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CHAPTER I 

 

INTRODUCTION 

 

Objective 

Modern neuroscience seeks to understand the human brain and determine how 

electrochemical interactions among neurons give rise to perception and behavior.  On a 

molecular level, sensory stimulation induces neurons to relay signals in a stimulus-

dependent manner.  Neural coding describes how these salient stimulus features are 

represented in neuronal responses.  A great deal has been learned about what happens in 

the brain, yet how the brain encodes sensory information and provides a direct mapping 

of stimulus properties to neuronal representations that govern emergent properties like 

perception or action remain unknown.  For practical reasons, most work in the past has 

focused on the relationship between the stimulus and firing rate patterns of individual 

neurons.  Recent technological developments in multineuron recording have enabled the 

observation of population behavior as well.  One prominent proposal for population-

based encoding of information is tight (<10 msec) synchronization in the firing of two or 

more cells (e.g., Singer et al. 1990; Kohn and Smith 2005).   Previous research has found 

that synchronization of neuronal responses is stimulus-dependent and exists between 

visual cortical neurons in an amount beyond that predicted by chance (for a review see 

Singer and Gray 1995).  Although synchrony has tremendous potential as a coding 

mechanism, understanding its relevance is difficult since the techniques to measure and 

analyze synchrony are relatively new.  The work presented here investigates the dynamic 

associations among small populations of neurons during natural stimulation and seeks the 
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form of the neural code for representation of visual structures.  Microelectrode array 

technology allows the simultaneous sampling of neurons with a variety of spatiotemporal 

preferences, which can be used to explore complex intercellular interactions.  This 

recording paradigm and a novel algorithm for quantifying synchrony are used here to 

study the timing relationships among neurons in the primary visual cortex of cats to 

evaluate synchrony's role as a possible neural substrate for contour detection. 

 

Specific Aims 

 Research on neural coding throughout the past several decades has emphasized 

the study of individual neurons in the visual pathways.  The frequency of firing events 

from a single neuron was found to be stimulus-dependent and reflected the cell's tuning 

preferences based on its spatiotemporal filter characteristics (Adrian and Zotterman 1926; 

Hubel and Wiesel 1962).  This analysis of average firing rate became the basis of neural 

coding theories where stimulus properties were thought to be encoded through the spike 

frequency modulation of independent neurons (Barlow 1972).  However, average firing 

rate of single neurons as a coding mechanism is inefficient and often ambiguous as a 

foundation for visual perception due to timing constraints and the limited number of 

neurons in the brain.  Alternative theories for the neural representation of stimulus 

structure involve dynamic assemblies of neurons, which contribute to a population code 

(Hebb 1949).  Due to the dynamic nature of grouping, the combinatorial possibilities of 

such a scheme offer a vastly increased dimensional magnitude for encoding visual 

information and also have implications for learning and plasticity.  In this manner, visual 

information would not only be inherent in the activity of individual neurons, but could be 

extracted from the collective activity of the group as a supplemental code. 
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Until recently, the study of cooperative relationships was mostly confined to 

interactions among cell pairs because simultaneous recording of the behavior of large 

populations was impractical.  This in turn discouraged the development of analysis 

techniques for comparing more than two simultaneous neuronal responses.  Current 

approaches quantify synchrony as a relationship between two neurons (Perkel et al. 1967; 

Aertsen et al. 1989).  However, synchrony allows for the formation of transient functional 

groups which could include tens, hundreds, thousands, or even larger numbers of 

neurons.  Pairwise distance calculations increase exponentially as group size increases 

and can be computationally exhaustive for large assemblies.  As a solution, we have 

developed a method that detects and quantifies the amount of correlated activity in a 

neuronal assembly of arbitrary size.  Our basic algorithm is designed to reflect the 

relevance of group synchrony to postsynaptic neurons by modeling the temporal 

summation of postsynaptic potentials.  In this measure, synchrony is computed as a 

fraction of total activity within an assembly and can be monitored dynamically 

throughout the stimulus presentation. 

 Previous research has found that synchrony among pairs of neurons is stimulus-

dependent and correlated with the spatial features of simple visual stimuli (Singer and 

Gray 1995).  Our work expands this foundation by exploring how visual information is 

represented by the cooperative behavior of aggregates of cells in the striate cortex.  This 

research is designed to reveal the role of synchrony as a possible neural substrate for 

encoding complex contours in natural scenes.  When considering theories of neural 

coding, the transition from the single neuron doctrine to population coding is 

conceptually grounded, but has not been realized experimentally due to the limited nature 

of many recording and analysis techniques.  Pairwise interactions among cells suggest 
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that synchrony may contribute to a population code, but these theories can only be 

confirmed if supported by similar findings from larger cell assemblies.  For each 

experiment, we used a 10x10 microelectrode array to acquire simultaneous recordings 

from dozens of discrete neurons in the striate cortex of paralyzed and anesthetized cats.  

To investigate synchrony as an encoding strategy, we have posed the following three 

aims: 

Aim 1. To determine the spatial and temporal evolution of synchronous activity 

throughout the stimulus presentation.  Previous studies using simple stimuli have shown 

that synchrony and oscillations of firing rate in the gamma frequency range rapidly 

decrease with increasing cortical distance (Nowak et al. 1995; Frien and Eckhorn 2000; 

Maldonado et al. 2000).  Moreover, many laboratories report a higher probability of 

measuring synchrony between pairs of neurons with similar orientation preferences (Gray 

et al. 1989; Eckhorn et al. 1988).  Often, this quantity is a normalized value corrected by 

an estimate of the firing rate-induced modulation of synchrony caused by the stimulus.  

Using natural stimulation, we will document the magnitude of synchrony within 

assemblies of arbitrary size as a function of cortical distance and orientation.  We will 

disambiguate the dynamic components of raw cooperation into those elements attributed 

to normalized synchrony and stimulus-locked activity and will also measure the temporal 

aspects of synchrony to determine the time windows of highest cooperation.  These 

results will provide insight into the cortical mechanisms responsible for the generation 

and propagation of synchrony. 

Aim 2. To determine the role of synchrony in signaling higher-order visual 

structure by analyzing responses to natural images.  Previous studies of cooperative 

neuronal activity have focused on experiments utilizing artificial stimulation to 
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systematically investigate the effects of altering various spatial properties such as 

orientation, spatial frequency, and contrast.  However, the importance of synchrony in the 

process of natural vision remains unknown.  Although the statistics of natural scenes are 

far too complex to manipulate systematically, using a broad selection of natural images 

offers an efficient approach for analyzing the complex spatial organization of larger 

assemblies, which have the potential to encode increasingly complex higher-order 

features not present in artificial stimuli.  We will present a large sequence of natural 

stimuli and identify the appearance of repeatable and reliable cooperative interactions 

within the neuronal population.  Using concepts from the association field theory (Field 

et al. 1993), we will quantitatively correlate these interactions with unique visual features 

in the scene and determine how synchrony is governed by the specific association among 

cells.  We will also measure synchrony between assemblies to determine how different 

features may be related. 

Aim 3. To quantify the selectivity of synchrony in larger assemblies in the context 

of sparse coding.  In a sparse coding scheme, input features are represented by activation 

of a subset of the cell population.  Therefore, encoding relies more on the identity of the 

active membership than on the amount of activation within the assembly.  Numerous 

theoretical and computational studies have shown that neural networks employing sparse 

coding strategies have exhibited increased efficiency and decreased metabolic demand 

for visual coding of high dimensionality (Hyvarinen and Hoyer 2001).  However, current 

models of sparse coding in the visual cortex are based on the average firing rate of 

independent neurons (Field 1994).  We will explore the extent to which synchrony 

supports sparse coding by measuring the sparseness of neuronal response distributions 
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and the dispersal of responses across the population and set of images.  Finally, we will 

compare the results with firing rate-based coding strategies.   

 Collectively, these aims provide a comprehensive investigation of synchronous 

activity within neural assemblies.  Aim 1 examines the spatial and temporal factors 

influencing synchrony, which provides an indirect look at the underlying anatomical 

mechanisms involved.  Aim 2 investigates the specific relationships between assembly 

receptive field filter characteristics and incoming visual information that induce 

synchronous activity.  Correlated stimulus content is measured across repeatable 

presentations, isolated, and quantified to determine the explicit visual structures encoded 

by synchrony.  Finally, the research in Aim 3 mathematically describes synchrony as a 

viable coding strategy employed by the visual cortex.  All aims focus on emergent 

properties examining synchrony in a capacity that is independent of firing rate 

modulations.  In addition to disambiguating the effects of synchrony and firing rate, this 

work explores new frontiers in synchrony research by quantitatively analyzing the 

cooperation of multiple single-units and incorporating techniques to systematically study 

responses to natural stimulation. 

 

Significance 

This research will provide fundamental knowledge about how dynamic cell 

assemblies contribute to visual perception.  Neither the properties of single neurons nor 

pairs of neurons can explain the behavioral and perceptual repertoire of the brain.  

Understanding the functional interactions and emergent properties of larger neural 

networks is crucial to linking neurophysiology and perception.  We cannot grasp the 

foundations of perception without exploring how cells work together in local networks to 
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describe the visual environment.  While the focus of this research is rooted in vision, the 

concept of synchronous neuronal activity as a substrate to encode stimulus features may 

very well transfer to other sensory modalities and in fact be a general cortical encoding 

mechanism.  Synchrony has been measured within and between other cortical regions 

(Engel et al. 1991; Roelfsema et al. 1997), but its functional significance is still largely 

unknown.  This research may lead to the discovery of the strategy by which information 

is assembled by groups of cells, which is critical to understanding the overall function of 

the brain.  By studying small populations of neurons, we are providing a crucial bridge 

between single unit and global population (EEG, fMRI) studies.  Finally, knowledge of 

normal synchronous behavior has numerous clinical applications such as vision 

prosthetics and understanding and treating certain visual pathologies. 

 

Background 

 

Introduction 

The brain, as the control center of the body, interprets sensory information and 

creates a perception and/or behavioral response appropriate to the environment.  For 

instance, the visual system is able to integrate the senses, separate figure from ground, 

perform invariant recognition, complete partially occluded objects, and recognize shape 

from coherent motion.  Information from the visual field is mapped onto the retina, 

relayed through the lateral geniculate nucleus of the thalamus, and directed through the 

primary visual cortex before the rest of the visual pathways.  Neurons in the primary 

visual cortex filter incoming information and generate precisely-timed spike trains that 

transmit this message to higher processing centers.  How information is transformed and 

 7



multiplexed in a neuronal spike train or distributed across the responses of multiple 

neurons is unknown.  Current research in the field seeks to determine the form of the 

neural code produced in relation to certain visual structures as a next step in 

understanding the metaphorical black box of the brain. 

The focus of these experiments is on the synchronization of neuronal responses 

and how these interactions might combine to yield percepts of unique visual features.  In 

the literature, however, the term synchrony has been used to describe several quantities 

that do not reflect our intended use of the term.  To avoid any misunderstandings, we 

provide the following definitions: stimulus synchrony refers to stimulus presentations in 

psychophysical experiments where manipulation of the timing of the stimulus results in 

motion-induced boundaries between figure and ground elements; oscillation refers to the 

fluctuations in potential from unresolved multi-unit activity due to the covariation of 

firing rate amongst the neurons (gamma oscillation specifically refers to the fluctuations 

that occur in the gamma frequency range, 30-70 Hz); synchronous oscillations occur 

when oscillations from two or more multi-unit recording sites are in phase; the term 

synchrony will be used to describe neuronal synchronization where responses (i.e. action 

potentials or spikes) from two or more neurons (or neuron clusters) occur within some 

small window of time, usually 10 ms. 

Although opinions on the abilities of synchrony differ, it has garnered the 

attention of researchers in a wide range of fields, from neurophysiologists studying 

neuronal communication on a cellular level to psychophysicists exploring figure-ground 

segregation on a perceptual level.  In this chapter, we will summarize the 

accomplishments concerning synchrony and neural coding from many different 

laboratories.  First, we will give a brief overview of the visual system and review the two 
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prevailing theories on the role of individual neurons in the primary visual cortex.  Then, 

we will introduce the single-unit coding theory and discuss how the shortcomings of that 

theory have lead others to postulate about multi-unit coding theories and dynamic 

population codes as a basis for complex feature representation.  Next, we will introduce 

temporal coding via average firing rate and synchronization of neuronal responses.  Then, 

we will describe the binding problem, discuss synchrony as a binding solution, and 

mention two studies with opposing viewpoints.  Finally, we will describe one of our 

previous experiments that inspired this research by suggesting that synchrony may be a 

plausible neural substrate for detecting higher-order correlations. 

 

Overview of the Visual System 

 As an animal roams through its environment, it will encounter a diverse 

abundance of objects that change shape, follow complicated trajectories, or hide amongst 

the shadows.  Survival depends on the ability to detect and discriminate items of 

beneficial importance as well as avoid potential sources of danger.  The mammalian 

visual system is adapted to process this wide assortment of visual information to build a 

representation of the surrounding world.  Size, location, and texture are only a few of the 

many characteristics of objects that can be gauged by the visual system.  Depending on 

their surface properties, objects reflect different amounts of electromagnetic radiation, the 

visible portion of which can be detected by the eyes.  Even though eyes shift and the time 

of day offers widely varying light conditions, the brain can interpret this dynamic pattern 

of light to produce a psychological manifestation of the information in the visual field.  

The animal’s perception of the environment is then used to judge the next appropriate 

course of action to be followed. 
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 The process of vision (Figure 1.1A) begins when light rays enter the structures of 

the eye and are focused onto the retina.  Photons are absorbed by photoreceptors in the 

posterior portion of the retina and are converted via the process of phototransduction into 

an electrochemical signal received by the interneurons (bipolar, horizontal, and amacrine 

cells).  Horizontal and amacrine cells facilitate lateral connections in the outer and inner 

plexiform layers, respectively, while bipolar cells transmit localized graded potentials to 

the ganglion cells in the anterior portion of the retina.  Ganglion cells are neurons whose 

dendrites integrate graded potentials from bipolar cells to generate action potentials.  The 

axons of ganglion cells form the optic nerve and exit the eye through the optic disc.  The 

optic tracts from each eye separate and the medial portions cross at the optic chiasm such 

that the axons fed by the left visual hemifield project to the right cerebral hemisphere and 

the axons fed by the right visual hemifield project to the left cerebral hemisphere (Figure 

1.1B).  Ganglion cells synapse onto neurons in the lateral geniculate nucleus (LGN) of 

the thalamus, which eventually sends projections to the primary visual cortex. 

 In the visual cortex, Korbinian Brodmann named different regions according to 

histological criteria such as cyto- and myeloarchitecture and primary visual cortex was 

designated Area 17, also anatomically known as striate cortex.  Alternatively, 

electrophysiological mapping criteria can also be used to define regions and Area 17 

contains a complete retinotopic representation of the visual field that is known as V1 (the 

fovea is on the most posterior end of the occipital lobe while the periphery is represented 

towards the anterior).  All of these terms (Area 17, striate cortex, V1) are used 

interchangeably to refer to primary visual cortex.  In the early stages of visual processing, 

all stimulus information necessary for analysis in subsequent parts of the cortical 

hierarchy must be represented.  V1 achieves this by organizing input and output 

 10
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connections into six different layers and segregating stimulus features into different 

iterated modules within each layer.  The majority of input from the LGN to the primary 

visual cortex terminates within layer IV.  The superficial layers (I, II, and especially III) 

output to extrastriate cortical areas such as V2 and V5 (MT) while layers V and VI output 

to subcortical areas such as the superior colliculus and send feedback projections to the 

LGN.  Hubel and Wiesel (1962) proposed the idea of a hypercolumn to explain columnar 

and modular organization in V1.  In this model, there are orientation columns, ocular 

dominance columns, and cytochrome oxidase blob modules for each region of visual 

space so that different stimulus attributes are represented in an iterated fashion across V1 

and all properties are represented in each visuotopic location without holes in the visual 

field. 

 In their initial investigation of the primary visual cortex, Hubel and Wiesel (1962) 

noted that not all cortical cells behaved similarly to flashing hand-held light stimuli used 

to categorize the location and extent of receptive fields.  Two different categories of cells 

seemed to emerge: simple and complex.  The receptive fields of simple cells were 

defined as follows: 1) there were distinct excitatory and inhibitory subregions, 2) there 

was quasi-linear spatial summation within each excitatory or inhibitory region, 3) there 

was antagonism between the regions, and 4) responses to simple stimuli could be 

predicted from a map of the excitatory and inhibitory regions.  A receptive field that did 

not satisfy all of these requirements was classified as complex.  In their study of areas 18 

(V2) and 19 (V3), Hubel and Wiesel (1965) introduced a new cell type, coined 

hypercomplex, which had fields similar to complex cells, but exhibited an end-stopping 

property.  The further refinement of stimulus features led Hubel and Wiesel to postulate 

on a hierarchical connection between areas 17, 18, and 19 and a serial connection of 
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visual processing through geniculate, simple, complex, and hypercomplex cells.  

However, doubts arose about the uniqueness of hypercomplex cells and studies providing 

evidence against a strict serial processing route between areas 17, 18, and 19 are 

numerous (Dreher and Cottee 1975, Ferster 1981, Singer et al. 1975, Movshon 1975, 

Orban 1984). 

 A general rule of most cells in the visual cortex is that they are more selective for 

the kind of stimulus that will drive them as compared to cells in the earlier stages of 

visual processing.  Both types of cortical cells exhibit an enhanced specialization by 

responding selectively to stimulus parameters such as spatial frequency, orientation, 

direction, and disparity.  In the case of spatial frequency, some cells may be more 

selective for sharp edges or fine details while others prefer a stimulus that changes more 

slowly across space.  Cortical cells exhibit tuning to the orientation of an elongated 

stimulus in their receptive fields and also show preference to the direction of motion 

orthogonal to stimulus orientation.  Finally, primary visual cortex is the first region in 

which there is excitatory combination of binocular signals.  Each cerebral hemisphere 

contains a map of the opposite visual hemifield and each optic radiation contains axonal 

projections from both eyes.  Therefore, cortical cells can selectively represent stereo 

information in a visual scene. 

Although the receptive field properties of simple and complex cells represent a 

behavioral dichotomy, there are no morphological differences between the two cell types.  

Each neuron consists of three main components (Figure 1.1C): dendrites, a soma, and an 

axon.  Dendrites are the branched projections that receive electrochemical stimulation 

from other cells and function to conduct graded potentials towards the base of the cell 

soma.  The soma is the central cell body and houses the nucleus, organelles, and internal 
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machinery for protein synthesis.  At the base of the soma, the axon hillock gives way to 

the axon and is the region of the cell with the highest density of voltage-dependent 

sodium channels.  This area is the most sensitive to changes in potential and has the 

ability to integrate graded potentials from different incoming regions on the dendrites.  If 

the summation of these potentials surpasses the action potential threshold, then a single 

spike is initiated and propagated unidirectionally down the axon.  The axon is a cable-like 

projection that carries nerve impulses away from the soma and branches into numerous 

axon terminals that synapse onto other target cells.  Axon terminals are specialized 

regions that contain neurotransmitters for release into the synaptic cleft for 

communication with nearby cells.  Action potentials are identical events and 

restabilization of the electrochemical gradient across the neuronal membrane contributes 

to the shape of an action potential, which has a rising (depolarization) phase, peak, falling 

(repolarization) phase, undershoot, and refractory period.  Action potentials are the 

fundamental units of information transmission, but researchers are still unable to forge a 

unified link between the temporal properties of spike trains and the structure in the visual 

environment. 

 

The Role of Cortical Cells 

 In order to unlock the secrets of visual processing, the bottom-up approach 

attempts to understand the role of individual neurons in terms of how they transform the 

afferent geniculate input.  As mentioned in the previous section, visual cortical cells 

respond selectively to stimulus parameters such as orientation, spatial frequency, 

direction, and disparity.  Two interpretations for this selectivity and precise stimulus 
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requirements are that cells behave as feature detectors or spatiotemporal filters (Figure 

1.2). 

 Cortical cells that function as feature detectors (Figure 1.2A) parse out visual 

images into tangible components, or features, such as lines, bars, curves, and edges.  A 

single cell responds maximally to one specific feature and transmission of this 

information signals the existence of this certain feature.  Simple features are detected in 

earlier stages of visual processing while more complex objects are detected in higher 

processing centers.  Feature detection theory evolved from the initial descriptions of 

cortical receptive fields given by Hubel and Wiesel (1962, 1965).  Hubel and Wiesel 

speculated on a serial processing connection between simple, complex, and 

hypercomplex cells in which each cell required a subsequent refinement of stimulus 

features or input configurations to generate a response.  However, as cells become more 

specific for stimulus features, they also become progressively more general or invariant 

to properties like scale and position in the visual field.  As one ascends the cortical 

hierarchy, extrapolation of this theory would yield a neuron, often referred to as a 

grandmother cell, whose activity would be so specific that it responds to only one object, 

yet so general it responds to this object anywhere in the visual field (Orban 1984). 

Numerous problems arise with feature detection theory in that the number of 

hypothetical grandmother cells needed to signal the amount of objects one may come 

across in a lifetime overwhelms the actual number of neurons in the visual cortex.  In 

addition, loss of any single cell would mean the corresponding object could not be 

recognized.  Furthermore, experimental evidence does not generally support this theory.  

Many experiments recording neuronal responses from animals have shown that a single 

neuron is not activated uniquely by one specific complicated or simple stimulus (Abeles 
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and Gerstein 1988, Braitenberg 1977).  Even the famous “face” neurons in the temporal 

cortex do not respond to single unique faces, to several faces, or to several features 

comprising the several faces (Young and Yamane 1992).  Conceptually, there is no 

generally agreed-upon set of features that can be used to construct the percept of a visual 

stimulus.  Although Bell and Sejnowski (1997) identified the independent components of 

natural scenes as edges, other studies have shown that perceived structure can be derived 

simply from temporal coherence of random dot patterns (Peterhans et al. 2005).  The term 

“feature detection” implies that cells detect some sort of tangible element that has spatial 

frequencies.  However, cells can detect illusory contours based on temporal properties of 

the stimulus (like motion coherency) in the absence of tangible elements.  Based on these 

arguments, neural coding via feature detection is inefficient, inflexible, impractical, 

conceptually flawed, and not supported by current experimental findings. 

 An alternative proposal for the role of cortical cells is derived from theories which 

describe the visual system as performing a Fourier-like analysis of the visual field 

(Maffei and Fiorentini 1973).  In 1822, Jean Baptiste Joseph Fourier introduced the 

concept of linear systems analysis where he demonstrated the mathematical foundations 

underlying the idea that any real world signal can be synthesized from the linear sum of 

sinusoids with appropriate frequencies, amplitudes, and phases.  For the visual system, 

real world signals are natural scenes that extend the input to two dimensions.  Parameter 

specificities allow cells to act as spatiotemporal filters by responding to a limited range of 

spatial and temporal information in the visual field.  By sampling a continuum of spatial 

frequency, orientation, direction, and/or disparity, visual cortical cells behave as filters 

for different stimulus dimensions (Figure 1.2B).  And because these cells cover the range 
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of parameter values to which the visual system is sensitive, their activity is sufficient to 

encode each stimulus attribute. 

A spatiotemporal filter approach can explain the detection of illusory contours 

derived from coherent motion since each cell is responsive to the temporal component of 

the stimulus.  Furthermore, any tangible features detected by neurons often result from 

their spatiotemporal preferences.  For instance, neurons in cat primary visual cortex will 

respond optimally to bars in their receptive fields as long as the bars match their preferred 

spatial and temporal frequencies, orientations, and directions (Hubel and Wiesel 1962).  

However, as mentioned above, these same neurons do not respond uniquely to bars; they 

also respond to sinewave gratings and objects in natural scenes.  Spatiotemporal filtering 

encompasses simple feature detection, but still allows for the detection of structure in the 

absence of tangible features using cues like motion.  Also, imbedded in this theory is the 

notion that objects are recognized through the collective activity of a population of cells 

instead of through the activity of a single cell (the problems with which are described in 

the arguments concerning grandmother cells above).  However, exactly how object 

binding and figure/ground segregation are accomplished by the distribution of population 

activity is unknown (theories for which are described in the next section).  Nevertheless, 

when only considering an individual cortical cell, its role is more consistent with 

spatiotemporal filtering than feature detection. 

 

Neural Coding by Independent Cells vs. Neural Assemblies 

For decades, the precise form of the neural code employed in the visual cortex has 

been hotly debated.  Whether cells behave as feature detectors or spatiotemporal filters 

(Figure 1.2), the exact correspondence between stimulus input and response output is 

 18



poorly understood.  This is due in part to the ambiguous nature of a neuronal spike train 

because the neural end-product of visual stimulation upon the retina is, in a certain sense, 

always the same.  After the intricacies of retinal processing (phototransduction, lateral 

and inhibitory interactions from horizontal and amacrine cells, and the integration of 

graded potentials via ganglion cell dendrites), the only information left to inform our 

visual perception is the constantly changing stream of nerve impulses propagating along 

ganglion cell axons.  Determining how a string of action potentials is interpreted by an 

upstream neuron or network of neurons to induce the full range of visual percepts that 

can possibly be experienced is a daunting challenge.  The neural code underlying visual 

perception may lie within a single cell or involve any number of dynamically interacting 

neurons that employ any number of strategies to multiplex visual information within the 

temporal properties of their spike trains. 

To address the relationship between the firing of single neurons and perceptual 

experience, Barlow (1972) proposed a single-neuron doctrine emphasizing the role of 

independent cells as stimulus-encoding mechanisms.  His classic view of the cardinal cell 

holds that individual neurons, each responsive to a particular set of local features, 

modulate their firing rates to reflect salient information in the visual field.  The most 

complex features are detected via convergence up the cortical hierarchy.  As this 

hypothesis echoes feature detection theory, these ideas surrender to the same pitfalls.  

However, the theory of individual cells as lone information encoders still fails to find a 

foundation even when cells are considered as spatiotemporal filters.  For example, 

orientation discrimination in the cat has shown that the information conveyed by a single 

cell is limited.  The average visual cortical cell has a broad orientation bandwidth with 

half-width at half-height of 25.6 degrees while the narrowest orientation tuning is 

 19



approximately 5 or 6 degrees (Orban 1984).  However, the comparable behavioral 

thresholds for orientation discrimination in the cat are 2.9 degrees for horizontal and 

vertical orientations and 4.7 degrees for oblique orientations (Vandenbussche and Orban 

1983).  Hence, the performance of the whole visual system does not reflect that of a 

single cell. 

Alternative theories for the neural representation of structure involve dynamic 

assemblies of neurons, which contribute to a population code.  Due to the dynamic nature 

of grouping, the combinatorial possibilities of such a scheme offer a vastly increased 

dimensional magnitude for encoding visual information and also have implications for 

learning and plasticity.  In 1941, Sherrington proposed that groups of neurons may 

cooperate synergistically such that the whole is more than the sum of its parts.  Hebb 

(1949) and Hayek (1952) expanded on this theory and suggested that groups of cells 

could form dynamic regional circuits or spatiotemporal assemblies to represent structures 

in a visual scene.  Indeed, they hypothesized that connections and interactions between 

neurons, defining a neural network architecture, were more functionally significant than 

the individual properties of the neurons themselves.  In this manner, visual information 

would not only be inherent in the activity of individual neurons, but could be extracted 

from the collective activity of the group. 

Originally, Hebb (1949) and Hayak (1952) proposed that cooperative 

relationships in cell assemblies were formed based on anatomical connections, perhaps 

defined by plasticity during brain development.  However, noting the adaptive nature of 

the brain, Hayak (1952) also suggested that the formation of cell assemblies could result 

from short-term enhancement of synaptic effectiveness initiated by changes in the 

temporal structure of spike trains (becoming effectively connected) instead of requiring 
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actual anatomical changes in synaptic connections.  In this manner, groups of cells could 

assemble and disassemble during certain tasks and individual cells could belong to more 

than one functional group.  Furthermore, uncorrelated groups could coexist without 

interference. 

