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CHAPTER I 

 

INTRODUCTION 

 

Objects surround us.  The world that we see is not comprised of unrelated colors 

and edges.  Instead, these elements are integrated into objects to which we attend, 

remember, and act upon.  This experience is provided by our psychological 

representations of the world.  When we attend to cars on the road, or when we search for 

a pen on our desks, we are attending to object representations.  When we are recalling a 

stop sign that we just passed, or remembering what we need from the grocery store, we 

are accessing memories about objects.  Are the object representations of attention the 

same as the object representations of memory?  My dissertation examines this question. 

In this introduction, I will review previous work on the role of object 

representations in attention and the storage of objects in memory.  I will end this section 

by discussing relationship between attention and memory, and propose that object 

representations are an important link between attention and memory.   

 

Object representations in visual attention 

Early research suggested that visual attention shifted across a spatial 

representation in a manner like a spotlight, processing all information within its scope.  In 

Posner’s (1980) spatial cueing paradigm, participants viewed two laterally arranged 

boxes.  A central arrow cued the box inside which a target was likely to appear.  Target 

detection was facilitated when the arrow validly cued target location, and was inhibited 



  

 2 

when the arrow invalidly cued target location.  These effects were attributed to the 

endogenous orienting of attention to enhance information processing at the cued location. 

What is the purpose of this spotlight?  Treisman and Gelade (1980) proposed that 

spatial attention served to bind the different features of an object into a single 

representation.  In their research, participants performed visual search within arrays of 

colored letters of varying set-size, and reported the presence of a target.  If the target 

differed from distractors by one unique feature, like color, then the search rate did not 

increase as a function of set-size.  If the target was a conjunction of features, like a blue 

letter A, then the search rate increased with the number of items in the array.  This data 

supported a two-stage model.  Prior to attentive processing, the elementary visual features 

of a scene are processed in a parallel manner.  If the visual target involves more than one 

feature in a specific configuration, then visual attention must be deployed to bind these 

features to perceive such an object.  Failure of attention resulted in an improperly bound 

object, i.e. an illusory conjunction (Treisman & Schmidt, 1982).  Importantly, this 

implied that there is no true role of objects in driving attentional behavior.  Attentional 

selection occurred at a stage earlier than that of object representation.  Instead, object 

representation is the result of attentional selection. 

Treisman and Gelade’s (1980) theory its original form did not take into account 

effects of visual grouping.  Prinzmetal (1981) showed a higher probability for 

participants to mistakenly conjoin two features if those features belonged to the same 

perceptual group rather than different perceptual groups.  This held true even when the 

features were equidistant across the different conditions.  Treisman (1982) later revised 

her theory by proposing that perceptual groups were formed with the same early vision 
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process as feature analysis, and showed that perceptual grouping affected search for 

conjunctions, but not features.  Similarly, Kahneman and Henik (1981) showed that 

Stroop effects were stronger when a response-incongruent word appeared inside a task 

relevant object, compared to a task irrelevant object.  These findings suggested that 

objects were formed prior to attentional selection and could act as the basis of selection. 

Duncan (1984) proposed that visual information was parsed into candidate objects 

in early vision to be selected by attention.  In a divided attention task, participants briefly 

viewed a line and box that were spatially overlapping.  The line varied in tilt and texture, 

while the box varied in size and the location of a gap appearing on one of its sides.  

Participants were then cued to report two attributes of the stimuli.  Participants reporting 

two attributes from the same object performed better than those who reporting one 

attribute from each of two objects.  These results showed clear evidence that visual form 

helped to drive attentional selection independently of spatial location.  This supported the 

idea that visual information was grouped and represented as simple forms, or candidate 

objects, prior to attentional selection.   

This finding drove a wealth of research into the understanding of objects and 

attention.  Some of the major investigations that will not be reviewed in depth include 

whether objects of attention are represented within a spatial- or non-spatial frame of 

reference (Kramer & Jacobson, 1991; Vecera & Farah, 1994; Kramer, 1994; Logan, 

1996), the automatic spread of attention within an object (Egly, Driver & Rafal, 1994; 

Goldsmith & Yeari, 2003), and the visual properties of an object representation (Watson 

& Kramer, 1994; Matsukura & Vecera, 2006).   
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How could objects help to explain attentional behavior?  Desimone and Duncan 

(1995) proposed that perceived objects compete for representation at high-levels of 

cortical processing. Top-down signals, such as memory for the appearance of a target 

object, may bias the competition in favor of a specific object over other objects.  Winning 

this competition results in the selection of one object over the others.  In this way, object 

representations are a crucial determinant of attentional behavior – they are the units of 

attentional capacity limitations.  Furthermore, Desimone and Duncan (1995) proposed 

one neural locus of competition to be the receptive fields in higher cortical areas of the 

ventral stream of cortical processing, known to represent the appearance of complex 

objects (Ungerleider & Mishkin, 1982).  This means that the visual appearance of an 

object could be the primary input for attentional selection. 

In contrast to defining a visual object’s identity by its appearance, or its type, an 

object can be defined as a token, or its individuation from other objects.  Pylyshyn (2001) 

noted two problems with defining an object’s identity by its visual appearance.  First, 

when looking for a target object based on its appearance, several other objects may 

satisfy the search criteria.  For example, when searching the cabinet for my favorite 

coffee mug, I will encounter several other white and cylindrical shapes.  Second, there 

are instances of viewing an object in which visual appearance must be ignored or 

discarded in order to maintain the object’s identity. For example, I might think that a 

person walking from the far end of the hall is Bill, but upon closer inspection I discover 

that the person is actually Betty.  The person must be perceived as the same object, even 

though my representation of their appearance changed.  One powerful demonstration of 

how objects can be individuated as different tokens independent of their appearance is the 
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multiple object tracking (MOT) task (Pylyshyn & Storm, 1988).  In MOT, participants 

view several identically appearing objects, some of which are indicated as targets, as they 

move around a display.  Since the objects appear identical, discriminating the targets 

from non-targets as the objects move cannot rely solely on visual appearance.   

In summary, there is evidence that object representations can drive attentional 

behavior.  An object representation can be defined by its visual appearance or type, but it 

can also be defined by its individuation from other objects, independent of its appearance.  

MOT exemplifies this latter brand of object-based attention, and was used as the primary 

measure of attention in the current research.   

 

Object representations in visual memory 

 Sperling (1960) discovered that memory could be divided into two stages.  The 

early, sensory stage is high in capacity and resolution, but short-lived and susceptible to 

masking.  A later stage is low in capacity, more enduring, and information is recoded to 

verbal information (see Coltheart, 1980).  Phillips (1974) suspected the existence of 

another memory that resembled the latter stage, but represented information visually.  

Participants viewed a brief display of random visual patterns, followed by a blank delay.  

Then, participants viewed another pattern and reported whether it was the same as the 

initial sample, or different by some minor change.  Using this change detection task, he 

concluded that visual memory could be delineated into two stages.  The early stage 

resembled that of Sperling’s early stage.  The latter stage consisted of a visual 

representation that was relatively low in capacity, but it was more enduring and resistant 

to masking.  This stage was called visual short-term memory (VSTM).   
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 What is stored in VSTM?  Irwin and Andrews (1996) had participants memorize 

arrays of colored letters, and showed that memory capacity was similar for both color and 

letter information.  The capacity for color and letter information was similar to that of 

letter information alone (Irwin, 1992).  Together, these results suggested that all the 

information within a location was integrated into an object.  Luck and Vogel (1997) 

directly examined this hypothesis by varying set-size and stimulus type in a change 

detection task.  Participants were presented with displays of colored squares, black 

oriented bars, or conjunctions of color and orientation.  The results indicated that the 

number of items stored steadily increased with set-size, but did not continue to rise when 

there were more than four items in the display.  Importantly, there was no effect of 

stimulus type, indicating a similar memory capacity for simple features like colors, and 

complex conjunctions like colored bars.  This suggested that information was already 

integrated as objects by the time of storage in VSTM, and these objects were the units of 

capacity limitation in VSTM.  Lee and Chun (2001) later showed VSTM capacity to be 

determined by the number of objects, regardless of whether they were spatially 

overlapped or separate. 

Wheeler and Treisman (2002) alternatively suggested that the number of features 

that could be represented within any feature domain limited VSTM storage.  Luck and 

Vogel (1997; Vogel, Woodman & Luck, 2001) had originally rejected this account by 

showing similar memory capacity for objects comprising of one or two colors.  The latter 

condition had twice as many features from one domain as the former condition.  

However, this result could not be replicated by Wheeler and Treisman (2002) or Olson 

and Jiang (2002).  Wheeler and Treisman (2002) also observed an impairment to change 
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detection when the change trials involved colors between objects being swapped, rather 

than replacing an old color with a new one.  They also noticed impairments when 

memory was probed using the whole array rather than a single item.  They suggested that 

perception of the whole array placed demands on visual attention to properly bind all 

objects in the display.  In other words, objects can only be represented in VSTM if 

attention is available to bind features into an object. 

Olson and Jiang (2002) observed better change detection performance when 

features were integrated into objects rather than appearing separate in the display, despite 

there being some cost related to the number of overall features.  Similarly, Alvarez and 

Cavanagh (2004) proposed that units of storage in memory would accept a minimal 

number of features that could be stored per object at an equal processing cost.  When the 

number of features exceeded this minimum, objects would be stored with lower 

resolution, ultimately resulting in a lowered capacity.  This account would fit well with 

Luck and Vogel’s (1997) findings, given that they had used relatively simple stimuli. 

