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CHAPTER I 

 

INTRODUCTION 

 

Objectives 

The emerging field of molecular imaging (MI) aims to noninvasively, 

quantitatively and repetitively monitor biological processes in vivo to detect disease, 

probe its basis, and study relevant biochemical pathways at the molecular level.  Since 

molecular targets (including cell surface and intracellular receptors, proteins, enzymes, 

DNA and RNA) undergo alterations prior to morphological or physical transformations, 

MI should aid in early detection and improved diagnosis of disease.  The use of MI may 

therefore result in improved clinical outcomes and enhanced long-term patient survival.  

In addition, the capability to monitor lesion physiology in vivo allows further 

characterization of disease, which may facilitate therapeutic efficacy monitoring, speed 

drug discovery, and potentially lead to patient-specific treatment regimens.  Recently, the 

ability to specifically label tumor cells has allowed enhanced tumor margin definition and 

surgical resection guidance. 

Optical MI, particularly in the near infrared (NIR) wavelength region, is an 

inexpensive technique that provides relatively high sensitivity without the use of ionizing 

radiation.  Fluorescence imaging is rapid, allowing for dynamic, real-time monitoring of 

agent biodistribution and clearance profiles and is commonly performed concurrently on 

multiple animals in a relatively high-throughput manner.  In addition, the use of multiple 

bandpass filters or a liquid crystal tunable filter allows spectral discrimination and the 
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ability to sequentially monitor multiple optical reporters at different wavelengths.  

Although typical in vivo optical imaging performed at the anatomical scale tends to suffer 

from relatively low spatial resolution, photon penetration can be long when working in 

the NIR tissue transparency window (λ ~ 650-900 nm).  Here, photon absorption by 

hemoglobin and water is low, scattering is reduced and tissue autofluorescence is 

minimal, allowing photons to interrogate as much as centimeters of tissue.   

The ultimate success of optical MI is depends on the development, 

characterization and optimization of probes as well as superior instrumentation to 

accurately detect, localize and quantify these unique MI compounds.  The objectives of 

this dissertation were directed at quantitative in vitro and in vivo evaluation of two novel 

MI probes developed in our laboratory: the peripheral benzodiazepine receptor (PBR)-

targeted NIR MI agent (NIR-conPK11195) and a potential optical analogue to the 2-

[18F]fluoro-2deoxy-D-glucose (18FDG) positron emission tomography (PET) agent, NIR-

glucosamine. 

 

Specific Aims 

 

Specific Aim 1: Determine the utility of using a peripheral benzodiazepine receptor-

targeted near infrared molecular imaging agent, NIR-conPK11195, for screening a pre-

clinical model of breast cancer 

 The peripheral benzodiazepine receptor (PBR) represents an attractive target for 

MI due to its overexpression in a variety of neurodegenerative diseases and cancers, 

including breast cancer.  Clinically, the expression of PBR appears to correlate with 
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disease stage, aggressive phenotype and clinical prognosis.  Capitalizing on this 

expression profile and the low absorption and increased photon penetration depth in the 

NIR tissue transparency window, our laboratory has developed a PBR-targeted NIR MI 

agent (NIR-conPK11195).  The quantitative evaluation of the in vitro and in vivo uptake 

of NIR-conPK11195 in a human metastatic breast adenocarcinoma (MDA-MB-231) 

model of breast cancer is presented in Chapter III.   

 

Specific Aim 2: Evaluate the applicability of using a lanthanide chelate-based PBR-

targeted molecular imaging probe (Eu3+-conPK11195) as a topical agent for brain tumor 

demarcation and a PBR-targeted near infrared molecular imaging agent (NIR-

conPK11195) to study breast cancer metastases to the brain 

 Both primary brain tumors and secondary brain metastases are often treated by 

maximum surgical resection followed by chemotherapy and/or radiation.  The extent of 

surgical resection has been shown to correlate with improved clinical prognosis, 

increased time to recurrence and overall patient survival.  However, the degree of 

surgical resection is often compromised due to difficulties in accurately determining 

tumor location and ill-defined tumor boundaries as well as the desire to preserve eloquent 

brain tissue.  In an effort to overcome some of the limitations of the commonly used 

image-guided surgery techniques, two PBR-targeted MI agents (Eu3+-conPK11195 and 

NIR-conPK11195) were assessed for their applicability to aid in primary brain tumor 

demarcation and the study of brain metastases, respectively.  These observations are 

reported in Chapter IV. 
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Specific Aim 3: Determine if a NIR-labeled glucosamine derivative has the potential to 

serve as an optical analogue to the 2-[18F]fluoro-2deoxy-D-glucose (18FDG) positron 

emission tomography (PET) agent 

While 2-[18F]fluoro-2-deoxy-D-glucose (18FDG) positron emission tomography 

(PET) has inherently high sensitivity and demonstrated clinical applicability, the imaging 

technique has several limitations.  These drawbacks include the exposure to ionizing 

radiation, difficulty of compound synthesis, requirement of a local cyclotron, short 

halflife of 18F (110 minutes) and relatively low spatial resolution.  In an attempt to 

overcome some of the major limitations of PET, our laboratory and others have 

developed potential optical analogues of 18FDG.  Chapter V presents the quantitative in 

vitro and in vivo assessment of NIR-glucosamine in an SW480 mouse model of human 

colorectal adenocarcinoma.   
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CHAPTER II 

 

BACKGROUND AND SIGNIFICANCE 

 

Cancer: Early Detection Improves Clinical Outcome and Patient Survival 

 The American Cancer Society estimates that approximately 559,650 Americans 

will die from cancer in 2007, representing the second leading cause of death in the United 

States (1).  In addition, another 1,444,920 new cancer diagnoses are expected this year 

alone (1).  Since treatment is more likely to be successful if initiated in the early stages of 

cancer, clinical outcomes could be improved by using novel strategies aimed at detecting 

initial cellular and molecular changes prior to the development of tumor-related 

symptoms or palpable tumor mass.   

 

Molecular Imaging 

The emerging field of molecular imaging (MI) aims to noninvasively, 

quantitatively and repetitively monitor biological processes in vivo to detect disease, 

probe its basis, and study relevant biochemical pathways at the molecular level (2).  Since 

molecular targets (including cell surface and intracellular receptors, proteins, enzymes, 

DNA and RNA) undergo alterations prior to morphological or physical transformations, 

MI should aid in early detection and improved diagnosis of disease (2-4).  The use of MI 

may therefore result in improved clinical outcomes and enhanced long-term patient 

survival.  In addition, the capability to monitor lesion physiology in vivo allows further 

characterization of disease, which may facilitate therapeutic efficacy monitoring, speed 
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drug discovery, and potentially lead to patient-specific treatment regimens.  Recently, the 

ability to specifically label tumor cells by MI has provided enhanced tumor margin 

definition and surgical resection guidance (5). 

Although a number of potential MI modalities exist; nuclear imaging, magnetic 

resonance imaging (MRI), and optical imaging represent the three major MI techniques 

currently in use (2, 4, 6-9).  These imaging techniques differ in a variety of ways, 

including sensitivity, spatial and temporal resolution, penetration depth, exploited 

energies (ionizing or non-ionizing), throughput, cost, and availability of injectable and 

biocompatible molecular probes [reviewed in (4, 6)].   

 

Radionuclide Imaging 

Nuclear MI techniques rely on the production of two or a single γ-ray from 

radioisotope decay.  The detection of these γ-rays is achieved by positron emission 

tomography (PET) or single photon emission computed tomography (SPECT), 

respectively (4).  PET requires the labeling of molecules with a positron-emitting isotope, 

such as 18F, 11C, 13N, 15O, 68Ga, or 64Cu.  The emitted positron annihilates with an 

electron, producing two 511 keV photon γ-rays ~180° apart, which are then detected by a 

cylindrical ring of scintillation crystals.  The ability to detect coincident photons 

eliminates the need for collimation to determine direction of flight and original location 

and ultimately allows for quantitative distribution measurements.  Conversely, SPECT 

utilizes γ-emitting isotopes, such as 99mTc, 111In, 123I, which emit a single high-energy 

photon, ranging from 70 to 400 keV (4).  The detection of a single photon in SPECT 

imaging, rather than two coincident photons in PET, requires physical, geometric 
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collimation to determine location and does not allow for full quantification of reporter 

concentration.  However, γ-emitting isotopes are more readily available than positron-

emitting isotopes and typically have longer half-lifes (t1/2 = hours to days) than PET 

labels (ex. t1/2 of 18F = 110 minutes) (6, 8).  Additionally, SPECT radioisotopes enable 

simultaneous detection of multiple probes with different γ-ray energies, whereas positron-

emitting isotopes all generate photons of equivalent energy (511 keV).  Both PET and 

SPECT suffer from the disadvantage of exposure to ionizing radiation. 

The sensitivity of PET is on the order of 10-11 to 10-12 M, regardless of reporter 

probe depth since the depth of γ-ray penetration is virtually unlimited (6, 8).  The spatial 

resolution of most clinical PET scanners is approximately (6-8)3 mm3, whereas typical 

microPET scanners have a spatial resolution of approximately 23 mm3 (6, 8).  The time 

required to collect enough information to produce a PET image is typically seconds to 

minutes.     

SPECT sensitivity is an order of magnitude poorer than PET due to the absorption 

of photons by the mechanical collimator and is on the order of 10-10 to 10-11 M (6, 8).  

Although there is a fundamental tradeoff between sensitivity and spatial resolution when 

designing the collimator, the spatial resolution of SPECT typically ranges from 1 to 2 

mm (6, 8).  Similar to PET, the time needed to acquire a useful image using SPECT is on 

the order of minutes.   

 

Magnetic Resonance Imaging  

 Magnetic resonance imaging (MRI) is based on the principle that unpaired 

nuclear spins, or magnetic dipoles, align themselves when exposed to a strong magnetic 
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field.  These magnetic dipoles subsequently return to their original orientation following 

perturbation by a radiofrequency pulse.  The change in electromagnetic flux is detected 

by the radiofrequency coil, which is then converted to a rate of relaxation by the MR 

scanner.  This rate of relaxation varies in different environments, producing different MR 

signals, and ultimately resulting in image contrast.  Exogenous agents based on 

paramagnetic and superparamagnetic metal cations can be used to enhance MR contrast 

in tissue by influencing proton relaxation rates (6, 10, 11).  

 The spatial resolution of MRI (10-100 μm for small animals to mm for humans) 

and the ability to simultaneously obtain both molecular and anatomical information are 

clear advantages over radionuclide and optical imaging modalities (4, 6).  However, the 

sensitivity of MRI (mM to μM) is several orders of magnitude less than both radionuclide 

and optical imaging (pM to nM).  Thus, significantly larger quantities of injected 

molecular probes or much longer scan times are typically necessary to acquire an image 

with reasonable signal to noise.  Other disadvantages of MRI include the relatively high 

cost and complexity of MR scanners, particularly when compared to optical imaging. 

 

Optical Molecular Imaging 

 Optical information may be obtained from endogenous tissue contrast (12-20), 

bioluminescence (21-25) or exogenous fluorescent MI probes using a variety of optical 

imaging technologies (26, 27).  These optical techniques either exploit light interaction 

with tissue (absorption, scattering, photon transmission or reflectance) or measure photon 

emission (fluorescence or (bio)luminescence) (27, 28).   
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 Endogenous tissue contrast results from one of three processes: absorption, 

scattering, or autofluorescence.  Since oxyhemoglobin, deoxyhemoglobin and water are 

primarily responsible for the absorption of photons in tissue, measuring the absorption 

coefficient at specific wavelengths allows for quantification of hemoglobin and water 

concentration and ultimately provides information about vascularization, perfusion, and 

hypoxia (12-16).  Elastic scattering measurements provide alternative information, 

specifically regarding tissue structure, intracellular composition, and organelle 

concentration (14, 15), while inelastic scattering information provides a biochemical 

“fingerprint” (17).  Finally, autofluorescence results from specific endogenous 

fluorophores including nicotinamide (NAD[H]), flavins, collagen, and elastin (18-20).  

The concentration of these compounds varies with disease progression, resulting in a 

measurable spectroscopic change.  However, autofluorescence techniques suffer from a 

lack of specificity and relatively low signal-to-noise ratios due to small fluorophore 

concentrations as well as high scattering and reflection backgrounds (26).  In addition, 

the quantification of these measurements is hindered by the tissue absorption and 

scattering of both the excitation and emitted light. 

Bioluminescence represents another form of optical imaging, which measures the 

photon emission from cells that have been genetically modified to express luciferases.  A 

number of luciferase genes exist and even more have been genetically engineered, 

allowing for spectrally-shifted, multi-reporter tracking (21-24).  In general, the energy-

dependent, enzymatic reaction between luciferase enzymes and their substrates results in 

photon emission between 480 and 670 nm (21, 24).   
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Bioluminescence differs from fluorescence in that the photon emission results 

from an oxidation/reduction reaction rather than from exposure to excitation light.  

Because the bioluminescent signal originates from a specific enzyme-substrate 

interaction, combined with the fact that mammalian tissue does not autoluminesce, the 

emitted light is essentially background free (6, 8).  Although this minimal background 

level results in a high SNR and allows for detection of significantly lower signals, 

bioluminescence imaging suffers from low photon penetration depth in tissue (1-2 cm) 

due to significant photon absorption and scattering.  This depth limitation is also a factor 

in fluorescence imaging.  However, the photon penetration depth can be significantly 

improved by working in the near infrared (NIR) tissue transparency window (λ ~ 650 – 

900 nm (29); discussed below).   

Bioluminescence also suffers from low spatial resolution and the unlikelihood of 

clinical translation due to the required transgenic modification of cells, the difficulty to 

measure deep in tissue, and the high cost of substrate.  However, the ease, speed and 

high-throughput of operation make bioluminescence highly suitable for evaluating pre-

clinical animal models, specifically for noninvasive imaging of tumors, cell trafficking, 

monitoring of gene expression, and monitoring of tumor growth or regression following 

treatment (6, 22, 23, 25). 

Fluorescence MI, particularly in the near infrared (NIR) wavelength region, is an 

inexpensive technique that provides relatively high sensitivity without the use of ionizing 

radiation (4, 27).  Fluorescence imaging is rapid, allowing for dynamic, real-time 

monitoring of agent biodistribution and clearance profiles and is commonly performed 

concurrently on multiple animals in a relatively high-throughput manner.  In addition, the 
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use of multiple bandpass filters or a liquid crystal tunable filter allows spectral 

discrimination and the ability to sequentially monitor multiple optical reporters at 

different wavelengths (30).  Although optical imaging suffers from relatively low spatial 

resolution, photon penetration can be long when working in the NIR tissue transparency 

window [λ ~ 650-900 nm] (29).  Here, photon absorption by hemoglobin and water is 

low, scattering is reduced and tissue autofluorescence is minimal, allowing photons to 

interrogate as much as centimeters of tissue (29, 31).   

Fluorescence MI techniques typically utilize exogenous fluorescent probes, which 

fall into one of three categories: non-specific, targeted, or “smart”/activatable (26, 27, 

32).  Non-specific or non-targeted probes represent the most common contrast agents.  

These agents reveal varied compartmental distribution, providing information related to 

physiological processes such as changes in blood volume, perfusion, permeability and 

blood flow (4, 11).  However, since these changes typically occur fairly late in the 

progression of disease, probes that are cellularly- or molecularly-targeted may provide 

earlier disease detection.   

Targeted MI probes provide molecular specificity by combining a signaling 

moiety (ex. fluorophore) with a targeting functionality such as a ligand, peptide, 

antibody, sugar or other small molecule (26, 33-35).  These targeted agents can be further 

characterized as direct binding and indirect binding probes.  Direct binding probes 

include antibody and receptor ligand-based probes that bind stoichiometrically to their 

targets, while indirect binding probes measure the target enzyme activity.   

Molecular specificity can also be achieved with activatable or “smart” probes (26, 

32, 36).  These agents are normally quiet, not producing an observable fluorescence 
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signal, until activated by a specific enzyme target.  The signal-to-noise ratio is therefore 

increased relative to other targeted MI probes, which provide a signal regardless of target 

interaction.   

The ultimate success of optical MI depends on the development, characterization 

and optimization of probes as well as superior instrumentation to accurately detect, 

localize and quantify these unique MI compounds.  The objectives of this dissertation 

were directed at quantitative in vitro and in vivo evaluation of two novel MI probes 

developed in our laboratory: the peripheral benzodiazepine receptor (PBR)-targeted NIR 

MI agent (NIR-conPK11195) and a potential optical analogue to the 2-[18F]fluoro-

2deoxy-D-glucose (18FDG) positron emission tomography (PET) agent, NIR-

glucosamine.  The significance and a brief review of the literature are provided below for 

each of the specific aims.   

 

Breast Cancer: Significance 

 Breast cancer represents the most frequently diagnosed cancer in women and the 

second most common cancer type responsible for women’s deaths (1).  In 2006, the 

American Cancer Society estimated that 212,920 women and 1,720 men would be newly 

diagnosed with breast cancer in the United States alone, while another 40,970 women and 

460 men were expected to die from breast cancer (1).  However, the five-year survival 

rate surpasses 95% if breast cancer is detected in its early stages (1, 37). 
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Typical Breast Cancer Detection Methods 

X-ray mammography is currently the most common and most effective breast 

cancer screening technique (38).  However, x-ray mammography has limited success in 

the case of younger women and women on hormone replacement therapies due to denser 

breast tissue.  In fact, the sensitivity and specificity of x-ray mammography in women 

with extremely dense breasts is only 63% and 89%, respectively, compared to 87% and 

97% in women with fattier breast tissue (39).  In addition, x-ray mammography requires 

breast compression and employs ionizing radiation.   

 The use of MRI for breast cancer diagnosis has been explored, but is not approved 

for breast cancer screening by the US Food and Drug Administration (FDA) (38).  

Although most of the investigations involve small patient numbers and typically only 

include high risk women, the sensitivity of MRI appears to be consistently greater than 

both x-ray mammography and ultrasound [reviewed in (38)].  MRI does, however, 

demonstrate relatively lower specificity than x-ray mammography and is limited by its 

high cost and longer imaging times (38).  

 Ultrasound has played a more pivotal role in the discrimination between cysts and 

solid lesions, than in breast cancer screening (38).  The use of ultrasound to delineate 

benign from malignant tumors has also been demonstrated (40).  However, breast cancer 

detection using ultrasound is limited by the difficulties in image interpretation and the 

inability to consistently detect microcalcifications (38). 
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Optical Breast Cancer Detection Methods 

 NIR methodologies for breast cancer screening have also been explored (12, 14, 

15, 34, 41).  The optical imaging techniques are typically rapid, noninvasive, 

inexpensive, relatively sensitive, and not limited by mammographic density.  Several of 

these techniques exploit intrinsic contrast mechanisms (12, 14, 15), while others obtain 

contrast through exogenous fluorescent contrast agents (34, 41).   

 

Time-Domain Optical Mammography  

 Advanced Research Technologies’ Softscan platform is a four-wavelength time 

domain optical imaging system that measures NIR parameters related to the main breast 

components (water, lipids, and deoxy- and oxy-hemoglobin) (15).  Diffuse optical 

spectroscopy (DOS) and diffuse optical tomography (DOT) algorithms are used to 

analyze the temporal data and determine the absorption (µa) and reduced scattering (µs
’) 

coefficients.  The physiologic properties of breast tissue are described by µa, which 

enables quantification of oxyhemoglobin (HbO2), deoxyhemoglobin (Hb) and water 

(H2O) concentration.  The structural properties of breast tissue are described by µs, which 

allows estimation of the scattering amplitude (a) and scattering power (b).  From these 

parameters, the total hemoglobin content (HbT = HbO2 + Hb), the tissue hemoglobin 

oxygen relative saturation (StO2 = HbO2/HbT), and lipid percentage (Li = -0.50 x b + 

0.90) can be approximated.   

To demonstrate the Softscan’s ability to describe breast composition and 

differentiate between benign and malignant tumors, ART performed a pilot study 

including 49 pre- and post-menopausal women of various demographics (15).  First, the 
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bulk optical and physiologic properties of normal breast tissue were determined to be 

within expected physiologic range, in agreement with published results, and consistent 

with demographic trends.  Next, the detection and characterization of breast tumors was 

evaluated in 11 malignant and 12 benign tumor cases.  Combined, the benign and 

malignant tumors both exhibited a significantly higher blood volume and water content 

than the surrounding normal tissue, as expected from increased angiogenesis (Hb), edema 

(H2O) and cellularity (H2O).  However, the diseased tissues were not discriminated from 

normal breast based on oxygen saturation.  When stratified into benign and malignant 

pathologies, additional differences became apparent.  The total hemoglobin contrast ratio 

between the suspicious lesion and the surrounding normal tissue was greater in the 

malignant population than in the benign population.  This contrast is even more 

pronounced and statistically significant for deoxyhemoglobin alone.   

 

Frequency-Domain Photon Migration and Steady-State Tissue Spectroscopy 

 Tromberg and colleagues also measure intrinsic optical properties of breast tissue 

in the NIR wavelength region by combining frequency-domain photon migration and 

continuous wave tissue spectroscopy in an attempt to distinguish between diseased and 

normal tissue (12, 14).  Their broadband DOS measurements provide complete spectral 

information from 650 to 1,000 nm and potentially more accurate concentration 

determinations than the Softscan, which only measures optical properties at four distinct 

wavelengths (14, 15).  In addition, the authors developed the tissue optical index (TOI) to 

monitor response to chemotherapy; TOI = (ctHHb x ctH2O)/(% lipid) where ctHHb is the 
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concentration of deoxy-hemoglobin in the tissue, ctH2O is the concentration of water in 

the tissue and % lipid is the percent of lipids in the tissue. 

