If an algebra has exactly two congruences

it is called simple. The class of all simple algebras of a class K is denoted by KSi.

If A = 〈A, f1, f2, . . . , fn〉 is an algebra and θ a congruence on A, we define the algebra

A/θ of the same similarity type as A, with underlying set the set of all θ-congruence blocks

[a]θ, a ∈ A, and fundamental operations f
A/θ
1 , . . . , f

A/θ
n , defined by f

A/θ
i ([a1]θ, . . . , [aσ(fi)]θ) =

[fA
i (a1, . . . , aσ(fi))]θ, for all i ∈ {1, 2, . . . , n} - the fact that θ is a congruence guarantees that

the operations are well-defined. The algebra A/θ is called the quotient algebra of A by θ.

A subdirect product of an indexed set A = {Ai | i ∈ I} of algebras of a given similarity

type F , is a subalgebra B of the product of the algebras of A, such that for every i ∈ I and

for every ai ∈ Ai, there exists an element of B, whose i-th coordinate is ai. In other words,

the projection to the i-th coordinate map from B to Ai is onto. An non-trivial algebra is

called subdirectly irreducible, if it is not a subdirect product of more than one non-trivial

algebras. Looking at the kernels of the i-th projection maps, it can be seen that an algebra

is subdirectly irreducible iff it has a minimum non-trivial congruence, called the monolith.

The collection of all subdirectly irreducible members of a class of algebras K is denoted by

KSI .

An ultrafilter over a set X is a filter, see definition below, in the power set P(X) of X

that is maximal with respect to inclusion. If A = {Ai | i ∈ I} is an indexed set of algebras of

a given similarity type and U is an ultrafilter over the index set I, then the binary relation

θU on the product P of the algebras of A, defined by 〈ai〉i∈I θU〈bi〉i∈I iff {i ∈ I |ai = bi} ∈ U ,

is a congruence on P. The quotient algebra P/θU is called the ultraproduct of A over the

ultrafilter U . The class of all ultraproducts of collections of algebras from a class K is denoted

by Pu(K).
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The ultraproduct construction preserves the validity of first-order formulas over the sim-

ilarity type F . A celebrated result due to B. Jónsson, known as Jónsson’s Lemma, states

that if a variety V is congruence distributive, i.e., the congruence lattice of every algebra is

distributive, see definition below, then the subdirectly irreducible algebras of V are homomor-

phic images of subalgebras of ultraproducts of algebras of V ; in symbols VSI ⊆ HSPu(V).

If K is a class of algebras we denote by S(K), H(K) and P(K) the classes of all algebras

that are isomorphic to a subalgebra, a homomorphic image and a product of algebras of K,

respectively. A class of algebras is called a variety , if it is closed under the three operators

S,H and P. We denote the composition HSP by V. It is not hard to prove that a class

V of algebras is a variety iff V = V(V). Moreover, given a class K of similar algebras, the

smallest variety containing K is V(K), the variety generated by K. If K = {A1,A2, . . . ,An},
we write V(A1,A2, . . . ,An) for V(K).

Let X be a set of variables, F a similarity type and (X∪F )∗ the set of all finite sequences

of elements of X ∪ F . The set TF(X) of terms in F over X is the least subset of (X ∪ F )∗

that contains X and if f ∈ F and t1, t2, . . . , tσ(f) ∈ TF(X), then the sequence ft1t2 . . . tσ(f)

is in TF(X). Usually, we omit the set of variables and write TF , if it is understood or of no

particular importance. Frequently, we will take the set of variables to be (bijective to) the

set N of natural numbers. The set of variables V ar(t) of a term t in F over X - we avoid

the clear inductive definition - is the indexed subset of variables of X that occur in t. The

term algebra TF in F over X is the algebra with underlying set TF , similarity type F and

fundamental operations fTF , for f ∈ F , defined by fTF (t1, t2, . . . , tσ(f)) = ft1t2 · · · tσ(f), for

all ti ∈ TF .

If A is an algebra of type F , t a term in F over a set of variables X and V ar(t) =

{x1, x2, . . . , xn}, we define the evaluation, or term operation tA of t inductively on the sub-

terms of t to be the operation from on A of arity n defined as follows: xA
i is the i-th

projection operation on An, and if s = ft1t2 . . . tσ(f), where f ∈ F and t1, t2, . . . , tσ(f) ∈
TF , then sA is defined by sA(a1, a2, . . . , an) = fA(tA1 (a1, a2, . . . , an), tA2 (a1, a2, . . . , an), . . . ,

tAσ(f)(a1, a2, . . . , an)). If t, t1, t2, . . . , tn are terms of TF and n = |V ar(t)|, then the substitu-

tion of t1, t2, . . . , tn into t is defined to be the element tTF (t1, t2, . . . , tn). We also allow for

substitutions of fewer terms than the variables. If A is an algebra of type F and t a term in

F , then the operation tA on A is called a term operation. Two algebras of possibly different

similarity types are called term equivalent, if every fundamental operation of one is a term

operation of the other.

An equation in the similarity type F over a variable set X is a pair of terms of TF . If

t, s are terms we write t ≈ s for the equation they define, instead of (t, s). We say that an

equation t ≈ s in F over X is valid in an algebra A of type F , or an identity of A, or that

5



it is satisfied by A, in symbols A |= t ≈ s, if tA = sA. The notion of validity is extended to

classes of algebras and sets of equations. A set E of equations in a type F is said to be valid

in, a set of identities of, or satisfied by a class K of algebras of type F , in symbols K |= E ,
if every equation of E is valid in every algebra of K.

It is easy to see that if an equation is valid in an algebra then it also valid in any

subalgebra and in any homomorphic image of the algebra. Moreover, if an equation is valid

in a set of algebras then it is valid in their product. In other words, equations are preserved

by the operators S,H and P.

A theory of equations, or equational theory T in a similarity type F is a congruence on

TF closed under substitutions, i.e., if (t ≈ s) ∈ T , V ar(t) ∪ V ar(s) = {x1, x2, . . . , xn}, and

t1, t2, . . . , tn ∈ TF , then (tTF (t1, t2, . . . , tn) ≈ sTF (t1, t2, . . . , tn)) ∈ T . It is easy to see that if

K is a class of algebras of similarity type F , then ThEq(K) = {(t ≈ s) ∈ TF | K |= t ≈ s} is

an equational theory, called the equational theory of K.

Given a set E of equations of a similarity type F the equational class axiomatized by

E is defined to be the class Mod(E) = {A |A |= E} of algebras of type F , that satisfy all

equations of E ; the set E is called an equational basis for Mod(E). By previous observations,

every variety is an equational class. G. Birkhoff’s celebrated HSP-theorem of establishes

that every equational class is a variety. Moreover, for every variety V of similar algebras,

we have that Mod(ThEq(V)) = V , and for every theory T of equations in a given type,

ThEq(Mod(T )) = T .

If K is a class of algebras of similarity type F , then the quotient algebra FK(X) =

TF(X)/ThEq(K) is called the free algebra for K over X and has the following universal

property: every map from X to an algebra A of K can be extended, in a unique way, to a

homomorphism from FK(X) to A. It can be shown that if V is a variety then FV(X) is in

V .

A subvariety is a subclass of a variety that is a variety. The class of all subvarieties of a

variety V of algebras of type F is a set bijective to the set of all subtheories of TF(N), that

contain the theory ThEq(V). Both of these sets form lattices, see definition below, under

inclusion that are dually isomorphic. We denote the lattice of subvarieties, or subvariety

lattice of a variety V , by L(V). Note that L(V) = L(FV(N)).

Order and lattice theory

Basic definitions and results in order and lattice theory can be found in [Gr].

A (partial) order relation ≤ on a set P is a subset of P 2 such that for all x, y, z ∈ P , (we

write x ≤ y for (x, y)∈ ≤)
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1. x ≤ x;

2. if x ≤ y, then y ≤ x; and

3. if x ≤ y and y ≤ z, then x ≤ z.

A partially ordered set or poset P is a set P with a partial order ≤ on it; P = 〈P,≤〉. It

is easy to see that given a partial order ≤, the converse relation ≥ is also an order. The

poset P∂ = 〈P,≥〉 is called the dual of P = 〈P,≤〉. A subset X of P is called increasing,

an upset, or an order filter if p ∈ X, whenever x ≤ p, for some x ∈ X. A decreasing set, an

downset, or an order ideal is the dual concept. The interval [x, y] in P is defined to be the

set {z ∈ P | x ≤ z ≤ y}.
An upper bound of a set X of elements in a poset P is an element p of P , such that

x ≤ p, for all x ∈ X. A lower bound is an upper bound of X in the dual poset. If there

exists a least upper bound for a set X of elements in a poset P, then it is called the join∨
X of X. The greatest lower bound of X, if it exists, is called the meet

∧
X of X. If X

is a doubleton {x, y}, we denote its join by x ∨ y and its meet by x ∧ y. A lattice L is a

poset, such that every pair of elements x, y ∈ L, has a join and a meet. In this case, the

meet and the join can be considered as binary operations on L. The algebra L = 〈L,∧,∨〉
is also called a lattice . Every lattice satisfies the following equations:

1. x ∧ x ≈ x ≈ x ∨ x;

2. x ∧ y ≈ y ∧ x and x ∨ y ≈ y ∨ x; and

3. x ∧ (x ∨ y) ≈ x ≈ x ∨ (x ∧ y).

It can be shown that if an algebra L = 〈L,∧,∨〉 satisfies these identities, then 〈L,≤〉, where

x ≤ y iff x = x∧y, is a lattice. We will be considering lattices as algebraic objects and think

of the order as an auxiliary expressive tool, as defined above.

A (lattice) ideal in a lattice is an order ideal that is closed under joins. Obviously, a

lattice ideal is a sublattice. The notion of a (lattice) filter is defined dually. A proper ideal

I is called prime, if for every pair of elements x, y, x ∈ I or y ∈ I, whenever x∧ y ∈ I. The

dual concept is that of a prime filter. The Prime Ideal Theorem states that if I ∩F = ∅, for

an ideal I and filter F , then there exists a prime ideal J that contains I and J ∩ F = ∅.
If P = 〈P,≤P〉 and Q = 〈Q,≤Q〉 are posets and f is a map from P to Q, then f is

said to preserve the order, or that to be order preserving, if for all x, y ∈ P , f(x) ≤Q f(y),

whenever x ≤P y.

A closure operator on a lattice L is a map γ : L → L, that satisfies the following

conditions:
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1. γ is extensive: x ≤ γ(x), for all x ∈ L.

2. γ is monotone: if x ≤ y, then γ(x) ≤ γ(y), for all x, y ∈ L.

3. γ is idempotent: γ(γ(x)) = γ(x), for all x ∈ L.

An interior operator on a lattice L is a map δ : L→ L, that satisfies the following conditions:

1. δ is contracting: δ(x) ≤ x, for all x ∈ L.

2. δ is monotone: if x ≤ y, then δ(x) ≤ δ(y), for all x, y ∈ L.

3. δ is idempotent: δ(δ(x)) = δ(x), for all x ∈ L.

We denote the image of an idempotent operator α on a lattice L, by Lα. Note that x ∈ Lα

iff x = α(x).

Residuation

For background in residuation theory we refer the reader to [Ro].

Let P = 〈P,≤〉 be a poset. A map f : P → P is called residuated if there exists a map

f ∗ : P → P , such that for all x, y ∈ P ,

f(x) ≤ y ⇔ x ≤ f ∗(y).

In this case, f ∗ is called the residual of f . It is not hard to see that if f is residuated then

it preserves the order and existing joins. Note that if f ∗ is the residual of f , then f ∗ ◦ f is a

closure operator and f ◦ f ∗ is an interior operator.

Let U be a set and S ⊆ U2, a binary relation on U . For every subset X of U , we set

S[X] = S[X, ] = {y ∈ U | x S y, for some x ∈ X} and S[ , X] = {y ∈ U | y S x, for

some x ∈ X}. We define the maps fS, gS on the power set of U , by fS(X) = S[X] and

gS(X) = {y ∈ U | S[ , {y}] ⊆ X}. It is not hard to see that both fS, gS are residuated and

that f ∗S(X) = S[ , X] and g∗S(X) = {y ∈ U | S[{y}, ] ⊆ X}.
A binary operation ∗ on a poset P = 〈P,≤〉 is called residuated if the maps lx and rx on

P , defined by lx(y) = x ∗ y and rx(y) = y ∗ x, are residuated, for all x ∈ P , i.e., if there exist

binary operations \ and / on P , such that for all x, y, z ∈ P

x ∗ y ≤ z ⇔ y ≤ x\z ⇔ x ≤ z/y.

Let U be a set and R ⊆ U3, a ternary relation on U . We write R(x, y, z) for (x, y, z) ∈ R

and R[X, Y, ] for {z ∈ P | R(x, y, z), for some x ∈ X, y ∈ Y }. For X, Y subsets of U ,
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we define the binary relations on U , RX = {(y, z) ∈ P 2 | R(x, y, z), for some x ∈ X} and

RY = {(x, z) ∈ P 2 | R(x, y, z), for some y ∈ Y }, and the binary operation on the power set

of U , X ∗ Y = R[X,Y, ]. It is easy to see that ∗ is residuated and the associated residuals,

or division operations are X\Z = f ∗RX
(Z) and Z/Y = f ∗RY (Z).
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CHAPTER III

RESIDUATED LATTICES

We begin with the definition of residuated lattices and a list of their basic properties.

Definition

A residuated lattice, or residuated lattice-ordered monoid, is an algebra

L = 〈L,∧,∨, ·, \, /, e〉 such that 〈L,∧,∨〉 is a lattice; 〈L, ·, e〉 is a monoid; and for all

a, b, c ∈ L,

a · b ≤ c ⇔ a ≤ c/b ⇔ b ≤ a\c.

It is not hard to see that RL, the class of all residuated lattices, is a variety and the

identities
x ≈ x ∧ (xy ∨ z)/y, x(y ∨ z) ≈ xy ∨ xz, (x/y)y ∨ x ≈ x

y ≈ y ∧ x\(xy ∨ z), (y ∨ z)x ≈ yx ∨ zx, y(y\x) ∨ x ≈ x

together with the monoid and the lattice identities form an equational basis for it.

In a residuated lattice term, multiplication has priority over the division operations,

which, in turn, have priority over the lattice operations. So, for example, x/yz ∧ u\v means

[x/(yz)] ∧ (u\v). We will be using the inequalitiy t ≤ s instead of the equalities t = t ∧ s

and t ∨ s = s to simplify the presentation, whenever appropriate.

The following lemma contains a number of identities useful in algebraic manipulations of

residuated lattices. The proof can be found in [BT] and is left to the reader.

Lemma 3.1. [BT] Residuated lattices satisfy the following identities:

1. x(y ∨ z) ≈ xy ∨ xz and (y ∨ z)x ≈ yx ∨ zx

2. x\(y ∧ z) ≈ (x\y) ∧ (x\z) and (y ∧ z)/x ≈ (y/x) ∧ (z/x)

3. x/(y ∨ z) ≈ (x/y) ∧ (x/z) and (y ∨ z)\x ≈ (y\x) ∧ (z\x)

4. (x/y)y ≤ x and y(y\x) ≤ x

5. x(y/z) ≤ xy/z and (z\y)x ≤ z\yx

6. (x/y)/z ≈ x/(zy) and z\(y\x) ≈ (yz)\x

7. (x/y)(y/z) ≤ x/z and (z\y)(y\x) ≤ z\x
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8. x/y ≤ (x/z)/(y/z) and y\x ≤ (z\y)\(z\x)

9. x/y ≤ (z/x)\(z/y) and y\x ≤ (y\z)/(x\z)

10. x/y ≤ xz/yz and y\x ≤ zy\zx

11. x ≤ y/(x\y) and x ≤ (y/x)\y

12. x\(y/z) ≈ (x\y)/z

13. x/e ≈ x ≈ e\x

14. e ≤ x/x and e ≤ x\x

15. x(x\x) ≈ x ≈ (x/x)x

16. (x\x)2 ≈ (x\x) and (x/x)2 ≈ (x/x)

Moreover, if a residuated lattice has a bottom element 0, then it also has a top element 1

and for every element a, we have:

(i) a0 = 0a = 0,

(ii) a/0 = 0\a = 1 and

(iii) 1/a = a\1 = 1.

It follows from (1), (2) and (3) of the lemma above that multiplication is order-preserving

and that the two divisions are order-preserving in the numerator and order-reversing in the

denominator. Moreover, it is shown in [BT] that the distribution in (1) and (2) holds for all

existing meets and joins.

It is not difficult to see that the last condition in the definition of a residuated lattice is

equivalent to the stipulation that multiplication is order-preserving and for any two elements

y, z, the join of each of the sets {x | xy ≤ z} and {x | yx ≤ z} exists and is equal to z/y and

y\z, respectively.

The dual of a residuated lattice equation is the equation obtained by interchanging the

two lattice operations. By the opposite of a residuated lattice equation we understand the

“mirror image” of it, namely the equation written in reverse order, where the two division op-

erations are interchanged. Examples of the opposite of an equation can be seen in properties

(4)-(11) of Lemma 3.1; property (12) is self-opposite up to a permutation of the variables.
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A residuated lattice is called commutative (respectively, cancellative, idempotent, n-

potent), when its monoid reduct is commutative (respectively, cancellative, idempotent, n-

potent). A residuated lattice is called distributive if it has a distributive lattice reduct; it is

called integral if its lattice reduct is upper bounded by the multiplicative identity. Note that

if a residuated lattice is commutative the two divisions operations coincide (each one is the

opposite of the other). In this case we denote the element x\y = y/x by x→ y.

A residuated bounded-lattice is an algebra L = 〈L,∧,∨, ·, \, /, e, 0〉 such that

L = 〈L,∧,∨, ·, e, \, /〉 is a residuated lattice and the nullary operation, 0, satisfies x∨ 0 ≈ x.

Note that 1 = 0\0 = 0/0 is the top element of such an algebra, so the constant 1 can be

conservatively added to the type.

An element a in a residuated lattice L is called invertible, if there exists an element a−1

such that aa−1 = e = a−1a; a is called integral, if e/a = a\e = e. We denote the set of

invertible elements of L by G(L) and the set of integral elements by I(L). It is easy to see

that a is invertible iff a(a\e) = e = (e/a)a; in this case, a−1 = e/a = a\e.

To establish an equality between two elements a, b of a residuated lattice, we will fre-

quently prove that x ≤ a ⇔ x ≤ b, for every element x. By setting x = a, we have a ≤ b.

On the other hand, by setting x = b, we obtain b ≤ a.

Lemma 3.2. If a is invertible, then for all x, y we have

1. x/a = xa−1 and a\x = a−1x;

2. a(x ∧ y) = ax ∧ ay and (x ∧ y)a = xa ∧ ya;

3. a\a = e and a/a = e;

4. (x/a)y = x(a\y); and

5. a(a−1x/a−1y) = (x/y)a and a(a−1y\a−1x) = a(y\x).

Moreover, (4) implies that a is invertible.

Proof. 1) For every element z we have

z ≤ x/a ⇔ za ≤ x ⇔ z ≤ xa−1,

so x/a = xa−1. Similarly, we get the opposite equality a\x = a−1x.
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2) We have a(x∧ y) ≤ ax, ay, so a(x∧ y) ≤ ax∧ ay. For the reverse inequality, note that

a−1(ax ∧ ay) ≤ a−1ax ∧ a−1ay = x ∧ y,

hence ax ∧ ay ≤ a(x ∧ y). Similarly we get the opposite equality.

3) This is a direct consequence of (1).

4) If a is invertible, then (x/a)y = xa−1y = x(a\y). Conversely, if we set x = e and y = a

in (x/a)y = x(a\y), we get (e/a)e = a\a. Since, by Lemma 3.1(4) and (14), (e/a)a ≤ e and

a\a ≥ e, we obtain (e/a)a = a\a = e. Similarly, (a\e)a = e.

5) For every z, we have

z ≤ a(a−1x/a−1y) ⇔ a−1z ≤ a−1x/a−1y

⇔ a−1za−1y ≤ a−1x

⇔ za−1y ≤ x

⇔ za−1 ≤ x/y

⇔ z ≤ (x/y)a

The opposite equation follows, since the definition of an invertible element is self-opposite.

Examples

In what follows we give a list of examples of residuated lattices, with the goal of enhancing

the intuition of the reader.

Known algebraic structures

As mentioned before, residuated lattices generalize a class of well studied algebraic struc-

tures. In what follows we mention a few.

Example 3.1. Lattice-ordered groups

A lattice-ordered group or `-group is an algebra G = 〈G,∧,∨, ·, −1, e〉, such that 〈G,∧,∨〉
is a lattice, 〈G, ·, −1, e〉 is a group and multiplication is order preserving. It can be easily

shown, see [AF], that the last requirement is equivalent to the stipulation that multiplication

distributes over binary meets and/or joins, hence the class of all `-groups is a variety. It

is easy to see that this variety is term equivalent to the subvariety of residuated lattices

axiomatized by the identity (e/x)x ≈ e, via x−1 = e/x and x/y = xy−1, y\x = y−1x, see

Lemma 4.3.
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Example 3.2. Generalized Boolean algebras

A generalized Boolean algebra B is a lattice such that every principal filter is a Boolean

algebra. We include in the type symbols for the lattice operations, the top element e and the

binary operation that, given x, y in B, produces the complement of x in the Boolean algebra

[y, e]. It is shown in Proposition 5.3 that the class of generalized Boolean algebras is term

equivalent to the subvariety GBA of RL generated by 2, the two-element residuated lattice.

This variety is shown to be an atom in the lattice of subvarieties of residuated lattices and

an equational basis is provided for it.

Example 3.3. Brouwerian algebras

A generalized Boolean algebra is a special case of a Brouwerian algebra. The latter is a

lattice such that for any pair of elements x, y there exits an element z, which is maximum

with respect to the property x ∧ z ≤ y. This element is denoted by x → y and it is called

the relative pseudo-complement of x with respect to y. As in the case of generalized Boolean

algebras, the lattice operations, the top element and the relative pseudo-complement are

considered as fundamental operations of the Brouwerian algebra. It is easy to see that the

class of Brouwerian algebras is term equivalent to the subvariety Br of residuated lattices

axiomatized by the equation x · y ≈ x ∧ y and that the only atom below Br is GBA. For a

study of Brouwerian algebras we refer the reader to [BD].

Example 3.4. Reducts of MV-algebras

MV-algebras are algebraic models of multi-valued logic. Among many term equivalent

definitions, we chose the one given in the setting of residuated lattices. An MV-algebra is

a commutative residuated bounded-lattice that satisfies the identity (x → y) → y ≈ x ∨ y,

the relativized law of double negation. MV-algebras are generalizations of Boolean algebras

and have been studied extensively; see [COM], [Ha] and [Mu]. In Chapter 7, we investigate

a common generalization of MV-algebras and `-groups.

Example 3.5. Reducts of relation algebras

A relation algebra is an algebra A = 〈A,∧,∨, −, 0, 1, ·, e, ∪〉, such that

〈A,∧,∨, −, 0, 1〉 is a Boolean algebra, 〈A, ·, e〉 is a monoid and for all a, b, c ∈ A

(i) (a∪)∪ = a, (ab)∪ = b∪a∪;

(ii) a(b ∨ c) = ab ∨ ac, (b ∨ c)a = ba ∨ ca, (a ∨ b)∪ = a∪ ∨ b∪; and

(iii) a∪(ab)− ≤ b−.
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The structure R(A) = 〈A,∧,∨, ·, \, /, e〉, where a\b = (a∪b−)− and b/a = (b−a∪)− is

a residuated lattice. The only thing to be checked is that the division operations are the

residuals of multiplication, i.e., the last condition in the definition of a residuated lattice. If

ab ≤ c then c− ≤ (ab)−. So, a∪c− ≤ a∪(ab)− ≤ b−, by (iii); hence b ≤ (a∪c−)−. On the other

hand, if b ≤ (a∪c−)−, then ab ≤ a(a∪c−)− ≤ c, by (iii), and the idempotency of ∪ and −.

General constructions on residuated lattices

Before proceeding to concrete examples, we mention some general constructions on ex-

isting residuated lattices that produce new ones.

Example 3.6. Subalgebras, products and homomorphic images

As mentioned before, the class of all residuated lattices is equationally definable. Thus,

by Birkhoff’s Theorem, it is a variety, namely it is closed under the operations of subalgebras,

products and homomorphic images.

Example 3.7. The negative cone

The negative cone of a residuated lattice L = 〈L,∧,∨, ·, \, /, e〉 is defined to be the

algebra L− = 〈L−,∧,∨, ·, \L− , /L− , e〉, where L− = {x ∈ L | x ≤ e}, x\L−y = x\y ∧ e and

x/L−y = x/y ∧ e. It is easy to check that L− is also a residuated lattice, which is obviously

integral. If K is a class of residuated lattices, we denote the class of negative cones of elements

of K by K−.

Example 3.8. The opposite residuated lattice

The opposite of a residuated lattice L = 〈L,∧,∨, ·, \, /, e〉 is the algebra Lop =

〈L,∧,∨, ·op, \op, /op, e〉, where x ·op y = y · x, x/opy = y\x and y\opx = x/y. The oppo-

site of a residuated lattice is also a residuated lattice, because the defining identities of

residuated lattices are self-opposite. We will use this symmetry frequently to obtain proofs

of the opposites of already proved identities.

Example 3.9. [Ro] Nuclei retractions

We first define an important notion in the context of residuated lattices.

A nucleus on a residuated lattice L is a closure operator γ on L such that γ(a)γ(b) ≤
γ(ab), for all a, b ∈ L.

The concept of a nucleus is not new to ordered algebraic structures. It was defined in

the context of Brouwerian algebras, see [ST]. Recall that Lγ is the image of L under γ.
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Lemma 3.3. [Ro] If γ is a closure operator on a residuated lattice L, then the following

statements are equivalent:

1. γ is a nucleus.

2. γ(γ(x)γ(y)) = γ(xy), for all x, y ∈ L.

3. x/y, y\x ∈ Lγ, for all x ∈ Lγ, y ∈ L.

Proof. (1)⇒ (2): Let x ∈ Lγ and y ∈ L. Since γ is extensive and monotone, we have γ(xy) ≤
γ(γ(x)γ(y)). On the other hand, by the defining property of a nucleus and monotonicity, we

have γ(γ(x)γ(y)) ≤ γ(γ(xy)). So, γ(γ(x)γ(y)) ≤ γ(xy), since γ is idempotent.

(2) ⇒ (3): Since x ∈ Lγ, we get γ(x) = x. So,

γ(x/y) · y ≤ γ(γ(x/y) · γ(y)) (γ is extensive)

= γ((x/y) · y) (2)

≤ γ(x) (Lemma 3.1(4) and monotonicity)

= x.

So, γ(x/y) ≤ x/y, by the defining property of residuated lattices. Since the reverse

inequality follows by the extensivity of γ, we have x/y = γ(x/y) ∈ Lγ. Similarly, we get the

result for the other division operation.

(3) ⇒ (1): Since γ is extensive, xy ≤ γ(xy), so x ≤ γ(xy)/y. By the monotonicity of

γ and the hypothesis, we have γ(x) ≤ γ(xy)/y. Using the defining property of residuated

lattices, we get y ≤ γ(x)\γ(xy). Invoking the monotonicity of γ and the hypothesis, once

more, we obtain γ(y) ≤ γ(x)\γ(xy), namely γ(x)γ(y) ≤ γ(xy).

Actually, it can be shown that an arbitrary map γ on a residuated lattice L is a nucleus

if and only if γ(a)/b = γ(a)/γ(b) and b\γ(a) = γ(b)\γ(a), for all a, b ∈ L.

If L = 〈L,∧,∨, ·, \, /, e〉 is a residuated lattice and γ a nucleus on L, then the algebra

Lγ = 〈Lγ,∧,∨γ, ◦γ, \, /, γ(e)〉, where x ◦γ y = γ(x · y) and x ∨γ y = γ(x ∨ y), is called the

γ-retraction of L.

Proposition 3.4. [Ro] If L is a residuated lattice and γ a nucleus on it, then the γ-retraction

Lγ of L is a residuated lattice.

Proof. Obviously, γ(e) is the multiplicative identity of Lγ and Lγ is closed under ◦γ and ∧γ.

By Lemma 3.3, it is also closed under the division operations. To prove that Lγ is closed
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under meets, note that for x, y ∈ Lγ, γ(x∧ y) ≤ γ(x)∧ γ(y) = x∧ y. The reverse inequality

follows by the fact that γ is extensive, so x∧y ∈ Lγ. Thus, Lγ is closed under all operations,

and it is a meet-subsemilattice of L.

To show that Lγ is a lattice note that for elements x, y, z ∈ Lγ, x, y ≤ z is equivalent to

x ∨ y ≤ z. Since γ(z) = z and γ is extensive, this is, in turn, equivalent to γ(x ∨ y) ≤ z,

namely to x ∨γ y ≤ z. Thus, ∨γ is the join in Lγ.

We next show that multiplication is associative. Let x, y, z ∈ Lγ. Using Lemma 3.3 and

the definition of multiplication, we get

(x ◦γ y) ◦γ z = γ(x · y) ◦γ z

= γ(γ(x · y) · z)

= γ(γ(x · y) · γ(z))

= γ((x · y) · z)

= γ(x · y · z).

Similarly,

x ◦γ (y ◦γ z) = γ(x · y · z).

Hence, multiplication in Lγ is associative and 〈L, ◦γ, γ(e)〉 is a monoid.

Finally, to check that ◦γ is residuated, consider x, y, z ∈ Lγ. We have

x ◦γ y ≤ z ⇔ γ(x · y) ≤ z

⇔ x · y ≤ z (x · y ≤ γ(x · y) and z = γ(z))

⇔ y ≤ x\z.

Likewise, x ◦γ y ≤ z ⇔ x ≤ z/y.

If L is an algebra on the signature of residuated lattices without the constant e, then

the concept of nucleus can be defined as above. In that case Lγ defines a residuated lattice,

provided that it has a multiplicative identity.

The preceding construction is quite general as it can be seen in the following known

result.

Proposition 3.5. [Ro] Every complete residuated lattice is a nucleus retraction of the power

set of a monoid. (See Example 3.15.)

Example 3.10. Retraction to an interval
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Let L be a residuated lattice and a ∈ L such that a ≤ e. The structure La =

〈[a, e],∧,∨, ◦a, \a, /a, e〉, where x ◦a y = xy ∨ a, x\ay = (x\y) ∧ e and y/ax = (y/x) ∧ e,

is a residuated lattice.

