
PHOTOCROSSLINKED POLY(ANHYDRIDES) FOR SPINAL FUSION: 

CHARACTERIZATION AND CONTROLLED RELEASE STUDIES 

 
 

By 

 

Ashley Aston Weiner 

 

Dissertation 

Submitted to the Faculty of the 

Graduate School of Vanderbilt University 

in partial fulfillment of the requirements 

for the degree of 

DOCTOR OF PHILOSOPHY 

in  

Biomedical Engineering 

May, 2007 

Nashville, Tennessee 

Approved: 

V. Prasad Shastri 

Todd D. Giorgio 

Scott A. Guelcher 

Frederick R. Haselton 

Ginger E. Holt 



ACKNOWLEDGEMENTS 
 

Many people have contributed over the course of my graduate school 

career.  First I would like to thank my advisor, Prasad Shastri, for giving me 

guidance throughout the course of my dissertation research.  Additionally, I 

would like to thank the members of my doctoral dissertation committee – Todd 

Giorgio, Scott Guelcher, Rick Haselton, and Ginger Holt – for their suggestions 

and mentoring as I worked toward my degree. 

I would also like to thank the members of the Shastri, Giorgio, and 

Haselton labs during my graduate career - Ian Dallmeyer, Ash Jayagopal, Kyle 

Kellinghaus, Amy Klemm, Sam Kuhn, Chrissy Marasco, Henrique Oliveira, Chris 

Pino, Sanjeet Rangarajan, Tricia Russ, Adam Smith, Chinmay Soman, Greg 

Stone, Elizabeth Vargis, and Shelby Wyatt.  During my years at Vanderbilt, they 

have constantly motivated and encouraged me both scientifically and socially. 

Undergraduate students Eileen Bock, Jordan Bush, Margaret Gipson, 

Marc Moore, Dani Shuck, and Amanda Walker have put many hours into the 

projects described in this dissertation.  I appreciate their diligence and 

commitment to research.   

A number of other faculty members have also assisted with this work.  

Don Stec graciously assisted with NMR analysis of the monomers.  Adam List 

provided access to FT-IR equipment for analysis of networks.  Ginger Holt has 

provided surgical expertise to shape preparations for the future applications of 

these studies.  Ed Donnelly and Todd Peterson have provided guidance for 

usage of imaging modalities in the future surgical applications. 

 ii



This work would not have been possible without our sources of funding.   

I would like to thank the Graduate School of Vanderbilt University for assistance 

with my stipend through the IBM and University Graduate Fellowship Programs 

and for assistance with travel funds.  I would also like to acknowledge the 

National Science Foundation for supporting me through the NSF Graduate 

Research Fellowship Program.  Additionally this work was funded by Vanderbilt 

Institute of Integrative Biology Research and Education (VIIBRE) funds and by a 

Vanderbilt Discovery Grant to Prasad Shastri. 

 Finally, I would like to thank my family – especially my parents and my 

husband – for their unwavering love and support during my graduate studies. 

 iii



TABLE OF CONTENTS 
 
 

Page 
  

ACKNOWLEDGEMENTS ..................................................................................... ii
 
LIST OF FIGURES ............................................................................................. vii 
 
LIST OF TABLES................................................................................................. xi 
 
Chapter 

I. INTRODUCTION ..........................................................................................1 

Specific Aims ........................................................................................1 
Aim 1 – Characterize in vitro degradation parameters for bone  
graft substitutes composed of surface-eroding poly-anhydrides......2 
Aim 2 – Evaluate in vitro release of proteins from surface  
eroding polyanhydrides ...................................................................3 
Aim 3 – Modulate in vitro release of proteins from surface  
eroding polyanhydrides via incorporation of additives .....................4 

Overview and Rationale........................................................................5 
Degradable biomaterials in orthopedics................................................8 
Polyanhydrides as drug delivery vehicles ...........................................10 
Role of BMPs in bone remodeling ......................................................11 
Current clinically used materials in spinal fusion.................................13 
Significance of the study.....................................................................14 
References .........................................................................................15 

II. OPTIMIZATION OF PHOTOCROSSLINKED ANHYDRIDE SYSTEMS   
FOR BONE AUGMENTATION APPLICATIONS: CHARACTERIZATION  
OF IN VITRO DEGRADATION...................................................................21 

Abstract ..............................................................................................22 
Introduction.........................................................................................23 
Experimental.......................................................................................28 

Materials........................................................................................28 
Experimental design ......................................................................29 
Monomer synthesis .......................................................................31 
Sample preparation and photopolymerization ...............................34 
Simulated body fluid preparation ...................................................34 
In vitro degradation studies ...........................................................35 
Gravimetric analysis ......................................................................35 
Mechanical testing.........................................................................36 
Scanning electron microscopy.......................................................36 
Statistical analysis .........................................................................36 

 iv



Results................................................................................................37 
Nomenclature ................................................................................37 
General observations ....................................................................38 
pH profiles .....................................................................................38 
Gravimetric analysis ......................................................................41 
Scanning electron microscopy.......................................................46 
Mechanical testing.........................................................................47 

Discussion ..........................................................................................48 
Conclusions ........................................................................................53 
Acknowledgements.............................................................................55 
References .........................................................................................55 

III. PHOTOCROSSLINKED ANHYDRIDE SYSTEMS FOR LONG-TERM 
PROTEIN RELEASE ..................................................................................59 

Abstract ..............................................................................................60 
Introduction.........................................................................................61 
Experimental.......................................................................................66 

Materials........................................................................................66 
Monomer synthesis .......................................................................66 
Protein formulation ........................................................................68 
Sample preparation and photopolymerization ...............................69 
In vitro release studies...................................................................69 
HRP activity assay.........................................................................70 
Insulin ELISA.................................................................................70 
Quantification of FITC-BSA fluorescence ......................................71 
Statistical analysis .........................................................................71 

Results and Discussion ......................................................................71 
Experimental design ......................................................................71 
Short term release of Insulin, HRP, and FITC-BSA.......................73 
Long-term release of HRP and FITC-BSA from  
photocrosslinked PA networks – effect of MCPH:MSA ratio..........77 
Long-term release of HRP – effect of PEGDA concentration ........82 

Conclusions ........................................................................................85 
Acknowledgements.............................................................................85 
References .........................................................................................86 

IV. MODULATION OF PROTEIN RELEASE FROM PHOTOCROSSLINKED 
POLY(ANHYDRIDE) NETWORKS THROUGH INCORPORATION OF 
GELATIN MICROPARTICLES....................................................................90 

Abstract ..............................................................................................91 
Introduction.........................................................................................93 
Experimental.......................................................................................96 

Materials........................................................................................96 
Monomer synthesis .......................................................................97 
Protein formulation ........................................................................98 

 v



Preparation of gelatin microparticles .............................................99 
Crosslinking of gelatin microparticles ..........................................100 
Protein loading of gelatin microparticles ......................................100 
In vitro protein release from gelatin microparticles ......................101 
Sample preparation and photopolymerization .............................101 
In vitro release studies.................................................................102 
HRP activity assay.......................................................................102 
Quantification of FITC-BSA fluorescence ....................................102 
Statistical analysis .......................................................................103 

Results..............................................................................................103 
HRP release from photocrosslinked PA matrices with NaCl-or 
gelatin microparticle-induced porosity .........................................103 
HRP release from photocrosslinked PA matrices with gelatin-
microparticle-induced porosity: Effect of loading and particle  
size ..............................................................................................106 
Gelatin microparticles as protein delivery vehicles ......................109 
Dual release system for HRP and FITC-BSA from  
photocrosslinked PA matrix-gelatin microparticle composites .....112 

Discussion ........................................................................................114 
Conclusions ......................................................................................120 
Acknowledgements...........................................................................120 
References .......................................................................................121 

V. CONCLUSIONS AND FUTURE WORK ...................................................123 

Summary of Manuscripts ..................................................................123 
Future Work ......................................................................................125 
References .......................................................................................127 

 
Appendices 
 
  A.   RATIONALE FOR SELECTION OF POLYMER FORMULATIONS FOR  
        SPECIFIC AIMS TWO AND THREE…………………………………………129 
 
  B.   INCORPORATION OF BARIUM SULFATE INTO  
        PHOTOCROSSLINKED POLY(ANHYDRIDE) NETWORKS……………..131 
 
  C.   INCORPORATION OF MORSELIZED BONE INTO         
        PHOTOCROSSLINKED POLY(ANHYDRIDE) NETWORKS……………..132 
 
  D.   IN SITU PHOTOCROSSLINKING IN HUMAN CADAVER SPINE……….133 
 
  E.   PHOTOCROSSLINKED POLY(ANHDRIDES) IN A RABBIT MODEL  
        FOR POSTEROLATERAL INTERTRANSVERSE FUSION………..……..135 
 
 

 vi



LIST OF FIGURES 
 
 
 
Figure              Page  
 

CHAPTER II 
 
1.  Photopolymerization scheme for dimethacrylated and diacrylated  

monomers.  MSA - sebacic acid dimethacrylate, MCPH - 1,6-bis(p-
carboxyphenoxy)hexane dimethacrylate, PEGDA – poly(ethylene  
glycol) diacrylate……………………………………………………………………….28 

 
2.   pH profiles of selected formulations.  A. Samples with higher  

MCPH:MSA ratios (ie F02) undergo less acidity during degradation 
than samples with intermediate MCPH:MSA ratios (F01) or low  
MCPH:MSA ratios (F00). This trend is evident in unmodified network 
and in networks containing PEGDA).  B. By increasing the percentage  
of PEDGA in a formulation, acidity is decreased.  C. Regardless of  
PEDGA MW, PEGDA incorporation decreases acidity during  
degradation in comparison to formulations that do not contain PEGDA  
(F01).  Until day 30, formulations containing PEGDA MW 700 (F31)  
have less acidity than formulations containing PEGDA MW 575 (P11).   
However after day 30, the acidity levels are comparable. D. Samples  
containing CaCO3 (C00) or CaCO3 + PEGDA MW 700 (C30)  
demonstrate the least acidity during degradation, in comparison 
with formulations with PEGDA MW 700 (F30) or formulations  
containing anhydride monomers alone (F00).  Data is represented as  
means ± standard deviations for n = 3-4……………………………………………40 

 
3. Percent change in polymer mass during in vitro degradation for unmodified 

photocrosslinked anhydride networks (F00, F01, F02), photocrosslinked 
anhydride networks contained PEGDA MW700 (F10 – F32) or MW575  
(P11), photocrosslinked anhydride networks containing CaCO3 (C00, C01)  
or photocrosslinked anhydride networks containing CaCO3 and PEGDA  
MW700 (C30 and C31). Results are presented as means ± standard  
deviation for n = 3-4……………………………………………………………..…….42   

 
4. Main effects of CaCO3 incorporation, PEGDA incorporation, and  

MCPH:MSA ratio percent on mass loss of photocrosslinked anhydride  
networks for 2 and 6 weeks. A positive number indicates that the particular 
parameter had an increasing effect on the mass loss as the value was  
changed from a low (L) level to a high (H) level. A negative number indicates  
a decrease in the normalized cumulative mass loss as the parameter was 
changed from the low (L) level to a high (H) level.  Formulations described  

 vii



in Table 1 were used for this analysis.  Error bars represent the standard 
deviations of the effect………………………………………………………………...43 

 
5. Percent water uptake during in vitro degradation for unmodified  

photocrosslinked anhydride networks (F00, F01, F02), photocrosslinked 
anhydride networks containing PEGDA MW700 (F10 – F32) or MW575  
(P11), photocrosslinked anhydride networks containing CaCO3 (C00, C01)  
or photocrosslinked anhydride networks containing CaCO3 and PEGDA  
MW700 (C30, C31). Results are presented as means ± standard deviation  
for n = 3-4………………………………………………………………….…………...45 

 
6. Main effects of CaCO3 incorporation, PEGDA incorporation, and  

MCPH:MSA ratio on percent water uptake of photocrosslinked anhydride 
networks for 2 and 6 weeks. A positive number indicates that the particular 
parameter had an increasing effect on the water uptake as the value was 
changed from a low (L) level to a high (H) level. A negative number  
indicates a decrease in the normalized cumulative water uptake as the  
parameter was changed from the low (L) level to a high (H) level.   
Formulations described in Table 3 were used in this analysis.  Error bars 
represent the standard deviations of the effect………..………………………...…46 

 
7. SEM images of the front of degradation for a photocrosslinked  

polyanhydride network (A) and for a photocrosslinked poly(anhydride)  
network containing 20 wt% CaCO3 (B)……………………………………………...47 

 
8. CaCO3 incorporation into photocrosslinked anhydride matrices – effect on 

compressive modulus. Results are presented as means ± standard deviation  
for n = 3-4……………………………………………………………………….……...48 

 
CHAPTER III 

 
1. A. Schematic of photocrosslinking.  Anhydride monomers (MSA, MCPH), 

PEGDA, CaCO3 and protein granules were mixed to form a paste.  Mixtures 
were photocrosslinked after addition of photoinitiators and exposure to  
visible light.  B. Photocrosslinked discs were subjected to in vitro degradation.   
At predetermined timepoints, the release buffer was removed and protein  
release was quantified……………………………………………………..………….65 

 
2. Cumulative release kinetics of insulin (A), HRP (B), and FITC-BSA (C) from 

photocrosslinked PA networks (containing 10  wt% PEGDA) into PBS at  
37°C with agitation (60 rpm) expressed as normalized protein release.  Error  
bars represent means ± SE for n=3-5……………………………………………….75 

 
3. Cumulative release kinetics of HRP from photocrosslinked PA networks 

(containing 10 wt% PEGDA) into PBS at 37°C with agitation (60 rpm)  
expressed as normalized active protein release.  Error bars represent  

 viii



means ± standard deviation for n=5………………………………………………....79 
 
4. Cumulative release kinetics of FITC-BSA from photocrosslinked PA networks 

(containing 10 wt% PEGDA) into PBS at 37°C with agitation (60 rpm)  
expressed as normalized protein release.  Error bars represent means ± 
standard deviation for n=4…………………………………………..………………..81 

 
5. Cumulative release kinetics of HRP from photocrosslinked PA networks 

(containing 5 or 20 wt% PEGDA) into PBS at 37°C with agitation (60 rpm) 
expressed as normalized active protein release.   
Error bars represent means ± SE for n=4…………………………………………..84 
 

CHAPTER IV 
 
1. Schematic of photocrosslinking.  Anhydride monomers (MSA, MCPH),  

PEGDA, CaCO3 and protein granules were mixed to form a paste.   
Mixtures were photocrosslinked after addition of photoinitiators and  
exposure to visible light…………………………………...…………………………..96 

 
2. Cumulative release kinetics of HRP from photocrosslinked anhydride  

networks containing gelatin microparticles (A) or NaCl particles (B) into  
PBS at 37°C with agitation (60 rpm). Error bars represent mean±S.D. 
for n=2-4……………………………………………………………………………….105 

 
3. Cumulative release kinetics of HRP from photocrosslinked anhydride  

networks containing gelatin microparticles into PBS at 37°C with agitation  
(60 rpm). (A) The cumulative normalized mass released from samples  
containing 75 v/v% gelatin microparticles, error bars represent mean±S.D.  
for n=2-4……………………………………………………………………………….107   

 
4. Cumulative release kinetics of HRP from photocrosslinked anhydride  

networks containing gelatin microparticles into PBS at 37°C with agitation  
(60 rpm). The cumulative normalized mass released from samples  
containing 106-180 µm or 180-250 µm gelatin microparticles, error bars 
represent mean±S.D. for n=4………………………………...…………………..…109   

 
5. Crosslinked gelatin microparticles were loaded with a solution of FITC-BSA  

or HRP; protein was released in 1 ml of PBS………………………………….….111 
 
6. Schematic for dual release strategy.  Specimen contained HRP in the  

wet-granulated formulation and FITC-BSA-loaded gelatin microparticles or  
FITC-BSA in the wet-granulated formulation and HRP-loaded gelatin 
microparticles…………………………………………………………………………113 

 
7. Cumulative release kinetics of HRP and FITC-BSA from photocrosslinked 

anhydride networks containing gelatin microparticles into PBS at 37°C  

 ix



with agitation (60 rpm). Samples contained traditionally formulated HRP  
(sugar+ protein+ granulation) (10 wt%) and FITC-BSA loaded gelatin 
microparticles (10 wt%). The cumulative normalized mass released from  
samples is shown, error bars represent mean±S.D. for n=2- 4………………....113 

 
8. Cumulative release kinetics of HRP and FITC-BSA from photocrosslinked 

anhydride networks containing gelatin microparticles into PBS at 37°C with 
agitation (60 rpm). Samples contained traditionally formulated FITC-BSA  
(sugar+ protein+ granulation) (10 wt%) and HRP loaded gelatin  
microparticles (10 wt%).The cumulative normalized mass released from  
samples is shown, error bars represent mean±S.D. for n=2-4………….………114 

 
9. Proposed mechanism for dual protein release from photocrosslinked  

PA network-gelatin microparticle composites………………………………..……119 
 

APPENDIX B 
 

1. Photocrosslinked poly(anhydride) networks without BaSO4 (bottom left) or  
with BaSO4 (top and bottow right).  BaSO4 incorporation within the network 
clearly improves contrast on x-ray without affecting curing parameters……….131 

 
APPENDIX C 

 
1. SEM images of photocrosslinked poly(anhydrides) containing A) 25%  

morselized bone and B) 50% morselized bone………………………………..….132 
 

APPENDIX D 
 

1. A. Thoracic region of a human cadaver spine.  B. Partial corpectomy of a  
thoracic vertebral body.  C. Mixture of anhydride monomers was poured  
into the corpectomy region. D.  Photocrosslinking the PA network in the 
corpectomy region of a human cadaver spine.  E.  Photocrosslinked PA  
network removed from the corpectomy region.  F.  Alternative view of the  
back of the photocrosslinked PA network, demonstrating a complete filling  
of the void space.  G. Cross-section of the photocrosslinked PA) network, 
demonstrating crosslinking throughout the depth of the material…..………..…133 

 
APPENDIX E 

 
1. A. Surgical procedure of the rabbit posterolateral intertransverse fusion  

after implantation and photocrosslinking. B.  Planar x-ray.  C. microCT 
reconstruction.  D. microCT coronal view.  E. microCT transverse view.   
F. DEXA image, coronal view.  G. Average bone mineral density for the  
polymer + BaSO4 specimen and the polymer + autograft specimen as  
calculated by DEXA……………….…………………………………………………138 

 x



LIST OF TABLES 
 
 
 

Table              Page  
 

CHAPTER II 
 
1. PEGDA MW 700, MSA, and MCPH experimental design…………………….......30 
 
2. PEGDA MW 575, MSA, and MCPH experimental design………...………………32 
 
3. CaCO3, MSA, MCPH, and PEGDA experimental design……………………...….32 
 

CHAPTER III 
 
1. Physiochemical properties and methods of detection for model proteins……….65 
 
2. Experimental design – Model proteins, protein:excipient ratios, tested matrix 

formulations, and experimental lengths……………………………………………..73 
 
3. Burst release, Phase 2-6 release rate and cumulative HRP release from 

photocrosslinked PA networks containing 10 wt% PEGDA. # denotes release 
that is significantly greater than other formulations, ^ denotes release that is 
significantly less than other formulations (p<0.05)……………………………..…..79 

 
4. Burst release, Phase 2-5 release rate and cumulative FITC-BSA release from 

photocrosslinked PA networks containing 10 wt% PEGDA. . # denotes release 
that is significantly greater than other formulations, ^ denotes release that is 
significantly less than other formulations (p<0.05)…………………………………82 

 
5. Burst release, Phase 2-4 release rate and cumulative HRP release from 

photocrosslinked PA networks containing 5 or 20 wt% PEGDA………………….84 
 

CHAPTER IV 
 

1. Experimental design for evaluation of microparticle leaching for modulation  
of protein release………………………………………………………………….....106 

 
2. Experimental design for evaluation of protein release from loaded 

gelatin microparticles and from photocrosslinked PA networks…………………106 
 
3. Release rates of HRP from crosslinked anhydride networks……………………111 
 
 
 

 xi



APPENDIX A 
 

1. Rationale for polymer formulation………………………………………………..…130 
  

 xii



CHAPTER I 

 

INTRODUCTION 

 

Specific Aims 

The primary goal of the National Bone and Joint decade is to foster the discovery 

and development of novel therapeutics and treatments for skeletal disorders.  Spine-

related applications would benefit greatly from the development of injectable and in situ 

curable biomaterials. Spinal fusion is a procedure that eliminates or minimizes motion at 

a site of degeneration in the spinal column.  When fusion procedures yield new bone 

that welds the transverse processes or the vertebral bodies, the stability of the spinal 

column is enhanced without dramatically altering spine motion as a whole.  The 

osteoinductive material of choice for grafting is autograft harvested from the iliac crest.  

The use of autograft is dictated by limited availability at the donor site (1) and post-

operative morbidity due to long-term discomfort at the donor site (2).  Furthermore, in 

cases of revision procedures and/or when previous iliac crest harvest has been made, 

the autograft option is an untenable one.  These limitations form the basis and serve as 

the motivating elements in the development of synthetic alternatives.   An ideal 

polymeric biomaterial for these applications provides immediate mechanical stability, 

degrades over time in order to promote new bone growth, and promotes no adverse 

immune response.  To fulfill these three criteria, the following characteristics are desired 

for bone regenerative biomaterials: capability of in situ formation, conformability to the 

implantation site, controlled degradation and retention of mechanical characteristics.  
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Additionally, the material should be readily modifiable to include osteogenic factors or 

components which minimize local pH alterations, as local acidity can induce 

inflammation and impair bone healing (3).  This combination of features is ideal for 

complex fractures, bony defects, or spinal augmentations which require immediate 

mechanical support yet would benefit from material degradation and eventual 

replacement by bone.   

