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CHAPTER I

INTRODUCTION

An elliptic differential operator D on a compact manifold M is a Fredholm operator. The

only topological invariant for a Fredholm operator is the Fredholm index [Dou72], which is

defined to be dim(kerD) − dim(cokerD). Fredholm index is a homotopy invariant. The

Atiyah-Singer index theorem calculates the Fredholm index of D in terms of its symbol

σ(D) and M . This theorem establishes a bridge between analysis, geometry and topology

[AS1, AS3]. The Fredholm index is often related to the geometry of the manifold. An

example of this is that the nonnegativity of the scalar curvature implies the vanishing of

the Fredholm index for the Dirac operator.

Index theorems have been generalized to noncompact manifolds of various sorts. Elliptic

operators on noncompact manifolds are no longer Fredholm in the classical sense, but are

Fredholm in a generalized sense with respect to certain operator algebras. An important

topological invariant for an elliptic operator is the generalized Fredholm index, which lives

in the K-theory of an operator algebra. An early example of this was the index theorem for

almost periodic Toeplitz operators, which computes partially a generalized Fredholm index

[CDSS]. Some other examples are the index theorem for coverings [A76, MS, CM], for

foliations [CS], for homogeneous spaces of Lie groups [CM82], and for complete manifolds

of bounded geometry with regular exhaustions [R88]. in the case of a complete manifold

M , Dirac type operators on M are generalized Fredholm operators in the sense that they

are invertible modulo the Roe-algebra. Hence the indices of Dirac operators live in the

K-theory of the Roe algebra.

In this thesis we define the equivariant index map for proper group actions and prove

that this equivariant index map is injective for certain manifolds and groups. We also prove

that the index map [Y95, Y97] is injective for spaces which admit a coarse embedding into

a simply-connected complete Riemannian manifold with nonpositive sectional curvature,

which is the joint work with Qin Wang.
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CHAPTER II

K-THEORY FOR C∗-ALGEBRAS

In this chapter, we will review the K-theory for C∗-algebras over C. All material in this

chapter is standard and can be found in most K-theory books, such as [Mur, T, W].

II.1 The group K0(A).

Let A be a unital C∗-algebra, and set

P(A) =
⋃
n∈N

{
p ∈Mn(A) : p∗ = p, p2 = p

}
.

Definition 1. Let p, q ∈ P(A).

• We say p and q are equivalent, denoted by p ∼ q, if p = uu∗ and q = u∗u for some

partial isometry u ∈Mm(A).

• We say p and q are unitarily equivalent, denoted by p ∼u q, if p = u∗qu for some

unitary u in Mm(A).

• We say p and q are homotopic, denoted by p ∼h q, if p and q are connected by a

norm continuous path of projections in Pm(A).

Proposition 1. If p and q are in P(A), then

p ∼h q ⇒ p ∼u q ⇒ p ∼ q.

And

p ∼ q ⇒

 p 0

0 0

 ∼u

 q 0

0 0

 and p ∼u q ⇒

 p 0

0 0

 ∼h

 q 0

0 0

 .

This proposition tells us that those three equivalence relations are equivalent in P(A).

So let the equivalent classes be denoted by [·]. Let V (A) = P(A)/ ∼ be the set of equivalent
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classes of all projections in P(A). Define the addition in V (A) by

[p] + [q]
def
=


 p 0

0 q


 .

Lemma 1. V (A) is an abelian semi-group with additive identity 0 = [0].

If A,B are unital C∗-algebras and if φ : A→ B is a ∗-homomorphism, the induced map

φ∗ : V (A)→ V (B) given by

φ∗([(aij)]) = [(φ(aij))]

is a well-defined homomorphism of semigroups.

Example 1. V (C) = N ∪ {0} .

Definition 2. Let A be a unital C∗-algebra. K0(A) is defined to be the Grothendieck group

of V (A).

Example 2. K0(C) = Z.

By the universal property of Grothendieck groups, the homomorphism φ∗ : V (A) →

V (B) induced by some homomorphism φ : A → B extends to a group homomorphism

φ∗ : K0(A)→ K0(B).

Definition 3. Let A be a non-unital C∗-algebra and let A+ be a unitization of A such that

A+/A = C. Let π : A+ → C be the projection. Define

K0(A)
def
= ker

{
π∗ : K0(A+)→ K0(C) ∼= Z

}
.

Example 3. K0(C0(R2)) = Z. This can be computed by the Bott periodicity Lemma 12.

Remark. When A is unital, we have

ker
{
π∗ : K0(A+)→ K0(C) ∼= Z

} ∼= K0(A),

where K0(A) is defined in Definition 2. Therefore we use ker {π∗ : K0(A+)→ K0(C) ∼= Z}

to be the definition of K0-groups of all C∗-algebras.
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Theorem 1. Let A be a C∗-algebra.

1. K0(A) is an abelian group.

2. The element of K0(A) can be written as [p]− [1n], where p, 1n ∈Mm(A+) for some m

and 1n is the matrix with n 1’s in the diagonal and 0 elsewhere and p− 1n ∈Mm(A).

If A is unital, we can choose p, 1n ∈Mm(A).

Theorem 2. The homomorphism A→ A⊗K by sending a→ a⊗ e1, where e1 is a rank 1

projection in K, induces an isomorphism K0(A) ∼= K0(A⊗K).

Theorem 3. Let J be an ideal in A. Then the exact sequence 0 −→ J
i−→ A

π−→ A/J −→ 0

induces a short exact sequence of K0-groups:

K0(J) i∗−→ K0(A) π∗−→ K0(A/J).

Definition 4. Let A and B be C∗-algebras.

1. Two homomorphisms φ, ψ : A → B are homotopic, denoted by φ ∼h ψ, if there is a

path {γt}[0,1] of homomorphisms γt : A→ B, such that t→ γt(a) is a norm continuous

path in B for every fixed a in A and such that γ0 = φ, γ1 = ψ.

2. A homomorphism φ : A → B is equivalence if there is another homomorphism ψ :

B → A such that φ ◦ ψ and ψ ◦ φ both are homotopic to the identity.

Theorem 4. When φ0, φ1 : A → B are homotopic, then φ0∗ = φ1∗ for the induced homo-

morphisms K0(A)→ K0(B).

II.2 The group K1(A) and the index map.

Let A be a unital C∗-algebra, and let

U(A) =
⋃
n∈N
{u ∈ Un(A) : u is a unitary} .

Definition 5. Let u and v be in U(A). We say that u and v are homotopic, denoted by

u ∼h v, if they are connected by a norm continuous path of unitaries in Um(A).

4



Let the equivalent classes be denoted by [·]. Define the addition in U(A) by

[u] + [v]
def
=


 u 0

0 v


 .

Definition 6. Define K1(A) = U(A)/ ∼h to be the set of equivalent classes of unitaries in

U(A).

Theorem 5. K1(A) is an abelian group.

Example 4. K1(C) = 0.

Definition 7. Let A a non-unital C∗-algebra and let A+ be a unitization of A such that

A+/A = C. Let π : A+ → C be the projection. Define

K1(A)
def
= ker

{
π∗ : K1(A+)→ K1(C) ∼= 0

}
.

Therefore, K1(A) = K1(A+).

Example 5. K1(C0(R)) = K1(C(T)) = Z.

Theorem 6. Let A be a C∗-algebra, then K1(A) ∼= K1(A⊗K).

Theorem 7. Let J be an ideal in A. Then the exact sequence 0 −→ J
i−→ A

π−→ A/J −→ 0

induces a short exact sequence of K1-groups:

K1(J) i∗−→ K1(A) π∗−→ K1(A/J).

Definition 8. The suspension of a C∗-algebra A is the C∗-algebra

SA
def
= C0(R→ A) ∼= C0(R)⊗A ∼= C0(0, 1)⊗A.

Theorem 8. For every C∗-algebra A, there is an isomorphism

θ : K1(A) −→ K0(SA).

5



Definition 9. For a C∗-algebra A, define the Kn(A) by

Kn(A) = K0(SnA), n ∈ N.

Theorem 9. When φ0, φ1 : A −→ B are homotopic, then φ0∗ = φ1∗ for the induced

homomorphisms K1(A) −→ K1(B).

Lemma 2. Let u ∈ U(A). There exists v ∈ U(A) such that

 u 0

0 v

 is homotopic to

1m(A).

Lemma 3. If A and B are C∗-algebras and φ : A −→ B is a surjective morphism, then

φ extends to a unital surjective morphism φ+ : A+ −→ B+ that can lift unitaries in the

connected component of 1 in B+ to unitaries in the connected component of 1 in A+.

Definition 10 (The Index Map). Let J be an ideal in a C∗-algebra A and u ∈ U((A/J)+).

Find a v ∈ U((A/J)+) for which

 u 0

0 v

 is homotopic to 1m ∈ U((A/J)+). Let w ∈

U(A+) be a unitary lift of

 u 0

0 v

.

The index map Ind : K1(A/J) −→ K0(J) is defined by

Ind(x)
def
= [wpnw

∗]− [pn],

where x = [u] ∈ K1(A/J).

We remark here that [wpnw
∗] − [pn] ∈ K0(J). The reason is the following. Let πJ :

A −→ A/J be the projection. Then πJ(wpnw
∗) =

 u 0

0 v

 pn

 u∗ 0

0 v∗

 = pn. Hence

wpnw
∗ ∈ P(J+). And let π : J+ −→ C. We have π∗([wpnw

∗] − [pn]) = [pn] − [pn] = 0

because π(w)pnπ(w)∗ ∼u pn.

Theorem 10 (The Long Exact Sequence). Let J be an ideal in a C∗-algebra A. The

6



following sequence is exact everywhere:

· · · −→ K1(J) i∗−→ K1(A) π∗−→ K1(A/J) Ind−→ K0(J) i∗−→ K0(A) π∗−→ K0(A/J).

II.3 The Bott periodicity and the six-term exact sequence.

Let A be a unital C∗-algebra. First, we can get the following characterization:

K1(SA) ∼= {[f ]|f ∈ C(T −→ U(A)), f(1) ∼h 1n for some n.}

This description tells that the elements in K1(SA) are loops in U(A). Let p ∈ P(A), we

define

fp(t) = e2πitp = 1 + p(e2πit − 1), ∀ 0 ≤ t ≤ 1.

fp has the following properties.

• fp(t)∗ = (e2πitp)∗ = e−2πitp∗ = e−2πitp = fp(−t),

• fp(t)fp(−t) = 1,

• f(0) = f(1) = 1.

Therefore fp gives an element in K1(SA).

Lemma 4. Let A be a unital C∗-algebra. Then the map

βA : K0(A) −→ K1(SA)

[p]− [q] −→ [fpf
∗
q ].

defines a group homomorphism.

Theorem 11. βA is an isomorphism.

Combine Theorem 8 and Theorem 11, we have the following famous theorem.

Theorem 12 (Bott Periodicity). K2(A) ∼= K0(A).

7



Theorem 13 (Six-term Exact Sequence). Let A be a C∗-algebra and let J be an ideal of

A. The following loop is exact every where

K0(J) −−−−→ K0(A) −−−−→ K0(A/J)x y
K1(A/J) ←−−−− K1(A) ←−−−− K1(J).

8



CHAPTER III

EQUIVARIANT K-HOMOLOGY

In this chapter, we will review the equivariant K-homology. Since K-homology has its root

in differential operators, we first review Sobolev spaces and the first-order partial differential

operators. This chapter is based on [KAS88, HR00].

III.1 Sobolev spaces and first-order partial differential operators

Let S be the Schwartz class of Rn which is the set of all smooth complex-valued functions

on Rn such that for all α, β, there exists a constant Cα,β such that

|xαDβ
xf | ≤ Cα,β,

where xα = xα1
1 · · ·xαn

n and Dβ
x = (−i)β1+···+βn

(
∂

∂x1

)β1

· · ·
(

∂
∂xn

)βn

. The extra factors

of (−i) defining Dβ
x are present to simplify later formulas. The functions in S have their

derivatives decreasing faster at infinity than the inverse of any polynomials. Let C∞0 (Rn)

denote the set of smooth functions with compact support on Rn, then it is a dense subset

of S.

Definition 11. Let u be a smooth, compactly supported function on Rn. Let s be a non-

negative real number. The Sobolev s-norm of u is the quantity ‖u‖s defined by

‖u‖2s =
∫

Rn

(1 + |ξ|2)s|û(ξ)|2dξ,

where û is the Fourier transform

û(ξ) =
∫

Rn

e−iξ·xu(x)dx.

If U is an open subset of Rn then the Sobolev space Hs(U) is the completion in the Sobolev

s-norm of the space of smooth functions on Rn which are compactly supported in U .

9



The Plancherel formula from Fourier theory asserts that

∫
Rn

|u(x)|2dx =
1

(2π)n

∫
Rn

|û(ξ)|2dξ.

Thus, up to a multiplicative constant, the Sobolev 0-norm is the same thing as the ordinary

L2-norm. If s1 > s2 then ‖u‖s1
> ‖u‖s2

. It follows that Hs1(U) may be regarded as a

(dense) subspace of Hs2(U). In particular all of the Sobolev spaces Hs(U) can be regarded

as subspaces of the Hilbert space L2(U).

If u is a smooth, compactly supported function on Rn, then the Fourier transform of

the function Dαu is the function ξαû(ξ).

Theorem 14. If s ≥ 0 and s ∈ N, then the Sobolev s-norm is equivalent to the norm

√∑
α≤s

‖Dαu‖2L2(Rn).

This theorem follows from Plancherel’s theorem that

∑
α≤s

‖Dαu‖2L2(Rn) =
1

(2π)n

∑
α≤s

∫
Rn

ξ2α|û(ξ)|2dξ

and the fact that the function
∑

α≤s ξ
2α and (1+|ξ|2)s are bounded multiples of one another.

Roughly speaking the Sobolev space Hs(U) consists of functions supported in U all of

whose derivatives of order s or less belong to L2(U).

In order to globalize the Sobolev norms to manifolds we shall need the following lemma:

Lemma 5. If σ is a smooth function on an open set U ⊂ Rn whose derivatives of all orders

are bounded functions on U , then pointwise multiplication by σ extends to a bounded linear

operator on Hs(U), for every s. In addition, if Φ : U ′ −→ U is a diffeomorphism from

one open set in Rn to another whose derivatives of all orders are bounded functions, then

the operation of composition with Φ extends to a bounded linear operator from Hs(U ′) to

Hs(U).

Suppose now that M is a compact smooth manifold. Choose a finite coordinate cover

{Uj} for M and a partition of unity {σj} subordinate to this cover. Using this structure

10



any function on M can be broken up into a list of compactly supported functions on Rn; we

construct a Sobolev s-norm of the function on u by combining the s-norm of the constituent

pieces σju, which we regard as compactly supported function on Rn. Thus:

‖u‖2s =
∑

j

‖σju‖2s .

This norm depends on the choice we made, but the different sets of choices give equiv-

alent norms.

Definition 12. Let M be a compact smooth manifold. The Sobolev space Hs(M) is the

completion of C∞(M) in the above Sobolev s-norm.

Theorem 15 (Rellich Lemma). Let {fm} ∈ S be a sequence of functions with support in a

fixed compact set K ⊂ Rn. We suppose there is a constant C so ‖fm‖s ≤ C for all m. Let

s > t. There exists a subsequence fmk
which converges in Ht.

