
BIOMEDICAL INFORMATICS 

 

A SYSTEM TO MONITOR AND IMPROVE MEDICATION SAFETY  

IN THE SETTING OF ACUTE KIDNEY INJURY 

 

ALLISON BECK MCCOY 

 

Thesis under the direction of Professor Lemuel R. Waitman 
 

Clinical decision support systems can decrease common errors related to 

inadequate dosing for nephrotoxic or renally cleared drugs.  Within the computerized 

provider order entry (CPOE) system, we developed, implemented, and evaluated a set of 

interventions with varying levels of workflow intrusiveness to continuously monitor for 

and alert providers about acute kidney injury.  Passive alerts appeared as persistent text 

within the CPOE system and on rounding reports, requiring no provider response.  Exit 

check alerts interrupted the provider at the end of the CPOE session, requiring the 

provider to modify or discontinue the drug order, assert the current dose as correct, or 

defer the alert.  In the intervention period, the number of drugs modified or discontinued 

within 24 hours increased from 35.7% to 50.9%, and the median time to modification or 

discontinuation decreased from 27.1 hours to 12.9 hours.  Providers delayed decisions by 

repeatedly deferring the alerts.  Future enhancements will address frequent deferrals by 

involving other team members in making mid-regimen prescription decisions. 
 
 
Approved ___________________________________________  Date _____________ 



A SYSTEM TO MONITOR AND IMPROVE MEDICATION SAFETY  

IN THE SETTING OF ACUTE KIDNEY INJURY 

 
By 

 
 

Allison Beck McCoy 
 
 

Thesis 
 

Submitted to the Faculty of the 
 

Graduate School of Vanderbilt University 
 

in partial fulfillment of the requirements 
 

for the degree of 
 
 

MASTER OF SCIENCE 
 

in 
 

Biomedical Informatics 
 
 

May, 2008 
 

 
Nashville, Tennessee 

 
 

Approved: 
 

Professor Lemuel R. Waitman 
 

Professor Josh F. Peterson 
 

Professor Cynthia S. Gadd 



 ii 
 

ACKNOWLEDGEMENTS 

I would like to thank my thesis committee for their guidance throughout this 

work.  I am grateful for my advisor, Russ Waitman, who has directed my work over the 

past two years and has helped to develop my research interests into a successful project.  

Josh Peterson and Cindy Gadd have both offered their expertise throughout the course of 

this work, and I appreciate the many hours they spent assisting me. 

I am also grateful for many others who gave invaluable assistance.  I am indebted 

to the entire WizOrder team for their technical assistance with development throughout 

this project.  In particular, Ioana Danciu contributed a significant amount of work in the 

development of this project.  I also appreciate the help from the clinicians involved in the 

project.  Mark Sullivan and Cori Nelsen in pharmacy, Julia Lewis and Jim Smith in 

nephrology, and Titus Daniels in infectious diseases provided invaluable input.  I am also 

grateful for Jonathan Schildcrout and his help in the statistical analysis of the project. 

I would also like to thank the Department of Biomedical Informatics.  I appreciate 

the support of the students, faculty, and staff.  Without the funding from the National 

Library of Medicine (2-T15 007450-06), my work would not have been possible. 

Finally, I am grateful for my family and friends for their encouragement.  My 

parents especially have inspired me to pursue an academic career and have supported me 

throughout process.  I am most grateful for my husband, Jake McCoy, for his unending 

love, support, and encouragement. 



 iii 
 

TABLE OF CONTENTS 

Page 
 
ACKNOWLEDGEMENTS............................................................................................ ii 
 
LIST OF TABLES ..........................................................................................................v 
 
LIST OF FIGURES....................................................................................................... vi 
 
LIST OF ABBREVIATIONS....................................................................................... vii 
 
I. INTRODUCTION .................................................................................................... 1 
 
II. BACKGROUND ...................................................................................................... 4 

 
Acute Kidney Injury ..................................................................................................4 

Definition............................................................................................................ 4 
Effect on Drug Administration ............................................................................ 6 
Significance ........................................................................................................ 7 

Informatics Solutions for Medication Safety ..............................................................8 
Vanderbilt University Medical Center......................................................................11 
Summary .................................................................................................................12 

 
III.  PILOT VANCOMYCIN DOSING MONITOR .......................................................14 

 
Introduction .............................................................................................................14 
Methods...................................................................................................................16 

System Description ............................................................................................16 
Study Population and Data Collection ................................................................17 
Procedures .........................................................................................................19 
Data Analysis.....................................................................................................20 

Results.....................................................................................................................20 
Discussion ...............................................................................................................21 

 
IV. MAIN INTERVENTION.........................................................................................23 

 
Introduction .............................................................................................................23 
Methods...................................................................................................................23 

Intervention Description.....................................................................................23 
Timeline for Implementation..............................................................................29 
Study Population................................................................................................29 
Data Collection ..................................................................................................31 
Data Analysis.....................................................................................................32 



 iv 
 

Results.....................................................................................................................34 
Comparative Analysis ........................................................................................34 

Action Rate ..................................................................................................34 
Time to Action .............................................................................................35 

Time-Series Analysis .........................................................................................36 
Provider Response Analysis ...............................................................................37 

Provider Actions ..........................................................................................37 
Exit Check Alert Selections..........................................................................38 

Discussion ...............................................................................................................40 
 
V. FUTURE WORK ....................................................................................................44 

 
Introduction .............................................................................................................44 
Improved Passive Alert ............................................................................................44 
Adjusted Alerting Criteria........................................................................................45 
Higher Level Surveillance........................................................................................46 
Further Intervention Evaluation ...............................................................................46 

 
VI. CONCLUSION .......................................................................................................48 
 
REFERENCES..............................................................................................................49 



 v 
 

LIST OF TABLES 

Table Page 

1. RIFLE criteria for risk of renal dysfunction, injury to the kidney, and failure of 
kidney function......................................................................................................... 5 

2. AKIN criteria for acute kidney injury........................................................................ 6 

3. Vancomycin pilot study results ................................................................................21 

4. Target drug list ........................................................................................................24 

5. Study population......................................................................................................30 

6. Target drug use by drug class in study population ....................................................31 

7. Comparative analysis results of action rate...............................................................35 

8. Comparative analysis results of time to action..........................................................35 

9. Action rate for alerted medication orders .................................................................37 

10. Exit check alert responses by drug ...........................................................................38 

 



 vi 
 

LIST OF FIGURES 

Figure Page 

1. Vancomycin dosing nomogram................................................................................15 

2. Vancomycin dosing advisor .....................................................................................15 

3. Pilot vancomycin therapeutic dosing alert ................................................................17 

4. Pre-intervention study population for vancomycin dosing monitor...........................18 

5. Passive intervention alert .........................................................................................27 

6. Exit check intervention alert ....................................................................................28 

7. Time-series analysis.................................................................................................36 

8. Number of deferred exit check alerts prior to terminal response ...............................39 

9. Median exit check defers before terminal response by week.....................................40 

 



 vii 
 

LIST OF ABBREVIATIONS 

 
ADQI .................................................................................acute dialysis quality initiative 

AKI ..................................................................................................... acute kidney injury 

AKIN .................................................................................... acute kidney injury network 

ARF ......................................................................................................acute renal failure 

CPOE ...........................................................................computerized provider order entry 

EMR...........................................................................................electronic medical record 

GFR ............................................................................................glomerular filtration rate 

RIFLE ............ Risk of renal dysfunction, Injury to the kidney, Failure of kidney function,  
Loss of kidney function, and End-stage kidney disease 

VUMC ................................................................... Vanderbilt University Medical Center 

 



 1 
 

CHAPTER I 

INTRODUCTION 

Medication safety is a major target for recent hospital efforts to reduce iatrogenic 

complications.  Many adverse drug events that hospitalized patients experience result 

from errors in drug selection, dosing, administration, and monitoring.  Admitted patients 

often experience significantly reduced renal function during their stay, and many receive 

inappropriate medications or excessive doses.  The causes of acute kidney injury (AKI) 

are well known, and with some attention to associated medication safety, complications 

can be significantly reduced. 

