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CHAPTER I 

 

INTRODUCTION 

 

Bves (blood vessel epicardial substance) was initially described in the 

literature eight years ago (Reese et al. 1999).  Despite the existence of nearly 20 

publications investigating this gene, very little has been learned about the 

functional significance of this protein.  Several phenotypic abnormalities have 

been generated via alteration of bves expression levels, yet little evidence exists 

to substantiate a molecular mechanism underlying these phenotypes.  Of course, 

determination of the function of a novel protein is a very attractive goal for those 

interested in basic science, and was the topic that I selected for my doctoral 

research. 

 This introductory chapter will provide a synopsis of the existing literature 

concerning Bves.  Additionally, a brief review of Rho-family GTPase signaling is 

also provided, which will be helpful in understanding the potential functional 

implications of the work described in this doctoral thesis.    

 

Bves:  Discovery and initial characterization 

To identify novel genes expressed during heart development, we 

performed a subtractive hybridization screen in the HH stage 18 chicken heart 

(Reese et al. 1999). bves (blood vessel epicardial substance) is a novel 
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message identified through this screen, as reported by Reese et al. (1999). We 

assigned the name Bves to the protein product because our first antiserum 

recognized the protein in cells of the epicardium and developing coronary 

vascular system. Using a similar screen, Thomas Brand and colleagues 

independently identified an identical chick cDNA, which they termed “pop1a”, and 

characterized a related family of genes in chick and several other species 

(Andree et al. 2000). As these transcripts were identified in heart and skeletal 

muscle, they assigned the name popeye to the gene family to reflect the robust 

expression pattern in muscle types. The Duncan laboratory also independently 

identified Bves in a screen for genes transcriptionally-regulated in eye 

development (M. Duncan, personal communication) and later reported the 

characterization of two monoclonal antibodies directed against the protein 

(DiAngelo et al. 2001).  For clarification, the correct nomenclature in mouse and 

human for the bves/pop1a gene and protein is Bves. The accepted names for the 

protein products of family members popdc2 and popdc3 are Popdc2 and Popdc3, 

respectively  (Mouse Genome Informatics, Jackson Labs; HUGO Gene 

Nomenclature Committee).  The gene family is known as the popdc (popeye 

domain-containing) family. 

Since the initial identification of bves in chicken, mouse and human, 

cDNAs representing this gene have been reported in all classes of vertebrates. 

Homologous Bves sequences have been identified in several invertebrates, 

including insects Drosophila and Anopheles, through a search for EST clones 
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with internet-based search engines (NCBI, Ensembl). Additionally, related 

transcripts have been reported in the cephalochordate Amphioxus floridae 

(Andree et al. 2000), as well as Ciona intestinalis (Davidson and Levine 2003) 

and the ascidian Boltenia villosa (Davidson et al. 2003). To date, Bves has not 

been reported to be in the C. elegans genome, in any single cell organism, or in 

plant species.  

The genomic location and structure of Bves is known for several species 

(Table 1). Mouse Bves lies on chromosome 10, human Bves has been mapped 

to chromosome 6q21, and the chicken gene is located on chromosome 3. The 

cloning of bves in many organisms has allowed a cross-species comparison of 

gene structure, which varies considerably. The mouse gene consists of 11 exons, 

while human BVES has only five exons. The chicken and Drosophila bves genes 

have eight and seven exons, respectively.  Chicken bves generates a message 

of approximately 1.7kb, while mouse bves is 1.8kb (Reese et al. 1999; Andree et 

al. 2000). A high sequence similarity exists at the nucleotide level (>70%). In 

addition, the presence of at least four individual transcripts from the chicken bves 

gene has been demonstrated, and originally reported as Pop1A-Pop1D (Andree 

et al. 2000). The splice variants appear to be generated principally in the extreme 

5’ and 3’ ends of the coding region (Andree et al. 2000). To date, no insight 

concerning function has been derived from the genomic structure. Currently, 

none of the promoter or enhancer elements that drive cell-specific expression 

have been described for bves or any other popdc genes, although bves has been  
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identified as a target of Pax3, a key developmental transcription factor in muscle 

(Barber et al. 2002). 

This dissertation will focus primarily on the bves gene and its gene 

product, Bves. However, it is necessary and appropriate to point out similarities 

and differences between the other family members, popdc2 and popdc3, which 

have been both been identified in mouse, human, and chicken (Andree et al. 

2000).  The gene structure and sizes of popdc family members have been 

determined (Table 1). The chromosomal location of the popdc2 and popdc3 

genes has been determined in many species (Table 1).  Mouse popdc3 is located 

in close proximity to bves on chromosome 10 while popdc2 is on chromosome 

16.  Similarly, human popdc3 has been mapped to chromosome 6q21 (like bves), 

while popdc2 has been mapped to chromosome 3q13. Chicken bves and popdc3 

genes are both located on chromosome 3 and popdc2 is on chromosome 1. 

However, not all species have multiple popdc genes. To date, only one transcript 

has identified in Xenopus (Hitz et al. 2002; Ripley et al. 2006), and in Drosophila 

through EST databases and cDNA cloning (NCBI). 

In summary, popdc genes appear in a broad spectrum of invertebrate and 

vertebrate species. Due to potential redundancy of popdc gene family members, 

genetic analysis of function may proceed more rapidly in organisms that have 

only one gene, whereas studies in mice, which are essential for understanding 

mammalian gene function, will apparently require disruption of two or more of the 

genes (Andree et al. 2002). 
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Protein Size and Structure 
 

The full-length protein sequence of bves has been determined in chicken (357 

a.a.), mouse (358 a.a.), and human (360 a.a.) (Table 1). Conservation of Bves 

protein sequence exists across a wide variety of vertebrate species (~80%; 

Figure 1). At present, groups studying Bves are in agreement that the protein 

possesses three transmembrane domains and has an extracellular glycosylated 

N-terminus and intracellular C-terminus (Figure 1) (Andree et al. 2002; Knight et 

al. 2003).  A closer examination of sequence similarity reveals that certain 

regions of the protein exhibit higher degrees of homology (Figure 1). For 

example, while the amino acid sequence of chick and mouse are 75% 

homologous, the highest degree of homology (92%) lies within the C-terminus.  

Outside of the regions that encode glycosylation sites, the N terminal sequence is 

rather diverse across species (Andree et al. 2000). While I will focus on the gene 

product, Bves, from this point forward, I will mention that the mouse, chick, and 

human popdc2 encodes a ~360 a.a. (41kD) and popdc3 encodes a ~290 a.a. 

protein, which has a shorter C-terminus (37kD) (Table 1).  Like Bves, the 

additional gene products in the Popdc family are highly conserved across species 

(~80%) (Table 1). However, within a single species Bves is ~25% homologous to 

Popdc2 and Popdc3.  Interestingly, Popdc2 and Popdc3 are ~50% identical, 

indicating that these gene products are more closely related to each other than to  
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Figure 1:  Alignment of vertebrate Bves sequences. Bves is highly conserved across species. 
Transmembrane/hydrophobic sequences are contained by red boxes. The Popeye domain is denoted (black line). 

Sequences to which antibodies were generated are indicated by blue (D033), green (XBves), and low (B846) lines. An 
additional monoclonal antibody generated by DiAngelo et al. (2001) was raised against amino acids 91-358 of the chick 

sequence. A pair of lysine residues within the C-terminus, denoted by a pink box, has been shown to be critical for 
epithelial integrity. 
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Bves, which appears to be the outlier of this family. This is surprising in light of 

the arrangement of the three family members in the genome (see Table 1).  

Immunochemical detection of Bves protein yields bands ranging between 

a ~42-48kD under reducing and denaturing conditions (Reese et al. 1999; 

Andree et al. 2000; DiAngelo et al. 2001; Smith and Bader 2006). The size 

variation may result from posttranslational modification of the protein in the form 

of N-linked glycosylation (Knight et al. 2003).  Early computer-based modeling 

predicted that Bves possesses three hydrophobic domains (Reese et al. 1999; 

Andree et al. 2000). Presence of these hydrophobic domains was confirmed and 

shown to be essential for membrane insertion/retention, as demonstrated by in 

vitro transcription/translation reactions in the presence of microsomes (Wada et 

al. 2001). Despite these findings, the structure of Bves was initially difficult to 

resolve and Wada et al. originally reported that the C-terminus of Bves was 

extracellular (2001). Subsequent immunocytochemical and biochemical data 

suggest that the short N-terminus (36-39a.a.) is extracellular, while the longer C-

terminus is intracellular (Knight et al. 2003). Two N-glycosylation sites have been 

found within the N-terminus in all species studied thus far (Knight et al. 2003), 

although the physiological significance of these sites is unknown.  

The C-terminal intracellular portion of the protein is a likely candidate 

region for interactions with other proteins and, thus, its dissection has been a 

primary focus. However, this region of Bves lacks known motifs, such as a PDZ, 

SH3, leucine zippers, or other protein-protein interaction domains that would 
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suggest function. However, a highly conserved domain (a.a. 172-266) in the C-

terminal intracellular portion of Bves for which function(s) is unknown has brought 

about the renaming of the Popeye family to Popdc (popeye domain containing), 

and this newly identified domain may be a motif for protein-protein interaction 

unique to the Popdc family.   The absence of any conserved or characterized 

domains in the Bves protein has greatly complicated early inquiries into the 

function of the protein, as the unique nature of Bves at the amino acid level 

precludes any sort of candidate approach in experimental design.  In the absence 

of known functional domains, it has been necessary to identify interacting 

partners using immunoprecipitation, protein pull-downs, and yeast two-hybrid 

analyses to ascribe function.  Later, I describe the isolation of two interacting 

proteins using genetic screens, and describe the characterization of one of these 

interactions.  

 

Expression of Bves during development 
 

Bves expression has been analyzed at the RNA and protein level in the 

mouse, chick, and frog during various developmental stages (Reese et al. 1999; 

Andree et al. 2000; DiAngelo et al. 2001; Wada et al. 2001; Andree et al. 2002; 

Hitz et al. 2002; Osler and Bader 2004; Ripley et al. 2004; Vasavada et al. 2004; 

Ripley et al. 2006). Interestingly, expression analysis using in situ hybridization or 

antibody detection did not always lead to congruent results, and some of the 

Bves expression data appeared difficult to reconcile. One major point of 
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contention has been the question whether Bves is expressed in the epicardium of 

the heart, and more generally, in epithelial cells. 

Published literature agrees that Bves is clearly expressed in muscle cell 

types. Reese et al. (1999) and Andree et al. (2000) originally identified the Bves 

transcript in a screen for gene expression in the developing chick heart. Without 

doubt, in situ hybridization, Northern blot, RT-PCR, and lacZ knock-in 

experiments have demonstrated that Bves is highly expressed in muscle cells of 

the embryonic heart in all vertebrates examined thus far (Reese et al. 1999; 

Andree et al. 2000; Hitz et al. 2002; Ripley et al. 2006). Immunocytochemical 

studies have confirmed this robust cardiac muscle expression. Using the B846 

polyclonal antiserum (Wada et al. 2001; Osler and Bader 2004; Ripley et al. 

2004), the XBves polyclonal antiserum (Ripley et al. 2006), the 3F11 monoclonal 

antiserum (DiAngelo et al. 2001; Vasavada et al. 2004), Bves has been detected 

in the developing myocardium of embryos and in the adult heart. Expanded 

analysis of both mRNA and protein expression have detected Bves in skeletal 

muscle of chick, mouse and frog (Andree et al. 2000; Andree et al. 2002; Ripley 

et al. 2006). It should be noted that Hitz et al. (2002) report no Bves expression in 

the skeletal muscle of Xenopus embryos by in situ hybridization. The reason for 

this conflicting result is presently not known. Interestingly, Swalla and colleagues 

found an ascidian popdc gene to be expressed in cells of the primordial heart and 

tail muscle lineages, suggesting a conserved function for Bves in striated muscle 

across species (Davidson et al. 2003).  Taken together, these published studies 
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permit the conclusion that Bves is expressed in all striated muscle continuously 

from development through adulthood. Furthermore, primary and immortal 

myocyte cell lines have been employed to analyze Bves expression and 

localization in a cell culture system. Overall, the published work pertaining to 

Bves expression in muscle indicates that Bves mRNA and protein are clearly 

observed in cardiac, skeletal, and smooth muscle types (Table 2). 

The tissue around which much of the dispute in the literature was centered 

was the epicardium.  While a thorough discussion of the epicardium and its 

significance will not be included here, a brief introduction to the epicardium and 

development of the coronary vasculature will be presented. During the process of 

cardiac looping, the epithelial proepicardium migrates to the surface of the 

myocardium, proliferates rapidly, and covers the surface of the myocardium 

(Viragh and Challice 1981; Viragh et al. 1993; Mikawa and Gourdie 1996).  This 

epithelium persists through development and adulthood, comprising the 

epicardium and pericardium.  A subpopulation of cells of the epicardium undergo 

an epithelial-mesenchymal transition, delaminate from the epithelial epicardium, 

and infiltrate the developing myocardium (Mikawa and Gourdie 1996; Reese et 

al. 1999).  These mesenchymal cells give rise to the smooth muscle, vascular 

endothelium, and cardiac fibroblasts of the coronary vasculature (Mikawa and 

Gourdie 1996).  The presence or absence of Bves in the proepicardium and 

mature epicardium, as well as in the derivatives of these tissues, has been a 

central topic of debate in the literature
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Table 2: Expression data are reported as interpreted by published literature. Sources are numbered in order of 
publication date. Corresponding numbers are used to indicate expression findings in chart form based on technique. A 

consensus of expression is presented as positive, negative or both, in the case where conflicting reports exist. Reference 
numbers with a strikethrough indicate that expression was analyzed in the noted report and not observed. A question 
mark indicates that the expression has not been tested and/or determined. Species are abbreviated as C (chick), M 

(mouse), H (human), X (frog), not applicable (n/a). 
 

.  
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EST database searches suggested that the message also existed in non-

striated muscle sources. Using Northern blot and RT-PCR analyses, the Bves 

transcript was identified in other organs such as the brain, kidney, stomach, lung, 

spleen, and the uterus of a pregnant mouse, (Andree et al. 2000). Based on 

these data and the results described above, Brand and co-workers hypothesized 

that Bves is expressed within the smooth muscle of these organs. However, 

Northern blot and RT-PCR analyses of organs or tissues do not allow the 

identification of the specific cell types expressing a certain transcript, presenting 

a disadvantage of these techniques for detailed expression studies at the cellular 

level. Using immunocytochemistry, Bves protein has been detected in the smooth 

muscle surrounding the coronary vessels and in gastric visceral smooth muscle 

(Reese and Bader 1999; Wada et al. 2001), but also in epithelia, as discussed 

below. Analysis of Bves lacZ knock-in mice further suggested Bves expression 

exists in the smooth muscle of the gut tube, notochord, and neural tube (Andree 

et al. 2002). While absolute resolution has not been reached concerning vascular 

smooth muscle expression, literature agrees that Bves is present in several 

smooth muscle cell types throughout the embryo.  

Several lines of evidence indicate that Bves is expressed in epithelial cell 

types, in addition to expression in various striated and smooth muscle cells. 

Since Bves had originally been isolated from a screen for heart-specific genes 

(Reese et al. 1999; Andree et al. 2000), the expression pattern was consequently 

expected to be restricted to the cardiac muscle progenitors and the myocardium. 
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Thus, the initial investigations concentrated only on heart development, with a 

broadened focus on muscle development upon detection of the gene/protein in 

skeletal and smooth muscle. Consequently, studies of Bves expression were 

extended to embryogenesis as a whole. Following comprehensive mRNA and 

protein analysis in many species, Bves was found to be expressed in a large 

variety of epithelial tissues in addition to muscle (Wada et al. 2001; Osler and 

Bader 2004; Ripley et al. 2004; Vasavada et al. 2004; Osler et al. 2005; Ripley et 

al. 2006)(Table 3).  