 Two studies demonstrated the ability of broadband DOS to differentiate between 

malignant breast tumors (stage II/III) and normal breast tissue in 12 pre-menopausal 

women (12) and 57 pre- and post-menopausal women (14).  In both investigations, the 

concentration of deoxy-hemoglobin, oxy-hemoglobin, water and lipids as well as 

scattering power demonstrated significant contrast from tissue in the contralateral normal 

breast.  The average Hb, HbO2, and H2O concentrations were significantly increased in 

the tumor region relative to the normal tissue, indicative of increased angiogenesis, 

edema and cellularity.  The scattering power was also increased in the tumor regions, 

which presumably results from the greater epithelial and collagen content.  Conversely, 

the percent lipid was decreased in the tumor regions, suggesting displacement of adipose 

tissue by the tumor mass.  Interestingly, tissue hemoglobin saturation was statistically 

similar for both tumor and normal tissues; this finding is in agreement with the Softscan 

results presented by Intes (15).  Finally, by combining several of these parameters into 

the TOI, the tumor to normal contrast was enhanced to almost 10-fold in the pre-

menopausal population and approximately 3-fold in the larger patient population.  This 

TOI is then used to monitor one patient’s response to adjuvant chemotherapy over an 

eight day treatment regime and demonstrated a 60% decrease in TOI.  The authors do 

point out, however, that this composite contrast is highly variable in both studies.   
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Indocyanine Green (ICG) 

 The use of an intravenously injected exogenous contrast agent for breast cancer 

detection was demonstrated by Ntziachristos et al (41).  The three case studies evaluated 

the ability of ICG-enhanced DOT to image malignant breast lesions.  Overall, the ICG 

contrast enhancement appeared to accurately localize the infiltrating ductal carcinoma 

and fibroadenoma as determined by Gadolinium-enhanced MRI coregistration; the 

healthy breast tissue exhibited only minor contrast enhancements, which presumably 

resulted from small vasculature.  The authors also attempted to quantify μa, but were 

unable to validate its accuracy.   

 

EGF-Cy5.5 

 The NIR fluorophore-labeled epidermal growth factor (EGF-Cy5.5) represents 

another example of an exogenous NIR contrast agent.  EGF is a ligand for the EGF 

receptor (EGFr), which is overexpressed in many malignant tumors including breast 

cancer (34).  The specificity of EGF-Cy5.5 to EGFr was evaluated in human mammary 

cancer cells that were EGFr+ (MDA-MB-468) or EGFr- (MDA-MB-435).  In vitro 

fluorescence microscopy confirmed uptake of EGF-Cy5.5 by MDA-MB-468 cells, but 

not MDA-MB-435 cells, while neither cell line appeared to be labeled by the free Cy5.5 

dye.  In addition, EGF-Cy5.5 labeling was inhibited by an anti-EGFr antibody and excess 

EGF ligand, suggesting EGFr specificity.  The in vivo results corroborated the in vitro 

findings in mice bearing MDA-MB-468 and MDA-MB-435 xenografts.  Furthermore, the 

uptake kinetics of EFG-Cy5.5 appeared to differentiate the EGFr+ and EGFr- tumors.   
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The Peripheral Benzodiazepine Receptor (PBR) and NIR-conPK11195 (Specific Aim I) 

The peripheral benzodiazepine receptor (PBR) represents an attractive target for 

MI of disease.  The PBR is a transmitochondrial membrane protein that is involved in a 

number of cellular process including steroidogenesis, cholesterol transport, cellular 

proliferation and apoptosis (42).  Although PBR is naturally expressed at various levels in 

many normal tissues, PBR has been shown to be highly upregulated in a variety of 

neurodegenerative diseases and cancers including breast cancer (42-44).  Clinically, the 

expression of PBR appears to correlate with disease stage, aggressive phenotype, and 

clinical prognosis (45, 46).  Capitalizing on this expression profile and the low absorption 

and increased photon penetration depth in the NIR tissue transparency window (29), our 

laboratory has developed a PBR-targeted NIR MI agent (NIR-conPK11195).  The 

quantitative evaluation of the in vitro and in vivo uptake of NIR-conPK11195 in a human 

metastatic breast adenocarcinoma (MDA-MB-231) model of breast cancer was 

accomplished through Specific Aim I, which is reported in Chapter III. 

 

Brain Tumors: Significance 

Both primary brain tumors and secondary brain metastases are often treated by 

maximum surgical resection followed by chemotherapy and/or radiation [reviewed in 

(47-50)].  Surgical resection provides cytoreduction of tumor mass as well as immediate 

symptomatic benefits including the reduction of intracranial hypertension, seizures and 

neurological deficits from the mass effect of the tumor (50, 51).  Importantly, the extent 

of surgical resection has been shown to correlate with clinical prognosis, recurrence and 

overall patient survival (47-50).  However, the degree of surgical resection is often 
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compromised due to difficulties in accurately determining tumor location and ill-defined 

tumor boundaries.  Thus, a number of imaging modalities have been employed to aid in 

intraoperative tumor localization in an attempt to perform more aggressive resections 

while preserving normal brain tissue. 

 

Typical Intraoperative Methods for Brain Tumor Demarcation 

Since neurosurgeons are often unable to solely rely upon the visual appearance or 

gross anatomy of the suspected lesion to achieve complete resection, surgical navigation 

systems are commonly used to aid in tumor localization.  These surgical navigation 

systems use fiducial marking schemes and sophisticated algorithms to register an 

intraoperative probe to preoperative computed tomography (CT) or magnetic resonance 

(MR) images in three dimensions [reviewed in (52)].  However, the effectiveness of this 

technique is limited by the sensitivity of the preoperative imaging modality (CT or MRI) 

as well as spatial inaccuracies due to registration errors and intraoperative brain 

deformation (52).   

The use of intraoperative ultrasound (iUS) takes advantage of the hyperechoic 

nature of tumor tissues to provide real-time feedback regarding tumor boundaries and 

extent of resection (53).  However, additional echogenic signals resulting from the 

contused brain and irrigation fluid as well as astrocytosis from previously irradiated brain 

and peritumoral edema decrease the accuracy of iUS, particularly as surgery progresses 

(53, 54).  The difficulties in iUS interpretation also limit its widespread clinical 

incorporation. 



 20

Intraoperative computed tomography (iCT) and intraoperative magnetic 

resonance imaging (iMRI) also provide real-time (or near real-time) information 

regarding tumor location and tissue characterization.  In addition, these imaging 

modalities aid in the identification of surrounding anatomical markers (52, 55).  

However, iMRI systems are expensive, not particularly compatible with standard 

operating room (OR) equipment, and limit patient access, while iCT systems expose the 

patient and OR personnel to ionizing radiation.   

 

Optical Intraoperative Methods for Brain Tumor Demarcation 

 In an effort to overcome some of the limitations of the commonly used image-

guided surgery methods described above, a number of optical methods have also been 

explored for intraoperative brain tumor demarcation.  These optical techniques include 

both intrinsic contrast mechanisms and intravenously administered fluorescent contrast 

agents.   

 

Optical Spectrocopy 

 Intraoperative optical spectroscopy detects the intrinsic spectral differences 

between diseased and normal tissue using a combination of 337-nm excitation 

fluorescence and diffuse white light reflectance spectroscopy (18-20).  These spectral 

characteristics, mainly peak location and line shape, have been correlated with 

histopathology from punch-biopsies taken from the interrogated tissue.  Tissue-specific 

spectral comparisons were subsequently used to develop empirical discrimination 

algorithms for tissue segmentation (18-20).  In a 24-patient study, Toms et al 
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demonstrated 80% sensitivity and 89% specificity in discriminating solid gliomas from 

normal brain as well as 94% sensitivity and 93% specificity in delineating infiltrating 

tumor margins from normal brain using this technique (20).   

 Overall, optical spectroscopy represents a low cost, portable and easily integrated 

intraoperative imaging modality, especially relative to iCT or iMRI.  Although the 

reported accuracy measurements are slightly low for clinical incorporation, ongoing 

improvements in data acquisition, data analysis, and algorithm development (based on 

larger sample populations) should increase the accuracy of this technique.  Another 

clinical limitation of optical spectroscopy results from the use of a fiber-optic probe for 

light delivery and detection.  The probe-based system requires tissue contact, interrogates 

only a small (600 x 670 µm) tissue area and does not provide spatial information.  

However, translation of probe-based optical spectroscopy to spectral imaging, which 

provides spectroscopic characterization at each pixel, has recently been explored (56).  

 

Fluorescein-Based Agents 

 The use of an exogenous fluorescent contrast agent to discriminate between 

malignant and normal tissues dates back to at least 1947 when Moore reported the use of 

intravenously injected sodium fluorescein (57).  In this study, the histological diagnosis 

of malignancy appeared to correlate with the vivid fluorescence of tumor tissues 

examined three to eight hours postinjection of sodium fluorescein (57).  Out of twelve 

brain and spinal cord tumors examined, eleven cases demonstrated good correlation, one 

demonstrated poor correlation, and no failures were reported (57). 
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Sodium fluorescein (FLS-Na) has since been conjugated to human serum albumin 

(FLS-HSA) in an effort to enhance tumor-specificity and duration of fluorescence-

enhanced contrast in a mouse xenograft model of human glioma (58).  Although the 

brightness ratio of tumor to peripheral tissue was increased from 1.6 (FLS-Na) to at least 

2.5 by using the HSA-conjugated fluorescein, the preclinical and clinical relevance of this 

probe is limited.  In this study, FLS-HSA was excited through a bandpass of 450 – 490 

nm and its emission collected between 500 – 530 nm.  The depth of photon penetration 

through tissue is on the order of mm in this wavelength region and the autofluorescence 

of tissue is particularly high.  Thus, to obtain adequate fluorescence signal, the authors 

sacrificed three mice at each time point and exposed the subcutaneous tumor nodules 

prior to imaging.  In addition, the FLS-HSA contrast enhancement was not appreciable 

after approximately six hours post-injection, further limiting the intraoperative 

application of this molecule.   

 

5-Aminolevulinic Acid (ALA)-Induced Porphyrin Fluorescence 

Another fluorescence-guided surgical technique takes advantage of the malignant 

tumor-specific synthesis and intracellular accumulation of fluorescent porphyrins 

following administration of 5-aminolevulinic acid (ALA) (59, 60).  In a preliminary 

investigation (60), bright reddish fluorescence was clearly visualized in the viable tumor 

tissues, which enabled detection of fluorescently labeled residual tumor and resulted in 

more complete tumor resection in seven of the nine patients studied; no residual tumor 

was apparent via intraoperative fluorescence or postoperative MR images.  The location 

of the residual tumor in the other two patients precluded the ability to obtain complete 
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surgical resection in order to preserve language function.  However, the fluorescence-

guided surgical protocol was not able to distinguish low-grade glioma from normal brain 

tissue, presumably due to the lack of blood-brain-barrier (BBB) breakdown in low grade 

lesions.  In addition, grossly necrotic tumor tissue did not demonstrate fluorescence 

accumulation as one might expect; this is less important for fluorescence-guided surgical 

resection as necrotic tissue is relatively easy to distinguish from normal brain.  The 

overall accuracy of porphyrin-enhanced tumor demarcation was determined by 

histological analysis of 89 biopsies, which resulted in 85% sensitivity, 100% specificity, 

and 90% accuracy (60).  The sensitivity suffered from false-negative necrotic tissues and 

sparse densities of tumor cells in some samples.  

To further assess the surgical resection improvement and long-term advantages 

associated with ALA-guided resections, Stummer and colleagues have since performed a 

one-site prospective study on 52 glioblastoma multiforme patients (61) and a multicenter 

phase III trial on 270 patients (5).  Overall, the patient population that underwent ALA-

guided surgery demonstrated an almost two-fold increase in percentage of complete 

resections as assessed by early postoperative MR scans than patients assigned to 

conventional white light microsurgery.  The remaining residual tumors in the 

fluorescence-guided population were also smaller in volume.  Furthermore, the 

fluorescence guided surgical resections resulted in an almost 2-fold increase in the 6-

month progression free survival.   

The use of ALA-induced porphyrin fluorescence to guide intraoperative surgical 

resection of malignant tumors shows promise and continues to be under active 

investigation.  The increased intratumoral synthesis of the photosensitizing porphyrin 
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enables tumor-specific labeling (60) rather than nonspecific uptake and decreased 

clearance of ICG due to the enhanced permeability and retention effect present in tumors 

(62) or the phagocytosis-dependent uptake of CLIO-Cy5.5 (63, 64) or quantum dots (65) 

by activated macrophages and microglia (discussed below).  However, the use of ALA-

induced porphyrin fluorescence may be restricted to high grade tumors with a disrupted 

BBB.  In addition, the spectroscopic properties of porphyrins (strong absorption between 

380 – 420 nm with emission peaks at 635 nm and 704 nm) severely limit the photon 

penetration depth (66).   

 

Indocyanine Green (ICG) 

In an effort to capitalize on the tissue transparency window (29), Haglund et al 

evaluated the ability of intravenously injected indocyanine green (ICG) to localize tumors 

and their margins in a rat glioma model (67).  In this study, the peak optical change at six 

seconds post-injection was greater in the tumor regions (40.5 ± 9.6%) than in the 

surrounding tissue (16.4 ± 6.8%) and contralateral normal brain (9.7 ± 4.7%).  In 

addition, the rate of fluorescence change over the first four seconds and the final signal 

plateau differentiate the three brain regions.  These tumor-specific dynamic 

characteristics of ICG uptake and clearance presumably result from slower blood flow in 

tumor tissues, increased permeability and resulting extravasation from tumor capillaries 

as well as an increased rate of and overall uptake by the tumor tissues (67).  To assess the 

accuracy of using ICG to delineate glial tissue from normal brain, the authors attempted 

surgical resection in the absence of fluorescence-guided cues, performed ICG-enhanced 

optical imaging and blindly biopsied tissues from the resulting tumor and normal brain 
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regions.  The histological samples revealed a sensitivity of 89.5% and specificity of 93%.  

Finally, the authors demonstrated the ability to discriminate tumor from normal tissue 

through the cranium and reported a significantly increased peak optical change in the 

tumor tissues relative to the signal emanating from the normal brain.   

In a follow-up study, Haglund et al reported enhanced optical imaging of human 

gliomas using ICG in a preliminary study involving nine patients (68).  The dynamic 

nature of ICG uptake and clearance again appeared to differentiate between normal brain, 

low-grade astrocytomas and malignant astrocytomas.  In one patient, the ICG-enhanced 

imaging was performed after a preliminary gross-total resection attempt.  After imaging, 

blinded biopsies were performed on tumor and normal tissues in the resection cavity, 

which appeared to accurately correlate with histology.   

These combined results show promise for the clinical use of ICG for tumor 

demarcation, but it remains unclear how effective the use of ICG will be to distinguish 

small tumor islets or single infiltrating cells from normal tissue.  Although the NIR 

spectroscopy of ICG enables increased tissue penetration (29), the detection limits of this 

technique and the contrast threshold necessary to discriminate tumor tissues should be 

addressed.  In addition, this imaging procedure suffers from a short temporal contrast 

enhancement of 2 – 10 minutes.  This limited window of differentiation between tumor 

and normal tissues suggests that subsequent re-injection of ICG will be necessary 

following a surgical resection attempt, resulting in increased cost and surgical duration.  

The use of targeted NIR agents should allow for enhanced tumor-specificity, increased 

sensitivity, and prolonged fluorescence-based resection cues. 
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Cy5.5-CLIO  

To enable both preoperative MRI and intraoperative NIR brain tumor delineation 

using a single probe, Kircher and colleagues developed Cy5.5-CLIO (63).  This 

multimodal nanoparticle was synthesized by covalently attaching the NIR fluorochrome 

Cy5.5 to a superparamagnetic iron oxide core coated with crosslinked dextran (63, 64).  

Accumulation of Cy5.5-CLIO in the tumor tissue of GFP-expressing 9L glioma-bearing 

rats appeared as a hypointense region on a T2-weighted MR image.  The MR contrast 

correlated well with both ex vivo hematoxylin and eosin (H&E) staining and DAB-

amplified Prussian blue staining for iron.  The intraoperative use of Cy5.5-CLIO was 

then demonstrated by visual and quantitative comparisons of the extent of tumor labeled 

with Cy5.5-CLIO relative to the true tumor size as determined by the “gold standard” 

GFP signal.  The Cy5.5-CLIO slightly overestimates the extent of tumor volume, which 

is justified by the uptake of Cy5.5-CLIO by microglia and the extension of microglia 

beyond the tumor margin.  The microglia-specific sequestration of Cy5.5-CLIO is 

demonstrated by laser scanning confocal microscopy following anti-CD11b staining for 

microglia and macrophages.  Interestingly, the Cy5.5-CLIO accumulation did not show a 

strong correlation to the GFP-positive tumor cells, but rather only to the CD11b-positive 

microglia and macrophages.   

An extension of this study assessed the effects of host response on the uptake of 

CLIO-Cy5.5, demonstrated a non-user-based quantitation algorithm to determine margin 

accuracy, determined cellular specificity of CLIO-Cy5.5 uptake via fluorescence-

activated cell sorter (FACS) analysis, described the distribution of host cells within the 

context of the tumors, and examined additional primary and metastatic brain tumor 
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models (64).  CLIO-Cy5.5 accumulation was apparent in both tumor-bearing 

immunocompromised mice and immunocompetent rats.  However, a larger population of 

microglia and macrophages was present in the immunocompetent rats, resulting in a 

slightly greater tumor margin overestimation (mean overestimation = 24 µm) relative to 

the immunocompromised mice (mean overestimation = 2 µm).  Overall, the tumor 

margin estimations based on a predefined threshold were a maximum of 65 µm 

overestimated and 64 µm underestimated in the nude mice versus a maximum of 151 µm 

overestimated and 57 µm underestimated in the rat model.  Contrary to previous 

observations (63), Trehin et al report CLIO-Cy5.5 uptake in tumor cells as well as 

CD11b+ microglia and macrophages.  Finally, the authors demonstrate labeling of 

intracranial CT26 colon and Gli36 glioma models. 

The CLIO-Cy5.5 agent provides a number of advantages over previously 

described optical demarcation techniques.  First, the multimodal nature of the single 

nanoparticles allows preoperative MRI contrast and intraoperative NIR signal from the 

same cells.  CLIO-Cy5.5 also provides the same NIR advantages as ICG including 

minimal tissue autofluorescence as well as decreased absorption and scattering, resulting 

in photon penetration through several centimeters of tissue (29).  Unlike ICG, CLIO-

Cy5.5’s long circulation and slow degradation/clearance provide a longer fluorescence-

enhanced surgical window (12 - 48 hours) than the ICG study (10 minutes in most cases).  

However, the ability to image this agent in vivo remains to be seen.  In addition, the 

authors suggest that the discrepancy in tumor cell uptake (64) or lack thereof (63) can be 

explained by the differing sensitivities of fluorescence microscopy and FACS analysis 

and contend that fluorescence microscopy may not be able to detect low CLIO-Cy5.5 
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concentrations in a high percentage of cells.  However, the FACS analysis indicates that 

the tumor cells in both the nude mouse and rat glioma models had greater relative median 

fluorescence than the CD11b+ cells.  Furthermore, the intraoperative use of Cy5.5-CLIO 

would require a substantial concentration of agent in the tumor cells to provide clinical 

relevance if currently only detectable by FACS analysis.  Finally, the increased photon 

penetration of Cy5.5-CLIO may actually decrease the meaningful spatial resolution for 

intraoperative tumor resection.  A targeted approach with higher signal to noise should 

provide increased sensitivity and additional tumor-specificity. 

 

Quantum Dots (Qdots) 

Recently, the intravenous administration of an alternative nanocrystal, specifically 

a NIR-emitting Quantum dot (Qdot), enabled fluorescence-enhanced detection of 

implanted tumors and some satellite lesions in brain tumor-bearing rodents (65).  

Conversely, no Qdot-specific fluorescence was observed in the brain tissue surrounding 

the tumor or contralateral normal brain hemispheres of the tumor-bearing rodents as well 

as in the brain tissues of non-tumor-bearing animals.  Consistent with other reports of 

nanoparticle uptake and internalization including the CLIO-Cy5.5 probe (63, 64), Qdots 

appeared to localize to tumor-infiltrating CD11b+ macrophages and microglia (65). 

Qdots provide some advantages over traditional fluorophores including size-

tunable broad excitation spectra and narrow emission peaks, intrinsic brightness and 

superior photostability (65).  NIR Qdots also have the advantage of increased tissue 

penetration of emission light due to the decreased absorption and scattering in the NIR 

tissue transparency window (29), as previously discussed for ICG and Cy5.5.  However, 
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unlike ICG and Cy5.5, NIR Qdots are much more efficiently excited in the UV 

wavelength region than by red-shifted wavelengths, dramatically decreasing the 

penetration depth of its excitation light (when excited with UV) or substantially reducing 

the absorbed photons and subsequent emission intensity (when excited with red-shifted 

light).  In addition, the cadmium selenide cores have the potential for significant toxicity, 

particularly with an insufficient protective coating.  Alternative nanoparticles with NIR 

emission capabilities have recently been developed (69).  And finally, a targeted 

approach that would enable labeling of the tumor cells themselves in addition to the 

tumor-infiltrating macrophages and microglia would provide greater sensitivity and 

specificity of the tumor demarcation. 

 

NIR-conPK11195 for Brain Tumor Demarcation (Specific Aim II) 

Previous studies have demonstrated cellular uptake and PBR-specificity of Eu3+-

conPK11195 and NIR-conPK11195 in C6 rat glioma cells (70) and MDA-MB-231 

human metastatic breast adenocarcinoma cells (Chapter III of this dissertation), 

respectively.  In addition, NIR-conPK11195 has demonstrated preferential labeling of 

MDA-MB-231 cells in vivo with an 11-fold contrast enhancement over normal tissue and 

a 5- to 7-fold enhancement over free NIR dye (Chapter III).  Through Specific Aim II, we 

report an extension of these results and evaluate the applicability of using Eu3+-

conPK11195 as a topical agent for brain tumor demarcation and NIR-conPK11195 as a 

molecular imaging agent to study breast cancer metastases to the brain (Chapter IV).  
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2-[18F]Fluoro-2-Deoxy-D-Glucose (18FDG) Positron Emission Tomography 

The most commonly used radiopharmaceutical, 2-[18F]fluoro-2-deoxy-D-glucose 

(18FDG), is valuable in oncologic diagnostics and therapeutic efficacy monitoring based 

on its versatility and sensitive detection of increased metabolic activity by positron 

emission tomography (PET) (71, 72).  The preferential uptake and accumulation of 

18FDG in cancerous tissues results from increased glycolysis by tumor cells.  