Clinical decision support within computerized provider order entry (CPOE) 

systems can reduce medication errors.  Interventions to suggest initial doses tailored to 

individual patients, especially geriatric patients or those with worsening physical 

conditions, can decrease the number of sub-therapeutic and toxic doses.  Changes that 

patients experience while admitted to the hospital may cause the initially prescribed dose 

to be inappropriate.  In particular, patients who experience a decline in renal function 

may require a discontinuation or a reduced dose for drugs that are nephrotoxic or renally 

cleared.  While the initial dosing interventions prevent some errors, much room for 

improvement exists.  A system to monitor for and alert providers about significant 

changes in renal function in patients on renally dosed drugs can improve both provider 

response to changes and resulting patient renal function. 
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Leveraging existing informatics frameworks at Vanderbilt University Medical 

Center (VUMC) and adopting methods proven successful in reviewed literature, we 

developed a set of interventions to detect AKI in patients receiving nephrotoxic or renally 

cleared medications and to alert providers about the change in renal function and 

appropriate medication safety recommendations.  We began our interventions with a pilot 

project, detecting changes in renal function sufficient to require a change in the dose of 

vancomycin.  To further improve medication safety, we developed our main intervention 

to include detection of more significant changes in renal function in the presence of 

numerous target nephrotoxic and renally cleared drugs. 

In developing our intervention, we incorporated successful aspects from reviewed 

systems not previously evaluated together.  Our system alerted providers directly in real 

time about significant changes in renal function that potentially affected existing orders.  

Within the CPOE system, a passive alert allowed providers to act on the given advice 

with minimal workflow interruption.  If the provider did not take any actions prior to the 

end of the session, the system interrupted the workflow, presenting an additional alert 

that required a response.   

We evaluated the interventions using as our primary outcome the rate at which 

providers modify or discontinue orders within 24 hours of a significant change in renal 

function.  As a secondary outcome, we evaluated the total time between a significant 

change and a modification or discontinuation of the drug.  We also analyzed the actual 

provider responses to the intervention using descriptive statistics.  Our provider response 

outcomes included the method for provider action, passive alert clicks, exit check alert 

option selection frequency, and alert deferrals. 
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Finally, we described in detail the steps we have planned for future work.  

Included in these steps are passive alert improvements, refined alerting criteria, and 

additional levels of medication safety monitoring.  We also plan to further evaluate our 

interventions, including analysis of patient outcomes and the effect of the intervention on 

improving renal function. 
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CHAPTER II 

BACKGROUND 

Acute Kidney Injury 

Definition 

Acute Kidney Injury (AKI), often referred to as acute renal failure (ARF) when 

severe, occurs when a patient rapidly loses kidney function such that elimination of 

metabolic byproducts decrease [1].  AKI commonly occurs in hospitalized patients, with 

the inciting event occurring prior to hospital admission or during the hospital stay.  

Causes can be classified into prerenal causes such as extracellular fluid volume loss and 

impaired cardiac function, intrinsic renal causes such as glomerulonephritis, interstitial 

nephritis, or acute tubular necrosis, or postrenal causes such as obstruction of urine flow. 

Acute tubular injury is the most common at 45%, resulting from ischemia, nephrotoxins, 

or pigment disposition [1-5].   

For many years, a consensus numerical value necessary to merit AKI 

classification, whether measured as blood urea nitrogen or serum creatinine, did not exist 

within the nephrology community.  Investigators use various criteria to classify AKI and 

ARF, including changes across a threshold value for serum creatinine or estimated 

glomerular filtration rate (GFR), or relative changes in serum creatinine or GFR  within a 

given time period.  GFR may be estimated with one of several methods, including the 

Cockcroft-Gault formula [6] or the Modification of Diet in Renal Disease formula [7].  
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Medical literature reports more than 30 criteria for defining AKI [8].  Threshold values 

most often range from serum creatinine values greater than 1.5 mg/dl to 4.0 mg/dl or 

estimated creatinine clearance less than 40 ml/min to 80 ml/min.  Relative change criteria 

range from serum creatinine increases of 0.5 mg/dl to 1.0 mg/dl or 25% to 100% from 

baseline or creatinine clearance decreases of 50% to 100% from baseline within 24 hours 

to two weeks. 

Recently, several groups developed formal criteria to better classify renal 

insufficiency.  In 2004, the Acute Dialysis Quality Initiative (ADQI) developed the 

RIFLE (Risk of renal dysfunction, Injury to the kidney, Failure of kidney function, Loss 

of kidney function, and End-stage kidney disease) criteria to classify levels of renal 

dysfunction based on glomerular filtration rate (GFR) or urine output [9].   

Table 1 summarizes the RIFLE criteria.  A subsequent study found that the 

RIFLE criteria outperformed previously used indicators to predict mortality in patients 

with AKI [10]. 

 

Table 1: RIFLE criteria for risk of renal dysfunction, injury to the kidney, and failure of kidney 
function 

Level GFR* Criteria Urine Output Criteria 
Risk   Increased serum creatinine x 1.5 

or  GFR decrease > 25% 
  Urine output < 0.5 ml/kg/h x 6 hrs 

Injury   Increased serum creatinine x 2 
or GFR decrease > 50% 

  Urine output < 0.5 ml/kg/h x 12 hrs 

Failure   Increased serum creatinine x 3 
or GFR decrease > 75% 
or Serum creatinine ≥ 4 mg/dl 
 with acute rise ≥ 0.5 mg/dl 

  Urine output < 0.3 ml/kg/h x 24 hrs 
or Anuria x 12 hrs 

*GFR = glomerular filtration rate 
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ADQI along with representatives from nephrology and intensive care medicine 

societies more recently introduced the term AKI to encompass a broader spectrum of 

ARF and established the Acute Kidney Injury Network (AKIN).  AKIN developed a new 

classification system for AKI by defining stages of injury based on more sensitive 

changes in serum creatinine [11].  The AKIN system mirrors the RIFLE criteria for 

percentage increases in serum creatinine and absolute in urine output, but it changes the 

earliest stage criteria to include a more sensitive 0.3 mg/dl increase in serum creatinine .  

Table 2 summarizes the AKIN system.  Alternative methods to determining acute renal 

failure include absolute increases in serum creatinine or estimated creatinine clearance 

levels below a certain threshold.   

 

Table 2: AKIN criteria for acute kidney injury 

Stage Serum Creatinine Criteria Urine Output Criteria 
1   Increased serum creatinine ≥ 0.3 mg/dl 

or  Increase to ≥ 150% to 200% from baseline 
  Urine output < 0.5 ml/kg/h x 6 hrs 

2   Increased serum creatinine to > 200% to 300%  
  from baseline 

  Urine output < 0.5 ml/kg/h x 12 hrs 

3   Increased serum creatinine to > 300% from baseline 
or Serum creatinine ≥ 4.0 mg/dl 
  with an acute increase ≥ 0.5 mg/dl 

  Urine output < 0.3 ml/kg/h x 24 hrs 
or Anuria x 12 hrs 

Effect on Drug Administration 

Significant changes in renal function have a considerable effect on drug 

pharmacokinetics and pharmacodynamics [12-14].  The most important factor that AKI 

may affect is reduced glomerular filtration, which causes renally cleared drugs to 

accumulate.  A 50% reduction in filtration can double the half-life of a drug [14].  Such 

changes do not typically affect loading doses, but maintenance drug doses and 
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frequencies often require alterations.  Other pharmacological parameters altered by AKI 

include altered drug absorption and bioavailability, distribution, and metabolism.  Also, 

when AKI is severe enough to require renal replacement therapy, drug management 

should change substantially to allow for periodic re-dosing of medications removed by 

hemodialysis. 

Significance 

AKI occurs frequently among inpatients and is most often hospital-acquired.  

Various studies estimate an incidence for AKI in adults of 5% to 17% in hospitalized 

patients [2, 5, 15-18].  In adult patients who develop AKI during hospitalization, risk of 

mortality rates may be significantly increased.  Within intensive care units, mortality 

rates for patients with AKI range from 62% to 86% [10, 18].  Studies of hospital-wide 

mortality associated with AKI estimate rates from 15% to 64% [2, 16, 19, 20].  