The map γ on L−, defined by γ(x) = x ∨ a is obviously a closure operator. To see that

it is a nucleus, note that if x, y ≤ a, then xa, ya, a2 ≤ a, so

γ(x) · γ(y) = (x ∨ a)(y ∨ a) = xy ∨ xa ∨ ay ∨ a2 ≤ xy ∨ a = γ(xy).

It is easy to observe that La = (L−)γ, which is a residuated lattice, by Proposition 3.4. Note

that if a ∈ L−, then La = (L−)a.

It is known, see [Mu], that if L is a commutative `-group and a is a negative element of

L, then La is an MV-algebra.

Example 3.11. Kernel contractions

A kernel δ on a residuated lattice L is an interior operator such that for all x, y in L

1. δ(δ(x)δ(y)) = δ(x)δ(y),

2. δ(e) = e and

3. δ(x) ∧ y = δ(δ(x) ∧ y).

Let L be a residuated lattice and δ a kernel on it. The δ-contraction of L is the algebra

Lδ = 〈Lδ,∧,∨, ·, \δ, /δ, e〉, where x/δy = δ(x/y) and x\δy = δ(x\y).

Proposition 3.6. The δ-contraction Lδ of a residuated lattice L under a kernel δ on L is

a residuated lattice. Moreover, Lδ is a lattice-ideal of L.

Proof. Note that Lδ is closed under join, since δ is an interior operator, and under multipli-

cation, by the first property of a kernel. Moreover, it contains e and it is obviously closed

under \δ and /δ.

By the third property of a kernel and the fact that it is closed under joins, Lδ is an ideal

of L. So, Lδ is closed under all the operations.

Finally, Lδ is residuated. Indeed, for all x, y, z ∈ Lδ, x ≤ z/δy is equivalent to x ≤ δ(x/y),

which in turn is equivalent to x ≤ z/y, since δ is contracting and x = δ(x).

Note that under the weaker assumptions δ(δ(x)δ(y)) = δ(x)δ(y) and δ(e)δ(x) = δ(x) =

δ(x)δ(e) on δ, the algebra 〈Lδ,∧,∨δ, ·, \δ, /δ, δ(e)〉, where x ∨δ y = δ(x ∨ y), is a residuated

lattice.
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The δ-contraction construction, where δ is a kernel, is a generalization of the negative

cone construction, defined in Example 3.7. The negative cone of a residuated lattice is its

δ-contraction, where δ(x) = x ∧ e.

Example 3.12. The dual of a residuated lattice with respect to an element

Let L = 〈L,∧,∨, ·, \, /, e〉 be a residuated lattice and a ∈ L a dualizing element, i.e., an

element of L such that

x = a/(x\a) = (a/x)\a,

for all x ∈ L. Then, the dual of L with respect to the element a is the algebra

L∂a = 〈L,∨,∧, +, . , . , a〉, where x + y = x/(y\a), x . y = x(y\a) and x . y = (a/x)y.

(Notice that the underlying lattice of L∂a is the dual of the lattice reduct of L.)

Proposition 3.7. The dual L∂a of a residuated lattice L with respect to a dualizing element

a of L is also a residuated lattice.

Proof. First observe that

x + y = x/(y\a)

= ((a/x)\a)/((y\a)

= (a/x)\(a/(y\a))

= (a/x)\y

and that e = a/(e\a) = (a/e)\a, i.e., e = a/a = a\a.

It is obvious that 〈L,∨,∧〉 is a lattice. Multiplication is associative because

(x + y) + z = [(a/x)\y]/(z\a)

= (a/x)\[y/(z\a)]

= x + (y + z);

and a is the additive identity since

x + a = x/(a\a) = x/e = x

and

a + x = (a/a)\x = e\x = x.
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Finally multiplication is residuated, since

x + y ≤L∂a z ⇔ x + y ≥L z

⇔ x/(y\a) ≥L z

⇔ x ≥L z(y\a)

⇔ x ≥L z . y

⇔ x ≤L∂a z . y

and similarly for . .

The dual is a generalization of a construction for MV-algebras. The dual of an MV-

algebra with respect to its least element is known to be an MV-algebra.

Example 3.13. Translations with respect to an invertible element

Let L be a residuated lattice, a an invertible element of L and fa the map on L defined by

fa(x) = ax. Note that the map fa is invertible and f−1
a (x) = a−1x. Consider the structure

La = 〈L,∧a,∨a, ·a, \a, /a, ea〉, where ea = a and for every binary operation ? ∈ {∧,∨, ·, \, /},

x ?a y = f(f−1(x) ? f−1(y)).

By Lemma 3.2, we have

x ∧a y = a(a−1x ∧ a−1y) = aa−1(x ∧ y) = x ∧ y.

Similarly, ∨a = ∨. Moreover, by Lemma 3.2,

x ·a y = a(a−1xa−1y) = xa−1y,

x/ay = a(a−1x/a−1y) = (x/y)a

and

y\x = a(a−1y\a−1x) = a(y\x).

Note that if we take ga(x) = xa, then we obtain the same structure, so La does not depend

on the choice of left or right multiplication by a. The algebra La = 〈L,∧,∨, ·a, \a, /a, a〉
is called the translation of L with respect to a. We remark that we could have defined the

operations as follows: x ·a y = (x/a)y, y\ax = (y/a)\x and x/ay = x/(a\y).

Proposition 3.8. The translation La of a residuated lattice L with respect to an invertible

element a is a residuated lattice.
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Proof. It is trivial to check that multiplication is associative and a is the multiplicative

identity. To show that multiplication is residuated, let x, y, z ∈ L. We have

x ·a y ≤ z ⇔ xa−1y ≤ z ⇔ a−1y ≤ x\z ⇔ y ≤ a(x\z) ⇔ y ≤ x\az

and similarly for the other division.

Note that the translation by an invertible element and the negative cone constructions

on a residuated lattice L commute, i.e., (La)− = (L−)a.

Example 3.14. [Bl] The Dedekind-McNeille completion

Let L be a residuated lattice and γ the map defined on P(L) by γ(X) = Xul, where

Au = {x ∈ L | x ≤ a for all a ∈ A} and Al = {x ∈ L | x ≥ a for all a ∈ A}, for all A ⊆ L.

It is shown in [Bl] that γ is a nucleus, so the Dedekind-McNeille completion P(L)γ, see

Examples 3.15 and 3.9, of L is a residuated lattice. The Dedekind-McNeille completion is

a complete residuated lattice and arbitrary existing joins and meets of L are preserved. In

view of Proposition 3.5, this shows that every residuated lattice is a subalgebra of the nucleus

image of the power set of a monoid.

For two more completions of residuated lattices see Examples 3.17 and 3.24, below.

Subsets of monoids

We now proceed to concrete examples of residuated lattices.

Example 3.15. The power set of a monoid

Let M = 〈M, ·, e〉 be a monoid. For any two elements X, Y of the power set P(M) of

M , we denote their intersection, union and complex product respectively, by X ∩ Y , X ∪ Y

and X · Y = {x · y | x ∈ X, y ∈ Y }. Also, we define the sets X/Y = {z | {z} · Y ⊆ X} and

Y \X = {z |Y · {z} ⊆ X}. It is easy to see that the algebra P(M) = 〈P(M),∩,∪, ·, \, /, {e}〉
is a residuated lattice.

It follows that every monoid is a monoid subreduct of a residuated lattice. On the other

hand no finite non-trivial group is the monoid reduct of a residuated lattice. It is an open

problem to determine all monoid reducts of residuated lattices.

A partial groupoid 〈S, ∗〉 is a set S with a partially defined binary operation ∗ on it,

namely a subset of S3 such that if (x, y, z) ∈ ∗ and (x, y, z′) ∈ ∗ then z = z′. If there is a z

such that (x, y, z) ∈ ∗, we denote this unique z, the product of x, y, by x ∗ y. We abbreviate

the fact that such a z exists by x ∗ y ∈ S.

21



A partial semigroup 〈S, ∗〉 is partial groupoid such that if any of the two sides of the

associativity condition is defined, then the other side is also defined and they are equal. It

is not hard to see that if the product of some elements of S exists with respect to a certain

association of the parenthesis, then the product of the elements in the same order exists with

respect to any other association of the parenthesis and the two products are equal.

A partial monoid 〈M, ∗, e〉 is a structure, such that 〈M, ∗〉 is a partial semigroup and

x ∗ e = e ∗ x = x, for all x ∈M .

Example 3.16. The power set of a partial monoid

Let M = 〈M, R,E〉 be a structure, where M is a set, R ⊆ M3 a ternary relation on

M and E is a subset of M . Define the following operations on the power set P(M) of M :

X ◦ Y = R[X, Y, ], X/Y = {z ∈M | {z} ◦ Y ⊆ X} and Y \X = {z ∈M | Y ◦ {z} ⊆ X}. It

is not hard to see that the algebra P(M) = 〈M,∩,∪, ◦, \, /, E〉 is a residuated lattice iff for

all x, y, z, w ∈M ,

1. R(x, e, y), for some e ∈ E, iff x = y, iff R(e, x, y), for some e ∈ E; and

2. R(x, y, u) and R(u, z, w), for some u ∈M iff R(x, v, w) and R(y, z, v), for some v ∈M .

In this case, the residuated lattice P(M) is called the power set of M. If R is a partial

operation, then E is a singleton and M is a partial monoid.

Example 3.17. Order ideals of a partially ordered monoid

As a different generalization of Example 3.15, let M = 〈M, ·, e,≤〉 be a partially ordered

monoid, namely a relational structure such that 〈M, ·, e〉 is a monoid, 〈M,≤〉 is a partially

ordered set and multiplication is order preserving. Moreover, let O be the set of all order

ideals of the underlying partially ordered set. For every X, Y ∈ O, set X • Y =↓ (X · Y ),

the downset of their complex product. Then, the algebra O(M) = 〈O,∩,∪, •, \, /, ↓ {e}〉 is

a residuated lattice.

To prove this we show that the map γ on P(M) defined by γ(X) =↓ X is a nucleus.

Indeed, if z ∈ γ(X)γ(Y ) = (↓X)(↓ Y ), then z = ab, a ≤ x and b ≤ y, for some x ∈ X and

y ∈ Y . So, z ≤ xy, namely z ∈↓ XY . Finally notice that for any two order ideals X, Y ,

γ(X ∪ Y ) =↓ (X ∪ Y ) = X ∪ Y . Thus, by Proposition 3.4, O(M) = (P(M))γ.

In the case of a discrete order we obtain Example 3.15. Note that we could have taken

order filters instead of order ideals.

If 〈S, ∗〉 is a partial semigroup, then for every two subsets X, Y of S we set X ∗ Y =

{x∗y |x∗y ∈ S, x ∈ X, y ∈ Y }, the complex product of X and Y , 〈X〉∗ = {x1 ∗x2 ∗· · ·∗xn ∈
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S |n ∈ N, x1, . . . xn ∈ X}, the subsemigroup generated by X, and [X]∗ = X ∪ (S ∗X)∪ (X ∗
S) ∪ (S ∗X ∗ S), the semigroup ideal generated by X.

Example 3.18. Ideals of a commutative partial semigroup

Let S = 〈S, ∗〉 be a commutative partial semigroup. Define γ on the power set of S, by

γ(X) = [X]∗. Since S is commutative this simplifies to γ(X) = X ∪ (S ∗X).

It is easy to see that γ is a closure operator. Moreover, note that if X, Y ⊆ S, a ∈
X ∪ (S ∗X) and b ∈ Y ∪ (S ∗Y ), then a∗ b is in one of the two forms x∗ y, s∗x∗ y, for some

s ∈ S, x ∈ X and y ∈ Y . In both cases a∗b is an element of (X ∗Y )∪(S∗X ∗Y ) = γ(X ∗Y ).

Finally, S ∗X = X ∗S = X, for every closed set X, i.e., S acts as an identity element. So, by

the remark following Proposition 3.4, γ gives rise to the residuated lattice IL(S) = (P(S))γ

of semigroup-ideals of S.

In case that a partial semigroup is commutative and idempotent, namely a partial semi-

lattice, we can look at its subsemigroups.

Example 3.19. Subsemilattices of a partial lower-bounded semilattice.

Let L = 〈L,∨〉 be a partial lower-bounded join-semilattice and let γ be the map defined

by γ(X) = 〈X〉∨, for every subset X of L. It is clear that γ is a closure operator. Moreover,

if a ∈ γ(X) and b ∈ γ(Y ), then

a = x1 ∨ x2 ∨ . . . ∨ xn and b = y1 ∨ y2 ∨ . . . ∨ ym,

for some n, m ∈ N, x1, x2, . . . , xn ∈ X and y1, y2, . . . , ym ∈ Y . So,

a ∨ b = (x1 ∨ x2 ∨ . . . ∨ xn) ∨ (y1 ∨ y2 ∨ . . . ∨ ym).

If n ≤ m, using the commutativity and idempotency of join, we get

a ∨ b = (x1 ∨ y1) ∨ (x2 ∨ y2) ∨ . . . (xn ∨ yn) ∨ (x1 ∨ yn+1) ∨ . . . ∨ (x1 ∨ ym),

which is an element of γ(X∨Y ). If 0 is the lower bound of L, then {0}∨X = X∨{0} = X, for

all X ⊆ L; so invoking the remark after Proposition 3.4, we can see that the subsemilattices

of L form a residuated lattice S(L) = (P(L))γ.

Example 3.20. Subsemigroups of a partial semiring

A partial semiring is a structure S = 〈S, ∗, e, +〉 such that 〈S, ∗, e〉 is a monoid, 〈S, +〉 is

a partial semigroup and ∗ distributes over existing binary sums, namely if x + y ∈ S, then
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x∗z +x∗y = (x+y)∗z and z ∗x+z ∗y = z ∗ (x+y). Note, that it follows that ∗ distributes

over finite existing sums.

Assume that S = 〈S, ∗, e, +〉 is a partial semiring. By Example 3.15, P(〈S, ∗, e〉) is a

residuated lattice, which we denote by P(S). Define γ on P(S) by γ(X) = 〈X〉+. We will

show that γ is a nucleus on P(S).

It is clear that γ is a closure operator. To check that γ(X) ∗ γ(Y ) ≤ γ(X ∗ Y ), namely

〈X〉+ ∗ 〈Y 〉+ ⊆ 〈X ∗ Y 〉+, let a ∈ 〈X〉+ and b ∈ 〈Y 〉+. Then

a = x1 + x2 + · · ·+ xn and b = y1 + y2 + · · ·+ ym,

for some m, n ∈ N, x1, x2 . . . xn ∈ X and y1, y2, . . . ym ∈ Y . So,

a ∗ b = (x1 + x2 + · · ·+ xn)(y1 + y2 + · · ·+ ym),

which, by the definition of a partial semiring, is equal to a sum of products of elements of

X and Y . Thus, a ∗ b ∈ 〈X ∗ Y 〉+.

According to Proposition 3.4, γ gives rise to the residuated lattice S(S) = (P(S))γ of the

+-subsemigroups of S.

Note that in a partial semiring S = 〈S, ∗, e, +〉, multiplication coincides with addition

iff S′ = 〈S, ∗, e〉 is a lower-bounded join-semilattice. Moreover, in this case the residuated

lattice S(S) of subsemigroups of S, given in Example 3.19, coincides with the residuated

lattice of subsemilattices S(S′) of S′ given in Example 3.20.

Example 3.21. Semigroup-ideals of a partial +-commutative semiring

Assume that S = 〈S, ∗, e, +〉 is a partial +-commutative semiring. Define the map γ(X) =

[X]+ on P(S). In view of commutativity of addition, γ simplifies to γ(X) = X ∪ (S + X).

Clearly γ is a closure operator. To see that it is a nucleus, let X, Y be subsets of S,

a ∈ γ(X) = X ∪ (S + X) and b ∈ γ(Y ) = Y ∪ (S + Y ). Then a = x or a = s1 + x, and b = y

or b = s2 + y, for some s1, s2 ∈ S, x ∈ X and y ∈ Y . If a = s1 + x and b = s2 + y, then

a ∗ b = (s1 + x) ∗ (s2 + y) = s1 ∗ s2 + s1 ∗ y + x ∗ s2 + x ∗ y,

which is an element of (X∗Y )∪[S+(X∗Y )] = γ(X∗Y ). It is easy to see that a∗b ∈ γ(X∗Y )

in the other three cases, as well. Thus, by Proposition 3.4, the nucleus γ gives rise to the

residuated lattice IS(S) = (P(S))γ of semigroup-ideals of S.
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Note that a partially ordered monoid M = 〈M, ·, e,≤〉 can be identified with a partial

semiring M′ = 〈M, ·, e,∧〉 such that x ∧ x = x for all x ∈ M and if x ∧ y ∈ M then

x ∧ y = y ∧ x. The definitional equivalence is given by x ∧ y = x iff x ≤ y. Moreover,

↓X = [X]∧, namely the notions of order-ideal of M and semigroup-ideal of M′ coincide. So,

the residuated lattice O(M) of order-ideals of M given in Example 3.17 is a special case of

the residuated lattice IS(M) of semigroup-ideals of M′ given in the previous example.

Example 3.22. Ideals of a partial semiring

Assume that S = 〈S, ∗, e, +〉 is a partial semiring. Set I = {X ⊆ S |X = [〈X〉+]∗}, the

collection of all ideals of S. It is easy to see that I(S) = 〈I,∧,∨, ·, /, \, e〉 is a subalgebra of

S(S), given in Example 3.20. In the case where S is ∗-commutative, I(S) can be realized as

the image of the power set of S under the nucleus defined by γ(X) = [〈X〉+]∗, the composition

of the nuclei given in Examples 3.20 and 3.18.

In case that S is a ring with unit we get the residuated lattice of ideals of a ring. It was

in this setting that (commutative, integral) residuated lattices were first considered by Ward

and Dilworth, see [WD38] and [WD39].

Example 3.23. Ideals of a join-semilattice-ordered monoid

A join-semilattice-ordered monoid M = 〈M, ∗, e,∨〉 is an algebra, such that 〈M, ∗, e〉 is

a monoid, 〈M,∨〉 is a join-semilattice and multiplication distributes over binary joins. Such

an algebra is a special case of a partial semiring, so by Example 3.22 the join-closed subsets

of M form a residuated lattice.

A meet-semilattice-ordered monoid is defined in a similar way.

Let M = 〈M, ∗, e,∨〉 be a join-semilattice-ordered monoid. Under the order induced

by the join operation, M can be considered a partially ordered monoid. By Example 3.17

the map defined by γ1(X) =↓ X is a nucleus. Moreover, by the previous observation and

Example 3.19, the map defined by γ2(X) = 〈X〉∨ is also a nucleus. It is easy to see that the

composition of two nuclei is also a nucleus. The composition γ of the two maps, which in

our case commute, gives rise to the residuated lattice IL(M) = (P(M))γ of join-ideals of M.

Note that the same holds for the filters of a meet-semilattice-ordered monoid.

In view of the remark following Example 3.21, a join-semilattice-ordered monoid can be

viewed as a structure M = 〈M, ∗, e,∨,∧〉, where 〈M, ∗, e,∨〉 and 〈M, ∗, e,∧〉 are partial

semirings. It is mentioned that the map γ2 is a special case of the nucleus of Example 3.19,

that gives the ∨-subsemigroups of 〈M, ∗, e,∨〉, while the map γ1 can be considered a spe-
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cial case of the nucleus γ(X) = [X]∧ in Example 3.17, that gives the ∧-semigroup-ideals

of 〈M, ∗, e,∧〉. Obviously, the join-ideals of a join-semilattice-ordered monoid are the ∨-

subsemigroups that happen to be ∧-ideals.

Example 3.24. Ideals of a lattice-ordered monoid

A lattice-ordered monoid M = 〈M, ∗, e,∧,∨〉 is an algebra such that 〈M∧,∨〉 is a lattice,

and both 〈M, ∗, e,∨〉 and 〈M, ∗, e,∧〉 are semilattice-ordered monoids.

As a special case of the previous example and of the remark following it, we obtain that

the ideals of a lattice-ordered monoid M form a residuated lattice IL(M). The same holds

for the filters of a lattice-ordered monoid.

Example 3.25. Ideals of a distributive lattice

A bounded distributive lattice L can be viewed as a lattice or join-semilattice ordered

monoid, where multiplication is meet. So the ideals of it form a residuated lattice. Even

without the assumption of bounds the map defined on the power set of the semigroup

〈L,∧〉 by γ(X) =↓ 〈X〉∨ = [〈X〉∨]∧ gives rise to an integral residuated lattice, actually

to a Brouwerian algebra, in view of the remark following Proposition 3.4.

Example 3.26. Cancellative Monoids

Let K = 〈K, ·, e〉 be a cancellative monoid and set MK = K ∪ {0, 1}. We define an

order on MK , by 0 < k < 1, for all k ∈ K, and extend the multiplication of K to MK , by

stipulating that 1 is an absorbing element for K ∪ {1} and 0 an absorbing element for the

set MK . Consider the algebra MK = 〈MK ,∧,∨, ·, \, /, e〉, where x/y =
∨
{z | zy ≤ x} and

y\x =
∨
{z | yz ≤ x}. To see that MK is a residuated lattice, note that it is isomorphic to

(P(K))γ, where γ(X) = X, if X has at most one element, and γ(X) = K otherwise, for

every X ⊆ K. The map γ is a nucleus since, if at least one of X, Y is the empty set, then

both γ(X)γ(Y ) and γ(XY ) are empty. If X, Y are both singletons then γ(X)γ(Y ) = XY ,

which is also a singleton, thus equal to γ(XY ). Finally if none is empty and at least

one has more than one elements then XY has at least two elements, by cancellativity, so

γ(XY ) = K ⊇ γ(X)γ(Y ).

Note that the stipulation that K is cancellative is necessary, since otherwise if ab = ac

for some a, b, c ∈ K, then, by Lemma 3.1(1), 1 = a1 = a(b ∨ c) = ab ∨ ac = ab ∈ K, a

contradiction.
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Other examples

We present a few more examples that we consider of special interest.

Example 3.27. Every bounded lattice with at least one completely join-irreducible

element

Let 〈L,∧,∨〉 be a bounded lattice with at least one completely join-irreducible element

e. Denote by 0 and 1 the least and greatest elements of the lattice and define multiplication

on L by xy = 0, if both x, y are less than e; xy = yx = y if y is less than e, but x is not;

and xy = 1, if none of x, y is less than or equal to e. The element e is the multiplicative

identity. One can easily check that multiplication is associative, order preserving and that

the joins x/y =
∨
{z | zy ≤ x} and y\x =

∨
{z | yz ≤ x} exist in L. Thus, 〈L,∧,∨, ·, \, /, e〉

is a residuated lattice.

This example generalizes the example due to Peter Jipsen mentioned in [Bl], where e

is stipulated to be an atom of L. As a special case we get that every dually algebraic

lattice, in particular every finite lattice, can be residuated, i.e., it is the lattice reduct of a

residuated lattice. Moreover, it follows that every lattice is a lattice subreduct of a residuated

lattice. Actually, it is shown in [BCGJT] that every lattice is a lattice subreduct of a simple,

cancellative residuated lattice.

Nevertheless, it is not the case that every lattice is the lattice reduct of a residuated

lattice. By Lemma 3.1, if a residuated lattice has a bottom element then it must have a top

element, as well. So, lattices that are lower, but not upper bounded cannot be residuated.

An example of an algebraic lattice that cannot be residuated is given below.

Example 3.28. The lattice of a binary tree: a non-example

Consider an infinite binary tree and add a least element to it. The underlying set L of

the lattice L obtained can be realized as the set of all finite words on two letters, that is

the set of all functions from initial segments of the natural numbers to the two element set

{1, 2}, together with a distinguished element 0. The order is defined as follows: a function

f is greater than or equal to a function g iff the domain of f is a subset of the domain of g,

and f, g agree on the domain of f . Moreover, the element 0 is less than any function.

Assume that L can be residuated and let e be the multiplicative identity. Every non-zero

element of L has exactly two lower covers. Let a, b be the lower covers of e, and c one of the

two lower covers of b. Since a, b, c ≤ e, we have ab ≤ ae = a and ab ≤ b, so ab ≤ a ∧ b = 0.

Moreover, cb ≤ ce = c. By Lemma 3.1(1), b = eb = (a ∨ c)b = ab ∨ cb ≤ 0 ∨ c = c, a

contradiction.
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Figure 1: A non-distributive cancellative commutative example

It is an open problem to determine the lattice reducts of all residuated lattices.

Example 3.29. [BCGJT] A commutative, non-distributive residuated lattice on a

free monoid

Let F = 〈{aibjck : i, j, k ∈ N}, ·, e〉 be the 3-generated free commutative monoid. For a

word w ∈ F, we denote the length of w by |w|, and for x ∈ {a, b, c}, we define |w|x to be

the number of occurrences of x in w. The order on F is defined by w ≤ v if |w| > |v|, or

|w| = |v|, |w|b ≤ |v|b and |w|c ≤ |v|c (see Figure 1). In [BCGJT] it is verified that F defines

a residuated lattice.

We refer the reader to [Co2], for general constructions of residuated lattices, whose

monoid reduct is a free monoid.

Example 3.30. ([Bl], [Le]) Residuated maps

Let L be a complete residuated lattice and let Res(L,L) be the set of all residuated

maps on L. If we order all such maps point-wise and define multiplication to be composition

then it can be shown, see [Bl], that the algebra LL = 〈Res(L,L),∧,∨, ◦, \, /〉 is a residuated

lattice, where f/g =
∨
{h | h ◦ g ≤ f} and g\f =

∨
{h | g ◦ h ≤ f}.
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Structure theory

The structure theory of residuated lattices was developed by K. Blount and C. Tsinakis in

[BT]. We review their basic result, specialize it to the finite case and give two easy corollaries

of their descriptions of congruence relations on residuated lattices.

Congruences as convex normal subalgebras

Congruence relations are in one-to-one correspondence with normal subgroups, in the

setting of group theory and with ideals in ring theory, but generally it is not the case that

congruences correspond to special subalgebras. It is shown in [BT] that residuated-lattice

congruences correspond to convex normal subalgebras.

Lemma 3.9. [BT] Let L be a residuated lattice and θ ∈ Con(L). Then the following are

equivalent:

1. a θ b

2. [a/b ∧ e] θ e and [b/a ∧ e] θ e

3. [a\b ∧ e] θ e and [b\a ∧ e] θ e

Let L be a residuated lattice, Y a set of variables. For x ∈ L ∪ Y ∪ {e}, where e is the

constant in the language of residuated lattices and y ∈ Y , we define the polynomials

ρx(y) = xy/x ∧ e and λx(y) = x\yx ∧ e,

the right and left conjugate of y with respect to x. An iterated conjugate is a composition of

a number of left and right conjugates - we consider composition of conjugates with respect

to their arguments. For X, A subsets of L ∪ Y ∪ {e}, we define the sets Γ0
X = {λe},

Γn
X = {γx1 ◦ γx2 ◦ ...γxn | γxi

∈ {λxi
, ρxi
}, xi ∈ X ∪ {e}, i ∈ N},

Γn
X(A) = {γ(a) | γ ∈ Γn

X , a ∈ A},

ΓX =
⋃
{Γn

X | n ∈ N},

ΓX(A) =
⋃
{Γn

X(A) | n ∈ N}.

Note that if L is a residuated lattice, λe(x) = ρe(x) = x ∧ e, γ(x) ≤ e and γ(e) = e,

for all x ∈ L and for every iterated conjugate γ ∈ ΓL. In particular, if x is negative,

λe(x) = ρe(x) = x. If L is commutative, then x ∧ e ≤ γ(x), for all x ∈ L and γ ∈ ΓL.
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A subset N of L is called normal, if it is closed under conjugation, i.e., γ(N) ⊆ N , for

all γ ∈ ΓL. A subset X of L is called convex, if for every x, y in X and z in L, x ≤ z ≤ y

implies that z is in X.

Theorem 3.10. [BT]

1. The convex normal subalgebras of a residuated lattice L form a lattice CNS(L), which

is isomorphic to the congruence lattice ConL of L via

S 7→ θS = {(a, b) ∈ L2| (a/b ∧ e)(b/a ∧ e) ∈ H}

and θ 7→ [e]θ, the θ-class of e.

Moreover, for each a ∈ L, the principal congruence generated by (a, e) corresponds to

the convex normal subalgebra generated by a.

2. The convex normal (in L) submonoids of the negative cone of a residuated lattice

L form a lattice CNLSM(L−), which is isomorphic to CNS(L), via S 7→ S− and

M 7→ SM = {x ∈ L |m ≤ x ≤ e/m, m ∈M}.

The convex normal submonoid generated by a negative element corresponds to the con-

vex normal subalgebra generated by that element.

3. If A ⊆ L− then the convex normal (in L) submonoid of the negative cone of L is

M(A) = {x ∈ L | g1g2...gn ≤ x ≤ e, for some n ∈ N and g1, . . . , gn ∈ ΓL(A)}.

The description of congruences in a residuated lattice by convex normal subalgebras is

pivotal. For finite residuated lattices, we can get a more concrete representation than the

one in the general case.

Let L be a residuated lattice and S ⊆ L. We denote the set of idempotent elements of S by

E(S) = {a ∈ S | a2 = a} and the set of central idempotents of S by CE(S) = {a ∈ S | a2 = a

and ax = xa, for all x ∈ L}.

Lemma 3.11. Let L be a residuated lattice. If a ∈ CE(L−), then [a, e/a] is the universe

of a convex normal subalgebra of L. Conversely, if N is the universe of a convex normal

subalgebra of L with a least element a, then N = [a, e/a] and a ∈ CE(L−).

Proof. Let a ∈ CE(L−). Note that a(e/a) = (e/a)a ≤ e, so e/a ≤ a\e. Similarly we get

a\e ≤ e/a, hence, e/a = a\e. Moreover, since a is negative, e ≤ e/a, so by Lemma 3.1,

e/a ≤ (e/a)(e/a) ≤ (e/a)e/a ≤ (e/a)/a = e/a2 = e/a,
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hence e/a ∈ E(L). For every x, y ∈ [a, e/a], we have

a = a2 ≤ xy ≤ (e/a)(e/a) = e/a,

thus, xy ∈ [a, e/a]. Moreover,

a = a2 ≤ a/(e/a) ≤ x/y ≤ (e/a)/a = e/a2 = e/a,

that is x/y ∈ [a, e/a]. Since, x ∨ y, x ∧ y, e ∈ [a, e/a], the interval [a, e/a] is a subuniverse,

which is obviously convex. To prove that [a, e/a] is normal, let x ∈ [a, e/a] and z ∈ L. We

have,

a = a ∧ e ≤ az/z ∧ e = za/z ∧ e ≤ zx/z ∧ e ≤ e,

that is ρz(x) ∈ [a, e/a]. Similarly, we show that λz(x) ∈ [a, e/a].