Definition 13. A first-order partial differential operator on Rn is

D =
∑
r≤m

Aj(x)Dj +B(x)

where Dj = −i ∂
∂xj

for all 1 ≤ j ≤ n and Aj(x) and B(x) are in Mp(C∞(Rn)) for some

p ∈ N.

Example 6. On the plane R2, let

D =

 0 −1

1 0

 ∂

∂x1
+

 0 i

i 0

 ∂

∂x2
.

Then D is a first-order partial differential operator on R2.

Definition 14. Let M be a smooth manifold. A first-order partial differential operator

on M is a linear map P on

p︷ ︸︸ ︷
C∞(M)⊕ · · · ⊕ C∞(M) such that on each local coordinate

{x1, · · · , xn},

D =
∑
j≤n

Aj(x)Dj +B

11



where Dj = −i ∂
∂xj

and Aj(x) and B are in Mp(C∞(Rn)).

Remark. In fact, we can define first-order partial differential operators on vector bundles

on M . In this case, we use the smooth sections to replace C∞(M). Recall that an m-

dimensional complex vector bundle is a triple η = (p,E,X) such that

1. E and X are topological spaces,

2. p : E −→ X is a continuous map such that for each x ∈ X, p−1(x) is an m-dimensional

vector space.

3. for each x ∈ X, there is a neighborhood U ⊂ X such that p−1(U) is isomorphic to

U × Cm.

A section of η is a map s : X −→ E such that p ◦ s = id : X −→ X. Let (p,E,X) be a

vector bundle over X and X and E be smooth manifolds, a section s : X −→ E is smooth

if it is smooth as a map from X to E.

Example 7. On the unit circle T, D = −i d
dθ

is a first-order partial differential operator

on T.

Definition 15. Let ξ = (ξ1, · · · , ξn) ∈ Rn and p(x, ξ) =
n∑

i=1

Ai(x)ξi + B(x). Then the

partial differential operator defined in definition 13 can be written as P = p(x,D). Let

σ(x, ξ) =
n∑

i=1

Ai(x)ξi. σ(x, ξ) is called the symbol of P .

Definition 16. Let P be a partial differential operator on Rn and let σ(x, ξ) be the symbol

of P . If σ(x, ξ) is invertible for all x ∈ Rn and ξ(6= 0) ∈ Rn, we call P elliptic.

Theorem 16 (Garding’s Inequality). Let D be a first-order partial differential operator on

M and let K be a compact subset of M . If D is elliptic over a neighborhood of K then there

is a constant c > 0 such that

‖u‖L2(M) + ‖Du‖L2(M) ≥ c ‖u‖H1(K) ,

for all u ∈ H1(K).

12



Example 8. H1(T) is the completion of
{∑

n∈Z
ane

int ∈ C(T)
∣∣∣ ∑n∈Z n

2|an|2 <∞
}

in the

Sobolev 1-norm, i.e. ‖u‖1 ≈ ‖f‖L2(T) + ‖Df‖L2(T).

Definition 17. An unbounded Hilbert space operator T is closable if the norm-closure of

its graph is the graph of another unbounded operator, called the closure of T and denoted

T̄ .

Lemma 6. Every differential operator D is closable.

Definition 18. An operator which has a unique self-adjoint extension is said to be essen-

tially self-adjoint.

Theorem 17 (Sobolev Embedding Theorem). If s > n
2 + k, then Hs(Rn) is included

within Ck
0 (Rn) the Banach space of k-times continuously differentiable functions on Rn,

whose derivatives up to order k vanish at infinity.

Proof. We need to show that the Ck-norm of a smooth, compactly supported function is

bounded by a multiple of the Sobolev s-norm, whenever s > n
2 +k. This will imply that the

identity map on C∞c (Rn) extends to a continuous map of Hs(Rn) into Ck(Rn), as required.

If |α| ≤ k, we compute, using the Fourier inversion formula, that

Dαu(x) =
∫
eiξ·xξαû(ξ)dξ.

Therefore, by the Cauchy-Schwarz inequality,

|Dαu(x)|2 ≤
∫

(1 + ξ2)−sξ2αdξ ·
∫

(1 + ξ2)s|û(ξ)|2dξ.

If s > n
2 + k and k ≥ |α| then the first integral is finite. Taking the square roots we get the

required estimate

sup
x
|Dαu(x)| ≤ C ‖u‖s

for some constant C.

Theorem 18 (Elliptic Regularity Principle). Let M be a smooth manifold and U ⊂M . If

D is elliptic over U and if u is a distribution such that Du is smooth over U, then in fact

13



u itself is smooth over U .

To prove this theorem, we need the Sobolev Embedding Theorem and Garding Inequal-

ity. The Garding Inequality implies that the eigenvectors of elliptic operators on compact

manifolds belong to every Sobolev space Hk(M). The Sobolev Embedding Theorem asserts

that ∩kH
k(M) is made up entirely of smooth functions on M .

It is immediate from the definition of the Sobolev space that every first-order differential

operator D is bounded when considered as an operator from H1(K) to L2(M).

Theorem 19. Let M be a manifold and let D be an essentially selfajoint differential oper-

ator on M . If D is elliptic over an open subset U ⊂M then for every φ ∈ C0(R) and every

g ∈ C0(U) the operator ρ(g)φ(D) : L2(M)→ L2(M) is compact.

To prove this theorem, we need the Rellich Lemma and Garding Inequality. First we

factor the map as follows:

ρ(g)φ(D) : L2(M) −→ H1(K) −→ L2(M)

where φ is a compactly supported function and K is the compact support of φ. The first

map is bounded via the Garding Inequality, the second map is compact via Rellich Lemma.

Theorem 20. Let M be a compact smooth manifold and let P be an elliptic differential

operator on M . Then P has closed range, kerP and cokerP are finite dimensional.

Example 9. For the differential operator D in Example 7, ker D is the set of all constant

functions and of dimension 1. cokerD is the same.

Definition 19. Let M be a smooth manifold. An ungraded Fredholm module is a triple

(H,φ, F ) such that

1. H is a Hilbert space;

2. φ : C0(M) −→ L(H) is a homomorphism;

3. F ∈ L(H) such that φ(f)(F ∗F − I), φ(f)(FF ∗ − I) and [φ(f), F ] are in K(H).
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Example 10. We show that the differential operator D in Example 7 induces an ungraded

Fredholm module. Let H = L2(T), φ : C(T) −→ L(H) is the multiplication operator, i.e.

φ(f)(g) = fg for all f ∈ C(T) and g ∈ H. D is unbounded on H, F =
D√

I + D2
is a

bounded operator on H. Let us check the conditions in the definition 19.

(1) φ(f)(FF ∗ − I) and φ(f)(F ∗F − I) are in K(H).

Since T is compact, we only need to show that FF ∗ − I, F ∗F − I are compact.

〈Df, g〉 =
∫

T
−i d
dt
f(t)g(t)dt

= −(−i)
∫

T
f(t)

d

dt
g(t)dt (integration by parts)

=
∫

T
f(t)−i d

dt
g(t)dt

= 〈f,Dg〉.

So D is symmetric, then F ∗ = F and FF ∗−I = F ∗F −I = (I+D2)−1. Since the spectrum

of D is {0,±1,±2, · · · ,±n, · · · }, FF ∗ − I = F ∗F − I = (I + D2)−1 are in K(H).

(2) [φ(f), F ] ∈ K(H).

On the standard basis
{
eint
}

n∈Z, D(eint) = neint and F (eint) =
n√

1 + n2
eint. Let f =

eim0t ∈ C(T),

(Ff − fF )(eint) =

(
n+m0√

1 + (n+m0)2
− n√

1 + n2

)
ei(n+m0)t.

Hence [F, f ] is a shift operator and
n+m0√

1 + (n+m0)2
− n√

1 + n2
approaches 0 when n ap-

proaches infinity. So [F, f ] can be approximated by finite rank operators. This means that

[F, f ] is a compact operator on H. For any f ∈ C(T) and ε > 0, we can find a finite sum

g(t) =
l∑

j=−l

aje
ijt such that ‖f − g‖ < ε. Since g is finite sum of compact operators, f is a

compact operator.

Therefore (H,φ, F ) is an ungraded Fredholm operator on T.

Definition 20. Let M be a smooth manifold. A graded Fredholm module is a triple (H,φ, F )

such that

1. H is a Z2-graded Hilbert space;
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2. φ : C0(M) −→ L(H) is a homomorphism of degree 0;

3. F ∈ L(H) is of degree 1 and φ(f)(F − F ∗), φ(f)(F 2 − I) and [φ(f), F ] are in K(H).

Example 11. We show that the differential operator D in Example 6 induces a graded

Fredholm module. Let H = L2(R2) ⊕ L2(R2), φ : C0(R2) −→ L(H) is the multiplication

operator, i.e. φ(f)(g1 ⊕ g2) = (fg1 ⊕ fg2) for all f ∈ C0(R2) and (g1, g2) ∈ H. Let

∂z =
∂

∂x1
− i

∂

∂x2
and ∂z̄ =

∂

∂x1
+ i

∂

∂x2
, then D =

 0 −∂z

∂z̄ 0

 is unbounded on H,

F =
D√

I + D2
is a bounded operator on H. Let us check the conditions in the definition 20.

(1) φ(f)(F − F ∗) ∈ K(H).

First for f1, f2 ∈ C∞(R2),

〈−∂zf1, f2〉 = 〈f1, ∂z̄f2〉.

Then for f ⊕ g, h⊕ l ∈ C∞(C)⊕ C∞(C),

〈D(f ⊕ g), h⊕ l〉 = 〈−∂zg ⊕ ∂z̄f, h⊕ l〉

= 〈−∂zg, h〉+ 〈∂z̄f, l〉

= 〈g, ∂z̄h〉+ 〈f,−∂zl〉

= 〈f ⊕ g,−∂zl ⊕ ∂z̄h〉

= 〈f ⊕ g,D(h⊕ l)〉.

So D is symmetric, then F ∗ = F and φ(f)(F − F ∗) = 0 for all f ∈ C0(R2).

(2) φ(f)(F 2 − I) ∈ K(H).

Let f ∈ C∞c (R2) be a compactly supported smooth function on R2. That φ(f)(F 2 − I) is a

compact operator follows from Rellich Lemma.

(3) [F, f ] ∈ K(H).

Here we have a formula

F =
2
π

∫ ∞

0

D

1 + λ2 + D2
dλ.
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Since the D is symmetric, the above formula comes from the integration

x√
1 + x2

=
2
π

∫ ∞

0

x

1 + λ2 + x2
dλ, (

∫
1

1 + λ2
dλ = tan−1(λ)).

Then for any f ∈ C∞c (R2),

[F, f ] =
2
π

∫ ∞

0

1
1 + λ2 + D2

(
(1 + λ2 + D2)Df − fD(1 + λ2 + D2)

) 1
1 + λ2 + D2

dλ

=
2
π

∫ ∞

0

1
1 + λ2 + D2

(
(1 + λ2)[D, f ] + D[f,D]D

) 1
1 + λ2 + D2

dλ.

Since
1 + λ2

1 + λ2 + D2
is uniformly bounded and [D, f ] is compactly supported,

1 + λ2

1 + λ2 + D2
[D, f ]

1
1 + λ2 + D2

is compact by Rellich Lemma. Similarly,
D

1 + λ2 + D2
is uniformly bounded and [f,D] is

compactly supported,
D

1 + λ2 + D2
[f,D]

D

1 + λ2 + D2
is compact by Rellich Lemma. Both∥∥∥∥ 1

1 + λ2 + D2

∥∥∥∥ and
∥∥∥∥ D

1 + λ2 + D2

∥∥∥∥ approach 0 when λ approaches infinity. Then for any

bounded interval [0, a] in [0,∞), the integral

Fa =
2
π

∫
[0,a]

1
1 + λ2 + D2

(
(1 + λ2)[D, f ] + D[f,D]D

) 1
1 + λ2 + D2

dλ

is compact. When a is big enough, ‖Fa − [F, f ]‖ can be smaller than any given positive

number, therefore [F, f ] is compact.

III.2 Equivariant K-homology

Let M be a Riemannian manifold, and let Γ act on M properly and isometrically. Recall

that Γ acts on M properly in the sense that the map

X × Γ → X ×X

(x, γ) (γx, x)

is proper, i.e. the preimage of compact sets are compact. In this case we call X a proper

Γ-space.

Definition 21. Let H be a separable graded Hilbert space with Γ action. For γ ∈ Γ and
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F ∈ L(H), we define γ(F ) ∈ L(H) as

γ(F )(x) = γ(F (γ−1(x)))

for all x ∈ H.

Definition 22. Let X be a proper Γ-space. A graded equivariant Kasparov Γ-module over

X is a triple (H,φ, F ) satisfying

(1) H is a separable graded Hilbert space with Γ action;

(2) φ : C0(X)→ L(H) is a *-homomorphism of degree 0;

(3) F ∈ L(H) of degree 1 such that the graded commutator [F, φ(f)], (F 2 − 1)φ(f),

(F − F ∗)φ(f) and (γ(F )− F )φ(f) are all in K(H) for all f ∈ C0(X) and γ ∈ Γ.

If [F, φ(f)] = (F 2 − 1)φ(f) = (F − F ∗)φ(f) = 0 for all f ∈ C0(X), we call (H,φ, F )

degenerate.

In the next definition, we give three equivalence relations between graded equivariant

Kasparov Γ-modules.

Definition 23. 1. Let (H,φ, Ft) be a graded equivariant Kasparov Γ-module over X for

t ∈ [0, 1]. If the map t −→ Ft is norm continuous, we call that (H,φ, F0) is operator

homotopic to (H,φ, F1);

2. Let (H,φ, F ) be a graded equivariant Kasparov Γ-module over X, H ′ be a Hilbert

space and U : H ′ −→ H be a unitary isomorphism preserving the grading. Then

(H ′, U∗φU,U∗FU) is a graded equivariant Kasparov Γ-module and we call it is uni-

tarily equivalent to (H,φ, F );

3. Let (H,φ, F ) and (H,φ, F ′) be graded equivariant Kasparov Γ-modules over X and

the (F − F ′)φ(f) is compact for all f ∈ C0(X). We call that (H,φ, F ′) is a compact

perturbation of (H,φ, F ).

Operator homotopy implies compact perturbation. The linear path will give the homo-

topy. And now we can normalize F such that F is self-adjoint. In fact we can use F+F ∗

2 to

replace F and they are the compact perturbation to each other.
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Definition 24. We denote by EΓ
0 (X) the set of all equivalence classes of graded equiv-

ariant Kasparov Γ-modules and denote by DΓ
0 (X) the set of equivalence classes containing

degenerate elements in EΓ
0 . We set KΓ

0 (X) = EΓ
0 (X)/DΓ

0 (X).

Lemma 7. KΓ
0 (X) is an abelian group with addition given by direct sum (H1, φ1, F1) ⊕

(H2, φ2, F2) = (H1⊕H2, φ1⊕φ2, F1⊕F2). Any degenerate module will give the zero element

and −[(H,φ, F )] = [(Hop, φ,−F )] where Hop = H as a Hilbert space but with the reverse

grading.