While existing data do not suggest whether Bves is restricted to a 

particular subset of epithelia, the protein is expressed in all three germ layers of 

the developing embryo, and in many epithelial structures during morphogenesis 

and in the adult (Osler and Bader 2004; Ripley et al. 2004; Osler et al. 2005; 

Ripley et al. 2006). The first clue that Bves could be a significant epithelial 

component arose with the identification of expression in the chick proepicardium 

and its derivative, the epicardium. (Figure 2A, Table 3). To this point, Bves 

expression in the epicardium has been detected using several monoclonal and 

polyclonal immunoreagents in chick and mouse embryos (Reese et al. 1999; 

Wada et al. 2001; Osler and Bader 2004; Vasavada et al. 2004). However, Bves 

expression in chick epicardium was reported to be of transient nature in one 

particular analysis using a monoclonal α-Bves antibody (Vasavada et al. 2004). 

These data point out that the persistence/continuity of Bves expression in the 

epicardium is not resolved at present. Furthermore, all reports of epicardial  
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Figure 2:  Bves expression in muscle and epithelia. A: B846 polyclonal 
immunoreagent detects Bves (red) in the epithelial epicardium (epic), 

delaminated migratory cells (arrows), and myocardium (myo) in a section through 
a developing chick heart. Smooth muscle actin (green) labels forming coronary 
vessels (cv) in the subepicardial space. B: Five-day frog embryo labeled with -
XBves (green). Positive cells are found in the epidermis (ep), the developing 

heart (h), and the velar plate (arrows). C: Bves is distributed at the cell 
circumference in cultured human corneal epithelial cells, as labeled by B846 

polyclonal antisera. D: Bves is detected by -Bves B846 (red) in the serosa (ser), 
the smooth muscle (sm), and the gastric epithelium (arrows) of the adult mouse 
intestine. The 4,6-diamidine-2-phenylidole-dihydrochloride (DAPI) labels the cell 
nuclei (blue). E: -XBves detects epithelium (arrows) and the smooth muscle (sm) 
cells of the adult Xenopus gut (green). F: Xenopus Bves is recognized by -XBves 
in the epithelial layers of the adult frog eye, including the cornea (cor) and retina 

(ret). 
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Table 3:  Expression data are reported as interpreted by published literature. Sources are numbered in order of 
publication date. Corresponding numbers are used to indicate expression findings in chart form based on technique. A 

consensus of expression is presented as positive, negative, or both, in the case where conflicting reports exist. Reference 
numbers with a strikethrough indicate that expression was analyzed in the noted report and not observed. A question 
mark indicates that the expression has not been tested and/or determined. Species are abbreviated as C (chick), M 
(mouse), H (human), X (frog), not applicable (n/a).expression come from studies in the chick embryo and it remains 

unclear whether this observation could be species-specific. 
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In addition to the epicardial epithelium, Bves is detected in a variety of 

other epithelia, including the gut epithelium and the serosa, epithelia of the 

respiratory system, the epidermis, the eye and the ependyma  (Osler and Bader 

2004; Ripley et al. 2004; Ripley et al. 2006) (Figure 2). Of these organs, the eye 

expression pattern is of particular interest since Duncan and colleagues identified 

the Bves transcript from a screen for genes essential for eye development 

(Duncan, personal communication). Importantly, proper eye development results 

from appropriate orchestration of signals between the primordial retina, lens and 

cornea, all of which are epithelial in nature. Unpublished work in Xenopus 

underscores the importance of Bves in epithelial morphogenesis of the eye, as 

development is impaired following XBves depletion (Osler, unpublished data). 

Notably, the Bves transcript has also been detected by RT-PCR in early 

embryonic stages in the chick and frog, prior to differentiation of the heart and 

skeletal muscle (Osler and Bader 2004; Ripley et al. 2004; Ripley et al. 2006). 

This supported the idea that Bves must be an epithelial component, since the cell 

layers of early, gastrulating embryos are epithelial in nature, and lack muscle 

gene expressing cells.  

Epithelial cell lines have permitted the analysis of Bves expression in a 

controlled culture system. Our group demonstrated a conserved presence in 

clonal epithelial cell lines of endodermal, mesodermal and ectodermal origin, as 

predicted by expression in embryos (Wada et al. 2001; Osler and Bader 2004; 
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Ripley et al. 2004). Antibodies (B846, D033, XBves) recognize Bves in various 

epithelia and clearly show this protein is present in epithelia (Figure 2; Table 3).   

Despite the agreement of investigators in the field concerning Bves 

expression in cardiac and skeletal muscle, numerous disagreements still exist 

about expression in other cell types.  As stated above, expression in epithelial 

cells and some smooth muscle remains a topic of debate in the literature.  While 

immunochemical analyses indicate that Bves is expressed in a variety of 

epithelial cell types and in cardiac smooth muscle; surveys of expression 

involving detection of bves message disagree with these findings.  It is critical to 

resolve the discrepancies in this field regarding expression, as important 

inferences concerning protein function can be made from expression patterns 

(Kamberov et al. 2000; Roh et al. 2002; Hurd et al. 2003; Roh et al. 2003).  For 

example, if Bves were found to be a protein expressed specifically in striated 

muscle, this would indicate that the function of Bves might be a “muscle-type” 

function, such as contraction, response to electrical stimulus, or adhesion 

between myocytes (Wang et al. 1999; Sinn et al. 2002).  However, determination 

that Bves is not restricted to muscle would preclude many of these potential 

functions, and indicate that Bves may have a more “generic” function that would 

be applicable to a broader range of cell types.  In a following chapter, I describe 

our efforts to remove these discrepancies from the field through generation of a 

panel of Bves-specific monoclonal antibodies, and our subsequent survey of 

Bves expression during murine embryogenesis 
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Function 
 

Of course, the most important scientific question about Bves is: What is 

the function of the Bves protein?  The lack of identifiable protein motifs and a 

potential redundancy of function between members of the Popdc gene family in 

coelomates have made ascertainment of Bves function difficult. By necessity, 

initial experiments conducted to determine function were broad in nature. 

Thomas Brand and colleagues published the first report of a Bves-null mouse 

(Andree et al. 2000). These animals displayed no overt embryonic phenotype 

(Andree et al. 2002), presumably due to redundant functions of Bves with Popdc2 

and 3. However, the adult mice showed a delay in skeletal muscle regeneration 

in vivo following cardiotoxin injection. Attempts to determine the developmental 

function using genetics in the mouse await generation of an animal where all 

Popdc genes are inactivated.  

Genetic analyses in Drosophila and zebrafish are also attractive, as only 

one Popdc family gene is present in Drosophila, while the number is currently 

unresolved in zebrafish. Recently, Bader and colleagues addressed function in 

vivo by depleting the X. laevis Bves homolog in developing frog embryos (Ripley 

et al. 2006). In this study, Ripley and Osler et al. show that global depletion of 

XBves by α-XBves morpholino oligonucleotides (Gene Tools, Inc.) causes a 

gastrulation block, while clonal depletion of XBves results in rogue movements by 

the progeny of the injected cell.  These findings underscore the essential nature 

of this protein in large-scale epithelial rearrangements that occur during early 
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development (Ripley et al. 2006).  However, these experimental findings do not 

indicate any sort of molecular mechanism for Bves, nor do they explain how 

alteration of Bves expression leads to the observed phenotypes. 

In the absence of genetic systems, advances in examination of Bves 

function have developed from in vitro studies using cell culture models (Wada et 

al. 2001; Ripley et al. 2004; Osler et al. 2005). Early findings support a role in 

cell-cell adhesion/cell-cell interaction. Experiments using fibroblastic L-cell 

hanging-drop aggregation assays support an adhesive function for Bves. These 

standard adhesion assays demonstrated that transfection of chicken, Xenopus, 

or Drosophila Bves resulted in increases in cell-cell adhesion in these normally 

non-adherent cells (Wada et al. 2001; Ripley et al. 2006).  

Published work from the Brand and Bader groups points to Bves-Bves 

homophillic interaction in both N- and C-termini (Wada et al. 2001; Andree et al. 

2002) and supports the results of L-cell adhesion assays. Vasavada et al. have 

also demonstrated that Bves in its native conformation forms dimers (2004) 

(Figure 3). Whether Bves heterophillically interacts with related Popdc family 

members is currently unknown.  Additional work from the Backstrom laboratory 

has indicated that intermolecular disulphide bonding plays a role in Bves-Bves 

interactions (Knight et al. 2003). Thus, it is plausible that oligomeric forms of 

Bves participate in cell-cell interaction at some level.  Clearly, evidence exists 

from a variety of experimental methods that Bves is important for cell-cell 

interaction/adhesion. 



 21 

 
 

Figure 3:  Predicted structure of Bves.  Bves, a protein containing ~360 
amino acids, is predicted to have 3 transmembrane domains.  The extracellular 
amino terminus possesses two N-linked glycosylation sites.  The intracellular C-
terminal tail contains a domain responsible for oligomerization (Kawaguchi and 
Bader, unpublished results) and the Popeye domain, a common feature of all 
popdc family members.from a variety of experimental methods that Bves is 

important for cell-cell interaction/adhesion. 
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Epithelial cells express Bves at points of cell-cell contact, reminiscent of 

proteins involved in cell adhesion (Osler et al. 2005). In confluent epithelial cells, 

Bves surrounds the cell border and significantly colocalizes with TJ proteins 

Occludin and ZO-1 (Osler et al. 2005). As previously stated, investigation of Bves 

interaction with other proteins is a critical avenue of exploration for determination 

of Bves function as little indication of function is provided by analyses of domains 

contained in the Bves protein.  GST pull-down analysis demonstrated an 

interaction between the intracellular C-terminus and a protein complex containing 

ZO-1 (Osler et al. 2005). ZO-1 is a scaffolding protein that interacts with a 

multitude of tight, adherens and gap junction proteins (Itoh et al. 1993; Fanning et 

al. 1998; Itoh et al. 1999; Barker et al. 2001).  

Consequently, the localization and interaction at the TJ led to a functional 

assessment of TJ integrity in Bves-depleted human corneal epithelial cells. 

Knockdown of Bves in epithelial cells leads to a disruption of epithelial sheet 

integrity, a concomitant loss of transepithelial resistance, and displacement of 

ZO-1 from the TJ domain, further suggesting interaction between Bves and the 

TJ (Osler et al. 2005).  While this finding indicates that Bves somehow affects TJ 

integrity in epithelia, perhaps through an interaction with ZO-1, neither the nature 

of this interaction nor the precise domain of Bves that interacts with ZO-1 have 

been determined.  While this interaction and phenotype are interesting, a 
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mechanistic explanation for how the interaction of Bves with a protein complex 

containing ZO-1 may be potentiating this phenotype is lacking at this time.   

In summary, the function of Bves has been largely undetermined.  

Tantalizing phenotypes, such as the epithelial wound assay, tight junction 

perturbation upon Bves depletion, defective cellular organization during Xenopus 

gastrulation upon Bves knockdown, and delays in skeletal muscle regeneration 

upon Bves global inactivation exist, yet no molecular mechanism has been 

determined to explain these phenotypes.   I have determined that Bves interacts 

with GEFT, a protein that modulates small Rho-GTPase signaling.  This 

interaction, and its effects on Rho-GTPase signaling, provides the first 

description of a protein that interacts with Bves directly and provides a molecular 

mechanism for the Bves protein that may explain some or all of the phenotypes 

listed above.   

 

Small GTPase signaling 

 Small GTPase signaling plays a variety of roles in the developing embryo 

as well as the mature organism.  GTPases serve as the molecular switches for 

cellular processes such as migration and shape change via regulation of the actin 

cytoskeleton (Kaibuchi et al. 1999).  Myriad cellular activities, including formation 

of stress fibers, cellular morphology, aggregation, motility, membrane ruffling, 

lamellipodia formation, filopodia formation, cytokinesis, and cellular adhesion 

have all been demonstrated to be controlled by the Rho-family GTPases 
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(Kaibuchi et al. 1999).  This family consists of at least 10 members in mammals, 

among those are Rac1, Cdc42, and RhoA—the three best understood members 

of the Rho GTPase family.   

 Rho-family GTPases bind to both GTP and GDP, and have intrinsic 

GTPase activity.  These proteins cycle between a GTP-bound active state and a 

GDP-bound inactive state.  Several accessory proteins modulate this exchange 

activity, such as GEFs (guanine nucleotide exchange factors), GAPs (GTPase 

activating proteins), and GDIs (GDP dissociation inhibitor).  GEFs stimulate the 

release of GDP from small GTPases, which in turn leads to increased GTP 

binding, thereby activating the small GTPase (Cerione and Zheng 1996).  GDIs 

play the opposite role by repressing the dissociation of GDP from GTPases, thus 

favoring the inactive state of these proteins (Takai et al. 1995).  GAPs stimulate 

the GTPase activity of GTPases, leading to their conversion to a GDP-bound 

inactive state (Takai et al. 1995).  In summary, these proteins regulate GTPase 

activity along the following broad cyclical pathway:  GDP-bound GTPases 

(inactive) in the cytoplasm are complexed with GDIs.  When a signal for 

activation is received, GEFs stimulate dissociation of GTPases and GDIs.  GDP 

dissociates from the GTPase, and the GTPase then binds free GTP in the 

cytoplasm (active).  The active GTP-bound GTPase is then targeted to the 

membrane where it interacts with its targets.  GAPs enhance the intrinsic 

GTPase activity of these GTP-bound proteins, catalyzing conversion to a GDP-
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bound (inactive) state.  At this point, GTPases complex with GDIs to begin the 

cycle again (Figure 4) (Kaibuchi et al. 1999). 

 Rho-family GTPases have numerous targets, some of which are shared 

between family members, and some of which are specific to a particular GTPase 

(Kaibuchi et al. 1999).  Rho targets in mammalian cells include Rho-kinase, 

myosin phosphatase, PRK1, rhophilin, rhotekin, citron, and p140mDia (Van Aelst 

and D'Souza-Schorey 1997).  These effectors elicit a variety of cellular activities, 

including smooth muscle contraction (Amano et al. 1996; Kimura et al. 1996), 

stress fiber formation (Leung et al. 1996; Amano et al. 1997), neurite retraction 

(Amano et al. 1998), cytokinesis (Yasui et al. 1998), and actin polymerization 

(Watanabe et al. 1997).   

Rac1 and Cdc42 target p21 activated kinases (PAKs), WASP and N-

WASP, IQGAP1, MRCK, Por1, p140Sra-1, and Posh .  Rac1 and Cdc42  share 

several of these targets.  Formation of lamellipodia and filopodia (Miki et al. 

1998), degradation of stress fibers and focal adhesions (Manser et al. 1997; Sells 

et al. 1997), activation of JNK and p38 transcriptional cascades (Bagrodia et al. 

1995; Zhang et al. 1995) have all been shown to be regulated by these 

Rac1/Cdc42 effectors.  Interestingly, activation of some of these effectors 

functions as positive feedback mechanisms to propagate GTPase signaling 

(Manser et al. 1998).     

 These small GTPases are critical for control of a number of cellular 

processes, and commonly function as a “relay” between extracellular signals and 
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Figure 4: In resting cells, Rho-famliy GTPases exist mostly in the GDP-bound 
form and in complexes with GDIs (GDP dissociation inhibitors) in the cytosol. 

When cells are stimulated with the appropriate extracellular factors, Rho-family 
GTPases are probably dissociated from GDIs and targeted to specific 

membranes by its carboxy-terminal prenyl group. At the membrane, specific 
GEFs (guanine nucleotide exchange factors) for Rho-family GTPases are 

activated and GDP-GTPase is then converted to GTP-GTPase. GTP-GTPase 
interacts with specific effectors to exert its functions. GAPs (GTPase-activating 
proteins) enhance the GTPase activity of Rho-family GTPases and reconvert 

GTPases to their inactive GDP-bound form.  GDIs can then form a complex with 
GDP-GTPases and extract it from the membrane back into the cytosol. (adapted 

from Fukata and Kaibuchi, 2001) 
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intracellular processes.  In many cases, the intracellular process most directly 

affected by Rho-family GTPase signaling is the dynamic organization of the actin 

cytoskeleton.  Via control of the cytoskeleton, Rho GTPases are able to exert 

influence upon are numerous cellular processes.   