 The focus of this work therefore, was to develop an injectable, in situ curable, 

biodegradable biomaterial for spinal fusion.  In this study, photocurable methacrylated-

anhydride monomers were formulated into injectable pastes.  Reactive diluents 

(polyethylene glycol diacrylate (PEGDA) and nonreactive fillers (calcium carbonate 

(CaCO3)) will be incorporated. The choice of the anhydride system was based on its 

similarity to PMMA with respect to crosslinking chemistry, while simultaneously affording 

degradability to biomaterial.  In this dissertation, a thorough evaluation of the in vitro 

degradation and biocompatibility of the photocrosslinked poly(anhydride) networks is 

provided.  In addition, the capabilities of the materials to deliver bioactive molecules are 

assessed in in vitro studies.  The following specific aims were pursued.  

 

Aim 1 – Characterize in vitro degradation parameters for bone graft substitutes 
composed of surface-eroding poly-anhydrides 
 

In this aim, we have evaluated the in vitro degradation characteristics of 

photocrosslinked networks composed of sebacic acid dimethacrylate (MSA), 1,6-bis-

carboxyphenoxyhexane dimethacrylate (MCPH), and PEGDA in varying proportions, 

with or without the presence of additives such as calcium carbonate.  We have 

evaluated the swelling, mass loss, and mechanical properties at varying time points.  In 
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addition, the effect of degradation on local pH was evaluated as a function of time.  This 

aim resulted in optimization of network formulation for further use in Aims 2 and 3. 

 

Aim 2 – Evaluate in vitro release of proteins from surface eroding polyanhydrides 

In this aim, we have evaluated the in vitro release of model proteins from three-

dimensional photocrosslinked networks composed of MSA, MCPH and PEGDA.  

Formulations demonstrating favorable degradation parameters (including pH profile, 

mass loss, swelling, and mechanical strength as well as reproducibility in fabrication 

and ease of handling) in Aim 1 were assessed for their capabilities of sustained release 

of proteins. For incorporation into the photocrosslinked poly(anhydride) networks, 

proteins were titurated with a hydroxypropyl-β-cyclodextrin excipient to minimize the 

potential for free radical or photothermal damage, to stabilize the protein, and to enable 

accurate measurement of low levels of proteins.  We employed a gelatin-based wet 

granulation technique on the protein:excipient mixture to further protect proteins from 

free radical or photothermal damage that may occur during crosslinking.  By using an 

excess of excipient (1:100 protein:excipient) and gelatin granulation, a barrier was 

formed that minimizes the probability of damage occurring to the protein.  Release 

profiles of active enzymes were assessed using horseradish peroxidase, bovine serum 

albumin conjugated with fluoroscein isothiocyanate, and insulin as model proteins.  

Metrics included establishing protein integrity after crosslinking and achieving release 

for a minimum of 4 weeks in vitro. 
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Aim 3 – Modulate in vitro release of proteins from surface eroding polyanhydrides via 
incorporation of additives 
 
 In Aim 2, the release of several model proteins has been achieved from 

photocrosslinked polyanhydride networks.  However, in initial polymer formulations, the 

rate of protein release is slower than desired.  In Aim 3, the methodology developed in 

Aim 2 was used and expanded upon to modulate rates of protein release. A particulate 

leaching strategy was employed to induce network microporosity and facilitate protein 

release.  Sodium chloride crystals and gelatin microparticles were explored for their 

capabilities of modulating protein release.  Additionally, protein-loaded gelatin 

microparticles were incorporated into photocrosslinked matrices as a composite vehicle 

for sustained release. 
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Overview and Rationale  

The decade spanning 2002 – 2011 has been designated the National Bone and 

Joint decade, in part to highlight the negative impact of skeletal degenerative diseases 

on productivity and quality of life and in addition to foster discovery and development of 

new treatment options.  Among disorders and diseases associated with the 

musculoskeletal system, low back pain has assumed epidemic proportions, accounts for 

more physician visits than any diagnosis other than the common cold and is estimated 

to affect over 90% of Americans, with a financial impact in the billions of dollars due to 

lost man-hours and related medical costs (4).  In an ageing population, the primary 

cause of lower back pain is degenerative changes that arise due to overgrown joints in 

the lumbar region of the spine subsequent to arthritis.  These degenerative changes 

over time can cause a progressive narrowing of the spinal canal resulting in 

compression of the spinal nerve roots resulting in pain, local inflammation and onset of 

vertebral body segments instability (4).  This condition is called Lumbar Spine Stenosis 

(LSS), which disproportionately affects the middle-aged and elderly population, has 

been implicated as the primary cause of lower back pain (4).  Further progressive 

degeneration can result in slippage of the vertebral processes, leading to a condition 

called degenerative spondylolisthesis.  Currently, non-surgical options include 

controlling inflammation and pain through systemic and localized administration of 

medications and physical therapy.  Surgery involves relieving the spinal nerve root 

compression via decompressive laminectomy along with spinal fusion.  Spinal fusion is 

procedure used to treat conditions that result in weakening of the spinal column due to 

localized trauma and disorders ranging from (1) injuries to spinal vertebrae, (2) 
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degeneration of disk (herniated or slipped disk) leading to degenerative 

spondylolisthesis (3) abnormal curvatures (scoliosis and kyphosis) and (4) weak or 

unstable spine caused by infections or tumors (AAOS).  The primary goal of spinal 

fusion, therefore, is to eliminate motion at the site of degeneration of the spinal column 

thereby improving overall spinal column stability. This is accomplished by “welding” the 

vertebral processes in question using a grafting material that is replaced by a solid 

volume of bone over time.  This stabilization includes posterolateral intertransverse 

fusion to restore alignment and stability to the spine and/or interbody fusion.  Since the 

fusion procedures typically involve no more 2-3 sequential spinal segments, overall 

motion to the spine is not compromised.  A spinal fusion procedure is typically 

accompanied by augmentation of the spinal column with internal devices such as metal 

rods.  Annually, over 400,000 spinal fusion procedures are performed in the United 

States, with over 50% of those involving the lower spine, namely lumbar fusion.  

Alarmingly, the rate of lumbar fusion surgery for the treatment of LSS saw a relative 

increase of 220% from 1990 to 2001 to over 122,000 lumbar fusion procedures in 2001 

alone (5).   

Current hurdles that clinicians face in restoring spine stability include achieving 

predictable bone fusion particularly in cases of revision spine surgery, elderly patients 

and smokers.  The grafting material of choice, i.e., the ‘gold standard’ is autogenous 

bone from the iliac crest.  In a human, typically no more than 15 cc of bone can be 

harvested from the iliac crest (1).  This additional procedure results in significant pain 

and morbidity and furthermore, is non-tenable option in patients who have already 

undergone harvest for other surgical procedures (2).  This has prompted the exploration 

 6



of other alternatives and they include pre-fabricated grafts, injectable tri-calcium 

phosphate pastes and collagen-BMP systems.  Pre-fabricated grafts neither provide 

stability nor promote new-bone formation easily.  Tri-calcium phosphate (TCP) pastes 

are utilized as non-weight bearing bone void fillers, and require supplementation with 

hydroxyapatite (HA) or growth factors such as rhBMP-2 or TGF-β to facilitate new bone 

growth (6).  Collagen-BMP systems while capable of inducing new-bone formation do 

not provide immediate stabilization to the spinal column at the site of application.  

Therefore, the current need in spinal fusion surgery is a material that (a) provides 

immediate structural stability for spinal stabilization, (b) allows for easy conformability to 

defect site but degrades over time producing a fusion rate comparable to or better than 

autografts and current materials and (c) is replaced by bone.  The focus of this proposal 

therefore, is to develop an in situ curable biomaterial for spinal procedures.  In the 

proposed study, photo-curable methacrylated-anhydride monomers will be formulated 

into injectable pastes and augmented with osteogenic factors.  The choice of the 

anhydride system is based on its similarity to polymethyl(methacrylate) (PMMA) with 

respect to crosslinking chemistry, while affording degradability to biomaterial.  While, 

degradable alternatives to autograft have been explored, these efforts have primarily 

focused on the development of calcium phosphate bone cements (7-10) with the 

exception of poly(propylene-co-fumarate) (PPF) which is discussed later in this section.  

The focus of this proposal therefore, is to develop an injectable, in situ curable 

biomaterial for minimally invasive spinal procedures.  The choice of the anhydride 

system is based on its similarity to PMMA with respect to chemistry, while affording 

degradability to biomaterial. In this study, photo-curable methacrylated-anhydride 
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monomers were formulated into injectable pastes.  The paste was photocrosslinked and 

its in vitro degradation properties were evaluated.  In addition, its capabilities for release 

of active biomolecules were assessed.  

 

Degradable biomaterials in orthopedics 

The poly(α-hydroxy acids) (PHAs)  such as poly(lactic acid), poly(glycolic acid) 

and their copolymers have garnered the most attention amongst biocompatible, 

degradable polymers. Although the PHAs have had long standing success as surgical 

sutures, their use in bone replacement or augmentation has been limited. A primary 

source of this limitation is the lack or reactive moieties that prevent the PHAs from being 

injected and crosslinked in situ. 

It is fairly well established that PHAs primarily undergo degradation via bulk 

erosion (11). A shortcoming of this degradation pattern is the accumulation of acidic 

degradation products due to end-stage hydrolysis (12). When the mass of the degrading 

polymer matrix is significantly large, the local concentration of soluble degradation 

products (monomers and oligomers) can reach levels adequate to lower the local pH 

(13). It is believed that local acidity can induce inflammation and thus impair bone 

healing (3). In addition, pockets of accumulated degradation products can occur, 

resulting in a net porosity increase throughout the degradative lifetime of the polymer.  

This is particularly detrimental in bone replacement situations, as the net increase in 

porosity causes a net decrease in mechanical strength. Thus the effective lifetime of the 

device could be much less than the theoretical lifetime based on mass calculations.  In 

contrast to the PHAs, poly(anhydrides) (14, 15) (PA) undergo degradation 
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predominantly via surface erosion (16).  The advantages of the surface eroding system 

in bone augmentation applications are twofold. Surface erosion is dictated by the 

presence of highly insoluble degradation products.  Although the degradation products 

of the PAs are also acids, the monomers are intentionally designed to have low 

solubility and hence the degradation products are less likely to contribute to local acidity 

under physiological conditions. As a result, devices fabricated from these polymers are 

less likely to alter the local pH during their degradative lifetime. A second advantage 

conferred by the surface eroding characteristics of the PA system is the maintenance of 

mechanical strength during the course of degradation.  Tensile modulus changes of less 

than 20% have been seen at up to 50% mass loss in photocrosslinked polyanhydride 

systems (17, 18).  

Another consideration in the development of materials for use in spinal 

applications is control over degradation behavior. The ability to vary degradation 

behavior in a predictable manner is of extreme significance in ensuring new bone 

formation. It is desirable that the degradation/erosion rates match new bone ingrowth. In 

the PA system the degradative lifetime of the polymer can be varied from a few days to 

few years by changing the relative hydrophobicity of the monomers and the co-

monomer composition in the polymer (19). Such flexibility in degradation properties is 

however absent in the PHAs without significant chemical modification. 

Although, poly(esters) derived from propylene glycol and fumaric acid 

(unsaturated diacid) are being evaluated for bone cement applications with moderate 

success (20-22), they lack the versatility in chemical structure to allow for tailoring of 

erosion behavior and curing kinetics. In fact the poly(propylene-co-fumaric acid) system 
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(PPF), by virtue of it being an alternating polymer, has a fixed concentration of 

unsaturated linkages per polymer chain. This typically results in a very high cross-link 

density yielding brittle structures, a problem which is only offset by adding excipients 

and filler agents to decrease the cross linking. Furthermore, aliphatic vinyl groups have 

very poor reactivity, requiring the use of highly reactive and toxic reactive diluents such 

as vinyl pyrrolidone to improve the kinetics of cross-linking. Finally, aliphatic 

unsaturation in absence of an adjacent activating group is not amenable to cross-linking 

via light radiation.  

We believe that biodegradable polymers if designed and formulated properly can 

yield a viable osteoconductive conduit for bone repair and replacement in spinal 

procedures. We have developed an anhydride based polymer system bearing reactive 

methacrylate functionalities that cure rapidly upon exposure to UV or visible radiation to 

produce high strength degradable networks that have degradative lifetimes ranging from 

a few days to months (17). This novel system addresses many of the limitations of the 

PPF system and can be developed into an injectable, photo-curable system for bone 

regeneration. 

 

Polyanhydrides as drug delivery vehicles 

Polyanhydrides have been studied for a variety of sustained release applications, 

primarily as a direct result of their surface erosion properties.  The predictable 

degradation profile results in a similarly predictable release profile for drugs, proteins, or 

other molecules. Polyanhydrides are currently approved by the FDA as an implantable 

device for the delivery of BCNU in the treatment of glioblastoma multiforme – a fatal 
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form of brain cancer (23, 24).  Polyanhydride microspheres have been evaluated for the 

release of a variety of molecules, including rhodamine B (25, 26), FITC-BSA (27), 

plasmid DNA (25), p-nitroaniline (26, 28), piroxicam (26), and BSA (28).  In addition, 

photocrosslinked polyanhydride networks have demonstrated a modest capability to 

deliver plasmid DNA (29). 

 Sustained release of osteogenic cytokines and growth factors from polymer 

scaffolds for imparting osteoinductivity has been the focus of much research (30-36).  

Utilization of a potent osteoinductive molecule, such as BMP-2, in a photocrosslinked 

polyanhydride matrix will add an additional benefit to the system for applications in 

spinal repair. 

 

Role of BMPs in bone remodeling 

Bone is a very dynamic and metabolically active tissue that remodels throughout 

ones lifetime. This process is governed by a complex interplay between molecular cues 

in the form of soluble growth factors (GFs) such as bone morphogenetic proteins 

(BMPs), and mechanical cues. The bone healing process is a complex multi-faceted 

pathway which can be expedited by a bone graft. The stages of bone healing are 

inflammation, vascularization, osteoinduction, osteoconduction and remodeling (37).  

Inflammation, the first stage, lasts approximately 14 days.  During the vascularization 

stage, capillaries begin extension throughout the graft.  From days 14-21, the 

osteoinduction stage occurs concurrently with the vascularization stage, and results in 

osteoblast differentiation. The fourth stage, osteointegration, occurs as bone grows into 
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the graft over the course of several months.  Finally, remodeling occurs over a period of 

months to years.  

BMPs are cytokines which are members of the TGF-β superfamily of proteins.  

BMPs are involved in cell proliferation, differentiation, apoptosis and morphogenesis 

(37).  The hallmark of BMPs is the ability to enhance osteoinduction in a multi-faceted 

approach. BMPs can contribute to osteoinduction via Smad-mediated gene expression 

after interaction with membrane bound BMP receptors.  BMPs act as a chemotactic 

agent by facilitating progenitor cell migration to the graft interface.  BMPs act as growth 

factors by stimulating stem cell proliferation and angiogenesis.  BMPs act in 

differentiation by inducing stem cell maturation into chondrocytes, osteocytes and 

osteoblasts.  BMP-2, on which we are focusing Aim 2, is involved in bone and cartilage 

formation during embryogenesis, morphogenesis, and induction of osteogenesis 

(lineage specific differentiation in mesenchymal progenitor cells and osteoblasts) (37).   

In vivo bone formation has been demonstrated in several spinal fusion models 

using BMP-2.  In a rat model, rhBMP-2 has demonstrated up to a tenfold increase in 

ectopic bone formation over bone extract (38-40). In a canine intertransverse fusion 

model, successful bone fusion at 3 months was evident in rhBMP-2 specimen, while no 

fusion was observed with autograft (41, 42).  Dose dependency of BMP-2 for spinal 

fusion has been observed; increased dosages yield more rapid and more significant 

degrees of fusion (42, 43).   
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Current clinically used materials in spinal fusion 

 In response to the inadequacy of autograft for spinal fusion in patient 

populations, several alternative fusion materials have been studied.  Healos (DuPuy 

Spine, Inc) is a Type I collagen/hydroxyapatite matrix provided in sheets.  Healos 

provides no immediate structural support as a fusion mass and is only an 

osteoconductive conduit.  It must be soaked in bone marrow aspirate to achieve 

osteoinductive capabilities.  Healos has been found to achieve clinical outcomes similar 

to autograft; however, Healos yields a fusion mass that is radiologically inferior to 

autograft (44). 

 Calcium sulfate pellets (OSTEOSET, Wright Medical Technologies) are another 

material that has been studied as an autograft replacement for spinal fusion.  This is a 

resorbable, osteoconductive material. In a study in which one side of the spine was 

augmented with iliac crest autograft and the other side was augmented with 

OSTEOSET, there was no significant difference in fusion between sides (45).   

 Coralline hydroxyapatite has also been assessed clinically for spinal fusion 

procedures.  Although this material was found to promote bone growth, in an 

posterolateral intertransverse fusion study it was found that there is not enough local 

bone available in this procedure to produce fusion comparable to autograft (46). 

rhBMP-2 has been tested in several completed, prospective, randomized clinical 

trials which have resulted in FDA approval for use in anterior interbody spinal fusion (47, 

48).  Carriers for BMP-2 used in clinical trials and/or animal studies include Gelfoam, 

biphasic ceramic phosphates (hydroxyapatite + tricalcium phosphate) (49), 

hydroxyapatite granules (50), an artificial hydroxyapatite True Bone Ceramic (9, 51), or 
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β-tricalcium phosphate mixed with a polymer matrix (52). While many studies utilize 

levels of BMP-2 loading in the 0.1 to 5 mg range, some studies, such as those by 

Namikawa have demonstrated success in spinal fusion with loading of less than 100 µg 

of BMP-2 per 3 cc of material (52).   

OP-1 (rhBMP-7) is a growth factor that has been approved for clinical use in 

spinal fusion for symptomatic degenerative spondylolisthesis and spinal stenosis.  OP-1 

is applied as putty with carboxymethylcellulose and bovine collagen.  In a clinical study 

using OP-1 for fusion in patients with lumbar degenerative spondylolisthesis, the OP-1 

putty yielded fusion in 70% of patients (53, 54).  However this was not statistically 

different from autograft controls.  In another study involving the use of OP-1 for 

posterolateral intertransverse fusion in patients with degenerative spondylolisthesis with 

spinal stenosis, but fusion was only seen in 4 or 7 patients (in comparison to 7 or 9 

patients who received the control, autograft, hydroxyapatite,TCP) (55). 

 

Significance of the study 

 The photocurable polyanhydride system has numerous advantages for 

applications in spinal repair.  First, the photocurable nature of the system, by virtue of 

methacrylate groups, allows formation of the network in situ, such that the polymer fits 

perfectly into the desired region.  Second, upon crosslinking, the network forms with a 

mechanical strength sufficient to withstand the compressive forces of the spinal column.  

Since the material’s modulus is comparable to that of cortico-cancellous bone, it is less 

likely to shield the bone from normal stresses.   Next, the system versatility is clearly 

unique.  The ratios of monomers can be altered to fit nearly any degradation rate.  
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Additionally, up to 30 wt% of the formulation can consist of reactive and nonreactive 

additives (inorganic fillers or porogens, growth factors, or viscosity modifiers) without 

altering crosslinking kinetics.  Photocuring allows a more extensive handling time prior 

to crosslinking than is typically possible with chemical crosslinking (as in PMMA). 

Finally, system biodegradability eliminates the need for secondary surgeries to remove 

the device. 

 Development of this photo-curable poly(anhydride) system into an 

osteoconductive, osteoinductive biomaterial for use in spinal applications will be a 

paradigm shift from the current material of choice,  autograft harvested from iliac crest.  

In summary, the research detailed in this dissertation provides a major advance in 

osteoconductive, osteoinductive biomaterials for use in spine applications.  These 

studies will also generate data supporting the capability of this material for sustained 

release of proteins. The results from this study will lead to the development of an 

osteoinductive (through sustained release of BMPs), degradable, in situ curable 

material in spinal fusion applications. 
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Abstract 

 In the past decade, injectable biomaterials that are capable of in situ formation 

have garnered increased interest for use in restorative orthopedic procedures.  In this 

study, the in vitro degradation of photocrosslinked polyanhydride matrices, derived from 

methacrylic anhydrides of 1,6-bis(p-carboxyphenoxy)hexane (MCPH) and sebacic acid 

(MSA) were evaluated over a six-week period under physiological conditions. These 

matrices were augmented with two additives – the reactive diluent polyethylene glycol 

diacrylate (PEGDA) and the buffering agent calcium carbonate (CaCO3).    Disc shaped 

specimens were produced by crosslinking the components using both chemical and 

photoinitiators and exposure to visible light.  The experimental variables studied 

included: MCPH:MSA ratio, PEGDA molecular weight and weight fraction,  and 

incorporation of CaCO3.  The effects of these variables on local pH, water uptake, mass 

loss, and mechanical properties were explored.  Increasing the MCPH:MSA ratio 

decreased the mass loss and water uptake at predetermined endpoints, and decreased 

buffer acidity during degradation.  Both PEGDA and CaCO3 were found to decrease 

acidity and to reduce water uptake during degradation.  Incorporation of CaCO3 enabled 

maintenance of compressive modulus during degradation.  These results demonstrate 

that incorporation of reactive diluents and nonreactive additives into networks of 

photocrosslinked anhydrides can improve system properties as a material for bone 

replacement. 
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Introduction

Polymers have been explored for augmentation and/or regeneration of osseous 

tissue – including pins and plates in fracture fixation, fillers for long bone defects, and 

spinal augmentation.  An ideal polymeric biomaterial for these applications provides 

immediate mechanical stability, degrades over time in order to promote new bone 

growth, and promotes no adverse immune response.  To fulfill these three criteria, the 

following characteristics are desired for bone regenerative biomaterials: capability of in 

situ formation, conformability to the implantation site, controlled degradation and 

retention of mechanical characteristics.  Additionally, the material should be readily 

modifiable to include osteogenic factors or components which minimize local pH 

alterations, as local acidity can induce inflammation and impair bone healing (1).  This 

combination of features is ideal for complex fractures, bony defects, or spinal 

augmentations which require immediate mechanical support yet would benefit from 

material degradation and eventual replacement by bone.   