International, multicenter studies estimate AKI associated mortality rates from 45% to 

60% [3, 5, 21]. 

Many factors contribute to AKI, including dehydration, surgical procedures, and 

administration of medications or contrast dyes [1, 2, 16, 18, 19, 22].  In particular, 

nephrotoxic drugs are the most common cause of AKI, and aminoglycosides  account for 

a large percent of medication-induced episodes [2, 19, 22].  Careful renal function 

monitoring with avoidance or reduction of nephrotoxic medications may contribute to 

increased AKI prevention or amelioration. 

Studies report that up to 50% of patients with AKI receive inappropriate doses  of 

nephrotoxic or renally cleared medications [17, 23-29].   Providers with minimal clinical 
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experience in renal dosing must rely on expertise from consulting pharmacists and 

nephrologists or refer to published dosing guidelines.  Such resources are often 

unavailable at the time of initial dosing, contributing to the high error rates in renally 

dosed drugs.  Immediate feedback, whether provided by an expert during rounds or 

decision support during a CPOE session, can reduce the frequency of renal dosing errors 

[23-27, 29]. 

Informatics Solutions for Medication Safety 

Clinical decision support embedded in CPOE systems may reduce large numbers 

of medication errors [30-33].  While various types of decision support may result in 

positive outcomes, systems implementing support including guided dosing algorithms 

and monitors for out-of-range lab values hold the highest potential to improve error rates 

[34-37].   

Several studies evaluated the effects of computer-assisted dosing at the initial 

order time.  Chertow, et al. measured the improvement on drug prescribing and patient 

outcomes of a system to adjust drug dose and frequency in patients with renal 

insufficiency.  When applicable, the CPOE intervention notified providers ordering one 

of about 500 nephrotoxic or renally cleared medications of a patient’s impaired renal 

function, suggesting drug dose amount and frequency from a knowledge base developed 

by the expert panel.  The intervention system also suggested substitute drugs when 

initially selected medications were considered to be harmful.  The results showed that 

15% of orders written for renally cleared or nephrotoxic medications in patients with 

renal insufficiency had at least one parameter modified by the system.  The fraction of 
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prescriptions written appropriately in the intervention and control periods was 67% 

versus 54% for dose and 59% versus 35% for frequency.  While the fraction of 

inappropriate doses decreased during the intervention period, the large number of doses 

still deemed inappropriate may be due to noncompliance [23]. 

In response to the system developed by Chertow, et al. and in an attempt to 

maintain educational opportunities through entering orders, Oppenheim, et al. developed 

a CPOE intervention to check the drug dose and interval and alert providers after 

submission and only when the entered dose is inappropriate.  During the intervention 

period, 23% of orders generated an alert prompting a change in the entered dose or 

frequency.  Providers adjusted 52% of orders that received the alert [29]. 

Galanter, et al. created a set of CPOE alerts to reduce administration of 

medications contraindicated due to renal insufficiency.  The authors designed the alerts to 

prompt providers not to complete an order for a drug if the minimum safe creatinine 

clearance was greater than the patient’s most recent estimated creatinine clearance.  

Following implementation, the likelihood of patients receiving one or more doses of a 

contraindicated medication after the order was initiated decreased from 89% to 47%.  

Staff provider compliance with the alert was 42%, and compliance increased in patients 

with worsening patient renal function [26]. 

Recognizing that patients often experience changing renal function during their 

admission, other studies developed surveillance systems to monitor for and alert 

providers about renal function changes.  Rind, et al. evaluated the effect on physicians’ 

behavior and patient outcomes of computer-based alerts for rising serum creatinine levels 

in the presence of nephrotoxic and renally cleared drugs.   The alert appeared in an 
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electronic mailbox to the attending physician and all additional physicians who had 

accessed the patient record within three days of the event.  A prospective time-series 

study showed discontinued or modified doses an average of 21.6 hours sooner than 

without the alerts.  The most noticeable change occurred with the renally cleared drugs, 

with a difference in 34.7 hours.  The authors attribute the smaller improvement in 

nephrotoxic drugs to the attentiveness of physicians without an alert to renal function 

changes in the presence of nephrotoxins.  The relative risk of a patient developing serious 

renal impairment in the intervention period compared to the control period was 0.45.  In 

addition, the mean serum creatinine levels after detected events dropped significantly 

during the intervention period.  When questioned about the alerts, 44% of physicians 

categorized the alerts as helpful in the care of their patients, 28% found them annoying, 

and 65% wished to continue receiving alerts [38]. 

In a later approach, Evans, et al. developed a surveillance system to monitor for 

excessive doses based on renal function for patients receiving any of five targeted 

antibiotics.  The system generated a printed list of patients daily, including for each 

patient the change in renal function, and for each drug a suggested dose and the drug 

level if available.  Pharmacists reviewed the list each morning, contacting the provider as 

necessary to prompt an alteration to the order.  The authors measured a decrease in both 

the number of patients receiving excessive doses (50% versus 44%) and the number of 

days patients received excessive doses (4.7 days versus 2.9 days) between the pre-

intervention and intervention periods [24]. 

Extending surveillance to all types of ADEs, Kilbridge, et al. implemented a 

monitoring system to alert providers about rules-based intervention and ADE triggers.  
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The system evaluates admitted patients each morning, displaying those patients that may 

require intervention to clinical pharmacists using a web-based application.  Rules 

including drug-induced nephrotoxicity resulted in frequent ADE and intervention triggers  

[39]. 

Vanderbilt University Medical Center 

Vanderbilt University Hospital, the Monroe Carrell Jr. Children’s Hospital at 

Vanderbilt, and the Psychiatric Hospital at Vanderbilt make up Vanderbilt University 

Medical Center (VUMC), a large, urban, tertiary care facility and Level 1 trauma center 

in Nashville, Tennessee.  VUMC has an 832 bed capacity and admits 42,611 patients 

each year [40]. 

Providers at VUMC utilize a variety of internally developed and purchased 

computerized systems, including an electronic medical record (EMR), CPOE, laboratory 

reporting, nursing documentation, and medication administration.  The EMR integrates 

communication between members of the health care team and provides aggregated 

patient information from numerous institutional resources [41].   

Developed internally and continuously enhanced and evaluated by the department 

of biomedical informatics, the CPOE system provides various levels of integrated 

decision support [42-44].  In one example, the CPOE system displays pharmacy warnings 

for drug-drug and drug-allergy interactions.  In addition to interaction alerts, providers 

may receive decision support for initial dosing of some medications.  Guidelines-based 

renal dosing nomograms assist providers in ordering renally excreted drugs such as 
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vancomycin, significantly improving the rate at which patients achieve therapeutic drug 

levels [45].   

Summary 

As demonstrated in numerous studies, hospital-acquired AKI is a widespread 

problem among inpatients.  Those patients with nephrotoxic or renally cleared drug 

orders are at an even greater risk for associated mortality or morbidities.  Fortunately, 

with close renal function monitoring and avoidance or adjusted dosing of targeted drugs, 

medication safety for patients experiencing AKI can be significantly improved.  Solutions 

including dosing experts rounding with providing teams and decision support within 

CPOE systems have demonstrated the success of such efforts, reducing percentages of 

incorrect dosing and times during which patients are receiving excessive doses. 

Despite the reported success of previous solutions in improving medication 

safety, no solution provides optimal support in reducing errors.  Systems providing initial 

dosing advice reduce many errors, but they do not account for changes in renal function 

experienced later in a patient’s hospital stay.  While the system developed by Rind, et al. 

[38] monitored for and alerted providers about changing renal function, the alerts 

appeared in a separate system, outside of the provider’s workflow.  The surveillance 

systems developed by Evans, et al. [24] and Kilbridge, et al. [39] also delivers alerts 

outside of the CPOE system and provider workflow, providing alerts to pharmacists.  

While notifying pharmacists has some advantages, displaying alerts to providers at order 

entry time may allow for the timeliest responses.  In addition, alerts displayed to 

providers remove the potentially high costs associated with additional pharmacy staffing.  



 13 
 

A system to alert providers directly in the CPOE system at order entry time of changes in 

renal function in patients with nephrotoxic or renally cleared drug orders may further 

reduce medication errors with AKI. 