 

Temporal Coding 

At the turn of the 20th century, the study of individual neurons in the brain became 

a reality through the anatomical works of Ramon y Cajal and Golgi.  The field of 

neurophysiology was pioneered with a novel experimental protocol and recording 

technique introduced by Adrian and Zotterman (1926).  Using a capillary electrometer 

and three-stage amplifier, Adrian and Zotterman recorded the impulses produced in the 

plantar digital nerves of a cat when stimulated by contact or pressure.  They noted that 

the frequency of the impulses (action currents – related to action potentials through 

Ohm's Law) varied with the intensity of the stimulus, but the magnitude of individual 

impulses did not.  These results supported an all-or-none relationship between stimulus 

and nerve impulses. 

A binary, all-or-none response to a stimulus could signal the presence or absence 

of the stimulus, but what property of a cellular response represents stimulus intensity?  

Since action potentials are indistinguishable events, the strength of a stimulus cannot be 

reflected in the shape or size of an impulse and therefore must be reflected in the 

temporal characteristics of the neuronal spike train, such as average firing rate, spike 

count, spike patterns, interspike intervals, or precise spike arrival times (Figure 1.3).  For 

instance, Strehler and Lestienne (1986) found distinct patterns in individual spike trains 

that occurred more often than chance with submillisecond precision.  Also, Victor (2000) 
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showed that different stimulus features (contrast, orientation, spatial frequency) could be 

represented at different temporal resolutions of interspike interval histograms.  In this 

manner, stimulus features can be multiplexed in a spike train. 

While temporal properties like spike patterns or interspike intervals have gained 

some support in the field as a means to encode stimulus information, the relationship 

between stimulus intensity and firing frequency described by Adrian and Zotterman 

remains central to our understanding of information transmission in the cortex.  In a 

population code, one possible way to associate cells of a common assembly is to consider 

their correlated relative firing rates (oscillation).  When stimulated with visual 

information, the enhanced specialization of cells in the primary visual cortex ensures that 

only a small fraction of the neuronal population will have receptive field preferences akin 

to the presented stimulus features and respond with increased firing probability.  These 

cells are grouped as members of the same neural assembly and their combination reflects 

a specific structure in the visual field. 

However, simply identifying an associated response characteristic across a 

subpopulation of cells does not give insight into how that characteristic is used to 

transmit visual information.  Now that the members are known, how are they combined?  

The average firing rate responses from each cell in the assembly could be averaged 

(weighted or unweighted), considered by absolute or relative standards, or involved in a 

winner-take-all scheme.  Another disadvantage of firing rate-based neural coding is that 

individual response gradations are limited by an action potential's refractory period.  A 

cell therefore has a maximum firing rate, which imposes a limit on the dynamic range for 

encoding stimulus intensity.  Furthermore, average firing rate is highly variable across 

stimulus repetitions, so reliable responses must be obtained by averaging across repeated 
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stimulus presentations (Gershon et al. 1998).  From a biological perspective, this cannot 

happen as the brain usually recognizes objects with a single viewing.  Finally, the 

integration of firing rate must take place over some finite time and given the required 

broad temporal resolution distinct populations can become confounded.  

On the other hand, synchronization of spike arrival times is believed to be more 

effective than elevation of firing rates (Abeles 1991; Azouz and Gray 2003) in 

forwarding information because the transmission efficiency in the cortex is generally low 

(Nicoll and Blakemore 1993; Thomson and West 1993).  The precise timing of 

synchronization allows expression of unambiguous relationships between cells in an 

assembly.  Simulations suggest that the effective summation interval based on the 

postsynaptic cell membrane time constant is less than 10 ms (Softky and Koch 1993), 

permitting rapid and dynamic assembly and disassembly as well as the coexistence of 

numbers of independent groups. 

The biological consequence of neuronal synchronization can be viewed as an 

efficient means of information propagation.  Upon external stimulation, simultaneous 

activation of voltage-gated sodium and potassium channels induce an action potential, the 

wave of which perpetuates and travels down the axon.  Once in the presynaptic axon 

terminal, depolarization of the membrane by the nerve impulse opens voltage-gated 

calcium channels and releases an influx of calcium ions which signals the exocytotic 

release of a neurotransmitter (e.g. glutamate, for excitatory neurons) into the synaptic 

cleft.  The neurotransmitter then binds to ligand-gated channels on the dendrites of a 

postsynaptic neuron and the resulting influx of sodium ions produces a graded potential 

that propagates down the dendrites to the axon hillock.  Each graded potential is 

subthreshold and must rely on the temporal and spatial summation of other graded 
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potentials to reach threshold and induce an action potential in the postsynaptic neuron.  

The process theoretically requires fewer synchronized spikes to reach threshold and 

synchrony, therefore, transmits information more efficiently than when relying on the 

spatiotemporal summation of a comparable number of asynchronous spikes. 

As a hypothetical neural substrate for encoding salient stimulus properties, 

synchrony enhances the probability of eliciting postsynaptic action potentials, thus 

ensuring propagation of this information to subsequent levels of the cortical hierarchy.  

As an efficient information transmission mechanism, synchronization of neuronal 

responses is an attractive candidate to play a role in generating perception.  Synchrony 

exists between visual cortical neurons, but its functional significance is largely unknown.  

Critics and longtime supporters of firing rate-based coding strategies argue that 

synchronous activity may be artifactual and result trivially from lateral or feedback 

connections present throughout the visual pathways.  Although the exact mechanism 

generating synchrony is unknown, an overwhelming amount of evidence suggests that 

synchrony, independent of firing rate-induced modulation of synchrony, is stimulus-

dependent.  Conceptually, a coding strategy involving dynamic synchronization of 

neuronal responses offers tremendous advantages in terms of coding capacity and 

efficiency.  The physical mechanism underlying synchrony would allow for neurons to be 

"effectively" connected and form dynamic regional circuits to reliably and efficiently 

transmit information throughout the cortex while minimizing metabolic demands. 

 

The Role of Synchrony 

 Synchronization of precise spike arrival times is an attractive candidate to play a 

role in encoding objects in the visual field because it seems to solve the binding problem.  
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The surrounding environment is full of complex objects that are characterized by 

numerous properties such as shape, motion, color, and location.  Property binding 

involves associating stimulus properties with the features they describe.  Part binding 

involves associating the parts of the same object together, sometimes across 

discontinuities resulting from partial occlusion (Treisman 1996).  Therefore, object 

recognition not only depends on the ability to identify all the parts of an object, but also 

how those features are combined to reflect a coherent percept.  For instance, when 

viewing a face, it is not only important to identify two eyes, a nose, and a mouth, but also 

recognize their correct facial locations.  Furthermore, the face must be recognized as 

separate from other faces and objects occupying the scene and also must be segregated 

from the background. 

The temporal binding theory (Milner 1974; von der Malsburg 1981) postulates 

that dynamic assembly formation is the physical basis for certain perceptual phenomena 

such as shape perception, figure-ground separation, long and short-term plasticity, and 

memory.  According to this theory, perceptually-related features are linked through 

correlated firing among subpopulations of cells.  Grouping into subpopulations is defined 

by perceptually-based relationships, e.g. feature proximity, similarity, or motion 

coherency.  In this scheme, only simple feature detectors are required and complex 

features are extracted through the activities of multiple assemblies.   

Experimental support for the temporal binding theory was provided independently 

by Eckhorn et al. (1988) and Gray et al. (1989) using anesthetized cats.  In both studies 

synchrony and oscillation between cell pairs was found to depend on the orientation and 

coherence of the visual stimulus.  Gray et al. (1989) used multiple electrodes to record 

the activity of neurons in the primary visual cortex of anesthetized cats to bar stimuli 
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(Figure 1.4A).  Using cross correlation analysis, they examined the correlated timing of 

firing between pairs of neurons when stimulated with 1) two light bars moving in 

opposite directions; 2) two light bars moving in the same direction; and 3) a long light bar 

moving across the receptive fields instead of two short light bars.  In the first case, the 

two light bars were perceived as two independent objects and the firing of both neurons 

was not synchronized.  In the second case, however, the two light bars moving in the 

same direction was perceived as a single object and the firing of both neurons was 

synchronized.  Furthermore, when a long light bar was used to stimulate the receptive 

fields, the magnitude of synchrony observed was higher.  These results suggested that the 

magnitude of synchrony was related to object coherence and could be involved in the 

binding process. 

Following this pioneering experimental study, there have been numerous 

neurophysiological studies investigating synchrony as a binding mechanism (i.e., Engel 

et al. 1991a, 1991b; Gray et al. 1992; Eckhorn et al. 1989; Eckhorn and Schanze 1991).  

More recently, several laboratories have been unable to find unambiguous relationships 

between synchrony and specific visual tasks designed around segmentation or 

figure/ground discrimination (Lamme and Spekreijse 1998, Thiele and Stoner 2003, 

Roelfsema et al. 2004, Palanca and DeAngelis 2005).  For instance, Roelfsema et al. 

(2004) recorded activity from multiple neurons in the primary visual cortex of macaque 

monkeys engaged in a contour-grouping task (Figure 1.4B).  Each monkey was required 

to locate a fixation point and then make an eye movement to a red target circle connected 

to the fixation point by a curved line without being distracted by a separate curve with its 

own red circle.  Successful completion of the task involved the correct binding of all 

contour segments from the target curve.  Cross-correlation analysis was used to measure 
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the amount of synchrony between groups of neurons with receptive fields on the same 

and different contours.  They found that the correlation between sites did not depend on 

object coherence and concluded that the strength of synchrony was unrelated to contour 

grouping.  However, this study examined correlations 200-600 ms after the stimulus 

onset and their wide cross-correlation functions may be indicative of firing rate artifact 

and does not necessarily reflect coupling on a millisecond timescale. 

In another context, some psychophysical studies with human subjects have 

indirectly supported the synchrony-for-binding mechanism.  These experimental 

paradigms were designed on the assumption that the manipulation of stimulus timing will 

affect neuronal synchronization.  The idea is that if figures are represented through 

neuronal synchrony and that synchronous stimuli upon the retina induce internal 

synchrony in the cortex, then features presented simultaneously will be more easily 

perceived as a single object that features that are presented asynchronously.  Fahle (1993) 

used visual stimuli consisting of dots to show that a figural region cannot be detected 

from the background when the difference in temporal phase of the regions was zero, but 

could emerge with the desynchronization of figural elements from their background by as 

little as 5-7ms.  However, other psychophysical studies using texture segregation tasks 

(Kiper et al. 1996), Kanizsa triangles (Fahle and Koch 1995), and tasks with multiple 

presented objects (Keele et al. 1988) have failed to confirm that stimulus synchrony 

affects perceptual grouping.  Although synchrony has been considered as a promising 

neural mechanism in feature binding, we cannot say simply that synchrony is stimulus-

induced and thus a solution to the binding problem.  If fact, binding can occur for objects 

separated in time (Treisman 1996) and also does not occur for all features presented 

simultaneously. 
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Synchrony Encodes Collinear and Cocircular Contours 

 As mentioned above, the first neurophysiological experiments linking synchrony 

and feature integration used drifting light bars (Eckhorn et al. 1988; Gray et al. 1989).  

This type of coherent collinear stimulation yielded synchrony between pairs of neuron 

clusters with similar orientation preferences and collinear receptive fields.  These 

findings led to speculation that synchrony could be facilitated through (or a result of) 

direct anatomical connections between orientation columns.  In this approach, horizontal 

connections were thought to play a critical role in contour integration since 60-70% of all 

horizontal connections are between columns with similar orientation preferences in the 

primary visual cortex (Bosking et al. 1997; Malach et al. 1993; Lund et al. 2003; Stettler 

et al. 2002).  However, after transecting horizontal connections throughout V1 in cats, 

Sperry et al. (1955) found no difference in performance when discriminating global 

contours and patterns. 

 If synchrony is involved in feature integration, but does not rely on horizontal 

connections as a critical avenue, then it might be observed between cells with different 

orientation preferences given the appropriate stimulation.  In fact, collinearity among 

receptive fields is a special case of the more general property of cocircularity (Parent and 

Zucker 1989) in which receptive fields have orientation preferences that are tangent to 

the same circle.  Cocircular structures are ubiquitous in natural scenes (Geisler et al. 

2001; Sigman et al. 2001; Elder and Goldberg 2002) and the predictable relationship 

between cocircular segments has been proposed as the foundation of contour integration 

(Field et al. 1993).  Inspired by psychophysical studies, Field et al. (1993) introduced the 

association field framework which describes the perception of contours and continuity.  

In this paradigm, contour segments are grouped depending on proximity and the 
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similarity of their orientations.  Applying these concepts to neurophysiology, association 

field theory predicts linking between orientation-tuned cells that is dependent on their 

joint relative orientation and spatial position. 

 By using an experimental protocol consisting of drifting sinusoidal gratings and 

concentric rings, we tested synchrony's adherence to association field rules by seeing if it 

predictably existed for pairs of cells with different orientation preferences, but whose 

receptive fields still had cocircular alignments (Samonds et al. 2006).  Using a 10x10 

microelectrode array, we simultaneously recorded from multiple single-units in areas 17 

and 18 of anesthetized cats and found that neuron pairs synchronized based on an 

appropriate match between stimulus curvature and receptive field configuration.  

Furthermore, synchronous responses were more reliable than changes in average firing 

rate in discriminating between concentric ring and grating stimuli (Figure 1.5).  Group 

membership was found to be dynamic in that individual cells could belong to more than 

one functional group, which assembled based on the spatiotemporal properties of the 

stimulus. 

   Analyses of electrode distance, receptive field overlap, and synchronous lag times 

show that the magnitude and probability of observing synchrony among cell pairs 

matched the fundamental prediction of the association field theory.  Extending collinear 

synchrony results (Eckhorn et al. 1988; Gray et al. 1989) to cells with cocircular 

receptive field properties is vital in establishing synchrony's role in complex feature 

detection.  The fact that synchrony was stimulus-dependent and observed between cells 

with different orientation preferences undermines a direct causal link between synchrony 

and anatomy (e.g., horizontal connections) per se and counters the notion that 

synchronous activity may be an artefact of cortical connections.  Instead, these findings 
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suggest a more global and purposeful function in which synchrony detects related contour 

segments, which have the ability to be integrated at higher processing centers throughout 

the visual system. 

 

Chapter Overview 

  The work presented here supports synchrony as a possible neural 

mechanism involved in contour detection.  Collectively, these results provide a 

comprehensive investigation of synchronous activity within neural assemblies to natural 

stimulation by studying the spatiotemporal factors influencing synchrony (Aim 1), the 

specific relationships between receptive field configuration and stimulus structure 

conducive to synchrony (Aim 2), and the efficiency of coding (Aim 3).  The next six 

chapters are organized as follows:  Chapter 2 describes the experimental setup, 

procedures, neural recording equipment, and general data processing methods used in all 

experiments.  Chapter 3 speaks to Aim 1 by characterizing the spatial relationships of 

synchronous assemblies across the cortex and examining the temporal dynamics of 

synchrony throughout the stimulus presentation.  Chapter 4 begins to answer the 

questions laid out in Aim 2 by showing that synchronous activity is affected by structural 

modifications in natural images.  The specific relationships between local stimulus 

structure and assembly receptive field organization are defined in Chapter 5 where we 

determine synchrony's consistency with the association field model in the context of 

natural stimulation.  Chapter 6 expands on Aim 3 to mathematically describe synchrony's 

ability as a sparse coding mechanism.  Finally, we summarize the results from each paper 

in Chapter 7 and discuss the future directions of this research. 
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CHAPTER II 

 

EXPERIMENTAL PROCEDURES AND DATA PROCESSING 

 

Overview 

By the mid-1960's, automatic data processing for neurophysiological experiments 

was widely available and enabled researchers to record the precise timing of single cell 

spike events over long periods.  In 1967, Perkel et al. introduced a variety of statistical 

techniques for the analysis of neuronal spike trains.  Mathematical descriptions of output 

behavior could in turn be used to make inferences about input or cell processing 

behavior.  Perkel and his colleagues operated under the assumption that details about the 

nervous system are inherent in the structure of a neuronal spike train.  Since action 

potentials are essentially identical, all-or-none events, only the timing of such events 

could relay information about the processes which lead to their generation.  Speculation 

on the precise form of the neural code for representation of visual structures suggested 

that perceptual phenomena like contour integration, figure-ground separation, and object 

recognition were encoded by the collective activity of multiple neurons (Hebb 1949; 

Hayek 1952), which were organized into dynamic spatiotemporal assemblies by the 

precise synchronization of cell responses on a millisecond timescale (Milner 1974; von 

der Malsburg 1981).  However, confirmation of these theories proved difficult because of 

the inability to record from multiple neurons while understanding the significance of joint 

activity.  Over the next few decades, there were numerous advances in the areas of 

microelectrode and tetrode arrays (Pouget et al. 2000; Milton and Mackey 2000; Buzsaki 

2004), but analysis techniques for these population recordings were limited.  Using 
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microelectrode array technology to record from dozens of neurons simultaneously, we 

demonstrate how to quantify the amount of synchronous activity in an assembly of 

arbitrary size with the PSP Method. 

 

Experimental Procedures 

 

Preparation and Experiment Setup 

 Ten adult cats (2.3-4.0 kg) were prepared for electrophysiological recordings in 

the primary visual cortex (left hemisphere).  All procedures were performed in 

accordance with guidelines set forth by the American Physiological Society and the 

Institutional Animal Care and Use Committee at Vanderbilt University.  Prior to surgery, 

each cat received intramuscular injections of 0.5 ml acepromazine maleate (10 mg/ml), 

0.5 ml atropine sulfate (0.4 mg/ml), and 0.25 ml dexamethasone sodium phosphate (4 

mg/ml).  Anesthesia was induced with 5% halothane in O2 and maintained with 

intravenous injection of Propofol (0.3 mg/kg hr).  Two forelimb veins and the trachea 

were cannulated and the animal was positioned in a stereotaxic device where a small 

craniotomy was performed over V1 according to Horsley-Clark coordinates.  The dura 

was excised, the electrode array implanted, and the opening was covered with agar and 

mammalian Ringer's solution, which was refreshed approximately every four hours. 

 During recording, paralysis was induced with 6 mg pancuronium bromide and 

maintained through intravenous injection (Pavulon; 0.3 mg/kg hr).  Health and effective 

anesthesia were maintained by monitoring the electrocardiogram and 

electroencephalogram and administering bolus injections of propofol when necessary.  

Cats were artificially ventilated with a mixture of N2O, O2, and CO2 (75:23.5:1.5) to hold 
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expired pCO2 at 3.9%.  Rectal temperature was maintained at 37.5° C with a servo-

controlled heating pad.  The nictitating membranes were retracted and the natural pupils 

dilated by instillation of phenylephrine HCl 10% and atropine sulfate 1% in the 

conjunctival sacs.  Contact lenses with 4 mm pupils were placed on the corneas and 

auxiliary spectacle lenses were added as dictated by direct ophthalmoscopy to render the 

retinae conjugate with the stimulus plane 57 cm away.  At this distance, a visual angle of 

1° is equivalent to 1 cm on the screen. 

 The experiment setup is illustrated in Figure 2.1.  Each subject is situated on a 

table with its head placed in a stereotaxic apparatus to aid in mapping the location of V1 

during surgery and ensures fixed eye positions during stimulation and recording.  The 

subject's body is wrapped with a heating pad to preserve physiological temperatures after 

paralysis is induced.  Cardiac and neural activities are displayed on an oscilloscope and 

pump rates for the paralytic and anesthetic agents are adjusted throughout the experiment 

to maintain consistent health and effective anesthesia.  During receptive field mapping, a 

plotting table is used to project spots or bars of light for manual recording of receptive 

field location and extent.  The table uses a reflecting surface which splits light into beams 

projected to the animal as well as to the plotting surface.  For drifting sinusoidal grating 

and natural image stimulation, a mirror is used to direct the subject’s gaze to a gamma-

corrected (to control for overall brightness and contrast modulation) monitor at a distance 

of 57 cm.  The output from the array is passed through a multichannel  amplifier and sent 

to the Cyberkinetics recording and acquisition system on a personal computer.  Binary 

NEV files from the computer are uploaded to other personal computers for spike sorting 

and the resulting waveforms are stored for later analysis with MATLAB-based programs. 
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Data Recording and Acquisition 

Simultaneous single-unit recordings are made from cells in the visual cortex via 

the Utah Intracortical Electrode Array (UIEA; Cyberkinetics Neurotechnology Systems, 

Foxborough, MA).  The UIEA recordings have good signal to noise ratios and have been 

shown to have qualities comparable to those from single-electrode recordings (Kelly et 

al. 2007).  The implant is a square 10x10 (100 total) silicon array (Figure 2.2A) on 400 

micron centers (4x4 mm footprint).  The electrodes have a length of 1.0 mm and are 

inserted to a depth of 0.6 mm with a pneumatic implantation tool (Figure 2.2B; Rousche 

and Normann 1992) that minimizes tissue damage (Schmidt et al. 1993; Rousche and 

Normann 1998).  The insertion depth concentrates the electrodes in layers II/III and 

avoids impact to the cortical surface by the electrode base.  The wires from the array to 

the amplifier are flexible, which enhances stability and allows for reliable recording 

sessions of more than thirty hours.  The impedance of each electrode is 50 – 300 kΩ and 

the signal on each channel is amplified by 5000 and band-limited between 250 Hz and 

7.5 kHz.  Thresholds are dynamic and set to 3.25x the mean activity on each electrode 

and waveforms are sampled at 30 kHz for 1.5 ms windows.   Recordings are displayed in 

real time (Figure 2.2C,D) and the waveform of each neural event is stored for later 

analysis by a comprehensive software system from Cyberkinetics. 

When the array is inserted, not every channel records reliable neural activity.  

Inevitably, the size of the array coupled with the curvature of the brain places some 

electrodes over a blood vessel or sulcus.  However, the majority of electrodes do record 

neural activity and these channels are processed with a MATLAB-based spike-sorting 

program to remove noise and artifact (Shoham et al 2003).  The program implements a 

mixture decomposition algorithm based on the Expectation-Maximization (EM) 
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algorithm.  Principle component analysis is used to generate a reduced feature set for 

each waveform and the distribution of waveforms from each source is modeled by a 

multivariate t-distribution (which utilizes the Mahalanobis metric for distance 

calculations).  An EM algorithm is used to estimate the parameters of mixtures of 

multivariate t-distributions and clustering is optimized through the competitive 

elimination of components.  We did not include multiple units that were recorded and 

resolved from a single channel.  Approximately 5% of channels showed multi-unit 

activity and were discarded.  Channels with isolated single-unit activity were used only if 

the activity was ≥ 5 spikes per second and showed clear orientation tuning (signal to 

noise ≥ 2:1) when viewing drifting sinusoidal gratings (Figure 2.3). 

 

Determining Receptive Field Properties 

In order to estimate receptive field properties during the experiment (as most of 

our analysis is offline), we used a short grating stimulation protocol to reveal orientation 

tuning preferences (Nishimoto et al. 2005), which were subsequently used during manual 

mapping of receptive field extent and location.  Drifting sinusoidal gratings of varying 

orientation were presented in random order at 50% contrast, 0.5 cycles/° spatial 

frequency, and 2 Hz temporal frequency.  An 18°x18° field was sufficient to drive all 

recorded cells simultaneously.  We used 36 (18) drifting directions in 10° (20°) 

increments and 2 (1) blank presentations.  Each stimulus was displayed through a circular 

aperture and presented for 2 seconds followed by 1 second of mean luminance 

background. We repeated the presentations 25 times and computed the average response 

properties offline.  We then utilized a stimulator that projects spots or bars of light onto a 

large tangent screen for rapid manual characterization of classical receptive field size and 
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location.  The center of the aggregate receptive field was determined and used to align the 

stimuli to maximize neuronal responses from the majority of the recorded population.  A 

longer grating experiment was performed after mapping for validation.  Gratings were 

displayed for 2 (0.5) seconds followed by a 1 (0.5) second mean luminance interval and 

repeated 50, 100, or 150 times for reliability. 

Most of the channels contained isolated complex cells from area 17.  Although 

histology was not performed, the response properties, receptive field sizes, Horsley-Clark 

coordinates, and curvature of the brain suggest that most cells were from area 17 (and are 

consistent with similar experiments in the past in which histology was performed).  The 

lateral portion of the array most likely enters area 18, but these channels account for less 

than 8% of the channel activity recorded (Samonds et al. 2006) and even less of the total 

number of cells actually used for analysis.  Table 2.1 summarizes the number of cells 

analyzed from each experiment.  Most cells are complex as determined by their relative 

modulation, F1/F0 (Hubel and Weisel 1962; Skottun et al. 1991). 

 

Stimulation 

We tested three different types of stimuli: drifting sinusoidal gratings, individual 

natural images, and natural image sequences.  As mentioned above, gratings were used to 

estimate neuronal tuning properties.  All stimuli were displayed on a gamma-corrected 

SONY Trinitron 21" monitor with a resolution of 800 x 600 pixels (22.6 pixels per visual 

degree) driven either by a Cambridge Research Systems VSG2/3F controller board (for 

gratings) or a video controller using the WinVis software package (for natural images and 

sequences).  Displays were refreshed at 120 Hz, which avoided spike entrainment artifact 

at the cortical level (Wollman and Palmer 1995; Snider et al. 1996).  We projected retinal 
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features onto the tangent screen with a reversible ophthalmoscope to ensure all stimuli 

were displayed in reference to the area centralis.   All stimuli spanned 18°x18° and 

appeared against a mean luminance background (73 cd/m2).  In each experiment, we also 

showed null stimuli which consisted of only the mean luminance background.  All natural 

images were obtained from www.imageafter.com, converted to grayscale, and scaled to 

have a global contrast of 0.32 (see Touryan et al. 2005).  All stimulus presentations were 

randomly interleaved. 

 

Data Processing: Quantifying Synchrony 

Microelectrode array technology allows for the simultaneous single-unit recording 

of dozens of neurons, but current analysis methods are unsuitable to accurately and 

completely describe cooperative population activity (Table 2.2).  Perkel et al. (1967) 

introduced the cross-correlogram (CCG) to quantify cooperative relationships between 

pairs of neurons.  However, CCGs and other techniques such as the Joint Peri-Stimulus 

Time Histogram (JPSTH; Aertsen et al. 1989) cannot characterize the synchrony between 

more than two cells.  The CCG has been extended to include cooperation among three 

cells (Gerstein and Perkel 1972; Perkel et al. 1975; Abeles and Goldstein 1977), but the 

resulting display is limited to triangular coordinates and cannot be applied practically to 

larger assemblies.  Other techniques such as gravitational clustering (Gerstein and 

Aertsen 1985; Gerstein et al. 1985) identify cells that fire together, but the results are 

qualitative, do not allow for dynamic grouping, and are still based on pair-wise distance 

calculations.  Therefore, development of a new method was imperative to understand 

how synchrony and assembly formation contribute to the perception of our environment. 
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Steps in the PSP Method 

Current approaches quantify synchrony in the form of a relationship between two 

neurons.  However, synchrony allows for the formation of transient functional groups 

which could include tens, hundreds, thousands, or even larger numbers of neurons so 

long as they fired simultaneously within some narrow time window.  Pair-wise distance 

calculations increase exponentially as group size increases and can be computationally 

exhaustive for large assemblies.  As a solution, we have developed a method that detects 

and quantifies the amount of correlated activity in a neuronal assembly of arbitrary size.  

As a hypothetical neural substrate for encoding salient stimulus properties, synchrony 

enhances the probability of eliciting postsynaptic action potentials (PSPs) when neurons 

behave as coincident detectors (Azouz and Gray 2003).  This enhances propagation of the 

information to subsequent levels of the cortical hierarchy.  Our basic algorithm is 

designed to reflect the relevance of group synchrony to postsynaptic neurons by modeling 

the temporal summation of postsynaptic potentials.  In this measure, synchrony is 

computed as a fraction of total activity within an assembly and can be monitored 

dynamically throughout the stimulus presentation.  The purpose of this method is to 

measure the timing similarity between neuronal spike trains.  Neurons with similarly-

timed events are considered synchronous and the magnitude of synchrony depends on the 

degree of similarity. 

Step 1: Convert spike waveforms (Wi) to point-process spike trains (Ci) 

If we assume that action potentials are instantaneous and indistinguishable, then 

only the timing of such events is sufficient to describe visual information.  The 

activities recorded simultaneously from all neurons in a target assembly (N 

neurons with NTS total spikes and NCS coincident spikes, where coincident spikes 
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are defined as events that occur within the integration time period, 10 ms) are 

preprocessed to retain only spike initiation times, creating point-event spike trains 

(Ci(t) is the spike train from neuron i).  Spike trains for a given evaluation must 

have the same duration, LS.  Note that this does not imply that all spike trains 

have the same number of spikes.  Stimulus repetitions are concatenated to form 

one long spike train which ensures that sweeps with firing activity, but no 

synchrony, effectively contribute a zero while sweeps without spikes (firing rate 

= 0 for all cells) are effectively skipped. 