The well-characterized homo and co-polymers of α-hydroxy acids (PHAs) such 

as poly(lactic acid) and poly(glycolic acid), which have great utility as surgical sutures, 

have garnered the most attention amongst biocompatible, degradable polymers.  In 

fracture fixation and bone augmentation applications, solid rods, plates and membranes 

formed from the PHAs have been used in conjunction with bioactive glass for evaluation 

of osteoconductivity (2).  While the PHAs do initially possess sufficient mechanical 

strength for load-bearing applications, their bulk degradation mechanism results in a 

rapid loss of strength without accompanying loss of mass.  Additionally resultant from 

the degradation mechanism, the accumulation of hydrophilic degradation products can 
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cause local acidity and inflammation.  Another limitation of the PHA-based systems is 

the inability to be processed and formed in situ, primarily due to an absence of reactive 

moieties or photocurable groups.  PHAs bearing acrylate end groups have been 

synthesized and explored for drug delivery and tissue sealant applications (3); however,  

these polymers lack versatility with respect to degradation behavior.  

Spine-related applications would benefit greatly from the development of 

injectable and in situ curable biomaterials. Spinal fusion is a procedure that eliminates 

or minimizes motion at a site of degeneration in the spinal column.  When fusion 

procedures yield new bone that welds the transverse processes or the vertebral bodies, 

the stability of the spinal column is enhanced without dramatically altering spine motion 

as a whole.  The osteoinductive material of choice for grafting is autograft harvested 

from the iliac crest.  The use of autograft is dictated by limited availability at the donor 

site (4) and post-operative morbidity due to long-term discomfort at the donor site (5).  

Furthermore, in cases of revision procedures and/or when previous iliac crest harvest 

has been made, the autograft option is an untenable one.  These limitations form the 

basis and serve as the motivating elements in the development of synthetic alternatives.  

Many materials are currently being studied for use in spinal fusion including calcium 

sulfate pellets (6), collagen/hydroxyapatite (HA) matrices (7), carriers for BMP-2 

(calcium phosphates (8), HA (9-11), and combinations of calcium phosphate and HA 

(12)), and BMP-7 (OP-1) (13-15). Autograft and the majority of currently studied 

synthetic alternatives do not provide immediate load-bearing capability to the spine. 

Mechanical stability does not occur until a bony fusion mass is formed.  Based on the 

surgical consideration and desired clinical outcomes, the ideal material for spinal fusion 

 24



applications is a degradable, in situ curable biomaterial that provided mechanical 

support until sufficient new bone growth occurs.  

An anhydride based polymer system has been developed which bears reactive 

methacrylate functionalities that cure rapidly upon exposure to UV or visible radiation to 

produce high strength networks with variable degradative lifetimes (16). This system 

meets the criteria for use in bone regeneration applications and provides an alternative 

synthetic system to overcome the limitations of PHAs, autograft or other materials used 

in spinal fusion.  For example, the system components can be mixed as a paste, which 

can be conformed to the desired region and crosslinked in situ by virtue of methacrylate 

groups.  Furthermore the chemistry of the monomers (differing lipophilicities) offer a 

means of varying the degradation of the system from a few days to around a year 

without compromising the photocuring characteristics by simply changing the co-

monomer composition in the polymer (16, 17). Another perceived advantage of 

polyanhydrides (PAs)  is a degradation mechanism predominantly via surface erosion 

(18), a result of the hydrophobicity of the matrix and degradation products.   For 

example, Muggli et al have shown complete degradation of discs of crosslinked MSA 

(an aliphatic anhydride monomer) in 50 hours, while crosslinked discs of MCPH (an 

aromatic, hydrophobic anhydride monomer) reached only 30% mass loss after 90 days 

of degradation (19).   Surface-eroding materials also favor the retention of mechanical 

strength during the course of degradation. The dense network enables achievement of 

a high strength material immediately following crosslinking.  Tensile modulus changes 

of less than 20% have been seen at up to 50% mass loss in photocrosslinked PA 

systems (16, 19). The surface erosion mechanism also minimizes acidity around the 
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degrading biomaterial, which should favor new bone deposition.  Finally, in in vivo 

applications, photocrosslinked PAs have shown evidence of soft tissue biocompatibility 

(20, 21) as well as a dynamic interface (22) for bone growth and remodeling. 

  An additional benefit of the photocrosslinked PA system is the relative ease with 

which physical characteristics of the system can be modulated (via incorporation of 

additives) without chemical alterations to the monomers.  Studies to date have primarily 

focused on the curing and degradation behavior of PA semi-interpenetrating networks 

(semi-IPN’s).  In one study, Muggli et al evaluated the degradation behavior of semi-

IPNs composed of linear anhydride polymers within a crosslinked network of 

dimethacrylated anhydride monomers (19).  This study demonstrated that addition of a 

linear polymer into the crosslinked network resulted in increased network hydrophobicity 

and a reduction of shrinkage and heat evolution during polymerization.  Burkoth et al 

explored incorporation of lipophilic moieties bearing photoreactive groups such as 

monomethacrylated cholesterol and stearic acid into networks (23).  In this system, both 

photografting and covalent incorporation of the additives decreased the degradation 

rate in comparison to unmodified networks.   

In this study, we evaluated the in vitro degradation behavior of varying 

formulations of MCPH and MSA in the presence or absence of reactive and nonreactive 

additive agents, with specific emphasis on maintenance of network integrity, retention of 

mechanical properties and local pH control.  The reactive diluent poly(ethylene glycol) 

diacrylate (PEGDA) was selected to modulate network crosslinking by virtue of its dual 

reactive acrylate groups.  Fig. 1 shows a photocrosslinking schematic for the anhydride 

monomers and PEGDA.  The inorganic buffering phase calcium carbonate (CaCO3) 
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was selected as a pH buffer to minimize acidity during degradation.  These two 

constituents were easily incorporated into the system prior to crosslinking. Since one-

dimensional degradation best enables characterization of surface erosion, most studies 

of photopolymerizable anhydrides evaluate crosslinked discs which are typically 12-16 

mm in diameter and <2 mm in height.  Since this does not approximate the three-

dimensional nature of most in vivo situations, in this study, samples of dimensions 8 mm 

diameter, 4 mm height were studied.  The overall effect of each additive (PEGDA or 

CaCO3) was based on criteria for usage of the material in spinal augmentation 

applications - curing efficiency, degradation rate, water uptake, pH during degradation, 

and mechanical properties.  The objectives of this study therefore was to deduce the 

effects of these additives on 1) network water uptake and mass loss, 2) acidity during 

degradation, and 3) maintenance of mechanical strength and integrity during 

degradation to enable the identification of an optimal system for spinal fusion 

applications.  
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Fig. 1: Photopolymerization scheme for dimethacrylated and diacrylated 
monomers.  MSA - sebacic acid dimethacrylate, MCPH - 1,6-bis(p-
carboxyphenoxy)hexane dimethacrylate, PEGDA – poly(ethylene glycol) 
diacrylate. 

 
 
 
Experimental 

 

Materials 

 Methacrylic acid, sebacoyl chloride, triethylamine, methylene chloride, sodium 

bicarbonate, sodium sulfate, 4-hydroxybenzoic acid, 1,6-dibromohexane, methacryloyl 

chloride, poly(ethylene gycol) diacrylate, camphorquinone, ethyl 4-
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(dimethylamino)benzoate, benzoyl peroxide, dimethyl toluidine, n-methyl pyrrolidone, 

sodium chloride, potassium chloride, Tris, sodium phosphate monobasic, magnesium 

chloride, calcium chloride, calcium carbonate, and hydrochloric acid were obtained from 

Sigma-Aldrich. Sulfuric acid and acetone were obtained from Fisher Scientific. All 

chemicals were used as received. 

 

Experimental design 

Effect of incorporation of PEGDA 

In order to assess the effects of the reactive additive PEGDA in photocurable PAs, 15 

sample formulations were evaluated.  Two variables were considered: 1) mass fraction 

of PEGDA in the formulation and 2) ratio of MCPH to MSA.  High, intermediate and low 

levels for each variable were selected, and used in a full factorial experimental design.  

Three mass fractions of PEGDA were evaluated – 0%, 5%, 10%, 20% and 40 w/w %.  

Three MCPH:MSA ratios were evaluated – 30:70, 50:50, and 70:30. The values for all 

parameters and all combinations can be seen in Table 1 (a) and (b). 
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Table 1: PEGDA MW 700, MSA, and MCPH experimental design 
a. Levels of parameters tested in the experimental design 
wt % PEGDA MCPH:MSA ratio 
Low level (0) 0% Low level (0) 30:70 
Low intermediate level (1) 5% Intermediate level (1) 50:50 
Intermediate level (2) 10% High level (2) 70:30 
High intermediate level (3) 20%   
High level (4) 40%   
b. Combinations of the experimental levels and parameters in the full factorial 
design 
Formulation wt% PEGDA MCPH:MSA ratio 
F00 0% 30:70 
F01 0% 50:50 
F02 0% 70:30 
F10 5% 30:70 
F11 5% 50:50 
F12 5% 70:30 
F20 10% 30:70 
F21 10% 50:50 
F22 10% 70:30 
F30 20% 30:70 
F31 20% 50:50 
F32 20% 70:30 
F40 40% 30:70 
F41 40% 50:50 
F42 40% 70:30  
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An additional variable, PEGDA molecular weight, was also assessed.  Two 

PEGDA molecular weights were evaluated - MW 575 and MW 700.  The values for all 

parameters and all combinations for the MW 700 experiments can be seen in Table 1 

(a) and (b).  The values for all parameters and all combinations for the MW 575 

experiments can be seen in Table 2 (a) and (b). 

Effect of incorporation of CaCO3   

In order to assess the effects of the nonreactive additive CaCO3 in photocurable 

PAs, four sample formulations were evaluated.  Three variables were considered: 1) 

presence or absence of CaCO3, 2) ratio of MCPH to MSA, and 3) presence or absence 

of PEGDA. High and low levels were selected for each parameter, and used in a full 

factorial experimental design. The values for all parameters and all combinations for the 

CaCO3 experiments can be seen in Table 3 (a) and (b). 

 

Monomer synthesis 

Sebacic acid dimethacrylate 

Sebacic acid dimethacrylate (MSA) was synthesized from methacrylic acid and 

sebacoyl chloride as described by Tarcha (24).  Methacrylic acid (9 g) and triethylamine 

(Et3N) (11.63 g) were dissolved in methylene chloride (150 ml), and the mixture was 

stirred at 0°C for 30 min. Sebacoyl chloride (12.5 g) was added dropwise to the solution. 

Stirring was continued for 1 h at a reduced temperature, followed by vacuum filtration 

for removal of the precipitated triethyl ammonium chloride. The filtrate was diluted with 

an additional 100 mL of methylene chloride and cooled to 0°C. The solution was 

washed sequentially with saturated NaHCO3  
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T able 2: PEGDA MW 575, MSA and MCPH experimental design 
a. Levels of parameters tested in the experimental design 
wt% PEGDA MCPH:MSA ratio 
Low level (0) 0% Low level (0) 30:70 
Intermediate level (1) 20% Intermediate level (1) 50:50 
High level (2) 40% High level (2) 70:30 
b. Combinations of the experimental levels and parameters in the full factorial 
design 
Formulation wt% PEGDA MCPH:MSA ratio 
P00 0% 30:70 
P01 0% 50:50 
P02 0% 70:30 
P10 20% 30:70 
P11 20% 50:50 
P12 20% 70:30 
P20 40% 30:70 
P21 40% 50:50 
P22 40% 70:30 

 
 
 
Table 3: CaCO3, MSA, MCPH, and PEGDA experimental design 
a. Low, intermediate, and high levels tested in the factorial design 
 wt% CaCO3 MCPH:MSA ratio wt% PEGDA 
Low level 0% 30:70 0% 
High level 20% 50:50 20% 
b. Combinations of the experimental values in the full factorial design 
Formulation wt% CaCO3 MCPH:MSA ratio wt% PEGDA 
F00 0% 30:70 0% 
F03 0% 30:70 20% 
F13 0% 50:50 20% 
F10 0% 50:50 0% 
C00 20% 30:70 0% 
C01 20% 50:50 0% 
C30 20% 30:70 20% 
C31 20% 50:50 20%  
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(250mL × 2) and distilled H2O (250mL × 2) and dried over Na2SO4. Methylene chloride 

was then removed in vacuo at 0°C.  

1,6-bis(p-carboxyphenoxy)hexane 

 1,6-bis(p-carboxyphenoxy)hexane (CPH) was synthesized from 4-

hydroxybenzoic acid and 1,6-dibromohexane based on the synthesis of 1,3-bis-(p-

carboxyphenoxy)propane described by Conix (25).  NaOH (20 g) was dissolved in 

distilled water (100 ml) in a 500 ml round-bottom flask equipped with a reflux condenser, 

an addition funnel and a stirbar.  To this solution, 4-hydroxybenzoic acid (29 g) was 

added, and the system was heated until reflux. 1,6-dibromohexane (24.6 g) was added 

dropwise over 2 hours.  The reaction was stirred for several hours under reflux.  The 

product (disodium salt of CPH) was dried by vacuum filtration and washed twice with 

methanol. The product was dissolved in distilled water, warmed to 60°C and acidified to 

pH 2 with H2SO4.  This resulted in the free acid of CPP or CPH as a white frothy 

precipitate.  The product was then isolated by vacuum filtration and washed with 

distilled H2O (200 ml × 2) and acetone (200 ml × 2) to remove any trace organics, 

water, and unreacted 4-hydroxybenzoic acid.  The final product was then dried 

overnight in a 60°C oven. 

1,6-bis(p-carboxyphenoxy)hexane dimethacrylate 

1,6-bis(p-carboxyphenoxy)hexane dimethacrylate (MCPH) was synthesized from 

CPH and methacryloyl chloride as described by Tarcha (24).  1,6-bis(p-

carboxyphenoxy)hexane (11.3 g) and Et3N (8.08 g) were dissolved in methylene 

chloride (120 mL) and stirred at 0 °C for 45 min. Methacryloyl chloride (7.1g) was added 

dropwise to this solution. Stirring was continued at a reduced temperature for 3.5 h, 
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followed by vacuum filtration for removal of precipitated triethyl ammonium chloride. The 

filtrate was washed sequentially with saturated NaHCO3 (200 mL × 2) and distilled H2O 

(200 mL × 2). The solution was dried over anhydrous Na2SO4, and CH2Cl2 was 

removed in vacuo; a slurry was thereby produced. Then, anhydrous ethyl ether was 

added and removed in vacuo to facilitate the removal of any remaining methylene 

chloride. 

 

Sample preparation and photopolymerization 

Photopolymerizations were initiated with a dual initiator strategy, composed of 

camphorquinone (CQ)/ ethyl 4-(dimethylamino)benzoate (4-EDMAB) for light-initiated 

crosslinking, and benzoyl peroxide (BPO)/dimethyl toluidine (DMT) for chemically-

initiated crosslinking.  Sample formulations were prepared by thoroughly mixing the 

monomers in appropriate amounts, followed by adding an appropriate quantity of a 

BPO/CQ in N-methyl pyrrolidone (NMP) followed by 4-EDMAB/DMT in NMP to yield a 

final quantity of up to 0.1 wt% for each of CQ, BPO, 4-EDMAB, and DMT in the 

formulation.  Uniform discs (4 mm in height and 8 mm in diameter) were prepared in 

Teflon molds Samples were polymerized with a blue dental lamp (3M CuringLight 

XL1500). 

 

Simulated body fluid preparation 

 Simulated body fluid (SBF), first described by Kokubo (26), was prepared by ion 

concentrations nearly equivalent to the inorganic components of human plasma – 142 

mM Na+,  5 mM K+, 1.5 mM Mg2+, 2.5 mM Ca2+, 148.8 mM Cl-, 4.2 mM HCO2
-, and 1 
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mM SO4
2-, buffered with 50 mM Tris.  Bayraktar’s modifications to Kokubo’s SBF were 

used in this study (27).   

 

In vitro degradation studies 

In vitro degradation parameters were assessed in simulated body fluid (SBF), pH 

7.4 at 37°C to most thoroughly mimic physiological conditions.  Samples were 

maintained at 60 rpm on an orbital shaker throughout degradation studies.  The discs 

were degraded in seven ml of SBF.  Buffer was replaced daily for the first two weeks, 

every other day for the next two weeks, and once every three days for the last two 

weeks of the study to maintain sink conditions.  Buffer pH was measured and recorded 

at each timepoint prior to buffer exchanges.  At pre-selected time points (2 and 6 

weeks), four samples of each formulation were removed for assessment.   

 

Gravimetric analysis 

 The dry mass of the samples (m0) was measured prior to commencement of 

degradation studies in SBF.  At pre-determined time points, samples were removed, 

rinsed with PBS and the excess liquid dabbed using a Kimwipe® before recording their 

wet mass (mw).  Samples were then flash frozen in liquid nitrogen and freeze-dried 

overnight. Next, they were vacuum-dried for an additional 48 hours and weighed to 

obtain the dry mass after degradation (md).  The mass loss (ML, Eq. 1) and water 

uptake (WU, Eq. 2) of the samples were then determined by the following equations: 

0

0

m
mm

ML d−
=

                                                          (1) 
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Minimums of four (n =4) samples were measured for each composition and time point. 

 

Mechanical testing 

Compressive mechanical testing was conducted using an AGS-J mechanical tester 

(Shimadzu, Kyoto, Japan) with a 1 kN load cell on dried samples (n = 4). The cylinders 

were compressed between two plates moving at a crosshead speed of 1 mm/min until 

failure, while load and displacement was recorded throughout. Based on sample 

geometry, the stress versus strain behavior was obtained and plotted. The compressive 

modulus was determined from the stress-strain curve using Trapezium software 

(Shimadzu) and Microsoft Excel. 

 

Scanning electron microscopy 

 Dried PA samples before and after degradation were cryo-fractured by cooling in 

liquid nitrogen and the cross-section was analyzed using scanning electron microscopy 

(SEM). The pellets were sputter-coated with gold-palladium to minimize charging and 

then mounted onto aluminum stubs using conductive tape for imaging. SEM images 

were obtained using a Hitachi S-4200 SEM at an acceleration voltage of 5 keV. 

 

Statistical analysis 

Results are reported as mean ± standard deviation.  Data analysis was 

performed using SigmaStat version 3.1 and SigmaPlot version 9.0 (Systat Software, 

Inc. Point Richmond, CA, USA). To determine differences between time points for each 

 36



formulation, a one-way analysis of variance (ANOVA) or a non-parametric ANOVA 

(Kruskal-Wallis Test) was first performed to determine statistical significance (p < 0.05) 

within each data set.  When the analysis of variance detected significance, a Tukey 

Multiple Comparison Test (one-way ANOVA) or a Dunn’s Multiple Comparison Test 

(Kruskal-Wallis Test) was run with a confidence level of 95%.  To determine differences 

between different formulations at the two timepoints, a t-test or a Mann-Whitney Rank 

Sum Test was performed to determine statistical significance (p<0.05).  In addition to 

statistical analysis by ANOVA, the main effects of experimental parameters 

(MCPH:MSA ratio, PEGDA amount, CaCO3 amount) on mass loss and water uptake 

were calculated at each timepoint as enabled by the factorial experimental design (28). 

 

Results 

 
 
Nomenclature 

 Polymer formulations are described in the following manner.  For the samples 

containing PEGDA MW700, the formulations are defined as F(x)(y) where x refers to the 

wt% of PEGDA with 0=0%, 1=5%, 2=10%, 3=20%, and 4=40% and y refers to the 

MCPH:MSA ratio where 0=30:70, 2=50:50, and 3=70:30. For the samples containing 

PEGDA MW575, the formulations are defined as P(x)(y) where x refers to the wt% of 

PEGDA with 0=0%, 1=20%, and 2=40%, and y refers to the MCPH:MSA ratio where 

0=30:70, 2=50:50, and 3=70:30.  Finally, samples containing CaCO3 were described by 

the notation C(x)(y) where the C denotes the presence of CaCO3 at 20 wt%, x 

represents the wt% of PEGDA, with 0=0% and 3=20% (to correspond with the 
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respective F formulations) and y represents the MCPH:MSA ratio with 0=30:70 and 

1=50:50. 

 

General observations 

In order to maximize the impact of the experimental variables, a more efficient 

dual initiator curing system was explored.  Instead of only a conventional 

photoinitiator/accelerator system commonly used in photocrosslinking applications, this 

system was augmented with a chemical curing agent and accelerator (benzoyl 

peroxide/dimethyl toluidine).  By combining these two systems, the initiator 

concentration required for induction of polymerization was 10-fold lower.  The low 

initiator concentrations allowed longer working times of the paste than were previously 

enabled.  However, more importantly, the addition of chemical curing resulted in rapid 

photocrosslinking (~ 60-90 seconds) with excellent depth of cure (up to 10 mm).   

 Some formulations did not maintain network integrity during the course of the in 

vitro degradation.  These formulations included the 40% PEGDA MW 700 formulations 

(F40, F41, F42), the 40% PEGDA MW 575 formulations (P20, P21, P22), and most of 

the 20% PEGDA MW 575 formulations (P10, P11). These results suggest an upper limit 

for PEGDA wt% within the matrices. 

 

pH profiles 

 To evaluate the acidity as a result of the polymer degradation products, pH of the 

degradation buffer was measured prior to each buffer exchange.  The degradation 

buffer was exchanged daily for the first week of degradation, every other day for the 

 38



next two weeks, and every third day for the final two weeks.  The pH profiles for each 

formulation showed the same general shape.  During days one and two there was a 

dramatic drop in degradation buffer pH.  From days three to 14, the pH level slowly 

increased to a level near 7.4 (the initial degradation buffer pH).  At day 14, when 

degradation buffer exchanges were changed from daily to every other day, there is an 

initial drop in pH.  This drop gradually recovered over the next few days.  By day 40, the 

pH for all samples was approaching 7.4. 

 Selected pH profiles are shown in Fig. 2 to demonstrate trends based on 

formulation.  As expected based on degradation rates reported in other studies (16), an 

increase in MCPH:MSA ratio resulted in decreased acidity during the course of 

degradation.  This trend was seen in both unmodified formulations (without PEGDA), 

shown in Fig. 1A, and in formulations containing PEGDA.  Additionally, as shown in Fig. 