 14 
 

CHAPTER III 

PILOT VANCOMYCIN DOSING MONITOR 

Introduction 

Pharmacy and informatics staff members at VUMC implement and maintain 

guidelines-based renal dosing nomograms to assist providers in ordering renally excreted 

drugs such as vancomycin.  Figure 1 displays the vancomycin nomogram.  The 

nomogram always suggests a 1000 milligram dose and adjusts the frequency of 

administration. The nomogram was not designed to apply to dialysis, burn, paralysis, 

liver failure, transplant, and cystic fibrosis patients, or for patients with extreme weight.  

The order advisor shown in Figure 2 appears when the provider initially prescribes 

vancomycin and recommends the correct dose amount and frequency based on the 

patient’s age, weight, and Cockcroft-Gault estimated creatinine clearance.  The use of the 

nomogram improves the rate at which patients achieve therapeutic range of vancomycin 

(85.2% versus 67.1%) [45].   

While the dosing advisor improves initial vancomycin dosing, the large percent of 

inpatients who experience changing renal function may require an adjusted dose [1].  Of 

these, less than half receive appropriate doses [17, 23-29].  A system to continuously 

monitor for medication errors may act as a safety net, enhancing computer-based 

guidelines [33, 39].  



 15 
 

 

Figure 1: Vancomycin dosing nomogram 

 

 

Figure 2: Vancomycin dosing advisor 
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We evaluated the efficacy and yield of the pilot monitoring orders after initial 

order entry in a retrospective study.  The initial alert appeared in the pharmacy alert 

section of the CPOE system to delivering targeted decision support for medication 

adjustment based on estimated creatinine clearance. 

Methods 

System Description 

We developed a monitor that detects vancomycin dose altering changes in a 

patient’s serum creatinine or creatinine clearance levels.  The system retrieved the 

original dosing parameters at the session initiation time, and it compared dosing 

recommendations based on these initial values with the recommendations based on 

current values.  If the advice differed, a pharmacy alert appeared, informing the provider 

that the values had changed and a new dosing recommendation may be available.   The 

provider could click on the text to view detailed information, including relevant lab 

values.  The system stored a record of the alert in the user activity log and printed the 

display text on the current medications and results sheet, which providers printed and 

referred to when rounding.  Figure 3 shows a screenshot of the vancomycin monitor alert. 
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Figure 3: Pilot vancomycin therapeutic dosing alert 

Study Population and Data Collection 

To perform our retrospective analysis, we retrieved data for all adult cases in 2006 

as the pre-intervention group. For the intervention group, we collected adult cases 

between 2/20/07 and 3/12/07, which encompasses the first three weeks of 

implementation.   

We first excluded patients who were not admitted as inpatients and patients who 

received only one-time vancomycin doses.  We did not analyze patients without a 

recorded baseline serum creatinine level, age, weight, and sex to limit the population to 

only orders based on the nomogram. We also excluded patients who did not have at least 

one serum creatinine lab result following the vancomycin order to potentially trigger the 

alert. Because the nomogram is inappropriate for dialysis patients, we attempted to 

remove them from the study population by eliminating those who received dialysis prior 
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to receiving vancomycin, those admitted to the nephrology service, and those who 

received dialysis after the vancomycin order but before an event occurred. We created an 

additional group for a subanalysis of patients who had at least one recorded vancomycin 

trough level.  

 

Total Adult Cases
(130,573)

Cases in ED Only
(86,742)

Cases Admitted
Inpatient or

Observation
(43,831)

Cases w ith No
Vancomycin or

Single Dose Only
(36,276)

Cases w ith
Recurring

Vancomycin Order
(7,555)

Cases w ith No
Creatinine Baseline

(1,457)

Cases w ith
Creatinine Baseline

(6,098)

Cases w ith No
Creatinine Af ter

Vancomycin
(3,929)

Cases w ith ≥  1
Creatinine Af ter

Vancomycin
(2,169)

Cases w ith
Previous Dialysis

(122)

Cases With No
Previous Dialysis

(2,047)

Cases w ith No
Vancomycin
Trough Level

(1145)

Cases w ith
Vancomycin
Trough Level

(902)
 

Figure 4: Pre-intervention study population for vancomycin dosing monitor 
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Our study populations consisted of 2047 cases in the pre- intervention group and 

138 cases in the intervention group.  The pre-intervention and intervention vancomycin 

trough level subgroups contained 902 and 113 cases respectively.  Figure 4 illustrates the 

pre-intervention study population relative to all patients admitted to the medical center.   

To analyze each patient in the population, we retrieved start times for new, modified, or 

discontinued vancomycin orders; dialysis unit orders; serum creatinine levels; and 

vancomycin levels. 

Procedures 

We applied the vancomycin nomogram to the data at each change in serum 

creatinine level or dose modification. Each time our monitor would have produced an 

alert (i.e. the nomogram recommended a different dose), we logged the time of the event. 

At the next change, if reapplication of the nomogram confirmed a corrected dose, we 

calculated the time in between the initial event detection and the correcting change.  We 

summed the time that the patient was receiving a non-optimal dose and the total time the 

patient was on a recurring vancomycin dose.  We recorded the number of times the 

nomogram detected an event, including whether the dose was too high or too low.  For 

the subgroup of patients with vancomycin trough levels, we tracked for each case 

whether the level dropped below 5 mcg/dl or reached a value greater than 25 mcg/dl. 

For preliminary analysis of the intervention data, we accessed the user activity log 

files to determine how many times the monitor actually displayed the alert for a patient.   
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Data Analysis 

To assess the alert’s value on past data, we calculated the median time while on 

vancomycin that the patient was receiving a non-optimal dose.  We also calculated the 

total frequency of events and observed whether the events were for too high or low doses.  

We tracked the number of patients who experienced more than one event.  For patients 

who had a vancomycin trough level, we recorded whether a level was less than 5 mcg/dl 

or greater than 25 mcg/dl.  We performed the same analysis on the intervention data.  

Results 

The pre-intervention group included 2047 cases.  For these cases, the median time 

patients spent receiving the non-optimal dose was 23.2 hours. The total number of events 

detected was 2922; 1795 high events occurred, and 1127 low events occurred.  These 

events affected 1414 patients, with 756 patients experiencing more than one event.  There 

were 112 patients with vancomycin trough levels less than 5 and 165 patients with levels 

greater than 25. 

The intervention group included 138 cases.  Patients experienced a median time 

of 8.5 hours receiving a non-optimal dose.  There were 163 total events; 95 events were 

high, and 68 events were low.  A total of 88 patients experienced events, and 42 patients 

experienced more than one event.  There were 10 patients with vancomycin trough levels 

less than 5 and 17 patients with levels greater than 25.  Table 3 shows these results.  

During the three-week time period, the monitor displayed an alert to providers in 3018 

separate CPOE session.  
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Table 3: Vancomycin pilot study results 

 Pre-intervention Intervention 
Total Patients in Study Population 2047 138 
Median Total Dosed Hours [IQR *] 291.83 [114.4, 1157.5] 137.5 [72.2, 233.6] 
Median Hours Non-Optimal Dose [IQR] 23.2 [0, 105.4] 8.5 [0, 54.1] 
Total Alerts 
High Alerts (%) 
Low Alerts (%) 

2922 
1795 (61.4) 
1127 (38.6) 

163 
95 (58.3) 
68 (41.7) 

Patients With 1 or More Alerts (%) 1414 (69.1) 88 (63.8) 
Patients with > 1 Alerts (%) 756 (36.9) 42 (30.4) 
Vancomycin Trough < 5 (%) 112 (12.4) 10 (8.8) 
Vancomycin Trough > 25 (%) 165 (18.3) 17 (15.0) 

* Interquartile range 

Discussion 

We developed, simulated, and implemented a decision support system that 

monitors patients’ renal function for changes in order to alert providers when a more 

optimal dose is recommended.  By applying the system to pre-intervention data, we 

determined that more than half of patients (69.1%) had an opportunity to receive a more 

optimal dose.  Non-optimal dosing occurs frequently in both directions; patients are both 

being overdosed and underdosed. 