Similarly we can define the K1(X).

Definition 25. Let X be a proper Γ-space. An ungraded equivariant Kasparov Γ-module

over X is a triple (H,φ, F ) satisfying

(1) H is a separable Hilbert space with Γ action;

(2) φ : C0(X)→ L(H) is a *-homomorphism;

(3) F ∈ L(H) such that the commutator [F, φ(f)], (F 2 − 1)φ(f), (F − F ∗)φ(f) and

(γ(F )− F )φ(f) are all in K(H) for all f ∈ C0(X) and γ ∈ Γ.

If [F, φ(f)] = (F 2 − 1)φ(f) = (F − F ∗)φ(f) = 0 for all f ∈ C0(X), we call (H,φ, F )

degenerate.

Similarly, we give three equivalence relations between ungraded equivariant Kasparov

Γ-modules.

Definition 26. 1. Let (H,φ, Ft) be an ungraded equivariant Fredholm Γ-module over X

for t ∈ [0, 1]. If the map t −→ Ft is norm continuous, we call that (H,φ, F0) is

operator homotopic to (H,φ, F1);

2. Let (H,φ, F ) be an ungraded equivariant Fredholm Γ-module over X, H ′ be a Hilbert

space and U : H ′ −→ H be a unitary isomorphism. Then (H ′, U∗φU,U∗FU) is

an ungraded equivariant Kasparov Γ-module and we call it is unitarily equivalent to

(H,φ, F );

19



3. Let (H,φ, F ) and (H,φ, F ′) be ungraded equivariant Fredholm Γ-modules over X and

the (F − F ′)φ(f) is compact for all f ∈ C0(X). We call that (H,φ, F ′) is a compact

perturbation of (H,φ, F ).

Operator homotopy implies compact perturbation. The linear path will give the homo-

topy. We can normalize F such that F is self-adjoint.

Definition 27. We denote by EΓ
1 (X) the set of all equivalence classes of ungraded equiv-

ariant Fredholm Γ-modules and denote by DΓ
1 (X) the set of equivalence classes containing

degenerate elements in EΓ
0 . We set KΓ

1 (X) = EΓ
1 (X)/DΓ

1 (X).

Lemma 8. KΓ
1 (X) is an abelian group with addition given by direct sum (H1, φ1, F1) ⊕

(H2, φ2, F2) = (H1⊕H2, φ1⊕φ2, F1⊕F2). Any degenerate module will give the zero element

and −[(H,φ, F )] = [(H,φ,−F )].
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CHAPTER IV

COARSE GEOMETRY

In this chapter, we study the coarse structure for metric spaces and compute the K-groups

of the C∗-algebras associated to several examples. This chapter is based on [HRY, HR00,

Y95, Y97].

Definition 28. Let X,Y be metric spaces. The map f : X → Y is called coarse if

• for any s > 0, there exists r > 0 such that for any x1, x2 ∈ X and dX(x1, x2) < s,

dY (f(x1), f(x2)) < r,

• for any R > 0, there exists S > 0 such that for any x1, x2 ∈ X and dY (f(x1), f(x2)) <

R, dX(x1, x2) < S.

Definition 29. Let X be a metric space and let S be any set. Two maps φ1, φ2 : S → X

are close if

sup
s∈S

d(φ1(s), φ2(s)) <∞.

Definition 30. Let X,Y be metric spaces. The maps f, g : X → Y are called (coarsely)

equivalent if f, g are close.

Definition 31. Let X,Y be metric spaces. X,Y are called (coarsely) equivalent if there

exist f : X → Y and g : Y → X such that f ◦ g is close to idY and g ◦ f is close idX .

Let X be a proper metric space (a metric space is called proper if every closed ball is

compact). An X-module is a separable Hilbert space equipped with a faithful and non-

degenerate ∗-representation of C0(X) whose range contains no nonzero compact operators,

where C0(X) is the algebra of all complex-valued continuous functions on X which vanish

at infinity.

Definition 32. Let X and Y be proper metric spaces, and let HX and HY be X-module

and Y -module, respectively.
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1. The support Supp(T ) of a bounded linear operator T from HX to HY is defined to be

the complement (in X × Y ) of the set of points (x, y) ∈ X × Y for which there exist

functions φ ∈ C0(X), ψ ∈ C0(Y ) such that ψTφ = 0 and φ(x) 6= 0, ψ(y) 6= 0.

2. The propagation of a bounded linear operator T : HX → HX is defined to be

sup
{
d(x, y) : (x, y) ∈ Supp(T ) ⊂ X ×X

}
.

3. A bounded linear operator T : HX → HX is said to be locally compact if the operators

φT and Tφ are compact for all φ ∈ C0(X).

Definition 33. Let HX be an X-module. The Roe algebra C∗(X,HX) is the operator norm

closure of the ∗-algebra of all locally compact, finite propagation operators acting on HX .

Example 12. Let X be a bounded metric space and let HX be an X-module. Then

C∗(X,HX) = K because local compactness implies compactness and every operators in

L(HX) have finite propagation.

Lemma 9. Let X,Y be metric spaces and let HX ,HY be X and Y -modules, respectively.

Let f : X → Y be a coarse map. There is an isometry Vf : HX → HY such that for some

R > 0,

Supp(V ) ⊂ {(x, y) ∈ X × Y |d(f(x), y) < R} .

We call that Vf covers f .

With Vf as above, Ad(Vf )(u) = Vfu(Vf )∗ for u ∈ C∗(X,HX) maps C∗(X,HX) to

C∗(Y,HY ). Clearly this Vf is not unique.

Lemma 10. Let V1, V2 be two isometries satisfying the above lemma. The induced maps

on K-theory are equal:

Ad(V1)∗ = Ad(V2)∗ : K∗(C∗(X,HX))→ K∗(C∗(Y,HY )).

Let X be a metric space and let H1 and H2 be two X-modules. The identity map

id : X → X induces an isomorphism id∗ : K∗(C∗(X,H1)) → K∗(C∗(X,H2)). So up to
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isomorphism, K∗(C∗(X,H1)) does not depend on the choice of X-modules. If f, g : X → Y

are close and Vf covers f , then Vf covers g too. We have

Lemma 11. Let X,Y be two coarsely equivalent metric spaces, then K∗(C∗(X)) ∼= K∗(C∗(Y )).

Example 13. K∗(C∗(Z)) ∼= K∗(C∗(R)).
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CHAPTER V

EQUIVARIANT INDEX THEORY AND NONPOSITIVELY-CURVED
MANIFOLDS

In this chapter, we will define the equivariant higher index map and prove the following

theorem.

Theorem 21. If X is a simply-connected complete Riemannian manifold with nonposi-

tive sectional curvature and Γ is a torsion-free discrete group acting on X properly and

isometrically, then the equivariant higher index map

Ind : KΓ
∗ (X)→ K∗(C∗(X)Γ)

is injective.

V.1 The equivariant higher index map.

In this section, we will define the equivariant higher index map. Let X be a complete

Riemannian manifold and let Γ be a torsion-free discrete group acting on X properly and

isometrically, where the Γ action on X is proper in the sense that the map

X × Γ → X ×X

(x, γ) (γx, x)

is proper, i.e. the preimage of a compact set is compact. Γ acts on X isometrically if

d(γx, γy) = d(x, y) for all γ ∈ Γ and x, y ∈ X. In this case, we call X a proper Γ-space. If

Γ is torsion-free, the properness of the Γ action implies that the Γ action is free.

Definition 34. An X-module is a Hilbert space H equipped with a ∗-homomorphism φ :

C0(X) → L(H) of C∗-algebras. If H is Z/2Z-graded, we require that φ(f) is of degree 0

for all f ∈ C0(X). An X-module H is called adequate if φ(C0(X))H = H and there is no

non-zero element in C0(X) acting on H as a compact operator. In this paper, we denote

φ(f)v by fv for all v ∈ H.
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Definition 35. Let X be a proper Γ-space. For γ ∈ Γ and f ∈ C0(X), we define γ(f) ∈

C0(X) as

γ(f)(x) = f(γ−1(x))

for x ∈ X.

Definition 36. Let H be an X-module. We say that H is a covariant X-module if it is

equipped with a unitary action ρ of Γ, i.e. ρ : Γ → U(H) is a group homomorphism from

Γ to the set of all unitary elements in L(H), compatible with the action of Γ on X, in the

sense that for all v ∈ H, f ∈ C0(X) and γ ∈ Γ

(γ(f))(v) = ρ(γ) (f(ρ(γ)∗(v))) .

For γ ∈ Γ and T ∈ L(H), we define γ(T ) ∈ L(H) as

γ(T )(v) = ρ(γ)Tρ(γ)∗(v)

for v ∈ L(H). In this paper, we assume that all X-modules are adequate and covariant.

Definition 37. Let HX be an X-module. A bounded operator T : HX → HX is Γ-invariant

if γ(T ) = T for all γ ∈ Γ.

Definition 38. The equivariant Roe algebra C∗(X)Γ is the operator norm closure of the

∗-algebra of all locally compact and Γ-invariant operators with finite propagation in L(HX).

Lemma 12. The Roe algebra C∗(X)Γ does not depend on the choice of the X-module HX .

The proof is similar to Lemma 6.2 in [Y95].

To define the equivariant higher index map, we need to make locally almost Γ-invariant

operators in KΓ
0 (X) to be Γ-invariant by a Γ-averaging process.

Lemma 13. Let X be a metric space and Γ be a torsion-free discrete group acting on X

properly. If (HX , φ, F ) is a cycle for KΓ
1 (X), then there exists another operator F ′ ∈ L(HX)

such that

[(HX , φ, F )] = [(HX , φ, F
′)] ∈ KΓ

1 (X)
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and

γ(F ′) = F ′ for all γ ∈ Γ.

The same result is also true for cycles for KΓ
0 (X).

Proof. We only prove it for cycles for KΓ
1 (X). The proof for cycles for KΓ

0 (X) is similar.

Since the Γ action on X is proper and Γ is torsion-free, we can find a cover {Ui}i∈I of X

such that Ui is Γ-equivariantly diffeomorphic to Γ×Oi, where Oi is an open subset of some

vector space and ({γ1} × Oi) ∩ ({γ2} × Oi) = ∅ for γ1, γ2 ∈ Γ and γ1 6= γ2. To simplify

notations, we identify Ui with Γ×Oi. Let {φi}i∈I be the partition of unity subordinate to

the cover {Ui}i∈I . Let

F ′′ =
∑
i∈I

φ
1
2
i Fφ

1
2
i =

∑
i∈I

F ′′i ,

where F ′′i = φ
1
2
i Fφ

1
2
i for i ∈ I and

∑
i∈I F

′′
i converges in strong operator topology. For all

f ∈ Cc(X),

f(F − F ′′) = f

(∑
i∈I

φ
1
2
i

(
φ

1
2
i F − Fφ

1
2
i

))

is a finite sum and therefore compact. Hence (HX , φ, F ) and (HX , φ, F
′′) represent the

same element in KΓ
1 (X).

Choose χi,γ ∈ C0(X) such that χi,γ(x) = 1 when x ∈ {γ} × Oi and χi,γ(x) = 0 when

x /∈ {γ} ×Oi for γ ∈ Γ and i ∈ I. Let

Gi,γ = χi,γF
′′
i χi,γ

for γ ∈ Γ and i ∈ I. Then for all f ∈ C0(X)

f(F ′′i −
∑
γ∈Γ

Gi,γ)
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is compact, where the infinite sum converges in strong topology. For any f ∈ Cc(X),

f

∑
γ∈Γ

(Gi,γ − γ(Gi,e))

 = f

∑
γ∈Γ

χi,γF
′′
i χi,γ − γχi,eF

′′
i χi,eγ

−1


=
∑
γ∈Γ

χi,γ

(
f(F ′′i − γ(F ′′i ))

)
χi,γ

is a finite sum and therefore compact. Let F ′i =
∑

γ∈Γ γ(Gi,e) and F ′ =
∑

i∈I F
′
i , then

f(F ′ − F ′′) is compact for all f ∈ C0(X), therefore [(HX , φ, F
′)] = [(HX , φ, F

′′)] ∈ KΓ
1 (X)

and γ(F ′) = F ′ for all γ ∈ Γ.

Now let us define the equivariant higher index map. Based on Lemma 13, let (HX , φ, F )

be a cycle for KΓ
0 (X) such that F is Γ-invariant and has finite propagation. If we have

the decomposition F =

 0 V

U 0

, then U is a multiplier of C∗(X)Γ in the multiplier

algebra M(C∗(X)Γ) and U is a unitary modulo C∗(X)Γ and ∂(U) ∈ K0(C∗(X)Γ), where ∂

is the boundary map: K1(M(C∗(X)Γ)/C∗(X)Γ) −→ K0(C∗(X)Γ). ∂(U) depends only on

the class [(HX , φ, F )] in KΓ
0 (X). Similarly, if (HX , φ, F ) is a cycle for KΓ

1 (X) such that F

is Γ-invariant and has finite propagation. Then F is a multiplier of C∗(X)Γ and I+F
2 is a

projection modulo C∗(X)Γ. Hence ∂[ I+F
2 ] ∈ K1(C∗(X)Γ), where ∂ is the boundary map:

K0(M(C∗(X)Γ)/C∗(X)Γ) −→ K1(C∗(X)Γ). ∂[ I+F
2 ] depends only on the class [(HX , φ, F )]

in KΓ
1 (X).

Definition 39.

1. Let [(HX , φ, F )] ∈ KΓ
0 (X) such that F is Γ-invariant, self-adjoint and has finite prop-

agation. If F =

 0 V

U 0

, define

Ind : KΓ
0 (X)→ K0(C∗(X)Γ)

by Ind([(HX , φ, F )]) = ∂(U), called the Γ-index of [(HX , φ, F )] in K0(C∗(X)Γ);
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2. Let [(HX , φ, F )] ∈ KΓ
1 (X) such that F is Γ-invariant, self-adjoint and has finite prop-

agation. Define

Ind : KΓ
1 (X)→ K1(C∗(X)Γ)

by Ind([(HX , φ, F )]) = ∂[ I+F
2 ], called the Γ-index of [(HX , φ, F )] in K1(C∗(X)Γ).

V.2 Local index theorem.

In this section, we construct the associated localization algebra C∗L(X)Γ, define the local

Γ-index map

IndL : KΓ
∗ (X)→ K∗(C∗L(X)Γ)

and prove the local index theorem.

Definition 40. The localization algebra C∗L(X)Γ is the norm-closure of the algebra of all

uniformly bounded and uniformly norm-continuous functions f : [0,∞) → C∗(X)Γ such

that

sup{d(m,m′) : (m,m′) ∈ supp(f(t))} → 0

as t→∞.

Let’s define the associated local Γ-index map. For each positive integer n, let {Un,i}i be

a locally finite and Γ-invariant open cover for X such that diameter(Un,i) < 1
n for all i. Let

{φn,i}i be a continuous partition of unity subordinate to {Un,i}i. Let [(HX , φ, F )] ∈ KΓ
0 (X).