What is the purpose of VSTM?  Irwin (1991) proposed that VSTM facilitated the 

comparison of visual representations across eye movements.  The retinal positions of 

objects change across saccades, so the visual system must determine whether the image 

of an object projected onto one retinal region prior to a saccade is the same as another 

object projects on a different region after the saccade.  This could be solved by a 

representation that preserves the spatial relations between objects.  Results by Phillips 

(1974) and Irwin (1991) showed that VSTM could fulfill this role. 

Hollingworth, Richard and Luck (2008) proposed that VSTM could function as a 

means of gaze correction.  Noting that saccades often fail to precisely land on their 
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targets, Hollingworth et al. (2008) proposed that the appearance of objects, acquired prior 

to the saccade and stored in VSTM, could be used to correct such errors.  Their 

participants were presented with a sample of colored dots, and instructed to saccade 

toward a cued dot.  On some trials, the array rotated during the saccade, while vision was 

suppressed, inducing a saccade error.  Memory for objects in the sample array was shown 

to be crucial in making corrective saccades to the target.  When participants engaged in a 

concurrent change detection task that also required VSTM, gaze correction was 

significantly impaired.  Together, this showed that VSTM facilitated object 

correspondence based on object appearance. 

In summary, VSTM is a visual representation that is distinct from earlier sensory 

memories.  It is low in capacity, but endures for several seconds and is robust to masking.  

The basic unit of storage has been shown to be integrated object representations.  This 

finding received some controversy that will be further discussed in the General 

Discussion, but it has been supported by several studies.  Some purposes of VSTM 

include facilitating the correspondence between different images of an object across 

saccades, as well as helping to correct erroneous eye movements. 

 

The relationship between objects in attention and memory 

 There are object representations related to both attention and memory.  Are the 

objects of attention and memory the different or the same?  It would be beneficial for 

attention and memory to have distinct means of representing objects.  If there are too 

many objects for attention to process, some of them could be stored in memory to 

alleviate the informational burden.  However, one benefit for a common means of object 
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representation between attention and memory could be object continuity.  If objects 

change across time, attention would be required to track the object, but a form of memory 

would be required to retain a history of the same object.   

Kahneman, Treisman & Gibbs (1992) proposed that a single representation is 

used in the accrual and retention of visual information.  They proposed that an “object 

file” is established for each perceived object, and this representation maintains a history 

of information related to the object.  The purpose of such a representation is to establish a 

means of stability and continuity for the object.  This way, detected changes in the visual 

input can be related to objects that are already represented.  If a change can be related to 

an object file, a single object could be perceived to be changing.  If it cannot, a new file 

can be opened and the change could be perceived as a new object.  Kahneman et al. 

(1992) proposed that object file continuity involved three operations: (1) a 

correspondence process determines whether a perceived object was previously seen or 

new, (2) if it was previous seen, a reviewing process retrieves previously viewed features 

of the object, and (3) an impletion process integrates current and reviewed information to 

produce the perception of a single object changing, rather than separate events involving 

distinct objects. 

Earlier work focused on the reviewing process.  Kahneman et al. (1992) presented 

participants with boxes containing letters.  The letters disappeared and the boxes shifted 

location, either via real or apparent motion.  Finally, one letter reappeared inside a box, 

and participants were instructed to name the letter rapidly.  Letter naming was facilitated 

if the letter appeared inside the same box as at the beginning of the trial, compared to the 

same letter appearing in a different box, or compared to a novel letter baseline.  This 
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effect suggested that the information related to the box was retained and integrated across 

changes in time and space, producing the perception of the same object changing across 

time.  Because the priming effect was specific to the object, Kahneman et al. (1992) 

suggested that it emerged solely due to continuity enabled by the object file.  This effect 

has subsequently been referred to as the object-specific preview benefit.  However, 

Henderson and Anes (1994) showed that under some conditions, a general priming effect 

not specific to the object accounted for more of the change in performance.  Using a 

similar paradigm to Kahneman et al. (1992), Gordon and Irwin (2000) found object-

specific priming when the initial and final inside the boxes matched semantically, i.e. a 

picture of a fish and the word “fish.”  This suggests that object file contain abstract, 

semantic information that is not specific to the episodic encoding of information.  

However, Mitroff, Scholl and Noles (2007) more recently showed that object-specific 

preview benefits occur with novel faces, showing that object files also support purely 

episodic information.   

 Some research suggests that one form of object-based attention uses the same 

object representations as visual memory.  Vecera and Farah (1994) suggested that there 

were two kinds of object-based representations upon which attention could select.  At a 

relatively early stage, attention could select perceptually grouped locations on a spatial 

representation.  At a relatively late stage, attention could select objects with fully bound 

features that are not represented, and this selection could occur independent of spatial 

location.  Awh, Dhaliwal, Christensen and Matsukura (2001) provided some evidence for 

this distinction.  Both groups of researchers proposed that the latter representation was 

the same as those demonstrated by Duncan’s (1984) results, and that they resided in 
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VSTM.  Matsukura and Vecera (2009) had participants engage in dual-tasks that 

comprised of an object- or spatial-attention task and an object- or spatial-memory task.  

The dual-task interference was much larger when the two tasks tapped into a common 

dimension.  The inference observed when object-based attention and memory tasks were 

concurrently performed suggested that the tasks shared a common basis of representation. 

 Wheeler and Treisman (2002) proposed that objects were represented in memory 

to the extent that attention was available to bind object features during storage.  This is 

the same means of object representation in visual attention proposed by Treisman and 

Gelade (1980).  Several subsequent studies that incorporated an attentional task during 

VSTM storage failed to support this account (Yeh, Yang & Chun, 2005; Allen, Baddeley 

& Hitch, 2006; Johnson, Hollingworth & Luck, 2008).  However, Fougnie and Marois 

(2008) argued that the tasks used in these studies were not demanding enough to disrupt 

attentional binding of the object features.  Their participants showed impairments in 

memorizing conjunctions while concurrently performing MOT, which supported Wheeler 

and Treisman’s (2002) account.  Although still debatable, this theory proposes one way 

that attention and memory could share the same means of object representation. 

 Another line of research has examined whether perceptual organization principles 

modulate VSTM storage.  Woodman, Vecera & Luck (2003) showed that Gestalt 

principles could play a role in visual memory.  Participants memorized colored squares 

that were organized into vertical columns in some trials.  During maintenance, one of the 

objects was spatially cued, which resulted in its facilitated retrieval at the end of the trial.  

Importantly, items belonging to the same perceptual group as the cued item were 

retrieved more efficiently than those belonging to another group.  Xu (2006) showed that 
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VSTM capacity could be modulated by the proximity and connectedness between the 

parts of each object.  Object-based attention has also been shown to be modulated by how 

well parts of an object are connected (Watson & Kramer, 1999).  Some researchers 

suggest that early Gestalt principles like connectedness, formed prior to attention (Driver, 

Davis, Russell, Turatto & Freeman, 2001; Russel & Driver, 2005; Kimchi & Peterson, 

2008), are exactly what drives object-based selection (Avrahami, 1999; Marino & Scholl, 

2005; Ben-Shahar, Scholl & Zucker, 2007).  Together, these studies show that object 

representations in memory abide by the same grouping principles as the objects of 

attention, suggesting that memory and attention may use common object representations. 

 In summary, some research suggests that the object representations of attention 

and memory could be the same.  One framework suggests that a single representation is 

used in the accrual and retention of object information.  Some empirical evidence 

includes dual-task methods showing greater interference when both attention and 

memory tap into object-based processing compared to if they tap into separate domains.  

One line of research suggests that the two are functionally equivalent.  In both visual 

attention and memory, objects are visual features bound together by sustained attention.  

Another line of research emphasizes that objects in attention and memory are formed by 

the same Gestalt principles, and that behavior proceeds similarly when these principles 

are adhered or violated in both attention- and memory-based representations. 

 

 What is an object? 

 The chapters that follow describe research conducted to examine whether the 

objects of attention are the same as those of memory or whether they the two are distinct.  
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The reasoning behind each investigation was tailored to fit a specific question.  Each 

rationale can also be viewed as a different way to think about visual objects.  In Chapter 

II, an object can be thought of as higher-order representations that could help reduce the 

cost of processing or storing information.  One strategy to investigate the primary 

question is to examine whether attention and memory overlap in the capacity to use these 

higher-order representations.  In Chapter III, an object is a single representation that 

results from relating different pieces of information.  This stems from the idea that 

dynamic objects must be perceived as a single, continuous entity.  If the process that 

provides this continuity involves both attention and memory, then it suggests that they 

both target a common object representation.  Finally, in Chapter IV, an object is 

considered to be a representation that changes in a unified manner.  An object is thought 

of as a unified entity with several features.  What happens to the representation when one 

of these features changes?  If an object is a unified representation, then perhaps the effect 

of changing one feature should affect the entire representation.   

 In the general discussion, the findings of these chapters are incorporated into a 

theory of visual object continuity.  It ultimately conceptualizes objects as a mapping 

between bound features.  Visual attention is thought of as a capacity for binding features, 

while visual memory is the retention of this binding.  These components, together with 

others, form a circuit that determines object continuity.  
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CHAPTER II 

 

DO ATTENTION AND MEMORY SHARE OBJECT REPRESENTATIONS? 

 

Introduction 

 In this chapter, I investigated whether attention and memory shared a common 

resource of object representations.  We can all imagine instances when we failed to see an 

object that was in plain sight.  Perhaps one reason for this is that we were preoccupied 

with other objects in our memory.  For example, someone could fail to see a stop sign on 

the road because he was remembering things to buy at the store.  This might happen 

because attention and memory share a common resource to represent objects.  In this 

introduction, I will present evidence to show that attention and memory are both limited 

by the number of objects that are represented.  Then I will show how dual-task methods 

have been used to examine the relationship between attention and memory. 