2B, the inclusion of PEGDA in the crosslinked network resulted in a net decrease in 

acidity in a dose dependant manner.  While the intermediate levels of PEGDA (5 and 10 

wt%), were not dramatically different in pH response, the high level of PEGDA (20%) 

caused less buffer acidity during degradation and the formulations without PEGDA 

resulted in increased buffer acidity during degradation.  During the first 30 days of 

degradation, the degradation buffer of formulations containing PEDGA MW 575 was 

less acidic than formulations containing PEGDA MW 700.  However, after 30 days there 

was negligible difference in the pH response of the formulations.  Both formulations 

were less acidic than unmodified formulations.  The pH profiles for these formulations 

are shown in Fig. 2C. 
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 The addition of CaCO3 to sample formulations provided the most dramatic 

decrease in degradation buffer acidity during sample degradation, shown in Fig. 2D.  

Formulations with CaCO3 or CaCO3 + PEGDA exhibited the least acidity of any 

formulation; however, these formulations were not different from each other.  In 

comparison, the unmodified samples exhibited the most acidic degradation buffer, while 

the samples containing PEGDA alone had intermediate buffer pH levels. 

 

Gravimetric analysis 

Mass loss 

 Percent mass loss was determined after two and six weeks of in vitro 

degradation to assess the extent of erosion that occurred in photocrosslinked PA 

networks (Fig. 3).  In general, a statistically significant difference in mass loss between 

weeks two and six was seen only in the samples containing 0% PEGDA (F00, F01, 

F02) and two samples containing 5% PEGDA (F11 and F12).  Likewise, samples 

containing 10% or 20% PEGDA did not exhibit statistically significant changes in mass 

loss between two and six weeks.  In general, samples containing PEGDA underwent 

less change in mass than samples without PEGDA.  In addition, samples with a higher 

MCPH:MSA ratio exhibited less mass loss than samples with a lower MCPH:MSA ratio.   

The main effects of each parameter (CaCO3, MCPH:MSA ratio, PEGDA) on mass loss 

are summarized in Fig. 4.  When CaCO3 is increased from a low level (0%) to a high 

level (25%) mass loss was increased.  This effect was more pronounced after two 

weeks of degradation than after six weeks.  Increasing the MCPH:MSA ratio from a low 
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level (30:70) to a high level (50:50), resulted in a decrease in mass loss.  Altering 

PEGDA content from a low level (0%) to a high level (20%) also decreased mass loss. 

F00 F01 F02 F10 F11 F12 F20 F21 F22 F30 F31 F32 P11 C00 C01 C30 C31
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Fig. 3: Percent change in polymer mass during in vitro degradation for 
unmodified photocrosslinked anhydride networks (F00, F01, F02), 
photocrosslinked anhydride networks contained PEGDA MW700 (F10 – 
F32) or MW575 (P11), photocrosslinked anhydride networks containing 
CaCO3 (C00, C01) or photocrosslinked anhydride networks containing 
CaCO3 and PEGDA MW700 (C30 and C31). Results are presented as 
means ± standard deviation for n = 3-4. 
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Fig. 4: Main effects of CaCO3 incorporation, PEGDA incorporation, and 
MCPH:MSA ratio percent on mass loss of photocrosslinked anhydride 
networks for 2 and 6 weeks. A positive number indicates that the 
particular parameter had an increasing effect on the mass loss as the 
value was changed from a low (L) level to a high (H) level. A negative 
number indicates a decrease in the normalized cumulative mass loss as 
the parameter was changed from the low (L) level to a high (H) level.  
Formulations described in Table 1 were used for this analysis.  Error bars 
represent the standard deviations of the effect. 

 
 
 
Water uptake 

Percent water uptake was determined after two and six weeks of in vitro 

degradation (Fig. 5).   All samples exhibited a greater percent water uptake at 6 weeks 

than at 2 weeks (p<0.02 for all formulations).  After two weeks of degradation, within a 

given MCPH:MSA ratio, samples containing any weight percent of PEGDA exhibited 

significantly less water uptake than the samples without PEGDA (p<0.001). After six 
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weeks of degradation, there was a statistically significant difference in water uptake 

between all formulations except between F10 and F20, and F20 and F30.  Increasing 

the PEGDA content of the photocrosslinked networks decreased the water uptake 

during in vitro degradation.  Dose-dependency of this effect was not seen after two 

weeks of degradation, but was evident after 6 weeks of degradation.  A trend was also 

seen to correlate MCPH:MSA ratio with water uptake.  In general, an increase in 

MCPH:MSA ratio (within a given PEGDA weight percent) resulted in a decrease in 

water uptake during degradation. 

The main effects of each parameter (CaCO3, MCPH:MSA ratio, PEGDA content) 

on water uptake are summarized in Fig. 6.  Changing CaCO3 content from a low level 

(0%) to a high level (25%) resulted in increased water uptake after two weeks of 

degradation. Alternatively, the same increase in CaCO3 content resulted in decreased 

water uptake after six weeks of degradation. Increasing the MCPH:MSA ratio from a low 

level (30:70) to a high level (50:50), resulted in a decrease in water uptake.  Altering 

PEGDA content from a low level (0%) to a high level (20%) also decreased water 

uptake. 
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Fig. 5: Percent water uptake during in vitro degradation for unmodified 
photocrosslinked anhydride networks (F00, F01, F02), photocrosslinked 
anhydride networks containing PEGDA MW700 (F10 – F32) or MW575 
(P11), photocrosslinked anhydride networks containing CaCO3 (C00, 
C01) or photocrosslinked anhydride networks containing CaCO3 and 
PEGDA MW700 (C30, C31). Results are presented as means ± standard 
deviation for n = 3-4. 
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Fig. 6: Main effects of CaCO3 incorporation, PEGDA incorporation, and 
MCPH:MSA ratio on percent water uptake of photocrosslinked anhydride 
networks for 2 and 6 weeks. A positive number indicates that the 
particular parameter had an increasing effect on the water uptake as the 
value was changed from a low (L) level to a high (H) level. A negative 
number indicates a decrease in the normalized cumulative water uptake 
as the parameter was changed from the low (L) level to a high (H) level.  
Formulations described in Table 3 were used in this analysis.  Error bars 
represent the standard deviations of the effect. 

 
 
 
Scanning electron microscopy 

 Formulations that did not contain CaCO3 showed no microporosity at the 

degrading zone.  In contrast, as seen in Fig. 7, microporosity is evident in samples 

containing 20 wt% CaCO3 in the region of the degradation front.  The degradation front 

for samples with CaCO3 was significantly thicker than the relatively thin front of 

degradation for samples without CaCO3 (data not shown). 
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 Mechanical testing 

 Compressive mechanical testing was performed on freeze-dried samples that 

were not subjected to degradation and those that had been subjected to either two or 

six weeks of in vitro degradation.  As seen in Fig. 8, inclusion of CaCO3 enabled 

maintenance of compressive modulus during in vitro degradation in comparison to 

samples which did not contain CaCO3.  Although samples with or without CaCO3 had a 

similar compressive modulus prior to degradation,  after two weeks of degradation, 

samples containing CaCO3 had a significantly greater compressive modulus (104±12 

MPa) than samples without CaCO3 (68±14 MPa) (p=0.015).  Interestingly, after six 

weeks of degradation samples containing CaCO3 had a compressive modulus of 127±9 

MPa, which is greater than the compressive modulus prior to degradation or after only 

two weeks of degradation.  After six weeks of degradation, samples without CaCO3 

underwent further loss of compressive modulus to 21±3 MPa (p<0.01). 

 

Fig. 7: SEM images of the front of degradation for a photocrosslinked 
polyanhydride network (A) and for a photocrosslinked poly(anhydride) network 
containing 20 wt% CaCO3 (B).   
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Discussion 

Many orthopedic applications can benefit from the development of a high-

strength, degradable, in situ curable polymeric system.  Criteria for success as a bone 

regenerative material include: capability of in situ formation, conformability to the 

implantation site, controlled degradation (water uptake and mass loss) and retention of 

mechanical characteristics.  Additionally, the degradation of the material should 

minimally affect local pH. In recent years a family of photopolymerizable anhydride 

network systems based on difunctional methacrylated monomers derived from sebacic 

anhydride, 1,3-bis(p-carboxyphenoxy)propane, and 1,6-bis(p-carboxyphenoxy)hexane 

have been developed (16) and explored for tissue contacting and drug delivery 

 48



applications.  These difunctional moieties can be crosslinked upon exposure to UV or 

visible light in the presence of a photoinitiator.  The photocurable nature of the system 

fulfills two desirable characteristics for a bone regenerative material – namely in situ 

formation and conformability to an implantation site or three dimensional mold (16).   

The incorporation of PEGDA was expected to promote the crosslinking efficiency 

of the system at the expense of increased network hydrophilicity and water uptake.  

Surprisingly, PEGDA incorporation into the photocrosslinked PA system resulted in a 

dramatic decrease in water uptake during degradation.  This phenomenon occurred in a 

somewhat dose-dependent fashion; with even 5 wt% PEGDA incorporation resulting in 

a 10-fold decrease in water uptake after six weeks of degradation (see Fig. 5).  

Increases in PEGDA concentrations to 10 or 20 wt% further decreased water uptake at 

a modest level.  The reduction of water uptake was seen in all formulations regardless 

of MCPH:MSA ratio or the inclusion of CaCO3.  This observation was contrary to the 

initial premise that inclusion of PEGDA would result in increased water uptake by nature 

of the molecule’s hydrophilicity.  Excessive system water uptake or swelling is 

undesirable, as it would preclude adequate filling of a void in vivo and would adversely 

affect the rate of degradation.  The most likely cause of the decrease in water uptake for 

the PEGDA-containing formulations is the presence of a denser network with increased 

crosslinking that minimizes water uptake.  Additionally, the introduction of PEGDA likely 

reduces the concentration of unreacted monomer that can lead to autocatalytic events 

promoted by the hydrolysis of the monomers.  PEGDA may be a useful additive for 

modulating water uptake behavior in in vivo applications for photocrosslinked PA 

networks. 
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Interestingly, CaCO3 inclusion also affected the water uptake behavior of degrading 

matrices (see Fig. 5).  Samples containing both PEGDA and CaCO3 displayed similar 

water uptake behavior as comparable formulations (same MCPH:MSA ratio) containing 

only PEGDA. However, in anhydride matrices augmented with only CaCO3 significantly 

different water uptake behavior was observed. After two weeks of degradation, the 

presence of CaCO3 resulted in slightly increased water uptake, presumably a direct 

result of microporosity induced by the presence of the additive.  The microporosity 

induced in the region of the degradation front facilitated water influx. Alternatively, after 

six weeks of degradation, the water uptake of samples containing CaCO3 was 

significantly decreased in comparison with corresponding formulations without CaCO3.  

This phenomenon suggests some ionic interaction between the crosslinked network and 

the CaCO3 that effectively tightens the network.  This mechanism may be similar to the 

effects seen during ionotropic gelation of alginate by divalent cations (29).  Crosslinking 

of alginate with calcium chloride serves to stiffen the polymer and to reduce solvent 

swelling (30); a similar effect as is seen in PA networks modulated with CaCO3.  

Modulation of photocrosslinked PAs with CaCO3 may be useful for eliminating longterm 

water uptake in in vivo applications. 

One additional property of importance in the development of a material for use in 

spinal applications is mechanical strength.  The compressive modulus was similar for all 

formulations prior to degradation.  However, after degradation, the compressive 

modulus for formulations without CaCO3 (regardless of PEGDA content) significantly 

decreased (see Fig. 8).  A 25% loss of modulus was seen after two weeks of 

degradation, and a 60% loss of modulus was seen after six weeks of degradation.  In 
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contrast, formulations containing CaCO3 (regardless of PEGDA content) displayed 

maintenance of modulus throughout the six week degradation period.  The mechanism 

for the maintenance of mechanical strength is most likely the ionotropic effect proposed 

as the mechanism for decreasing water uptake in the longterm. Interactions between 

the anhydride network and Ca2+ strengthen the system, which will prove critical for load 

bearing applications in the spine. 

Another important and surprising outcome of the incorporation of PEGDA was 

the reduction in buffer acidity during sample degradation.   During the final four weeks of 

degradation, PEGDA incorporation significantly reduced acidity in the sample 

degradation buffer, with pH differences between samples containing PEGDA and 

samples without PEGDA of ~0.5 pH units (see Fig. 2B).  This elevation in pH was 

greater than would occur purely by a reduction in concentration of anhydride bonds.  

Additionally, PEGDA of a lower molecular weight favored less changes in pH during the 

first 30 days of degradation (see Fig. 2C), an observation that is consistent with a 

denser network (decreased elasticity).  A portion of this effect is dictated by the amount 

of PEGDA measured as a weight percent instead of a mole percent – with this 

measurement, there are more molecules of PEGDA MW 575 in the system with an 

equal weight percent.   Again, with pH differences near 0.5 pH units, it seems unlikely 

that the molar difference can account completely for the reduction in acidity. Although 

PEGDA has been incorporated into a variety of degradable polymers, similar pH effects 

have not been reported. 

Although the incorporation of CaCO3 into the PA matrices did not significantly 

impact the initial drop in pH observed in all samples, the pH of the degradation buffer of 
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samples containing CaCO3 was restored to physiological pH by day 20.  Such a 

normalization of pH was not observed in samples without CaCO3.    Interestingly, 

formulations containing both CaCO3 and PEGDA had similar pH profiles to formulations 

containing CaCO3 alone, an effect greater than that of PEGDA alone.  Furthermore, 

while introduction of PEGDA yielded small changes in pH (reduced acidity) in 

comparison to samples containing CaCO3, the incorporation of both yielded similar pH 

profiles as CaCO3 alone.  More importantly, the beneficial effect of CaCO3 was more 

pronounced after two weeks.  This suggests that the events that contributed to acidity in 

the first two weeks are not easily mitigated by simple formulation changes and are 

induced by initial network hydrolysis. The buffering capability of CaCO3 has been 

studied in conjunction with degradable polymers including PLGA(50:50) (31) and 

poly(ortho esters) (32). Additionally, carbonated calcium phosphates as well as CaCO3 

are capable of buffering pH of lactic acid in the physiological range (33). Inclusion of 

CaCO3 into photocrosslinked PA networks enabled pH buffering in the physiological 

range, a property of importance in bone regeneration applications.  

The effect of MCPH:MSA ratio on mass loss, water uptake, and pH was 

consistent with results from previous studies (16, 19).  In the photocrosslinked PA 

system, mass loss and water uptake are functions of network hydrophobicity.  In 

general, MCPH:MSA ratio affects the system degradation in a predictable manner.  

Increases in MCPH:MSA ratio decrease the mass loss (see Fig. 3) and decrease 

system water uptake (see Fig. 5).  Increasing the MCPH:MSA ratio also decreases the 

acidity that occurs during degradation (see Fig. 2A).  This may be attributed to an 

overall increase in hydrophobicity of the system, which would be expected based on 
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chemical structure considerations of MCPH and MSA.  MCPH, with its two aromatic 

groups and long hydrocarbon chain as a backbone, is a much more hydrophobic moiety 

than MSA, with only a shorter aliphatic hydrocarbon backbone.  A more hydrophobic 

system is expected to less readily uptake water, favoring a slower degradation rate. The 

lower aqueous solubility of MCPH in comparison with MSA is also expected to favor 

reduced acidity. 

The inclusion of the additives PEGDA and CaCO3 also affected mass loss in the 

system.  When PEGDA was included in the system, generally a decrease in mass loss 

was observed, which can be attributed to the increased crosslinking density and 

decreased penetration of water in the system.  In addition, some loss of control of the 

degradation rate dictated by MCPH:MSA ratio occured.  The inclusion of CaCO3 in the 

system increased the system mass loss, a result of microporosity introduced by 

leaching of the additive.  This effect was more pronounced after two weeks of 

degradation than after six weeks of degradation.  We theorize that the effect on mass 

loss is less prominent in the long term due to the ionotropic interactions between the 

calcium ion and the crosslinked network. 

 

Conclusions 

In conclusion, the photocrosslinked PA system described here clearly possesses 

necessary characteristics for usage in bone replacement applications. These 

characteristics are enhanced by the inclusion of PEGDA and CaCO3 as additives.  The 

incorporation of additives does not alter the curing ability or formability of the system.   

Incorporation of PEGDA and CaCO3 serve both to decrease water uptake and to 
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modulate local acidity during degradation.  Surprisingly, inclusion of CaCO3 enables 

maintenance of compressive modulus throughout the degradative lifetime of the 

material.  In this study, we have revealed additional mechanisms for tuning material 

properties via incorporation of additive agents to expand the scope and functionality of 

the system. Finally, this study demonstrates that additives can be easily and 

successfully incorporated into photocrosslinked PA networks to address a variety of 

physical characteristics.  In the future, these strategies can be applied to impart 

osteoinductivity to the network by incorporation of growth factors.   

Selection of a polymer formulation for future work is based on several 

parameters determined in this study.  First, we have determined that roughly 20% mass 

loss after six weeks of degradation is an optimal design criterion for use in drug delivery 

and in vivo bone augmentation applications.  This amount of mass loss will provide 

mechanical stability which lasts until a bony fusion mass can be formed, while still 

allowing substantial release of any osteoinductive factors which will be incorporated in 

the matrix.  The samples containing 10% PEGDA (F20, F21, F22) and the samples 

containing CaCO3 and 20% PEGDA (C30, C31) best meet this criteria.  Additionally, 

based on the results of this study, PEGDA and CaCO3 are additives that improve the 

material properties.  Therefore PEGDA (at 10-20 wt%) and CaCO3 (at a maximum of 20 

wt%) will be components of the design criteria for future work in drug delivery and bone 

augmentation. 
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Abstract 

 Injectable delivery systems are attractive as vehicles of localized delivery of 

therapeutics especially in the context of regenerative medicine.  In this study, the 

potential of photocrosslinked polyanhydride (PA) networks as an encapsulation matrix 

for long-term delivery of macromolecules was studied.  The in vitro release of three 

model proteins (horseradish peroxidase (HRP), bovine serum albumin labeled with 

fluorescein isothiocyanate (FITC-BSA), and insulin) were evaluated from cross-linked 

anhydride networks composed of sebacic acid dimethacrylate (MSA), 1,6-bis-

carboxyphenoxyhexane dimethacrylate (MCPH), and poly(ethylene glycol) diacrylate 

(PEGDA), supplemented with calcium carbonate.  The proteins were formulated into 

granules first by dilution with a cyclodextrin excipient through tituration, followed by 

gelatin-based wet-granulation prior to incorporation into the networks.  Protein release 

was quantified over predetermined time periods by activity assay (HRP), fluorescence 

(FITC-BSA), or ELISA (insulin).  All proteins were readily released from the 

photocrosslinked PA networks; however, each protein displayed a unique release 

behavior.   Most importantly, release of protein with retention of activity and antigenicity 

was achieved for durations ranging from one week to over four months.  In general, a 

more hydrophobic network (higher MCPH:MSA ratio) resulted in slower rates of protein 

release.  Incorporation of PEGDA into the matrices was found to be critical for 

maintenance of integrity during degradation and protein release.  These results suggest 

that a photocrosslinked PA system may useful as injectable delivery systems for long-

term delivery of peptides and growth factors in tissue regeneration applications. 

 60



Introduction 

 Polymers are routinely used in the development of sustained drug delivery 

systems.  Some of the notable examples of polymer-based sustained release systems 

are Lupron Depot, an implantable ethylene-co-vinyl acetate based system for the 

delivery of GnRH agonist, Nutropin Depot, injectable microspheres of poly(α-hydroxy 

acid) for the delivery of recombinant human growth hormone and the Norplant family of 

Silastic-based implantable devices for the delivery of female contraceptives (1, 2).  One 

of the drawbacks of using non-degradable polymer implantable systems is the need to 

excise the implant at the end of use.  Therefore, when long-term systemic or localized 

delivery is sought, implementation of systems derived from degradable polymers is 

desirable; a need currently met by co-polymers of lactic acid and glycolic acid (PLGA).  

Some of the perceived limitations of the PLGA system include reproducibility of release 

behavior, difficulty in readily providing zero-order release and inability to form the 

delivery vehicle in situ.  This last limitation is particularly relevant for tissue regeneration 

applications in which placement of a delivery system within a trauma site and physical 

conformation of the device to the implant site are important prerequisites to promote 

optimal tissue healing.  Linear polymers containing anhydride linkages (polyanhydrides 

(PA)), which are capable of undergoing surface erosion, fulfill some of these criteria by 

achieving predictable near-zero order release.   

In the PA system, the rate of matrix degradation and drug release can be easily 

modulated by simple modification of polymer hydrophobicity via polymer chemistry as 

well as by alterations in fabrication technique, additive components, and/or geometry (3, 

4).  Sustained release from linear PAs has been focused on a variety of drugs including 
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antibiotics (5, 6), local anesthetics (7), hormones (8), heparin (9), and many types of 

small molecules for the treatment of cancers (5, 10-15).  Gliadel®, one of the most 

successful commercially available polyanhydride drug delivery vehicles, delivers BCNU 

(carmustine) directly in the site of surgical resection for treatment of glioblastoma 

multiforme (16, 17). 

While small molecules form the basis for a majority of new therapeutic agents, 

recombinant protein technologies are becoming increasingly prevalent.  Unlike small 

molecules, proteins are complex three-dimensional molecules whose function is 

dependent on structure.  Proteins are susceptible to chemical and physical 

modifications, which may adversely affect both structure and function.  The environment 

of a protein delivery vehicle is therefore a critical parameter for successful long-term 

protein release.  Matrices derived from linear PA have been explored for release of 

insulin (18), trypsin (19), bovine serum albumin (20), FITC-BSA (21), water-soluble 

bone proteins (22), and the neuropeptide TRH (23).  The utility of PA have been further 

improved by recent adaptation.  A polymer system based on anhydride monomers with 

reactive methacrylate functionalities has been developed for use in orthopedic tissue 

repair and regeneration (24). Upon exposure to light radiation, this system can be 

rapidly crosslinked in situ into a high strength degradable network.  Such systems 

address one of the limitations of the PLGA system as they are amenable to minimally 

invasive surgical interventions. In our laboratory, we have shown that a traditional 

photocrosslinked PA system composed of MCPH and MSA can be easily modified with 

additives such as CaCO3 and PEGDA to modulate degradation properties such as 

mass loss, water uptake, pH and mechanical strength with no adverse impact on the 
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crosslinking capabilities of the system (25).  The versatility for additive incorporation 

demonstrated in this study suggests that this system can be further modified to include 

therapeutic macromolecules without affecting crosslinking parameters.  With the 

incorporation and bioactive molecules, the photocrosslinked PA system can serve as an 

injectable delivery system for sustained release.   Although previous studies of the 

photocrosslinked PA system have focused on orthopedic applications, a more general 

application would involve intra-muscular and sub-dermal injectable systems capable of 

long-term delivery of macromolecules.    

