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CHAPTER I

INTRODUCTION

The availability of a variety of sensors around the globe and the ability to quickly make

this data available in remote locations give today’s scientists an unprecedented advantage

in studying and predicting weather, natural disasters, and climate change. Unfortunately

this wealth of sensor data is often difficult to locate, access, analyze, and integrate with

other data to gain more precise and accurate understanding of earth science issues. Addi-

tionally, new sensors are being added at a prodigious rate, further confounding attempts to

identify and use the most appropriate sensors to accurately answer particular earth science

questions. Technology has advanced to the point that these sensors are also increasingly

configurable in terms of measurements, data rate, and sometimes location (e.g., for remote

sensing and mobile platforms). Naturally, selecting and coordinating an appropriate subset

of these heterogeneous and distributed sensors for large-scale tasks (e.g., studying/predict-

ing natural disasters and climate change) is a complex task.

For example, sensors must first be located and may have to be reconfigured and re-

calibrated to collect the needed data. Moreover, changing local conditions (e.g., increased

cloud cover reducing available power from solar panels) and conflicting goals (e.g., main-

taining power reserves versus collecting data at a high rate) require local system adaptation

for efficient use of available resources. Effective, timely adaptation requires intelligent

reasoning for trade-offs among goals and reconfiguration in response to rapidly evolving

situations. However, even intelligent reasoning with a local view of conditions, goals, and

tasks is insufficient when there are dependencies between distributed resources for achiev-

ing a complex task like natural disaster prediction/tracking.

Coordination among these distributed sensor and computational resources is required

for efficient and effective execution of complex tasks. For these reasons and more, NASA’s
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Earth Science Vision calls for the design and implementation of a global sensor web to

research and resolve a variety of Earth science issues [53]. Figure 1 illustrates a global

sensor web as envisioned by NASA [78] that is composed of constituent sensor networks,

possibly incorporated into smaller sensor webs, designed for a variety of environments and

science missions. Further, the sensor networks comprising the global sensor web would

employ a wide variety of hardware and software platforms with on-board information pro-

cessing [53]. The global sensor web vision includes orchestrating real-time collaborative

operations among these heterogeneous platforms and computing facilities [53].

Figure 1: A global sensor web [78]

Effective, collaborative operation of a large, diverse system like a global sensor web

presents many challenges across a wide array of fields. In this dissertation research, we will
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address the autonomous coordination and distributed control needs of a global sensor web

through the design of a multi-agent framework, coordination mechanisms, and autonomous

adaptation mechanisms. The proposed framework spans the scope of a sensor web from

high-level coordination among distributed (i.e., geographically dispersed) sensor networks

to intelligent control of individual sensor platforms in the field.

Major requirements of a multi-agent framework for autonomous coordination and dis-

tributed control of a global sensor web are:

• definition of autonomous agent roles/responsibilities, organization, and supporting

infrastructure;

• efficient, fair allocation of sensor web resources to address many tasks simultane-

ously;

• global, task-oriented planning, scheduling, and distributed coordination for sensor

and computing resources;

• local, decision-theoretic planning and scheduling for adaptability in a dynamic, un-

certain environment;

• system integration, including interoperability of task/resource representations across

sensor network domains and a coordination protocol between the global and local

representations of task plans and schedules.

I.1 Sensor Webs and Multi-Agent Systems

The vast array of heterogeneous sensors and platforms making up a global sensor web

presents a complex problem for effective control and cooperative operation in a highly dis-

tributed environment. One aspect of this problem is that the sensor web’s resources (e.g.,

sensors, servers, bandwidth) are not owned or controlled by any single entity. Various in-

stitutions, governments, and corporations will have the final say on how their resources
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are deployed and used. Even assuming these entities are willing to participate in a collab-

orative sensor web, they will certainly have internal goals and tasks that can sometimes

conflict with requests for use of their resources from other sensor web participants or users.

Further, a global sensor web will have many independent, heterogeneous “users” (e.g.,

weather modeling and prediction systems, disaster recognition and management systems,

scientists, educators, political groups, and members of the public interested in tracking

natural phenomena) requesting access to, and control of, the sensor platforms to support

their research and analysis activities. The finite resources available in a sensor web en-

sure that, at times, the goals of these users will compete for control of those resources. A

multi-agent system (MAS) provides a natural approach to handling the complexity of dis-

tributed resource allocation and task coordination in such a large-scale system composed

of heterogeneous, independent entities.

A multi-agent system is composed of independent, intelligent agents, which, in the

case of a sensor web, can represent the interests of the participants and the users. These

agents interact through communication of local beliefs and negotiation to achieve their

goals. Properly designed protocols for agent communication and negotiation facilitate

effective global behavior in the pursuit of system objectives. Further, individual agents

employ intelligent reasoning capabilities necessary for semi-autonomous behavior that ac-

curately represents the interests of their owner(s). In a sensor web MAS, these reasoning

capabilities allow sensor networks to adapt the use of local resources to achieve current

goals, under changing system and environmental conditions. Intelligent agent technology

can allow the system to respond quickly to changing local conditions, as well as external

user requests, with minimal human input (e.g., high-level guidance in the form of local

sensor network goals, tasks, and constraints).

In addition to supporting the independence and adaptability needs of a global sensor

web, a MAS allows the complex problem of sensor web control to be addressed in a dis-

tributed fashion. Coordination/negotiation protocols defining inter-agent communications,
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coupled with the planning and decision-making activities of individual agents, are, in ef-

fect, a complex distributed algorithm for sensor web control. Solving the control problem

in such a distributed fashion can make use of relatively small amounts of computational

power available to many, distributed agents rather than requiring the addition of a mas-

sive amount of computational power for a single, centralized solution to the problem. To-

gether, the heterogeneous make-up, independent control of resources, need for dynamic

semi-autonomous adaptation, and availability of distributed computational power in a sen-

sor web make a multi-agent system a natural and promising solution for global sensor web

coordination and control.

I.2 Sensor Web MAS Requirements

Although a multi-agent system provides a powerful solution framework for sensor web

coordination and control, the design of its components, protocols, and functionality is a

large and complex undertaking. To illustrate the major coordination and control require-

ments of a sensor web MAS, consider a weather modeling application designed to predict

and track hurricanes. In its nominal configuration, i.e., in the absence of extreme weather

conditions likely to result in hurricanes, the application requires relatively low-resolution,

aggregated data from a large number of sensors distributed around the world. For simplic-

ity, we will assume that this data is always being collected and available during the normal

operation of the sensor web.

Analysis of the data over a period of time may indicate that the thunderstorm activity

in a particular area is likely to evolve into a hurricane in the near future. At this point,

the application must identify additional resource types and/or sensor configurations that

will lead to richer data collection for more accurate analysis and prediction. Further, these

resources must be tasked and configured to provide the requested information. Therefore,

control of the relevant resources must be granted to the hurricane application rather than

other applications/users whose tasks are of lower priority.
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Reconfiguration, data collection, and pertinent information extraction by the applicable

sensor resources may take different amounts of time and could be performed in multiple

ways to enable detection and accurate tracking of the evolving hurricane. However, effec-

tive use of these individual resources for the overall hurricane tracking task is not indepen-

dent of one another (e.g., the hurricane application may require synchronized, or otherwise

compatible, data rates from two sets of sensors and require that data from both be provided

for analysis within specified time deadlines). Therefore, to achieve the desired analysis in

a timely fashion with distributed, independently-controlled resources requires coordination

among the representatives of those resources to plan and schedule related tasks. Having

identified, tasked, and configured an appropriate set of sensor resources, the application

can receive and process the additional information from the sensor web to produce more

accurate predictions and tracking of relevant phenomena.

This scenario illustrates three required capabilities of the sensor web MAS for the hur-

ricane prediction/tracking application: (1) task/resource allocation, (2) global, coordinated

planning/scheduling, and (3) local, dynamic planning/scheduling. Figure 2 illustrates the

major coordination and control steps in the hurricane tracking scenario with the related

capabilities and general MAS issues. First, the sensor web must allocate sensor resources

to the hurricane application that are capable of producing the necessary data. This is the

task/resource allocation capability, whose steps include identifying applicable sensor re-

sources and negotiating the use of an appropriate subset of those resources. Second, the

agents representing allocated resources must coordinate their planned activity in order to

achieve the overall hurricane tracking task on an acceptable schedule. This is the global,

coordinated planning/scheduling capability that consists of: (1) high-level planning and

scheduling of subtasks by individual agents, and (2) coordination of plans/schedules to

ensure that individual agent plans obey inter-agent constraints imposed by the overall hur-

ricane task. Finally, the servers and individual sensor platforms in a sensor network must
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create a detailed plan and schedule for execution of their local subtasks, replanning and

rescheduling as necessary. This is the local, dynamic planning/scheduling capability.

Figure 2: Key steps and capabilities for the hurricane tracking scenario

Although this scenario and Figure 2 present the major coordination and control steps

as a simplified task flow, they are actually closely intertwined, and often do not follow

such a linear progression. For example, in order to allocate sensor web resources, some

planning and scheduling is required to determine the resources a given task may require.

The overlap and interactions among the described capabilities suggest two more major

requirements for a global sensor web MAS. First, to consistently and efficiently provide

these capabilities requires the design of an appropriate multi-agent architecture, including

agent roles, organization, and supporting infrastructure. Second, the interactions among

coordination protocols and translations between different representational formats requires

significant system integration work to weld these capabilities into a functioning sensor web

system.

The global-level coordination and control requirements (i.e., task allocation and coor-

dinated planning/scheduling) are complex, and they raise a number of issues in the design

of an appropriate multi-agent architecture. As illustrated in Figure 2, the resource/task
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allocation capability involves two steps: (1) matching the hurricane tracking task to an ap-

propriate set of agents capable of providing required sensor data and processing/analysis

in a timely manner, and (2) allocating agent (sensor network) resources to that task. Given

the global scope of the sensor web, there will likely be other users of the system that are

also requesting, or already allocated, resources from the set of agents applicable to the hur-

ricane task. While some resources may be simultaneously allocated to multiple users (e.g.,

providing a series of measurements from a particular sensor at the same rate), others may

be mutually exclusive (e.g., using satellite-based sensors to monitor one location versus

another or limited power requiring the use of one sensor versus another).

This aspect of the allocation problem also illustrates two architecture issues that must

be resolved in the design of a sensor web MAS. Broadcasting the hurricane tracking task to

all agents is infeasible at the global scale of the sensor web. Therefore, a streamlined orga-

nization of the agents for solving this problem is an important aspect of the system design.

For example, broker agents may be used to mediate allocation of sensor web resources

and reduce the number of required messages between agents. Also, in order to commit to

fulfilling all or part of the requested task, the agents must reason about their existing goals

and commitments in light of current conditions and the newly requested hurricane task.

Providing the appropriate global information to agents for comparison of potential tasks is

a non-trivial part of ensuring an efficient and effective solution to the allocation problem.

After an initial allocation of resources by a set of agents to the high-level hurricane

task, those agents must, in effect, produce a distributed plan and schedule for achieving the

task that takes into account available local resources, as well as dependencies among their

subtasks. In fact, at least some of the initial planning and scheduling will have to be carried

out in determining a valid allocation. For example, an agent should reasonably determine

whether it can achieve a task/subtask before committing to it.

The global planning, scheduling, and coordination requirement also highlights two

other important aspects of a sensor web MAS. Because the agents will, in effect, act as
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a group, or team, to fulfill the broad hurricane task, their organization, individual roles, and

coordination is again an important issue for efficient and effective use of the system. In

this case, there is the added complication that their organization and roles will necessarily

be dynamic as different, probably overlapping, sets of agents will be working on different

tasks over time. Further, in order to efficiently coordinate plans and schedules, agents must

communicate and reason over multiple levels of abstraction. For example, to successfully

achieve a high-level goal, an agent must be able to produce a detailed, scheduled plan of

action. However, it must also be able to efficiently coordinate with other agents, which will

likely require exchanging information largely at a higher level of abstraction.

I.3 Research Challenges

The scope of a global sensor web requires an open, efficient, scalable system to allo-

cate, plan/schedule, and coordinate the operation of its many heterogeneous, independent

components in a dynamic, effective, and equitable manner. This work focuses on a number

of specific research challenges for providing these coordination and control capabilities.

Section I.2 illustrated the need for fair and efficient allocation of complex tasks in the

global sensor web. The global task/resource allocation requirement presents three signifi-

cant challenges (detailed in Section III.2):

• definition of a metric for sensor web task/resource allocations that combines fairness

and efficiency;

• design of an allocation mechanism through which system designers can influence

allocations for fair and efficient use of resources, while limiting infrastructure com-

putational overhead; and

• efficient, effective subcontracting for complex, hierarchically-decomposable tasks.

In addition to task allocation, a global sensor web requires autonomous planning and
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scheduling capabilities. In Section I.2 we described the need for coordinated planning/-

scheduling at the global level of interaction across sensor networks. Section IV.1 describes

the MACRO solution to this global planning/scheduling requirement. Further, we iden-

tified the local, dynamic planning/scheduling requirement for adaptive operation of indi-

vidual sensor networks. This requirement presents three significant challenges (detailed in

Section IV.3):

• the design and application of an efficient heuristic to guide the planning process in

the search for valid, high expected utility plans;

• the efficient integration of an appropriate scheduling mechanism with the planning

process; and

• representing and producing plans that include both execution of traditional, individ-

ual actions and assembly/deployment of applications comprising configured software

components.

For effective coordination and control of a global sensor web, the task allocation and

planning/scheduling capabilities must work together in a complete, coherent system. In-

tegration of these sensor web capabilities presents three significant challenges (detailed in

Section V.2):

• definition of a flexible, extensible agent internal architecture that can effectively co-

ordinate its allocation, planning/scheduling, plan/schedule coordination, and task ex-

ecution activities;

• translation between task representation formats, including aggregation of domain

information across independently-designed sensor networks; and

• efficient coordination and translation between the different planning and scheduling

mechanisms/representations at the global and local levels.
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I.4 Research Approach and Contributions

The research conducted for this dissertation has resulted in the design and implemen-

tation of agents and coordination mechanisms in the Multi-agent Architecture for Coor-

dinated Responsive Observations (MACRO), which resolves the challenges identified in

Section I.3. This work has produced a number of research contributions in the fields of

multi-agent systems and autonomous planning and scheduling.

MACRO provides a metric for task allocation combining fairness (i.e., user satisfaction)

and efficiency (i.e., system value) considerations that does not require parameter tweak-

ing for different system configurations (e.g., system load and relative importance of user

agents). MACRO also provides a distributed mechanism for the fair and efficient allo-

cation of hierarchically-decomposable tasks. Specifically, we enhance a two-phase con-

tract net protocol with efficient subcontracting and broker agents for mediating negotia-

tions and evaluating user tasks. Experimental results in Section III.6.1 verify the efficiency

of MACRO’s subcontracting for hierarchically-decomposable tasks. Further, experimental

results in Section III.6.2 verify MACRO performance in producing fair and efficient task al-

locations. In general, the novel, MACRO task allocation metric and mechanism are suitable

to large multi-agent systems with heterogeneous users, hierarchically-decomposable tasks

requiring multiple agents’ resources, and limited infrastructure computational capabilities.

At the local sensor network level of MACRO, the Spreading Activation Partial Order

Planner (SA-POP) provides a decision-theoretic planning and scheduling service for local

sensor network agents operating on shared computational resources. Section IV.6 presents

experimental results verifying SA-POP’s ability to produce plans with near-optimal ex-

pected utility under tight scheduling constraints. SA-POP allows MACRO agents operating

on shared computational resources to achieve goals in a dynamic, uncertain environment

with limited resources. In general, the SA-POP planning and scheduling service is suit-

able for autonomous action and adaptation of system applications by agents operating in a

dynamic, uncertain environment with limited, shared resources.
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Further, MACRO resolves system integration challenges for a proof-of-concept imple-

mentation integrating the MACRO task allocation and planning/scheduling capabilities.

By defining appropriate meta-data for sensor network domain information, MACRO al-

lows aggregation of potential tasks across sensor networks and translation between user

and provider task representations. Further, MACRO implements context-sensitive co-

ordination between the different forms and representations of planning/scheduling em-

ployed at the global and local levels. This coordination mechanism is applicable to agents

in a hierarchical relationship where the top level employs hierarchical task decomposi-

tion and (re)scheduling while the bottom level employs decision-theoretic, first-principles

(re)planning and (re)scheduling for adaptation to local system conditions while obeying

top-level goals and constraints. Experimental results presented in Section V.7 illustrate

some of the communication and computation overhead benefits of this coordination. Fi-

nally, we illustrate the integration of MACRO’s sensor web coordination and control capa-

bilities in a case study with three simulated sensor networks presented in Section V.6.

I.5 Dissertation Organization

The remainder of this dissertation is organized as follows: Chapter II gives an overview

of the Multi-agent Architecture for Coordinated Responsive Observations (MACRO), defin-

ing agent roles, organization, and services on a middleware infrastructure; Chapter III

details MACRO’s sensor web metric for fair and efficient task allocation, brokered task

auctions, and efficient subcontracting in an enhanced contract net protocol; Chapter IV

provides details of the autonomous planning and scheduling in MACRO, including the SA-

POP decision-theoretic planning and scheduling service and MACRO’s use of a global,

distributed planning and scheduling representation and mechanism; Chapter V describes

the integration of MACRO coordination and control capabilities, including an extensi-

ble agent internal architecture, aggregation of domain information across independently-

designed sensor networks, translation between task representation formats, and efficient
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coordination between the different planning and scheduling mechanisms/representations at

the global and local levels; and Chapter VI provides a summary of the presented work on

MACRO, lessons learned, and future research directions.
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CHAPTER II

THE MULTI-AGENT ARCHITECTURE FOR COORDINATED RESPONSIVE
OBSERVATIONS

As illustrated in Section I.1, a multi-agent system is a powerful solution for sensor web

coordination and control. However, its design is a large and complex undertaking. The

definition of agent roles, communication, and implementation standards provides the nec-

essary basis for the design and implementation of effective coordination mechanisms and

adaptive agent capabilities in any multi-agent system. Naturally, as those specific coordi-

nation mechanisms and capabilities have been designed, implemented, and refined, they

have also driven revisions to the agent architecture presented in this chapter.

A significant contribution of this research has been the definition and implementation

of the Multi-agent Architecture for Coordinated Responsive Observations (MACRO). Ul-

timately, MACRO provides a powerful computational infrastructure for enabling the de-

ployment and adaptive operation of large, distributed systems, such as a sensor web, that

require both high-level coordination of complex tasks across agents and local, dynamic

adaptation for effective use of limited resources in dynamic, uncertain environments. This

chapter presents the design of the MACRO framework, including agent roles, agent orga-

nization, agent services, the underlying system infrastructure, and related work relevant to

these aspects and more generally to the coordination mechanisms discussed in subsequent

chapters.

II.1 Related Research

Effectively managing global sensor web activities to achieve a diverse set of goals re-

quires a significant degree of coordination among the agents representing individual sensor

networks, as well as between these agents and the agents representing external users. In
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fact, coordination is generally considered the primary aspect of a multi-agent system dis-

tinguishing it from a simple collection of independent agents. Nwana et al. [80] identified

five, overlapping, reasons for coordination among agents. All of these points are applicable

to global sensor web control in at least some degree:

• Preventing anarchy or chaos – Anarchy is an inherent danger in most multi-agent

systems because the independent agents are not constrained by any centralized con-

trol. In a global sensor web, an agent responsible for a single sensor network is

knowledgeable about its current state and goals. However, without coordination to

provide information about other agents’ situations, intents, and potentially conflict-

ing goals, independent agent action may produce undesirable and ineffective system

behavior. In particular, tasks requiring the resources of multiple sensor networks may

not be correctly achieved without coordination.

• Efficiency – When agents are operating with independent resources and goals, they

can generally achieve their goals with no coordination. However, in some appli-

cations they can coordinate their activities to achieve their independent goals more

efficiently. For example, if data analysis is shifted from an agent with highly utilized

computing resources to an under-utilized one at one point, and then the reverse oc-

curs at a later point, both agents are able to achieve their goals more quickly. Further,

given limited resources, more efficient use of those resources will allow more tasks

to be completed even when it is not possible to complete all tasks.

• Meeting global constraints – A successful multi-agent system is designed such that

the interactions of its agents, as a whole, solve some large, complicated problem(s).

Generally there are global constraints and/or metrics for system success, which re-

quire coordination among the agents to meet those constraints or optimize for sys-

tem metrics. Clearly such metrics exist for a sensor web (e.g., fair-share access to
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resources and timely completion of tasks), requiring agents to coordinate their activ-

ities.

• Distributed expertise, resources, or information – A global sensor web, by definition,

is made up of many distributed resources, including the sensors and computational

power. Reconfiguration of multiple component sensor networks to achieve a user’s

task may be possible in a large number of ways acceptable to the user, but only

a few of those may be acceptable to the relevant sensor networks because of their

individual goals and constraints. Without coordination among sensor web agents,

individual users would have to indirectly impose coordination, possibly attempting

many configurations before finding one acceptable to all relevant sensor networks, in

order to effectively use sensor web resources.

• Dependencies between agents’ actions – Although agents operate independently,

their actions may affect the ability of other agents to effectively achieve their goals.

For example, two sensor networks may be producing data that a user intends to com-

bine and analyze. If one of the sensor networks is forced to change the rate or time

window of data collection due to unexpected events, this may present difficulties for

the user’s analysis, unless it coordinates with the other sensor network to also change

its rate/window. In general, there may be a variety of data quality and synchroniza-

tion dependencies between subtasks achieved by various sensor networks.

Although preventing anarchy and system efficiency are always important, the latter

three of these goals are more specifically applicable to a global sensor web MAS and have

been achieved in other MASs in a variety of ways. Nwana et al. [80] categorize the methods

for achieving coordination into four, again overlapping, groups: organizational structure,

contracting, negotiation, and multi-agent planning. Each have their particular benefits and

potential drawbacks, and each are applicable to some of the challenges faced by a global

sensor web MAS.
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II.1.1 Types of Coordination

A well-defined, comprehensive organizational structure is one of the easiest ways of

achieving a basic level of coordination in a multi-agent system. Individual agents have

specific roles and responsibilities that determine their relationship and appropriate com-

munication with other agents in the system. Many organizational structures include some

degree of power imbalance among agents (i.e., some agents have at least partial authority

over other agents) [54]. Such dominance relationships significantly simplify coordination

reducing the number of “peers” that must negotiate or otherwise reach mutually agreeable

decisions. Other, more peer-oriented, relationships also reduce the complexity of coordi-

nation by limiting the number of other agents an individual agent must interact with based

on its particular role in the organization [63]. The global scope of a sensor web requires

such limitations because if, instead, each of the hundreds (potentially thousands or more) of

agents needed to interact with a significant fraction of the others, message and processing

time overhead would be too great for effective system operation. On the other hand, the

more effectively an organizational structure limits interactions among agents, particularly

hierarchical organizations or others with many dominance relationships, the less flexible the

agents are in their interactions. Consequently, extremely rigid and limiting organizational

structures can preclude many of the benefits of distributed systems, such as concurrency,

robustness, and minimal bottlenecks [54].

Another category of coordination techniques is contracting. Contracting generally in-

volves the creation of temporary contracts between agents for the execution of tasks or use

of resources. In a sense, a contract prescribes a temporary, well-defined relationship be-

tween two or more agents. It provides a powerful method of organizing agents with greater

flexibility than static organizational roles. The price of this flexibility is that more complex

communication among potentially contracting agents is required to produce the contracts,

and additional computing infrastructure may be needed to manage the contracting process.

Contracting is often done through some form of auction (e.g., [56, 65, 86, 104]), which can
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provide an efficient method of allocating tasks or resources. However, there are numer-

ous flavors of auctions differing in dimensions including how the winner(s) are chosen, the

price paid by the winner(s), and whether items may be bundled [117]. Therefore, choosing

the appropriate form of auction by considering the characteristics of the items and bidders,

as well as which provides the best incentives for achieving global metrics, is a significant

challenge that must be addressed based on the particular system to which it is applied.

Relevant contracting and auction techniques are covered in more detail as they relate to

resource allocation in Section III.1.3.

A related, and much broader, category of coordination techniques is negotiation (e.g.,

[41, 57, 80]. Similar to, and often encompassing, the economics-inspired auctions for

agent contracts, negotiation techniques are often based on economic and game theories,

which can provide important information on the potential strategies for different negoti-

ation scenarios and their equilibria and efficiency. Generally, negotiation techniques are

more competitive and require less inherently benevolent/cooperative agents than strict or-

ganizational structures and some contracting schemes. Allowing for more self-interested

agents makes these negotiation techniques particularly useful for open systems in which

the benevolence or adherence to cooperative strategies of agents cannot be assumed. On

the other hand, negotiation usually requires repeated interactions between agents to reach

agreement or even to determine that there is no mutually acceptable agreement. Because of

this, open-ended negotiation is likely to be an impractical technique for the primary coordi-

nation mechanisms in a global sensor web. However, negotiation techniques can be applied

within the confines of other coordination mechanisms. For example, organizational rela-

tionships between agents can allow for some degree of negotiation and contract auctions

could allow negotiation over contract details rather than simply acceptance or rejection of

proposed contracts. A subset of negotiation techniques applicable to resource allocation

and contract nets is discussed further in Section III.1.

Finally, the fourth category of coordination techniques identified by Nwana et al. is
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multi-agent planning [80]. These techniques perform coordination in terms of a plan dis-

tributed among multiple agents (e.g., [29, 30, 32, 110]. They are primarily differentiated

from other coordination techniques in that the goal of coordination is the production of a

valid, consistent plan distributed among the agents. Interactions among these agents often

include communicating details of their local plans and reaching agreement on modifica-

tions to their plans to resolve conflicts. The scope of a global sensor web implies that no

single agent will have a global view of the system, so significant communications may be

necessary to provide agents with sufficient knowledge of others plans. Further, coordi-

nation of agents through multi-agent planning is likely to require significant computation

and repeated negotiation to resolve conflicts. Despite these costs, multi-agent planning

still provides a useful coordination mechanism when the primary goal of coordination is to

determine dependencies among agents’ planned tasks and resolve related conflicts. Multi-

agent planning techniques applicable to a sensor web are discussed in detail in Section IV.1.

II.1.2 Scalability of Coordination Techniques

The variety of available coordination techniques provides a great deal of flexibility in

designing multi-agent systems but also requires careful consideration of their advantages

and disadvantages in choosing an appropriate coordination scheme for a particular system.

Durfee [34] suggests three dimensions in which multi-agent coordination mechanisms are

stressed: agent population properties, task/environment properties, and solution properties.

Agent population properties include agent heterogeneity, agent complexity, quantity of

agents/agent-interactions. The agent population in a sensor web could take many different

forms so we will specifically consider the MACRO agents. Agent heterogeneity is certainly

significant at the MACRO mission-level because Mission agents have control of a wide ar-

ray of different sensor and computing resources, with a similarly wide spectrum of goals.

However, the physical distribution inherent in this heterogeneity actually reduces the coor-

dination stress because resources are generally discrete/uniquely-owned and Mission agent
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actions rarely affect the outcomes of one another. Agent complexity is also significant

in MACRO because the agents have relatively powerful reasoning capabilities and a high

degree of autonomy. The relationships imposed by the MACRO organizational structure

help to alleviate this stress by obviating the need for most agents to build complex internal

representations of each other to interact effectively. Finally, considering the extent of the

sensor web from field operations in sensor networks up to the global mission level, the total

quantity of agents in a sensor web will be very large. Therefore, the MACRO organization

significantly limits the potential number of other agents any agent must interact with at a

given time. For example, the hierarchical and federated aspects of the MACRO organiza-

tion limit the number of peers each agent must interact with, particularly at the resource

level. However, at the mission level, any given agent may have to interact with any other

agent, depending on the situation, to ensure allocation constraints and plan coordination are

satisfied. Generally contract auctions and other economic coordination schemes scale well

to large number of agents in terms of generating effective solutions, but limiting commu-

nications to applicable/interested agents can be a significant problem. Fortunately, brokers

can help reduce the number of mission-level agent interactions for resource allocation, and

dynamic goal-oriented teams can significantly reduce interactions for distributed planning.

Task and environment properties are another important dimension of stress in sensor

web coordination. Durfee [34] divides this dimension into the degree of interaction, dis-

tributivity, and dynamics of tasks/environment. The fact that most actions in the sensor

web involve sensing and processing data, rather than affecting their environment, results in

a relatively low degree of interaction among actions not related to the same task. Similarly,

distributivity does not place a significant stress on sensor web agent coordination, because

the physical distribution and heterogeneity of sensor web resources limits which tasks are

applicable to which agents. The dynamics of the environment, on the other hand, are a

significant stress in a sensor web. Local environmental changes require autonomous adap-

tation by resource-level agents, which in turn can necessitate modification of mission-level
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agent plans and commitments. The coordination stress of such a dynamic environment

can be minimized by the use of summary information and abstraction in defining tasks/-

subtasks and goals/subgoals at different levels of the system. For example, if a Mission

agent directs a resource-level agent to achieve a subgoal rather than execute a specific set

of actions to achieve that subgoal, when conditions change, the resource-level agent may

be able to achieve the subgoal with a different set of actions without compromising the

Mission agent’s high-level plan.

The third dimension of coordination stress identified by Durfee is the system solution

properties [34]. This dimension includes the quality, robustness, and overhead limitation of

system-wide solutions/operation. Sensor webs provide a moderate stress in terms of coor-

dination quality because efficient use of resources and coordination to achieve user goals is

important but does not have to be optimal for effective sensor web operation. For example,

a multi-agent plan to achieve a particular user goal must meet provided constraints such as

data quality and time for completion, but by limiting the number of tasks they accept, the

relevant Mission agents may not need to determine the optimal plan for task achievement

in order to meet the constraints. Further, while more efficient resource allocation is always

preferable, determining the optimal allocation at any given time is not necessary or even

reasonable because the dynamically changing user goals and environmental conditions ne-

cessitate continuous revisions to agent plans and resource allocation. On the other hand,

overhead limitations are a major stress in a sensor web. For example, resource-level agents

may have limited bandwidth for communication and may be operating in a soft real-time

environment requiring minimal communication and time overhead for effective operation.

At the mission level, time overhead to achieve an allocation of resources and multi-agent

plans must be kept low because of the dynamic nature of user goals and environmental con-

ditions (e.g., if it takes too long to allocate resources, the time deadlines on user requests

may have passed and the set of current requests may have changed significantly).