Define a family of operators F (t) (t ∈ [0,∞)) acting on HX by

F (t) =
∑

i

((1− (t− n))φ
1
2
n,iFφ

1
2
n,i + (t− n)φ

1
2
n+1,iFφ

1
2
n+1,i)

for all t ∈ [n, n + 1], where the infinite sum converges in strong topology. Notice that the

propagation of (F (t))→ 0 as t→∞.

Definition 41.

1. Let (HX , φ, F ) be a cycle for KΓ
0 (X) such that F is Γ-invariant, self-adjoint and has

finite propagation. Define F (t) as above and assume that F (t) =

 0 V (t)

U(t) 0

.
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The local index map

IndL : KΓ
0 (X)→ K0(C∗L(X)Γ)

is defined by IndL([(HX , φ, F )]) = [∂(U(t))], called the local Γ-index of [(HX , φ, F )] in

K0(C∗L(X)Γ);

2. Let (HX , φ, F ) be a cycle for KΓ
1 (X) such that F is Γ-invariant, self-adjoint and has

finite propagation. Define F (t) as above. The local index map

IndL : KΓ
1 (X)→ K1(C∗L(X)Γ)

is defined by IndL([(HX , φ, F )]) = [∂( I+F (t)
2 )], called the local Γ-index of [(HX , φ, F )]

in K1(C∗L(X)Γ).

Next we will use Mayer-Vietoris argument to show that the local Γ-index is an isomor-

phism. Since Γ acts on X properly, X is covered by sets of the form Γ ×F U , where U

is F -equivariantly contractible and F is a finite subgroup of Γ ([BCH]). The existence of

Mayer-Vietoris sequence for localization algebras without group action has been proved in

[Y97] and [HRY]. Then the existence of Mayer-Vietoris sequence for localization algebras

with a proper group action follows from those two results.

Theorem 22. Let X be a metric space and let Γ be a torsion-free discrete group acting

on X properly and isometrically. If X1 and X2 are two Γ-invariant open subspaces of X

endowed with the subspace metric and are proper Γ-spaces such that X = X1 ∪ X2 and

A = X1 ∩X2, then we have the following six term exact sequence

K0(C∗L(A)Γ) −−−−→ K0(C∗L(X1)Γ)⊕K0(C∗L(X2)Γ) −−−−→ K0(C∗L(X)Γ)x y
K1(C∗L(X)Γ) ←−−−− K1(C∗L(X1)Γ)⊕K1(C∗L(X2)Γ) ←−−−− K1(C∗L(A)Γ) .

The proof of this requires a couple of lemmas.

Definition 42 ([HRY]). Let U be a Γ-invariant open subspace of a Γ-space X and let

HM be an X-module. Denote by C∗(U ;X)Γ the norm closure of the set of all locally com-

pact, finite propagation and Γ-invariant operators T on HM whose support is contained
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in {x ∈ X|d(x,U) < R} × {x ∈ X|d(x,U) < R}, for some R > 0 (depending on T ). De-

note by C∗L(U ;X)Γ the norm closure of the algebra of all uniformly bounded and uniformly

continuous functions f : [0,∞) −→ C∗(U ;X)Γ such that

sup
{
d(m,m′) : (m,m′) ∈ supp(f(t))

}
−→ 0

as t −→∞.

Lemma 14 ([HRY]). Let HY1 and HY2 be adequate Y1 and Y2-modules and let F : Y1 −→ Y2

be a Γ-invariant coarse map. The exists a Γ-invariant isometry V : HY1 −→ HY2 such that

for some R > 0

supp(V ) ⊂ {(y1, y2) ∈ Y1 × Y2|d(F (y1), y2) ≤ R} .

Clearly C∗L(U ;X)Γ is a closed two-sided ideal in C∗L(X)Γ. If V : HU −→ HX is a Γ-

invariant isometry associated to the inclusion morphism U −→ X as in the previous lemma,

then the range of the map Ad(V ) : C∗L(U)Γ −→ C∗L(X)Γ lies within C∗L(U ;X)Γ.

Lemma 15 ([HRY]). The induced map

Ad(V ) : K∗(C∗L(U)Γ) −→ K∗(C∗L(U ;X)Γ)

is an isomorphism.

The Proof of Theorem 22. Observe that C∗L(X1;X)Γ and C∗L(X2;X)Γ are ideals of

C∗L(X)Γ and C∗L(X1;X)Γ + C∗L(X2;X)Γ = C∗L(X)Γ. The Theorem follows from Lemma 15

and the Mayer-Vietoris sequence on page 90 in [HRY].

Theorem 23. IndL : KΓ
∗ (X)→ K∗(C∗L(X)Γ) is an isomorphism.

Proof. The required isomorphism may be shown by Mayer-Vietoris argument, based on the

fact that X is covered by sets of the form Γ × U , where U is contractible. Let P be a

one-point set. Note that P is homotopic to U . By Mayer-Vietoris sequence and the five

lemma it suffices to show that for a single such space Γ× U the map

IndL : KΓ
∗ (Γ× U)→ K∗(C∗L(Γ× U)Γ)
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is an isomorphism. For this, it suffices to show that

IndL : KΓ
∗ (Γ× P )→ K∗(C∗L(Γ× P )Γ)

is an isomorphism. Both sides are isomorphic to the K-theory of compact operators, there-

fore it is an isomorphism.

V.3 Twisted Roe algebras and twisted localization algebras.

In this section, we define certain twisted Roe algebras and twisted localization algebras. In

the case of coarse embedding into Hilbert space, these algebras are introduced by Yu in

[Y00].

Assume that X is a proper Γ-space. Let X × R be the metric space with the product

metric. Define the Γ action by

γ(x, r) = (γx, r)

for γ ∈ Γ and (x, r) ∈ X × R. Note that this Γ action is proper and isometric.

Lemma 16.

Ki(C∗(X × R)Γ) ∼= Ki+1(C∗(X)Γ))

for i = 0, 1.

By the six-term exact sequence, we only need to show that Ki(C∗(X × R+)Γ) = 0 for

i = 0, 1. This proof is the same as the proof when Γ is trivial.

Lemma 17. The following diagram commutes

KΓ
i (X × R) Ind−−−−→ Ki(C∗(X × R)Γ)

∼=
y y∼=

KΓ
i+1(X) Ind−−−−→ Ki+1(C∗(X)Γ)

for i = 0, 1.

This is the naturality of the index map.
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Based on these two lemmas we only prove Theorem 21 for even-dimensional manifold

X. Let A = C0(X,Cliff(TX)). Choose a countable dense subset X ′ of X such that X ′ is

Γ-invariant.

Let C∗alg(X,A)ΓX′ be the set of all functions T on X ′ ×X ′ such that

(1) T (x, y) ∈ A⊗K for all x, y ∈ X ′, where K is the algebra of compact operators;

(2) ∃ L > 0 such that T (x, y) = 0 if d(x, y) > L for all x, y ∈ X;

(3) ∃ r > 0 such that support(T (x, y)) ⊂ B(x, r) for all x, y ∈ X;

(4) γ(T ) = T for all γ ∈ Γ, where γ(T )(x, y) = γ(T (γ−1(x), γ−1(y)));

(5) ∃ M > 0 and N > 0 such that ‖T (x, y)‖ ≤M for all x, y ∈ X ′, and for each y ∈ X ′,

#{x : T (x, y) 6= 0} ≤ N , #{x : T (y, x) 6= 0} ≤ N .

We define a product structure on C∗alg(X,A)ΓX′ by:

(T1T2)(x, y) =
∑
z∈X′

T1(x, z)T2(z, y).

Let

E =

{∑
x∈X′

ax[x] : ax ∈ A⊗K,
∑
x∈X′

a∗xax <∞

}
.

E is a Hilbert module over A⊗K:

〈∑
x∈X′

ax[x],
∑
x∈X′

bx[x]

〉
=
∑
x∈X′

a∗xbx,

(∑
x∈X′

ax[x]

)
a =

∑
x∈X′

axa[x]

for all a ∈ A⊗K and
∑
x∈X′

ax[x] ∈ E.

C∗alg(X,A)ΓX′ acts on E by:

T

(∑
x∈X′

ax[x]

)
=
∑
y∈X′

(∑
x∈X′

T (y, x)ax

)
[y],
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where T ∈ C∗alg(X,A)ΓX′ and
∑
x∈X′

ax[x] ∈ E. T is a module homomorphism which has an

adjoint module homomorphism.

Definition 43. C∗(X,A)Γ is the operator norm closure of C∗alg(X,A)ΓX′ in B(E), the

C∗-algebra of all module homomorphisms from E to E for which there is an adjoint

module homomorphism.

Remark ([Y00]). The twisted equivariant Roe algebra C∗(X,A)Γ does not depend on the

choice of X ′.

Let C∗L,alg(X,A)ΓX′ be the set of all uniformly continuous and uniformly bounded functions

g : [0,∞)→ C∗alg(X,A)ΓX′ such that

(1) ∃ a bounded function r(t) : R+ → R+ such that lim
t→∞

r(t) = 0 and if d(x, y) > r(t),

g(t)(x, y) = 0 for all x, y ∈ X;

(2) ∃ R > 0 such that supp(g(t)(x, y)) ⊂ B(x,R) for all x, y ∈ X and t ∈ [0,∞).

Definition 44. C∗L(X,A)Γ is the operator norm closure of C∗L,alg(X,A)ΓX′, where

C∗L,alg(X,A)ΓX′ is endowed with the norm:

‖g‖ = sup
t∈[0,∞)

‖g(t)‖B(E).

V.4 K-Theory of twisted Roe algebras and twisted localization algebras.

In this section, we compute the K-theory of twisted Roe algebras and twisted localization

algebras.

Definition 45.

1. The support of an element T in C∗alg(X,A)ΓX′ is defined to be

{
(x, y, u) ∈ X ′ ×X ′ ×X : u ∈ supp(T (x, y))

}
;

2. The support of an element g in C∗L,alg(X,A)ΓX′ is defined to be

⋃
t∈[0,∞)

supp(g(t)).
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Let O be a subset of X. Define C∗alg(X,A)ΓO to be the subalgebra of C∗alg(X,A)ΓX′

consisting of all elements whose supports are contained in X ′ ×X ′ ×O. Define C∗(X,A)ΓO

to be the norm closure of C∗alg(X,A)ΓO. We can similarly define C∗L(X,A)ΓO. Let

C∗L,0(X,A)ΓO be the C∗-subalgebra of C∗L(X,A)ΓO consisting of elements g satisfying

g(0) = 0.

Lemma 18. If O is Γ invariant and cocompact, then

e∗ : K∗(C∗L(X,A)ΓO)→ K∗(C∗(X,A)ΓO)

is an isomorphism.

Proof. This proof is similar to the proofs of Lemma 6.4 and Lemma 6.7 in [Y00]. We have

a short exact sequence:

0→ C∗L,0(X,A)ΓO → C∗L(X,A)ΓO → C∗(X,A)ΓO → 0.

Hence it is enough to show

K∗(C∗L,0(X,A)ΓO) = 0.

Let AO be the subset of A consisting of elements f satisfying that supp(f) ⊆ O and

supp(f) is compact. For all R > 0, let

O(R) = {x ∈ X : ∃z ∈ O such that d(z, x) < R} .

Since O is cocompact, we have

C∗(X,A)ΓO = lim
R→∞

AO ⊗ C∗(O(R))Γ.

Clearly O(R) is cocompact, then

C∗(X,A)ΓO = lim
R→∞

AO ⊗ C∗r (Γ)⊗K = AO ⊗ C∗r (Γ)⊗K.

Hence C∗L,0(X,A)ΓO is the set of g : [0,∞)→ AO ⊗C∗r (Γ)⊗K satisfying that g(0) = 0, and
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g is uniformly continuous and uniformly bounded.

We prove that

K1(C∗L,0(X,A)ΓO) = 0.

Clearly C∗L,0(X,A)ΓO is stable. Therefore any element in K1(C∗L,0(X,A)ΓO) can be

represented by a unitary u in (C∗L,0(X,A)ΓO)+.

For each s ∈ [0,∞), we define

us(t) =


I if 0 ≤ t ≤ s;

u(t− s) if s ≤ t <∞.

Consider

w(s) = (⊕∞k=0uk ⊕ I)(I ⊕ (⊕∞k=1u
−1
k−s)⊕ I),

where s ∈ [0,∞). Notice that w(s) is an element in (C∗L,0(X,A)ΓO)+ for each s ∈ [0, 1]. We

have

w(0) = u⊕ (⊕∞k=1I)⊕ I,

w(1) = (⊕∞k=0uk ⊕ I)(I ⊕ (⊕∞k=1u
−1
k−1)⊕ I).

w(1) is equivalent to ⊕∞k=0I ⊕ I in K1(C∗L,0(X,A)ΓO) by a rotation. Therefore u is

equivalent to the zero element in K1(C∗L,0(X,A)ΓO).

Using suspension, we can also prove that KΓ
0 (C∗L,0(X,A)ΓO) = 0.

Theorem 24. e∗ : K∗(C∗L(X,A)Γ)→ K∗(C∗(X,A)Γ) is an isomorphism.

Proof. We have the exact sequence

0→ C∗L,0(X,A)Γ → C∗L(X,A)Γ → C∗(X,A)Γ → 0.

Therefore it is enough to show that K∗(C∗L,0(X,A)Γ) = 0. Fix x ∈ X and let Br be the

ball with radius r and centered at x. Let Or the smallest Γ-invariant subset of X
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containing Br. Then Or is cocompact and

C∗L,0(X,A)Γ = lim
r→∞

C∗L,0(X,A)ΓOr
.

From the previous lemma, we know that

K∗(C∗L,0(X,A)ΓOr
) = 0.

Hence

K∗(C∗L,0(X,A)Γ) = 0.

V.5 The Bott elements and Bott maps.

In this section we define the Bott elements and Bott maps. We will define the Bott

element and Bott map for K0, using suspension we can extend our definition onto K1. Let

X be a simply-connected complete Riemannian manifold with nonpositive sectional

curvature and Γ be a torsion-free discrete group acting on X properly and isometrically.

First we define the Bott element for each x ∈ X. Let x, z ∈ X and σ(t) be the unique

geodesic connecting x and z such that σ(0) = x and σ(1) = z. Let vx(z) = σ′(1)
‖σ′(1)‖ ∈ TzX.

Define fx(z) = φ(z)vx(z) where φ(z) is a continuous function such that

φ(z) =


1 if d(x, z) > c ,

0 if d(x, z) < 99
100c

for some constant c.

Let B = Cb(X,Cliff(TX)) and A = C0(X,Cliff(TX)).

Lemma 19. fx is an invertible element in B/A with an inverse −fx.

We have a short exact sequence

0→ A→ B→ B/A→ 0,
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then we have a boundary map

∂ : K1 (B/A)→ K0(A).

Let u = [fx] ∈ K1(B/A) and gx = −fx ∈ B be a representative of u−1 ∈ K1(B/A). Define

ω =

 1 fx

0 1


 1 0

−gx 1


 1 fx

0 1


 0 −1

1 0



and βx
1 = ω

 1 0

0 0

ω−1 and βx
0 =

 1 0

0 0

. Then βx
1 , βx

0 are both projections in

M2(A+) and βx
1 − βx

0 ∈M2(A). We define

∂([fx]) = [βx
1 ]− [βx

0 ] ∈ K0(A).