 

Attention to multiple objects 

 Attention can continually remain on objects that change over time.  This is 

demonstrated by the multiple object-tracking (MOT) task, developed by Pylyshyn and 

Storm (1988).  In MOT, participants are required to continually discriminate a set of 

target objects moving amongst identically appearing non-target objects.  Pylyshyn (2000) 

argued that MOT was accomplished by a set of pre-attentive visual indices.  According to 

his visual index theory, early perceptual processes segment the visual scene to extract 

candidate ‘proto’-objects.  A visual index is attracted to a candidate object in a pre-
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attentive, bottom-up manner and remains stuck to it, so that the index can move with the 

object.  The index individuates its object from other objects, and can be used to further 

consult properties of the object.  The properties that attract indices and the means that an 

index remains stuck on an object remain unspecified.  In MOT, each target attracts an 

index.  An index can remain stuck on an object even if it moves, demonstrating that the 

index is not committed to a location.  

Although the role of the visual index in MOT is still debated (Scholl, 2009), there 

is strong evidence for the role of attention in MOT.  For example, Oksama and Hyönä 

(2004) that individual differences in MOT performance were correlated with performance 

on other attentionally demanding tasks, such as attentional switching and spatial short-

term memory.  Tombu and Seiffert (2008) showed an increased impairment in MOT 

performance when participants discriminated an auditory tone that onset concurrently 

with a manipulation of tracking difficulty, compared to when they discriminated a tone 

prior to the manipulation.  This result indicated that, in addition to visual attention, MOT 

involved a general form of attention that was not specific to any modality.  This is called 

central attention. 

How does attention operate in MOT?  Yantis (1992) proposed that participants 

strategically grouped the multiple targets in order to attend to a single object.  A single 

focus of attention would be directed to this morphing object during the tracking period.  

Yantis (1992) showed that informing participants of this strategy led to higher 

performance compared to those who were naïve to the strategy, although naïve 

participants eventually adopted the strategy on their own.  This grouping strategy may 

also influence eye movement behavior during MOT (Fehd & Seiffert, 2008).  Although 
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there is evidence for the use of a grouped representation, this does not eliminate the 

representation of the individual targets.  The targets must be represented individually on 

some level, because there is a limit to the number of targets that can be tracked (Pylyshyn 

& Storm, 1988), and performance decreases with set-size (Oksama & Hyönä, 2008).  

Also, the use of the grouping strategy still demands the representation of each individual 

object in order to update the shape and position of the continuously morphing object 

(Pylyshyn, 2000).   

Cavanagh and Alvarez (2005) proposed that MOT is accomplished by multiple 

foci of visual attention.  In their model, a focus of attention is centered over the location 

of each target, and it outputs information about the target to higher-level processes.  This 

information is used to spatially shift the focus of attention in order to remain centered on 

the moving target.  In support of this, Sears and Pylyshyn (2000) showed that detection of 

feature changes was faster for tracked targets than non-targets in MOT.  Additionally, 

this benefit only applied to targets, and did not extend to non-targets that were spatially 

proximal to targets, suggesting that attention was not spread around the entire area 

encompassed by the targets. 

Finally, there is evidence that attention adheres to the visual form of objects in 

MOT.  Scholl, Feldman and Pylyshyn (2001) grouped targets and non-targets, so that the 

stimuli appeared like dumbbells.  Performance was impaired in these trials relative to 

trials without such groupings.  This indicated that attention selected the entire object 

associated with the target, impairing the discrimination between the target and non-target.  

This ruled out an account of attention selecting the spatial region surrounding the target.  

However, visual selection in MOT does not apply to all forms of grouping.  Van Marle 
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and Scholl (2003) also impaired MOT when the targets appeared like liquid substances 

pouring from one location to the next, compared to when targets were rigid squares.  This 

showed that attention in MOT does not select arbitrary groupings, but may be selective 

for rigid forms rather than substances. 

In summary, MOT uses a mode of attention that selects individual objects, rather 

than the spatial region encompassed by all targets or the spatial region around each target 

object.  Although a strategy of grouping targets can be used, its benefits are modest, and 

individual objects must still be represented to use this strategy.  The number of objects 

that can be represented limits attention in MOT. 

 

Task related issues in VSTM 

 The role of object representations in visual short-term memory (VSTM) has been 

discussed in the Introduction.  Although the purpose of Chapter II was to examine 

whether the object representations of VSTM are related to those of attention, the task I 

used to assess VSTM differed from standard methods in important ways.  This section 

will discuss some of these issues and relate it to the method used in this chapter. 

The primary task used to examine VSTM has been change detection (Phillips, 

1974).  In this task, participants briefly view a visual pattern, followed by a blank screen, 

and then a similar pattern.  Their task is to report whether the two patterns are the same or 

different by any amount.  The ability to perform this task depends on retaining 

information about the first display in some form of memory in order to compare it to the 

second display.  Phillips (1974) suggested that this memory is visual, because it enables 

retention of complex visual patterns that are difficult to verbalize.  Phillips also suggested 
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that it is a form of short-term memory, since it can retain information without degradation 

over 600 ms, and then slowly degrades over the course of at least 9 seconds.   

 Performance on change detection does not just rely on the duration of delay 

period, but also of the time allowed to encoding the first display, or the encoding 

duration.  Alvarez and Cavanagh (2004) showed that VSTM capacity is determined by 

the complexity of visual features, so that there is less memory capacity for increasingly 

complex items.  However, Eng, Chen and Jiang (2005) showed that this effect of 

complexity was in part due to impairments related to perceptually encoding the stimuli.  

For this reason, it is important to display memory targets for a sufficient time in order to 

relate task performance to storage, rather than encoding processes.  In the current study, 

participants perform a memory task that allows several seconds for perceptual encoding.  

Tasks used to assess VSTM also do not require a blank delay period, since VSTM is 

resistant to backwards masking (Phillips, 1974; Vogel, Woodman & Luck, 2006).  In the 

current study, the period during which information is assumed to be stored in VSTM 

involved a visual display with moving objects.  Since the memory used was unaffected 

by this display, I assumed the memory task to measure the use of VSTM rather than other 

visual memories, like iconic memory. 

 

Shared capacity for object representation revealed by dual-task methods 

Do attention and memory draw from a common capacity for object 

representation?  Findings of object-based attention (Duncan, 1984) and object-based 

storage in memory (Luck & Vogel, 1997) have led some researchers to use dual-task 

methods to investigate this possibility.  Barnes, Nelson and Reuter-Lorenz (2001) had 
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participants judge the relative height of vertices appearing on the same object or different 

object while also memorizing digits, an object or a spatial location.  The height judgment 

was superior when the vertices appeared on the same object (replicating Baylis & Driver, 

1993), but this same-object advantage was reduced when participants concurrently stored 

an object, as opposed to a digit or location.  A conclusion consistent with these results is 

that object-based attentional processes are used for object-based VSTM.  Also, 

Matsukura and Vecera (2009) showed impaired accuracy on a memory task when it was 

paired with an attentional task.  However, there was a greater detriment to accuracy on 

object-memory tasks when they were paired with an object-attention task compared to a 

spatial-attention task.  Although these studies support the idea of common processing 

resources between attention and memory for objects, as opposed to space, they do not 

show whether attention and memory operate on the same object representations. 

The dual-task method used in this chapter was developed by Fougnie and Marois 

(2006) to examine the relationship between attention and memory.  They hypothesized 

that if attention and VSTM shared the same capacity, then concurrent performance of 

tasks demanding these processes should be mutually exclusive.  Participants maintained a 

number of color-location conjunctions while concurrently tracking several moving 

objects.  After tracking, participants were presented with a single object and reported 

whether it was the same or different than any object in the memory sample, and also 

reported whether a single probed object in the tracking task was a target or not.  In other 

conditions, participants performed two interleaved change detection tasks, both involving 

conjunctions of color and location, in order to construct an estimate of mutual exclusivity 

on dual-task performance.  The results of the MOT/change detection dual-task showed 
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that the magnitude of dual-task interference was significantly less than that of performing 

two change detection tasks.  In fact, the observed interference from the MOT/change 

detection dual-task was more similar to that of concurrent performing MOT and a verbal 

memory task.  These results suggested that there were some distinct capacities between 

attention and memory, as assessed by MOT and change detection.  However, the nature 

of the remaining overlap was still unknown.  Part of the overlap could have reflected the 

common use of central attention, as suggested by the similar magnitude of interference 

observed when MOT was paired with change detection or a verbal memory task.  It could 

have also stemmed from common use of spatial processing, since the change detection 

task involved conjunctions of color and location. 

In this chapter, I hypothesized that one source of overlap could be a shared 

resource of object representations.  In other words, it is possible that attention represents 

objects in the same way as memory.  Two hypotheses were contrasted.  An independent 

objects hypothesis proposes that attention and memory each have an independent set of 

object representations.  While both attention and memory might share a limited resource 

for object-based processing, these would entail separate representations of objects. This 

hypothesis predicts no difference in task performance if the two processes targeted the 

same objects or different objects.  In contrast, a shared objects hypothesis proposes that 

attention and memory share common object representations.  The same object 

representations would be accessed by both attentional and memory processes.  Targeting 

the same objects would activate fewer total object representations than targeting different 

objects.  This hypothesis predicts more efficient task performance if the two processes 

targeted the same objects rather than different objects.  I used the task developed by 
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Fougnie and Marois (2006) to contrast these hypotheses.  The crucial manipulation was 

whether MOT and the memory task targeted different sets of objects, as in Fougnie and 

Marois’ (2006) study, or if they targeted the same set of objects. 

To preview, the results of Experiment 2.1 showed significantly decreased dual-

task performance when MOT and the memory task targeted the same objects, supporting 

the shared objects hypothesis.  This effect was called the same-object advantage.  