The scale and scope of a global sensor web produce significant difficulties in achieving

21



effective multi-agent coordination. As such, the combination of multiple strategies to ad-

dress the inter-twined requirements of task allocation, global distributed planning/schedul-

ing, and local dynamic planning/scheduling is a logical approach identified in Section I.2.

To choose or design appropriate coordination mechanisms requires consideration of how

they scale in the face of the characteristics of a global sensor web, particularly:

• quantity of agents,

• dynamic environment,

• time/message overhead.

Through careful consideration of these factors and the interactions among applicable coor-

dination mechanisms, we can create an efficient, scalable system for sensor web coordina-

tion and control.

II.2 Unresolved Challenges

Knowledge of existing paradigms and major factors in agent organization and coor-

dination, such as those discussed in Section II.1, provides a solid basis for design of a

multi-agent system, such as MACRO. However, it does not provide a ready-made solution

to the definition of an effective agent architecture for a complex, distributed system like a

global sensor web. In particular, the scope of a global sensor web encompasses the need

for both coordination of large-scale, complex tasks across sensor networks and dynamic

adaptation for effective use of local resources in dynamic, uncertain environments.

Therefore, one challenge in designing the MACRO framework is defining a set of agent

roles and relationships that enable efficient resolution of large-scale coordination problems

(i.e., allocation of complex tasks and distributed planning and scheduling for those tasks),

as well as local adaptation problems (i.e., autonomous operation with limited resources to

achieve local goals in a dynamic, uncertain environment). The MACRO agent roles and

organizational structure that resolve this challenge are presented in Section II.3.

22



Another challenge for the MACRO framework is the need for agent services and a flex-

ible infrastructure to enable efficient and effective implementation of the MACRO agents

and sensor web tasks. In particular, MACRO agents operating on shared, local sensor

network resources require capabilities for autonomous planning/scheduling and adaptive

resource management. Further, to effectively implement and operate MACRO agents and

services in a distributed, heterogeneous computing environment (e.g., a variety of hardware

and operating system platforms interacting over wireless and wired networks) requires a

software layer (i.e., middleware) to automate system configuration, management, and net-

working tasks. The MACRO agent services and middleware infrastructure that resolve this

challenge are presented in Section II.4.

II.3 MACRO Agent Roles and Organization

As illustrated in Section I.1, multi-agent systems provide a promising solution for

global sensor web control. As part of a joint project with the Lockheed Martin Advanced

Technology Center, we have developed the Multi-agent Architecture for Coordinated, Re-

sponsive Observations (MACRO) (e.g., [106, 107]). MACRO is designed to provide a

flexible agent architecture and infrastructure for enabling the deployment and operation

of a sensor web at both the local sensor net “resource level” and the global sensor web

“mission level.” Further, its infrastructure is designed to be amenable for use with other

potential sensor web software and agents. For example, all agents communicate using

messages based on a subset of the FIPA Agent Communication Language [44]. MACRO

also employs interoperable sensor and data description standards in the content language

of agent messages. Specifically, the OGC SensorML [9] provides a standardized content

language for describing sensor capabilities and processing of sensor data, and the OGC Ob-

servations and Measurements standard [25] provides a standard format for encoding sensor

data. This also allows MACRO to support interoperability with other external tools and

systems employing these standards.
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In MACRO, there are multiple types of agents, whose roles and responsibilities are

partially defined by the organizational structure of the system. As illustrated in Figure 3

there is a broad, two-level hierarchy of control. The top (mission) level is comprised of

User agents, Mission agents, and Broker agents.

II.3.1 MACRO Mission-Level Agents

The MACRO mission level is comprised of User agents, Mission agents, and Broker

agents. User agents provide the high-level tasks/goals to be achieved by the system. The

User agents are interfaces to mission scientists or wrappers for earth science applications

and legacy systems, such as weather modeling and simulation. The Mission agents achieve

these tasks with the resources under their control. Specifically, each Mission agent rep-

resents and controls a sensor net. This hierarchy is a natural result of the sensor web’s

structure in which there are many low-level sensor platforms with limited computational

resources that are supported and directed by computing facilities with far greater resources.

Moreover, this hierarchical structure can take advantage of the efficiency gained through

task decomposition and separation of concerns [54]. The disadvantage of a hierarchical

structure is the potential for brittleness and bottlenecks [54]. In MACRO, these disadvan-

tages are mitigated by the fact that the top level of the hierarchy includes a large number of

Mission, Broker, and User agents rather than a single agent, and this group can be dynami-

cally expanded as additional sensor nets and users are added to the global sensor web.

The Mission agents take on overlapping roles in the allocation and planning aspects

of the sensor web, and their interactions with each other and the User agents ultimately

provide the global resource allocation and distributed planning/scheduling necessary for

coherent operation of the sensor web. Finally, Broker agents are responsible for providing

matchmaker services between User agent requests and applicable Mission agents. They

also mediate negotiations between User agents and Mission agents. As opposed to most

User and Mission agents, Broker agents are implemented by the MACRO system designers,
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providing them with a way to directly influence overall system performance. A global

sensor web could easily contain thousands of these various mission-level agents, or more.

However, given the processing power required for each mission-level agent, we will limit

the scope of most experiments and discussion in this work to hundreds of mission-level

agents rather than thousands.

Figure 3: MACRO system architecture

II.3.2 MACRO Resource-Level Agents

The lower (resource) level of the MACRO agent hierarchy consists of the agents located

on the servers and field hardware making up individual sensor networks. Each sensor net

is controlled by a single Mission agent and is composed of individual resource groups. A

resource group is a natural grouping of computational resources that are directly connected

to device nodes (i.e. sensors and actuators). For example, a spacecraft may have multiple

processors with a range of different device nodes, but it can logically be viewed as a single
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set of shared resources. Similarly a cluster of in situ ground sensors connected by a bus to

one or more processing nodes would be a single resource group. The key characteristic of

a resource group is that it is a set of shared computational resources. Within the resource

group, the resource-level agents are organized by the federation paradigm, with the Exec

agent acting as the intermediary between the Mission agent and specialized resource-level

agents.

Resource-level agents are defined by the necessary roles and responsibilities of spe-

cific resource groups. The particular set of agents used in a resource group depends on

the physical system itself. For example, a spacecraft requires guidance and navigation,

while an in situ ground cluster does not. The central agent, which exists in any resource

group and may be the only agent for limited field hardware, is the Exec agent [107]. The

Exec agent oversees achievement of the goals provided by the sensor network’s Mission

agent. It also arbitrates conflicting resource requests between other agents in its resource

group and is responsible for monitoring overall resource group health (e.g., fault detection).

Other resource group agents may include one or more Science agent(s) responsible for

decision-making associated with achieving particular science objectives and other, special-

ized, domain-dependent agents (e.g., a GNC agent for guidance, navigation, and control

on a spacecraft) [107].

Resource-level agents are defined by the roles appropriate to a specific sensor net-

work. Initial work on MACRO focused on providing autonomy for a constellation of multi-

processor spacecraft [107], such as the NASA Earth Science Enterprise’s Magnetospheric

Multiscale Mission (MMS) [26]. In this scenario, spacecraft sensing and computational

functionality is broken into four agent roles illustrated in Figure 4. The Exec agent in

overall control of the spacecraft and directs other agent activities by providing appropriate

subgoals. The Science agent performs sensor configuration and on-board data analysis,

making dynamic changes to sensor operation and data processing based on current con-

ditions and science subgoals. The spacecraft also has a Communications agent to handle
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communication with other spacecraft and the ground station. Finally, a guidance, naviga-

tion, and control (GNC) agent maintains the spacecraft in the appropriate orientation to the

other spacecraft in the constellation. All of these agents share the computational resources

of the spacecraft, which drove the initial development of the shared planning and resource

management services for the resource level.

Figure 4: MACRO configuration for MMS

More generally, other sensor networks, such as those for weather monitoring, can be

divided into resource groups of shared computational resources, each with an Exec agent,

and likely one or more Science and other agents, with roles defined by the needs of the

particular resource group. This initial work on the MACRO resource-level agents resulted

in the design and implementation of middleware-based agents and the SA-POP and RACE

services they employ, which are summarized in Sections II.4.1 and II.4.2, respectively.
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Testing of the implementation and deployment of these resource-level agents and services

in an MMS scenario provided results used to refine the interaction of SA-POP and RACE,

as well as the modeling and development process for MACRO resource-level agents. These

results, described in papers [C-9] and [C-11], illustrate the effectiveness of model-driven

design, middleware, and services for planning and resource management to allow rapid

design and implementation of autonomous agents for distributed, real-time embedded sys-

tems.

II.4 MACRO Agent Services and Infrastructure

In MACRO, multiple resource-level agents may share a set of computational resources

to perform their particular functions. To efficiently employ and control a set of shared

computational resources, they use services for decision-theoretic planning/scheduling (i.e.,

SA-POP) and processor resource allocation/management (i.e., RACE).

II.4.1 Planning Service for Resource Group Agents

Typically, deliberative agents achieve their goals by creating and executing plans. Most

agent architectures include planning as an integral part of an individual agent’s reasoning

mechanisms. However, this picture is complicated in MACRO by the need for scheduling

and awareness of resource utilization on shared computational resources by some resource-

level agents. The Spreading Activation Partial Order Planner (SA-POP) [59] is designed

to provide planning (and scheduling) as a service to resource-level agents, rather than the

traditional inclusion of planning as an integral part of an individual agent’s reasoning mech-

anisms. By providing efficient planning and scheduling as a shared service, the agents do

not require detailed knowledge of the plans for other agents operating on the same set of

shared computational resources. Rather, the agents are free to employ meta-level reasoning

and communicate only high-level details for inter-agent coordination, while SA-POP, with
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a system-wide awareness of agents’ plans, is employed to efficiently meet their planning

and scheduling needs.

II.4.2 Dynamic Resource Management Service

In addition to a planning service, MACRO resource-level agents use a service to pro-

vide dynamic resource management, freeing them from considering low-level resource al-

location and control decisions. In large systems, the sheer number of software component

sequences often poses a combinatorial deployment problem, i.e., mapping components to

computing nodes [76]. Moreover, the dynamic nature of the operations require runtime

management and modification of deployments [50]. At the level of individual platforms

(e.g., individual satellites and ground-based sensor installations with a small set of servers)

these problems necessitate a system with the ability to make resource allocation and control

decisions at runtime. In MACRO, this service is provided by the Resource Allocation and

Control Engine (RACE), which performs autonomous resource (re)allocation of compo-

nents and (re)configuration of their settings, such that data gathering and analysis quality

of service (QoS) requirements are met [101].

The Resource Allocation and Control Engine was designed and implemented as part

of Nishanth Shankaran’s dissertation research [100]. RACE provides a range of resource

allocation and control algorithms that can use middleware deployment and configuration

mechanisms to allocate resources to operational strings and control system performance

after operational strings have been deployed [101]. In particular, it uses Resource Monitors

and Application QoS Monitors, to track system resource utilization and application QoS

respectively. The broad architecture of RACE and its interplay with SA-POP is illustrated

in Figure 5.

RACE’s algorithms determine how to (re)deploy an application specified by opera-

tional strings and ensure desired QoS requirements are met, while maintaining resource

29



utilization within desired bounds at all times. The allocation algorithms determine the ini-

tial component deployment by determining the best mapping of these components to the

appropriate target nodes based on the availability of system resources. For example, an al-

location algorithm could apportion both CPU and memory resources of a set of processors

to components in such a way that avoids saturating these resources. Likewise, RACE’s

control algorithms adapt the execution of an operational strings’ components at runtime in

response to changing environments and variations in resource availability and/or demand.

For example, a control algorithm could (1) modify an application’s current operating mode,

(2) dynamically update component implementations, and/or (3) redeploy all or part of an

operational string’s components to other target nodes to meet end-to-end QoS requirements.

RACE uses mechanisms provided by the underlying middleware to perform the allo-

cation and control decisions made by its algorithms. For example, RACE uses standard

mechanisms defined by the Lightweight CORBA Component Model (CCM) [82] to (1)

(re)deploy and (re)configure application components, (2) transition application components

from idle states to operational states and monitor the performance of the system, and (3)

modify components and/or operational strings to realize the adaptation decisions of control

algorithms.

The integration of RACE with SA-POP as services for MACRO resource-level agents

has provided a powerful infrastructure that includes planning and scheduling for actions and

application composition, multi-capacity resource allocation, system monitoring, and adap-

tive resource management. The results presented in paper [C-6] illustrate the effectiveness

of using a suite of resource allocation algorithms in RACE when multiple resource con-

straints (e.g., processing power and memory) must be considered. Experiments conducted

for a system employing RACE and SA-POP together showed that they provided effective,

autonomous adaptation to both large and small fluctuations in resource availability as well

as dynamic changes in the environment. These results are presented in papers [J-1], [C-7],

and [W-1] and illustrate the flexibility and autonomous performance benefits of integrating

30



SA-POP and RACE as part of an agent infrastructure. Further details on RACE and its

integration with SA-POP are available in paper [J-1].

Figure 5: RACE architecture

II.4.3 Middleware Infrastructure

Many of the platforms comprising a global sensor web will be distributed, real-time

embedded (DRE) systems, such as field sensors, spacecraft and airborne systems. Modern

DRE systems implement task sequences, such as data processing, using component mid-

dleware [52], which automates remoting, lifecycle management, system resource manage-

ment, deployment, and configuration. To perform efficiently in a distributed, heterogeneous

computing environment, MACRO agents rely on the underlying component middleware.

The CORBA Component Model provides a way to logically bundle interfaces into service

families and specify the configuration and deployment of objects as complete applications.

This results in flexible, scalable implementations for distributed systems that are easier to

adapt and maintain.

To perform efficiently in a distributed, heterogeneous computing environment, all agents

in MACRO, as well as resource-level agent services, are implemented using state-of-the-

art component middleware, implemented as an open source project led by the Distributed

Object Computing (DOC) group under Dr. Douglas Schmidt’s direction at the Institute for
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Software Integrated Systems, Vanderbilt University. Specifically, MACRO is built upon the

Component Integrated ACE ORB (CIAO) and the Deployment and Configuration Engine

(DAnCE), which are open source implementations of the OMG’s Lightweight CORBA

Component Model (CCM) [82] and Deployment and Configuration (D&C) [81] specifi-

cations. CIAO and DAnCE are built atop The ACE ORB (TAO). TAO is a highly con-

figurable, open-source, real-time CORBA Object Request Broker (ORB) that implements

key design patterns to meet the demanding quality-of-service (QoS) requirements of dis-

tributed systems, including servers as well as real-time embedded systems. CIAO extends

TAO by abstracting key QoS concerns (such as priority models, thread-to-connection bind-

ings, and timing properties) into elements that can be configured declaratively via metadata

(such as standards for specifying, implementing, packaging, assembling, and deploying

components). Defining and configuring QoS properties as metadata disentangles code for

controlling these concerns unrelated to functionality from code that implements the appli-

cation logic, thus making MACRO development more flexible and productive. DAnCE

extends CIAO by allowing application deployers to specify how implemented components

should be packaged, assembled, and customized into reusable subsystems and services.

More information, including relevant publications, on DOC group middleware is available

from http://www.dre.vanderbilt.edu/.

II.5 Summary

This chapter defined the Multi-agent Architecture for Coordinated Responsive Obser-

vations (MACRO) and provided an overview of its agents’ roles, relationships, and ser-

vices, as well as the middleware infrastructure on which they are built. MACRO uses QoS-

enabled component middleware to help automate many system configuration and manage-

ment tasks for sensor web agents and applications. Atop the middleware infrastructure,

MACRO’s dynamic resource management service, RACE, provides efficient allocation

and control of computational resources, while MACRO agents employ a decision-theoretic
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planning and scheduling service, SA-POP, to autonomously adapt system functionality to

changing science objectives and environmental conditions. The specialized roles and two-

level hierarchy (i.e., a mission level spanning the sensor web’s constituent sensor networks

and a resource level for adaptive operation of local sensor network resources) of MACRO

agents enables tractable solutions to the coordination and control problems facing a sys-

tem with the scope of a global sensor web, identified in Section I.3. Ultimately, MACRO

provides a powerful computational infrastructure for enabling the deployment and adaptive

operation of large, distributed systems that require both high-level coordination of complex

tasks across agents and local, dynamic adaptation for effective use of limited resources in

dynamic, uncertain environments.
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CHAPTER III

TASK ALLOCATION

In large-scale, distributed, multi-agent systems (MAS) with limited resources and het-

erogeneous users, task allocation is a necessary system capability. Further, effective task

allocation requires the optimization of allocations for an appropriate allocation metric. As

discussed in Chapter I, NASA’s Earth Science Vision calls for the development of a global

sensor web that provides coordinated access to constituent sensor network resources for

research and resolution of Earth science issues [53]. An effective task allocation mech-

anism for a global sensor web must account for both allocation efficiency (i.e., value or

importance to the sensor web as a whole) and fairness (i.e., individual user satisfaction).

This task allocation mechanism must select and allocate an appropriate subset of hetero-

geneous, distributed sensors and computational resources for user tasks that often require

collaboration among multiple constituent sensor networks. Further, the global scale and

distributed nature of the sensor web require that most computation be performed by users

and constituent sensor networks, rather than providing a large computational infrastructure

in addition to user and sensor network resources.

As illustrated in Figure 1 in Section I.1, a sensor web is made up of many independent

sensor networks. One difficulty in task allocation for a sensor web is that available re-

sources (e.g., sensors, servers, bandwidth) are not owned or controlled by any single entity.

Various institutions, governments, and corporations will have the final say on how their re-

sources are deployed and used. Further, a global sensor web will have many independent,

heterogeneous “users” (e.g., weather modeling and prediction systems, disaster recognition

and management systems, and scientists) requesting access to, and control of, the sensor

platforms to support their research and analysis activities.

In a global sensor web MAS, user tasks and plans for their achievement have a high
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degree of complexity and may span multiple sensor networks. Hierarchical analysis helps

deal with this complexity, both for problem/task representation by domain experts and

for coordinated planning and scheduling among multiple Mission agents. Section IV.1

describes how MACRO Mission agents employ a modified implementation of the Task

Analysis, Environment Modeling, and Simulation (TÆMS) [55] language, which provides a

hierarchical task network representation for multi-agent planning and scheduling. Further,

Section V.4 details MACRO’s augmentation of TÆMS hierarchically-decomposable tasks

with the OGC SensorML [9] representation of sensors and data processing. This provides

standardized descriptions of task/subtask requirements, effects, and classification across

sensor networks.

To maintain tractability at the scale of a global sensor web, MACRO decouples the

problems of task allocation and planning/scheduling for task achievement. Mission agents

plan and schedule achievement of allocated tasks/subtasks represented in the augmented

TÆMS representation. However, User agents are not required to have explicit knowledge

of how tasks can be achieved in the system. Instead they announce tasks in the standard-

ized SensorML format more appropriate to their needs and knowledge. Because MACRO

augments TÆMS tasks with SensorML metadata, broker agents can translate between User

agents’ SensorML task announcements and the the augmented TÆMS representation em-

ployed by Mission agents. The details of the translation between these representations is

presented in Section V.4.

In this chapter we present the MACRO agent negotiation mechanism for fair, high-

utility allocation of these complex, hierarchically-decomposable tasks to the sensor web

resources. Sensor web users require resources in the sensor web to accomplish their tasks.

Because different sensor web users may be of different importance/priority in the sensor

web, we assume that an organizing body, such as NASA, assigns a guideline percentage

share of the sensor web resources to each User (and Mission) agent. Generally, the task

allocation problem can be viewed as that of determining the best selection of high-level
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user tasks, which are divided into subtasks assigned to sensor web agents with resources

capable of fulfilling those subtasks. The “best” selection of tasks is defined by the combined

considerations of system value/importance and user fairness.

III.1 Related Research

Task allocation has been dealt with in MASs through a variety of techniques suitable to

a range of applications (e.g., [33, 49, 102]). Many of the techniques for “task allocation”

are applicable primarily to cases in which the capabilities of many agents are the same or

at least largely overlapping. In the sensor web, while computing resources, and to some

extent software resources, may be interchangeable/overlapping, sensor networks also have

disparate and sometimes unique capabilities defined by the particular types of sensors in

their network and their geographical location. Thus task allocation techniques designed for

agents with heterogeneous, substitutable and non-substitutable, capabilities and resources

may be more useful for the sensor web allocation problem.

A related area of research to “task allocation” is that of “resource allocation,” in which

resources are allocated to agents so they can complete tasks (e.g., [18, 72, 77]). In fact,

“task allocation” can sometimes be viewed as an inverse form of resource allocation, where

subtasks are treated as resources with a cost rather than a utility, which are then allocated to

agents “interested” in those subtasks (i.e., the ones capable of performing them) [18]. How-

ever, this view of task allocation may introduce significant complications when there are

causal and other scheduling dependencies between subtasks, because resource allocation

algorithms are not designed to handle such constraints among resources [18]. Regardless

of whether the problem is viewed as “resource allocation” or “task allocation,” there are

dependencies between tasks/subtasks that are not accounted for in most allocation mech-

anisms. This implies that the task/resource allocation capability is intertwined with the

global, coordinated planning/scheduling capability, which is discussed further in Chap-

ter IV.
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III.1.1 Allocation Problem Characteristics

In order to determine applicable task/resource allocation algorithms for sensor web al-

location, one must consider the characteristics of the problem to be solved. First, it must

be clear which “resources” of the sensor web must be allocated. These are primarily con-

figurations of sensors and software capable of data collection, distribution, and processing.

Other “resources” (e.g., power and computational resources) in the sensor web are more

appropriately handled as constraints on the availability of the aforementioned resources

because their usage is not the primary concern of the users requesting tasks. For example,

the hurricane tracking application from Section I.1 must acquire data from appropriately

configured sensors and have it processed in a particular fashion, but it is agnostic to the par-

ticular use of power, CPU, memory, and bandwidth by the sensor networks accomplishing

its task.

The characteristics of the allocable sensor web resources are an important factor in the

choice/design of resource and task allocation algorithms. Chevaleyre et al. [18] suggest

some basic characteristics of resources that determine the applicability of most resource

allocation algorithms: static vs. dynamic, continuous vs. discrete, divisibility, single-unit

vs. multi-unit, and shareability. Because configured sensors and software are neither con-

sumable (i.e., they can be used more than once without replenishment/replacement) nor

perishable (i.e., they do not expire or become unusable over a relatively short period of

time like food products), they are static (reusable) resources for the purposes of alloca-

tion. Additionally, sensor web resources can be considered discrete, because data products

are produced by sensors with particular configurations and software capable of particular

forms of data processing. The static and discrete characteristics of sensor web resources

significantly reduce the complexity of potential allocation algorithms.

Further, although divisibility is more a characteristic of how resources are treated dur-

ing allocation, the discreteness of sensor web resources implies that they can be considered
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indivisible for allocation purposes. Also, because most are unique (defined by sensor ca-

pabilities and location) or only useful in the given amount (computational resources for a

particular piece of software), a simple, single-unit representation is most appropriate. Al-

though there is significantly more overlap in data processing software available on multiple

servers, there is still generally no need for multiple units of those equivalent resources in

sensor web tasks.

Finally, shareability of resources is an important, complicating factor in the sensor web

allocation problem. While many resource allocation algorithms are designed solely for

non-shareable resources, these are not particularly appropriate for sensor webs because in

many cases the production of data from a sensor can be shared among the tasks of many

users. Of course, allocation would not be an issue if resources were always shareable,

and there are also many cases where tasks imply mutually exclusive use of a sensor web

resource (e.g., a satellite and its imaging sensors that can only be aimed at a single location

at a time or field equipment that only has enough power reserves to operate one set of

sensors at a time). This is further complicated by the fact that the shareability of a resource

may actually be determined by the choice of allocation. Consider a sensor configured to

a particular data rate for a user task. This resource is not shareable, without modification,

with a task requiring a higher data rate, but is (probably) shareable with tasks requiring the

same, or lesser, data rate.

III.1.2 Allocation Solution Characteristics

In addition to characteristics of the allocation problem, characteristics of, and metrics

for, the desired solution are an important consideration in the design of an allocation tech-

nique. Criteria for assessing allocations in economics and MASs, referred to as “social

welfare” metrics, often fall into the two, somewhat overlapping, categories of “efficiency”

and “fairness” [13, 28]. Efficiency metrics are primarily concerned with maximizing the

benefit to (agent or human) society as whole, whereas fairness metrics generally attempt
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to improve the lot of individuals, particularly those that are worst off, in comparison to the

rest of society. Chevaleyre et al. [19] suggest some common types of social welfare metrics

applicable to MASs:

• Pareto efficient allocations (e.g., [38]) are ones for which no other allocation can be

found in which no agents would be worse off and some would be better off. Pareto

efficiency would be a desirable characteristic for sensor web allocations, although

one that may not be easily computed or provable given the potential variety of agents

in a global sensor web.

• Utilitarian allocations (e.g., [38]) maximize the sum of individual utilities for mem-

bers of the society. A related utilitarian measure is the Nash product, which is the

product of individual utilities. Assessing these metrics requires that individuals can

assign a utility to their potential allocations of resources, rather than just expressing

a preference order over them. When this is possible, utilitarianism provides a use-

ful, although very strong (with strict maximization), metric for social efficiency of

allocation.

• Egalitarian allocations (e.g., [39]) maximize the utility of the individual that is worst

off in the society. The leximin metric extends egalitarianism in the cases where mul-

tiple allocations have the same utility for the least satisfied individual(s) by compar-

ing the utilities of the next least satisfied individual(s) across allocations, and so on.

Egalitarian metrics could provide a useful measure of fairness in sensor web resource

allocation, although the emphasis on the least satisfied individual(s) can be limiting.

• Envy-free allocations (e.g., [37]) are ones in which no individual would prefer the

resources allocated to any other individual. The task-based nature of sensor web

allocations limit the usefulness of this metric. Since the set of resources an agent

desires are the ones necessary for the achievement of a particular task, direct com-

parison of resources across agents is rarely relevant.

39



Because one goal of a sensor web is to provide synergistic benefits to its member sensor

networks as well as other users, allocation efficiency (i.e., system utility) is an important

consideration. However, fairness is also important because repeated allocations that do not

respect some measure of fairness will likely be unacceptable to the human operators/own-

ers of sensor networks, as well as other human users, who receive the least resources. De

Jong et al. make the point that MASs that do not incorporate additional, human notions of

fairness risk producing unexpected behavior and not achieving intended goals, particularly

when some agents are intended to represent the interests of individual humans or organi-

zations [28]. In particular, inequity aversion (the tendency to avoid outcomes that are not

equitable among participants) suggests that egalitarianism may be too narrowly focused on

the least satisfied individual to provide an appropriate fairness metric. Rather an extension

that considers not just the least satisfied individuals, but rather the range or other disparity

measures in utility across the society, may be more useful.

De Jong et al. also suggest that priority awareness (the inclusion of additional informa-

tion about the importance of priority of participants in judging the equity of a solution) is an

important enhancement to inequity aversion [28]. This is particularly important in the case

of sensor web allocations because some members will be contributing more resources than

others and some users (e.g., a hurricane tracking application) will have priority over oth-

ers (e.g., a web interface to members of the public interested in earth science). Therefore,

an appropriate fairness metric for sensor web allocations would be an extended egalitar-

ian metric incorporating inequity aversion rather than simply considering the least satisfied

individual, which accounts for priority awareness. Such a metric is discussed further in

Section III.3.

Overall, it is clear that the appropriate metric(s) for sensor web allocations should in-

clude both efficiency and fairness considerations. Unfortunately, strong fairness and strong

efficiency criteria often can not be simultaneously accommodated [11, 12]. This necessi-

tates some form of tradeoff between fairness and efficiency metrics in optimizing sensor
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web allocations. Thus allocation algorithms that do not consider fairness and efficiency

criteria simultaneously are ill-suited to the sensor web allocation problem. Our solution to

the combination of fairness and efficiency criteria is presented in Section III.3.

A significant amount of research has been done on algorithms for combinatorial auc-

tions [46, 85, 89], including many for task/resource allocation and scheduling (e.g., [27,

56]). While these algorithms have been successful in optimizing allocations for efficiency

metrics, they do not consider fairness in attempting to find an allocation. Further, combi-

natorial auctions generally require a central party to determine allocations, making them

poorly suited to a distributed system on the scale of a global sensor web. Although work

has been done on distributed task allocation/scheduling algorithms that incorporate combi-

natorial auctions (e.g., [56, 65]), the available algorithms still require a significant amount

of centralized computation not amenable to distribution across the participating agents.

Others have considered task allocation as the problem of coalition formation (e.g.,

[68, 96, 99, 102, 112]). From this perspective, allocation of tasks is achieved by deter-

mining an optimal or near-optimal set of coalitions each of which includes the resources

necessary to achieve a particular task. Most solutions to the coalition formation problem

involve forms of set covering techniques or market/auction techniques. However, set cov-

ering and similar techniques rely on centralized computation of coalitions or on negotiation

among provider agents (i.e., Mission agents in the MACRO framework) without allowing

requesting agents (i.e., User agents in the MACRO framework) to choose among poten-

tial coalitions based on task achievement criteria (e.g., time to completion, data rate, and

other quality of service characteristics in a sensor web). While market/auction techniques

(e.g., [70, 111]) for coalition formation might be extended to allow user preferences on task

achievement, they require requesting agents to have knowledge of the resources required to

achieve their task and often also require centralized computation, such as solution of com-

binatorial auctions. Therefore, other auction techniques without these requirements may

provide a task allocation solution more appropriate to a global sensor web.
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III.1.3 Contract Nets for Allocation

A widely implemented MAS solution to resource/task allocation that uses computa-

tionally simpler, single auctions is the Contract Net Protocol (CNP) [104]. The CNP is a

well-studied [86, 121] multi-agent negotiation mechanism for distributed task/resource al-

location, where agents have different, or even changing, resources, capabilities, and perfor-

mance. In particular, the CNP and its derivatives can allow efficient allocation of resources

without restricting the criteria individual agents can apply to determining their preference

for tasks or bids to complete tasks. This flexibility is particularly important in designing a

system for a tradeoff between efficiency and fairness metrics. Further, allowing arbitrary

preference criteria is vital when the individual agents must represent, and may be designed

by, many different parties with varying internal goals and constraints, such as in a global

sensor web.

A number of variations and extensions to the classic CNP have been proposed to in-

crease performance and handle additional problems in a range of applications (e.g., [1, 84,

97, 109, 113]). One difficulty in using the classic CNP for sensor web task allocation is that

subtasks are interdependent. Sandholm recognized the problem of dependencies between

tasks and suggested grouping of tasks for bidding to handle dependencies [95]. While this

solution may be insufficient for a global sensor web, explicit recognition of subtask de-

pendencies by decomposition of a high-level user task can allow other planning/scheduling

algorithms to be used in conjunction with the contracting mechanism of a CNP.