Upregulation of glucose transporter proteins (GLUTs) and the presence of a highly active 

hexokinase are responsible for the enhanced glucose metabolism of malignant tumor 

cells.  The cellular uptake of 18FDG occurs via these GLUTs.  Once internalized, 18FDG 

is phosphorylated by hexokinase to 18FDG-6-phosphate in a similar manner as glucose.  

However, unlike glucose-6-phosphate, 18FDG-6-phosphate cannot be further metabolized 

due to the lack of a hydroxyl group at the C-2 position, resulting in intracellular 

accumulation of 18FDG-6-phosphate and tumor-specific PET signal (71, 72).   

While 18FDG-PET has inherently high sensitivity and demonstrated clinical 

applicability, the imaging technique has several limitations.  These drawbacks include the 

exposure to ionizing radiation, difficulty of compound synthesis, requirement of a local 

cyclotron, short halflife of 18F (110 minutes) and relatively low spatial resolution.  In an 

attempt to overcome some of the major limitations of PET, our laboratory and others 

have developed potential optical analogues of 18FDG including 2-[N-(7-nitrobenz-2-oxa-

1,3-diazol-4-yl)amino]-2-deoxy-D-glucose (2-NBDG) (35, 73-77), pyropheophorbide 2-

deoxyglucosamide (Pyro-2DG) (78, 79), fluorescent dendritic arrays of glucosamine (80), 

and Cy5.5-D-glucosamine (Cy5.5-2DG) (81).   
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Optical 18FDG Analogues 

2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose (2-NBDG) 

To evaluate glucose uptake activity and rapidly assess cell viability, Yoshioka et 

al synthesized 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose (2-

NBDG) by conjugating 4-chloro-7-nitrobenz-2-oxa-1,3-diazole (NBD-Cl) to D-

glucosamine (35).  2-NBDG effectively labeled live Escherichia coli B (E. coli) cells, but 

not dead cells, which was confirmed by propidium iodide staining.  Since D-glucose, but 

not L-glucose, competitively inhibited 2-NBDG uptake, the mechanism of 2-NBDG 

accumulation was attributed to the glucose transporting system.  In a follow-up study, 

mass spectrometry was employed to demonstrate that 2-NBDG can be phosphorylated to 

2-NBDG-6-phosphate in E. coli cells (74).  Combined, these results suggest that 2-

NBDG functions as a fluorescent derivative of D-glucose and may be useful as a 

metabolic indicator.  

2-NBDG has subsequently been used to evaluate glucose uptake and cellular 

viability in several cell lines including yeast cells (73, 76), GLUT2-overexpressing 

pancreatic β cells (75) and tumor cells (77).  In each case, the uptake of 2-NBDG was 

competitively inhibited by D-glucose, but not L-glucose.  Another known GLUT 

inhibitor, cytochalasin B, almost completely blocked 2-NBDG uptake in the GLUT2-

overexpressing pancreatic β cells (75).   

Although 2-NBDG appears to label metabolically active cells via GLUT-

mediated uptake and likely accumulates through hexokinase phosphorylation, the 

spectroscopic properties (λex = 475 nm and λem = 550 nm) render the 2-NBDG probe a 

poor choice for in vivo imaging.  In addition, the uptake of 2-NBDG has not been 
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compared to the uptake of free NBD.  Comparison to the unconjugated fluorophore is 

particularly important at high agent concentrations, such as the ones used in these studies 

(10 – 600 µM), due to potential non-specific binding. 

 

Pyropheophorbide 2-Deoxyglucosamide (Pyro-2DG) 

 In an attempt to exploit the intracellular trapping of 2-deoxyglucose and the 

relative tissue transparency in the NIR wavelength region, Zhang et al developed a 

pyropheophorbide derivative of (Pyro-2DG).  Pyro-2DG, which functions as both a NIR 

imaging and photodynamic therapy agent, was evaluated in a 9L rat glioma model (78, 

79) and a c-Myc-induced mammary tumor model (79).  Fluorescence imaging 

demonstrated preferential uptake of Pyro-2DG in the tumor tissue relative to the 

surrounding muscle tissue with a 10:1 tumor to normal contrast ratio in both tumor 

models approximately two hours post-injection.  Conversely, the uptake of the 2DG-

lacking Pyro-acid resulted in only a 1.5:1 tumor to normal ratio (79).  The 

photoactivation of Pyro-2DG resulted in point-specific mitochondrial damage that was 

not observed in the control animals lacking Pyro-2DG or the Pyro-2DG-injected animals 

that were not photoirradiated (79).  In addition, the redox ratio (a measure of energy 

metabolism) was highly correlated to Pyro-2DG uptake, but not Pyro-acid (79).  Finally, 

preliminary confocal microscopy studies suggest that Pyro-2DG uptake was 

competitively inhibited by D-glucose (78).  
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Fluorescent Dendritic Arrays of Glucosamine 

Samuel Achilefu’s group has synthesized dendritic arrays of glucosamine based 

on an inner NIR carbocyanine core including mono-, di-, tri-, tetra-, hexa-, and octa-

D(+)-glucosamine-containing derivatives of cypate (80).  Although the number of 

glucosamines conjugated to the multicarboxylate probe does not appear to correlate with 

tumor uptake, each of the dendritic glucosamine arrays provided some tumor signal.  The 

maximum tumor uptake at twenty-four hours post-injection resulted from the di- and tri-

glucosamine probes.  However, the diglucosamine derivative also demonstrated 

substantial retention in the kidneys as well as the skin.  The high fluorescence signal in 

the skin is particularly disadvantageous since increased background fluorescence will 

decrease tumor to normal tissue contrast, crucial for noninvasive optical imaging.  The 

monoglucosamine and tetraglucosamine agents primarily accumulated in the liver, with 

considerably less uptake in the tumors.  Finally, the octaglucosamine probe accumulated 

in the tumor within six hours post-injection but was mainly retained in the kidneys 24 

hours post-injection.  The octaglucosamine also suffered from skin retention and 

therefore low tumor to normal contrast.   

 The lack of correlation between the number of tethered glucosamines and tumor 

uptake of glucosamine-containing derivatives of cypate reveals the crucial need for 

optimization of probes for particular biomedical applications (80).  For example, the 

triglucosamine-containing derivative of cypate demonstrated the highest tumor 

accumulation in combination with decreased normal tissue uptake, suggesting a role for 

tumor-specific labeling.  And, although the tetraglucosamine probe primarily 

accumulated in the liver, the agent retention in the blood for over 24 hours could prove 
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useful for imaging vasculature or monitoring blood flow (80).  However, the mechanisms 

of uptake and accumulation of the glucosamine-containing cypate derivatives remain 

unknown.  Thus, these multivalent molecular beacons may actually not represent glucose 

analogues.   

 

Cy5.5-D-glucosamine (Cy5.5-2DG) 

 After demonstrating the D-glucose (but not L-glucose) inhibited uptake of 2-

NBDG in U87MG human glioblastoma cells, Chen et al developed and evaluated Cy5.5-

2DG for use as an optical glucose analogue (81).  First, fluorescence microscopy 

demonstrated that Cy5.5-2DG labeled a variety of tumor cell lines at 37°C, but was only 

marginally taken up at 4°C, suggesting an active uptake mechanism.  However, the free 

NIR dye (Cy5.5-NHS) was equally effective at labeling the tumor cells in a temperature-

dependent manner and the Cy5.5-2DG uptake was not inhibited by D-glucose, indicating 

that GLUTs are likely not involved.  Next, the authors were unable to demonstrate that 

Cy5.5-2DG can be phosphorylated to Cy5.5-2DG-6-phosphate by MALDI-TOF-MS 

analysis, suggesting that Cy5.5-2DG may not be metabolized by hexokinase.  Finally, the 

in vivo results demonstrated tumor-specific accumulation of both Cy5.5-2DG and Cy5.5-

NHS.  In terms of tumor to normal contrast, the Cy5.5-NHS actually performed better 

than Cy5.5-2DG, but 18FDG provided better tumor contrast than either Cy5.5-2DG or 

Cy5.5-NHS.  These observations were corroborated in an A375M melanoma tumor 

model.   

 Overall, Cy5.5-2DG and Cy5.5-NHS appear to label tumors in vivo with fairly 

high specificity and long retention times, but Cy5.5-DG does not appear to act as an 
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optical analogue to 18FDG.  The authors attribute the difference in 2-NBDG and Cy5.5-

2DG GLUT/hexokinase-specificity to the size of the fluorophore conjugated to the 

glucosamine.   

 

NIR-glucosamine as a Potential Optical Analogue to 18FDG (Specific Aim III) 

Based on the literature precedence regarding optical analogues to 18FDG, our 

laboratory has developed an alternative NIR deoxyglucose analogue by conjugating D-

glucosamine to LI-COR Biosciences’ IRDyeTM 800CW.  The IRDyeTM 800CW is a 

cyanine-like dye that is highly water soluble and relatively stable.  IRDyeTM 800CW 

capitalizes on the increased photon penetration in the NIR tissue transparency window 

and is slightly red-shifted relative to Cy5.5.  This red-shift in excitation and emission 

eliminates the fluorescence contribution from the autofluorescence of typical alfalfa-

based rodent chow, which is often seen in the Cy5.5 wavelength region, and is more 

suitable for in vivo imaging (34).  In chapter V, we report the in vitro and in vivo 

characterization of NIR-glucosamine in an SW480neo mouse model of human colon 

cancer that corroborates and expands upon the Cy5.5-2DG observations (81).   
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Abstract 

Based on the observations that the peripheral benzodiazepine receptor (PBR) is 

overexpressed in breast cancer tissues combined with the fact that this expression profile 

appears to correlate with disease stage, aggressive phenotype and clinical prognosis, our 

laboratory and others have focused on the development of PBR-targeted molecular 

imaging agents for enhanced disease detection.  Here we quantify the in vitro and in vivo 

uptake of a near infrared (NIR) PBR-targeted probe (NIR-conPK11195) in a human 

metastatic breast adenocarcinoma (MDA-MB-231) model of breast cancer.  Fluorescence 

micrographs illustrate the effective labeling of MDA-MB-231 cells by NIR-conPK11195.  

Cellular uptake and competition assays provide further evidence of significant dose 

dependent (p < 0.001) and PBR-specific (p < 0.001) cellular uptake of NIR-conPK11195.  

By exploiting the NIR tissue transparency window and conPK11195 specificity it was 

possible to preferentially label MDA-MB-231 tumors in vivo with an 11-fold contrast 

enhancement over normal tissue (p < 0.001).  Furthermore, the fluorescence signal due to 

NIR-conPK11195 accumulation was up to 7-fold greater than the free NIR dye and 

demonstrated statistical significance (p < 0.001).  Overall, our results indicate that NIR-

conPK11195 has the potential to be an effective PBR-targeted MI agent for breast cancer 

screening, while yielding valuable insights regarding the biological development and 

progression of the disease.  

 

Introduction 

The emerging field of molecular imaging (MI) aims to noninvasively, 

quantitatively and repetitively monitor biological processes in vivo to detect disease, 
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probe its basis, and study relevant biochemical pathways at the molecular level (1).  Since 

molecular targets (including cell surface and intracellular receptors, proteins, enzymes, 

DNA and RNA) undergo alterations prior to morphological or physical transformations, 

MI should aid in early detection and improved diagnosis of disease (1, 2).  The use of MI 

may therefore result in improved clinical outcomes and enhanced long-term patient 

survival.  In addition, the capability to monitor lesion physiology in vivo allows further 

characterization of disease, which may facilitate therapeutic efficacy monitoring, speed 

drug discovery, and potentially lead to patient-specific treatment regimens.  Recently, the 

ability to specifically label tumor cells has allowed enhanced tumor margin definition and 

surgical resection guidance (3). 

Optical MI, particularly in the near infrared (NIR) wavelength region, is an 

inexpensive technique that provides relatively high sensitivity without the use of ionizing 

radiation (2).  Fluorescence imaging is rapid, allowing for dynamic, real-time monitoring 

of agent biodistribution and clearance profiles and is commonly performed concurrently 

on multiple animals in a relatively high-throughput manner.  In addition, the use of 

multiple filters or a liquid crystal tunable filter allows spectral discrimination and the 

ability to sequentially monitor multiple optical reporters at different wavelengths (4).  

Although typical in vivo optical imaging performed at the anatomical scale tends to suffer 

from relatively low spatial resolution, photon penetration can be long when working in 

the NIR tissue transparency window (λ ~ 650-900 nm) (5).  Here, photon absorption by 

hemoglobin and water is low, scattering is reduced and tissue autofluorescence is 

minimal, allowing photons to interrogate as much as centimeters of tissue (5, 6).   
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Exploitation of the tissue transparency window has led to the development of 

commercial optical imaging systems, such as the SoftScan platform for optical 

mammography, and clinical trials (7-16).  The use of optical mammography, as an 

alternative or adjuvant screening methodology to conventional x-ray mammography, is 

noninvasive, does not necessarily require breast compression for imaging, and employs 

non-ionizing radiation.  The lack of exposure to ionizing radiation is particularly 

important since some studies suggest that repeated exposure to x-rays may increase the 

incidence of breast cancers.   

Current research in the field of NIR optical mammography has focused on the 

study of both intrinsic and extrinsic contrast mechanisms.  Intrinsic tumor contrast 

measures of total, deoxy- and oxy-hemoglobin concentration provide functional 

information regarding vascularity and angiogenesis of the tumor as well as oxygen 

saturation and hypoxia (7-11).  Tissue scattering and lipid content offer insight into 

structural complexity, cellularity and fibrosis (9, 10).  Although these intrinsic 

characteristics have been correlated with malignancy and show clinical promise (7-11), 

the introduction of an exogenous contrast agent may provide enhanced specificity and 

sensitivity (12-16).  In fact, results from Ntziachristos and colleagues indicate that 

physiologically relevant NIR agent concentrations can be detected through 10-12 cm of 

breast tissue (6).  Furthermore, preliminary studies suggest that the administration of 

indocyanine green (ICG) may differentiate between diseased and normal human breast 

tissue in vivo (16).  This contrast enhancement presumably results from the preferential 

extravasation of ICG through blood vessels with increased permeability, such as those 

found in tumor tissues (17).  
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Additional physiologically relevant information may be obtained by targeting 

exogenous contrast agents to biological processes such as MMP expression (18), or 

cellular or intracellular proteins such as the peripheral benzodiazepine receptor (PBR) 

(19, 20).  PBR is a transmitochondrial membrane protein that is involved in a number of 

cellular process including steroidogenesis, cholesterol transport, cellular proliferation and 

apoptosis (21).  Although PBR is naturally expressed at various levels in many normal 

tissues, PBR has been shown to be highly upregulated in a variety of neurodegenerative 

diseases and cancers including breast cancer (21-28).  The overexpression of PBR even 

appears to correlate with aggressive phenotype (24) and the ability of some human 

metastatic breast cancer cells to grow in immunodeficient mice (25).  Clinically, the 

overexpression of PBR appears to be a strong predictor of poor prognosis (26).  Taken 

together, these observations indicate that conjugation of a signaling moiety to a high 

affinity PBR ligand should provide a MI agent that can be used to aid in enhancing tumor 

contrast in vivo, allowing earlier detection, diagnosis and further elucidation of disease. 

A number of exogenous high affinity PBR ligands have been developed, 

including PK11195 (29), FGIN-1-27 (30), 2-phenylindolglyoxylamide derivatives (31), 

DAA1106 (32, 33), Ro 5-4864 (34), and SSR180575 (35, 36).  Radiolabeled 3H- and 11C-

PK11195 have even been used clinically for human imaging of glioma, 

neurodegenerative disease, and stroke [reviewed in (23)].  Since PK11195 is not 

conjugable in its native form, our laboratory developed a conjugable derivative 

(conPK11195), which has since been coupled to a number of imaging moieties (19, 20, 

37, 38). 
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The utility of PBR-targeted optical MI agents for in vitro imaging and screening 

has been demonstrated in the literature (19, 20, 31, 37, 39).  The fluorescent NBD-FGIN-

1-27 (39) and 2-Phenylindolglyoxylamide-based (31) agents both appear to specifically 

label PBR in C6 rat glioma cells, but are limited for in vivo imaging due to the high 

autofluorescence of tissue, photon absorbance and scatter in the wavelength range of their 

excitation and emission profiles (~ 470 nm and ~ 540 nm, respectively).  One major 

advantage of the lanthanide chelate-based PBR-targeted MI agent (Ln-conPK11195) is 

the ability to provide multiple spectroscopic signatures depending upon the chelated 

lanthanide ion (ex. Eu3+ for optical imaging or Gd3+ for magnetic resonance imaging) (20, 

37).  The fluorescent Eu3+-conPK11195 compound also possesses inherent spectral 

resolution (~ 300 nm Stokes shift) and the capability to employ time-resolved imaging 

due to its long fluorescence lifetime (~ 500 µs) relative to endogenous chromophores      

(~ 4 ns) (40).  However, ultraviolet (UV) excitation is necessary to sensitize the 

lanthanide luminescence, which limits the use of Eu3+-conPK11195 in vivo.  Finally, 

Lissamine-conPK11195 appears to be PBR specific and has been used for both live cell 

imaging and high-throughput in vitro screening assays (19).  However, this compound 

also suffers from less than optimal absorbance and emission properties for noninvasive in 

vivo MI.   

Recently our laboratory has described the effective use of a NIR PBR-targeted 

probe, NIR-conPK11195, for in vivo imaging of colonic tumors in Smad3-/- mice (38).  

Here we report the concurrent investigations regarding the use of NIR-conPK11195 for 

imaging of breast cancer that further expand upon the published study.  Specifically, we 

demonstrate quantitative in vitro characterization of cellular uptake and PBR specificity 
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as well as significant in vivo contrast enhancement by NIR-conPK11195 in the MDA-

MB-231 mouse model of breast cancer. 

 

Materials and Methods 

Materials 

The IRDyeTM 800CW NHS Ester dye and IRDyeTM 800-acid (designated here as 

“free NIR dye”) were obtained from LI-COR Biosciences (Lincoln, NE).  

Dimethylsulfoxide (DMSO) was purchased from Fisher Scientific (Pittsburgh, PA).  

MDA-MB-231 cells were acquired from the American Type Culture Collection (ATCC; 

Manassas, VA).  Calcium- and magnesium-free phosphate buffered saline (CMF-PBS), 

fetal bovine serum (FBS), and Leibovitz’s L-15 media supplemented with 2 mM L-

glutamine were obtained from Invitrogen Corporation (Carlsbad, CA).  PK11195 was 

purchased from Sigma Aldrich (St. Louis, MI).  Female BALB/c immunodeficient mice 

(8-9 weeks of age and weighing 15-20 g) were obtained from Charles River Canada Inc. 

(Lasalle, St-Constant, Quebec).  

 

Synthesis and Characterization of NIR-conPK11195 

IRDyeTM 800CW NHS ester (2 mg, 1.7 μmol) and the conjugable form of 

PK11195 (conPK11195; 2.5 mg, 6.6 μmol) were mixed in DMSO (5 mL) in a round 

bottom flask and stirred under argon flow for one hour.  The reaction was monitored 

using HPLC analysis on a Varian Polaris C-18 column (250 × 4.6 mm) at a flow rate of 

0.8 mL/min.  Flow A was 20 mM tetrabutylammonium bromide in water and flow B was 

20 mM tetrabutylammonium bromide in 90 % acetonitrile and 10 % water.  The elution 
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method for analytical HPLC started with a linear gradient from 100 % to 50 % A over ten 

minutes, held at 50 % A for five minutes, arrived at 10 % A in another ten minutes, held 

at 10 % A for ten minutes, and finally returned to 100 % A over two minutes. The elution 

profile was monitored by absorbance at 254 (unreacted conPK11195) and 780 nm.  

Product was purified by preparative HPLC using a Varian Polaris C-18 column (250 × 

21.2 mm) at 17 mL/min.  The collected solution was concentrated by vacuum rotary 

evaporation, frozen to -78ºC and dried under a freeze-dry system.  The collected green 

solid was dissolved in DMSO and the undissolved tetrabutylammonium bromide was 

removed by centrifugation. The amount of NIR-conPK11195 was determined by 

absorption in DMSO solution at 797 nm (0.6 mg, 24 %).  Note: The λex,max = 797 nm in 

DMSO and λex,max = 777 nm in CMF-PBS. 

MS (ESI)+ [M+H]+ calcd 1366.4, found 1366.3.  1H NMR 500MHz (MeOD) δ 

8.55 (s, 1H), 8.10 (d, J=8.0 Hz, 1H), 7.97-7.89 (m, 2H), 7.85-7.77 (m, 7H), 7.67-7.46 (m, 

7H), 7.33 (d, J=8.5 Hz, 1H), 7.24 (d, J=8.5 Hz, 1H), 7.15 (d, J=8.5 Hz, 2H), 6.25 (d, 

J=14.0 Hz, 1H), 6.14 (d, J=14.0 Hz, 1H), 4.15-4.10 (m, 2H), 4.08-4.04 (m, 2H), 3.44 (t, 

J=7.0 Hz, 2H), 3.17 (q, J=2.5 Hz, 5H), 3.12 (t, J=2.0 Hz, 2H), 3.01 (q, J=2.5 Hz, 5H), 

2.89-2.85 (m, 2H), 2.77-2.69 (m, 4H), 2.15 (t, J=2.0 Hz, 2H), 2.03-2.00(m, 2H), 1.94-

1.90 (m, 6H), 1.79-1.75 (m, 2H), 1.67-1.63 (m, 5H), 1.49-1.46 (m, 2H), 1.37 (d, J=4.5 

Hz, 7H).  