With the constant c in the definition of fx, we can construct “almost flat” Bott element in

the following sense.

Lemma 20. Let X be a simply-connected complete Riemannian manifold with nonpositive

sectional curvature and x, y ∈ X. Let fx, β
x
1 , β

x
0 and fy, β

y
1 , β

y
0 defined as above. Then for

all r, ε > 0, there exists c > 0 such that for all z ∈ X,

‖βx
1 (z)− βy

1 (z)‖ < ε if d(x, y) < r,

where c depends only on r and ε.

Proof. First we prove that it is true for Euclidean spaces. Let x, y, z ∈ Rn, z 6= x, y and

d(x, y) = r. Let vx(z) and vy(z) be the unit vectors defined as above and let θ denote the

angle formed by vx(z) and vy(z). Let c = 100r
ε . When d(x, z) > c and d(y, z) > c,

‖vx(z)− vy(z)‖ =
√
‖vx(z)‖2 + ‖vy(z)‖2 − 2 ‖vx(z)‖ ‖vy(z)‖ cos θ

=
√

2− 2 cos θ < ε.
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This is true since θ will decrease to zero when d(x, z) and d(y, z) approach infinity. We

just choose this c to define fx and fy. Clearly we have

‖βx
1 (z)− βy

1 (z)‖ < ε.

Now let X be a simply-connected complete Riemannian manifold with nonpositive

sectional curvature and x, y, z ∈ X. Assume that z 6= x, y and dX(x, y) = r where dX is

the Riemannian metric on X. Let vx(z), vy(z) ∈ TzX defined as above. Let

exp : TzX −→ X be the exponential map which is a diffeomorphism between TzX and X.

Since X is nonpositively curved, by the comparison theorem in Riemannian geometry

dTzX(exp−1(x), exp−1(y)) ≤ dX(x, y) = r. And
∥∥exp−1(x)

∥∥ = dX(x, z) and∥∥exp−1(y)
∥∥ = dX(y, z) since exp−1(z) = 0. Since TzX is a Euclidean space, from the first

part we know that on TzX we can find c such that when
∥∥exp−1(x)

∥∥ > c and∥∥exp−1(y)
∥∥ > c,

‖vx(z)− vy(z)‖ < ε.

We just use this c to define fx and fy. Similarly we have

‖βx
1 (z)− βy

1 (z)‖ < ε.

To define the Bott maps, we need the following difference construction introduced by

Kasparov and Yu in [KY]. Let A be a unital C∗-algebra and J be a two-sided ideal of A.

Let p, q ∈Mk(A) be two idempotents and p− q ∈Mk(J). Let

Z(q) =



q 0 1− q 0

1− q 0 0 q

0 0 q 1− q

0 1 0 0


,
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then Z(q) is invertible and

Z(q)−1 =



q 1− q 0 0

0 0 0 1

1− q 0 q 0

0 q 1− q 0


.

Let

D0(p, q) = Z(q)−1



p 0 0 0

0 1− q 0 0

0 0 0 0

0 0 0 0


Z(q),

then

D0(p, q) ∈ J+ ⊗M4(C)

and

D0(p, q)−



1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


∈ J ⊗M4(C).

Lemma 21 ([KY]). Let A, J, p, q, Z(q) and D0(p, q) defined as above, then

D(p, q) = [D0(p, q)]−





1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




∈ K0(J)

and we call D(p, q) the difference of p, q in K0(J).

Now, let us construct the Bott maps. For any [(k(x, y))x,y∈X′ ]− [pk] ∈ K0(C∗(X)Γ),

choose (kn(x, y))x,y∈X′ ∈ (C∗alg(X)Γ)+ such that
∥∥(k(x, y))x,y∈X′ − (kn(x, y))x,y∈X′

∥∥ < 1
n

and
∥∥∥((kn(x, y))x,y∈X′

)2 − (kn(x, y))x,y∈X′

∥∥∥ < 1
n and the propagation of (kn(x, y))x,y∈X′ is

r. Here (k(x, y))x,y∈X′ is considered as an infinite dimensional matrix and the product is
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the matrix product. Then when n is big enough, there is a constant c in the definition of

fx, β
x
0 , β

x
1 depending on r and ε such that

∥∥∥∥((kn(x, y)⊗ βx
i )x,y∈X′

)2
− (kn(x, y)⊗ βx

i )x,y∈X′

∥∥∥∥ < ε for i = 0, 1.

For x, z ∈ X and γ ∈ Γ, we have

γ(βγ−1x
1 )(z) = γ(βγ−1x

1 (γ−1z)) = βx
1 (z).

This implies that (kn(x, y)⊗ βx
1 )x,y∈X′ is Γ-invariant and

(kn(x, y)⊗ βx
1 )x,y∈X′ − (kn(x, y)⊗ βx

0 )x,y∈X′ ∈ C∗(X,A)Γ.

When ε is small enough, (kn(x, y)⊗ βx
1 )x,y∈X′ and (kn(x, y)⊗ βx

0 )x,y∈X′ define two

idempotents p1 and p0 by functional calculus. Then we construct the Bott map as follows.

Definition 46. The Bott map

β : K0(C∗(X)Γ) −→ K0(C∗(X,A)Γ)

is defined by

β([(k(x, y))x,y∈X′ ]− [pk]) = D(p1, p0)

for all [(k(x, y))x,y∈X′ ]− [pk] ∈ K0(C∗(X)Γ), where p1 and p0 are defined above and

D(p1, p0) is the difference of p1 and p0 defined in Lemma 21.

Using suspension, we have the Bott map

β : K1(C∗(X)Γ) −→ K1(C∗(X,A)Γ).

Similarly we define the Bott map for K-groups of the localization algebras

(βL)∗ : Ki(C∗L(X)Γ)→ Ki(C∗L(X,A)Γ) i = 0, 1.
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In the next lemma we will show that (βL)∗ is an isomorphism.

By the proof of Theorem 22, we can easily see that K∗(C∗L(X,A)Γ) also has the

Mayer-Vietoris sequence.

Lemma 22. (βL)∗ : K∗(C∗L(X)Γ)→ K∗(C∗L(X,A)Γ) is an isomorphism.

Proof. This proof is the composition of Mayer-Vietoris argument, the five lemma and Bott

periodicity. X is covered by sets of the form Γ× U , where U is contractible. Let P be the

one-point set. Note that P is homotopic to U . By Mayer-Vietoris argument and the five

lemma it suffices to show that for a single such space Γ× U the map

(βL)∗ : K∗(C∗L(Γ× U)Γ)→ K∗(C∗L(Γ× U,A)Γ)

is an isomorphism. For this, it suffices to show that

(βL)∗ : K∗(C∗L(Γ× P )Γ)→ K∗(C∗L(Γ× P,A)Γ)

is an isomorphism. The last map is an isomorphism by the Bott periodicity.

V.6 The proof of the main theorem.

Theorem 25. Let X be a simply-connected Riemannian manifold with nonpositive

sectional curvature and Γ be a torsion-free discrete group acting on X properly and

isometrically. Then the equivariant index map

Ind : KΓ
∗ (X)→ K∗(C∗(X)Γ)

is injective.

Proof. We have the commuting diagram

K∗(C∗L(X)Γ)
(βL)∗

//

e∗
��

K∗(C∗L(X,A)Γ)

e∗
��

KΓ
∗ (X)

IndL

55kkkkkkkkkkkkkkk
Ind // K∗(C∗(X)Γ)

β∗
// K∗(C∗(X,A)Γ).
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From above, we have the isomorphism

e∗ ◦ (βL)∗ ◦ IndL : KΓ
∗ (X)→ K∗(C∗(X,A)Γ)) .

Therefore,

Ind : KΓ
∗ (X)→ K∗(C∗(X)Γ)

is injective.

42



CHAPTER VI

SUBSPACES OF A SIMPLY CONNECTED COMPLETE RIEMANNIAN
MANIFOLD OF NONPOSITIVE SECTIONAL CURVATURE

This chapter is the joint work with Qin Wang. Let X and Y be two metric spaces. A map

f : X → Y is said to be a coarse embedding or uniform embedding [G] if there exist

non-decreasing functions ρ1 and ρ2 from R+ = [0,∞) to R+ such that

1. ρ1(d(x, y)) ≤ d(f(x), f(y)) ≤ ρ2(d(x, y));

2. lim
r→∞

ρi(r) =∞ for i = 1, 2.

The main purpose of this chapter is to prove the following result:

Theorem 26. Let Γ be a discrete metric space with bounded geometry. If Γ admits a

coarse embedding into a simply connected complete Riemannian manifold of nonpositive

sectional curvature, then the coarse geometric Novikov conjecture holds for Γ, i.e., the

index map from lim
d→∞

K∗(Pd(Γ)) to K∗(C∗(Γ)) is injective, where

K∗(Pd(Γ)) = KK∗(C0(Pd(Γ)),C) is the locally finite K-homology group of the Rips

complex Pd(Γ), and K∗(C∗(Γ)) is the K-theory group of the Roe algebra C∗(Γ) associated

to Γ.

Recall that a discrete metric space X is said to have bounded geometry if for any r > 0

there is N > 0 such that any ball of radius r in X contains at most N elements. The

coarse geometric Novikov conjecture provides an algorithm of determining non-vanishing

of the higher index for elliptic differential operators on noncompact complete Riemannian

manifolds. It implies Gromov’s conjecture stating that a uniformly contractible

Riemmanian manifold with bounded geometry can not have uniformly positive scalar

curvature, and the zero-in-the-spectrum conjecture stating that the Laplacian operator

acting on the space of all L2-forms of a uniformly contractible Riemannian manifold has

zero in its spectrum.

The coarse geometric Novikov conjecture holds for bounded geometry metric spaces which

are coarsely embeddable into Hilbert space [Y00]. More generally, Kasparov and Yu
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proved the coarse geometric Novikov conjecture for bounded geometry metric spaces

which are coarsely embeddable into uniformly convex Banach space [KY]. The coarse

geometric Novikov conjecture holds for a simply connected complete Riemannian manifold

of nonpositive sectional curvature [HR, HRY, Y97]. Yet it is an open problem if any

simply connected complete Riemannian manifold with nonpositive sectional curvature

admits a coarse embedding into a Hilbert space or a uniformly convex Banach space. It is

also an interesting problem if a bounded geometry metric space which admits a coarse

embedding into a simply connected complete Riemannian manifold of nonpositive

sectional curvature is coarsely embeddable into a Hilbert space or a uniformly convex

Banach space. We remark here that Dranishnikov proved that a metric space with a finite

asymptotic dimension is coarsely embeddable into a non-positively curved manifold [D].

VI.1 The coarse geometric Novikov conjecture

In this section, we shall recall the concept of the Roe algebra [R93], the coarse geometric

Novikov conjecture and Yu’s localization algebras [Y97].

Let X be a proper metric space (a metric space is called proper if every closed ball is

compact). and let (HX , F ) be a cycle for K0(X). Let {Uj}j be a locally finite and

uniformly bounded open cover of X and {φj}j be a continuous partition of unity

subordinate to the open cover {Uj}j . Define

F ′ =
∑

j

φ
1
2
j Fφ

1
2
j

where the infinite sum converges in strong topology. Then it is not difficult to verify that

(HX , F
′) is equivalent to (HX , F ) in K0(X). Note that F ′ has finite propagation so that

F ′ is a multiplier of C∗(X). It is easy to see that F ′ is a unitary modulo C∗(X). Hence F ′

gives rise to an element, denoted by ∂[F ′], in K0(C∗(X)). We define the index of the

K-homology class of (HX , F ) to be ∂[F ′]. Similarly, we can define the index map from

K1(X) to K1(C∗(X)).

Recall that a discrete metric space is said to be locally finite if every ball contains finitely

many elements.
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Definition 47. Let Γ be a locally finite discrete metric space. For each d ≥ 0, the Rips

complex Pd(Γ) is defined to be the simplicial polyhedron in which the set of vertices is Γ,

and a finite subset {γ0, γ1, · · · , γn} ⊂ Γ spans a simplex if and only if d(γi, γj) ≤ d for all

0 ≤ i, j ≤ n.

Endow Pd(Γ) with the spherical metric. Recall that on each path connected component of

Pd(Γ), the spherical metric is the maximal metric whose restriction to each simplex

{
∑n

i=0 tiγi | ti ≥ 0,
∑n

i=0 ti = 1} is the metric obtained by identifying the simplex with

Sn
+ := {(s0, s1, · · · , sn) ∈ Rn+1 : si ≥ 0,

∑n
i=0 s

2
i = 1} via the map

n∑
i=0

tiγi 7→

 t0√∑n
i=0 t

2
i

,
t1√∑n
i=0 t

2
i

, · · · , tn√∑n
i=0 t

2
i


where Sn

+ is endowed with the standard Riemannian metric. The distance of a pair of

points in different connected components of Pd(Γ) is defined to be infinity.

The following conjecture is called the coarse geometric Novikov conjecture:

Conjecture 1. If Γ is a discrete metric space with bounded geometry, then the index map

ind : lim
d→∞

K∗(Pd(Γ))→ lim
d→∞

K∗(C∗(Pd(Γ))) ∼= K∗(C∗(Γ))

is injective.

The coarse geometric Novikov conjecture is false if the bounded geometry condition is

dropped [Y98]. In the rest of this section, we shall recall the localization algebra [Y97] and

its relation with K-homology. Let X be a proper metric space.

Definition 48 ([Y97]). The localization algebra C∗L(X) is the norm-closure of the algebra

of all bounded and uniformly norm-continuous functions g : [0,∞)→ C∗(X) such that

propagation(g(t))→ 0 as t→∞.

The evaluation homomorphism e from C∗L(X) to C∗(X) is defined by e(g) = g(0) for
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g ∈ C∗L(X). There exists a local index map [Y97]

indL : K∗(X)→ K∗(C∗L(X)).

Theorem 27 ([Y97]). For every finite dimensional simplicial complex X endowed with

the spherical metric, the local index map indL : K∗(X)→ K∗(C∗L(X)) is an isomorphism.

Consequently, if Γ is a discrete metric space with bounded geometry, we have the following

commuting diagram:

lim
d→∞

K∗(C∗L(Pd(Γ)))

e∗
��

lim
d→∞

K∗(Pd(Γ))

indL

∼=

55jjjjjjjjjjjjjjj
ind // lim

d→∞
K∗(C∗(Pd(Γ))).

VI.2 Twisted Roe algebras and twisted localization algebras

In this section, we shall define the twisted Roe algebras and the twisted localization

algebras for bounded geometry spaces which admit a coarse embedding into a simply

connected complete Riemannian manifold of nonpositive sectional curvature. The

construction of these twisted algebras is similar to those twisted algebras introduced in

[Y00].

Let M be a simply connected complete Riemannian manifold of nonpositive sectional

curvature. In the following, we shall assume that the dimension of M is even. If dim(M)

is odd, we can replace M by M ×R. Indeed, the product manifold M ×R is also a simply

connected complete Riemannian manifold with nonpositive sectional curvature. And if

f : Γ→M is a coarse embedding, then the induced map f ′ : Γ→M × R defined by

f ′(γ) = (f(γ), 0) is also a coarse embedding so that we can replace f by f ′. Thus, without

loss of generality, we assume dimM = 2n for some integer n > 0.