A related approach is to organize agents interested in dependent subtasks into teams.

For example, Sims et al. apply bottom-up formation of teams based on marginal utilities

to achieve efficient resource coverage in bidding on interdependent tasks/subtasks [103].

However, this particular approach assumes agents are singularly motivated to improve

global utility and that many resources are equivalent for a given task. Still the concept of or-

ganizing agents into teams for bidding on tasks could be combined with planning/schedul-

ing among team participants to provide a viable solution in a sensor web contract net.
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Another significant problem in application of the CNP is the determination of when

contractors should bid [98]. One solution is to allow bidding on multiple tasks requir-

ing the same resource, plus a conflict resolution stage [84]. Another, more popular so-

lution that alleviates the problem of when to bid, is to allow decommitment from con-

tracts [97, 109, 113]. However, decommitment penalties may be necessary to prevent in-

stability problems in such systems [40]. In a sensor web, decommitment penalties, such as

the leveled commitments introduced in [97], may not be possible because the sensor net-

work Mission agents do not directly receive any monetary or other benefit from contracted

tasks. Another solution is to separate initial bidding from commitment [1, 62, 118].

Aknine et al. propose an extended (prebidding plus definitive bidding phases) CNP

negotiation protocol [1]. This extension is primarily useful when task announcements come

in rounds or negotiations for many announcements tend to overlap in time. Experimental

results show that the multi-phase CNP negotiation allows efficient allocation of resources

with less time overhead than a classic CNP implementation when many announcements

are made by managers over relatively short periods of time [1]. A related benefit is that

decommitments from contracts tend to be unnecessary due to the parallel negotiating and

more efficient allocation.

Finally, a significant problem in using contract nets for sensor web allocation is how to

effectively handle agents with independent goals and constraints that are not purely coop-

erative and interested in maximizing for system-wide social welfare metrics. Sandholm

proposed bid pricing based on marginal cost and bid selection based entirely on these

costs, allowing effective use of the CNP with competitive agents as well as cooperative

ones [95]. Although such restrictions are impossible when agent design and implementa-

tion, are not under the control of the system designer, introducing some form of price for

bids may be a useful tool. When bids can be priced by trusted broker agents, under the

control of the system designers, they can influence bid choices in the system. The use of

third-party agents/infrastructure has been suggested in other extensions of the CNP. For
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example, MAGNET enhances a leveled-commitment contracting process with a general

market infrastructure acting as third-party intermediaries [24].

III.1.4 Brokers for Contract Nets

Beyond infrastructure/services to facilitate communication and market interactions,

some multi-agent systems have used full-fledged agents as matchmakers, brokers, or medi-

ators, collectively referred to as “middle agents.” The term “matchmaker” usually applies

to an agent who simply helps locate service providers for service requesters. Matchmaking

is clearly an important function of a middle agent for mission-level coordination in sensor

webs and has been successfully applied in contract nets (e.g., [74]). However, using mid-

dle agents only for matchmaking may require User agents with more capabilities to con-

sider alternative providers and include additional communication overhead [31]. Beyond

matchmakers, more capable middle agents have been suggested to provide “market-maker

services, domain expertise, trust, visibility, assurance, and certification” [61].

Some dimensions for classifying middle agents include how much information is pro-

vided to the middle agent (e.g., simply capabilities and requests, or also parameters and

preferences) and whether the middle agent is an intermediary in communication/negotia-

tion between the other agents [119]. In a sensor web contract net, “brokers,” who also act

as an intermediary between the other agents, provide a solution that puts greater control

in the hands of the system designers. For example, a broker can effect optimization of the

system (e.g., in terms of load-balancing) while maintaining privacy [31].

There is no doubt that the centralization inherent in a single broker presents a com-

munication bottleneck and a single point of failure [31], which would be unacceptable in a

sensor web. Scalable approaches have been suggested for distributed matchmaking without

the centralization of middle agents (e.g., [83]), but they do not provide the other benefits of

a trusted third-party or an effective way to influence negotiations in the system. Instead, a

dynamic team of brokers could provide most of the benefits of a single broker. Although
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multiple brokers requires additional message traffic to synchronize and aggregate informa-

tion among them, it avoids the centralization of a single broker. For example, Kumar et

al. suggest persistent teams of brokers sharing agent registration information with dynamic

spawning of additional brokers to address fault tolerance and recovery concerns in brokered

systems [64].

A team of broker agents to mediate contract net negotiations could alleviate many of

the difficulties in using a contract net for sensor web resource allocation. The brokers could

provide efficient matchmaking/locater services, minimizing communication overhead. The

use of brokers also provides possibilities for affecting contract net negotiations, such as

assigning priority/utility values to task announcements forwarded to Mission agents or by

controlling a virtual currency and taxing bids forwarded to User agents. Even though User

agents and Mission agents may be implemented by parties other than the system design-

ers, employing these techniques through broker agents will allow the system designers to

influence the contract net negotiations, and potentially optimize the resource allocation

for efficiency and fairness metrics. Further, Zhang and Zhang suggest that matchmaking

algorithms be extended to consider the track record of agents in providing advertised capa-

bilities [125]. Similarly, in a sensor web, brokers could maintain records of agents who fail

to meet contracts or violate other system conventions.

Overall, a multi-phase contract net protocol provides an effective, flexible allocation

solution for a sensor web MAS. However, existing research does not resolve all of the diffi-

culties in employing a contract net protocol for allocation of complex tasks in a large, open

MAS. Employing brokers for matchmaking reduces communication overhead in a contract

net, but does not limit it sufficiently for efficient consideration of all possible solutions

to the combinatorial problem of contracting subtasks that may be performed by multiple

agents. Further, an open MAS, in which announcers and contractors are independently de-

signed, also requires an infrastructure that can influence allocations, optimizing for fair and

efficient use of resources. Finally, in order to accurately evaluate allocation techniques,

45



we must also define a metric that combines fairness and efficiency appropriate to sensor

web allocations. Section III.2 illustrates these challenges in more detail, and Sections III.3,

III.4, and III.5 describe the proposed approach to resolve them in MACRO.

III.2 Unresolved Challenges

As discussed in Section III.1.2, the definition of preferred allocations for the sensor

web must allow for a trade-off between fairness and efficiency. Fairness depends on a

comparison of individual agents’ satisfaction with their allocated tasks, while efficiency

depends on the overall system definition of utility for the allocated tasks. Even if the utility

value assigned to tasks is based on the assigned share of the sensor web resources of a

User agent, considering only the efficiency of an allocation (total system utility), could

result in the monopolization of system resources by the users with greater shares at the

expense of the users with smaller shares. If, on the other hand, only fairness is considered

in allocations, the overall system utility could suffer significantly. Thus, the first challenge

in achieving appropriate allocations is defining a metric for sensor web allocations that

combines fairness and efficiency. The MACRO sensor web task allocation metric and its

variations are presented in Section III.3.

One of the major advantages of using the contract net protocol for allocation is that

it provides flexibility in defining the utility or preference structure that User agents em-

ploy for task bids, which depends on the needs of the people or application they represent.

However, this flexibility also presents a challenge in designing an allocation architecture

that performs well under a given metric. The standard contract net protocol does not pro-

vide a method to influence allocations other than by the definition of task/bid creation and

preferences in announcers and bidders. This is insufficient for MACRO because User and

Mission agents are implemented independently of the MACRO infrastructure. Therefore,

another challenge in achieving appropriate allocations is providing a framework in which
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system designers can influence the task auctions to yield allocations that provide fair and ef-

ficient use of resources, while limiting infrastructure computational overhead. Section III.4

discusses how our implementation of MACRO addresses this challenge and Section III.6.2

provides experimental verification of the MACRO solution approach.

Another difficulty in applying the contract net protocol in a sensor web MAS is its em-

phasis on two-party contracts. In a sensor web, a User agent may require the resources of

multiple Mission agents to achieve a high-level task. Therefore, MACRO uses the concept

of subcontracting, allowing resources of multiple Mission agents to be assigned to a sin-

gle task through a primary contract and additional subcontracts between Mission agents.

However, with multiple required resource types and multiple possible decompositions for

a task, there may be many Mission agents that could play the role of the primary contrac-

tor, each with many possibilities for subcontractors. If each potential primary contractor

announces subtasks and receives subtask bids before bidding on the task, a great deal of

communication and computation must be performed before each Mission agent can bid

on the task. The space of possible task allocations, including task decompositions and

subtask allocations, is large and complex, making consideration of all possible contractor-

subcontractor sets computationally infeasible in a global sensor web. On the other hand, if

each Mission agent bids on the task before soliciting subcontract bids, the uncertainty in

the resulting primary contract bids would significantly diminish a User agent’s ability to

make an informed choice. Therefore, efficiently and effectively performing subcontract-

ing with decomposable tasks is another challenge, which is addressed in Section III.5 and

experimentally verified in Section III.6.1.

III.3 Sensor Web Metric

Comparing potential allocations and measuring performance of an allocation mecha-

nism in a sensor web presents the challenge of defining an appropriate allocation metric,

as indicated in Section III.2. In the sensor web, allocation of resources to announced tasks
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is an ongoing process and the “allocation” can be defined as the set of tasks that Mission

agents have committed resources to achieve over a given window of operation. Comparing

potential allocations and measuring performance of a sensor web allocation mechanism

requires an appropriate task allocation utility metric. In particular, a sensor web task allo-

cation utility must account for two, sometimes competing, concerns: 1) efficiency: value

of the allocated tasks to the system as a whole, and 2) fairness: satisfaction of individual

system users.

Many multi-agent allocation metrics and mechanisms have been devised based on using

a single-dimensional utility measure [49]. However these metrics are generally employed

by multi-agent systems in which agents’ self-interest extends only as far as necessary to

result in the preferred system behavior. When some agents represent real, self-interested

parties, as in the sensor web, fairness becomes an important consideration. Rather than

relying solely on allocation efficiency to determine overall utility, we propose a sensor web

task allocation metric that incorporates both efficiency and fairness.

To provide a metric combining these two considerations, we first define two separate

metrics for evaluating the efficiency and fairness of a given allocation. To measure the

efficiency of a sensor web allocation, we use a utility-based approach, in which the ideal

would be to determine a measure of the importance of each allocated task to the system

and sum them to provide an efficiency measure for the allocation. In a system where each

User agent assigns the same utility to each task and is of equal importance in the sensor

web, the allocation efficiency could simply be measured as the sum of the utility accrued

by each User agent for all allocated tasks. However, to aggregate utility values in a sensor

web, there are two complicating factors that must be considered: 1) agent importance and

2) task importance.

User agents will be of varying importance in the sensor web as a whole, so the utility

accrued to an individual User agent must be weighted by the User agent’s importance to

accurately represent its overall value. We assume an organizing body for the sensor web
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can assign an appropriate share of the sensor web, as a percentage of the whole, to each

User agent.

Definition sa: the percentage share of the sensor web assigned to agent a, indicating relative

importance of agent a in the system.

Further, User agents often assign different utilities to the same task (e.g., a storm front

data gathering and analysis task of a weather simulation application may be of high utility

to that application but of no utility to a glacial watershed research application). Therefore,

the utility of tasks from different User agents must be normalized to allow comparison or

aggregation across agents. Over a sufficiently long period of time, a reasonable method for

normalizing utility across User agents is to scale the utility of the tasks such that the sum

of utilities for all desired tasks of an agent equals a pre-defined value, such as 100.

Definition ûa,t́ : the normalized utility of agent a’s task t́ equal to 100• ua,t́

∑
Da
t=0 ua,t

, where Da

is the number of tasks desired by agent a and ua,t is the utility to agent a of task t.

We propose to measure the efficiency of a sensor web allocation as the sum of nor-

malized utility values for allocated tasks, where each task utility value is also weighted

by the announcing agent’s share of the sensor web. This accounts for both task and agent

importance in the efficiency metric, defined as:

A

∑
a=0

Ta

∑
t=0

ûa,t • sa

where A is the number of agents, Ta is the number of allocated tasks for agent a, and ûa,t is

the normalized utility of agent a’s allocated task t

Many fairness metrics rely on the utility of an allocation to each individual in order

to rank allocations based on the least satisfied individual(s). Because User agents assess

task utility differently and MACRO assumes a “share” approach to sensor web resource as-

signment, we prefer a fairness metric that compares allocated resources rather than accrued

utility. Similarly, MACRO assumes that each Mission agent’s resources can be defined as
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a percentage of the total sensor web resources. In addition, each Mission agent can provide

an estimate of the percentage of its resources, over time, used to achieve an allocated task.

Given the available task resource usage information, we can determine the total re-

sources used in an allocation and the quantity of resources each agent should have received

based on its share. For each agent receiving less than its share of resources, we calculate the

deviation, by percentage, between the resources it should have received and the resources

it actually received.

Definition da: agent a’s percentage deviation below fair share of resources, which is 0 if

ŕa ≥ ra (where ŕa is the quantity of resources actually allocated to agent a, and ra is a’s

assigned share of the total allocated resources), and otherwise is equal to 1− ŕa
ra

.

We scale the fair share deviations from the range of [0%,100%] to the range of [0, 1
A ],

where A is the number of agents in the system, such that the total of all agents’ scaled

deviations never exceeds 1. Any agent receiving its share or more of resources will have

a deviation of 0, so if all agents were completely satisfied the sum of fairness deviations

would be 0. At the other extreme, if all agents were completely unsatisfied the sum of

fairness deviations would be 1.

We suggest that an appropriate sensor web fairness metric should account for all un-

satisfied individuals, instead of just the least satisfied individual. Therefore, we aggregate

individual agent fairness deviations by summing and produce the allocation fairness metric

value by subtracting this sum from 1. This provides a measure of user satisfaction that

accounts for all individuals in the system. Further, this value has a range of [0,1], such that

it can be used as weight on the measure of allocation efficiency. We define the fairness

metric as:

1−
A

∑
a=0

da

A

One method of combining an efficiency and fairness metric would be to weight each

individually and sum them to produce the metric value. Such a scheme has the advantage

of allowing different tradeoffs between efficiency and fairness by using custom weights on
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the component metrics. However, different system loads (i.e. number of tasks in the sys-

tem) can result in vastly different efficiency values, and, therefore, require careful tweaking

of the weight parameters for each load condition. Instead, we employ the fairness metric,

with a value in the range [0,1], as a weight on the efficiency metric. Naturally, in alloca-

tions where all agents are satisfied, the fairness metric will have a value of 1, so allocations

are compared purely by efficiency. When all agents are completely unsatisfied, both the ef-

ficiency and fairness metrics will have values of 0 because no tasks have been allocated. In

general, the combined metric accounts for agent importance, task importance, and priority-

aware agent satisfaction by using the overall system value of the allocation weighted by the

level of agent satisfaction. This combination provides a consistent measure that adjusts au-

tomatically to system load, as well as number and relative importance of user agents. The

overall sensor web task allocation metric is provided by multiplying the efficiency metric

value by the fairness metric value:

(
A

∑
a=0

Ta

∑
t=0

ûa,t • sa

)
•

(
1−

A

∑
a=0

da

A

)

III.4 Allocation Mechanism and Optimization

Given a sensor web task allocation utility metric, MACRO mission-level agents must

efficiently employ the preferences defined by such a metric in selecting the subset of an-

nounced tasks to allocate to sensor web resources. As described in Section II.3.1, MACRO

User agents request tasks to be completed with sensor web resources. The User agents ne-

gotiate with Mission agents, who are capable of completing some or all of the announced

task. Ultimately Mission agents will perform the tasks/subtasks allocated to them during

the negotiation with User agents, which is mediated by the broker agents. Designing a

flexible, low-overhead task allocation mechanism that can optimize allocations based on

the sensor web metric presents a significant challenge, as identified in Section III.2.
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III.4.1 MACRO Task Auctions

Problem. Heterogeneous User agents may have different preferences for task achieve-

ment characteristics (e.g., completion time, sensor data resolution, and data compression

level). The independence of individual sensor networks requires that Mission agents indi-

vidually determine whether they can complete announced tasks, given internal goals and

constraints, and that they estimate expected task achievement characteristics. Further, the

vast majority of the computational power available to the sensor web is likely to reside

with the constituent networks and users, rather than including a significant amount of ded-

icated infrastructure hardware. Therefore, MACRO requires a distributed (i.e., primarily

relying on User agent and Mission agent computation and communication, with minimal

computation by broker agents), flexible (i.e., allowing arbitrary user preferences on task

achievement) task allocation mechanism.

Solution → Single task auctions. To provide distributed, flexible task allocation,

MACRO employs single task auctions mediated by broker agents. This minimizes the ad-

ditional computational power necessary for system infrastructure (i.e., the broker agents in

MACRO), as compared to more complicated allocation schemes (e.g., solving combinato-

rial auctions). Further, single task auctions allow User agents to apply arbitrary preference

criteria to the selection of received bids. Since MACRO task allocation is based on single

auctions to negotiate a contract for performance of a task, it can be considered an extended

form of the Contract Net Protocol (CNP) [104].

The first step in allocating high-level tasks is to determine which agents are capable

of executing part or all of the task. In MACRO, broker agents are employed to provide

this matchmaker service and the related translation of SensorML task announcements to

possible sets of TÆMS subtasks. The directed announcement of tasks to agents capable

of some part of the task significantly reduces the communication overhead compared to

the traditional CNP, in which each task announcement is sent to every agent. MACRO

employs two types of broker agents to mediate task allocation. Although a single type of
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broker agent is theoretically sufficient to perform all necessary services, MACRO divides

broker agents into two tiers based on their specific roles and responsibilities to simplify

system deployment and dynamic modification.

Figure 6: MACRO contract net

One responsibility of MACRO brokers is to provide an efficient matchmaking/locater

service (i.e., determining agents capable of performing all or part of an announced task

and forwarding messages appropriately). Tier 2 Broker agents cluster Mission agents by

geographic region and maintain a directory of sensor and computational capabilities for the

Mission agents in their region. The requirements of an announced task are used by Tier

1 Broker agents to forward task announcements to appropriate Tier 2 Broker agents, who

then relay the announcement to applicable Mission agents. Tier 1 Broker agents are also
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responsible for assigning system utility values to task announcements taking into account

User agent priority and task importance, as well as past system performance. Even though

User agents and Mission agents may be implemented by parties other than the system

designers, broker valuation of tasks allows the system to influence the contract net nego-

tiations, and optimize task allocation for efficiency and fairness with the sensor web task

allocation metric. Other roles and responsibilities of MACRO Broker agents are discussed

in Section V.4

In a sensor web, a user task may require the resources of multiple Mission agents.

Therefore, MACRO task allocation also includes subcontracting, such that a task may be

achieved by multiple Mission agents through a primary contract and additional subcon-

tracts. To reduce redundant communication and computation in the generation of subcon-

tract bids, MACRO separates initial bidding from final bidding, extending the approach in

the two-phase CNP proposed by Aknine et al. [1]. MACRO subcontracting for complex

tasks is detailed in Section III.5.

III.4.2 MACRO Task Valuation

Problem. In addition to efficiently enabling flexible task auctions, MACRO allocation

must also effectively handle resource contention. When multiple tasks require mutually

exclusive control of the same resource during the same period of time, the system must

ultimately determine which task will be allocated. While User agents can rank task bids

based on a variety of task achievement characteristics, Mission agents are providing sensor

network resources as a requirement of participation in the global sensor web and have little

reason to prefer one task over another. Therefore, additional information is required by

the Mission agents to make an informed choice among competing task announcements.

Moreover, to achieve fair and efficient task allocations, the system must have a mechanism

for influencing which task will be allocated.

Solution → Broker task valuation. Since broker agents provide the MACRO agent
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infrastructure, and are the only MACRO agents entirely designed and implemented by the

system designers, they perform the important role of influencing task auctions to optimize

for fairness and efficiency. As mediators of all MACRO task auctions, they are in a position

to provide additional information to Mission agents regarding announced tasks and thereby

influence their preference between competing tasks. Specifically, the broker agents evaluate

each task to determine an approximation of its marginal fairness-weighted utility based on

past allocation performance.

In order to determine past allocation performance, Tier 1 broker agents track all current

and completed task contracts for their assigned User agents. They maintain information

on system performance, including: 1) utility to the User agent of each announced task,

2) completed tasks and their resource usage, 3) current task contracts and their expected

resource usage. Periodically, each Tier 1 Broker agent broadcasts updates to its fellow

Tier 1 Broker agents, allowing each agent to maintain a system-wide view of allocation

performance. Although there is a lag time inherent in this update scheme, the brokers

evaluate system-wide performance over a large moving window to minimize the impact of

any lag times.

Tier 1 Brokers use the sensor web task allocation metric described in Section III.3 to

evaluate past system performance within the given time window. Since the metric relies

on summation of utility and resource usage values, revising the system performance value

as new information arrives requires only relatively simple, constant time, additions to the

running totals. Similarly, removal of tasks falling outside the moving window requires only

the inverse computation (i.e., subtraction of the relevant values from the running totals).

When a new task is announced by a User agent, its assigned Tier 1 Broker assigns

the task a value corresponding to the approximated, marginal utility for allocation of the

task based on the sensor web task allocation metric. This value is an approximation of the

task’s marginal utility because an individual broker’s knowledge of the current allocation

performance is incomplete due to the lag in receiving information from its peers. However,
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we expect a reasonably large time window should prevent rapid changes in the fairness

weight and corresponding over- or under-compensation. Given the broker’s most up-to-date

information on system-wide allocation performance, the task’s marginal utility is calculated

as the difference between the metric value (fairness-weighted system utility) if the task were

allocated and the existing metric value.

III.5 Efficient Subcontracting

Sensor web users may often request allocation of tasks requiring resources from multi-

ple independent sensor networks, each represented by an independent agent. Further, when

the overall task is broken down into subtasks, an individual subtask may require resources

that could be provided by multiple agents (e.g., when there is overlap in sensor or data

processing capability between multiple sensor networks in the sensor web). Consequently,

there may be many combinations of agents capable of executing the overall task, as repre-

sented by the possible subtask allocations, which will be of varying utility to the requesting

agent. This presents the challenge, identified in Section III.2, of designing an efficient

mechanism for achieving a high utility allocation of subtasks among applicable agents.

As discussed in Section III.4, MACRO allocates tasks using auctions based on the Con-

tract Net Protocol (CNP) [104] enhanced with brokers to accommodate both fairness and

system utility considerations. In particular, the CNP and its derivatives can allow effective

allocation of tasks/resources without restricting the criteria individual agents can apply to

determine their preference for tasks or bids. This flexibility is especially important when

individual agents are designed by many, heterogeneous parties with varying internal goals

and constraints, as in a sensor web.

A primary issue in applying the contract net protocol to a sensor web MAS is its em-

phasis on two-party contracts. In MACRO, a User agent may require the resources of

multiple Mission agents to achieve its high-level task. Therefore, MACRO uses subcon-

tracting, allowing resources of multiple Mission agents to be assigned to a task through
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a primary contract and additional subcontracts between Mission agents. However, with

multiple possible decompositions of a task, there may be a large number of Mission agents

who could be the primary contractor for the task, and each Mission agent could choose

from a variety of subcontractors. If each of these Mission agents announces subtasks and

receives bids before bidding on the task, a great deal of communication and computation

must be performed before each can generate a complete bid on the task. On the other hand,

if each Mission agent bids on the task before soliciting subcontracts, there is a great deal of

uncertainty in the accuracy of resulting bids. Finding a trade-off between subcontracting

overhead and completeness of bids for decomposable tasks presents a major challenge for

efficient and effective allocation.

Figure 7: MACRO subcontracting

The MACRO CNP addresses this challenge by separating initial bidding from final bid-

ding, extending the approach in the two-phase contract net protocol proposed by Aknine

et al. [1]. This variation of the CNP breaks the contract net negotiations into an initial

pre-commitment phase and a final commitment phase. During pre-commitment, the task

is announced and initial bids are made, as illustrated by the steps 1.1 and 1.2 in Figure 7.
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The announcing agent then pre-accepts what it determines to be the best initial bid, begin-

ning the commitment phase, illustrated by the steps 2.1 and 2.2. In the MACRO CNP the

pre-accepted agent can then announce subtasks it may not be able to, or want to, perform.

As illustrated in step 2.1.1, a pre-accepted Mission agent is acting in an announcing ca-

pacity for these subtasks and communicates them to an assigned Tier 1 Broker, just as the

User agent did for the initial task announcement. After receiving bids on its announced

subtasks, the Mission agent makes a final bid on the task. This final bid includes relevant

information on subcontracts and better estimates of applicable quality measures and time-

to-completion. The announcing agent can then accept the final bid or pre-accept a different

agent.

MACRO employs this two-phase CNP, including subcontracting, to limit subtask ne-

gotiations to a subset of initial bidders. Rather than allowing all potential contractors for

the high-level task to announce subtasks, the MACRO CNP allows Mission agents to an-

nounce subtasks only after receiving a pre-accept from the User agent. Further, by limit-

ing the number of pre-accepts a User agent can issue for a given task announcement, the

MACRO CNP significantly reduces the total amount of communication and computation

overhead in the contract net. One goal of the experiments in Section III.6.1 is to determine

appropriate cutoffs for the number of pre-accepts allowed under different system configu-

rations and operating conditions. Further, these experiments identify scalability trends for

the MACRO pre-commitment subcontracting in terms of the major stress factors related to

Mission agent capability overlap and task composition.

III.6 Experimental Evaluation

To evaluate the performance of MACRO task allocation and verify its efficiency and

effectiveness, we performed two sets of experiments. The first set of experiments evaluates

the efficiency (i.e., overhead performance) and scalability of MACRO task allocation with
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the pre-commitment task subcontracting presented in Section III.5. The second set of ex-

periments evaluates MACRO allocation performance (i.e., performance on the sensor web

task allocation metric from Section III.3) using task auctions and broker task valuation, as

described in Section III.4.

III.6.1 Subcontracting Experiments

This section presents the design and results of experiments that evaluate the overhead

and scalability of the MACRO extended contract net protocol for subtask allocation un-

der a variety of different potential system configurations and operating conditions. This

experimental study of overhead performance with randomly-generated tasks allows us to

determine realistic scalability trends and determine appropriate pre-accept cutoffs for real-

world applications. These experiments validate our claims in Section III.5 that the MACRO

extended contract net, with appropriate pre-accept cutoffs, provides an efficient, scalable

solution to the challenges of allocating hierarchically-decomposable tasks in a sensor web

or similar large multi-agent system. We determine reasonable limits on the number of

pre-accepts required to find the best final bid under a variety of potential system configura-

tions and conditions. Further, we identify scalability trends for the major factors affecting

subtask allocation: 1) Mission agent capability overlap (defined as a density equal to the

average number of Mission agents capable of performing requested subtasks), 2) number

of alternative decompositions per task, and 3) number of subtasks per task decomposition.

III.6.1.1 Experimental Design

To maintain the generality of our results and their applicability to other large-scale

multi-agent systems, we employed a simplified representation of subtasks and Mission

agent capabilities. Specifically, each subtask is randomly generated in a generic XY plane,

and each Mission agent is capable of achieving subtasks in a square region within that

plane. We define density of Mission agents as the average number of agents capable of
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requested subtasks in the system. In this setup, the Mission agent density is defined by

their overlapping geographic regions, since subtasks are randomly generated in the XY

plane. However, this simple representation allows our results to be easily extended to

other applications where capabilities are significantly more complex and even unrelated to

geography. Specifically, these results are applicable to other systems in which MACRO

subcontracting can be applied and where capability overlap/density can be determined. In

this experiment, 200 Mission agents were grouped into regions of 4 agents with overlapping

capabilities. Each group of 4 Mission agents was assigned to a Tier 2 Broker for a total of

50 Tier 2 Brokers.

We also use a simplified representation of bid characteristics, rather than explicitly

model the large range of utility functions a User agent could apply to bids. The experi-

ments employ a single, randomly generated, quality value for each subtask based on the

Mission agent contracted or subcontracted to perform the subtask. In general, Mission

agents may be unaware of how the User agent determines bid utility from individual bid

characteristics. Therefore a single quality value for each subtask suffices to represent the

combined characteristics for that subtask in this experiment. Because Mission agents can

include multiple possible task decompositions and subcontractors in their bids, the User

agent can, in general, choose the one with the highest utility in any given bid.

In each trial, a single User agent and Tier 1 Broker agent were used to randomly gen-

erate a task and its decomposition into subtasks. With the MACRO Brokers’ ability to

aggregate task trees, any task can be decomposed into one or more sets of subtasks, where

each subtask can be achieved by at least one Mission agent. Therefore, each task in this

experiment had a corresponding set of randomly generated decompositions with a variable

number of subtasks.

To determine pre-accept limits applicable to a variety of systems, we take a plausibly

worst case approach in setting static experimental parameters. For example, in a real sys-

tem, the different possible decompositions of a task would likely include some of the same
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subtasks or, at least, many subtasks that could be performed by the same agents. Instead,

this experiment considers a worst case scenario where decompositions are completely un-

correlated by independently generating random subtasks for each decomposition. Simi-

larly, subtasks are generated randomly over the range of Mission agent capabilities, while a

real-world system would likely exhibit greater clustering of subtasks based on geographic

location and sensor types. The quality values for subtask bids are generated in the uniform,

random range of 1 to 100, which is far more variability in quality than is likely in most

systems. In this experiment, subtask bids are generated by all agents with the capabilities

to perform the subtask. This results in more messages than in most systems where agents

may not be interested in all subtask announcements or may have already committed the

requisite resources to another task.

Further, subtask quality can be aggregated in a variety of ways to yield overall task

quality, such as using the minimum or maximum value of subtasks (e.g., when quality is

determined by timeliness for a set of parallel subtasks). In these experiments, User agents

employ a sum quality aggregation function (qaf) to generate the quality of the task from

the subtask qualities. In other words, the quality of the task is equal to the sum of qualities

for each subtask. Use of a sum qaf in these experiments represents situations in which the

utility of a task bid to the User agent depends on the characteristics of each subtask, rather

than being determined by a single, limiting subtask, as with the minimum and maximum

qafs. Further, our experiments indicated that the sum qaf was the more difficult parameter

setting, requiring more pre-accepts (and messages) to find the best bid than the minimum

and maximum qafs.

In these experiments, we define performance in terms of message overhead rather than

time overhead because messages are the major factor in the workload for the system in-

frastructure (i.e., broker agents mediating the contract net negotiations). Sensor webs and

similar applications that deal with many task announcements can face significant problems
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due to communication and computation overhead when allocating each task requires nu-

merous subtask announcements and bids, as with pre-bid subcontracting. Although the

sequential pre-accepts in the proposed algorithm require more time to allocate a task than

with the pre-bid approach, this provides a disincentive for User agents to increase system

workload by making additional pre-accepts after they have received an acceptable final bid.