Experiment 2.2 examined the relative cost of features and objects in this paradigm, 

revealing that although there was a cost of features, the use of objects reduced this cost 

when the number of features was high.  The results of Experiment 2.3 showed the same-

object advantage even when the number of spatial locations across dual-task conditions 

was equal.  Finally, Experiment 2.4 examined how much of the dual-task cost was related 

to memory for binding color features to specific objects in the display compared to 

memory for colors alone.  Together, the results indicated that attention and memory 

shared a common capacity for object representation. 

 

Experiment 2.1: Same-object advantage in a dual-task of attention and memory 

We adopted a dual-task method to examine the object-based representations used 

by attention and VSTM.  Attention to objects was engaged with MOT.  VSTM was 

engaged with a memory task requiring participants to encode colors or shapes.  The 

critical manipulation was whether these tasks targeted the same or different objects. 
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Method 

Participants  

The participants were Vanderbilt University students who participated in 

exchange for course credit.  They were tested in accordance with Vanderbilt University’s 

Policy for the Protection of Human Subjects and the APA 2002 Code of Ethics.  There 

were 44 participants in Experiment 1.  There were 22 participants in the color group, 

including 16 males, with a mean age of 20.4 (s = 3.26).  There were 22 participants in the 

shape group, including 10 males, with a mean age of 19.68 (s = 2.25). 

 

Apparatus and stimuli   

The stimuli were presented on an eMac G4 using MATLAB and the 

Psychophysics Toolbox extension (Brainerd, 1997; Pelli, 1997).  Observers sat 60 cm 

from the monitor.  The visual display consisted of ten items within a white frame 

subtending 23.5 x 17.8 degrees visual angle (°) on a black background. For the color 

group of participants, items were white or colored dots each spanning 0.57° in diameter.  

The RGB values for each color were: red (255 0 0), yellow (255 255 0), orange (255 140 

0), pink (255 105 180), magenta (150 0 139), green (0 255 0), blue (0 0 255), violet (148 

0 230), turquoise (0 134 139), and light blue (132 112 255).   For the shapes group, items 

were white dots or novel, white shapes that fit within 0.56°x0.56°.  Examples of the 

shapes appear in Figure 2.1  

The motion of the dots proceeded by first dividing the tracking area into a 5 x 5 

grid, and positioning each dot to a grid coordinate with some random jitter.  The initial 

directions of motion for each dot were randomly selected from 0 to 360 degrees in 5 
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degree steps.  At each step, the direction of motion changed randomly from –20 to +20 

degrees from the previous direction.  The direction of a dot was shifted if it came within a 

certain distance to the edges of the tracking area.  The dots also repulsed each other by a 

factor scaled according to the proximity of the surrounding dots, such that closer dots 

were weighted more heavily.  These factors produced some variability in speed and 

changes in direction.  The average velocity of a dot was 8.12 degrees of visual angle per 

second (°/s).   

 

Procedure  

Each trial had four phases: encoding, tracking, memory probe, and tracking probe 

(Figure 2.1).  At encoding, seven white dots and three memory targets appeared 

stationary within the frame in random, nonoverlapping positions. For different groups (n 

= 22, each), the memory targets were either three colored dots or three white shapes.  

Simultaneously, white circles cued three targets for tracking. In the Different-object 

condition, tracking targets were three white dots that were distinct from the memory 

targets.  In the Same-object condition, the circles appeared around the memory targets, so 

that the tracking targets were the same as the memory targets.  Participants were 

instructed to remember which colors or shapes belonged to each specific memory target, 

and prepare to track the circled items.  Memory targets changed to white dots and the 

cues disappeared after 4600 milliseconds (ms), leaving ten identical white dots.  For the 

tracking phase, all but three dots moved randomly for 3000 ms. In the Different-object 

condition, the memory targets were stationary, and in the Same-object condition, three 

non-target dots were stationary.  Verbal encoding of memory stimuli was minimized with 
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an articulatory suppression task. Participants repeated the word “the” aloud from the 

onset of encoding until the end of tracking and were monitored by the experimenter.  For 

the memory probe, one white dot changed back into a memory target.  On valid trials, 

this was the same feature that had appeared on that particular dot at encoding, and on 

invalid trials, this was one of the other two features presented at encoding.  Half the trials 

were validly cued and the other half were invalid, split evenly between the other two 

features. For the tracking probe, a circle surrounded a target on valid trials, and 

surrounded a non-target on invalid trials. Memory and tracking probes never appeared on 

the same object, and validity of the memory and tracking probes were varied 

independently.  Participants responded to each probe by pressing labeled keys.   

 We also included Single-task trials that resembled the Different-object condition, 

except that preceding text indicated which task the participant should perform.  

Participants responded to the relevant task and made a random keypress to the irrelevant 

task.  An equal number of Same-object, Different-object, and Single-task trials were 

intermixed, with Single-task trials split equally between the memory and tracking tasks. 

There were 192 trials, split into four blocks of 48 trials. 

 

 

 

 

 

 

 

FIGURE 2.1 
Depicted on the left is schematic of the basic 
paradigm, using shapes as an example.  During 
the encoding stage, participants were presented 
memory and tracking targets.  Visual features 
and tracking cues were removed after 4.6 
seconds.  During the tracking phase, white dots 
randomly moved around the screen.  During 
the memory and tracking probe phases, probes 
for each task appeared with a response prompt. 
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Results and Discussion 

The proportion of accurate trials was averaged across memory and tracking tasks 

for each condition.  This measure was appropriate since the priority for each component 

task was not manipulated.  By averaging the performance of the two Single-task 

conditions, I formed an estimate of ideal dual-task performance, called Expected.  Any 

significant drop below this estimate was considered to result from dual-task interference 

(Fougnie & Marois, 2006).  The data were submitted to a mixed design analysis of 

variance (ANOVA) to examine the effects of the between-subjects factor of Group 

(color, shape) x the within-subjects factor of Condition (Expected, Different, Same).  

There was no main effect of Group, F(1,42) = 0.35, p = 0.56, (partial eta-squared, ηp
2 = 

0.008), but there was a main effect of Condition, F(2,84) = 35.88, p < 0.001 (ηp
2 = 0.46).  

The interaction approached significance, F(2,84) = 2.9, p = 0.06 (ηp
2 = 0.06). 

 Paired comparisons showed worse dual-task performance in the Different-object 

condition compared to Expected for both color, t(21) = 3.53, p < 0.001 (Cohen’s d = 

0.57), and shape, t(21) = 7.74, p < 0.001 (d = 1.23).  These results replicated findings by 

Fougnie and Marois (2006), who showed a dual-task cost between tracking and change 

detection and suggested some overlap between attention and VSTM processes. 

Importantly, there was a same-object advantage in that the Same-objects condition was 

performed better than the Different-objects condition for both color, t(21) = 4.18, p < 

0.01 (d = 0.38), and shape, t(21) = 2.63, p < 0.05 (d = 0.36). These results suggest a 

shared resource of object representations for attentive tracking and VSTM.  In fact, no 

significant difference was found between the Same-object condition and Expected for the 

color group, t(21) = 1.44, p = 0.16 (d = 0.22)  The abolished dual-task cost for color 
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targets suggested a complete shared resource for attentive tracking and VSTM of color. 

There was, however, an observable difference between Same-object and Expected for 

shapes, t(21) = 6.02, p < 0.001 (d = 0.82).  These results are shown in Figure 2.2. 

These results cleared showed that when attention and memory targeted the same 

objects, there was a benefit to dual-task performance compared to when they targeted 

different sets of objects, supporting the shared objects hypothesis.  In fact, dual-task 

performance in the color group was not significantly different from an estimate of ideal 

performance that we derived the Single-task trials.  However, we observed some dual-

task interference for shapes compared to this estimate.  This could have reflected 

additional performance cost due to the complexity of the features to be stored in memory 

(Alvarez & Cavanagh, 2004; Xu & Chun, 2006).  We examined the relative cost of 

features and objects in the next experiment. 

 

 

 

FIGURE 2.2 
Depicted on the left are the 
results of Experiment 2.1.  
The y-axis depicts the 
proportion of accurate trials 
averaged across memory and 
MOT tasks.  Errors bars are 
the standard error.  *p < 0.01 
(color group), **p < 0.05 
(shape group). 
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Experiment 2.2: Is the shared capacity determined by features or objects? 

 The results of Experiment 2.1 showed a same-object advantage when attention 

and memory targeted the same set of objects.  However, there was less of an advantage 

when the memory task involved complex shapes, rather than colors.  This could suggest 

that some of the dual-task cost was related to the features involved in the memory task.  

Experiment 2.2 examined the relative cost of features and objects in our dual-task 

paradigm.  By varying the target set-size, we were able to quantify the effect of 

increasing feature load separately from increasing the object load.  This manipulation 

enabled the comparison of trials with a varying number of features but the same number 

of objects.  It also enabled the comparison of trials with a varying number of objects, but 

the same number of features. 

 

Method 

 The participants were 22 Vanderbilt University undergraduate students, including 

7 males, who participated for course credit (mean age = 19, s = 1.14).  The apparatus and 

stimuli were identical to that of Experiment 1.  The procedure was identical to the color 

group of Experiment 1, with an added manipulation of target set-size.  At set-size 2, the 

memory and tracking tasks each had two targets.  However, the number of objects, or 

individual dots in the display, varied across dual-task conditions.  In the Different-objects 

trials, there were four total target objects, while in the Same-objects trials, there were two 

total target objects.  At set-size 4, eight objects were targeted in the Different-objects 

trials, and four objects were targeted in the Same-objects trials. The relevant features in 

this experiment were the color of the memory targets and the spatiotemporal continuity of 
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the tracking targets.  Across both dual-task conditions, there were four target features at 

set-size 2 and eight target features at set-size 4 (Figure 2.3). 