 For example, control of the actin cytoskeleton during cell-cell and cell-

matrix adhesion is exerted through the Rho GTPase family.   Integrins, which link 

the cytoskeleton to the extracellular matrix, activate both Rac1 and Cdc42, and 

this activation is critical for normal cell spreading (Price et al. 1998; del Pozo et 

al. 2000).  Similarly, cadherin signaling during formation of adhesion complexes 

also activates Rac1 and Cdc42, while repressing RhoA.  Disruptions of these 

GTPase activations and repressions have been shown to block the formation of 

cell-cell adhesions (Braga et al. 1997; Hordijk et al. 1997; Kuroda et al. 1997; 

Zhong et al. 1997; Jou and Nelson 1998). 

 Perhaps the most commonly known function of the Rho GTPases is 

control of processes that govern cellular motility.   In Swiss 3T3 fibroblasts, Rac1, 

Cdc42, and RhoA are all activated during cell motility.  On the leading edge of 

movement, Rac1 and Cdc42 are active, producing filopodia and lamellipodia.  

The combination of this protrusive activity driven by Rac1 and Cdc42 coupled 

with acto-myosin based retraction on the trailing edge, catalyzed by RhoA 

activity, allows directed cellular movement in response to extracellular cues  

(Figure 5) (Etienne-Manneville and Hall 2002).  Complex processes regulated by 

Rho GTPases, such as cell motility, are closely regulated by crosstalk between 
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Figure 5:  Independent movement controlled by Rho-family GTPase signals. 
Cells move through the polarized and dynamic re-organization of the actin 

cytoskeleton, involving a protruding force at the front (blue arrows), combined 
with a contractile force in the cell body (double-headed red arrows). This 

contractile activity leads to retraction of the rear of the cell as the adhesions are 
lost (single-headed red arrows). Rho-family GTPases act spatially and temporally 

to control all these aspects. Rac regulates actin polymerization at the front to 
promote protrusion. Cdc42 acts at the front to control direction in response to 
extracellular cues. Rho stimulates actin-myosin contraction in the cell body. 

Invading cancer cells are probably not directed by outside signals, but 
deregulated Rac is thought to have an important role. b, Coordinated movement. 

In in vitro scratch assays, cells sense the free space left by the scratch and 
migrate together as a sheet. Rac is essential for forward movement in fibroblasts. 
Migrating cells are oriented perpendicularly to the scratch. How cells behind the 

front row migrate coordinately with front row cells is unclear, but may involve 
secretion of soluble factors and/or mechanical tension.  The Rac1/Cdc42-

dependent secretion of a soluble TGFbeta-like factor (in blue) is required to 
promote migration of the entire monolayer. When cells approach each other, 
Cdc42- and Rac-dependent filopodia and lamellipodia protrude to execute  

wound closure.  (Adapted from Etienne-Manneville and Hall, 2002) 
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members of the Rho GTPase family.  These mechanisms are poorly understood 

at this time, and vary by cell type in which they exist, but are the topic of active 

investigation. 

 It is clear that the Rho-family GTPase signaling pathway is a key regulator 

of many cellular processes.  Data presented in a later chapter demonstrate that 

Bves interacts with GEFT, a protein that directly controls the activity level of Rho 

GTPases (Guo et al. 2003).  The interaction of Bves with a regulatory component 

of this signaling pathway not only has important implications for understanding 

the function of Bves, but also for developing a more complete understanding of 

Rho-family GTPase signaling and how it controls the variety of cellular behaviors 

previously described.       

 

The Dbl-family of guanine nucleotide exchange factors 

 As mentioned previously, GEFs stimulate GDP dissociation from 

GTPases.  This dissociation catalyzes GTP binding to GTPases, as the cytosolic 

concentration of GTP is 5x higher than the concentration of GDP (Cerione and 

Zheng 1996).  The activation of Rho-family GTPases through these proteins is 

often stimulated by extracellular signals via various cell-surface receptors.  

Receptors of the tyrosine kinase, adhesion, cytokine, and GPCR families all 

stimulate downstream Rho-family GTPase activity (Kjoller and Hall 1999; Sah et 

al. 2000).   The intermediates between cell-surface receptors and GTPases 

activation are GEFs.   
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 The prototypical mammalian Rho family GEF is Dbl.  This GEF was 

isolated from diffuse B-cell-lymphoma cells (Eva et al. 1988; Hart et al. 1991).  

This protein was found to share a highly conserved domain with Cdc24, a 

Saccharomyces cerevisiae protein that interacts with Cdc42 during yeast budding 

and polarity.  Later, Dbl was demonstrated to have GEF activity for human 

Cdc42.  69 distinct members of the Dbl family of GEFs have since been identified 

(Rossman et al. 2005). 

 Dbl family GEFs, for the most part, share two conserved domains:  the Dbl 

homology domain (DH) and the pleckstrin homology domain (PH).  DH domains 

catalyze the exchange of GDP for GTP by Rho-family GTPases by promoting a 

“nucleotide-free” state, thereby stimulating GTP binding due to the relative higher 

cytosolic GTP concentration.  The DH domain elicits this functional activity by 

interaction with the switch regions of Rho-family GTPases, altering the 

nucleotide-binding pocket and disrupting the proper structural conformation 

necessary for GDP binding (Rossman et al. 2002).  While some Dbl GEFs are 

promiscuous in their binding to GTPases, others are specific to one GTPase, and 

this specificity is likely determined by uniqueness within the DH domain (Schmidt 

and Hall 2002). 

PH domains serve to localize Dbl GEFs to plasma membranes.  Through 

control of localization to sites where nucleotide exchange activity occurs, and 

allosteric interactions, PH domains help to regulate Dbl GEF activity.  The PH 

domain is always found C-terminal to the DH domain in Dbl GEFs, although 
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instances of Dbl GEFs with no PH domain do exist (Rumenapp et al. 2002).  

Although the PH domains do not catalyze GTPase activity themselves, their 

presence is important for proper GEF activity.  Experiments have shown that DH-

PH fragments of Dbl GEFs stimulate a higher rate of nucleotide exchange activity 

than the respective DH domains alone (Ron et al. 1991; Whitehead et al. 1995; 

Liu et al. 1998; Rossman and Campbell 2000).  In some cases, investigators 

demonstrated the necessity for PH-domain membrane targeting in GEF function 

by replacing the PH domain with other sequences that direct protein localization 

to the plasma membrane.  Interestingly, PH domains of Dbl GEFs show little 

affinity or specificity for phospholipids, indicating that interaction with the lipid 

bilayer alone is insufficient GEF localization to the membrane (Snyder et al. 

2001) and that interaction with other membrane associated proteins may be 

critical for proper localization of Dbl GEFs to sites where they are needed for 

GTPase regulation.  Here I demonstrate that Bves, an integral membrane 

protein, interacts directly with the Dbl-family GEF GEFT.  This Bves-Geft 

interaction may be one of these interactions that serve to localize a Dbl GEF to 

the proper site of Rho GTPase activity in order to properly control Rho GTPase 

signaling in a variety of cellular events.      

 

Approach to this project 

As outlined in this chapter, Bves is a novel protein that is largely 

uncharacterized.  The domain of expression of this protein is still debated in the 
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literature, the function is undefined, and molecular mechanism of any Bves action 

is completely unknown.  The ability of Bves to affect cellular behaviors during 

epithelial wound healing (Osler et al. 2005), Xenopus development (Ripley et al. 

2006), and skeletal muscle regeneration (Andree et al. 2002) has been reported, 

yet no plausible molecular mechanism for these phenotypes has been offered at 

this time.  In fact, direct interaction with any protein has not been reported, 

although interaction with a protein complex containing ZO-1 has been 

demonstrated (Osler et al. 2005).   

Given that the expression pattern of Bves was disputed, and that no 

directly interacting proteins had been discovered; little evidence for making 

hypotheses of Bves function and molecular mechanism of function existed.  The 

absence of conserved protein motifs also provided no clues with which a 

hypothesis could be logically formulated regarding Bves function.  With this 

knowledge, I first set out to remove the controversy regarding the expression 

pattern of Bves from the literature.  The generation of a new panel of monoclonal 

antibodies specific to Bves, the characterization of these reagents, and the 

definition of the expression pattern of Bves during mouse embryogenesis are 

described in Chapter II.    

 We next hypothesized that definition of Bves-interacting proteins will 

reveal the function of Bves.  Utilizing a yeast two-hybrid screen with an 

embryonic mouse heart library, I discovered a direct interaction between the 

intracellular carboxyl-terminus of Bves and GEFT, a Rho-family GTPase GEF.  
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Characterization of this interaction, as well as our investigation of the functional 

significance of this interaction, is provided in Chapter III.  The relevant 

discussion, our conclusions from the entirety of this data, and potential future 

avenues of research are presented in Chapter IV. 
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CHAPTER II 

 

CHARACTERIZATION OF BVES EXPRESSION DURING MOUSE 
DEVELOPMENT USING NEWLY GENERATED IMMUNOREAGENTS  

 
 
 

Introduction 

Bves was isolated independently by two laboratories (Reese et al. 1999; 

Andree et al. 2000) using subtractive hybridization screens for heart enriched 

gene products.  Additional members of the gene family (Popdc2 and Popdc3) 

were also isolated (Andree et al. 2000).  Sequence analysis of Bves revealed no 

conserved or predicted functional motifs and no homology to any previously 

identified protein. Three hydrophobic regions near the N- terminus were identified 

that have since been determined to be functional in anchoring the protein to the 

plasma membrane (Wada et al. 2001; Knight et al. 2003). Orthologous genes 

have been identified in numerous invertebrates and vertebrates (Reese and 

Bader 1999; Reese et al. 1999; Andree et al. 2000; Hitz et al. 2002; Ripley et al. 

2006). 

Controversy about the expression pattern of the Bves protein persists in 

the literature. Detection of Bves message through in situ hybridization, Northern 

blotting (Andree et al. 2000), or lacZ knock-in (Andree et al. 2002) do not agree 

with detection of the Bves protein using multiple anti-Bves immunological 

reagents (Reese et al. 1999; DiAngelo et al. 2001; Wada et al. 2001; Osler and 
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Bader 2004; Ripley et al. 2004; Vasavada et al. 2004).  While in situ hybridization 

and lacZ knock-in analyses have been interpreted as indicating that Bves is 

expressed preferentially in cardiac and skeletal muscle, analyses of protein 

expression indicate that Bves is expressed in many epithelial cell types as well.  

The first polyclonal antibody generated by our laboratory, D033, revealed 

expression in the proepicardium, migrating epicardium, epicardial-derived 

mesenchyme and smooth muscle cells of the cardiac arteries of the developing 

chicken heart (Reese et al. 1999).  A second polyclonal antibody, B846, also 

revealed Bves expression in cardiac muscle and all epicardial/epicardially 

derived tissues listed above (Wada et al. 2001), as well as expression in various 

epithelial cell lines (Wada et al. 2001), epithelia of all three germ layers during 

early chick development, epidermis, gut endoderm (Osler and Bader 2004), and 

epithelia of the lens, retina, and cornea (Ripley et al. 2004).  A subsequent 

antibody against the X. laevis ortholog of Bves was developed, and has revealed 

highly similar expression in the frog (Ripley et al. 2006).  A monoclonal antibody 

generated against the chicken Bves protein (DiAngelo et al. 2001) also 

demonstrated that Bves is expressed in skeletal muscle, cardiac muscle, brain, 

and epicardium (Vasavada et al. 2004). The monoclonal antibody generated by 

Duncan and colleagues clearly reacts with the chicken Bves protein in cardiac 

myocytes and transiently in the epicardium, but has not been reported to react 

with chicken Bves protein in other epithelial cell types (DiAngelo et al. 2001; 

Vasavada et al. 2004). 
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Here, I describe the generation of multiple new α- mouse Bves 

monoclonal antibodies that display reactivity with cardiac muscle, skeletal 

muscle, and epithelial cell types throughout embryonic development, as well as 

cultured epithelial and muscle cell lines.  I also thoroughly examine the 

developmental expression profile of the mouse Bves protein using these and 

other previously generated α-Bves reagents.  Thus, I provide a comprehensive 

description of Bves expression at the protein level in the mouse, which is lacking 

in the literature at this time. Our data clearly demonstrate that the Bves protein is 

present in developing muscle and epithelial cell types derived from all three germ 

layers.  These studies are essential for a meaningful understanding of Bves 

function and to determine the role of Bves in mouse embryogenesis.     

 

Materials and Methods 

 

Generation of α-Bves monoclonal antibodies 

Antibodies were generated against the peptide DPTLNDKKVKKLEPQMS 

(amino acids 266-283 of mouse Bves) in collaboration with QEDBioscience (San 

Diego, CA) using standard methodology (Bader et al. 1982).  Antibodies were 

initally screened using ELISA against the original peptide.  Reactive clones were 

selected from this screen and were then subjected to screening using secondary 

immunofluoresence against COS-7 cells transfected with Bves expression 

constructs.  Reactive clones were further characterized using standard 
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immunoblotting procedures against GST-fused Bves, Popdc2, and Popdc3.  

Once isolated, hybridomas were cultured and also injected into the peritoneal 

cavity of mice to generate ascites fluid.  Five independent clones were used to 

generate ascites, and all five of these hybridoma lines will be deposited in the 

Developmental Studies Hybridoma Bank.  

 

Antibodies 

 Primary antibodies against E-cadherin (Chemicon), ZO-1 (Zymed), 

sarcomeric myosin (MF20, DSHB), c-myc (Sigma), cytokeratin (Sigma), and GST 

(Amersham) were applied according to manufacturer’s specifications.  Alexa-488 

and Alexa-568 conjugated secondary antibodies (Molecular Probes) were used 

at 1:4,000 dilutions for indirect immunofluoresence, and alkaline phosphatase 

conjugated secondary antibodies (Sigma) were dilluted 1:10,000 for 

immunoblotting.  DAPI (4’, 6-diamidine-2phenylidole-dihydrochloride; Roche) was 

used to visualize nuclei per manufacturer’s specifications.  When direct labeling 

of antibodies was necessary, Zenon Alexa Fluor labeling kit (Molecular Probes) 

was employed to label primary anitbodies according to manufacturer’s 

specifications.  The polyclonal antibody B846 has been previously described 

(Wada et al. 2001; Osler and Bader 2004).  Newly generated α-Bves monoclonal 

antibody ascites fluids were used at a 1:2,000 dilution for immunohistochemistry 

with both tissue sections and cultured cells.  Samples were incubated in primary 

antibodies at 4°C overnight in a humidified chamber. 
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Western Blotting analysis 

Hearts were excised from adult (~8 weeks) ICR mice (Jackson Labs), and 

dissected into small pieces.  Tissue was then homogenized using extraction 

buffer (1x PBS, 1% Igepal CA-630 (Sigma), 0.5% sodium deoxycholate, 0.1% 

SDS) containing mammalian protease inhibitors (Roche Complete).  Samples 

were then centrifuged at 21,000 x g for 30 minutes at 4°C.  Supernatant was 

collected, and protein concentration assayed using Bradford assay (Biorad).  40 

ug protein was diluted in SDS-PAGE sample buffer, and electrophoresed on a 

10% SDS-PAGE gel at 125 V.  Protein was then transferred to Immobilon-P 

membrane (Millipore), and then blocked in blocking solution (10% nonfat dry milk 

(Carnation), 100mM Tris Cl pH 7.5, 150 mM NaCl, .25% TritonX-100 (Sigma)) 

overnight at 4°C.  Primary antibody (SB1, anti-Bves monoclonal Ab) was applied 

to blot at 1:2000 dilution (~1 ug/mL) for one hour at room temperature.  Blot was 

washed 3 times with 1x TBST (100mM Tris Cl pH 7.5, 150 mM NaCl, .25% 

TritonX-100 (Sigma)), and then incubated with alkaline phosphatase conjugated 

secondary antibodies (Sigma) at manufacturer’s recommended concentrations in 

blocking buffer for one hour at room temperature.  Blot was washed 3 times with 

1x TBST, and binding of secondary antibodies visualized using NBT/BCIP 

(Roche) according to manufacturer’s specifications.   
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Tissue/cell preparation  

Tissues were harvested, washed in cold PBS and then incubated in 20% 

sucrose in PBS overnight at 4°C.  Tissues were then processed for frozen 

sectioning and immunohistochemical staining of using standard methodology 

(Bader et al. 1982; Wada et al. 2003).  Cultured cells were transfected with 

expression constructs using Fugene (Roche) transfection reagent according to 

manufacturer’s instructions.  