Step 2: Convolve point-process spike trains (Ci) with an alpha function to create PSP 

trains (Pi) 

The comparison of simultaneous spike trains requires deriving a similarity 

measure that is conscious of time.  This can be accomplished by convolving a 

point-event spike train, Ci(t), with a PSP waveform, W(t), that has area A. 

( ) ( ) ( ) ( ) ( )τ τ τ= ∗ = −∫i i it
P t C t W t C W t d        (2.1) 

This yields a PSP train, Pi(t).  A PSP waveform is often approximated using an 

alpha function, but any waveform can essentially be chosen based on its desired 

Weight Function (see Table 2.3).  For instance, an alpha waveform nonlinearly 

weights events so that spikes occurring closely in time are weighted more than 

those occurring towards the end of the integration time period.  Alternatively, 

waveforms can be chosen to reflect linear or constant weighting schemes.  For 

example, the JPSTH method (Aertsen et al. 1989) effectively uses a constant 

weighting scheme by binning.  For all subsequent illustrations and analysis, a 

truncated (10 ms) alpha function will be used (τ = 1 ms). 
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Step 3: Determine the time windows (ts) during which all PSP trains (Pi) exhibit activity 

Determine the timing of coincident events by noting the time periods (ts) in which 

all trains exhibit spiking activity, i.e., intervals in which all PSP trains have a 

value greater than zero. 

Step 4: Sum PSP trains (Pi) from all cells to get PSP activity for the entire assembly 

To visualize the total amount of activity within an assembly, add PSP trains from 

all neurons. 

 =∑ i
i

Assembly Activity P        (2.2) 

Step 5: Integrate the assembly activity over ts and t then divide to compute the Raw Score 

The Raw Score is computed as the ratio of the area under the overlapped portion 

of coincident waveforms to the total area under all waveforms in the assembly.  

The total area is found by summing all PSP trains and then integrating the 

resulting waveform over all time (t).  The synchronous area results from 

integration of the summed trains over just the time periods found in Step 3 (ts).  

The Raw Score is the ratio of synchronous area to total area and represents the 

percentage of assembly activity that is synchronous.  Alternatively, the total area 

can be computed by multiplying the area under one waveform, A, and the total 

number of spikes in the assembly, NTS.  The Raw Score is a number between 0 

and 1.  An assembly with a large Raw Score is comprised of neurons whose 

responses occur at similar times and are thus very synchronous. 
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Step 6: Compute Chance Score by shifting 1 or more stimulus periods and repeating 

Steps 1-5 

The Chance Score is the percentage of waveforms expected to overlap by chance 

under the null hypothesis that all neurons in the assembly are firing 

independently.  This value can be estimated by calculating the shift predictor 

(Perkel et al. 1967).  Successive trials of stimulus presentations are shifted in 

time, which destroys any temporal relationships and preserves order-independent 

statistics.  The Chance Score is computed by completing Steps 1-5 with spike 

trains that are shifted in time by the length of at least one stimulus trial compared 

to all other trains.  This was found to be not significantly different (t-test, p > 

0.05) than averaging the scores from all possible shift combinations in assemblies 

where N = 2.  However, it is beneficial to perform this step a number of times 

with different shift combinations to build a distribution with which to statistically 

compare the Raw Score. 

Step 7: Compute statistical significance and normalize the magnitude of synchrony 

We use a one-tailed student's t-test (α = 0.01) to compare the Raw and Chance 

Scores.  A Normalized Score can be computed by subtracting the Chance Score 

from the Raw Score and renormalizing the resulting value so that Chance is 

assigned a value of 0 and synchrony among identical spike trains has a value of 1.  

A Normalized Score is independent of firing rate and scores greater than zeros 

represent the percentage of waveforms that are synchronous, but not due to 

chance from firing rate-induced modulation of synchrony.  For instance, a 

Normalized Score of 0.5 means 50% of waveforms are synchronous beyond that 

expected by chance.  Renormalizing the score ensures that assemblies with 
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different spike counts and Chance Scores can be compared and assemblies with 

identical spike trains have a Normalized Score of 1. 

   
1  

−
=

−
Raw Score Chance ScoreNormalized Score

Chance Score
      (2.4) 

Figure 2.4 depicts a graphical representation of the steps in quantifying the 

magnitude of synchrony.  Although this method was developed to measure the temporal 

similarity of spike trains within an assembly and not to determine underlying functional 

anatomy (e.g. like the JPSTH, Aertsen et al. 1989), this method can reveal some aspects 

of effective connectivity.  Individual Scores can be calculated by integrating each 

individual PSP train over ts and dividing by the Raw Score.  The resulting values 

represent individual contributions to the collective group synchrony.  When using an 

asymmetric waveform like an alpha function in the PSP trains, this information can 

reveal whether some neurons tend to fire before or after others.  Neurons with similar 

contributions reflect a shared input while uneven contributions reflect direct interactions.  

Although there are no assumptions about the underlying configuration of the network, 

these results can be compared to those from a known network configuration to determine 

whether they are consistent with a certain neuronal architecture. 
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The magnitude of synchronous activity is normalized so that a neural assembly 

with identical spike trains will yield a value of unity.  Therefore, this quantity is a 

percentage of its maximum synchrony potential.  Note that maximum potential is a 

conceptual, mathematical quantity and may not be possible to achieve in every assembly.  

The maximum synchrony potential occurs when all spikes within an assembly are 
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completely synchronized.  However, this may not be realistic if for instance, one non-

bursting cell (A) has 25 spikes and another non-bursting cell (B) has 75 spikes (N = 2).  

This pair cannot achieve their maximum potential to obtain a score of 1 (100 spikes 

synchronized).  Therefore, their highest score (with 50 synchronized spikes – 25 from 

each cell) is a fraction of their maximum potential (50/100 or 0.5).  (Note that bursting 

could increase the score since two partially overlapping spikes from cell B could coincide 

with one spike from cell A.) 

 Figure 2.5 shows the PSP algorithm as it unfolds for an assembly of four cells.  

While viewing a 260° drifting sinusoidal grating (Figure 2.5A), 4 cells (preferred 

orientations: 260°, 260°, 260°, and 240°) synchronized their responses.  Their individual 

scores (Figure 2.5B) show a distributed level of synchronization implying a common 

input triggered by the spatial coherence of the stimulus.  The time course of the response 

for each cell is illustrated in Figure 2.5D.  The top four plots are the PSP trains for each 

neuron followed by the raw (0.0348), chance (0.0061), and normalized synchrony 

(0.0289) plots extracted from those trains.  As demonstrated in this example, the amount 

of correlation estimated from firing rate effects is small and becomes negligible for larger 

assemblies. 

 

Discussion 

By convolving a point-event spike train with a truncated (10 ms) alpha waveform, 

we derive a similarity measure that is conscious of time.  PSP trains for a group of cells 

can be summed and compared to identify spike times that are coincident.  The magnitude 

of synchrony is computed as the ratio of the area under coincident waveforms to the total 

area under all waveforms in the assembly.  Unlike other approaches, this can be applied 
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to neural assemblies of arbitrary size, not just pairs.  This algorithm also selectively 

emphasizes spikes that occur closely in time instead of treating all spikes within the 

integration time period as equally important events.  By using the shift predictor (Perkel 

et al 1967), we can resolve and separate sources of synchrony in order to normalize our 

results for the effects of firing rate.  The uncertainties of normalization and firing rate 

dependence are minimized due to the very large ratios seen between chance and observed 

probabilities of synchrony as group sizes grow. 

This method is advantageous because: (1) it can be applied to an arbitrary number 

of cells and computation time increases linearly with the number of cells involved; (2) 

waveform parameters like PSP amplitude, integration time and threshold are adjustable; 

(3) the temporal dynamics of synchrony can be monitored throughout the stimulus 

presentation; (4) we can normalize synchrony scores by subtracting the shift predictor to 

associate coordinated events with specific sources of synchrony (For instance, firing rate 

effects can be removed and the analysis can focus on synchrony from only endogenous 

sources.); (5) members of large groups can be predicted from the scores of smaller 

groups, thus drastically reducing the number of assembly permutations that need to be 

computed; (6) no binning or smoothing techniques are required; (7) this method is based 

on biological principles and the results are physically meaningful (i.e., a raw score of 

0.15 means that 15% of all waveforms in an assembly were coincident).  The flexibility 

of this approach allows us to investigate the effects of increased/decreased integration 

times, examine group characteristics, and decipher trends correlated with group size.   In 

order to understand group dynamics and document rules governing group membership, 

we can use this method to measure collective responses and explore temporal 

characteristics of neural assemblies.  And although we are investigating synchronous 
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activity in the visual system, this method can be applied to other sensory modalities in 

any creature in which more than one neuronal spike train is recorded.  Synchrony has 

been observed in the olfactory, auditory, and somatosensory systems and is found in the 

hippocampus, frontal cortex, and motor system (for review see Engel et al. 1999). 
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CHAPTER III 

 

EVOLUTION OF NEURONAL SYNCHRONIZATION ACROSS 
CORTICAL SPACE AND TIME 

 

Introduction 

 Neurons in the striate cortex exhibit an enhanced specialization beyond that found 

in earlier visual areas by responding selectively to stimulus parameters such as spatial 

frequency, orientation, direction, and disparity.  This selectivity allows cells to behave as 

filters for different stimulus dimensions and since these cells cover the range of 

parameter values to which the visual system is sensitive, their activity is sufficient to 

encode each stimulus attribute.  Relative to behavioral visual performance, each cell is 

broadly tuned and tasks such as contour integration and object recognition undoubtedly 

involve the cooperation of numerous cells with various spatiotemporal filter 

characteristics.  One way to assemble these simple feature detectors is through the precise 

firing of action potentials on a millisecond timescale (Singer and Gray 1995), which can 

be discriminated by target cells acting as coincident detectors (Azouz and Gray 2003; 

Bruno and Sakmann 2006).  As a distributed population code, synchrony momentarily 

enhances the transmission probability of an assembly and this linking is strengthened by 

repetitions throughout the stimulus duration.  Synchrony allows for neurons to be 

effectively connected into a functional unit and the combinatorial possibilities offer 

tremendous stimulus-encoding capabilities. 

 Unfortunately, the term synchrony in this context has been interpreted to mean a 

number of different neurophysiological phenomena.  Synchrony has been referred to as 

the 0 ms correlation between two single-unit responses (e.g. Samonds et al. 2006), two 
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multi-unit responses (e.g. Roelfsema et al. 2004), or the coherence of firing rate 

oscillations in single units (e.g. Zhou et al. 2008) or multiple units (e.g. Womelsdorf et al. 

2007).  Depending on the electrophysiological recording method, oscillations and their 

synchrony can be studied at different levels of brain organization (Ford et al. 2007): (1) in 

single-unit recordings, continuous firing in a spike train can be resolved into a component 

frequency; (2) in multi-unit recordings; (3) in recordings of local field potential; and (4) 

in electroencephalogram recordings.  With the covariation of firing rates, synchrony can 

be measured as the height of a cross-correlation histogram peak among cell responses 

regardless of oscillation frequency or refer to the degree to which responses are in phase.  

Furthermore, the term synchronization has also been used to describe neuronal responses 

that are stimulus-locked and modulate with changing stimulus conditions. 

 Most of what we know about "synchrony" is from research on multi-unit activity 

or oscillations of multi-unit activity.  Synchrony and oscillations have been postulated as 

neural encoding mechanisms because they are stimulus-dependent (Singer and Gray 

1995; Neuenschwander and Singer 1996; de Charms and Merzenich 1996) or depend on 

the behavioral state of the animal (Abeles et al. 1993; Murthy and Fetz 1992).  However, 

little has been done to disambiguate synchronization and oscillations although the two are 

inherently different and have independent origins (Samonds and Bonds 2005; Roelfsema 

et al. 2004).  Samonds and Bonds (2005) showed that oscillations in the gamma 

frequency range are not needed to generate synchrony between pairs of cells, but can help 

strengthen and sustain it. 

 The goal of this paper is to provide information on the characteristics of neuronal 

synchronization between isolated single-units and to specifically illustrate the evolution 

of synchrony across cortical space and time.  Previously, this kind of effort would have 
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been impractical due to the immaturity of the field with regard to measuring and 

analyzing multiple simultaneous responses from single-units.  There have been no 

adequate metrics developed that monitor the temporal dynamics of synchrony in large 

assemblies throughout an entire stimulus presentation.  Modern microelectrode array 

technology now allows us to study the spatial extent of synchrony by sampling 

simultaneous spike trains from different areas of cortex within V1.  To move beyond 

pairwise comparisons and take advantage of our recording capabilities, we developed an 

algorithm for quantifying the amount of synchrony in a neural assembly of arbitrary size.  

This data processing method measures the raw and firing rate-induced components of 

synchrony and can be used to document synchronous interactions over time. 

 We used these measurement and analysis tools to study the synchrony and 

average firing rate responses of assemblies of up to six cells in paralyzed and 

anesthetized cats during stimulation with natural images.  Synchrony between pairs of 

cells decreased linearly with distance across the striate cortex, but still existed in 

significant amounts for cells that were separated by up to 3 mm.  The average amount of 

synchrony declined as the difference in orientation between cells increased, but could still 

be found between cells with wholly different orientation preferences (< 80°).  We 

investigated the effects of stimulus presentation style and found that jittering stimuli in 

random directions about the origin produced the same amount of synchrony as that 

obtained during the most generous drift direction and that moderate amounts of 

synchrony were still observed during presentation of static stimuli.  The temporal 

analysis showed that most synchrony is generated during the onset transient and reaches a 

stable value after approximately 800 ms.  Finally, an assessment of normalizing 

synchrony responses to eliminate firing rate effects reveals that the correction is moot for 
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assemblies with four or more cells.  These results provide insight into the underlying 

mechanisms of synchrony and suggest that precise timing within assemblies could serve 

as a practical platform for contour detection and transmission of salient information. 

 

Materials and Methods 

 

Preparation 

 Two adult cats were prepared for electrophysiological recordings in V1.  All 

procedures were performed in accordance with guidelines set forth by the American 

Physiological Society and the Institutional Animal Care and Use Committee at 

Vanderbilt University.  Prior to surgery, each cat received intramuscular injections of 0.5 

ml acepromazine maleate (10 mg/ml), 0.5 ml atropine sulfate (0.4 mg/ml), and 0.25 ml 

dexamethasone sodium phosphate (4 mg/ml).  Anesthesia was induced with 5% 

halothane in O2 and maintained with intravenous injection of Propofol (0.3 mg/kg hr).  

During recording, paralysis was induced with 6 mg pancuronium bromide and maintained 

through intravenous injection (Pavulon; 0.3 mg/kg hr).  The cats were artificially 

ventilated with a mixture of N2O, O2, and CO2 (75:23.5:1.5) to hold expired pCO2 at 

3.9%.  Rectal temperature was maintained at 37.5° C with a servo-controlled heating pad.   

 

Data Recording and Acquisition 

Simultaneous single-unit recordings were made from cells in the striate cortex via 

the Utah Intracortical Electrode Array (UIEA; Cyberkinetics Neurotechnology Systems, 

Foxborough, MA).  The UIEA recordings have good signal to noise ratios and have been 

shown to have qualities comparable to those from single-electrode recordings (Kelly et 
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al. 2007).  The implant is a square 10x10 silicon array on 400 micron centers.  The 

electrodes have a length of 1.0 mm and were inserted to a depth of 0.6 mm with a 

pneumatic implantation tool (Rousche and Normann, 1992).  The insertion depth 

concentrated the electrodes in layers II/III and avoided impact to the cortical surface by 

the electrode base.  Thresholds were dynamic and set to 3.25x the mean activity on each 

electrode and waveforms were sampled at 30 kHz for 1.5 ms windows.   A MATLAB-

based spike-sorting program was used to remove noise and artifact from each channel 

(Shoham et al. 2003).  We did not include multiple units that were recorded and resolved 

from a single channel.  Channels with multi-unit activity were discarded.  Channels with 

single-unit activity were used only if the activity was ≥ 5 spikes per second and showed 

clear orientation tuning when viewing drifting sinusoidal gratings (Figure 3.1A). 

 

Stimulation 

We tested two different types of stimuli: drifting sinusoidal gratings and 

individual natural images.  Gratings were used to estimate neuronal tuning properties.  

All stimuli were displayed on a gamma-corrected SONY Trinitron 21" monitor driven 

either by a Cambridge Research Systems VSG2/3F controller board (for gratings) or a 

video controller using the WinVis software package (for natural images).  Displays were 

refreshed at 120 Hz, which avoided entrainment artifact (Wollman and Palmer, 1995; 

Snider et al. 1996).  All stimuli spanned 18°x18° to ensure stimulation of both classical 

and non-classical receptive fields of the entire recorded population and appeared against a 

mean luminance background (73 cd/m2).  Each stimulus was presented for 2 seconds 

followed by a 1 second delay in which only the mean luminance background was shown.  
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In each experiment, we also showed null stimuli which consisted of only the mean 

luminance background. 

The stimulus protocol contained two natural grayscale images (Image 1: Fungus 

and Image 2: Leaf) from www.imageafter.com that were scaled to have a global contrast 

of 0.32 (see Touryan et al. 2005).  We investigated four different presentation styles: drift 

(20° to 360° in 20° increments at a speed of 2°/s), random jitter in a web pattern (60 Hz), 

random jitter in a star pattern (like an asterisk, 60 Hz), and stationary (Figure 3.3A).  The 

direction of jitter step in a web pattern is random and the step size and therefore speed are 

not constant.  In a star pattern, the direction of jitter step is also random, but followed by 

the opposite step to place the image back at the origin.  In this pattern, jitter step and 

speed are constant.  For both jitter motions, we also varied the size of the jitter step 3 to 9 

pixels (< 0.4°).  All presentations were randomly interleaved and repeated 100 times for 

reliability. 

 

Data Processing 

To quantify cooperation within multi-cell assemblies, we used the PSP Method as 

described in the previous chapter.  By convolving a point-event spike train with a 

truncated (10 ms) alpha waveform (yielding a PSP train), we derived a similarity measure 

that is conscious of time.  PSP trains for a group of cells were summed and filtered to 

identify spike times that were coincident.  The magnitude of synchrony was computed as 

the ratio of the area under coincident waveforms to the total area under all waveforms in 

the assembly.  The use of an alpha function selectively emphasizes spikes that occur 

closely in time instead of treating all spikes within the integration time period as equally 

important events.  By using the shift predictor (Perkel et al. 1967), we resolved and 
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separated sources of synchrony in order to normalize our results for the effects of firing 

rate.  The uncertainties of normalization and firing rate dependence were minimized due 

to the very large ratios seen between chance and observed probabilities of synchrony as 

group size grows. 

 Our basic algorithm reflects the relevance of group synchrony to postsynaptic 

neurons by modeling the temporal summation of PSPs.   Neurons with similarly-timed 

events are considered synchronous and the magnitude of synchrony depends on the 

degree of similarity.  The steps in this algorithm are as follows (Figure 3.1B): 

Step 1: Preprocess data to convert spike waveforms to trains of point events 

Step 2: Convolve with PSP waveform to generate PSP trains 

Step 3: Determine synchronous portions of PSP trains 

Step 4: Obtain assembly activity by summing PSP trains 

Step 5: Calculate Raw Score 

Step 6: Use Shift Predictor to calculate the Chance Score 

Step 7: Compute Normalized Score and determine significance 

We computed the statistical significance between the Raw and Chance distributions using 

a 1-tailed student's t-test with α = 0.01. 

 

Results 

 We used a 10x10 microelectrode array and the PSP algorithm to record from and 

subsequently analyze the responses of cell assemblies in the striate cortex of two 

paralyzed and anesthetized cats during natural stimulation.  We quantified the amount of 

synchronous activity generated during different stimulus presentation styles (drift, jitter 

web, jitter star, and static) and compared the temporal dynamics of each assembly's 
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response to determine the influence of various motions.  The preferred orientation 

pairings were tabulated across all stimulus conditions and the spatial extent of synchrony 

was mapped across the array.  We also conducted a window analysis of synchrony to 

determine the time windows of greatest synchrony production and stability for all 

conditions.  Finally, we resolved the observed raw synchrony into stimulus-locked and 

internally-generated components to compare the effects of normalization across assembly 

size. 

 We simultaneously recorded single-unit activity from 39 and 47 cells in two cats.  

The PSP algorithm quantifies the amount of synchrony in assemblies of arbitrary size, but 

requires the identification of all cells in the group so that specific spike train responses 

can be compared.  Our previous studies with analytical stimuli suggest that cells with 

similar orientations and extensive receptive field overlap are likely to synchronize, but 

without precise knowledge of the relationship between stimulus and assembly response, 

there are no straightforward ways to extract functional groups for testing with the 

algorithm.  Due to the high combinatorial dimensionality of cells from the population, 

there are endless membership possibilities.  Assuming that only a small fraction of 

subsets in the population will synchronize to any given stimulus, then the probability of 

randomly testing combinations of cells and finding a significant assembly is very low.  

Fortunately, we can take advantage of our definition of synchrony to test small groups of 

cells and effectively build larger assemblies from these.  Our definition of synchrony 

requires participation from all cells in a selected group so all subsets of cells from that 

group must also synchronize.  Essentially, members from larger assemblies can be 

predicted based on the Normalized Scores from smaller assemblies.  We can compute a 

relatively low number of small assembly scores and progressively cluster cells that 
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synchronize well to create an assembly of arbitrary size that has a high probability of 

synchronizing.  However, only the members are predicted, not their assembly behavior 

(Score).  These large assemblies can then be entered into the PSP algorithm to determine 

if, in fact, their grouping is significant (to build larger assemblies from smaller ones, 

synchrony must exist between groups as well as within groups). 

We used the PSP algorithm to compute the amount of synchronous activity 

among all pair-wise combinations of cells (N = 1822; 741 pairs from cat 1 and 1081 pairs 

from cat 2) and used those results to cluster cells into larger assemblies.  We found a total 

of 282 pairs that had significant activity (α = 0.01) during at least one condition for Image 

1 and 338 pairs for Image 2.  These pairs were clustered to suggest larger assemblies (n = 

3, 4, 5, and 6) which were then tested with the PSP algorithm to determine statistical 

significance.  We found N = 613 groups of 3, 584 groups of 4, 487 groups of 5, and 533 

groups of 6 cells.  These groups do not comprise the entire population of synchronous 

assemblies, but do represent an adequate sample.  Groups of 6 cells or less provided 

ample activity and consistency to study trends during the analysis of temporal dynamics,  

 

Spatial Evolution of Synchrony 

 Previous studies using simple stimuli have shown that synchrony and oscillations 

of firing rate in the gamma frequency range rapidly decrease with increasing cortical 

distance between electrodes (Das and Gilbert 1999; Nowak et al. 1995; Frien and 

Eckhorn 2000; Maldonado et al. 2000).  These studies report a higher probability of 

measuring synchrony between pairs of neurons or recording sites with overlapping 

receptive fields and/or similar orientation preferences.  Similarly, the first 

neurophysiological experiments linking synchrony and feature integration used drifting 
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light bars (Eckhorn et al. 1988; Gray et al. 1989).  This type of coherent collinear 

stimulation yielded synchrony between pairs of neuron clusters with similar orientation 

preferences and collinear receptive fields.  Whether this pattern of cooperation was 

inherent to synchrony (e.g. due to anatomical connections) or was a direct consequence 

of the spatial organization of the stimulus was unknown.  Since collinearity is a special 

case of the more general property of cocircularity (Parent and Zucker 1989), we used 

drifting concentric rings to see if synchrony predictably existed for pairs of cells with 

different orientation preferences, but whose receptive fields still had cocircular 

alignments (Samonds et al. 2006).  A positive finding would be consistent with the 

association field framework (Field et al. 1993; Hess et al. 2003), which predicts linking 

between orientation-tuned cells that is dependent on their joint relative orientation and 

spatial position.  We found that neuron pairs synchronized based on an appropriate match 

between stimulus curvature and receptive field configuration despite wholly different 

preferences in orientation. 

Studies using collinear stimulation restricted the type of cell pairings among 

which synchronous activity was observed.  Our cocircular study (Samonds et al. 2006) 

expanded this result to additional cellular interactions and although cocircular structures 

are ubiquitous in natural scenes (Geisler et al., 2001; Sigman et al., 2001; Elder and 

Goldberg, 2002), drifting sinusoidal concentric rings only represent a limited class of 

visual structures.  To extend these findings further yet, we measured the preferred 

orientation pairings and spatial extent of synchrony across the striate cortex in response 

to natural stimulation (Figure 3.2).  (How synchrony depends on receptive field 

proximity, receptive field overlap, and curvature is described in Chapter 5.) 

For each channel in the microelectrode array with isolated single-unit activity, we 
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measured all pairwise interactions in which significant synchrony was observed.  These 

values were averaged and mapped onto the array to visualize the extent of 

synchronization across the cortex.  Figure 3.2A shows the pairings for channel 65 across 

the array.  The synchrony between channel 65 and all other channels was calculated with 

the PSP algorithm and significant scores were averaged across all conditions from both 

images over both experiments.  For example, if responses from channels 65 and 66 

generated synchrony beyond that estimated by stimulus-induced firing rate effects in 10 

conditions, these scores are averaged and placed in box 66.  This map was unfolded 

radially to show the correlation between the strength of synchrony and Euclidean distance 

between electrode centers (Figure 3.2B).  Synchrony scores were normalized to the 

maximum value for each experiment before being combined.  For a comparison, average 

firing rates for each cell were plotted in the array (Figure 3.2C) and against distance 

(Figure 3.2D).  This evaluation demonstrates that our synchrony measure has been 

normalized for firing rate effects and the largest synchrony scores are not necessarily 

generated among neurons with the highest firing rates.  Again, firing rates were 

normalized to the maximum value for each experiment before being combined. 

The average amount of synchrony measured across all pairs (N = 620) and the 

distribution of pairs are plotted against cortical distance in Figure 3.2E.  The strength of 

synchrony decreased linearly over the extent of the microelectrode array, but significant 

synchrony was still measured between cells separated by up to 3 mm.  The mode 

separation distance was 1.0-1.5 mm.  Synchrony was plotted against the difference in 

preferred orientation among the pairs and also found to decrease linearly with greater 

angular differences (Figure 3.2F), but could be supported between cells aligned as much 

as 80° apart.  The mode orientation difference in the population was 20°.  These results 
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are similar to those obtained with cocircular stimulation (Samonds et al. 2006) and 

support a neurophysiological correlate of the association field model (Field et al. 1993; 

Hess et al. 2003). 

Although a pairwise analysis was completed, a reasonable question would be to 

inquire how these results would change for larger assemblies.  One possibility is that 

larger assemblies are fickle and require a more rigid relationship among members for 

continued cooperation.  In this case, perhaps assemblies would only synchronize for cells 

with similar orientation preferences in closer proximities.  However, the opposite was 

found to be true.  Synchrony can support larger assemblies over greater distances and 

orientation preferences as long as the aggregate receptive field is stimulus-appropriate.  

Larger assemblies still show this inverse relationship with synchrony across cortical 

distance and orientation.  Our pairwise analysis is for comparison with previous studies 

and is easily illustrated on a two-dimensional map, but represents the building-block 

relationships for larger assemblies. The orientation plot in Figure 3.2F shows the 

difference in preferred orientation between pairs, but can also be interpreted as the 

maximum preference difference in a large assembly (the plots are similar).  The average 

orientation difference in an assembly is an indication of the degree of curvature, which is 

discussed in Chapter 5. 

 

Stimulus Presentation Style 

In their initial investigation of area 17, Hubel and Wiesel (1962) noted that a 

moving stimulus was a powerful stimulus and some cells gave no response to a stationary 

stimulus.  Our subjects are paralyzed and anesthetized, so stimuli require motion for 

neurons in the primary visual cortex to avoid adaptation and maintain their responses for 
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the entire stimulus duration.  For artificial stimuli like gratings and concentric rings, 

unidirectional drift orthogonal to the axis of preferred orientation is commonly used.  