 

 

Results and Discussion 

The data were scored as proportion accurate and submitted to a Set-size (2, 4) x 

Condition (Expected, Different, Same) ANOVA, which revealed main effects of Set-size, 

F(1,21) = 131.13, p < 0.001 (ηp
2 = 0.86), and Condition, F(2,42) = 53.5, p < 0.001 (ηp

2 = 

0.72), and an interaction, F(2,42) = 7.2, p < 0.01 (ηp
2 = 0.25).  Feature-based costs were 

examined by contrasting trials with the same number of objects, but involved a varying 

number of features.  There was superior performance in the Different objects condition at 

set-size 2, compared to that of the Same objects condition at set-size 4, t(21) = 7.09, p < 

0.001 (d = 1.29).  Although the task in both conditions targeted four objects, the former 

FIGURE 2.3 
The encoding phase for 
Experiment 2.2 is depicted 
across the manipulation of 
set-size and condition. 
Feature-based costs were 
examined by comparing 
performance across 
conditions when the 
number of objects was 
equal (Different objects, 
Set-size 2 vs. Same objects, 
Set-size 4).  Object-based 
costs by comparing 
performance across 
conditions when the 
number of features was 
equal, i.e. across conditions 
within each level of the set-
size manipulation. 
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condition involved four features while the latter condition involve eight features.  This 

result demonstrated a feature-based cost. 

Object-based costs were examined by contrasting the Same- and Different objects 

conditions at each feature set-size.  The number of features was equal within each level of 

set-size, but the number of objects varied such that the Same-objects conditions had half 

the number of objects than the Different-objects condition.  Although there was no 

difference when there were 4 total features, t(21) = 1.66, p = 0.11 (d = 0.29), performance 

was superior in the Same-objects compared to the Different-objects condition when there 

were 8 total features, t(21) = 2.61, p < 0.05 (d = 0.48).  The same-object advantage arose 

in the latter condition possibly because task difficulty was sufficiently high at this set-

size.  These results showed that even though there were costs related to the number of 

features, there was a same-object advantage (see Figure 2.4). 

 

 

 

 

 

FIGURE 2.4 
The results of Experiment 2.2 are 
depicted as performance varying as 
a function of the total number of 
target features.  The number of 
objects in each condition appears in 
parentheses, with gray text referring 
to the Different objects condition 
and black text referring to the Same 
objects condition.  Feature-based 
costs were observed, as shown by 
significant declines in performance 
as the number of features increased 
in both dual-task conditions.  This 
occurred when the number of 
objects was equal (gray squares at 
feature set-size 4 vs. black dots at 
features set-size 8).  However, a 
same-object advantage was 
observed when the number of 
features was 8. *p < 0.05. 
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Experiment 2.3: Are dual-task costs determined by spatial attention? 

 An alternative account of our main findings is that there were fewer attended 

locations, rather than fewer attended objects, in the Same-object condition compared to 

the Different-objects condition.  Experiment 3 addressed this by adapting the task so that 

the memory task only involved one location rather than multiple locations.   

 

Method 

The participants were 21 Vanderbilt University undergraduates, including 9 

males, who participated for course credit.  The mean age was 18.9 (s = 0.92).  The 

apparatus and stimuli were identical to Experiment 2.1, except that we used a different set 

of colors (see Experiment 3.1 for a description).  At the start of the encoding phase, 

participants were instructed to memorize the colors of three dots that were serially 

presented at the center of the screen.  Unlike Experiment 2.1, participants remembered 

only the colors themselves, not the binding of color and item.  Each colored dot appeared 

at the center of the screen for 1 second, and was overlapped by a white dot for 1 second.  

At the start of the tracking phase, eight dots moved straight away from the center in 

different directions for 450 ms, followed by random motion for the remainder of the 

tracking phase (5500 ms).  From the start of the tracking phase up to 1000 ms, three dots 

were shaded to indicate them as tracking targets.  In the Same-objects condition, tracking 

targets were shaded in the same colors that had to be memorized.  In the Different-objects 

condition, targets were gray.  Before the probe phase, dots remained white and stationary 

for a short period of time. In the Different-objects condition, the dots were white and 

stationary for 250 ms.  In the Same-objects conditions, the dots were white and stationary 
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for an additional 1000 ms to offset the additional time that colors had appeared at the start 

of the tracking phase. The tracking probes were the same as those in Experiment 2.1. For 

the memory probes, a color previously shown at encoding appeared in half of the trials, 

and a new, previously unseen color appeared in other half of trials.  In the Same-objects 

trials, if the color was previously seen, it appeared on the same object as it did at the 

beginning of motion.  In the Different-objects trials, the color appeared on any of the 

tracking targets.  The order of memory and tracking probes was counterbalanced across 

four blocks of trials, and they never overlapped the same object on a given trial (see 

Figure 2.6). 

 

Results and Discussion 

 The data were scored as proportion accurate and averaged across tasks. A paired 

comparison showed superior accuracy in the Same objects (

! 

X = 0.89, SEM = 0.01) 

compared to the Different objects condition (

! 

X = 0.87, SEM = 0.01), t(20) = 3.17, p < 

0.01 (d = 0.4).  These results showed the same-object advantage, further supporting our 

hypothesis that attention and memory targeting the same objects is advantageous.  The 

results of previous experiments could have shown a same-object advantage because the 

Same-objects condition required less spatial processing than the Different-objects 

condition.  In Experiment 2.3, the same-object advantage was still observed even though 

the number of spatial locations across dual-task conditions was equal, supporting the idea 

that the source of the dual-task costs observed in these experiments is due to differences 

in the number of objects that must be represented in attention and memory.  
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Experiment 2.4: Are impairments related to memory for binding or features? 

 Although a same-object advantage was observed in Experiment 2.3, the 

magnitude of the effect was relatively modest compared to previous experiments.  

Another source of dual-task cost in Experiments 2.1 and 2.2 could have been that the 

memory task required the binding of a feature, like color, to a specific object in the 

display, which was not required in Experiment 2.3.   

The purpose of Experiment 2.4 was to examine the possibility that some dual-task 

cost observed in previous experiments could be related to the binding of color to a 

specific object.  An alternative source of impairment is the loss of some features in 

FIGURE 2.5 
The method for Experiment 
2.3 is depicted on the left. 
Each of the 3 memory 
targets was presented 
centrally, followed by a 
white dot, as depicted by 
the first two frames.  For 
the tracking phase, dots 
initially moved radially 
away from the center for 
450 ms and then moved 
randomly for 5.5 seconds.  
In the Same-objects 
condition (shown), tracking 
targets were shown in the 
memory color for 1 second 
at the beginning of the 
tracking phase. In the 
Different-objects condition, 
the tracking targets were 
grey for 1 second (not 
shown).    The tracking and 
memory probe phases were 
the same as the previous 
experiments. 
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memory.  For the purposes of this study, memory loss of a feature is considered to be 

complete failure to store that feature, not a gradual decay of that feature.  These two 

accounts were examined by manipulating the nature of the memory probe.  There were 

two types of trials for when the color of the object probed for the memory task was 

invalid.  In Misbound color trials, the invalid color appearing on the probed object was 

one drawn from a different memory target.  In New color trials, the invalid color was one 

not previously seen in the trial.  If some performance in Experiments 2.1 and 2.2 was 

impaired due to a failure to bind colors to specific objects rather than the loss of colors in 

memory, then participants may recognize the color on the probed object as one they had 

seen previously in the trial, but will still make errors about which color belonged to 

which object.  This predicts the observation of dual-task costs in the Misbound color 

trials.  If impaired performance was due to a loss of colors in memory, not feature 

binding, then participants may fail to remember some colors viewed at encoding, and will 

make errors even if the color on the probed object was not previously seen in the trial.  

This predicts the observation of dual-task costs in the New color trials. 

 

Method 

 There were 13 participants (including 4 males) recruited from the Nashville 

community who were each paid $10 an hour, with a mean age of 22.2 (s = 4.09).  The 

procedure was exactly like Experiment 2.1, except that there were two types of invalid 

memory probes.  In the Misbound color trials, the probed object appeared in a color 

previously belonging to a different object.  In the New color trials, the probed object 
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appeared in a color not previously seen in that trial.  The instructions to participants and 

procedure was identical to that of Experiment 2.1. 

 

Results and Discussion 

 The data were submitted to a 2 x 3 ANOVA to examined the effects of Memory 

probe (Misbound, New) x Condition (Expected, Different, Same).  There was no main 

effect of Memory probe, F(1,12) = 0.31, p = 0.58 (ηp
2 = 0.02), but there was a main 

effect of Condition, F(1,12) = 13.07, p < 0.001 (ηp
2 = 0.52) and a significant interaction, 

F(1,12) = 4.14, p < 0.05 (ηp
2 = 0.26).  The interaction was examined by conducting 

paired comparisons in the bound and unbound trials.  In the Misbound trials, dual-task 

costs were examined by comparing performance in the dual-task conditions to that of the 

Expected condition.  This showed significant dual-task costs in the Different-objects, 

t(12) = 7.7, p < 0.001 (d = 0.98) and Same-objects conditions, t(12) = 3.65, p < 0.01 (d = 

0.62).  In addition, a same-object advantage was observed since performance in the 

Same-objects trials was significantly better than that of the Different-objects trials, t(12) 

= 3.45, p < 0.01 (d = 0.53).  In the New color trials, there were no differences across any 

conditions (all t’s < 1.5).  The results are depicted in Figure 2.6. 