 

Immunofluoresence methods for α-Bves monoclonal antibodies 

As this is the first communication employing these immunochemical 

reagents, a protocol generated for their use is provided.  Briefly, tissue sections 

or cultured cells were fixed for 10 minutes in cold 70% methanol, washed three 

times with PBS, and permeabilized with 0.25% Triton X-100 in PBS for 10 

minutes.  Sections/cells were then washed with PBS three times, and non-

specific binding was blocked by incubation with 2% bovine serum albumin in PBS 

for one hour at room temperature.  Ascites fluids were applied at 1:2,000 dilutions 

for 1-16 hours at room temperature.  No variation in background or staining 

intensity was observed over that period.  Alexa-conjugated secondary antibodies 

(Molecular Probes) were added for one hour at room temperature according to 

manufacturer’s specifications.  Subsequent washing was standard.     
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Generation of mammalian and bacterial expression constructs 

 Mammalian and bacterial expression constructs were generated using 

PCR amplification followed by cloning into pCI-neo (Promega) and pGex 5x-3 

(Amersham).  All expression constructs express the portion of the respective 

protein 3’ to the hydrophobic transmembrane domains of Bves.  A c-myc epitope 

tag was also added to the carboxyl terminus of all mammalian expression 

constructs to aid in monoclonal antibody characterization.  

  

Culture of neonatal mouse myocytes 

 Hearts of N2 mice were harvested, mechanically dissociated, and placed 

in cold PBS.  Hearts were placed in 5 mL 0.25% Trypsin-EDTA (Cellgro) for two 

minutes with rapid stirring using mechanical stir bar.  3.5 mL of Trypsin-EDTA 

was removed after two minutes, and replaced with 3.5 mL fresh Trypsin-EDTA.  

The first two fractions of Trypsin-EDTA were discarded, with fractions 3-8 

retained and placed into a 10x volume of myocyte medium (DMEM: 4.5 g/L 

glucose, 0.0025M thymidine, 10 U/mL penicillin, 10 mg/mL streptomycin, 100 

µg/mL gentamycin, 15% NuSerum (Collaborative Biomedical Products)).  

Myocytes were gently pelleted at 650 x G for seven minutes, then resuspended 

in growth media, counted using a hemacytometer, and plated on 100 mm plastic 

dishes at 3x106 cells per dish. 
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Results 

 

α-Bves monoclonal antibodies recognize Bves specifically 

 Immunochemical reagents against mouse and chicken Bves have 

previously been generated and characterized (Reese et al. 1999; DiAngelo et al. 

2001; Wada et al. 2001; Osler and Bader 2004; Ripley et al. 2004; Vasavada et 

al. 2004).  Recently, DiAngelo et al. (2001) have generated a monoclonal 

antibody against the intracellular C-terminus of chicken Bves.  To this point, no 

monoclonal reagents against murine Bves exist and the characterization of 

protein expression in any organism is incomplete.  

Specificity of α-Bves reactivity was initially established using transfection 

of COS-7 cells with a c-myc-tagged Bves expression construct followed by co-

immunofluoresence using α-c-myc and putative Bves monoclonal antibody 

supernatants.  All ten of the antibody-secreting clones that passed the initial 

screening process were reactive with transfected Bves (SB1 is given as an 

example in Figure 6A, i-iii).  Anti-Bves antibodies were then tested for cross 

reactivity with other members of the gene family (Figure 6A, iv-ix) and a non-

related protein, LEK1 (Figure 6A, x-xii) by transfection of COS-7 fibroblasts with 

c-myc tagged Bves, Popdc2, and Popdc3.  All antibodies generated were found 

to react in a similar manner: specifically with Bves and not with other Popdc 

family members or the unrelated LEK1 protein.  
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Figure 6:  Characterization of α-Bves monoclonal antibodies.  SB1 seen to 
be reactive with COS-7 cells transfected with c-myc tagged Bves expression 

constructs, but no labeling of cells transfected with other members of the protein 
family (PopDC2 and PopDC3) is observed (Fig. 6A).  SB family monoclonal 

reagents are also Bves specific in immunoblotting assays against GST-tagged 
fusion proteins.  No reactivity with PopDC2 (Fig. 6B) or PopDC3 (data not shown) 
is observed.  SB1 reacts with a single protein in immunoblotting assays of adult 

mouse heart (Fig. 6C).  Reactive band is visualized at approximately 53 kD. 
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 α-Bves monoclonal antibodies were then tested for specificity in 

immunoblotting assays.  GST-fusion expression constructs of each Bves family 

member were generated, and purified protein was subjected to standard 

immunoblotting procedures.  SB1 is used here as an example.  Again, α-Bves 

monoclonal antibodies were found to react specifically with Bves, and were 

unreactive with Popdc2 (Figure 6B) and Popdc3 (data not shown). 

 α-Bves monoclonal antibodies were also found to react with an 

approximately 53 kD protein in immunoblotting assays using protein samples 

from adult mouse hearts (Figure 6C).  These data demonstrate the reactivity and 

specificity of these reagents for Bves amongst Popdc family members. 

   

α-Bves monoclonal antibodies detect Bves in epithelial cell lines 

 Analyses of Bves expression in the chicken utilizing in situ hybridization 

techniques differ from results obatined using immunochemical methods (Reese 

et al. 1999; Andree et al. 2000; Wada et al. 2001; Osler and Bader 2004; 

Vasavada et al. 2004).  While both methods provide evidence for expression in 

muscle cell types, in situ hybridization assays and immunochemical assays do 

not agree concerning expression in epithelial cell types.  Utilizing cell lines allows 

the examination of Bves expression in a clonal cell population consisting of a 

single cell type.  Having verified specificity of antibodies SB1-SB5, I then tested 

the newly generated antibodies on a variety of cell lines (Figure 7). α-Bves 

monoclonal antibodies revealed expression in cell lines derived from the rat  
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Figure 7:  Bves is expressed in muscle and epithelial cell lines.  Bves expression 
(green) is observed using indirect immunofluoresence and monoclonal antibody 

SB1 (green) with DAPI (blue) staining for nuclei.  Peripheral expression is 
observed in the EMC (epicardial mesotheial cells, Fig 2A) cell line, the HCE 

(human corneal epithelial, Fig. 7C) cell line, and the MDCK (Maldin Darby Canine 
Kidney, Fig. 7D) cell line.  A broader staining pattern is seen in the differentiated 

mouse C2C12 mouse myoblast cell line (Fig. 7B). 



 45 

epithelial epicardium (line EMC, Figure 7A), differentiated mouse skeletal 

myoblasts (line C2C12, Figure 7B), human corneal epithelium (line HCE, Figure 

7C), and canine kidney epithelial cells (line MDCK, Figure 7D).  Intense staining 

in the lateral compartment of the cell membrane is observed in all epithelial cell 

lines tested thus far.  Punctate intracellular staining is also observed in these cell 

lines (see arrowheads, Figure 7C) and in the C2C12 muscle cell line (Figure 7D). 

These patterns are in general agreement with the subcellular distribution 

detected with polyclonal reagents (Reese and Bader 1999; Wada et al. 2001; 

Osler and Bader 2004).  Therefore the SB monoclonal series recognizes Bves in 

a variety of cell types across a spectrum of mammalian species and cell lines, in 

agreement with previously generated reagents. 

 

Bves is expressed in mouse epidermis throughout development 

 While epithelial and muscle cell lines clearly express Bves, these cell lines 

may not reflect embryonic expression of the protein.  To test whether Bves 

protein is present in developing epithelia derived from ectoderm, frozen sections 

of mouse embryos at various stages of development were examined for Bves 

expression using the SB1 antibody.  Expression of Bves protein was observed in 

multiple epithelial tissues.  Using epithelial markers cytokeratin and ZO1 to verify 

staining patterns, I determined that Bves is expressed in the epidermis of the 

mouse throughout development (Figure 8).  At E12.5, Bves is expressed in the 

apical portion in the epidermal layer.  At low power magnification in Figure 8, the  
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Figure 8:  Bves expression in the epidermis during gestation.  Bves expression is 
seen in the epidermis throughout development, as observed by colocalization 

with cytokeratin, ZO-1, and E-cadherin markers at various developmental stages.  
Colocalization of Bves (Fig. 8B) and cytokeratin (Fig. 8A) at E12.5 shows 
expression of Bves in keratin producing cells, which continues throughout 
gestation.  Expression of Bves in subdermal blood vessels is not observed 

(arrowheads, Fig. 8G-8I).  Near the end of gestation, expression of Bves (Fig. 
8K) is seen in the epidermis at a position apical to that of E-cadherin (Fig. 8J).  

Polyclonal anti-Bves antibody (B846, Fig. 3D) and monoclonal anti-Bves antibody 
(SB1, Fig. 8E) show a similar distribution in the epidermis during development.  

DAPI counterstain used to visulalize nuclei in blue (Fig. 8A-L). 
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general colocalization of SB1 and cytokeratin is observed (Figure 8, A-C).  At 

E12.5, Bves is also detected in the apical regions of the developing epidermis.  

Interestingly, while both SB1 and the polyclonal B846 both recognize Bves 

protein in the epidermis (Figure 8, D-F), the distribution pattern of SB1 labeling is 

somewhat broader in the epidermis than that of the polyclonal antiserum.  As 

development proceeds, a high degree of colocalization of Bves and ZO1 is 

observed in the epidermal layer in the lateral membrane (Figure 8, G-I), while no 

Bves expression is observed in the endothelium of the subdermal blood vessels 

(see ZO1 positive cells indicated by arrowheads Figure 8, G and I).  Near the end 

of gestation, an increase in intensity of staining is observed, and the pattern of 

Bves distribution appears to be wider than at earlier points of development. The 

monoclonal antibody SB1 appears to be reactive with Bves protein in very apical 

portions of epidermal cells.  This is exemplified by comparison of the epidermally-

expressed E-cadherin and Bves (Figure 8, J-L).  While both are clearly 

expressed in this epithelium and exhibit domains of overlap, the major deposition 

of Bves is apical to E-cadherin.  Taken together, the data demonstrate Bves 

expression in ectodermally derived epidermis of the mouse. 

  

Bves is expressed in developing cardiac and skeletal muscle 

 The first generation polyclonal antibody D033 (Reese et al. 1999) did not 

react with cardiac muscle. However Andree et al (2000) clearly demonstrated 

that Bves mRNA was expressed at high levels in cardiac myocytes using in situ 
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hybridization.  In addition, DiAngelo et al (2002) used an α-Bves monoclonal 

antibody to show protein expression in avian cardiac myocytes.  Subsequent 

polyclonal antisera from our laboratory also demonstrated Bves expression in the 

heart (Osler and Bader 2004).  To determine the expression pattern and 

subcellular localization of the Bves protein in the mouse heart, an analysis at 

various embryonic stages using SB1 was undertaken.  At E12.5, Bves staining 

using the SB1 antibody is observed in a uniform subcellular pattern in cardiac 

myocytes (Figure 9A).  At later stages and in the adult, staining is most intense at 

the myocyte periphery (Figure 9B).  Polyclonal B846, which has previously been 

used to study Bves expression in epithelial cells (Osler and Bader 2004), also 

reacts with cardiac myocytes.  As previously seen in epidermis (Figure 8), the 

pattern of localization revealed by B846 in myocytes varies from that of SB1. 

Consistent with these results, SB1 recognizes a broader distribution of Bves in 

the myocardium, labeling the entire periphery of the cell (lateral and longitudinal 

surfaces).  A similar pattern is seen in the chicken during embryonic stages using 

the polyclonal antisera B846.  Bves is seen to localize around the entirety of the 

myocyte (data not shown).  However, B846 only recognizes Bves at the 

intercalated disc, and not on lateral surfaces (Figure 10A).  These results are 

consistent with observations in epithelia, where B846 appears only to recognize 

Bves protein at points of cell-cell contact, as the intercalated disc is the only point 

of cell-cell contact for the cardiac myocyte.  Additionally, Bves localizes to 

nascent points of cell-cell contact in reaggregating myocytes (Figure 10B).  This 
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Figure 9:  Bves expression in the heart.  Broad expression of Bves is observed in 
the heart at E17.5 (Fig. 9A) as observed by labeling with SB1 (anti-Bves, green) 

and MF20 (anti-sarcomeric myosin, red).  Negative control using anti-myc 
antibody shows no background reactivity (Fig. 9A).  Nuclei are visualized using 

DAPI (Fig. 9A, 9B)  In the adult heart, subcelllular localiaztion of protein becomes 
more restricted (Fig. 9B).  Bves (red) is observed to localize to periphery of 
cardiac myocytes in definitive myocardium.  Expression of Bves in vascular 

smooth muscle of the coronary arteries is also observed using SB1 (anti-Bves, 
red) and α-smooth muscle actin (green). 
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Fig 10:  Bves localizes to points of myocyte-myocyte contact in vivo and in vitro.  
Anti-bves antibody B846 (Fig. 10A, red) shows Bves colocalizes with Cx43 (Fig. 

10B, green) to the intercalated disc structure in adult mouse heart.  Bves (Fig 
10B ii and Fig 10B v, red) also localizes to myocyte-myocyte contact points in 
primary cultures of mouse N2 myocytes (arrowheads).  DAPI used to visualize 
nuclei in all panels, and anti-sarcomeric myosin antibody MF20 used to label 

myocytes (Fig. 10B i and iv, green). 
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result in highly consistent with observations regarding Bves localization during 

nascent contact formation in cultured epithelia (Osler et al. 2005).   

It is of interest to note that SB1-5 also detect Bves expression in not only 

in cardiac myocytes, but also in smoooth muscle cells of the coronary system (as 

seen by colocalization with α-smooth muscle actin, Figure 9B) in agreement with 

our previous studies (Reese et al. 1999; Wada et al. 2001).  Andree et al (2000) 

report Bves mRNA expression in somites and delveoping skeletal muscle.  In 

agreement with those studies, SB1-5 also detects Bves protein in developing 

skeletal muscle (Figure 11).  In skeletal myocytes, as confirmed by colocalization 

with the α-MHC monoclonal antibody MF20, SB1 reveals strong Bves 

expression.  The polyclonal α-Bves reagent B846 also recognizes this Bves 

expression in skeletal myocytes.  Note that the epithelial epidermis (arrowheads, 

Figure 11) is positive for SB1 while MF20 labeling is negative; however both 

antibodies are positive for adjacent skeletal muscle. Interestingly, Bves 

expression is also seem in the epithelial somite early during musculogenesis 

(data not shown).    

 Expression of Bves in the epicardium has been debated and remains 

controversial at this time. While in situ hybridization studies did not yield 

significant signal in the epicardium (Andree et al. 2000), monoclonal (DiAngelo et 

al. 2001) and polyclonal antibodies (Reese et al. 1999; Wada et al. 2001; Osler 

and Bader 2004) detect transient or sustained expression of Bves in the 

epicardium.  Thus, it is important to note that our initial observations using the 
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Figure 11:  Bves expression in developing skeletal muscle at E17.5.  Bves expression is visualized using SB1 antibody (Fig. 11B and 11H, green) 
and MF20 antibody is used to visualize sarcomeric myosin (Fig. 11A and 11G, red).  Co-labeling with MF20 demonstrates expression in skeletal 
muscle. Note that the epithelial epidermis (arrowheads) is positive for SB1 while MF20 labeling is negative; while both antibodies are positive for 
adjacent skeletal muscle.  Polyclonal antiserum (B846, Fig. 11D) also recognizes Bves expression in skeletal muscle in a similar pattern to anti-

Bves monoclonal antibody (SB1, Fig. 11E).  DAPI used to visualize nuclei in blue (Fig. 11A-I).
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reagents and methods described here do not detect Bves protein in the definitive 

epicardium, even though these antibodies are highly reactive with the epicardially 

derived EMC cell line (Figure 7A). 

 

Bves is expressed in epithelia of the lung and esophagus during development  

 We next tested SB1 antibody reactivity in endodermally derived epithelium 

using lung and gut epithelium as examples of this cell type.  Bves is detected in 

the epithelial components of the digestive tract and lung during development.  