Conversely, assume that N is a convex normal subalgebra with a least element a. The

element a is in the negative cone, so a2 ≤ a. Since a2 ∈ N , we get a = a2, i.e., a ∈ E(L). By

the normality of N , for all z ∈ L, za/z∧ e is an element of N , hence a ≤ za/z∧ e. Since a is

already negative, this is equivalent to a ≤ za/z, thus az ≤ za for all z ∈ L. Symmetrically,

we get za ≤ az for all z ∈ L, so a ∈ CE(L−). Moreover, since N is a convex subalgebra

[a, e/a] ⊆ N . On the other hand, for every b ∈ N , we have e/b ∈ N , so a ≤ e/b, i.e.,

ab ≤ e. By the centrality of a we get ba ≤ e, i.e., b ≤ e/a, hence b ∈ [a, e/a]. Consequently,

[a, e/a] = N .

The next theorem shows that the congruence lattice of a finite residuated lattice is dually

isomorphic to a join-subsemilattice of L.

Theorem 3.12. Let L be a finite residuated lattice. Then the structure CE(L−) =

〈CE(L−), ·,∨〉 is a lattice and ConL ∼= (CE(L−))∂.

Proof. It is easy to see that CE(L−) is a lattice and that for all a, b ∈ CE(L−),

a = ab ⇔ a ≤ b ⇔ a ∨ b = b.

We define the map φ : CE(L−)→ CNS(L), by φ(a) = [a, e/a]. If follows from the previous

lemma that φ is well defined. If φ(a) = φ(b) for some a, b ∈ CE(L−), then [a, e/a] =

[b, e/b], so a = b; hence φ is one-to-one. If N ∈ CNS(L), then, by the previous lemma,

N = [a, e/a], for some a ∈ CE(L−), so φ is onto. The map φ reverses the order, since

if a ≤ b, then [b, e/b] ⊆ [a, e/a]. Moreover, if [a, e/a] ⊆ [b, e/b] then b ≤ a, so φ is a
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lattice anti-isomorphism. Using the isomorphism between ConL and CNS(L) provided in

Theorem 3.10, we get an anti-isomorphism between ConL and CE(L−).

In the commutative case we do not need the centrality assumption.

Corollary 3.13. Let L be a finite commutative residuated lattice. Then E(L−) is a lattice

with multiplication as meet and ConL ∼= (E(L−))∂.

Note that the statement is false without the assumption of finiteness. For example,

|ConZ−| = 2, but |CE(Z−)| = 1.

Varieties with equationally definable principal congruences

We use the description of congruence relations to characterize the commutative varieties

of residuated lattices that have EDPC.

For two elements a, b in a residuated lattice, set a∆b = (a/b ∧ e)(b/a ∧ e).

Lemma 3.14. If a variety V satisfies the identity (x ∧ e)ky ≈ y(x ∧ e)k, for some k ∈ N∗,
then for every L ∈ V and for all a, b, c, d ∈ L, (a, b) ∈ Cg(c, d) is equivalent to (c∆d)l ≤ a∆b,

for some l ∈ N

Proof. Let L be a residuated lattice and a, b ∈ L. It follows from Lemma 3.9 that aθb

iff (a∆b)θe. Consequently, Cg(a, b) = Cg(a∆b, e); moreover, (a, b) ∈ Cg(c, d) iff a∆b ∈
[e]Cg(c∆d,e). Since a∆b is negative, (a, b) ∈ Cg(c, d) is equivalent to a∆b ∈ M(c∆d), by

Theorem 3.10. Using the description of the convex, normal submonoid M(s) generated

by a negative element s given Theorem 3.10(3), we see that this is in turn equivalent to∏m
i=1 γi(c∆d) ≤ a∆b, for some m ∈ N and some iterated conjugates γ1, ..., γn ∈ ΓL. Recall

that f ≤ γ(f), for every negative element f ∈ L and for every iterated conjugate γ ∈ ΓL, so,

(c∆d)km = ((c∆d)k)m ≤
m∏

i=1

γi((c∆d)k) ≤
m∏

i=1

γi(c∆d),

thus (a, b) ∈ Cg(c, d) is equivalent to (c∆d)l ≤ a∆b, for some l ∈ N.

We say that a variety has equationally definable principal congruences or EDPC if there

is a conjunction φ(x, y, z, w) of equations such that for every algebra in the variety and for all

elements a, b, c, d in the algebra, (a, b) is in the congruence generated by (c, d) iff φ(a, b, c, d)

holds.

Proposition 3.15. Let V be a variety that satisfies (x ∧ e)ky ≈ y(x ∧ e)k, for some k ∈ N∗

and let . Then, V has EDPC iff V satisfies (x ∧ e)n ≈ (x ∧ e)n+1, for some n ∈ N.

32



Proof. Assume that V satisfies (x ∧ e)n ≈ (x ∧ e)n+1, for some n ∈ N and let L ∈ V and

a, b, c, d ∈ L. Since, (c∆d)n ≤ (c∆d)l, for every l, by Lemma 3.14 we get

(a, b) ∈ Cg(c, d) ⇔ (c∆d)n ≤ a∆b.

Conversely, if V has EDPC given by a conjunction φ of equations and (x∧e)n ≈ (x∧e)n+1

fails for every natural number n, then for every n there exist An ∈ V and an ∈ An, an < e,

such that an+1
n < an

n. Let A =
∏n

i=1 An, a = (an)n∈N and b = (an+1
n )n∈N. Since An satisfies

φ(an+1
n , e, an, e), for all n, it follows that A satisfies φ(b, e, a, e), that is (b, e) ∈ Cg(a, e). By

Lemma 3.14, this is equivalent to al ≤ b, for some number l. Thus, al
l ≤ al+1

l , for some l, a

contradiction.

Corollary 3.16. A variety of commutative residuated lattices has EDPC iff the negative

cones of the algebras in the variety are n-potent, for some natural number n.

The congruence extension property

A variety has the congruence extension property or CEP if for every algebra A in the

variety, for any subalgebra B of A and for any congruence θ on B, there exists a congruence

θ̄ on A, such that θ̄ ∩B2 = θ.

Note that in view of Theorem 3.10 congruences of subalgebras can be extended to the

whole algebra iff convex normal subalgebras can be extended.

Lemma 3.17. If a variety satisfies (x ∧ e)ky ≈ y(x ∧ e)k then it enjoys the congruence

extension property. In particular CRL has the CEP.

Proof. Recall that by Theorem 3.10, congruences on a residuated lattice are in one-to-one

correspondence with convex normal (in the whole residuated lattice) submonoids of the

negative cone. Let A be a residuated lattice, B a subalgebra of it and N a convex normal

submonoid of B. If N ′ is the convex normal submonoid of A generated by N , it suffices to

show that N = N ′∩B. For the non-obvious inclusion, let b ∈ N ′∩B. Then
∏n

i=1 γi(ai) ≤ b,

for some a1, ..., an ∈ N and some iterated conjugates γ1, ..., γn. Since, k-powers of the

negative cone are in the center, ak
i ≤ γi(a

k
i ). Moreover, γi(a

k
i ) ≤ γi(ai), because ai are in the

negative cone. Thus,
∏n

i=1 ak
i ≤ b. Since, ai ∈ N and b ∈ B, we get b ∈ N .

Not every residuated lattice satisfies the CEP. Let A = {0, c, b, a, e} and 0 < c < b < a <

e. Define a2 = a, b2 = ba = ab = b, ac = bc = c, and let all other non-trivial products be

0. It is easy to see that A is a residuated lattice and B = {e, a, b} defines a subalgebra of

it. B has the non-trivial congruence {{e, a}, {b}}, while A is simple. To see that, let θ be a

non-trivial congruence and aθe; then (ca/c)θce/c, namely cθe. So, 0θe, hence θ = A× A.
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The subvariety lattice

In this section we define a number of interesting subvarieties of RL and investigate their

relative position in L(RL). Also, we describe a correspondence between positive universal

formulas of residuated lattices and subvarieties, and we apply it to get equational basis for

joins of varieties in L(RL). Finally, we provide sufficient conditions for the join of two

finitely based varieties to be finitely based and give examples where the join of two varieties

is their Cartesian product.

We denote the class of commutative, cancellative, distributive, and integral residuated

lattices, by CRL, CanRL, DRL and IRL, respectively. It is clear that all these classes,

except possibly for CanRL, are varieties (in particular, IRL = Mod(x∧e ≈ x) = Mod(e/x ≈
e)). We will show in Lemma 4.1 that CanRL is a variety as well. Also, let RLC be the

variety generated by the class of all totally ordered residuated lattices.

Theorem 3.18. ([BT], [JT]) The equation λz(x/(x∨ y))∨ ρw(y/(x∨ y)) ≈ e constitutes an

equational basis for RLC.

Definition 3.19. A generalized BL-algebra (GBL-algebra) is a residuated lattice that satisfies

the identities

((x ∧ y)/y)y ≈ x ∧ y ≈ y(y\(x ∧ y)).

A generalized MV-algebra (GMV-algebra) is a residuated lattice that satisfies the identities

x/((x ∨ y)\x) ≈ x ∨ y ≈ (x/(x ∨ y))\x.

We denote the varieties of all GBL-algebras and all GMV-algebras, by GBL and GMV ,

respectively. GBL-algebras generalize BL-algebras, the algebraic counterpart of basic logic

(see [Ha]).

It is noted in [Bl] that the variety RL is arithmetical; in particular the subvariety lattice

L(RL) is distributive. We give a partial picture of the subvariety lattice. Inclusions that

have not been discussed will be proved in subsequent chapters.

Varieties generated by positive universal classes

A variety V is called a discriminator variety if there exists a term t(x, y, z) in the language

of V , such that if an algebra A of V is subdirectly irreducible then t(a, a, c) = c and t(a, b, c) =

a, for all a, b, c ∈ A, with a 6= b.

If V is a discriminator variety, to every first order formula corresponds a variety with the

property that a subdirectly irreducible algebra is in the variety iff it satisfies the first order
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Figure 2: Inclusions between some subvarieties of RL
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formula. In this case it is easy to construct an equational basis for the variety generated by

the class of all models of a first order formula. Moreover, all subdirectly irreducible algebras

are simple.

Residuated lattices do not form a discriminator variety, since e.g. not all subdirectly

irreducible residuated lattices are simple. Nevertheless, a similar correspondence can be

developed for positive universal formulas. We construct an equational basis for the variety

generated by an arbitrary positive universal class in a recursive way. The main tool in the

proof is the lattice isomorphism between congruence relations and certain subalgebras of a

residuated lattice developed in [BT], see Theorem 3.10. Even though the produced basis of

equations is infinite it reduces to a finite one for certain classes.

Lemma 3.20. Let L be a residuated lattice and A1, ..., An finite subsets of L. If a1 ∨ ... ∨
an = e, for all ai ∈ Ai, i ∈ {1, ..., n}, then for all i ∈ {1, . . . , n}, ni ∈ N, and for all

ai1, ai2, . . . , aini
∈ Ai, we have p1 ∨ ... ∨ pn = e, where pi = ai1ai2 · · · aini

.

Proof. The proof is a simple induction argument.

An open positive universal formula in a given language is an open first order formula

that can be written as a disjunction of conjunctions of equations in the language. A (closed)

positive universal formula is the universal closure of an open one. A positive universal class

is the collection of all models of a set of positive universal formulas.

Lemma 3.21. Every open (closed) positive universal formula, φ, in the language of residu-

ated lattices is equivalent to (the universal closure of) a disjunction, φ′, of equations of the

form e ≈ r, where the evaluation of the term r is negative in all residuated lattices.

Proof. Every equation t ≈ s in in the language of residuated lattices, where t, s are terms,

is equivalent to the conjunction of the two inequalities t ≤ s and s ≤ t, which in turn

is equivalent to the conjunction of the inequalities e ≤ s/t and e ≤ t/s. Moreover, a

conjunction of a finite number of inequalities of the form e ≤ ti, for 1 ≤ i ≤ n is equivalent

to the inequality e ≤ t1 ∧ ... ∧ tn. So, a conjunction of a a finite number of equations

is equivalent to a single inequality of the form e ≤ p, which in turn is equivalent to the

equation e ≈ r, where r = p ∧ e.

Recall the definition of the set Γm
Y of conjugate terms on the variable set Y .

For a positive universal formula φ(x̄) and a countable set of variables Y , we define

Bm
Y (φ′(x̄)) = {e ≈ γ1(r1(x̄)) ∨ ... ∨ γn(rn(x̄)) | γi ∈ Γm

Y }
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and BY (φ′(x̄)) =
⋃
{Bm

Y (φ′(x̄)) | m ∈ N}, where φ′(x̄) = (r1(x̄) = e or ... or rn(x̄) = e) is

the equivalent to φ(x̄) formula, given in Lemma 3.21.

Theorem 3.22. Let φ be a positive universal formula in the language of residuated lattices

and L a residuated lattice.

1. If L satisfies (∀x̄)(φ(x̄)), then L satisfies (∀x̄, ȳ)(ε(x̄, ȳ)), for all ε(x̄, ȳ) in BY (φ′(x̄))

and ȳ ∈ Y l, for some appropriate l ∈ N.

2. If L is subdirectly irreducible, then L satisfies (∀x̄)(φ(x̄)) iff L satisfies the equation

(∀x̄, ȳ)(ε(x̄, ȳ)), for all ε(x̄, ȳ) in BY (φ′(x̄)) and ȳ ∈ Y l.

Proof. 1) Let L be a residuated lattice that satisfies (∀x̄)(φ(x̄)). Moreover, let ε(x̄, ȳ) be

an equation in BY (φ′(x̄)), c̄ ∈ Lk and d̄ ∈ Ll. We will show that ε(c̄, d̄) holds in L. Since

L satisfies (∀x̄)(φ(x̄)), φ′(c̄) holds in L. So, ri(c̄) = e, for some i ∈ {1, 2, . . . , n}; hence

γ(ri(c̄)) = e, for all γ ∈ ΓY . Thus, ε(c̄, d̄) holds.

2) Let L be a subdirectly irreducible that satisfies BY (φ′(x̄)) and c̄ ∈ Lk, and let ai = ri(c̄).

We will show that ai = e for some i.

Let b ∈M(a1)∩ ...∩M(an), where M(x) symbolizes the convex normal submonoid of the

negative cone generated by x. Using Theorem 3.10(3), we have that for all i ∈ {1, 2, . . . , n},
si∏

j=1

gij ≤ b ≤ e, for some s1, s2, . . . , sn ∈ N and gi1, gi2, . . . , gisi
∈ ΓL(ai). So,

s1∏
j=1

g1j ∨
s2∏

j=1

g2j ∨ ... ∨
sn∏

j=1

g2j ≤ b ≤ e.

On the other hand,

γ1(a1) ∨ γ2(a2) ∨ ... ∨ γn(an) = e,

for all γi ∈ ΓL, since every equation of BY (φ′(x̄)) holds in L. Thus, for all i ∈ {1, 2, . . . , n}
and gi ∈ ΓL(ai), we have g1 ∨ g2 ∨ ... ∨ gn = e and, by Lemma 3.20,

s1∏
j=1

g1j ∨
s2∏

j=1

g2j ∨ ... ∨
sn∏

j=1

g2j = e.

Thus, b = e and M(a1) ∩ ... ∩M(an) = {e}.
Using the lattice isomorphisms of Theorem 3.10, we obtain

Θ(a1, e) ∩Θ(a2, e) ∩ ... ∩Θ(an, e) = ∆,
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where Θ(a, e) denotes the principal congruence generated by (a, e) and ∆ denotes the di-

agonal congruence. Since L is subdirectly irreducible, this implies that Θ(ai, e) = ∆, i.e.,

ai = e, for some i. Thus, (∀x̄)(φ′(x̄)) holds in L.

Corollary 3.23. Let {φi | i ∈ I} be a collection of positive universal formulas. Then,⋃
{B(φ′i)|i ∈ I} is an equational basis for the variety generated by the (subdirectly irreducible)

residuated lattices that satisfy φi, for every i ∈ I.

Proof. By the previous theorem a subdirectly irreducible residuated lattice satisfies φi iff it

satisfies all the equations in B(φ′i), so

(Mod(
⋃
{φi | i ∈ I}))SI =

⋂
{(Mod(φi))SI | i ∈ I}

=
⋂
{(Mod(B(φ′i)))SI | i ∈ I}

= (Mod(
⋃
{B(φ′i) | i ∈ I}))SI ,

where for every variety V and every set of equations E , VSI denotes the class of all subdirectly

irreducible algebras of V and Mod(E) denotes the variety of all models of E . Consequently,

V((Mod(
⋃
{φi | i ∈ I}))SI) = V((Mod(

⋃
{B(φ′i) | i ∈ I}))SI)

= Mod(
⋃
{B(φ′i) | i ∈ I}),

where V(K) denotes the variety generated by a class K of similar algebras.

Note that the equational basis for the variety generated by the models of a positive

universal formula is recursive.

The basis given in Theorem 3.22 is by no means of minimal cardinality. It is always

infinite, while, as it can be easily seen, for commutative subvarieties it simplifies to the

conjunction of commutativity and the equation of B0(φ′). So, for example, the variety

generated by the commutative residuated lattices, whose underlying set is the union of its

positive and negative cone, is axiomatized by xy ≈ yx and e ≈ (x ∧ e) ∨ (e/x ∧ e).

Equational bases for joins of subvarieties

We can apply the correspondence to the join of two residuated lattice varieties to obtain

an equational basis for it, given equational bases for the two varieties. In particular, we

provide sufficient conditions for a variety so that the join of any two of its finitely based

subvarieties is also finitely based.

Corollary 3.24. If B1, B2, . . . Bn are equational bases for the varieties V1,V2, ...,Vn, such

that the sets of variables in each basis are pairwise disjoint, then
⋃
{B(φ′i) | i ∈ I} is an

38



equational basis for the join V1 ∨V2 ∨ . . .∨Vn, where φi ranges over all possible disjunctions

of n equations, one from each of B1, B2, . . . , Bn.

Proof. The variety RL is congruence distributive, so, by Jónsson’s Lemma, a subdirectly

irreducible residuated lattice in the join of finitely many varieties is in one of the varieties.

Moreover, by the definition of φi, it is clear that a subdirectly irreducible residuated lattice

satisfies every φi, for i ∈ I, if and only if it is in one of the varieties V1,V2, . . . ,Vn. So,

V1 ∨ V2 ∨ . . . ∨ Vn = V((V1 ∨ V2 ∨ . . . ∨ Vn)SI)

= V((V1 ∪ V2 ∪ · · · ∪ Vn)SI)

= V(Mod(
⋃
{φi | i ∈ I})SI)

= Mod(
⋃
{B(φ′i) | i ∈ I}).

In the case of the join of finitely based varieties the situation is simpler.

Corollary 3.25. If B1, B2, . . . Bn are finite equational bases for the varieties V1,V2, . . . ,Vn,

then B(φ′) is an equational basis for the join V1 ∨ V2 ∨ . . . ∨ Vn of the varieties, where

φ = (
∧

B1∨
∧

B2∨· · ·∨
∧

Bn) and for every i ∈ {1, 2, · · · , n},
∧

Bi denotes the conjunction

of the equations in Bi.

Proof. Retaining the notation of Corollary 3.24, we see that
⋃
{φi | i ∈ I} is equivalent to φ

and
⋃
{B(φ′i) | i ∈ I} is equivalent to B(φ′).

Corollary 3.26. The join of finitely many finitely based varieties of residuated lattices is

recursively based.

We define the varieties C−k RL = Mod((x∧ e)k(y ∧ e) ≈ (y ∧ e)(x∧ e)k) and CanC−1 RL =

CanRL ∩ C−1 RL.

Theorem 3.27.

1. The join of two finitely based subvarieties of LG ∨ CanC−1 RL is also finitely based.

2. The join of two finitely based subvarieties of RLC ∨ C−k RL is also finitely based, for

every k ≥ 1.
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Proof. 1) Note that LG satisfies λz(λw(x)) ≈ λwz(x) and ρz(x) ≈ λz−1(x), since

λz(λw(x)) = z\(w\xw ∧ e)z ∧ e

= z\(w\xw)z ∧ z\z ∧ e

= z−1w−1xwz ∧ e

= (wz)−1xwz ∧ e

= wz\xwz ∧ e

= λwz(x)

and

ρz(x) = zx/z ∧ e = zxz−1 ∧ e = z−1\xz−1 ∧ e = λz−1(x).

So, λz(λw(x ∧ e)) ≈ λwz(x ∧ e) and ρz(x ∧ e) ≈ λz−1(x ∧ e) hold in LG. The same two

equations hold in CanC−1 RL, since for any negative element a and any element b, λb(a) =

b\ab ∧ e = b\ba ∧ e = a ∧ e = a and ρb(a) = a ∧ e = a. Thus, these equations hold in the

join LG ∨ CanC−1 RL.

If V1, V2 are subvarieties of LG ∨ CanC−1 RL with finite equational bases B1, B2, their

join satisfies the two equations, which together with the equations in B2(φ′) imply every

equation of B(φ′), where φ =
∧

B1 ∨
∧

B2.

2) The variety RLC satisfies the implication

x ∨ y = e ⇒ λz(x) ∨ ρw(y) = e,

by Theorem 3.18. We will show that the same implication holds in C−k RL. If x∨y = e, then,

by Lemma 3.20, xk∨yk = e. Since, x ≤ e, we have xk ≤ x ≤ e; so, for all z, xkz = zxk, hence

xk ≤ z\xkz and xk ≤ zxk/z. Since xk ≤ e, this implies xk ≤ z\xkz ∧ e and xk ≤ zxk/z ∧ e,

i.e., xk ≤ λz(x
k) and xk ≤ ρz(x

k), for all z. Thus, λz(x
k) ∨ ρw(yk) = e. Moreover, left and

right conjugates are increasing in their arguments, so λz(x) ∨ ρw(y) = e.

All subdirectly irreducible residuated lattices in the join RLC ∨C−k RL coincide with the

subdirectly irreducibles in the union RLC ∪ C−k RL, so all of them satisfy the implication.

Since every residuated lattice in the join RLC ∨C−k RL is a subdirect product of subdirectly

irreducible algebras, and quasi-equations are preserved under products and subalgebras, the

join satisfies the above implication.

Now, if V1, V2 are subvarieties of RLC ∨ C−k RL with finite equational basis B1, B2, then

their join also satisfies the implication. Since, B(φ′) is an equational basis for V1 ∨ V2,

where φ =
∧

B1 ∨
∧

B2, the implication is a consequence of a finite subset B of B(φ′), by

compactness. It is clear that B ∪B0(φ′) is a finite equational basis for V1 ∨ V2.
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Corollary 3.28. The join of two finitely based commutative varieties of residuated lattices

is finitely based.

It is an open problem whether the join of two finitely based varieties of residuated lattices

is finitely based.

Direct product decompositions

Certain pairs of subvarieties of RL are so different that their join decomposes into their

the Cartesian product of the two varieties, i.e., the class of all Cartesian products of algebras

of the two varieties. Such a pair is the variety of `-groups and the variety of their negative

cones. First we give a general lemma that allows us to obtain such decompositions of the

join of two varieties from two projection-terms.

The following proposition is in the folklore of the subject and easy to prove.

Proposition 3.29. Let V1,V2 be subvarieties of RL with equational bases B1 and B2, respec-

tively, and let π1(x), π2(x) be unary terms, such that V1 satisfies π1(x) ≈ x and π2(x) ≈ e

and V2 satisfies π1(x) ≈ e and π2(x) ≈ x. Then V1 ∨ V2 = V1 × V2 and the following list,

B1 ∗B2, of equations is an equational basis for it.

i) π1(x) · π2(x) ≈ x

ii) πi(πj(x)) ≈ e, for i, j ∈ {1, 2}, i 6= j and πi(πi(x)) ≈ πi(x) for i ∈ {1, 2}.
iii) πi(x ? y) ≈ πi(x) ? πi(y), where ? ∈ {∧,∨, ·, /, \} and i ∈ {1, 2}
iv) ε(π1(x1), ..., π1(xn)), for all equations ε(x1, ..., xn) of B1

v) ε(π2(x1), ..., π2(xn)), for all equations ε(x1, ..., xn) of B2

For any pair of subvarieties of V1,V2, the same decomposition holds for their join, and if

B1, B2 are finite, then so is B1 ∗B2.

Proof. It is easy to see that the equations in B1∗B2 hold both in V1 and V2, hence they hold

in V1 ∨ V2, also. Now, suppose that the residuated lattice A satisfies the equations B1 ∗B2;

we will show that A is in V1 × V2.

Define A1 = {x ∈ A| π2(x) = e} and A2 = {x ∈ A| π1(x) = e}. Using (iii) and (i),

it is easy to see that A1 and A2 are subalgebras of A. Define the map f : A → A1 × A2,

by f(x) = (π1(x), π2(x)). It is easy to check that f is well defined, using (ii); that it is a

homomorphism, using (iii); one-to-one, using (i); and onto, using (iii) and (i). Thus, A is

isomorphic to A1 × A2 ∈ V1 × V2 ⊆ V1 ∨ V2.

Corollary 3.30. If B1 = {(e/x)x ≈ e} and B2 = {e∧x ≈ x}, then B1 ∗B2 is an equational

basis for LG ∨ IRL = LG × IRL.
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Proof. Let π1(x) = e/(e/x) and π2(x) = (e/x)x. It is easy to see that LG satisfies e/(e/x) ≈
e(ex−1)−1 ≈ x and (e/x)x ≈ x−1x ≈ e, and that IRL satisfies (e/x)x ≈ ex ≈ x and

e/(e/x) ≈ e.

Substructural logics and the decidability of the equational theory

In this section we discuss the connections of residuated lattices to logical sequent calculi

and mention the derivation of the decidability of the equational theory of RL from this

analysis, given in [JT].

Let L be the similarity type of residuated lattices and TL the set of all residuated lattice

terms. A sequent is a sequence of the form

w(γ1, . . . γn, t1(x̄), . . . tm(x̄)) ` t(x̄),

where x̄ = (x1, . . . xl), n, m, l ∈ N, w is a monoid word on its arguments; t, t1, . . . , tm are

residuated lattice terms; and γ1, . . . , γn are distinct symbols. An instance of a sequent is

obtained by substituting (t1k, . . . , tikk) for γk and si for xi, where i ∈ Nl, k ∈ Nn, ik ∈
N, si, tij ∈ TL. A sequent rule or Gentzen rule is a sequence of the form

Γ1, . . . Γm, Γm+1,

where m ∈ N and Γi are sequents for all i ∈ Nm+1. An instance of the rule is obtained by

substituting instances of the sequents in it. We denote the empty monoid word by ε and

the empty sequence of sequents by space. A Gentzen rule R is usually written in fraction

notation:
Γ1 Γ2 . . . Γm

Γm+1

R.

A sequent calculus or Gentzen system is a set of Gentzen rules.

Let Σ be a set of instances of sequents, Γ an instance of a sequent and S a Gentzen

system. We call Γ an immediate consequence of Σ via S, if there are Γ1, ..., Γm ∈ Σ and

R ∈ S, such that Γ1 Γ2 ... Γm

Γ
is an instance of R. We say that Γ is provable from Σ via S, if

there is a sequence Γ1, . . . , Γn = Γ, such that for all i ∈ Nn, Γi is an immediate consequence

of Σ ∪ {Γ1, . . . Γi−1}, via S. If Γ is provable from ∅ via S, we say that Γ is provable in S.

We define the interpretation, [ ], of a sequence of terms, an instance of a sequent and an

instance of a Gentzen rule in the following way:

[γ] = [(t1, t2, . . . , tl)] = t1 · t2 · · · tl; [ε] = e;
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[Γ] = [w(γ1, . . . , γn, t1(s̄), . . . , tm(s̄)) ` t(s̄)]

= (w̄([γ1], [γ2], . . . , [γn], t1(s̄), . . . , tm(s̄)) ≤ [t(s̄)]),

where w̄ is the evaluation of w in residuated lattices, γk = (t1k, . . . , tikk) and s̄ = (s1, . . . , sk);[
Γ1 Γ2 . . . Γm

Γ

]
= (([Γ1] and [Γ2] and . . . and [Γm]) imply [Γ]).

Consider the following Gentzen system, G:

t ` t
(Id)

γδ ` u

γeδ ` u
(e-left)

ε ` e
(e-right)

γstδ ` u

γ(s · t)δ ` u
(·left) γ ` s δ ` t

γδ ` s · t
(·right)

σ ` s γtδ ` u

γσ(s\t)δ ` u
(\left) sγ ` t

γ ` s\t
(\right)

σ ` s γtδ ` u

γ(t/s)σδ ` u
(/left)

γs ` t

γ ` t/s
(/right)

γsδ ` u γtδ ` u

γ(s∨t)δ ` u
(∨left)

γ ` s

γ ` s ∨ t
(∨right1)

γ ` t

γ ` s ∨ t
(∨right2)

γsδ ` u

γ(s∧t)δ ` u
(∧left1)

γtδ ` u

γ(s∧t)δ ` u
(∧left2)

γ ` s γ ` t

γ ` s ∧ t
(∧right)

This system lacks the three structural rules of weakening, contraction and exchange, so

it describes a substructural logic. Actually, the corresponding logic is the unbounded version

of the Full Lambek calculus. It is easy to check that if Γ is provable in G, then [Γ] is true in

RL, by verifying that the interpretation of every immediate consequence of Σ is satisfied, if

the interpretation of every element of Σ is satisfied. But more than soundness of the rules

is true; the following completeness theorem is a generalization to the non-commutative case

of a theorem for a fragment of intuitionistic linear logic, proved in [OT]. The details can be

found in [JT].

Theorem 3.31. [JT] For a residuated lattice term p, the inequality e ≤ p is satisfied in RL
iff the sequent ε ` p is provable in G.

Corollary 3.32. [JT] The equational theory of residuated lattices is decidable.