However, creating motion for discrete natural images is less straightforward.  Drifting 

images causes features to pass through receptive fields, confounding the correlation 

between stimulus and neuronal response.  Solutions to this problem include using a 

shorter stimulus duration or slower speed, both of which can be drawbacks.  Also, since 

neurons in the striate cortex prefer motion in the direction perpendicular to their preferred 

orientation (Hubel and Weisel 1962), choosing a drift direction for gratings or bars is 

relatively simple.  A natural image contains novel features that vary in their spatial 

properties making it difficult to determine the direction of optimal stimulation.  

Therefore, the image must be drifted in every direction to ensure optimal stimulation of 

the majority of cells in the population.  Using multiple drift directions to find the best one 

can be time-consuming. 

We wanted to see how synchrony and average firing rate compared when 

generated by drifting or jittering images.  Jitter offers two main advantages over drift in 

that presentation times are drastically reduced and features are anchored within local 

receptive fields.  And although the move towards conducting more neuroethological 

experiments is imperative to understanding the true neural basis of behavior, using 

natural or simulated natural movement is often impractical and some laboratory 

conditions or stimulation equipment limit the type of stimuli available for study.  For 

instance, memory requirements in our computers and stimulator software package limit 

the presentation of large sequences of images to static displays.  Therefore, we also 

studied the implications of using static stimuli for relatively short durations. 
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We measured the synchrony and average firing rate among assemblies of cells 

while viewing two natural images undergoing four different types of motion: drift (in 20° 

increments at a speed of 2°/s), random jitter in a web pattern, random jitter in a star 

pattern, and stationary (Figure 3.3A).  The direction of jitter step in a web pattern is 

random and the step size and therefore speed are not constant.  In a star pattern, the 

direction of jitter step is also random, but followed by the opposite step to place the 

image back at the origin.  In this pattern, jitter step and speed are constant.  For both jitter 

motions, we varied the size of the jitter step up to 9 pixels or 0.4° (step sizes of zero 

pixels were used as stationary stimuli).  These results were tested in striate cortex and the 

jitter step size was appropriate relative to the typical receptive field extent, but this step 

may not be effective in higher visual areas where the receptive fields are larger. 

Typical average firing rate (Figure 3.3B) and synchrony (Figure 3.3C) responses 

for two cells (with receptive fields and orientation preferences as indicated) are displayed 

across all motion conditions.  For the drifting stimuli, each cell shows a tuning preference 

for 200°, which corresponds to the dominant features in the image.  For both types of 

jitter motion, firing rate increases with jitter step size.  For drift conditions, synchrony 

within this pair of cells shows a similar tuning preference and has a maximum value at 

200° as expected.  On the other hand, synchrony is relatively constant for jitter step size 

and appears more stable during the jitter star conditions.  Synchrony during the optimal 

drift direction is similar to that obtained on average over the jitter conditions.  In fact, a 

survey of all pairs (N = 620) shows this trend (Figure 3.3D).  The average jitter 

synchrony is similar to the maximum drift synchrony.  This also holds true for larger 

assembly sizes in which each group had significant synchrony during at least one 

condition (see groups of 2-4 in Figure 3.3D).  More groups are revealed with the use of 
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jitter, which corresponds to the presentation of the stimuli over all drift directions.  Thus 

for natural images, a sampling of all drift directions can be replaced by one jitter 

condition, which drastically reduces the duration of the experiment or increases the 

number of stimuli that can be tested. 

These results suggest that synchrony is independent of jitter step size (< 0.4°) and 

firing rate.  Synchrony seems to be constant for features anchored within their receptive 

fields despite temporal variations which affect the firing rate.  Compared to the static 

conditions, jittering an image by 5 pixels increased the firing rate by 74.2% while a step 

of 5 pixels generated only 28.8% more synchrony.  These results support our hypothesis 

that synchrony is mainly generated from the spatial configuration of the stimulus.  Using 

jitter, synchrony is generated with a lower overall firing rate, which maintains the 

signaling of structural salience while reducing metabolic demand. 

 

Time Course Analysis 

Over the past several decades, researchers have developed numerous methods to 

quantify the interactions between neurons.  Cross-correlation histograms (Perkel et al. 

1967) have provided insight into the effective underlying neuronal architecture, but must 

represent an average over many stimulus repetitions and the temporal dynamics the 

cellular interaction cannot be resolved.  To examine the temporal dynamics of neuronal 

firing correlation, the idea of a joint peri-stimulus time (JPST) scatter diagram was 

introduced (Gerstein and Perkel 1969; 1972).  Aertsen et al. (1989) developed methods to 

quantify and normalize the JPST scatter diagram.  These new procedures allowed the 

separation of raw correlation into correlation caused by direct stimulus effects and 

correlation caused by interaction between the two neurons.  Unfortunately, this procedure 

 81



is designed to measure interactions between pairs and cannot be applied practically to 

larger assemblies.  In order to investigate the cooperative activity of assemblies with 

more than two neurons, the gravitational clustering algorithm was introduced, which 

characterizes the time-varying organization and extent of neural assemblies (Gerstein et 

al. 1985; Gerstein and Aertsen 1985; Aertsen et al. 1986).  The gravitational clustering 

algorithm relates the activity of neurons to the motion of particles in a multidimensional 

Euclidean space.  Although each relationship is based on a quantitative measure of 

attraction, there is no quantitative description of the cooperation in an entire assembly.  

Furthermore, this algorithm does not readily identify cells that belong to more than one 

functional group or subsets of cells within larger functional groups. 

The PSP Method quantifies the magnitude of synchronous activity within 

assemblies of arbitrary size.  Although each score is computed as an average over 

multiple stimulus trials, the temporal layout of each sweep can be visualized by 

extracting the PSP Trains during Step 4 of the algorithm.  Furthermore, correlation 

caused by direct stimulus effects can be estimated using the average Shift Predictor 

(Perkel et al. 1967) from Step 6.  Similar firing rate statistics across trials allow the Shift 

Predictor to estimate chance synchronous events since the interactions between neurons 

happen on a smaller time scale than one stimulus period and are destroyed after shifting.  

This allows us to decompose the raw synchrony observed into correlations caused by 

direct stimulus effects and internal interactions. 

 We used the PSP algorithm to document the evolution of synchrony throughout 

each stimulus presentation.  Figure 3.4A shows the post-stimulus time histograms 

(PSTHs) for the cell pair in Figure 3.3B for the best drift direction, jittering 5 pixels for 

the web and star patterns, and the best static stimulus (of 2).  Each PSTH is computed for 
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1 ms bins using spike trains convolved with temporal kernels (PSP Trains) and 

normalized by the kernel area.  The panels in one column depict the time course of each 

cell's response, the raw synchrony measured from both trains, the chance synchrony 

estimated with the Shift Predictor, and the normalized synchrony computed by 

subtracting the raw and chance scores bin by bin and normalizing by 1-chance.  For the 

drift panels, the PSTH from each cell shows a standard stimulus onset response transient 

followed by steady firing until an increase in firing rate at the end of the stimulus 

presentation.  The enhanced response towards the end of the presentation is most likely 

due to the presence of another feature entering the assembly receptive fields.  The raw, 

chance, and normalized synchrony all show this similar time course.  Drifting for two 

seconds causes features in the image to displace 4°, which can be larger than the typical 

receptive field and highlights the drawbacks of this type of motion.  On the other hand, 

jitter causes features to stay anchored within the receptive field.  The responses during 

the web conditions also depict an onset response, but subsequent firing is more erratic 

due to the random speeds of each jitter increment.  The jitter star conditions have steady 

increments and result in constant firing patterns while the static stimuli produce 

pronounced onset responses which decay slightly during the rest of the presentation. 

 We performed a sliding window analysis of normalized synchrony for each 

condition in Figure 3.4A using a 250 ms window in 50 ms increments (Figure 3.4B).  The 

raw synchrony in each window was integrated, divided by the total activity measured 

from each cell's response, then normalized by the corresponding calculation from the 

chance estimate.  During all conditions, the highest synchrony scores were generated 

within the first 100 ms after the stimulus onset.  This may seem surprising for the drift 

condition since a large peak in the raw synchrony plot occurs during the end of the 
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stimulus period.  However, recall that a synchrony score is computed as a ratio of 

synchronous spikes to total spikes and the new feature also generated a greater proportion 

of asynchronous spikes during that period as compared to the response onset.  We also 

conducted a cumulative analysis (Figure 3.4C) of the normalized synchrony conditions in 

Figure 3.4A.  Synchrony was computed as in Figure 3.4B for successively larger 

windows from the stimulus onset in 100 ms increments (100 ms, 200 ms, …, 2000ms).  

Again, each condition showed a large ratio of synchronous events after the stimulus onset 

and this value decreased steadily for successive time windows.  Synchrony scores were 

stabilized within 10% of their final value after approximately 800 ms, after which the 

proportion of synchronous spikes to total spikes remained constant.  Across assembly 

size, group responses displayed a similar pattern in which the maximum synchrony score 

was almost always generated during the stimulus onset response transient. 

 

Normalization 

 The temporal binding theory (Milner 1974; von der Malsburg 1981) postulates 

that dynamic assembly formation is the physical basis for certain perceptual phenomena 

such as shape perception and figure-ground separation  According to this theory, 

perceptually-related features are linked through correlated firing among subpopulations 

of cells.  The introduction of correlated visual information motivates the generation of 

precisely-time spike events in the striate cortex.  Feature encoding is determined by the 

reverse correlation of neuronal responses to specific stimulus attributes.  However, the 

exact correspondence between visual structure and response requires knowledge of the 

induced events that are stimulus-dependent and not a trivial result of firing rate effects.  

When cells fire action potentials over time, the probability of spikes from two or more 
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cells being within the same time window increases with higher firing rates.  One way to 

correct for this is to measure all synchronous events and subtract an estimate of the 

chance events.  For cross-correlation histograms (CCH; Perkel et al. 1967), a shift 

predictor is used to estimate chance synchronous events based on similar firing rate 

statistics measured across repeated stimulus trials.  Similarly, the joint peri-stimulus time 

histogram (JPSTH; Aertsen et al. 1989) is corrected using an estimate based on the cross-

product of both PSTHs.  However, application of these estimators for studying correlated 

neural responses has been criticized by the notion that peaks in the CCH may be induced 

by trial to trial latency and nonstationarity (Brody 1999a,b), which confound the 

estimation of synchrony.  Ito and Tsuji (2000) have claimed that normalization of the 

JPSTH is inadequate, especially when cells exhibit higher firing rates.  Others suggest the 

predictors underestimate salient effects by overcorrecting for chance events (Eggermont 

and Smith 1996) by assuming linearity when disambiguating sources of correlation. 

 We used the PSP Method to measure the raw synchrony, stimulus-locked 

synchrony due to modulation of the firing rate, and resulting internally-generated 

synchrony for assemblies of two to six cells (Figure 3.5).  The signal to noise ratios 

increase exponentially across assembly size from 1.82 in pairs of cells to over 1400 for 

groups of six cells (Figure 3.5A).  For large assemblies, random correlations among all 

members are exceedingly rare and the probability of chance collisions approaches zero.  

As a result, the amount of synchrony subtracted as a correction is negligible and the 

normalized estimate approaches the raw estimate for assemblies with four or more 

neurons (Figure 3.5B).  As processes like contour integration and object recognition 

undoubtedly involve large numbers of neurons, the effects of normalization become 

insignificant. 
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Discussion 

 In this paper, we measured the synchrony and average firing rate responses of 

assemblies with up to six cells during natural image stimulation undergoing various kinds 

of motion.  We found that synchrony between pairs of cells decreased linearly as a 

function of electrode separation, but was still observed for cells spanning up to 3 mm.  

Similarly, the amount of synchrony decreased linearly as a function of increased 

orientation misalignment, but could be measured in between cells with up to 80° in 

angular difference.  The effects of drifting and jittering stimuli were compared and we 

found that jittering stimuli in small increments about the origin generated the same 

magnitude of synchrony as that observed during the most bountiful drift direction.  

Furthermore, static stimuli still generated about 71.2% of the synchrony seen during jitter 

conditions.  The time course analysis revealed that the greatest proportion of synchronous 

events was generated during the stimulus onset response transient and achieves stability 

after approximately 800 ms.  Finally, the amount of synchrony due to stimulus-induced 

modulation of firing rate was found to be negligible for assemblies with four or more 

neurons, rendering the issue of normalization insignificant for large assemblies. 

 

The Spatial Extent of Synchrony 

 The spatial analysis of synchrony gives us a topographic map of cooperation, 

which benefits future studies by identifying areas of high probability of finding 

synchronous cells or members of a large synchronous assembly.  Analyses of electrode 

distance and orientation preference showed that the magnitude and probability of 

observing synchrony among cell pairs matched the fundamental prediction of the 

association field theory.  Synchrony existed between cells with closer proximities and 

 88



similar orientations despite viewing images with a variety of structural information.  The 

frequent existence of synchronous interactions among cells with similar orientation 

preferences in the absence of strictly collinear stimulation could reflect a 

neurophysiological correlate of the association field model and play an important role in 

encoding contour information. Extending collinear (Eckhorn et al. 1988; Gray et al. 

1989) and cocircular synchrony results (Samonds et al. 2006) to natural stimulation is 

vital in establishing synchrony's role in complex feature integration.  The fact that 

synchrony was stimulus-dependent and observed between cells with different orientations 

undermines a direct causal link between synchrony and anatomy (e.g. horizontal 

connections) per se and counters the notion that synchrony may be an artifact of cortical 

connections.  Instead, these findings suggest a more global and purposeful function in 

which synchrony identifies related contour segments, which have the ability to be 

integrated at higher processing centers throughout the visual system. 

 

Stimulus Features and Motion 

 Although natural images provide the best variety of visual information to 

stimulate an army of cells with different spatiotemporal filter characteristics, they are also 

fundamentally necessary for understanding the functional role of synchrony.  

Unfortunately, complex images as opposed to simple analytical stimuli are difficult to 

manipulate systematically and introduce the additional challenge of optimizing responses 

from the population of recorded neurons.  Based on drifting grating experiments, we 

knew that motion provided a constant platform for neuronal responses throughout the 

entire stimulus duration.  However, the appropriate direction of drift for natural images is 

not straightforward because of complex geometries and angle content.  Since the drift 
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speed is 2 °/s, the image will move 4° during the stimulus presentation and any target 

image features may well be outside a cell's receptive field by the end of the trial.  This 

may cause changes in firing rate and/or synchrony.  We tried to circumvent this by using 

images with large and repeatable features.  We also measured the maximum drift 

response to compare with the jitter results. 

Alternatively, we used jitter motion as a different approach to provide constant 

stimulation.  An important result is to find out whether jittering is effective in generating 

synchrony across the population, and if so, what affect the motion has on the synchrony 

observed.  We found that random jitter around the origin provided as much stimulation as 

all combined drift directions and that normalized synchrony was independent of jitter 

style, jitter step size (under 0.4°), and firing rate.  Since we are investigating how 

synchronous cortical activity correlates with structure in the visual scene, we must parse 

out any portion of synchrony attributed to the temporal aspects of the stimulus.  We 

found that jittering induces 28.8% more synchrony compared to the static condition.  

These results suggest that synchrony is relatively constant for features anchored within 

their receptive fields despite temporal variations.  This supports our hypothesis that 

synchrony is mainly generated from the spatial layout of the stimulus. 

 

The Origins of Synchrony 

 By examining the time course of synchrony, we were able to show that the 

greatest proportion of synchronous activity was generated during the stimulus onset 

response transient suggesting that cells may be synchronized by the time of their first 

spikes (Samonds and Bonds 2005).  This synchrony levels off after approximately 800 

ms and subsequent synchronous spikes are in constant relation to the total activity 
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generated.  These results are similar to those obtained among pairs of cells viewing 

simple collinear stimuli.  In a separate experiment, we added noise to systematically 

deconstruct the spatial integrity of drifting sinusoidal gratings in order to disambiguate 

the effects of spatial and temporal stimulus properties on synchrony and oscillations of 

firing rate (Zhou et al. 2008).  Using cross-correlation and coherence analyses to examine 

the temporal dynamics of synchronization in the time and frequency domains, we found 

that synchrony reaches its highest magnitude right after the stimulus onset and stabilizes 

to within 20% of its final value after 700 ms.  Coherence between frequency-specific 

oscillatory components in the gamma range is apparent after the stimulus onset, but 

doesn't reach its maximum potential until approximately 900 ms later.  We know that 

gamma oscillation is not needed to generate synchrony (Samonds and Bonds 2005), but 

coincidence in timing between synchrony stabilization (800 ms) and maximum 

oscillation coherence (900 ms) may actually reflect the mechanism that contributes to 

stabilization since oscillations then maintain synchrony at a constant pace. 

 Our results suggest that spike timing synchronization is initiated by coherent 

stimulus structure whereas the organization of firing rate oscillations develops as a 

product of slower acting network interactions.  Previous analyses of electrode distance, 

receptive field overlap, and synchronous lag times suggest that synchrony can be 

explained by common and synchronous input from earlier stages of visual processing 

(Samonds et al. 2006) perhaps triggered by visual information falling on the retina.  The 

bottom-up synchronous integration resulting from converging and diverging anatomical 

connections from previous levels of the visual system may underlie contour integration 

(Alonso et al. 1996; Usrey and Reid 1999) in which the synchronization of orientation-

selective neurons in the striate cortex guide the detection of related contour segments. 
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A Word on Normalization 

The PSP method gives us the advantage of separating raw synchrony into 

stimulus-locked and internally-generated synchrony by subtraction of the shift predictor 

(Perkel et al. 1967).  We investigated how each component affects the dynamic pathway 

of synchrony and determined the validity of using normalization methods in our analysis 

of larger neural assemblies.  We found that groups of four neurons had a signal to noise 

ratio of 70.4 while six neurons generated more than 1400 times the amount of synchrony 

predicted by chance.  Normalizing raw measurements for assemblies with four or more 

neurons becomes insignificant as the probability of spurious synchrony due to firing rate 

becomes negligible.  Furthermore, the act of normalization is a conceptual tool and in 

general is irrelevant since the brain provides no such function on incoming visual 

information.  If synchronous activity encodes salient stimulus information, neuronal 

responses must deviate from independence.  An upstream neuron or network of neurons 

can do little beyond applying thresholds to "normalize" synchrony and does not decipher 

which events were caused by common input or increased excitability.  While deciphering 

the origins of these sources may lead to important discoveries of the neural mechanism 

underlying synchrony, our primary focus is on the stimulus-dependence and dynamic 

behavior of synchrony. 
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CHAPTER IV 

 

SYNCHRONOUS ACTIVITY IN CAT VISUAL CORTEX DETECTS STRUCTURAL 
MODIFICATIONS IN NATURAL IMAGES 

 

Introduction 

The relationship between stimulus intensity and firing frequency remains central 

to our understanding of information transmission in the cortex (e.g., Barlow 1972), 

although temporal properties like spike patterns or interspike intervals have gained some 

attention as a means to encode stimulus information (e.g., Strehler and Lestienne 1986; 

Victor 2000).  Another alternative for the representation of information is encoding 

inherent in the coordinated activity of populations of cells.  Although the stimulus 

dependence of average firing rate is unambiguous for a single cell in the primary visual 

cortex, generalized firing activity considered across a group of cells is not easily defined, 

since the integration of firing rate must take place over some finite time period and the 

required broad temporal resolution can confound the definition of populations.  On the 

other hand, brief synchronization of spike times expresses unambiguous relationships 

between cells in an assembly.  This may serve as a supplemental coding strategy in which 

neurons can be effectively connected and form dynamic regional circuits to reliably and 

efficiently transmit information throughout the cortex while minimizing metabolic 

demands.  In this manner, visual information would not only be inherent in the activity of 

individual neurons, but could be extracted from the collective activity of the group.  Due 

to the dynamic nature of grouping, the combinatorial possibilities offer a vastly increased 

dimensional magnitude for encoding visual information. 
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The grouping of neurons responding to perceptually-related features into 

subpopulations defined by synchrony has been postulated as a neural mechanism 

underlying feature integration and object binding (Singer and Gray 1995; von der 

Malsburg 1999; but see also Shadlen and Movshon 1999).  For example, Gray et al. 

(1989) found using cross-correlation analysis that the magnitude of synchrony between 

pairs of cells with similar orientation preferences and collinear receptive fields was larger 

when stimulated with a long light bar across the receptive fields than with two shorter 

light bars over each receptive field.  However, these results and others (Eckhorn et al. 

1988; Ts’o et al. 1986) only examined synchrony in the context of collinear stimulation. 

To generalize the role of synchrony as a substrate for detection of nonlinear 

contours, we expanded the stimulation protocol to include cocircular figures (Samonds et 

al. 2006).  We found that neuron pairs with receptive field alignments tangent to annular 

rings would synchronize their responses (as measured by the rate-normalized cross-

correlation histogram described by Aertsen et al. 1989), despite wholly different 

orientation preferences.  Synchrony predictably existed between pairs of neurons as long 

as their receptive fields followed cocircularity and association field rules (Field et al. 

1993), and synchronous responses were more reliable than changes in average firing rate 

in discriminating between concentric ring and grating stimuli.  Group membership was 

dynamic, in that individual cells could belong to more than one functional group, which 

assembled based on the relationship between the spatial properties of the stimulus and the 

organization of the receptive fields. 

Since synchrony appears to be triggered by spatial coherence, we wish to 

determine whether synchronous activity between larger groups of cells can serve as a 

general substrate for detection of contour structure.  The receptive fields of single cells 
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are suitable for analysis with one-dimensional analytical stimuli, but the collective 

receptive fields of larger cell assemblies generally extend to two dimensions, which 

markedly expands the space of appropriate test stimuli (e.g., Vinje and Gallant 2000).  

Pairs of cells can be analyzed with simple curvatures (Samonds et al. 2006), but larger 

groups may require shapes of arbitrary complexity.  We therefore chose to sample this 

dimensionality with natural images. 

Here we explored the dependence of synchrony on structural integrity by using 

natural images that were modified with various methods and degrees of degradation.  We 

implanted a 10x10 microelectrode array into the visual cortex of two paralyzed and 

anesthetized cats to record from dozens of neurons simultaneously.  Assemblies of up to 

six cells were analyzed using a novel metric that detects and quantifies the amount of 

synchronous activity in a neural assembly of arbitrary size.  We found that image 

degradation reduces synchrony more strongly than firing rate and that, unlike firing rate, 

synchrony is sensitive to the degree of degradation.  The decrease in synchrony across 

different conditions reflected a reduction in the number of synchronous events.  A 

quantitative analysis of receptive field layout showed that assemblies with good 

associations as described by association field rules (similar preferred orientations and 

close receptive field proximity) tended to generate more synchrony than those with poor 

associations.  Overall, these results suggest that synchrony signals the presence of 

contour structure in natural images.  We propose that synchrony can overcome the 

ambiguity of firing rate to identify contour structure, which then is integrated to convey 

information on complex curvatures and shapes at subsequent sites in the extrastriate 

hierarchy. 
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Materials and Methods 

 

Preparation 

 Two adult cats (2.3 and 2.6 kg) were prepared for electrophysiological recordings 

in V1.  All procedures were performed in accordance with guidelines set forth by the 

American Physiological Society and the Institutional Animal Care and Use Committee at 

Vanderbilt University.  Prior to surgery, each cat received intramuscular injections of 0.5 

ml acepromazine maleate (10 mg/ml), 0.5 ml atropine sulfate (0.4 mg/ml), and 0.25 ml 

dexamethasone sodium phosphate (4 mg/ml).  Anesthesia was induced with 5% 

halothane in O2 and maintained with intravenous injection of Propofol (0.3 mg/kg hr).  

Two forelimb veins and the trachea were cannulated and the animal was positioned in a 

stereotaxic device where a craniotomy (6x6 mm) was performed over V1.  After the dura 

was excised, the electrode array was implanted and the opening was covered with a 

mixture of agar and mammalian Ringer's solution. 

 During recording, paralysis was induced with 6 mg pancuronium bromide and 

maintained through intravenous injection (Pavulon; 0.3 mg/kg hr).  Health and effective 

anesthesia were maintained by monitoring the EEG and ECG and administering bolus 

injections of propofol when necessary.  Cats were artificially ventilated with a mixture of 

N2O, O2, and CO2 (75:23.5:1.5) to hold expired pCO2 at 3.9%.  Rectal temperature was 

maintained at 37.5° C with a heating pad.  The nictitating membranes were retracted and 

the natural pupils dilated by instillation of phenylephrine HCl 10% and atropine sulfate 

1% in the conjunctival sacs.  Contact lenses with 4 mm pupils were placed on the corneas 

and auxiliary spectacle lenses were added as dictated by direct ophthalmoscopy to render 

the retinae conjugate with the stimulus plane at a distance of 57 cm. 
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Data Recording and Acquisition 

Simultaneous single-unit recordings were made from cells in the visual cortex via 

the Utah Intracortical Electrode Array (UIEA; Cyberkinetics Neurotechnology Systems, 

Foxborough, MA).  The UIEA recordings have good signal to noise ratios and have been 

shown to have qualities comparable to those from single-electrode recordings (Kelly et 

al. 2007).  Details of the array are described in Chapter 2.  The signal on each channel 

was amplified by 5000 and band-limited between 250 Hz and 7.5 kHz.  Thresholds were 

dynamic and set to 3.25x the mean activity on each electrode.  Waveforms were sampled 

at 30 kHz and preserved in 1.5 ms windows.  Channels with single-unit activity were 

used only if the activity was ≥ 5 spikes per second and showed clear orientation tuning 

(signal to noise ratio ≥ 2:1) while viewing drifting sinusoidal gratings.  In the end, we 

recorded from 81 single units, 79 of which were complex cells (Hubel and Weisel 1962; 

Skottun et al. 1991) with a mean relative modulation, F1/F0, of 0.23±0.17 (n = 79 cells).  

Unless otherwise stated, all cells were used for analysis. 

 

Stimulation 

All stimuli were displayed on a gamma-corrected SONY Trinitron 21" monitor 

driven either by a Cambridge Research Systems VSG2/3F controller board (for gratings) 

or a video controller using the WinVis software package (for natural images).  The 

monitor resolution was 800 x 600 pixels (22.6 pixels per visual degree) and displays were 

refreshed at 120 Hz.  All stimuli spanned 18°x18° and appeared against a mean 

luminance background (73 cd/m2).  The stimulus protocol contained natural, grayscale 

images from www.imageafter.com with three modifications (contrast reversal, noise 

addition, and frequency filtering; see Figure 4.1) presented for 2 seconds.  Grayscale 
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noise (3x3 pixels, 0.13º) was added to cover 20%, 30%, 40%, 50%, or 100% of the 

image.  Images were restricted in frequency content with the smooth sinusoidal-edged 

low-pass filter (extended to two dimensions) in Figure 4.1B, which reduces filtering 

artifact, where fc = 0.44 and 0.88 cycle/° and ω = 0.275 cycle/°.  (High-passed images 

used the reverse filter.)  Images were jittered 5 pixels (0.22°) in a random fashion (like an 

asterisk, returning to the origin) at 60 Hz to provide motion (Figure 4.1C).  This generates 

as much synchrony as drift (next paragraph), but anchors features within local receptive 

fields.  We did not see 60 Hz entrainment reflected in the power spectra of the neuronal 

responses and speculate that the use of random jitter directions reduced any 60 Hz 

transients to the level of noise.  There was a 1 second delay between each image, during 

which only the mean luminance was shown.  Each picture spanned 18°x18° to ensure 

stimulation of both classical and non-classical receptive fields of the entire recorded 

sample.  All presentations were randomly interleaved and repeated 100 times for 

reliability.  Three natural images (referred to as Image 1, Image 2, and Image 3; see 

Figure 4.1A) and their subsequent modifications were investigated.  All images were 

scaled to have a global contrast of 0.32 (see Touryan et al. 2005), but since the original 

image in each protocol served as a control, it was not necessary to normalize the images 

for other spectral content. 