Particularly, strong expression in the esophagus and main bronchi is observed at 

E14.5 (Figure 12).  As confirmed by co-expression of E-Cadherin, these cells are 

the epithelial linings of these passageways.  However, the expression of Bves in 

the respiratory system appears to be restricted to the trachea and larger bronchi, 

while expression in smaller airways is not observed at high levels.  Comparison 

of Bves and E-cadherin staining demonstrates that Bves protein distribution is 

not uniform in the epithelium of the respiratory system, while expression in the 

esophagus appears to be more evenly distributed.  These data clearly 

demonstrate the expression of Bves in endodermally derived epithelium.    

 

Discussion 

 For a meaningful understanding of protein function during development or 

in the adult, it is essential to determine the domain of expression of the protein.  

The expression of Bves has been a topic of debate since the initial experiments  
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Fig 12:  Bves expression in epithelial components of the digestive and respiratory 
tracts.  Bves labeled using SB1 antibody(Fig. 12B, green) is observed in epithelia 
of the esophagus as seen by colocalization with ZO1 (Fig. 12A, red).  Expression 

of Bves (Fig. 12D, green, SB1 antibody) in a subset of epithelial cells that line 
bronchi is demonstrated through colocalization with E-cadherin (Fig. 12C, red).  

Nuclei are visualized in blue using DAPI (Fig. 12A-F).  Note that not all epithelial 
cells in respiratory passageway are Bves positive, and that Bves expression is 

absent in smaller airways.  (Eso. = esophagus, Br. = bronchi) 
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characterizing the gene.  The expression of Bves has been previously examined 

using polyclonal antisera in the developing chick and frog (Reese et al. 1999; 

Wada et al. 2001; Osler and Bader 2004; Ripley et al. 2004; Vasavada et al. 

2004; Ripley et al. 2006), in situ hybridization in the develoing chick (Andree et al. 

2000) and frog (Hitz et al. 2002; Ripley et al. 2006), lacZ knock-in (Andree et al. 

2002; Andree et al. 2002), RT-PCR (Wada et al. 2003; Osler and Bader 2004), 

and Northern blotting (Reese et al. 1999; Andree et al. 2000; Andree et al. 2002).  

However, despite the utilization of these many methods in several model 

systems, disagreement in the literature still persists regarding the expression 

pattern of this protein.  While some reports indicate that the expression of the 

protein was either restricted to or highly enriched in cardiac, skeletal, and smooth 

muscle (Andree et al. 2000; Andree et al. 2002; Andree et al. 2002; Hitz et al. 

2002); other reports have strongly supported a broader expression pattern that 

extends to many epithelial cell types (Reese et al. 1999; Wada et al. 2001; Wada 

et al. 2003; Osler and Bader 2004; Ripley et al. 2004; Vasavada et al. 2004).  

Here, using newly generated monoclonal reagents, I show that Bves is 

expressed in tissues derived from all three germ layers, various epithelia and in 

epithelial cell lines, and in smooth and striated muscle. 

My goal was to develop reagents to more precisely determine the 

expression pattern of the Bves protein, and to examine the expression of Bves 

during mouse development.  As expected, expression of Bves was observed in 

skeletal and cardiac muscle (Figure 11 and Figure 9, respectively).  This is in 
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agreement with previous analyses of Bves mRNA expression and with antibody 

studies from the Duncan and Bader laboratories (Reese et al. 1999; Andree et al. 

2000; DiAngelo et al. 2001; Wada et al. 2001; Osler and Bader 2004).  In 

contrast, we have reported that our original D033 polyclonal serum, while clearly 

reacting with the protein (Reese et al. 1999; Osler and Bader 2004), does not 

recognize Bves in heart muscle.  In addition to striated muscle staining, the SB 

antibody series recognizes Bves expression in some but not all smooth muscle 

populations.  Clearly, coronary smooth muscle is intensely stained by SB 

antibodies (Figure 9) in agreement with our previous polyclonal data. 

The major point of disagreement at this time concerning the expression of 

Bves is whether it is present in developing and adult epithelia. Using newly 

generated monoclonal antibodies, I was able to clearly demonstrate protein 

expression in many endodermally- and ectodermally-derived epithelia. Still, not 

all epithelia in the developing or adult organism exhibit antibody reactivity.  This 

may be due to variation in isoform production and/or the simple lack of 

expression. The localization of protein revealed by the SB1 antibody is highly 

similar to that observed using previously characterized mono- and polyclonal 

antibodies with the notable exception of epicardial staining. Additionally, our 

present studies definitively detect the protein in numerous cell lines of epithelial 

origin (Figure 7).  The subcellular distribution of Bves protein revealed by the SB 

series generally but not completely follows the pattern of staining observed with 

polyclonal B846 (Wada et al. 2001; Osler and Bader 2004). This staining is 
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abundant at points of cell-cell contact, consistent with the hypothesis that Bves 

plays a role in cell-cell adhesion/interaction (Wada et al. 2001; Osler and Bader 

2004). I have also observed Bves at points of myocyte-myocyte contact in 

reaggregation assays, which further supports this hypothesis. 

 The expression pattern revealed by investigation of Bves mRNA 

expression and lacZ knock-in is often different from the pattern revealed through 

examination of the protein expression.  Both in situ analyses (Andree et al. 2002) 

and lacZ knock-in assays (Andree et al. 2002) reveal very little epithelial 

expression.  However, three independently generated polyclonal antisera 

(against chick Bves, mouse Bves, and frog Bves) from our laboratory reveal Bves 

expression in a variety of epithelial tissues, along with striated and smooth 

muscle types.  In addition, the Duncan laboratory has generated a monoclonal 

antibody against chick Bves that also recognizes expression of Bves in the 

epicardium of the chicken at E6.  Examination of Bves expression in other 

epithelia using this antibody has not yet been published.  Still, the present data 

clearly detect Bves in a variety of epithelial cell types.  The discrepancy between 

mRNA expression analysis and analyses using immunoreagents may be due to a 

low level of Bves message in non-muscle cell types that makes mRNA detection 

difficult.  Accordingly, when using either immunochemical or riboprobe assays to 

determine expression of a protein, negative results should be interpreted 

cautiously as many factors can affect the results of these assays independent of 

message/protein presence. 
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 These antibodies clearly demonstrate that Bves is expressed in a variety 

of epithelial and muscular cell types, and that Bves protein expression extends to 

derivatives of all primordial germ layers.  Understanding of the expression pattern 

of the protein is necessary for developing and understanding the function of the 

protein.  Such broad expression within the organism and in species ranging from 

invertebrate to human indicates that the function of the Bves protein will likely be 

more general in nature, including muscle and non-muscle cell types. 
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CHAPTER III 
 
 
 

BVES INTERACTS WITH GEFT AND MODULATES RAC1/CDC42 SIGNALING 
 
 
 

Introduction 
 

Bves (blood vessel epicardial substance), a gene discovered by our 

laboratory in 1999, is widely expressed throughout development and adulthood in 

many different species.  All three developing germ layers (Osler and Bader 

2004), cardiac muscle (Reese and Bader 1999; Andree et al. 2000; DiAngelo et 

al. 2001; Hitz et al. 2002; Smith and Bader 2006), skeletal muscle (Andree et al. 

2000; Andree et al. 2002; Smith and Bader 2006), neural tissues (Andree et al. 

2000; Osler and Bader 2004), epicardium (Reese et al. 1999; Wada et al. 2001; 

Reese et al. 2002; Wada et al. 2003; Osler and Bader 2004; Vasavada et al. 

2004), epithelial components of the eye (Ripley et al. 2004), and smooth muscle 

(Osler and Bader 2004; Smith and Bader 2006) have all been demonstrated to 

express bves.  While expression of the Bves protein is now resolved, few 

definitive indications of molecular function exist.   

 Several indications of potential Bves function have been described.  

Epithelial integrity of cultured corneal cells is severely decreased by knockdown 

of Bves protein using morpholino oligonucleotides, possibly via an interaction 

with an interaction with a protein complex containing ZO-1 at the tight junction 

(Osler et al. 2005). Perturbation of Bves function has also been shown to disrupt 
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proper migration of epithelial components of the early Xenopus embryo (Ripley et 

al. 2006) and affect wound healing of epithelia in scratch assays (Ripley et al. 

2004).  Additionally, mice null for the bves gene are delayed in regeneration of 

skeletal muscle upon injury (Andree et al. 2002).  Despite these indications of 

Bves function, no direct molecular mechanism for any of these phenotypes exists 

at this time. 

 Many of the preliminary indications of Bves function seem to involve cell 

movement, interaction, and adhesion.  Using a yeast-two hybrid screen for 

interacting proteins, I identified GEFT (guanine nucleotide exchange factor T) 

(Guo et al. 2003) as a protein that interacts with the cytoplasmic portion of the 

Bves protein.  GEF proteins modulate activity of small GTPases, specifically the 

Rho family of GTPases in the case of GEFT (Guo et al. 2003; Bryan et al. 2004; 

Bryan et al. 2005; Bryan et al. 2006). The activity state of GTPases is controlled 

by GEFs and GAPs (GTPase-activating proteins).  GEFs stimulate exchange of 

GDP for GTP, thereby activating Rho-family small GTPases.  GAPs stimulate the 

activity of GTPases, thus favoring the inactive GDP-bound state of these 

proteins. The Rho-family of small GTPases have myriad effects on cell behavior; 

including control of proliferation, differentiation, cell motility, and gene expression 

(Bishop and Hall 2000; Etienne-Manneville and Hall 2002).  Considering 

previously observed organogenesis and cellular phenotypes observed when 

Bves function is inhibited, this relationship was examined further.   
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Here, I show that Bves interacts with GEFT.  I also demonstrate that 

transfection of a truncated version of Bves decreases Rac1 and Cdc42 activity, 

and that transfection of this Bves truncation or full-length Bves also decreases 

motility of NIH 3T3 cells in real-time assays.  This study provides evidence that 

Bves directly affects the activity levels of Rac1 and Cdc42, and that the 

phenotypes previously observed when Bves function is altered may be a result of 

modulation of Rho GTPase activity via a GEFT-Bves interaction.   

 

Materials and Methods 

 

Yeast two-hybrid  

The cytoplasmic portion (amino acids 115-358) of mouse bves was PCR 

amplified from a full-length mouse bves clone (aa 1–358) containing restriction 

sites and ligated into pGBKT7 for use in the Matchmaker Y2H System 3 (BD 

Biosciences Clontech, San Jose, CA) (Figure 13). The bait was mated with a 

yeast strain pretransformed with a mouse heart embryonic day 17.5 cDNA 

library. Yeast colonies that survived on Quadruple Dropout Medium (QDO; SD/–

Ade/–His/–Leu/–Trp/X-a-Gal) and exhibited lacZ expression were subjected to 

further testing. Colonies were streaked several times to ensure plasmid 

segregation. Library plasmids were isolated, and the inserts were sequenced by 

the Vanderbilt Sequencing Core Facility and identified using NCBI Blast (Altschul 

et al., 1990Go). For each identified protein product, false-positive tests involving 
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Figure 13:  Yeast two hybrid approach to isolation of Bves-interacting proteins.  The cytoplasmic carboxyl-terminus of 
mouse Bves (amino acids 118-358) were cloned into pGBKT7 via a PCR-based approach and transformed into yeast.  

This plasmid was then mated with a pretransformed E17.5 mouse heart library in a yeast two-hybrid screen.  Two 
independent clones were isolated that contained GEFT cDNAs
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empty vector and random protein matings were conducted to eliminate spurious 

interactions according to manufacturer’s recommendations. 

 

Deletion analysis 

 Deletion constructs of the bait used for the initial yeast two-hybrid screen 

were made by PCR amplification from the original bait plasmid, pGBKT7-mbves 

CT.  Deletion constructs of GEFT were generated by PCR amplification from 

pCMVTag-2b-mGeft (a kind gift from M. Liu) and cloned into pGADT7.  Deletion 

constructs generated are seen in Figure 14. Bves and GEFT deletion constructs 

were transformed into AH109 and Y187 yeast, respectively, for matings. Colonies 

were grown on QDO medium and tested for lacZ expression to determine viable 

interactions.       

 

Cell culture 

COS-7 cells were grown on 10-cm dishes and in DMEM (Cellgro).  Cells 

were transfected using Lipofectamine 2000 (Invitrogen) transfection reagent 

according to manufacturer’s specifications. Protein was extracted with 1 ml of 

extraction buffer (20 mM Tris pH 8.0, 150 mM NaCl, 2 mM EDTA, 1% Triton X-

100, 0.05% SDS, 1 mg/ml BSA, 1 mM DTT) and 100 µl of protease inhibitor 

(Sigma, P8340).  Extracted protein was subject to SDS/PAGE analysis followed 

by immunoblotting. Lysate (10 µg per lane) was used to confirm protein 

expression.  
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Glutathione bead preparation 

GST fusion proteins were generated by PCR from the C-terminal tail (aa 

115-347) and the N-terminal tail (aa 1-36) of murine Bves and cloned into the 

pGEX bacterial expression vector. GST-N terminal Bves, an ~34 kDa protein, 

consists of the GST tag 5' of the extracellular N-terminal region of Bves. GST-C 

terminal Bves, an ~66 kDa protein, contains the GST tag followed by the 

intracellular C-terminal tail of Bves. Constructs were transformed into BL21 E. 

coli bacterial strain and protein was induced with isopropyl-ß-D-

thiogalactopyranoside (IPTG) using standard methods (Amersham). Bacterial 

lysates were prepared by 5 cycles of freeze/thaw, followed by brief sonication, 

and were stored at –80°C until use.  

Preparation of glutathione-Sepharose 4B for pull-down was performed as 

follows. A 50% slurry of glutathione-Sepharose 4B was prepared from a 

commercially available 75% slurry (Amersham). An aliquot of 1 ml of bacterial 

lysate expressing the GST fusion proteins was cleared by centrifugation (14,000 

g) prior to the addition of 40 µl of 50% slurry. Cleared lysate was incubated with 

glutathione-Sepharose 4B for at least 2 hours; the Sepharose was then washed 

three times with 100 µl of PBS, and resuspended in 100 µl of PBS.  These 

glutathione-Sepharose 4B beads, now bound to the GST, GST N-terminal Bves, 

or GST C-terminal Bves, were used for interaction assays described below.  In 

order to verify that the amounts of glutathione-Sepharose 4B-bound GST proteins 
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being used for pulldown experiments was consistent, 20 µL samples of these 

reagents were boiled in 2x SDS-PAGE sample buffer, and eluted proteins were 

subjected to SDS-PAGE followed by colloidal blue staining.  

 

GST-pulldown of GEFT 

Mouse GEFT was amplified from pCMVTag-2b-mGeft and cloned in frame 

with GFP of pEGFP-C1 (Clontech) to generate pEGFP-mGeft.  pEGFP-mNudeL1 

was generated previously by our laboratory (Soukoulis et al. 2005).   

COS-7 cells transfected with pEGFP-mGeft or pEGFP-mNudeL1 were 

grown to confluence in 10-cm dishes. Protein was extracted with 1 ml of 

extraction buffer (20 mM Tris pH 8.0, 150 mM NaCl, 2 mM EDTA, 1% Triton X-

100, 0.05% SDS, 1 mg/ml BSA, 1 mM DTT) and 100 µl of protease inhibitor 

(Sigma, P8340). Cells were incubated on ice for 30 minutes with gentle agitation, 

scraped off the plate and centrifuged for 30 minutes at 18,000 g at 4°C. Cell 

lysate was removed from the pellet and retained.  

Lysate was precleared by incubation with 20 µl bed volume of glutathione-

Sepharose 4B for 2 hours at 4°C, after which beads were spun down and lysate 

was removed. Glutathione-Sepharose 4B bound with GST constructs was then 

added to the lysate and incubated overnight at 4°C.  Sepharose conjugates were 

captured using centrifugation, washed 5 times with 100 µl PBS and bound protein 

was eluted with 20 µl of 1x SDS sample buffer, boiled for 3 minutes, and loaded 

onto an 10% SDS-PAGE gel. Western blotting was performed using standard 
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methods and the antibody concentrations used were as listed below. Blots were 

developed by using nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate 

(Roche) and scanned into digital format (Hewlett–Packard). 