Proof. Let t, s be residuated lattice terms. Note that an equation t ≈ s is equivalent to the

conjunction of the inequalities e ≤ s/t and e ≤ t/s. Thus, to decide whether t ≈ s holds
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in RL it suffices to decide whether RL |= e ≤ p, where p is a term. By Theorem 3.31,

this is equivalent to deciding whether ε ` p is provable in G. Note that provability in G is

decidable, because if Γ is provable then there is a sequence of immediate consequences, of

which Γ is the last member. There are only finitely many choices for the rule used in the

last step. Actually, only the rules for which there is an instance with Γ as the denominator

are candidates. Moreover, there are finitely many ways in which Γ can be a denominator

of a given instance of a rule. Thus, we have finitely many collections of finitely many

sequent instances as the only choices for numerators of rule instances that can produce Γ.

Additionally, all these sequent instances have strictly lower complexity than Γ, where the

complexity of a sequent instance could be taken as the sum of the heights of the terms that

are members of it (a sequent instance is a sequence of terms and `). Of course the same

argumentation applies to the candidate sequent instances. This process of checking possible

elements for being denominators has to stop because of the decreasing-complexity nature of

it. If a possible route, which can be visualized as a branch of a search tree, leads to the

numerator of the Id-rule or of the e-right rule, then Γ is provable in G. Otherwise, if all

routes stop at some sequent that is not a denominator of any instance of a rule in G, then

Γ cannot be provable. Thus, it is decidable whether ε ` p is provable in G, for every term

p.

Lexicographic orders on semidirect products of residuated lattices

We conclude this section with an observation on semidirect products of residuated lattices

under the lexicographic order. Lexicographic orders on `-groups turn out to be a useful tool,

see [AF], [Me]. We provide conditions for the semidirect product of two residuated lattices

under the lexicographic order to be a residuated lattice.

Let K and Q be residuated lattices and θ a monoid homomorphism from the monoid

reduct of Q to the endomorphism monoid of the monoid reduct of K. It is easy to check

that the set K×Q together with the multiplication given by (a, b) · (c, d) = (a · θb(c), bd) and

the order defined by (a, b) < (c, d) ⇔ b < d or (b = d and a < c), the reverse lexicographic

order, is actually a monoid with identity element (1K, 1Q) and a partially ordered set. We

call this structure the semidirect product of K by Q over θ and we symbolize it by K
←
×θ Q.

(Note that multiplication is not necessarily compatible with the order.)

Proposition 3.33. Let K and Q be residuated lattices and θ a monoid homomorphism from

the monoid reduct of Q to the endomorphism monoid of the monoid reduct of K. Then,

K
←
×θ Q defines a residuated lattice iff all the following conditions hold
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1. Q is a chain or K is bounded;

2. θx is a residuated map, for all x ∈ Q;

3. Q is cancellative or K is a singleton; and

4. Q is an `-group or K has a maximum element.

Proof. Assume all the conditions hold. The first condition guarantees that the structure is

a lattice. In both cases the join and the meet are easy to compute.

If K is bounded then

(a, b) ∨ (c, d) =

{
(a ∨ c, b) if b = d

(0K, b ∨ d) if b 6= d

and

(a, b) ∧ (c, d) =

{
(a ∧ c, b) if b = d

(1K, b ∧ d) if b 6= d

If Q is a chain then

(a, b) ∨ (c, d) =


(a ∨ c, b) if b = d

(a, b) if b > d

(c, d) if b < d

and

(a, b) ∧ (c, d) =


(a ∧ c, b) if b = d

(c, d) if b > d

(a, b) if b < d

If K is a singleton, multiplication is vacuously order preserving. In view of the third

condition assume that Q is cancellative. Let a, c, f ∈ K, b, d, g ∈ Q and (a, b) < (c, d), i.e.,

b < d or (b = d and a < c). We will show that (a, b)(f, g) ≤ (c, d)(f, g) and (f, g)(a, b) ≤
(f, g)(c, d), namely that (aθb(f), bg) ≤ (cθd(f), dg) and that (fθg(a), gb) ≤ (fθg(c), gd).

If b < d then bg < dg and gb < gd, because of cancellativity, so both of the inequalities

hold. If b = d and a < c, then bg = dg and gb = gd. Additionally, aθb(f) = aθd(f) < cθd(f)

and θg(a) ≤ θg(c), so fθg(a) ≤ fθg(c). Thus, the inequalities hold in this case, as well.

By the second condition, θx = θ(x) is a residuated map for all x ∈ Q; let θ∗(x) denote

the residual of θx. To prove that multiplication is residuated, in view of the last condition,

suppose first that Q is an l-group. Let k, l, m ∈ K, x, y, z ∈ Q. We will show that the pair

(θ∗x(k\l), x−1y) is the maximum (m, z) with respect to the property (k, x)(m, z) ≤ (l, y).

Note that

(k, x)(θ∗x(k\l), x−1y) = (kθx(θ
∗
x(k\l)), xx−1y) ≤ (k(k\l), y) ≤ (l, y).
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Conversely, if (k, x)(m, z) ≤ (l, y), then (kθx(m), xz) ≤ (l, y). So either xz < y, or xz = y

and kθx(m) ≤ l. In the first case, z < x−1y, so (m, z) ≤ (θ∗x(k\l), x−1y). In the second

case, z = x−1y and θx(m) ≤ k\l, so m ≤ θ∗(k\l), hence (m, z) ≤ (θ∗x(k\l), x−1y). Thus,

(k, x)\(l, y) = (θ∗x(k\l), x−1y). Similarly, we can show that (l, y)/(k, x) = (yx−1, θyx−1(k)\l).
In the case that K has a top element, working as above we can see that

(k, x)\(l, y) =

{
(1K, x\y) if x(x\y) < y

(θ∗x(k\l), x\y) if x(x\y) = y

and

(l, y)/(k, x) =

{
(1K, y/x) if (y/x)x < y

(l/θy/x(k), y/x) if (y/x)x = y

Conversely, suppose that K
←
×θ Q is a residuated lattice. If Q is not a chain, then there

is a pair of incomparable elements x, y. Let a ∈ K and (a, x)∨ (a, y) = (b, z), for some b ∈ K

and z ∈ Q. Since, (a, x), (a, y) ≤ (b, z) we get x, y ≤ z, thus x ∨ y ≤ z. If x ∨ y < z then

(a, x ∨ y) would be a common upper bound of (a, x) and (a, y), but strictly less than their

join, a contradiction. So z = x ∨ y. Since x, y are incomparable (a, x), (a, y) < (c, x ∨ y) for

all c ∈ K, thus (b, x∨ y) = (a, x)∨ (a, y) ≤ (c, x∨y) for all c ∈ K; hence b ≤ c, for all c ∈ K,

namely b is the least element of K. Similarly, one can prove that K is upper bounded; thus

the first condition holds.

If Q is not an l-group, then there exists an element x in Q such that x(x\e) < e. Let

k, l, m ∈ K, z ∈ Q and (m, z) = (k, x)\(l, e). Then (kθx(m), xz) ≤ (l, e), so xz ≤ e, i.e.,

z ≤ x\e. Hence, (m, z) ≤ (m, x\e). Moreover,

(k, x)(m, x\e) = (kθx(m), x(x\e)) < (l, e),

hence (m, z) = (m, x\e). Furthermore, for every n ∈ K,

(k, x)(n, x\e) = (kθx(n), x(x\e)) < (l, e),

hence (n, x\e) ≤ (m,x\e). Thus, n ≤ m, for all n ∈ K, i.e., K has an upper bound, a fact

that establishes the last condition.

To prove the second condition, we need to show that for all x ∈ Q, the map θx is

residuated, i.e., there exists a map θ′x,such that for all k, n ∈ K, θx(n) ≤ l iff n ≤ θ′x(l).

We define θ′x(l) to be the first coordinate of the element (e, x)\(l, x). It is easy to see that

the second coordinate of this element is x\x, so (θ′x(l), x\x) = (e, x)\(l, x). Given that
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x · (x\x) = x holds in every residuated lattice, by Lemma 3.1(15), we have

n ≤ θ′x(l) ⇔ (n, x\x) ≤ (θ′x(l), x\x)

⇔ (n, x\x) ≤ (e, x)\(l, x)

⇔ (e, x)(n, x\x) ≤ (l, x)

⇔ (e · θx(n), x · (x\x)) ≤ (l, x)

⇔ θx(n) ≤ l

Assume, now, that K is not a singleton. We will show that Q is cancellative. Note first

that for all q ∈ Q, there are m, n ∈ K such that m < n and θq(m) 6= θq(n), because otherwise

θq(x) = θq(y), for all x, y ∈ K, a contradiction since no constant map is residuated, unless it is

defined over a singleton. Suppose, by way of contradiction, that qs = qr, for some q, s, r ∈ Q.

If t = s ∨ r, then qt = q(s ∨ r) = qs ∨ qr = qs. Since multiplication is order preserving

and (n, s) ≤ (m, t), we get (e, q)(n, s) ≤ (e, q)(m, t), namely (θq(n), qs) ≤ (θq(m), qt). Since

qs = qt, we get θq(n) ≤ θq(m), while from m < n and the fact that θq is order preserving

we have θq(m) ≤ θq(n), a contradiction. Now, suppose that sq = tq and s ≤ t, for some

q, s, t ∈ Q. From (n, s) ≤ (m, t), we get (n, s)(e, q) ≤ (m, t)(e, q), namely (n, sq) ≤ (m, tq).

Since sq = tq, we get n ≤ m, a contradiction. Thus, Q is both left and right cancellative.

Since the direct product is a special case of a semidirect product under a residuated map,

the same conditions apply.

For a study of semidirect products under different order relations, we refer the reader to

the work in progress [JoT] of B. Jónsson and C. Tsinakis.
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CHAPTER IV

CANCELLATIVE RESIDUATED LATTICES

This section contains a brief exposition of cancellative residuated lattices and of the

connections between `-groups and their negative cones. Most of the results will appear in

the author’s joint paper [BCGJT] and will be used in Chapter VII.

Note that every non-trivial cancellative residuated lattice is infinite. Indeed, since a non-

trivial residuated lattice has a non-trivial negative cone (it can have a trivial positive cone),

and multiplication is order preserving and cancellative, it follows that all the powers of a

strictly negative element have to be distinct.

It turns out that the language of residuated lattices has enough descriptive power to

express equationally the property of cancellativity (ac = bc ⇒ a = c).

Lemma 4.1. [BCGJT] A residuated lattice is right cancellative as a monoid if and only if

it satisfies the identity xy/y ≈ x.

Proof. The identity (xy/y)y ≈ xy holds in every residuated lattice since xy/y ≤ xy/y implies

(xy/y)y ≤ xy, and xy ≤ xy implies x ≤ xy/y, hence xy ≤ (xy/y)y. By right cancellativity,

we have xy/y = x. Conversely, suppose xy/y ≈ x holds, and consider elements a, b, c such

that ac = bc. Then a = ac/c = bc/c = b, so right cancellativity is satisfied.

Thus, a residuated lattice is cancellative if it satisfies both x\xy ≈ y and yx/x ≈ y.

Consequently, the class CanRL of cancellative residuated lattices is a variety.

In [AF], it is shown that the lattice reduct of an `-group is distributive. Example 3.29

shows that this is not the case for, even commutative, cancellative residuated lattices. Ac-

tually, it is shown in [BCGJT] that CanRL satisfies no non-trivial lattice identity.

The following proposition shows that V(Z−), the variety of residuated lattices generated

by the non-positive integers under addition and the natural order, and the variety of `-groups

form a splitting pair in the subvariety lattice of cancellative residuated lattices.

Proposition 4.2. For every cancellative residuated lattice, either it has Z− as a subalgebra

or it is an `-group.

Proof. Let A be a cancellative residuated lattice. In view of Lemma 3.1(4) either there

exists a strictly negative element a of A, such that e/a = e or for every strictly negative

element x of A, e < e/x. It is easy to see that in the first case the subalgebra generated
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by a is isomorphic to Z−. In the second case for every element a of A, consider the element

x = (e/a)a. It cannot be strictly negative because e/x = e/(e/a)a = (e/a)/(e/a) = e, by

cancellativity; so x = e. Thus, A is an `-group.

Lattice-ordered groups

The most well studied examples of cancellative residuated lattices are `-groups. As men-

tioned in Example 3.1, the class LG of `-groups is axiomatized, in the context of residuated

lattices, by the identity x(x\e) ≈ e. Below we provide alternative axiomatizations of LG.

Lemma 4.3. Each of the following sets of equations forms an equational basis for LG.

1. (e/x)x ≈ e

2. x ≈ e/(x\e) and x/x = e

3. x ≈ y/(x\y)

4. x/(y\e) ≈ yx

5. x/(y\e) ≈ xy and e/x ≈ x\e

6. (y/x)x ≈ y

7. x/(y\z) ≈ (z/x)\y)

Proof. Recall that an `-group has a group and a lattice reduct and multiplication distributes

over joins. Obviously all the equations are valid in `-groups, if we define x/y = xy−1 and

y\x = y−1x.

A residuated lattice that satisfies the first identity is a monoid such that every element

has a right inverse, so it is a group. Multiplication distributes over joins, by Lemma 3.1, so

we obtain an `-group. Using the two identities of (2) and Lemma 3.1 we get

(e/x)/(e/x) ≈ e ⇒ e/(e/x)x ≈ e

⇒ [e/(e/x)x]\e ≈ e\e
⇒ (e/x)x ≈ e.

So, (2) implies (1). Setting y = e in (3), we obtain x ≈ e/(x\e); setting x = e, we get

e ≈ y/y. So (3) implies (2). Setting x = e in (4), we have e/(y\e) ≈ y; setting y = e/x,

we get x/[(e/x)\e] ≈ (e/x)x, so x/x ≈ (e/x)x. It follows from Lemma 3.1(4) and (14) that

x/x is an element of the positive cone and that (e/x)x is an element of the negative cone, so
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x/x ≈ (e/x) ≈ e. For (5) we work in a similar way. Identity (6) yields (1) for y = e. Finally,

for x = z = e in (7), we get y = e/(y\e) and for z = x, y = e we have e ≤ x/x = (x/x)\e, so

x/x ≤ e, so x/x = e. Thus, (7) implies (1).

The subvariety lattice of LG has a unique atom, the variety CLG of commutative `-groups.

This varitey is known (see [AF]) to be equal to V(Z), the variety of `-groups generated by

the integers under addition and the natural order. Moreover, LG has a unique lower cover

N . It is well known that LG has a decidable equational theory.

Negative cones of `-groups

Recall the definition of the negative cone of a residuated lattice and of a class of residuated

lattices given in Example 3.7. We present a characterization of the negative cones of `-groups,

that allows to conclude that LG− is a variety. Moreover, we investigate the similarities

between the subvariety lattices of LG and LG−.

Recall the definition of a generalized BL-algebra and of a generalized MV-algebra, from

page 34.

Theorem 4.4. [BCGJT] For a residuated lattice L, the following statements are equivalent.

1. L is the negative cone of an `-group.

2. L is a cancellative integral GMV-algebra.

3. L is a cancellative integral GBL-algebra.

Corollary 4.5. [BCGJT] The class LG− is a variety, axiomatized relative to RL by the

identities xy/y ≈ x ≈ y\yx and (x/y)y ≈ x ∧ y ≈ y(y\x). Alternatively, the last two

identities can be replaced by x/(y\x) ≈ x ∨ y ≈ (x/y)\x.

Recall that for a class K of residuated lattices, H(K), S(K), P(K) and K− denote,

respectively, the class of homomorphic images, subalgebras, products and negative cones of

members of K.

Theorem 4.6. [BCGJT] The map K 7→ K−, defined on classes of `-groups, commutes with

the operators H, S and P, and restricts to a lattice isomorphism between the subvariety

lattices of LG and LG−.

Corollary 4.7. [BCGJT] The variety V(Z−) consists of all negative cones of Abelian `-

groups.
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We now show how equational bases of varieties are translated by the isomorphism of the

subvariety lattices of LG and LG−.

For a residuated lattice term t, we define a translated term t− by

x− = x ∧ e e− = e

(s/t)− = s−/t− ∧ e (s\t)− = s−\t− ∧ e

(st)− = s−t− (s ∨ t)− = s− ∨ t− (s ∧ t)− = s− ∧ t−

Lemma 4.8. [BCGJT] For any L ∈ RL, L− |= s ≈ t iff L |= s− ≈ t−.

Theorem 4.9. [BCGJT] Let V be a subvariety of LG−, defined by a set E of identities and

let W = Mod(E−) ∩ LG, where E− = {s− ≈ t− | (s ≈ t) ∈ E}. Then W− = V.

Note that since · and −1 distribute over ∨ and ∧, any LG identity is equivalent to a

conjunction of two identities of the form e ≤ p(g1, . . . , gn), where p is a lattice term and

g1, . . . , gn are group terms. Since `-groups are distributive, this can be further reduced to a

finite conjunction of inequalities of the form e ≤ g1 ∨ · · · ∨ gn.

For a term t(x1, . . . , xm) and a variable z distinct from x1, . . . , xm, let

t̄(z, x1, . . . , xm) = t(z−1x1, . . . , z
−1xm).

Every group term g can be written in the form p1q
−1
1 p2q

−1
2 · · · pnq

−1
n where the pi and qi

are products of variables (without inverses). Define

ĝ = qn · · · q2q1\[qn(· · · (q2(q1p1/q1)p2/q2) · · · )pn/qn].

Theorem 4.10. [BCGJT] Let V be a subvariety of LG, defined by a set E of identities,

which we may assume to be of the form e ≤ g1 ∨ . . . ∨ gn. Let

Ē = {e ≈ ̂̄g1 ∨ . . . ∨ ̂̄gn | e ≤ g1 ∨ . . . ∨ gn is in E}.

Then Ē is an equational basis for V− relative to LG−.

For example consider the variety R = RLC ∩ LG of representable `-groups which (by

definition) is generated by the class of totally ordered groups (see [AF] for more details). An

equational basis for this variety is given by e ≤ x−1yx ∨ y−1 (relative to LG). Applying the

translation above, we obtain e ≈ zx\(zy/z)x ∨ y\z as as equational basis for R−.

Corollary 4.11. [BCGJT] The map V 7→ V− from L(LG) to L(LG−) sends finitely based

subvarieties of LG to finitely based subvarieties of LG−.
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CHAPTER V

ATOMIC SUBVARIETIES

In this chapter we investigate the atomic varieties in the subvariety lattice of residuated

lattices. In particular, we give infinitely many commutative atoms and note that there are

only two cancellative ones. Moreover, we present a continuum of atoms that satisfy the

idempotency law for multiplication and are in RLC . Finally, we observe that there are only

two commutative idempotent atomic varieties.

A non-trivial algebra A is called strictly simple if it lacks non-trivial proper subalgebras

and congruences. Recall that, by Theorem 3.10, congruences on residuated lattices corre-

spond to convex normal subalgebras. So, the absence of non-trivial proper subalgebras is

enough to establish the strict simplicity of a residuated lattice.

Proposition 5.1. Let a be a non-identity element of a strictly simple, lower bounded resid-

uated lattice, A, and let t(x) be a term such that A satisfies t(x) = a, if x 6= e. Then, the

variety generated by A is an atom in the subvariety lattice.

Proof. Let V be the variety generated by A. By Jónsson’s Lemma the subdirectly irreducible

algebras of V are contained in HSPu(A). So, if D ∈ VSI , there exists, an ultrapower B of A

and a non-trivial subalgebra C of B such that D = f(C) for some homomorphism f . Since

A is strictly simple, thus generated by any of its non-identity elements, we can assume,

without loss of generality, that a = 0, the least element of A. Note that A satisfies the first

order formula:

(∀ x, y, z)(x 6= e 6= y → t(x) = t(y) ≤ z),

thus, so does B, by the remark on page 5. So, B has a least element 0′, which is actually

contained in all non-trivial subalgebras of B.

Since the least element is term definable and A is generated by 0, the subalgebra F of

C generated by 0′ is isomorphic to A, hence F is strictly simple. If any two elements of

F have the same image under f , then f(F ) = {e}; thus f(0′) = f(e). Since the identity

element of a residuated lattice is its least element only if the residuated lattice is trivial, we

get f(C) = {e}, a contradiction. Consequently, f(F) ⊆ D is isomorphic to F. Thus, A

is isomorphic to a subalgebra of every subdirectly irreducible member of V , hence V is an

atom.

The following lemma describes the finitely generated atoms of L(RL).

52



Corollary 5.2. Let V be a finitely generated variety. Then V is an atom in L(RL) iff

V = V(L), for some finite strictly simple L.

Proof. Let V be an atomic variety generated by a finite algebra K. If K is not strictly simple,

then there is a minimal non-trivial subalgebra L of K. Since V is an atom, it is generated

by L. The converse is a direct consequence of the previous lemma; the necessary term exists

because L is strictly simple and finite.

Commutative atoms

The simplest non-trivial residuated lattice is 2. The underlying set is 2 = {0, e}, 0 is the

least element and e the multiplicative identity. Recall the definition of a generalized Boolean

algebra from Example 3.2. We prove that the class GBA of generalized Boolean algebras is

a variety and it is generated by 2. Additionally, we provide equational bases for this variety.

Proposition 5.3. Let L be a residuated lattice. The following statements are equivalent.

1. L is a generalized Boolean algebra.

2. L is in the variety V(2).

3. L satisfies the identities

(a) x · y ≈ x ∧ y, and

(b) x/(x ∨ y) ∨ (x ∨ y) ≈ e.

4. L satisfies the identities

(a) x · y ≈ x ∧ y, and

(b) (x ∧ y)/y ∨ y ≈ e.

5. L satisfies the identities

(a) xy ≈ x ∧ y, and

(b) y/(y/x) ≈ x ∨ y.

6. L satisfies x/(x\y) ≈ x ≈ (y/x)\x.

Proof. We will show that (1) ⇒ (3) ⇒ (4) ⇒ (2) ⇒ (5) ⇒ (1) and that (6) ⇔ (1).

(1) ⇒ (3): We assume that every principal ideal is a Boolean algebra. In particular, L

has a top element e. Consider arbitrary x, y ∈ L. Since the element x ∨ y is in the interval
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[x, e], it has a complement z in [x, e]. Note that x/(x∨ y)∧ (x∨ y) ≤ x, by Lemma 3.1, and

x/(x∨ y) is the maximum element with this property. Since z also satisfies this property, we

have z ≤ x/(x∨y). So, e = z∨(x∨y) ≤ x/(x∨y)∨(x∨y) ≤ e, hence x/(x∨y)∨(x∨y) = e.

(3) ⇒ (4): The identity (4)(b) follows from the identity (3)(b). by substituting x ∧ y

for x.

(4) ⇒ (2): Let P be a prime filter of L and fP : L → 2 be defined by f(x) = 1 iff

x ∈ P . We will show that f is a residuated lattice homomorphism. It is clear that fP is

a lattice homomorphism, thus a monoid homomorphism as well. To prove that it preserves

the division operations, given their behavior on 2, we only need to show that

x/y 6∈ P iff x 6∈ P and y ∈ P .

Assume that x/y 6∈ P and y 6∈ P . Since, x/y = (x ∧ y)/y, and P is prime we have

e = (x∧ y)/y ∨ y 6∈ P , a contradiction. Assume that x/y 6∈ P and x ∈ P , then x ≤ x/y and,

since P is a filter, x/y ∈ P , a contradiction. Conversely, if x 6∈ P , y ∈ P and x/y ∈ P , then

x ≥ (x/y) ∧ y ∈ P , hence x ∈ P , a contradiction.

Since fP is a homomorphism, Ker(fP ) is a congruence on L. In order to prove that

L is a subdirect product of copies of 2, we need only show that the intersection of the

congruences above is the diagonal. This follows from the fact that any pair of elements (a, b)

in a distributive lattice can be separated by a prime filter, i.e., there exists a prime filter P

such that a ∈ P and b 6∈ P , or such that b ∈ P and a 6∈ P . Thus L is in V(2).

(2) ⇒ (5): It is trivial to check that 2 satisfies the identities in (5).

(5) ⇒ (1): Assume that x, y are elements of L, such that x ≤ y. We will show that

x/y is the complement of y in [x, e]. We have x ≤ x/y, since x ∧ y ≤ x; so x ≤ y ∧ (x/y).

Moreover, y ∧ (x/y) ≤ x, hence y ∧ (x/y) = x. Additionally,

y ∨ (x/y) = (x/y)/((x/y)/y) = (x/y)/(x/(y ∧ y)) = (x/y)/(x/y) = e.

(1) ⇔ (6): Having established the equivalence of (1) and (2), note that the algebra 2

satisfies the identity (6). Conversely, suppose the equation (6) holds in L. For every element

y of it we have e = e/(e\y), so e ≤ e/y, i.e., y ≤ e. So, L is an integral residuated lattice.

Moreover, we have

x ≈ x/(x\y) ⇒ x\(x\y) ≈ (x/(x\y))\(x\y)

⇒ x2\y ≈ x\y
⇒ x2 ≈ x.

Together with integrality this gives xy = x ∧ y, for all x, y ∈ L. Assume now that y ≤ x.
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We will show that the complement of x in [y, e] is x\y. Note that y ≤ x\y, by integrality, so

y ≤ x ∧ x\y. On the other hand we have x ∧ (x\y) ≤ y, by Lemma 3.1, thus x ∧ x\y = y.

Moreover,

x ∨ x\y = (x/(x ∨ x\y))\(x ∨ x\y)

= (x/x ∧ x/(x\y))\(x ∨ x\y)

= (x/x ∧ x)\(x ∨ x\y)

≥ x\x ≥ e.

So, x ∨ x\y = e.

Recall that Br denotes the variety of Brouwerian algebras, see Example 3.3, and GMV
the variety of generalized MV-algebras, see page 34. By (5)(b) of the previous lemma, we

have GBA = Br ∩ GMV . Moreover, GBA is an atom in the subvariety lattice, since 2 is

strictly simple. It is easy to see that it is the only atom below Br.

We denote by n the integral residuated lattice defined by the monoid on the set

{e, a, a2, . . . , an−1}, under the obvious linear order. It is easy to see that n is an n-potent

GMV-algebra.

Lemma 5.4. The following list is an equational basis for V(n + 1).

1. λz(x/(x ∨ y)) ∨ ρw(y/(x ∨ y)) = e

2. xn+1 ≈ xn

3. x ∧ y = x(x\y) = (y/x)x

4. xn = xn/(xn\yn)

5. (xn/yn)2 = (xn/yn) and (yn\xn)2 = yn\xn

6. xy ≈ yx

Proof. Obviously, the algebra n + 1 satisfies all the identities. Conversely, assume that L is

a subdirectly irreducible residuated lattice that satisfies the identities. By (1) and (2), L is

an n-potent chain. It is easy to see, and it will be proved in Lemma 7.5, that L is an integral

GBL-algebra, by (3). Note that the idempotent elements are of the form xn and that they

form a subalgebra of L. Indeed, they are closed under division by (5), obviously closed under

the lattice operations, and the product of any two such elements is their meet - if a ≤ b,

then a = a2 ≤ ab ≤ a. By the fourth identity and Proposition 5.3(6), this subalgebra is a

generalized Boolean algebra. Since it is also totally ordered it is isomorphic to 2.
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We will, now, show that L is generated by a single element as a monoid. Assume

that there are non-identity elements a ≤ b that are not powers of a common element.

Define a1 = a, b1 = b, ak+1 = bk ∧ bk\ak and bk+1 = bk ∨ bk\ak. Obviously, ak ≤ bk,

ak = ak+1bk+1, because of (6) and (3), for all k, and bk is an increasing sequence. So,

a = a1 = a2b2 = a3b3b2 = · · · = an+1bn+1bnbn−1 · · · b3b2 ≤ e(bn+1)
n = (bn+1)

n. Since there

are only two idempotent elements in L, either (bn+1)
n = 0, or (bn+1)

n = e. In the first

case, a = 0 = bn, so both a and b are powers of b. In the second case bn+1 = e. Since

bn+1 = bn ∨ bn\an = bn−1 ∨ bn−1\an−1 ∨ . . . ∨ bn\an = · · · = b ∨ b1\a1 ∨ . . . ∨ bn\an, we have

bk\ak = e, for some k. We have bk ≤ ak, so ak = bk. Using the fact that bk ∈ {ak+1, bk+1}
and ak = ak+1bk+1, for all k, and induction, it is not hard to see that both b and a are powers

of bk.

Any strictly simple finite residuated lattice different from 2 has to have a top element

different than e. This is because otherwise {0, e} would be a subalgebra isomorphic to 2.

We give below an infinite list of examples of finite commutative totally ordered residuated

lattices that are strictly simple and generate distinct atoms in L(RL).

For every natural number n set Tn = {1, e} ∪ {uk | k ∈ Nn}. Define an order relation

on Tn by uk ≤ ul iff k ≥ l, and uk < e < 1, for all natural numbers k ≤ n. Also, define

multiplication by x1 = 1x = x, for all x 6= e; ukul = umin{n,k+l}, for all k, l ∈ Nn; and the

two division operations by x/y =
∨
{z ∈ Tn | zy ≤ x} and y\x =

∨
{z ∈ Tn | yz ≤ x}.

Note that multiplication is order preserving and, since Tn is dually well ordered, Tn =

〈Tn,∧,∨, ·, \, /, e〉 is a residuated lattice.

t 1

t e

tu1tu2qqq
tun

Figure 3: The residuated lattice Tn.

Lemma 5.5. The variety V(Tn) is an atom in the subvariety lattice of RL, for every natural

number n.
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Proof. Note that Tn is generated by any of its non-identity elements. If x < e, then e/x = 1;

moreover, e/1 = u and uk = uk, for all k ≤ n. So, Tn is strictly simple, hence it generates

an atom by Corollary 5.2.

Set 1(x) = x ∨ (e/x). If a ∈ Tn − {e}, then 1(a) = 1.

Proposition 5.6. For every n, the following list Bn of equations is a finite equational basis

for V(Tn).