While the increase in time overhead could still be a issue for some applications, it can be

significantly mitigated by a simple modification to the limited pre-accept contracting ap-

proach. For these applications, the allowed number of pre-accepts could be performed in

parallel rather than sequentially, and the presented performance and scalability results for

message overhead remain the same.

III.6.1.2 Experimental Results

Each experimental run involved 2000 trials (i.e., 2000 randomly generated tasks). In

each trial, the User agent announced a task through the Tier 1 Broker. The Tier 1 Broker

generated task decompositions and passed this information to the applicable Tier 2 Bro-

kers, who forwarded the task announcement and decompositions to the applicable Mission

agents.

In the baseline pre-bid subcontracting approach, each Mission agent receiving the task

announcement then announced all subtasks that it could not perform through the Tier 1

Broker. In response, it received bids from all other applicable Mission agents for those

subtasks. Each Mission agent combined these subtask bids and generated a task bid, which

was forwarded through its Tier 2 Broker and the Tier 1 Broker to the User agent. The User

agent ranked the complete bids and chose the one with the highest aggregated quality value.

Because the bids were complete, this agent was pre-accepted and contracted. These results

were compared to the results with MACRO pre-commitment subcontracting.

In the pre-commitment subcontracting approach, each Mission agent receiving the task

announcement made a preliminary bid, including only the quality values for the subtasks
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it could perform. The User agent ranked the preliminary bids by aggregated quality value.

Starting with the highest preliminary bid, the User agent pre-accepted the corresponding

Mission agent. The pre-accepted Mission agent then announced all subtasks that it could

not perform through the Tier 1 Broker. In response, the Mission agent received bids from

all other applicable Mission agents for those subtasks. It combined the subtask bids and

generated a task bid, which was forwarded through its Tier 2 Broker and the Tier 1 Broker

to the User agent. The User agent continued to pre-accept each preliminary bid in this

manner, in order of decreasing quality, to generate the results presented below.

To illustrate the scalability of the MACRO approach, we compare the average num-

ber of messages required to reach the best final bid in MACRO pre-commitment subcon-

tracting with the messages required in the baseline pre-bid subcontracting. These results

are presented in Figures 8, 9, and 10. In each figure, the circle data points indicate pre-

commitment subcontracting and the square data points are the result of pre-bid subcon-

tracting. The 95% confidence interval is shown for each data point, although it is smaller

than the data point marker in many cases.

Figure 8: Scalability with respect to Mission agent density
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Pre-Bid To 75% Cutoff
Density Decompositions Subtasks Messages Pre-Accepts Messages

1.50 1-3 1-3 113 (84) 1 41 (20)
1.50 1-3 4-6 606 (326) 2 140 (41)
1.50 1-3 7-9 1505 (728) 2 226 (58)
1.50 4-6 1-3 276 (117) 3 109 (29)
1.50 4-6 4-6 1494 (408) 3 277 (47)
1.50 4-6 7-9 3714 (840) 4 520 (81)
2.00 1-3 1-3 168 (132) 1 51 (25)
2.00 1-3 4-6 956 (523) 2 172 (51)
2.00 1-3 7-9 2411 (1197) 2 282 (76)
2.00 4-6 1-3 414 (187) 3 136 (38)
2.00 4-6 4-6 2369 (673) 4 400 (72)
2.00 4-6 7-9 5988 (1381) 5 756 (129)

Table 1: Subtask allocation results (2000 trials each)

The appropriate cutoff for allowed number of pre-accepts depends on the configura-

tion and requirements of the system. For example, the cutoff may be determined based

on the desired percentage of tasks that must reach the best final bid. Consequently, this

percentage also determines how many messages will be required, on average, in MACRO

pre-commitment subcontracting with limited pre-accepts. For a given percentage of tri-

als/tasks to reach the best final bid, the resulting cutoff requires an average number of

messages closely correlated with the average number of messages required to reach the

best final bid. Therefore, the pre-commitment subcontracting is illustrated by this average

number of messages in Figures 8, 9, and 10. Table 1 provides specific pre-accept cutoff

values for at least 75% of trials reaching the best final bid. These results cover a large

range of potential system configurations/conditions and illustrate the dramatic reduction of

messages in MACRO pre-commitment subcontracting compared to the pre-bid approach.

Figure 8 illustrates the scalability of MACRO pre-commitment subcontracting in terms

of Mission agent density/overlap. The average number of messages scales linearly with

Mission agent density. These results were generated with 2-6 (average 4) decompositions
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per task and 2-6 (average 4) subtasks per decomposition. In comparison, the pre-bid sub-

contracting approach required an average number of messages that increased with Mission

agent density to a power of 1.6, for the same parameter settings. For the highest Mis-

sion agent density of 4.0, pre-bid subcontracting required nearly 10 times the messages of

pre-commitment subcontracting.

Figure 9: Scalability with respect to task decompositions

Figure 9 illustrates the scalability of MACRO pre-commitment subcontracting in terms

of decompositions per task. The average number of messages scales slightly less than lin-

early (to the power of 0.8) with the number of decompositions per task. These results were

generated with a Mission agent density of 1.5 and 2-6 (average 4) subtasks per decompo-

sition. The pre-bid subcontracting approach, on the other hand, scaled linearly in terms

of decompositions per task. For the highest decompositions of 12, pre-bid subcontracting

required over 5 times the messages of pre-commitment subcontracting.

Figure 10 illustrates the scalability of MACRO pre-commitment subcontracting in terms

of subtasks per task decomposition. The average number of messages scales slightly worse

than linearly (to the power of 1.2) with number of subtasks. These results were generated

65



Figure 10: Scalability with respect to number of subtasks

with a Mission agent density of 1.5 and 2-6 (average 4) decompositions per task. In com-

parison, the pre-bid subcontracting approach required an average number of messages that

increased with Mission agent density to a power of 2.0. For the highest subtasks of 12, pre-

bid subcontracting required over 10 times the messages of pre-commitment subcontracting.

These results show that the MACRO limited pre-commitment subcontracting approach

scales significantly better than the pre-bid subcontracting approach, and that the number of

subtasks is the largest stress factor in terms of scalability. Further, the required number of

messages to reach the best final bid in pre-commitment subcontracting are on the order of

five times fewer than pre-bid subcontracting for likely sensor web system configurations

and operating conditions. Considering that each trial illustrates subcontracting of a single

task, the number of messages required for pre-commitment subcontracting (e.g. 50 to 200

for likely scenarios) are still higher than would be desired. This point is mitigated by

the fact that these numbers were determined with plausibly worst case settings of static

experimental parameters (e.g., uncorrelated subtasks and task decompositions, all capable

agents bidding on task/subtask announcements, and a large range of subtask quality with
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the application of “sum” quality aggregation function) and by the increasingly low latency

and high bandwidth connections available to agents communicating over the internet.

III.6.2 Allocation Optimization Experiments

This section presents the design and results of experiments that evaluate the perfor-

mance of the MACRO task allocation mechanism under a variety of different potential

system configurations and operating conditions. Performance is measured by evaluation

of the MACRO task allocation using the fair and efficient sensor web metric proposed in

Section III.3 and comparison with the performance of offline allocation generation under

the same metric. These experiments validate our claims in Section III.4 that the evaluation

of task marginal utility by MACRO Brokers during task auctions yields fair and efficient

task allocation in the sensor web system. Further, we identify relevant trends for the major

factors affecting allocation performance: 1) maximum ratio between User agent shares of

sensor web resources, 2) number of announced tasks, 3) scenario length (system execution

time), and 4) task execution time.

III.6.2.1 Experimental Design

As in the subcontracting experiments presented in Section III.6.1, we employed a sim-

plified representation of subtasks and Mission agent capabilities to maintain the generality

of our results and their applicability to other large-scale multi-agent systems Specifically,

each subtask is randomly generated in a generic XY plane, and each Mission agent is ca-

pable of achieving subtasks in a square region within that plane. We define density of

Mission agents as the average number of agents capable of requested subtasks in the sys-

tem. In this setup, the Mission agent density is defined by their overlapping geographic

regions, since subtasks are randomly generated in the XY plane. However, this simple rep-

resentation allows our results to be easily extended to other applications where capabilities

are significantly more complex and even unrelated to geography. Specifically, these results
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are applicable to other systems in which MACRO allocation can be applied and where

capability overlap/density can be determined.

With overlapping capabilities, multiple task decompositions, and a large number of

total tasks, there are many possible task allocations in these experiments. Therefore, gener-

ation of the baseline results for comparison to the MACRO allocation mechanism required

significant processing time, so we limit the number of Mission agents in these experiments

to 20. However, we test a wide variety of system configuration parameters and performed

enough trials for each data point to generate statistically significant results. In this ex-

periment, the 20 Mission agents were grouped into regions of 4 agents with overlapping

capabilities. Each group of 4 Mission agents was assigned to a Tier 2 Broker for a total of

5 Tier 2 Brokers.

The full implementation of task allocation in MACRO allows task announcements at

any time with specified time-out values, and there is a potential lag time in updating sys-

tem performance information, as mentioned in Section III.4. To simplify the generation

and execution of scenarios in these experiments, task announcements are compressed into

rounds, and each broker receives a complete update on allocations from the previous round

at the beginning of a round. Further, the broker time windows were equal to the length of

the trial, so all previously allocated tasks were considered in each round.

We also employ a simplified representation of bid characteristics, rather than explicitly

model the large range of utility functions a User agent could apply to bids. The experiments

employ a single, randomly generated, quality value for each subtask based on the Mission

agent contracted or subcontracted to perform the subtask. In general, Mission agents may

be unaware of how the User agent determines bid utility from individual bid characteristics.

Therefore a single quality/utility value for each subtask suffices to represent the combined

characteristics for that subtask in this experiment. Because Mission agents can include

multiple possible task decompositions and subcontractors in their bids, the User agent can,

in general, choose the one with the highest utility to itself.
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In each trial, 20 User agents were employed to announce randomly-generated tasks and

were divided into groups of 4. Each group of User agents was assigned to a Tier 1 Broker

agent, for a total of 5 Tier 1 Brokers to evaluate and forward task announcements. With the

MACRO Brokers’ ability to aggregate task trees, any task can be decomposed into one or

more sets of subtasks, where each subtask can be achieved by at least one Mission agent.

Therefore, each task in this experiment had a corresponding set of randomly generated

decompositions with a variable number of subtasks.

To maintain applicability to a variety of systems, most experimental scenario parame-

ters are randomly generated within a uniform range of values. For example, the number of

decompositions and each decomposition’s number of subtasks are randomly chosen from

the range [1,3] (i.e., each task can be performed in one to three different ways and each

way requires resources from one to three different Mission agents). Similarly, subtasks

are generated randomly over the range of Mission agent capabilities. For simplicity, each

Mission agent can only execute one subtask per time step, and each subtask requires the

same quantity of resources.

The quality values for subtask bids are generated in the uniform, random range of [50,

100] to represent the variety in bid characteristics (e.g., data rate and completion time)

from different Mission agents capable of performing the same subtask. User agents em-

ploy a sum quality aggregation function to generate the quality of the task from the subtask

qualities. In other words, the quality of the task is equal to the sum of qualities for each

subtask, and this total quality is used as the agent’s utility for the task/bid. This repre-

sents a situation in which the user utility of a bid depends on the characteristics of each

subtask, rather than being determined by a single, limiting subtask, as with the minimum

and maximum aggregation functions. Further, this results in decompositions with more

subtasks having a higher possible utility. Since allocating more subtasks requires more

resources, this follows the common pattern of higher utility being achievable by applying

more resources to the achievement of the task.
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III.6.2.2 Experimental Results

Each experimental run involved 100 trials (i.e., 100 randomly generated scenarios, in-

cluding User agent tasks over the entire length of the trial). In each trial, the User agents

announced the tasks for that round (i.e., the tasks with start times for the next time step)

through their assigned Tier 1 Broker. The Tier 1 Broker generated task decompositions and

calculated marginal utility values for each task. The Broker then passed this information

to the applicable Tier 2 Brokers, who forwarded the task announcement and decomposi-

tions to the applicable Mission agents. The task auctions proceeded with each User agent

providing pre-accepts to their three preferred initial bids and ultimately contracting to the

most preferred final bid, if any.

Figure 11: Performance with respect to User agent share ratio

To provide a value for comparison, each trial in the experiment included the random

generation of 10,000 allocations with an offline algorithm (i.e., random allocation of tasks

to Mission agents using knowledge of all tasks to be announced over the entire course of

the trial). The best allocation (under the sensor web metric) from those randomly generated

allocations was used as the comparison data point and are labeled “Offline” in the figures
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below. Of course, such a mechanism is far more computationally expensive than MACRO’s

task valuation and auction, as well as inappropriate for use in the online setting of sensor

web task allocation (i.e., allocation of tasks as they are announced at runtime). However,

the offline algorithm provides a useful baseline for allocation performance.

During generation of the offline allocations, the same trend in (best) performance val-

ues was observed across all parameter settings. Specifically, the best performance value

increased rapidly at first (e.g., the first 500 randomly-generated allocations), largely level-

ing off by the first quarter of the allocation generation and only increasing slightly (e.g., 1%

to 5%) over the remaining 7,500 allocations. The sparsity of data points for any individ-

ual trial precludes quantitative assessment of individual patterns, but the consistent trend

observed across these trials suggests that the “Offline” data points presented below are at

least in the neighborhood of the optimal allocation.

Figure 12: Performance with respect to tasks per round

Except for the parameter being varied in each experiment, the parameter settings in

these experiments were: Number of User Agents = 20, User Share Ratio = [1, 1.5], Number

of Mission Agents = 20, Mission Agent Density = 1.5, Number of Tasks Announced per
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Round = 15, Execution Time (steps) per Task = [1, 2], Number of Decompositions per Task

= [1, 3], Number of Subtasks per Decomposition = [1, 3], Subtask Quality = [50, 100], Trial

Length (steps) = 20.

Figure 13: Performance with respect to trial length

Figures 11, 12, and 13 compare the mean performance of MACRO and Offline alloca-

tion with the 95% confidence interval shown for each set of trials. Figure 11 illustrates that

performance under the sensor web metric does not vary significantly by the distribution

of User agent shares of the sensor web. Further, Figures 11, 12, and 13 all indicate that

the performance of MACRO task allocation is very close to that of the best Offline alloca-

tion under a wide variety of conditions. The one exception to this characterization is that

MACRO performance for the shortest trials (5 rounds) is significantly lower than Offline

performance. This suggests that MACRO marginal utility task valuation requires a mini-

mum amount of past performance information (e.g. 5 to 10 rounds in these experiments) in

order to be most effective in optimizing allocations.

Figures 12 and 13 show a decreasing metric value for both MACRO and Offline alloca-

tions as the number of tasks per round or length of trials increases. This trend illustrates that
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the sensor web metric is sensitive to the number of announced but unallocated user tasks.

Because the utility value of a user’s tasks is normalized with respect to all announced tasks,

the normalized value of allocated tasks can be decreased by large numbers of unallocated

tasks. However, MACRO performance relative to the Offline allocations remained consis-

tently high. Still, the sensitivity of the metric, and consequently of the MACRO marginal

utility task valuation, to unallocated tasks could be detrimental to performance in situations

where some User agents announce significantly more tasks than others. In future work, we

could address this issue by weighting unallocated tasks during normalization to reduce their

impact on marginal utility calculations.

Figure 14: Performance with respect to task length

Although MACRO performance closely matched Offline performance across a range

of user share ratios, tasks per round, and trial lengths, Figure 14 illustrates one parameter

that had a significantly greater impact on MACRO performance than Offline performance.

Figure 14 shows the ratio of MACRO to Offline performance across a range of task ex-

ecution times. With longer execution times, MACRO performed significantly worse in

comparison to Offline allocations. The MACRO task allocation performs poorly with long
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execution times in this experiment because no decommitments were allowed. Even when

an announced task was of significantly greater value, the Mission agents were not allowed

to decommit from currently contracted and executing tasks in favor of the new task. Future

work, detailed in Section VI.2, includes exploration of decommitment schemes to improve

MACRO allocation performance with long-running tasks.

III.7 Summary

Large multi-agent systems with limited resources and heterogeneous users require an

appropriate task allocation mechanism to simultaneously address issues of allocation effi-

ciency (i.e., utility to the system as a whole) and fairness (i.e., individual user satisfaction).

In this chapter, we presented a novel approach to fair and efficient allocation of complex

tasks spanning multiple agents’ capabilities and resources, while employing limited infras-

tructure computational resources. We presented the definition of a task allocation utility

metric combining user satisfaction and system utility that is applicable to a global sensor

web. We illustrated how this metric is employed by the MACRO Brokers to value tasks us-

ing an approximation of their marginal utility to the system. We also presented the details

of MACRO’s task auctions in a brokered, two-phase contract net, which includes a novel

subcontracting approach to minimize message overhead. Overall, MACRO’s task alloca-

tion mechanism provides a scalable method of allocating complex tasks to the resources of

multiple agents and results in fair and efficient allocations. Finally, we presented results

of experiments with MACRO task allocation that verify both its allocation performance

and scalability. The generality of representation in these experiments ensures that these

results can be extended to other systems in which hierarchically-decomposable tasks must

be allocated to agents with overlapping capabilities.
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CHAPTER IV

PLANNING AND SCHEDULING

A global sensor web is a large-scale, distributed system that spans multiple domains

of agent operation. More specifically, the global sensor web requires global coordination

among sensor networks to cooperatively achieve complex user tasks and adaptive opera-

tion of individual sensor networks situated in a variety of physical environments. In such

systems, choosing a single planning and scheduling mechanism for all agents may be in-

efficient and impractical. In MACRO, complex task/goal achievement with resource con-

straints and time deadlines presents different planning and scheduling challenges at the two

levels of agent operation.

As described in Section II.3, MACRO is structured as a two-level agent hierarchy with

different planning and scheduling needs at each level: (1) at the mission level, Mission

agents representing individual sensor networks coordinate to cooperatively achieve com-

plex tasks spanning the resources and capabilities of multiple agents, and (2) at the resource

level, Exec agents and other domain-specific agents adapt local operations within a sensor

network to efficiently achieve goals given current conditions in dynamic, uncertain and

resource-constrained environments. Therefore, agents at these different levels of the sys-

tem operate in different contexts that imply different planning and scheduling requirements.

At the mission level of a sensor web MAS, new tasks are allocated based on user re-

quests, as discussed in Chapter III, as well as from a sensor network’s internal aims and

priorities. Many tasks have a high degree of complexity a variety of ways by which they

may be accomplished. Typically such tasks must employ resources from multiple sen-

sor networks. In particular, hierarchical analysis helps deal with this complexity, both for

problem/task representation by domain experts and for coordinated planning and schedul-

ing among multiple agents. While the sensor web dynamically performs multiple tasks
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simultaneously, the relative importance of completion metrics differs among tasks. For ex-

ample, achievement of some tasks may need to be optimized for earliest completion time

while others may need to be optimized for a particular data quality of service characteristic.

At the resource level of a sensor web MAS, many sensor networks incorporate dis-

tributed, real-time, embedded (DRE) systems functioning in environments where operating

conditions and resource availability cannot be completely characterized a priori. Further,

goals and priorities may change frequently due to evolving phenomena, changes in oper-

ating conditions, and the allocation of tasks at the mission level. Appropriate autonomous

planning and scheduling capabilities at this level must produce plans to maximize expected

utility with their limited computational resources for achieving local goals in a dynamic,

uncertain environment. Moreover, they must provide re-planning/re-scheduling that can

quickly revise scheduled plans during execution and prevent more expensive (in time and

computational resources) re-planning/re-scheduling at the mission level.

With the appropriate autonomous planning and scheduling capabilities at each level,

MACRO agents can facilitate the real-time collection and analysis of sensor data, even

under changing environmental conditions and many concurrent science objectives. This

chapter describes the planning/scheduling representations and mechanisms employed in

MACRO. Section IV.1 discusses the related work in planning and scheduling relevant to

the MACRO mission level and the choice of a distributed planning and scheduling repre-

sentation/mechanism for Mission agents. Section IV.2 covers the related work in planning

under uncertainty and incorporation of scheduling with planning relevant to the MACRO

resource level. Section IV.3 identifies the unresolved challenges in planning and schedul-

ing for MACRO resource-level agents, and Section IV.4 presents the MACRO solution

to these challenges in the form of the Spreading Activation Partial Order Planner (SA-

POP). Section IV.5 illustrates the use of SA-POP and the extension of MACRO resource-

level planning with plan schemas for field agents in a representative sensor network. Sec-

tion IV.6 presents an experimental verification of SA-POP planning performance. Finally,
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Section IV.7 summarizes the MACRO research on planning and scheduling presented in

this chapter.

IV.1 Mission-level Planning and Scheduling

At the MACRO mission level, Mission agents representing individual sensor networks

negotiate with User agents to allocate user tasks. These tasks are often complex and may

require the resources of multiple Mission agents for successful completion. In order to

perform the allocated tasks, Mission agents must have appropriate distributed planning and

scheduling capabilities to create effective plans and schedules for task/subtask achieve-

ment. Further, they must coordinate those scheduled plans with other Mission agents that

have been allocated parts of the same overall task.

IV.1.1 Planning/Scheduling Problem and Task Representation

The representation of tasks and goals is an important first step in designing or choosing

a system for planning and scheduling. At the MACRO mission level, the representation lan-

guage must be expressive enough to represent important characteristics of the sensor web

domain, including scheduling/resource information, utility with varying degrees or types

of completion (e.g., in terms of data rates and quality of service (QoS) criteria), and assign-

ment to different agents with resulting constraints and commitments between them. Classic

planning representations, such as STRIPS [43] and hierarchical task networks (HTN) [94],

have been extended in various ways to allow representation of more complex domains/plan-

ning problems, although scheduling and resource constraints are usually an afterthought,

or handled as a separate problem, when such languages have been employed. More re-

cent representations, such as the planning domain definition language (PDDL) [75] have

been extended to include scheduling and utility/solution-quality aspects of the problem as

a primary part of its representation (e.g., PDDL 2.1 includes temporal and numeric quality

properties in its representation of tasks [45]). However, none of these representations are
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designed to take into consideration issues primary to multi-agent planning/scheduling, such

as assignment and synchronization.

Recently some multi-agent planning/scheduling representations have been created, such

as MAPL [14], which allows efficient representation of partially ordered, scheduled, multi-

agent plans. However, MAPL does not easily allow representation of plans/tasks at multiple

levels of abstraction. The complex nature of tasks and plans at the mission level of a sensor

web MAS makes hierarchical analysis important for dealing with this complexity, both for

problem/task representation by domain experts and for coordinated planning among mul-

tiple agents. The Task Analysis, Environment Modeling, and Simulation (TÆMS) [55]

language provides such a hierarchical task representation for multi-agent planning and

scheduling.

The TÆMS language represents tasks as a hierarchical structure with a number of possi-

ble decompositions into subtasks, and ultimately to individual methods that can be directly

implemented by agents, as illustrated in Figure 15. The TÆMS representation has many

features making it applicable to planning and scheduling in a sensor web MAS. For ex-

ample, rather than simply expressing task completion as a black or white (success/failure)

outcome, it allows for shades of gray, i.e., levels of quality in outcomes [69]. Given that

there are many options for performing a high-level task, information on expected quality

combined with resource and time considerations allows decision-theoretic criteria to guide

task choice/decomposition by agents. Recent extensions to TÆMS also allow the specifica-

tion of discrete probability distributions for task/subtask characteristics including outcomes

and quality [116]. The probability distributions allow better preliminary planning decisions

for uncertain environments and task execution, as well as replanning during the execution

of a plan.
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Figure 15: Example TÆMS task decomposition tree [116]

IV.1.2 Distributed Planning/Scheduling Algorithms

While an appropriate task/plan representation is vital to effective performance of dis-

tributed planning/scheduling in MACRO, the choice of how to perform planning and schedul-

ing is equally important. Some of the key characteristics of an algorithm for this problem

in sensor webs are: 1) scheduling under resource constraints is integral to the planning pro-

cess; 2) subtasks will be distributed among agents, so synchronization and other commu-

nication activities must be planned; 3) multiple goals or tasks will be planned and execute

concurrently; 4) utility should be (at least approximately) optimized when not all goals can

be satisfied; and 5) replanning/rescheduling are necessary in a dynamic environment.

In recent years, numerous multi-agent planning algorithms with most or all of these

characteristics have been proposed for various domains (e.g., [29, 30, 32, 110]. One im-

portant division between these algorithms is whether they are designed for inherently co-

operative agents willing to share sufficient details of their goals and plans to maximize a

group/system utility measure or more self-interested/untrusting agents with private goal-

s/plans [29, 32]. Mission agents in the sensor web may not wish to divulge all details of

their internal goals or, in particular, the personal importance/utility of those goals. How-

ever, there is little reason for them to require complete privacy of their “personal” plans

(e.g., sharing resource and scheduling information, if not actual subtasks/subgoals) or
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other constraints imposed by their internal goals. Since Mission agents can reasonably

share pertinent plan information and constraints, it is not necessary to limit sensor web

planning/scheduling with the privacy restrictions imposed by some algorithms, such as the

sequential goal plan repair scheme proposed by van der Krogt and de Weerdt [110].

Another important restriction in some domains is limited communication, such as in the

Shared Activity Coordination (SHAC) framework [20]. Again, this specialization and its

resulting limitations on the planning/scheduling algorithm are not necessary at the mission

level of a sensor web MAS, where Mission agents can communicate at any time within rea-

sonable bandwidth restrictions. Instead, a more efficient, cooperative, multi-agent planning

and scheduling algorithm can be applied in a sensor web MAS. Generalized Partial Global

Planning (GPGP) [30] is such an algorithm, which has been successfully implemented for

numerous real-world systems. The GPGP coordination technique shares partial plans be-

tween agents to build up (partial) global plans in order to recognize constraints, conflicts,

and opportunities between individual agents’ plans. This technique, introduced by Partial

Global Planning (PGP) [35], is extended in GPGP to include hierarchical tasks and more

flexibility in coordinating planning/scheduling activities between agents.

IV.1.3 GPGP/TÆMS for a Sensor Web MAS

GPGP uses the TÆMS representation to schedule tasks across agents and coordinate

task interdependencies through inter-agent commitments. Although its name refers to

“planning,” GPGP is focused primarily on optimizing this coordination and scheduling of

tasks across agents to maximize group utility. The traditional planning aspects of the prob-

lem are solved primarily through parsing of TÆMS task networks and other domain/design-

dependent internal activities of each agent. With its emphasis on coordination and schedul-

ing, GPGP is particularly useful in the face of interdependent tasks, such as those that result

from joint high-level goals across agents, and limited time/resources. While agents may be

more or less self-interested and have independent goals in addition to joint goals, GPGP is
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only effective in increasing utility to the extent that agents are willing to make commitments

to other agents. In particular, most of the coordination protocols designed for GPGP rely

on the agents being willing to make commitments without any direct benefit/reciprocity for

themselves. Further GPGP uses the interdependence of tasks (or potential decomposition

of tasks) across agents to drive its coordination. This interdependence results from sub-

tasks that contribute to the solution of a joint, higher-level goal/task as specified in TÆMS

hierarchical task graphs.

Within the realm of systems designed to achieve global solutions with highly coopera-

tive agents, GPGP/TÆMS has a great degree of domain-independence, making it applica-

ble to a wide array of applications. It is a particularly powerful solution for applications in

domains with: interdependent tasks that can be distributed across agents, local autonomy

issues, resource constraints, time constraints, and dynamic environments. Further, through

the choice of GPGP coordination protocols and the design of the agents’ domain problem-

solving engine, the framework can be highly tailored to specific applications. For example,

GPGP/TÆMS has the flexibility to allow meta-level or additional coordination activities to

take place between agents based on their domain-specific problem-solving strategies [69].

As such, it should be possible to effectively integrate it with coordination and negotiation

via contract net for task/subtask allocation. Lesser et al. also suggest the potential for

significantly reduced communication/coordination overhead through application of organi-

zational roles implicitly or explicitly used to shape GPGP coordination protocols [69]. In

the sensor web, teams organized by the allocation of subtasks from a particular user task

can provide an important reduction in overhead and complexity of GPGP. Because agents

with independent goals generally cannot achieve a significant increase in utility by shar-

ing their plans, many sensor web planning/scheduling interactions can be limited to the

members of each task team.

The GPGP family of coordination protocols relies heavily on the TÆMS task represen-

tation. A TÆMS task structure is a hierarchical task network that includes meta-data on
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the composition/decomposition of subtasks and on implementable “methods” that form the

leaves of the task decomposition tree. At the root of a TÆMS task tree is the high-level

task or goal to be achieved by one or more agents. The root task may be decomposed into

one or more subtasks that can be performed to achieve the root task. Similarly subtasks can

be decomposed into simpler subtasks, and so on, until the decomposition tree reaches the

methods that can be directly implemented by the agent. A quality accumulation function

(QAF) defines how the decomposition is performed (e.g., decomposition by choosing any

one of the subtasks, any subset of the subtasks, all of the subtasks, or all of the subtasks

in sequence) and how the quality of subtasks is combined to give the quality of the parent

task (e.g., sum, minimum, or maximum). Meta-data for the methods in the task tree include

quality, cost, and duration, each of which is described by a discrete probability distribution

allowing uncertainty in the outcome of method execution. Execution time constraints/win-

dows from the goal specification, coordination with other agents, and scheduling can also

be associated with the tasks and methods.

In addition to method meta-data and decomposition meta-data, TÆMS task structures

include relationships between tasks/subtasks called nonlocal effects (NLEs). NLEs can

define hard constraints between tasks, such as “enables” or “disables,” defining causal or

other precedence constraints. However, “soft NLEs” can define other relationships between

tasks where the execution of one affects the outcome of another but does not indicate a hard

constraint. For example, “facilitates” and “hinders” indicate the specific effects of one task

on another where the first task increases or decreases (respectively) the probable quality or

execution speed of the second task. Finally, TÆMS task structures can include consumable

and non-consumable resources and their relationships to the tasks/methods. For example,

a method may require a quantity of a resource to execute or the absence of a resource may

affect the quality or duration of a method without being strictly required for it to execute.