 

Antibodies 

 Monoclonal anti-GFP (JL8, Invitrogen) was used at a dilution of 1:5000; 

monoclonal anti-Rac1 (Abcam) and polyclonal anti-Cdc42 (Abcam) were used at 

1:500 dilutions according to manufacturers directions.  Appropriate alkaline-

phosphatase conjugated antibodies (Sigma) were used at 1:30,000 dilutions for 

immunoblotting. 

 For immunostaining, monoclonal antibodies to Bves (Smith and Bader 

2006) were used at a 1:2000 dilution.  Polyclonal antibody against the GEFT 

protein (a kind gift of M. Liu) was used at a 1:1000 dilution.  Secondary detection 

was performed using Alexa-568 and Alexa-488 conjugated specific antibodies 

specific to the primary antibodies used. 

  

Rac1/cdc42 activation assay 

 COS-7 cells were transfected as described with pEGFP-C3 vector and 

pEGFP-mBvesCT-myc (aa115-aa358) expression vectors.  Cells were then 

harvested in MLB (Magnesium-containing Lysis Buffer) two days after 

transfection, lysates were sonicated for five seconds, centrifuged for 30 minutes 

at 18,000 g at 4°C following manufacturer’s specifications for Rac1/Cdc42 Assay 
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Reagent Kit (Upstate Cell Signaling) (Taylor and Shalloway 1996).  10 µg of 

Rac1/Cdc42 assay reagent was added to 600 µL of protein lysate, and gently 

rocked at 4°C for 30 minutes.  PAK-21-agarose conjugates were collected by 

centrifugation for 5 seconds at 14,000 g at room temperature, washed 3x with 

500 µL MLB, and bound protein was eluted in 25 µL SDS-PAGE sample buffer.  

Western blotting of these samples, and of 10 µL of the original lysate as a 

loading control, was performed using standard protocols.  

 

Motility assays 

The intracellular C-terminus of Bves (aa115-358) was cloned into a 

mammalian expression construct (pCMV-myc).  Full length Bves was cloned in 

frame with GFP of the pEGFP-C1 plasmid to generate GFP-Bves.  NIH 3T3 cells 

were cotransfected using Lipofectamine 2000 at 95% confluency with pCMV-

myc-BvesCT and pEGFP-C1 (as a tracer for transfected cells), GFP-Bves, or 

with pEGFP-C1 alone.  Cells were split to ~10% confluency two days after 

transfection.  Initial assays of cell motility analyzing the effects of full length Bves 

transfection were performed by the Lo laboratory at the National Institutes of 

Health as described previously (Xu et al. 2006).  For monitoring the velocity of 

cell motility (total path length/time), cells in 10 cm2 dishes were placed on the 37° 

heated stage of a Leica DMIRE2 inverted microscope.  Time-lapse images were 

captured using an Orca-ER camera.  Images were captured every 60 seconds 

over a 45 minute interval using a 10x objective.  Quantitative motion analysis was 
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carried out using Dynamic Image Analysis Software (Solltech, Oakdale, IA).  The 

outline of each cell was traced frame by frame, and using these tracings the 

DIAS software calculated the speed of cell movement by tracking the change in 

position of the cell centroid for each frame.  All data from these experiments were 

evaluated by ANOVA using Statview (SAS Institute, Cary, NC). 

Experiments evaluating the effects of exogenous expression of the 

carboxyl-terminus of Bves were conducted at the Cell Imaging Shared Resource 

at Vanderbilt University.  Cells were transfected as described, and split to ~10% 

confluence in 24-well culture plates (Nalgene).  Plates were placed on the 37° 

heated stage of a an inverted Nikon TE300 widefield microscope with automated 

stage for acquisition of multiple fields or view.  Images were captured every two 

minutes for 30 minutes using a 20x objective.  Quantitative motion analysis was 

carried out as described above using Metamorph software (Molecular Devices, 

Sunnyvale, CA).  Data was evaluated using Microsoft Excel. 

 

Cell roundness assay 

 In addition to the motility data rendered from the analysis of exogenous 

expression of GFP-Bves described above, the cell tracings were also used to 

investigate the relative roundness of cells transfected with either GFP-Bves or 

GFP alone.  The roundness of these cells was calculated using the equation 100 

X 4π (area/perimeter2) (Stites et al. 1998).  This equation provides a 

measurement of how efficiently a given amount of perimeter encloses area:  a 
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circle has the largest area for any given perimeter with a roundness of 100%.  

Accordingly, the greater the number of cell protrusions, the lower the roundness.  

All data obtained from quantitative assessments were evaluated by ANOVA 

using Statview as above.        

 

Results 

 

The cytoplasmic C-terminus of Bves interacts with GEFT. 

A yeast two-hybrid screen was used to isolate Bves interacting proteins 

from an embryonic mouse heart library (Figure 13).  The cytoplasmic carboxyl 

terminal portion of Bves (aa115-358) was used for this screen.  This region of 

Bves contains the uncharacterized popdc domain (Breher et al. 2004; Brand 

2005; Osler et al. 2006).  Utilizing a yeast two-hybrid screen with cDNAs 

expressed in the embryonic mouse heart, I isolated 104 interacting proteins when 

the carboxyl-terminus (aa115-aa358) of mBves was used as bait. Two 

independent clones were isolated that contained coding sequence for amino 

acids 46-344 of the mouse GEFT protein.  Both of these clones passed the false 

positive screening process.  As previous experiments have shown defects in cell 

motility/interaction (Ripley et al. 2004; Osler et al. 2005; Ripley et al. 2006), I 

chose to pursue this interaction further. 
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Deletion analysis of interacting domains 

In order to determine which regions of the Bves and GEFT proteins were 

responsible for the interaction revealed by the yeast-two hybrid screen, a deletion 

analysis further utilizing the yeast-two hybrid method was used.  A series of 

truncations of the cytoplasmic portion of Bves revealed that the portion of the 

protein between amino acid 250 and amino acid 300 is critical for interaction with 

GEFT (Figure 14).   

 The truncation analysis to determine the region of the GEFT protein 

responsible for interaction with Bves revealed that the portion of the protein 

between amino acid 300 and amino acid 450 is necessary for interaction with 

Bves (Figure 14).  However, further analysis of the results of these studies 

revealed that these regions (aa 250-aa 300 of Bves, aa 300-aa 450 of GEFT) are 

necessary, but not sufficient for the Bves-Geft interaction to occur as neither aa 

250- aa 300 of Bves or aa 300- aa450 of GEFT interacts with the other full-length 

interacting partner.    The cytoplasmic portion of Bves has previously been shown 

to contain cysteines through which intramolecular disulfide binding occurs (Knight 

et al. 2003).  The region of Bves shown here to be responsible for interaction with 

GEFT contains a cysteine at amino acid 283, indicating that an intramolecular 

disulfide bond through this cysteine may be critical for Bves protein structure that 

dictates interaction with GEFT.  It should also be noted that the Dbl homology 

(DH) domain (Hoffman and Cerione 2002), which is the domain of GEFT 

responsible for nucleotide exchange activity with GTPases, falls within the region  
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Figure 14:  Deletion analysis strategy.  Bves and GEFT truncations were 
generated using PCR-based strategies for further definition of interacting 

domains.  Bves truncations (black bars) were screened against full-length GEFT 
(aa34-618) for interaction.  GEFT truncations (gray bars) were screened against 

aa118-358 of Bves.  Results of matings listed on right, + signifies growth on 
selective media, while – indicates no growth observed upon mating. 
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that I have found to be necessary for GEFT-Bves interaction.  This domain is 

present in all Dbl family members, and our findings may indicate that Bves is 

capable of interaction with other Dbl family members.  Our laboratory is currently 

investigating this possibility.  Taken together, the data presented here 

demonstrate that the aa 250-aa 300 region of Bves and the aa 300-450 region of 

GEFT are necessary for the interaction between these two proteins. 

 

Biochemical verification of mBves-mGeft interaction 

 Utilizing a GST-pulldown strategy, I biochemically confirmed the Bves-Geft 

interaction revealed by the genetic screen.  Prokaryotic GST-fusion protein 

expression constructs of Bves were generated, while GEFT-GFP fusion protein 

expression plasmids were generated for use in mammalian cells.  COS-7 cells 

were transfected with the GEFT-GFP expression plasmid, protein was harvested 

and incubated with GST-mBves Sepharose.  Figure 15 demonstrates that mBves 

specifically pulls down GEFT protein while no interaction is detected using GFP-

NudeL protein as a negative control.  NudeL is a microtubule-binding protein 

unrelated to Bves function (Liang et al. 2004; Li et al. 2005).  Thus, I demonstrate 

that mBves specifically interacts with mGeft in this assay and corroborate the 

yeast two-hybrid analyses.   
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Figure 15:  GST-Bves pulldown of GEFT.  GST-Bves fusion proteins representing 
the extracellular N-terminus and cytoplasmic C-terminus of Bves were tested for 

interaction with GEFT-GFP and NudeL-GFP (Figure 15A).  Representative 
mobilities of mGeft-GFP (Figure 15B, lane 1) and mNudeL-GFP (Figure 15B, 

lane 2) are provided.  No reactivity is observed in lanes containing isolates from 
GST/mGeft-GFP (Figure 15B, lane 3), GST-mBves1-22/mGeft-GFP (Figure 15B, 
lane 4), or GST-mBves 115-358/mNudeL-GFP (Figure 15B, lane 6) pulldowns, 
indicating these proteins do not interact.  A band representing mGeft-GFP is 

clearly seen in the lane containing isolate from the GST-mBves115-358/mGeft-
GFP pulldown. 
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Exogenous expression of mBves affects activation of Rac and cdc42. 

 Having demonstrated that mBves interacts with mGeft, I next sought to 

determine if mBves expression changes activity levels of the Rac1 and Cdc42 

GTPases.  As the PAK-21 protein binds to only activated (GTP-bound) forms of 

active GTPases (Benard et al. 1999; Chiang et al. 2001), I utilized a PAK-21 

pulldown approach to assay for GTPase activity upon transfection of mBves 

constructs.  NIH 3T3 cells were transfected with pEGFP-mBvesCT-myc or 

pEGFP-C3 vector as a control.  Lysates were harvested and subjected to PAK-

21 pulldown.  Amounts of GTP-bound Rac1, Cdc42, and RhoA were determined 

by SDS-PAGE followed by immunoblotting using published methodologies.  

Whole cell lysates from each sample were also immunoblotted to verify that 

similar amounts of protein were used for each pulldown experiment, and each 

assay was performed in triplicate.  As seen in Figure 16, transfection of mBves-

CT markedly reduces the amount of active Rac1 and Cdc42 while the amount of 

active RhoA remains unchanged.  As GEFT has previously been shown to bind 

and preferentially activate Rac1 and Cdc42 as opposed to RhoA (Guo et al. 

2003), this result is consistent with Bves modulation of Rho-family GTPase 

activity through an interaction with GEFT. 

 

mBves decreases movement speed of NIH 3T3 cells and increases cell 
roundness 
 
 Having determined that expression of the intracellular carboxyl terminus of  
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Figure 16:  Transfection of the carboxyl-terminus of Bves reduces Rac1 and 
Cdc42 activity in NIH 3T3 cells.  Cells were transfected with either pEGFP 

(control) or pEGFP-BvesCT (amino acids 118-358 of mouse Bves).  Lysates 
were harvested, and PAK-21 pulldowns were performed.  Samples from 
pulldowns were loaded and blotted with α-Rac1, α-Cdc42, and α-RhoA 

antibodies to determine relative amounts of isolated active proteins.  Amount of 
isolated Rac1 and Cdc42 is significantly reduced upon truncated Bves 

expression, while amount of active RhoA appears unchanged.  Cell lysates were 
loaded and blotted with α-Rac1 to verify equivalent amounts of total Rac1 was 

present in samples used for assay. 
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 Bves reduces the amount of active Rac1 and Cdc42 in NIH 3T3 cells, I next 

sought to determine if transfection of full-length Bves and truncated Bves has an 

effect on cellular motility.  Previous studies have determined that reduction of 

Rac1 and Cdc42 activity results in a decrease in cell movement (Kraynov et al. 

2000; Etienne-Manneville and Hall 2001; Itoh et al. 2002).  Co-transfection of a 

GFP marker plasmid with the carboxyl terminus of GFP, or transfection of full-

length murine Bves fused with GFP allowed real-time imaging of cell movement 

in collaboration with the Lo lab at the National Institutes of Health.  As seen in 

Figure 17, transfection of the full-length mBves-GFP construct markedly (~45%) 

reduces the speed of cellular migration (total path length/time) (Figure 17) in 

comparison to the control cells which were transfected with a GFP-only 

expression plasmid. As Rac1 and Cdc42 signaling are well-characterized 

activators of cellular motility (Etienne-Manneville and Hall 2002), this decrease in 

cell movement would be expected due to the previously observed decrease in 

active Rac1 and Cdc42 (Figure 16).  No significant change in directionality of 

movement (net path length/total path length) was detected in this experiment 

(data not shown). 

 These experiments also allowed us to analyze the effect of exogenous 

Bves expression on cellular roundness. Using the measured area and perimeter 

length of a cell, it is possible to quantify how efficiently the measured perimeter 

encompasses the cellular area.  The maximum roundness measurement would 

be obtained from a cell that was perfectly circular.  Therefore more protrusions 
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Figure 17:  Transfection of Bves and truncated Bves reduces motility of NIH 3T3 
cells.  Cells were transfected and motility measured as described in Materials 
and Methods.  Upon transfection of either full-length (green bar) or truncated 

Bves (aa 118-358, red bar), a significant reduction in motility speed is observed 
in comparison to cells transfected with a GFP-only expressing plasmid (blue 

bars).  Error bars represent SEM, significance determined using standard 
Student-T test. 
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 (lamellipodia and filopodia) a cell has, the lower the cell’s measured roundness 

will be.  As Rac1 and Cdc42 drive lamellipodial and filopodial extension (Fukata 

et al. 2003), respectively, cells with higher levels of active Rac1 and Cdc42 would 

have lower roundness measurements than cells with relatively lower levels of 

active Rac1 and Cdc42.  Consistent with our previous findings that exogenous 

Bves expression negatively regulates the amount or active Rac1/Cdc42, this 

experiment found that exogenous expression of Bves caused cells to be ~25% 

more round than cells transfected with a GFP marker plasmid alone (Figure 18).  

Again, this indicates that overexpression of Bves leads to a repression in overall 

Rac1/Cdc42 signaling activity.    

Subsequent experiments conducted at Vanderbilt by our laboratory further 

support our findings.  As shown in Figure 17, cotransfection of the carboxyl 

terminus of mBves with a GFP marker plasmid also decreases the rate of cell 

movement in this assay by ~22% in comparison to cells transfected with the 

marker plasmid alone.  Taken together, these findings demonstrate that 

exogenous expression of full-length Bves or the cytoplasmic carboxyl-terminus of 

Bves negatively regulates cell movement.  

 

Discussion 

Bves is a protein expressed in a variety of tissue types throughout 

development.   It has previously been demonstrated that Bves affects the trans- 
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Figure 18:  Transfection of truncated Bves decreases protrusive activity.  Roundness of cells 

measured in real-time as described in Materials and Methods.  Software analysis of cellular area 
and perimeter allows determination of roundness (sample of images rendered for analysis 
presented in top panels).  Upon transfection of truncated Bves (aa118-358), an increase in 

roundness (red bar) of ~25% is observed in comparison to cells transfected with GFP only (blue 
bar). ).  Error bars represent SEM, significance determined using standard Student-T test. 
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epithelial resistance of cultured cells, possibly via an interaction with a protein 

complex containing the tight junction protein ZO1. Several other phenotypes 

have been reported when Bves protein is decreased, but no molecular 

mechanism for these observations has been determined to this point.  The 

presented data are the first to establish a direct interaction with any protein and 

link Bves to an established molecular pathway.  

Upon knockdown of Bves expression in gastrulating Xenopus laevis, 

defects in epithelial morphogenesis and cell movements have been observed 

(Ripley et al. 2006). Global inactivation of the murine Bves gene leads to defects 

in skeletal muscle repair by satellite cells (Andree et al. 2002), and upon 

knockdown of Bves expression in cultured epithelia defects in wound healing 

have also been reported (Ripley et al. 2004).  The described interaction with a 

component of the Rac1/Cdc42 signaling pathway may provide the first molecular 

mechanism to explain the cellular/embryonic phenotypes observed upon 

alteration of Bves expression levels previously described in the literature.  