These results suggest that differences in performance between conditions were 

primarily determined by failure to correctly bind features to specific objects, rather than 

the loss of feature information in memory.  The observation of the same-object advantage 

suggests that the cost of binding is significantly reduced when attention and memory 

target the same objects rather than different objects.  This may suggest that the binding of 

features to objects is enhanced by attention, such that the binding is stronger when the 
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focus of attention remains on the object rather than when attention shifts to other objects.  

This agrees with a theory proposed by Wheeler and Treisman (2002), and supports the 

results of Fougnie and Marois (2008), who found that feature bindings in memory decay 

when visual attention is sufficiently occupied by another task like MOT. 

 

 

General Discussion of Chapter II 

 This chapter presents research investigating whether attention and memory share 

a common or distinct capacity for the representation of objects.  The results of the four 

experiments in this chapter showed an advantage to dual-task performance when the two 

component tasks targeted the same objects rather than different sets of objects.  The 

components tasks were MOT, which involves attending to visual objects, and a memory 

task requiring VSTM, which involves storing visual objects.  Experiment 2.1 provided a 

basic demonstration that targeting the same objects across both tasks led to an advantage 

in dual-task performance, both when participants memorized colors and complex shapes.  

FIGURE 2.6 
The results for Experiment 
2.4 are depicted on the left.  
*p < 0.01. 
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We called this result the same-object advantage.  Experiment 2.2 revealed that the total 

number of features exerted a cost on the dual-task.  However, this cost was reduced when 

the information was integrated into the same objects compared to when they were 

distributed across objects.  Experiment 2.3 showed that when the number of spatial 

locations was equal across the same- and different-object conditions, there was still a 

same-object advantage.  Finally, Experiment 2.4 showed that some of the dual-cost 

observed in the previous experiments came from binding features to objects.  Together, 

these results suggest that attention and memory share a common resource for representing 

objects.  When attention and memory are simultaneously required, performance is 

superior when they target the same objects.   

 

What is the object representation used in the dual-task? 

 What do the results of this chapter reveal about the objects that are shared by 

attention and memory?  The results of Experiment 2.1 showed that dual-task performance 

in the Same-objects condition was significantly lower than the expected performance 

derived from the Single-task trials when the memory task involved shapes.  This could 

have reflected the cost of storing complex features.  Alvarez and Cavanagh (2004) 

showed that change detection performance was inversely related to the complexity of the 

memorized objects.  For example, participants showed greater capacity when the memory 

task involved colored squares compared to when it involved random polygons.  These 

findings suggested that visual features exert a cost upon VSTM storage.  However, as the 

information per object approached zero, only about 4 or 5 objects could be represented in 

VSTM, suggesting that the number of objects was still an important limiting factor.  They 
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proposed that the total VSTM capacity could be conceived of as slots, each of which 

could only hold a minimal number of features without decay in resolution.  However, the 

resolution decays as the features related to a given slot exceed this minimum threshold.    

The results of Experiment 2.2 confirmed that features exerted a cost in the dual-task 

paradigm.  The results showed a significant performance cost that varied with the number 

of features when the number of objects was equal across the Same- and Different-objects 

conditions.  These findings agreed with those of Olson and Jiang (2002), who showed 

that although features exerted a cost onto VSTM capacity, there was a benefit to reducing 

the number of objects when the total number of features was high. 

One common criticism of object-based attention is that the number of objects is 

often confounded by the amount of spatial processing.  The results of Experiment 2.3 

showed a significant same-object advantage even when the total number of relevant 

locations was equal across conditions.  This supported the idea that the difference 

between the two dual-task conditions in previous experiments was driven by the number 

of objects across the conditions, and not by spatial processing.  However, the same-object 

advantage observed in Experiment 2.3 was relatively modest.  One possibility for this 

modest effect was that the memory task did not require binding colors to specific objects, 

unlike the previous experiments.  It was possible that a portion of the dual-task cost in 

our paradigm was related to successfully binding features to specific objects.  This was 

directly examined in Experiment 2.4.  In some trials, the memory task required binding of 

features to objects, while in others it did not.  The results showed dual-task costs only 

when the memory task required the binding of features to objects.  What is the source of 

errors in binding features to objects?  One possibility is the dividing of attention across 
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several objects resulted in non-optimal allocation to each object, resulting in binding 

errors (Treisman & Schmidt, 1982).   

Together, the results of these experiments reveal some properties of the object 

representations shared by attention and memory.  The fundamental unit of the capacity 

for representation may be individual features, since we showed performance costs related 

to more complex shapes compared to colors, as well as costs related to the total number 

of features required for representation.  However, integrating feature information into 

objects could be an important way to compress the information that is represented. The 

number of objects that could be represented is limited, and this limitation is independent 

of spatial processing.  Conceiving visual features as the smallest the units of processing 

differs from ideas of Cowan (2001), who proposes that capacity limitations should be 

characterized in terms of the highest-order representation in which information can be 

recoded.  However, this might only be useful if information can be recoded into higher-

order representations without error.  In the current study, features exerted some cost even 

when they were integrated as objects.  This might indicate that the means of integration 

are imperfect or weak.  This fits with the idea that the means of integrating features into 

objects is attentionally-mediated binding.  Dividing visual attention, as required in the 

tasks of this chapter, could impair necessary bindings, revealing some cost related to 

features. 

The object representations used in the current chapter could be object files 

(Kahneman et al., 1992).  The primary finding of this chapter suggested that a single 

representation was used for the accrual of new information, as the spatial updating of 

MOT required, and the retention of old information, as required by the memory task.  
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One advantage of a single representation for updating and memory is to preserve 

continuity.  An object that is changing over time, like a moving object, must be perceived 

as a single, continuous entity over the course of its change.  The visual system must 

deploy a process that makes a correspondence between different states across time.  Any 

correspondence process must use some form of memory because older states of the 

object, which are no longer in view, must be related to the current state of the object.  For 

example, to perceive a man walking across the street as continuous, a correspondence 

process may sample and store the image of the man at one point in time.  At a later point 

in time, when the man is at a different position, visual information is sampled again and 

then matched to the image of the man stored in memory.  A successful match could lead 

to the integration of the newly sampled information to the existing image in memory, 

effectively updating that image.  Kahneman et al. (1992) called this integration of old and 

new information impletion, and it was the means of perceiving the changing states of a 

single object.  This concept of a dynamic object representation requires the use of 

attention for the accrual of new information and memory for storage of older information.  

The finding of a shared capacity for object representation in attention and memory 

supports this view.  

 

Alternative sources of overlap between attention and memory 

The conclusion of this chapter is that attention and memory share the capacity for 

object representation.  Are there alternative interpretations of this overlap?  Cowan 

(2001) considered the source of short-term memory limitations to be the focus of 

attention.  In other words, short-term memory and attention shared a common capacity.  
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Fougnie and Marois (2006) directly examined this possibility in visual attention and 

memory, and showed that there was some distinction in their respective capacities.  

However, there was an amount of task overlap observed, and the current study replicated 

their results.  Fougnie and Marois (2006) concluded that although attention and memory 

have distinct capacities, they primarily share central executive resources.  If the central 

executive is defined as functions such as mental set-shifting, updating, and inhibition 

(Miyake, Friedman, Emerson, Witzki & Howerter, 2000), then the same-object advantage 

observed here cannot be explained by differences in executive processing.  The demands 

on these executive functions were the same across the Same- and Different-objects 

conditions.  However, if another function of the central executive is the formation and 

maintenance of objects, then the same-object advantage observed in the current study can 

be considered to stem from a central executive resource. However, the dual-task cost 

observed in the current experiments was not completely eliminated by the same-object 

advantage, suggesting that there is more to the distinction of attention and memory than 

object representations. 

Another way to view the current results is that VSTM is an important part of the 

tracking process.  The specific mechanism supporting attentional tracking is still under 

debate (Cavanagh & Alvarez, 2005), but some researchers have modeled tracking as a 

cycle of sampling and encoding target information into VSTM, and comparing them to 

the stimulus at the next sample (Allen, McGeorge, Pearson & Milne, 2006; Oksama & 

Hyönä, 2008). Under this view, VSTM is a crucial component of a tracking process.  In 

the next chapter, I will examine this possibility. 
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Conclusion of Chapter II 

 The experiments of this chapter investigated whether attention and memory 

shared a common resource of object representations.  Using a dual-task requiring the use 

of attention and memory, this problem was addressed by manipulating whether attention 

and memory targeted the same set of objects or a different set of objects.  If attention and 

memory used the same object representations, dual-task performance should be higher 

when tasks using attention and memory target the same objects compared to when they 

target different objects.  The results of four experiments agreed with this prediction.  It is 

concluded that attention and memory share a common capacity for representing objects. 
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CHAPTER III 

 

HOW DOES ATTENTION PRESERVE OBJECT CONTINUITY? 

 

Introduction 

 This chapter will examine the process by which objects are perceived to be 

continuous.  The conclusion of the previous chapter was that attention and memory share 

a capacity for object representation.  Another way to view this conclusion is to say that 

attention and memory are both required in preserving an object representation.  This 

experiments reported in this chapter examined how attention and memory could both be 

involved in preserving object continuity.   

Information from the visual world is constantly changing.  One fundamental 

component of human cognition is to provide a sense of stability despite changes in 

information.  Objects must be perceived as the same enduring entities, or as continuous, 

over time in the face of changes to location and appearance.  For example, if you see a 

person crossing the road, how do you know it is the same person that arrives on the other 

side?  Object continuity must also be preserved when information about the object is 

temporarily discontinued.  For example, if the person walks behind a truck, how do you 

know that the person emerging from behind the truck is the same person?  One way that 

the person could be perceived as continuous is by sampling an image of the person prior 

to disappearing, and comparing a memory of the image to a new sample taken after the 

person emerges from behind the truck.  The purpose of this study was to investigate 
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whether attention mediates object tracking by comparing discretely sampled information 

to representations in memory. 