With a task structure represented in TÆMS, GPGP provides a general approach and

specific set of mechanisms for coordination of plans and scheduling among a set of agents.
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The GPGP approach is for each agent to build up a local view of its tasks/plan include

non-local tasks performed by other agents and their relationship to its local tasks through

coordination with other agents. This partial view of the global MAS plan/schedule allows

agents to reason about their local activities in light of related activities performed by other

agents. The GPGP coordination mechanisms allow an agent to recognize important pat-

terns in the relationships between local and non-local tasks and specifies an appropriate

coordination response in terms of modifying task structures, communicating information,

and making commitments to other agents. Because the coordination mechanisms are ap-

plicable to specific task relationships or patterns, multiple coordination mechanisms can be

used concurrently. Generally, more than one mechanism is necessary for effective and ef-

ficient coordination and the specific set of coordination mechanisms appropriate to a MAS

are domain-dependent.

A number of GPGP coordination mechanisms have been designed for specific domains

since the original introduction of GPGP. However, the most generally applicable coordina-

tion mechanisms are the original five introduced with the GPGP concept [30]:

• Updating non-local views – When a relationship between a local task and a non-local

task is detected, communicate the relevant task structures to the other agent. This is

the basic coordination mechanism for building up partial global views in the MAS.

Detection of the inter-agent task relationships is domain-dependent. In a sensor web

MAS, such as MACRO, subtasks of a high-level user task are determined by agents

from the known task decomposition trees and can be allocated via the contract net

protocol. In such a system, inter-agent task relationships are known by the agent

managing the high-level task and can be communicated to the other agents contracted

to perform subtasks. Upon further decomposition/scheduling of subtasks, additional

inter-agent task relationships may be identified and communicated.

• Communicate results when they will be used by others – When another agent can

use the result of a local task known by the relationship between the local task and a
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non-local task or a commitment to provide the result, communicate the result when

execution of the local task completes. In sensor web MAS, many of the “results”

communicated between tasks will actually be in the form of a sensor data stream

being transmitted for additional processing or analysis by another agent. Extending

this mechanism to allow data streams in addition to one time result communication is

an obvious improvement for sensor web MASs. Further, with agents organized into

teams to perform a high-level task, it is unlikely that a task result will be useful to

another agent where there is not already a commitment to provide that result between

team members. Therefore, the detection step of this mechanism need not search for

relationships where no commitment has been made.

• Handling simple redundancy – When multiple agents intend to execute the same

method, one agent is randomly chosen to execute the method and commit to sending

the result to the other agents. When tasks and subtasks are allocated via contract

net, as in MACRO, this coordination mechanism is not likely to be useful. An agent

already intending to perform a method would generally have the lowest incremental

cost for its execution and would therefore have been contracted to perform it for any

other tasks as well, so redundant execution of methods would be rare.

• Handling hard relationships from the predecessor side – When a hard relationship/-

NLE exists between two tasks at different agents, the agent with the predecessor task

should schedule the task locally and then communicate a commitment to complete

the task by the scheduled time to the other agent. Clearly this coordination mecha-

nism is important for coordination in a sensor web MAS so that the agent with the

successor task can accurately schedule its execution in light of the expected comple-

tion time for the predecessor task.

• Handling soft relationships from the predecessor side – Similar to a hard relationship,

when a soft relationship/NLE exists between two tasks at different agents, the agent
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with the predecessor task should schedule the task locally and then communicate a

commitment to complete the task by the scheduled time to the other agent. In this

case, the agent with the successor task may determine through scheduling that it

is preferable to execute its task before the predecessor task will be completed, but

it can make that decision with knowledge of the expected completion time for the

predecessor task.

GPGP coordination relies on the use of existing or generated TÆMS task structures and

an independent scheduler/planner that can generate an appropriate task decomposition and

schedule for execution. The scheduler designed for use with TÆMS and successfully em-

ployed in many systems using GPGP is the Design-To-Criteria (DTC) scheduler [114, 115].

The DTC scheduler is designed to provide soft real-time scheduling for the combinatorial

problem of optimally decomposing and scheduling a TÆMS task. Although DTC does not

use an anytime algorithm, it does provide soft real-time results by using goal criteria and

heuristics to reduce the search space of scheduled plans.

To provide a tractable search space of scheduled decompositions, the DTC scheduler

employs four major techniques [115]:

• Criteria-direct focusing – The goal criteria (e.g., reducing uncertainty in task out-

come, maximizing quality, and minimizing completion time) is used to focus pro-

cessing on partial solutions likely to achieve the provided goal criteria. For example,

if the goal criteria is to reduce uncertainty in task outcome, DTC attempts to sched-

ule possible decomposition of a task with highly certain outcomes and only considers

less certain decompositions if that scheduling fails.

• Schedule approximations – Alternative decompositions are generated from the task

tree with approximate quality, cost, and duration distributions before actually order-

ing methods in those decompositions. Combined with criteria-directed focusing, this

85



allows DTC to attempt the more computationally complex task of scheduling only

for decompositions that are likely to meet goal criteria.

• Heuristic action ordering – Heuristics for leveraging positive task interactions in

scheduling and avoiding negative ones are used to minimize the work performed in

scheduling potential decompositions. Although the resulting algorithm is approxi-

mate, this allows the scheduling complexity to be reduced to polynomial time in the

worst case.

• Heuristic error correction – The action ordering heuristics and schedule approxima-

tions used by DTC can result in schedules that do not achieve the task or meet goal

criteria. Additional heuristics are used to repair correctable scheduling errors or else

identify invalid schedules and prevent them from being returned.

The combination of GPGP coordination mechanisms, TÆMS task representation, and

DTC scheduling provides a powerful solution to distributed planning/scheduling problems.

For a sensor web MAS, the identified GPGP coordination mechanisms (updating non-local

views, communicating results, predecessor handling of hard relationships, and predecessor

handling of soft relationships) allow effective coordination of local planning/scheduling

across multiple agents working together to achieve a high-level task. Moreover, the hierar-

chical task representation in TÆMS limits the complexity of codifying and reasoning about

sensor web domain information. Finally, the DTC scheduler provides an effective method

for local planning/scheduling of TÆMS tasks that is required for GPGP coordination.

However, the research on TÆMS and similar hierarchical task representations assumes

a system with a unified design team. In an open MAS, an agent’s domain knowledge, in-

cluding TÆMS task trees, is specific to their individual purposes and capabilities, without

full knowledge of goals and tasks throughout the system. Therefore, interoperability among

independently-designed agents requires an enhancement to existing hierarchical task rep-

resentations to allow translation and aggregation of task information across agents. In
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MACRO, TÆMS is extended with the OGC SensorML standard [9] for describing sensor

capabilities and processing of sensor data. This allows Broker agents to aggregate Mis-

sion agent TÆMS task trees and translate between User agent requests and Mission agent

capabilities, as described in Section V.4.

Moreover, MACRO resource level agents use a different planning/scheduling repre-

sentation and mechanism (SA-POP decision-theoretic planning and scheduling described

in Section IV.4). Employing the two different representations and forms of planning and

scheduling requires the definition of an appropriate plan/schedule coordination mechanism

between the mission and resource level. This coordination between Mission and Exec

agents is detailed in Section V.5.

IV.2 Resource-level Planning and Scheduling

At the MACRO resource level, Exec agents and other domain-specific agents operate

in environments where operating conditions and resource availability cannot be completely

characterized a priori. Further, goals and priorities may change frequently due to evolv-

ing phenomena, changes in operating conditions, and the allocation of tasks at the mission

level. Autonomous planning and scheduling for resource-level agents must produce plans

to maximize expected utility for achieving local goals in a dynamic, uncertain environ-

ment while operating on shared processors with limited computational resources. To adapt

local operations for action failure and changes in resources availability, agents must also

have re-planning/re-scheduling capabilities that can quickly revise scheduled plans during

execution.

IV.2.1 Planning under Uncertainty

In real-world domains, such as a sensor network, obtaining complete knowledge about

the state of the environment is often impractical or impossible. Therefore, many planners
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for uncertain environments make simplifying assumptions about the environment and at-

tempt to construct effective plans using probabilistic domain knowledge. Some planners

assume a known initial environment and utilize actions with probabilistic effects. Others

assume that actions have deterministic effects, but the starting environment is unknown, and

the challenge is to determine or approximate the initial environment [73]. Overall, plan-

ning under uncertainty can be categorized by the observability of the environment: (1) no-

observability planning, (2) partial-observability planning and (3) full-observability plan-

ning. Full-observability planners assume a known initial environment and actions whose

effects can be immediately observed. No-observability planners, or conformant planners,

try to generate a plan that has the highest possibility of success assuming no feedback

from the environment about plan success. Partial-observability planners assume partial

feedback. Partial- and full-observability planning, which are most applicable to the sensor

network environments in a sensor web, are usually approached in one of two ways: (1) con-

tingent planners construct plans that include contingency subplans or actions based on the

effects of actions, and (2) re-planners construct a single, complete plan and re-plan during

execution, if observed conditions invalidate part of the plan.

Probabilistic planning problems are often represented as a Markov Decision Process

(MDP) or a Partially Observable Markov Decision Process (POMDP) [8]. Many early

probabilistic planners attempted to find optimal solutions using MDP/POMDP representa-

tions, but, in practice, such planners do not scale [88]. Even for moderately-sized POMDP

problems, optimal solutions require very efficient mechanisms and/or additional assump-

tions about the soluble set of problems. For example, Incremental Pruning [16] was shown

to significantly outperform other exact POMDP algorithms. However, in general, these

algorithms are not competitive on planning problems [73]. Newer approaches like Grid-

Based algorithms proposed by Bonet [8] have shown promise, but remain untested on

benchmark International Planning Competition (IPC) domains.
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Another common solution to probabilistic planning is to adapt the successful Graph-

plan framework for a probabilistic environment (e.g., PGraphplan and TGraphplan [7]).

PGraphplan is an optimal dynamic programming planner; unfortunately, PGraphplan could

not fully leverage the plan graph structure that provides the efficiency of Graphplan [71].

Other optimal probabilistic planners suffer similar performance problems for large plan-

ning problems. Another approach is to sacrifice optimality by using a relaxed problem that

can be more easily solved. For example, TGraphplan is an online planner which solves a

relaxation of the probabilistic problem via a traditional Graphplan algorithm; therefore it is

not an optimal planner, but runs at essentially the same speed as deterministic Graphplan.

Like the probabilistic extensions of Graphplan, planning-as-satisfiability algorithms have

been extended to stochastic satisfiability (SSAT) planners. For example, ZANDER [73]

is capable of solving finite-horizon problems in partially-observable environments and has

performed well against contemporary probabilistic planners [73].

Many probabilistic planners, (e.g., derivatives of Graphplan like PGraphplan and TGraph-

plan [7]) only allow uncertainty about action outcome. However, some planners also in-

corporate uncertainty about the environment or observations of the environment (e.g., C-

SHOP [10] using hierarchical planning and Drips [51], which produce contingent plans).

In some sensor networks, the outcomes of data sensing and processing actions may de-

pend on environmental characteristics that cannot be directly measured or can only be ap-

proximated. Therefore, the ability to represent and utilize probabilistic information about

both the environment and action outcome is an important feature in a planner for MACRO

resource-level agents. Of course, the ability to handle unexpected occurrences, such as

failures and transient phenomena, in uncertain sensor network environments is also vital.

Many of the most successful IPC planners for fully- and partially-observable domains

have been re-planners, rather than contingency planners [123]. FF-Replan [122] and RFF

[108] employ the efficient deterministic planner Fast Forward on a deterministic relaxation
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of the probabilistic environment for planning and re-planning. When an action has a con-

sequence not predicted by the deterministic relaxation, these planners produce a new plan

based for the current situation. This is often a very computationally efficient approach, and

works especially well in domains with no dead-end states. In domains with dead-end states,

a re-planner can end up in situations where there is no longer a valid solution, but which a

contingent planner could have avoided. However, in most sensor networks, sensors are far

more common than actuators. Consequently, there are few or no actions that have direct

effects on the local environment, making dead-end states rare. Therefore, re-planners are a

promising option for the MACRO resource level.

Another important characteristic for sensor webs is the production of highly parallel

plans because of the variety of long-running data gathering and analysis actions that must

operate concurrently. Partial-order planning (POP) produces partially-ordered plans that

generally exhibit a high degree of parallelism as opposed to plans generated by other tech-

niques like POMDP and state-space planners [79]. The parallelism of partial-order plans

also promises greater flexibility in scheduling for limited resource environments and tight

time deadlines. While the use of partial-order causal-link (POCL) planners is promising

for sensor networks, state-space planners have often outperformed POCL planners. Fortu-

nately, REPOP [79] and VHPOP [124] have demonstrated that POP can utilize some of the

advanced heuristics of contemporary state-space planning to be competitive.

IV.2.2 Integrating Planning and Scheduling

Many complex, real-life, automated planning domains, such as sensor networks, have

to satisfy both functional (i.e., planning) and scheduling constraints. In such situations,

many have chosen to separate the planning and scheduling/resource aspects of the problem

(e.g., [105] and [36]). This approach works well when the resource/time constraints are

relatively loose or there are relatively few alternatives in the planning process that could
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use fewer or different resources. However, in some domains, interleaving planning and

scheduling can provide significant performance improvements [5].

In particular, domains with tight resource constraints and multiple software implemen-

tation options (with different resource requirements) for actions may benefit from the inter-

leaving of planning and scheduling. In sensor networks, this approach has the potential to

improve planning efficiency by utilizing resource constraints to limit the planning search

and choice of action implementations. Interleaving planning with scheduling also allows

for the translation of certain constraints in the problem description into resources, which

schedulers are usually better at handling than planners. Of course, scheduling must be

leveraged at the appropriate point during planning for its integration to be beneficial. For

example, creating complete schedules at each step of the planning search, when they will

likely have to be re-scheduled at the next step, is unlikely to be an efficient approach.

IxTeT [67] uses partial-order planning and allows interleaving resource conflict resolu-

tion with the planning process. However, its incorporation of scheduling/timing informa-

tion into the action representation makes it difficult to separate the issues of action choice

and action implementation that are important to sensor network domains where data gath-

ering and processing actions may be implemented with a variety of software components.

Garrido et al. present a more flexible integrated planning and scheduling framework [48],

which can employ a variety of planning strategies (e.g., POCL planning, hierarchical task

network (HTN) decomposition, or planning graphs). However, the existing planning ca-

pabilities in this framework do not provide probabilistic planning for uncertain environ-

ments. Further, the choice of a scheduling mechanism that complements the chosen plan-

ning mechanism is important to performance and applicability to a particular domain, such

as sensor networks.

Given the limited computational resources of sensor network systems, a least com-

mitment strategy of only scheduling tasks in highly constrained areas (by schedule and
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resource usage) of the plan is a promising approach. In particular, Laborie’s energy prece-

dence and balancing constraint propagation techniques [66] allow just such a strategy for

scheduling choices. Further, such constraint propagation techniques can leverage the order-

ing information available in a partial-order plan to efficiently schedule actions even without

concrete time limits (e.g., in sensor network data processing activities whose end times de-

pend on the evolving phenomena in the environment).

IV.3 Unresolved Challenges

Section IV.2 illustrates the promise of interleaving partial-order planning (POP) and

resource-constraint propagation for MACRO resource-level agents. Further, re-planning

and re-scheduling abilities are necessary for effective operation in a sensor network envi-

ronment. Because multiple resource-level agents may share the same limited computational

resources in a MACRO sensor network, their planning and scheduling needs are best re-

solved by providing a shared planning/scheduling service. The appropriate design of this

planning/scheduling service presents significant research challenges.

Given the limited computational resources of many sensor networks, designing and in-

corporating an efficient heuristic to guide the POP process in the search for valid, high

expected utility plans is a significant challenge. Section IV.4.1 resolves this challenge by

extending a spreading activation mechanism to calculate a heuristic for use in partial-order

planning. Further, efficiently integrating scheduling with POP presents another significant

challenge in the design of a resource-level planning/scheduling service. Section IV.4.2 re-

solves this challenge by interleaving resource-constraint propagation with planning, while

ordering tasks to resolve scheduling conflicts only in highly constrained areas of the plan.

To effectively adapt sensor network operations to current goals and conditions, MACRO

resource-level agents must be able to both execute traditional, individual actions, as well as

assemble and deploy applications comprising configured software components for data pro-

cessing and analysis. Representing and producing plans combining both of these aspects of

92



sensor network operation presents another challenge in the design of SA-POP. Section IV.4

describes how the functional and resource-usage aspects of both actions and parameterized

software components are represented in SA-POP task networks and task maps. Section IV.5

illustrates how MACRO resource-level agents can employ SA-POP-generated plans with

both actions and software components in a representative sensor network. Further, Sec-

tion IV.5 illustrates how MACRO resource-level agents can employ both SA-POP and plan

schemas in sensor networks where resource-limited field hardware precludes the use of the

full planning and scheduling capabilities in SA-POP.

IV.4 The Spreading Activation Partial-Order Planner

To resolve the planning and scheduling challenges for MACRO resource-level agents

operating in a dynamic, uncertain, resource-constrained, sensor network environment, we

designed and implemented the Spreading Activation Partial Order Planner (SA-POP) [59].

SA-POP provides autonomous planning and scheduling capabilities as a service for resource-

level agents operating on shared computational resources. SA-POP starts with a goal spec-

ified by a MACRO agent and generates a plan with a high expected utility based on the

current and expected conditions in the environment. The resulting plan is made up of tasks,

which are (1) actions that can be directly executed by the agent, or (2) parameterized soft-

ware components that can be deployed using the middleware infrastructure in MACRO. A

goal can include multiple goal conditions each with an associated utility value as well as

scheduling (time) constraints. Each task may have more than one possible implementation,

especially for software component tasks, where different implementations have different

time and resource requirements. Figure 16 illustrates the SA-POP mechanism in conjunc-

tion with MACRO agents and a middleware infrastructure.

The planner uses the links in the task network to generate a plan for the given goal. It

also employs a spreading activation mechanism [4] to compute a heuristic values for each

task that guide its choice of tasks. However, the plan must also execute within the time and
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resource constraints of the system. As each task is added to the nascent plan, it is asso-

ciated with an implementation from the task map based on resource and time constraints.

If scheduling constraints cannot be met using the highest expected utility tasks, lower ex-

pected utility tasks will be used. The complete plan, including assemblies of configured

software components (i.e., applications) and executable actions is captured as an opera-

tional string, which specifies the necessary tasks, a suggested implementation for each

task, the control (ordering) dependencies, the data (producer/consumer) dependencies, and

any necessary start and end times for tasks.

Figure 16: Planning/re-planning structure of SA-POP

To ensure planned action execution and applications do not violate resource and schedul-

ing constraints, SA-POP requires knowledge of the expected resource consumption and
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execution time of each possible implementation of a task, i.e., its resource signature. SA-

POP includes a task map to associate each task with a set of implementations and their

individual resource signatures. As each task is added to the nascent operational string, SA-

POP performs scheduling in critical areas of the plan using Laborie’s resource constraint

propagation [66].

For SA-POP to choose appropriate tasks to achieve a goal, it must know which precon-

ditions must be satisfied for each task, its input/output data dependencies, if any, and the

pertinent effects that result from its operation. Uncertainty as to whether tasks will execute

successfully and produce the relevant output or effects is captured via conditional proba-

bilities associated with the preconditions and effects of a task, respectively. Together, the

input/output definitions, preconditions/effects, and related conditional probabilities define

the functional signature of the task.

The functional signature of each task, and consequently all task dependencies, are cap-

tured in a domain-specific task network, as illustrated in Figure 16. A task network is a

directed graph that represents both tasks and conditions (preconditions, data input, effects,

and data output) with the links encoding the requisite probability information. In general,

the task network can be constructed by a domain expert using domain-specific modeling

tools, such as the SA-POP Modeling Language (SAML), which is implemented in the

Generic Modeling Environment (GME) [58]. Given the task network, current values for

conditions, and a goal, SA-POP’s spreading activation mechanism computes a heuristic

value for each task that guides the search for a high expected-utility (EU) plan.

IV.4.1 The Spreading Activation Mechanism

Figure 17 illustrates an example task network, which contains condition nodes and task

nodes with directed links to indicate the preconditions and effects of each task. Condi-

tion nodes represent Boolean variables and include a probability that reflects their believed

likelihood of being true/false. Environmental/system conditions (e.g., a particular sensor
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Figure 17: Example spreading activation task network

is active or environmental condition has been observed) and data input/output (e.g., a data

stream from a particular sensor or software component) are represented as condition nodes.

The condition nodes representing preconditions or required data input for a particular

task have links to it, which encode relevant probabilistic information. The weight, wi j, of

the link from a condition node, ci, to a task node, t j, defines the likelihood that t j executes

successfully given ci:

wi j =
P(ts

j|ci = true)−P(ts
j|ci = f alse)

P(ts
j|ci = true)+P(ts

j|ci = f alse)
, (IV.1)

where ts
j indicates that task t j executes successfully. This encoding supports hard con-

straints (weight = 1 (−1)), i.e., the condition must be true (false) for the task to succeed,

and soft constraints (weight < 1 (>−1)), i.e., a true (false) value of the condition increases

the probability of task success. Soft constraints can be used to model inferred conditions

in uncertain environments, especially in situations where actual preconditions cannot be
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sensed directly but are probabilistically related to other conditions that can be sensed. For

example, an imperfect (noisy) sensor for detecting an environmental condition necessary

for the success of a task can be modeled using a soft constraint.

The task nodes have outgoing links to their effects and/or data outputs. The weight,

w jk, of the link from a task node, t j, to a condition node, ck, indicates the probability that

ck will be true/false after t j executes, i.e., tx
j :

w jk =

 P(ck = true|tx
j ) if t j sets ck = true

−P(ck = f alse|tx
j ) if t j sets ck = f alse,

(IV.2)

Agent goals are expressed as desired conditions with associated utility values. SA-POP

first uses the spreading activation mechanism to generate heuristic values for individual

tasks that can contribute to achieving the specified goal conditions. The spreading acti-

vation mechanism simultaneously performs a forward propagation of probabilities and a

backward propagation of utilities to produce this spreading activation expected utility (SA-

EU) heuristic for each task node.

Forward propagation uses an iterative approach of calculating the likelihoods of task

success and the probability of resulting effect conditions. For a given state of the network

St , the set of conditions in the network [c1,c2, ...,cN ] have an initial probability value in-

dicating the believed probability that they are true. In order to efficiently calculate the

SA-EU heuristic, the spreading activation mechanism makes the simplifying assumption

of independence among the preconditions of a task, i.e., P(c1,c2, ...,cN) = ∏
N
i=1 P(ci) and

P(c1,c2, ...,cN |tsuccess
j ) = ∏

N
i=1 P(ci|tsuccess

j ).

With this assumption, Bayes rule gives the probability of successful task execution as:

P(tsuccess
j |St) = P(tsuccess

j )
N

∏
i=1

P(tsuccess
j |ci)

P(tsuccess
j )

. (IV.3)
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Equation IV.3 can be rewritten with respect to a current condition, ci, as

P(tsuccess
j |ci)

P(tsuccess
j ) =

P(tsuccess
j |ci = true)P(ci = true|St)+

P(tsuccess
j |ci = f alse)(1−P(ci = f alse|St))

P(tsuccess
j )

. (IV.4)

This ratio represents the likelihood of a task succeeding given a condition’s current value

versus the prior probability of task success. If the value of ci increases the probability of a

task being successful, the ratio will be > 1. If the condition decreases the likelihood, the

ratio will be < 1. If the condition must be true for the task to execute successfully, but its

current value is 0 (i.e., false), the task’s posterior probability will be 0.

Equation IV.3 defines the probability of a task’s success. Spreading activation propa-

gates this probability forward to the effects of a task. The future probability of a condition

due the execution of a task is calculated as:

P(ck|texecuted
j ,St+1) = w jk

P(tsuccess
j |St)

P(tsuccess
j )

. (IV.5)

When multiple effect links apply to a condition, the maximum probabilities for both true

and false values are maintained for the current state:

Pmax(ck = true|St+1) = max
j

P(ck|texecuted
j ,St) (IV.6)

Pmax(ck = f alse|St+1) =−min
j

P(ck|texecuted
j ,St). (IV.7)

Thus spreading activation propagates the probabilities from St , maintaining the maximum

ones for each condition in St+1, and so on.

Only keeping the maximum probabilities for true and false at each condition node al-

lows spreading activation to efficiently compute the SA-EU heuristic for each task. How-

ever, this optimistic calculation is no longer valid when the task producing the highest
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probability for a condition cannot be employed due to scheduling constraints. Further, or-

derings enforced on the execution of tasks during planning and scheduling can invalidate

the optimistic probability values maintained by spreading activation. It is these issues that

motivate the experiment detailed in Section IV.6 to prove the effectiveness of the SA-EU

heuristic, even when scheduling constraints prevent the use of the highest SA-EU valued

set of tasks.

In order to calculate the SA-EU heuristic value of a task, spreading activation combines

the forward-propagated probability values with backward-propagated utility values from

the goal condition(s). The backward-propagation of utility highlights potential subgoals

for achievement of the goal condition(s). The utility values in spreading activation can

be either positive, indicating a (sub)goal of the condition as true, or negative, indicating a

(sub)goal of the condition as false. Conditions that can have no impact on goal condition

achievement will have utility values of 0.

During backward-propagation of utility, the utility value of a condition is first used to

determine the reward that tasks affecting it receive. We represent the initial probability

(for true) of a condition, ck, as P(ck = true|St). If this probability equals 1, then tasks that

set the value to true are left without a reward, since they are redundant. Similarly, if the

probability of false is 1, any task that would change the value to false will not receive any

award. The reward is computed as:

R(t j|ck,St) =

 w jkP(ck = f alse|St)U+(ck) if (w jk > 0)

w jkP(ck = true|St)U−(ck) if (w jk < 0)
(IV.8)

This reward is multiplied by the task’s probability of success to give the spreading

activation expected utility (SA-EU) value for the task’s effect on ck:

U(t j|ck,St) = P(tsuccess
j |St)R(t j|ck,St). (IV.9)
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These values are summed for all effects of a task to produce its total SA-EU value:

U(t j|St) = ∑
k

U(t j|ck,St). (IV.10)

Spreading activation then propagates a task’s SA-EU value backward to its precondi-

tions, making them potential subgoals. Since positive and negative utilities for conditions

indicate utility for different values of the condition, they are maintained separately. For

example, the positive SA-EU of condition ci is calculated as a sum of the SA-EU from all

tasks that require it to be true as a precondition.

U+(ci|St) = ∑ j wi jU(ci|t j,St) if (wi j > 0). (IV.11)

Figure 17 illustrates spreading activation probability and utility (SA-EU) values in a

simple network. At each step of spreading activation both forward propagation of proba-

bilities and backward propagation of utilities occur (first for conditions then for tasks). In

the first step of spreading activation, tasks T1 and T3 acquire a probability of 1.0 from their

preconditions, C1 and C3, respectively. In step 2, this probability is propagated to their

effects, C2 and C4, and then to tasks T2 and T4. At this point, because T2 has a probability

of 1.0 and a reward of 9.0 from C5, its utility (SA-EU) becomes 9.0. Similarly, T4 has

a utility of 8.0. The utility values of T2 and T4 are then propagated back through their

preconditions, to tasks T1 and T3.

Since T2 has a higher SA-EU value than T4, SA-POP would prefer to use it to satisfy

the goal condition C5. This would ultimately result in the highest expected utility plan of

executing T1 and then T2. However, in an alternative scenario, the initial probability of

C1 being true might only be 0.8 instead of 1.0. In this scenario, the propagated probability

would result in an SA-EU value for T2 of 7.2 instead of 9.0. Since T4 would have the
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higher SA-EU value of 8.0, it would instead be chosen to satisfy C5. The resulting SA-

POP plan of executing T3 followed by T4 would have a higher expected utility than the

plan chosen in the original scenario because of the uncertainty in condition C1’s value.

IV.4.2 Integrated Planning and Scheduling

To generate a plan, SA-POP performs partial-order causal-link (POCL) planning, while

preferring tasks with higher SA-EU heuristic values to satisfy open conditions. It also

leverages ordering information from the nascent partial-order plan to propagate resource

constraints at each planning step. Specifically, SA-POP applies a modified version of La-

borie’s energy precedence and balancing constraint propagation techniques [66] to detect

potential resource violations and constrict potential execution time windows for tasks. To

speed the search for a plan, SA-POP makes scheduling decisions only in critical regions

of the plan (i.e., where time and resources are highly constrained). This allows it to recog-

nize insoluble scheduling conflicts early, while leaving other scheduling decisions until a

complete plan is generated.

A plan (or operational string) generated by SA-POP is constrained by four different

kinds of “links,” which specify an ordering between two task instances. A Causal Link in-

dicates one task must execute before the other based on a system/environmental condition.

These links are imposed during planning when a task is chosen to satisfy an open, non-data

condition and are only applicable between task instances within a single operational string.

A Data Link indicates both tasks must execute simultaneously because they both operate

on the same data stream. These links are imposed during planning when a task is chosen to

satisfy an open, data condition, and are only applicable within a single operational string.

Threat Links indicate one task must execute before the other to avoid resource violations.

These links are imposed during planning to resolve causal link threats, and are valid within,

as well as across, operational strings. Scheduling Links indicate one task must execute be-

fore the other to avoid resource violations. Scheduling links are imposed during scheduling
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to prevent potential resource violations, and are valid within, as well as across, operational

strings. We also define one additional type of constraint on task instances in a plan, a Time

Constraint. This constraint specifies a required start-by or end-by time, and it is specified

in the goal input for a required condition.

In addition to links and time constraints in the nascent plan, SA-POP also maintains

some additional time and ordering information A Time Window, which consists of an earli-

est time and latest time. Start and end time windows are maintained for each task instance.

A Ranking(a, b) is a comparison between task instances a and b, which describes the order

in which they will be executed given the current knowledge of the plan. There are four

rankings used by SA-POP: Before (a will complete its execution before b begins execut-

ing), After (reciprocal of the Before relation), Simultaneous(both a and b will start and end

their executions strictly at the same times), and Unranked (a and b potentially overlap in

their execution).

The rankings between all pairs of tasks are maintained in a precedence graph [66],

determined by the links and time windows in the current plan. The precedence graph main-

tained by SA-POP differs from Laborie’s definition primarily in that it is defined between

pairs of task instances rather than events, which are the individual start and end times of task

instances. This simplification allows more efficient scheduling calculations for discrete re-

sources, e.g., memory which is used during a task execution and then freed. SA-POP

currently does not deal with reservoir resources, which are resources that can be arbitrarily

produced or consumed. The existing framework could be extended, however, to apply re-

source constraint propagation and search for reservoir resources with some modifications

to the Laborie balance constraint [66].