 

Bves interacts with GEFT, a modulator of Rho-family GTPase signaling 

Here, I demonstrate that Bves interacts with GEFT, a GEF for small Rho-

family GTPases.  GEFT has previously been shown to affect cell proliferation, 

foci formation (Guo et al. 2003), neurite outgrowth (Bryan et al. 2004; Bryan et al. 

2006), differentiation, and skeletal muscle regeneration (Bryan et al. 2005); 

presumably through modulation of Rho-family GTPase activity.  The motility of 
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cells has been shown in numerous studies to be controlled by Rho-family 

GTPases through the control of processes such as filopodial and lamellipodial 

extension, as well as polymerization of actin (Etienne-Manneville and Hall 2002).  

Here, I show that when wildtype Bves or a Bves truncation is transfected into NIH 

3T3 cells, movement and roundness of these cells is dramatically affected. I also 

show here that exogenous overexpression of truncated Bves reduces the amount 

of active Rac and Cdc42 when expressed in NIH 3T3 cells.  These results 

support our hypothesis that Bves modulates the Rac1/Cdc42 activity through an 

interaction with GEFT.  Potential models for the experimental results presented 

here are discussed later in this chapter. 

 

Modulation of Rac1/Cdc42 activity by Bves is consistent with observed Bves 
knockdown/knockout phenotypes  
 

Control of GTPase activity via an interaction with GEFs could provide an 

explanation for previously observed phenotypes that currently lack mechanistic 

explanation. Numerous studies have demonstrated the critical role for 

Rac1/Cdc42 during gastrulation and convergent extension of Xenopus (Habas et 

al. 2003; Tahinci and Symes 2003; Miyakoshi et al. 2004; Kwan and Kirschner 

2005; Ren et al. 2006).  Our laboratory previously described a defect in epithelial 

migration upon knockdown of Bves expression using morpholino oligonucleotides 

on developing Xenopus embryos. Perturbation of Rac1/Cdc42 activity by Bves 

knockdown would seem a plausible explanation for this phenotype.   
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Similarly, previous work has shown that knockdown of Bves expression in 

cultured corneal epithelial cells disrupted epithelial integrity and delayed healing 

of epithelial sheets upon wounding via scratch assay.  Rac1 and Cdc42 have 

been shown to be critical players in cellular activity required for wound healing 

and epithelial sheet integrity (Fenteany et al. 2000; Nobes 2000; Kofron et al. 

2002; Malliri et al. 2004; Stramer et al. 2005; Woolner et al. 2005; Kimura et al. 

2006).  Again, the phenotypes observed upon disregulation of normal Bves levels 

are consistent with a role for Bves in control of Rac1/Cdc42 signaling. 

Additionally, the Brand laboratory noted that in Bves-null animals, skeletal 

muscle regeneration is delayed upon injury.  Rac1/Cdc42 has been shown to 

affect skeletal muscle regeneration (Chen et al. 2003; Bryan et al. 2005) and 

regeneration is dependent on process extenstion and myoblast motility (Carlson 

1973; Carlson and Faulkner 1983). This previously observed phenotype is also 

seemingly consistent with a role for Bves in control of Rac1/Cdc42 signaling. 

 

Potential mechanisms of Bves modulation of Rac1/Cdc42 activity 

 The discovery of an interaction between Bves and GEFT leads us to 

several potential models for Bves function.  Future investigations by our 

laboratory will attempt to determine which, if any of these current models 

represent the actual mechanism through which Bves generates the previously 

observed phenotypes.  Several other questions are brought to light by our 

discovery of this interaction, including the question of whether Bves interacts with 
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other GEFs, or is an interacting protein specific to GEFT.  If it is determined that 

Bves does interact with other GEFs, the interaction presented here may 

represent an entirely new pathway for cellular regulation of GTPase activity. 

 The first potential model is one where Bves controls the nucleotide binding 

ability of GEFT, and possibly other GEFs.  As shown previously, Bves 

preferentially localizes to the plasma membrane (Wada et al. 2001; Osler et al. 

2005; Smith and Bader 2006).  GEFT contains a pleckstrin homology domain 

(PH), which has been demonstrated to localize Dbl family GEFs to the membrane 

(Russo et al. 2001; Vanni et al. 2002).  As demonstrated here, the intracellular 

carboxyl terminus of Bves interacts with the DH domain of GEFT, which is the 

portion of GEFT responsible for interaction with the nucleotide-binding pocket of 

GTPases.  This GEF-GTPase interaction leads to a conformational change in the 

nucleotide-binding pocket of the GTPase, which stimulates GDP release 

(Rossman et al. 2002).  A Bves-GEF interaction may serve as a negative 

regulator of GEF activity, thereby leading to decreased activation of GTPase 

signaling.  Thus, the overexpression of truncated or full-length Bves may lead to 

aberrant blockage of this active site, causing the experimental results presented 

here.  This model is also consistent with previously reported “Bves-knockdown” 

phenotypes of delay in skeletal muscle regeneration, aberrant cell movement 

during Xenopus gastrulation, and altered epithelial sheet integrity and migration.  

If Bves controls the nucleotide binding activity of GEFT and potentially other 
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GEFs, disregulation of GTPase signaling control would likely result, potentially 

generating the previously published phenotypic abnormalities. 

Another potential model for Bves regulation of GTPase signaling through 

GEFT interaction is one in which Bves controls the proper localization of GEFT to 

active sites of GTPase activity.  As Rac and Cdc42 activity have been previously 

reported to be highest at the leading edges of motile cells (Etienne-Manneville 

and Hall 2002), proper localization of GEF proteins to the plasma membrane in 

these areas is critical for proper control of cellular motility.  Bves may serve to 

localize GEFT (and potentially other GEFs) to this leading edge, allowing them to 

catalyze nucleotide exchange of GTPases (Figures 19 and 20).  This model is 

also consistent with the results described here.  Exogenous overexpression of 

full-length and truncated Bves may disrupt this controlled localization, resulting in 

a decrease in overall GTPase activity at the leading edge due to decreased GEF 

presence in the area.  As transfected full-length Bves has been reported to 

accumulate in the Golgi/ER and not localize to the membrane (Knight et al. 

2003)(Smith and Bader unpublished results) and the truncated Bves used here 

has a broad cytoplasmic distribution (Smith and Bader 2006), exogenous 

expression of these proteins could serve as a “sink” that prohibits localization of 

GEFT to the leading edge of motile cells.  Again, this model is also consistent 

with the previously observed knockdown/inactivation phenotypes.  If Bves is 

critical for proper localization of GEFT and possibly other GEFs to sites of 
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Figure 19:  Potential model for Bves function.  In a normal cell, Bves acts as a 
“scaffolding” protein, facilitating interaction with membrane-associated GTPases 

with GEFT (Figure 20A),  However, when either full-length (Figure 20B) or 
truncated Bves (not shown) is exogenously expressed, GEFT may be 

sequestered from the site of activity at the membrane. 
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Figure 20:  Potential model for Bves function.  In a normal cell, Bves normally 
acts to sequester GEFT from interacting with membrane-associated GTPases 

(Figure 21A).  A signal from the cell stimulates release of GEFT, and GEFT then 
moves to the membrane and interacts with GEFT causing stimulation of GTPase 

activity.  When full-length or truncated Bves is exogenously expressed (Figure 
21B), aberrant interaction of Bves and GEFT leads to improper localization of 

Bves, and overall repression of GTPase activity. 
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activity, decreased Bves levels would disregulate GTPase signaling cascades 

through improper localization of the necessary catalytic proteins.   

 Similarly, Bves may block interaction of GEFT and potentially other GEFs 

with another protein(s) at the plasma membrane that are necessary for proper 

localization of GEFs during GTPase activation. Bves may serve to block 

interaction between GEFs and membrane anchors during times when 

Rac1/Cdc42 activity is downregulated. Accordingly, this blockage would then be 

somehow removed during periods of GTPase activity upregulation. 

Overexpression of the proteins used in these experiments may block these GEF-

anchor protein interactions from occurring, leading to an overall decrease in 

GTPase activity due to improper localization of GEFT.  As with the previously 

described models, this model is also consistent with results observed upon 

depletion of Bves protein.  Decreased Bves protein in a cell in this model would 

allow GEFT and possibly other GEFs to be constantly available for stimulation of 

GTPase activity, and lead to overall deregulation of the tightly controlled GTPase 

signaling cascades necessary for proper control of cellular movement.   

 In summation, I have determined that Bves interacts with GEFT, a 

member of the Dbl family of GEFs.  I report that exogenous expression of full-

length and truncated Bves constructs in vitro leads to a decrease in active levels 

of Rac1 and Cdc42, and results in phenotypic changes consistent with 

downregulation of Rac1 and Cdc42 activity.  This represents the first direct 

molecular interaction elucidated for the Bves protein, and provides the first and 
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only current link to a characterized cellular pathway.  The results presented here 

are consistent with previously observed phenotypes in other experimental 

systems, and provides direction to the fields continuing investigation of the 

function of Bves. 

 

Current Investigations 

 Investigation of the Bves-Geft interaction is still underway in our 

laboratory.  We are currently attempting to determine the colocalization of GEFT 

and Bves in a variety of tissues and cell types using confocal microscopy.  I have 

examined the localization of both the GEFT and Bves proteins in differentiated 

C2C12 myoblasts (Figure 21).  In this cell type, I have not observed extensive 

colocalization of Bves and GEFT to this point.  This result is not necessarily 

inconsistent with the previously presented data, however.  As localization of 

these proteins changes during different cellular events, we will likely need to 

assay a variey of cell lines undergoing different cellular processes to determine at 

what time and place Bves and GEFT colocalize, and subsequently determine the 

localization of these proteins.  For example, in two different myotubes shown in 

Figure 19, different protein localizations are observed.  A significant portion of the 

protein is seen to be cytoplasmic in distribution (white arrowheads) in some 

areas.  In other areas, very little cytoplasmic Bves is seen, and the vast majority 

of the Bves protein localizes to the plasma membrane of the cell (white arrows).   
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Figure 21:  Localization of Bves and GEFT in differentiated C2C12 myotubes.  
Differentiated C2C12 myotubes were labeled with antibodies against GEFT 

(green) and Bves (red).  Confocal microscopy was used to examine the 
localization of these proteins in a three dimensional manner.  Bves is observed to 
localize to both the intracellular space (arrowheads), and also to be enriched at 

the plasma membrane surrouding myotubes (arrows). 
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CHAPTER IV 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

Conclusions 

 

Summary 

 Bves was isolated by the Bader lab in 1999, and has since been the 

subject of more than 20 peer-reviewed articles.  As with many recently 

discovered molecules, the earliest work on Bves was centered on defining the 

genomic organization of the bves gene.  Subsequent work focused on the 

definition of expression of bves in the chicken and mouse.  The two groups 

actively studying Bves at this time, the Brand group and the Bader group, utilized 

two different methodologies for analysis of Bves expression.  The Brand group 

focused on definition of Bves expression using protocols that defined the 

presence of bves message, and reported bves was expressed nearly exclusively 

in striated muscle and non-vascular smooth muscle.  Our group chose to 

examine Bves expression using immunoreagents, and generated polyclonal 

antibodies against the chicken Bves protein.  Using these antibodies, the Bader 

group found Bves to be expressed in the proepicardium, epicardium, and 

components of the coronary vasculature.  Interestingly, these reagents also 
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indicated that Bves is expressed in multiple epithelia throughout the embryo such 

as the gut and eye.      

 These divergent findings led to an important question in the Bves field.  

While the Bader group focused on studying Bves in the developing coronary 

vasculature, the Brand group directed their efforts towards analysis in striated 

muscle types.  In fact, the expression of Bves in epithelial cell types has been the 

center of disagreement since the initial publications describing Bves.  While 

immunochemical detection methods showed the presence of Bves in epithelial 

cell types as well as striated muscle, examination of Bves expression using RT-

PCR, in-situ hybridization, and northern blotting showed that Bves was 

expressed only in striated and non-vascular smooth muscle. 

 Definition of the domain of expression of a gene is a critical step in its 

study.  The knowledge of where a protein is expressed and where it is absent 

provides clues to potential function.  For example, knowing that a protein is 

expressed only in muscle cell types would indicate that this protein might have a 

“muscle-specific” function.  Likewise, knowing that a protein is absent from 

certain cell types allows exclusion of some possible functional hypotheses.  

Accordingly, I sought to properly define the expression pattern of Bves using 

newly developed monoclonal antibodies to the Bves protein.  The results 

presented in Chapter II of this dissertation conclusively demonstrate that Bves is 

expressed not only in striated muscle and some non-vascular smooth muscle, 

but is also expressed in multiple epithelial cell types throughout the developing 
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mouse embryo as well as vascular smooth muscle of the coronary vasculature 

(Smith and Bader 2006).  These findings are critical for the analysis of Bves, as 

they not only resolve the persistent conflict in the literature, but also indicate that 

Bves likely has a function that is not specific in nature to muscle.   

However, the most important question in the Bves field still had no answer:  

What is the molecular function of Bves?  As Bves contains no conserved protein-

protein interaction motifs, and appears to have been subject to gene duplication 

during evolution (Andree et al. 2000; Brand 2005), candidate or inactivation 

approaches were excluded from consideration by our laboratory.  Early in this 

project, I developed the hypothesis that determining the protein(s) that interact 

with Bves will reveal the function of Bves.  I reasoned that being able to place 

Bves into a molecular pathway would enable us to postulate about Bves function 

in a more focused manner, and directly test these hypotheses to determine the 

functional significance of the Bves protein.  To this end, I conducted a yeast two-

hybrid screen to find interacting protein(s), and isolated GEFT.  As described in 

Chapter I, GEFT modulates Rho-family GTPases.  In Chapter III, data was 

presented that clearly demonstrates that Bves biochemically interacts with GEFT.  

I also presented data that Bves overexpression in vitro represses Rac1 and 

Cdc42 activation, and also produces cellular phenotypes consistent with 

modulation of Rho-GTPase signaling.   

Thus, the data presented in this thesis not only resolve important 

questions in the literature concerning the expression pattern of Bves, but also 
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describe the first direct molecular interaction with another protein.  In addition, 

modulation of a defined cellular signaling pathway has been demonstrated, 

placing Bves into a molecular context that will enable the entire field to more 

directly examine the molecular function of this novel protein.  The following 

discussion addresses several points about the previously presented data, and 

discusses several potential models of function along with experiments to 

investigate these models. 

 

The importance of Bves expression in non-muscular tissues 

 The generation of the monoclonal α-Bves immunoreagents described in 

Chapter II is an important event in the field of Bves study.  Before the publication 

of this work, dispute about the localization of Bves was one of the primary topics 

in the literature of the field.  Expression studies using polyclonal antibodies 

clearly showed expression in non-muscle cell types (Reese and Bader 1999; 

Reese et al. 1999; Wada et al. 2001; Osler and Bader 2004; Ripley et al. 2004; 

Vasavada et al. 2004).  However, some of these antibodies were not reactive 

with mammalian forms of the protein, and all were beginning to be in short supply 

due to their polyclonal nature.  To address these issues, I generated a panel of 

monoclonal reagents against the mouse Bves protein and conducted an assay of 

expression during mouse embryogenesis that clearly demonstrates widespread 

non-muscular expression of Bves (Smith and Bader 2006).  In the literature at 

this point, there are 3 unique polyclonal antisera (Reese et al. 1999; Wada et al. 
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2001; Ripley et al. 2004), one monoclonal against avian Bves (Vasavada et al. 

2004), and the antibodies described in Chapter II.  All of these antibodies 

recognize Bves in non-muscular cell types. 

 While the antibodies described in Chapter II do not recognize Bves in 

either of these structures at the developmental stages examined, they clearly 

label Bves in the smooth muscle of the coronary vasculature of the mature heart. 

It should be noted that the antibodies described in Chapter II recognize Bves in 

the EMC (Epicardial Mesenchymal Cell) line, which is a cell line derived from 

epicardium.   Additionally, all 5 of the antibodies I generated and described in 

Chapter II recognize Bves in a variety of epithelial cells lines and epithelia in 

developing and mature organisms.  A more thorough investigation of the 

expression of Bves in the epicardium is still needed to determine if the antibodies 

developed here recognize Bves in the epicardium at other stages than those 

examined, but it is clear from the data presented that Bves is expressed in 

multiple epithelial tissues and in coronary smooth muscle, which is a product of 

the proepicardium/epicardium.  