For spectroscopic characterization, the absorbance spectra of free NIR dye and 

NIR-conPK11195 were measured using a Shimadzu UV-VIS 1700 spectrophotometer 

(Columbia, MD) and the emission spectra were measured using a PTI Technologies 

spectrofluorometer (Oxnard, CA).    
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Cell Culture 

The PBR overexpressing, human metastatic breast adenocarcinoma cell line 

(MDA-MB-231) was propagated in Leibovitz’s L-15 medium supplemented with 2 mM 

L-glutamine, 10 % fetal bovine serum (FBS), and 1 % penicillin-streptomycin or 50 mg 

gentamicin in seal plug culture flasks (Corning; Corning, NY) at 37 °C and 95 % 

humidity.  The medium was replaced every three days or as necessary.  After attaining 

confluence, the cells were sub-cultured approximately 1:2 to 1:10. 

 

In Vitro Fluorescence Microscopy 

MDA-MB-231 cells (~100,000) were plated in parafilm-wrapped, collagen-

coated glass bottom dishes (MatTek Corporation; Ashland, MA) 48 hours prior to 

experimentation.  The cells were first washed once with warmed FBS-free medium and 

then incubated with 10 μM NIR-conPK11195 or free NIR dye for 30 minutes at 37 °C.  

Subsequently, the cells were washed three times with CMF-PBS, fixed in 4 % 

paraformaldehyde for one hour at room temperature and washed twice again with CMF-

PBS.  A Nikon Eclipse TE2000-U fluorescence microscope equipped with a mercury 

lamp, indocyanine green (ICG) filter set and a Hamamatsu ORCA II BT 512 camera 

controlled by Metamorph v6.1 (Molecular Devices Corporation; Downingtown, PA) was 

used for imaging.   

 

In Vitro Uptake and Competition Studies 

MDA-MB-231 cells were plated at 10,000 cells per well in 96 MicroWell™ 

Nunclon™Δ Optical Bottom Plates (Nalge Nunc International; Rochester, NY) and 
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incubated under standard culture conditions for approximately 48 hours.  Immediately 

prior to experimentation, the cells were washed once with 37 °C FBS-free medium to 

remove any dead cells and serum.  The cells were then divided into four populations and 

evaluated in triplicate: (1) cells incubated with increasing concentrations of NIR-

conPK11195 (1 nM, 4 nM, 7 nM, 10 nM, 40 nM, 70 nM, 100 nM, 400 nM, 700 nM, 1 

μM) in FBS-free medium (100 μL volume), (2) cells simultaneously incubated with the 

same concentrations of NIR-conPK11195 and 100 µM PK11195, (3) cells incubated with 

the same concentrations of free NIR dye, and (4) undosed cells as blanks.  Following a 

30-minute incubation, the cells were gently washed twice with FBS-free medium and 

imaged on the Odyssey Infrared Imaging System (LI-COR Biosciences; Lincoln, NE) at 

169 μm resolution, 3 mm focus offset, and 4.0, 8.0 and 10.0 intensity (gain) in the 800 

nm channel.  The average raw fluorescence intensity of each population ± standard 

deviation was then plotted in terms of NIR-conPK11195 or free NIR dye concentration; 

n = 3.  The percent change in raw fluorescence intensity due to PK11195 competition was 

calculated as 100*
unblocked

unblockedblocked

FI
FIFI −

 where FI ≡ raw fluorescence intensity.   

 

Murine Model: Cell Implantation and Tumor Growth 

The in vivo imaging studies were performed at LAB Pre-Clinical Research 

International Inc. (Montreal, Canada) under approved LAB protocols.   

MDA-MB-231 cells were propagated until near confluency as described above.  

Cells were harvested by incubation with trypsin, pelleted by centrifugation, resuspended 

in sterile CMF-PBS, counted and assessed for viability (%) using trypan blue staining.  
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The cells were again pelleted by centrifugation, resuspended in sterile CMF-PBS at a 

concentration of 5 x 106 cells/100 μL and kept on ice.  Prior to cell implantation, the cell-

containing tube was gently inverted several times to assure proper cell distribution.  

Female BALB/c immunodeficient mice were finally injected with 5 x 106 MDA-MB-231 

cells (100 μL volume) subcutaneously at the level of the right scapula.  

 

In Vivo Imaging Studies 

After approximately three weeks of tumor growth, the MDA-MB-231 tumor 

bearing mice were injected with four nmoles of either free NIR dye or NIR-conPK11195 

in sterile saline via the tail vein (100 μL volume).  The biodistribution and accumulation 

of the free NIR dye and PBR-targeted probe were monitored in real time using the 

eXplore Optix pre-clinical optical molecular imager (GE/ART Advanced Research 

Technologies Inc., Saint-Laurent, Quebec) equipped with an excitation laser tuned to 780 

nm and an 830 nm long pass emission filter (Barr Associates; Westford, MA).  Images 

were obtained preinjection and approximately 10 minutes, 1 hour, 4 hours, 6 hours, 12 

hours, 24 hours, and 48 hours post-injection.  Approximately 48 hours post-injection, the 

mice were sacrificed and tissues were harvested (kidneys, liver, brain, and tumors), 

imaged and fixed in 10 % formalin.  The fixed tumors were then paraffin embedded, 

sliced and stained with hematoxylin and eosin (H & E) for histological characterization. 

 During the imaging sessions, the mice were kept on a heated animal support plate 

under general anesthesia by inhalation of 2.5 % isoflurane.  All animals were supplied 

with Tears Naturale P.M. (Alcon, Mississauga, ON). 
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 Throughout the study the step size, or spatial resolution, was maintained at 1.5 

mm.  However, the laser power (40 – 800 μW) and integration time (250 ms – 1 sec) 

were optimized at each individual time point using the peak value of the temporal point 

spread function (TPSF) to maximize the signal and avoid saturation.  Thus, the 

fluorescence intensity was subsequently normalized to laser power and integration time 

to allow for direct comparison between mice and over time.  For visualization purposes, 

images were smoothed using a linear interpolation algorithm in the OptiView Analysis 

Workstation software (ART Advanced Research Technologies, Inc). 

The data were processed in MATLAB (Mathworks Inc, Boston, MA) using 

custom code (Guobin Ma, ART), which allows specific regions of interest (ROIs) to be 

manually defined and quantified in terms of normalized integrated TPSF intensity.  For 

these studies, ROIs of equivalent size (9 mm x 6 mm) were drawn around the tumor itself 

and the opposite hind limb, defined as “normal” tissue.  The average normalized 

integrated TPSF intensities (± standard deviation) for each group were then plotted as a 

function of time post-injection to generate time activity curves and monitor 

pharmacokinetics.  To further determine tumor specificity, two contrast ratios were 

calculated: (1) the average ratio of the fluorescence intensity of the tumor regions relative 

to the normal tissue regions and (2) the ratio of the average fluorescence intensity of the 

tumors of the mice injected with NIR-conPK11195 relative to that of the tumors of the 

mice injected with free NIR dye. 
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Figure 3.1.  (A) Synthetic pathway, (B) relevant chemical structures and (C) 
spectroscopic properties of NIR-conPK11195 in CMF-PBS (λex = 777nm). 

Statistical Analysis 

Statistical significance was determined using a one-way analysis of variance 

(ANOVA) test and the Holm-Sidak method for pairwise multiple comparisons with an 

overall significance level of 0.05 (SigmaStat v3.10); most results obtained p < 0.001.  

  

Results and Discussion 

The PBR-targeted NIR MI agent, NIR-conPK11195, was easily synthesized by 

coupling the IRDyeTM 800CW NHS Ester dye to the primary amine on the conPK11195 

ligand previously developed in our laboratory [Figure 3.1A, B; (37)].  In CMF-PBS, 

NIR-conPK11195 exhibits an absorbance maximum centered at 777 nm with peak 

emission at 799 nm (λex = 777 nm; Figure 3.1C).  This spectroscopy is very similar to 

that of the IRDyeTM 800-acid (designated here as “free NIR dye”; λabs = 774 nm and λem 

= 796nm).  The absorbance and fluorescence spectra for NIR-conPK11195 are red shifted 
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Figure 3.2.  In vitro fluorescence microscopy illustrates 
appreciable NIR fluorescence and cellular uptake of NIR-
conPK11195 (A), but not free NIR dye (B).  MDA-MB-231 
cells were incubated with 10 μM NIR-conPK11195 (A) or free 
NIR dye (B) for 30 minutes at 37°C in FBS-free medium.  
Pseudocolored fluorescence images overlaid onto the 
corresponding white light images also provide evidence of 
nuclear and perinuclear localization of NIR-conPK11195. 

by only 3 nm relative to the free NIR dye and the Stokes shift is 22 nm for both 

compounds, suggesting that the spectroscopic properties of IRDyeTM 800CW were not 

substantially altered by the conjugation of conPK11195.  Furthermore, the NIR-

conPK11195 spectroscopy falls directly within the NIR tissue transparency window and 

thus overcomes some of the major in vivo limitations of other fluorescent PBR-targeted 

agents (19, 20, 31, 37, 39).   

To visualize cellular uptake of NIR-conPK11195 in comparison to free NIR dye, 

in vitro fluorescence microscopy was performed using PBR-overexpressing, human 

metastatic breast adenocarcinoma (MDA-MB-231) cells.  The fluorescence micrograph 

in Figure 3.2A 

illustrates 

appreciable NIR 

fluorescence and 

cellular uptake of 

NIR-conPK11195.  

Using the same 

experimental 

conditions, 

instrument settings, 

and grayscale 

dynamic range, the 

cells incubated with 

free NIR dye exhibit 
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Figure 3.3.  Cellular uptake and competition assays indicate significant dose 
dependent (p < 0.001) and PBR-specific (p < 0.001) cellular uptake of NIR-
conPK11195.  The average fluorescence intensity per well ± standard deviation as a 
function of NIR-conPK11195 concentration (unchallenged ( ) or in the presence of 
100 μM PK11195 ( )) or free NIR dye concentration ( ); undosed cells ( ) serve as 
a negative control for autofluorescence.  n = 3 wells.  

discernibly less fluorescence signal (Figure 3.2B).  In addition, the fluorescence overlay 

in Figure 3.2A provides evidence that the NIR signal is emanating from the nuclear and 

perinuclear region of the NIR-conPK11195 dosed cells, as one would expect from the 

nuclear and mitochondrial location of PBR in MDA-MB-231 cells (24).   

To further evaluate the cellular uptake and PBR-specificity of NIR-conPK11195, 

competitive binding assays were performed in a multiwell plate format.  Figure 3.3 

illustrates the significant (28-fold overall) increase in fluorescence intensity as a function 

of increasing NIR-conPK11195 concentration from 1 nM to 70 nM (p < 0.001; ).  It is 

unlikely that the observed dose-dependent uptake is actually due to nonspecific binding 
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since the cells dosed with the non-targeted, free NIR dye ( ) show significantly less 

fluorescence signal than those incubated with NIR-conPK11195 at each concentration   

(p < 0.001).  In fact, the cells dosed with free NIR dye remain statistically 

indistinguishable from the undosed blanks ( ).  Combined, these results suggest that the 

cellular uptake of NIR-conPK11195 is conPK11195-specific.  In addition, the significant 

(33-88 %) attenuation of the fluorescence intensity due to the presence of the PK11195 

ligand (p < 0.001; ) provides solid evidence for PBR-specificity. 

Although the competition assay included concentrations ranging from 1 nM to     

1 μM, the dynamic range of the Odyssey restricted the quantification of this assay to two 

orders of magnitude in incubation concentration for each of the three intensities scanned.  

The data presented in Figure 3.3 was acquired at an intensity setting of 10; all wells 

incubated with NIR-conPK11195 concentrations greater than 70 nM were saturated under 

these conditions and could therefore not be accurately quantified.  At the lower intensity 

settings, higher dosages were quantifiable while the lower concentrations remained in the 

noise.  The fluorescence intensity of the cells dosed with 100 nM to 1 μM NIR-

conPK11195 increased dramatically as a function of concentration and was presumed to 

result from nonspecifically binding to the lipid membrane of the cells or perhaps another 

protein altogether (data not shown).  However, more studies are necessary to determine 

the exact cause of this increased cellular uptake or association under these conditions. 

 In vivo imaging experiments were initiated after approximately three weeks of 

tumor growth.  The normalized fluorescence images taken pre- and post-injection of 

NIR-conPK11195 and free NIR dye are shown in Figures 3.4A and 3.4B for qualitative 

visualization of the in vivo biodistribution, clearance and accumulation of the PBR- 
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Figure 3.4.  Direct comparison of the biodistribution and accumulation of the 
PBR-targeted NIR-conPK11195 (A) and free NIR dye (B) in tumor-bearing 
mice demonstrates significantly different clearance profiles and enhanced 
preferential labeling of MDA-MB-231 tumors in vivo by NIR-conPK11195.  
Fluorescence images were normalized to laser power and integration time, 
overlaid onto the corresponding white light images, and displayed in terms of 
normalized photon counts over 48 hours post-injection (pi).  Images are 
representative of n = 3 mice per group. 
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targeted and non-targeted agents, respectively.  Prior to injection, the mice are essentially 

devoid of fluorescence, revealing the negligible autofluorescence of tissue in the 

exploited wavelength region.  Approximately 1 hour post-injection, both compounds 

exhibit fairly uniform distribution throughout the mice.  Over time the free NIR dye 

clears primarily through the kidneys and demonstrates a more rapid clearance profile than 

NIR-conPK11195, which is cleared through both the renal and hepatobiliary systems.  

Ultimately, NIR-conPK11195 preferentially accumulates in the tumor regions to a 

significantly greater extent than the free NIR dye (p < 0.001 from 4 – 48 hours post-

injection; quantitation discussed below).  This enhanced fluorescence signal in the MDA-

MB-231 tumors of the mice injected with NIR-conPK11195 is consistent with our in 

vitro observations of conPK11195- and PBR-specific cellular uptake of NIR-

conPK11195. 

Figure 3.5 further illustrates the ability to discriminate tumor from normal tissue 

at 48 hours post-injection due to the substantial signal enhancement of breast tumors 

from the PBR-targeted MI agent (A,C) over the free NIR dye (B,D).  The tumor regions 

of the mice injected with free NIR dye (B,D) show some detectable fluorescence signal, 

presumably due to the enhanced permeability and retention (EPR) effect (17).  However, 

the in vivo (A) and harvested (C) tumors of the mice injected with NIR-conPK11195 are 

on average 5-fold more intense (p < 0.001) than the mice injected with free NIR dye, and 

maintain significant tumor to normal contrast from 4 to 48 hours post-injection 

(quantitation discussed below). 

To statistically evaluate the in vivo utility and effectiveness of our PBR-targeted 

NIR-conPK11195 agent, the fluorescence intensity of the tumor and normal (muscle) 
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Figure 3.5.  NIR-conPK11195 preferentially labels MDA-MB-231 tumors in vivo, 
substantially enhances the tumor-associated signal over free NIR dye and provides 
functional information without compromising the tumor to normal ratio (see Figure 
3.6).  (A, B) Fluorescence overlays of MDA-MB-231 tumor-bearing mice ~48 hours pi of 
NIR-conPK11195 and free NIR dye, respectively.  (C, D) Fluorescence overlays of the 
tissues harvested from mouse A and B, respectively.  Representative of n = 3 mice per group.

tissue regions were quantified in terms of normalized integrated TPSF intensity.  Time 

activity curves generated from these measurements allow quantitative evaluation of the 

clearance rate and accumulation of NIR-conPK111195 and free NIR dye in vivo.  Two 

noticeably distinct clearance profiles for NIR-conPK11195 (  tumor,  normal) and free 

NIR dye (  tumor,  normal) are seen in Figure 3.6.  More specifically, the time 

necessary to clear half of the maximum fluorescence intensity occurring at 10 minutes 

post-injection is ~10 hours for the NIR-conPK11195, but only ~3 hours for the free NIR 

dye (estimated from Figure 3.6).  We attribute the differences in t1/2 primarily to the 

targeting capabilities of NIR-conPK11195 and the polarity differences between the two 

agents.  HPLC analysis indicates that free NIR dye is more hydrophilic than NIR-

conPK11195 (data not shown), which should result in more rapid excretion from the 
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Figure 3.6.  Time activity curves illustrate the distinct clearance profile of NIR-
conPK11195 relative to free NIR dye, further demonstrate tumor specificity of 
NIR-conPK11195 in vivo, and reveal the significant signal enhancement resulting 
from the PBR-targeted NIR MI probe. 
 

blood stream.  The increased lipophilicity of NIR-conPK11195 may also lead to more 

cellular membrane interactions than the free NIR dye.     

Figure 3.6 also illustrates the significant accumulation of NIR-conPK11195 in the 

tumor ( ) relative to the normal muscle tissue ( ), as well as compared to the tumor ( ) 

and normal ( ) tissue of the mice injected with free NIR dye.  This tumor-specific 

accumulation of NIR-conPK11195 can be quantitatively expressed in terms of two 

contrast ratios: (1) Tumor:Normal Ratio – the fluorescence intensity of the tumor regions 

relative to the normal regions of the tumor-bearing mice and (2) PBR-targeted:Free Ratio 

- the average intensity of the tumors in mice injected with the PBR-targeted agent (NIR-
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Table 3.1.  ROI Contrast Ratios 

~ Time PI (hr)
NIR-conPK11195: 
Tumor/Normala

Tumor: PBR-
Targeted/Freeb

0 1.0 0.8
0.2 1.4 0.5*
1 1.6 0.9
4 1.8* 2.7*
6 2.0* 4.4*
12 2.9* 6.0*
18 3.6* 5.7*
24 5.6* 7.0*
48 11.3* 4.9*

   region relative to the normal tissue region of mice injected
   with NIR-conPK11195

   the mice injected with NIR-conPK11195 relative to the
   average fluorescence intensity of the tumor regions of the
   mice injected with free NIR dye

   of variance (ANOVA) test and the Holm-Sidak method of 
   pairwise multiple comparisons with an overall significance 
  level of 0.05

b The average fluorescence intensity of the tumor regions of

 * Statistically significant according to a one-way analysis 

a The average ratio of the fluorescence intensity of the tumor

conPK11195) relative to the average intensity of the tumors in mice injected with the free 

NIR dye (Table 1, Figure 3.7).  

The intensity in the tumor region 

due to accumulation of NIR-

conPK11195 becomes 

significantly greater than the 

fluorescence intensity of the  

normal tissue four hours post-

injection (p < 0.001), 

demonstrating preferential 

labeling of MDA-MB-231 tumors 

in vivo.  The contrast 

enhancement steadily increases to 11-fold at 48 hours post-injection of NIR-conPK11195 

and remains statistically significant (p < 0.001).  Interestingly, the Tumor:Normal ratio 

for free NIR dye also increases to 11-fold as a function of time post-injection.  This 

contrast, however, is most likely due to the EPR effect rather than tumor-targeting (17) 

and provides complementary information regarding the leakiness of the tumor 

vasculature.  Furthermore, conjugation of the PK11195 analogue to the NIR dye provides 

a significant 3-7 fold contrast enhancement over the free NIR dye as demonstrated by the 

PBR-targeted/free contrast ratio (Table 1 and Figure 3.7; p < 0.001).  This substantial 

signal enhancement not only provides tumor specificity over compound pooling and 

functional information regarding the suspected lesion, but also may allow for detection of 

smaller and/or deeper tumors.   
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Figure 3.7.  Graphical representation of the PBR-targeted to free NIR dye 
ratio demonstrating significant fluorescence signal enhancement from the 
NIR-conPK11195 relative to the free NIR dye.  *p < 0.001 

 Overall, this study describes the utility of NIR-conPK11195 for in vitro and in 

vivo breast cancer screening and monitoring.  The cellular uptake of NIR-conPK11195 

can be visualized by fluorescence microscopy, quantified in live-cell competition assays, 

and monitored in an in vivo model of breast cancer.  These studies demonstrate 

significant dose dependent (p < 0.001) and PBR-specific (p < 0.001) cellular uptake of 

NIR-conPK11195 in vitro.  In vivo, NIR-conPK11195 provides an 11-fold contrast 

enhancement over normal tissue (p < 0.001) and a significant 7-fold improvement in 

fluorescence signal with respect to free NIR dye (p < 0.001).  In theory, this signal 

enhancement could translate into increased sensitivity and therefore allow the detection 

of smaller and/or deeper tumors.  NIR-conPK11195 will certainly prove useful in small 
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animal models of disease to provide physiologically relevant information about tumor 

tissues as well as to facilitate therapeutic efficacy monitoring and drug discovery.   In 

addition, the PBR-targeted NIR-conPK11195 may contribute to the development and 

clinical use of optical mammography.   
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Abstract 

Maximum surgical resection is predominantly believed to improve the clinical 

prognosis of primary brain tumors and secondary brain metastases.  However, the extent 

of surgical resection is often compromised due to difficulties in accurately determining 

tumor location and ill-defined tumor boundaries as well as the desire to preserve eloquent 

normal brain tissue.  In an effort to overcome some of the limitations of the commonly 

used image-guided surgery techniques, two PBR-targeted MI agents were assessed for 

their applicability to aid in primary brain tumor demarcation (Eu3+-conPK11195) and the 

study of secondary brain metastases in vivo (NIR-conPK11195).   

The use of Eu3+-conPK11195 as a topical agent for labeling brain tumors was 

evaluated in an intracranial rat model of glioma.  Preliminary imaging results 

demonstrate substantial localized fluorescence in the tumor-bearing hemisphere, while 

the contralateral normal brain is relatively devoid of fluorescence.  These observations 

suggest that Eu3+-conPK11195 preferentially bound to the tumor tissue over normal brain 

tissue and may therefore be useful for intraoperative labeling of gliomas.  Next, the use of 

NIR-conPK11195 to study breast cancer metastases to the brain was evaluated in an 

intracranial breast cancer (MDA-MB-231) model of secondary brain metastases.  In vivo 

imaging studies and quantitative time activity curves demonstrate distinct clearance 

profiles for NIR-conPK11195 and free NIR dye, resulting in preferential labeling of the 

MDA-MB-231-bearing hemisphere by NIR-conPK11195.  Quantification of the tumor-

to-normal and PBR-targeted-to-free contrast ratios further indicate that NIR-conPK11195 

provides significantly enhanced fluorescence signal over the normal tissue (p < 0.005) 

and the non-targeted fluorophore (p < 0.001).  Overall, these preliminary observations 
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indicate that PBR-targeted fluorescent agents may be useful in the management of 

primary brain tumors and secondary brain metastases.    