Decision support within the system at the LDS Hospital included a similar system 

to monitor antibiotic dosing [33].  The study found that implementing the monitor 

reduced rates and lengths of excessive dosage.  Our monitor does not limit detection to 

doses exceeding the recommendation by also including underdosed amounts.  In addition, 

we focus on alerting the provider directly with this data rather than only informing the 

pharmacists. 

Our study had several limitations.  Some indications, such as pneumococcal 

meningitis, have higher target trough levels.  This limitation supports the monitoring 

based on the vancomycin level rather than strictly following the nomogram.  We 
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excluded patients who were not started on the nomogram to restrict our analysis to 

patients with typical indications for vancomycin.  The Cockcroft-Gault formula for 

estimating renal function [6] is less accurate for rapidly changing renal function, limiting 

our calculated non-optimal dose time for cases.  However, alerting physicians is still 

appropriate.  Our analysis does not include patients who start vancomycin without a 

baseline creatinine, which is common in patients arriving to the emergency department.  

These patients may still benefit from a monitor that alerts based on renal function. 

While this research showed potential for improving medication safety, changes in 

serum creatinine are often severe enough to indicate AKI.  These changes demand more 

than a simple reduction in dose, and involve many targeted drugs in addition to 

vancomycin.  An enhanced intervention, including more sensitive detection of changes in 

creatinine and responding to all nephrotoxic or renally cleared drugs will likely have a 

stronger effect in reducing associated morbidities. 
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CHAPTER IV 

MAIN INTERVENTION 

Introduction 

To further improve medication use in patients with changing renal function, we 

developed an enhanced set of interventions, including alerts similar to the vancomycin 

dose monitor.  The interventions monitored for more significant changes in renal function 

in the presence of target nephrotoxic and renally cleared drugs.  The interventions also 

utilized more intrusive methods of alerting providers.  With this enhanced intervention, 

we aimed to improve provider response to changing renal function. 

Methods 

Intervention Description 

The set of interventions includes a passive text display alert and a more intrusive, 

interactive exit check alert.  Providers may receive one or both of the alert types for non-

dialysis adult patients when a change in renal function may be linked to one of three 

classes of drugs as defined by a team of nephrologists, pharmacists, and infection control 

physicians.  Table 4 shows the complete list of target drugs for each drug class.  Drugs in 

class A are nephrotoxic and should be avoided with AKI, drugs in class B should be 

adjusted with AKI, and drugs in class C should be reviewed and possibly adjusted or 

discontinued with prolonged AKI. 
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Table 4: Target drug list 

Class A Drugs 
Avoid with AKI* 

Class B Drugs 
Adjust with AKI* 

Class C Drugs 
Review with Prolonged AKI* 

Acarbose 
Acetazolamide 
Acetohexamide 
Amikacin 
Amphotericin B 
Capreomycin 
Celecoxib 
Chlorpropamide 
Cidofovir 
Diclofenac sodium 
Diflunisal 
Enoxaparin 
Etodolac 
Fenoprofen 
Flurbiprofen 
Gallamine 
Gentamicin 
Glyburide 
Ibuprofen 
Immune globulin 
Indomethacin 
Ketoprofen 
Ketorolac 
Meloxicam 
Meperidine 
Metformin 
Methotrexate 
Nabumetone 
Naproxen 
Nitrofurantoin 
Nitroprusside 
Pancuronium 
Piroxicam 
Radiology exams  

with contrast dye 
Rofecoxib 
Sotalol 
Streptomycin 
Sulindac 
Tenofovir 
Tetracycline 
Tobramycin 
Tolmetin 
Trimetrexate 
Tubocurarine 
Valdecoxib 
 

Acyclovir 
Adefovir 
Allopurinol 
Carboplatin 
Cisplatin 
Colchicine 
Cycloserine 
Didanosine 
Digitoxin 
Digoxin 
Eptifibatide 
Etoposide 
Famciclovir 
Flucytosine 
Foscarnet 
Ganciclovir 
Imipenem-cilastatin 
Itraconazole 
Meropenem 
Mitomycin 
Penicillin-VK 
Pentostatin 
Procainamide 
Pyridostigmine 
Stavudine 
Temozolomide 
Topotecan 
Valacyclovir 
Valganciclovir 
Vancomycin 
Voriconazole 

Amoxicillin 
Ampicillin 
Azithromycin 
Bretylium 
Cefaclor 
Cefazolin 
Cefepime 
Cefotaxime 
Cefotetan 
Cefoxitin 
Ceftazidime 
Cefuroxime 
Cephalexin 
Chloroquine 
Ciprofloxacin 
Clarithromycin 
Clofibrate 
Daptomycin 
Disopyramide 
Doxacurium 
Ertapenem 
Ethambutol 
Flecainide 
Fluconazole 
Gemfibrozil 
Hydroxyurea 
Idarubicin 
Indinavir 
Lamivudine 
Levofloxacin 
Melphalan 
Metocurine 
Mivacurium 
Morphine 
Neostigmine 
Norfloxacin 
Ofloxacin 
Penicillin-G 
Piperacillin 
Pyrazinamide 
Quinidine 
Quinine 
Rifampin 
Ticarcillin 
Tocainide 
Zidovudine 

*AKI = acute kidney injury 
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We defined a significant change in renal function as an increase or decrease in 

serum creatinine of 0.5 mg/dl within 48 hours.  The critical difference for a lab value is 

the minimum change measured that is not a result of chance [46].  Our team of 

nephrologists recognizes a change in serum creatinine of three times the critical 

difference as significant, which for a wide range of measured values averages to 0.5 

mg/dl.  

The improved passive alert (Figure 5) appeared in the case of a significant 

increase or decrease in renal function coupled with class A, B, or C drug that was ordered 

or last modified prior to the change.  Patients receiving dialysis, identified by providers 

using a dialysis flag order, did not receive the alert.  The passive alert displayed as 

descriptive text in the Pharmacy Alert section of the information pane and as a simple 

alert notification next to the trigger drug in the Medication List section.  In addition, the 

text appeared in the Pharmacy Alert section of printed rounding reports.  Within the 

CPOE system, when a provider clicked the Pharmacy Alert text, a popup window 

appeared with detailed information about the order, including initial patient data, and 

relevant lab results.  The popup window also contained advice about what action to take 

with the drug, depending on the drug classification: avoid, adjust, or review.  When 

available for drugs requiring an adjustment, the system provided updated dosing advice.  

The Medication List text opened an order modification dialog window when clicked, 

which providers frequently used to modify or discontinue orders.  The alert persisted for 

48 hours or until the patient’s renal function improved such that no significant change 

was detected.  The provider could suppress the alert by modifying or discontinuing the 
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order or the asserting the current dose as correct within the exit check alert (described 

below).   

The exit check alert (Figure 6) interrupted the provider when he or she tried to 

exit the CPOE system on a patient with a significant decrease in renal function coupled 

with a class A or B drug that that was ordered or last modified prior to the change and not 

modified or discontinued within the current session.  As with the passive alert, patients 

with the dialysis flag order did not receive the alert.  In addition, the alert excluded drugs 

that were ordered when the patient’s estimated creatinine clearance was less than 30 

ml/min.  A popup window appeared, requiring the provider to act on the alert by 

choosing to modify or discontinue the drug, to suppress the alert by confirming that the 

dose was correct, or defer the alert until the next CPOE session.  The provider could also 

select to identify the patient as receiving dialysis, suppressing all renal dosing alerts for 

future sessions.  Similar to the passive alert, the alert displayed detailed information 

about the order and related lab values.  Deferred alerts persisted for 48 hours or until the 

patient’s renal improved such that no significant change was detected.   
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Figure 5: Passive intervention alert 

1) Pharmacy alert text 
 - Informative text about the change in renal function and prescribed target drug 
 - Opens pharmacy alert popup when clicked. 
2) Medication alert text 
 - Alert text about prescribed target drugs 
 - Denotes class A or class B target drug with “!” symbol 
 - Opens order modification dialog window when clicked. 
3) Pharmacy alert popup 
 - Opens with pharmacy alert text click 
 - Displays detailed information about the change in renal function and prescribed target drugs 
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Figure 6: Exit check intervention alert 

- Displays change in renal function with graph of serum creatinine over time  
- Requires providers for each alerting drug to modify the order, discontinue the drug, defer the alert, or 
 assert the dose as correct 
- Allows option to identify patient as receiving dialysis, suppressing future alerts  
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Timeline for Implementation 

Implementation of the intervention in the CPOE system began in June 2007 with 

a pilot exit check alert for vancomycin.  On August 13, 2007, we released a preliminary 

version of the both the passive and exit check alerts.  After reviewing the user activity log 

files and user feedback, we made final adjustments and fixed all reported issues.  We 

implemented the final version on October 12, 2007. 