 Beyond the knowledge of where and when a protein is expressed, 

determining the localization pattern of a protein is important for other reasons.  

For instance, expression of a protein can serve to mark a specific population of 

cells for experimental purposes.  For example, the protein Sca-1 is commonly 

used to identify hematopoietic stem cells in a variety of experimental protocols 

(Spangrude et al. 1988; Spangrude et al. 1989).  Using this marker, investigators 
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can isolate populations stem cells or study the localization and activity of these 

cells in vivo.  Similarly, expression of Bves is now used in the field of coronary 

vessel development as a marker for the epicardium or epicardially-derived cells.  

More importantly for this discussion, however, is how the expression pattern of 

Bves can be used to hypothesize about the function of the protein itself.  If Bves 

were found to be muscle-specific, it would naturally lead an investigator to 

hypothesize that the protein might have a role in contraction, fusion of myoblasts, 

or regulation of muscle-specific genes.  However, understanding that Bves is 

actually expressed in a variety of non-muscle cell types, as well as striated 

muscle, they would likely be led to a different set of possible hypotheses when 

considering the function of the protein.  The finding that the Bves protein was not 

specific to striated muscle led us to hypothesize that Bves must play a role in a 

process conserved between epithelial and muscular cell types. 

  

Bves interacts with GEFT, a modulator of Rho-GTPase signaling 

 In Chapter III, I describe the discovery and characterization of an 

interaction between Bves and the Rac1/Cdc42 specific GEF GEFT.  As this 

protein-protein interaction was isolated using yeast two-hybrid technology, by 

nature of the experimental method the interaction between GEFT and Bves is 

direct.  This is the first reported direct interaction of Bves with any protein, and 

thus represents a major landmark in the study of the Bves.  I also present data 

from cell culture models consistent with Bves modulation of Rac1/Cdc42 control.  
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While there have been several phenotypes reported when expression levels of 

Bves are experimentally downregulated, there has been no definition of the 

molecular mechanism behind these phenotypes.  While the data presented here 

do not address the molecular mechanism behind these phenotypes, a depression 

in Rac1/Cdc42 signaling could account for the previously reported experimental 

results.  

To this point, all reported mutant phenotypes that occur when levels of 

Bves are experimentally manipulated exhibit abnormalities consistent with 

defects in cellular movement and/or adhesion.  Rho-family GTPases have been 

demonstrated to be one nexus between coordination of cellular adhesion and 

adhesion (Evers et al. 2000; Noren et al. 2000; Teramoto et al. 2003; Noritake et 

al. 2005).  Rho-family GTPases have been shown to be necessary for cadherin-

based adhesion in multiple cell types (Braga et al. 1997; Hordijk et al. 1997; 

Kuroda et al. 1997; Kodama et al. 1999).  The control of cellular adhesion by 

Rho-family GTPases has been shown to be direct, and not merely a by-product 

of GTPase control of actin-based motility.  IQGAP, a downstream target of 

GTPase signaling, negatively regulates cell-cell adhesion by interacting with ß-

catenin, which causes α-catenin to dissociate from the cadherin-catenin complex 

(Kuroda et al. 1998; Fukata et al. 1999).  Thus, phenotypes that indicate 

disruption of cell motility and/or cell adhesion are entirely consistent with defects 

in Rho-family GTPase signaling. 
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 Brand and colleagues reported a delay in skeletal muscle regeneration 

when Bves is globally inactivated in the mouse through gene targeting (Andree et 

al. 2002).  Interestingly, it has been recently reported that GEFT is a potent 

regulator of mesenchymal cell behavior during skeletal muscle regeneration in 

mammalian models (Bryan et al. 2005).  In this model, either control virus or 

GEFT virus was injected into the anterior tibialis muscle with cardiotoxin.  In this 

standard skeletal muscle regeneration assay, cardiotoxin kills mature skeletal 

muscle, and the resident mesenchymal satellite cells then proliferate and 

differentiate to regenerate muscle cells (Carlson 1973; Carlson and Faulkner 

1983).  Upon viral overexpression of GEFT, a powerful promotion of skeletal 

muscle regeneration was seen (Bryan et al. 2005).  Thus, Bves and GEFT, which 

I have shown here to be interacting proteins, have both been experimentally 

demonstrated to be involved in regulation of skeletal muscle regeneration. 

 Later, our laboratory presented data demonstrating that Bves plays a role 

in control of epithelial sheet integrity and in regulation of wound healing in vitro 

(Ripley et al. 2004).  When levels of expressed Bves are reduced by morpholino 

antisense oligonucleotides, a decrease in epithelial integrity of cultured corneal 

cells was observed.  Similar treatment of these cells in wound healing models 

induced an increase in cell movement at the wound surface but regeneration of 

an intact epithelium was ultimately impeded (Ripley et al. 2004).  Proper 

regulation of GTPases has been previously demonstrated to be critical for proper 

regulation of corneal epithelial wound healing (Kimura et al. 2006; Lee and Kay 
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2006).  Again, our laboratory has reproduced an experimental result by 

perturbing Bves function that has also been reported to be a result of disruption 

of Rho-GTPase function.  This finding also further supports the hypothesis that 

Bves modulates Rho-GTPase activity. 

 Finally, our laboratory recently reported that experimental downregulation 

of Bves expression in developing Xenopus laevis results in major defects in 

movement of epithelial cells (Ripley et al. 2006).  When Bves knockdown is 

experimentally induced at the two-cell stage, gastrulation is arrested by disruption 

of epiboly and involution.  When a clonal knockdown of Bves is performed by 

injection of morpholino into the A1 blastomere, progenitors of this blastomere 

move completely randomly throughout the embryo and cell intercalation during 

gastrulation is abnormal (Ripley et al. 2006).  As before, this phenotype is highly 

consistent with other published phenotypes described when Rho-family GTPase 

signaling is perturbed.  Rac1 signaling has been demonstrated to be necessary 

for convergent extension movements and cell intercalation during gastrulation 

(Tahinci and Symes 2003), and Cdc42 has also been shown to be a regulator of 

gastrulation and convergent extension (Choi and Han 2002; Penzo-Mendez et al. 

2003).  These phenotypes are consistent with the Xenopus phenotype, and 

suggest a disruption in a common molecular pathway. 

 The alteration of cell motility upon transfection of Bves and truncated Bves 

presented in Chapter III also supports the hypothesis that Bves modulation of 

Rho-GTPase signaling may be responsible for the previously described 
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phenotypes.  In these experiments, overexpression of either full-length or 

truncated Bves reduced the ability of NIH 3T3 cells to migrate abnormally (Figure 

17).  Wound healing, skeletal muscle regeneration by satellite cells, and 

migration of cells during gastrulation of Xenopus laevis are all processes that 

require highly regulated cellular movement.  The knockdown experiments in cell 

culture and Xenopus models discussed above both demonstrate exhibit defective 

cell migration.  In the Bves -/- mouse model, the movement ability or speed of 

satellite cells was not measured, and it was not noted if motility of satellite cells 

appeared to be affected.     

 In summary, the interaction between Bves and a modulator of Rho-family 

GTPase signaling could represent a molecular explanation for previously 

observed phenotypes exerted by experimental manipulation of Bves expression 

levels.  While the data presented here demonstrate that Bves directly affects 

Rac1 and Cdc42 activity levels, experiments to determine whether alteration of 

Rac1 and Cdc42 activity occurs in the described mutant phenotypes have yet to 

be conducted.  Potential models of Bves modulation of these signaling cascades 

are discussed in Chapter III.  These models represent the first actual models for 

experimental testing that focus directly on one particular cellular pathway.  

Although many components of the Bves/Rho-family GTPase relationship remain 

to be defined, the importance of the discovery of an interaction between Bves 

and a characterized member of a known molecular pathway cannot be 

overstated.  Where investigators were previously left to investigate whole 
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organisms or whole cells upon manipulation, this interaction now provides a 

specific, characterized target for investigators to focus upon when evaluating 

experiments that manipulate Bves activity.    

 

Future Directions 

 In the final component of this thesis, potential future experiments and 

avenues of investigation will be presented.  By necessity, early examinations of 

Bves function have focused on “large-scale” assessment of experimental 

manipulation of Bves.  The product of the current work, however, represents a 

turning point in this field.  In the future, investigators will be able to focus on a 

particular cellular pathway when designing experiments and evaluating results.   

 First, further identification of interacting partners is necessary for a 

thorough explanation of Bves activity.  Pursuit of this avenue of investigation has 

already begun in our laboratory.  The interaction described in Chapter III is the 

result of a yeast two-hybrid screen I conducted.  Naturally, this screen generated 

many potential interacting proteins, several of which passed all false positive 

screens.  These proteins are shown in Table 4.  These proteins should also 

further analyzed, as I analyzed GEFT.  It is likely that interaction between one or 

more of these proteins can be biochemically verified, and may reveal important 

functional knowledge regarding Bves.  In addition to the yeast two-hybrid screen 

described here, I have performed a split-ubiquitin screen for Bves-interacting 

proteins.  The recently developed split-ubiquitin modification of the yeast two- 
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Table 4:  Summary of genes isolated from yeast two-hybrid screen against 
embryonic heart library.  Right column represents number of clones isolated in 

original screen. 
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hybrid system is superior for isolation of interacting partners of membrane-

associated and membrane-bound proteins (Fetchko and Stagljar 2004; Thaminy 

et al. 2004; Iyer et al. 2005).  Using this technology, I have isolated an interaction 

between Bves and Ndrg4 (N-myc regulated downstream gene 4) (Smith and 

Bader, unpublished results).  Ndrg4, like Bves, is highly expressed in developing 

neural tissues and cardiac muscle (Zhou et al. 2001).  Interestingly, Ndrg4 has 

been experimentally demonstrated to control MEK and ERK phosphorylation 

(Hongo et al. 2006).  MEK and ERK are also downstream targets of Rho-family 

GTPase signaling (Zugasti et al. 2001; Rul et al. 2002).  Taking into account the 

GEFT-Bves interaction, the interaction of Bves with another component of 

Rac1/Cdc42 signaling provides further support for our findings that Bves 

modulates Rac1/Cdc42 signaling.  Further investigation and characterization of 

the Ndrg4-Bves interaction, as well as interaction between Bves and other 

proteins will undoubtedly provide valuable data for those interested in the 

molecular mechanisms underlying Bves activity.  As with the previously 

described yeast two-hybrid screen, many results from the split-ubiquitin screen 

that passed all tests for false-positives were not further examined.  These 

proteins, shown in Table 5, should definitely be further studied for potentially 

important interactions with Bves. 

 Along with identification of additional interacting proteins, it will be 

important to determine whether Bves is capable of interactions with other 

members of the Dbl family of GEFs.  As shown in Chapter III, Bves interacts with  
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Table 5:  Summary of genes isolated from split-ubiquitin screen against adult 
mouse heart library.  All of these proteins were isolated from original screen, and 

tested for potential false positive interaction.  All clones passed false positive 
screening. 
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GEFT through a region of GEFT that contains the highly conserved DH domain.  

While the Bves-Geft interaction may be an interaction unique to this member of 

the Dbl family, the possibility exists that this interaction is shared with other family 

members.  If Bves were found to interact with other GEFs, it would indicate that 

Bves might have a broad function in control of GTPase signaling, as opposed to 

the rather specific function of interaction with one particular GEF.  In fact, careful 

consideration of the PAK-21 pulldown assay of GTPase activation presented in 

Chapter III (Figure 16) indicates that Bves may modulate GTPase signaling 

through modulation of more than one GEF.  As seen in Figure 16, the amount of 

Cdc42 activity in this assay is almost entirely abolished by transfection of 

truncated Bves, and the amount of Rac1 activity is reduced by more than 50%.  

As more than one GEF is likely involved simultaneously in GTPase signaling in 

most cell types (Overbeck et al. 1995), the amount of activity reduction seen 

indicates that truncated Bves may be affecting the activity of more than one GEF 

at a time.  Thus, it is critical to determine whether Bves interacts promiscuously 

with multiple members of the Dbl GEF family, or is specific to GEFT, in order to 

truly elucidate the molecular mechanism underlying Bves control of GTPase 

signaling. 

 Potential roles for the other members of the Popdc gene family should 

also be studied to determine any role in regulation of GTPase signaling during 

cell movement and developmental processes.  As there is a very high degree of 

conservation between all family members in the intracellular carboxyl-terminus, 
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shown here to be important for interaction with GEFT, it is reasonable to 

hypothesize that some or all other Popdc family members may interact with 

GEFT or other GEFs.  At this point, no function has been ascribed to any of the 

other Popdc family members (Osler et al. 2006).  Additionally, functional 

redundancy seems to be indicated by the lack of a strong phenotype in Bves -/- 

mice.  All or some members of the Popdc family may interact with GEFs to 

regulate myriad cellular processes by affecting the activity states of GTPases.  

Alternatively, it has been shown that homophillic Bves protein-protein interaction 

occurs (Knight et al. 2003), therefore it is also possible that Bves is capable of 

interacting with other Popdc family members.  If this were the case, other Popdc 

family members may interact with and regulate the activity of Bves, thereby 

indirectly controlling GTPase activity.  In any case, it is clear that the relationship 

between Bves and other Popdc family members needs to be examined more 

closely, as well as the individual and perhaps unique characteristics of each 

family member.     

 Next, experimental definition of Rac1/Cdc42 activity levels in the 

knockdown/knockout phenotypes previously reported is necessary.  Examination 

of Rac1/Cdc42 levels in the satellite cells that regenerate skeletal muscle in the 

Bves-/- mouse (Andree et al. 2002) and comparison of these levels to that of a 

wildtype animal would strongly indicate that the observed phenotype is a direct 

result of disruption of proper Rac1/Cdc42 signaling induced by Bves inactivation.  

Similarly, determination of relative Rac1/Cdc42 activation states in the Xenopus 
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laevis model system utilized by our laboratory is necessary for similar reasons.  

Further investigation of these models, as well as the NIH 3T3 model system 

described in Chapter III, will also allow investigators to directly address the 

models presented above.  In these systems, definition of the subcellular 

localization of Bves, Rac1, Cdc42, and GEFT and potentially other GEFs is 

possible.  If experimental manipulation of Bves were found to alter the 

localization of other components of the Rho-family GTPase signaling pathway, 

this would strongly indicate that Bves is critical for proper localization of proteins 

involved in this pathway.  A variety of methods to address the localization of 

these proteins are available, but the most likely to be used involve usage of the 

immunoreagents described in Chapter II.  Additionally, now that these reagents 

are available for use, and have been demonstrated to be specific for the Bves 

protein, re-examination of previously published experiments should be 

performed.  For example, the visualized ultrastructural localization of Bves should 

be compared with the previously published electron micrographs that used the 

B846 polyclonal antisera (Osler et al. 2005).  As noted in Chapter II, the Bves 

protein has a wider localization when visualized with the SB panel of monoclonal 

antibodies than when visualized with the B846 antisera.   

 In summation, the work presented in this thesis represent not only a 

significant advance for the field of Bves study, but provide critical direction and 

tools for investigation to continue and advance.  The immunoreagents described 

in Chapter II not only helped to resolve long-standing discrepancies in the 
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literature, but also provide tools that will be used in the future.  These antibodies 

will undoubtedly be used to determine the subcellular localization of Bves in the 

future experiments described above, and also will provide valuable tools for 

immunoprecipitation-based experimental protocols necessary for investigation of 

new Bves-interacting proteins.  Furthermore, the identification of the first protein 

known to directly interact with Bves not only places Bves into a molecular 

context, but also provides focus and direction for future experiments investigating 

the function of Bves in modulation of Rho-family GTPase signaling.  Additionally, 

the screens for interating proteins that were performed as a part of this research 

have also isolated many other candidate proteins that interact with Bves in a 

genetic screen.  These interacting proteins may open more new and exciting 

avenues of investigation of the Bves protein, just as the identification of a direct 

interaction between Bves and Geft does in this work. 
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