     

Introduction 

Both primary brain tumors and secondary brain metastases are often treated by 

maximum surgical resection followed by chemotherapy and/or radiation (1-4).  Surgical 

resection provides cytoreduction of tumor mass as well as immediate symptomatic 

benefits including the reduction of intracranial hypertension, seizures and neurological 

deficits from the mass effect of the tumor (4, 5).  Importantly, the extent of surgical 

resection is predominantly believed to correlate with improved clinical prognosis, 

increased time to recurrence and overall patient survival [reviewed in (1-4)].  However, 

the degree of surgical resection is often compromised due to difficulties in accurately 

determining tumor location and ill-defined tumor boundaries as well as the desire to 

preserve eloquent normal brain tissue. 

A number of techniques have been employed to aid in intraoperative tumor 

localization in an attempt to perform more aggressive resections without inducing 

neurological deficits. Surgical navigation systems based on preoperative images are 

commonly used to intraoperatively guide tumor resections.  However, the accuracy of 

these systems is limited by the sensitivity of the preoperative imaging modality 

[computed tomography (CT) or magnetic resonance imaging (MRI)] as well as spatial 

inaccuracies due to registration errors and intraoperative brain deformation (6, 7).  The 

use of intraoperative ultrasound (iUS), intraoperative magnetic resonance imaging (iMRI) 

and intraoperative computed tomography (iCT) provide the advantage of real-time (or 
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near-real time) feedback regarding tumor boundaries and extent of resection, but also 

possess associated disadvantages (6).  Additional echogenic signals resulting from the 

contused brain, irrigation fluid and peritumoral edema decrease the accuracy of iUS, 

particularly as surgery progresses (8, 9).  iMRI systems are expensive, not particularly 

compatible with standard operating room equipment, and limit patient access, while iCT 

systems expose the patient and neurosurgeons to ionizing radiation.   

In an effort to overcome some of the limitations of the commonly used image-

guided surgery techniques, a number of optical methods have also been explored for 

intraoperative brain tumor demarcation.  Optical spectroscopy (OS) is an inexpensive, 

portable and easily integrated intraoperative imaging modality that detects spectral 

differences between diseased and normal tissue (10-12).  While the sensitivity (80 – 

100%) and specificity (76 – 93%) of current generation OS devices are useful, the small 

area of tissue interrogated by the probe (600 x 670 µm) and the short photon penetration 

depth (< 500 µm) limit its clinical incorporation, particularly for cancer screening 

applications (11, 12).  In addition, the probe-based system requires tissue contact and 

only provides single-point spatial information.  However, translation of probe-based 

optical spectroscopy to spectral imaging, which provides spectroscopic characterization 

at each pixel, has recently been explored (13).  Several studies have also reported the use 

of exogenous agents for brain tumor demarcation including fluorescein (14, 15), 

indocyanine green (ICG) (16, 17), Cy5.5-CLIO (18, 19), and Quantum dots (Qdots) (20) 

as well as 5-aminolevulinic acid (ALA)-induced fluorescence (21-23).  Although each of 

these agents appears to preferentially label tumor tissues and possesses unique 

advantages, they are also limited in their clinical applicability.  These disadvantages 
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include brief temporal contrast (fluorescein-based agents and ICG), potential toxicity 

(Qdots), and predominant uptake by tumor-infiltrating macrophages and microglia rather 

than tumor cells (Cy5.5-CLIO and Qdots).  In addition, the short tissue penetration by 

fluorescein-based agents and ALA-induced porphyrin fluorescence may be beneficial for 

intraoperative surgical resection, but is a clear limitation for in vivo cancer screening 

applications.  The use of targeted molecular imaging agents with time-resolved 

capabilities (for intraoperative surgical resection guidance) or NIR spectroscopy (for in 

vivo cancer screening) should overcome some of the aforementioned limitations and 

provide further functional information regarding the tumor phenotype.  

The peripheral benzodiazepine receptor (PBR) represents an attractive target for 

imaging of both primary and secondary brain tumors since PBR has been shown to be 

upregulated in both glioblastomas (the predominant primary brain tumor) (24, 25) and 

breast cancer (the second most common origin site of brain metastases) (26, 27).  

Clinically, the expression of PBR appears to correlate with aggressive phenotype (27) 

and is a strong predictor of poor prognosis (28).   

A number of exogenous PBR-targeting ligands (29-36) and fluorescence-based 

imaging agents (31, 37-40) have been synthesized.  The lanthanide chelate-based Eu3+-

conPK11195 (37, 38) and near infrared (NIR) NIR-conPK11195 (41, 42) were developed 

in our laboratory.  Both compounds possess unique advantages over previously reported 

agents.  Eu3+-conPK11195 offers high spectral resolution due to a large Stokes shift (~ 

300 nm), can be detected with the naked eye, and is more resistant to photobleaching than 

typical organic fluorophores.  The long fluorescence lifetime of Eu3+-conPK11195 (~500 

µsec) relative to endogenous compounds such as collagen, elastin and NADH (~4 ns) 
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enables the use of time-resolved imaging or gated detection techniques and thus the 

capability to work in a low background regime (43).  Combined, these spectroscopic 

properties suggest that Eu3+-conPK11195 is particularly amenable to surgical resection 

guidance following topical application.  On the other hand, NIR-conPK11195 (λex = 777 

nm and λem = 799 nm in saline) exploits the NIR tissue transparency window (44) to 

provide increased photon penetration and better signal localization as well as the ability 

to monitor in vivo disease progression in real-time (41, 42). 

Previous studies have demonstrated cellular uptake and PBR-specificity of Eu3+-

conPK11195 and NIR-conPK11195 in C6 rat glioma cells (38) and MDA-MB-231 

human metastatic breast adenocarcinoma cells (42), respectively.  In addition, NIR-

conPK11195 has been shown to preferentially label MDA-MB-231 cells in vivo with an 

11-fold contrast enhancement over normal tissue and a 5- to 7-fold enhancement over 

free NIR dye (42).  Here, we report an extension of these observations and exploit the 

unique spectroscopic characteristics of the two agents to demonstrate the potential 

applicability of using Eu3+-conPK11195 as a topical agent for brain tumor demarcation 

and NIR-conPK11195 as a molecular imaging agent to study breast cancer metastases to 

the brain.  

 

Materials and Methods 

Materials    

The IRDye® 800CW NHS Ester dye and IRDye® 800-acid (free NIR dye) were 

obtained from LI-COR Biosciences (Lincoln, Nebraska).  Dimethylsulfoxide (DMSO) 

was purchased from Fisher Scientific (Pittsburgh, PA).  MDA-MB-231 cells, C6 cells, 
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and horse serum were acquired from the American Type Culture Collection (ATCC; 

Manassas, VA).  Calcium- and magnesium-free phosphate buffered saline (CMF-PBS), 

Leibovitz’s L-15 media supplemented with 2 mM L-glutamine, Dulbecco’s Modified 

Eagle Medium (DMEM)-F12 medium, fetal bovine serum (FBS), and gentamicin sulfate 

were obtained from Invitrogen Corporation (Carlsbad, CA).  Wistar rats and female 

athymic nude (nu/nu) mice were obtained from Charles Rivers Laboratories, Inc. 

(Wilmington, MA).   

 

PBR-Targeted Molecular Imaging Agents 

Eu3+-conPK11195 (37) and NIR-conPK11195 (41, 42) were synthesized, purified 

and characterized as previously described.  For spectroscopic characterization, the 

absorbance spectra of Eu3+-conPK11195, free NIR dye and NIR-conPK11195 were 

measured using a Shimadzu UV-VIS 1700 spectrophotometer (Columbia, MD) and the 

emission spectra were measured using a PTI Technologies spectrofluorometer 

(Birmingham, NJ).    

 

Cell Culture 

C6 rat glioma cells were propagated in DMEM-F12 medium, 15% horse serum, 

2.5% FBS, and 50 mg gentamicin sulfate in vented culture flasks (Corning; Corning, NY) 

at 37 °C, 5 % CO2 and 95 % humidity.  MDA-MB-231 (human metastatic breast 

adenocarcinoma) cells were propagated in Leibovitz’s L-15 medium supplemented with 2 

mM L-glutamine, 10% FBS, and 50 mg gentamicin in seal plug culture flasks at 37 °C 
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and 95 % humidity.  The medium was replaced every three days or as necessary.  After 

attaining confluence, the cells were sub-cultured approximately 1:2 to 1:10. 

 

Animal Models 

Animal studies were performed under guidelines approved by the Institutional 

Animal Care and Use Committee (IACUC) at Vanderbilt University.   

A rat model of glioma was prepared by intracranially implanting C6 cells into 

Wistar rats to evaluate the applicability of using Eu3+-conPK11195 as a topical agent for 

brain tumor demarcation.  A mouse model of breast cancer metastasis to the brain was 

prepared by intracranially implanting MDA-MB-231 cells into athymic nude (nu/nu) 

mice to evaluate the use of NIR-conPK11195 for studying metastases to the brain in vivo 

with the future potential for intraoperative surgical resection guidance.   

First, an incision was made in the midline of the cranium and a 2-mm burr hole 

was drilled into the bone overlying the right hemisphere 2.5 mm anterior and 2.5 mm 

lateral to the bregma under microscopic guidance.  C6 cells (1 x 105 in 5 μL sterile saline; 

Wistar rat) or MDA-MB-231 cells (1 x 106 cells in 4 μL of sterile saline; nu/nu mouse) 

were then stereotactically injected intracranially into the basal ganglia to a depth of 3 mm 

(rat) or 2 mm (mouse).  Following injection, the skin was closed with sterile surgical 

staples, which were removed after seven days following confirmation of healing.   

 

Imaging Studies 

 To evaluate the applicability of using Eu3+-conPK11195 as a topical imaging 

agent for brain tumor demarcation, a craniotomy was first performed to expose the rat’s 
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brain.  Then, approximately 100 μL of 100 μM Eu3+-conPK11195 was applied topically 

in a dropwise manner to the exposed tumor-bearing and contralateral normal brain 

hemispheres.  Following a ten minute incubation, the rat’s brain was washed three times 

with CMF-PBS and imaged with a simple imaging setup.  An ultraviolet (UV) light 

curing system (SunSpot SM, Uvitron International; West Springfield, MA) equipped with 

a 100W mercury lamp was as used the excitation source.  The excitation light traveled 

through a liquid core light guide and was filtered through a UG11 Schott filter (λex = 

320nm) directed onto the rat’s brain.  The emitted light was collected through an 

objective lens, passed through a TRITC/DiI emission filter (λem = 610/75 nm; Chroma; 

Rockingham, VT) and detected with the QImaging Micropublisher High Resolution 

Digital CCD Color Camera. 

To evaluate the in vivo use of NIR-conPK11195 for studying breast cancer 

metastases to the brain, tumor-bearing and non-tumor-bearing mice were injected with 10 

nmoles of either free NIR dye or NIR-conPK11195 in sterile saline via the tail vein (100 

µL) two weeks post-implantation.  The biodistribution and accumulation of the free NIR 

dye and PBR-targeted probe were monitored in real-time using the IVIS Imaging System 

200 (Xenogen Corporation/Caliper LifeSciences; Alameda, CA) equipped with an 

indocyanine green (ICG) excitation and emission filter set (710 – 760 nm and 810 – 875 

nm, respectively).  Images were obtained pre-injection and approximately five minutes, 

4.5 hours, 8.5 hours, 12.5 hours, and 24.5 hours post-injection using the following 

instrument settings: 7 seconds exposure time, medium binning (8 x 8 pixels), f/stop of 8 

and FOV D (19.5 cm x 19.5 cm).  The mice were then imaged longitudinally once a week 

for three consecutive weeks.  On the fifth week post-implantation, the mice were 
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sacrificed approximately 25 hours post-injection and the harvested brains, the remaining 

exposed head cavities and pieces of suspected tumor growth out of the brain (if 

applicable) were imaged using the same IVIS instrument parameters.  The brains and 

suspected tumor tissues were fixed in 4% paraformaldehyde followed by ethanol 

dehydration.  The fixed tissues were then paraffin embedded, sliced and stained with 

hematoxylin and eosin (H&E) for histological characterization.   

During the imaging sessions, the mice were kept on a heated animal support plate 

under general anesthesia by inhalation of 2-3% isoflurane.  Anesthesia was initiated in an 

induction chamber.   

The data were processed in Living Image® Software Version 2.50 (Xenogen 

Corporation).  Regions of interest (ROIs) of equivalent size were drawn over the tumor-

bearing hemisphere and a normal (muscle) region defined on the hindlimb of the mice.  

The average total photon flux (photons/second) ± standard deviation for each group were 

plotted as a function of time post-injection to generate time-activity curves and to 

monitor clearance rate and accumulation of the PBR-targeted and non-targeted probes (n 

= 2-3).  In addition, three contrast ratios were calculated to further determine tumor 

specificity: (1) the average ratio of the fluorescence intensity of the tumor-bearing 

hemisphere relative to the normal tissue, (2) the ratio of the average fluorescence 

intensity of the tumor-bearing hemispheres of the mice injected with NIR-conPK11195 to 

that of the tumor-bearing hemispheres of the mice injected with free NIR dye and (3) the 

ratio of the average fluorescence intensity of the tumor-bearing hemispheres of the 

tumor-bearing mice relative to the average fluorescence intensity of the “tumor” regions 

of the non-tumor-bearing control mice. 
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Statistical Analysis 

Statistical significance was determined using a one-way analysis of variance 

(ANOVA) test and the Holm-Sidak method for pairwise multiple comparisons with an 

overall significance level of 0.05 (SigmaStat v3.10). 

 

Results and Discussion 

 An intracranial rat glioma model was employed to evaluate the applicability of 

using a PBR-targeted lanthanide chelate-based molecular imaging agent (Eu3+-

conPK11195) to preferentially label brain tumor cells, with a potential application to 

intraoperative brain tumor demarcation.  Preliminary imaging results following the 

topical application of Eu3+-conPK11195 on a glioma-bearing rat’s brain are shown in 

Figure 4.1.  Substantial localized fluorescence is apparent in the tumor-bearing 

hemisphere as diagnosed by the attending neurosurgeon (Figures 4.1A,B).  Conversely, 

the non-tumor-bearing hemisphere exhibits a relative lack of fluorescence signal (Figures 

4.1C,D).  To allow for better spatial orientation, the fluorescence images collected for the 

suspected tumor region is overlaid onto the white light image of the skull and brain 

(Figure 4.1E).  Combined, these results suggest that the PBR-targeted lanthanide chelate-

based MI agent preferentially bound to the tumor tissue over the contralateral normal 

brain tissue.  Although more animal studies with additional histological characterization 

are necessary to confirm C6- and PBR-specific labeling by Eu3+-conPK11195, these 

preliminary imaging results suggest that Eu3+-conPK11195 may be useful for 

demarcation of gliomas, particularly for intraoperative surgical resection guidance.   
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Figure 4.1. Fluorescence molecular imaging of a rat glioma model following topical 
Eu3+-conPK11195 application for brain tumor demarcation.  (A) Fluorescence and 
(B) white light images of the C6 glioma-bearing region of a rat’s brain following topical 
application of Eu3+-conPK11195.  (C) Fluorescence and (D) white light images of the 
contralateral normal hemisphere following dosing with Eu3+-conPK11195.  (E) Overlay 
of the fluorescence images of the tumor region (A) and opposite normal hemisphere (C) 
onto the white light image of the skull and brain for spatial orientation. 
 

The potential to use Eu3+-conPK11195 to label tumor tissue is advantageous over 

previously reported intraoperative optical agents for several reasons.  First, the PBR-

specific Eu3+-conPK11195 is a targeted imaging agent that provides physiological 

information regarding PBR expression levels, which have been shown to be indicative of 

clinical prognosis (28).  In addition, the antenna-sensitized Eu3+ fluorescence is 

inherently spectrally resolved (Stokes shift ~ 300nm), and can be detected either with the 

naked eye or using simple instrumentation.  Under the circumstances where enhanced 

detectability is necessary, the sensitivity could be further improved by exploiting the long 

fluorescence lifetime (on the order of ~ 500 μs) relative to endogenous compounds (~ 4 

ns) and implementing gated imaging techniques to work in a low background regime.  

Finally, by substituting gadolinium (Gd3+) for the Eu3+ ion, the Ln-conPK11195 complex 

could provide MRI contrast with T1 relaxivity comparable to the commonly used MR 
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agent Magnevist (38).  Simultaneous delivery of a “cocktail” of the PBR-targeted 

fluorescent Eu3+-conPK11195 and MR active Gd3+-conPK11195 could potentially allow 

for bimodal imaging, which has been successfully demonstrated in in vitro C6 glioma 

cells (38).   

Although Eu3+-conPK11195 shows promise as a topical imaging agent for brain 

tumor demarcation (Figure 4.1) with the possibility of intraoperative surgical resection 

guidance, the capabilities of this probe for in vivo or deep tissue imaging are limited by 

the photon penetration depth in the wavelength range of its excitation and emission 

profiles (centered around 320 nm and 610 nm, respectively).  Thus, we evaluated the 

applicability of using a NIR-labeled conPK11195 agent to label intracranial tumors in 

vivo to study breast cancer metastases to the brain.  For this study, we stereotactially 

implanted MDA-MB-231 human metastatic breast adenocarcinoma cells into the brains 

of athymic nu/nu mice.  Tumor-bearing and non-tumor-bearing mice were injected with 

10 nmoles of NIR-conPK11195 or free NIR dye via the tail vein.  The biodistribution, 

clearance rate and accumulation of the PBR-targeted and non-targeted probes were 

monitored in real-time using the IVIS Imaging System 200 equipped with an ICG filter 

set. 

Fluorescence images taken approximately 25 hours post-injection of NIR-

conPK11195 or free NIR dye are shown in Figures 4.2A-D, displayed on a color bar 

scale ranging from 0 to 1x108 photons/sec/cm2/sr.  To further highlight the tumor 

specificity of NIR-conPK11195, the images from A-D are displayed on a smaller 

dynamic range (7x107 to 8.6x107 photons/sec/cm2/sr) in Figure 4.2E-H.  The harvested 

brains from each of these mice (Figures 4.2I-L) as well as the exposed head cavities of 
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mouse A (representative of tumor-bearing mice injected with NIR-conPK11195; Figure 

4.2M) and mouse C (representative of non-tumor-bearing mice injected with NIR-

conPK11195; Figure 4.2O) are also shown, displayed on a color bar scale ranging from 

1.2x108 to 2.0x108 photons/sec/cm2/sr.  The head cavities of mice B (representative of 

tumor-bearing mice injected with free NIR dye) and D (representative of non-tumor-

bearing mice injected with free NIR dye) are devoid of fluorescence and are not shown.  

Increased fluorescence intensity is apparent in the right tumor-bearing hemisphere of the 

mouse’s brain twenty-five hours post-injection of NIR-conPK11195 (Figures 4.2A,E,I), 

suggesting preferential uptake of the PBR-targeted imaging agent by tumor tissue over 

the contralateral normal brain.  Conversely, the non-tumor-bearing mouse injected with 

NIR-conPK11195 demonstrates fairly uniform residual fluorescence (Figure 4.2C) as 

well as a lack of fluorescence signal in the harvested brain (Figure 4.2G) ~ 25 hours post-

injection.  The uniformly distributed fluorescence intensity in the normal tissues of both 

the tumor-bearing (Figure 4.2A) and non-tumor-bearing (Figure 4.2C) mice injected with 

NIR-conPK11195 is similar in magnitude and presumably results from the ubiquitous 

expression of PBR, albeit significantly lower than that of MDA-MB-231 cells (26).  In 

addition, the free NIR has cleared to approximately baseline levels from both the tumor-

bearing (Figure 4.2B,F,J) and non-tumor-bearing (Figure 4.2D,H,L) mice injected with 

the non-targeted fluorophore.   

The images in Figure 4.2 indicate preferential uptake of NIR-conPK11195 by the 

MDA-MB-231 tumor-bearing brain tissue over the contralateral (Figure 4.2A,E) and non-

tumor-bearing normal brain (Figure 4.2C,G).  In addition, the absence of fluorescence 

~25 hours post-injection of free NIR dye in the tumor-bearing mice (Figure 4.2B,F)  
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Figure 4.2.  Fluorescence images and fluorescence overlays approximately 25 
hours post-injection of NIR-conPK11195 or free NIR dye in tumor-bearing and 
non-tumor-bearing mice.  (A) Tumor-bearing mouse injected with NIR-
conPK11195, (B) Tumor-bearing mouse injected with free NIR dye, (C) Non-tumor-
bearing mouse injected with NIR-conPK11195, (D) Non-tumor-bearing mouse 
injected with free NIR dye, (E-H) Images from A-D displayed on a smaller dynamic 
range to highlight the tumor-specificity of NIR-conPK11195, (I-L) Harvested brains 
from mice A-D, respectively, (M) Skull piece with tumor growth outside of brain and 
exposed head cavity from mouse A, (N) Histological characterization of the tumor 
growth outside of brain in M, (O) Exposed head cavity from mouse C. 
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indicates that the uptake of NIR-conPK11195 is conPK11195-specific rather than simply 

due to the enhanced permeability and retention effect (EPR) present in tumors (45).  This 

observation is in agreement with previous studies that have demonstrated PBR-specificity 

of NIR-conPK11195 in in vitro MDA-MB-231 cells as well as an up to 7-fold contrast 

enhancement of in vivo MDA-MB-231 xenografts labeled with NIR-conPK11195 (42).  