Study Population 

We included all adult cases that could have received an exit check alert.  Eligible 

cases had two or more measured serum creatinine levels within 48 hours, where the 

second level is 0.5 mg/dl greater than the first level, with an active order for a class A or 

class B target drug.  To exclude dialysis patients from analysis, for whom the intervention 

does not apply, cases with a dialysis order preceding the significant change in serum 

creatinine were not included.  We analyzed only the first significant creatinine change 

within a drug regimen.  The patient demographics (Table 5) and target drug orders (Table 

6) were similar for the pre-intervention and intervention periods. 

In the 301-day pre-intervention period, we recorded 10,822 significant serum 

creatinine changes, with 4209 changes in the presence of a target drug.  We evaluated 

1369 initial events.  Of these, 54 drugs were discontinued because the patient was 

discharged within 24 hours of the event.  In the 126-day intervention period, we recorded 

3984 significant serum creatinine changes, with 1994 in the presence of a target drug.  

We evaluated 629 initial events, including 25 drugs that were discontinued due to patient 

discharge within a 24 hour period. 
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Table 5: Study population 

 

Pre-Intervention 
10/15/06 – 8/11/07 
(301 days, 43 weeks) 

Intervention 
10/14/07 – 2/16/08 
(126 days, 18 weeks) p-value 

Admitted adult patients (patients per day) 29849 (99.17) 13138 (104.27) < .01 
Age, mean, year (s.d.) 53.46 (21.62) 53.30 (20.56) .47 
Sex 
Females, % 
Males, % 
Unknown, % 

 
51.72 
48.63 
0.35 

 
51.87 
48.46 
0.33 

 
.77 
.75 
.74 

Race, % 
White 
Black 
Hispanic 
Other 
Unknown 

 
76.79 
16.03 
1.87 
2.13 
23.35 

 
77.39 
15.65 
1.75 
6.34 
22.58 

 
.17 
.32 
.39 
< .01 
.08 

Admitting service, % 
Cardiology  
Critical Care  
Dermatology  
Gastroenterology  
Geriatrics  
Hematology/Oncology  
Infectious Disease  
Medicine 
Neurology  
Neurosurgery  
Ob-Gyn  
Orthopedics 
Other 
Otolaryngology  
Psychiatry 
Pulmonary 
Renal  
Surgery 

 
10.56 
4.29 
0.02 
1.37 
1.29 
4.77 
1.58 
9.86 
2.84 
4.45 
9.91 
6.11 
1.97 
1.60 
7.96 
1.95 
1.92 
27.55 

 
10.64 
4.66 
0.03 
1.69 
1.80 
5.15 
1.64 
10.87 
3.68 
4.24 
8.57 
5.89 
1.81 
1.55 
7.28 
2.18 
2.15 
26.16 

 
.80 
.09 
.53 
.01 
<.01 
.09 
.65 
<.01 
<.01 
.33 
<.01 
.38 
<.01 
.70 
.02 
.12 
.12 
< .01 

ICU, % 22.62 22.56 .89 
Dialysis, % 3.07 3.19 .51 
Creatinines  per patient per day 1.73 2.91 < .01 
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Table 6: Target drug use by drug class in study population 

Drug group (N), % 

Pre-Intervention 
10/15/06 – 8/11/07 
(301 days, 43 weeks) 

Intervention 
10/14/07 – 2/16/08 
(126 days, 18 weeks) p-value 

Any target drug (152) 70.33 70.15 .71 
Analgesics (4) 
Antiarrhythmics (8) 
Antibacterials – Aminoglycosides (4) 
Antibacterials – Carbapenems (3) 
Antibacterials – Glycopeptides (1) 
Antibacterials – Other (3) 
Antibacterials – Penicillins (1) 
Antibacterials – Tetracyclines (1) 
Antibodies (5) 
Anticholinesterases (3) 
Anticonvulsants (4) 
Antidiabetics (7) 
Antifungals (5) 
Antigouts (4) 
Antimycobacterials (2) 
Antineoplastics (14) 
Antiparasitics (1) 
Antithrombotics (3) 
Antivirals (14) 
Cardiac Glycosides (4) 
Muscle Relaxants (5) 
NSAIDs (23) 
Radiology Exams with Contrast Dye (28) 
Vasodilators (5) 

3.72 
1.27 
5.55 
3.07 
16.65 
1.27 
0.18 
0.05 
0.45 
0.19 
0.73 
2.53 
0.42 
2.80 
0 
0.85 
0 
17.80 
4.65 
3.75 
0 
30.75 
4.67 
1.72 

4.96 
1.44 
4.36 
2.57 
17.07 
1.29 
0.14 
0.06 
0.37 
0.15 
0.75 
2.24 
0.32 
2.96 
0 
0.59 
0 
17.01 
4.87 
3.60 
0.02 
30.11 
4.22 
1.80 

<.01 
<.01 
<.01 
<.01 
.28 
.86 
.35 
<.01 
.24 
.36 
82 
.07 
.13 
.36 
  - 
<.01 
  - 
.04 
.32 
.45 
.01 
.18 
.04 
.56 

Data Collection 

For each initial significant increase in serum creatinine detected, we recorded a 

unique case event for all active class A or class B drugs when the change occurred.  For 

example, a patient with two active orders at the time of the change would have two 

events recorded.  We also recorded actions for each drug, including modifications and 

discontinuations of the order.  We defined a successful action for each event as a 

modification or discontinuation of the order within 24 hours of the significant change.  

From the user activity log files, we collected the number of alerts displayed, the number 

of clicked passive alerts, and the exit check alert responses. 
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We did not contact patients or physicians during the study, so informed consent 

was waived.  The local institutional review board approved this study through an 

expedited review, considering it to be of minimal risk to participants. 

Data Analysis 

We conducted a comparative analysis using the rate of actions per detected event 

as our main outcome.  We completed a chi-square test to evaluate for a significant 

difference in the action rate between the intervention periods for all drugs and for class A 

and B drugs separately.  We also evaluated the overall time taken to modify or 

discontinue an event-causing drug as secondary outcome.  We calculated the median time 

between an event occurrence and a drug modification or discontinuation, excluding drug 

orders that were discontinued for the reason of patient discharge.  Using a Mann-Whitney 

ranksum test, we evaluated for a significant difference in the median time outcome 

between the intervention and control periods. 

We further evaluated the data using an interrupted time series analysis [47, 48], 

assessing the weekly action rate multiple ways to account for various outcomes.  To 

account for a potential secular trend, we included in our model the number of weeks since 

the start of the study period.  We included a parameter to allow a hinge point after the 

intervention.  We tested for correlation between weeks by adding lags of one and two 

weeks to the model.  We also evaluated the number of events, or the number of potential 

actions.  Because both the lags and number of events did not significantly predict the 

outcome, we excluded the variables from our final model.  We considered an alternate 

model with the number of actions per week as our dependent variable and evaluated the 
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number of events in addition to the variables described in the previous model.  The effect 

of the intervention as an interaction variable did not differ significantly from the previous 

model, so did not pursue the analysis.  Our final regression model evaluated the weekly 

rate of action against variables for time and intervention. 

In addition to evaluating the rate of provider action before and after the 

intervention, we analyzed actual provider responses to the intervention alerts.  We first 

evaluated the action rates for alerted medications after the passive alert, through the exit 

check alert, and in subsequent sessions after initially overriding the alert.  To exclude the 

effect of the exit check alert for class A and class B drugs and evaluate the passive alert, 

we measured the action rate prior to the end of a CPOE session, which would suppress 

the exit check alert.   