Before planning and scheduling, SA-POP uses spreading activation as a preprocessing

step to generate the SA-EU heuristic values for tasks. In addition to guiding SA-POP’s

search for high expected utility plans, SA-EU values also speed up the SA-POP planning

and scheduling process by pruning portions of the planning search space. Any task with an
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SA-EU of 0 cannot be successfully executed (or is not on any path to the goal conditions,

but such tasks would not be considered during the partial-order planning anyway).

In the worst case, the computational complexity of spreading activation is O(n3) be-

cause, at each step, each of n nodes may update probability and utility values from its

neighbors (O(n) for highly connected networks), and to fully propagate probabilities and

utilities can require O(n) steps. However, SA-POP only performs spreading activation

once as a pre-processing step, and when time or processing power available for planning is

scarce, SA-POP can limit the number of spreading activation steps. Spreading activation

is an anytime algorithm, and stopping after x steps corresponds to generation of SA-EU

values that account for potential task sequences with lengths up to x
2 .

After generation of the SA-EU heuristic values, SA-POP uses four mutually-recursive

algorithms to produce a scheduled plan. The first two algorithms, Plan and ResolveThreats,

correspond to steps in traditional POCL planning. The other two algorithms, Schedule and

ResolveRes, perform scheduling through constraint propagation and resolution of the most

critical potential resource violations.

Algorithm 1 summarizes the SA-POP planning and scheduling process. Each step in

the generation of a plan involves all four mutually-recursive algorithms:

(1) Plan first chooses an open condition (which is a goal or subgoal unsatisfied in the cur-

rent plan), then chooses a task that can achieve the open condition, and next instantiates

the task. (2) ResolveThreats resolves causal link threats by promotion or demotion of task

instances in a recursive manner. This operates in the same manner as traditional POCL

planning algorithms.

(3) Schedule chooses an implementation for the task instance and propagates resource con-

straints to constrict time windows.

(4) ResourceRes adds scheduling links to resolve potential resource violations.

Algorithm 1 (Plan) begins with the provided goal conditions as the set of open condi-

tions. Since data manipulation tasks are resource intensive and execute concurrently with
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Algorithm 1 Plan()
1: Add all goal conditions to the list of open conditions
2: if ∃ open condition then
3: cond⇐ Choose an open condition (prefer data conditions)
4: while ∃ task to achieve cond in TaskNetwork do
5: task⇐ Choose a task
6: Remove cond from open conditions
7: Add preconditions of task to open conditions (prefer high EU)
8: while ∃ instance of task do
9: inst⇐ Choose existing instance of task

10: Add causal links for inst
11: if ResolveT hreats(inst) then
12: return true
13: end if
14: end while
15: inst⇐ New instance of task
16: Add causal links for inst
17: if ResolveT hreats(inst) then
18: return true
19: end if
20: end while
21: else
22: for all res⇐ Resources do
23: for all inst⇐ Task instances do
24: if ¬ResolveRes(inst, res, 0, f alse) then
25: return false
26: end if
27: end for
28: end for
29: return true
30: end if
31: return false
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other tasks on the same data stream, SA-POP gives priority to data flow conditions, which

enables early detection of irresolvable resource violations in a nascent plan, thereby prun-

ing the search space.

In choosing a task to satisfy the current open condition, SA-POP prefers tasks with

higher expected utility values However, there is also a threshold on the probability of a task

achieving the open condition, and those tasks falling below the threshold are ranked strictly

by probability rather than expected utility. This ranking represents a tradeoff between the

total expected utility, which may accumulate from multiple goals, and the likelihood of

achieving a particular subgoal under consideration.

The total expected utility of a task may be accumulated from multiple goals, so a high

expected utility task may have only a low probability of achieving the given subgoal. Con-

versely, simply choosing the task with the highest probability of achieving the given sub-

goal does not consider the potential benefit of using another higher total expected utility

task that could aid in the achievement of other goals. In some cases, such a task may be di-

rectly used by the plan in the course of achieving multiple goals. Even when this is not the

case, the incorporation of such a task makes the plan more robust because the task might

become necessary to achieve other goals due to unexpected changes in the environment.

Algorithm 2 (ResolveThreats) recursively resolves causal link threats, as in traditional

POCL planning. Specifically, a causal link is of the form T 1-(C1=ValueX)→ T 2, meaning

task instance T 1 achieves condition C1 = ValueX as a precondition for task instance T 2.

A causal link threat occurs when another task instance, T 3, has an effect of C1 =ValueY ,

where ValueX 6=ValueY , and is not ordered (by the current set of causal, data, threat, and

scheduling links) with respect to T 1 and T 2. To resolve this threat, T 3 must be ordered

either before T 1 (demotion) or after T 2 (promotion). ResolveThreats thus recursively re-

solves all causal link threats by promotion or demotion.

With Algorithm 3 (Schedule), SA-POP moves from POCL planning to scheduling that

meets available/expected resource requirements. SA-POP first determines the change in
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Algorithm 2 ResolveThreats(Task Instance inst)
1: if ∃ causal link threats involving inst then
2: threat⇐ Choose a causal link threat
3: Resolve threat by promotion
4: if ResolveT hreats(inst) then
5: return true
6: else
7: Resolve threat by demotion
8: if ResolveT hreats(inst) then
9: return true

10: end if
11: end if
12: else
13: if Schedule(inst) then
14: return true
15: end if
16: end if
17: return false

Algorithm 3 Schedule(Task Instance inst)
1: while ∃ implementation of task in TaskMap do
2: impl⇐ Choose an implementation
3: Add or update inst in the Precedence Graph
4: for all res⇐ Resources used by impl do
5: ENERGY ↪→ constrict time windows
6: for all Task start and end events do
7: BALANCE ↪→ compute min resource level
8: end for
9: BALANCE ↪→ constrict time windows

10: BALANCE ↪→ impose scheduling links
11: if Irresolvable res violation then
12: Try next implementation
13: end if
14: if ¬ResolveRes(inst, res, T hresh, true) then
15: Try next implementation
16: end if
17: end for
18: end while
19: return false
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potential resource usage for each implementation (from the task map) of a task instance,

given current rankings from the precedence graph. The resource impact score of an im-

plementation is the sum across all resources of the percentage of resource capacity that

would be utilized if all potentially overlapping task instances were to be executed concur-

rently. The implementation with the smallest impact on potential resource availability, as

measured by the resource impact score, is chosen to implement the task instance. This

preference for low resource impact implementations is analogous to the least constraining

value heuristic often used in general constraint satisfaction problems.

For example, there may be multiple compression components that are associated with

a “Compress Data” task, each with a different tradeoff between memory and CPU usage

requirements. If other potentially overlapping task instances in the current plan (i.e. those

that are Unranked or Simultaneous in the precedence graph with respect to the given task

instance) would require nearly, or even more than, the full capacity of the memory resource,

but the CPU resource is relatively underutilized, SA-POP would prefer a component that

uses less memory, even if it has a high CPU usage profile.

In Algorithm 3 (Schedule), SA-POP also employs Laborie’s energy precedence and bal-

ance constraint propagation techniques [66] modified for planning in DRE systems. These

techniques are largely complementary and apply to different precedence sets with respect

to a given task instance. The energy precedence constraint propagation can constrict time

windows (and consequently derive more accurate rankings), even with relatively loose time

windows that are prevalent early in planning. It applies to a task instance’s start (end) time

window based on the resource usage of all other task instances in its Before (After) prece-

dence set.

The balance constraint propagation applies to a task instance based on the other task

instances in its Unranked and Simultaneous precedence sets. For the discrete resources,

precedence graph, and links utilized by SA-POP, the constraint propagation differs from

the Laborie calculations [66] with one major simplification: for discrete resources, only the
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start and end events of (potentially) overlapping task instances (Unranked and Simultane-

ous precedence sets) must be considered in the balance constraint. With this simplification,

SA-POP uses Laborie’s balance constraint propagation [66] to constrict time windows and

detect irresolvable resource violations.

Algorithm 4 ResolveRes(Task Instance inst, Resource res, Criticality thresh, Flag plan)
1: if ∃ res violation in Unranked(inst)> thresh then
2: instx⇐ Choose a task instance
3: BALANCE ↪→ compute min resource level for x
4: while ∃ instance set ⊆Unranked(instx) do
5: instset ⇐ Choose a set of task instances
6: for all insty ∈ instset do
7: Add link insty→ instx (instx→ insty)
8: end for
9: if ResolveRes(inst, res, thresh, plan) then

10: return true
11: end if
12: end while
13: else
14: if plan then
15: if Plan() then
16: return true
17: end if
18: else
19: return true
20: end if
21: end if
22: return false

Algorithm 4 (ResolveRes) implements SA-POP’s search for resolutions to potential re-

source violations. SA-POP employs two significant simplifications in the calculation of

resource levels for events: (1) a potential resource conflict can only be resolved by impos-

ing an ordering constraint (scheduling link) between two task instances (i.e., by ordering

an end event before a start event) and (2) given (1), only a worst case (minimum) resource

level and best case (maximum) resource level need be calculated for each task instance

(corresponding to the level when its start event occurs).
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For a given task instance, the minimum resource level is the resource capacity less the

sum of: its resource usage, the resource usage of all unranked task instances that may over-

lap its start (i.e., those whose minimum start time is less than the given task instance’s

maximum start time), and the resource usage of all simultaneous task instances. The maxi-

mum resource level is the resource capacity less the sum of: its resource usage, the resource

usage of all unranked tasks that must overlap its start (i.e. those whose minimum start time

is less than its maximum start time and whose minimum end time is greater than its maxi-

mum start time), and the resource usage of all simultaneous task instances.

The heuristic for choosing the most significant resource violations is provided by the

scheduling criticality score [66] for each task instance: crit(x)=max(0,−Lmin(x))/(Lmax(x)−

Lmin(x)Q∆tstart(x) where, L is a resource level, Q is a resource capacity, and ∆t is the length

of a time window. After choosing the most critical task instance, x, a set of task instances

from Unranked(x) that can be ordered before x is chosen to reduce the criticality of x below

a specified threshold. The heuristic for choosing these task instances is provided by pre-

ferring those with highest pair-wise criticality values [66]: crit(x,y) =−commit(y,x)/R(y)

where, R is a resource usage value, and commit(y,x) is a measure of the commitment im-

plied by ordering the end event of y before the start event of x. This heuristic provides a least

commitment strategy (consistent with SA-POP’s preference for highly-parallel, minimally-

constrained operational strings) by balancing the preference for low commitment with the

preference for high reduction in potential resource violations.

During execution of these four mutually-recursive algorithms, SA-POP employs back-

tracking whenever an irresolvable resource violation is discovered, or an attempt is made to

impose a link inconsistent with the rankings in the precedence graph. This makes SA-POP

a complete planning algorithm, because it will always find a valid plan if one exists. Fur-

ther, SA-POP’s use of heuristic to guide choices for tasks (SA-EU value), implementations

(resource impact score), and early resolution of potential resource violations (scheduling

criticality score). Moreover, the use of task SA-EU values to guide task choice results in
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plans of high expected utility even when scheduling conflicts prevent SA-POP from em-

ploying the tasks with the highest SA-EU values. The experiments in Section IV.6 verify

SA-POP’s expected utility performance even under tight scheduling constraints.

IV.5 Case Study: SEAMONSTER Sensor Network

Recent work on the MACRO resource level has been driven by collaboration with the

South East Alaska MOnitoring Network for Science, Telecommunications, Education, and

Research (SEAMONSTER) [42], which is a glacier monitoring sensor network. This sen-

sor web monitors and collects data regarding glacier dynamics and mass balance, watershed

hydrology, coastal marine ecology, and human impact/hazards in and around the Lemon

Creek watershed. The collected data is used to study the correlation between hydrology,

glacier velocity, and temperature variation at Lemon Creek.

The SEAMONSTER sensor network, illustrated in Figure 18, includes sensors with

weatherized computer platforms that are deployed on the glacier and throughout the wa-

tershed to collect data of scientific interest. The data collected by the sensors is relayed to

a cluster of servers primarily via wireless networks for processing, correlation, and anal-

ysis. The data processing applications (e.g., GPS data analysis for glacier dynamics and

hydrology data analysis for watershed monitoring) run on the server cluster, while small

computational platforms for controlling sensors and acquiring data with minimal process-

ing are deployed in the field. As opposed to the multi-processor spacecraft constellation

in MMS described in Section II.3.2, SEAMONSTER is an example of a sensor network in

which relatively powerful servers are connected to a highly distributed set of sensors with

extremely limited computational resources.

This type of sensor network provides a different set of challenges for MACRO resource

agents than a spacecraft constellation sensor network. Specifically, differences between the

servers and field nodes require a different organization of MACRO resource-level agents

and agent services. In the server cluster, significant computational resources are available
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Figure 18: SEAMONSTER field sensor deployment

to direct the tasks performed by computationally limited field resources. These servers are

shared among the data processing applications, sensor web agents, and other SEAMON-

STER applications, such as a database and web server. As such, they are controlled as a re-

source group similar to that in the spacecraft scenario. In the field, however, computational

resources are severely limited and consequently require software solutions with a smaller

footprint and lower computational complexity. A full resource group implementation of

multiple agents and powerful agent services, such as SA-POP and RACE, is impractical

for the field nodes.

However, to address the problem of rapid, effective reaction to local changes in en-

vironmental conditions and resource availability—while respecting system-wide science

goals—the field nodes must be capable of some autonomous adaptation and action. Since

local field agents have limited computational resources, extensive planning and scheduling

(e.g., the SA-POP service), is not feasible for rapid reaction to local changes. Instead, in

SEAMONSTER and similar sensor networks with servers and extremely limited field plat-

forms, MACRO field agents are provided with a set of template plan schemas that cover a

range of conditions and local goals to which they are applicable [60]. Server-based agents

can then provide the field agents with the current set of local goals to pursue, and the task
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Figure 19: MACRO configuration for SEAMONSTER

of the field agent becomes the simpler choice of an appropriate set of schemas to follow

given current conditions and resource constraints. When conditions change unexpectedly

during schema execution, MACRO field agents stop executing an instantiated schema that

is no long applicable and instantiate and execute a new one based on current conditions and

the relevant goal.

This alternative MACRO resource-level architecture is illustrated in Figure 19. The

Exec agents on the server use SA-POP, described in Section IV.4, to decompose goals into

subgoals to be achieved at the server or by individual field nodes and to plan/schedule

their achievement. With information from field agents about current conditions and local

activities, SA-POP produces scheduled, high expected utility plans to achieve all subgoals,

including both the selection/configuration of software components for data processing on

the server and actions/reconfiguration at the field nodes.

In the nominal case, where an appropriate set of actions and software deployments at a

field node is already represented in a schema available to the field node’s Science agent, the

subgoal and scheduling information is simply passed to that field agent. Otherwise, the plan

can be packaged as a new schema and distributed to the field agent along with the applicable
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subgoal, conditions, and scheduling information. This process allows the server-based

agents to do extensive planning and optimization for the current set of science objectives,

as well as entirely new objectives, while the computationally limited field agents can choose

among their pre-packaged schemas to intelligently react to changing local conditions and

resource availability in light of current science objectives.

The SEAMONSTER-inspired work on MACRO resource-level agents resulted in the

addition of field agents using planning schemas and the Action/Effector framework de-

signed to allow extensible implementation of low-overhead hardware-dependent actions.

The design and overhead results for the initial Action/Effector framework implementation

are described in papers [C-5], [C-3], and [C-4]. These results illustrate the overhead and

extensibility benefits of a middleware-based agent infrastructure combining server agents

employing SA-POP and RACE services with field agents using planning schemas and the

Action/Effector framework on resource-limited field hardware.

IV.6 Experimental Evaluation

This section presents the results of SA-POP performance in terms of the expected utility

(EU) of its plan compared to the expected utility of the best possible plan in a variety of

randomly-generated domains. These results validate our claims that SA-POP’s use of the

SA-EU heuristic to guide its planning process results in high expected utility plans even

when scheduling requires SA-POP to forgo its first-choice plan.

IV.6.1 Experimental Design

To illustrate the general effectiveness of the SA-EU heuristic, these experiments used

500 randomly-generated spreading activation task networks for each set of domain param-

eters. For each of these task networks, 10 trials were run with a randomly chosen goal

condition and random initial conditions, providing 5,000 trials for each set of domain pa-

rameters.
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It is difficult to simulate the tight resource and time constraints in real-world sensor

webs across a variety of randomly-generated domains. Random generation of resource us-

age and duration for tasks generally resulted in either no schedulable plan or SA-POP’s

first-choice plan being schedulable. Therefore, we simulate the tight, real-world, schedul-

ing constraints by rejecting the partially-ordered set of tasks that made up SA-POP’s first-

choice plan as unschedulable. This forced SA-POP to continue planning until it found a

schedulable plan (its preferred plan for the purposes of these experiments).

For comparison to SA-POP’s preferred plan, we exhaustively generated every possible

plan that could achieve the randomly-chosen goal condition with a non-zero probability.

We applied the same schedulability criteria in this exhaustive compilation of plans by re-

jecting any plan that contained the “unschedulable” set of tasks from SA-POP’s first-choice

plan. SA-POP’s performance on each trial is measured as the ratio of the expected utility

of SA-POP’s preferred plan to the highest expected utility of any possible plan.

The domain parameters used to generate task networks were: 1) size of the network,

2) average number of precondition links per task (node in-degree), and 3) average number

of effect links per task (node out-degree). For each network size, nodes were split equally

between tasks and conditions. Each link was generated by randomly choosing the condition

and task node for the link with an Erodos-Renyi random graph generator.

To simplify the generation of networks, all links had a positive weight and all precondi-

tions were hard preconditions (i.e., a precondition link weight of 1.0). Effect link weights

were generated from a random, uniform distribution of [0.8, 1.0] because most real-world

tasks are only included in a system if they have a reasonable chance of successfully achiev-

ing their intended effects. Since all links in the network were positive, initial conditions for

each trial were chosen by randomly assigning half of the conditions in the network to true

(other than the goal condition), and the rest to false.
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Figure 20: SA-POP plan expected utility performance

IV.6.2 Experimental Results

The experimental results in Figure 20 illustrate SA-POP’s performance across a variety

of network sizes and node in/out degrees. The 95% confidence interval is shown for each

data point. Although SA-POP is capable of quickly generating plans for much larger net-

works, in order to exhaustively generate all possible plans, we had to limit network size to

24 nodes in these experiments. Similarly, as node in and out degree increases, the num-

ber of possible plans increases exponentially. However, the highest node in/out degree in

these experiments (1.4/1.4) is close to the average node in/out degree of 1.44/1.69 on In-

ternational Planning Competition problems, after conversion to spreading activation task

networks.

Since the greater connectivity of networks with higher node degree generally results in

more complex problems with more potential plans, SA-POP’s performance is higher for the

lower node degrees. However, as illustrated in Figure 20, SA-POP’s average performance

is above 99% of the best plan EU for all runs. More importantly, for larger real-world

domains, the experimental results show a power regression to be a closer fit than a linear

regression for all data sets. If the power curve holds for larger network sizes, it forecasts
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SA-POP EU performance to be over 96% of the optimal EU for 10,000 node networks with

1.4/1.4 in/out node degrees.

IV.7 Summary

In MACRO, User agents request tasks in OGC SensorML format. Broker agents trans-

late these tasks into the TÆMS hierarchical task representation and manage negotiations

for task allocation. Mission agents employ GPGP coordination and DTC planning/schedul-

ing to cooperatively achieve allocated tasks at the mission level. Mission agents imple-

ment their plans to achieve tasks/subtasks by providing goals to resource-level agents for

achievement in the local environment.

To operate efficiently and effectively at the resource level requires the use of available

probabilistic domain information for generation of high expected utility plans and the in-

tegration of an efficient scheduling mechanism. For MACRO resource-level agents, the

shared Spreading Activation Partial Order Planner (SA-POP) service provides decision-

theoretic planning and scheduling to support their autonomous adaptation of sensor net-

work operations. SA-POP employs the SA-EU heuristic in an integrated planning and

scheduling process designed to produce high expected utility plans in uncertain, resource-

limited domains. Together, the planning and scheduling capabilities of MACRO mission-

and resource-level agents facilitate the real-time collection and analysis of sensor data, even

under changing environmental conditions and many concurrent science objectives.

This chapter presented the related work, challenges, and solution for the planning and

scheduling needs of MACRO agents. Section IV.1 discussed the related work in plan-

ning and scheduling relevant to the MACRO mission level and the choice of a distributed

planning and scheduling representation/mechanism for Mission agents. Section IV.2 dis-

cussed the related work in planning under uncertainty and incorporation of scheduling with

planning relevant to the MACRO resource level. Section IV.3 identified the unresolved

challenges in planning and scheduling for MACRO resource-level agents, and Section IV.4
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presented the MACRO solution to these challenges in the form of the SA-POP service.

Section IV.5 illustrated the use of SA-POP and the extension of MACRO resource-level

planning with plan schemas for field agents in a representative sensor network. Finally,

Section IV.6 presented the experimental results and verification of SA-POP planning per-

formance.
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CHAPTER V

SYSTEM INTEGRATION

Section I.1 introduced the coordination and control requirements for a global sensor

web. MACRO provides the necessary capabilities to meet these requirements through its

agent architecture, task allocation mechanism, and planning/scheduling mechanisms de-

tailed in Chapters II, III, and IV, respectively. However, implementing even a prototype of a

complete MACRO system based on these capabilities is a non-trivial task. Building a com-

putational scheme that captures integration of the agents, autonomous planning/scheduling,

and coordination mechanisms in MACRO presents additional research challenges. This

chapter covers the major implementation and integration challenges in building a proof of

concept (PoC) MACRO system.

Section V.1 discusses existing work related to the design of the MACRO PoC imple-

mentation and Section V.2 identifies the challenges not resolved by existing work. Sec-

tion V.4 describes MACRO’s translation of User tasks in SensorML to Mission agent

TÆMS tasks and aggregation of Mission agent TÆMS task trees augmented with Sen-

sorML meta-data. Section V.3 details the object-oriented design of an extensible, proto-

type Mission agent designed to handle multiple coordination and execution activities at

the MACRO mission level. Section V.5 covers coordination of planning and scheduling

between the MACRO mission and resource level. To illustrate the capabilities of the in-

tegrated MACRO system, Section V.6 provides a case study of MACRO system operation

for a set of simulated sensor networks, and Section V.7 presents the results of experiments

on planning/scheduling coordination between the MACRO mission and resource levels. Fi-

nally, Section V.8 summarizes the MACRO implementation and integration work presented

in this chapter.
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V.1 Related Research

Integration of the MACRO PoC implementation leverages research in a variety of

fields. Related work in multi-agent systems is presented in Section II.1. Section III.1

presents related work in task/resource allocation. Research related to the task-oriented

planning/scheduling and plan/schedule coordination at the MACRO mission level is pre-

sented in Section IV.1. Further, Section IV.2 presents research related to decision-theoretic

planning and integration of resource-constraint-propagation scheduling at the MACRO re-

source level. In this section, we present additional research related to the design of the

MACRO Mission agent and the coordination of planning and scheduling between the

MACRO mission and resource levels.

V.1.1 Agent Internal Architecture

Effective execution of the disparate activities (e.g., inter-agent negotiation, planning,

scheduling, and plan execution or delegation) performed by a sensor web agent, such as a

MACRO Mission agent, requires an appropriate internal architecture to facilitate and con-

trol these activities. Autonomous agent architectures range from primarily reactive designs

(e.g., the Subsumption Architecture [15]) to highly deliberative designs (e.g., architectures

based on the popular Belief-Desire-Intention (BDI) theory [23, 93]). Further, a popular

architectural approach combining reactive and deliberative elements is the layered archi-

tecture [120]. Layered architectures combine both a reactive layer for quick reaction to

perceptions and one or more deliberative layers for more complex control.

Because MACRO is designed to include agents designed by multiple parties, complete

consideration of the internal structure of sensor web agents is beyond its scope. How-

ever, implementation and integration of the MACRO PoC system requires the design of

a prototype Mission agent. Since MACRO Mission agent reasoning operates at the mis-

sion level, including direction of subordinate resource-level agents and global coordination

across sensor networks, its control needs fall primarily into the deliberative category. For
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a deliberative agent, the Belief-Desire-Intention (BDI) framework [23, 93] provides a stan-

dard context for discussing many internal control and reasoning activities pertinent to the

allocation, planning/scheduling, and inter-agent coordination in a sensor web MAS.

The BDI theory suggests three primary concepts central to an agent’s reasoning and ac-

tions: its beliefs about the world, including beliefs about other agents; its desires, which are

often loosely construed as inherent or persistent goals, not all of which may be applicable

or achievable at a given time; and its intentions, which are commitments to achieving cer-

tain goals/desires through action. A BDI agent uses its beliefs and reasoning mechanism(s)

to determine the relevance and feasibility of its desires in the current situation. This reason-

ing about beliefs and desires results in an updated set of intentions, for which it produces

a plan to achieve. The correspondence between the prototype MACRO Mission agent and

the BDI framework is discussed further in Section V.3.

Although the BDI theory provides a context for general discussion of some Mission

agent activities, in order to perform effectively in a MACRO system implementation, a Mis-

sion agent must be able to coordinate a wider variety of reasoning and domain activities.

Many recent advances in agent architectures go beyond traditional reactive, deliberative,

and layered architectures to allow more complex design and interaction among different

agent activities (e.g., aspect-oriented software engineering for agents [47]). In particular,

the category of meta-control [2] refers to the coordination of a variety of agent activities

including both domain activities (e.g. action execution) and deliberative reasoning mecha-

nisms.

Raja and Lesser suggest a broad division of agent activities into four categories [91]: (1)

domain activities that are the actual actions executed by the agent; (2) planning/scheduling

activities to determine what actions to take in the domain and when to execute them;

(3) coordination activities, which includes all communication and negotiation with other

agents; and (4) meta-level control activities, such as determining when and how to perform

planning/scheduling and coordination. Meta-control is especially important for agents with
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multiple deliberative reasoning mechanisms (e.g., a planning mechanism and inter-agent

negotiation mechanisms), such as the MACRO Mission agent.

Some have suggested meta-control should be performed by additional meta-agents in-

corporated into a MAS, providing guidance to ordinary agents for their individual reason-

ing activities and inter-agent coordination (e.g., [17, 87]). Given the independent design

and goals of sensor web agents, providing incentives to follow the guidance of meta-

agents could present more problems than the meta-agents solve. The more common ap-

proach to meta-control is to incorporate it directly into the architecture of individual agents

(e.g., [3, 90, 92]).

The approach of integrating meta-control in the agent architecture is a good solution

for sensor web agents who must perform planning/scheduling of announced and contracted

tasks, as well as multiple forms of coordination with other agents. The limited meta-control

of the prototype Mission agent is described in Section V.3. More advanced meta-control

and meta-reasoning techniques are left for future work described in Section VI.2.

V.1.2 Planning and Scheduling Coordination

MACRO’s approach to planning and scheduling builds upon and extends a significant

body of related work. As discussed in Section IV.1, MACRO Mission agents employ

task decomposition with criteria-directed scheduling [114, 115], which operates on a task

tree based on the Task Analysis, Environment Modeling, and Simulation (TÆMS) [55]

representation. Employing criteria-directed scheduling with the TÆMS task representa-

tion allows Mission agents to efficiently optimize schedule/plan generation for the cri-

teria relevant to assigned subtasks. Moreover, Mission agents executing inter-dependent

tasks coordinate their plans and schedules through the Generalized Partial Global Plan-

ning (GPGP) [69] coordination mechanisms. At the resource level, Exec agents employ
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the Spreading Activation Partial Order Planner (SA-POP) [59] for decision-theoretic plan-

ning with constraint-propagation scheduling. Details of SA-POP design and operation are

presented in Section IV.4, with related work covered in Section IV.2

In order to efficiently coordinate the two planning/scheduling mechanisms in MACRO,

agents must communicate the most useful information at the appropriate abstraction level.

To limit communication and computation overhead, this coordination should only occur

when the plan/schedule information may be relevant to the receiving agent for use during

planning and scheduling. The translation from resource-level plans to mission-level method

parameters has some similarities to research that uses plan summary information to coordi-

nate between agents employing hierarchical task network (HTN) planning (e.g., [21, 22]).

MACRO Mission and Exec agents, however, employ different representations for planning

and scheduling, making translation and coordination more difficult. Moreover, the resource

and scheduling constraints employed in MACRO require summary information beyond the

pre-, in-, and post-conditions used in Clement’s task summary approach [21].

V.2 Unresolved Challenges

To coordinate task achievement, MACRO Mission agents employ multiple protocols

(e.g., a broker-mediated contract net protocol and GPGP distributed planning protocols).

Results of planning and scheduling can affect bidding on tasks in the contract net, and

contracted tasks require further planning, scheduling, and GPGP coordination. Although

design and implementation of advanced meta-control and meta-reasoning techniques is be-

yond the scope of this work, an appropriate Mission agent design should lend itself to

future extension with such techniques. Therefore, a significant integration challenge in

MACRO is defining a flexible, extensible Mission agent architecture that can effectively

coordinate its allocation, planning/scheduling, plan/schedule coordination, and task execu-

tion activities. Section V.3 discusses how the MACRO prototype Mission agent architecture

addresses this challenge.
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At the mission level, MACRO combines broker-mediated allocation with GPGP coor-

dination and criteria-directed scheduling to effectively achieve user tasks. Extending and

integrating these techniques in a sensor web MAS poses additional challenges because the

TÆMS representation and GPGP coordination were designed for systems built by a single

group of designers sharing a conception of the entire system and its function. In that orig-

inal context, task decomposition trees can be built with a top-down goal-oriented structure

combined with bottom-up knowledge of the functionality available in the system. However,

at the mission level in MACRO, Mission and User agents are implemented by the various

groups they represent, such as organizations operating sensor networks or applications and

researchers using sensor web data. Typically, the agent’s domain knowledge, such as ap-

propriate internal goals and TÆMS task trees, is specific to their individual purposes and

capabilities, without full knowledge of goals and tasks throughout the system. The inde-

pendence of task tree design in the sensor web presents a challenge in combining Mission

agent tasks and determining potential decompositions of requested tasks that require re-

sources of multiple Mission agents. MACRO’s broker-based solution to this challenge is

presented in Section V.4.

To achieve the high-level tasks allocated and coordinated at the mission level, individual

Mission agents must communicate appropriate subtasks or subgoals to their resource-level

agents for execution. A Mission agent uses a TÆMS task decomposition tree and criteria-

directed scheduling to plan and schedule tasks for execution. However, at the resource

level, Exec agents use SA-POP for detailed, first-principles planning and scheduling to

achieve their assigned goal conditions in a dynamic environment. Efficiently employing

both representations and forms of planning and scheduling requires careful design of the

protocol and format for communication between Mission and Exec agents. For example,

the quality and completion time of subtasks in TÆMS format, may include a probability

distribution for a range of possibilities. However, the expected quality and completion

time of subtasks could change significantly after resource-level planning and scheduling,
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reducing the utility of, or invalidating, the Mission agent’s original plan and schedule.