1. λz(x/(x ∨ y)) ∨ ρw(y/(x ∨ y)) ≈ e

2. xn+1 ≈ xn

3. (x ∨ e)2 ≈ (x ∨ e)

4. e/((x ∨ e)\e) ≈ x ∨ e

5. (e/1(x))n · x ≈ (e/1(x))n

6. x ∧ y ∧ e ≈ (x ∧ e)((x ∧ e)\(y ∧ e)) ≈ ((y ∧ e)/(x ∧ e))(x ∧ e)

7. (x ∧ e)n ≈ (x ∧ e)n/((x ∧ e)n\(y ∧ e)n ∧ e) ∧ e

8. (xn/yn)2 ≈ (xn/yn) and (yn\xn)2 ≈ yn\xn

9. xy ≈ yx

Proof. Obviously, V(Tn) satisfies Bn. Let L be a subdirectly irreducible residuated lattice

that satisfies Bn. L has to be a chain, because of the first equation and Theorem 3.18, and

its negative cone is isomorphic to n, because of equations (2), (6), (7), (8) and (9). Assume

that the negative cone is {e, u, u2, ..., un = 0}. Observe that L has a strictly positive element

a. Otherwise, L would be integral, so e/x = e, for all x ∈ L, hence 1(x) = e. In that case,

(5) would imply e · x = e, for all x ∈ A, a contradiction. By (3), we get a2 = a. Since L

has a bottom element, it also has a top element 1. For every strictly positive element b of

L, we have u = eu ≤ bu. If e ≤ bu, we have e ≤ beu ≤ bbuu ≤ ... ≤ bnun = bn0 = 0, a

contradiction. So bu = u, hence b\e = u. Using equation (4), we have b = e/(b\e) = e/u = 1,

so there is a unique strictly positive element and L is isomorphic to Tn

Working toward a partial description of finite, commutative, strictly simple, residuated

chains, we note that they have similar properties as the algebras Tn.

Lemma 5.7. Let L be a finite, commutative, strictly simple member of RLC and let 1 be

its top element. Then x1 = x, x/1 = x, x/x = 1 and x(e/1) ≤ x ∧ (e/1), for all x 6= e.

Moreover, 1 covers e and e covers e/1.
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Proof. Obviously, L is a subdirectly irreducible element ofRLC , so L is chain. If L ∼= 2, then

the conclusion is obvious. Otherwise, L has a top element 1 6= e. If e = e/1, then e ≤ e/1,

i.e., 1 ≤ e, a contradiction. So, e 6= e/1. Note that e/1 = e/12 = (e/1)/1, so e/1 ≤ (e/1)/1,

hence (e/1)1 ≤ e/1. On the other hand, e/1 ≤ (e/1)1, since e ≤ 1; so e/1 = (e/1)1.

It is easy to show that if x1 = x and y1 = y, then xy1 = xy, (x/y)1 = x/y and

(e/x)1 = e/x. By the assumption of strict simplicity, for every element of a 6= e of L, there

exists a term ta, such that a = ta(1). It is easy to prove that x1 = x, for all x 6= e, by

induction on the complexity of ta. Consequently, x ≤ x/1. Since, x/1 ≤ x/e = x, we have

x/1 = x. Moreover, 1x ≤ x implies 1 ≤ x/x, so x/x = 1. Obviously, e/1 ≤ e, so x(e/1) ≤ x.

Also, e/1 ≤ e/x, since x ≤ 1, i.e., x(e/1) ≤ e. So, x(e/1)1 ≤ e, hence x(e/1) ≤ e/1. Thus,

x(e/1) ≤ x ∧ (e/1). To show that e is covered by 1, note that if x > e, then 1 ≤ 1x = x. It

is obvious that e/1 ≤ e. If x < e, then 1x ≤ e, so x ≤ e/1, hence e is a cover of e/1.

Corollary 5.8. Let V |= (e/(e/x))n ≤ x and (x ∧ e)n ≈ (x ∧ e)n+1. Then CanIRL ∨ V =

CanIRL × V. Hence, CanIRL ∨ V(Ti1 ,Ti2 , ...,Tik) = CanIRL × V(Ti1 ,Ti2 , ...,Tik).

Proof. Let π1(x) = ((e∧x)n+1/(e∧x)n)∧e and π2(x) = (e/(e/x))n∨x. Note that CanIRL
satisfies π1(x) = ((e ∧ x)n+1/(e ∧ x)n) ∧ e ≈ (e ∧ x) ∧ e ≈ x and π2(x) = (e/(e/x))n ∨ x ≈
en ∨ x ≈ e. On the other hand, V satisfies π2(x) = (e/(e/x))n ∨ x ≈ x and π1(x) =

((e ∧ x)n+1/(e ∧ x)n) ∧ e ≈ ((e ∧ x)n/(e ∧ x)n) ∧ e ≈ e.

If n ≥ m and x ∈ Tm, then, π1(x) = ((e∧x)n+1/(e∧x)n)∧ e = (0/0)∧ e = 1∧ e = e, for

x 6= e, 1, π1(e) = e and π1(1) = (e/e) ∧ e = e. Thus, V(Tm) satisfies π1(x) ≈ e. Moreover,

if x ∈ Tm, then π2(x) = (e/(e/x))n ∨ x = (e/1)n ∨ x = 0 ∨ x = x, for x 6= e, 1, π2(e) = e

and π2(1) = (e/(e/1))n∨ 1 = 1. So V(Tm) satisfies π2(x) ≈ x. If we pick n ≥ max{i1, ..., ik}
then V(Ti1 ,Ti2 , ...,Tik) satisfies π1(x) = e and π2(x) = x.

Note that IRL∨ V(T1) 6= IRL×V(T1) since A ∈ S(T1 × 2)− (IRL×V(T1)), where

A = {(1, 1), (1, e), (1, 0), (0, 0)}.

Idempotent atoms

It is well known and easy to observe that the variety V(Z) generated by the `-group of

the integers under addition is the only `-group atom. It is shown in [BCGJT] that the variety

V(Z−) generated by the negative cone of Z is the only atom below the variety of negative

cones of `-groups. Both of these atoms are cancellative. It follows from Proposition 4.2 that

they are actually the only atoms below the variety of cancellative residuated lattices.

Corollary 5.9. The varieties V(Z) and V(Z−) are the only cancellative atoms.
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In view of this observation, it makes sense to investigate the other end of the spectrum of

atoms, i.e., varieties that are n-potent for some n. We will provide a continuum of idempotent

atoms, that are actually distributive.

For every set of integers S, set NS = {ai | i ∈ Z} ∪ {bi | i ∈ Z} ∪ {e}. We define an order

on NS, by bi < bj < e < ak < al, for all i, j, k, l ∈ Z, such that i < j and k > l. Obviously,

this is a total order on NS. We also define a multiplication by

aiaj = amin{i,j}, bibj = bmin{i,j}

and

bjai =

{
bj if j < i, or i = j ∈ S

ai if i < j, or i = j 6∈ S
, aibj =

{
ai if i < j, or i = j ∈ S

bj if i > j, or i = j 6∈ S

The division operations are defined in the usual way by x/y =
∨
{z | xz ≤ y} and y\x =∨

{z | zx ≤ y}.

It is easy to see that multiplication is associative, order preserving and residuated. So, we

can define a residuated lattice NS with underlying set NS and operations the ones described

above.

We will investigate for which sets S the variety generated by NS is an atom in the

subvariety lattice of residuated lattices.

Define the following residuated lattice terms:

`(x) = x\e, r(x) = e/x,

t(x) = e/x ∨ x\e,

m(x) = ``(x) ∧ `r(x) ∧ r`(x) ∧ rr(x),

p(x) = ``(x) ∨ `r(x) ∨ r`(x) ∨ rr(x).

Moreover, define three binary relations by,

x
r→ y ⇔ r(x) = y,

x →̀ y ⇔ `(x) = y,

x→ y ⇔ r(x) = y or `(x) = y.
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Figure 4: The residuated lattice NS.

A word over {0, 1} is a function w : A→ {0, 1}, where A is a subinterval of Z; A is called

the support, supp(w), of w. We call w finite (infinite, bi-infinite) if |A| < ω (A = N, A = Z,

respectively). If w is a bi-infinite and v a finite word, we say v is a subword of w, if there

exists an integer k, such that v(i) = w(i+k) for all i ∈ supp(v). Note that the characteristic

function wS of a subset S of Z is a bi-infinite word. For two bi-infinite words w1, w2, define

w1 ≤ w2 iff every finite subword of w1 is a subword of w2. Obviously, ≤ is a pre-order.

Define w1
∼= w2 iff w1 ≤ w2 ≤ w1. We call a bi-infinite word w minimal with respect to the

pre-order ≤, if w ∼= w′, whenever w ≤ w′, for some bi-infinite word w′.

Proposition 5.10. The following properties hold for NS, for every S.

1. For all i ∈ Z, m(bi) = bi−1, p(bi) = bi+1, m(ai) = ai+1, p(ai) = ai−1. Moreover,

t(ai) = bi and t(bi) = ai.

2. It is totally ordered.

3. For every x, {xt(x), t(x)x} = {x, t(x)}.
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4. If x < e < y , then m(x) ≺ x ≺ p(x) < e < m(y) ≺ y ≺ p(y) and t(y) < e < t(x).

5. For every x, m(t(x)) = t(p(x)), p(t(x)) = t(m(x)), m(p(x)) = p(m(x)) = x and

t(t(x)) = x.

6. If x is negative, then xy = yx =

{
x for x ≤ y < t(x)

y for y ≤ x or t(x) < y.

If x is positive, then xy = yx =

{
x for t(x) < y ≤ x

y for y < t(x) or x ≤ y.

7. For all x, y; x ∧ y, x ∨ y, xy ∈ {x, y}.

8. For all x, y; x/y, y\x ∈ {x, m(x), p(x), t(x), m(t(x)), t(y), m(t(y)), p(t(y)}.

9. For every finite word v there exists a universal first order formula φ(v), such that v is

not a subword of wS iff φ(v) is satisfied in NS.

Proof. It is easy to see that

bi−1 ←̀ ai
r←→

`
bi

r→ ai+1 (i ∈ S)

bi−1
r← ai

r←→̀ bi →̀ ai+1 (i 6∈ S)

It follows directly that t(bi) = ai ∨ ai+1 = ai and t(ai) = bi−1 ∨ bi = bi.

Moreover,

{r(r(bi)), r(`(bi)), `(r(bi)), `(`(bi))} = {bi−1, bi, bi+1},

so m(bi) = bi−1 and p(bi) = bi+1. Similarly, m(ai) = ai+1 and p(ai) = ai−1. So (1) holds.

Moreover, (2) is obvious from the definition; (3)-(7) follow from (1); and (8) is easy to check.

Finally for (9), the first order formula associated to a finite word v is

φv = ( ∀x1, ...xn, y1, ..., yn)[(x1 ≺ x2 ≺ ... ≺ xn < e < yn ≺ ... ≺ y1)

& (t(x1) = y1 & · · ·& t(xn) = yn)→ ¬(x1y1 = s1 & · · ·& xnyn = sn)],

where n is the length of v and si = xi, if v(i) = 1 and si = yi if v(i) = 0. Note that φv is

equivalent to a universally quantified formula in the language of residuated lattices.

Corollary 5.11. The residuated lattice NS is strictly simple, for every set of integers S.

Proof. For all a, b ∈ NS − {e}, (a, b) is in the transitive closure of the relation → defined

above. Thus, NS is strictly simple.
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Lemma 5.12. Every non-trivial one-generated subalgebra of an ultrapower of NS is isomor-

phic to NS′, for some set of integers S ′.

Proof. Every first order formula true in NS is also true in an ultrapower of it. Since prop-

erties (2)-(8) of Proposition 5.10 can be expressed as first order formulas, they hold in any

ultrapower of NS.

By property (2), any ultrapower B of NS is totally ordered, so the same holds for every

subalgebra of B. Let A be a non-trivial one-generated subalgebra of B and let a be a

generator for A. The element a can be taken to be negative, since if a is positive, t(a) is

negative and, by property (4), it generates A, because t(t(a)) = a, by property (5).

By properties (7) and (8), A is the set of evaluations of terms composed by the terms

m, p, t and the constant term e. By property (5), these compositions reduce to one of the

forms mn(x), pn(x), pn(t(x)) and mn(t(x)), for n a natural number.

Set b−n = mn(a), bn = pn(a), a−n = pn(t(a)) and an = mn(t(a)), for all natural numbers

n. By the remark above, A consists of exactly these elements together with e. Define a

subset S ′ of Z, by m ∈ S ′ iff bmam = bm and consider the following map f : A → NS′ ,

f(bi) = b′i, f(ai) = a′i, f(e) = e′, where NS′ = {b′i | i ∈ Z} ∪ {a′i | i ∈ Z} ∪ {e′}. By property

(4), this map is an order isomorphism and, since A is totally ordered, a lattice isomorphism,

as well. Moreover, it is easy to check that it is a monoid homomorphism, using properties

(3) and (6). Any lattice isomorphism preserves existing joins, so f preserves the two division

operations. Thus, A is isomorphic to NS′ .

Theorem 5.13. Let A be a one-generated residuated lattice and S a subset of Z. Then,

A ∈ HSPu(NS) iff A ∼= NS′, for some S ′ such that wS′ ≤ wS.

Proof. Let S ′ be a set of integers, such that wS′ ≤ wS. Also, let B = (NS)N/F , where F is

an ultrafilter over N that extends the filter of co-finite subsets, and NS = {bi |i ∈ Z}∪{ai |i ∈
Z} ∪ {e}. We will show that NS′ ∈ ISPu(NS).

For every natural number n, define the finite approximations, vn, of the bi-infinite word

wS′ , by vn(i) = wS′(i), for all i ∈ [−n, n]Z. Since, wS′ ≤ wS, the words vn are subwords of

wS, so for every natural number n there exists an integer Kn, such that vn(i) = wS(Kn + i),

for all i ∈ supp(vn) = [−n, n]Z.

Let b̄ = (bKn)n∈N, where bKn ∈ NS. By Lemma 5.12, the subalgebra of B generated by

b̃ = [b̄], the equivalence class of b under F , is isomorphic to NS̃, NS̃ = {b̃i | i ∈ Z} ∪ {ãi | i ∈
Z} ∪ {ẽ}, for some subset S̃ of Z. We identify the subalgebra generated by b̃ with NS̃ and

we can actually choose S̃ such that b̃0 = b̃. We will show that S̃ = S ′.

We pick representatives b̄m and ām, for b̃m and ãm, and we adopt a double subscript

notation for their coordinates. So, there exist b̄mn and āmn in NS, such that b̃m = [b̄m] =

62



[(b̄mn)n∈N] and ãm = [ām] = [(āmn)n∈N].

It is easy to prove that b̃m = [(bKn+m)n∈N] and ãm = [(aKn+m)n∈N], using the definition

of b̃, Proposition 5.10(1), basic induction and the following facts:

ãm = t(b̃m) = t([(b̄mn)n∈N]) = [(t(b̄mn))n∈N]

b̃m+1 = p(b̃m) = p([(b̄mn)n∈N]) = [(p(b̄mn))n∈N]

b̃m−1 = m(b̃m) = m([(b̄mn)n∈N]) = [(m(b̄mn))n∈N]

Now, for |m| < n, i.e., m ∈ supp(vn), we have

Kn + m ∈ S ⇔ ws(Kn + m) = 1

⇔ vn(m) = 1

⇔ wS′(m) = 1

⇔ m ∈ S ′.

Since, bKn+maKn+m = bKn+m exactly when Kn + m ∈ S, we get that if |m| < n, then

bKn+maKn+m = bKn+m is equivalent to m ∈ S ′.

In other words,

{n | |m| < n} ⊆ {n | bKn+maKn+m = bKn+m ⇔ m ∈ S ′}.

Since the first set is in F , so is the second one. It is not hard to check that this means that:

{n | bKn+maKn+m = bKn+m} ∈ F is equivalent to m ∈ S ′. So, b̃mãm = b̃m is equivalent to

m ∈ S ′; hence m ∈ S̃ iff m ∈ S ′. Thus, S̃ = S ′

For the converse, we will prove the implication for A ∈ SPu(NS). This is sufficient since

under a homomorphism every one generated subalgebra will either map isomorphically or

to the identity element, because of the strictly simple nature of the algebras NS′ . Let A be

a subalgebra of an ultrapower of NS. By Lemma 5.12, A is isomorphic to NS′ , for some

subset S ′ of Z.

To show that wS′ ≤ wS it suffices to show that, for every finite word v, if v is not a

subword of wS, then it is not a subword of wS′ either. If v is not a subword of wS, then

NS satisfies φv of Proposition 5.10(9); hence so does every ultrapower of NS. Since φv is

universally quantified it is also satisfied by any subalgebra of an ultrapower of NS and in

particular by NS′ . Thus, v is not a subword of wS′ .

Corollary 5.14. Let S, S ′ be sets of integers, then
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1. V(NS′) ⊆ V(NS) if and only if wS′ ≤ wS, and

2. if wS is minimal with respect to ≤, then V = V(NS) is an atom in the subvariety

lattice of RL.

Proof. 1) If wS ≤ wS′ then, by Theorem 5.13, NS′ ∈ HSPu(NS) ⊆ V(NS), so V(NS′) ⊆
V(NS). Conversely, if V(NS′) ⊆ V(NS), then NS′ ∈ V(NS). NS′ is subdirectly irreducible,

by Lemma 5.11, so, by Jónsson’s Lemma, NS′ ∈ HSPu(NS). By Theorem 5.13, wS′ ≤ wS.

2) If L is a subdirectly irreducible of V , then L ∈ HSPu(NS), by Jónsson’s Lemma.

Every one-generated subalgebra A of L is a member of SHSPu(NS) ⊆ HSPu(NS), because

SH ≤ HS; so, by Theorem 5.13, A is isomorphic to some NS′ , where wS′ ≤ wS. Since wS is

minimal with respect to the pre-order ≤, we have wS′
∼= wS; hence V(NS′) = V(NS), by (i).

Thus, V = V(NS′) = V(A) ⊆ V(L) ⊆ V. Since V = V(L), for every subdirectly irreducible

L in V , V is an atom.

The following corollary generalizes a result of [JT].

Corollary 5.15. There are uncountably many atoms in the subvariety lattice of RLC ∩
Mod(x2 ≈ x).

Proof. There are uncountably many minimal bi-infinite words that are not related by ∼=, by

[Lo].

The proof of the previous result relies heavily on the non-commutativity of the generating

algebras. If we add the restriction of commutativity or even the weaker condition e/x ≈ x\e,
we get only finitely many atoms, actually only two, even without the hypothesis that they

are in RLC .

Theorem 5.16. The only atoms below the variety Mod(x2 ≈ x, e/x ≈ x\e) are the varieties

generated by the residuated lattices on the chains {0, e} and {0, e,>}.

Proof. Assume A is a non trivial member of Mod(x2 ≈ x, e/x ≈ x\e) and let a be a negative

element of A. If e/a = e, then {e, a} is a subalgebra of A. If e < e/a, set T = e/a and

b = e/T . We have a ≤ b ≤ bT = (e/T )T ≤ e and bT = bbT ≤ b, so bT = b. Since

e/T = T\e, we also get Tb = b. Additionally, T ≤ e/b. If S = e/b, then Sa ≤ Sb ≤ e,

so S ≤ e/a = T ; thus, T = e/b. Moreover, b ≤ b/T ≤ (b/T )T ≤ b, so b/T = b. Also,

a ≤ aa ≤ ba ≤ a, so T/b = (e/a)/b = e/ba = e/a = T . Thus, {b, e, T} is a subalgebra of

A.
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CHAPTER VI

DISTRIBUTIVE RESIDUATED LATTICES

Many interesting examples of residuated lattices are distributive. In this section we

discuss the undecidability of the quasi-equational theory of the variety DRL of distributive

residuated lattices and provide a duality theory for distributive residuated bounded-lattices.

We start with some sufficient conditions for distributivity.

Corollary 6.1. [BCGJT] For residuated lattices, any of the following sets of identities im-

plies the distributive law:

1. x/x ≈ e and (x ∨ y)/z ≈ x/z ∨ y/z

2. x(x\(x ∧ y)) ≈ x ∧ y

3. x\xy ≈ y, xy ≈ yx and x(y ∧ z) ≈ xy ∧ xy.

Undecidability of the quasi-equational theory

The results in this section are due to the author and can be found in [Ga]. We present

only the main theorem and its consequences and refer the reader to the paper for details.

Let V be a vector space. The residuated lattice P(V) on the power set of the monoid

reduct of V, given in Example 3.15, is distributive.

Theorem 6.2. [Ga] Let V be a variety of distributive residuated lattices, containing P(V),

for some infinite-dimensional vector space V. Then, there is a finitely presented residuated

lattice in V, with unsolvable word problem.

The proof of the theorem uses the notion of an n-frame and results on distributive lattices

to reduce the decidability of the word problem for semigroups to the decidability of the word

problem for distributive residuated lattices.

Corollary 6.3. [Ga] If V is a variety such that HSP(P(V)) ⊆ V ⊆ DRL, for some

infinite-dimensional vector space V, then V has an undecidable quasi-equational theory.

Corollary 6.4. [Ga] The word problem and the quasi-equational theory of distributive and

for commutative distributive residuated lattices are undecidable.
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This result becomes more interesting given that, as recently proved, the equational theory

of commutative distributive residuated lattices is decidable. The details can be found in [GR].

Duality Theory for distributive residuated bounded-lattices

In what follows we try to extend the Priestley duality for bounded distributive lattices to

distributive residuated bounded-lattices. The ideas stem from [Ur], where a duality theory

for bounded distributive lattice-ordered semigroups is developed.

Priestley duality

H. Priestley introduced, see e.g. [DP], a duality between the category of bounded dis-

tributive lattices and certain ordered topological spaces. The theory is useful because it

presents an alternative understanding of distributive lattices and suggests a different ap-

proach to problems about them.

A structure S = 〈S, τ,≤〉 is called a Priestley space if 〈S, τ〉 is a compact topological

space, 〈S,≤〉 is a bounded partially ordered set and S is totally order-disconnected, i.e., for

all x, y ∈ S, if x ≤ y, then there exists a clopen increasing set containing y, but not x.

A map h : S1 → S2 between two Priestley spaces is a Priestley map if it is order-

preserving, continuous and preserves the bounds.

If L = 〈L,∧,∨, 0, 1〉 is a bounded distributive lattice, then its dual space is the structure

S̄(L) = 〈S(L), τ,≤〉, where S(L) is the set of all prime filters of L; τ is the topology having

the family of all sets of the form f(l) and (f(l))c, l ∈ L, as sub-basis, where f(l) = {X ∈
S(L)| l ∈ X}, for l ∈ L; and ≤ is set inclusion.

If S = 〈S, τ,≤〉 is a Priestley space then its dual lattice is the structure L̄(S) = 〈L(S),∩,∪, ∅, S〉,
where L(S) is the set of all clopen increasing subsets of S.

Theorem 6.5. [DP]

1. The dual space of a bounded distributive lattice L is a Priestley space and L(S(L)) =

{f(l)| l ∈ L} ∪ {∅,S(L)}.

2. The dual lattice of a Priestley space is a bounded distributive lattice.

Theorem 6.6. [DP]

1. If L1,L2 are bounded distributive lattices and h : L1 → L2 is a bounded-lattice homo-

morphism, then the map S̄(h) : S̄(L2) → S̄(L1), defined by S̄(h)(X) = h−1[X], is a

Priestley map.

2. If S1,S2 are Priestley spaces and h : S1 → S2 is a Priestley map, then the map L̄(h) :

L̄(S2)→ L̄(S1), defined by L̄(h)(A) = h−1[A], is a bounded-lattice homomorphism.
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Theorem 6.7. [DP] The categories of bounded distributive lattices with bounded-lattice ho-

momorphisms and of Priestley spaces with Priestley maps are dual.

Duality for distributive residuated bounded-lattices

For X, Y subsets of a residuated lattice, we denote by X · Y their complex product and

define X • Y =↑ (X · Y ). Note that if Z is a filter then X · Y ⊆ Z iff X • Y ⊆ Z.

Lemma 6.8. If X, Y are filters in a residuated lattice, then X • Y is also a filter.

Proof. The set X • Y is obviously increasing. Moreover, if k1, k2 ∈ X • Y , then a1b1 ≤ k1

and a2b2 ≤ k2, for some a1, a2 ∈ X, b1, b2 ∈ Y . Thus,

(a1 ∧ a2)(b1 ∧ b2) ≤ (a1 ∧ a2)b1 ∧ (a1 ∧ a2)b2 ≤ a1b1 ∧ a2b2 ≤ k1 ∧ k2

and a1 ∧ a2 ∈ X, b1 ∧ b2 ∈ Y ; hence, k1 ∧ k2 ∈ X • Y .

Lemma 6.9. If X, Y, Z are filters in a distributive residuated lattice L, Z is a prime filter

and XY ⊆ Z, then there are prime filters X ′, Y ′, such that X ⊆ X ′, Y ⊆ Y ′, X ′Y ⊆ Z and

XY ′ ⊆ Z.

Proof. We first show that I = {l ∈ L| lY 6⊆ Z} is a down-set. Indeed, if l′ ≤ l ∈ I and l′ 6∈ I,

then l′Y ⊆ Z, i.e., l′y ∈ Z, for all y ∈ Y . Since l′y ≤ ly and Z is a filter, we have ly ∈ Z for

all y ∈ Y , i.e., lY ⊆ Z. So, l 6∈ I, a contradiction.

Furthermore, if l1, l2 ∈ I then l1Y 6⊆ Z and l2Y 6⊆ Z, i.e., l1y1 6∈ Z and l1y1 6∈ Z, for

some y1, y2 ∈ Y . Since Z is prime, we have l1y1 ∨ l2y2 6∈ Z. Moreover,

(l1 ∨ l2)(y1 ∧ y2) = l1(y1 ∧ y2) ∨ l2(y1 ∧ y2) ≤ l1y1 ∨ l2y2,

so (l1 ∨ l2)(y1 ∧ y2) 6∈ Z, because Z is a filter. Consequently, (l1 ∨ l2)Y 6⊆ Z, i.e., l1 ∨ l2 ∈ I.

Thus, I is an ideal.

Note that X ∩ I = ∅, since xY ⊆ Z for all x in X, so by the Prime Ideal Theorem, there

exists a prime filter X ′, such that X ⊆ X ′ and X ′ ∩ I = ∅, i.e., x 6∈ I, for all x in X ′. So

xY ⊆ Z, for all x in X ′, i.e., X ′Y ⊆ Z. The existence of Y ′ is proved similarly.

If R is a ternary relation on a set S, x, y, z are elements of S and A, B are subsets of S,

we write R(x, y, z) for (x, y, z) ∈ R. Moreover, we define

R[A, B, ] = {z ∈ S| (∃x ∈ A)(∃y ∈ B)(R(x, y, z))},

R[x, B, ] = R[{x}, B, ] and R[A, y, ] = R[A, {y}, ].
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Multiplication in a residuated lattice corresponds to a suitable ternary relation in the

dual space. Recall the definition of L(S).

A distributive residuated bounded-lattice space (DRbL-space) is a structure S = 〈S, τ,≤
, R, E〉, where 〈S, τ,≤〉 is a Priestley space, R is a ternary relation on S and E ⊆ S, such

that for all x, y, z, w ∈ S the following properties hold:

1. R(x, y, u) and R(u, z, w) for some u ∈ S iff R(y, z, v) and R(x, v, w) for some v ∈ S.

2. If x ≤ y and R(y, z, w), then R(x, z, w);

if x ≤ y and R(z, y, w), then R(z, x, w); and

if x ≤ y and R(z, w, x), then R(z, w, y).

3. The failure of R(x, y, z) is witnessed by some A, B ∈ L(S), namely x ∈ A, y ∈ B and

z 6∈ R[A, B, ].

4. If A, B ∈ L(S) then the sets R[A, B, ], {z ∈ S|R[z, B, ] ⊆ A} and {z ∈ S|R[B, z, ] ⊆
A} are clopen.

5. E ∈ L(S) and for all K ∈ L(S), R[K, E, ] = R[E, K, ] = K.

The dual space of a distributive residuated bounded-lattice is an extension of the Priestley

space of the distributive lattice reduct. Note that the third condition states that the space is

totally disconnected with respect to the ternary relation. This condition for ternary relations

is the analogue of the assumption that the space is totally disconnected with respect to the

order. The first and last conditions are reminiscent of the conditions in Example 3.16.

Let L = 〈L,∧,∨, ·, \, /, e, 0, 1〉 be a distributive residuated bounded-lattice. We denote

by S(L) the set of all prime filters of L and set

f(k) = {X ∈ S(L)| k ∈ X},

for every k ∈ L. Let τ be the topology whose sub-basis is the family of all sets of the

form f(l) and (f(l))c, l ∈ L. Also, let E = f(e) and R(X, Y, Z) = (X • Y ⊆ Z), for all

X, Y, Z ∈ S(L). The structure S(L) = 〈S(L), τ,⊆, R, E〉 is called the dual space of L.

Let S = 〈S, τ,≤, R, E〉 be a DRbL-space and L(S), as mentioned before, the set of

all clopen increasing subsets of S. For A, B ∈ L(S), define the operations A ◦ B =

R[A, B, ], A/B = {z ∈ S | z ◦ B ⊆ A}, and B\A = {z ∈ S | B ◦ z ⊆ A}. The struc-

ture L(S) = 〈L(S),∩,∪, ◦, \, /, E, ∅, S〉, is called the dual algebra of S.
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In the proofs of the results in this section we will use variables for different structures.

To make the exposition as clear as possible, we use specific letters for each set of variables.

In particular, we use lower-case letters toward the end of the alphabet for elements of DRbL-

spaces and letters in the first part of the alphabet for bounded residuated lattices. For the

dual of a structure we use uppercase letters and for the second dual lower-case Greek letters.

For example we will use x, y, z for elements of a DRbL-space and A, B, C, for elements of its

dual.

Lemma 6.10. Let L be a bounded distributive residuated lattice. Then, for all k, l ∈ L,

1. f(k · l) = f(k) ◦ f(l),

2. f(k/l) = f(k)/f(l) and

3. f(k\l) = f(k)\f(l).

Proof. 1) If W ∈ f(k) ◦ f(l) = R[f(k), f(l), ], then there exist U ∈ f(k) and V ∈ f(l)

such that R(U, V,W ), i.e., there exist prime filters U, V of L such that k ∈ U , l ∈ V and

U · V ⊆ W . Hence, kl ∈ U · V ⊆ W , i.e., W ∈ f(kl).

Conversely, if W ∈ f(kl), i.e., W is a prime filter of L that contains the element kl,

then (↑ k)(↑ l) ⊆ W . By Lemma 6.9, there exist prime filters U, V such that k ∈ U ,

l ∈ V and UV ⊆ W , i.e., there exist U ∈ f(k) and V ∈ f(l) such that R(U, V,W ); hence

W ∈ f(k) ◦ f(l).

2) We have f(k/l) ◦ f(l) = f((k/l)l) = {W ∈ S(L)| (k/l)l ∈ W}. Since (k/l)l ≤ k, we

have f(k/l)◦f(l) ⊆ {W ∈ S(L) |k ∈ W} = f(k). So, if X ∈ f(k/l), then {X}◦f(l) ⊆ f(k),

i.e., X ∈ f(k)/f(l).