While the hydrophobic nature and surface erosion behavior of PAs protects bio-

encapsulants such as proteins from moisture-induced aggregation that can readily 

occur with other polymeric delivery vehicles (such as poly(D,L-lactide-co-glycolide), 

augmentation with secondary protection strategies is imperative to ensure peptide an 

protein stability in photocurable PA systems.  For example, inclusion of sugar-based 

excipients can prevent aggregation of proteins within a polymeric delivery vehicle (26). 

Additionally, inclusion of basic compounds can minimize acidity during degradation of 

the carrier and further enhance protein stabilization (27).  While several studies describe 

the long-term protein release of proteins and growth factors such as BSA, TGF-β1, HRP 

and IGF-1 from photocurable matrices derived from PEGDA exist (28-31) no such 

studies have been undertaken with photocurable PA, with the notable exception of 

plasmid DNA release (32).   

For this study, three model proteins (HRP, FITC-BSA, and insulin) were selected 

for release from photocrosslinked PA networks.  As seen in Table 1, these proteins 

differ in molecular weight, isoelectric point, and detection strategy.  Recently, we 
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developed a dual-purpose photocurable PA system, with optimized degradation 

characteristics and mechanical properties that is suitable as both an autograft extender 

and delivery vehicle for spinal fusion applications (25).  In this study we have 

implemented a protein stabilization strategy previously developed in our laboratory to 

protect proteins from free radicals during polymerization (33), with some minor 

modifications to stabilize and disperse the protein in the PA system developed for the 

spinal fusion application.  The overall objective of this study is therefore, to demonstrate 

the suitability of this system (see Fig. 1) for sustained delivery of peptides and proteins.  

Specifically, we aim to answer the following questions: (1) To what extent can the 

delivery of macromolecules be controlled by the chemistry of photocrosslinked PA 

networks? (2) Do the released proteins maintain activity and/or antigenicity after 

incorporation into and release from the matrix? (3) Can active protein release be 

achieved over a long-term period (>three months)?, and (4)  Can a variety of 

macromolecules with differing physical properties be released from the networks?  By 

answering these questions, the feasibility of the photocrosslinked PA system for the 

long-term delivery of active macromolecules has been established. 
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Fig. 1: A. Schematic of photocrosslinking.  Anhydride monomers (MSA, MCPH), 
PEGDA, CaCO3 and protein granules were mixed to form a paste.  Mixtures were 
photocrosslinked after addition of photoinitiators and exposure to visible light.  B. 
Photocrosslinked discs were subjected to in vitro degradation.  At predetermined 
timepoints, the release buffer was removed and protein release was quantified. 
 
 
 
Table 1:  Physiochemical properties and methods of detection for model proteins. 
Protein MW pI Structural information Detection method 
Insulin 6.7 kDa 5.3 2 subunits, connected by 

disulfides 
ELISA 

HRP 43 kDa 9.0 Disulfides  
Heme group 

Activity assay 
(oxidation of TMB) 

FITC-BSA 67 kDa 4.8 Roughly 54% α-helix Fluorescence (FITC)  
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 Experimental 

 

Materials 

 Methacrylic acid, sebacoyl chloride, triethylamine, methylene chloride, sodium 

bicarbonate, sodium sulfate, 4-hydroxybenzoic acid, 1,6-dibromohexane, methacryloyl 

chloride, poly(ethylene gycol) diacrylate (PEGDA), camphorquinone, ethyl 4-

(dimethylamino)benzoate (4-EDMAB), benzoyl peroxide, dimethyl toluidine, n-methyl 

pyrrolidone, bovine serum albumin fluorescein isothiocyanate conjugate (FITC-BSA), 

bovine insulin, and calcium carbonate were obtained from Sigma-Aldrich. Horseradish 

peroxidase, TMB substrate kits and Coomassie-based Bradford assay kits were 

purchased from Pierce. Rat insulin ELISA kits were obtained from Crystal Chem. 

 

Monomer synthesis 

Sebacic acid dimethacrylate 

Sebacic acid dimethacrylate (MSA) was synthesized from methacrylic acid and 

sebacoyl chloride as described by Tarcha (34).  Methacrylic acid (9 g) and triethylamine 

(Et3N) (11.63 g) were dissolved in methylene chloride (150 ml), and the mixture was 

stirred at 0°C for 30 min. Sebacoyl chloride (12.5 g) was added dropwise to the solution. 

Stirring was continued for 1 h at a reduced temperature, followed by vacuum filtration 

for removal of the precipitated triethyl ammonium chloride. The filtrate was diluted with 

an additional 100 mL of methylene chloride and cooled to 0°C. The solution was 

washed sequentially with saturated NaHCO3 (250mL × 2) and distilled H2O (250mL × 2) 

and dried over Na2SO4. Methylene chloride was then removed in vacuo at 0°C.  
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1,6-bis-carboxyphenoxyhexane 

 1,6-bis-carboxyphenoxyhexane (CPH) was synthesized from 4-hydroxybenzoic 

acid and 1,6-dibromohexane based on the synthesis of 1,3-bis-carboxyphenoxypropane 

described by Conix (35).  NaOH (20 g) was dissolved in distilled water (100 ml) in a 500 

ml round-bottom flask equipped with a reflux condenser, an addition funnel and a 

stirbar.  4-hydroxybenzoic acid (29 g) was added to this solution, and the system was 

heated until reflux. 1,6-dibromohexane (24.6 g) was added dropwise over 2 hours.  The 

reaction was stirred for several hours under reflux.  The product (disodium salt of CPH) 

was dried by vacuum filtration and washed twice with methanol. The product was 

dissolved in distilled water, warmed to 60°C and acidified to pH 2 with H2SO4.  This 

resulted in the free acid of CPP or CPH as a white frothy precipitate.  The product was 

then isolated by vacuum filtration and washed with distilled H2O (200 ml × 2) and 

acetone (200 ml × 2) to remove any trace organics, water, and unreacted 4-

hydroxybenzoic acid.  The final product was then dried overnight in a 60°C oven. 

1,6-bis-carboxyphenoxyhexane dimethacrylate 

1,6-biscarboxyphenoxyhexane dimethacrylate (MCPH) was synthesized from 

CPH and methacryloyl chloride as described by Tarcha (34).  1,6-bis(p-

carboxyphenoxy)hexane (11.3 g) and Et3N (8.08 g) were dissolved in methylene 

chloride (120 mL) and stirred at 0 °C for 45 min. Methacryloyl chloride (7.1g) was added 

dropwise to this solution. Stirring was continued at a reduced temperature for 3.5 h, 

followed by vacuum filtration for removal of precipitated triethyl ammonium chloride. The 

filtrate was washed sequentially with saturated NaHCO3 (200 mL × 2) and distilled H2O 

(200 mL × 2). The solution was dried over anhydrous Na2SO4, and CH2Cl2 was 
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removed in vacuo; a slurry was thereby produced. Then, anhydrous ethyl ether was 

added and removed in vacuo to facilitate the removal of any remaining methylene 

chloride. 

 

Protein formulation 

HRP, FITC-BSA and insulin were used as model proteins. The formulation for 

incorporation into photocrosslinked polyanhydride matrices was based on methods 

described by Baroli (33). In brief, each protein (P) was first pulverized by trituration in a 

Teflon dish with a Teflon-coated spatula. Pulverized protein was then mixed with 

hydroxypropyl-β-cyclodextrin (HPβCD), in a ratio of 1:1 (insulin), 1:50 (FITC-BSA), or 

1:100 (HRP) w/w (P:HPβCD), by geometric dilutions until a homogeneous powder was 

obtained.  Subsequently, this P–HPβCD mixture was granulated with a 5% aqueous 

solution of gelatin B (100 mg of gelatin solution per 1 g of P–HPβCD mixture) to 

produce a slightly wet mass, which was then forced through a 250 µm sieve to yield 

granules. The granulated P–HPβCD mixture was stored at -20°C and analyzed for 

fluorescence (FITC-BSA), antigenicity (insulin) or enzymatic activity (HRP) prior to use.  

To verify the homogeneity of the protein distribution in freshly prepared powders, 

a content uniformity test was used. Prior to granulation, the P–HPβCD mixtures were 

sampled uniformly over their entirety without mixing. Using a sample size of 10 mg 

(n=10 per each formulation), the mixtures were then quantified for enzyme content 

using a Coomassie-based Bradford Assay.  For each set of 10 samples, the mean and 

the standard deviation was calculated. Requirements of the test were considered met if 

the amount of enzyme was within the limits of 85 and 115% of the expected values, and 
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the relative standard deviation (expressed as a percentage) was less than or equal to 

6%. 

 

Sample preparation and photopolymerization 

Photopolymerizations were initiated with a dual initiator strategy, composed of 

camphorquinone (CQ)/4-EDMAB for light-initiated crosslinking, and benzoyl peroxide 

(BPO)/dimethyl toluidine (DMT) for chemically-initiated crosslinking.  Sample 

formulations were prepared by thoroughly mixing the monomers in appropriate 

amounts, followed by adding an appropriate quantity of a BPO/CQ in N-methyl 

pyrrolidone (NMP) followed by 4-EDMAB/DMT in NMP to yield a final quantity of up to 

0.1 wt% for each of CQ, BPO, 4-EDMAB, and DMT in the formulation.  Uniform discs (4 

mm in height and 9 mm in diameter) were prepared in Teflon molds. Samples were 

polymerized with a blue dental lamp (CuringLight XL1500). 

 

 In vitro release studies 

In vitro protein release was assessed in phosphate buffered saline, pH 7.4 at 

37°C to mimic physiological conditions.  Samples were maintained at 60 rpm on an 

orbital shaker throughout degradation studies.  The discs were degraded in 10 ml of 

buffer.  Buffer was replaced at predetermined timepoints for entire duration of the study 

to minimize the effects enzyme deactivation in solution and to maintain sink conditions 

for degradation.   
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HRP activity assay 

 Enzymatic activity of HRP was calculated by quantification of oxidized TMB 

substrate in a peroxide solution using a TMB Substrate Kit.  Serial dilutions of HRP 

release buffer were performed in PBS. 100 µl of each appropriate dilution was added to 

a 96 well plate.  Using a multichannel pipettor, 100 µl of TMB substrate in a peroxidase 

buffer was added and the plate was immediately transferred to a plate reader for 

analysis. The concentration of the oxidized product was measured every 5 minutes for 

30 minutes total at 462 nm on a BioTek II microplate reader.  HRP concentrations in 

release buffer were compared to freshly prepared HRP standards ranging from 0.01 

mU/ml to1 mU/ml.  The linear range for a 30 minute incubation was between 0.01 

mU/ml and 0.25 mU/ml.  The detection limit was 0.01 mU/ml. 

 

Insulin ELISA 

 ELISA was used to quantify insulin release and antigenicity, according to the 

manufacturer’s instructions.  In brief, samples and standards were incubated for two 

hours at 4°C in a 96 well plate that had been preadsorbed with anti-insulin antibody.  

The plate was washed five times, and was then incubated with 100 µl anti-insulin 

enzyme conjugate for 30 minutes at room temperature.  The plate was then washed 

seven times and incubated with 100 µl of TMB substrate for 40 minutes at room 

temperature.  Immediately following the TMB incubation, 100 µl of 2N sulfuric acid was 

added to stop the reaction. The absorbance at 450 nm was measured on a BioTek II 

microplate reader, with a subtraction of the absorbance at 630 nm.  Insulin 
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concentrations were compared to freshly prepared standards ranging from 0.01 to 6.4 

ng/ml.  The detection limit for the assay was 0.01 ng/ml. 

 

Quantification of FITC-BSA fluorescence 

 Concentration of FITC-BSA was quantified by fluorescence at 488 nm on a 

BioTek II microplate reader.  200 µl FITC-BSA containing release buffer was loaded in 

wells of a 96b well plate.  FITC-BSA concentrations were compared to freshly prepared 

standards ranging from 0.01 to 2 µg/ml.  The detection limit for the assay was 0.01 

µg/ml. 

 

Statistical analysis 

 Statistical analysis for comparison of burst release, cumulative release, and rates 

of release was performed using a Student’s t-test with a minimum confidence level of 

0.05 for statistical significance.  All experiments were performed with n = 3-5 and are 

reported as mean ± standard deviation of the mean. 

Results and Discussion 

 

Experimental design 

We have developed a method for protecting proteins from the detrimental effects 

that can occur during incorporation into a photocrosslinked system, such as free radical 

damage (33).  In the current study, HPβCD was selected instead of lactose as the 

excipient, to avoid potential detrimental effects of the reducing sugar.  Cyclodextrins 

have been shown to minimize solution-based and lyophilization-induced aggregation in 
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proteins, as well as to stabilize against degradation and denaturation (36).   The 

resulting uniform powder was then subjected to wet granulation with a 5% aqueous 

bovine gelatin solution.   This excipient and wet granulation strategy served to protect 

the proteins in two ways.  First, the physical barrier of the gelatin granule prevented 

access of the free radicals to the sensitive protein molecules.  Second, the excess of 

HPβCD molecules in comparison to protein minimized the probability of interaction 

between free radicals and the protein. The prepared granules were then incorporated 

into monomer mixtures prior to photocrosslinking.   

Monomer formulations, protein:excipient ratios, and maximum experimental 

lengths are summarized in Table 2.  Protein:excipient ratios were utilized such that the 

lowest level of protein loading that allowed measurable levels during the entire 

experimental length.  This necessitated different levels of loading for the different 

proteins related to release rate and detection sensitivity.  PEGDA incorporation into 

matrices enabled a reduction in water uptake, as shown in previous studies (25). 

Additionally, samples without PEGDA that were loaded with protein granules did not 

maintain structural integrity during degradation (data not shown).  This finding supported 

previous conclusions that PEGDA serves to improve network elasticity via crosslinking.  

MCPH:MSA ratio was a metric for network hydrophobicity, and therefore was a dictator 

of degradation rate (higher ratio was a more hydrophobic network with a slower rate of 

degradation). 
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Table 2: Experimental design – Model proteins, protein:excipient ratios, tested matrix formulations, 
and experimental lengths. 
Protein Protein:Excipient ratio Matrix formulations Length of Experiment 
Insulin 1:1 10% PEGDA 70:30 MCPH:MSA 

10% PEGDA 30:70 MCPH:MSA 
7 days 
7 days 

HRP 1:100 0% PEGDA 70:30 MCPH:MSA 
0% PEGDA 30:70 MCPH:MSA 
5% PEGDA 70:30 MCPH:MSA 
5% PEGDA 30:70 MCPH:MSA 
10% PEGDA 70:30 MCPH:MSA 
10% PEGDA 50:50 MCPH:MSA 
10% PEGDA 30:70 MCPH:MSA 
20% PEGDA 70:30 MCPH:MSA 
20% PEGDA 30:70 MCPH:MSA 

N/A 
N/A 

27 days 
27 days 

120 days 
120 days 
120 days 
27 days 
27 days 

FITC-
BSA 

1:50 10% PEGDA 70:30 MCPH:MSA 
10% PEGDA 50:50 MCPH:MSA 
10% PEGDA 30:70 MCPH:MSA 

27 days 
27 days 
27 days  

 
 
 
Short term release of Insulin, HRP, and FITC-BSA 
 

For evaluation of protein release from photocrosslinked PA networks, three 

model proteins were selected – HRP, FITC-BSA, and insulin.  These proteins possess 

different physiochemical characteristics and can be detected and quantified in solution 

by different assays; these properties are summarized in Table 1.  HRP is a 43 kDa 

protein which is positively charged at a neutral pH (pI = 9.0).  Its structure is 

characterized by four disulfide bonds, seven N-linked carbohydrate residues, one 

pyrrolidone residue, and one heme group.  HRP detection is achieved by enzymatic 

reaction, generally the oxidation of tetramethylbenzidene (TMB) substrate in a peroxide 

buffer.  Detection by enzymatic activity requires maintenance of protein activity during 

and after release.  FITC-BSA is a 67 kDa globular protein with a pI of roughly 4.8 and a 

secondary structure that is roughly 54% α-helix.  Although it has no measurable 

biological activity, labeling of BSA with FITC enables simple, sensitive quantification of 

protein release. Insulin is a polypeptide of 6.7 kDa with a pI of 5.3.  It is composed of 
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two subunits that are linked by two disulfide bonds.  Detection of insulin is carried out by 

ELISA, which verifies maintenance of antigenicity of the epitopes recognized by the 

antibodies.  Selection of these three model proteins with differing characteristics serves 

to verify the robust capabilities for protein delivery in the photocrosslinked PA system.     

 Initially insulin, HRP, and FITC-BSA release were quantified for 7 days (Fig. 2).  

PAs are commonly studied for drug delivery applications as a result of a near zero order 

drug release profile.  In this study, the release profiles deviated from linear release 

profiles.  During the first seven days of degradation and release, FITC-BSA release is 

the most nearly linear (R2 = 0.98) of the three model proteins studied here, followed by 

HRP (R2 = 0.87) and insulin (R2 = 0.83).   Traditional PA matrices used in release 

studies are one-dimensional wafers, which best allow linear release approximation.  

However, in this study, three-dimensional discs were used to more accurately mimic 

potential in vivo applications.  Therefore network dimensions could be one potential 

cause for deviations from a zero order release curve.  Additionally, the detection 

strategy for FITC-BSA (fluorescence) enables the quantification of total protein release.  

In the cases of HRP and insulin, the detection strategies of activity assay or ELISA 

respectively enabled only the quantitation of released protein that has maintained 

activity or antigenicity.  The low levels of protein release in this study prevented 

quantification of total protein release by alternative methodology such as Bradford or 

BCA assay.  If nonlinearities in protein activity or antigenicity occurred, these presented 

themselves in the release profile. 
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Fig. 2 Cumulative release kinetics of insulin 
(A), HRP (B), and FITC-BSA (C) from 
photocrosslinked PA networks (containing 10  
wt% PEGDA) into PBS at 37°C with agitation 
(60 rpm) expressed as normalized protein 
release.  Error bars represent means ± SD for 
n=3-5 

 
 
 

Differences in release between the three proteins can be attributed to several 

different parameters – the physiochemical properties of the protein itself, the nature of 

the detection strategy, or the loading levels of protein within the photocrosslinked 

networks.  Interestingly, the quantity of insulin released was less than 1% of the total 

loaded protein as determined by ELISA, significantly less than HRP or FITC-BSA after 

one week. Similarly, slow release of insulin in comparison to larger molecular weight 

proteins such as BSA and lysozyme has been seen in other sustained release systems 
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(37).  If the mechanism for protein release were dictated purely by erosion of the 

polymer network, it would be expected that the release profile and amount of protein 

release would be unrelated to protein molecular weight.  However, molecular weight 

appeared to play a dominant role.  One suggested mechanism was that sustained 

release occurred via diffusion through matrix channels.  As a result, release was 

dictated by protein properties (solubility and diffusivity) as well as matrix properties 

(porosity and tortuosity).  Small molecular weight macromolecules such as insulin were 

incapable of inducing substantial matrix porosity, therefore hindering release.  

Additionally, insulin can be trapped in micropores throughout the system, while 

macromolecules of larger molecular weight were able to bypass the smallest conduits in 

the network to be more rapidly released into the surrounding buffer.  

An additional mechanism that explains the slow insulin release is that low insulin 

solubility in the aqueous solutions slowed transfer of insulin from the matrix to the 

release buffer.  In our previous study we have shown that contrary to prevailing logic, 

the incorporation of the hydrophilic PEGDA reduced water uptake and swelling in 

comparison with unaugmented matrices, most likely through increased network 

crosslink density (25).    However, even with 10 wt% PEGDA incorporation into the 

system, water uptake of 200% (by mass) has been seen after two weeks of 

degradation.  It was likely that a network of hydrated conduits formed within the 

crosslinked system, facilitating release of the more soluble HRP and FITC-BSA proteins 

with minimal effect on the less soluble insulin. However, this proposed mechanism 

would play a minimal role during short-term release from photocrosslinked PA matrices, 

as acidity produced by the degrading system improves insulin solubility.  An alternative 
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theory is that insulin aggregation into insoluble fibrils occurred within the system.  

Aggregation occurs when hydrophobic residues within the interior of monomeric insulin 

become exposed to the protein surface (38).  Degradation-induced acidity would not be 

sufficient to solublize fibrils, resulting in insulin retention within the network. 

Also contributing to this theory that matrix porosity and protein properties were 

dominant factors in protein release was the observation that MCPH:MSA ratio, the main 

contributor to degradation rate, was not a good predictor of amount of protein release 

during this short-term study.  In both FITC-BSA and insulin release systems, 

formulations with a higher MCPH:MSA  ratio (more slowly degrading) actually provided 

greater protein release during the seven day study.  

 

Long-term release of HRP and FITC-BSA from photocrosslinked PA networks – effect 
of MCPH:MSA ratio 
 
 To evaluate the long-term release behavior and phases of release from 

photocrosslinked PA networks, HRP release was assessed over a 120 day period. 

Release profiles for three MCPH:MSA ratios are displayed in Fig. 3.. In all experiments, 

protein release is expressed a percentage of the theoretical quantity of protein loaded 

per sample.  To quantify observed trends in release rate, release profiles were divided 

into 6 phases, similar to the four phase methodology (over 21 days of release) used to 

describe protein release from an oligo(poly(ethylene glycol) fumarate) hydrogel (39).  