Achieving efficient coordination and interoperability between the two different levels/forms

of planning and scheduling is another design challenge in MACRO, which is addressed in

Section V.5.

V.3 MACRO Mission Agent Architecture

A MACRO Mission agent must perform a variety of intertwined reasoning and coor-

dination activities to effectively participate in the global sensor web. Section V.2 identi-

fied the challenge of integrating these activities in an efficient and effective manner. The

prototype MACRO Mission agent follows an object-oriented design, in which objects en-

capsulate a particular set of related functionality and state information. The event-driven

(e.g., messages from other agents, including task announcements from Broker agents,

GPGP coordination messages from other Mission agents, and environmental condition or

plan/schedule updates from subordinate Exec agents) interaction of these objects results in

the desired overall agent behavior. The major objects and their interactions in the Mission

agent architecture are illustrated in Figure 21.

The Belief-Desire-Intention (BDI) framework, discussed in Section V.1.1, provides a

context for discussing internal control and reasoning activities pertinent to the allocation,

planning/scheduling, and inter-agent coordination in a sensor web MAS. By definition,

intelligent agents reason about their beliefs (e.g., their knowledge of environmental condi-

tions and other agents plans) in order to make decisions. In MACRO Mission agents, the

Knowledge Base object maintains the current set of beliefs (e.g., conditions in the sensor

network environment and scheduled completion times for related tasks assigned to other

Mission agents). Reasoning in MACRO Mission agents, includes the task decomposition

and scheduling performed by the Planning and Scheduling object, as well as the meta-level

control integrating the agent’s activities in the Meta-Control object. For MACRO Mission
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Figure 21: MACRO Mission agent architecture

agents, desires are maintained in the Meta-Control object in the form of internal, sensor-

network goals as well as announced tasks. Intentions include the achievement of both

contracted tasks/subtasks and any internally-generated tasks (as a result of sensor-network-

specific goals).

Meta-Control. The central component of a Mission agent is the meta-control object.

In general, this object controls the allocation, planning/scheduling, plan/schedule coordi-

nation, and domain activities of the Mission agent. Advanced meta-control strategies are

beyond the scope of this work, but the centrality of the Meta-Control object with its inter-

face to all other objects allows for future extension with such strategies.

Meta-control in the prototype MACRO Mission agent, performs three major sets of ac-

tivities: (1) task allocation is handled by generating bids for announced tasks and choosing

among mutually-exclusive tasks based on their broker-assigned values; (2) task execution

is performed by informing Exec agents of relevant goals (based on the methods in its plan

for achievement of an allocated task); and (3) coordination with other Mission agents is de-

fined by the five GPGP coordination mechanisms described in Section IV.1.3 for allocated

subtasks of the same overall task.
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Knowledge Base. The Mission agent knowledge base provides the central repository

for information about the state of its sensor network environment, communications with

other agents, and its allocated tasks. In general, other agent objects request notification

when a particular pattern of knowledge is present in the Knowledge Base. In the prototype

Mission agent this is limited to specifying particular message types and environmental con-

ditions. For example, the meta-control object is informed of any of the situations (identified

by communications from other Mission agents) relevant to GPGP coordination protocols.

Similarly, the planning/scheduling object is informed whenever a resource-level agent in-

dicates changes in environmental conditions relevant to existing plans.

Planning and Scheduling. The Mission agent’s planning/scheduling object performs

the actual decomposition and scheduling of TÆMS tasks. The mission-level approach to

planning and scheduling is discussed in Section IV.1.3. With direction from the meta-

control object, scheduled plans are generated for announced tasks in order to produce ap-

propriate bids. Further, the meta-control object employs the planning/scheduling object to

generate and update plans for allocated tasks.

Communication. The Mission agent communication object handles formatting, ad-

dressing, and interpretation of agent messages. For example, the meta-control object uses

the communication object to format and address a message to the appropriate Exec agent

for execution of a method in an allocated task. The communication object maintains the

header information (based on the FIPA Agent Communication Language [44]) for all on-

going agent conversations in order to properly address or interpret agent messages. For

example, an incoming message from an Exec agent with current conditions in the sensor

network environment is interpreted by the communication object, and the parsed data is

provided to the Knowledge Base.
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V.4 Mission-level Goal/Task Representation and Interoperability

MACRO employs the Open Geospatial Consortium (OGC) SensorML standard [9] to

represent sensor characteristics and data processing activities in a standardized, interoper-

able format. SensorML represents sensors and data analysis as processes with standard-

ized descriptors applicable to sensor webs. Therefore, User agents can succinctly and

effectively express their desired tasks based on this format. However, MACRO Mission

agents utilize the TÆMS format for specifying tasks/subtasks in sensor networks, allowing

criteria-directed scheduling and GPGP distributed planning coordination among Mission

agents. Section V.2 identified the challenge of providing interoperability among Mission

agent task trees and between User agent SensorML task requests and Mission agent TÆMS

tasks/subtasks.

The MACRO solution approach to this challenge is to define Mission agent capabilities

and task meta-data with the relevant SensorML attributes. In general, MACRO incorporates

SensorML attributes that are identified using the relevant XML tags and their parameters.

SensorML tag and parameter values (i.e., numbers or standard OGC string values) are

specified by a range or list in MACRO task meta-data and agent communications.

Listing V.1 provides a SensorML excerpt partially specifying a temperature sensor. In

order to specify the use of a particular sensor or sensor type, a MACRO User agent provides

a constraint based on the relevant SensorML tags. Specifically, the hierarchy of header tags,

the constraining tag(s) and tag parameter(s), and the relevant values or value range for each

tag or parameter. To indicate the specific temperature sensor from the example, MACRO

specifies a constraint as:

HeaderTags=[]

Tag=<Detector>

Parameter="id"

ParameterValues=["EXAMPLE_THERMOMETER"]

Values=[]

To indicate any temperature sensor providing measurements in either Celsius or Faren-

heit, MACRO specifies a constraint on the output type of the detector as the OGC Uniform
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< D e t e c t o r i d ="EXAMPLE_THERMOMETER">
< i d e n t i f i c a t i o n >

< I d e n t i f i e r L i s t >
< i d e n t i f i e r name=" longName ">

<Term q u a l i f i e r =" u r n : o g c : d e f : i d e n t i f i e r : l o n g N a m e ">
Example Thermometer< / Term>

< / i d e n t i f i e r >
< / I d e n t i f i e r L i s t >

< / i d e n t i f i c a t i o n >
< !−− INPUT DEFINITION −−>
< i n p u t s >

< I n p u t L i s t >
< i n p u t name=" t e m p e r a t u r e ">

< s w e : Q u a n t i t y d e f i n i t i o n =" u r n : o g c : d e f : p h e n o m e n o n : t e m p e r a t u r e "
uom=" u r n : o g c : d e f : u n i t : c e l s i u s " / >

< / i n p u t >
< / I n p u t L i s t >

< / i n p u t s >
< !−− OUTPUT DEFINITION −−>
< o u t p u t s >

< O u t p u t L i s t >
< o u t p u t name=" u r n : m a c r o : d e f : d a t a T y p e : t e m p e r a t u r e ">

< s w e : Q u a n t i t y d e f i n i t i o n =" u r n : o g c : d e f : p h e n o m e n o n : t e m p e r a t u r e "
uom=" u r n : o g c : d e f : u n i t : c e l s i u s " / >

< / o u t p u t >
< / O u t p u t L i s t >

< / o u t p u t s >
< / D e t e c t o r >

Listing V.1: SensorML sensor example (thermometer)
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Resource Name (URN) for temperature and a constraint on the unit-of-measure (UOM) as

a list of the URNs for Celsius and Farenheit:

HeaderTags=[<Detector>, <outputs>, <OutputList>, <output>]

Tag=<swe:Quantity>

Parameter="definition"

ParameterValues=["urn:ogc:def:phenomenon:temperature"]

Parameter="uom"

ParameterValues=["urn:ogc:def:unit:celsius", "urn:ogc:def:unit:farenheit"]

Values=[]

Although the MACRO PoC implementation only recognizes a small subset of SensorML,

the generality of the MACRO approach in using constraints on SensorML tags and param-

eters allows it to be directly extended to the full SensorML language, as it evolves.

V.4.1 Aggregation of TÆMS Task Trees

One responsibility of MACRO Broker agents is to aggregate domain knowledge across

Mission agents. Tier 2 Brokers collect task/subtask information from their assigned Mis-

sion agents to allow a complex user task spanning multiple sensor networks to be translated

into subtasks, each of which can be performed by a single Mission agent. Since Mission

agent task trees may be designed independently, they are enhanced with SensorML [9]

meta-data to provide standard descriptions of task/subtask input, output, and type clas-

sifiers. This allows MACRO Brokers to determine appropriate join points and overlap

between independent task trees. Tier 1 Broker agents employ the aggregated information

to translate User agent task requests into one-level task decompositions, as described in

Section V.4.2.

In SensorML, data acquisition and processing is defined in terms of processes. In fact,

SensorML even defines sensors as a special type of process. A SensorML process (or

process chain) is composed of process models, defining atomic processes, with associated

process methods, defining the behavior and interface of process models. For example, a
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process model (and associated process method) for calculation of wind chill is partially

specified in Listing V.2.

< ProcessMode l i d ="WINDCHILL_PROCESS">
< d e s c r i p t i o n >

< s w e : D i s c u s s i o n >Wind c h i l l c o m p u t a t i o n < / s w e : D i s c u s s i o n >
< / d e s c r i p t i o n >
< !−− INPUTS DEFINITION −−>
< i n p u t s >

< I n p u t L i s t >
< i n p u t name=" u r n : m a c r o : d e f : d a t a S t r e a m T y p e : t e m p e r a t u r e ">

< s w e : Q u a n t i t y d e f i n i t i o n =" u r n : o g c : d e f : p h e n o m e n o n : t e m p e r a t u r e "
uom=" u r n : o g c : d e f : u n i t : c e l s i u s " / >

< / i n p u t >
< i n p u t name=" u r n : m a c r o : d e f : d a t a S t r e a m T y p e : w i n d S p e e d ">

< s w e : Q u a n t i t y d e f i n i t i o n =" u r n : o g c : d e f : p h e n o m e n o n : w i n d S p e e d "
uom=" u r n : o g c : d e f : u n i t : m i l e s p e r h o u r " / >

< / i n p u t >
< / I n p u t L i s t >

< / i n p u t s >
< !−− OUTPUTS DEFINITION −−>
< o u t p u t s >

< O u t p u t L i s t >
< o u t p u t name=" u r n : m a c r o : d e f : d a t a S t r e a m T y p e : t e m p e r a t u r e : w i n d C h i l l ">

< s w e : Q u a n t i t y d e f i n i t i o n =" u r n : o g c : d e f : p h e n o m e n o n : t e m p e r a t u r e "
uom=" u r n : o g c : d e f : u n i t : c e l s i u s " / >

< / o u t p u t >
< / O u t p u t L i s t >

< / o u t p u t s >
< ProcessMethod >

< c l a s s i f i c a t i o n >
< C l a s s i f i e r L i s t >

< c l a s s i f i e r name=" i n t e n d e d A p p l i c a t i o n ">
<Term q u a l i f i e r =" u r n : o g c : d e f : p r o p e r t y : i n t e n d e d A p p l i c a t i o n ">

w e a t h e r < / Term>
< / c l a s s i f i e r >
< c l a s s i f i e r name=" p r o c e s s T y p e ">

<Term q u a l i f i e r =" u r n : m a c r o : d e f : p r o c e s s T y p e "> w i n d C h i l l < / Term>
< / c l a s s i f i e r >

< / C l a s s i f i e r L i s t >
< / c l a s s i f i c a t i o n >

< / ProcessMethod >
< / ProcessMode l >

Listing V.2: SensorML process example (wind chill)

The MACRO PoC implementation allows TÆMS tasks/subtasks to specify input and

output meta-data (based on a SensorML process model), as well as classifier meta-data
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(based on a SensorML process method). For example, a task for calculating wind chill

values would include the meta-data:

Input=("urn:ogc:def:phenomenon:temperature", "urn:ogc:def:unit:celsius")

Input=("urn:ogc:def:phenomenon:windSpeed", "urn:ogc:def:unit:milesperhour")

Output=("urn:ogc:def:phenomenon:temperature", "urn:ogc:def:unit:celsius")

ProcessType="windChill"

By comparing the SensorML descriptions of task input and output data types, MACRO

Broker agents can identify possible join points between tasks and subtasks from different

Mission agents to combine and extend their task decomposition trees. Further, MACRO

adds a Uniform Resource Name (URN) for process type to allow classification of data pro-

cessing tasks. This is a special classifier whose applicable values are defined by MACRO

because SensorML does not currently include any standard way to identify equivalent types

of data processing/analysis. By comparing processType classifiers, MACRO Broker agents

can identify substitutable tasks/subtasks across Mission agents.

V.4.2 Translation of SensorML Requests to TÆMS Tasks

In addition to aggregation of domain information across Mission agents, MACRO Bro-

ker agents also provide a matchmaking/locater service (i.e., identifying agents capable of

performing all or part of an User requested task and forwarding appropriate messages).

Tier 2 Broker agents cluster Mission agents by geographic region and maintain a directory

of sensor and computational capabilities based on SensorML meta-data from the Mission

agents in their region.

In SensorML, a sensor is defined as a measurement system made up of one or more

detectors. Each detector, defines the input (physical phenomena) and output (measurement

of the phenomena) types, as well as its sampling and response characteristics. SensorML

measurement systems include information on their physical position. A SensorML position

can include a location (as latitude, longitude, and altitude) and an orientation. For example,

a measurement system position for the thermometer example is specified in Listing V.3.
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<System i d ="THERMOMETER_SYSTEM">
< !−− POSITION i n EPSG4329 −−>
< p o s i t i o n s >

< P o s i t i o n L i s t >
< p o s i t i o n name=" t h e r m o m e t e r P o s i t i o n ">

< s w e : P o s i t i o n l o c a l F r a m e =" #THERMOMETER_FRAME"
r e f e r e n c e F r a m e =" u r n : o g c : d e f : c r s : E P S G : 4 3 2 9 ">
< s w e : l o c a t i o n >

< s w e : L o c a t i o n d e f i n i t i o n =" u r n : o g c : d e f : p h e n o m e n o n : l o c a t i o n ">
< s w e : c o o r d i n a t e name=" l a t i t u d e ">

< s w e : Q u a n t i t y d e f i n i t i o n ="
u r n : o g c : d e f : p h e n o m e n o n : l a t i t u d e "

uom=" u r n : o g c : d e f : u n i t : d e g r e e "> 34 .72450 < / s w e : Q u a n t i t y >
< / s w e : c o o r d i n a t e >
< s w e : c o o r d i n a t e name=" l o n g i t u d e ">

< s w e : Q u a n t i t y d e f i n i t i o n ="
u r n : o g c : d e f : p h e n o m e n o n : l o n g i t u d e "

uom=" u r n : o g c : d e f : u n i t : d e g r e e "> 86 .94533 < / s w e : Q u a n t i t y >
< / s w e : c o o r d i n a t e >
< s w e : c o o r d i n a t e name=" a l t i t u d e ">

< s w e : Q u a n t i t y d e f i n i t i o n ="
u r n : o g c : d e f : p h e n o m e n o n : a l t i t u d e "

uom=" u r n : o g c : d e f : u n i t : m e t e r "> 5 .1169 < / s w e : Q u a n t i t y >
< / s w e : c o o r d i n a t e >

< / s w e : L o c a t i o n >
< / s w e : l o c a t i o n >
< s w e : o r i e n t a t i o n >

< s w e : O r i e n t a t i o n d e f i n i t i o n ="
u r n : o g c : d e f : p h e n o m e n o n : o r i e n t a t i o n ">

< s w e : c o o r d i n a t e name=" t r u e H e a d i n g ">
< s w e : Q u a n t i t y d e f i n i t i o n ="

u r n : o g c : d e f : p h e n o m e n o n : a n g l e T o N o r t h "
ax i sCode ="Z" uom=" u r n : o g c : d e f : u n i t : d e g r e e "> 8 7 . 0 < /

s w e : Q u a n t i t y >
< / s w e : c o o r d i n a t e >

< / s w e : O r i e n t a t i o n >
< / s w e : o r i e n t a t i o n >

< / s w e : P o s i t i o n >
< / p o s i t i o n >

< / P o s i t i o n L i s t >
< / p o s i t i o n s >

< / System>

Listing V.3: Measurement system location example (thermometer)
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In MACRO, sensor capabilities are represented by their output type and position. Sen-

sor output type is defined in the detector output portion of a SensorML system format (e.g.,

the thermometer output defined by the < out put > tag in Listing V.1). Sensor position is

defined by the position portion of a SensorML system (e.g., the thermometer location and

orientation defined by the < swe : location> and < swe : orientation> tags in Listing V.3).

Similarly, computational capabilities are represented by the SensorML classifiers. Specif-

ically, computational capabilities are defined by MACRO process type classifiers (urn :

macro : de f : processType), discussed in Section V.4.1. For example, Listing V.2 classifies

the wind chill calculation process as a windChill process type. Similarly, a JPEG com-

pression algorithm for images could be classified by multiple levels of classifier, such as

imageCompression and imageCompression : JPEG, in MACRO.

A MACRO User agent announces a task using the relevant sensor types and locations,

along with the relevant process chain information (as identified by MACRO defined process

types and input/output data types, if any). For example, a task could specify use of a

temperature sensor in a particular geographic region as:

HeaderTags=[<Detector>, ... <output>]

Tag=<swe:Quantity>

Parameter="definition"

ParameterValues=["urn:ogc:def:phenomenon:temperature"]

Values=[]

AND

HeaderTags=[<System>, ... <swe:Location>, <swe:coordinate>]

Tag=<swe:Quantity>

Parameter="definition"

ParameterValues=["urn:ogc:def:phenomenon:latitude"]

Parameter="uom"

ParameterValues=["urn:ogc:def:unit:degree"]

Values=[34.6 - 35.8]

AND

HeaderTags=[<System>, ... <swe:Location>, <swe:coordinate>]
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Tag=<swe:Quantity>

Parameter="definition"

ParameterValues=["urn:ogc:def:phenomenon:longitude"]

Parameter="uom"

ParameterValues=["urn:ogc:def:unit:degree"]

Values=[86.8 - 87.0]

The sensor location requirements of an announced task are used by Tier 1 Broker agents

to forward task announcements to appropriate Tier 2 Broker agents, who then relay the

announcement to applicable Mission agents. Tier 1 Broker agents are also responsible for

defining the possible decompositions of the user task into TÆMS subtasks, each of which

can be achieved by a single Mission agent. This is achieved by matching process type

classifications in the task request to the process type meta-data of TÆMS tasks/subtasks

collected by Tier 2 Broker agents. For example, a simple user task could request an image

in a compressed format by specifying a process type of imageCompression : JPEG and

appropriate parameters for a JPEG image compression process. However, if the User did

not care which type of image compression was used, it could simply specify a process type

of imageCompression.

With such general specification of process types, the number of possible task decompo-

sitions could be very large in MACRO. However, the MACRO PoC implementation uses

only the first level of decomposition in Mission agent TÆMS task trees for aggregation

and user task decomposition by MACRO Brokers. This limits the possible decompositions

of a user task request to a manageable number, while ensuring that each subtask in any

decomposition can be performed by at least one Mission agent. Further, whenever pos-

sible, MACRO Brokers limit the data processing portions of a task to Mission agents in

the same region(s) (defined by their Tier 2 Broker agent) as the sensor (data acquisition)

requirements of the task.

The use of the SensorML standard in MACRO agent communications and task meta-

data allows for interoperability among independently-designed Mission and User agents.
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Broker translation of User agent task requests and identification of relevant Mission agents,

allows MACRO User and Mission agents to use different task representations, appropriate

to their different roles in the sensor web. Further, use of SensorML meta-data in TÆMS

task trees and Broker aggregation of Mission agent tasks, allows MACRO to support Mis-

sion agents independently designed by a variety of sensor network domain experts.

V.5 Context-sensitive Coordination of Planning and Scheduling

In large-scale, distributed, multi-agent systems (MAS) that span multiple domains of

agent operation, choosing a single planning and scheduling mechanism for all agents may

be inefficient and impractical. For example, a global sensor web must select and coordi-

nate an appropriate subset of many heterogeneous, distributed sensors and computational

resources for user tasks. Further, sensor web tasks often operate under significant re-

source constraints and require collaboration among multiple constituent sensor networks.

In MACRO, accomplishing such complex tasks requires that planning and scheduling be

performed at multiple levels of the sensor web.

As described in Section II.3, MACRO is structured as a two-level agent hierarchy: (1)

mission level and (2) resource level. Agents have different responsibilities related to task

achievement at each level:

• At the mission level, Mission agents representing individual sensor networks must

coordinate to cooperatively achieve complex tasks spanning the resources and capa-

bilities of multiple agents.

• At the resource level, Exec agents and other domain-specific agents adapt local op-

erations within a sensor network to efficiently achieve goals given current conditions

in dynamic, uncertain and resource-constrained environments.

Therefore, agents at these different levels of the system operate in different contexts that

imply different planning and scheduling requirements.
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At the mission level of a sensor web MAS, user tasks and scheduled plans may span

multiple sensor networks and have a high degree of complexity. MACRO, therefore, em-

ploys a modified implementation of the TÆMS language [55], which provides a hierar-

chical task network representation for multi-agent planning and scheduling. The TÆMS

language represents tasks as a hierarchical tree structure, decomposing tasks into appli-

cable sets of subtasks, which can be further decomposed into their subtasks, and so on.

The TÆMS representation also allows the specification of discrete probability distribu-

tions for task/subtask characteristics including potential outcome quality and duration [69].

As illustrated in Section IV.1, MACRO Mission agents employ hierarchical task network

decomposition and criteria-directed scheduling [115] to generate an appropriate task de-

composition and schedule from a TÆMS task tree.

At the resource level, Exec agents use the Spreading Activation Partial Order Plan-

ner (SA-POP), which generates high-utility, scheduled, partial-order plans that respect lo-

cal resource constraints. Section IV.4 describes the SA-POP service, which allows the

Exec agents to use their limited computational resources to maximize expected utility for

achieving local goals in dynamic, uncertain environments. First-principles planning [6]

and scheduling with SA-POP requires a set of goal conditions that correspond to the de-

sired outcome. These goal conditions are specified as desired environmental and system

conditions with associated utility values and time deadlines. Given these goal conditions,

SA-POP uses current/expected conditions to generate a scheduled plan of high expected

utility.

MACRO achieves efficient and effective autonomous planning/scheduling by combin-

ing hierarchical task network planning with criteria-directed scheduling at the mission

level and decision-theoretic planning with resource-constraint propagation at the resource

level. Mission agents efficiently generate and coordinate plans and schedules based on the

TÆMS task decomposition trees As shown in Figure 22, the leaves of a TÆMS task tree

are methods, which in standard TÆMS usage can be directly executed by the agent. In
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MACRO, however, Mission agents must communicate these methods to their Exec agents

for resource-level planning/scheduling and ultimate execution. As illustrated in Figure 22,

Figure 22: Planning/scheduling representations in MACRO

Exec agents employ the planning and scheduling service, SA-POP, to achieve goals in

the dynamic sensor network environment. Effectively employing both representations and

forms of planning and scheduling requires an appropriate translation of the task, plan, and

schedule representations between levels in MACRO. Further, MACRO agents require a co-

ordination mechanism for deciding when to exchange information between levels during

plan execution.

V.5.1 Translation: Top-Down

Problem. For an Exec agent to implement a TÆMS method, the Mission agent must

translate it into the goal format used by SA-POP. SA-POP goals include one or more goal

conditions with associated utility values and time deadlines. To generate an effective plan
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for a goal, SA-POP requires knowledge of expected system and environmental conditions at

the time the plan will be executed. Although current conditions and other Exec agent plans

provide most of this information, other expected conditions may be the result of methods

assigned to other Exec agents in the Mission agent’s current plan (i.e., other methods that

enable the method in question by satisfying some of its preconditions).

Solution → Cross-references in task/goal modeling. In MACRO, TÆMS methods

are associated with necessary resource-level preconditions and goal conditions, which in

turn are represented in the action network model employed by the Exec agent and SA-POP.

Moreover, a domain expert can derive method distributions for duration and outcome by

employing SA-POP with its domain-specific modeling language, discussed in Section IV.4.

Provided with initial condition settings (including their associated probabilities) SA-POP

can produce scheduled plans. Aggregating the expected utilities, durations, and resource

usages for these plans provides the information to specify TÆMS method characteristics

(e.g., duration and outcome quality).

Instead of directly executing a method, the Mission agent uses the encoded translation

information from the model to provide a goal to the Exec agent. This top-down translation

is shown by the Mission agent to Exec agent information transfer in Figure 23. The Mission

agent awards overall task utility to methods based on the quality aggregation functions

(QAFs) and expected quality in the TÆMS task tree.

In the chosen decomposition of the TÆMS task tree, parents with a QAF that requires

execution of all child subtasks/methods pass the full parent utility to each child, while

QAFs that allow any subset of children pass a percentage of parent utility based on the

child’s percentage of total expected quality for the parent. For example, a task with an

overall utility of 100 that is decomposed into two subtasks of expected quality 3 and 7 with

a sum QAF would assign utility of 30 and 70, respectively, to its subtasks. Future work will

investigate more advanced methods of reward assignment in the decomposition of TÆMS

task trees.
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Figure 23: Planning/scheduling translation in MACRO

V.5.2 Translation: Bottom-Up

Problem. Another important challenge is codifying the bottom-up translation between

SA-POP plans and TÆMS method parameters. Standard TÆMS methods include a priori

probability distributions for duration and outcome quality, which are used during initial

criteria-directed scheduling by the Mission agent. After an Exec agent plans to achieve a

goal, the resultant scheduled plan may imply significantly different probability distributions

for the corresponding method. Similarly, as a plan is being executed by the Exec agent,

there may be further changes to the expected duration or probability of outcomes for the

plan and its corresponding method. To improve the efficiency of future criteria-directed

scheduling and to trigger appropriate mission-level re-scheduling, information about the

Exec agent’s plan must be communicated to the Mission agent.

Solution → Summarize resource-level plans. Instead of providing the complete

resource-level plan to the Mission agent (whose format is ill-suited to its planning and

scheduling capabilities), a MACRO Exec agent summarizes its plan by providing relevant
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information only, including (1) expected duration, (2) probability of achieving the goal, and

(3) average and maximum resource usage over expected execution. The Mission agent uses

these values to update method parameters with more accurate information, based on the

resource-level planning and scheduling for the current and expected environmental/system

conditions. For example, Figure 23 illustrates updating a TÆMS method with a new out-

come distribution (i.e., 90% probability of achieving the method’s maximum utility based

on the 90% probability of success for the resource-level goal condition), duration (i.e., 43

seconds from the expected completion time of the resource-level plan), and resource us-

age (i.e., as both a maximum and average resource usage over the scheduled execution of

the resource-levle plan). The updated method parameters allow the Mission agent to more

effectively perform any further planning and scheduling for its task(s).

V.5.3 Context-Sensitive Updates

Problem. In addition to translating between the Mission and Exec agent planning/-

scheduling representations, MACRO agents must also decide when to update and com-

municate the translated information. In particular, during execution of Exec agent plans,

deviations may occur (e.g., differences between actual and expected duration of actions).

Only some variations, however, will impact the rest of the mission-level plan—or other

plans—in a manner that would be of interest to the Mission agent.

Solution→ Leverage mission-level task context. Given the hierarchical relationship

between Mission and Exec agents, the top-down decision to communicate (i.e., when the

Mission agent should communicate information to an Exec agent) is relatively straightfor-

ward. Specifically, whenever a new task is decomposed/scheduled or method parameters

in the plan are changed by re-planning/re-scheduling, the Mission agent communicates the

new or revised goals (translated from the methods) to the assigned Exec agents.

For bottom-up updates, however, an Exec agent can use its knowledge of a Mission
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agent’s overall goals/interests to guide its decision of when to communicate. Without Mis-

sion agent guidance, an Exec agent would be forced to communicate on a periodic basis or

whenever the execution deviates from the scheduled plan, which may happen frequently in

a dynamic sensor network environment. When tasking an Exec agent with a goal, therefore,

the MACRO Mission agents also provide guidance and contextual information, such as the

optimization criteria for the related task. Knowledge of the optimization criteria allows the

Exec agent to configure SA-POP’s planning and scheduling to prefer plans based on that

criteria.

In addition to optimization criteria, the Mission agent can specify acceptable deviations

(in either direction), success probability, expected utility, duration, and resource usage of

an executing plan. This information provides the Exec agent with guidance on the context

for the corresponding method in the Mission agent’s plan, which allows the agent to more

intelligently determine when to update its scheduled plan and provide the revised summary

to the Mission agent. Specifically, during execution of a plan, the Exec agent will only re-

plan and re-schedule if the expected utility falls below, or if the duration surpasses, specified

thresholds. When other thresholds are exceeded, the Exec agent simply communicates

updated summary information to the Mission agent.

Figure 24 shows the execution of the resource-level plan from Section V.5.2. To demon-

strate the benefit of the guidance/context provided by the Mission agent, we focus on devia-

tions of action duration from expected duration in the critical path (i.e., the linked sequence

of actions that requires the longest time to complete). Although the planning and schedul-

ing in MACRO does not rely on identification of the critical path, such a path(s) always

exist, and it constrains the expected completion time of the plan.

Without the context provided by duration thresholds, the Exec agent would have no

knowledge of what deviations were important to the Mission agent and would have to com-

municate updates based on each deviation. The Exec agent would recalculate its schedule

every time an action did not complete with exactly the expected duration. It would also
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Figure 24: Example resource-level plan with critical path highlighted

transmit the new expected duration of the plan either with every recalculation or at least

every time an action finished outside of its scheduled end window (either before or after

that window).