Conversely, assume that X ∈ f(k)/f(l) and let U = {l̄ ∈ L | (∃a ∈ X)(al̄ ≤ k)}. If

l′ ≤ l̄ ∈ U , then there is an a ∈ X such that al̄ ≤ k. So, al′ ≤ al̄ ≤ k, hence l′ ∈ U .

Moreover, if l1, l2 ∈ U , then a1l1 ≤ k and a2l2 ≤ k, for some a1, a2 ∈ X. Note that

(a1 ∧ a2)(l1 ∨ l2) = (a1 ∧ a2)l1 ∨ (a1 ∧ a2)l2 ≤ a1l1 ∨ a2l2 ≤ k ∨ k = k

and (a1 ∧ a2) ∈ X, since X is a filter; so, l1 ∨ l2 ∈ U . Consequently, U is an ideal.

We will show that l ∈ U . Assume, by way of contradiction, that l 6∈ U . Then U∩ ↑ l = ∅
and, by the Prime Ideal Theorem, there exists a prime filter U such that ↑ l ⊆ U and

U ∩ U = ∅. In particular, U is contained in the complement of U , hence for all l′ ∈ U and

for all a ∈ X, we have al̄ 6≤ k. Consequently, k 6∈ X •U , hence ↓ k∩X •U = ∅. Since X •U
is a filter by Lemma 6.8, there is a prime filter V such that X • U ⊆ V and ↓ k ∩ V = ∅.

69



Note that l ∈ U , since l′ ∈ U ′, and that k 6∈ V , since ↓ k ∩ V = ∅. Summarizing, there

exist prime filters U and V such that X • U ⊆ V , U ∈ f(l) and V 6∈ f(k). This shows that

R[X, f(l), ] 6⊆ f(k), i.e., X ◦ f(l) 6⊆ f(k), a contradiction, since {X} ∈ f(k)/f(l).

Consequently, l ∈ U , i.e., al ≤ k, for some a ∈ X; hence a ≤ k/l, for some a ∈ X. Since

X is a filter, we get (k/l) ∈ X, i.e., X ∈ f(k/l).

3) We obtain the proof of the last property in a similar way.

Theorem 6.11.

1. The dual algebra L(S) of a DRbL-space S is a distributive residuated bounded-lattice.

2. The dual space S(L) of a distributive residuated bounded-lattice L is a DRbL-space.

Proof. 1) Assume that S is a DRbL-space. By Priestley duality for bounded distributive

lattices, we have that L(S) has a bounded distributive lattice reduct.

We will show that L(S) is closed under multiplication and the two division operations.

If A, B are clopen and and increasing then A ◦ B, A/B, B\A are clopen, by the the fourth

property of a DRbL-space. Moreover, if x ∈ A ◦ B and x ≤ y, then x ∈ R[A, B, ], i.e.,

R(a, b, x) for some a ∈ A and b ∈ B. By the second property of a DRbL-space, we get

R(a, b, y), i.e., y ∈ A◦B. Thus, A◦B is increasing. Additionally, if x ∈ A/B and x ≤ y, then

R[x, B, ] ⊆ A and R[y, B, ] ⊆ R[x, B, ]. So, R[y, B, ] ⊆ A, i.e., y ∈ A/B. Consequently,

A/B is increasing. The opposite set B\A is also increasing; thus, A ◦B, A/B, B\A ∈ L(S).

To see that multiplication is associative, note that w ∈ (A ◦ B) ◦ C, namely w ∈
R[R[A, B, ], C, ], is equivalent to R(x, y, u) and R(u, z, w), for some u ∈ L, x ∈ A, y ∈ B

and z ∈ C. By the first property of a DRbL-space, this is equivalent to R(x, v, w) and

R(y, z, v), for some v ∈ L, x ∈ A, y ∈ B and z ∈ C. Finally, this is in turn equivalent to

w ∈ R[A, R[B, C, ], ], namely w ∈ A ◦ (B ◦ C). Thus, (A ◦B) ◦ C = A ◦ (B ◦ C).

To show that / is the right residual of multiplication, we need to show that A ◦ B ⊆ C

iff A ⊆ C/B, i.e., that

R[A, B, ] ⊆ C iff A ⊆ {x ∈ S|R[x, B, ] ⊆ C}.

For the forward direction, assume that x ∈ A. If z ∈ R[x, B, ], then there is a y ∈ B such

that R(x, y, z); thus z ∈ R[A, B, ]. By assumption R[A, B, ] ⊆ C, so z ∈ C. Conversely,

assume that z ∈ R[A, B, ]. Then, there is an x ∈ A such that z ∈ R[x, B, ]. By our

assumption R[x, B, ] ⊆ C, for all x ∈ A, hence z ∈ C.

Likewise, we have that \ is the left residual of multiplication. Finally, it follows from the

last property of a DRbL-space that E is the multiplicative identity.
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2) By Theorem 6.5, 〈S(L), τ,≤〉 is a Priestley space and L(S(L)) = {f(l)| l ∈ L} ∪
{∅,S(L)}. In what follows we verify all the properties of a DRbL-space.

For the first property, suppose R(X, Y, U) and R(U,Z, W ) hold, i.e., X • Y ⊆ U and

U • Z ⊆ W . Let V ′ = Y • Z. If d ∈ X • V ′, then there exist a ∈ X and g ∈ V ′ such

that ag ≤ d. Since V ′ = Y • Z, there exist b ∈ Y and c ∈ Z such that bc ≤ g. Moreover,

ab ∈ U , since X • Y ⊆ U , hence abc ∈ U • Z. Consequently, ag ∈ U • Z, so d ∈ W . Thus,

X • V ′ ⊆ W . By Lemma 6.9, there exists a prime filter V such that X • V ⊆ Z, V ′ ⊆ V

and Y • Z ⊆ V , i.e., R(X, V,W ) and R(Y, Z, V ).

To see that the second property holds, let X, Y, U, V ∈ S(L) and X ⊆ Y . If R(Y, U, V )

holds, i.e., Y • U ⊆ V , then

X • U =↑ (X · U) ⊆↑ (Y · U) = Y • U ⊆ V,

thus X • U ⊆ V , i.e., R(X, U, V ) holds. The other two implications are proved similarly.

To prove the third property, note first that if there exist A, B ∈ L(S), such that x ∈
A, y ∈ B and z 6∈ R[A, B, ], then R(U, V, Z) fails, for all U ∈ α and V ∈ β. In

particular R(X,Y, Z) is false. Conversely, if R(X, Y, Z) fails for some X,Y, Z ∈ S(L), then

↑ (X · Y ) 6⊆ Z, i.e., there exists a c in L such that c ∈↑ (X · Y ) and c 6∈ Z. So, ab ≤ c and

c 6∈ Z, for some c ∈ L, a ∈ X and b ∈ Y . If α = f(a), β = f(b), then, X ∈ α and Y ∈ β.

We will show that Z 6∈ R[α, β, ]. If Z ∈ R[α, β, ], then R(X ′, Y ′, Z), i.e., ↑ (X ′ · Y ′) ⊆ Z,

for some X ′ ∈ α, Y ′ ∈ β. Since a ∈ X ′, b ∈ Y ′ and ab ≤ c, we get c ∈ Z, a contradiction.

The fourth property follows from Lemma 6.10, since if α, β ∈ L(S(L)), then there exist

a ∈ L and b ∈ L, such that α = f(a) and β = f(b)). So,

R[α, β, ] = α ◦ β = f(a) ◦ f(b) = f(ab) ∈ L(S(L));

{c ∈ X| {c} ◦ β ⊆ α} = α/β = f(a)/f(b) = f(a/b) ∈ L(S(L));

and

{c ∈ X| β ◦ {c} ⊆ α} = β\a = f(b)\f(a) = f(b\a) ∈ L(S(L)).

To verify the last property, let K be a clopen increasing subset of S(L); then, K = f(k),

for some k ∈ L. We have,

R[K, E, ] = R[f(k), f(e), ] = f(k) ◦ f(e) = f(ke) = f(k) = K

and similarly R[E, K, ] = K.

The following theorem shows that we can recover the original structure from the dual.
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Theorem 6.12.

1. The dual algebra L(S(L)) of the dual space of a distributive residuated bounded-lattice

L is isomorphic to L.

2. The dual space S(L(S)) of the dual algebra of a DRbL-space S is homeomorphic to S

under a map that respects and preserves the order, the ternary and the unary relation.

Proof. 1) Let f : L→ L(S(L)) be the map l 7→ f(l). Note that f is a lattice isomorphism,

by Theorem 6.7; L(S(L)) is a distributive residuated bounded-lattice, by Theorem 6.11; and

f preserves multiplication and both division operations, by Lemma 6.10. Since f(e) = E,

the map f is a residuated lattice isomorphism.

2) Define g : S→ S(L(S)) by g(x) = {A ∈ L(S)| x ∈ A}. Notice that, by Theorem 6.7,

g is a topological homeomorphism that is also an order-isomorphism. We will show that g

is a R-isomorphism, as well, i.e.,

RS(x, y, z) iff RS(L(S))(g(x), g(y), g(z)),

or equivalently that

RS(x, y, z) ⇔ ↑ (g(x) ◦ g(y)) ⊆ g(z).

For the forward direction, assume that C ∈↑ (g(x) ◦ g(y)). Then, A ◦ B ⊆ C, for some

A ∈ g(x) and B ∈ g(y), i.e., RS[A, B, ] ⊆ C, for some prime filters A, B, such that x ∈ A

and y ∈ B. By the hypothesis, z ∈ RS[A, B, ], thus z ∈ C, i.e., C ∈ g(z).

Conversely, if RS(x, y, z) is false, then there exist A, B ∈ L(S), such that x ∈ A, y ∈ B

and z 6∈ R[A, B, ] = A ◦ B, i.e., A ◦ B 6∈ g(z), for some A ∈ g(x) and B ∈ g(y). So,

g(x) ◦ g(y) 6⊆ g(z); a fortiori, ↑ (g(x) ◦ g(y)) 6⊆ g(z).

Finally, x ∈ ES iff ES ∈ g(x) iff g(x) ∈ f(ES) iff g(x) ∈ ES(L(S)), namely g is an

E-isomorphism.

Let S1 = 〈S1, τ1,≤1, R1, E1〉 and S2 = 〈S2, τ2,≤2, R2, E2〉 be two DRbL-spaces. A

DRbL-map, is a Priestley map h : S1 → S2 that satisfies the following conditions.

1. If R1(x, y, z), then R2(h(x), h(y), h(z)).

2. If R2(u, v, h(z)), then u ≤ h(x), v ≤ h(y) and R1(x, y, z), for some x, y ∈ S1.

3. For all B, C ∈ L(S2) and for all x ∈ S1, if R1[x, h−1[B], ] ⊆ h−1[C] then R2[h(x), B, ] ⊆
C.

4. h−1[E2] = E1.
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We can now prove the main result in this section.

Theorem 6.13. The categories of distributive residuated bounded-lattices with residuated

bounded-lattice homomorphisms that preserve the lattice bounds and DRbL-spaces with DRbL

maps are dual.

Proof. The restrictions S and L of the functors S̄ and L̄ that arise from Priestley duality,

given in Theorem 6.7, are bijective on objects of the subcategories of distributive residu-

ated bounded-lattices and DRbL-spaces, by Theorems 6.11 and 6.12. We show that these

restrictions map morphisms to morphisms on the subcategories.

Let L1,L2 be distributive residuated bounded-lattices and h : L1 → L2 a residuated

lattice homomorphism that preserves the lattice bounds. We define the map S(h) : S(L2)→
S(L1), by S(h)(A) = h−1[A]. By Theorem 6.6, it is a Priestley map. To show that S(h) is

a DRbL-map we verify the four conditions of the definition.

If R2(X, Y, Z), i.e., X · Y ⊆ Z, then h−1[X · Y ] ⊆ h−1[Z]. So h−1[X] · h−1[Y ] ⊆ h−1[Z],

i.e., R1(h
−1[X], h−1[Y ], h−1[Z]).

For the second condition, assume that R1(U, V, h−1[Z]), i.e., UV ⊆ h−1[Z], holds and set

X ′ =↑ (h[U ]) and Y ′ =↑ (h[V ]). If a ∈ U , then h(a) ∈ h[U ] ⊆↑ (h[U ]) = X ′, so a ∈ h−1[X ′].

Thus U ⊆ h−1[X ′] and similarly V ⊆ h−1[Y ′]. Moreover, if a ∈ X ′ and b ∈ Y ′, then there are

c ∈ U, d ∈ V such that h(c) ≤ a and h(d) ≤ b; so, h(c) · h(d) ≤ ab and cd ∈ UV ⊆ h−1[Z],

i.e., h(cd) ∈ Z. Since h is a homomorphism and Z is an upset we have ab ∈ Z. Thus,

X ′ · Y ′ ⊆ Z. Finally, by Lemma 6.9, there are prime filters X, Y such that X ′ ⊆ X, Y ′ ⊆ Y

and XY ⊆ Z, i.e., U ⊆ h−1[X], V ⊆ h−1[Y ′] and R1(X, Y, Z).

To show the third condition, let β, γ be clopen increasing subsets of S1 = S(L1), let

X ∈ S2 = S(L2) and assume that R2[X, (S(h))−1[β], ] ⊆ (S(h))−1[γ]. We will show that

R1[S(h)[X], β, ] ⊆ γ. For that purpose let Z ∈ R1[h
−1[X], β, ], namely R1(h

−1[X], Y, Z), for

some Y ∈ β. By definition, β = f(b) and γ = f(c), for some b, c ∈ L2, so ↑ (h−1[X]Y ) ⊆ Z,

for some prime filter Y of L1, such that b ∈ Y . We will show that Z ∈ γ, i.e., that c ∈ Z.

We will first show that c/b ∈ h−1[X]. If this is not the case, then c/b 6∈ h−1[X], i.e.,

h(c)/h(b) 6∈ X, since h is a homomorphism. Since X is increasing, we have that there is no

element a of X, such that a ≤ h(c)/h(b), i.e., such that ah(b) ≤ h(c). So, h(c) 6∈↑ (X· ↑
(h(b))) and in particular

↑ (X· ↑ (h(b))) ∩ ↓ (h(c)) = ∅.

Note that ↑ (X· ↑ (h(b))) is a filter, by Lemma 6.8, so by the Prime Ideal Theorem there

exists a prime filter W such that ↑ (X· ↑ (h(b))) ⊆ W and W∩ ↓ (h(c)) = ∅, i.e., such that

↑ (X· ↑ (h(b))) ⊆ W and h(c) 6∈ W . By Lemma 6.9, there is a prime filter V , such that
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h(b) ∈ V and XV ⊆ W , i.e., such that b ∈ h−1[V ] and XV ⊆ W . So, there is a prime filter V ,

such that h−1[V ] ∈ β, XV ⊆ W and c 6∈ h−1[W ], i.e., there exist a V ∈ S(h))−1[β], such that

XV ⊆ W and h−1[W ] 6∈ γ. Consequently, W ∈ R2[X, (S(h))−1[β], ], but W 6∈ (S(h))−1[γ],

a contradiction to our hypothesis. So, c/b ∈ h−1[X].

Now, note that since b ∈ Y and c/b ∈ h−1[X], we have (c/b)b ∈ h−1[X]Y . Moreover,

(c/b)b ≤ c, so c ∈↑ (h−1[X]Y ). Thus, c ∈ Z.

Finally, for the last condition, we will show that (S(h))−1[E1] = E2. Note that a clopen

increasing set X is in the first set iff X ∈ (S(h))−1(Y ), for some Y ∈ E1, i.e., iff S(h)(X) = Y ,

for some clopen increasing set Y , such that e1 ∈ Y . Recalling the definition of S(h), this

is equivalent to h−1(X) = Y and e1 ∈ Y , i.e., to e1 ∈ h−1(X). This is in turn equivalent

to h(e1) ∈ X, namely to e2 ∈ X. In view of the definition of E2, this is a restatement of

X ∈ E2.

For the reverse direction, let S1,S2 be DRbL-spaces and h : S1 → S2 a DRbL-map.

We define the map L(h) : L(S2) → L(S1), by L(h)(A) = h−1[A]. By Theorem 6.6, L(h)

is a lattice homomorphism that preserves lattice bounds. To show that it is a residuated

lattice homomorphism we need to demonstrate that it preserves multiplication, both division

operations and the identity.

We first show that

h−1[A] ◦ h−1[B] = h−1(A ◦B).

If z ∈ h−1[A]◦h−1[B], i.e., z ∈ R1[h
−1[A], h−1[B], ], then (R1(x, y, z), for some x ∈ h−1[A]

and y ∈ h−1[B]. By the first property of a DRbL-map, we get R2(h(x), h(y), h(z)), for some

x, y ∈ S1 such that h(x) ∈ A and h(y) ∈ B, hence h(z) ∈ R2[A, B, ]. So, h(z) ∈ A ◦B, i.e.,

z ∈ h−1(A ◦B).

Conversely, if z ∈ h−1(A ◦ B), then h(z) ∈ A ◦ B = R2[A, B, ], i.e., R2(x, y, h(z)),

for some x ∈ A and y ∈ B. By the second property for h, we have R1(u, v, z), for some

x ∈ A, y ∈ B and for some u, v ∈ S1 such that x ≤ h(u) and y ≤ h(v). In other words

R1(u, v, z), for some u, v ∈ S1 such that h(u) ∈ A and h(v) ∈ B, i.e., such that u ∈ h−1[A]

and v ∈ h−1[B]. So, z ∈ R1[h
−1[A], h−1[B], ] = h−1[A] ◦ h−1[B].

Next we show that

h−1[C/B] ◦ h−1[B] = h−1[C]/h−1[B].

First, note that h−1[C/B] ◦ h−1[B] = h−1[(C/B) ◦ B] ⊆ h−1[C]. Consequently, we have

h−1[C/B] ⊆ h−1[C]/h−1[B]. Conversely, if x ∈ h−1[C]/h−1[B], then x ◦ h−1[B] ⊆ h−1[C],

i.e., R1[x, h−1[B], ] ⊆ h−1[C]. By the third property of h, we have R2[h(x), B, ] ⊆ C, i.e.,

h(x) ◦B ⊆ C. Thus, h(x) ∈ C/B, namely x ∈ h−1[C/B].
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Finally the last condition for h gives h−1[E2] = E1.

Thus, the correspondences S and L are the restrictions of the functors S̄ and L̄ on the

objects and on the morphisms of the subcategories. Since they are actually restrictions of

a duality, they induce a duality between the category of distributive residuated bounded-

lattices and homomorphisms, and the category of DRbL-spaces and DRbL-maps.
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CHAPTER VII

GENERALIZED MV-ALGEBRAS

As we have seen before, generalized BL-algebras encompass `-groups and Brouwerian

algebras. Also, generalized Boolean algebras and `-groups are special cases of generalized

MV-algebras. In this chapter we study GBL and GMV-algebras and show that they de-

compose into Cartesian products of `-groups and integral residuated lattices. Moreover, we

characterize the integral factor of a GMV-algebra as a nucleus retraction on the negative

cone of an `-group. From the analysis we get that every GMV-algebra is equivalent to an

image of a core map on an `-group. Both of the correspondences, in the integral and in the

general case, extend to categorical equivalences. Finally, we observe that the close connec-

tion of the variety GMV with those of `-groups and of their negative cones guarantees the

decidability of its equational theory.

Definitions and basic properties

Recall the definition of a GBL and of a GMV-algebra from page 34. Note that the

equational bases for the varieties GBL of generalized BL-algebras and GMV of generalized

MV-algebras have the following more simple quasi-identity formulations, respectively:

x ≤ y ⇒ (x/y)y = x = y(y\x)

and

x ≤ y ⇒ x/(y\x) = y = (x/y)\x.

Moreover, it is noted in [BCGJT] that the following are equivalent bases of equations for

the two varieties, respectively:

x(x\y ∧ e) ≈ x ∧ y ≈ (y/x ∧ e)x

and

x/(y\x ∧ e) = x ∨ y = (x/y ∧ e)\x

Also note that the first set of identities is also equivalent to the property of divisibility :

x ≤ y ⇒ (∃z, w)(zy = x = yw),

in the setting of residuated lattices.
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Lemma 7.1. [BCGJT] Every GMV-algebra is also a GBL-algebra.

Proof. Let x, y be elements of L such that x ≤ y. Set z = (x/y)y and note that, by

Lemma 3.1, z ≤ x and y/z ≤ x/z.

Using the equivalent quasi-equation for GMV-algebras and Lemma 3.1(12), (6), we have

the following:

z ≤ x ⇒ (z/x)\z = x

⇒ ((z/x)\z)/y = x/y

⇒ (z/x)\(z/y) = x/y

⇒ (z/y)/((z/x)\(z/y)) = (z/y)/(x/y)

⇒ z/x = z/(x/y)y

⇒ (z/x)\z = (z/(x/y)y)\z
⇒ x = (x/y)y

Thus, x ≤ y implies x = (x/y)y. Likewise, x ≤ y implies y(y\x) = x.

Lattice-ordered groups and their negative cones are examples of cancellative GMV-

algebras. Non-cancellative examples include generalized Boolean algebras.

Lemma 7.2. Let L be a GBL-algebra. Then,

1. Every positive element of L is invertible.

2. L satisfies the identities x/x ≈ x\x ≈ e.

3. L satisfies e/x ≈ x\e.

Proof. For the first property, let a be a positive element; by the defining identity for GBL-

algebras, we get a(a\e) = e = (e/a)a; that is, a is invertible. By (1) and Lemma 3.1(14),

x/x and x\x are invertible for every x. Hence, by Lemma 3.1(16), x/x = e = x\x. Finally,

by (2) and Lemma 3.1(5), x(e/x) ≤ x/x = e, hence e/x ≤ x\e. Likewise, x\e ≤ e/x.

Lemma 7.3. If x, y are elements of a GBL-algebra and x ∨ y = e, (x, y are orthogonal),

then xy = x ∧ y.

Proof. We have,

x = x/e = x/(x ∨ y) = x/x ∧ x/y = e ∧ x/y = y/y ∧ x/y = (y ∧ x)/y.

So, xy = ((x ∧ y)/y)y = x ∧ y.

Lemma 7.4. Every GBL-algebra has a distributive lattice reduct.
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Proof. Let L be a GBL-algebra and x, y, z ∈ L. Using Lemma 3.1, we have

x ∧ (y ∨ z) = [(x ∧ (y ∨ z))/(y ∨ z)](y ∨ z)

= [x/(y ∨ z) ∧ e](y ∨ z)

= [x/(y ∨ z) ∧ e]y ∨ [x/(y ∨ z) ∧ e]z

≤ (x/y ∧ e)y ∨ (x/z ∧ e)z

= (x ∧ y) ∨ (x ∧ z),

for all x, y, z. We have proved that the lattice reduct of L is distributive.

We denote the variety of integral GBL-algebras by IGBL and the variety of integral

GMV-algebras by IGMV .

Lemma 7.5.

1. The variety IGBL is axiomatized, relative to RL, by the equations

(x/y)y ≈ x ∧ y ≈ y(y\x).

2. The variety IGMV is axiomatized by the equations

x/(y\x) ≈ x ∨ y ≈ (x/y)\x.

Proof. In view of the alternative axiomatizations of GBL and GMV , the proposed equations

hold in the corresponding varieties. For the reverse direction we verify that the proposed

identities imply integrality. This is obvious for the first set of identities for y = e. For the

second set observe that for every x,

e ≤ e ∨ e/x = e/((e/x)\e) = e/(e ∨ x);

so e ∨ x ≤ e, i.e., x ≤ e.

Negative cones of `-groups are examples of integral GMV-algebras, hence also of integral

GBL-algebras. Moreover, they are cancellative residuated lattices. Note that, by Corol-

lary 4.4, LG− = IGMV ∩ CanRL = IGBL ∩ CanRL.

It is easy to see that IGBL contains all Brouwerian algebras. Also, it was mentioned

before that GBA = V(2) = IGMV ∩ Br.

Lemma 7.6.

1. Every integral GBL-algebra satisfies the identity (y/x)\(x/y) ≈ x/y and its opposite.
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2. Every integral GMV-algebra satisfies the identity x/y ∨ y/x ≈ e and its opposite.

3. Every commutative integral GMV-algebra is in RLC. Consequently, the subdirectly

irreducible commutative integral GMV-algebras are totally ordered.

Proof. 1) For every integral GBL-algebra, y/x ≤ e, so (y/x)\(x/y) ≥ x/y.

To show the reverse inequality, we need to check that

((y/x)\(x/y))y ≤ x.

By Lemma 3.1(12), it suffices to show that

(((y/x)\x)/y)y ≤ x.

Using one of the the defining equations, (u/v)v ≈ (v/u)u, of integral GBL-algebras, we see

that the last equation is equivalent to

(y/((y/x)\x))((y/x)\x) ≤ x,

which in turn is equivalent to

y/((y/x)\x) ≤ x/((y/x)\x).

To show that this holds note that

y/((y/x)\x) ≤ y/x,

since y/x ≤ e, and that

y/x ≤ x/((y/x)\x),

since u ≤ v/(u\v) is valid in any residuated lattice, by Lemma 3.1(11).

2) Using one of the defining equations, u ∨ v ≈ u/(v\u), for integral GMV-algebras,

x/y ∨ y/x equals (x/y)/((y/x)\(x/y)), which simplifies to (x/y)/(x/y), by invoking (1) and

the fact that integral GMV-algebras are integral GBL-algebras. Finally, the last term equals

to e in integral residuated lattices.

3) By Lemma 3.18, an equational basis for RLC , relative to RL, is

z\(x/(x ∨ y))z ∨ w(y/(x ∨ y))/w ≈ e,
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which simplifies to

x/(x ∨ y) ∨ y/(x ∨ y) ≈ e,

under commutativity and integrality. In every residuated lattice

x/(x ∨ y) ∨ y/(x ∨ y) = (x/x ∧ x/y) ∨ (y/x ∧ y/y),

which in turn equals x/y∨y/x, under integrality. By (2), every commutative integral GMV-

algebra satisfies the last equation.

Bosbach’s embedding theorem

The results of this section are due to B. Bosbach, see [BoRG] and [BoCA]. Our presen-

tation is a variant of his exposition.

A cone algebra is an algebra C = 〈C, \, /, e〉, that satisfies:

(x\y)\(x\z) ≈ (y\x)\(y\z) (z/y)/(x/y) ≈ (z/x)/(y/x)

e\y ≈ y y ≈ y/e

x\(y/z) ≈ (x\y)/z x/(y\x) ≈ (y/x)\y
x\x ≈ e x/x ≈ e

Lemma 7.7. ([BoRG], [BoCA]) If C = 〈C, \, /, e〉 is a cone algebra, then

1. for all a, b ∈ C, a\b = e iff b/a = e;

2. the relation ≤ on C defined by a ≤ b ⇔ a\b = e is a semilattice order with a ∨ b =

a/(b\a); in particular a ≤ e, for all a;

3. if a ≤ b, then c\a ≤ c\b and a/c ≤ b/c.

If L = 〈L,∧,∨, ·, e, \, /, 〉, is an integral GMV-algebra, then 〈L, \, /〉 is a cone algebra,

called the cone algebra of L.

It will be shown that every cone algebra is a subalgebra of the cone algebra of the

negative cone of an `-group. In the following construction, the negative cone is defined as

the union of an ascending chain 〈Cn〉n∈N of cone algebras, each of which is a subalgebra

of its successor. In the process of constructing the algebras Cn, we also define in Cn+1

binary products of elements of Cn. Each such product is identified with the congruence

class of the corresponding ordered pair. The definition below of the division operations

becomes transparent if we note that negative cones of `-groups satisfy the law ab\cd =

(b\(a\c)) · (((a\c)\b)\((c\a)\d)) and its opposite.
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Let C be a cone algebra. Define the operations \ and / and the relations θ and θ′ on

C × C, by

(a, b)\(c, d) = (b\(a\c), ((a\c)\b)\((c\a)\d))

(d, c)/(b, a) = ((d/(a/c))/(b/(c/a)), (c/a)/b)

(a, b)θ(c, d) ⇔ (a, b)\(c, d) = (e, e) and (c, d)\(a, b) = (e, e)

(a, b)θ′(c, d) ⇔ (a, b)/(c, d) = (e, e) and (c, d)/(a, b) = (e, e)

Lemma 7.8. ([BoRG], [BoCA]) Let C be a cone algebra. Then:

i) θ = θ′.

ii) θ is a congruence relation.

iii) s(C) = 〈C × C, \, /〉/θ is a cone algebra.

iv) C can be embedded in s(C).

Let C0 = C, Cn+1 = s(Cn), for every natural number n, and C =
⋃

Cn, the directed

union of the Cn’s.

We can now establish the main result of [BoCA].

Theorem 7.9. [BoCA] Every cone algebra C is a subalgebra of the cone algebra of the

negative cone Ĉ of an `-group. Moreover, every element of Ĉ is a product of elements of C.

Proof. We will show that C is the cone algebra, i.e., the {\, /}-reduct of the negative cone

Ĉ of an `-group.

For two elements of C, we define their product, a·b, to be the element [(a, b)]θ. This is well

defined, because of the embedding of Cn into Cn+1, for every n. Let Ĉ = 〈C,∧,∨, ·, \, /, e〉,
where \ = \C, / = /C, x ∨ y = x/(y\x) and x ∧ y = (x/y) · y. We will show that Ĉ is the

negative cone of an `-group.

By the definition of the operations in Ĉ and Lemma 7.7(2), Ĉ is a join semilattice. Note

that ab\cd = (b\(a\c)) · (((a\c)\b)\((c\a)\d)). In particular, ab\c = b\(a\c) and a\ab = b.

The dual equations hold, as well. Finally, note that e/a = e = a\e.
To see that multiplication is order preserving, let a ≤ c. We have e = a\c, by the

definition of ≤. To show that ab ≤ cb, we note that ab\cb = b\[(c\a)\b] = [(c\a)b]\b.
Moreover,

b/[(c\a)b] = (b/b)/(c\d) = e/(c\d) = e.

This yields successively, (c\a)b ≤ b, [(c\a)b]\b = e, ab\cb = e and ab ≤ cb. Likewise a ≤ c
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implies ba ≤ bc. Also, multiplication is associative, since

(ab)c ≤ d ⇔ ab ≤ d/c

⇔ b ≤ a\(d/c)

⇔ b ≤ (a\d)/c

⇔ bc ≤ (a\d)

⇔ a(bc) ≤ d.