Phase 1 was defined as the burst release after 24 hours of degradation.  Phase 2 was a 

period of rapid release between days 1-3.  Distinct release rates were also noted 

between days 3-6 (Phase 3), days 6-28 (Phase 4) and days 28-60 (Phase 5).  A less 

distinct phase (Phase 6) was seen in the long-term, between days 60 and 120.  In the 
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context of regenerative medicine, phases 1 and 2 constitute priming the environment 

with a bolus of the therapeutic macromolecule.   The remaining long-term release 

phases aid in maintenance of a sustained response, a strategy desired for a single-dose 

vaccine such as tetanus toxoid (40).  

Final cumulative release values are reported for the end of the experiment; 

however significant (>50%) polymer mass remained even at later (120 day) timepoints.  

The burst release cumulative release, and rates of release for each phase can be seen 

in Table 3.  The 70:30 MCPH:MSA network formulation displayed the lowest burst effect 

(3.81±0.62%) after 24 hours of release, while the 50:50 MCPH:MSA and 70:30 

MCPH:MSA displayed similar burst releases (6.22±1.36% and 7.33±0.37% 

respectively).  Phase 2 and 3 release rates were similar for all polymer formulations.  

However, between days 6 and 28 (Phase 4) as well as days 28-60 (Phase 5), 

significantly different rates of HRP release were observed for all three formulations.  

The 30:70 MCPH:MSA formulation had the highest rate of protein release during these 

phases, while the 70:30 MCPH:MSA formulation had the slowest protein release.  The 

slowest overall protein release was seen during the final phase, Phase 6.  As a result of 

a high matrix hydrophobicity, the lowest cumulative release during the study was seen 

in the 70:30 MCPH:MSA formulation.  The 30:70 MCPH:MSA formulation exhibited the 

highest cumulative release. The release from the 70:30 MCPH:MSA formulation was 

significantly lower than the 50:50 and 30:70 formulations throughout the experiment, an 

expected result since this was the most hydrophobic formulation.  
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(containing 10 wt% PEGDA) into PBS at 37°C with agitation (60 rpm) expressed 
as normalized active protein release.  Error bars represent means ± standard 
deviation for n=5. 

 

 

Table 3: Burst release, Phase 2-6 release rate and cumulative HRP release from 
photocrosslinked PA networks containing 10 wt% PEGDA. # denotes release that is 
significantly greater than other formulations, ^ denotes release that is significantly less than 
other formulations (p<0.05). 
Formulation Burst 

release 
(%) 

Phase 2 
(day 1-3) 

rate 
(%/day) 

Phase 3 
(day 3-6) 

rate 
(%/day) 

Phase 4 
(day 6-28) 

rate 
(%/day) 

Phase 5 
(day 28-60) 

rate 
(%/day) 

Phase 6 
(day 60-
120) rate 
(%/day) 

Cumulative 
release 

(%) 

30:70 
MCPH:MSA 6.22±1.36 1.94±0.36 0.48±0.09 0.20±0.02# 0.04±0.003# 0.02±0.01 18.41±3.0 

50:50 
MCPH:MSA 7.33±0.37 1.33±0.41^ 0.44±0.07 0.13±0.02 0.03±0.004 0.025±0.01 16.61±1.5 

70:30 
MCPH:MSA 3.81±0.62^ 1.74±0.24 0.46±0.07 0.06±0.02^ 0.02±0.01^ 0.01±0.01^ 11.35±1.4^ 
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 These long-term release studies suggested that the mechanism of protein 

release from photocrosslinked PA networks changes during the course of the 

experiment.  The initial burst release most likely occurred as a result of both water 

uptake and the release of protein that is immediately available for dissolution at the 

matrix surface.  In the short-term release period following the initial burst, matrix 

porosity and protein properties presumably play a dominant role as protein release is 

dictated by diffusion.  Finally, in the long-term release phases (Phases 4 - 6), 

dependence on matrix hydrophobicity (MCPH:MSA ratio) was observed.   

 Surprisingly, FITC-BSA release profiles (Fig. 4) and phases of release (Table 4) 

were dramatically different from the release curves for HRP with the same polymer 

network formulations.  For the first 10 days of release, MCPH:MSA ratio appeared to 

play no significant role in dictating rate of protein release. Interestingly, the Phase 2 

(day 1-3) rates were statistically different for all formulations; although, the highest 

MCPH:MSA ratio formulation (most hydrophobic and most slowly degrading) had the 

greatest rate of FITC-BSA release during this time.  The release behavior during the 

initial phases (burst release and Phases 2-3) suggests that matrix degradation was not 

a predominant factor during the short term release.  During this time, a gradual wetting 

of the matrix may have led to induction of porosity and diffusion of the protein into the 

release buffer. However, in Phase 4 (days 6-27), significantly different release rates 

were again seen in all formulations.  In this phase, the MCPH:MSA ratio was a good 

predictor of the rate of release.  More rapid FITC-BSA release was seen in the more 

rapidly degrading 30:70 MCPH:MSA formulation.  Correspondingly, the lowest rate of 

FITC-BSA release was seen in the slowest degrading 70:30 MCPH:MSA formulation 
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during Phase 4.  The reliance on matrix degradation during Phase 4 was a common 

factor in release of both HRP and FITC-BSA, despite differences in the overall rate of 

release and release profiles between the two proteins. 
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Fig. 4: Cumulative release kinetics of FITC-BSA from photocrosslinked PA 
networks (containing 10 wt% PEGDA) into PBS at 37°C with agitation (60 rpm) 
expressed as normalized protein release.  Error bars represent means ± 
standard deviation for n=4 
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Table 4: Burst release, Phase 2-5 release rate and cumulative FITC-BSA release from 
photocrosslinked PA networks containing 10 wt% PEGDA. . # denotes release that is 
significantly greater than other formulations, ^ denotes release that is significantly less 
than other formulations (p<0.05). 

Formulation Burst 
release (%) 

Phase 2 
(day 1-3) 

rate 
(%/day) 

Phase 3 
(day 3-6) 

rate 
(%/day) 

Phase 4 
(day 6-27) 

rate 
(%/day) 

Phase 5 
(day 27-41) 

rate 
(%/day) 

Cumulative 
release (%) 

30:70 MCPH:MSA 0.46±0.25^ 1.10±0.32^ 3.04±0.51 2.24±0.09# 0.42±0.22 64.74±5.89#
50:50 MCPH:MSA 1.94±0.94 1.84±0.74 2.70±0.81 1.06±0.20 0.33±0.06 40.54±5.89 
70:30 MCPH:MSA 1.99±0.41 3.09±0.35# 2.57±0.23 0.61±0.11^ 0.31±0.37 33.36±8.14 
 

 

 Long-term release of HRP – effect of PEGDA concentration 

Previous studies in our laboratory have shown that incorporation of PEGDA into 

photocrosslinked matrices minimizes water uptake and buffer acidity during in vitro 

degradation. Although we have determined that inclusion of PEGDA is beneficial for 

performance of the material in in vitro degradation, some dose dependence was seen 

with different percentages of PEGDA in photocrosslinked PA formulations. To assess 

the effect of PEGDA loading on protein release, HRP-containing formulations described 

in Table 2 were evaluated.  Interestingly, samples containing 0 wt% PEGDA did not 

remain intact for more than 4 days of in vitro degradation (data not shown). This result 

provides conclusive evidence that PEGDA is a critical component of photocrosslinked 

PA systems for protein release.  In earlier studies, the proposed mechanism for 

reduction in water uptake by PEGDA (despite the molecule’s hydrophilicity) was the 

introduction of a more densely crosslinked network and a reduction in the concentration 

of unreacted monomer.  A system that was not augmented by PEGDA most likely 

lacked sufficient crosslinking density and elasticity to maintain structural integrity with 

the inclusion of protein granules.  
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Formulations containing 5% or 20% PEGDA displayed a similarly shaped release 

profile (Fig 5.)  as previously described for the 10% PEGDA formulations (Fig. 3).  Burst 

releases and Phase 1 release rates for the 20% PEGDA formulations were higher than 

the 5% PEGDA formulations (Table 5).  As expected from earlier experiments, the 

MCPH:MSA ratio did not play a significant role in protein release during these phases.  

However, during Phases 3 and 4, the MCPH:MSA ratio was a better predictor of release 

rate, with the 30:70 MCPH:MSA ratio yielding more rapid release.  Final cumulative 

HRP release was significantly greater for the 20% PEGDA loading than for the 5% 

PEGDA loading within a given MCPH:MSA ratio.  Final cumulative HRP release was 

greater for the 30:70 MCPH:MSA ratio within a given PEGDA loading.  These data 

suggested that matrix hydrophilicity played a role in increasing protein release since 

both high PEGDA concentrations and low MCPH:MSA ratios yielded greater protein 

release, thus presenting a novel mechanism for controlling macromolecular release 

from hydrophobic matrices. FITC-BSA release was quantified from similar formulations; 

however no difference in release rate was seen with alternative PEGDA loading (5 or 20 

wt%) (data not shown).  This finding suggested that physical properties of the protein 

may alter the effect of PEGDA on release profiles.   
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Fig. 5: Cumulative release kinetics of HRP from photocrosslinked PA networks 
(containing 5 or 20 wt% PEGDA) into PBS at 37°C with agitation (60 rpm) 
expressed as normalized active protein release.  Error bars represent means ± 
SE for n=4. 

 
 
 

Table 5: Burst release, Phase 2-4 release rate and cumulative HRP release 
rom photocrosslinked PA networks containing 5 or 20 wt% PEGDA. f 

Formulation Burst 
release (%) 

Phase 2 
(day 1-3) 

rate 
(%/day) 

Phase 3 
(day 3-6) 

rate 
(%/day) 

Phase 4 
(day 6-27) 

rate 
(%/day) 

Cumulative 
release (%) 

5% PEGDA  
30:70 MCPH:MSA 7.30±2.17 5.67±0.86 3.93±0.69 0.50±0.08 41.73±3.89 

5% PEGDA  
70:30 MCPH:MSA 8.82±0.71 4.01±0.51 0.81±0.08 0.19±0.02 23.30±1.54 

20% PEGDA  
30:70 MCPH:MSA 16.36±1.85 13.38±0.94 2.20±0.06 0.38±0.04 57.57±2.52 

20% PEGDA  
70:30 MCPH:MSA 11.82±0.64 10.36±1.84 2.13±0.46 0.25±0.04 44.96±6.02 
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Conclusions 

This study is the first to evaluate protein release from photocrosslinked PA 

networks.  More importantly, sustained long-term release (> 4 months) of 

macromolecules in their active form from photocrosslinked PA networks has been 

demonstrated.  Three model proteins, that differ in their physicochemical and detection 

modalities have been incorporated into the matrices and released in vitro.   By varying 

the network hydrophobicity (MCPH:MSA ratio or PEGDA content) the release profiles 

were tuned to achieve varying rates of protein release from the matrices, although these 

effects were seen primarily in the later phases of release.  This observation constitutes 

a novel mechanism for controlling macromolecular release from hydrophobic matrices. 

Interestingly, especially during the early phases of protein release, the physicochemical 

properties of individual proteins are a dominant factor in determining protein release.  

These findings validate the photocrosslinked PA system as an injectable vehicle for 

macromolecule delivery with broad clinical applications.  
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Abstract 

Injectable delivery systems are attractive as vehicles for localized delivery of 

therapeutics especially in the context of regenerative medicine.  In this study, 

photocrosslinked polyanhydride (PA) networks were modified by incorporation of 

microparticles to enhance and modulate long-term delivery of macromolecules.  The in 

vitro release of two model proteins (horseradish peroxidase (HRP) and bovine serum 

albumin labeled with fluorescein isothiocyanate (FITC-BSA)) were evaluated from 

photocrosslinked anhydride networks composed of sebacic acid dimethacrylate (MSA), 

1,6-bis-carboxyphenoxyhexane dimethacrylate (MCPH), poly(ethylene glycol) diacrylate 

(PEGDA), and calcium carbonate (CaCO3), supplemented with gelatin microparticles or 

sodium chloride (NaCl) crystals.  The proteins were formulated into granules first by 

dilution with a cyclodextrin excipient through tituration, followed by gelatin-based wet-

granulation prior to incorporation into the networks.  Protein release was quantified over 

predetermined time periods by activity assay (HRP) or fluorescence (FITC-BSA).  

Protein release profiles and rates of protein release were successfully modulated by 

incorporation of microparticles into photocrosslinked PA networks, presumably by 

enabling aqueous channels through the matrix.  By loading the protein in the gelatin 

microparticles, additional control over protein release was achieved.  Furthermore, a 

dual release system has been demonstrated by incorporation of protein in both the PA 

matrix and the gelatin microparticles.  These results suggest that microparticle 

incorporation into photocrosslinked PA system may be a useful strategy to modulate 

protein release in injectable delivery systems for the long-term delivery of 
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macromolecules.  These gelatin microparticle-photocrosslinked composites present an 

interesting class of materials for bone regeneration applications. 
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Introduction 

In the recent past, our laboratory efforts have focused on the exploration of the 

photocrosslinked polyanhydride (PA) system as a scaffold for hard tissue regeneration 

and drug delivery. This system is based on anhydride monomers with reactive 

methacrylate functionalities and has been developed for use in orthopedic tissue repair 

and regeneration (1). Upon exposure to light radiation, this system can be rapidly 

crosslinked in situ into a high strength degradable network.  This system has several 

advantages over traditional PLGA systems for drug delivery. First, as a result of the 

anhydride linkages, PA based systems are capable of undergoing surface erosion and 

achieving predictable near-zero order drug release.  Additionally, the capability of in situ 

formation is of particular importance in TE applications in which physical conformation 

of the device to an implant site is an important prerequisite for optimal tissue healing.   

We have shown that a traditional photocrosslinked PA system composed of 

MCPH and MSA can be easily modified with additives such as CaCO3 and PEGDA to 

modulate degradation properties such as mass loss, water uptake, pH and mechanical 

strength while providing no adverse effects on the crosslinking capabilities of the system 

(2).  Additionally, we have demonstrated that this system possesses a robust capability 

for long-term delivery of macromolecules (3).  We have implemented a protein 

stabilization strategy previously developed in our laboratory to protect proteins from free 

radicals during polymerization (4), with some minor modifications to stabilize and 

disperse the protein in the PA system developed for the spinal fusion application. Using 

these strategies, we have demonstrated that the photocrosslinked PA system can serve 

as an injectable vehicle for the long-term delivery of active proteins.  Although most 
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studies of the photocrosslinked PA system have focused on orthopedic applications, a 

more general application would involve intra-muscular and sub-dermal injectable 

systems capable of long-term delivery of macromolecules. 

In our previous work, we were able to achieve long-term (over four months) 

release of enzymatically active protein (HRP), although relatively low levels of protein 

release were attained.  The release rate and profile were modestly modulated by 

altering matrix hydrophobicity (MCPH:MSA ratio or PEGDA content).  Significant 

modulation of protein release rates and profiles is difficult in this photocrosslinked 

system outside of altering matrix hydrophobicity.  Although reactive and nonreactive 

additives can be incorporated with ease, an upper limit exists after which crosslinking 

and/or structural integrity of the system is impaired.   

 One proposed driving force for protein release (in addition to degradation) is 

protein diffusion through aqueous channels in the wetted network.  Maximization of the 

channel volume within the matrix by incorporation of porogens would be one 

mechanism for increasing release. One possible methodology for induction of 

microscale channels is the incorporation of microparticles or salt crystals within the 

crosslinked matrix (5). In the field of TE, microparticles alone suffer limitations, since 

they do not provide a substrate for cellular or tissue ingrowth.  However diverse uses 

have been identified for incorporation of microparticles into TE scaffolds.  Initially, 

leachable porogens such as microparticles of gelatin or NaCl have been used to 

generate porosity in scaffolds by solvent casting or particulate leaching. More recently, 

drug or protein-loaded microparticles have been incorporated into TE scaffolds (such as 

polypropylene fumarate (5) or oligo(poly(ethylene glycol) fumarate) (6)) to form 
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composites with the capability of delivering bioactive molecules that aid in tissue 

regeneration.  For these drug delivery applications, biodegradable microparticles 

composed of gelatin (7), co-polymers of lactic acid and glycolic acid (PLGA) (5), or 

polyanhydrides (PA) (8) have garnered much interest.   

In the current study, two model proteins (HRP and FITC-BSA) were selected for 

release from porous photocrosslinked PA networks.  The current strategies employed 

include both particulate leaching of NaCl and gelatin microparticles as well as release of 

protein from composites composed of protein loaded gelatin microparticles within 

photocrosslinked PA networks (see Fig. 1).  This study is the first to evaluate the 

incorporation of porogens in the photocrosslinked PA system.  In addition, it is the first 

to employ the particulate leaching strategy as a primary means of facilitating protein 

release. The overall objective of this study was therefore to demonstrate the ease of 

modulation of this system for improving delivery of peptides and proteins.  Specifically, 

we aim to answer the following questions: (1) To what extent can the delivery of 

macromolecules be controlled by incorporation of porogens (NaCl and gelatin 

microparticles) within the matrix? (2) Can the protein carrier affect protein release? and 

(3) Does the physiochemical nature of the macromolecule affect release?  By answering 

these questions, we have expanded on our previous studies to demonstrate versatility 

in release profiles from the photocrosslinked PA system for the long-term delivery of 

active macromolecules. 
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Fig. 1:  Schematic of photocrosslinking.  Anhydride monomers (MSA, MCPH), 
PEGDA, CaCO3 and protein granules were mixed to form a paste.  Mixtures were 
photocrosslinked after addition of photoinitiators and exposure to visible light.   

 
 
 

Experimental 

 
 
Materials 

 Methacrylic acid, sebacoyl chloride, triethylamine, methylene chloride, sodium 

bicarbonate, sodium sulfate, 4-hydroxybenzoic acid, 1,6-dibromohexane, methacryloyl 

chloride, poly(ethylene gycol) diacrylate (PEGDA), camphorquinone, ethyl 4-

(dimethylamino)benzoate (4-EDMAB), benzoyl peroxide, dimethyl toluidine, n-methyl 

pyrrolidone, bovine serum albumin fluorescein isothiocyanate conjugate (FITC-BSA), 

calcium carbonate, bovine gelatin B, and glutaraldehyde were obtained from Sigma-

Aldrich. Horseradish peroxidase, TMB substrate kits and Coomassie-based Bradford 

assay kits were purchased from Pierce.  All materials were used as received. 
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Monomer synthesis 

Sebacic acid dimethacrylate 

Sebacic acid dimethacrylate (MSA) was synthesized from methacrylic acid and 

sebacoyl chloride as described by Tarcha (9).  Methacrylic acid (9 g) and triethylamine 

(Et3N) (11.63 g) were dissolved in methylene chloride (150 ml), and the mixture was 

stirred at 0°C for 30 min. Sebacoyl chloride (12.5 g) was added dropwise to the solution. 

Stirring was continued for 1 h at a reduced temperature, followed by vacuum filtration 

for removal of the precipitated triethyl ammonium chloride. The filtrate was diluted with 

an additional 100 mL of methylene chloride and cooled to 0°C. The solution was 

washed sequentially with saturated NaHCO3 (250mL × 2) and distilled H2O (250mL × 2) 

and dried over Na2SO4. Methylene chloride was then removed in vacuo at 0°C.  

1,6-bis-carboxyphenoxyhexane 

 1,6-bis-carboxyphenoxyhexane (CPH) was synthesized from 4-hydroxybenzoic 

acid and 1,6-dibromohexane based on the synthesis of 1,3-bis-carboxyphenoxypropane 

described by Conix (10).  NaOH (20 g) was dissolved in distilled water (100 ml) in a 500 

ml round-bottom flask equipped with a reflux condenser, an addition funnel and a 

stirbar.  4-hydroxybenzoic acid (29 g) was added to this solution, and the system was 

heated until reflux. 1,6-dibromohexane (24.6 g) was added dropwise over 2 hours.  The 

reaction was stirred for several hours under reflux.  The product (disodium salt of CPH) 

was dried by vacuum filtration and washed twice with methanol. The product was 

dissolved in distilled water, warmed to 60°C and acidified to pH 2 with H2SO4.  This 

resulted in the free acid of CPP or CPH as a white frothy precipitate.  The product was 

then isolated by vacuum filtration and washed with distilled H2O (200 ml × 2) and 
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acetone (200 ml × 2) to remove any trace organics, water, and unreacted 4-

hydroxybenzoic acid.  The final product was then dried overnight in a 60°C oven. 

1,6-bis-carboxyphenoxyhexane dimethacrylate 

1,6-biscarboxyphenoxyhexane dimethacrylate (MCPH) was synthesized from 

CPH and methacryloyl chloride as described by Tarcha (9).  1,6-bis(p-

carboxyphenoxy)hexane (11.3 g) and Et3N (8.08 g) were dissolved in methylene 

chloride (120 mL) and stirred at 0 °C for 45 min. Methacryloyl chloride (7.1g) was added 

dropwise to this solution. Stirring was continued at a reduced temperature for 3.5 h, 

followed by vacuum filtration for removal of precipitated triethyl ammonium chloride. The 

filtrate was washed sequentially with saturated NaHCO3 (200 mL × 2) and distilled H2O 

(200 mL × 2). The solution was dried over anhydrous Na2SO4, and CH2Cl2 was 

removed in vacuo; a slurry was thereby produced. Then, anhydrous ethyl ether was 

added and removed in vacuo to facilitate the removal of any remaining methylene 

chloride. 

 

Protein formulation 

HRP and FITC-BSA were used as model proteins. The formulation for 

incorporation into photocrosslinked polyanhydride matrices was based on methods 

described by Baroli (4). In brief, each protein (P) was first pulverized by trituration in a 

Teflon dish with a Teflon-coated spatula. Pulverized protein was then mixed with 

hydroxypropyl-β-cyclodextrin (HPβCD), in a ratio 1:50 (FITC-BSA) or 1:100 (HRP) w/w 

(P:HPβCD), by geometric dilutions until a homogeneous powder was obtained.  