However, the fluorescence signal in the in vivo mouse head (Figure 4.2A) appears to 

emanate from other tissues (Figure 4.2M) in addition to the tumor-bearing brain 

hemisphere (Figure 4.2I).  At least some of this additional fluorescently-labeled tissue 

includes MDA-MB-231 tumor growth outside of the brain (seen attached to a piece of the 

mouse’s skull in Figure 4.2M with histological characterization shown in Figure 4.2N).  

Low levels of uptake by the skin and normal tissues appear to be similar in magnitude to 

the normal uptake in non-tumor-bearing mice (Figure 4.2C,O).  However, inflammation 

may also contribute to some of this uptake.  Microglia, the major immune cells of the 

brain, and macrophages have been shown to upregulate PBR expression upon activation 

and as a function of certain central nervous system (CNS) disorders [reviewed in (46)].  

Thus, ongoing and future studies are aimed at expanding the histological characterization 

to determine the exact cellular population that is taking up NIR-conPK11195.   

To quantitatively evaluate the in vivo utility and effectiveness of our PBR-

targeted NIR-conPK11195 agent to study breast cancer metastases to the brain, the 

fluorescence intensity of the right brain hemisphere and normal tissue (muscle) regions 

were quantified in terms of total photon flux (photons/second) using equivalently sized 

ROIs.  Figure 4.3 displays the time activity curves generated from these measurements, 

allowing quantitative evaluation of the clearance rates and accumulation of NIR- 
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Figure 4.3.  Time activity curves for intracranial MDA-MB-231 tumor-bearing 
(solid lines) and non-tumor-bearing (dashed lines) mice.  ( ) Tumor or equivalent 
“tumor” region of mice injected with NIR-conPK11195, ( ) Normal (muscle) region 
of mice injected with NIR-conPK11195, ( ) Tumor or equivalent “tumor” region of 
mice injected with free NIR dye, ( ) Normal (muscle) region of mice injected with 
free NIR dye.  The time activity curves illustrate distinct clearance profiles for NIR-
conPK11195 and free NIR dye, demonstrate tumor specificity of NIR-conPK11195, 
and reveal the significant signal enhancement resulting from the PBR-targeted NIR 
MI agent. 

conPK111195 and free NIR dye in vivo.  In tumor-bearing mice, the time necessary to 

clear half of the maximum fluorescence intensity in the tumor regions was approximately 

ten hours for NIR-conPK11195 (Figure 4.3 , solid line) and approximately three hours 

for free NIR dye (Figure 4.3 , solid line); these clearance rates are in agreement with the 

previously reported clearance rates of NIR-conPK11195 and free NIR dye in MDA-MB-

231 xenografts (42).  However, the time necessary to clear half of the maximum 

fluorescence intensity in the equivalent “tumor” regions of the non-tumor-bearing mice 
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was only ~5 hours for NIR-conPK11195; the t1/2 of the free NIR dye was ~3 hours in both 

the tumor-bearing and non-tumor-bearing mice.  Figure 4.3 also illustrates the significant 

accumulation of NIR-conPK11195 in the tumor-bearing hemispheres of the tumor-

bearing mice ( , solid line ) relative to their normal muscle tissue ( , solid line) as well 

as the significant contrast enhancement compared to free NIR dye (solid lines,  and ♦).  

The statistical significance of the contrast enhancement can be evaluated by calculating 

three valuable contrast ratios: (1) Tumor/Normal: the average ratio of the fluorescence 

intensity of the tumor-bearing hemisphere relative to the normal (muscle) tissue, (2) 

PBR-Targeted/Free: the ratio of the average fluorescence intensity of the tumor-bearing 

hemispheres of the mice injected with NIR-conPK11195 relative to the average 

fluorescence intensity of the tumor-bearing hemispheres of the mice injected with free 

NIR dye and (3) Tumor/“Tumor”: the ratio of the average fluorescence intensity of the 

tumor-bearing hemispheres of the tumor-bearing mice relative to the average 

fluorescence intensity of the equivalent “tumor” regions of the non-tumor-bearing control 

mice (Table 4.1).   

The fluorescence intensity of the tumor regions of the intracranial tumor-bearing 

mice injected with NIR-conPK11195 becomes significantly greater than the normal 

muscle tissue approximately 4.5 hours post-injection (p < 0.001; Table 4.1 – 

Tumor:Normal Ratio).  This significant tumor-specific contrast persists and increases to 

2.4-fold at 24.5 hours post-injection (p < 0.005; Table 4.1).  Conversely, the 

tumor/normal ratio of the tumor-bearing mice injected with free NIR dye is not 

statistically significant at any time point post-injection.  Combined, these results indicate 
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Table 4.1.  Contrast ratios further demonstrate tumor-specificity of NIR-conPK11195. 
 

NIR-conPK: 
Tumor/Normala

Free NIR Dye: 
Tumor/Normala

Tumor: PBR-
Targeted/Freeb

NIR-conPK: 
Tumor/Normala

Free NIR Dye: 
Tumor/Normala

Tumor: PBR-
Targeted/Freeb

NIR-conPK: 
Tumor/"Tumor" c

Free NIR dye: 
Tumor/"Tumor" c

0.1 1.7 1.4 1.0 1.2 0.9 1.2 1.5 1.8
4.5 2.1 * 1.0 7.2 * 1.1 1.1 2.7 * 2.8 * 1.0
8.5 2.3 * 1.2 6.5 * 1.1 1.1 2.4 * 3.2 * 1.2
12.5 2.3 * 1.2 4.5 * 1.1 1.3 1.8 * 2.9 * 1.2
24.5 2.4 * 1.3 2.7 * 1.0 1.1 1.4 2.5 * 1.3

   injected with free NIR dye
 c The ratio of the average fluorescence intensity of the tumor regions of tumor-bearing mice injected with NIR-conPK11195 relative to the average fluorescence
   intensity of the "tumor" regions of non-tumor-bearing control mice injected with NIR-conPK11195

    significance level of 0.05

 a The average ratio of the fluorescence intensity of the tumor region relative to the normal region of individual mice
 b The ratio of the average fluorescence intensity of the tumor regions of mice injected with NIR-conPK11195 relative to the average fluorescence intensity of mice 

 * Statistically significant according to a one-way analysis of variance (ANOVA) test and the Holm-Sidak method for pairwise comparisons with an overall

Approx 
Time PI 
(hours)

Tumor- vs Non-Tumor-Bearing MiceNon-Tumor-Bearing MiceIntracranial MDA-MB-231 Tumor-Bearing Mice

that the accumulation of NIR-conPK11195 is conPK11195-specific and not simply due to 

agent pooling and the EPR effect (45).   

The tumor-specific contrast enhancement due to the accumulation of NIR-

conPK11195 is further demonstrated by comparing the tumor regions of the tumor-

bearing mice injected with NIR-conPK11195 with those of the free NIR dye-injected 

tumor-bearing mice (Table 4.1 - PBR-targeted:Free Ratio).  Immediately post-injection, 

the tumor regions of the tumor-bearing mice injected with NIR-conPK11195 and free 

NIR dye are equivalent (PBR-targeted/free = 1.0).  Over time, however, NIR-

conPK11195 is taken up, presumably binds to PBR and is retained to a significantly 

greater extent than the free NIR dye (p < 0.001; Table 4.1 – PBR-targeted:Free Ratio). 

The non-tumor-bearing mice injected with either NIR-conPK11195 or free NIR 

dye demonstrate no appreciable accumulation of the PBR-targeted or non-targeted agents 

in the equivalent “tumor” regions; the tumor/normal ratios at all time points post-

injection are approximately 1.1 (Table 4.1).  The significant 1.8- to 2.7-fold increase in 

the fluorescence intensity of the “tumor” regions of the mice injected with NIR-

conPK11195 relative to those injected with free NIR dye presumably results from the 
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ubiquitous low levels of NIR-conPK11195 uptake (see also Figure 4.2C,D).  As one 

might expect, the PBR-targeted/free ratios of the normal regions of the non-tumor-

bearing mice also range from 1.5 – 2.8, suggesting that this slight enhancement is not due 

tumor-specific. 

As a final measure of NIR-conPK11195 specificity, the tumor regions of tumor-

bearing mice were compared to the equivalent “tumor” regions of the non-tumor-bearing 

controls.  The tumor/“tumor” ratio of the mice injected with NIR-conPK11195 was 

significant from 4.5 to 24.5 hours post-injection and demonstrated an approximately 3-

fold signal enhancement in the tumor-bearing mice relative to the non-tumor-bearing 

controls.  Conversely, the free NIR dye tumor/“tumor” ratio remained statistically 

insignificant for the duration of the study.  These results suggest similar clearance rates 

and lack of accumulation of free NIR dye in both tumor-bearing and non-tumor-bearing 

mice as well as tumor-specific uptake of NIR-conPK11195. 

Although the NIR spectroscopy of NIR-conPK11195 enables increased tissue 

penetration over visible fluorescent agents (44), the detection limits of this technique and 

the contrast threshold necessary to discriminate tumor tissues should be addressed.  All of 

the results discussed above were obtained five weeks post-implantation.  At four weeks 

post-implantation, the fluorescence intensity of the tumor region was significantly greater 

(1.8-fold) than the normal tissue at 24 hours post-injection (p < 0.01), while the 

tumor/normal ratio for free NIR dye-injected tumor-bearing mice remained statistically 

insignificant at all time points post-injection (1.0- to 1.3-fold).  However, at two and three 

weeks post-implantation, no contrast enhancement was appreciable in the tumor regions 

relative to the normal tissues.  The lack of observable signal is likely dictated by the 
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tumor size and location depth.  Although larger tumors could be produced by implanting 

more cells, smaller tumors are more biologically relevant and of greater interest to our 

laboratories.  As optical instrumentation improves, the in vivo imaging capabilities of this 

agent through the cranium should also improve.  Nevertheless, NIR-conPK11195 may 

prove effective as an intraoperative imaging agent due to its significant sensitivity 

advantages over visible and/or non-targeted optical agents, previously demonstrated 

PBR-specificity, and ability to provide functional information regarding PBR expression 

profiles.   

Overall, this study demonstrates (1) the potential use of Eu3+-conPK11195 as a 

topical imaging agent for brain tumor demarcation and (2) the applicability of using a 

PBR-targeted NIR MI agent (NIR-conPK11195) in an intracranial MDA-MB-231 breast 

cancer model to study breast cancer metastases to the brain.   
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Introduction 

The most commonly used radiopharmaceutical, 2-[18F]fluoro-2-deoxy-D-glucose 

(18FDG), is valuable in oncologic diagnostics and therapeutic efficacy monitoring based 

on its versatility and sensitive detection of increased metabolic activity by positron 

emission tomography (PET) (1, 2).  The preferential uptake and accumulation of 18FDG 

in cancerous tissues results from increased glycolysis by tumor cells as well as the 

upregulation of glucose transporter proteins (GLUTs) and the presence of a highly active 

hexokinase.  The cellular uptake of 18FDG occurs via these GLUTs.  Once internalized, 

18FDG is phosphorylated by hexokinase to 18FDG-6-phosphate in a similar manner as 

glucose.  However, unlike the glucose metabolite, 18FDG-6-phosphate cannot be further 

metabolized due to the lack of a hydroxyl group at the C-2 position, resulting in 

intracellular accumulation of 18FDG-6-phosphate and PET signal that can serve to detect 

tumors (1, 2).   

While 18FDG-PET has inherently high sensitivity and demonstrated clinical 

applicability, the imaging technique has several limitations.  These drawbacks include 

exposure to ionizing radiation, difficulty of compound synthesis, requirement of a local 

cyclotron, short halflife of 18F (110 minutes) and relatively low spatial resolution.  In an 

effort to overcome some of the major limitations of PET, our laboratory and others have 

developed potential optical analogues of 18FDG including 2-[N-(7-nitrobenz-2-oxa-1,3-

diazol-4-yl)amino]-2-deoxy-D-glucose [2-NBDG] (3-8), pyropheophorbide 2-

deoxyglucosamide [Pyro-2DG] (9, 10), fluorescent dendritic arrays of glucosamine (11), 

and Cy5.5-D-glucosamine [Cy5.5-2DG] (12).   
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Yoshioka et al developed the first fluorescent D-glucose derivative, 2-NBDG, and 

demonstrated D-glucose but not L-glucose inhibition of cellular uptake (3).  In addition, 

mass spectrometry indicated intracellular phosphorylation of 2-NBDG to 2-NBDG-6-

phosphate (3-8).  Combined, these results suggest that 2-NBDG is taken up and 

accumulated via the GLUT/hexokinase pathway.  However, the spectroscopic properties 

(λex = 475 nm and λem = 550 nm) render the 2-NBDG probe a poor choice for in vivo 

imaging.   

Several more recent studies have attempted to develop D-glucose analogues 

suitable for in vivo imaging by capitalizing on the increased sensitivity and photon 

penetration depth in the near infrared (NIR) tissue transparency window (13).  Pyro-2DG, 

which functions as both a NIR imaging and photodynamic therapy agent, demonstrated 

enhanced tumor uptake relative to the surrounding muscle tissue (9, 10).  Preliminary 

confocal microscopy studies suggest that the uptake of Pyro-2DG is GLUT-specific, 

since D-glucose appears to competitively inhibit cellular localization of Pyro-2DG but 

not Pyro-acid (9).  Using an alternative approach, Ye et al synthesized dendritic arrays of 

glucosamine based on an inner NIR carbocyanine core (11).  Although the number of 

glucosamines (1, 2, 3, 4, 6, or 8) conjugated to the multicarboxylate probe does not 

appear to correlate with tumor uptake, each of the dendritic glucosamine arrays provided 

some tumor signal.  The mechanisms of uptake and accumulation of the glucosamine-

containing cypate derivatives, however, remain unknown.  Interestingly, Cheng et al 

reported that another NIR deoxyglucose analogue (Cy5.5-2DG) does not appear to follow 

the GLUT/hexokinase pathway and provides significantly less contrast enhancement than 

the free Cy5.5 N-hydroxysuccinimide ester dye (12).  The authors hypothesize that the 
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dye characteristics are responsible for the differing behaviors of 2-NBDG and Cy5.5-

2DG and suggest careful selection of NIR fluorophores for particular biological 

applications.   

Based on the literature precedence regarding optical analogues to 18FDG, our 

laboratory has developed an alternative NIR deoxyglucose analogue by conjugating D-

glucosamine to IRDyeTM 800CW.  The IRDyeTM 800CW is a cyanine-like dye that is 

highly water soluble and relatively stable.  IRDyeTM 800CW capitalizes on the increased 

photon penetration in the NIR tissue transparency window and is slightly red-shifted 

relative to Cy5.5.  This red-shift in excitation and emission eliminates the fluorescence 

contribution from the autofluorescence of typical alfalfa-based rodent chow, which is 

often seen in the Cy5.5 wavelength region, and is more suitable for in vivo imaging (14).  

Here, we report the in vitro and in vivo characterization of NIR-glucosamine in an 

SW480neo mouse model of human colon cancer that corroborates and expands upon the 

recent results reported for Cy5.5-2DG (12).   

 

Materials and Methods 

Materials  

The IRDyeTM 800CW NHS Ester dye and IRDyeTM 800-acid (designated here as 

“free NIR dye”) were obtained from LI-COR Biosciences (Lincoln, NE).  Sodium 

methoxide, glucosamine hydrochloride, D-(+)-glucose monohydrate, and cytochalasin B 

were purchased from Fluka/Sigma Aldrich (St. Louis, MO).  Dimethylsulfoxide (DMSO) 

was purchased from Fisher Scientific (Pittsburgh, PA).  SW480 (human colorectal 

adenocarcinoma) cells were acquired from the American Type Culture Collection (ATCC; 
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Manassas, VA).  Calcium- and magnesium-free phosphate buffered saline (CMF-PBS), 

Dulbecco’s Modified Eagle Medium (DMEM), fetal bovine serum (FBS), and gentamicin 

sulfate were obtained from Invitrogen Corporation (Carlsbad, CA).  Female athymic nude 

(nu/nu) mice (6 weeks of age) were obtained from Harlan Sprague Dawley (Indianapolis, 

IN). 

  

Synthesis of NIR-glucosamine 

A mixture of sodium methoxide (9.3 mg, 0.17 mmol) and D-glucosamine 

hydrochloride (37 mg, 0.17 mmol) in DMSO (2 mL) was stirred at room temperature for 

two hours.  150 μL of this mixture (12.9 µmol) was added to a stirring solution of 

IRDyeTM 800CW NHS Ester dye (5mg, 4.3 µmol) in DMSO (9.85 mL).  The mixture 

was stirred in the dark under argon positive pressure flow overnight. 

HPLC analysis was performed to monitor the reaction on a Varian Polaris C-18 

column (250 × 4.6 mm) at a flow rate of 0.8 mL/min.  Flow A was 0.1% TEA in water 

and flow B was 0.1% TEA in acetonitrile.  The elution method for analytical HPLC 

started with a linear gradient from 100% to 80% A over 30 minutes, then from 80% to 

50% A for 5 minutes, arrived at 20% A in another 3 minutes, held at 20% A for 10 

minutes, and finally returned to 100% A over 1 minute.  The elution profile was 

monitored by UV absorbance at 254 and 780 nm.  Product was purified by preparative 

HPLC using a Varian Polaris C-18 column (250×21.2 mm) at 17 mL/min.  The collected 

solution was concentrated by vacuum rotary evaporation, frozen to -78ºC and dried under 

freeze-dry system.  The amount of NIR-glucosamine was determined by absorption in 

DMSO solution at 780 nm (3.5 mg, 66%).   
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MS (ESI)+ [M+H]+ calcd 1162.3, found 1162.2.  1H NMR 400MHz (MeOD) δ 

8.02-7.93 (m, 2H), 7.88-7.80 (m, 6H), 7.36 (d, J=8.4 Hz, 1H), 7.28 (d, J=8.4 Hz, 1H), 

7.19 (d, J=8.8 Hz, 2H), 6.29 (d, J=14.4 Hz, 1H), 6.19 (d, J=14.0 Hz, 1H), 5.08 (d, J=3.2 

Hz, 1H), 4.20-4.14 (m, 2H), 4.10 (t, J=6.8 Hz, 2H), 3.89-3.58 (m, 5H), 3.06-3.01 (m, 2H), 

2.92-2.86 (m, 2H), 2.82-2.75 (m, 2H), 2.28-2.22 (m, 2H), 2.08-2.05 (m, 2H), 2.00-1.91 

(m, 5H), 1.80-1.79 (m, 2H), 1.71-1.68 (m, 3H), 1.40 (s, 12H).  

For spectroscopic characterization, the absorbance spectra of free NIR dye and 

NIR-glucosamine were measured using a Shimadzu UV-VIS 1700 spectrophotometer 

(Columbia, MD) and the emission spectra were measured using a PTI Technologies 

spectrofluorometer (Oxnard, CA).    

 

Cell Culture 

Stable SW480 clones expressing the neomycin selection cassette (SW480neo) 

were isolated and characterized as previously reported (15).  SW480neo (human 

colorectal adenocarcinoma) cells were propagated in Dulbecco’s Modified Eagle 

Medium (DMEM; high glucose) supplemented with 2mM L-glutamine, 10% FBS, and 

50 mg gentamicin sulfate in vented culture flasks (Corning; Corning, NY) at 37 °C and 

5% CO2.  The medium was replaced every three days or as necessary.  After attaining 

confluence, the cells were sub-cultured approximately 1:2 to 1:10. 

 

Animal Models 

Animal studies were performed under guidelines approved by the Institutional 

Animal Care and Use Committee (IACUC) at Vanderbilt University.   
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SW480neo cells were propagated until near confluency as described above.  Cells 

were harvested by incubation with trypsin, pelleted by centrifugation, resuspended in 

sterile CMF-PBS, counted and assessed for viability (%) using trypan blue staining.  The 

cells were again pelleted by centrifugation, resuspended in sterile CMF-PBS at a 

concentration of 1.5 x 106 or 2 x 106 cells/100 μL and kept on ice.  Prior to cell 

implantation, the cell-containing tube was gently inverted several times to assure proper 

cell distribution.  Athymic nude (nu/nu) mice were finally injected with approximately 

1.5 x 106 or 2 x 106 SW480neo cells (100 μL volume) subcutaneously on one or both 

hind limbs.  

 

In Vivo Optical Imaging Studies 

During the imaging sessions, the mice were kept on a heated animal support plate 

under general anesthesia by inhalation of 2-3% isoflurane.  Anesthesia was initiated in an 

induction chamber.   

Tumor-bearing mice that had been fasted overnight to decrease blood glucose 

levels were retroorbitally injected with 20 nmoles of either free NIR dye or NIR-

glucosamine (100 µL in sterile saline).  The biodistribution and accumulation of free NIR 

dye and NIR-glucosamine were monitored in real-time using the IVIS Imaging System 

200 (Xenogen Corporation/ Caliper LifeSciences; Alameda, CA) equipped with an 

indocyanine green (ICG) excitation and emission filter set (710 – 760 nm and 810 – 875 

nm, respectively).  Images were obtained pre-injection and at numerous time points post-

injection (typically several minutes post-injection, 1 hour, 3 hours, 4 hours, 6 hours, 8 

hours, 12 hours, 24 hours and 48 hours).  The following instrument settings were used: 1 
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or 3 second exposure time, small or medium binning (4 x 4 pixels or 8 x 8 pixels, 

respectively), f/stop of 8 and FOV B or C (6.4 cm x 6.4 cm and 12.8 cm x 12.8 cm, 

respectively).  At the conclusion of the study, the mice were sacrificed and the harvested 

organs (heart, lungs, kidneys, liver) and tumors were also imaged using the same IVIS 

instrument parameters and/or on the Odyssey Infrared Imaging System.  The tumors and 

organs were subsequently fixed in 10% formalin followed by ethanol dehydration.  The 

fixed tumor tissues were then paraffin embedded and serially sliced.  Alternating slices 

were stained with hematoxylin and eosin (H&E) for histological characterization or 

DAPI-mounted for NIR fluorescence microscopy.  