To see that multiplication is residuated, note that a(a\c) ≤ c, since [a(a\c)]\c =

(a\c)\(a\c) = e. If ab ≤ c, then a\ab ≤ a\c, so b ≤ a\c. Conversely, if b ≤ a\c, then

ab ≤ a(a\c) ≤ c. The equivalence for right division is the opposite of the one established.

To show that the operation ∧ that we have defined above is the meet operation, note

that it was proved above that a(a\b) ≤ b. Moreover, a(a\b) ≤ ae = a. On the other hand,

if c ≤ a and c ≤ b, then e = c\a = c\b. We have,

c\a(a\b) = (c\a) · [(a\c)\(a\c)] = (c\a)\(c\b) = e,

so c ≤ a(a\b). Interchanging the roles of a and b we get that c ≤ a, b ⇔ c ≤ b(b\a). The

opposites of these properties are obtained in a similar way.

Thus, Ĉ is a residuated lattice. Since it satisfies x\xy ≈ y ≈ yx/x and x/(y\x) ≈ x∨y ≈
(x/y)\x, it is the negative cone of an `-group, by Corollary 4.5. Finally, by construction,

every element of Ĉ is the product of elements of C.

The algebra Ĉ is called the product extension of C.

Decomposition of GBL-algebras

We now show that every GBL-algebra decomposes into a direct product.

Lemma 7.10. Every GBL-algebra satisfies the identity x ≈ (x ∨ e)(x ∧ e).

Proof. Setting y = e into the equivalent axiomatization of GBL-algebras, we have that

(e/x∧e)x = x∧e. Moreover, by Lemma 7.2(1), x∨e is invertible and (x∨e)−1 = e/(x∨e) =

e/x ∧ e. Thus, (x ∨ e)−1x = x ∧ e, i.e., x = (x ∨ e)(x ∧ e).

We say that an algebra A is the direct sum of two of its subuniverses B, C, in symbols

A = B ⊕ C, if the map f : B×C→ A, defined by f(x, y) = xy is an isomorphism.

Recall the definition of the set G(L) of invertible and I(L) of integral elements of L.

Theorem 7.11. Every GBL-algebra, L, is equal to the direct sum G(L)⊕ I(L).
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Proof. We begin with a series of claims.

Claim 1: G(L) is a subuniverse of L.

Let x, y be invertible elements. It is clear that xy is invertible. Additionally, by Lemma 3.2,

x/y = xy−1 and y\x = y−1x are invertible.

Lastly, x∨y = (xy−1∨e)y. So, x∨y is invertible, since every positive element is invertible,

by Lemma 7.2(1), and the fact that the product of two invertible elements is invertible. By

Lemma 7.2(3), x ∧ y = e/(x−1 ∨ y−1), which is invertible, since we have already shown

that G(L) is closed under joins and the division operation. We have verified that G(L) is a

subuniverse of L.

Claim 2: I(L) is a subuniverse of L.

Note that every integral element a is negative, since e = e/a implies e ≤ e/a and a ≤ e.

For x, y ∈ I(L), using Lemma 3.1 repeatedly, we get:

e/xy = (e/y)/x = e/x = e, so xy ∈ I(L).

e/(x ∨ y) = e/x ∧ e/y = e, so x ∨ y ∈ I(L).

e ≤ e/x ≤ e/(x ∧ y) ≤ e/xy = e, so x ∧ y ∈ I(L).

e = e/(e/y) ≤ e/(x/y) ≤ e/(x/e) = e/x = e, so x/y ∈ I(L).

We have shown that I(L) is a subuniverse of L.

Claim 3: For every g ∈ (G(L))− and every h ∈ I(L), g ∨ h = e.

Let g ∈ (G(L))− and h ∈ I(L). We have e/(g ∨ h) = e/g ∧ e/h = e/g ∧ e = e, since

e ≤ e/g. Moreover, g ≤ g ∨ h, so e ≤ g−1(g ∨ h). Thus, by the GBL-algebra identities

e = (e/[g−1(g ∨ h)])[g−1(g ∨ h)]

= ([e/(g ∨ h)]/g−1)g−1(g ∨ h)

= (e/g−1)g−1(g ∨ h)

= gg−1(g ∨ h)

= g ∨ h.

Claim 4: For every g ∈ (G(L))− and every h ∈ I(L), gh = g ∧ h.

In light of Lemma 7.10, g−1h = (g−1h ∨ e)(g−1h ∧ e). Multiplication by g yields h =

(h ∨ g)(g−1h ∧ e). Using Claim 3 and Lemma 3.2(2), we have gh = g(g−1h ∧ e) = h ∧ g.
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Claim 5: For every g ∈ G(L) and every h ∈ I(L), gh = hg.

The statement is true if g ≤ e, by Claim 4. If g ≥ e then g−1 ≤ e, thus g−1h = hg−1,

hence hg = gh. For arbitrary g, note that both g ∨ e and g ∧ e commute with h. Using

Lemma 7.10, we get gh = (g ∨ e)(g ∧ e)h = (g ∨ e)h(g ∧ e) = h(g ∨ e)(g ∧ e) = hg.

Claim 6: For every x ∈ L, there exist gx ∈ G(L) and hx ∈ I(L), such that x = gxhx.

By Lemma 7.10, x = (x∨ e)(x∧ e). Since e ≤ x∨ e and e ≤ e/(x∧ e), by Lemma 7.2(1),

these elements are invertible. Set gx = (x ∨ e)(e/(x ∧ e))−1 and hx = (e/(x ∧ e))(x ∧ e). It

is clear that x = gxhx, gx is invertible and hx is integral.

Claim 7: For every g1, g2 ∈ G(L) and h1, h2 ∈ I(L), g1h1 ≤ g2h2 if and only if g1 ≤ g2 and

h1 ≤ h2.

For the non-trivial direction we have

g1h1 ≤ g2h2 ⇒ g−1
2 g1h1 ≤ h2 ⇒ g−1

2 g1 ≤ h2/h1 ≤ e ⇒ g1 ≤ g2.

Moreover,

g−1
2 g1 ≤ h2/h1 ⇒ e ≤ g−1

1 g2(h2/h1)

⇒ e = [e/g−1
1 g2(h2/h1)]g

−1
1 g2(h2/h1)

⇒ e = [(e/(h2/h1))/g
−1
1 g2]g

−1
1 g2(h2/h1)

⇒ e = g−1
2 g1g

−1
1 g2(h2/h1)

⇒ e = h2/h1

⇒ h1 ≤ h2.

By Claims 1 and 2, G(L) and I(L) are subalgebras of L. Define f : G(L) × I(L) → L

by f(g, h) = gh. We will show that f is an isomorphism. It is onto by Claim 6 and an order

isomorphism by Claim 7. So, it is a lattice isomorphism, as well. To verify that f preserves

the other operations note that, by Claim 5 and 7, for all g, g′ ∈ G(L) and h, h′ ∈ I(L),

gg′hh′ = ghg′h′, gh/g′h′ = (g/g′)(h/h′) and g′h′\gh = (g′\g)(h′\h).

Corollary 7.12. The varieties GBL and GMV decompose as follows:

GBL = LG × IGBL = LG ∨ IGBL and GMV = LG × IGMV = LG ∨ IGMV

Taking intersections with CanRL and recalling Theorem 4.4, we get:

Corollary 7.13. CanGMV = CanGBL = LG × LG−.

This simplifies the equational basis obtained by Corollary 3.30. Moreover, in conjunction

with Lemma 7.6(3) and Theorem 3.18, we have:
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Corollary 7.14. CGMV ⊆ RLC. Thus, every commutative GMV-algebra is a subdirect

product of totally ordered GMV-algebras.

Representation theorems

In this section we establish two related representation theorems for generalized MV-

algebras, by first characterizing integral GMV-algebras.

Direct product representation

The first representation decomposes a generalized MV-algebra into the direct product of

an `-group and the nucleus image of the negative cone of an `-group.

Recall the definition of a nucleus from Example 3.3.

Theorem 7.15. If L = 〈L,∧,∨, ·, \, /, e〉 is a GMV-algebra and γ a nucleus on it, then

1. Lγ = 〈Lγ,∧,∨, ◦γ, \, /, e〉 and Lγ is a GMV-algebra,

2. Lγ is a filter in L and

3. γ is join-preserving.

Proof. 1) By Lemma 3.4, Lγ is a residuated lattice. Since γ is extensive, e ≤ γ(e). Hence,

γ(e) is invertible, by Lemma 7.2(i). By the fact that γ is a nucleus, we get γ(e)γ(e) ≤ γ(e),

so γ(e) ≤ e. Thus, γ(e) = e.

Since L is a GMV-algebra, if x ∈ Lγ, then x∨ y = x/((x∨ y)\x) ∈ Lγ, by Lemma 3.3(2).

Thus, ∨γ is the restriction of ∨ on Lγ. Finally, Lγ is a GMV-algebra, because the join and

division operations of Lγ are the restrictions of the ones in L, and L is a GMV-algebra.

2) If x ∈ Lγ, y ∈ L and x ≤ y, then by Lemma 3.3, y = x ∨ y = x/((x ∨ y)\x) is an

element of Lγ. Since Lγ is also a sublattice, it is a filter.

3) For all x, y ∈ L we have

γ(x) ∨ γ(y) ≤ γ(x ∨ y),

by the monotonicity of γ. So,

γ(γ(x) ∨ γ(y)) ≤ γ(x ∨ y),

by the monotonicity and idempotency of γ. The reverse inequality is also true, since γ is

extensive and monotone, so

γ(x ∨ y) = γ(γ(x) ∨ γ(y)).
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Finally, since γ(x) ∨ γ(y) is an element of Lγ,

γ(γ(x) ∨ γ(y)) = γ(x) ∨ γ(y).

Thus,

γ(x ∨ y) = γ(x) ∨ γ(y).

Corollary 7.16. If L is an integral GMV-algebra and γ is a nucleus on it, then Lγ is an

integral GMV-algebra, as well.

Lemma 7.17. Let L be the negative cone of an `-group and γ a nucleus on it. If z ∈ L and

u = γ(z), then γ agrees with γu on the principal filter generated by z, where γu(x) = u ∨ x.

Proof. Let x ≥ z. We will show that γ(x) = u∨x. On the one hand, u∨x = γ(z)∨x ≤ γ(x),

since γ is monotone and extensive. Moreover, x ≤ u∨x, so γ(x) ≤ γ(u∨x) = u∨x, because

Lγ is a filter, by Theorem 7.15(2).

Corollary 7.18. Every nucleus on a GMV-algebra is a lattice homomorphism.

Proof. In view of Theorem 7.15(3), we need only show that γ preserves meets. Let x, y be

elements of the GMV-algebra and set z = x ∧ y and u = γ(z). By Lemma 7.17, we have

γ(x ∧ y) = γu(x ∧ y) = u ∨ (x ∧ y) = (u ∨ x) ∧ (u ∨ y) = γu(x) ∧ γu(y) = γ(x) ∧ γ(y).

We used the fact that GMV-algebras have a distributive lattice reduct; this follows from

Lemmas 7.1 and 7.4.

Theorem 7.19. The residuated lattice M is an integral GMV-algebra if and only if M ∼= Lγ,

for some L ∈ LG− and some nucleus γ on it.

Proof. One direction follows from the previous corollary. For the other direction, let

M = 〈M,∧,∨, •, \, /, e〉 be an integral GMV-algebra. Using Lemma 7.1, Lemma 7.5(2),

Lemma 3.1(6), Lemma 7.2(2), Lemma 3.1(8),(7) and Lemma 7.5(1), we see that 〈M, \, /〉
is a cone algebra. So, by Theorem 7.9, it is a subreduct of the negative cone L = M̂ of an

`-group, such that the monoid generated by M is equal to L.

Since the division operations of M are the restrictions of the division operations of L we

use the symbols \ and / for the latter, as well. Moreover, the same holds for the join and

the constant e, because in integral GMV-algebras they are term definable by the division

operations (x ∨ y ≈ x/(y\x) and e ≈ x/x). We denote multiplication in L by ·.
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Since M generates L as a monoid, for every x ∈ L, there exist elements x1, . . . , xn ∈M ,

such that x = x1 · x2 · · ·xn. We prove the following Claim.

Claim: If z ∈M, x ∈ L and x = x1 · · ·xn, then z ∨ x = z ∨ x1 • · · · • xn.

z ∨ x = z/(x\z) (axiom of IGMV-algebras)

= z/((x1 · · ·xn)\z)

= z/[xn\(. . . (x2\(x1\z)) . . . )] (Lemma 3.1(6))

= z/((x1 • · · · • xn)\z) (Lemma 3.1(4))

= z ∨ x1 • · · · • xn (axiom of IGMV-algebras)

Suppose now that x = x1 · · ·xn = y1 · · · yn, with xi, yi ∈M . Then,

x1 • · · · • xn ∨ y1 • · · · • yn = x1 • · · · • xn ∨ x1 • · · · • xn,

by the preceding claim. Hence, y1 •· · ·•yn ≤ x1 •· · ·•xn. Likewise, x1 •· · ·•xn ≤ y1 •· · ·•yn,

hence x1 • · · · • xn = y1 • · · · • yn.

Retaining the notation established in the preceding paragraph, we define γ(x) = x1 •· · ·•
xn. By the previous paragraph this map is well-defined. We will show that it is a nucleus

on L, Lγ = M and Lγ
∼= M.

Note that γ(x) ∈ M , for all x ∈ L, so by setting z = γ(x) to the claim above, we get

γ(x) ∨ x = γ(x). So, x ≤ γ(x), for all x ∈ L. If x ≤ y, then

γ(x) ≤ γ(y) ∨ γ(x)

= γ(y) ∨ x (Claim for z = γ(y))

≤ γ(y) ∨ y (x ≤ y)

≤ γ(y) (extensivity of γ)

So, γ is monotone. We also have

γ(γ(x)) = γ(x1 • · · · • xn) = x1 • · · · • xn = γ(x).

We have shown that γ is idempotent, hence γ is a closure operator. Finally, if x = x1 · · ·xn

and y = y1 · · · yn, then

γ(x) · γ(y) ≤ γ(γ(x) · γ(y)) (extensivity)

= γ((x1 • · · · • xn) · (y1 • · · · • ym)) (definition of γ)

= (x1 • · · · • xn) • (y1 • · · · • yn) (definition of γ)

= γ(x · y) (definition of γ)
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Thus, γ is a nucleus. By definition, γ(x) ∈M , for every x ∈ L. So, Lγ ⊆M . Conversely,

if x ∈M , then γ(x) = x, that is x ∈ Lγ. We have established that Lγ = M .

By the remarks at the beginning of the proof and the definition of Lγ, we see that the

division operations, join and e agree on Lγ and M. Moreover, for x, y ∈ M, x ◦γ y =

γ(x · y) = x • y. Finally, the meet operation on the two structures is the same, since integral

GMV-algebras satisfy the identity x∧y ≈ (x/y)·y. Thus, the two structures are identical.

As an example, we note that the collection of all co-finite subsets of N is the universe

of a generalized Boolean algebra A, hence an integral GMV-algebra. It is easy to see that

A ∼= ((Z−)N)γ, where γ((xn)n∈N) = (xn ∨ (−1))n∈N.

Combining Theorem 7.11 and Theorem 7.19, we obtain the following.

Theorem 7.20. A residuated lattice M is a GMV-algebra if and only if it has a direct

product decomposition M ∼= G×H−γ ,where G,H are `-groups and γ is a nucleus on H−.

Representation as a retraction

In what follows we obtain a second characterization of GMV-algebras. A generalized MV-

algebra is shown to be the image of an `-group under an idempotent monotone operator.

Recall the definition of a kernel from Example 3.11.

Lemma 7.21. If L is a GMV-algebra or a GBL-algebra and δ a kernel on it, then so is the

δ-contraction of L.

Proof. If L is a GMV-algebra, then

(x ∨ y)\x = x\x ∧ y\x = e ∧ y\x ≤ e.

Since Lδ is an ideal that contains e, we have

δ((x ∨ y)\x) = (x ∨ y)\x.

So,

x/δ[(x ∨ y)\δx] = δ(x/δ((x ∨ y)\x)) = δ(x/((x ∨ y)\x)) = δ(x ∨ y) = x ∨ y.

Similarly, if L is a GBL-algebra, (x ∧ y)/y ≤ e, so

((x ∧ y)/δy)y = δ((x ∧ y)/y)y = ((x ∧ y)/y)y = x ∧ y.
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The opposite properties are obtained similarly.

Theorem 7.22. A residuated lattice L is a GMV-algebra iff L ∼= (Gδ)γ, for some `-group

G, some kernel δ on G and some nucleus γ on Gδ.

Proof. By the previous lemma, if G is an `-group and δ a kernel on it, then Gδ is a GMV-

algebra. Moreover, by Theorem 7.16, (Gδ)γ is a GMV-algebra, as well.

Conversely, let L be a GMV-algebra. By Corollary 7.22, L ∼= K×H−γ , for some `-groups

K and H, and a nucleus γ on H−. Define a map δ on K ×H, by δ(k, h) = (k, h ∧ e). We

will show that δ is a kernel. It is obviously an interior operator and δ(e, e) = (e, e). Note

that

δ(k, h)δ(k′, h′) = (k, h ∧ e)(k′, h′ ∧ e) = (kk′, (h ∧ e)(h′ ∧ e)) = (kk′, hh′ ∧ h ∧ h′ ∧ e)

and δ(kk′, hh′ ∧ h ∧ h′ ∧ e) = (kk′, hh′ ∧ h ∧ h′ ∧ e). Similarly

δ(k, h) ∧ (k′, h′) = (k, h ∧ e) ∧ (k′, h) = (k ∧ k′, h ∧ e ∧ h′)

and δ(k ∧ k′, h ∧ e ∧ h′) = (k ∧ k′, h ∧ e ∧ h′).

Observe that the underlying set of (K × H)δ is K × H−. Define γ̄ on K × H−, by

γ̄(k, h) = (k, γ(h)). We will show that γ̄ is a nucleus on (K×H)δ. It is obviously a closure

operator. Moreover,

γ̄(k, h)γ̄(k′, h′) = (k, γ(h))(k′, γ(h′))

= (kk′, γ(h)γ(h′))

≤ (kk′, γ(hh′))

= γ̄(kk′, hh′)

= γ̄((k, h)(k′, h′)).

Notice that γ̄((K × H)δ) = γ̄(K × H−) = K × H−γ . So, the underlying set of K ×H−γ

and ((K×H)δ)γ̄ coincide. Recalling the constructions of the δ-contraction and γ-retraction,

we see that the lattice operations on the two algebras coincide. To show that the other

operations are the same, as well, note that for all (k, h), (k′h′) ∈ K ×H−γ ,

(k, h) •((K×H)δ)γ̄ (k′, h′) = (k, h) ◦γ̄ (k′, h′)

= γ̄((k, h) · (k′, h′))
= γ̄(kk′, hh′)

= (kk′, γ(hh′))

= (kk′, h ◦γ h′)

= (k, h) •K×H−
γ

(k′, h′)
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(k, h)\((K×H)δ)γ̄ (k
′, h′) = δ((k, h)\K×H(k′, h′))

= δ((k\Kk′, h\Hh′))

= (k\Kk′, h\Hh′ ∧ e)

= (k\Kk′, h\H−h′)

= (k\Kk′, h\H−
γ
h′)

= (k, h)\K×H−
γ
(k′, h′)

and likewise for the other division operation.

We investigate the action of nuclei and kernels on GMV-algebras, before we characterize

their compositions.

Corollary 7.23. If δ is a kernel on an `-group G, then there exist `-groups K,H, such that

G = K×H and δ(k, h) = (k, h ∧ e), for all (k, h) ∈ K ×H. Thus, Gδ = K×H−.

Proof. Since Gδ is a GMV-algebra, by Theorem 7.15, there are `-groups K,H and a nucleus

γ on H−, such that Gδ = K×H−γ and the submonoid generated by H−γ is H−. Since K×H−γ

is contained in G, the `-subgroup generated by K × H−γ is contained in G, as well. So, K

and the `-subgroup generated by H−γ are contained in G. Since the submonoid generated by

H−γ is H− and the `-subgroup generated by H− is H, H is contained in G. So, K ×H is

contained in G. By Theorem 7.21, Gδ is a lattice ideal of G. Since (k, h) ∈ G, for k ∈ K

and h ∈ H−, and (k, e) ∈ K × H−γ = Gδ, we get (k, h) ∈ Gδ. So, K × H− is contained in

Gδ = K ×H−γ , which in turn is contained in K ×H−. Thus, Gδ = K ×H−. If x ∈ G−, we

get x ∈ Gδ, since e ∈ Gδ. So, G− is contained in Gδ = K ×H−, hence G− is contained in

K− ×H−, which in turn is contained in G. So, G− = K− ×H−, thus G = K ×H.

Consequently, (K×H)δ = K×H−, so δ(K×H) = δ′(K×H), where δ′(g, h) = (g, h∧e)

is a interior operator. Since an interior operator is defined by its image, we get δ(g, h) =

(g, h ∧ e).

Lemma 7.24.

1. The identity map is the only nucleus on an `-group.

2. The identity is the only kernel on an integral GMV-algebra.

Proof. 1) Assume γ is a nucleus on the `-group G. Since G is a GMV-algebra, by Theo-

rem 7.15, e = γ(e) ∈ Gγ. Moreover, by Lemma 3.3, for every x ∈ G, e/x ∈ Gγ, that is

x−1 ∈ Gγ. Thus, Gγ = G. Since a closure operator is uniquely defined by its image, γ is the

identity on G.

2) Assume that δ is a kernel on an integral GMV-algebra M. By Lemma 7.21, Mδ is an ideal

of M . Moreover, e = δ(e) ∈Mδ. So, Mδ = M , hence δ is the identity.
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Corollary 7.25. If δ is a kernel on a GMV-algebra M, then there exist a GMV-algebra N

and an `-group H, such that M = N ×H and δ(n, h) = (n, h ∧ e), for all (n, h) ∈ N ×H.

Thus, Mδ = N×H−.

Proof. By Theorem 7.20, there are `-groups G,L, and a nucleus γ on L−, such that M =

G×L−γ . The coordinate maps of δ, which we denote by δ, as well, on G and L−γ are kernels,

because of the equational definition of a kernel. By Corollary 7.23, there exist `-groups K,H,

such that G = K×H and δ(k, h) = (k, h∧ e), for all (k, h) ∈ K×H. So, M = K×H×L−γ .

Moreover, by Lemma 7.24(2), δ on L−γ is the identity. If we identify isomorphic algebras and

set N = K× L−γ , we get M = N×H and δ(n, h) = (n, h ∧ e), for all (n, h) ∈ N ×H.

Corollary 7.26.

1. A residuated lattice L is a cancellative GMV-algebra iff L ∼= Gδ, for some `-group G

and some kernel δ on G.

2. A residuated lattice L is a GMV-algebra iff L ∼= Kγ, for some cancellative GMV-algebra

K and some nucleus γ on K.

Proof. 1) One direction follows from Corollary 7.23 and Corollary 7.13. For the other direc-

tion, assume that L is a cancellative GMV-algebra. By Corollary 7.13, L = K × H−, for

some `-groups K,H. It is easy to see that the map δ on K×H, defined by δ(k, h) = (k, h∧e)

is a kernel and that (K×H)δ = K×H− = L.

2) One direction follows from Theorem 7.15. Conversely, if L is a GMV-algebra, by Theo-

rem 7.20 , there exist `-groups G,H and a nucleus on H−, such that L = G ×H−γ . It is

easy to check that the map γ̄ on G × H− defined by γ̄(g, h) = (g, γ(h)) is a nucleus and

that (G ×H−)γ̄ = G ×H−γ = L. Finally, K = G ×H− is a cancellative GMV-algebra, by

Corollary 7.13.

A core, defined below, on a GMV-algebra is a typical composition of a nucleus and a

kernel.

A map β on a residuated lattice is called a core if

1. β(x)β(y) ≤ β(xy),

2. β(e) = e,

3. (β(x) ∧ x)(β(y) ∧ y) ≤ β((β(x) ∧ x)(β(y) ∧ y)),

4. β(x) ∧ x ∧ y ≤ β(β(x) ∧ x ∧ y) and

5. β(β(x) ∧ x) = β(x).
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If δ is a map on a residuated lattice L and γ a map on δ(L), define β(γ,δ) on L, by

β(γ,δ)(x) = γ(δ(x)). Moreover, β is a map on a residuated lattice, define δβ on L and γβ on

δβ(L), by δβ(x) = β(x) ∧ x and γβ(x) = β(x).

Lemma 7.27. Let L be a GMV-algebra. If δ is a kernel on L, γ a nucleus on Lδ, and β a

core on L, then

1. γβ is a nucleus on δβ(L) and δβ is a kernel on L,

2. δβ(γ,δ)
= δ, γβ(γ,δ)

= γ and β(γβ ,δβ) = β,

3. β(γ,δ) is a core on L.

Proof. 1) Since γβ is the restriction of β, we have γβ(x)γβ(y) ≤ γβ(xy), by the first property

of a core. So, γβ is a nucleus.

Obviously, δβ(e) = β(e) ∧ e = e, by the second property of a core. The remaining two

properties of a kernel state that δβ(x)δβ(y) and δβ(x)∨ y are elements fixed by δβ. It is easy

to see that for every x, δβ(x) = x iff x ≤ β(x). So, the remaining properties are equivalent

to properties (3) and (4) of the definition of a core, which hold for β. Thus, δβ is a kernel.

2) We have δβ(γ,δ)
(x) = β(γ,δ)(x) ∧ x = γ(δ(x)) ∧ x. In view of Corollary 7.25, to show

that δβ(γ,δ)
= δ, it suffices to verify that γ(δ(x)) ∧ x = δ(x), only for the cases δ(x) = x

and δ(x) = x ∧ e. In the first case, the equation holds, by the extensivity of γ. In the

second case, the equation reduces to γ(x ∧ e) ∧ x = x ∧ e. By the extensivity of γ we have

x∧e = x∧e∧x ≤ γ(x∧e)∧x and by the monotonicity of γ we get γ(x∧e)∧x ≤ γ(e)∧x = e∧x,

by Theorem 7.15(1).

For every x in the range of δβ(γ,δ)
= δ, namely δ(x) = x, we have γβ(γ,δ)

(x) = β(γ,δ)(x) =

γ(δ(x)) = γ(x). Finally, β(γβ ,δβ)(x) = γβ(δβ(x)) = β(β(x) ∧ x) = β(x).

3) For the first property of a core we have

β(x)β(y) = γ(δ(x))γ(δ(y)) ≤ γ(δ(x)δ(y)) = γ(δ(δ(x)δ(y))) ≤ γ(δ(xy)) = β(xy).

Also, β(e) = γ(δ(e)) = γ(e) = e, by Theorem 7.15(1).

Since for every x, x ≤ β(γ,δ)(x) iff δβ(γ,δ)
(x) = x, properties (3) and (4) of the definition

of a core hold for β(γ,δ) iff and only if the last two properties of a kernel hold for δβ(γ,δ)
. This

is a true statement, since δβ(γ,δ)
= δ, by (2).

The last property of a core for β(γ,δ) is equivalent to β(γ,δ)(δβ(γ,δ)
(x)) = β(γ,δ)(x), that is

β(γ,δ)(δ(x)) = β(γ,δ)(x), namely γ(δ(δ(x))) = γ(δ(x)), which follows from the idempotency of

δ.
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For a residuated lattice L and a core β on it, define Lβ = (Lδβ
)γβ

.

Corollary 7.28. A residuated lattice L is a GMV-algebra iff L ∼= Gβ, for some `-group G

and some core β on G.

Categorical equivalences

In this section we show that the representations of integral GMV-algebras and of GMV-

algebras extend to categorical equivalences.

Let IGMV be the category with objects integral GMV-algebras and morphisms resid-

uated lattice homomorphisms. Also, let LG−∗ be the category with objects algebras 〈L, γ〉,
such that L is the negative cone of an `-group and γ is a nucleus on it, whose image gener-

ates L as a monoid. Let the morphisms of this category be homomorphisms between these

algebras.

Moreover, let GMV be the category with objects GMV-algebras and morphisms resid-

uated lattice homomorphisms. Also, let LG∗ be the category with objects algebras 〈G, β〉,
such that G is an `-group and β is core on G, whose image generates G. Let the morphisms

of this category be homomorphisms between these algebras.

The two main results of this section, Theorem 7.43 and Theorem 7.44, assert that the

two pairs of categories defined above are pairs of equivalent categories.

Lemma 7.29. For a, b, c in the negative cone of an `-group, ab = c iff (a = c/b and c ≤ b)

iff (b = a\c and c ≤ a). Moreover, the negative cone of every `-group satisfies the identity,

x/(y ∧ z) ≈ x/y ∨ x/z and its opposite.

Proof. If ab = c, then ab/b = c/b, so, by Theorem 4.5, a = c/b. Moreover, c = ab ≤ eb ≤ b,

by integrality. Conversely, if a = c/b, then ab = (c/b)b. So, since negative cones of `-groups

are integral GBL-algebras, ab = c ∧ b. Since c ≤ b, we get ab = c.

Assume that G is an `-group and recall the definition of a negative cone. For elements

x, y, z ∈ G−, we have

x/(y ∧ z) = x(y ∧ z)−1 ∧ e

= x(y−1 ∨ z−1) ∧ e

= (xy−1 ∨ xz−1) ∧ e

= (xy−1 ∧ e) ∨ (xz−1 ∧ e)

= x/y ∨ x/z.

For the opposite equation we work similarly.
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Definition 7.30 and lemmas 7.31, 7.32, 7.33, 7.36 and 7.39 are non-commutative, un-

bounded generalizations of concepts and results in [Mu].

Definition 7.30. Let L be the negative cone of an `-group and u, x elements of it. Define

the elements xu
n and bu

n, for every natural number n, inductively, by bu
0 = x and xu

k+1 =

u ∨ bu
k , bu

k+1 = xu
k+1\bu

k, for all k ≥ 0.

Lemma 7.31. Let L be the negative cone of an `-group and u, x elements of it. For all

natural numbers n,

1. bu
n = un\x,

2. bu
n = (xu

1x
u
2 · · ·xu

n)\x,

3. x ≤ xu
1x

u
2 · · ·xu

n.

Proof. Statement (1) is obvious for n = 0; we proceed by induction. Assume the statement

is true for n = k. To show that it is true for n = k + 1, note that, using properties (3) and

(6) of Lemma 3.1, we get

bu
k+1 = xu

k+1\bu
k = (u ∨ bu

k)\bu
k

= u\bu
k ∧ bu

k\bu
k = u\bu

k ∧ e

= u\(uk\x) = uk+1\x.