Subsequently, this P–HPβCD mixture was granulated with a 5% aqueous solution of 
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gelatin B (100 mg of gelatin solution per 1 g of P–HPβCD mixture) to produce a slightly 

wet mass, which was then forced through a 250 µm sieve to yield granules. The 

granulated P–HPβCD mixture was stored at -20°C and analyzed for fluorescence 

(FITC-BSA) or enzymatic activity (HRP) prior to use.  

To verify the homogeneity of the protein distribution in freshly prepared powders, 

a content uniformity test was used. Prior to granulation, the P–HPβCD mixtures were 

sampled uniformly over their entirety without mixing. Using a sample size of 10 mg 

(n=10 per each formulation), the mixtures were then quantified for enzyme content 

using a Coomassie-based Bradford Assay.  For each set of 10 samples, the mean and 

the standard deviation was calculated. Requirements of the test were considered met if 

the amount of enzyme was within the limits of 85 and 115% of the expected values, and 

the relative standard deviation (expressed as a percentage) was less than or equal to 

6%. 

 

Preparation of gelatin microparticles 

 Gelatin microparticles were fabricated as described by Holland (6).  Briefly, 5 g of 

basic gelatin was dissolved in 45 ml of deionized water by heating to 60°C under 

constant stirring.  The aqueous gelatin solution was added dropwise via a syringe and 

21-G needle to 250 ml of olive oil while maintaining a stirring rate of 500 rpm.  Stirring 

was maintained while the emulsion temperature was decreased to 15°C to induce 

gelation.  After 30 minutes, 100 ml of chilled acetone were added.  The microparticles 

were removed by vacuum filtration and were washed 4 times with acetone to remove 
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residual olive oil.  Microparticles were sized by passing through sieves of sizes ranging 

from 500 µm to 106 µm. 

 

Crosslinking of gelatin microparticles 

 Gelatin microparticles were crosslinked by stirring in a 0.1% solution of Tween 80 

containing 0.5% glutaraldehyde for 12 h at 15°C.  Crosslinked microparticles were 

collected by vacuum filtration.  The microparticles were washed in deionized water and 

then incubated in a 25 mM glycine solution for 1 h to block any unreacted 

gluteraldehyde.  The microparticles were collected by vacuum, washed in deionized 

water, and vacuum-dried overnight.  Crosslinked microparticles were then sized by 

passing through a gradient of sieves. 

 

Protein loading of gelatin microparticles 

 Solutions of protein in phosphate buffered saline were prepared for loading of the 

crosslinked gelatin microparticles.  Microparticle loading was achieved by incubating 5 

µl of protein solution (2 mg/ml, HRP or FITC-BSA) per mg of gelatin microparticles.  

This solution volume was significantly below the theoretical equilibrium swelling volume 

of the microparticles, ensuring complete protein adsorption by the particles.  The 

microparticle-protein mixture was vortexed completely and incubated overnight at 4°C to 

allow adsorption to occur. 
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In vitro protein release from gelatin microparticles 

 HRP and FITC-BSA release from crosslinked gelatin microparticles was 

assessed in PBS.  Loaded microparticle were weighed and incubated with 1 ml of PBS.  

All specimens were incubated at 37°C with shaking (60 rpm).  At predetermined 

timepoints, the specimens were pelleted by centrifugation. The release buffer was 

removed and replaced with fresh PBS.  The presence of protein in the release buffer 

was quantified by correlation with a standard curve (see assays for HRP and FITC-BSA 

below).  Cumulative protein release was quantified by calculating the cumulative protein 

release and normalizing to the total loaded protein in each specimen. 

 

Sample preparation and photopolymerization 

Photopolymerizations were initiated with a dual initiator strategy, composed of 

camphorquinone (CQ)/4-EDMAB for light-initiated crosslinking, and benzoyl peroxide 

(BPO)/dimethyl toluidine (DMT) for chemically-initiated crosslinking. as previously developed 

and described (2).  Sample formulations were prepared by thoroughly mixing the monomers in 

appropriate amounts, followed by adding an appropriate quantity of a BPO/CQ in N-methyl 

pyrrolidone (NMP) followed by 4-EDMAB/DMT in NMP to yield a final quantity of up to 0.1 wt% 

for each of CQ, BPO, 4-EDMAB, and DMT in the formulation.  Uniform discs (4 mm in height 

and 9 mm in diameter) were prepared in Teflon molds. Samples were polymerized with a blue 

dental lamp (CuringLight XL1500). 
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In vitro release studies 

In vitro protein release was assessed in phosphate buffered saline, pH 7.4 at 

37°C to mimic physiological conditions.  Samples were maintained at 60 rpm on an 

orbital shaker throughout degradation studies.  The discs were degraded in 10 ml of 

buffer.  Buffer was replaced at predetermined timepoints for entire duration of the study 

to minimize the effects enzyme deactivation in solution and to maintain sink conditions 

for degradation.   

 

HRP activity assay 

 Enzymatic activity of HRP was calculated by quantification of oxidized TMB 

substrate in a peroxide solution using a TMB Substrate Kit.  Serial dilutions of HRP 

release buffer were performed in PBS. 100 µl of each appropriate dilution was added to 

a 96 well plate.  Using a multichannel pipettor, 100 µl of TMB substrate in a peroxidase 

buffer was added and the plate was immediately transferred to a plate reader for 

analysis. The concentration of the oxidized product was measured every 5 minutes for 

30 minutes total at 462 nm on a BioTek II microplate reader.  HRP concentrations in 

release buffer were compared to freshly prepared HRP standards ranging from 0.01 

mU/ml to1 mU/ml.  The linear range for a 30 minute incubation was between 0.01 

mU/ml and 0.25 mU/ml.  The detection limit was 0.01 mU/ml. 

 

Quantification of FITC-BSA fluorescence 

 Concentration of FITC-BSA was quantified by fluorescence at 488 nm on a 

BioTek II microplate reader.  200 µl FITC-BSA containing release buffer was loaded in 
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wells of a 96b well plate.  FITC-BSA concentrations were compared to freshly prepared 

standards ranging from 0.01 to 2 µg/ml.  The detection limit for the assay was 0.01 

µg/ml. 

 

Statistical analysis 

 Statistical analysis for comparison of burst release, cumulative release, and rates 

of release was performed using a Student’s t-test with a minimum confidence level of 

0.05 for statistical significance.  All experiments were performed with n = 3-5 and are 

reported as mean ± standard deviation of the mean. 

 

Results 

 
 
HRP release from photocrosslinked PA matrices with NaCl-or gelatin microparticle-
induced porosity 
 
 Although previous experimentation in our laboratory demonstrated capability of 

delivering active proteins over a long timeframe at a tunable rate, the cumulative HRP 

release was less than 20% of total loaded HRP after 35 days. We therefore 

hypothesized that the introduction water soluble porogens such as NaCl or gelatin 

microparticles might accelerate the release of HRP (see formulations in Table 1a).  The 

most hydrophobic network (MCPH:MSA) was selected, as it resulted in the slowest 

protein release in unmodified systems. Introduction of 25 w/w% of 250 µm gelatin 

microspheres into the system resulted in the release of 56% of loaded HRP over a 5-

week period which represents a five-fold increase over the 10% release seen in the 

unmodified system.  A significant increase in protein release was seen both during the 
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24 hour burst release (p=0.001) as well as during the long term release phase (days 7-

35, p=0.005) in the gelatin microparticle supplemented system.  However, when NaCl 

particles (<106 µm) were incorporated into networks as a porogen, no difference in 

release rate occurred in comparison with the unmodified, nonporous matrix. This is an 

important result as it suggests that the leaching of dissolved gelatin leaves an aqueous 

path, whereas the complete ionic dissolution of NaCl does not result in new aqueous 

pathways or macroporosity for protein diffusion.  Fig. 2 shows the release profiles over 

35 days for these three formulations. In addition, Table 2 compares the 24 hour burst 

effect release, the cumulative release after 48 hours, the long-term release rate 

(between days 7 and 35), and the total cumulative release rate for the unmodified, 

nonporous network, and for the network containing 250 µm gelatin microparticles.  

There is a statistically significant difference for all calculated parameters in this table.  

There is only a difference in burst release between the unmodified, nonporous network 

and the network containing <106 µm NaCl crystals. This modification to our HRP 

release studies shows that we can modulate the rate of release of active protein from 

our crosslinked anhydride system. Further enhancement in protein release can be 

achieved by varying the size, volume fraction or type of porogen.  
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Fig. 2: Cumulative release kinetics of HRP from photocrosslinked 
anhydride networks containing gelatin microparticles (A) or NaCl 
particles (B) into PBS at 37°C with agitation (60 rpm). Error bars 
represent mean±S.E. for n=2-4.   
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Table 1: Experimental design for evaluation of microparticle leaching for 
modulation of protein release 
 MCPH:MSA 

ratio 
Granulated 

protein 
Microparticle 

loading 
Microparticle 

size 
Microparticle 

type 
a. 70:30 HRP 25 w/w% < 106 µm NaCl 
 70:30 HRP 25 w/w% 250 µm Gelatin B 
b. 70:30 HRP 75 v/v% 180-250 µm Gelatin B 
 70:30 HRP 75 v/v% 250-300 µm Gelatin B 
c. 70:30 HRP 33 v/v% 106-180 µm Gelatin B 
 70:30 HRP 55 v/v% 180-250 µm Gelatin B 
 30:70 HRP 33 v/v% 180-250 µm Gelatin B 
 30:70 HRP 55 v/v% 106-180 µm Gelatin B  

 
 
 

Table 2: Release rates of HRP from crosslinked anhydride networks 
Formulation 24 h 

Burst (%) 
Cumulative 

release after 
48 h 
(%) 

Long term 
release (d7 – 

d35)  
(%/d) 

Cumulative 
release (%) 

70:30 
MCPH:MSA 

3.81±0.7
0 

5.61±0.78 0.05±0.02 10.33±0.89 

70:30 
MCPH:MSA + 
gelatin 
µparticles 

15.22±2.
54 

41.72±17.29 0.518±0.16 56.71±18.61 

 
 
 
HRP release from photocrosslinked PA matrices with gelatin-microparticle-induced 
porosity: Effect of loading and particle size 
 
 Since gelatin microparticles were better modulators of protein release than NaCl 

crystals, preliminary studies were pursued with gelatin microparticles alone.  Initially, 

gelatin microparticles of two size ranges (180-250 µm and 250-300 µm) were 

incorporated into photocrosslinked PA networks at a loading of 75 v/v%, the maximal 

loading allowable (formulations described in Table 1b).  Large microparticles were 

selected to maximize the effect in these proof-of-concept studies.  HRP release profiles 
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from these networks can be seen in Fig. 3.  During the first eight days of degradation 

and release, the release profiles were identical, regardless of microparticle size.  After 

day eight, the rate of HRP release from samples containing 180-250 µm microparticles 

was 0.48±0.11% per day, while the rate of HRP release from samples containing 250-

300 µm microparticles was 1.22±0.06% per day (p<0.05).  Since larger (250-300 µm) 

were often the result of the aggregation of smaller particles, additional studies utilized 

smaller, more uniform microparticles. 
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Fig. 3: Cumulative release kinetics of HRP from photocrosslinked 
anhydride networks containing gelatin microparticles into PBS at 37°C 
with agitation (60 rpm). (A) The cumulative normalized mass released 
from samples containing 75 v/v% gelatin microparticles, error bars 
represent mean±S.E. for n=2-4.   
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 To evaluate the effect of gelatin microparticle size and loading on protein release, 

gelatin microparticles of two size ranges (106-180 µm and 180-250 µm) were utilized at 

loadings of 33 or 55 v/v%.  Additionally, two MCPH:MSA ratios – 30:70 and 70:30 were 

evaluated.  These formulations are described in Table 1c. Interestingly, the release 

profile was independent of microparticle loading and MCPH:MSA ratio (Fig. 4). As 

expected based on percolation theory, gelatin microparticle size was the dominant 

factor in dictating HRP release.  The larger microparticles (180-250 µm) yielded greater 

cumulative protein release than the smaller microparticles (106-180 µm) (p<0.05) 

regardless of MCPH:MSA ratio or microparticle loading percentage.  This long-term 

release profile was primarily dominated by the release of HRP over the first 48 hours. 
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Fig. 4: Cumulative release kinetics of HRP from photocrosslinked 
anhydride networks containing gelatin microparticles into PBS at 37°C 
with agitation (60 rpm). The cumulative normalized mass released from 
samples containing 106-180 µm or 180-250 µm gelatin microparticles, 
error bars represent mean±S.D. for n=4.   

 
 
 
Gelatin microparticles as protein delivery vehicles  

 Gelatin microparticles were also studied as a vehicle for protein delivery. 

Microparticles were loaded with a 2 mg/ml solution of FITC-BSA or HRP in PBS by 

swelling.   Ten mg samples of loaded microparticles were then incubated in PBS 

release buffer.  Combinations of protein type and microparticle size are described in 

Table 3a. The buffer was removed at predetermined timepoints and protein release was 

quantified (Fig. 5).  Microparticles (106-180 µm) loaded with FITC-BSA exhibited a 24 

hour burst release of 59.98±0.79% of loaded protein, while those loaded with HRP 

exhibited a smaller burst release than that of FITC-BSA (14.01±2.13%).  Larger 
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microparticles (180-250 µm) loaded with HRP exhibited the smallest burst release 

(11.43±1.15%).  Since the 180-250 µm particles were less uniform than smaller 

microparticles (data not shown), these were not used to evaluate FITC-BSA release nor 

were they utilized in future studies.  Final cumulative release was the greatest for FITC-

BSA (93.49±2.2% of loaded protein after 18 days).  In contrast, 81.64±0.07% of loaded 

HRP was released from the 106-180 µm microparticles and 60.57±0.01% of loaded 

HRP was released from 180-250 µm microparticles.  As expected, the total cumulative 

release of HRP was greater from the smaller microparticles, presumably a result of the 

increased surface area to volume ratio over the larger microparticles.
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Fig. 5: Crosslinked gelatin microparticles were loaded with a solution of 
FITC-BSA or HRP; protein was released in 1 ml of PBS. 

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Experimental design for evaluation of protein release from loaded 
gelatin microparticles and from photocrosslinked PA networks 

 Matrix Granulated 
protein 

Microparticle 
loading 

Microparticle 
size 

Protein loaded 
in 

microparticles 
a. N/A N/A N/A 106-180 µm FITC-BSA 
 N/A N/A N/A 106-180 µm HRP 
 N/A N/A N/A 180-250 µm HRP 

b. 70:30 
MCPH:MSA 

HRP 10 w/w% 106-180 µm FITC-BSA 

 70:30 
MCPH:MSA 

FITC-BSA 10 w/w% 106-180 µm HRP 
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Dual release system for HRP and FITC-BSA from photocrosslinked PA matrix-gelatin 
microparticle composites 
 
 Composites of photocrosslinked PA networks and gelatin microparticles were 

fabricated to evaluate co-release of FITC-BSA and HRP.  One set of composites was 

created which contained FITC-BSA in the traditional wet granulated protein and 

cyclodextrin formulation and HRP-loaded gelatin microparticles.  Another set of 

composites contained HRP in the traditional wet granulated protein and cyclodextrin 

formulation and FITC-BSA-loaded gelatin microparticles.  A schematic for protein and 

microparticle loading is shown in Fig. 6.  Release profiles were dependent on both the 

phase of protein loading (within gelatin microparticles or within the granulated 

formulation) and the type of protein (formulations described in Table 3b).  When HRP 

was incorporated into composites in the granulated formulation with FITC-BSA loaded 

gelatin microparticles (Fig. 7), there was a burst release of 9.66±2.45% of loaded HRP 

after 24 hours.  After 18 days, the cumulative release of HRP was 11.20±0.002% of the 

theoretical loading.  Interestingly, only 0.02+0.008% of FITC-BSA from the composites 

was released after 18 days, with no detectable burst release.  In contrast, when FITC-

BSA was incorporated into composites in the granulated formulation with HRP loaded 

gelatin microparticles (Fig. 8), there was a burst release of 5.73±0.87% of loaded FITC-

BSA after 24 hours.  After 18 days, the cumulative release of FITC-BSA was 

82.7±0.47% of the theoretical loading.  HRP release from gelatin microparticles within 

the composite yielded a burst release of 30.32±0.19%.  Final cumulative release of HRP 

after 18 days was 34.00±0.20% of the theoretical loading. 
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FITC-BSA in granulated protein formulation

HRP loaded into gelatin microparticles
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Fig. 6: Schematic for dual release strategy.  Specimen contained HRP in the 
wet-granulated formulation and FITC-BSA-loaded gelatin microparticles or FITC-
BSA in the wet-granulated formulation and HRP-loaded gelatin microparticles. 
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Fig. 7: Cumulative release kinetics of HRP and FITC-BSA from photocrosslinked 
anhydride networks containing gelatin microparticles into PBS at 37°C with 
agitation (60 rpm). Samples contained traditionally formulated HRP (sugar+ 
protein+ granulation) (10 wt%) and FITC-BSA loaded gelatin microparticles (10 
wt%).The cumulative normalized mass released from samples is shown, error 
bars represent mean±S.D. for n=2-4.  
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Fig. 8: Cumulative release kinetics of HRP and FITC-BSA from photocrosslinked 
anhydride networks containing gelatin microparticles into PBS at 37°C with 
agitation (60 rpm). Samples contained traditionally formulated FITC-BSA (sugar+ 
protein+ granulation) (10 wt%) and HRP loaded gelatin microparticles (10 
wt%).The cumulative normalized mass released from samples is shown, error 
bars represent mean±S.D. for n=2-4. 

 
 
 
Discussion 
 

Our laboratory has been the first to evaluate protein release from 

photocrosslinked PA networks (3).  This delivery system was initially selected as a 

result of numerous properties including the potential for predictable near-zero order 

release profiles, the capability of formation in situ by virtue of photocrosslinking, and the 

relative ease of system modification. In our initial study, sustained long-term release (> 

4 months) of macromolecules in their active form from photocrosslinked PA networks 

was demonstrated.  Additionally, the release profiles of the evaluated macromolecules 

led to new conclusions regarding the mechanism of protein release from these 

networks.  As expected, varying the network hydrophobicity (MCPH:MSA ratio or 
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PEGDA content) altered the release profiles to achieve varying rates of protein release 

from the matrices.  Surprisingly, these effects were seen primarily in the later phases 

(>7 days) of release.  Interestingly, especially during the early phases of protein release, 

the physicochemical properties of individual proteins were a dominant factor in 

determining protein release.   

If the mechanism for protein release were dictated purely by erosion of the 

polymer network, it would be expected that the release profile would be near-zero order 

and unrelated to protein molecular weight.  However, protein molecular weight played a 

dominant role.  The mechanism for protein release in the short-term appeared to be 

diffusion through matrix channels.  As a result, release was dictated by protein 

properties (solubility and diffusivity) as well as by matrix properties (porosity and 

tortuosity).  Small molecular weight macromolecules were incapable of inducing 

substantial matrix porosity, therefore hindering release.  Also contributing to this theory 

that matrix porosity and protein properties were dominant factors in protein release was 

the observation that MCPH:MSA ratio, the main contributor to degradation rate, was not 

a good predictor of amount of protein release during the short-term.  In contrast, after 

roughly 7 days of release, network hydrophobicity began to play the expected role in 

modulating protein release. 

In prior work, alteration of monomers failed to achieve modulation of protein 

release in the short-term, therefore other avenues have been explored.  Since porosity 

played a dominant role in dictating protein release, modifications in network porosity 

have been explored.  Particulate leaching strategies are used in TE to induce porosity in 

scaffolds.  In this process, leachable porogens such as salt or gelatin microparticles are 
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incorporated uniformly into a scaffold.  By incubation in aqueous buffer, the leachables 

are removed, leaving a uniformly porous scaffold.  In the current study, the particulate 

leaching strategy was employed to fine tune protein release from photocrosslinked PA 

networks.  Gelatin microparticles (250 µm) or NaCl particles (<106 µm) were 

incorporated into photocrosslinked PA matrices of identical formulations.  In specimen 

with gelatin microparticles, burst effect, long-term release rate, and total cumulative 

release rate of HRP were increased in comparison with unmodified networks (Fig. 2).  

However, in specimen containing NaCl particles, there was only a significant increase in 

burst release behavior. This suggests that the leaching of dissolved gelatin leaves an 

aqueous path, whereas the complete ionic dissolution of NaCl does not result in new 

aqueous pathways or macroporosity for protein diffusion and release.   

Particulate leaching of gelatin microparticles for facilitation of HRP release from 

photocrosslinked PA networks was further pursued.  Initially, gelatin microparticles of 

two sizes (180-250 µm or 250-300 µm) were incorporated into photocrosslinked PA 

networks at a loading of 75 v/v%.  In this system, microparticle size played no role in the 

burst release or release rate during the first 8 days (Fig 3).  However, after eight days, 

matrices with larger microparticles resulted in a higher rate of protein release.  Since 75 

v/v% was the upper limit for microparticle loading, and did result in some fracture during 

degradation, lower levels of loading were explored. A fractional factorial design of 

formulations was prepared with a high and low MCPH:MSA ratio (70:30 and 30:70), 

microparticle loading (55 v/v% and 33 v/v%) and gelatin microparticle size (180-250 µm 

and 106-180 µm).  Interestingly, protein release was independent of both MCPH:MSA 

ratio and microparticle loading (Fig. 4).  The larger gelatin microparticle size significantly 
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increased cumulative protein release, although this was primarily a result of protein 

release during the initial 48 hours.  These data demonstrate that protein release can be 

modulated by a particulate leaching strategy.  Regardless of gelatin microparticle size or 

loading, burst release and cumulative release were increased in comparison to 

nonporous matrices in previous studies.  Experimental differences between the 75 v/v% 

loading and the lower (55 and 33 v/v %) loadings could be a result of a failure of the 

lower loadings to reach the percolation threshold for the material   This critical threshold 

concentration of porogens would result in an “infinite cluster” of conducting links, or 

pores through which the buffer can infiltrate (11).  In this system, achieving the 

percolation threshold was not generally feasible; as structural integrity was 

compromised by high (75 v/v%) microparticle loading. 