The data were processed in Living Image® Software Version 2.50 (Xenogen 

Corporation).  Regions of interest (ROIs) were drawn over the xenograft tumors and a 

normal region.  Since most of the mice had two hindlimb tumors, several “normal” ROIs 

were drawn and evaluated including regions over one forelimb, along the midline (spine) 

between the two flank tumors, slightly to the right or left of the spine between the two 

flank tumors, between the forelimbs and below the tumors on the lower portion of a 

hindlimb.  All of the data presented here refer to the lower hindlimb ROI analysis for 

reasons discussed below.  Also, since these mice were imaged longitudinally, the 

contribution of residual NIR-glucosamine or free NIR dye needed to be accounted for.  

This was accomplished by subtracting the original (true) pre-injection fluorescence 

intensity obtained on the very first day of imaging from the initial “pre-injection” 

fluorescence intensity acquired a week or more later to reestablish baseline pre-injection 

values.  For example: ( )  , ,  , 6  , 6 AdayonpreinjectiBdayonpreinjectiBdaypihBdaypih FIFIFIFI −−=  where 

FI ≡ fluorescence intensity in terms of average radiance = [p/s/cm2/sr] and 
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( )AdayonpreinjectiBdayonpreinjecti FIFI  , , −  represents the contribution from the residual 

fluorescence signal. 

To generate time activity curves and monitor biodistribution, accumulation and 

clearance rates, the average radiance (photons/sec/cm2/sr) ± standard deviation for each 

group were plotted as a function of time post-injection to generate time-activity curves (n 

= 2 – 8 tumors from 1 – 4 mice per group).  To further determine tumor specificity, the 

tumor to normal contrast ratio was also calculated as the average ratio of the fluorescence 

intensity of the tumor region relative to the normal tissue. 

 

In Vivo microPET Imaging 

SW480neo tumor-bearing mice that had been fasted overnight to decrease blood 

glucose levels were injected with approximately 118-300 μCi of 18FDG two days pre- or 

post-injection of NIR-glucosamine and imaged dynamically over an hour to an hour and 

a half using the Concorde Microsystems microPET Focus 220 (Concorde Microsystems; 

Knoxville, TN).  Maximum a posteriori (MAP) reconstructions were performed after the 

scans were collected.  Data processing was performed using ASIPro VMTM (Concorde 

Microsystems; Knoxville, TN). 

 

Blood Stability 

HPLC was used to evaluate the stability of NIR-glucosamine in blood.  Since 

blood samples taken from mice ~3.5 hours post-injection of NIR-glucosamine did not 

contain enough compound to analyze via HPLC or mass spectrometry, these studies were 

performed ex vivo.  To maintain the in vivo concentration (20 nmoles injected into ~1.6 
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mL of blood), five nmoles of NIR-glucosamine was added to 400 μL of blood obtained 

from Balb/c mice; the blood was originally collected and stored in heparinized-tubes.  

The NIR-glucosamine-containing blood was then incubated at 37°C for either zero, four 

or eight hours to allow sufficient time for agent degradation by blood components.  The 

NIR-glucosamine-containing blood was then centrifuged at 1,800 g for 20 minutes to 

separate the red blood cells from the plasma.  The supernatant (plasma) was collected, 

vortexed, and centrifuged again for 20 minutes at 1,800 g to settle any sediment.  The 

supernatant was carefully transferred to another tube and an equal volume of acetonitrile 

was added for precipitation.  The tube was vortexed for 60 seconds and centrifuged for 

five minutes at 1,800 g.  Supernatant was transferred to a separate tube and centrifuged 

again at 1,800 g for five minutes to remove any residual precipitate.   

Stock NIR-glucosamine and free NIR dye as well as the purified plasma samples 

were analyzed via HPLC at 782 nm.  Flow A was 20mM tetrabutylammonium bromide 

in water and B was 20mM tetrabutylammonium bromide in 90% acetonitrile and 10% 

water. The elution method started with a linear gradient from 100% to 50% A over 10 

minutes, held at 50% for 5 minutes, arrived at 10% A in another 10 minutes, held at 10% 

A for 5 minutes and finally returned to 100% A over 1 minute.  The data were processed 

by integrating the area under the peaks at 782 nm using Empower software (Waters 

Corporation; Milford, MA).  The relative percent free NIR dye (eluting at 23 minutes) 

and NIR-glucosamine (eluting at 18 minutes) were calculated as:  

100 x 
min23at Areamin 18at Area

minutes 23at  Area  Dye NIR Free %
+

=  

100 x 
min23at Areamin 18at Area

minutes 18at  Area  eglucosamin-IRN %
+

=  
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Preliminary Extravasation Experiment  

Non-tumor-bearing mice were injected with either free NIR dye (20 nmoles), 

NIR-glucosamine (20 nmoles) or saline (2 mice per compound).  At approximately three 

and a half hours post-injection, one group of mice was exsanguinated while the other 

group was not.  The brain, liver, kidneys, lungs and heart were harvested and imaged on 

the Odyssey Infrared Imaging System on both the 700 and 800 nm channels (λex, 700 = 

680 nm and λex, 800 = 780 nm; dichroic mirror reflects light below 750 nm for detection in 

the 700 channel and transmits light above 810 nm for detection in the 800 nm channel).   

 

In Vitro Uptake and Competition Studies 

SW480neo cells were plated at ~15,000 cells per well in 96 MicroWell™ 

Nunclon™Δ Optical Bottom Plates (Nalge Nunc International; Rochester, NY) and 

incubated under standard culture conditions for approximately 48 hours.  Immediately 

prior to experimentation, the cells were washed once with warmed glucose- and FBS-free 

medium to remove any dead cells, glucose and serum.  Twelve populations of SW480neo 

cells [1 through 12] were evaluated in triplicate using glucose- and FBS-free medium: 

cells incubated with 1 μM or 10 μM NIR-glucosamine [1,2] or free NIR dye [3,4] for 30 

minutes in the absence of inhibitor; cells pretreated with 50 mM D-glucose for 30 

minutes followed by incubation with 1 μM or 10 μM NIR-glucosamine [5,6] or free NIR 

dye [7,8] for 30 minutes; cells pretreated with 10 μM cytochalasin B for 30 minutes 

followed by a 30-minute incubation with 1 μM or 10 μM NIR-glucosamine [9,10] or free 

NIR dye [11,12].  Following a 30-minute incubation, the cells were gently washed three 

times with glucose- and FBS-free medium and imaged on the Odyssey Infrared Imaging 
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System (LI-COR Biosciences; Lincoln, NE) at 169 μm resolution, 3 mm focus offset, and 

7.0 intensity in the 800 nm channel.  The average raw fluorescence intensity of each 

population ± standard deviation was then plotted; n = 3.   

 

Cell Imaging 

SW480neo cells (~75,000 per dish) were plated in collagen-coated glass bottom 

dishes (MatTek Corporation; Ashland, MA) 48 hours prior to experimentation.  The cells 

were first washed once with warmed glucose- and FBS-free medium and then incubated 

with 10 – 20 μM NIR-glucosamine or free NIR dye for 30 minutes at 37°C.  

Subsequently, the cells were washed three times with medium and imaged.  A Nikon 

Eclipse TE2000-U fluorescence microscope equipped with a mercury lamp, indocyanine 

green (ICG) filter set and a Hamamatsu ORCA II BT 512 camera controlled by 

Metamorph software v6.1 (Molecular Devices Corporation; Downingtown, PA) was used 

for imaging.   

 

Statistical Analysis 

Statistical significance was determined using a one-way or two-way analysis of 

variance (ANOVA) test and the Holm-Sidak method for pairwise multiple comparisons 

with an overall significance level of 0.05 (SigmaStat v3.10).   

 

Results and Discussion 

Based on literature precedence regarding optical analogues to 18FDG, our 

laboratory synthesized an alternative NIR D-glucose analogue by coupling the IRDyeTM 
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Figure 5.1: (A) Synthetic pathway, (B) relevant chemical structures, and (C) 
aqueous spectroscopic properties of NIR-glucosamine (λex = 774 nm). 

800CW NHS ester dye to D-glucosamine (NIR-glucosamine; Figure 5.1A).  The 

IRDyeTM 800CW is reported by the manufacturer to be a cyanine-like dye (Figure 5.1B) 

that is highly water soluble and relatively stable.  IRDyeTM 800CW capitalizes on the 

increased photon penetration in the NIR tissue transparency window and is slightly red-

shifted relative to Cy5.5.  This red-shift in excitation and emission eliminates the 

fluorescence contribution from the autofluorescence of typical alfalfa-based rodent chow, 

which is often seen in the Cy5.5 wavelength region, and its longer wavelength excitation 

and emission is more suitable for in vivo imaging (14).  In water, NIR-glucosamine 

exhibits an absorbance maximum centered at 774 nm with peak emission at 799 nm (λex  

= 774 nm; Figure 5.1D).  This spectroscopy is very similar to the IRDye800-acid 

(designated here as “free NIR dye”; λex = 774 nm, λex = 796 nm).  Like 18FDG (Figure 

5.1C), NIR-glucosamine is conjugated at the C-2 position to allow for potential 
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Preinjection ~3 min pi ~6 hours pi

A B

Figure 5.2.  Biodistribution and accumulation of NIR-glucosamine in real-time. 
(A) Fluorescence images of an SW480 tumor-bearing mouse overlaid onto the 
corresponding photographic images, displayed on a color bar scale ranging from 
2.2x108 to 2.2x109 photons/sec/cm2/sr (acquired using FOV C and medium 
binning).  Substantial accumulation of NIR-glucosamine is seen in the tumor region 
relative to the normal tissues approximately six hours post-injection.  (B) Zoomed 
image of the tumor region with better resolution on a color bar scale ranging from 
1.75x109 to 3x109 photons/sec/cm2/sr (acquired using FOV B and small binning). 

recognition and phosphorylation by hexokinase at C-6.   

In a preliminary study of the in vivo tumor targeting capabilities of NIR-

glucosamine, an SW480neo tumor-bearing mouse was injected with 20 nmoles of NIR-

glucosamine and imaged over time using the IVIS Imaging System 200.  Fluorescence 

images taken pre-injection as well as approximately three minutes and six hours post-

injection of NIR-glucosamine are shown in Figure 5.2; the fluorescence images are also 

overlaid onto the corresponding photographic images for orientation.  Prior to injection, 

the mice are essentially devoid of NIR fluorescence, revealing the negligible 

autofluorescence of tissue in the exploited wavelength region.  Approximately 3 minutes 

post-injection, the NIR-glucosamine appears to be fairly uniformly distributed throughout 

the mouse with some increased signal near the retroorbital injection site (right eye).   
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However, almost six hours post-injection, substantial accumulation of NIR-glucosamine 

is apparent in the tumor tissue.  The bright fluorescence signal on the left rear paw is 

believed to result from urine contamination and is not present in other imaging studies.  

Figure 5.2B displays a zoomed image of the tumor region, imaged using a smaller IVIS 

field of view (FOV B = 6.4 x 6.4 cm), with better resolution (binning = 4 x 4), and 

presented on a different average radiance scale.  Quantification of the fluorescent signal 

in the tumor region relative to the normal tissue on the opposite hindlimb demonstrates a 

2.3-fold tumor-specific enhancement, suggesting that NIR-glucosamine specifically 

labels tumor tissue in vivo.   

Two days after optical imaging, the mouse shown in Figure 5.2 was injected with 

118 µCi of 18FDG and dynamically imaged in the Concorde MicroSystems microPET 

scanner.  A summation of the microPET images taken over an hour and ten minutes post-

injection of 18FDG is shown in Figure 5.3A.  As expected, enhanced PET signal resulting 

from increased uptake and accumulation of 18FDG is seen in the highly metabolic tissues 

including the brain, heart, and tumor.  The bladder is also significantly bright due to the 

renal excretion of 18FDG.  For comparison, the optical image demonstrating NIR-

glucosamine accumulation six hours post-injection is shown in Figure 5.3B.  We 

originally attributed the lack of fluorescence signal emanating from the heart and brain 

following injection with NIR-glucosamine to decreased sensitivity in deeper tissues and 

the potential that NIR-glucosamine may not cross the blood brain barrier.  Further studies 

have demonstrated otherwise as discussed below.   

Figure 5.3C displays a coronal slice through the tumor of the 18FDG-PET image 

for comparison to the tumor-specific accumulation of NIR-glucosamine (Figure 5.3D).  It  
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Figure 5.3.  Comparison of 18FDG signal to NIR-glucosamine accumulation in 
the tumor region of the same SW480 tumor-bearing mouse.  (A) The microPET 
image illustrates 18FDG accumulation in the highly metabolic tissues (brain, heart, 
and tumor) as well as the bladder due to renal excretion of 18FDG.  (B) The optical 
image captured six hours post-injection shows substantial accumulation of NIR-
glucosamine in the same tumor two days prior to 18FDG-microPET imaging.  (C) A 
coronal slice through the tumor of the 18FDG-PET image for comparison to the 
tumor-specific accumulation of NIR-glucosamine (D). 
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is noteworthy that both images have a similar size and shape, indicating potential 

correlation between the two imaging probes and methodologies.  However, the central 

region of the tumor is devoid of 18FDG-PET signal while the optical image shows 

substantial fluorescence intensity mid-tumor.  This observation is presumably due to the 

fact that the IVIS Imaging System produces two-dimensional projection images of 

fluorescence intensity and is essentially a volumetric ensemble of all the photons 

emanating from the interrogated regions, whereas the microPET image is a slice through 

the tumor itself.  This discrepancy is analogous to the difference between fluorescence 

and confocal microscopy.  It is likely that the dark region on the 18FDG-microPET image 

represented necrotic tissue that was not evident in the 2D optical projection image.  (In 

later studies, it became apparent that unlike 18FDG, NIR-glucosamine does label necrotic 

and transitioning tissues, which may also account for the difference.)  Qualitatively, but 

not quantitatively, the tumor-specific uptake of NIR-glucosamine appears to mimic that 

of 18FDG uptake and accumulation.  We therefore set out to determine the uptake 

mechanism responsible for tumor-specific labeling by NIR-glucosamine and to compare 

the in vivo biodistribution, clearance and accumulation of NIR-glucosamine with free 

NIR dye.   

To evaluate the in vivo biodistribution, clearance and accumulation of NIR-

glucosamine compared to free NIR dye, a pilot imaging study was performed in four 

SW480neo tumor-bearing mice.  Approximately four and a half weeks post-implantation, 

the tumors were externally visible but fairly small (2 – 8 mm in their longest dimension).  

Following an overnight fast, the tumor-bearing mice were retroorbitally injected with 20 

nmoles of free NIR dye and imaged over 24 hours using the Xenogen IVIS Imaging 
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System 200.  Two days later, the same mice were injected with NIR-glucosamine and 

again monitored over 24 hours post-injection.  The fluorescence intensity of the tumor 

and normal regions were subsequently quantified in terms of average radiance 

(photons/sec/cm2/steradian) to generate time activity curves and determine tumor 

specificity.  It is important to note that since these mice each had two flank tumors, the 

opposite hindlimb could not be used as the “normal” tissue control.  Thus, several ROIs 

were evaluated to determine the most appropriate “normal” tissue region, including 

regions (1) over one forelimb, (2) along the midline (spine) between the two flank tumors, 

(3) slightly to the right or left of the spine between the two flank tumors, (4) between the 

forelimbs and (5) below the tumors on the lower portion of a hindlimb.  The “normal” 

region defined over one forelimb consistently provided the highest tumor to normal 

contrast.  However, this region did not appear to accurately represent normal tissue 

biodistribution as evident even in the immediately post-injection images (ex. Figure 

5.2A).  The “normal” regions defined along the spine and slightly offset from the spine 

demonstrated increased fluorescence intensity relative to the rest of the normal tissue, 

even immediately post-injection.  These ROIs were also too close to the bladder and 

presumably included some signal from the renally cleared agents.  Finally, the “normal” 

ROI between the shoulders consistently demonstrated a different clearance profile than 

either the tumor or the other normal ROIs and was consequently eliminated.  Thus, all of 

the results presented herein result from quantitative analysis of the tumor ROI relative to 

the lower portion of the hindlimb.   



 115

Time Post-Injection (hours)
0 4 8 12 16 20 24

Av
er

ag
e 

R
ad

ia
nc

e 
(p

/s
/c

m
2 /s

r)

0

1e+9

2e+9

3e+9

4e+9

5e+9

6e+9

7e+9

NIR-glucosamine: Tumors
NIR-glucosamine: Hindlimb
Free NIR dye: Tumors
Free NIR dye: Hindlimb

Time Post-Injection (hours)
0 1 2 3 4

Av
er

ag
e 

R
ad

ia
nc

e 
(p

/s
/c

m
2 /s

r)
0

1e+9

2e+9

3e+9

4e+9

5e+9

6e+9

7e+9

NIR-glucosamine: Tumors
NIR-glucosamine: Hindlimb
Free NIR dye: Tumors
Free NIR dye: Hindlimb

Figure 5.4.  Time activity curves for NIR-glucosamine and free NIR dye in the 
tumor region and “normal” lower hindlimb tissue of mice bearing relatively small 
SW480 xenograft tumors.  The same average radiance data up to four hours post-
injection is displayed in the inset plot.  The NIR-glucosamine appears to clear slightly 
faster than the free NIR dye in both the tumor and normal regions.   
 

The in vivo time activity curves of NIR-glucosamine and free NIR dye in mice 

bearing relatively small SW480neo tumors are shown in Figure 5.4; the same average 

radiance data up to four hours post-injection is displayed as an inset.  The NIR- 

glucosamine and free NIR dye appear to clear from the tumor and normal tissues with 

slightly different clearance profiles.  More specifically, the time necessary to clear half of 

the maximum fluorescence intensity occurring immediately post-injection is 

approximately 2.5 hours for the free NIR dye, but only ~ 1.5 hours for the NIR-

glucosamine.  The faster rate of clearance presumably results from the increased polarity 

and therefore water solubility of NIR-glucosamine relative to the free NIR dye, which is 

more lipophilic.  Overall, both agents appear to provide very little to no contrast 
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Figure 5.5.  The tumor to normal contrast ratios of mice bearing relatively small 
SW480 xenograft tumors at each time point post-injection.  Overall, both agents 
appear to provide very little to no tumor-specific contrast enhancement, suggesting a 
potential size or vascularity requirement for substantial tumor uptake. 

enhancement in the relatively small tumors (Figure 5.5), suggesting a potential size or 

vascularity requirement for substantial tumor uptake. 

 Several weeks later, when the tumors approximately doubled in size, both the free 

NIR dye and NIR-glucosamine provided enhanced tumor-specific contrast relative to the 

adjacent normal hindlimb tissue.  The time activity curves and tumor to normal contrast 

ratios for two mice imaged simultaneously following retroorbital injection of 20 nmoles 

of free NIR dye or NIR-glucosamine are shown in Figures 5.6 and 5.7, respectively.  As 

previously demonstrated in Figure 5.4, the NIR-glucosamine appears to clear more 

rapidly than the free NIR dye, particularly from the normal hindlimb tissue (Figure 5.6 
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inset).  As a result, the apparent tumor to normal contrast from NIR-glucosamine 

increases from 1.0 immediately post-injection to a maximum of 2.7 six hours post-

injection (Figure 5.7).  This 2.7-fold contrast enhancement persists for the duration of the 

study (~24 hours).  Conversely, the tumor to normal ratio from the free NIR dye is only 

1.8 at six hours post-injection, but steadily increases to 3.3-fold at 21 hours post-injection.   

Since the fluorescence intensity in the free NIR dye-containing tumors is consistently 

higher than the fluorescence intensity in the NIR-glucosamine-containing tumors, this 

contrast discrepancy is presumably due to the faster normal tissue washout of NIR-

glucosamine rather than preferential NIR-glucosamine accumulation over free NIR dye.  

This increased normal tissue clearance due to the contribution of the D-glucosamine may 

prove beneficial over free NIR dye due to the earlier contrast enhancement and could 
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Figure 5.6.  Time activity curves for NIR-glucosamine and free NIR dye in the 
tumor region and “normal” lower hindlimb tissue of mice bearing relatively 
larger SW480 xenograft tumors.  The same average radiance data up to six hours 
post-injection is displayed in the inset plot.  The NIR-glucosamine appears to clear 
slightly faster than the free NIR dye in the normal hindlimb region.     
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Figure 5.7.  The tumor to normal contrast ratios of mice bearing relatively larger 
SW480 xenograft tumors at each time point post-injection.  The NIR-glucosamine 
reaches a maximum tumor to normal contrast ratio (2.7) at six hours post-injection, 
while the free NIR dye contrast steadily rises to 3.3 over 24 hours post-injection.  This 
discrepancy is presumably due to the faster rate of NIR-glucosamine clearance in the 
normal hindlimb tissue, which appears to result in earlier tumor-specific contrast and 
potentially less toxicity.  
 

potentially provide a reduction in cytotoxicity.  However, more animal studies are 

necessary to evaluate the potential advantages of NIR-glucosamine over the use of free 

NIR dye for tumor labeling. 

 The ex vivo NIR fluorescence and histological characterization of tumor tissue 

harvested approximately 24 hours post-injection of NIR-glucosamine or free NIR dye is 

shown in Figure 5.8.  Serial sections of tumor tissue were either DAPI-mounted for NIR 

fluorescence microscopy (A-C, E-G) or stained with hematoxylin and eosin (H&E) for 

histological characterization (D,H).  Both NIR-glucosamine and free NIR dye appear to 
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Figure 5.8.  Ex vivo NIR fluorescence and histological characterization of tumor 
tissue harvested from SW480 tumor-bearing mice ~24 hours post-injection of NIR-
glucosamine (A-D) or free NIR dye (E-H).  (A, B) NIR fluorescence and DAPI 
images from the same slice of a NIR-glucosamine-containing tumor section.  (C) 
Overlay of the fluorescence and DAPI images seen in A and B. (D) H&E stain from an 
adjacent tissue section that shows (1) viable tumor, (2) necrotic, and (3) transitioning 
tumor tissue.  (E, F) NIR fluorescence and DAPI images from the same slice of a free 
NIR dye-containing tumor section.  (G) Overlay of the fluorescence and DAPI images 
seen in E and F. (H) H&E stain from an adjacent tissue section that shows (1) viable 
tumor, (2) necrotic, and (3) transitioning tumor tissue.         

predominantly label necrotic or transitioning tissue rather than viable tumor cells, 

suggesting non-specific pooling of these agents in vivo due to the enhanced permeability 

and retention (EPR) effect in malignant tumors (16).   