While gratings have an inherent drift direction that is orthogonal to their 

orientation, natural images do not.  In a pilot experiment, we measured the amount of 

average firing rate (n = 47 cells) and synchrony between pairs of isolated single units (n = 

338 pairs with significant activity during one or more condition) viewing drifting or 

jittering natural images and found that average jitter synchrony, independent of jitter style 

(returning to origin or not), was statistically the same as synchrony generated during the 
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optimal drift direction.  Furthermore, normalized synchrony was independent of jitter 

step size (Figure 4.1D; we tested up to 9 pixels or 0.4 °) and firing rate.  Firing rate 

increased linearly with jitter step size and a step of 5 pixels generated 71.0% more spikes 

than the static condition.  On the other hand, synchrony is relatively independent of jitter 

step size (> 0) and a step of 5 pixels generated on average 27.1% more synchronous 

events than the static condition.  These results suggest that synchrony is constant for 

features anchored within their receptive fields despite temporal variations.  This is 

optimistic since we propose that synchrony is mainly generated from the spatial 

configuration of the stimulus.  Using jitter, synchrony is generated with a lower overall 

firing rate, which maintains the signaling of structural salience while reducing metabolic 

demand. 

 

Data Processing 

We have developed a method that detects and quantifies the amount of correlated 

activity in a neuronal assembly of arbitrary size.  Synchrony enhances the probability of 

eliciting postsynaptic action potentials (PSPs) when neurons behave as coincident 

detectors (Azouz and Gray 2003).  This encourages selective propagation of 

synchronously-coded information to subsequent levels of the cortical hierarchy.  Our 

basic algorithm reflects the relevance of group synchrony to postsynaptic neurons by 

modeling the temporal summation of PSPs.   Neurons with similarly-timed events are 

considered synchronous and the magnitude of synchrony depends on the degree of 

similarity.  The steps in this algorithm are discussed in Chapter 2. 

Due to the combinatorial arrangement of cells from the population, there are a 

very large number of potential inputs (identified groups) to the PSP algorithm.  If we 
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assume that only a small fraction of subsets in the population will synchronize to any 

given stimulus, then the probability of randomly testing combinations of cells and finding 

a significant assembly is very low.  Fortunately, we have found that members of larger 

assemblies can, in general, be predicted based on Normalized Scores from smaller 

assemblies.  This is because our definition of synchrony requires participation from all 

cells so large assemblies with significant synchrony must contain subsets of cells that 

synchronize.  This rule is used to suggest likely members of larger assemblies, but cannot 

predict assembly behavior, i.e. Normalized Scores from smaller assemblies cannot be 

combined in some way to produce a Normalized Score from a larger assembly.  We can 

compute a relatively low number of small assembly scores and progressively cluster cells 

that synchronize well to create an assembly of arbitrary size that has a high probability of 

synchronizing.  For instance, in a population of cells [A B C D], if pairs [AC AD CD] 

synchronize often and [AB BC BD] do not, a likely group of three cells to input into the 

algorithm is [ACD] as opposed to [ABC BCD].  (Note that cells are "clustered with 

replacement" so they can belong to more than one assembly.)  These large assemblies can 

then be entered into the PSP algorithm to determine if, in fact, their grouping is 

significant (to build larger assemblies from smaller ones, synchrony must exist between 

groups as well as within groups). 

 To establish our algorithm as a viable method for quantifying synchrony, we 

compared it to the Joint Peri-Stimulus Time Histogram method (JPSTH, Aertsen et al., 

1989).  The JPSTH can only quantify synchrony among pairs of neurons, so we focused 

on assemblies of size 2.  We found that the PSP method identified the same significant 

neuron pairs as the JPSTH, and cross-correlograms (CCGs) for a significant neuron pair 

derived from each method were qualitatively similar (Figure 4.2A).  The CCG from the 
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PSP Method was generated by shifting one spike train relative to the other and 

calculating the magnitude of synchrony at each lag from -100 ms to 100 ms.  Relative 

magnitudes of synchrony between assemblies differed between the methods due to the 

non-linear weighting scheme employed by the PSP Method compared to the constant (via 

binning) weighting scheme employed by the JPSTH.  As seen in Figure 4.2A, both CCGs 

have large central peaks indicating significant synchrony and periodic side lobes 

resembling oscillation.  The smooth appearance of the top graph is most likely due to the 

graded values available in the PSP Method as opposed to discrete spike counts in the 

JPSTH method. 

In larger groups, the uncertainties of normalization and firing rate dependence are 

minimized due to the very large ratios seen between chance and observed probabilities of 

synchrony as group size grows (Figure 4.2B).  Observed synchrony was calculated by 

averaging raw scores for 39 significant assemblies per size group during natural image 

stimulation.  Chance synchrony was calculated by averaging shift predictors computed 

for 200 randomly chosen assemblies in each size group (each shift predictor was 

computed as the mean of 100 different shift combinations for each assembly).  On 

average, significant assemblies of 2 cells contain twice the amount of synchrony expected 

by chance and assemblies of 6 cells contain 1500x more synchrony than expected when 

cells are firing independently (see also Schneidman et al. 2006).  

 

Results 

 We used a 10x10 microelectrode array and the PSP algorithm to record from and 

analyze the responses of cell assemblies in the visual cortex of two paralyzed and 

anesthetized cats during presentation of three natural images that were systematically 
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modified with noise, blur, and polarity-reversal.  We quantified the amount of 

synchronous activity generated during each modification and compared it to the average 

firing rate of each neuron.  (Note that these quantities are different and this comparison is 

methodologically difficult.  Results derived independently for each response type are 

qualitatively compared.)  The PSP algorithm was also used to explore the temporal 

dynamics of synchrony throughout the stimulus duration as well as to explore the 

mechanisms causing decreased cooperation with loss of structural integrity.  Finally, we 

quantitatively examined the receptive field organizations of three-cell assemblies and 

measured the synchronous activity generated as a function of relative orientation and 

receptive field overlap. 

We simultaneously recorded single-unit activity from 39 and 42 cells in two cats.  

Unfortunately, analysis of assembly constituents is not straightforward as each of these 

populations contains trillions of possible inputs to the PSP algorithm.  Evaluating the 

efforts of subgroups of cells leads to a combinatorial explosion of grouping possibilities 

and requires the identification of assemblies with significant cooperative activity.  

Especially during the initial response to stimulus onset, large numbers of cells organize 

cooperatively by responding within a short period of time.  Although the amount of raw 

synchronous activity in an assembly can be computed quickly, the Raw Score is not 

necessarily a good indication of significance since neurons with high firing rates tend to 

have more chance synchrony events that artificially inflate the Raw Score.  Therefore, 

Normalized Scores must be computed and analyzed instead.  Determining which 

assemblies have significant cooperation beyond that expected by chance requires 

statistical calculations that can be cumbersome for large numbers of assemblies.  For 

instance, approximately 68%, or 76,112 groups, out of all possible four-cell assemblies 
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were active in the visual cortex of cat 2 during the presentation of Image 1.  Fortunately, 

we found that the members of larger assemblies with significant activity can in general be 

predicted by the Normalized Scores from smaller assemblies.  This procedure is helpful 

to pinpoint larger assemblies of interest although not necessary if promising groups can 

be identified through other means, e.g., receptive field analysis. 

We used the PSP algorithm to compute the amount of synchronous activity 

among all pair-wise combinations of cells (N = 1602; 741 pairs from cat 1 and 861 pairs 

from cat 2) and used those results to cluster cells into larger assemblies.  This shortcut is 

justified since our definition of synchrony requires that all cells in a selected assembly 

participate in overlapping events and, hence, all subsets of that assembly must 

synchronize as well.  We found a total of 266 pairs that had significant activity (α = 0.01) 

for Image 1, 275 pairs for Image 2, and 214 pairs for Image 3.  These pairs were clustered 

to suggest larger assemblies (n = 3, 4, 5, and 6) which were then tested with the PSP 

algorithm to determine statistical significance until 50 assemblies of each size were 

identified.  Although even larger (n > 6) assemblies were identified (for instance, an 

assembly of 20 cells synchronized for 4 ms during the onset transient of one stimulus 

presentation), groups of 6 cells or less provided ample activity and consistency to study 

trends during the temporal dynamic analysis. 

 

Differential Measurements of Structural Degradation 

One challenge in analyzing synchronous responses to natural stimuli lies in 

pairing the responses to a specific stimulus attribute.  Spatial, temporal, and luminance 

properties may combine in any number of ways to elicit a given response.  To investigate 

the specific properties of natural stimuli that encourage assembly formation, we used 
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differential measurements, as commonly used in fMRI studies.  Our general strategy was 

to measure a response to a control image and then systematically vary the properties of 

that image.  Cooperative responses were compared to those elicited from the original 

image and the difference represented the consequences of the imposed modification. 

We used three different natural images and measured the effects of noise addition, 

frequency filtering, and polarity-reversal on the amount of firing rate and synchrony 

generated in assemblies of size 2, 3, 4, 5, and 6 cells.  We found that the average 

synchrony among each size group is reduced much more strongly than average firing rate 

across noise and low-passed conditions, yet remained the same for high-passed 

conditions.  We found no significant change in either response property for contrast 

reversal, indicating that synchrony is independent of luminance levels and, like firing 

rate, shows non-linear rectification in complex cells.  Average firing rate did not change 

significantly during any modification except the 100% white noise stimulus.  Average 

firing rate was compared on an individual cell basis with a paired t-test, not computed as 

an average over the entire assembly.  Since individual firing rates did not change 

significantly, it did not matter if we used the sum or product of firing rates across all 

members. 

 Figure 4.3 shows the relative change in synchrony and firing rate across each 

modification for Image 3.  For the noise conditions (Figure 4.3A), average synchrony in 

two-cell assemblies (n = 214) decreased by 33.9% (p < 0.00013) with 50% added noise 

and synchrony in six-cell assemblies (n = 50) decreased by 44.0% (p < 0.00002).  

Average firing rate (n = 42) only dropped by 3.7% (p > 0.3).  However, total elimination 

of stimulus structure was followed by a 79.0% reduction of synchrony among cell pairs 

and a 93.0% reduction among groups of six.  Average firing rate dropped significantly by 
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15.8% (p < 0.004).  For the spectrally-filtered conditions (Figure 4.3B), although 

synchrony decreased slightly for the high-passed images, there was no significant change 

across assembly size.  However, synchrony was measurably smaller across all sizes for 

the low-passed modifications (decreased by 11.4% and 44.7% for two cells and six cells, 

respectively, when frequencies above 0.88 cycles/° were removed; 20.0% and 57.5% for 

two cells and six cells, respectively, when frequencies above 0.44 cycles/° were 

removed).  Average firing rate was not significantly affected by removing specific 

frequency bands.  Finally, synchrony decreased slightly for all assembly sizes when 

viewing the contrast-reversed image (Figure 4.3C), but, like firing rate, there was no 

significant difference when compared to the original (p > 0.6 for synchrony in two-cell 

assemblies, p > 0.05 for firing rate). 

 

Temporal Dynamics 

 In the previous section, we showed that progressive structural degradation 

destroyed synchronous neuronal interactions while preserving firing rate statistics for the 

most part.  Here, we examine the temporal dynamics underlying synchrony and firing 

rate responses to the noise conditions.  In Figure 4.4A, we show an example post-

stimulus time histogram (PSTH) for a typical cell averaged over the presentations of 

Image 3.  The PSTH for each condition is computed for 1 ms bins using spike trains 

convolved with temporal kernels (PSP Trains) and normalized by the kernel area.  The 

maintenance of firing rate after structural degradation is shown over a 250 ms sliding 

window in 50 ms increments in Figure 4.4B and only for the complete loss of structure 

does firing rate show a pronounced decrease in spiking activity after the onset transient.  

However, even during the 100% noise image, 84.2% of the original firing rate is 
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maintained and may be accounted for by the extra spikes induced while the stimulus 

underwent jitter motion (refer to Figure 4.1C,D).  The pilot experiment predicted a jitter-

induced spiking percentage increase of 71.0%. 

In order to investigate the amount of synchrony generated throughout the stimulus 

presentation, we used the PSP algorithm to calculate Normalized Scores in a 250 ms 

sliding window moved in 50 ms increments (this window size was necessary to contain 

enough spikes for a reliable estimate).  This was applied to Image 2 and its five noise 

conditions (20%, 30%, 40%, 50%, and 100%).  The time course for one assembly with 

significant synchrony (p < 0.003) during the original image is mapped over all conditions 

in Figure 4.4C.  The introduction of noise reduced the amount of synchrony generated 

during the onset transient and throughout the stimulus duration until 100% noise 

completely destroyed the local structure and there was a substantial decrease in 

synchrony during the onset transient.  Similar to firing rate, synchrony is not completely 

gone during presentation of the white noise stimulus and the 21.0% that remains, on 

average, among pairs is well predicted by the 27.1% estimated to exist based on the 

motion-induced activity from stimulus jitter (refer to Figure 4.1C,D). 

In Figures 4.3, 4.4, and 4.5, image degradation by noise addition and low-pass 

filtering caused a reduction in the average amount of synchrony generated.  We 

concentrated on the responses of 50 four-cell assemblies to presentations of Image 1 and 

its low-passed modifications to determine what firing characteristics contributed to this 

reduction in synchrony (Figure 4.5A).  The factors influencing total synchrony are the 

number of spikes produced and the duration of synchronous episodes (Figure 4.5B).  

However, since the average firing rate of each cell was not reduced by image degradation 

(see Figure 4.5B), reduced synchrony must have resulted from a decrease in the amount 
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of time spent cooperating.  This component in turn can be divided into two quantities: the 

number of synchronous events and the total time window over which synchrony occurs 

during each event (by definition, maximum = 10 ms).  We found that on average, four-

cell assemblies spent approximately 2.9 ms firing together during each synchronous event 

and this value did not change across the different conditions.  However, the number of 

synchronous events did decline significantly, from 80 to 60 in the first low-passed 

condition and 60 to 46 in the second, more extreme, low-passed condition.  The reduction 

in synchrony by structural degradation thus results from a decrease in the number of 

synchronous events.  This reduced the proportion of synchronous spikes versus 

asynchronous spikes, which is our definition of synchrony for the PSP algorithm. 

 

Receptive Field Analysis 

Unlike simple stimuli, natural scenes have complex high-order spatial correlations 

(Field et al. 1993; Schwartz and Simoncelli, 2001).  Neighboring locations have similar 

color and intensity values and line segments are predominantly linear with a decreasing 

probability of greater curvature (Geisler et al. 2001; Sigman et al. 2001; Elder and 

Goldberg 2002).  Field et al. (1993) found that perceptual integration of oriented Gabor 

elements depended on their joint relative orientation and spatial position, which 

resembled the relationship of contour segments in natural scenes.  Like similar studies 

that suggest the structure and function of the visual system reflects the statistics found in 

nature (Barlow 1961; Kersten 1987; Field 1987; Simoncelli 2003), their concept of an 

association field (Field et al. 1993; Hess et al. 2003) was proposed as a behavioral 

correlate with specialized filter cells in the visual cortex.  Association field theory 

predicts linking between orientation-tuned cells that depends on the extent to which 
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receptive fields are aligned on notional contours.  Using cocircular stimulation, we found 

that synchronous activity in V1 tends to follow the predictions made by the association 

field in that synchrony was generated between pairs of cells with similar relative 

orientation and closer receptive field proximity (Samonds et al. 2006). 

 Here we examine the properties of receptive field configurations which generate 

significant amounts of synchrony in assemblies with more than two members.  We found 

that assemblies with large amounts of synchronous activity tended to be arranged such 

that all receptive fields followed the association field rules of alignment and spatial 

proximity (Field et al. 1993).  Alignment was computed as the maximum preferred 

orientation difference among all cells in the assembly.  Receptive field overlap was used 

as a measure of proximity and was computed as the ratio of overlapping area among 

individual fields to the total area subtended by the compound assembly receptive field 

(Figure 4.6C).  Since this measure is a percentage, it is normalized for receptive field size 

and eccentricity.  In addition, these measures can be calculated for larger assemblies 

without considering an increasing number of pair-wise combinations. 

 Figure 4.6A shows the receptive fields and orientation preferences of 3 three-cell 

assemblies on Image 1 and these groups were chosen for demonstration based on their 

matching firing rates.  For these three assemblies, we measured their average synchrony, 

average firing rate (computed as the mean over each cell’s individual firing rates after 

subtraction of the baseline activity measured during the null stimulus), maximum 

orientation difference in the group, and receptive field overlap (see Figure 4.6B).  Firing 

rates did not differ among the groups, and an increase in synchrony seen from Assembly 

1 to Assembly 3 corresponded to a decrease in the relative orientation preference between 

cells and an increase in receptive field overlap.  In fact, we measured these two 
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parameters across our population of 50 three-cell assemblies (Figure 4.6D,E) and found 

moderately strong correlations between them and synchrony (R2 = 0.53 for orientation 

and R2 = 0.63 for receptive field overlap). 

 

Discussion 

Using a novel analytical tool, we studied the responses of synchrony-defined 

neural assemblies to three natural images that had been modified with noise addition, 

frequency filtering, and contrast reversal.  For both noise addition and low-pass filtering, 

synchrony is reduced much more strongly than firing rate, and synchrony is sensitive to 

the degree of modification, unlike firing rate.  This reduction in the amount of synchrony 

was related to a decrease in the amount of total time spent in synchrony due to a decline 

in the number of synchronous events.  We found no significant change in either response 

property for contrast reversal, indicating that synchrony, like firing rate, shows luminance 

invariance and non-linear rectification in complex cells. 

When analyzing the evolution of synchrony over time we found that the largest 

amount of synchrony occurs during the onset response transient, even after normalization 

to compensate for chance synchronous events due to an increase in firing rate.  However, 

this quantity decreases with progressive structural degradation.  Similar to firing rate, the 

residual responses observed for synchrony during the white noise stimulus can be 

approximately accounted for by motion effects in which jitter motion during the stimulus 

presentation induced activity. 

Finally, we analyzed receptive field properties and found that the degree of 

neuronal synchronization correlates with receptive field configurations exhibiting good 

alignment and proximity, which suggests that the underlying local stimulus structure to 

 118



which the assembly is responding is configured with similar alignment and close 

proximity (e.g., like a continuous, well-defined contour).  In the examples from Figure 

4.6A, each assembly had a similar firing rate which indicates a sort of equal driving 

effectiveness between assembly and local image structure.  However, the differences 

reflected in the magnitudes of synchrony could be related to the different arrangements of 

local structure, specifically how well associated the structure is within the compound 

receptive field.  Orientation and proximity are hallmark properties of the association field 

(Field et al. 1993), which is based on the perception of contours and continuity.  Similar 

relative orientations contribute to axial alignment, or continuity, which is important since 

the responses of V1 cells are enhanced when co-aligned structure is presented outside the 

classical receptive field (Kapadia et al. 1995), but inhibited with co-oriented (parallel) 

stimulation in the non-classical periphery (Born and Tootell 1991). 

Supporting the notion that synchrony appears to encode contours that follow the 

association field rules is the observation that synchrony was not altered during 

presentation of high-pass filtered images.  In natural scenes, contours and edges are 

represented by high spatial frequencies that are retained after filtering.  From these 

preliminary observations we hypothesize that while firing rate signals the fundamental 

structure of the image, synchrony transfers information on fine detail, which is disrupted 

either by noise or low-pass filtering.  This is consistent with our earlier finding that 

synchrony signals fine, but not coarse, changes in orientation (Samonds et al. 2003). 

 

Implications for Contour Integration 

While the spatiotemporal filter design of neurons in the primary visual cortex is 

sufficient to represent the local contrast of edges within an individual receptive field 
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(Hubel and Wiesel 1962; Maffei and Fiorentini 1973), edges and contours that extend 

beyond the scope of one neuronal filter require the organized influence of other neurons 

for integration.  Several neuroanatomical and neurophysiological studies have proposed 

that contour integration is initiated by linking between orientation-tuned cells in the 

primary visual cortex (Hess, Hayes, & Field, 2003).  However, the mode and source (i.e., 

feedforward, feedback, lateral projections) of integration information is unknown, 

although V1 horizontal connections project primarily to orientation columns with similar 

orientation preferences (Malach et al. 1993; Bosking et al. 1997) and there are longer 

connections between axially aligned cells (Bosking et al. 1997). 

Synchronization of neural responses appears to link cells with similar orientation 

preferences (Eckhorn et al. 1988; Gray et al. 1989), and our previous study demonstrated 

that synchrony could also facilitate linking between cells with an alignment difference of 

up to 80 degrees (Samonds et al. 2006).  Here we demonstrate synchrony’s strong 

dependence on orientation (Figure 8D), which was enhanced by the close proximity of 

receptive fields.  Synchrony may allow for an adaptive mechanism of contour detection 

that links cells via short-term enhancement of synaptic effectiveness.  A possible 

mechanism is described by Womelsdorf et al. (2007) who demonstrated that an increase 

in assembly interactions is more likely when rhythmic activity between assemblies was in 

phase.  As receptive field properties may change with context (Pettet and Gilbert 1992), 

this plasticity would be beneficial by having a virtually-connected system instead of 

overcoming hard-wired anatomical restrictions.  Synchrony can then identify salient 

contours, which have the potential to be integrated at subsequent locations in the 

extrastriate hierarchy. 
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Temporal Dynamics of Larger Assemblies with the PSP Algorithm 

While array technology allows for the simultaneous single-unit recording of 

dozens of neurons, current analysis methods are insufficient to completely describe 

cooperative population activity.  Perkel et al. (1967) introduced the cross-correlation 

histogram (CCH) method to quantify cooperative relationships between pairs of neurons.  

However, CCHs and other techniques such as the Joint Peri-Stimulus Time Histogram 

(JPSTH; Aertsen et al. 1989) cannot characterize the synchrony between more than two 

cells.  The CCH has been extended to include cooperation among three cells (Gerstein 

and Perkel 1972; Perkel et al. 1975; Abeles and Goldstein 1977), but the resulting display 

is limited to triangular coordinates and cannot be applied practically to larger assemblies.  

Other techniques such as gravitational clustering (Gerstein and Aertsen 1985; Gerstein et 

al. 1985) identify cells that fire together, but the results are qualitative, do not allow for 

dynamic grouping, and are still based on pair-wise distance calculations. 

 However, one important feature of the JPSTH and gravitational clustering 

methods is that cooperative activity can be tracked over time.  We introduced the PSP 

algorithm, which tracks synchronous events and includes the added capability of 

analyzing any arbitrary number of neurons.  In the PSP algorithm, synchrony is computed 

as a fraction of total activity within an assembly and can be monitored dynamically 

throughout the stimulus presentation.  Like firing rate, averaging synchrony across the 

entire presentation masks any information that is time-dependent and may be strongly 

affected by events such as the stimulus onset.  On the other hand, examining the temporal 

evolution of synchronous activity may aid in understanding the neural substrate of 

synchrony, e.g., feedforward or feedback influences. 
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Investigating Natural Stimulation 

While natural images are the most practical way of stimulating an army of cells, 

they are also fundamentally necessary for understanding the role of synchrony.  The 

historic use of spatially or spectrally pure stimuli (lines, gratings) allowed controlled and 

systematic manipulation of the visual environment.  This was founded on the 

presumptions that responses to simple stimuli could be used to describe the processing of 

more complex stimuli.  However, more recent descriptions of previously unsuspected 

interactions such as receptive field reorganization due to stimulation of the non-classical 

periphery (Pettet and Gilbert 1992) suggest that we may not yet have a realistic model for 

cell behavior in the context of behavioral vision.  For instance, David et al. (2004) found 

that natural tuning properties are not well-predicted from responses to grating sequences.  

This could be due in part to the reduced effectiveness of simple stimuli (as opposed to 

natural scenes) in driving cortical cells (Rieke et al. 1995).  Since responses of V1 

neurons to natural stimuli are both qualitatively and quantitatively different from those to 

simple stimuli (Baddeley et al. 1997; Kayser et al. 2003), progress in understanding the 

cellular support of behavioral vision must rely on natural image stimulation. 
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CHAPTER V 

 

SYNCHRONOUS ACTIVITY IN CAT VISUAL CORTEX DETECTS COMPLEX 
CONTOURS IN NATURAL IMAGES 

 

Introduction 

 In striate cortex, the spatiotemporal filter characteristics of individual neurons and 

the localization of their classical receptive fields limit their responses to a restricted range 

of information contained within the input.  More specifically, the emergence of enhanced 

specialization for certain stimulus parameters such as spatial frequency, orientation, and 

direction allow cells to respond selectively to local contrast patches (Hubel and Wiesel 

1962).  In natural images, contrast gradients can exist for object boundaries, texture 

patterns, surface shading, and shadows.  As simple edge detection mechanisms (Marr and 

Vaina 1982), V1 neurons parse images into their basic structural elements.  However, 

many of these candidate edges reflect spurious contrast information from uninteresting 

properties of the stimulus that do not necessarily contribute to the description of salient 

visual features.  Relevant contrast segments that define important stimulus structures are 

grouped together by the visual system to give the perception of global elements such as 

complex contours and complete figures, but the mechanism supporting this grouping (the 

binding problem; Treisman 1996) is poorly understood. 

 The temporal binding theory (Milner 1974; von der Malsburg 1981) postulates 

that the firing of neurons which identify related contour segments are linked through 

neuronal synchronization.  The first neurophysiological experiments linking synchrony 

and feature integration used drifting light bars (Eckhorn et al. 1988; Gray et al. 1989).  

This type of coherent collinear stimulation yielded synchrony between pairs of neuron 
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clusters with similar orientation preferences and collinear receptive fields. However, if 

synchrony is involved in feature integration, then it should be observed between cells 

with different orientation preferences given the appropriate stimulation.  In fact, 

collinearity among receptive fields is a special case of the more general property of 

cocircularity (Parent and Zucker 1989) in which receptive fields have orientation 

preferences that are tangent to the same circle.  Cocircular structures are ubiquitous in 

natural scenes (Geisler et al. 2001; Sigman et al. 2001; Elder and Goldberg 2002) and the 

predictable relationship between cocircular segments has been proposed as the foundation 

of contour integration (Field et al. 1993).  Inspired by psychophysical studies, Field et al. 

(1993) introduced the association field framework which describes the perception of 

contours and continuity.  In this paradigm, contour segments are grouped depending on 

proximity and the similarity of their orientations.  Applying these concepts to 

neurophysiology, association field theory predicts linking between orientation-tuned cells 

that is dependent on their joint relative orientation and spatial position. 

 By using an experimental protocol consisting of drifting sinusoidal gratings and 

concentric rings, we tested synchrony's adherence to association field rules by seeing if it 

predictably existed for pairs of cells with different orientation preferences, but whose 

receptive fields still had cocircular alignments (Samonds et al. 2006).  Using a 10x10 

microelectrode array, we simultaneously recorded from multiple single-units in areas 17 

and 18 of anesthetized cats and found that neuron pairs synchronized based on an 

appropriate match between stimulus curvature and receptive field configuration.  

Furthermore, synchronous responses were more reliable than changes in average firing 

rate in discriminating between concentric ring and grating stimuli.  Group membership 
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was found to be dynamic in that individual cells could belong to more than one functional 

group, which assembled based on the spatiotemporal properties of the stimulus. 

   Analyses of electrode distance, receptive field overlap, and synchronous lag times 

show that the magnitude and probability of observing synchrony among cell pairs 

matched the fundamental prediction of the association field theory.  Extending collinear 

synchrony results (Eckhorn et al. 1988; Gray et al. 1989) to cells with cocircular 

receptive field properties is vital in establishing synchrony's role in complex feature 

integration.  In this paper, we measured synchrony's dependence on the proximity, 

orientation, and alignment of assembly receptive fields during natural stimulation and 

used these parameters to create an index of association.  Synchrony was moderately 

correlated with this index showing adherence to the association field rules for larger 

neural assemblies and complex natural features.  By quantitatively correlating 

synchronous activity to local contrast structure, we found that cooperative activity is 

driven by a continuous, well-defined contour.  Furthermore, synchrony measured 

between assemblies driven by different contours on the same or different objects was 

inhibited.  These findings suggest a more global and purposeful function in which 

synchrony detects related contour segments, which have the ability to be integrated at 

higher processing centers throughout the visual system. 

 

Materials and Methods 

 

Data Recording and Acquisition 

 Four adult cats (2.5-4.0 kg) were prepared for electrophysiological recordings in 

the primary visual cortex.  All procedures were performed in accordance with guidelines 
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set forth by the American Physiological Society and the Institutional Animal Care and 

Use Committee at Vanderbilt University and are described in Chapter 2.  Simultaneous 

single-unit recordings were made from cells in the visual cortex via the Utah Intracortical 

Electrode Array (UIEA; Cyberkinetics Neurotechnology Systems, Foxborough, MA).  