Our secondary provider responses analysis outcomes included the number of 

times providers clicked on the passive alert to open the more informative popup window 

and the frequency at which each exit check option was selected.  For the exit check 

selection frequency, we disregarded deferrals and included only the terminal response for 

each significant change and drug pair.  We also quantified the number of times providers 

chose the “defer” option before making a final selection. 
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Results 

Comparative Analysis 

Action Rate 

We compared the rate of provider action, modifications or discontinuations within 

24 hours, for events, initial serum creatinine significant changes in the presence of a 

target drug, before and after implementation of the intervention.  In the pre-intervention 

period, 894 patient cases with a class A or class B drug order experienced at least one 

significant change in creatinine.  We recorded 1315 events, with 470 actions (35.7 actions 

per 100 events).  In the intervention period, 416 cases with a nephrotoxic or renally 

cleared drug order experienced events.  The action rate increased to 50.9 actions per 100 

events, with 629 events and 320 actions (p < 0.001).  

The intervention appeared to have a more profound effect when we stratify the 

results by drug severity group.  We saw the most significant impact with the class A, or 

nephrotoxic, drugs.  In the pre-intervention period, we recorded 498 events with 194 

actions (39.0 actions per 100 events).  The intervention period action rate increased to 

63.6 actions per 100 events, with 239 events and 152 actions (p < 0.001).  The action rate 

for class B drugs also increased in the post-intervention period (p = 0.002).  In the pre-

intervention period we recorded 817 events with 276 actions (33.8 actions per 100 

events), and in the intervention period we recorded 390 events with 168 actions (43.1 

actions per 100 events).  Table 7 summarizes the comparative analysis results. 
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Table 7: Comparative analysis results of action rate 

 Pre-intervention Intervention p-value 
Cases with an Event (%) 894 (3.00) 416 (3.16) .37 
Total Events 
Nephrotoxins (%) 
Renally Cleared (%) 

1315 
498 (37.9) 
817 (62.1) 

629 
239 (38.0) 
390 (62.0) 

.08 
.27 
.18 

Total Actions (%) 
Nephrotoxins 
Renally Cleared 

470 (35.7) 
194 (39.0) 
276 (33.8) 

320 (50.9) 
152 (63.6) 
168 (43.1) 

<.001 
< .001 
.002 

Time to Action 

We also evaluated the overall time to action between the pre-intervention and 

intervention periods.  In the pre-intervention period, 992 event-triggering medications 

resulted in a drug modification or discontinuation before patient discharge.  The median 

time between an event occurrence and an action in the pre-intervention period was 

27.1hours.  The median time in the intervention period was 14.2 hours sooner at 12.9 

hours.  The difference between intervention and pre-intervention periods for nephrotoxin 

discontinuation or modification was 14.6 hours sooner (23 hours vs. 8.4 hours), and the 

difference between periods for renally cleared drugs was 9.8 hours sooner (28.8 hours vs. 

19.0 hours).  Table 8 summarizes the time to action results. 

 

Table 8: Comparative analysis results of time to action 

 Pre-intervention Intervention p-value 
Total Events with Actions (%) 992 (72.5) 514 (78.6) .003 
Median Hours to Action (IQR)* 
Nephrotoxins 
Renally Cleared 

27.1 (7.8, 57.1) 
23 (7.5, 41.3) 
28.8 (8.3, 61.8) 

12.9 (5.8, 38.5) 
8.4 (4.5, 21.2) 
19.0 (6.7, 55.1) 

< 0.001 
< 0.001 
0.012 

* IQR = Interquartile ranges 
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Time-Series Analysis 

Our time-series analysis confirmed our previous finding that the intervention 

significantly increased the action rate (p = 0.03).  Time was not a significant factor in the 

regression model before or after the intervention (p = 0.34 and 0.28 respectively).  Figure 

7 illustrates the significant increase in weekly action rate after intervention for all target 

drugs.  As in the comparative analyses, we found a greater effect of the interventions for 

the nephrotoxic drugs.  The change in action rate for nephrotoxic drugs remained 

significant (p = 0.02), while the change in action rate for renally cleared drugs was not 

significant (p = 0.32). 
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Figure 7: Time-series analysis 
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Provider Response Analysis 

Provider Actions 

We evaluated 516 initial alerted AKI events.  For each event-drug pair, the 

passive alerts displayed a median of 14 times, often to multiple providers.  The overall 

action rate for orders that generated a passive or exit check alert was 58.9 actions per 100 

events.   Of these, providers modified or discontinued 69 drugs (13.4%) after only 

viewing a passive alert, suppressing the exit check alert.  After viewing the exit check 

alert, providers acted on 116 drugs (22.5%) by selecting the “modify” or “discontinue” 

option.  Providers modified or discontinued 119 drugs (23.1%) in a subsequent CPOE 

session after initially selecting the “correct dose” option or choosing to defer the alert.  

Providers performed the largest percentage of actions after initially deferring the alert 

(15.1%).  Table 9 summarizes these results. 

 

Table 9: Action rate for alerted medication orders 

Alert Type Action Rate, N (%) 
All Orders (N = 516) 304 (58.9) 
After viewing passive alert only 69 (13.4) 
Through the exit check alert 

“Modify” option selected 
“Discontinue” option selected 

116 (22.5) 
63 (12.2) 
53 (10.3) 

Within a subsequent CPOE session 
“Defer” option selected 
“Correct Dose” option selected 

119 (23.1) 
78 (15.1) 
41 (7.9) 

 

After receiving the passive alert, providers clicked on 21 alerts to view the 

additional details.  Of these, 13 were in response to increasing serum creatinine events, 

and 8 were in response to decreasing serum creatinine events.  Five clicks in response to 
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increasing serum creatinine included class A or B drugs, and the remaining clicks 

involved a class C target drug.  In addition to clicks on the Pharmacy Alert text, providers 

also clicked on the Medication List text to display a prompt to change the order.  After 

receiving an alert, providers clicked on the text 713 times.  However, this number may 

over-represent provider acknowledgement of the alert, as providers typically click the 

medication list to modify or discontinue drugs, regardless of a displayed alert. 

Exit Check Alert Selections 

For each event triggering an exit check intervention, we determined the terminal 

response selected by providers.  The most frequent option selected was “correct dose”, in 

37.8% of cases, followed by “defer”, in 34.7% of cases.  The “modify” option was 

selected in 15.0% of cases, and the “discontinue” option was selected in 12.5% of cases. 

 

Table 10: Exit check alert responses by drug 

  Selection Rate, % 
Drug (Drug Class) Total Events Modify Discontinue Defer Correct Dose 

Vancomycin (B) 101 21.8 4.0 37.6 36.6 
Enoxaparin (A) 78 19.2 11.5 34.6 34.6 
Acyclovir (B) 71 1.4 0 74.6 23.9 
Meperidine (A) 39 5.1 12.8 76.9 5.1 
Digoxin (B) 35 5.7 2.9 45.7 45.7 
Allopurinol (B) 17 23.5 11.8 17.6 47.1 
Ibuprofen (A) 17 11.8 47.1 23.5 17.6 
Imipenem (B) 16 25.0 0 37.5 37.5 
Valganciclovir (B) 15 6.7 0 53.3 40.0 
Gentamicin (A) 12 25 8.3 50 16.7 

 

The ten drugs that generated the most alerts are shown in Table 10.  Of the 42 

nephrotoxic or renally cleared drugs that generated an alert, 29 had less than 10 alerts 
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appear to providers in the intervention period.  Of the ten drugs that triggered the highest 

number of alerts, the drugs most often deferred were meperidine (76.9%) and acyclovir 

(74.6%).  On the contrary, allopurinol and ibuprofen were deferred much less frequently.   