The example execution in Figure 24 shows a typical case in which the Mission agent

provides an over-threshold on duration equal to the difference between the expected end-

time of the plan and the original deadline. In other words, the Mission agent is only inter-

ested in changes to the resource-level schedule that would result in its finishing later than

the deadline. In this example, the Exec agent would have to re-plan/re-schedule only when

execution of action A6 goes beyond its scheduled end window. Without the appropriate

context (i.e., the duration threshold), the Exec agent would have also had to unnecessarily

recalculate or re-plan/re-schedule three times (after completion of A1, A4, and A3) and

communicate unnecessary updates twice (after A1 and A4).
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V.6 Case Study: Southeast Alaska

Chapters II, III, and IV described the MACRO agents/architecture, task allocation mech-

anism, and planning/scheduling mechanisms, respectively. Further, this chapter has de-

tailed the major challenges in integrating the adaptation/coordination mechanisms and pro-

tocols of the MACRO system in Sections V.4, V.3, and V.5. In order to illustrate the full

complement of MACRO’s capabilities and their integration, this section describes an end-

to-end case study scenario. The SouthEast Alaska (SEA) case study includes three sim-

ulated sensor networks, described in Section V.6.1, and two simulated user applications,

described in Section V.6.2. The MACRO mission level for this scenario includes two User

agents, a Tier 1 Broker agent, a Tier 2 Broker agent, and three Mission agents, illustrated

in Figure 25. The MACRO resource level in this scenario includes four Exec agents with

no secondary resource-level agents to minimize extraneous detail.

V.6.1 MACRO for Southeast Alaska Sensor Networks

Th Southeast Alaska case study includes three simulated sensor networks in southeast

Alaska: (1) the SEAMONSTER glacial watershed research sensor network, which is based

on a real sensor network; (2) the hypothetical MONSEA marine sensor network; and (3)

the hypothetical WReNSEA weather monitoring sensor network. The MACRO agent or-

ganization for these sensor networks is illustrated in Figure 25. For comprehensibility of

the overall scenario, each simulated network includes only four field nodes with three to

four sensors each. All simulated sensors have three data rates, defined as low, medium, and

high.

SEAMONSTER is the simulation of the South East Alaska MOnitoring Network for

Science, Telecommunications, Education, and Research. The SEAMONSTER network in

this scenario is based on the actual SEAMONSTER network [42], described in Section IV.5

and illustrated in Figure 18. The SEAMONSTER sensor network includes sensors attached

to weatherized computer platforms in the vicinity of Juneau, AK. SEAMONSTER field
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Figure 25: MACRO configuration for southeast Alaska sensor networks

computer nodes are deployed on Lemon Glacier and throughout the Lemon Creek water-

shed to collect data of scientific interest. The data collected by the sensors attached to the

weatherized field nodes is communicated via wireless networks through a field relay node

to a server cluster for processing, correlation, and analysis. In this scenario, we identify

the MACRO Mission agent representing the SEAMONSTER network as SMiss. SMiss

has two Exec agents, resident on SEAMONSTER servers, for resource-level planning and

execution: (1) SExecW is responsible for the field nodes along the watershed and (2) SEx-

ecG is responsible for the field nodes on the glacier. For this scenario, we include two

glacier field nodes with sensors for air temperature, humidity, and wind speed. One of the

glacier field nodes is located adjacent to a glacial lake, which occasionally drains into the

watershed river, and has an additional sensor for monitoring the lake level. The simulated

SEAMONSTER system also includes two watershed field nodes with sensors for air tem-

perature, water temperature, and water turbidity. The relay node in SEAMONSTER has

a limited bandwidth that can not accommodate high data rates from more than two field

nodes at a time.
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MONSEA is the simulation of the hypothetical Marine Observation Network in South

East Alaska. The MONSEA sensor network includes small computational nodes with sen-

sors in the coastal waters around Juneau, AK. In this scenario, we identify the MACRO

Mission agent representing the MONSEA network as MMiss. MMiss has a single Exec

agent, MExec, which is responsible for resource-level planning and execution for all MON-

SEA field nodes. The simulated MONSEA system includes four field nodes with water

temperature, air temperature, and wind speed sensors.

WReNSEA is the simulation of the hypothetical Weather Research Network of South

East Alaska. The WReNSEA sensor network includes land-based field nodes/sensors in

and around Juneau, AK. In this scenario, WMiss is the MACRO Mission agent represent-

ing the WreNSEA network. WMiss has a single Exec agent, WExec, which is responsible

for resource-level planning and execution for all WReNSEA field nodes. The simulated

WReNSEA system includes four field nodes with sensors to monitor air temperature, hu-

midity, and wind speed.

V.6.2 Southeast Alaska Scenario

Figure 26, illustrates the three major phases of the Southeast Alaska scenario: (1) the

task coordination phase begins with the announcement of three tasks by the User agents,

(2) the task execution phase begins at the specified start time for the two allocated tasks,

and (3) the dynamic reaction phase begins when a glacial lake drainage event is detected

in the SEAMONSTER network. Task allocation and planning/scheduling occur during the

task coordination phase. During the task execution phase, the subtasks (of the allocated user

tasks) are executed by the Exec agents of the sensor networks to which they were allocated.

Finally, during the dynamic reaction phase, SEAMONSTER activates an internal task due

to the lake drainage event, re-plans for the new task, and begins executing it.

The two User agents in the SEA scenario are PUser, which is a web portal providing

sensor web access to registered users, and GUser, which is an application for glacial flow
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modeling. PUser has two tasks: PTask1 is visualization of local meteorological conditions

and PTask2 is visualization of local marine currents. GUser’s task (GTask1) is extraction

of relevant features of glacial weather conditions for use in the glacial flow modeling ap-

plication.

Figure 26: Timeline and phases of operation in SEA scenario

The three sensor network Mission agents capture domain information in TÆMS task

trees, as discussed in Section IV.1.3. The relevant senors and subtasks are illustrated in

Figure 27. SMiss’s subtasks include: (S1) extracting glacial flow features and (S2) gener-

ating river temperature/turbidity map. MMiss’s subtasks include: (M1) extracting marine

current features, (M2) generating marine current map, and (M3) JPEG image compression.

WMiss’s subtasks include: (W1) generating meteorological map and (W2) JPEG image

compression.

Before the end-to-end scenario in Section V.6.3, the MACRO Broker agents must gather

appropriate domain information from the Mission agents. As detailed in Section V.4,

MACRO Broker agents aggregate Mission agent task and sensor capability info, in order to

provide matchmaker and translation services for User agent task announcements. During

system initialization, the MACRO Tier 2 Broker requests the information on the top-level

decompositions of TÆMS tasks from its Mission agents, including the subtasks illustrated

146



Figure 27: Mission agent sensors and subtasks in SEA scenario

147



in Figure 27. The Tier 2 Broker agent also requests sensor capability information from the

Mission agents, and forwards the task and sensor information to the Tier 1 Broker.

V.6.3 End-to-End Scenario Evolution

The SEA scenario begins with the announcement of tasks by PUser and GUser. The

Tier 1 Broker receives these announcements and translates them into potential TÆMS task

decompositions, as described in Section V.4.2. The resulting, first-level task decomposi-

tions are illustrated in Figure 28. PTask1 and PTask2 each require image compression,

which can be provided by either MMiss or WMiss. Therefore, each of those tasks have two

possible decompositions. The Tier 1 Broker also assigns a system value to each task, as

described in Section III.4.2. Because neither User agent has any previously announced or

allocated tasks in this scenario, the Broker agent assigns a higher value to GTask1, which

is from the User agent of greater importance to the overall sensor web.

The Tier 1 Broker forwards the translated task announcements to the Tier 2 Broker

agent, which passes them to the Mission agents that can perform at least one of the relevant

subtasks. As described in Section III.4.1 and Section III.5, each Mission agent produces

an initial bid based on its own capabilities for the received task announcements. WMiss

and MMiss each bid on PTask1 and PTask2 because they can perform at least one sub-

task of each task. Similarly, SMiss produces an initial bid for both PTask1 and GTask1.

PUser sends pre-accepts for the more complete bids from WMiss for PTask1 and MMiss

for PTask2, and GUser sends a pre-accept to SMiss for its bid on GTask1. At this point,

WMiss attempts to subcontract the subtasks of PTask1 that it cannot perform to SMiss.

SMiss must choose between making a final bid on GTask1 or PTask1, which cannot both

be performed due to its bandwidth constraints. GTask1 has the higher broker-assigned

value, so SMiss chooses to make a final bid to GUser for that task. Since SMiss rejects

PTask1, WMiss cannot make a final bid on PTask1. PUser attempts to pre-accept MMiss

for PTask1. However, when MMiss attempts to subcontract the same portions of the task,
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Figure 28: Broker translations of User agent tasks
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SMiss again rejects them. Similarly, when PUser makes its final pre-accept attempt to

SMiss, it is rejected. Ultimately, GUser accepts the final bid from SMiss for GTask1, and

PUser accepts the final bid of MMiss for PTask2.

After the tasks have been allocated, SMiss and MMiss employ criteria-directed schedul-

ing for their respective tasks, as described in Section IV.1.3. As described in Section V.5,

SMiss passes the appropriate goals to SExecG for resource-level planning and scheduling

to achieve GTask1. Similarly, MMiss passes the goals specified by methods in its plan

for PTask2 to its Exec agent. At the start time specified in their tasks, the Mission agents

instruct their Exec agents to begin execution of their plans for the specified tasks.

During execution of GTask1, the glacial lake begins draining. This event causes SMiss

to activate an internal SEAMONSTER task, STask1, which includes high data rate moni-

toring of the watershed during lake drainage. However, due to SEAMONSTER’s limited

bandwidth, it cannot find valid task decompositions to achieve both this internal task and

GTask1. The internal task has a higher priority than the external task, GTask1, so SMiss

revokes the GTask1 goals from SExecG and provides goals for watershed monitoring to

SExecW. This illustrates the dynamic adaptability of the MACRO resource level for tran-

sient environmental phenomena. However, since SMiss is no longer attempting to achieve

GTask1, it informs GUser it has broken the contract for GTask1. Since no other sensor

network can perform GTask1, GUser must wait until SMiss is available again to complete

its task.

V.7 Experimental Evaluation

Section V.2 identified the challenge of achieving efficient coordination and interop-

erability between the two different forms of planning and scheduling employed at the

MACRO mission and resource levels. MACRO’s guided, context-sensitive coordination
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between Mission agent and Exec agent planning/scheduling resolves this challenge, as dis-

cussed in Section V.5. This section presents the results of Mission and Exec agent coordina-

tion through the simulated execution of randomly-generated resource-level plans with a va-

riety of duration distributions for actions. These experiments are intended to illustrate some

of the benefits of MACRO’s guided, context-sensitive coordination in planning/scheduling.

In particular, these experiments show that MACRO’s planning/scheduling translation and

coordination can significantly decrease communication and computation overhead in com-

parison to a baseline of unguided coordination approach. In the baseline coordination, no

context information (i.e., no threshold or indication that the Mission agent is only interested

in changes that exceed that threshold) is provided to the Exec agent.

V.7.1 Experimental Design

Our experiments simulate a scheduled, partial-order plan generated by SA-POP for

an Exec agent at the resource level of MACRO. These plans include a set of actions with

expected start and end time windows, as well as ordering links (specifically, causal links and

the links generated by scheduling and causal threat resolution). For these experiments, we

only simulate cases in which a valid plan can be generated and consider several variations

on the execution context in terms of action duration.

An important parameter in these experiments is the variability of actual action dura-

tions. Action durations are generated from a probability distribution parameterized by a

sigma value. These experiments included both uniform distributions and Gaussian (Nor-

mal) distributions. The uniform distributions showed the same trends observed in the

Gaussian distributions. Moreover, the Gaussian distributions are likely to more accu-

rately represent real-world action durations and proved the more difficult cases for MACRO

plan/schedule coordination. Therefore the results presented here are based on the the Gaus-

sian distributions. In these experiments, the action duration distributions have a mean of
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100 seconds and “low” and “high” variance scenarios were based on a 95% likelihood that

durations would be within 25 seconds or 75 seconds of the mean, respectively.

Another experimental variable is the length of the critical path in resource-level plans.

The critical path is the ordered sequence of actions in the plan that constrains the end time

of the plan (i.e., the sequence of actions that requires the longest time to complete). Since

each action has an expected duration of 100 seconds, the expected time for completion of

the plan is determined by the number of actions in the critical path. In these experiments,

the critical path length was varied between one action and 40 actions.

The final experimental variable is the time threshold provided by the Mission agent

in MACRO context-sensitive coordination, which determines how far actions can surpass

their expected end times before the Mission agent must be notified for potential mission-

level re-planning and re-scheduling. To assess computation and communication overhead

of the coordination mechanism, we employed random generation of plans across a range

of parameters rather than using a few example problems. These experiments do not assess

the quality or utility of plans or potential plan changes during coordination. MACRO co-

ordination will not result in any degradation of plan quality in comparison to the baseline

coordination, however, since plan and schedule information that triggers mission-level re-

planning and re-scheduling is provided by both MACRO coordination mechanism and the

baseline mechanism at the same time.

Since these experiments employ randomly-generated plans to cover a range of poten-

tial applications, they do not allow changes to resource-level or mission-level plans during

execution. Whenever an action execution exceeded its scheduled end window, the sched-

ule was updated and communicated to the Mission agent, but no changes to the plan or

threshold were made. Without re-planning, the MACRO coordination overhead is an over-

estimate of the real overhead. After a critical path action’s end window is exceeded, exe-

cution of further actions will continue to exceed action end windows. Re-planning reduces

this possibility.
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V.7.2 Experimental Results

Each experimental run included 10,000 trials with the given parameter settings. In

each trial, a series of (n) actions formed the critical path, and each action had an expected

duration of 100 seconds. Using the chosen distribution, random values are generated that

correspond to actual execution times. The number of updates and messages are calculated

using those values.

V.7.2.1 Investigating Critical Path Length

These experiments were performed under the assumption that the Mission agent simply

requires a method to be completed by the provided deadline and should only be notified if

the expected execution time will exceed that deadline. The threshold value is therefore set

to the difference between the deadline and the expected duration of the plan. This threshold

is varied in the experiments between 0 and 200 seconds in 5 second increments.

Figure 29: Effect of critical path length with a low variance Gaussian

Figure 29 shows the information from the Mission agent results in significantly less

153



Figure 30: Effect of critical path length with a high variance Gaussian

computation and communication than the baseline condition for all but the smallest of crit-

ical paths. The linear trend suggests that in the worst case (i.e., a tight threshold/deadline),

MACRO sends about half as many messages as the baseline machanism. As the thresh-

old increases, MACRO performs even better, whereas the baseline performance does not

change. This illustrates MACRO’s ability to leverage the context information of deadline

thresholds to minimize coordination overhead.

A comparison of the low variance action duration distribution in Figure 29 to a high

variance one in Figure 30 shows that with the smallest thresholds a ratio of approximately

1 update per 2 actions in the critical path is required for both distributions. The 1:2 ratio

is thus an approximate upper limit on the average number of updates required in MACRO,

even when re-planning and re-scheduling is not possible.

The baseline mechanism shows a slight, relative improvement in the high variance case,

but MACRO’s context-sensitive coordination still requires far fewer updates. However,

the number of updates required in MACRO with different thresholds are much closer in

the high variance case than the low variance case. This result suggests that when action
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durations are less certain, the critical path length is significantly more important than the

threshold, because even large thresholds can be exceeded by a series of actions that begins

with an unexpectedly long-running action.

V.7.2.2 Investigating Time Thresholds

Figure 31 and Figure 32 show the trends in communication and computation with re-

spect to the duration threshold. The baseline results are not included in these figures be-

cause they do not use of the threshold value, therefore, they would produce a horizontal

line close to the number of actions in the critical path.

Figure 31: Effect of time threshold with a low variance Gaussian

These results show that as the threshold increases, the number of MACRO updates

decreases. Figure 31, shows a steep initial decrease which levels off. Qualitatively, this

trend occurs since longer thresholds allow a series of actions to exceed their expected du-

ration by a greater amount before requiring an update. Extreme variation, however, from

expected durations can occur and will still require some updates, even with relatively large
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Figure 32: Effect of time threshold with a high variance Gaussian

thresholds. These results also show, that even when uncertainty of action duration is high,

the Exec agent can leverage the contextual information provided by the Mission agent to

minimize coordination overhead.

V.8 Summary

This chapter presented the challenges and solution approach for implementing and in-

tegrating a proof-of-concept (PoC) system employing MACRO task allocation and plan-

ning/scheduling mechanisms. Section V.1 discussed existing work related to the design of

the MACRO PoC implementation and Section V.2 identified the challenges not resolved by

existing work.

Employing OGC SensorML [9] standards allows MACRO to support interoperabil-

ity with other external tools and systems employing these standards. Further, SensorML

provides a standard representation for User agent tasks and a way to standardize Mission

agent task trees across sensor networks. Section V.4 described MACRO’s translation of
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User tasks in SensorML to Mission agent TÆMS tasks and aggregation of Mission agent

TÆMS task trees augmented with SensorML meta-data.

To perform allocation and distributed planning/scheduling, MACRO Mission agents

employ multiple coordination protocols (e.g., the contract net protocol and GPGP dis-

tributed planning protocols), which they must perform simultaneously. Further, a Mis-

sion agent may execute on the same set of computational resources as some resource-level

agents. Therefore, the MACRO prototype Mission agent has an extensible, object-oriented

design including meta-control to coordinate its diverse activities, which was described in

Section V.3.

To achieve the high-level tasks allocated and coordinated at the mission level, individual

Mission agents must communicate appropriate subtasks or subgoals to their resource-level

Exec agents for execution. However, MACRO Mission and Exec agents employ different

representations and forms of planning and scheduling, which complicates their integration

in the overall MACRO system. Section V.5 detailed the context-sensitive coordination of

planning/scheduling and translation of planning and scheduling representations between

the MACRO Mission and Exec agents.

To illustrate the capabilities of the integrated MACRO system, Section V.6 provided a

case study of MACRO system operation for a set of simulated sensor networks. Further,

Section V.7 presented experimental results verifying the efficacy and efficiency of MACRO

planning and scheduling coordination between the mission and resource levels.
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CHAPTER VI

CONCLUDING REMARKS

Effective coordination and control of a global sensor web requires an open, efficient,

scalable system to allocate, plan/schedule, and coordinate the operation of its many het-

erogeneous, independent components in a dynamic, effective, and equitable manner. Sec-

tion I.3 identified specific research challenges in task allocation, planning/scheduling, and

system integration to be addressed in this work on sensor web coordination and control.

This dissertation has described the Multi-agent Architecture for Coordinated Responsive

Observations (MACRO), designed to resolve those research challenges. MACRO provides

a powerful computational infrastructure for enabling the deployment and adaptive oper-

ation of large, distributed systems that require high-level coordination of complex tasks

among agents, as well as local, dynamic adaptation for effective use of limited resources in

dynamic, uncertain environments.

VI.1 Summary and Research Contributions

Chapter II defined the Multi-agent Architecture for Coordinated Responsive Observa-

tions (MACRO) and provided an overview of its agents’ roles and relationships, agent

services, and the middleware infrastructure on which MACRO is built. MACRO uses QoS-

enabled component middleware to help automate many system configuration and manage-

ment tasks for sensor web agents and applications. Atop the middleware infrastructure,

MACRO’s dynamic resource management service, RACE, provides efficient allocation

and control of computational resources, while MACRO agents employ a decision-theoretic

planning and scheduling service, SA-POP, to autonomously adapt system functionality to

changing science objectives and environmental conditions. MACRO agents are organized
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in a two-level hierarchy: (1) the mission level spanning the sensor web’s constituent sen-

sor networks and (2) the resource level for adaptive operation of local sensor network re-

sources. This separation of concerns enables tractable solutions to the coordination and

control problems facing a system with the scope of a global sensor web.

In Chapter III, we presented a novel approach to achieving both fairness (i.e., individual

user satisfaction) and efficiency (i.e., value to the system as a whole) in allocation of sensor

web tasks. To integrate the allocation concerns of fairness and efficiency, we presented the

definition of a sensor web task allocation metric, which combines a measure of user satis-

faction and a measure of total system utility for a set of allocated tasks. We illustrated how

this metric is employed by the MACRO brokers to value tasks and described MACRO’s

task auctions in a brokered, two-phase contract net, including a novel subcontracting ap-

proach to minimize message overhead. Finally, we presented results of experiments with

MACRO task allocation that verify both its allocation performance and scalability. The

major contributions of this chapter to the research in multi-agent systems are:

• A novel task allocation metric: To allow a tradeoff between system-wide value and

user satisfaction, the metric weights allocation efficiency by an agent satisfaction

level. Unlike utilitarian, egalitarian, or weighted combination metrics, this metric

provides a preference for allocations in which most agents are highly satisfied and

the allocated tasks provide a high value to the overall system, but does not require

parameter tweaking for different system configurations (e.g., system load and relative

importance of user agents).

• A novel task allocation mechanism: To achieve scalable allocation of tasks while

respecting allocation fairness and efficiency criteria, we employ brokered task auc-

tions including efficient subcontracting and task valuation by an approximation of

marginal utility. For effective design and implementation of necessary broker agents,

we include two tiers of brokers that provides a separation between specific broker
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roles and responsibilities. Generally, this mechanism is applicable to large multi-

agent systems with heterogeneous users and hierarchically-decomposable tasks re-

quiring multiple agents’ resources. In such systems, the task allocation mechanism

produces fair and efficient allocations of tasks while requiring only minimal infras-

tructure computational capabilities and not limiting user agent preferences on task

achievement criteria. Experimental evaluation demonstrated the allocation mecha-

nism’s performance and scalability across a range of User agent share ratios, Mission

agent densities, and task characteristics.

Chapter IV described the planning and scheduling mechanisms employed by MACRO

agents. Mission agents employ the TÆMS hierarchical task-tree representation with GPGP

coordination and criteria-directed scheduling/task-decomposition to cooperatively achieve

allocated tasks. At the resource level, planning requires the use of available probabilistic

domain information for generation of high expected utility plans and the integration of an

efficient scheduling mechanism. We presented the details of SA-POP, which is a novel,

decision-theoretic planning and scheduling service for MACRO resource-level agents to

support adaptation of sensor network operations. Further, we presented experimental re-

sults that verify SA-POP’s ability to produce high expected utility plans even under signifi-

cant scheduling constraints. Together, the planning and scheduling capabilities of MACRO

mission- and resource-level agents facilitate the real-time collection and analysis of sensor

data, even under changing environmental conditions and many concurrent science objec-

tives. The major contribution of this chapter to the research in autonomous planning and

scheduling is:

• A novel planning and scheduling mechanism: Existing decision-theoretic planning

mechanisms do not provide targeted scheduling during planning to produce high ex-

pected utility plans of autonomous action and application adaptation for distributed,
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real-time embedded systems. To address this deficiency, SA-POP provides decision-

theoretic planning and scheduling for agents operating in a dynamic, uncertain en-

vironment with limited, shared resources. This planning and scheduling mechanism

employs a decision-theoretic heuristic to guide planning and efficiently integrates

scheduling by leveraging a scheduling criticality measure for targeted scheduling

during the planning process. Therefore, agents can adapt system operation in un-

certain, resource-limited domains by executing the high expected utility, scheduled

plans produced by this mechanism. Experimental evaluation demonstrated the plan-

ning and scheduling mechanism’s performance across a range of task network sizes

and connectedness.

Chapter V presented the challenges and solution approach for implementing and in-

tegrating a proof-of-concept (PoC) system employing MACRO task allocation and plan-

ning/scheduling mechanisms. We presented the MACRO Mission agent internal architec-

ture, which allows Mission agents to integrate their multiple allocation, planning/schedul-

ing, coordination, and domain operation activities. Chapter V also illustrated MACRO’s

use of the OGC SensorML [9] standard, which can enable interoperability with future sen-

sor web tools and systems. Further, SensorML provides a standard representation for User

agent tasks and a way to standardize Mission agent task trees across sensor networks. We

presented MACRO’s aggregation of domain information (i.e., TÆMS task trees augmented

with SensorML meta-data) across sensor networks and translation of User tasks from Sen-

sorML descriptions to one-level decompositions of TÆMS tasks. We also presented the

guided, context-sensitive coordination of planning/scheduling and translation of planning

and scheduling representations between the MACRO Mission and Exec agents. Experi-

mental results verified the overhead reduction achieved with this coordination mechanism.

Finally, to illustrate the capabilities and operation of the integrated MACRO system, we
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provided a case study of MACRO execution for a scenario including three simulated sen-

sor networks. The major contributions of this chapter to the research in multi-agent systems

and autonomous planning and scheduling are:

• A sensor web task translation and aggregation mechanism: Implementation of a

sensor web system with heterogeneous users and providers requires task translation

and aggregation in order to leverage both SensorML standards and a hierarchically-

decomposable task representation. Therefore, we employ a distributed set of broker

agents to aggregate and translate tasks for other sensor web agents. This mechanism

allows sensor web users to express tasks as constraints based on standard SensorML

processes while providers can employ a hierarchically-decomposable task represen-

tation appropriate to their distributed planning and scheduling requirements. A case

study illustrated the effectiveness of this mechanism in a MACRO sensor web.

• A novel planning/scheduling coordination mechanism: Existing work does not pro-

vide an efficient mechanism for coordinating scheduled plans between the two dif-

ferent planning and scheduling representations employed in MACRO. Therefore, this

mechanism leverages mission-level context information, such as deadline thresholds

and optimization criteria, to provide efficient coordination between MACRO Mis-

sion and Exec agents. In general, this mechanism is applicable to agents in a hi-

erarchical relationship where the top level employs hierarchical task decomposition

and (re)scheduling while the bottom level employs decision-theoretic, first-principles

(re)planning and (re)scheduling. In such systems, this mechanism enables efficient

coordination of scheduled plans for adaptation to local system conditions while obey-

ing top-level goals and constraints. Experimental evaluation demonstrated the coor-

dination mechanism’s performance and scalability across a range of time thresholds

and plan lengths.
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VI.2 Future Research Directions

Given the complexity and scope of a global sensor web, there are many opportunities for

future research with the MACRO framework. Promising research directions for extending

the capabilities and performance of MACRO include:

Task decommitment. Section III.6.2 presented experimental results verifying MACRO

near-optimal allocation performance across a range of user share ratios, tasks per round, and

trial lengths. However, with longer task execution times, results indicated a decline in al-

location performance. This decline was due to the fact that MACRO Mission agents could

not decommit from an allocated task even when an announced task was of significantly

greater value. Decommitment from tasks in a sensor web is particularly difficult because

of the impact on real-world user satisfaction. In future work, we would investigate decom-

mitment schemes to improve MACRO allocation performance with long-running tasks. In

particular, we could define an appropriate threshold (between committed task value and

announced task value), enforced by MACRO Broker agents, that will allow decommit-

ments in extreme cases to increase overall allocation performance, while minimizing user

dissatisfaction from decommitted tasks.

Dynamic subcontracting. Section III.6.1 presented experimental results showing that

the MACRO limited pre-commitment subcontracting approach scales significantly better

than the pre-bid subcontracting approach The required number of messages to reach the

best final bid in pre-commitment subcontracting are on the order of five times fewer than

pre-bid subcontracting for likely sensor web system configurations and operating condi-

tions. However, the large number of tasks likely to be announced in a global sensor web

suggests that further reduction in subcontracting message overhead would be worthwhile

in sensor web task allocation. In future work, we could include dynamic adjustment of

pre-accept cutoff values based on announced task and current configuration/conditions, as

well as caching of subtask bids by broker agents, to decrease the number of messages re-

quired. Further, we can explore allowing User agents to include information on the utility
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of specific bid quality criteria to yield smaller, more directed, Mission agent bids. These

extensions should further diminish the message overhead required in pre-commitment sub-

contracting, while maintaining the scalability of this approach.

Mission agent meta-reasoning. To coordinate task achievement, MACRO Mission

agents employ multiple protocols (e.g., a broker-mediated contract net protocol and GPGP

distributed planning protocols). Results of planning and scheduling can affect bidding on

tasks in the contract net, and contracted tasks require further planning, scheduling, and

GPGP coordination. The prototype MACRO Mission agent described in Section V.3 at-

tempts to perform planning and scheduling for all announced tasks. However, a Mission

agent may execute on the same set of computational resources as some resource-level

agents, such as in the SEAMONSTER sensor net described in Section IV.5. Therefore,

MACRO would benefit from Mission agents that can balance the amount of computation

expended on each of its various internal activities to maximize the utility of its sensor net-

work. In particular, with decomposable tasks and criteria-directed scheduling, additional

computation may yield a better estimate of whether the task can be accomplished given cur-

rent commitments, as well as more accurate schedules and estimates of the amount of work

required for the task. For deciding whether to bid on announced tasks and determining the

expected quality and duration of a task for bidding, there is a trade-off between amount

of computation and accuracy of the required information. In future work, we could inves-

tigate advanced meta-reasoning and meta-control strategies to allow the Mission agent to

determine the expected benefit of further computation across its different computationally-

intensive activities.
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LIST OF PUBLICATIONS

Our research on MACRO and SA-POP has lead to the following journal, conference,
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C-1 John S. Kinnebrew, Daniel L.C. Mack, Gautam Biswas, and Douglas C. Schmidt,

“Coordination of Planning and Scheduling Techniques for a Distributed, Multi-level,

Multi-agent System”, The International Conference on Agents and Artificial Intelli-
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2009 IEEE Aerospace Conference, Big Sky, Montana, March 7-14, 2009.
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Dipa Suri, “Application of Middleware and Agent Technologies to a Representative

Sensor Network”, The Eighth Annual NASA Earth Science Technology Conference,

College Park, Maryland, June 24-26, 2008.
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C. Schmidt, “Toward Effective Multi-capacity Resource Allocation in Distributed

Real-time and Embedded Systems”, The 11th IEEE International Symposium on

Object/Component/Service-oriented Real-time Distributed Computing (ISORC 2008),
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APPENDIX B

LIST OF ACRONYMS

ACE Adaptive Communication Environment

CCM CORBA Component Model

CIAO Component Integrated ACE ORB

CNP Contract Net Protocol

CORBA Common Object Request Broker Architecture

DAnCE Deployment and Configuration Engine

DRE Distributed, Real-time, Embedded

EU Expected Utility

GPGP Generalized Partial Global Planning

HTN Hierarchical Task Network

IPC International Planning Competition

MACRO Multi-agent Architecture for Coordinated, Responsive Observations

MMS Magnetospheric MultiScale mission

OGC Open Geospatial Consortium

OMG Object Management Group

ORB Object Request Broker

PDDL Planning Domain Definition Language
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POCL Partial-Order Causal-Link

POP Partial-Order Planning

QAF Quality Aggregation Function

QoS Quality of Service

SA-EU Spreading Activation Expected Utility

SA-POP Spreading Activation Partial Order Planner

SAML SA-POP Modeling Language

RACE Resource Allocation and Control Engine

TÆMS Task Analysis, Environment Modeling, and Simulation

TAO The ACE ORB
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