Let A = C0(M,Cliff(TM)) be the C∗-algebra of continuous functions a on M which have

value a(x) ∈ Cliff(TxM) at each point x ∈M and vanish at infinity, where Cliff(TxM) is

the complexified Clifford algebra of the tangent space TxM at x ∈M with respect to the

inner product on TxM given by the Riemannian structure of M . Note that the
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exponential map at any point x ∈M

expx : TxM −→M

is a homeomorphism, which induces a ∗-isomorphism:

A ∼= C0(R2n)⊗M2n(C),

where by Mk(C) we denote the algebra of k × k complex matrices.

Let Γ be a discrete metric space with bounded geometry. Let f : Γ→M be a coarse

embedding.

For each d > 0, we shall extend the map f to the Rips complex Pd(Γ) in the following

way. Note that f is a coarse map, i.e., there exists R > 0 such that for all γ1, γ2 ∈ Γ,

d(γ1, γ2) ≤ d =⇒ dM (f(γ1), f(γ2)) ≤ R.

For any point x =
∑

γ∈Γ cγγ ∈ Pd(Γ), where cγ ≥ 0 and
∑

γ∈Γ cγ = 1, we choose a point

fx ∈M such that

d(fx, f(γ)) ≤ R

for all γ ∈ Γ with cγ 6= 0. The correspondence x 7→ fx gives a coarse embedding

Pd(Γ)→M , also denoted by f .

Choose a countable dense subset Γd of Pd(Γ) for each d > 0 in such a way that Γd ⊂ Γd′

when d < d′. Let K be the algebra of all compact operators on a separable Hilbert space

H0.

Let C∗alg(Pd(Γ),A) be the set of all functions

T : Γd × Γd → A⊗K

such that

1. there exists C > 0 such that ‖T (x, y)‖ ≤ C for all x, y ∈ Γd;
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2. there exists R > 0 such that T (x, y) = 0 if d(x, y) > R;

3. there exists L > 0 such that for every z ∈ Pd(Γ), the number of elements in the

following set

{(x, y) ∈ Γd × Γd : d(x, z) ≤ 3R, d(y, z) ≤ 3R, T (x, y) 6= 0}

is less than L;

4. there exists r > 0 such that

Supp(T (x, y)) ⊂ B(f(x), r)

for all x, y ∈ Γd, where B(f(x), r) = {p ∈M : d(p, f(x)) < r} and, for all x, y ∈ Γd,

the entry T (x, y) ∈ A⊗K is a function on M with T (x, y)(p) ∈ Cliff(TpM)⊗K for

each p ∈M so that the support of T (x, y) is defined by

Supp(T (x, y)) := {p ∈M : T (x, y)(p) 6= 0}.

Remark. For any T ∈ C∗alg(Pd(Γ),A), there is r > 0 such that

Supp(T (x, y)) ⊂ B(f(x), r)

for all x, y ∈ Γd. Since f : Pd(Γ)→M is a coarse embedding, there exists S > 0 such that

d(f(x), f(y)) < S whenever d(x, y) < R. It follows that

Supp(T (x, y)) ⊂ B(f(y), S + r)

for all x, y ∈ Γd. Hence, the adjoint T ∗ of T defined by

T ∗(x, y) = (T (y, x))∗ ∈ A⊗K (∀x, y ∈ Γd)

is also an element of C∗alg(Pd(Γ),A). Therefore, C∗alg(Pd(Γ),A) is a ∗-algebra.
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A product structure on C∗alg(Pd(Γ),A) can be defined by

(T1T2)(x, y) =
∑
z∈Γd

T1(x, z)T2(z, y).

Let

E =

∑
x∈Γd

ax[x] : ax ∈ A⊗K,
∑
x∈Γd

a∗xax converges in norm

 .

Then E is a Hilbert module over A⊗K:

〈∑
x∈Γd

ax[x],
∑
x∈Γd

bx[x]

〉
=
∑
x∈Γd

a∗xbx,

∑
x∈Γd

ax[x]

 a =
∑
x∈Γd

axa[x]

for all a ∈ A⊗K. The ∗-algebra C∗alg(Pd(Γ),A) acts on E by

T

∑
x∈Γd

ax[x]

 =
∑
y∈Γd

∑
x∈Γd

T (y, x)ax

 [y],

where T ∈ C∗alg(Pd(Γ),A) and
∑

x∈Γd
ax[x] ∈ E. Note that T is a module homomorphism

which has an adjoint module homomorphism.

Definition 49. The twisted Roe algebra C∗(Pd(Γ),A) is defined to be the operator norm

closure of C∗alg(Pd(Γ),A) in B(E), the C∗-algebra of all module homomorphisms from E

to E for which there is an adjoint module homomorphism.

The above definition of the twisted Roe algebra is similar to that in [Y00].

Let C∗L,alg(Pd(Γ),A) be the set of all bounded, uniformly norm-continuous functions

g : R+ → C∗alg(Pd(Γ),A)

such that

1. there exists a bounded function R(t) : R+ → R+ with lim
t→∞

R(t) = 0 such that

(g(t))(x, y) = 0 whenever d(x, y) > R(t);
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2. there exists L > 0 such that for every z ∈ Pd(Γ), the number of elements in the

following set

{(x, y) ∈ Γd × Γd : d(x, z) ≤ 3R, d(y, z) ≤ 3R, g(t)(x, y) 6= 0}

is less than L for every t ∈ R+.

3. there exists r > 0 such that Supp((g(t))(x, y)) ⊂ B(f(x), r) for all t ∈ R+, x, y ∈ Γd,

where f : Pd(Γ)→M is the extension of the coarse embedding f : Γ→M and

B(f(x), r) = {p ∈M : d(p, f(x)) < r}.

Definition 50. The twisted localization algebra C∗L(Pd(Γ),A) is defined to be the norm

completion of C∗L,alg(Pd(Γ),A), where C∗L,alg(Pd(Γ),A) is endowed with the norm

‖g‖∞ = sup
t∈R+

‖g(t)‖C∗(Pd(Γ),A).

The above definition of the twisted localization Roe algebra is similar to that in [Y00].

The evaluation homomorphism e from C∗L(Pd(Γ),A) to C∗(Pd(Γ),A) defined by

e(g) = g(0) induces a homomorphism at K-theory level:

e∗ : lim
d→∞

K∗(C∗L(Pd(Γ),A))→ lim
d→∞

K∗(C∗(Pd(Γ),A)).

Theorem 28. Let Γ be a discrete metric space with bounded geometry which admits a

coarse embedding f : Γ→M into a simply connected, complete Riemannian manifold M

of non-positive sectional curvature. Then the homomorphism

e∗ : lim
d→∞

K∗(C∗L(Pd(Γ),A))→ lim
d→∞

K∗(C∗(Pd(Γ),A))

is an isomorphism.

The proof of Theorem 28 is similar to the proof of Theorem 6.8 in [Y00]. To begin with,

we need to discuss ideals of the twisted algebras associated to open subsets of the

manifold M .
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Definition 51.

1. The support of an element T in C∗alg(Pd(Γ),A) is defined to be

Supp(T ) =
{

(x, y, p) ∈ Γd × Γd ×M : p ∈ Supp(T (x, y))
}

=
{

(x, y, p) ∈ Γd × Γd ×M : (T (x, y))(p) 6= 0
}

;

2. The support of an element g in C∗L,alg(Pd(Γ),A) is defined to be

⋃
t∈R+

Supp(g(t)).

Let O ⊂M be an open subset of M . Define C∗alg(Pd(Γ),A)O to be the subalgebra of

C∗alg(Pd(Γ),A) consisting of all elements whose supports are contained in Γd × Γd ×O, i.e.,

C∗alg(Pd(Γ),A)O = {T ∈ C∗alg(Pd(Γ),A) : Supp(T (x, y)) ⊂ O, ∀ x, y ∈ Γd}.

Define C∗(Pd(Γ),A)O to be the norm closure of C∗alg(Pd(Γ),A)O. Similarly, let

C∗L,alg(Pd(Γ),A)O =
{
g ∈ C∗L,alg(Pd(Γ),A) : Supp(g) ⊂ Γd × Γd ×O

}

and define C∗L(Pd(Γ),A)O to be the norm closure of C∗L,alg(Pd(Γ),A)O under the norm

‖g‖∞ = supt∈R+
‖g(t)‖C∗(Pd(Γ),A).

Note that C∗(Pd(Γ),A)O and C∗L(Pd(Γ),A)O are closed two-sided ideals of C∗(Pd(Γ),A)

and C∗L(Pd(Γ),A), respectively. We also have an evaluation homomorphism

e : C∗L(Pd(Γ),A)O → C∗(Pd(Γ),A)O given by e(g) = g(0).

Lemma 23. For any two open subsets O1, O2 of M , we have

C∗(Pd(Γ),A)O1 + C∗(Pd(Γ),A)O2 = C∗(Pd(Γ),A)O1∪O2 ,

C∗(Pd(Γ),A)O1 ∩ C∗(Pd(Γ),A)O2 = C∗(Pd(Γ),A)O1∩O2 ,

C∗L(Pd(Γ),A)O1 + C∗L(Pd(Γ),A)O2 = C∗L(Pd(Γ),A)O1∪O2 ,

51



C∗L(Pd(Γ),A)O1 ∩ C∗L(Pd(Γ),A)O2 = C∗L(Pd(Γ),A)O1∩O2 .

Consequently, we have the following commuting diagram connecting two Mayer-Vietoris

sequences at K-Theory level:

AL0
//

��

BL0
//

��

CL0

e∗

��

{{xxxxxxxx

CL1

;;xxxxxxxx

e∗

��

BL1
oo

��

AL1
oo

��

A0
// B0

// C0

{{xx
xx

xx
xx

x

C1

;;xxxxxxxxx
B1

oo A1
oo

where, for ∗ = 0, 1,

AL∗ = K∗

(
C∗L(Pd(Γ),A)O1∩O2

)
, CL∗ = K∗

(
C∗L(Pd(Γ),A)O1∪O2

)
,

A∗ = K∗

(
C∗(Pd(Γ),A)O1∩O2

)
, C∗ = K∗

(
C∗(Pd(Γ),A)O1∪O2

)
,

BL∗ = K∗

(
C∗L(Pd(Γ),A)O1

)⊕
K∗

(
C∗L(Pd(Γ),A)O2

)
,

B∗ = K∗

(
C∗(Pd(Γ),A)O1

)⊕
K∗

(
C∗(Pd(Γ),A)O2

)
.

Proof. We shall prove the first equality. Other equalities can be proved similarly. Then

the two Mayer-Vietoris exact sequences follow from Lemma 2.4 of [HRY].

To prove the first equality, it suffices to show that

C∗alg(Pd(Γ),A)O1∪O2 ⊆ C∗alg(Pd(Γ),A)O1 + C∗alg(Pd(Γ),A)O2 .

Now suppose T ∈ C∗alg(Pd(Γ),A)O1∪O2 . Take a continuous partition of unity {ϕ1, ϕ2} on

O1 ∪O2 subordinate to the open over {O1, O2} of O1 ∪O2. Define two functions

T1, T2 : Γd × Γd −→ A⊗K
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by

T1(x, y)(p) = ϕ1(p)
(
T (x, y)(p)

)
,

T2(x, y)(p) = ϕ2(p)
(
T (x, y)(p)

)
for x, y ∈ Γd and p ∈M . Then T1 ∈ C∗alg(Pd(Γ),A)O1 , T2 ∈ C∗alg(Pd(Γ),A)O2 , and

T = T1 + T2 ∈ C∗alg(Pd(Γ),A)O1 + C∗alg(Pd(Γ),A)O2

as desired.

It would be convenient to introduce the following notion associated with the coarse

embedding f : Γ→M .

Definition 52. Let r > 0. A family of open subsets {Oi}i∈J of M is said to be

(Γ, r)-separate if

1. Oi ∩Oj = ∅ if i 6= j;

2. there exists γi ∈ Γ such that Oi ⊆ B(f(γi), r) ⊂M for each i ∈ J .

Lemma 24. If {Oi}i∈J is a family of (Γ, r)-separate open subsets of M , then

e∗ : lim
d→∞

K∗(C∗L(Pd(Γ),A)ti∈JOi)→ lim
d→∞

K∗(C∗(Pd(Γ),A)ti∈JOi)

is an isomorphism, where ti∈JOi is the (disjoint) union of {Oi}i∈J .

We will prove Lemma 24 in the next section. Granting Lemma 24 for the moment, we are

able to prove Theorem 28.

Proof of Theorem 28. [Y00]. For any r > 0, we define Or ⊂M by

Or =
⋃
γ∈Γ

B(f(γ), r),

where f : Γ→M is the coarse embedding and B(f(γ), r) = {p ∈M : d(p, f(γ)) < r}.
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For any d > 0, if r < r′ then C∗(Pd(Γ),A)Or ⊆ C∗(Pd(Γ),A)Or′ and

C∗L(Pd(Γ),A)Or ⊆ C∗L(Pd(Γ),A)Or′ . By definition, we have

C∗(Pd(Γ),A) = lim
r→∞

C∗(Pd(Γ),A)Or ,

C∗L(Pd(Γ),A) = lim
r→∞

C∗L(Pd(Γ),A)Or .

On the other hand, for any r > 0, if d < d′ then Γd ⊆ Γd′ in Pd(Γ) ⊆ Pd′(Γ) so that we

have natural inclusions C∗(Pd(Γ),A)Or ⊆ C∗(Pd′(Γ),A)Or and

C∗L(Pd(Γ),A)Or ⊆ C∗L(Pd′(Γ),A)Or . These inclusions induce the following commuting

diagram

K∗(C∗
L(Pd′ (Γ), A)Or )

e∗ //

��

K∗(C∗(Pd′ (Γ), A)Or )

��

K∗(C∗
L(Pd(Γ), A)Or )

55jjjjjjjjjjjjjjj e∗ //

��

K∗(C∗(Pd(Γ), A)Or )

55jjjjjjjjjjjjjjj

��

K∗(C∗
L(Pd′ (Γ), A)Or′

)
e∗ // K∗(C∗(Pd′ (Γ), A)Or′

)

K∗(C∗
L(Pd(Γ), A)Or′

)
e∗ //

55jjjjjjjjjjjjjjj
K∗(C∗(Pd(Γ), A)Or′

)

55jjjjjjjjjjjjjjj

which allows us to change the order of limits from lim
d→∞

lim
r→∞

to lim
r→∞

lim
d→∞

in the second

piece of the following commuting diagram

lim
d→∞

K∗(C∗L(Pd(Γ),A))

∼=
��

e∗ // lim
d→∞

K∗(C∗(Pd(Γ),A))

∼=
��

lim
d→∞

lim
r→∞

K∗(C∗L(Pd(Γ),A)Or)

∼=
��

e∗ // lim
d→∞

lim
r→∞

K∗(C∗(Pd(Γ),A)Or)

∼=
��

lim
r→∞

lim
d→∞

K∗(C∗L(Pd(Γ),A)Or) e∗ // lim
r→∞

lim
d→∞

K∗(C∗(Pd(Γ),A)Or)

So, to prove Theorem 28, it suffices to show that, for any r > 0,

e∗ : lim
d→∞

K∗(C∗L(Pd(Γ),A)Or)→ lim
d→∞

K∗(C∗(Pd(Γ),A)Or)
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is an isomorphism.