The UIEA recordings have good signal to noise ratios and have been shown to have 

qualities comparable to those from single-electrode recordings (Kelly et al. 2007).  The 

implant is a square 10x10 silicon array (electrode length of 1.0 mm), which is inserted to 

a depth of 0.6 mm with a pneumatic implantation tool (Rousche and Normann 1992) that 

minimizes tissue damage (Schmidt et al. 1993; Rousche and Normann 1998).  The 

insertion depth concentrates the electrodes in layers II/III and avoids impact to the 

cortical surface by the electrode base.  The wires from the array to the amplifier are 

flexible, which enhances stability and allows for reliable recording sessions of more than 

thirty hours.  Thresholds are dynamic and set to 3.25x the mean activity on each electrode 

and waveforms are sampled at 30 kHz for 1.5 ms windows.  Viable channels are 

processed with a MATLAB-based spike-sorting program to remove noise and artifact 

(Shoham et al 2003).  Approximately 5% of channels with multi-unit activity were 

discarded.  Channels with isolated single-unit activity were used only if the activity was ≥ 

5 spikes per second and showed clear orientation tuning (signal to noise ≥ 2:1) when 

viewing drifting sinusoidal gratings.  We recorded from 134 single units, 125 of which 

were complex cells (Hubel and Weisel 1962; Skottun et al. 1991) with a median relative 

modulation, F1/F0, of 0.06 (n = 125 cells).  All cells were used for analysis. 

 

Stimulation 

We tested two different types of stimuli: drifting sinusoidal gratings and a natural 
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image sequence.  In order to estimate receptive field properties during the experiment, we 

used the grating protocol to reveal orientation tuning preferences (Nishimoto et al. 2005), 

which were subsequently used during manual mapping of receptive field extent and 

location.  The center of the aggregate activity was determined and used to align the 

stimuli to maximize neuronal responses from the majority of the recorded population.  

All stimuli were displayed on a gamma-corrected SONY Trinitron 21" monitor with a 

resolution of 800 x 600 pixels (22.6 pixels per visual degree) driven either by a 

Cambridge Research Systems VSG2/3F controller board (for gratings) or a video 

controller using the WinVis software package (for the natural image sequence).  Displays 

were refreshed at 120 Hz, which avoided entrainment artifact (Wollman and Palmer 

1995; Snider et al. 1996).  The natural stimulus protocol (Figure 5.2A) contained a 

sequence of 336 natural, grayscale images from www.imageafter.com, each rotated at 9 

angles (40° to 360°, in 40° increments) for an effective stimulus set of 3024 pictures, 

presented for 500 ms followed by a mean luminance (73 cd/m2) interval of 500 ms.  In 

addition, there were two null stimuli during which only the mean luminance was shown.  

Each presentation was static, images were randomly interleaved, and the entire sequence 

was repeated 8, 9, 10, or 13 times for reliability.  All stimuli spanned 18°x18° and were 

scaled to have a global contrast of 0.32 (see Touryan et al. 2005). 

 

Data Processing 

 Since previous measures quantify correlation among pairs of cells (Perkel et al. 

1967; Aertsen et al. 1989), we have developed a method that detects and quantifies the 

amount of synchronous activity in a neuronal assembly of arbitrary size.  As a 

hypothetical neural substrate for encoding salient stimulus properties, synchrony 
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enhances the probability of eliciting postsynaptic action potentials (PSPs) when neurons 

behave as coincident detectors (Azouz and Gray 2003).  Our basic algorithm (described 

in detail in Chapter 2) is designed to reflect the relevance of group synchrony to 

postsynaptic neurons by modeling the temporal summation of postsynaptic potentials.  

The steps in the algorithm are as follows: (Step 1) Convert spike waveforms to point-

process spike trains.  (Step 2) Convolve point-process spike trains with an alpha function 

to create PSP trains.  (Step 3) Determine the time windows (ts) during which all PSP 

trains exhibit activity.  (Step 4) Add PSP trains from all cells to get PSP activity for the 

entire assembly.  (Step 5) Integrate the assembly activity over ts and t then divide to 

compute the Raw Score.  (Step 6) Compute Chance Score by shifting 1 or more stimulus 

periods and repeating Steps 1-5.  (Step 7) Compute statistical significance and normalize 

the magnitude of synchrony. 

By convolving a point-event spike train with a truncated (10 ms) alpha waveform, 

we derive a similarity measure that is conscious of time.  PSP trains for a group of cells 

can be summed and compared to identify spike times that are coincident.  The magnitude 

of synchrony is computed as the ratio of the area under coincident waveforms to the total 

area under all waveforms in the assembly.  Unlike other approaches, this can be applied 

to neural assemblies of arbitrary size, not just pairs.  Also, the temporal dynamics of 

synchrony can be monitored throughout the stimulus presentation.  By using the shift 

predictor (Step 6; Perkel et al. 1967), we can resolve and separate sources of synchrony 

in order to normalize our results for the effects of firing rate.  However, the uncertainties 

of normalization and firing rate dependence are minimized due to the very low 

probability of chance events as group sizes grow. 
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Results 

 To examine the specific relationships between complex natural stimulus structure 

and synchronous activity in assemblies of 2-8 cells, we used a sequence of natural images 

to elicit responses.  The receptive fields of the synchronously-driven cells were then 

compared to the image to identify the local contrast structure driving each interaction.  

Using a broad selection of natural images offers an efficient approach for analyzing the 

complex spatial organization of larger assemblies.  We determined the relevance of 

association field concepts (Field et al. 1993) to the grouping of cooperative members by 

studying how the magnitude of synchrony was affected by the orientation, proximity, and 

continuity of neighboring receptive fields.  Data from these dependency studies were 

integrated to create a Contour Index, which described how well an aggregate receptive 

field conformed to a well-associated contour configuration.  Together with a Contrast 

Index, which estimates the expected firing rate response, these measures quantified the 

relationship between synchronous assembly and contour structure in natural scenes.  

Finally, we investigated the viability of inter-assembly linking as a binding mechanism 

for multiple related contours. 

 Using a 10x10 microelectrode array, we simultaneously recorded from 134 cells 

in the visual cortex of four paralyzed and anesthetized cats.  The number of candidate 

grouping possibilities offered by the size of our moderate recording population is 

exhaustive and cannot be analyzed in its entirety.  Instead, we sampled these 

combinations by choosing assemblies of 2-8 neurons with an assortment of receptive 

field layouts.  Assemblies with a range of orientation preferences, proximities, and 

alignments were chosen to optimize responses to the variety of structural information in 

the natural image sequence.  We used different thresholds for each parameter to find over 
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one thousand assemblies in each size group (N = 1399, 1166, 1379, 1432, 1394, 1422, 

and 1373 for assembly sizes 2-8, respectively).  Because of the broad range of spatial 

structures contained within the sequence, each identified assembly synchronized beyond 

the chance level (significance was measured with the PSP Method using α = 0.01) to at 

least one image and usually to several images with similar features. 

 

Resolution of Trigger Features for an Assembly 

 We have previously shown that synchrony between cell pairs can represent 

cocircular contours (Samonds et al. 2006), suggesting that synchrony within larger 

assemblies may be involved in encoding more complex contours.  To investigate the role 

of synchrony as a contour-encoding mechanism in natural vision, we measured the 

synchronous responses of larger neural assemblies to a sequence of 3024 natural images.  

In a previous study (Chapter 4), we found that the degree of synchrony depended on the 

coherence of visual structure and was negatively influenced by spatial modifications like 

noise addition and frequency filtering.  While those results yield information on how 

assemblies respond to global image manipulations, they do not address the particular 

spatial structure that might provide ideal stimulation for the group.  In a method adapted 

from Smyth et al. (2003) and Weliky et al. (2003), we presented the natural image 

sequence and identified images that elicited strong synchrony and firing rate responses in 

a given group.  Orientation and spatial frequency components filtered by the measured 

selectivity and spatial localization of each cell in the assembly were extracted from each 

image (see Appendix), summed together and weighted by the magnitude of the response.  

The resulting composite synthesized a stimulus attribute seen in each picture or combined 

different structural features to create a new attribute that was ideal for the group. 
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 For each assembly, synchrony responses were measured across the image set and 

normalized by the maximum response.  The firing rate of each cell was normalized by its 

maximum response and responses from each cell in the assembly were averaged together 

to compute the group response.  The firing rate response for each assembly was measured 

for each image in the sequence and normalized by the maximum group response across 

all stimulus conditions.  On the same scale, the synchrony and firing rate responses were 

then averaged to calculate a combined response for each stimulus.  We combined these 

quantities because we wanted to investigate synchrony when all cells were being 

optimally driven.  The top ten images with the largest combined responses were selected 

for feature extraction.  The orientation preference, spatial frequency tuning, and location 

of each receptive field in the assembly were used to filter the image for the local contrast 

information to which the cell is responding.  The contrast segments from each neuron 

were summed together to produce filtered visual information for the entire assembly.  

The extracted features from the top ten images were weighted by their combined 

response and summed to produce a composite element that embodied preferred features 

for the assembly. 

 Figure 5.1 shows trigger features for two assemblies of four neurons.  In Figure 

5.1A, the best images elicit large synchrony and firing rate responses and the synthesized 

features resembles a well-defined contour.  A similar contour from different images was 

reliably and consistently signaled by the assembly activity and this selectivity has been 

manifested by the composite of extracted features.  In Figure 5.1B, a different assembly 

shows an enhanced selectivity for an acute corner feature seen across multiple images.  

This feature generated the highest combined response, but overall synchrony levels were 

low when compared to the first assembly.  In both cases, the firing rate responses 
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suggested each assembly was driven adequately by the stimulus, but some property of the 

first assembly was more conducive to cooperation.  We hypothesize that this property 

was related to the spatial relationship between receptive fields.  In Figure 5.1A, receptive 

fields from each cell had similar orientations, closer proximities, and better alignment as 

compared to the assembly in Figure 5.1B. 

 

Association Field Correlations 

   Unlike simple stimuli, natural scenes have complex high-order spatial 

correlations (Schwartz and Simoncelli 2001).  In an image, neighboring locations have 

similar color and intensity values and line segments tend to be arranged in a collinear or 

cocircular fashion (Geisler et al. 2001; Sigman et al. 2001; Elder and Goldberg 2002).  

First-order image statistics describe individual pixel intensities, whereas second-order 

statistics describe correlations between pairs of pixel values.  Higher-order statistics are 

needed to describe local features such as contours, surfaces, and textures.  To 

psychophysically investigate how the visual system codes contour continuity, Field et al. 

(1993) studied the integration of contours made from spatial frequency narrowband 

elements.  By using Gabor patch segments, the investigators systematically varied the 

spatial properties relating adjacent elements to understand the perceptual discrimination 

of grouped segments from random background constituents.  These results formed the 

foundation of a theory known as the association field, which describes the perception of 

contours based on continuity.  In this model, the probability of perceptual grouping is 

higher when neighboring contour segments are close and have similar orientation and 

alignment. 
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 Numerous studies suggest the visual system may be optimized for processing the 

statistics of natural scenes (Barlow 1961; Kersten et al. 1987; Simoncelli 2003).  A 

neurophysiological correlate of the association field using orientation-tuned cells in V1 

would provide a direct link between physiology and perceptual behavior.  This theory 

predicts linking between neurons that is dependent on their joint relative orientation and 

spatial position.  The results of our previous study (Samonds et al. 2006) suggest that 

synchronous activity in the primary visual cortex is consistent with the association field.  

Pairs of cells synchronized to drifting sinusoidal concentric rings as long as their 

orientation preference and separation varied predictably by association field rules.  To 

extend these findings to larger assemblies viewing more complex contours, we tested the 

hypothesis that synchrony would depend on the degree of association among assembly 

member receptive fields (see Figure 5.2B).  We measured the synchrony from the image 

with the highest combined response for each assembly and plotted it against the receptive 

field parameters of proximity, orientation, and continuity (the next section describes how 

each measure was computed).  Figure 5.2C shows the correlation between synchrony and 

each property for 399 assemblies of four cells observed during the same experiment.  The 

magnitude of synchrony is moderately dependent on each property (R = -0.48 for 

proximity, R = -0.56 for orientation, and R = -0.57 for continuity), suggesting adherence 

to the association field predictions for larger assemblies and complex contours. 

  

Contour Quantification Analysis 

The results from Figure 5.1 suggest that the specific feature that best drives a 

synchronous assembly is a continuous, well-defined contour.  We wish to quantitatively 

describe the contour content in natural images, but this is a challenging task.  Contour 
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presence depends on contrast, blur, occlusions, and numerous other qualities that make 

identifying contours a subjective matter.  Detection is also dependent on which assembly 

is viewing the image as contours will be “present” only if they fall within the assembly’s 

aggregate receptive field.  In order to quantitatively measure whether synchronous 

activity within assemblies is signaling contours in natural images, we have created a two-

part measure based on the rules of implication (Figure 5.3).  The first measure relates 

how well a contour structure fits an assembly’s receptive field configuration and the 

second measures how well the assembly’s receptive field configuration fits an image.  

Together, these measures describe how well a contour structure fits the part of the image 

the assembly is viewing.  Good matches for each measure imply that the contrast 

structure eliciting a response from the assembly is arranged as a contour. 

Here we will quantitatively relate the contour content of images to the spatial 

organization of the cells composing the synchronous assembly.  The association field 

theory (Field et al. 1993; Hess et al. 2003) describes three properties of contour 

association: proximity, orientation, and continuity.  In this paper, delta (δ) is the distance 

metric and represents the Euclidean distance between the centers of two neighboring 

receptive fields.  This measure is normalized by the average width of the receptive fields 

in order to control for eccentricity.  Distance values less than unity reflect overlapping 

receptive fields and those above unity are spatially distinct.  In assemblies with more than 

two cells, this metric is computed as the average distance between consecutive 

neighboring receptive fields in a directed manner such that proximity is minimized within 

the assembly.  Theta (θ) is the orientation metric and represents the difference in 

preferred orientations between neighboring cells.  In assemblies with more than two 

neurons, this value is computed as the average difference in preferred orientation between 
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consecutive neighboring receptive fields and is an indication of curvature.  Again, this 

follows the same direction as distance and has a maximum value of 90°.  Phi (φ) is the 

continuity variable and is computed as the minimum difference between the orientation 

preferences of neighboring cells and the angle of a vector drawn between their receptive 

field centers.  For assemblies with more than two cells, this metric is computed as the 

average continuity in directed neighboring cells and represents the degree of receptive 

field alignment (Field et al. 1993; May and Hess 2007). 

 Although Hess et al. (2003) described a more prominent perceptual discrimination 

effect for continuity than proximity and our results from Figure 5.2 suggest that 

synchrony is slightly less correlated with proximity, the three metrics described above are 

normalized (which gives equal weighting to each property) and integrated into one 

variable as the elements of a three-dimensional vector in “association space.”  However, 

this vector scales with an increase in these properties and thus represents and indication 

of poor association.  Therefore, we have defined a new variable, C, which is termed the 

contour index: 

max

1 RC
R

= −              (5.1) 

The contour index is a number between 0 and 1 and represents the degree to which an 

assembly’s receptive field properties fit a contour configuration as described by the 

association field theory.  Receptive fields arranged with good association (distance, 

orientation, and continuity) will resemble a contour structure and have a contour index 

near one.  Assemblies with poor receptive field associations will have a contour index 

near zero. 
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 For the second measure, we needed to relate how well the receptive fields of an 

assembly match an image.  A good indication of how well receptive field tuning is 

matched to the contrast structure in an image is the firing rate.  A similar measure can be 

computed by measuring the local contrast information in the image in the area covered by 

the receptive fields of the assembly.  Pooled cell activity is directly linked to local 

contrast structure (Weliky et al. 2003), so these measures are correlated (see Figure 

5.4A).  To compute the amount of contrast information in an image, we used a procedure 

modified from Weliky et al. (2003).  We first created a feature matrix by extracting the 

orientation and spatial frequency components in the image matching the tuning properties 

of each cell in the assembly and summing them together (Figure 5.3B; see Appendix).  

Next, we computed the absolute value of the feature matrix, computed the area 

(AreaFeatures), and normalized it by the area subtended by the receptive fields (AreaRF, 

where areas covered by more than one receptive field are counted multiple times).  This 

creates a measure, I, called the contrast index which describes the degree of fit between 

an assembly and an image: 

Features

RF

AreaI
Area

=         (5.2) 

The contrast index can be used to estimate the firing rate response of an assembly in 

order to avoid using variable responses from different stimulus trials or evaluate images 

for testing. 

 Using the same assemblies as in Figure 5.2C, Figures 5.4A-F display the different 

correlations for synchrony, firing rate, contour index, and contrast index.  As mentioned 

above, firing rate and contrast index are highly correlated since the contrast index is an 

estimator of firing rate.  Synchrony computed with the PSP algorithm is normalized for 
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firing rate effects, but these quantities (and synchrony vs. contrast index) show a slight 

correlation because we imposed one by looking at the stimuli with the largest combined 

response.  The small correlation coefficient suggests that the images with the largest 

synchrony response were often not the ones with the largest firing rate response.  On the 

other hand, synchrony is moderately correlated with the contour index, suggesting that 

cooperative activity depends on the spatial configuration of the assembly when there is an 

appropriate match between assembly and image structure.  This means that when 

assemblies have a good association, they synchronize to contrast segments that also have 

a good association, i.e. a contour.  There is a weak correlation between firing rate and 

contour index (contrast index vs. contour index), which may be due to the abundance of 

contour structure in natural images.  Figure 5.4G shows an example of four neurons 

viewing stimuli in which the contrast indices are matched, but the contour index is higher 

for the group on the left.  These metrics work together by showing that the contrast 

structure to which the assembly is responding has a higher probability of being arranged 

in a contour as compared to the assembly on the right. 

 

Dynamic Grouping 

A coding strategy involving dynamic synchronization of neuronal responses 

offers tremendous advantages in terms of coding capacity.  The physical mechanism 

underlying synchrony would allow for neurons to be effectively connected and form 

dynamic local circuits to efficiently transmit information about the visual environment.  

Dynamic grouping also provides a way to multiplex visual information within a neuronal 

spike train while allowing neurons to participate in multiple functional assemblies to 

recover all the structure represented in a visual scene.  Organization of assemblies could 
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result from changes in the precise temporal structure of spikes trains, which produces a 

short-term enhancement of synaptic effectiveness (Hayek 1952).  In this manner, groups 

of cells could assemble and disassemble during certain tasks and individual cells could 

belong to more than one functional group.  Furthermore, uncorrelated groups could 

coexist without interference. 

We investigated whether synchronous activity between assemblies may constitute 

the foundations of a linking mechanism for features of the same object.  We found thirty-

eight instances of dynamic grouping in which two pairs of cells synchronized with a third 

neuron, but did not synchronize with each other (Figure 5.5A).  These different functional 

groups signaled different objects (image on left) or different features of the same object 

(image on right).  The magnitude of synchrony was significant within each group (N = 76 

3-cell assemblies, N = 76 cooperative pairs, and N = 152 uncooperative pairs), but 

synchrony was inhibited between groups by 31.9%.  The magnitude of synchrony 

between uncooperative assemblies was significantly below that expected by chance 

correlations from firing rate effects (p < 0.004).  These results suggest that different 

functional groups do not interact at this stage of processing.  However, synchrony is 

involved in signaling contours and is consistent with a detection mechanism. 

Concerning the role of synchrony in the visual cortex, several neurophysiological 

studies have been unable to find unambiguous relationships between synchrony and 

specific visual tasks designed around segmentation or figure-ground discrimination 

(Lamme and Spekreijse 1998, Thiele and Stoner 2003, Roelfsema et al. 2004, Palanca 

and DeAngelis 2005).  Perhaps the definition of synchrony is too narrow for these tasks.  

Since synchrony strength decreases with increasing distance between electrodes (Singer 

and Gray 1995; Eckhorn 1994; Das and Gilbert 1999), we should consider recruitment of 
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neurons across the cortex.  Our definition of synchrony requires all members of a selected 

assembly to contribute to overall cooperation, but does not consider assemblies in which 

delayed synchrony (i.e., not present at stimulus onset, but developing throughout the 

presentation) may link small assemblies, especially across large distances in the visual 

field.  Such a mechanism (Figure 5.5B) could recruit neurons over a broad cortical 

distance using top-down influences from feedback or lateral connections.  Unfortunately, 

although we found dynamic grouping as in Figure 5.5A, the cooperation was concurrent 

(not delayed) and did not exist for segments of the same feature.  Our inability to find 

examples of recruitment support psychophysical results that suggest linking is not 

iterative (Hess et al. 2001). 

 

Discussion 

 The importance of synchrony in the process of natural vision remains unknown 

and natural images offer an efficient approach for analyzing the complex spatial 

organization of larger assemblies.  We presented broad selections of natural stimuli and 

identified the appearance of repeatable and reliable cooperative interactions within the 

cell population.  Using concepts from the association field theory (Field et al. 1993; Hess 

et al. 2003), we quantitatively correlated synchronous interactions with unique visual 

features in the scene to determine how synchrony is governed by the specific association 

among cells.  We found that the magnitude of synchrony correlated moderately with the 

spatial relationships (proximity, orientation, and alignment) of receptive fields in the 

assembly.  These parameters were combined into one metric that described how well the 

assembly organization fits an association-defined contour.  Synchrony was moderately 

correlated with this index (R = 0.597), which quantitatively showed that the receptive 
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fields of cells within an assembly tended to be aligned on a complex contour in the image 

with the highest combined (synchrony and firing rate) response.  Preferred contours are 

reliably detected across multiple images.  We propose that higher-order features found in 

natural images (e.g., complex contours) are responsible for the high selectivity of 

synchrony because adequate descriptions of high-order spatial correlations require the 

coordinated response of multiple cells.  This process is cumulative, in that more complex 

structures require larger neural assemblies for accurate description.  This most likely 

reflects the need to combine more elemental image features represented by individual 

cells in order to represent the complex features. 

 

Neural Mechanisms Underlying the Association Field 

 The consistency of synchronous activity with the predictions made by the 

association field suggests that the two may be inherently related and served by the same 

underlying cortical machinery.  Results such as those in Figures 5.1 demonstrate an 

enhancement of synchrony for well-associated neurons viewing continuous contours, but 

little or no synchrony is observed for incoherent contour segments.  The responses of 

neurons in the primary visual cortex change depending on surrounding information in the 

visual field (Knierim and van Essen 1992; Kapadia et al. 1995).  For example, neurons 

increase their response when stimulated by edge segments that are aligned with similar 

elements outside their classical receptive fields (Kapadia et al. 1995).  Similarly, 

psychophysical results show that humans demonstrate increased sensitivity to certain 

edge segments when they are aligned with other edges (Polat and Sagi 1994; Kapadia et 

al. 1995).  Horizontal connections in the primary visual cortex could account for this 

phenomenon and represent neural connections that link cells with similar receptive field 
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properties (Rockland and Lund 1983; Gilbert 1992).  The underlying anatomical 

mechanism for the surround effect could be facilitated by the long-range horizontal 

connections linking cells with a separation of more that 4 mm (Kapadia et al. 1995; 

Gilbert 1992).  These connections extend from excitatory pyramidal neurons and reach 

postsynaptic cells that can be excitatory or inhibitory (Gilbert 1992; Hirsch and Gilbert 

1991; Weliky et al. 1995).  Furthermore, horizontal connections are asymmetrical 

extending for a longer distance along the axis of the receptive field (Rockland and Lund 

1983; Gilbert and Wiesel 1983; Fitzpatrick 1996; Bosking et al. 1997).  

 

Network Oscillations 

 Horizontal connections may also be linked to the coherence of gamma oscillations 

in neural responses (Gray et al. 1989; Gray and Singer 1989; Eckhorn et al. 1988).  Gray 

et al. (1989) used multiple electrodes to record the activity of collinear neuron clusters in 

the primary visual cortex of anesthetized cats to bar stimuli.  Using cross correlation 

analysis, they examined the correlated timing of firing between pairs of clusters when 

stimulated with 1) two light bars moving in opposite directions; 2) two light bars moving 

in the same direction; and 3) a long light bar moving across the receptive fields instead of 

two short light bars.  When a long light bar was used to stimulate the receptive fields, the 

magnitude of synchrony observed was highest. 

 We have shown that synchrony between single units can be observed for neurons 

with wholly different preferred orientations, but still mainly follow association field rules 

(Samonds et al. 2006).  With this information and findings from Chapter 3 and Zhou et 

al. 1998, we propose that synchrony is initiated during the onset response and correlates 

with the contour information in the stimulus.  This activity is then maintained by network 
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oscillations (Samonds and Bonds 2005) via lateral connections, which shapes synchrony 

to conform to association field rules. 

 

Appendix: Extracting Orientation and Spatial Frequency Components from an 

Image 

 To aid in the investigation of whether synchronous responses of assemblies in the 

primary visual cortex encode contours in natural images, we used the objective measure 

described by Weliky et al. (2003) to quantify two-dimensional contrast structure in the 

image falling within each cell's classical receptive field (Figure 5.A1).  Any image (A) is 

comprised of an intensity value at two given spatial coordinates and can be transformed 

into an equivalent Fourier representation in the frequency domain (D).  Jean Baptiste 

Fourier showed that any signal could be reconstructed by summing a series of sine waves 

with appropriate phase and frequency.  In our case, the signal is two-dimensional and 

each point in the Fourier transform reflects the magnitude of a two-dimensional sine 

wave with a specific orientation and spatial frequency.  Most neurons in the primary 

visual cortex respond selectively to simple sinusoidal stimuli restricted in the Fourier 

domain and therefore have tuning preferences that are sensitive to specific ranges of 

orientations and frequencies (B).  These tuning properties, in their Fourier representation 

(E), are multiplied by the Fourier representation of the image to create an estimate of the 

contrast components in the image that match a neuron's tuning preferences (F).  The 

inverse Fourier transform is applied to this result to produce an image filtered by a cell's 

tuning characteristics (C), which is spatially filtered by the receptive field mask of the 

cell (G) to obtain an estimate of the two-dimensional contrast structure in the image to 

which the cell's classical receptive field is responding.  
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 In our analysis, orientation tuning curves were fitted with normal distributions.  In 

the interest of time during the experiment, spatial frequency tuning was not measured, 

and instead the filter was estimated by using a normal distribution with μ = log10(0.45) 

and σ = 0.6 cycles/º.  Classical receptive fields were estimated as bivariate normal 

distributions where μ was the measured receptive field center and σ1 (σ2) was the 

measured height (width) of the receptive field divided by 3 (since >99% of values drawn 

from a standard normal distribution are within 3 standard deviations of the mean).  

Finally, this method was extrapolated for an assembly of cells by repeating the process 

for each cell in the assembly to quantify the specific arrangement of two-dimensional 

contrast structure lying within their aggregate receptive field. 
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CHAPTER VI 

 

SYNCHRONOUS ACTIVITY IN CAT VISUAL CORTEX IMPLEMENTS A SPARSE 
CODING STRATEGY FOR NATURAL IMAGES 

 

Introduction 

How can neuronal responses represent contours, surfaces, and textures in natural 

scenes?  This is dependent on the more general question of how information about the 

natural environment is encoded by the early visual system.  While the traditional model 

involving cells acting as independent filters (Barlow 1972) doubtless contributes to this 

process, it fails to account for any interactions between the filters making up the 

population and the dynamic nature of the filters.  Due to the dynamic nature of grouping, 

the combinatorial possibilities of a population code offer a vastly increased 

dimensionality for encoding visual information (Sherrington 1941, Hebb 1949).  

Employing a population code, in which subsets of the neural population form dynamic 

assemblies to accomplish tasks, enhances robustness and contributes to learning and 

plasticity.  Although current recording technology allows us to monitor the interactions of 

hundreds of neurons simultaneously, we cannot understand their contribution to visual 

perception without a conceptual framework that describes their information processing 

strategy.  Two competing theories within this general approach include compact coding 

and sparse coding, both of which take advantage of redundancy in natural scenes to 

produce more efficient representations of the environment (Field 1994). 

In a compact coding strategy, the goal of visual coding is to reduce the 

redundancy in natural scenes by creating a representation with the minimum number of 

cells.  This idea is closely related to Barlow's theories of redundancy reduction (Barlow 
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1961) as well as dimensionality reduction using Principal Components Analysis (PCA).  