The preservation of object continuity is important in the multiple-object tracking 

(MOT) task, where participants are required to discriminate moving targets from non-

targets.  Despite the continual change in objects’ positions, participants must perceive the 

targets as the same enduring entities throughout the tracking period.  Some theories of 

how MOT is accomplished was discussed in the previous chapter, including visual index 

theory Pylyshyn (2000, 2001), grouping strategies (Yantis, 1992), and multi-focal 

attention (Cavanagh & Alvarez, 2005).   

More recently, some researchers have proposed that MOT involves sampling and 

memory. Allen, McGeorge, Pearson and Milne (2006) proposed that the locations of 

targets are sampled by visual indices and stored in visual short-term memory (VSTM).  

While the target locations are stored in VSTM, the indices take another sample at the next 

distinct time interval.  Importantly, changes occurring between these sampling intervals 

do not affect the process.  A central control mechanism compares the stored targets to the 

newly indexed objects, and if the two groups have similar attributes, the newly indexed 

objects are stored and become the current representation of the targets.  This process is 

repeated throughout the motion period.  Oksama and Hyönä (2008) also incorporated 

memory into a model of tracking objects with unique visual identities.  Their model 

involves the attentional updating of target objects in a serial manner.  The locations of 

objects not currently under the focus of attention are stored in VSTM.  Memorized 

locations and the visual identity are compared to current visual input with a central 

control mechanism.  Successful target tracking depends on minimal discrepancy between 
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memorized and perceived object information.  A mechanism that takes discrete samples 

can maintain object continuity even if an object disappears for a period of time.  Storing 

the information for comparison to the next sample suggests that object continuity depends 

on the consistency of information between samples.  

 The results of the target recovery (TR) task suggest that a sampling mechanism 

could facilitate object tracking.  TR is similar to MOT, in that participants track the 

positions of multiple moving targets, but it differs from MOT because the display briefly 

disappears while participants are tracking.  Alvarez, Horowitz, Arsenio, DiMase and 

Wolfe (2005) first showed that, surprisingly, participants were able to maintain high 

tracking performance despite the inclusion of this brief blank period.  Do participants 

continue tracking through the blank, or do they memorize the information necessary to 

recover targets after the blank?  Horowitz, Birnkrant, Fencsik, Tran and Wolfe (2006) 

proposed that participants treated the blank like an occlusion and continued to track 

objects while they were invisible.  This predicted that providing occlusion cues just 

before the blank and making the objects disappear one at a time would result in better 

performance than if occlusion cues were absent and objects all disappeared at once.  

Instead, they found that occlusion cues and asynchronous disappearance resulted in worse 

performance than when occlusion cues were present and objects disappeared 

simultaneously.  They suggested that recovery of targets was accomplished by storing 

information prior to the blank to compare it with information across the blank.  

How does behavior related to TR suggest a sampling mechanism?  Keane and 

Pylyshyn (2006) manipulated the blank duration and the post-blank object positions in a 

TR task.  In some trials, the objects paused during the blank, so that the pre-blank object 
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positions matched the post-blank positions.  In other trials, the objects moved during the 

blank, so that the pre-blank and post-blank positions became increasingly discrepant as 

the blank duration increased.  Performance was high when objects paused during the 

blank, and remained high across all blank durations.  However, performance declined 

when objects moved during the blank, and became more impaired as the blank duration 

increased.  These results showed that accuracy declined as the spatial discrepancy 

increased between the object locations prior to and after the blank.  These results support 

the memory-based account by Horowitz and colleagues (2006).  However, these results 

similarly support sampling models of the MOT process.  As the duration of the blank 

increases, so does the discrepancy between pre- and post-blank positions, and so it would 

degrade the match between the stored location and the newly indexed location. The 

sampling account of TR is also appealing because performance is not impaired by the 

blank in the display, but by the consistency of information across the blank. 

 A memory-based sampling mechanism may account for TR performance, but 

does it apply to multiple-object tracking without a blank?  One way to examine this is by 

testing whether behavior related to MOT and TR is similarly affected by consistency of 

the same kind of target information.  In this chapter, we examined whether the 

consistency of surface features, specifically color, affected behavior related to MOT and 

TR.  The role of surface features in MOT has been controversial (Bahrami, 2003; 

Horowitz, Klieger, Fencsik, Yang, Alvarez & Wolfe, 2007), but there is a facilitative 

effect of surface features on MOT (Makovski & Jiang, 2009a, 2009b). The results 

showed that consistent colors facilitated performance in both MOT and TR.  These 
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results supported predictions of a proposed tracking process based on sampling object 

information for storage into memory, and matching it to currently viewed objects. 

 

Experiment 3.1: Consistent colors facilitate target recovery 

In Experiment 3.1, we examined whether consistent color could facilitate the 

recovery of targets after the blank.  Participants tracked objects appearing in different 

task-irrelevant colors.  At a random point during motion, the all the objects disappeared, 

and during this blank the objects could pause or move.  Color consistency was 

manipulated so that, in half of the trials, color was the same across the blank, while in the 

other half the color was different.  Additionally, we divided the time of object motion 

into several discrete periods, and manipulated the consistency of object colors across 

these periods.  This manipulation resulted in the appearance of moving objects having 

visibly consistent colors or periodically changing colors.   

 

Method 

Participants 

All participants in this chapter were recruited through the Psychology Research 

Sign-up System at Vanderbilt University, and participated in exchange for credit toward 

requirements of undergraduate psychology classes. All participants were tested in 

accordance with Vanderbilt University’s Policy for the Protection of Human Subjects and 

the APA 2002 Code of Ethics.  Participants in Experiment 3.1 were 16 Vanderbilt 

undergraduate students, including 13 females, with a mean age of 19.75 (s = 1.24).   
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Apparatus and Stimuli 

All stimuli were presented in MATLAB using the Psychophysics Toolbox 

extension (Brainerd, 1997; Pelli, 1997) and administered on an eMac G4 with a CRT 

monitor at 1024 x 768 pixel resolution and 89 Hz refresh rate.  Participants were 

positioned approximately 57 centimeters (cm) from the computer monitor.  Each dot was 

0.8 degrees of visual angle (°) in diameter, and they appeared in a square, white frame 

spanning 19° x 19°, appearing on a black background.  The motion algorithm used in the 

experiments of this chapter was identical to the one described in Chapter II.  The average 

speed was 9.15 degrees per second (°/s). Nine unique colors were randomly chosen and 

assigned to each dot at the beginning of each trial. The colors were randomly chosen 

without replacement from a set of 12 equidistant color coordinates on an imaginary circle 

centered on the white spot in 1976 CIE L*u*v* color space (CIE, 1986).  The radius of 

the circle was 0.09 u’v’ units.  The mean luminance of the colors was 29.88 cd/m2 (s = 

0.88).  This color set is depicted in Figure 3.1. 

 

FIGURE 3.1 
The 12 colors used for stimuli are depicted to 
the left.  These colors are drawn from 1976 
CIE L*u*v* space.  The color space 
coordinates of each color are preserved in 
this figure, so that neighboring colors are 
harder to perceptually discriminate than 
colors that are further apart.  Each color is 
most easily discriminated from the color 
directly across from it.  The perceptual 
discriminability between the colors was 
verified by psychophysics (data not shown).   



  

 48 

Procedure 

Nine colored dots appeared for 500 ms, followed by the appearance of circle cues 

around the 3 target dots for an additional 2000 ms. Participants were instructed to track 

the circled dots.  The cues disappeared, and after 250 ms, the dots began moving 

randomly for 6000 ms. The appearance of the dots was manipulated with a 5x2x2 within-

subjects factorial design. The first factor in this experiment was color consistency across 

periods.  The entire 6000 ms duration of motion was divided into discrete periods.  The 

dot colors were made inconsistent across periods by swapping colors between randomly 

selected pairs of dots. Target dots could swap colors with either targets or non-targets. 

Color swaps occurred at a random point within each period so that the rate of swapping 

was not perfectly regular and predictable. Period duration was manipulated across trials 

to be 125, 250, 500, or 1000 ms, so that there were 48, 24, 12 or 6 swaps in a trial, 

respectively. In the remaining one fifth of the trials, the dot colors were consistent across 

all periods; in other words, dots retained their colors for the entire 6000 ms motion 

duration. The second factor in this experiment was the motion of the dots during the 

blank. At 1, 2, 3, or 4 seconds after the dots started to move, all the dots disappeared for 

350 ms. During this blank, the dots either paused so that they were in the same position 

before and after the blank, or continued to move such that they were in a different 

position before and after the blank.  Color swaps across periods were constrained prior to 

and after the blank to occur at least half of a period length before and after the blank.  The 

third factor in this experiment was the color consistency across the blank. In half of the 

trials, dot colors were consistent prior to and just after the blank, while in the other half, 

the dot colors were swapped during the blank so that they were inconsistent prior to and 
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just after the blank.  At the end of the trial, the dots stopped moving and turned white.  

Removing the colors for the response period eliminated the possibility that participants 

were responding only based on the memorized colors of the targets in the trials in which 

the colors were always consistent. Participants were instructed to use the mouse to select 

their targets.  At each selection, either a high or low tone was sounded depending on 

whether a target or non-target, respectively, was selected.  Participants completed 8 trials 

for each condition, resulting in 160 trials in total. 