We also determined how often providers chose the “defer” option before making 

a final selection.  The terminal response was selected as the first response for 45% of 

alerts.  Figure 8 shows how often exit check alerts were deferred prior to the terminal 

response.  When the “defer” option was selected at least once before the terminal 

response, the median number of prior alerts was 3.  The maximum number of deferrals 

prior to the terminal response selected was 18, 22, 56, and 32 for the “modify,” 

“discontinue,” “correct dose”, and “defer” responses respectively.   
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Figure 8: Number of deferred exit check alerts prior to terminal response 
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As time progressed and providers became more familiar with the interventions, 

the number of deferred alerts decreased.  Figure 9 shows the median number of deferred 

alerts for each week, stratified by terminal exit check response. 
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Figure 9: Median exit check defers before terminal response by week 

Discussion 

We developed a set of CPOE interventions with varying levels of workflow 

intrusiveness to continuously monitor for and alert providers about AKI.  Through a 

comparative analysis of AKI events before and after implementation of the interventions, 

we discovered that the interventions significantly improved provider response to AKI 

events.  Providers modified or discontinued nephrotoxic and renally cleared drugs more 

frequently and quickly with the interventions.  Despite the success in improving provider 
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response, evaluation of actual provider usage showed low response rates to passive alerts 

and high override and deferral rates for the exit check alerts. 

The findings of our evaluation are important in reducing errors.  Improved dosing 

of nephrotoxic and renally cleared drugs in patients with AKI may reduce associated 

patient morbidity and represents improved compliance with standard of care for 

hospitalized patients.  A better understanding of how providers respond to the available 

alert types allows us to build further enhanced intervention systems and further improve 

medication safety. 

The interventions we developed utilize decision support capabilities not 

previously combined in a single system.  Many evaluated systems provide guidance for 

renally dosed drugs when providers initially prescribe the medications [23, 26, 29].  

Because patients often experience changes in renal function, these doses may become 

inappropriate later during a patient’s hospital stay.  Rind, et al. implemented a 

surveillance system to alert providers about renal function changes [38], however the 

alerts appeared to providers as e-mail messages outside of the workflow.  The systems 

developed by Evans, et al. [24] and Kilbridge, et al. [39] also include a surveillance 

approach, however the systems assess for changes only once daily, and the alerts appear 

to pharmacists rather than ordering providers.  Alerts displayed to pharmacists require 

additional pharmacy staffing, which may be expensive.  By continuously monitoring for 

updated lab results and alerting ordering providers directly in the CPOE system, we 

eliminate associated pharmacy costs and give providers the opportunity to make dosing 

changes more quickly.   
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Rind, et al. measured a reduction in the time to action of 21.6 hours, while we 

recorded a reduction of 14.2 hours.  The authors also found that the reduction in time to 

action for renally cleared drugs exceeded the reduction for nephrotoxic drugs, while we 

found the greatest reduction in nephrotoxic drugs.  The disparity in the results may be due 

to the differing intervention criteria, both for the change in renal function and target 

drugs. 

The high rate of deferred and overridden alerts that we measured matches the 

results of previous studies.  Chertow, et al. [23] and Galanter, et al. [26] also found high 

rates of alert overrides and noncompliance (42%, 48%) with their decision support 

systems.  Some of the overrides are likely appropriate due to sufficiently low initial 

dosing as a result of guided dosing decision support.  Additionally, some renal 

dysfunction may result from patient dehydration, and may be easily reversed with fluid 

administration.  As with the disparate time to action results we observed compared to 

previous studies, the higher override rate may result from differing alert criteria.  

Providers choose to defer or override some drugs more often than others.  Through 

additional evaluation of alerting criteria, we can improve the specificity of the alert and 

increase compliance. 

Our study had some limitations.  Although we tried to account for confounders 

through our time-series analysis, some factors in addition to the intervention may have 

caused the improved provider response.  In one example, pharmacists began to use a 

surveillance tool to monitor aminoglycoside dosing during the intervention period.  

Improved aminoglycoside prescribing as a result of the pharmacy tool may have biased 

our results. 
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Another limitation is our analysis of action rate.  For this study, we counted any 

discontinuation or modification to an order as an event, and we did not check that dose 

modifications were appropriate or in the correct direction.  Some modifications that we 

counted as compliant responses in our analysis may have included incorrectly increased 

doses by providers who ignored the alert advice.   
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CHAPTER V 

FUTURE WORK 

Introduction 

 These interventions had a significant effect in improving provider response to 

AKI events.  However, responses to the passive alerts were low, and providers deferred 

more than half of the exit check alerts.   By making changes to the intervention, including 

an improved passive alert, adjusting the alerting criteria, and adding a monitoring system 

that includes other team members, provider response can be further improved. 

Improved Passive Alert 

 The current passive alert in the CPOE system allows providers to respond to 

alerts in their normal workflow and avoid interruptions.  However, low response rates 

with passive alerts indicate that the alerts may remain unnoticed in the busy user 

interface.  The pharmacy alert section of the CPOE system often displays numerous text 

alerts that providers frequently override.  To increase the effectiveness of the alert, we 

propose modifications to make the alert more visible.  One method to accomplish this 

includes prioritizing alerts and changing the text of higher priority alerts from black to an 

alternative color.  Alerts displayed in the alternative color may stand out and increase 

provider response. 

Another method to improve the passive alert is to enhance the order modification 

window that opens with the medication list alert click.  Providers click on the medication 
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list alert more often than the pharmacy alert, but at present this alert does not show the 

detailed information included with the pharmacy alert popup window.  By adding this 

data to the order modification window, providers may make better decision about the 

target drugs. 

Adjusted Alerting Criteria 

The effect of the intervention varied for the numerous target drugs.  Vancomycin 

triggered the most number of alerts and had a high action rate.  However, other drugs that 

received numerous alerts, including meperidine and acyclovir, had a much lower action 

rate.  In addition, many drugs received very few alerts.  We can further evaluate the target 

drugs that may not always merit an action, either eliminating the drugs from our target 

list or placing the drugs into a different alert class.  In addition, we can evaluate the 

passive alerts generated for significant serum creatinine increases with class C drugs and 

significant serum creatinine decreases.  As a result, we can decrease the noise level of the 

alerts and reduce the high provider deferral and override rates. 

We can also improve the alerting criteria by checking for correct dosing of 

prescribed medications when patients experience AKI.  Providers often anticipate AKI 

events and reduce doses of target medications at the time of initial prescription.  When 

this is the case, the alerts may be unnecessary.  By suppressing alerts for sufficiently low 

doses of target drugs, we can further reduce noisy alerts. 
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Higher Level Surveillance 

The high alert deferral rate may be due to ordering providers’ lack of experience 

in dosing drugs according to renal function.  By involving other team members, such as 

pharmacists, we can potentially allow for quicker decisions about dosing.  In particular, 

alerts that are repeatedly deferred may be escalated to a higher priority for additional 

review.  Many other groups have adopted the method of alerting pharmacists instead of 

providers directly [24, 39].  We have begun to develop tools allowing pharmacists to 

monitor for adverse drug events resulting from aminoglycoside and warfarin use.  

Extensions of these tools, in addition to team-level monitoring tools, such as patient 

management dashboard, incorporated into the EMR may improve provider responses to 

the alerts. 

Further Intervention Evaluation 

While the intervention currently alerts providers about declining and improving 

renal function, we only evaluated declining renal function for this study.  Patients 

frequently experience improved renal function while admitted, and initially low doses 

may need to be increased to allow for optimal therapy.  We can evaluate the effect of the 

interventions in the presence of improving renal function using methods similar to those 

we employed to evaluate the effect of the interventions in AKI. 

In addition to evaluating provider responses to the interventions, we plan to 

evaluate the effect of the interventions on patient outcomes.  Potential outcomes include 

patient serum creatinine levels at the time of discharge, incidence of AKI, duration of 

AKI, the number of patients with unanticipated dialysis, mortality rates, and patient 
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lengths of stay.  However, due to the complexity of AKI and illness severity of patients 

who experience AKI, patient outcomes may be difficult to measure. 
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CHAPTER VI 

CONCLUSION 

We developed, implemented, and evaluated a set of interventions to continuously 

monitor for and alert providers about AKI in the presence of target nephrotoxic or renally 

cleared drugs.  Through comparative and time-series analyses, we determined the 

interventions to be significantly effective in both increasing the rate of provider 

modification or discontinuation of target drugs within 24 hours and decreasing the total 

time to modification or discontinuation following an AKI event.  Evaluation of actual 

provider responses to alerts revealed high rates of provider overrides and deferrals.  We 

plan to improve future responses by enhancing the alerting methods and criteria and 

developing additional interventions to be used by other team members. 
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