Neurons in a target assembly are differentiated from others by having higher activation 

levels.  Different objects are then represented by the different firing patterns of the same 

subset of cells.  Although a number of studies have suggested that spatial coding by the 

visual system is consistent with a compact code (e.g. Atick and Redlich 1990, 1992; 

Daugman 1988, 1991; Linsker 1988; Sanger 1989), there are several inconsistencies in its 

ability to account for receptive field properties of cells in the retina and primary visual 

cortex.  The absence of phase information due to the stationarity of natural scenes (i.e. 

features do not prefer any specific spatial location) means that compact coding cannot 

account for the localized nature of receptive fields (Field 1994).  Furthermore, this 

criterion may confound coactivated assemblies since the identification of members to 

particular assemblies is lost (von der Malsburg 1986, Sakurai 1999). 

 In a sparse coding strategy, different objects are represented by firing patterns 

from different subsets of cells in the population.  Willmore and Tolhurst (2001) define 

two different sparseness properties for encoding the depth and breadth of information in 

the cortex.  Population sparseness describes the response probability of the cell 

population at one instance in time (e.g. for one stimulus condition).  The distribution of 

responses is leptokurtic with a large peak at zero (or chance), indicating that most of the 

population is inactive for any given stimulus.  Lifetime sparseness describes the activity 

of one neuron (or assembly) across time (e.g. responses to the set of all input images), 

also yielding a leptokurtic response distribution with a peak at zero (or chance).  Across 

all input images, all cells have an equal response probability, but have a low response 

probability for any single image.  With sparseness, the dimensionality is not reduced, but 

the redundancy in the input is transformed into the redundancy in the firing pattern of the 
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cells (Field 1994).  In this manner, information about the environment is distributed 

across all cells and objects are represented by which cells are active and not by the 

relative activity or overall amount of activity of a specific subset. 

 Sparse coding has been observed in the visual system and has been found to be 

consistent with the representations of natural scenes (Field 1987, 1989, 1994; Zetzsche 

1990).  The degenerate mapping of highly correlated stimuli to a sparse representation is 

described as a fault-tolerant method of reliably learning and discriminating closely-

related patterns (Leonardo 2005).  In the primary visual cortex of primates, neurons 

produce (lifetime) sparse responses when stimulated with natural image sequences (Vinje 

and Gallant 2000, 2002) and high lifetime and population sparseness is found in V1 of 

ferrets (Weliky et al 2003).  Furthermore, responses are most sparse when the non-

classical receptive field is stimulated, implying that sparseness (and possible learning) is 

modulated by context.  Lifetime sparseness has been shown to exist in the auditory 

system of rats (DeWeese et al. 2003), the somatosensory system of rats (Brecht and 

Sakmann 2002), and the olfactory system of insects (Perez-Orive et al. 2002; Laurent 

2002; Theunissen 2003).  Kenyon cells in the mushroom body of the locust olfactory 

system have sparse odor identity-specific responses (Stopfer et al. 2003).  In the 

inferotemporal cortex of monkeys, neuronal responses to faces have shown high 

population sparseness (Young and Yamane 1992).  Population sparseness has also been 

exhibited in the hippocampus (Thompson and Best 1989) and in computational models 

on auditory speech processing (Coath et al. 2005).  Similar to sensory modalities, 

(lifetime) sparseness is also evident in the motor systems of rabbits (Beloozerova et al. 

2003), rats (Brecht et al. 2004), and the zebra finch (Hahnloser et al. 2002; Fiete et al. 

2004). 
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  Previous studies that have investigated the sparse coding capabilities of the visual 

cortex have focused on the average firing rate of independent neurons and found that the 

encoding of visual information is in fact sparse and distributed across small populations 

of cells.  In the previous chapter, we demonstrated that synchrony among neuronal 

assemblies is correlated with local contour information in natural scenes.  We would like 

to compare firing rate results from previous studies to results generated for a synchrony-

based coding strategy in order to determine how consistent synchrony is with a sparse 

coding representation and determine its efficiency for encoding contours in natural 

images. 

 Using a 10x10 microelectrode array, we measured the simultaneous response of 

single cells to thousands of natural images and analyzed the sparseness and dispersal of 

synchrony and firing rate response distributions.  We found that synchrony response 

distributions increased in sparseness across assembly size as compared to firing rate 

response distributions, which led to a more efficient coding capability, but that firing rate 

response distributions were more distributed when considering additional members.  

Field (1994) suggested that the phase spectrum of natural images provided the foundation 

for sparse coding, so we wanted to see if synchrony was correlated with natural phase 

information.  We measured synchrony and firing rate responses of assemblies viewing 

hybrid images with natural or random phase spectra.  We found that images with natural 

phase spectra generated more synchrony than images with random phase spectra and that 

firing rates for each condition showed less sensitivity.  These results suggest that 

synchrony among visual cortical neurons is implementing a sparse code for contours in 

natural images. 
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Materials and Methods 

 

Preparation and Data Acquisition 

Six adult cats (2.3-4.0 kg) were prepared for electrophysiological recordings in 

the primary visual cortex.  All procedures were performed in accordance with guidelines 

set forth by the American Physiological Society and the Institutional Animal Care and 

Use Committee at Vanderbilt University.  Details on the preparation are described in 

Chapter 2.  Simultaneous single-unit recordings were made from cells in the visual cortex 

of anesthetized cats via the Utah Intracortical Electrode Array (UIEA; Cyberkinetics 

Neurotechnology Systems, Foxborough, MA).  The UIEA recordings have good signal to 

noise ratios and have been shown to have qualities comparable to those from single-

electrode recordings (Kelly et al. 2007).  The implant is a square 10x10 silicon array with 

a 0.4 mm electrode separation.  The electrodes have a length of 1.0 mm and are inserted 

to a depth of 0.6 mm with a pneumatic implantation tool (Rousche and Normann 1992).  

Recordings are displayed in real time and the waveform of each neural event is stored for 

later analysis by a comprehensive software system from Cyberkinetics.  When the array 

is inserted, not every channel records reliable neural activity.  Inevitably, the size of the 

array coupled with the curvature of the brain places some electrodes over a blood vessel 

or sulcus.  However, the majority of electrodes do record neural activity and these 

channels are processed with a MATLAB-based spike-sorting program to remove noise 

and artifact (Shoham et al 2003).  We did not include multiple units that were recorded 

and resolved from a single channel.  Approximately 5% of channels with multi-unit 

activity were discarded.  Channels with isolated single-unit activity were used only if the 

activity was ≥ 5 spikes per second and showed clear orientation tuning (signal to noise ≥ 
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2:1) when viewing drifting sinusoidal gratings.  In the end, we recorded from 215 single 

units, 205 of which were complex cells (Hubel and Weisel 1962; Skottun et al. 1991) 

with a median relative modulation, F1/F0, of 0.06 (n = 205 cells).  Unless otherwise 

stated, all cells were used for analysis. 

 

Stimulation 

All stimuli were displayed on a gamma-corrected SONY Trinitron 21" monitor 

with a resolution of 800 x 600 pixels (22.6 pixels per visual degree) driven either by a 

Cambridge Research Systems VSG2/3F controller board (for gratings) or a video 

controller using the WinVis software package (for natural images and sequences).  

Displays were refreshed at 120 Hz.  All stimuli spanned 18°x18°, appeared against a 

mean luminance background (73 cd/m2), and were scaled to have a global contrast of 

0.32 (see Touryan et al. 2005).  Two stimulus protocols were used.  The first stimulus 

protocol (Figure 6.1A) was used on four subjects (described in Chapter 5) and contained 

a sequence of 336 natural, grayscale images from www.imageafter.com, each rotated at 9 

angles (40° to 360°, in 40° increments) for an effective stimulus set of 3024 pictures, 

presented for 500 ms.  There were two null stimuli and a 500 ms delay between each 

image, during which only the mean luminance was shown.    Each presentation was 

static, images were randomly interleaved, and the entire sequence was repeated 8, 9, 10, 

or 13 times for reliability.  The second stimulus protocol (Figure 6.5A) was used in two 

experiments (similar to that described in Chapter 4) and contained three natural, 

grayscale images with hybrid modifications, presented for 2 seconds.  Natural images 

were separated into their power and phase components in the frequency domain and 

swapped with those from a random white noise stimulus.  These hybrid images either 
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contain a natural phase spectrum and random power spectrum or a random phase 

spectrum and natural power spectrum.  Stimuli were jittered 5 pixels (0.22°) in random 

star fashion (returning to origin) at 60 Hz to provide motion while anchoring features 

within the receptive field.  There was a 1 second delay between each image, during which 

only the mean luminance was shown, and each presentation was repeated 100 times for 

reliability. 

 

Data Processing 

 We have developed a method that detects and quantifies the amount of correlated 

activity in a neuronal assembly of arbitrary size (Figure 6.1B).  As a hypothetical neural 

substrate for encoding salient stimulus properties, synchrony enhances the probability of 

eliciting postsynaptic action potentials (PSPs) when neurons behave as coincident 

detectors (Azouz and Gray 2003).  Our basic algorithm (described in detail in Chapter 2) 

is designed to reflect the relevance of group synchrony to postsynaptic neurons by 

modeling the temporal summation of postsynaptic potentials.  In this measure, synchrony 

is computed as a fraction of total activity within an assembly and can be monitored 

dynamically throughout the stimulus presentation.  The steps in the algorithm are as 

follows: 

Step 1: Convert spike waveforms to point-process spike trains 

The activities recorded simultaneously from all neurons in a target assembly are 

preprocessed to retain only spike initiation times, creating point-event spike 

trains.  Stimulus repetitions are concatenated to form one long spike train 

Step 2: Convolve point-process spike trains with an alpha function to create PSP trains 
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Convolve a point-event spike train with a truncated (10 ms) PSP waveform, 

yielding a PSP train.  We modeled the PSP waveform with an alpha 

function, ( ) t
a t Ate τ

−
= , where τ = 1 ms. 

Step 3: Determine the time windows during which all PSP trains exhibit activity 

Determine the timing of coincident events by noting the time periods (ts) in which 

all trains exhibit spiking activity, i.e., intervals in which all PSP trains have a 

value greater than zero. 

Step 4: Sum PSP trains from all cells to get PSP activity for the entire assembly 

To visualize the total amount of activity within an assembly, add PSP trains from 

all neurons. 

Step 5: Integrate the assembly activity over ts and t then divide to compute the Raw Score 

The Raw Score is computed as the ratio of the area under the overlapped portion 

of coincident waveforms to the total area under all waveforms in the assembly.  

The total area is found by summing all PSP trains and then integrating the 

resulting waveform over all time (t).  The synchronous area results from 

integration of the summed trains over just the time periods found in Step 3 (ts).  

The Raw Score is the ratio of synchronous area to total area and represents the 

percentage of assembly activity that is synchronous. 

Step 6: Compute Chance Score by shifting 1 or more stimulus periods and repeating 

Steps 1-5 

The Chance Score estimates the amount of stimulus-locked activity generated by 

the coactivation of each cell and is computed by completing Steps 1-5 with spike 

trains that are shifted in time by the length of at least one stimulus trial compared 
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to all other trains.  This step is repeated 100 times with different shift orders and 

combinations to build a distribution with which to statistically compare the Raw 

Score. 

Step 7: Compute statistical significance and normalize the magnitude of synchrony 

We use a one-tailed student's t-test (α = 0.01) to compare scores from the Raw 

and Chance distributions.  A Normalized Score can be computed by subtracting 

the Chance Score from the Raw Score and renormalizing the resulting value so 

that Chance is assigned a value of 0 and synchrony among identical spike trains 

has a value of 1. 

 

Results 

 Using a 10x10 microelectrode array, we recorded the responses of hundreds of 

neurons in the striate cortex of six paralyzed and anesthetized cats.  Using the PSP 

algorithm, we quantified the amount of synchronous activity generated among the 

neurons in response to each stimulus and compared it to the combined average firing rate 

response.  In the first protocol, we tested and compared six sparseness metrics that can be 

alternatively computed for population or lifetime analysis by changing two variable 

definitions.  The degree of distribution for synchrony-based and firing rate-based 

strategies was quantified using dispersal (Willmore et al. 2000).  In the second protocol, 

the phase spectra of three images were modified and the effects on synchrony and firing 

rate were measured to evaluate the dependence on power and phase components.  In 

order to examine trends across assembly size, we evaluated the collective responses of 

hundreds of assemblies for each size group (n = 2 to 8 cells). 
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Natural Image Sequence 

 We simultaneously recorded single-unit activity from 18, 32, 39, and 45 channels 

in four cats.  Since computation of all combinatorial arrangements of cells from the 

recorded population is exhaustive, and the probability of randomly testing a successful 

assembly of cells with individual sparse response properties (Vinje and Gallant 2000, 

2002) is low, we needed an intelligent way to identify members of larger assemblies that 

were likely to synchronize.  In Chapters 3 and 4, this was accomplished by computing a 

relatively low number of small assembly scores and progressively clustering cells that 

synchronize well to create an assembly of arbitrary size that has a high probability of 

synchronizing.  However, this method was only practical because of the small number of 

stimuli shown.  Our natural image sequence contains over three thousand images and 

would require a considerable amount of computational resources to complete this step for 

each image. 

 Fortunately, in Chapter 5 we found that specific receptive field organizations were 

conducive to synchrony.  Cells that had receptive field configurations consistent with the 

association field model (Field et al. 1993; Hess et al. 2003) often matched local contrast 

structure throughout the natural image sequence.  We therefore organized assemblies 

based on their receptive field layouts (similar orientation preferences, close proximity, 

and good continuity), but still used a variety of configurations (e.g. larger proximities to 

examine neurons with separate receptive fields) to optimize responses to the variety of 

structural information in the sequence.  We used various orientation, proximity, and 

continuity thresholds to find over one thousand assemblies in each size group (N = 1399, 

1166, 1379, 1432, 1394, 1422, and 1373 for assembly sizes 2-8, respectively).  Because 

of the assortment of spatial structure throughout the sequence, each assembly 
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synchronized beyond that expected by chance (significance was measured with the PSP 

Method using α = 0.01) to at least one and usually to multiple images with similar 

features. 

 

Sparseness 

Traditionally, selectivity is expressed by tuning functions for individual cells, but 

the dimensionality of spatial factors leading to synchrony in large groups does not allow 

selectivity to be expressed by simple filter functions.  Instead we assessed selectivity on 

the basis of the probability distribution of such synchrony (and firing rate) across 

presentation of numerous natural images.  As there is no standard measure of sparseness, 

we tested and compared six sparseness metrics that can be alternatively computed for 

population or lifetime analysis by changing two variable definitions.  S1 is the Treves and 

Rolls (1991) measure as modified by Willmore and Tolhurst (2001), S2-S4 are three 

metrics defined by Olshausen and Field (1997), S5 is the "activity (or response) 

sparseness" measure (Willmore and Tolhurst 2001), and S6 is kurtosis of the response 

distribution.  In each equation, xi is the response of one assembly to N stimuli (lifetime) 

or the response for one image from N assemblies (population).  The mean and standard 

deviation of the responses are xbar and s, respectively.  For each measure, the value for a 

Gaussian distribution (mesokurtic) has been subtracted so that a number above zero 

reflects a leptokurtic distribution while a number less than zero reflects a platykurtic 

distribution. 
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All of these metrics reflect how strongly peaked a distribution is, with many zero 

(or chance) values and long tails as compared to less peaked distributions of the same 

variance.  The peakedness of a response distribution reflects how infrequently an 

assembly responds significantly above expectation.  Across numerous stimulus 

conditions, an assembly that responds sparsely would only produce strong responses to a 

few stimuli and the response distribution would have a sharp peak at zero.  On the other 

hand, if the assembly produced all responses with equal frequency, then the distribution 

of responses would be flat and have no peak.  However, the peakedness of the response 

distribution does not always reflect sparseness and may be due to trivial properties of the 

visual stimulus.  Baddeley (1996) showed that exaggerated kurtosis could result from 

local luminance variances between images, which could be caused by daily changes in 

illumination or indoor vs. outdoor settings.  This phenomenon occurs between images, so 

it affects measures of lifetime kurtosis and not population kurtosis.  Similarly, 

preprocessing of images such as pseudo-whitening or log-transformations can affect 
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measures of sparseness.  In our study, all images were scaled to have the same global 

contrast and all sparseness metrics are compared relatively for different response types. 

The fifth metric is a measure that is derived from the definition of sparseness and 

represents the number of images (response sparseness – lifetime) or assemblies (activity 

sparseness – population) that are "off" in a given distribution (Willmore and Tolhurst 

2001).  To calculate response sparseness, a threshold set to one standard deviation above 

the mean response over all images is used to divide the distribution.  Any assembly 

response above this line is considered "on" and all others are considered "off."  This 

binary measure directly counts the number of images to which the assembly does not 

respond.  Similarly, for activity sparseness, the threshold is set for the distribution of 

responses to one image and responses below this line are counted and represent the 

number of assemblies that do not respond to a particular stimulus.  Any threshold can be 

chosen for these measures, but one based on the standard deviation of the response 

distribution effectively standardized these measures similar to the other metrics. 

 The last metric is kurtosis, which is the fourth moment of the response 

distribution.  As it measures the peakedness of a distribution, kurtosis seems like an 

obvious choice for sparseness metric, but it has certain limitations.  For instance, it is 

more accurate for unimodal distributions that are approximately symmetrical about zero.  

Since cell responses do not often have symmetric distributions, kurtosis should be used 

with caution for these data (see Vinje and Gallant 2000). 

 In this study, we wanted to compare sparseness metrics for average firing rate-

based and synchrony-based information.  Average firing rate is quantified as the mean 

firing rate over all neurons in the assembly and is normalized to the maximum response 

from each distribution.  This action effectively behaves like a logic OR operation.  The 
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firing rate responses of each assembly are summed together (and divided by the number 

of neurons), which expands the response with each additional member.  The entire 

assembly responds to an image if any one neuron increases its firing frequency to that 

image.  On the other hand, our definition of synchrony requires all members in the 

assembly to be active, which behaves like an AND operation.  In this manner, the 

assembly response is dependent on the activation of all members and will happen more 

rarely as compared to the firing rate case.  Although this discrepancy helps to highlight 

synchrony's role as a sparse code, to even the playing field we also measured the firing 

rate responses after introducing a threshold above which all members must comply.  We 

set this value to chance.  All firing rate responses were normalized for chance firing, 

which is the average background activity level for each neuron as measured during the 

two null stimuli. 

 Figure 6.2 shows the results of each metric for synchrony, firing rate, and 

thresholded firing rate response distributions computed for lifetime sparseness.  As 

mentioned above, this quantity refers to the sparseness of the response distribution from 

one assembly over all stimulus conditions.  This figure shows plots from one subject and 

represents the average response from hundreds of assemblies for assemblies of size 2, 4,6 

and 8.  All results were similar and displayed the same trend between subjects.  Figure 

6.2A-C show the average distributions for synchrony, firing rate, and thresholded firing 

rate responses.  Synchrony response distributions increase in peakedness with assembly 

size while firing rate distributions depress slightly and shift to the right.  The six 

sparseness metrics (Figure 6.2D-I) indicate that synchrony and thresholded firing rate 

distributions increase in sparseness as assemblies are more selective across the image 

sequence while the sparseness of firing rate distributions decreases slightly as each group 
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responds to all of the images that trigger each additional member.  Similar trends 

observed across the metrics suggest they are consistent with one another and are 

measuring the same quantity. 

 Figure 6.3 shows the same plots recomputed for population sparseness.  This 

quantity refers to the sparseness of the responses to one stimulus condition over all 

assemblies and each plot represents the average response for 3026 images in each size 

group.  Again, the top three plots (Figure 6.3A-C) show the average response 

distributions for one image over four different assembly sizes.  All traces show similar 

sparseness trends compared to the lifetime values.  The firing rate traces again indicate a 

decreased selectivity across assembly size meaning that more and more assemblies 

respond to each image.  The sparseness of synchrony and thresholded firing rate 

distributions increases for larger assemblies.  All metrics again show similar trends to 

each other. 

 

Variance and Dispersal 

 The variance of an assembly response distribution measures the spread of activity 

over the natural image sequence.  Since each response is normalized by chance (for 

synchrony, the number of synchronous events expected to occur from increased 

activation, or for firing rate, the background activity level monitored during null 

stimulation), an assembly can produce a range of responses from strongly positive to 

strongly negative.  If responses along this entire axis are produced during the image set, 

then each assembly has a large response variance.  This means that the assembly can 

discriminate between members of the image set and can serve as an appropriate encoder 

of this information.  An ideal encoder would have a widely different response for each 
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image, yielding a one-to-one correspondence between stimulus and response.  On the 

other hand, an assembly with a small response variance is a poor encoder of this 

information.  Too few responses or similar responses may be able to discriminate 

between broadly different stimuli, but images with similar properties may be lumped 

together and effectively indistinguishable by response alone. 

 The degree of distribution of each code can be quantified using dispersal 

(Willmore et al. 2000).  The variance of each assembly to all natural images is computed 

and normalized by the maximum value and rank-ordered in a scree plot.  This plot 

quantifies the distribution of variance across the assemblies and also indicates the 

distribution of assembly responses across the natural images.  Plots with high plateaus 

indicate that each assembly is a good encoder of the stimulus set and this code is 

distributed across all assemblies.  In contrast, scree plots that resemble a decaying 

exponential indicate that only a few assemblies encode the images, while the others give 

little or no response across all stimulus conditions (as in PCA when the first few principal 

components cover the largest variance).  Figures 6.4A-C show the scree plots for each 

response type (synchrony, firing rate, thresholded firing rate where all cells in the 

assembly fire above their background levels) across assembly size (2-8 neurons for 

synchrony, and 1-8 for both firing rate response distributions).  Figure 6.4D shows the 

dispersal of each code computed from the area under each curve.  Across assembly size, 

firing rate responses show an increased level of distribution, signifying that larger 

assemblies are better at discriminating between images in the sequence.  In contrast, 

synchrony and thresholded firing rate scree plots show decreased levels of dispersal 

across the population of assemblies for larger assemblies, decaying for groups of 2-4 and 

stabilizing for groups with 5 or more cells.  This suggests that the inclusion of more 
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members reduces the variance of responses to the entire image set, but the reduction in 

dispersal could be a result of sampling from a sparse assembly population.  

 

Hybrid Image Protocol 

For the second protocol, we simultaneously recorded single-unit activity from 39 

and 42 cells in two cats.  Since assemblies were chosen for only three images (see Images 

1, 2, and 3 in Figure 6.5) and those same assemblies were analyzed for each image 

modification, choosing which assemblies to analyze was based on the clustering of 

smaller assemblies (see Chapter 4).  We used the fact that all subsets of a synchronous 

assembly must also synchronize to narrow the possibility of finding successful 

assemblies with significant synchronous activity among all possible assemblies for a 

certain size group.  Likely assemblies built based on pairwise scores were identified and 

then processed with the PSP algorithm to determine if, in fact, their grouping was 

significant (to build larger assemblies from smaller ones, synchrony must exist between 

groups as well as within groups).  This shortcut is only used to predict members of 

synchronous assemblies because scores from subgroups do not necessarily correlate with 

the overt behavior of the entire assembly (see Chapter 5).  We used the PSP algorithm to 

compute the amount of synchronous activity among all pair-wise combinations of cells 

(N = 1602; 741 pairs from cat 1 and 861 pairs from cat 2) and found a total of 266 pairs 

that had significant activity (α = 0.01) for Image 1, 275 pairs for Image 2, and 214 pairs 

for Image 3.  These pairs were clustered to suggest larger assemblies (n = 2-8) which 

were then tested with the PSP algorithm to determine statistical significance until 50 

assemblies of each size were identified.   
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Phase Spectrum Analysis 

 Since the brain shows a considerable amount of adaptation and plasticity, it has 

been suggested that the visual system may be optimized for processing the statistics of 

natural scenes (Barlow 1961; Kersten et al. 1987; Simoncelli 2003).  Using spike-

triggered covariance analysis, Felsen et al. (2005) found that complex cells had an 

enhanced sensitivity to natural images as compared to random stimuli and that this high 

feature sensitivity was due to the spatial characteristics of the stimuli.  Exploring this 

phenomenon one step further, the investigators parsed natural images into power and 

phase components and switched them with those from a random white noise stimulus to 

create synthetic hybrid stimuli and investigate the effect on complex cell response.  The 

power spectrum of natural images falls off inversely with spatial frequency, 

approximately as 1/f2 (Field 1987; Tolhurst et al 1992; van der Schaaf and van Hateren 

1996), and nearby frequencies tend to have similar phases.  Phase alignment allows for 

the formation of edges and surfaces and accounts for the localized nature of image 

features.  In contrast, a white noise stimulus has a flat power spectrum and random phase 

structure.  Using their synthetic stimulus ensembles, the investigators determined that the 

observed cortical feature sensitivity was related more closely to natural phase regularities 

and not the spatial power spectra. 

Field (1994) suggested that the phase spectrum of a natural image describes the 

redundancy necessary for sparse coding.  The structure of complex image features is 

preserved in the phase information and the presence of certain features is rare across the 

set of natural scenes.  In a previous study, we found that synchronous activity among 

pairs of cells could discriminate between collinear and cocircular contours (Samonds et 

al. 2006) and that this activity was more predictable than changes in average firing rate.  
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Cells synchronized dynamically depending on their joint tuning preferences relative to 

the spatial configuration of the stimulus.  Similarly, we showed in Chapter 5 that 

synchronous activity in larger assemblies with receptive fields organized according to the 

association field model (Field et al. 1993; Hess et al. 2003) consistently signaled complex 

contours in natural images.  If synchrony reflects the implementation of a sparse code, we 

would expect to find that synchronized activity is stronger when viewing hybrid images 

with natural phase spectra than when stimulated with images that have random phase 

spectra.  Since the phase spectrum captures structural information, this finding would 

support our hypothesis that synchrony may function as a contour-encoding mechanism in 

the primary visual cortex. 

We can determine whether synchrony depends on the phase spectrum of an image 

by altering it.  We separated three natural images into their power and phase components 

in the frequency domain.  By swapping components with a random white noise stimulus, 

hybrid images were produced that had a natural phase spectrum and random power 

spectrum (natural hybrid) or a random phase spectrum and natural power spectrum 

(random hybrid; Figure 6.5A).  We measured the synchrony and firing rate responses 

(averaged across all neurons) in assemblies of 2-8 cells over each stimulus condition and 

found that while synchrony decreased to approximately 60% of its original value after 

removal of the natural power spectrum, almost all activity was obliterated when the phase 

spectrum was eliminated (Figure 6.5C).  Firing rate decreased in a similar fashion, but the 

rate of change was less severe (Figure 6.5D).  Consistent with an earlier finding that 

synchrony signals fine, but not coarse, changes in orientation (Samonds et al. 2003), we 

suggest that synchrony is more sensitive to fine structure in the natural hybrid stimulus 

than firing rate.  
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Discussion 

 Field (1994) proposed that the hallmarks of an efficient encoding strategy for the 

representation of natural scenes are sparseness and distribution.  Synchrony was 

investigated as a viable sparse-dispersed code employed by the visual cortex to represent 

high-order stimulus features in natural scenes.  Using a 10x10 microelectrode array and 

the PSP algorithm, we recorded from and subsequently analyzed the responses of 

hundreds of neurons in the striate cortex of cats when viewing a natural image sequence 

or spectral hybrid stimuli.  We found that the definition of synchrony requires increased 

sparseness across assembly size, which was consistent with an artificially sparsified firing 

rate code in which all members were forced to exhibit simultaneous coactivation above a 

chance threshold determined from the background activity of each neuron.  Responses 

were sparse for each assembly across the image set (lifetime) as well as across all 

assemblies for each condition (population).  Average firing rate response distributions 

decreased in sparseness across assembly size, but had higher dispersal values.  Results 

from the phase spectrum analysis suggest that synchrony is particularly sensitive to 

structural content in natural images and since neuronal spike trains contain firing rate and 

synchrony responses, these coding strategies may be simultaneously employed in the 

primary visual cortex to encode the representation of natural scenes. 