Let r > 0. Since Γ has bounded geometry and f : Γ→M is a coarse embedding, there

exist finitely many mutually disjoint subsets of Γ, say Γk := {γi : i ∈ Jk} with some index

set Jk for k = 1, 2, · · · , k0, such that Γ =
⊔k0

k=1 Γk and, for each k, d(f(γi), f(γj)) > 2r for

distinct elements γi, γj in Γk.

For each k = 1, 2, · · · , k0, let

Or,k =
⋃

i∈Jk

B(f(γi), r).

Then Or =
⋃k0

k=1Or,k and each Or,k, or an intersection of several Or,k, is the union of a

family of (Γ, r)-separate (Definition 52) open subsets of M . Now Theorem 28 follows from

Lemma 24 together with a Mayer-Vietoris sequence argument by using Lemma 23.

VI.3 Strong Lipschitz homotopy invariance

In this section, we shall present Yu’s arguments about strong Lipschitz homotopy

invariance for K-theory of the twisted localization algebras [Y00], and prove Lemma 24 of

the previous section.

Let f : Γ→M be a coarse embedding of a bounded geometry discrete metric space Γ into

a simply connected complete Riemannian manifold M of nonpositive sectional curvature,

and let r > 0. Let {Oi}i∈J be a family of (Γ, r)-separate open subsets of M , i.e., (1)

Oi ∩Oj = ∅ if i 6= j; (2) there exists γi ∈ Γ such that Oi ⊆ B(f(γi), r) ⊂M for each i ∈ J .

For d > 0, let Xi, i ∈ J , be a family of closed subsets of Pd(Γ) such that γi ∈ Xi for every

i ∈ J and {Xi}i∈J is uniformly bounded in the sense that there exists r0 > 0 such that

diameter(Xi) ≤ r0 for each i ∈ J . In particular, we will consider the following three cases

of {Xi}i∈J :

1. Xi = BPd(Γ)(γi, R) := {x ∈ Pd(Γ) : d(x, γi) ≤ R}, for some common R > 0 for all

i ∈ J ;

2. Xi = ∆i, a simplex in Pd(Γ) with γi ∈ ∆i for each i ∈ J ;

3. Xi = {γi} for each i ∈ J .
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For each i ∈ J , let AOi be the C∗-subalgebra of A = C0(M,Cliff(TM)) generated by those

functions whose supports are contained in Oi. We define

A∗(Xi : i ∈ J) =
∏

i∈J C∗(Xi)⊗AOi

=
{ ⊕

i∈JTi | Ti ∈ C∗(Xi)⊗AOi , supi∈J ‖Ti‖ <∞
}
.

Similarly we define A∗L(Xi : i ∈ J) to be the C∗-subalgebra of

{⊕
i∈J

bi

∣∣∣∣ bi ∈ C∗L(Xi)⊗AOi , sup
i∈J
‖bi‖ <∞

}

generated by elements
⊕

i∈J bi such that

1. the function ⊕
i∈J

bi : R+ →
∏
i∈J

C∗(Xi)⊗AOi

is uniformly norm-continuous in t ∈ R+.

2. there exists a bounded function c(t) on R+ with limt→∞ c(t) = 0 such that

(bi(t))(x, y) = 0 whenever d(x, y) > c(t) for all i ∈ J , x, y ∈ Xi and t ∈ R+.

For each natural number s > 0, let ∆i(s) be the simplex with vertices

{γ ∈ Γ : d(γ, γi) ≤ s} in Pd(Γ) for d > s.

Lemma 25. Let O = ti∈JOi be the (disjoint) union of a family of (Γ, r)-separate open

subsets {Oi}i∈J of M as above. Then

1. C∗(Pd(Γ),A)O
∼= lim

R→∞
A∗({x ∈ Pd(Γ) : d(x, γi) ≤ R} : i ∈ J);

2. C∗L(Pd(Γ),A)O
∼= lim

R→∞
A∗L({x ∈ Pd(Γ) : d(x, γi) ≤ R} : i ∈ J);

3. lim
d→∞

C∗(Pd(Γ),A)O
∼= lim

s→∞
A∗(∆i(s) : i ∈ J);

4. lim
d→∞

C∗L(Pd(Γ),A)O
∼= lim

s→∞
A∗L(∆i(s) : i ∈ J).

Proof. [Y00]. Let AO be the C∗-subalgebra of A = C0(M,Cliff(TM)) generated by

elements whose supports are contained in O. The support of an element
∑

x∈Γd
ax[x] in
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the Hilbert module

E = {
∑
x∈Γd

ax[x] : ax ∈ A⊗K,
∑
x∈Γd

a∗xax converges in norm}

is defined to be

{(x, p) ∈ Γd ×M : p ∈ Supp(ax)}.

Let EO be the closure of the set of all elements in E whose supports are contained in

Γd ×O. Then EO is a Hilbert module over AO ⊗K and C∗(Pd(Γ),A)O has a faithful

representation on EO. We have a decomposition

EO =
⊕
i∈J

EOi .

Each T ∈ C∗alg(Pd(Γ),A)O has a corresponding decomposition

T =
⊕
i∈J

Ti

such that there exists R > 0 for which each Ti is supported on

{(x, y, p) : p ∈ Oi, x, y ∈ Γd, d(x, γi) ≤ R, d(y, γi) ≤ R}.

On the other hand, the C∗-algebra C∗({x ∈ Pd(Γ) : d(x, γi) ≤ R})⊗AOi has a natural

faithful representation on

`2({x ∈ Γd : d(x, γi) ≤ R})⊗K⊗AOi

so that on EO, for each R > 0, the algebra A∗({x ∈ Pd(Γ) : d(x, γi) ≤ R} : i ∈ J) can be

represented as a subalgebra of C∗(Pd(Γ),A)O. In this way, the decomposition T = ⊕i∈JTi

induces a ∗-isomorphism

C∗(Pd(Γ),A)O
∼= lim

R→∞
A∗({x ∈ Pd(Γ) : d(x, γi) ≤ R} : i ∈ J)
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as desired in (1). Then (2),(3),(4) follows easily from (1).

Now we turn to recall the notion of strong Lipschitz homotopy [Y97, Y98, Y00].

Let {Yi}i∈J and {Xi}i∈J be two families of uniformly bounded closed subspaces of Pd(Γ)

for some d > 0 with γi ∈ Xi, γi ∈ Yi for every i ∈ J . A map g :
⊔

i∈J Xi →
⊔

i∈J Yi is said

to be Lipschitz if

1. g(Xi) ⊆ Yi for each i ∈ J ;

2. there exists a constant c, independent of i ∈ J , such that

d(g(x), g(y)) ≤ c d(x, y)

for all x, y ∈ Xi, i ∈ J .

Let g1, g2 be two Lipschitz maps from
⊔

i∈J Xi to
⊔

i∈J Yi. We say g1 is strongly Lipschitz

homotopy equivalent to g2 if there exists a continuous map

F : [0, 1]× (ti∈JXi)→ ti∈JYi

such that

1. F (0, x) = g1(x), F (1, x) = g2(x) for all x ∈ ti∈JXi;

2. there exists a constant c for which d(F (t, x), F (t, y)) ≤ c d(x, y) for all x, y ∈ Xi,

t ∈ [0, 1], where i is any element in J ;

3. F is equicontinuous in t, i.e., for any ε > 0 there exists δ > 0 such that

d(F (t1, x), F (t2, x)) < ε for all x ∈ ti∈JXi if |t1 − t2| < δ.

We say {Xi}i∈J is strongly Lipschitz homotopy equivalent to {Yi}i∈J if there exist

Lipschitz maps g1 : ti∈JXi → ti∈JYi and g2 : ti∈JYi → ti∈JXi such that g1g2 and g2g1

are respectively strongly Lipschitz homotopy equivalent to identity maps.

Define A∗L,0(Xi : i ∈ J) to be the C∗-subalgebra of A∗L(Xi : i ∈ J) consisting of elements

⊕i∈Jbi(t) satisfying bi(0) = 0 for all i ∈ J .
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Lemma 26 ([Y00]). If {Xi}i∈J is strongly Lipschitz homotopy equivalent to {Yi}i∈J then

K∗(A∗L,0(Xi : i ∈ J) is isomorphic to K∗(A∗L,0(Yi : i ∈ J)).

Let e be the evaluation homomorphism from A∗L(Xi : i ∈ J) to A∗(Xi : i ∈ J) given by

⊕i∈J gi(t) 7→ ⊕i∈Jgi(0).

Lemma 27 ([Y00]). Let {γi}i∈J be as above, i.e., Oi ⊆ B(f(γi), r) ⊂M for each i. If

{∆i}i∈J is a family of simplices in Pd(Γ) for some d > 0 such that γi ∈ ∆i for all i ∈ J ,

then

e∗ : K∗(A∗L(∆i : i ∈ J))→ K∗(A∗(∆i : i ∈ J))

is an isomorphism.

Proof. ([Y00]) Note that {∆i}i∈J is strongly Lipschitz homotopy equivalent to {γi}i∈J .

By an argument of Eilenberg swindle, we have K∗(A∗L,0({γi} : i ∈ J)) = 0. Consequently,

Lemma 27 follows from Lemma 26 and the six term exact sequence of C∗-algebra

K-theory.

We are now ready to give a proof to Lemma 24 of the previous section.

Proof of Lemma 24. ([Y00]) By Lemma 25 we have the following commuting diagram

lim
d→∞

C∗L(Pd(Γ),A)ti∈JOi

∼=
��

e // lim
d→∞

C∗(Pd(Γ),A)ti∈JOi

∼=
��

lim
s→∞

A∗L(∆i(s)i : i ∈ J) e // lim
s→∞

A∗(∆i(s)i : i ∈ J)

which induces the following commuting diagram at K-theory level

lim
d→∞

K∗

(
C∗L(Pd(Γ),A)ti∈JOi

)
∼=

��

e∗ // lim
d→∞

K∗

(
C∗(Pd(Γ),A)ti∈JOi

)
∼=

��

lim
s→∞

K∗

(
A∗L(∆i(s) : i ∈ J)

)
e∗ // lim

s→∞
K∗

(
A∗(∆i(s) : i ∈ J)

)
.

Now Lemma 24 follows from Lemma 27.
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VI.4 Almost flat Bott elements and Bott maps

In this section, we shall construct uniformly almost flat Bott generators for a simply

connected complete Riemannian manifold with nonpositive sectional curvature, and define

a Bott map from the K-theory of the Roe algebra to the K-theory of the twisted Roe

algebra and another Bott map between the K-theory of corresponding localization

algebras. We show that the Bott map from the K-theory of the localization algebra to the

K-theory of the twisted localization algebra is an isomorphism (Theorem 29).

Let M be a simply connected complete Riemannian manifold with nonpositive sectional

curvature. As remarked at the beginning of Section VI.2, without loss of generality, we

assume in the following dim(M) = 2n for some integer n > 0.

Recall that A := C0(M,Cliff(TM)) is the C∗-algebra of all continuous functions a on M ,

with values a(x) ∈ Cliff(TxM) for every x ∈M , such that lim
x→∞

a(x) = 0, where Cliff(TxM)

denotes the complexified Clifford algebra of the tangent space TxM with respect to the

inner product on TxM given by the Riemannian structure on M . Since dimM = 2n, the

exponential map

expx : TxM ∼= R2n →M

at any point x ∈M induces an isomorphism

C0(M,Cliff(TM)) ∼= C0(R2n)⊗M2n(C).

Similarly, we define B := Cb(M,Cliff(TM)) to be the C∗-algebra of all bounded functions

a on M with a(x) ∈ Cliff(TxM) at all x ∈M .

Let x ∈M . For any z ∈M , let σ : [0, 1]→M be the unique geodesic such that

σ(0) = x, σ(1) = z.

Let vx(z) := σ′(1)
‖σ′(1)‖ ∈ TzM . For any c > 0, take a continuous function φx,c : M → [0, 1]

satisfying

φx,c(z) =

 0, if d(x, z) ≤ c
2 ;

1, if d(x, z) ≥ c.
(1)
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For any z ∈M , let

fx,c(z) := φx,c(z) · vx(z) ∈ TzM.

Then fx,c ∈ Cb(M,Cliff(TM)). The following result describes certain “uniform almost

flatness” of the functions fx,c (x ∈M , c > 0).

Lemma 28. For any R > 0 and ε > 0, there exist a constant c > 0 and a family of

continuous function {φx,c}x∈M satisfying the above condition (1) such that, if d(x, y) < R,

then

sup
z∈M
‖fx,c(z)− fy,c(z)‖TzM < ε.

Proof. Let c = 2R
ε . For any x ∈M , define φx,c : M → [0, 1] by

φx,c(z) =


0, if d(x, z) ≤ R

ε ;

ε
Rd(x, z)− 1, if R

ε ≤ d(x, z) ≤
2R
ε ;

1, if d(x, z) ≥ 2R
ε .

Let x, y ∈M such that d(x, y) < R. Then we have several cases for the position of z ∈M

with respect to x, y.

Consider the case where d(x, z) > c = 2R
ε and d(y, z) > c = 2R

ε . Since

φx,c(z) = φy,c(z) = 1, we have

fx,c(z)− fy,c(z) = vx(z)− vy(z).

Without loss of generality, assume d(x, z) ≤ d(y, z). Then there exists a unique point y′ on

the unique geodesic connecting y and z such that d(y′, z) = d(x, z). Then d(y′, y) < R

since d(x, y) < R, so that d(x, y′) < 2R.

Let exp−1
z : M → TzM denote the inverse of the exponential map

expz : TzM →M

at z ∈M . Then we have

1. ‖ exp−1
z (x)‖ = d(x, z) = d(y′, z) = ‖ exp−1

z (y′)‖ > c = 2R
ε ;
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2. ‖ exp−1
z (x)− exp−1

z (y′)‖ ≤ d(x, y′) < 2R, since M has nonpositive sectional

curvature;

3. vx(z) = − exp−1
z (x)

‖exp−1
z (x)‖ and vy(z) = − exp−1

z (y′)

‖exp−1
z (y′)‖ .

Hence, for any z ∈M , we have

‖fx,c(z)− fy,c(z)‖ = ‖vx(z)− vy(z)‖ < 2R/(2R/ε) = ε

whenever d(x, y) < R. Similarly, we can check the inequality in other cases where z ∈M

satisfies either d(x, z) ≤ c or d(y, z) ≤ c.

Now let’s consider the short exact sequence

0 −→ A −→ B
π−→ B/A −→ 0,

where A = C0(M,Cliff(TM)) and B = Cb(M,Cliff(TM)). For any fx,c (x ∈M , c > 0)

constructed above, it is easy to see that [fx,c] := π(fx,c) is invertible in B/A with its

inverse [−fx,c]. Thus [fx,c] defines an element in K1(B/A). With the help of the index map

∂ : K1(B/A)→ K0(A),

we obtain an element ∂([fx,c]) in

K0(A) = K0

(
C0(M,Cliff(TM))

)
∼= K0

(
C0(R2n)⊗M2n(C)

)
∼= Z.