In addition to their usage in particulate leaching, gelatin microparticles have also 

been utilized for controlled delivery of growth factors as a result of ionic complexation 

capabilities (12).  Microparticles were loaded with protein solutions by partial swelling.  

During release, poorly associated protein was released into the release buffer during 

the initial 24 hours as the microparticles reach equilibrium swelling (Fig 5).  FITC-BSA 

demonstrated a high burst release from gelatin microparticles, yet also appeared to 

yield sustained release throughout the 18 day experimental conditions.  HRP 

demonstrated less of a burst response than FITC-BSA; however HRP release after 6 

days was negligible.  HRP release from smaller microparticles (106-180 µm) was 

greater than HRP release from larger microparticles (180-250 µm), presumably an 

effect of a higher surface area to volume ratio in the smaller microparticles. This 
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difference in cumulative release was primarily dictated by HRP release between days 2 

and 6. 

Finally, further experiments examined the dual release of FITC-BSA and HRP 

from photocrosslinked PA network – gelatin microparticle composites.  The goal of this 

dual release strategy was to create a system that could provide sustained release of 

two or more growth factors at different rates or release profiles.  For example, in a 

system for tissue regeneration, a proliferative growth factor could undergo substantial 

release in the short-term, while a release of a differentiative growth factor could 

dominate in the long-term.  In this study, protein-loaded microparticles were 

encapsulated into the photocrosslinked network along with a wet-granulated protein-

cyclodextrin formulation.  One composite formulation contained FITC-BSA-loaded 

gelatin microparticles and HRP in the wet-granulated phase (Fig. 7). The other 

composite formulation contained HRP-loaded gelatin microparticles and FITC-BSA in 

the wet-granulated phase (Fig. 8).  The strategy of encapsulating drug- or protein-

loaded microparticles in a matrix is commonly used to localize delivery to a specific site.  

In this system, the microparticles additionally confer porosity to the matrix to facilitate 

release of the protein in the wet-granulated phase. 

When FITC-BSA was loaded into gelatin microparticles and HRP was present in 

the wet-granulated phase, surprisingly, there was no detectable release of FITC-BSA 

from the composite.  Additionally, HRP release profiles were similar to profiles from a 

nonporous matrix.  Alternatively, when HRP was loaded into gelatin microparticles and 

FITC-BSA was present in the wet-granulated phase, significant release of both HRP 

and FITC-BSA occurred.  Release was greater than from nonporous matrices in 
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previous studies.  It was surprising that no appreciable release of FITC-BSA was 

detected from the composites containing FITC-BSA in the gelatin phase, although FITC-

BSA does release from gelatin microparticles and HRP release from the matrix was 

observed.  The phenomenon is presumably explained by protein molecular weight (MW) 

and hydrodynamic radius (HR).  The protein in the wet-granulated phase was readily 

solubilized when in contact with buffer.  When the higher molecular weight protein 

(FITC-BSA, MW 67 kDa, HR 36Å) was present in the wet-granulated phase, protein 

diffusion created channels through which the smaller protein (HRP, MW 43 kDa, HR 

30Å) could diffuse as well.  However when the larger protein was in the gelatin 

microparticle phase, the channels created by the smaller protein probably are 

insufficient for the larger protein to transport through (Scheme in Fig. 9).     

Photocrosslinked PA network

Gelatin microparticle

HRP

FITC-BSA

Photocrosslinked PA network

Gelatin microparticle

HRP

FITC-BSA

Photocrosslinked PA network

Gelatin microparticle

HRP

FITC-BSA
Fig. 9: Proposed mechanism for dual protein release from photocrosslinked PA 
network-gelatin microparticle composites.  
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Conclusions 

 This study details a means of modulating delivery of proteins from an injectable 

degradable system by incorporation of gelatin microparticles into the photocrosslinked 

PA system.  Since protein diffusivity and matrix porosity in addition to matrix 

degradation were dominant factors in controlling protein release in previous studies, 

here we have focused on incorporation of porogens for increasing levels of protein 

release.  When gelatin microparticles were included in matrices, microparticle size 

appeared to be the predominant factor affecting HRP release, with microparticle loading 

having no appreciable effect.   Gelatin microparticles were also explored as a delivery 

vehicle.  Both microparticle size and protein type (FITC-BSA or HRP) affected protein 

release from gelatin microparticles.  By loading the protein in the gelatin microparticles, 

additional control over protein release was achieved.  Furthermore, a dual release 

system has been demonstrated by incorporation of protein in both the PA matrix and the 

gelatin microparticles.  Variation of system parameters – microparticle size, loading 

percentage, and protein loading of the microparticles – provide a versatile methodology 

for tailoring release profiles from photocrosslinked PA system.  Future work will include 

further elucidation of the mechanisms of release, including porosity and aqueous 

channel formation. 
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CHAPTER V 

 

CONCLUSIONS AND FUTURE WORK 

 

Summary of Manuscripts 

 This dissertation is composed of three manuscripts which detail the optimization 

of the photocrosslinked polyanhydride (PA) system for tissue engineering and drug 

delivery applications.  Each manuscript corresponds to one of the three specific aims 

detailed in Chapter I.  Together, these three aims describe the development of a 

versatile biomaterial for usage in spinal fusion applications. 

 In Chapter II, the photocrosslinked PA system was enhanced by the inclusion of 

PEGDA and CaCO3 as additives.  The incorporation of additives did not alter the curing 

ability or formability of the system.   Incorporation of PEGDA and CaCO3 served both to 

decrease water uptake and to modulate local acidity during degradation.  The inclusion 

of CaCO3 enabled maintenance of compressive modulus throughout the degradative 

lifetime of the material.  In this study, we have revealed additional mechanisms for 

tuning material properties via incorporation of additive agents to expand the scope and 

functionality of the system. Finally, this study demonstrated that additives can be easily 

and successfully incorporated into photocrosslinked PA networks to address a variety of 

physical characteristics.   

Chapter III detailed the first study to evaluate protein release from 

photocrosslinked PA networks.  The modifications described in Chapter II were used in 

this system.  One important result of this work was that sustained long-term release (> 4 
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months) of macromolecules in their active form from photocrosslinked PA networks was 

feasible.  Three model proteins, that differ in their physicochemical and detection 

modalities have been incorporated into the matrices and released in vitro.   By varying 

the network hydrophobicity (MCPH:MSA ratio or PEGDA content) the release profiles 

were tuned to achieve varying rates of protein release from the matrices.  This 

observation constituted a novel mechanism for controlling macromolecular release from 

hydrophobic matrices. Interestingly, especially during the early phases of protein 

release, the physicochemical properties of individual proteins were a dominant factor in 

determining protein release.  These findings validated the photocrosslinked PA system 

as an injectable vehicle for macromolecule delivery with broad clinical applications.  

Chapter IV is a direct extension of the studies described in Chapter III. The 

release rate of proteins in Chapter III was slower than may be desirable for in vivo 

applications. This study detailed a means of modulating delivery of proteins from an 

injectable degradable system by incorporation of gelatin microparticles into the 

photocrosslinked PA system.  Since protein diffusivity and matrix porosity in addition to 

matrix degradation were dominant factors in controlling protein release in previous 

studies, here we focused on incorporation of porogens for increasing levels of protein 

release.  When gelatin microparticles were included in matrices, microparticle size 

appeared to be the predominant factor affecting HRP release, although microparticle 

loading was also evaluated.   Gelatin microparticles were also explored as a delivery 

vehicle.  Both microparticle size and protein type (FITC-BSA or HRP) affected protein 

release from gelatin microparticles.  When protein-loaded microparticles were 

incorporated into photocrosslinked PA networks, release behavior was greatly 
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dependent on the protein.  Variation of these parameters – microparticle size, loading 

percentage, and protein loading of the microparticles – provided a versatile 

methodology for tailoring release profiles from photocrosslinked PA system.  

In summary, the studies this from dissertation have optimized the 

photocrosslinked PA system.  By incorporation of additives, the material properties have 

been modulated to minimize water uptake and acidity during degradation, while 

preserving mechanical strength.  Next, the system was further modified to enable long-

term release of active proteins.  Theories were developed as to mechanisms of protein 

release during different phases.  Finally, based on these theories, protein release from 

the system was enhanced through the incorporation of water soluble porogens.  These 

results demonstrate progress toward the development of an injectable, biodegradable 

material for spinal fusion, with an end goal of releasing osteoinductive factors for 

promotion of new bone growth in spinal fusion applications. 

 

Future Work 

 The photocurable polyanhydride system has numerous advantages for 

applications in spinal fusion.  First, the photocurable nature of the system, by virtue of 

methacrylate groups, allows formation of the network in situ, thereby enabling 

conformability of the material to the desired region.  Second, upon crosslinking, the 

network’s modulus is comparable to that of cortico-cancellous bone, and hence is less 

likely to shield the bone from normal stresses, allowing for bone remodeling.   The ratios 

of monomers can be altered to fit nearly any degradation rate.  Up to 30 wt% of the 

formulation can consist of non-reactive additives (inorganic fillers or porogens, growth 
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factors, or viscosity modifiers) without altering crosslinking kinetics.  Photocuring allows 

a more extensive handling time prior to crosslinking than is typically possible with 

chemical crosslinking. By combining chemical and photo crosslinking, both the handling 

time and depth of cure are increased.  Finally, system biodegradability eliminates the 

need for secondary surgeries to remove the device.   

 Development of this photo-curable poly(anhydride) system into an 

osteoconductive, osteoinductive biomaterial for use in spinal applications will be a 

paradigm shift. There is currently no material that provides immediate structural stability 

and is biodegradable over time.  While minimally invasive procedures such as 

vertebroplasty and kyphoplasty are also envisioned as a long-term application for this 

biomaterial, the initial future studies will focus on spinal fusion.  We feel that by 

evaluating our material in a well-validated animal model for spinal fusion (posterolateral 

intertransverse arthrodesis in the New Zealand white rabbit) we can demonstrate the full 

range of material capabilities and biocompatibility.   

The New Zealand white rabbit model for posterolateral intertransverse (PLIT) 

lumbar arthrodesis has been a well-described, well-accepted and prevalent model for 

spinal fusion since its description by Boden in 1995 (1-3).  Model utility is based on 

several factors, including approximation to human surgical procedure, healing 

environment, and nonunion rate (4).  The surgical anatomy (4) and operative technique 

(5) have been thoroughly described in the literature.  The model has been applied to 

study the effects of diverse parameters on the bone biology of lumbar fusion – including 

bone graft substitutes, growth factors, or gene therapy (6-11).  We have selected this 

model to demonstrate the potential of our PA system to facilitate spinal fusion. 
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Initial animal studies will involve the use of the photocrosslinked PA system as an 

extender to autograft.  Morselized autograft from iliac crest will be mixed with the 

monomer paste, and used in the PLITF model.  Three experimental groups will be 

assessed to accomplish this aim.  In the control group, the fusion material will be 

morselized autograft bone, harvested from iliac crest during surgery.  In experimental 

group 1, the fusion material will be the poly(anhydride) network, which will be 

crosslinked in situ. In experimental group 2, the fusion material will be a mixture of the 

PA network and morselized autograft bone.  Data collected from this study will include: 

histology, histomorphometry, planar x-ray, microCT, and DEXA imaging.  

Biocompatibility, as well as osteogenicity will be evaluated.  Subsequent studies will 

involve the replacement of the autograft + polymer group with a group that receives 

polymer mixed with formulated BMP-2, for osteoinduction.  Success of this material 

(defined as fusion that is comparable to that of autograft) in spinal fusion applications is 

the end goal.  In summary, the research that stems from the work in this dissertation will 

provide a major advance in osteoconductive, osteoinductive biomaterials for use in 

spine applications.   
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APPENDIX A 
 
 

 
RATIONALE FOR SELECTION OF POLYMER FORMULATIONS FOR SPECIFIC 

AIMS TWO AND THREE 
 
 
 

 Based on our preliminary results, we have selected a formulation of monomers, 

inorganic fillers and photoinitiators that have yielded the most desirable properties in 

vitro.  First, the anhydride portion of the formulation will be composed of MCPH and 

MSA in a ratio of 70:30.  The balance of this parameter is responsible for the rate of 

mass loss, the pH profile on degradation, as well as the mechanical strength.  Next, the 

overall composition should be 10 wt% PEGDA (MW 700).  This amount is sufficient to 

provide viscosity modification and to improved depth of cure and crosslinking resultant 

from the highly reactive diacrylate functionality.  The improvement in crosslinking 

diminishes swelling during network degradation.  The inorganic filler calcium carbonate 

(CaCO3) should be present at 10 wt%, to serve as a moderate porogen and as a 

significant pH buffer during the course of degradation.  Finally, the photoinitiators should 

be included at 0.1 wt%.  This photoinitiator concentration provides excellent depth of 

cure within 10 minutes in our human cadaver corpectomy model, while allowing a 

reasonable working time after adding initiators.  In addition, we have demonstrated that 

photocrosslinking can occur with an additional 10 wt% of nonreactive fillers, allowing the 

supplementation of this formulation with proteins without affecting the polymerization 

efficacy. This level of in vitro testing will provide our collaborators and others in the field 

with an unprecedented level of insight, thereby enabling tests of function in a direct and 

highly efficient manner.  Table 1 summarizes the network components. 
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Table 1: Rationale for polymer formulation 
Parameter Composition Rationale 
Anhydride ratio (MCPH:MSA) 70:30  Mass loss 

pH 
Mechanical 
properties 

PEGDA 10 wt% Viscosity modification 
Depth of cure 

Calcium carbonate 10 wt% pH buffer 
Porogen 

Benzoyl Peroxide 
Dimethyl Toluidine 
Camphorquinone 
Ethyl 4-dimethylaminobenzoate 

0.1 wt% 
0.1 wt% 
0.1 wt% 
0.1 wt% 

Chemical crosslinking 
 
Photo-crosslinking 
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APPENDIX B 
 
 
 

INCORPORATION OF BARIUM SULFATE INTO PHOTOCROSSLINKED 
POLY(ANHYDRIDE) NETWORKS 

 
 
 

Radio-opacity must be conferred to the polymer if it is to be visualized after 

implantation.  This allows the clinical outcome to be easily followed via x-ray.  In a proof-

of-concept experiment, barium sulfate (BaSO4) was mixed into a mixture of 

methacrylated anhydride monomers and photocrosslinked.  The specimen were 

embedded in agarose phantoms and imaged by planar x-ray.  In Fig. 1, two samples 

containing BaSO4 (top and bottom right) show more contrast than a photocrosslinked 

poly(anhydride) network without BaSO4 (bottom left). BaSO4 incorporation within the 

network clearly improves contrast on x-ray without affecting curing parameters. 

 

 

 

Fig. 1: Photocrosslinked poly(anhydride) 
networks without BaSO4 (bottom left) or 
with BaSO4 (top and bottow right).  
BaSO4 incorporation within the network 
clearly improves contrast on x-ray 
without affecting curing parameters. 
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APPENDIX C 
 
 

INCORPORATION OF MORSELIZED BONE INTO PHOTOCROSSLINKED 
POLY(ANHYDRIDE) NETWORKS 

 
 
 

Producing crosslinked poly(anhydride) matrices containing autogenous bone 

from the iliac crest is a vital component of future work. To evaluate feasibility of an 

experimental group containing a mixture of autograft and polymer, two formulations 

were crosslinked.  The first contained 50% iliac crest autograft and 50% polymer 

formulation (by mass), and the second contained 35% iliac crest autograft and 75% 

polymer formulation.  Both formulations crosslinked into uniform discs (5 mm height, 10 

mm diameter), although after a curing time of 10 minutes, the 50:50 sample required 

showed evidence of inhomogeneous curing. The 25:75 samples polymerized in less 

than 5 minutes.  Samples containing morselized bone (Fig. 1 a 25:75, b 50:50) were 

imaged by scanning electron microscopy (SEM, Hitachi S-4200) to demonstrate more 

porous network architecture than unmodified polymer formulations.  As a result of the 

lengthened crosslinking time and inhomogeneous curing for the 50:50 formulation, the 

25:75 formulation has been selected for future studies. 

 

  
Fig. 1: SEM images of photocrosslinked 
poly(anhydrides) containing A) 25% morselized bone 
and B) 50% morselized bone. 
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APPENDIX D 
 
 
 

IN SITU PHOTOCROSSLINKING IN HUMAN CADAVER SPINE 
 
 
 

To evaluate proof of principle for photocrosslinking the poly(anhydride) system in 

the spine, a modified corpectomy model was assessed in a human cadaver spine (Fig. 

1).  A partial corpectomy was performed on a thoracic vertebral body.  The polymer 

formulation was mixed and poured into the excised region.  The polymer network was 

formed via curing with a blue dental lamp (CuringLight XL1500) for 10 minutes.  The 

crosslinked network was removed from the defect.  The polymer network meshed with 

existing bone and perfectly filled the defect, verifying feasibility of this strategy in vivo.  

The crosslinked polymer in this scenario was 3 cm in width and 1.5 cm in height, 

demonstrating that complete curing can occur in a reasonable timeframe even on larger 

samples. 
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Fig. 1: A. Thoracic region of a human cadaver spine.  B. Partial 
corpectomy of a thoracic vertebral body.  C. Mixture of anhydride 
monomers was poured into the corpectomy region. D.  
Photocrosslinking the PA network in the corpectomy region of a 
human cadaver spine.  E.  Photocrosslinked PA network removed 
from the corpectomy region.  F.  Alternative view of the back of 
the photocrosslinked PA network, demonstrating a complete 
filling of the void space.  G. Cross-section of the photocrosslinked 
PA) network, demonstrating crosslinking throughout the depth of 
the material. 
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APPENDIX E 

 

PHOTOCROSSLINKED POLY(ANHDRIDES) IN A RABBIT MODEL FOR 
POSTEROLATERAL INTERTRANSVERSE FUSION 

 
 
 
Surgical procedure 

 Posterolateral intertransverse arthrodesis was performed as described by 

Valdes et al (1).  The dorsal aspect of the lumbar spine was shaved.  The skin was 

prepared using sterile technique, and the spinal level to be fused, L5-L6, was identified 

by palpation.  A dorsal midline incision of approximately 6 cm in length was made over 

the L5-L6 level. The skin and subcutaneous tissue was retracted.  A 4-6 cm incision 

through the lumbar fascia was made, approximately 2 cm lateral to the midline. The 

iliocostalis muscle was divided to reveal the longissimus muscle, which underwent blunt 

dissection at the lateral border to reveal the transverse processes.  The graft material 

was placed over the intertransverse ligament, spanning the distance between the L5 

and L6 transverse processes.   Fig. 1A shows the crosslinked matrices during the 

surgical procedure. Harvest of iliac crest autograft was carried out concurrently with the 

posterolateral intertransverse spinal fusion procedure, as described by Valdes et al (1). 

The middle two thirds of the iliac crest was exposed (greatest amount of cancellous 

bone at this location).  For this study, the harvest of only one iliac crest was required.  

The graft on the right side of the animal consisted of polymer alone, supplemented with 

10 mg BaSO4 to provide radio-opacity.  The graft on the left side of the spine was 

composed of polymer + 25% iliac crest autograft.   Photocrosslinking of the polymer 

graft required 3 minutes of exposure to a blue dental lamp for the BaSO4 modified side 
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and 6 minutes of exposure for the polymer+autograft side.  A 3-0 vicryl suture was used 

for muscle and lumbodorsal fascia.  2-0 nylon sutures were used along the incision.  

 Following this, the lumbar spine was explanted for analysis using microCT. The 

planar x-ray and DEXAscan were carried out with the assistance of Dr. Ed Donnelly at 

the Vanderbilt Institute of Imaging Sciences (VUIIS) Small Animal Imaging Facility.  The 

microCT was carried out with the assistance of Dr. Todd Peterson at the VUIIS Small 

Animal Imaging Facility. 

 

Planar x-ray 

 Radiographs were taken in the anteroposterior plane using a Faxitron 

Radiography X-ray (Wheeling, IL).  Radiographs were taken at 60 kV with a 10 s 

exposure and a digital acquisition system.  Both the specimen containing BaSO4 and 

the specimen containing morselized autograft had sufficient contrast to be visualized on 

the x-ray image (Fig. 1B). 

 

microCT 

 The Imtek MicroCAT II scanner is an X-ray computed tomography system 

capable of performing imaging studies of small animals in vivo or specimens. The 

microCT images were reconstructed and analyzed using Amide software.  The 3D 

reconstruction can be seen in Fig. 1C.  In Fig. 1D and 1E, slices of the coronal plane 

and transverse plane can be seen respectively. In both Fig.s 1D and E, the specimen 

containing autograft is seen on the left, and the specimen with BaSO4 can be seen on 

the right. Both the polymer specimen containing BaSO4 and morselized autograft were 
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clearly visible on the microCT reconstructions.  The specimen containing BaSO4 

showed more contrast than the specimen containing morselized autograft.  However, 

the pieces of morselized bone in the polymer + autograft specimen were clearly evident 

in most CT slices.  This finding validates our strategy for using microCT as a metric for 

determining fusion in our studies as we will be able to detect bone within the polymer. 

 

Dual energy x-ray absorptiometry (DEXA) 

 A GE Lunar PIXImus bone densitometer was used to evaluate the bone density 

in the regions of polymer and polymer + autograft.  The image obtained from the 

densitometer is seen in Fig. 1F. From this image, six fields of 10 by 11 pixels were 

evaluated for bone density (g/cm2).  The specimen containing bone autograft had a 

significantly greater bone density than the BaSO4 specimen (p<0.05). This data is 

shown in Fig. 1G. This result suggests that bone within the polymer can be both 

detected and quantified within the polymer specimen. 
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Fig. 1:  A. Surgical procedure of the rabbit 
posterolateral intertransverse fusion after 
implantation and photocrosslinking. B.  
Planar x-ray.  C. microCT reconstruction.  D. 
microCT coronal view.  E. microCT 
transverse view.  F. DEXA image, coronal 
view.  G. Average bone mineral density for 
the polymer + BaSO4 specimen and the 
polymer + autograft specimen as calculated 
by DEXA. 
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