Since both NIR-glucosamine and free NIR dye provide similar contrast 

enhancement in SW480neo tumor-bearing mice, the blood stability and extravasation of 



 120

Table 5.1.  Blood Stability Analysis. 
 

;100 x 
min 23at  Areamin  18at  Area

minutes 23at  Area  Dye NIR Free % a

+
= 100 x 

min 23at  Areamin 18at Area
minutes 18at  Area  eglucosamin-NIR % b

+
=

Compound Experimental 
Condition

Peak Elution 
Time (min) 
NIR-gluc

Area
Peak Elution 
Time (min) 

Free NIR dye
Area

% NIR-
glucosaminea

% Free NIR 
Dyeb

Free NIR Dye Stock Solution 18.3 1.3 22.5 95 1 % 99 %

NIR-glucosamine Stock Solution 18.1 88 22.6 7.7 92 % 8 %

NIR-glucosamine Diluted in blood and 
immediately purified 18.0 66 22.5 6.9 91 % 9 %

NIR-glucosamine In whole blood for    
4 hours 18.2 53 23.1 7.1 88 % 12 %

NIR-glucosamine In whole blood for    
8 hours 18.1 61 23.0 4.7 93 % 7 %

these molecules came into question.  HPLC analysis was used to determine whether or 

not NIR-glucosamine is degraded to free NIR dye in the presence of blood components 

on a relevant time scale.  Following a 0, 4, or 8 hour incubation in whole blood, the 

elution profile of NIR-glucosamine was compared to that of the NIR-glucosamine and 

free NIR dye stocks at 782 nm (Table 5.1).  NIR-glucosamine and free NIR dye eluted at 

~18.1 minutes and ~22.5 minutes, respectively.  The shorter elution time for NIR-

glucosamine indicates an increased polarity relative to the free NIR dye, as previously 

discussed.  The reduction in area following incubation in whole blood results from some 

baseline issues due to the very low signal of these samples.  The blood stability analysis  

will be scaled up to allow for sample concentration and improved signal to noise.  The 

small fraction of the NIR-glucosamine stock (~8 %) that eluted at 22.6 minutes is likely 

free NIR dye.  The NIR-glucosamine sample used for these studies was approximately 

six month old and has probably degraded slightly.  However, this small contribution to 

the entire elution profile remains less than 13 % after exposure to whole blood 

components for 4 or 8 hours.  This suggests that the NIR-glucosamine remains intact and 

is stable in blood for at least 8 hours.   
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Figure 5.9.  Fluorescence images of tissues harvested from mice ~3.5 hours post-
injection of free NIR dye, NIR-glucosamine or saline using the 700 nm (A, C) and 
800 nm (B, D) channels of the Odyssey Infrared Imaging System, displayed on 
the same dynamic range.  (A, B) Mice that have not been exsanguinated.  (C, D) 
Exsanguinated mice.  

 Next, a preliminary experiment was performed to determine whether or not these 

compounds extravasate into various tissues or are unable to escape the vasculature in the 

absence of the enhanced permeability and retention (EPR) effect in tumors (16).  Non-

tumor-bearing mice were injected with either free NIR dye, NIR-glucosamine or saline (2 

mice per compound).  At approximately three and a half hours post-injection, one group 

of mice was exsanguinated while the other group was not.  Various organs were 

subsequently harvested (brain, liver, kidneys, lungs, heart) and imaged on the Odyssey 

Infrared Imaging System on both the 700 and 800 nm channels.  The 700 nm channel 

allows for visualization of the organs due to autofluorescence in this wavelength range, 
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while the 800 nm channel only collects NIR signal through an 810 nm longpass emission 

filter.  Two important observations can be made from the results in Figure 5.9.  First, the 

NIR-glucosamine agent does not appear to be taken up and accumulated in the highly 

metabolically active brain or heart; the bright, localized NIR fluorescence that does 

appear to emanate from the heart is actually from a fatty deposit attached to the heart 

itself.  It is possible that NIR-glucosamine does not cross the intact blood brain barrier, 

but one would expect to see fluorescence signal in the heart if NIR-glucosamine 

functioned as an optical analogue to 18FDG.  Secondly, the fluorescence signal in the 

exsanguinated organs is at least as bright, if not brighter than the organs from the non-

exsanguinated mice.  The slight increase in signal in the exsanguinated organs may result 

from the decreased blood volume and therefore reduced hemoglobin absorption of 

photons, albeit small, or more likely from reduced scattering.  The similar NIR intensities 

suggest that withdrawal of the blood volume did not reduce the fluorescence signal of 

these organs and that perhaps these agents did extravasate from the vasculature.  

However, more in depth studies are necessary to fully characterize the distribution of 

these agents in tissues.   

In an attempt to elucidate the cellular uptake mechanism of NIR-glucosamine, in 

vitro competition assays were performed in a multiwell plate format.  SW480neo cells 

were incubated with 1 μM or 10 μM NIR-glucosamine or free NIR dye for 30 minutes in 

the absence of competitor (unblocked) or following pretreatment with 50 mM D-glucose 

or 10 μM cytochalasin B, two known inhibitors of GLUT-mediated uptake (17).  The 

average raw fluorescence intensity of each population ± the standard deviation is shown 

in Figure 5.10.   
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At 1 μM NIR-glucosamine (Figure 5.10, green) and free NIR dye (Figure 5.10, 

yellow) concentrations, the unblocked NIR-glucosamine signal is statistically 

insignificant from the unblocked free NIR dye population; both agents appear to label 

SW480neo cells equally.  In addition, pretreatment with 50 mM D-glucose does not 

appear to have an affect on either NIR-glucosamine or free NIR dye uptake when dosed 

at 1 μM concentration.  However, cytochalasin B appears to slightly increase the uptake 

of free NIR dye at 1 μM incubation concentration (p < 0.05).  The competition assay was 

also performed using 10 μM NIR-glucosamine (Figure 5.10, red) and free NIR dye 

(Figure 5.10, blue).  Interestingly, the unblocked cells incubated with 10 μM free NIR 
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Figure 5.10.  In vitro cellular uptake and competition assays performed in a 
multi-well plate format.  SW480 cells were incubated with 1 μM or 10 μM NIR-
glucosamine or free NIR dye in the absence of competitor (unblocked) or following 
pretreatment with 50 mM D-glucose or 10 μM cytochalasin B.  The average raw 
fluorescence intensity of each population ± the standard deviation is shown here (n = 3 
wells).  Pairwise statistical significance (p < 0.05) is indicated by α, β, χ, δ, ε, φ.  
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dye (blue) are significantly more fluorescent than the unblocked cells incubated with 10 

μM NIR-glucosamine (red; p < 0.05).  In addition, pretreatment with 50 mM D-glucose 

significantly attenuates the fluorescence intensity of both the NIR-glucosamine (red) and 

free NIR dye (blue) populations relative to the unblocked cells incubated with 10 μM 

NIR-glucosamine or free NIR dye alone (p < 0.05).  Finally, pretreatment with 10 μM 

cytochalasin B does not inhibit cellular uptake, but actually significantly increases the 

fluorescence intensity of cells incubated with 10 μM NIR-glucosamine or free NIR dye 

(p < 0.05).  Taken together, these results suggest that the uptake of NIR-glucosamine is 

likely not mediated by the GLUT proteins and may simply result from non-specific 

binding to the cell membrane.  If so, the increased fluorescence intensity of the cells 

incubated with free NIR dye (10 μM) compared to the cells incubated with NIR-

glucosamine (10 μM) could be explained by the relative lipophilicity of these molecules.  

HPLC analysis indicates that the free NIR dye is less polar and thus more lipophilic than 

the NIR-glucosamine agent (discussed below).  This increase in lipophilicity could 

potentially increase the cell membrane interactions and result in increased cellular-

associated fluorescence signal. However, additional studies are necessary to confirm the 

potential non-specific binding to the lipid membrane or to determine the precise uptake 

mechanism. 

Finally, fluorescence microscopy studies were performed to assess the cellular 

localization of NIR-glucosamine and free NIR dye.  Figure 5.11 displays one slice of a 

pseudo-confocal NIR z-stack of SW480neo cells incubated with NIR-glucosamine (A, B) 

or free NIR dye (C,D) for 30 minutes.  Both agents appear to be primarily localized to the 

outer cellular membrane.  This localization is better demonstrated by the full z-stack, 
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which shows localized fluorescence at the top of the cell that spreads radially outwards as 

one traverses through the cell.  These fluorescence images further suggest non-specific 

binding to the lipid membrane.    

 In summary, this report describes the in vitro and in vivo characterization of an 

alternative NIR D-glucose analogue developed in our laboratory.  Preliminary imaging 

studies in an SW480neo mouse model of human colon cancer suggest that NIR-

glucosamine specifically labels tumor tissue in vivo with a 2.3 to 2.7-fold contrast 

enhancement over normal tissue.  This tumor-specific fluorescence signal also appears to 

C D

A B

 
Figure 5.11.  Fluorescence microscopy of SW480 cells incubated with NIR-
glucosamine (white light image in A and NIR fluorescence in B) or free NIR dye 
(white light image in C and NIR fluorescence in D) in glucose- and FBS-free 
medium.  The fluorescence signal appears to be primarily associated with the cell 
membrane.  The localization is better demonstrated by the full, pseudo-confocal z-
stack. 
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mimic that of 18FDG accumulation, at least qualitatively.  However, subsequent studies 

demonstrate a potential size and/or vascularity requirement for appreciable tumor-

specific contrast; a larger animal cohort is necessary to establish the precise conditions 

for significant contrast enhancement.  Furthermore, several observations suggest that 

NIR-glucosamine, like Cy5.5-2DG (12), does not follow the GLUT/hexokinase pathway 

and may label tumors in a non-specific manner.  First, ex vivo fluorescence microscopy 

studies suggest that the NIR-glucosamine and free NIR dye molecules preferentially label 

necrotic tissue, which may indicate tumor-specific labeling due to the EPR effect (16) 

rather than cellular uptake and accumulation.  Second, in vitro competition assays and 

fluorescence microscopy studies demonstrate that the free NIR dye labels SW480neo 

cells as well or more efficiently than NIR-glucosamine and both compounds appear to 

localize to the cell membrane.  Finally, blood stability analysis and preliminary tissue 

imaging studies suggest that NIR-glucosamine is not degraded to free NIR dye in blood 

and appears to be able to extravasate from the vasculature at least in liver, kidneys and 

lungs.  

Overall, NIR-glucosamine and free NIR dye appear to provide enhanced tumor 

contrast over normal tissues in reasonably sized tumors.  Although the mechanism of 

uptake and accumulation remains unknown, the increased rate of NIR-glucosamine 

clearance from the normal tissue due to increased polarity may prove beneficial for 

imaging of vascular permeability and could result in less toxicity.  However, additional 

animal studies are necessary to evaluate the potential advantages of NIR-glucosamine 

over free NIR dye for tumor labeling. 
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CHAPTER VI 

 

CONCLUSIONS AND FUTURE WORK 

 

Conclusions 

The overall objectives of this dissertation were directed at quantitative in vitro and 

in vivo characterization of two novel molecular imaging (MI) agents developed in our 

laboratory: (1) a peripheral benzodiazepine receptor (PBR)-targeted near infrared (NIR) 

MI agent (NIR-conPK11195) and (2) a potential optical analogue to the 2-[18F]fluoro-

2deoxy-D-glucose (18FDG) positron emission tomography (PET) agent.  NIR-

conPK11195 was evaluated in a subcutaneous MDA-MB-231 breast cancer xenograft 

model as well as in an intracranial MDA-MB-231 breast cancer model to study breast 

cancer metastases to the brain; NIR-glucosamine was assessed in an SW480 mouse 

model of human colon cancer. 

Chapter II briefly describes the significance of improved cancer detection 

methodologies as well as provides a concise overview of relevant topics in the literature.  

Specifically, the typical detection methods for breast and brain cancer, the clinical 

applicability of 18FDG-PET, and the recent research efforts regarding optical imaging 

techniques are discussed.  Finally, the rationale for the development of NIR-conPK11195 

and NIR-glucosamine are highlighted. 

The quantitative evaluation of the in vitro and in vivo uptake of NIR-conPK11195 

in a human metastatic breast adenocarcinoma (MDA-MB-231) model of breast cancer is 

presented in Chapter III.  Fluorescence micrographs illustrate the effective labeling of 
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MDA-MB-231 cells by NIR-conPK11195.  Cellular uptake and competition assays 

provide further evidence of significant dose-dependent and PBR-specific cellular uptake 

of NIR-conPK11195.  By exploiting the NIR tissue transparency window and 

conPK11195 specificity, it was possible to preferentially label MDA-MB-231 tumors in 

vivo with an 11-fold contrast enhancement over normal tissue.  Furthermore, the 

fluorescence signal due to NIR-conPK11195 accumulation was up to 7-fold greater than 

the free NIR dye and demonstrated statistical significance.  Overall, our results indicate 

that NIR-conPK11195 has the potential to be an effective PBR-targeted MI agent for 

breast cancer screening, while yielding valuable insights regarding the biological 

development and progression of the disease. 

In Chapter IV, two PBR-targeted MI agents were assessed for their applicability 

to aid in primary brain tumor demarcation (Eu3+-conPK11195) and the study of 

secondary brain metastases in vivo (NIR-conPK11195).  Preliminary imaging studies 

suggest that Eu3+-conPK11195 preferentially bound to the tumor tissue over the 

contralateral normal brain tissue and may therefore be useful for intraoperative labeling 

of gliomas.  Real-time in vivo monitoring of biodistribution over 48 hours post-injection 

of NIR-conPK11195 or free NIR dye in intracranial MDA-MB-231 tumor-bearing mice 

demonstrated distinct clearance profiles for the PBR-targeted and non-targeted 

fluorophores, resulting in preferential labeling of the MDA-MB-231-bearing hemisphere 

by NIR-conPK11195.  Quantification of the tumor-to-normal and PBR-targeted-to-free 

contrast ratios further indicate that NIR-conPK11195 provides significantly enhanced 

fluorescence signal over the normal tissue and the non-targeted fluorophore.  Combined, 
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these observations indicate that PBR-targeted fluorescent agents may be useful in the 

management of primary brain tumors and secondary brain metastases.    

Chapter V details the extensive in vitro and in vivo characterization of NIR-

glucosamine, particularly in comparison to the GLUT-mediated uptake and hexokinase-

specific accumulation of 18FDG.  The scientific deductive reasoning involved in these 

experiments is outlined.  Overall, it appears that NIR-glucosamine may not function as an 

optical analogue to 18FDG and that both NIR-glucosamine and free NIR dye provide 

enhanced tumor contrast over normal tissues in reasonably sized tumors.  Although the 

mechanism of uptake and accumulation remains unknown, the increased rate of NIR-

glucosamine clearance from the normal tissue due to increased polarity may prove 

beneficial for imaging of vascular permeability and could result in less toxicity.  

However, additional animal studies are necessary to evaluate the potential advantages of 

NIR-glucosamine over free NIR dye for tumor labeling. 

 

Future Work 

In addition to determining the limitations of these probes (such as the maximum 

intracranial depth and/or minimum tumor size detectable using NIR-conPK11195) and 

answering the remaining mechanistic questions regarding NIR-glucosamine uptake and 

accumulation, the future goals of this research are focused on two main objectives: (1) 

imaging multiple physiological readouts simultaneously in small animal models and (2) 

obtaining biologically relevant pharmacokinetic information from dynamic optical image 

acquisition.  Some preliminary efforts towards these aims have recently been completed, 

but much work remains to accomplish these goals.   
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Figure 6.1.  Multicolor fluorescence 
imaging of  spectrally overlapping 
dyes in solution-based and tissue-
like phantoms.  (A) Optical spectra 
for Lissamine (L), IRDye 700DX, 
and IRDye 800CW.  (B, F) 
Lissamine signal, (C,G) 700 signal, 
(D, H) 800 signal, (E, I) False color 
composites.  Note: Each dye is also 
resolved in the mixture. 

The ability to simultaneously monitor multiple optical reporters with different 

spectroscopic profiles is one major advantage of optical imaging.  In an effort to exploit 

this multicolor capability, our laboratory has developed a toolbox of molecular imaging 

(MI) compounds targeted to various cellular and intracellular receptors and biological 

processes.  These MI agents target the peripheral benzodiazepine receptor (PBR), 

epidermal growth factor receptor (EGFr), and vascular endothelial growth factor (VEGF) 

as well as apoptosis (Annexin-V) and DNA 

replication (deoxythymidine).  By 

conjugating these ligands or proteins to 

different near infrared (NIR) fluorophores 

and capitalizing on the spectral 

discrimination capabilities of the recently 

acquired Maestro In Vivo Imaging System 

(CRi; Woburn, MA), monitoring of multiple 

physiological readouts becomes possible.   

In a preliminary effort to illustrate our 

spectral discrimination capabilities, a group 

of solution-based and tissue-like phantoms 

(1) containing spectrally overlapping 

fluorescent dyes were imaged on the CRi 

Maestro.  Figure 6.1 shows the excitation and 

emission spectra for the three dyes used in 

this study, which included Lissamine, 
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Figure 6.2.  Spectral discrimination of 
five NIR dyes.  The fluorescence spectra 
are color coded according to the spectrally 
resolved signal in the fluorescence image 
(one dye per tube; the 6th tube = saline) 

IRDyeTM 700DX (LI-COR Biosciences), and IRDyeTM 800CW  (LI-COR Biosciences).  

The solution-based (Figure 6.1B-E) and tissue-like phantoms (Figure 6.1F-I) of each dye 

were imaged separately and as mixtures simultaneously in the Maestro.  Using spectral 

unmixing techniques, we were able to completely resolve the Lissamine (Figure 6.1B,F), 

IRDyeTM 700DX (Figure 6.1C,G), and IRDyeTM 800CW fluorescence signal (Figure 

6.1D,H) separately and within the mixture in both experiments.  The individual signals 

were subsequently false colorized and overlaid to yield the multi-color composite images 

seen in Figure 6.1E,I.  In a similar 

study, five NIR dyes (Alexa Fluor 

680 (Invitrogen), AlexaFluor 700, 

Alexa Fluor 750, IRDyeTM 700DX, 

and IRDyeTM 800CW) were imaged 

simultaneously in collaboration with 

Randy Scherer and Dr. J. Oliver 

McIntyre.  These dyes are more 

suited for in vivo imaging than 

Lissamine and have considerably 

overlapping spectroscopic profiles 

(Figure 6.2A).  However, the 

Maestro’s spectral discrimination 

algorithm was able to distinguish 

each of these NIR dyes independently (Figure 6.2B, false colorized composite).  Given 

these results, we hypothesize that it will be possible to image multiple optical imaging 
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probes simultaneously in vivo.  However, the quantitative implications of this endeavor 

and the actual performance in a mouse model of disease have not yet been determined. 

 Another advantage of optical imaging is the short time required to obtain a useful 

image (on the order of seconds).  Capitalizing on this rapidity and the increased photon 

penetration depth in the near infrared (NIR) tissue transparency window has allowed 

analysis of indocyanine pharmacokinetics by several groups [for ex. (2, 3)].  Although the 

determination of true pharmacokinetic parameters represents a technically and 

mathematically challenging problem, some initial experiments have been completed to 

investigate the capabilities of obtaining pharmacokinetic data here at the Vanderbilt 

University Institute of Imaging Science.  First, the IVIS Imaging System 200 software 

was modified to allow image acquisition at an approximately nine-second temporal 

resolution; a significant improvement over the original 45 seconds – 1 minute duration 

between images due to filter movement and lamp warm-up.  Next, a 12V computer 

battery was connected to a PicoPlus syringe pump (Harvard Apparatus), which could fit 

in the IVIS system and was calibrated to deliver 100 μL over 30 seconds.  This time 

frame was chosen based on Dr. Tom Yankeelov’s experience with dynamic contrast 

enhanced magnetic resonance imaging (DCE-MRI) studies.  Micro-renathane tubing was 

connected from the syringe pump to the jugular vein catheter in the mouse for agent 

delivery.  A carotid artery catheter was also available for blood draws, which allow for 

input function curve determinations.  Figure 6.3 shows an example of dynamic data taken 

over approximately an hour and a half post-injection of NIR-glucosamine.  It is important 

to note that these data have not been corrected (ie. flat-field, background, dark current, 

cosmic), but I am currently working with Drs. Brad Rice and Bill Rathbun at Xenogen 
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Figure 6.3.  Example of dynamic optical imaging obtained in the IVIS Imaging 
System following syringe-pump assisted injection of NIR-glucosamine. 

Corporation/Caliper Life Sciences as well as Dr. Tuhin Sinha to convert these images to 

calibrated units.  Figure 6.4 illustrates an input function curve generated by withdrawing 

blood from the carotid artery catheter as quickly as possible for the first ~ 4-5 minutes 

and then approximately every 30 minutes thereafter.  Since the blood volume drawn at 

each time point is only 10 μL, the sample would have to be diluted at least 100-fold to 

obtain UV-VIS absorption measurements for concentration determination.  Thus, I 

developed a method to use 384-well plates to image the blood samples on the Odyssey 

Infrared Imaging System (800 nm channel).  The fluorescence intensity at each time point 

can then be converted to approximate blood concentration using a known calibration 

curve.  Although these results are preliminary and do not allow for precise 
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Figure 6.4.  Example input function curve obtained from successive carotid artery 
blood draws following syringe-pump assisted injection of NIR-glucosamine. 

pharmacokinetic data determinations, they may provide a stepping stone for future 

pharmacokinetic work here at VUIIS.   
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