 

Sparse-Dispersed Coding 

 Previous studies report that firing rate-based codes are sparse and distributed 

(Willmore et al. 2000; Willmore and Tolhurst 2001), but we expected to find that a 

synchrony-based code also has high population sparseness, lifetime sparseness, and 

dispersal and that these properties grew with assembly size.  As synchrony is a subset of 
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firing rate and is by definition less frequent, our results came as no surprise when we 

found that synchrony response distributions are sparser than average firing rate.  Across 

all six metrics, we found a drastic increase in selectivity when considering a synchrony-

based code than one based on average firing rate.  And although there was a similar trend 

for lifetime and population analyses implying that assembly responses to natural scenes 

are uncommon events, these quantities do not measure the same property and are not 

always correlated (Willmore and Tolhurst 2001).  Sparseness statistics measure the 

infrequency of assembly responses, but recall that our probability of response was 

enhanced by the selection of assemblies with receptive field organizations conducive to 

synchronous activity.  This suggests that our results actually underestimate sparseness, 

but the selection criteria were necessary in order for assemblies to be evaluated with a 

sample of 3026 images. 

 In choosing specific assemblies, we tried to find groups that responded to 

numerous elements in the stimulus sequence.  However, synchrony responses were found 

to be less distributed across assembly size.  This could be due to two reasons.  First, as 

synchrony signals higher-order structure, increasingly complex features become rarer in 

the image set and the assembly responses become less variable.  Second, the assemblies 

chosen for analysis do not necessarily form a representative sample of all possible 

assemblies that could be chosen from the primary visual cortex as the combinatorial 

possibilities lead to an endless amount of feature selectivity.  With their orientation 

preferences and locations, two cells can be used to identify a circle (Samonds et al. 2006).  

Pairs of cells in our analysis showed the most dispersal because cocircularity is a 

ubiquitous structure in natural scenes (Geisler et al., 2001; Sigman et al., 2001; Elder and 
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Goldberg, 2002).  On the other hand, larger assemblies can encode more highly-figured 

stimuli, which become more and more uncommon. 

 Across assembly size, firing rate responses show an increased level of 

distribution, signifying that larger assemblies are better at discriminating between images 

in the sequence.  This is due to the successive inclusion of neurons with different 

spatiotemporal properties which, together, represent an aggregate encoder with the 

superposition of all response variations produced by its members.  Parameter specificities 

allow individual cells to act as spatiotemporal filters by responding to a limited range of 

spatial and temporal information in the visual field.  By sampling a continuum of spatial 

frequency, orientation, direction, and/or disparity, visual cortical cells behave as filters 

for different stimulus dimensions.  And because these cells cover the range of parameter 

values to which the visual system is sensitive, their average firing rate activity is 

sufficient to encode each stimulus attribute.  With respect to orientation preference, a 

group of approximately forty neurons can sufficiently sample the full range of 

orientations.  Because tuning bandwidths for this property is sufficiently wide, the 

variance of firing rate responses for each cell across a set of stimuli will be high and 

encoding will be dispersed across the population of cells (or assemblies that combine 

these cells). 

 

Advantages of a Sparse Code 

 Evidence from numerous studies suggest that cells in the visual cortex perform a 

sparse-dispersed coding of the spatial information of natural scenes (Field 1994; 

Olshausen and Field 1996, 1997; Bell and Sejnowski 1997).  Basis functions produced 

when the visual system is optimized to process the statistics of natural scenes (Barlow 
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1961; Kersten et al. 1987; Simoncelli 2003) resemble the receptive fields of simple cells 

(Olshausen and Field 1996; Bell and Sejnowski 1997; van Hateren and van der Schaaf 

1998; van Hateren and Ruderman 1998; Hyvarinen and Hoyer 2000).  In addition, sparse 

coding models have been shown to learn complex cell receptive fields and topography 

from natural images (Hyvarinen and Hoyer 2001).  Outside of the visual system, this 

approach has been extended to represent natural sounds as sparse events and the resulting 

receptive fields have similar spectro-temporal properties of auditory nerve cells (Lewicki 

2002; Olshausen and O'Connor 2002). 

There are several biological advantages for employing a sparse coding strategy.  

For instance, by utilizing a small number of neurons during any one task, sparse codes 

are energy efficient.  Estimates of the energy required for signaling in cortical neurons 

suggest that less than 2% of the population can be significantly active at any given time 

(Attwell and Laughlin 2001; Lennie 2003).  Experimental evidence has shown that 

average firing rates are low for natural images compared to that from optimal grating 

stimulation, which reduces the metabolic demands of visual processing (Baddeley et al. 

1997; Guo et al. 2005).  Also, several theoretical and computational studies have shown 

that sparse representations are most effective for storing patterns in associative memory 

models (Willshaw et al. 1969) and they are advantageous for learning associations in 

neural networks (Palm 1980; Baum et al. 1988; Zetsche 1990; Field 1994; Sommer and 

Palm 1999).  Since the response of any one cell (assembly) is relatively rare, tasks that 

require matching or detecting corresponding features are more successful.  As a code 

becomes more sparse (i.e. lowered probability of one cell or assembly responding), the 

probability of detecting a correct correspondence increases.  Higher-order relations 

requiring large neural assemblies are increasingly rare and thus more informative when 
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present.  High-order features in nature can then be represented by a unique subset of 

cells.  In fact, Hoyer and Hyvarinen (2002) have shown that a multi-layer sparse coding 

network is capable of learning contour coding from natural images in an unsupervised 

fashion. 

Sparse coding networks have been shown to exhibit continuous generalization 

across changing input, smooth degradation if the network is incomplete or damaged, and 

can store large numbers of representations (Rolls and Tovee 1995).  Sakurai (1999) 

suggested that continuous generalization, functional compensation, and information-

encoding capabilities are all qualities of a dynamic population code that utilizes the 

temporal coordination of neuronal firing.  A population code requires specific rules for 

the association among cells.  While sparse coding requires a subset of cells to be active 

for any given input, what properties of the input define the subsets formed?  Is formation 

guided by intrinsic properties such as anatomical connections among cells with similar 

tuning preferences, extrinsic properties such as features within the stimulus, or both?   

Furthermore, how is this property represented by the subset?  Since a given subset is 

particular to certain inputs, this property may be stimulus-dependent and relatively rare 

across the population of inputs.  As mentioned above, higher-order features (contours, 

surfaces, textures) may be represented in a sparse code.  Our previous results suggest that 

synchrony may be encoding contours in natural images (Samonds et al. 2006).  Like 

Sakurai (1999), we propose that this representation is reflected in the cooperative activity 

of the subset.  In other words, synchrony is a way to implement a sparse coding strategy 

where higher-order stimulus information preserved in the phase spectrum is represented 

in the precise temporal pattern of a neural assembly.  Precise temporal coordination 
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among neurons preserves the requirements for sparse coding in that information is 

transmitted efficiently (through cooperation) and by a few neurons (assembly). 

 

Dual Coding Strategy 

 By introducing a method whose output is relevant to the postsynaptic neuron, the 

magnitude of synchrony is also a measure of efficiency.  Higher scores reflect more 

efficient transmission in that threshold can be reached more quickly than with assemblies 

with lower scores.  Synchrony, itself, represents an efficient coding strategy since 

dynamic grouping allows for the formation of transient functional groups during different 

stimuli or separate functional groups during the same stimulus.  Victor (2000) suggested 

that stimulus information is multiplexed at different temporal resolutions of the interspike 

interval histogram, but we suggest that cells can multiplex information in their spike 

trains by forming separate assemblies to encode all objects in a scene.  Therefore, 

synchrony allows for multitasking so that visual information can be processed with a 

minimum number of cells.  Conversely, a larger number of cells can process more 

complicated stimuli. 

 To increase encoding capabilities, the brain probably takes advantage of multiple 

supplemental coding strategies.  Just as synchrony may behave as a sparse code to 

identify assemblies, there may also be a firing rate compact code within each assembly 

that optimizes not only on which cells are active, but also information can be revealed 

from the amount of activity generated by each neuron or assembly.  Dual coding with 

assemblies and single neuron functions (Eichenbaum 1993; Sakurai 1999) would 

maximize sparseness as well as dispersal creating the ideal sparse-dispersed code.  

Stopfer et al. (2003) showed evidence for the dual coding of odor concentration and 
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identity in the locust olfactory system.  In the motor cortex, Riehle et al. (1997) 

demonstrated that synchrony within an assembly reliable encodes cognitive processes 

like expectation while the magnitude of single unit activity encoded external events.  In 

Chapter 4, we showed that synchrony can be used to identify contour structure and the 

amount of synchrony correlated with the degree of structural integrity.  Both firing rate 

and synchrony are stimulus-dependent (e.g. see Figure 6.5C and D), but may reflect this 

in different proportions to encode different stimulus attributes.  Although firing rate 

correlates with local contrast structure (Weliky et al. 2003) and can signal coarse stimulus 

properties (Samonds et al. 2003), synchrony defines specific relationships between the 

figural elements detected, which can be interpreted at higher cognitive levels in the visual 

system. 
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CHAPTER VII 

 

SUMMARY AND FUTURE DIRECTIONS 

 

Summary 

 The work presented here investigates the dynamic associations among small 

populations of neurons during natural stimulation and seeks the form of the neural code 

for representation of visual structures.  Microelectrode array technology allows the 

simultaneous sampling of neurons with a variety of spatiotemporal preferences, which 

can be used to explore complex intercellular interactions.  This recording paradigm and a 

novel algorithm for quantifying synchrony were used to study the timing relationships 

among neurons in the primary visual cortex of cats to evaluate synchrony's role as a 

possible neural substrate for contour detection. 

 Chapter 1 discussed relevant history of the problem of neural coding.  A review of 

the temporal binding theory (Milner 1974; von der Malsburg 1981) and evidence that 

synchrony may be involved in contour detection (Gray et al. 1989; Samonds et al. 2006) 

provided the motivation for our current research.  In Chapter 2, we described our 

experimental protocol.  Our multielectrode array technology allows the recording of 

dozens of single units, which can be analyzed simultaneously with the PSP algorithm.  

Based on modeling postsynaptic potential integration, this method quantifies the amount 

of synchronous activity in an assembly of arbitrary size and provides measures for direct 

statistical comparison. 

 In Chapter 3, we studied the spatial and temporal evolution of synchronous 

activity across the striate cortex and found that cooperation between pairs of cells 
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decreased linearly with a separation distance of up to 3 mm.  The average magnitude of 

synchrony decreased with the difference in joint orientations, but could still be found in 

significant quantities between cells with wholly different orientation preferences (< 80°) 

similar to the findings in Samonds et al. (2006).  We measured the effects of stimulus 

presentation style and found that firing rate responses were more sensitive to motion 

effects.  We also found that jittering stimuli in random directions about the origin 

produced the same amount of synchrony as that obtained during the drift presentation 

with the largest response.  Furthermore, moderate amounts of synchrony were still 

observed during presentation of static stimuli.  These results have important implications 

for the use of natural images in similar paradigms since the use of natural stimuli is vital 

in understanding sensory processing in the early visual pathway (Felsen and Dan 2005).  

Analysis of the time course of synchrony during stimulus presentations showed that large 

amounts of synchrony are generated during the onset response transient and reach a 

stable level after approximately 800 ms.  This result and the finding that synchrony is 

minimally affected by stimulus motion suggest that cooperative activity is initiated by the 

spatial properties of the image.  Finally, an assessment of raw synchrony compared to 

stimulus-locked events reveals that normalization is irrelevant for assemblies with four or 

more cells. 

 In Chapter 4, we used a difference method to study systematically the effects of 

structural degradation in natural images by measuring responses to stimuli before and 

after noise, frequency, and contrast manipulations.  We found that synchronous activity, 

unlike firing rate, is sensitive to the degree of image degradation when added noise and 

removing spatial frequency bands.  This reduction in synchrony was attributed to the 

generation of fewer synchronous events rather than a shortening of existing events.  A 
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quantitative analysis of receptive field layout showed that assemblies with good 

associations as described by the association field model (Field et al. 1993; Hess et al. 

2003), with similar preferred orientations and close receptive field proximity, tended to 

generate more synchrony than assemblies with poorer associations.  As in Chapter 3, 

these results suggest that synchrony signals spatial elements in the stimulus and reflects 

the presence of coherent structural information. 

 The results from Chapter 4 were extended into Chapter 5 where we specifically 

measured synchrony's dependence on the proximity, orientation, and alignment of 

assembly receptive fields.  Using a large natural image sequence with a variety of visual 

features to optimize stimulation of the entire recorded population, we showed that 

synchronous activity was moderately correlated with the properties of association.  We 

used these properties to create a contour index, which quantitatively described how well 

an assembly's configuration matched a contour structure.  Synchrony was well-correlated 

with this measure, which, along with a measure of the corresponding contrast information 

to which the assembly is responding, indicates that cooperation may be selective for local 

contrast structure arranged in continuous, well-defined contours.  Synchronous activity 

measured between assemblies representing different contours on the same or different 

object was severely reduced and found in amounts much lower than expected by chance. 

 Finally, Chapter 6 describes synchrony in the context of a sparse coding strategy 

used to encode contour information in natural scenes.  We measured the simultaneous 

response of assemblies to thousands of natural images and analyzed the sparseness and 

dispersal of synchrony and firing rate distributions.  We found that the definition of 

synchrony requires increased sparseness across assembly size as groups become more 

selective for stimulus features.  This was consistent with an artificially sparsified firing 
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rate code in which the activities of all members were forced to exhibit simultaneous 

coactivation above a change threshold.  Synchronous responses were sparse for each 

assembly across the image set (lifetime) and well as across all assemblies for each 

condition (population).  In contrast, average firing rate response distributions were less 

sparse for larger assemblies, but represented a more distributed code.  An analysis of the 

phase spectrum suggests that synchronous activity is particularly sensitive to structural 

content in natural images, which is preserved in the phase regularities in the image and 

not the power spectrum. 

 Large amounts of synchrony during the stimulus onset response emphasize that 

synchrony is stimulus-dependent.  Although it is unlikely that the large assembly 

response (50% of the population) signals features of the same object, an initial 

synchronization may ready the cortex for incoming information, which is then parsed out 

among smaller assemblies.  We have been concerned with the binding problem, assuming 

that the visual input is effectively in pieces and must be put together.  However, another 

view is that incoming information is initially represented as a complete picture that must 

be resolved into individual components.  In Chapter 6, we mentioned that the brain may 

take advantage of firing rate and synchrony coding capabilities to implement a dual 

coding strategy for the representation of natural scenes.  While synchrony initially signals 

all salient features, firing rates of individual neurons respond to local contrast information 

and these two paths may combine to describe coherent features and can be modulated by 

feedback.  Although this field started with the measuring of single neurons, which 

described pieces of the visual scene, the brain may start with a complete representation 

(although not immediately meaningful) that must be broken down. 

Analytical stimuli applied to the receptive fields of single cells have produced a 
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solid foundation for understanding the cellular processes of vision, but elaboration of 

vision at a more holistic level must rely on more global approaches. Here we combine 

simultaneous recordings from dozens of cells with natural image stimulation and a novel 

method for identification of cellular assemblies defined by synchrony.  By analyzing 

responses to natural images, we found that synchronous activity was able to discriminate 

changes in structural integrity and overcome the ambiguity of firing rate to identify 

contour structure.  The time course of synchrony suggests that it is directly related to 

spatial stimulus properties.  Our results demonstrate that synchrony has the potential to 

encode image properties not apparent from changes in firing rate and, in that capacity, 

may serve as a neural substrate for contour detection.  Orientation linking appears to 

operate prior to feature extraction (Dakin and Hess 1999).  As a fundamental mechanism 

of sensory cognition, synchrony may act as a sparse code to help facilitate the detection 

of contour information for integration and processing in higher visual areas. 

 

Future Directions 

 

Understanding Synchrony with Visual Illusions 

 As described in earlier chapters and in Samonds et al. (2006), we have 

demonstrated that synchrony is stimulus-dependent and corresponds to the appropriate 

match between stimulus features and the spatiotemporal preferences of the assembly.  

These conclusions are based on studies that have examined natural scenes or simple 

analytical stimuli that have explicit perceptual relationships between objects.  However, a 

greater understanding of visual neurophysiology may be obtained through the use of 

unconventional stimulation in which content is enigmatic.  A more complete 
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understanding of synchrony and its underlying neural mechanisms may follow from an 

investigation of stimuli in which the incoming visual information is perceptually 

ambiguous.  Whether assembly membership and synchronous activity modulates with 

actual stimulus structure or perceived content may reveal if synchrony plays a role in 

perception or simply behaves as a signal transmission mechanism.  Our prediction is that 

synchrony correlates with actual stimulus structure at the onset of the response, but may 

evolve to signal perceived structure after the influences of feedback from network 

interactions and higher processing centers. 

 Visual illusions are false percepts induced by the precise arrangement of elements 

in a visual scene that create emergent and not necessarily existing features.  Illusions can 

be created with real lines such as in the tilt effect (Roncato and Casco 2006) or Ponzo, 

Hering, and Zollner illusions.  Figure 7.1A-C shows variations of an Ehrenstein illusion 

in which the apparent curvature of real contours change with context.  Straight lines can 

take an apparent concave or convex direction depending on the placement of a pattern of 

concentric rings.  On the other hand, illusory contours can be perceived in images in 

which there is no physical stimulation for that feature.  Contour interpolation exists for 

amodal completion such as when the visual system connects contours under occlusion 

and for modal completion, which is experienced with the Kanizsa square (Kanizsa 1976).  

Figure 7.1D-F shows variations of the Kanizsa square whose apparent curvature changes 

with context similar to Figure 7.1A-C.  Stimuli such as The Window by Sandro del Petre 

(Figure 7.1I) demonstrate figure-ground ambiguity in which the incoming visual 

information produces two different percepts. 

 A number of neurophysiological experiments have investigated illusory contour 

formation in the visual system.  Responses to stimuli that produce illusory contours in 
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humans were found in V2 neurons of monkeys (von der Heydt and Peterhans 1989; 

Ramsden et al. 2001) and less often in V1 (Lee and Nguyen 2001).  Although cognitive 

factors influence the perception of illusory contours (Bradley and Petry 1977; Rock and 

Anson 1979; Wallach and Slaughter 1988), findings from early visual areas suggest 

higher processing centers may not be needed for illusory contour formation (Coren 1972; 

Gregory 1972; Kanizsa 1976; Rock and Anson 1979).  In fact, many psychophysical 

studies have implicated real and illusory contours in several processes of early vision 

such as the tilt aftereffect (Smith and Over 1975, 1979), apparent motion (von Grunau 

1979; Ramachandran 1985), orientation discrimination (Vogels and Orban 1987), and 

motion aftereffect (Smith and Over 1979; Weisstein et al. 1977). 

 Neurons in V2 demonstrate similar orientation selectivity for real and illusory 

contours while the selectivity of V1 neurons is reversed (Ramsden et al. 2001).  

Psychophysical evidence suggests that real and illusory contour processes in these visual 

areas may be competitive rather than supportive (Ringach and Shapley. 1996).  

Speculation on the boundary completion process that underlies illusory contour formation 

has provided opposing viewpoints.  While some researchers suggest a comparable 

contour integration process to real contours involving the linking of neural activity with 

similar orientations along the direction of the inducing elements (Grossberg and Mingolla 

1985, 1987), others postulate a different relationship between the perceived contour and 

inducing units (Kellman and Shipley 1991; Finkel and Edelman 1989; Peterhans et al. 

1986).  Illusory contour formation may not necessarily be a component of the integration 

process (Field et al. 2000).  In order to understand synchrony's role in the process of 

visual illusions, we suggest an in depth investigation of real and illusory contour stimuli, 

including the effects of occlusion and figure-ground ambiguity (Figure 7.1).  Our 
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previous results suggest synchrony may behave as a contour detection mechanism for real 

contours and these results would give insight into whether illusory contours may be 

detected by a similar mechanism or be produced by some alternate process. 

 

Neuroethological Experiments 

 Traditional approaches to the study of vision have involved recording from an 

anesthetized animal during presentations of pure spatial frequency grating or light bar 

stimuli.  This “systems identification” approach uses non-natural stimuli with adjustable 

properties to analyze the operation of the system in an attempt to understand the 

metaphorical black box of the brain.  This technique may yield a partial understanding for 

early processing centers that function in a quasi-linear fashion, but by and large give 

inaccurate descriptions of brain function in the numerous nonlinear components 

throughout the visual system.  Subsequently, the field of neuroethology emerged as a 

branch of neuroscience that focuses on the study of neural mechanisms in the context of 

natural behavior.  The foundation for the neuroethological method stems from the idea 

that over time, an animal’s nervous system has evolved to behave and react in a particular 

environmental niche.  As it would not make sense to study a fish out of water, so would it 

not be appropriate to study an animal’s neural basis of behavior outside of its natural 

surroundings.   

 The research detailed in the previous chapters investigated the role of neural 

coding mechanisms in the context of natural vision.  Although progress was made in 

understanding the information encoding capacity of neuronal synchronization, our novel 

approach was still hampered by the subject and relative immaturity of the experimental 

protocol.  For practical and often necessary considerations, our protocol was dependent 
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on laboratory conditions to control certain aspects of the environment.  Besides 

controlling for elements such as electrical noise that could confound our measurements, 

we had to keep our subjects stable under general anesthesia in order to map the receptive 

field extent and location of dozens of cells.  In this manner, the eyes were in a fixed 

position during mapping and viewed the same localized space for all stimulus 

presentations.  Mapping this many cells in an awake, behaving animal would have been 

impractical due to the time required.  Controlling eye movements was necessary for this 

reason and also critical to reflect a one-to-one correspondence between cell responses and 

stimulus features. 

 Critics have suggested that synchrony could be a byproduct of anesthesia and not 

actually exist as a natural phenomenon in the awake brain (Kulli and Koch 1991).  

However, synchronization of multi-unit activity, oscillations, and local field potentials 

has been observed in several visual areas of anesthetized cats (Eckhorn et al. 1988; Gray 

et al. 1989; Engel et al. 1991; Schwarz and Bolz 1991), in the primary visual cortex of 

awake cats (Raether et al. 1989), in visual areas of anesthetized (Livingstone 1996) and 

awake monkeys (Krieter and Singer 1992; Eckhorn et al. 1993), and in the optic tectum 

of awake pigeons (Neuenschwander and Varela 1993; see review in Singer and Gray 

1995).  In all instances, the synchronized activity had similar properties.  In fact, identical 

experiments from anesthetized cats (Engel et al. 1991) have been repeated in awake 

monkeys (Krieter and Singer 1996) and the replication of results suggests that synchrony 

is a general property of the visual cortex. 

 Besides using awake preparations, our protocol could be improved by recording 

from larger populations of neurons.  Although our measurements focused on moderate-

sized assemblies of 2-8 neurons, a more realistic view of assembly function would be 
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obtained from larger groups.  We have the ability to record from dozens of neurons 

simultaneously, but can only find robust assemblies on a smaller scale (i.e., we have yet 

to find stimulation that will induce synchronization in the entire recorded population).  

The recordings sample multiple functional groups that organize around contour structure 

in natural images.  Up to approximately 50% of the recorded population has 

demonstrated synchronization during the stimulus onset response transient (see Chapter 

4), predicting that larger recorded samples could yield larger assemblies.  For now, we 

are limited by the size of the microelectrode array, which has 100 electrodes with 0.4 mm 

spacing.  Future studies should investigate arrays with a finer resolution and greater 

recording capacity.  Also, studies linking this single-unit activity with population studies 

such as fMRI could provide significant insight into the role of synchrony in natural 

vision. 

 

Other Roles for Synchrony and Cooperation Beyond the Visual System 

 As synchrony allows for the formation of dynamic functional assemblies to 

encode information in a visual scene, cooperative activity may serve more than one 

purpose.  In the visual cortex, most studies on neuronal synchrony and oscillations 

contend that these mechanisms are involved in contour integration or figure-ground 

discrimination (for review, see Singer and Gray 1995).  However, synchronous activity 

could carry out multiple functions in different visual areas (or on different time scales) 

and other possible functions have been hypothesized.  Poppel and Logothetis (1986) 

studied human reaction times during pursuit eye movements and speculated that gamma 

oscillations could operate as a clock, organizing temporal events.  Sleep studies suggested 

synchrony was related to cognitive experience and could reflect the state of 
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consciousness (Llinas and Ribary 2001; Madler et al. 1991; Kulli and Koch 1991; Crick 

and Koch 1990).  Iwabuchi and Shimizu (1997) used flickering stimuli to conclude that 

synchrony may place objects in different depth planes, which is consistent with the 

temporal binding theory (Milner 1974; von der Malsburg 1981).  Other hypotheses 

implicate cooperative activity in multi-modal integration (Damasio 1990), discrimination 

of tactile structure (Ahissar and Vaadia 1990), and selective attention (Crick 1984). 

 When investigating possible roles for synchrony, many investigators looked 

between visual areas and beyond the visual system (for a complete review, see Iwabuchi 

1998; Singer and Gray 1995).  Synchronous activity has been observed in many visual 

sectors including areas 17, 18, 19, and PMLS (Eckhorn et al. 1993; Engel et al. 1990, 

1991; Gray et al. 1990), between visual areas such as between areas 17, 18, and 19 

(Eckhorn et al. 1988; Nelson et al. 1992), between area 17 and PMLS (Engel et al. 

1991a), and between area 17 in both hemispheres (Engel et al. 1991b).  Correlated 

activity has also been observed in other sensory areas such as the somatosensory cortex 

(Ahissar and Vaadia 1990), motor cortex (Murthy and Fetz 1992), prefrontal cortex 

(Vaadia et al. 1995), and lateral geniculate nucleus of the thalamus (Ghose and Freeman 

1992; Podvigin et al. 1992; Neuenschwander and Singer 1996; Sillito et al. 1994).  

Roelfsema et al. (1997) also showed robust synchronous activity between areas of the 

visual and parietal cortex and between areas of the parietal and motor cortex in awake 

cats.  To gain a comprehensive understanding of synchrony for future studies, we suggest 

an investigation of the synchronous activity across all layers of organization in the cortex: 

within and between cortical layers, cortical areas, sensory systems, and brain 

hemispheres. 
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Clinical Applications and the Role of Synchrony in Neurological Disorders 

 The research in this dissertation studies synchronous activity in neural assemblies 

during natural stimulation to determine the role of such cooperation in the normal brain.  

However, malfunctioning processes and their overt system effects can also contribute to 

the understanding of normal brain functions.  Abnormalities in the synchronization of 

neuronal oscillations have been implicated in the cognitive dysfunctions of brain 

disorders such as schizophrenia, epilepsy, autism, Alzheimer's disease, and Parkinson's 

disease (Uhlhaas and Singer 2006).  By examining clinical results with 

electroencephalography, magneto-encephalography, and magnetic resonance imaging, 

these techniques revealed deficiencies in tasks designed around perceptual grouping, 

attention-dependent stimulus selection, routing of signals across cortical networks, 

sensory-motor integration, working memory, and perceptual awareness (for a review see 

Singer 1999; Schnitzler and Gross 2005). 

 For example, schizophrenia is a mental disorder characterized by psychotic 

symptoms, negative symptoms, and disorganization of thought and behavior (Uhlhaas 

and Singer 2006).  Speculation on the pathophysiological mechanisms leading to the 

manifested behavior of schizophrenia suggests that deficits in the coordination of 

distributed processes may be linked to the synchronization of firing oscillations (Friston 

1999).  Visual binding tasks have been shown to reduce non-stimulus-locked oscillatory 

activity (Spencer et al. 2003).  In epilepsy, increases in local synchrony and decreases in 

long-range synchronization have been correlated with specific dysfunctions in the area 

where a seizure occurred (Niedermeyer 2005).  In autism, reduced functional 

connectivity and neural synchrony correlate with impairments in perception, social 

cognition, and attention (Belmonte et al. 2004; Hill and Frith 2003).  In Alzheimer's 
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disease, reduced synchronization of oscillatory activity during the resting state 

corresponds to deficits in working memory, attention, and executive processes (Stam et 

al. 2003, 2005, 2006).  Studies of synchrony in Parkinson's disease show an increase in 

oscillations in the basal ganglia and between subcortical structures that are linked to 

deficits in motor functioning (Boroud et al. 2005).   

 Research on many of these neurological disorders showed evidence for reduced 

anatomical connectivity, which may contribute to the observed deficiencies in 

synchronous activity.  A comprehensive investigation of synchrony and oscillations 

including studies of anatomical connections, long-range synchrony, and related 

perceptual processes will provide medically relevant information that can possibly be 

used in the diagnosis and treatment of these and other neural pathologies. 
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