It follows from the construction of fx,c that, for every x ∈M and c > 0, ∂([fx,c]) is just

the Bott generator of K0(A).

The element ∂([fx,c]) can be expressed explicitly as follows. Let

Wx,c =

 1 fx,c

0 1


 1 0

fx,c 1


 1 fx,c

0 1


 0 −1

1 0

 ,
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bx,c = Wx,c

 1 0

0 0

W−1
x,c ,

b0 =

 1 0

0 0

 .

Then both bx,c and b0 are idempotents in M2(A+), where A+ is the algebra jointing a unit

to A. It is easy to check that

bx,c − b0 ∈ Cc(M,Cliff(TM))⊗M2(C),

the algebra of 2× 2 matrices of compactly supported continuous functions, with

Supp(bx,c − b0) ⊂ BM (x, c) := {z ∈M : d(x, z) ≤ c},

where for a matrix a =

 a11 a12

a21 a22

 of functions on M we define the support of a by

Supp(a) =
2⋃

i,j=1

Supp(ai,j).

Now we have the explicit expression

∂([fx,c]) = [bx,c]− [b0] ∈ K0(A).

Lemma 29 (Uniform almost flatness of the Bott generators). The family of idempotents

{bx,c}x∈M,c>0 in M2(A+) = C0(M,Cliff(TM))+ ⊗M2(C) constructed above are uniformly

almost flat in the following sense:

for any R > 0 and ε > 0, there exist c > 0 and a family of continuous functions{
φx,c : M → [0, 1]

}
x∈M

such that, whenever d(x, y) < R, we have

sup
z∈M
‖bx,c(z)− by,c(z)‖Cliff(TzM)⊗M2(C) < ε,
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where bx,c is defined via Wx,c and fx,c = φx,cvx as above, and Cliff(TzM) is the

complexified Clifford algebra of the tangent space TzM .

Proof. Straightforward from Lemma 28.

It would be convenient to introduce the following notion:

Definition 53. For R > 0, ε > 0, c > 0, a family of idempotents {bx}x∈M in

M2(A+) = C0(M,Cliff(TM))+ ⊗M2(C) is said to be (R, ε; c)-flat if

1. for any x, y ∈M with d(x, y) < R we have

sup
z∈M
‖bx(z)− by(z)‖Cliff(TzM)⊗M2(C) < ε.

2. bx − b0 ∈ Cc(M,Cliff(TM))⊗M2(C) and

Supp(bx − b0) ⊂ BM (x, c) := {z ∈M : d(x, z) ≤ c}.

Construction of the Bott map β∗:

Now we shall use the above almost flat Bott generators for

K0(A) = K0

(
C0(M,Cliff(TM))

)

to construct a “Bott map”

β∗ : K∗(C∗(Pd(Γ)))→ K∗(C∗(Pd(Γ),A)).

To begin with, we give a representation of C∗(Pd(Γ)) on `2(Γd)⊗H0, where Γd is the

countable dense subset of Pd(Γ) and H0 is the Hilbert space as in the definition of

C∗(Pd(Γ),A).

Let C∗alg(Pd(Γ)) be the algebra of functions

Q : Γd × Γd → K(H0)
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such that

1. there exists C > 0 such that ‖Q(x, y)‖ ≤ C for all x, y ∈ Γd;

2. there exists R > 0 such that Q(x, y) = 0 whenever d(x, y) > R;

3. there exists L > 0 such that for every z ∈ Pd(Γ), the number of elements in the

following set

{(x, y) ∈ Γd × Γd : d(x, z) ≤ 3R, d(y, z) ≤ 3R, Q(x, y) 6= 0}

is less than L.

The product structure on C∗alg(Pd(Γ)) is defined by

(Q1Q2)(x, y) =
∑
z∈Γd

Q1(x, z)Q2(z, y).

The algebra C∗alg(Pd(Γ)) has a ∗-representation on `2(Γd)⊗H0. The operator norm

completion of C∗alg(Pd(Γ)) with respect to this ∗-representation is ∗-isomorphic to

C∗(Pd(Γ)) when Γ has bounded geometry.

Note that C∗(Pd(Γ)) is stable in the sense that C∗(Pd(Γ)) ∼= C∗(Pd(Γ))⊗Mk(C) for all

natural number k. Any element in K0(C∗(Pd(Γ))) can be expressed as the difference of

the K0-classes of two idempotents in C∗(Pd(Γ)). To define the Bott map

β∗ : K0(C∗(Pd(Γ)))→ K0(C∗(Pd(Γ),A)), we need to specify the value β∗([P ]) in

K0(C∗(Pd(Γ),A)) for any idempotent P ∈ C∗(Pd(Γ)).

Now let P ∈ C∗(Pd(Γ)) ⊆ B(`2(Γd)⊗H0) be an idempotent. For any 0 < ε1 < 1/100, take

an element Q ∈ C∗alg(Pd(Γ)) such that

‖P −Q‖ < ε1.

Then ‖Q−Q2‖ < 4ε1 and there is Rε1 > 0 such that Q(x, y) = 0 whenever d(x, y) > Rε1 .

For any ε2 > 0, take by Lemma 29 a family of (Rε1 , ε2; c)-flat idempotents {bx}x∈M in
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M2(A+) for some c > 0. Define

Q̃, Q̃0 : Γd × Γd → A+ ⊗K⊗M2(C)

by

Q̃(x, y) = Q(x, y)⊗ bx

and

Q̃0(x, y) = Q(x, y)⊗ b0,

respectively, for all (x, y) ∈ Γd × Γd, where b0 =

 1 0

0 0

. Then

Q̃, Q̃0 ∈ C∗alg(Pd(Γ),A+ ⊗M2(C)) ∼= C∗alg(Pd(Γ),A+)⊗M2(C)

and

Q̃− Q̃0 ∈ C∗alg(Pd(Γ),A)⊗M2(C).

Since Γ has bounded geometry, by the almost flatness of the Bott generators (Lemma 29),

we can choose ε1 and ε2 small enough to obtain Q̃, Q̃0 as constructed above such that

‖Q̃2 − Q̃‖ < 1/5 and ‖Q̃2
0 − Q̃0‖ < 1/5.

It follows that the spectrum of either Q̃ or Q̃0 is contained in disjoint neighborhoods S0 of

0 and S1 of 1 in the complex plane. Let f : S0 t S1 → C be the function such that

f(S0) = {0}, f(S1) = {1}. Let Θ = f(Q̃) and Θ0 = f(Q̃0). Then Θ and Θ0 are

idempotents in C∗(Pd(Γ),A+)⊗M2(C) with

Θ−Θ0 ∈ C∗(Pd(Γ),A)⊗M2(C).

Note that C∗(Pd(Γ),A)⊗M2(C) is a closed two-sided ideal of C∗(Pd(Γ),A+)⊗M2(C).

At this point we need to recall the difference construction in K-theory of Banach algebras

introduced by Kasparov-Yu [KY]. Let J be a closed two-sided ideal of a Banach algebra

B. Let p, q ∈ B+ be idempotents such that p− q ∈ J . Then a difference element
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D(p, q) ∈ K0(J) associated to the pair p, q is defined as follows. Let

Z(p, q) =



q 0 1− q 0

1− q 0 0 q

0 0 q 1− q

0 1 0 0


∈M4(B+).

We have

(Z(p, q))−1 =



q 1− q 0 0

0 0 0 1

1− q 0 q 0

0 q 1− q 0


∈M4(B+).

Define

D0(p, q) = (Z(p, q))−1



p 0 0 0

0 1− q 0 0

0 0 0 0

0 0 0 0


Z(p, q).

Let

p1 =



1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


.

Then D0(p, q) ∈M4(J+) and D0(p, q) = p1 modulo M4(J). We define the difference

element

D(p, q) := [D0(p, q)]− [p1]

in K0(J).

Finally, for any idempotent P ∈ C∗(Pd(Γ)) representing an element [P ] in K0(C∗(Pd(Γ))),

we define

β∗([P ]) = D(Θ,Θ0) ∈ K0(C∗(Pd(Γ),A)),
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The correspondence [P ]→ β∗([P ]) extends to a homomorphism, the Bott map

β∗ : K0(C∗(Pd(Γ)))→ K0(C∗(Pd(Γ),A)).

By using suspension, we similarly define the Bott map

β∗ : K1(C∗(Pd(Γ)))→ K1(C∗(Pd(Γ),A)).

Construction of the Bott map (βL)∗ :

Next we shall construct a Bott map for K-theory of localization algebras:

(βL)∗ : K∗(C∗L(Pd(Γ)))→ K∗(C∗L(Pd(Γ),A)).

Let C∗L,alg(Pd(Γ)) be the ∗-algebra of all bounded, uniformly continuous functions

g : R+ → C∗alg(Pd(Γ)) ⊂ B(`2(Γd)⊗H0)

with the following properties:

1. there exists a bounded function R : R+ → R+ with lim
t→∞

R(t) = 0 such that

g(t)(x, y) = 0 whenever d(x, y) > R(t) for every t;

2. there exists L > 0 such that for every z ∈ Pd(Γ), the number of elements in the

following set

{(x, y) ∈ Γd × Γd : d(x, z) ≤ 3R, d(y, z) ≤ 3R, g(t)(x, y) 6= 0}

is less than L for every t ∈ R+.

The localization algebra C∗L(Pd(Γ)) is ∗-isomorphic to the norm completion of

C∗L,alg(Pd(Γ)) under the norm

‖g‖∞ := sup
t∈R+

‖g(t)‖

when Γ has bounded geometry. Note that C∗L(Pd(Γ)) is stable in the sense that
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C∗L(Pd(Γ)) ∼= C∗L(Pd(Γ))⊗Mk(C) for all natural number k. Hence, any element in

K0(C∗L(Pd(Γ))) can be expressed as the difference of the K0-classes of two idempotents in

C∗L(Pd(Γ)). To define the Bott map (βL)∗ : K0(C∗L(Pd(Γ)))→ K0(C∗L(Pd(Γ),A)), we need

to specify the value (βL)∗([g]) in K0(C∗L(Pd(Γ),A)) for any idempotent g ∈ C∗L(Pd(Γ))

representing an element [g] ∈ K0(C∗L(Pd(Γ))).

Now let g ∈ C∗L(Pd(Γ)) be an idempotent. For any 0 < ε1 < 1/100, take an element

h ∈ C∗L,alg(Pd(Γ)) such that

‖g − h‖∞ < ε1.

Then ‖h− h2‖ < 4ε1 and there is a bounded function Rε1(t) > 0 with lim
t→∞

Rε1(t) = 0 such

that h(t)(x, y) = 0 whenever d(x, y) > Rε1(t) for every t. Let R̃ε1 = supt∈R+
R(t). For any

ε2 > 0, take by Lemma 29 a family of (R̃ε1 , ε2; c)-flat idempotents {bx}x∈M in M2(A+) for

some c > 0. Define

h̃, h̃0 : R+ → C∗alg(Pd(Γ),A+)⊗M2(C)

by (
h̃(t)

)
(x, y) =

(
h(t)(x, y)

)
⊗ bx ∈ A+ ⊗K⊗M2(C),

(
h̃0(t)

)
(x, y) =

(
h(t)(x, y)

)
⊗

(
1 0

0 0

)
∈ A+ ⊗K⊗M2(C)

for each t ∈ R+. Then we have

h̃, h̃0 ∈ C∗L,alg(Pd(Γ),A+)⊗M2(C)

and

h̃− h̃0 ∈ C∗L,alg(Pd(Γ),A)⊗M2(C).

Since Γ has bounded geometry, by the almost flatness of the Bott generators, we can

choose ε1 and ε2 small enough to obtain h̃, h̃0, as constructed above, such that

‖h̃2 − h̃‖∞ < 1/5 and ‖h̃2
0 − h̃0‖ < 1/5. The spectrum of either h̃ or h̃0 is contained in

disjoint neighborhoods S0 of 0 and S1 of 1 in the complex plane. Let f : S0 t S1 → C be

the function such that f(S0) = {0}, f(S1) = {1}. Let η = f(h̃) and η0 = f(h̃0). Then η
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and η0 are idempotents in C∗L(Pd(Γ),A+)⊗M2(C) with

η − η0 ∈ C∗L(Pd(Γ),A)⊗M2(C).

Thanks to the difference construction, we define

(βL)∗([g]) = D(η, η0) ∈ K0(C∗L(Pd(Γ),A)).

This correspondence [g] 7→ (βL)∗([g]) extends to a homomorphism, the Bott map

(βL)∗ : K0(C∗L(Pd(Γ)))→ K0(C∗L(Pd(Γ),A)).

By suspension, we similarly define

(βL)∗ : K1(C∗L(Pd(Γ)))→ K1(C∗L(Pd(Γ),A)).

This completes the construction of the Bott map (βL)∗.

It follows from the constructions of β∗ and (βL)∗, we have the following commuting

diagram

K∗(C∗L(Pd(Γ)))

e∗
��

(βL)∗
// K∗(C∗L(Pd(Γ),A))

e∗
��

K∗(C∗(Pd(Γ)))
β∗

// K∗(C∗(Pd(Γ),A))

Theorem 29. For any d > 0, the Bott map

(βL)∗ : K∗(C∗L(Pd(Γ)))→ K∗(C∗L(Pd(Γ),A))

is an isomorphism.

Proof. Note that Γ has bounded geometry, and both the localization algebra and the

twisted localization algebra have strong Lipschitz homotopy invariance at the K-theory

level. By a Mayer-Vietoris sequence argument and induction on the dimension of the

skeletons [Y97, CW02], the general case can be reduced to the 0-dimensional case, i.e., if

70



D ⊂ Pd(Γ) is a δ-separated subspace (meaning d(x, y) ≥ δ if x 6= y ∈ D) for some δ > 0,

then

(βL)∗ : K∗(C∗L(D))→ K∗(C∗L(D,A))

is an isomorphism. But this follows from the facts that

K∗(C∗L(D)) ∼=
∏
γ∈D

K∗(C∗L({γ})),

K∗(C∗L(D,A)) ∼=
∏
γ∈D

K∗(C∗L({γ},A))

and that (βL)∗ restricts to an isomorphism from K∗(C∗L({γ})) ∼= K∗(K) to

K∗(C∗L({γ},A)) ∼= K∗(K⊗A)

at each γ ∈ D by the classic Bott periodicity.

VI.5 Proof of the Main Theorem

Proof of Theorem 26. We have the commuting diagram

lim
d→∞

K∗(C∗L(Pd(Γ)))

e∗
��

(βL)∗
∼=

// lim
d→∞

K∗(C∗L(Pd(Γ),A))

e∗∼=
��

lim
d→∞

K∗(Pd(Γ))

indL

∼=

55kkkkkkkkkkkkkk
ind // lim

d→∞
K∗(C∗(Pd(Γ))) β∗

// lim
d→∞

K∗(C∗(Pd(Γ),A)).

Hence, β∗ ◦ ind = e∗ ◦ (βL)∗ ◦ indL. It follows from Theorem 27, Theorem 28 and Theorem

29 that β∗ ◦ ind is an isomorphism. Consequently, the index map

ind : lim
d→∞

K∗(Pd(Γ))→ lim
d→∞

K∗(C∗(Pd(Γ))) ∼= K∗(C∗(Γ))

is injective.
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