The second statement is clear from the definition of bu
n and Lemma 3.1(6). We prove the

third statement by induction. For n = 1 we have x = bu
0 ≤ u ∨ bu

0 = x1. If x ≤ xu
1x

u
2 · · ·xu

n,

then,

x = xu
1x

u
2 · · ·xu

n ∧ x

= xu
1x

u
2 · · ·xu

n[(xu
1x

u
2 · · ·xu

n)\x]

= xu
1x

u
2 · · ·xu

nb
u
n

≤ xu
1x

u
2 · · ·xu

n(u ∨ bu
n)

≤ xu
1x

u
2 · · ·xu

n · xu
n+1.

Thus, x ≤ xu
1x

u
2 · · ·xu

n holds for all natural numbers.

Lemma 7.32. Let L be the negative cone of an `-group and u, x elements of it. If un ≤ x,

for some natural number n, then

1. bu
k−1 = e, for all k > n,

2. xu
k = e, for all k > n,

3. x = xu
1x

u
2 · · ·xu

n,
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4. If x ≤ y, then xu
i ≤ yu

i , for all i.

Proof. For the first property note that uk−1 ≤ un ≤ x, so e ≤ uk−1\x. Hence, bu
k−1 =

u(k−1)\x = e. As a consequence we have xu
k = u ∨ bu

k−1 = u ∨ e = e. Moreover, by

Lemma 7.29 and Lemma 7.31(3), x = xu
1x

u
2 · · ·xu

n,so e = bu
k−1 = (xu

1x
u
2 · · ·xu

n)\x. Finally, by

Lemma 7.31(1), we have xu
i = u ∨ ui−1\x ≤ u ∨ ui−1\y = yu

i , for all i.

Lemma 7.33. Let L be the negative cone of an `-group and γ a nucleus on it, such that Lγ

generates L as a monoid. If x ∈ L and u ≤ γ(x), then x = xu
1x

u
2 · · ·xu

n, for some n.

Proof. By the monoid generation property, we have x = x1x2 · · ·xn, for some elements

x1, . . . xn of Lγ and some natural number n. So,

u ≤ γ(x) = γ(x1 · · ·xn) = x1 ◦γ · · · ◦γ xn ≤ xi,

for all i. Thus, un ≤ x1x2 · · ·xn = x. The lemma follows from Lemma 7.32(3).

Lemma 7.34. Let L be the negative cone of an `-group and γ a nucleus on it, such that Lγ

generates L as a monoid. Also, let z, x ∈ L, x ≤ z and u = γ(z). Then, the elements xu
i

are the unique elements xi that satisfy x = x1 · · ·xn, for some n, and xi ◦γ xi+1 = xi, for all

i ≥ 1.

Proof. Note that x = xu
1 · · ·xu

n, for some n, by Lemma 7.33, since u = γ(z) ≤ γ(x), by the

monotonicity of γ. Additionally, xu
i ◦γ xu

i+1 = γ(xu
i x

u
i+1) = γu(x

u
i x

u
i+1), by Lemma 7.17, since

z ≤ x ≤ xu
i x

u
i+1, which in turn equals u ∨ xu

i x
u
i+1 = u ∨ xu

i (u ∨ bu
i ) = u ∨ xu

i u ∨ xu
i b

u
i =

u ∨ xu
i u ∨ bu

i−1 = u ∨ bu
i−1 = xu

i .

Conversely, if x = x1 · · ·xn, for some n, and xi ◦γ xi+1 = xi, for all i, then γ(x) =

γ(x1 · · ·xn). So, since z ≤ x, by Lemma 7.17, γu(x) = x1 ◦γ · · · ◦γ xn, hence u ∨ x = x1,

namely x1 = xu
1 . We proceed by induction. If xi = xu

i , for all i ≤ k, then

(x1 · · ·xk)\x = xk+1 · · ·xn ⇒ (xu
1 · · ·xu

k)\x = xk+1 · · ·xn

⇒ bu
k = xk+1 · · ·xn ≥ x ≥ z

⇒ γ(bu
k) = γ(xk+1 · · ·xn) and z ≤ bu

k

⇒ γ(bu
k) = xk+1 ◦γ · · · ◦γ xn and γ(bu

k) = γu(b
u
k)

⇒ γ(bu
k) = xk+1 and γ(bu

k) = u ∨ bu
k

⇒ xk+1 = xu
k+1.

Thus, the decomposition is unique.

Corollary 7.35. Let L be the negative cone of an `-group and γ a nucleus on it, such that

Lγ generates L as a monoid. If z, x ∈ L and z ≤ x, then, for all i ≥ 1, x
γ(z)
i = x

γ(x)
i .
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Lemma 7.36. Let L be the negative cone of an `-group and γ a nucleus on it, such that Lγ

generates L as a monoid. Also, let x, y, t be elements of L, such that t ≤ x∧ y and u = γ(t).

Then, for some natural number s,

x ∧ y =
s∏

i=1

(xu
i ∧ yu

i ).

Proof. Set z = x ∧ y. Then, by Lemma 7.33, for some s,

x =
s∏

i=1

xu
i , y =

s∏
i=1

yu
i and z =

s∏
i=1

zu
i .

Obviously,
s∏

i=1

(xu
i ∧ yu

i ) ≤
s∏

i=1

xu
i ∧

s∏
i=1

yu
i = x ∧ y = z

Moreover, z ≤ x, y, so zu
i ≤ xu

i ∧ yu
i , for all i, by Lemma 7.32(4). Consequently,

z =
s∏

i=1

zu
i ≤

s∏
i=1

(xu
i ∧ yu

i ).

Thus, z =
s∏

i=1

(xu
i ∧ yu

i ).

Let L be the negative cone of an `-group and ai, bj, cij ∈ L. We say that the matrix

C = [cij], 1 ≤ i ≤ n, 1 ≤ j ≤ m is an orthogonal decomposition of the factors of the

equation a1 · a2 · · · an = b1 · b2 · · · bm, in symbols,

a1 . . . an

b1

...

bm




c11 . . c1n

...
...

cm1 . . cmn




if for all i, j,

ai =
m∏

j=1

cij, bj =
n∏

i=1

cij,

and the (i, j)-orthogonality condition,

n∏
k=i+1

ckj ∨
m∏

l=j+1

cil = e
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holds, for all i, j; that is the product of the elements to the right of cij is orthogonal to

the product of elements below it.

Lemma 7.37. Let L be the negative cone of an `-group and ai, bj, cij ∈ L. If the matrix C

is an orthogonal decomposition of the factors of the equation a1 ·a2 · · · an = b1 · b2 · · · bm, then

the equation holds.

Proof. For m = n = 2, we have a1a2 = c11c12c21c22 = c11c21c12c22 = b1b2. We proceed by

induction on the pair (m, n). Assume the lemma is true for all pairs (m, k), where m ≥ 2

and k < n. We will show it is true for the pair (m,n).

Suppose that the matrix C = [cij], 1 ≤ i ≤ n, 1 ≤ j ≤ m is an orthogonal decomposition

of the factors of the equation a1 · a2 · · · an = b1 · b2 · · · bm. It is easy to see that

a2 . . . an

c1

...

cm




c12 . . c1n

...
...

cm2 . . cmn


 and

a1 c

b1

...

bm




c11 c1

...
...

cm1 cm




where c = c1 · · · cm. So, a1 · a2 · · · an = a1 · (c2 · · · cm) = a1c = b1 · b2 · · · bm

The following refinement lemma, can be found in [Fu]. For completeness, we give the

proof in the language of negative cones of `-groups.

Lemma 7.38. ([Fu], Theorem 1, p. 68) Let L be the negative cone of an `-group and let

a1, ..., an, b1, ..., bm be elements of L. Then, a1 · a2 · · · an = b1 · b2 · · · bm iff there exists an

orthogonal decomposition of the factors of the equation.

Proof. One direction is given by the previous lemma. For the other direction we use induc-

tion. We first prove it for m = n = 2. Assume that a1a2 = b1b2 = c. Set

c11 = a1 ∨ b1, c21 = a2/c22

c12 = c11\a1, c22 = a2 ∨ b2
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Using Lemma 7.29 and Lemma 3.1 we get

c21 = a2/c22 = a2/(a2 ∨ b2)

= (a1\c)/(a1\c ∨ b1\c)
= (a1\c)/((a1 ∧ b1)\c)
= a1\[c/((a1 ∧ b1)\c)]
= a1\[(a1 ∧ b1) ∨ c]

= a1\(a1 ∧ b1) = a1\a1 ∧ a1\b1

= e ∧ a1\b1 = a1\b1 ∧ b1\b1

= (a1 ∨ b1)\b1 = c11\b1

Similarly, we show that c12 = b2/c22. Consequently, we can compute the products

c11c12 = c11(c11\a1) = c11 ∧ a1 = (a1 ∨ b1) ∧ a1 = a1

c21c22 = (a2/c22)c22 = a2 ∧ c22 = a2

c11c21 = c11(c11\b1) = c11 ∧ b1 = b1

c12c22 = (b2/c22)c22 = b2 ∧ c22 = b2

Finally, c12 ∨ c21 = c11\a1 ∨ c11\b1 = c11\(a1 ∨ b1) = c11\c11 = e.

For the general case, we proceed by induction on the pair (m, n). Assume that the

statement is true for all pairs (m, k), where m ≥ 2 and k < n. We will show it is true for

the pair (m,n).

Assume that a1 · a2 · · · an = b1 · b2 · · · bm and set a = a2 · a3...an. So, a1a = b1 · b2 · · · bm.

By the induction hypothesis, we get

a1 a

b1

...

bm




c11 c12

...
...

cm1 cm2


 and

a2 . . . an

c12

...

cm2




d12 . . d1n

...
...

dm2 . . dmn




So, we have,
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a1 a2 . . . an

b1

...

bm




c11 d12 . . . d1n

...
...

cm1 dm2 . . . dmn




Lemma 7.39. Let L be the negative cone of an `-group, γ a nucleus on it and a, a1, . . . , an

in Lγ. Then, a = a1 · a2 · · · an iff a = a1 ◦γ a2 ◦γ · · · ◦γ an and ak = (ak ◦γ ak+1 ◦γ · · · ◦γ
an)/(ak+1 ◦γ ak+2 ◦γ · · · ◦γ an), for all 1 ≤ k < n.

Proof. We use induction on n. For n = 2, if a = a1a2, then γ(a) = γ(a1a2), so a = a1 ◦γ a2.

Moreover, by Lemma 7.29, a1 = a/a2, so a1 = (a1 ◦γ a2)/a2. Conversely, if a = a1 ◦γ a2, then

a = γ(a1a2) ≤ γ(a2) = a2. Since a1 = a/a2, we get a = a1a2, by Lemma 7.29.

Assume, now, that the statement is true for all numbers less than n.

a = a1(a2 · · · an) ⇔ a = a1b and b = a2 · · · an

⇔ a = a1 ◦γ b, a1 = a/b, b = a2 ◦γ · · · ◦γ an and

ak = (ak ◦γ ak+1 ◦γ · · · ◦γ an)/(ak+1 ◦γ ak+2 ◦γ · · · ◦γ an),

for all 2 ≤ k < n

⇔ a = a1 ◦γ a2 ◦γ · · · ◦γ an and

ak = (ak ◦γ ak+1 ◦γ · · · ◦γ an)/(ak+1 ◦γ ak+2 ◦γ · · · ◦γ an),

for all 1 ≤ k < n.

Lemma 7.40. Assume K,L are negative cones of `-groups, γ1, γ2 are nuclei and Kγ1, Lγ2

generate K and L respectively as monoids. Moreover, let f : Kγ1 → Lγ2 be a residuated

lattice homomorphism and let a1, . . . , an, b1, . . . , bm be elements of M , such that a1a2 · · · an =

b1b2 · · · bm, where multiplication is in K. Then, f(a1)f(a2) · · · f(an) = f(b1)f(b2) · · · f(bm),

where multiplication is in L.

Proof. First note that, for all c1, c2, . . . , cn ∈ Kγ1 , if c1c2 · · · cn ∈ Kγ1 , then

f(c1c2 · · · cn) = f(c1)f(c2) · · · f(cn).

To see that, notice that by Lemma 7.39, c = c1c2 · · · cn is equivalent to a system of IGMV-

algebra equations in Kγ1 . Since f is a homomorphism, the same equations hold for the images

of the elements under f . Applying Lemma 7.39 again, we get f(c) = f(c1)f(c2) · · · f(cn).
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By Lemma 7.38, there exist cij ∈ Kγ1 , such that if for all i, j,

ai =
m∏

j=1

cij, bj =
n∏

i=1

cij and
n∏

k=i+1

ckj ∨
m∏

l=j+1

cil = e.

Using the observation above and the fact that f preserves joins (join in Kγ1 is the

restriction of join in K), we get that, for all i, j,

f(ai) =
m∏

j=1

f(cij), f(bj) =
n∏

i=1

f(cij) and
n∏

k=i+1

f(ckj) ∨
m∏

l=j+1

f(cil) = e.

Applying Lemma 7.38 again, we get

f(a1)f(a2) · · · f(an) = f(b1)f(b2) · · · f(bm),

where multiplication is calculated in L.

Lemma 7.41. Assume K,L are negative cones of `-groups, γ1, γ2 are nuclei, Kγ1, Lγ2

generate K and L respectively as monoids, and f : Kγ1 → Lγ2 is a residuated lattice homo-

morphism. Then, the map f̄ : K→ L, defined by f̄(x1x2 · · ·xn) = f(x1)f(x2) · · · f(xn), is a

homomorphism, such that f̄ ◦ γ1 = γ2 ◦ f̄ .

Proof. By Lemma 7.40, f̄ is well defined and it obviously preserves multiplication. If x ∈ K,

then there exist x1, . . . , xn ∈ Lγ1 such that x = x1 · · ·xn. Hence,

f̄(γ1(x)) = f(γ1(x))

= f(γ2(x1 · · ·xn))

= f(x1 ◦γ1 · · · ◦γ1 xn)

= f(x1) ◦γ2 · · · ◦γ2 f(xn)

= γ2(f(x1) · · · f(xn))

= γ2(f̄(x)).

Thus, f̄ ◦ γ1 = γ2 ◦ f̄ . Note that f̄ is order preserving. If x ≤ y and u = γ(x ∧ y), then

f̄(x) = f(xu
1) · · · f(xu

n) ≤ f(yu
1 ) · · · f(yu

n) = f̄(y),

by Lemma 7.32(4). Note that if u = γ1(z), z ≤ x, then, by Lemma 7.34,

x = xu
1 · · ·xu

n and xu
i ◦γ1 xu

i+1 = xu
i .
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So,

f̄(x) = f(xu
1) · · · f(xu

n) and f(xu
i ) ◦γ2 f(xu

i+1) = f(xu
i ).

Applying Lemma 7.34 again, we get that for all i,

f(xu
i ) = (f̄(x))

γ2(f̄(x))
i .

Since f̄ preserves order, f̄(z) ≤ f̄(x). So, by Corollary 7.35,

f(xu
i ) = (f̄(x))

γ2(f̄(z))
i .

We can now show that f̄ preserves meets.

Let z = x ∧ y, u = γ1(z)

f̄(x ∧ y) = f̄(
s∏

i=1

(xu
i ∧ yu

i )) (Lemma 7.36)

=
s∏

i=1

f(xu
i ∧ yu

i )

=
s∏

i=1

(f(xu
i ) ∧ f(yu

i ))

=
s∏

i=1

[(f̄(x))
γ2(f̄(z))
i ∧ (f̄(y))

γ2(f̄(z))
i ]

= f̄(x) ∧ f̄(y),

where the last equality is given by Lemma 7.36, since

γ2(f̄(z)) ≤ γ2(f̄(x)) ∧ γ2(f̄(y)).

Thus, f̄ is a map between the negative cones of two `-groups that preserves multiplication

and meet. By Theorem 1.4.5 of [BKW], f̄ is a homomorphism.

Corollary 7.42. Under the hypothesis of the previous theorem, if f is an isomorphism, then

so is f̄ .

Proof. To show that f̄ is onto, let y ∈ L. There exist y1, . . . , yn ∈ Kγ2 , such that y =

y1 · · · yn. Moreover, there exist x1, . . . , xn ∈ Kγ1 , such that f(xi) = yi for all i. Then,

f̄(x1 · · ·xn) = f(x1) · · · f(xn) = y1 · · · yn = y.

If f̄(x) = f̄(y), namely f(xu
1) · · · f(xu

n) = f(yu
1 ) · · · f(yu

m) then, by the preservation of the

uniqueness of the decomposition under f̄ , given in the proof of the previous theorem, we get

f(xu
i ) = f(yu

i ) for all i. By the injectivity of f we get xu
i = yu

i , for all i, so x = y.

101



Theorem 7.43. The categories LG−∗ and IGMV are equivalent.

Proof. For an object 〈K, γ〉 of LG−∗ , let Γ(〈K, γ〉) = Kγ and for a homomorphism f :

〈K, γ1〉 → 〈L, γ2〉 let Γ(f) be the restriction of f to Kγ1 .

By Corollary 7.16, Γ(〈K, γ〉) is an object. Using the fact that f commutes with the nuclei

it is easy to see that Γ(f) is a morphism of IGMV. To check, for example, that it preserves

multiplication, note that

Γ(f)(x ◦γ1 y) = f(γ1(xy)) = γ2(f(xy)) = γ2(f(x)f(y)) = f(x) ◦γ2 f(y).

Moreover, it is obvious that Γ(f ◦ g) = Γ(f) ◦ Γ(g) and that Γ(idKγ1
) = idKγ1

. Thus, Γ

is a functor between the two categories. By Theorem 7.19, Γ is onto the objects of IGMV

and by Lemma 7.41, Γ is full. Finally, Γ is faithful, because if two morphisms agree on a

generating set, they agree on the whole negative cone of the `-group. Thus, by [Ml], Γ is a

categorical equivalence between the two categories.

Since the category of `-groups and the category of their negative cones are equivalent,

by [BCGJT], one can consider for objects pairs (G, γ), where G is an `-group, but all other

conditions remain the same (i.e., γ is a nucleus on G− and morphisms are homomorphisms

between negative cones), and still obtain a categorical equivalence between the categories

LG∗ and IGMV.

The categorical equivalence holds also for the full subcategories of IGMV and LG−∗ (or

LG∗), where we consider only bounded IGMV-algebras, also known as pseudo-MV-algebras

(category bIGMV), and nuclei γ such that γ(x) = u ∨ x, for some u (category bLG−∗ or

bLG∗).

Moreover, the categorical equivalence holds also for the subcategories of IGMV and

LG−∗ (or LG∗), where we consider only homomorphisms such that the order filter generated

by the image is the co-domain (categories IGMVb, and LG−∗ b or LG∗b).

Finally, the same holds if we make both of these restrictions to obtain the categories

bIGMVb, and bLG−∗ b or bLG∗b. This final categorical equivalence is the one established

by Dvurečenskij in [Dv]. If we restrict further to the commutative sub-case, we obtain

Mundici’s result, in [Mu].

Theorem 7.44. The categories LG∗ and GMV are equivalent.

Proof. For an object 〈G, β〉 of LG∗, define Γ(〈G, β〉) = Gβ. For a morphism f of LG∗ with

domain 〈G, β〉, define Γ(f) to be the restriction of f to Gβ.
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Let δ = δβ and γ = γβ. By Corollary 7.21 and Theorem 7.15, Γ(〈G, β〉) is an object

of GMV. Actually, Gβ = 〈(Gδ)γ,∧,∨, ◦γ, \δ, /δ, e〉. To show that Γ(f) is a morphism of

GMV we use the fact that f commutes with β - we use the same symbol for the cores in

the domain and in the co-domain.

First note that if x = β(x), then x = γ(x) = δ(x). In this case f(x) = δ(f(x)) = γ(f(x)).

By Lemma 7.27,

δ(f(x)) = β(f(x)) ∧ f(x) = f(β(x)) ∧ f(x) = f(β(x) ∧ x) = f(δ(x)) = f(x).

Moreover, γ(f(x)) = γ(δ(f(x))) = f(γ(δ(x))) = f(x).

We can now show that f preserves multiplication. For x, y ∈ β(G), x = δ(x) = γ(x) and

y = δ(y)γ(y), so δ(xy) = δ(δ(x)δ(y)) = δ(x)δ(y) = xy. Thus,

f(x ◦γ y) = f(γ(xy)) = f(γ(δ(xy)) = f(β(xy))

= β(f(xy)) = γ(δ(f(xy))) = γ(f(xy))

= γ(f(x)f(y)) = f(x) ◦γ f(y)

Additionally,

f(x/δy) = f(γ(x)/δγ(y)) = f(γ(x/δy))

= f(γ(δ(x/y))) = γ(δ(f(x/y)))

= γ(δ(f(x)/f(y))) = γ(f(x)/δf(y))

= γ(f(x))/δγ(f(y)) = f(x)/δf(y).

For the other division we work similarly. Γ(f) preserves the lattice operations, because they

are restrictions of the lattice operations of the `-group, so Γ(f) is a homomorphism.

By Theorem 7.28, Γ is onto the objects of GMV. Moreover, Γ is faithful, because if two

morphisms agree on a generating set, they agree on the whole `-group.

To see that Γ is full, let g : M→ N, be a morphism in GMV. By Corollary 7.20, there

exist `-groups K,H,K,H and nuclei γ1 on H− and γ2 on H
−
, such that M = K×H−γ1

and

N = K×H
−
γ2

. Moreover, by the proof of Theorem 7.22, there exist kernels δ1 on K×H, δ2

on K×H, and nuclei γ1 on (K×H)δ1 and γ2 on (K×H)δ2 , such that δi(k, h) = (k, h ∧ e)

and γi(k, h) = (k, γi(h)), i ∈ {1, 2}. So, there are homomorphisms g1 : G → G and

g2 : H−γ1
→ H

−
γ2

, such that g = (g1, g2). By Theorem 7.41, there exists a homomorphism

f−2 : H− → H
−
, that extends g2 and commutes with the γ’s. By the results in [BCGJT],

there exists a homomorphism f2 : H → H that extends f−2 . Let f : K ×H → K ×H be

defined by f = (g1, f2). It is clear that Γ(f) = g. We will show that g(β1(x)) = β2(g(x)),
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where βi(x) = γi(δi(x)). Let (k, h) ∈ K ×H−γ1
.

g(β1(k, h)) = g(γ1(δ1(k, h))) = g(k, γ1(h ∧ e))

= (g1(k), g2(γ1(h ∧ e))) = (g1(k), γ2(g2(h ∧ e)))

= (g1(k), γ2(g2(h) ∧ e)) = γ2(g1(k), g2(h) ∧ e)

= γ2(δ2((g1(k), g2(h)))) = β2(g(k, h)).

Thus, by [Ml], Γ is a categorical equivalence between the two categories.

Decidability of the equational theory

We obtain the decidability of the equational theory of GMV as an easy application of

the representation theorem, established above.

For a residuated lattice term t and a variable z 6∈ V ar(t), we define the term tz inductively

on the complexity of a term, by

xz = x ∨ z ez = e

(s ∨ r)z = sz ∨ rz (s ∧ r)z = sz ∧ rz

(s/r)z = sz/rz (s\r)z = sz\rz (sr)z = szrz ∨ z,

for every variable x and every pair of terms s, r.

Recall the definition of the term operation tA on an algebra A induced by a term t over

the (ordered) set of variables {xi | i ∈ N}, given on page 5.

For a residuated lattice term t, a residuated lattice L and a map γ on L, we define the

operation tγ on L, of arity equal to the number of variables in t, by

xγ = xL eγ = eL

(s ∨ r)γ = sγ ∨ rγ (s ∧ r)γ = sγ ∧ rγ

(s/r)γ = sγ/rz (s\r)γ = sγ\rγ (sr)γ = γ(sγrγ)

for every variable x and every pair of terms s, r.

Essentially, tγ is obtained from tL by replacing every product sr by γ(sr), and tz is

obtained from t by replacing every product sr by sr ∨ z and every variable x by x ∨ z. We

extend the above definitions to every residuated lattice identity ε = (t ≈ s) by εz = (tz ≈ sz),

for a variable z that does not occur in ε. Moreover, we define εγ(ā) = (tγ(ā) = sγ(ā)), where

ā is an element of an appropriate power of L.

Lemma 7.45. An identity ε holds in IGMV iff the identity εz holds in LG−, where z 6∈
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V ar(ε).

Proof. We prove the contrapositive of the lemma. Let ε be an identity that fails in IGMV .

Then there exists an integral generalized MV-algebra M, and an ā in an appropriate power,

n, of M , such that ε(ā) is false. By Theorem 7.19, there exists a negative cone L of an

`-group and a nucleus γ on L, such that M = Lγ. By the definition of Lγ, it follows that

εγ(ā) is false in L. Let p be the meet of all products tγ(ā)sγ(ā), where t, s range over all

subterms of ε and u = γ(p). By Lemma 7.17, γ and γu agree on the upset of p. Since the

arguments of all occurences of γ in εγ(ā) are of the form tγ(ā)sγ(ā), where t, s are subterms

of ε, and tγ(ā)sγ(ā) are in the upset of p, we can replace, working inductively inwards, all

occurences of γ in εγ(ā) by γu. So, εγu(ā) = εγ(ā), hence εγu(ā) is false in L. Note that p is

below ā(i), for all i ∈ {1, . . . , n}, so u = γ(p) ≤ γ(ā(i)) = ā(i), hence ā(i) = ā(i) ∨ u, for all

i ∈ {1, . . . , n}. Consequently, εγu(ā) = (εz)
L(ā, u), thus εz fails in L; i.e., εz fails in LG−.

Conversely, if εz, fails in LG−, then there exists a negative cone L of an `-group, ā in

an appropriate power, n, of L and u ∈ L, such that (εq)
L(ā, u) is false. Obviously, γu is

a nucleus on L, so Lγu is an integral generalized MV-algebra. Let b̄ be the element of Ln,

defined by b̄(i) = ā(i) ∨ u, for all i ∈ {1, . . . , n}. Note that (εz)
L(ā, u) = εγu(b̄) = εLγu (b̄)

and u, b̄(i) ∈ Lγu , for all i ∈ {1, . . . , n}. So ε fails in Lγu , hence it fails in IGMV .

In view of Theorem 7.20 we have the following corollary.

Corollary 7.46. An identity ε holds in GMV iff ε holds in LG and εz holds in LG−, where

z 6∈ V ar(ε).

The variety of `-groups has a decidable equational theory by [HM]. Based on this fact,

it is shown in [BCGJT] that the same holds for LG−. So, we get the following result.

Corollary 7.47. The equational theories of the varieties IGMV and GMV are decidable.

105



CHAPTER VIII

CONCLUDING REMARKS AND OPEN PROBLEMS

In this thesis we have tried to present a range of subvarieties of residuated lattices.

Our goal was not to exhaust the topic, but rather to stimulate interest for this area of

mathematics that is algebraic in nature and has connections to logic. The vastness of the

topic is apparent considering that many well and not well-studied classes of algebras are

examples of residuated lattices. We believe that the context of residuated lattices is ideal

for formulating and proving general results about its subclasses.

The connections to logic (substructural, relevant, linear etc.) have not been explored

fully. It is promising that lately researchers concentrate on the interactions mentioned above.

Certain results seem to have easier, or only, logic proofs, i.e., see [JT], [GR].

We mention below a number of open problems that have come up from our study. We

believe that a lot of them have relative easy answers, but we suspect that some are very

hard.

1. Is there a continuum of commutative atomic subvarieties of residuated lattices?

2. Are there infinitely many integral atoms in the subvariety lattice of RL?

3. Is the equational theory of distributive or cancellative residuated lattices decidable?

Are there cut-free Gentzen systems for the corresponding logics?

4. Do commutative cancellative integral residuated lattices satisfy any non-trivial lattice

identity?

5. Is the join of any two finitely based residuated lattice varieties also finitely based?

6. Which varieties of residuated lattices have EDPC. Which satisfy the CEP or the AP?

7. Is there a good description of all monoid or lattice reducts of residuated lattices?
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Brouwerian, 14
cone, 80
generalized BL, GBL, 34
generalized Boolean, 14
generalized MV, GMV, 34
MV, 14
quotient, 4
relation, 14
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CEP, 33
congruence, 4

diagonal, 4
distributive, 5
generated, 4
lattice, 4
universal, 4

contraction
kernel, 18

convex, 30
core, 91

decreasing, 7
direct sum, 82
downset, 7
DRbL

map, 72
DRbL-space, 68
dual
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identity, 11
lattice, 66
poset, 7
residuated lattice, 19
space, 66, 68

dualizing element, 19

EDPC, 32
equation, 5
equational

basis, 6
class, 6

theory, 6
equational theory, 6

Gentzen
rule, 42
system, 42

homomorphism, 3

ideal
lattice, 7

prime, 7
order, 7
semigroup, 23
semiring, 25

identity, 5
increasing, 7
integral, 12
interval, 7
invertible, 12

join, 7
Jónsson’s Lemma, 5

kernel, 18
contraction, 18

`-group, 13
l-groups

`-groups
negative cones, 50

`-groups, 49
lattice, 7

filter, 7
prime, 7

ideal, 7
of subvarieties, 6

lattice-ordered group, 13

meet, 7

negative cone, 15
normal, 30
nucleus, 15
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retraction, 16

operation, 3
fundamental, 3
term, 5

operator
closure, 7
interior, 8

opposite
identity, 11
residuated lattice, 15

order, 6
preserving map, 7

order filter, 7
orthogonal decomposition, 96

partial semiring, 23
poset, 7
Priestley space, 66
Prime Ideal Theorem, 7
product

complex, 22
of algebras, 4
subdirect, 4
ultraproduct, 4

product extension, 82

reduct, 3
residuated

bounded-lattice, 12
lattice, 10

cancellative, 12, 34
commutative, 12, 34
distributive, 34
idempotent, 12
integral, 34
n-potent, 12

map, 8
operation, 8

retraction
nucleus, 16
to an interval, 17

RL, 10
RLC , 34

sequent, 42

calculus, 42
rule, 42

simple, 4
strictly, 52

subdirectly irreducible, 4
subreduct, 3
subvariety, 6

term, 5
equivalence, 5
operation, 5

translation, 20
type, 3

ultrafilter, 4
underlying set, 3
universe, 3
upset, 7

variety, 5
generated, 5

word, 60
bi-finite, 60
finite, 60
infinite, 60
subword, 60
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