 

Results 

The data were scored as proportion of accurately selected targets, that is the 

number of correctly selected targets divided by number of targets. An analysis of 

variance (ANOVA) examined the effects of color consistency across motion periods (125 

ms, 250 ms, 500 ms, 1000 ms period duration, consistent), color consistency across the 

blank (inconsistent, consistent) and position during the blank (pause, move).  There was 

no main effect of consistency across motion periods, F(4,60) = 2.04, p = 0.099 (partial 

eta squared, ηp
2  = 0.12), but there were main effects of consistency across the blank, 

F(1,15) = 26.55, p < 0.001 (ηp
2 = 0.64), and position, F(1,15) = 132.94, p < 0.001 (ηp

2 = 

0.898).  There were two-way interactions between consistency across motion periods and 

consistency across the blank, F(4,60) = 7.22, p < 0.001 (ηp
2 = 0.325), as well as 

consistency across the blank and position, F(1,15) = 7.13, p < 0.05 (ηp
2 = 0.322), but the 

interaction between consistency across motion periods and position was not significant, 

F(4,60) = 0.45, p = 0.77 (ηp
2 = 0.029).  The three-way interaction was significant, 

F(4,60) = 4.72, p < 0.01 (ηp
2 = 0.24).  
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Simple effect analyses were conducted to find the source of the three-way 

interaction.  We first examined trials when colors were inconsistent across motion 

periods.  We averaged across the levels of motion period duration and submitted the data 

to examine effects of consistency across the blank (inconsistent, consistent) and position 

(pause, move).  This revealed main effects of color consistency, F(1,15) = 7.94, p < 0.05 

(ηp
2 = 0.34), and position, F(1,15) = 111.89, p < 0.001 (ηp

2 = 0.88), but no interaction, 

F(1,15) = 0.39, p = 0.54 (ηp
2 = 0.02).  When averaged across the levels of position, there 

was a modest, but significant, increase in accuracy when colors were consistent across 

the blank (

! 

X  = 0.74, SEM = 0.26) compared to when they were inconsistent across the 

blank (

! 

X  = 0.71, SEM = 0.027), t(15) = 2.82, p < 0.05 (d = 0.28).  This confirmed that 

the main effect of consistency was driven by a consistent color benefit.  Then, trials with 

consistent colors across motion periods were submitted to a simple effects ANOVA to 

examine the factors of color consistency across the blank (inconsistent, consistent) and 

position (pause, move).  There were main effects of consistency, F(1,15) = 42.21, p < 

0.001 (ηp
2 = 0.74), and position, F(1,15) = 67.48, p < 0.001 (ηp

2 = 0.82), and the 

interaction was significant, F(1,15) = 20.27, p < 0.001 (ηp
2 = 0.57).  Paired comparisons 

showed higher performance when the color across the blank was consistent compared to 

inconsistent in both the pause, t(15) = 2.52, p < 0.05 (d = 0.53), and the move trials, t(15) 

= 6.89, p < 0.001 (d = 1.7).  As shown on the right side of Figure 3.2, there was a larger 

benefit from color consistency across the blank when the dots moved compared to than 

when they paused.  This was confirmed by taking the difference between consistent and 

inconsistent color trials and comparing these differences across move and pause trials.  
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This contrast revealed a significant larger difference in the move trials compared to the 

pause trials, t(15) = 4.5, p < 0.001 (d = 1.44). 

 

Discussion 

These results clearly showed facilitated target recovery when colors were 

consistent across the blank.  However, this consistent-color benefit was much stronger 

when the colors of the objects were visibly consistent across motion periods.  Further 

results showed a greater consistent-color benefit when the dots moved compared to when 

they paused during the blank.  These results suggest that appearance information is relied 

on more when other types of information, such as object position, are insufficient to 

create a correspondence across a discontinuity.  We conclude that appearance information 

is important in preserving the continuity of dynamic objects tracked across a blank.  

These observations are consistent with the sampling account in that the success of 

tracking was dependent the consistency of object position and color.  These results can be 

explained by a mechanism that samples information about the targets before the blank 

and compares that to information after the blank to successfully recover the targets.  We 

also found that consistent colors across periods facilitated performance, suggesting 

perhaps that people used color to sustain target representations during tracking.  
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Experiment 3.2: Color consistency in object tracking and target recovery 

In Experiment 3.1, we demonstrated that consistent colors facilitated TR.  Does 

consistent color have a similar effect on MOT?  In the current experiment, MOT and TR 

tasks were mixed, as the absence or presence of a blank varied randomly across trials.  

Importantly, the consistency of colors was manipulated differently to examine the effects 

of consistency on behavior related to MOT and TR.  In MOT trials (blank absent), the 

effect of color consistency was assessed by manipulating whether the colors consistent 

across motion periods.  In TR trials (blank present), the effect of color consistency was 

assessed by manipulating whether the object colors were consistent or inconsistent across 

the blank.  It is proposed that if a common process mediates both MOT and TR, then the 

effect of color consistency should be the same in both tasks.  Alternatively, if distinct 

processes mediate both MOT and TR, then the effect of color consistency should be 

different across tasks.  A secondary purpose of Experiment 3.2 was to investigate 

FIGURE 3.2 
The results of Experiment 3.1 are 
depicted to the left. When colors were 
inconsistent across periods, they changed 
once per period.  Higher performance was 
found when dots paused during the blank 
(black) versus moved (gray). There was 
better performance when colors were the 
consistent across the blank (squares) 
compared to when they were inconsistent 
across the blank (circles).  When colors 
were inconsistent across periods, there 
was a modest consistent color benefit (p < 
0.05).  Consistent color benefits were 
more evident when the colors were 
consistent across periods in both pause 
(black) and move (gray) conditions.  * p 
< 0.05, ** p < 0.001.  The error bars 
represent the standard error of the mean. 
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whether the use of appearance information in TR is mediated by VSTM. Participants 

performed an articulatory suppression task to discourage verbal encoding of the colors.   

 

Method 

Participants were 12 Vanderbilt undergraduate students, including 4 females, with 

a mean age of 18.58 (s = 0.9).  The apparatus was identical to that of Experiment 3.1, 

except that vocal responses to the articulatory suppression task were recorded with an 

InSync gooseneck microphone, connected with a Griffin iMic USB convertor.  The 

stimuli were identical to that of Experiment 3.1. 

 

Procedure 

As shown in Figure 3.3, participants viewed 2 vertically aligned digits for 500 ms 

and were instructed to repeatedly recite these digits aloud into a microphone until the end 

of the dot motion.  A 200 ms interstimulus interval (ISI) followed.  The square white 

frame then appeared for 500 ms, followed by nine dots, including the 3 circled targets, for 

2000 ms.  The circle cues disappeared, and after 200 ms, the dots randomly moved for 

6000 ms.  The blank was absent in half of the trials and present in the other half of the 

trials, indicating MOT and TR trials, respectively.  In order to find conditions under 

which MOT and TR could be equated for task difficulty, the average speed of the dots’ 

motion was varied to be 9.38, 12.42, 15.49, or 18.56°/s.  In half of all the trials, the dot 

colors were consistent across motion periods, while in the other half they were made 

inconsistent across periods by swapping at a random point in each period.  Of the trials 

with colors that were inconsistent across motion periods, only a 500 ms period duration 
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was used.  In the TR trials, all of the dots disappeared at 1, 2, 3 or 4 seconds after the start 

of the dot motion for 200 ms.  The dots continued to move during the blank in all trials.  

The dot colors were inconsistent across the blank in half of the TR trials, and consistent 

across the blank in the other half of TR trials.  In MOT trials, the manipulation of 

consistency across the blank was coded as a dummy variable since there was no blank.  

For both MOT and TR, the dots stopped moving and turned white after moving for 6000 

ms.  Participants selected targets by controlling a box on the display with the computer 

mouse.  To avoid feedback effects on each response, the tone accompanying each 

selection was uninformative.  After participants selected three objects, the targets 

appeared red for 200 ms before the blank intertrial interval (ITI), so that feedback was not 

available until all selections were made.  There were 8 trials per condition, resulting in a 

total of 256 trials. 

 

 

FIGURE 3.3 
A schematic of the procedure 
for target recovery (TR) trials 
when colors were inconsistent 
across periods in Experiment 
3.2. First, participants were 
shown two digits for the 
articulatory suppression task.  
Next, different colored dots 
appeared for 2000 ms with the 
targets cued by circles.  Next, 
the dots started to move and 
change colors. The mask and 
blank appeared at 1, 2, 3 or 4 
seconds from the beginning of 
the 6000 ms motion period.  
Multiple-object tracking 
(MOT) trials were similar 
except that the mask and 
blank were absent. 
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Results  

  We directly compared the consistent color benefits in MOT and TR by 

examining the difference in accuracy between trials when color was consistent and 

inconsistent.  For MOT, trials with consistent colors across periods were categorized as 

consistent, while trials with inconsistent colors across periods, averaged across all period 

durations, were categorized as inconsistent.  In TR, trials with consistent colors across the 

blank were categorized as consistent, while trials with inconsistent colors across the 

blank were categorized as inconsistent.  For TR, only trials with consistent colors across 

motion periods were considered for analysis.  Results from earlier experiments had 

shown that the effects of consistency across the blank in TR were only effective when the 

colors were consistent across motion periods (data not shown).  The data were submitted 

to a 3-way ANOVA to examine the effects of Speed (9.38, 12.42, 15.49, 18.56°/s) x Task 

(MOT, TR) x Consistency (inconsistent, consistent).  There were main effects of Speed, 

F(3,33) = 98.4, p < 0.001 (ηp
2 = 0.899), Task, F(1,11) = 168.5, p < 0.001 (ηp

2 = 0.94), 

and Consistency, F(1,11) = 39.08, p < 0.001 (ηp
2 = 0.78).  There was no Speed x 

Consistency interaction, F(3,33) = 1.27, p = 0.3.  However, there was a Speed x Task 

interaction, F(3,33) = 5.5, p < 0.01 (ηp
2 = 0.33), as well as a Task x Consistency 

interaction, F(1,11) = 26.96, p < 0.001 (ηp
2 = 0.71).  The three-way interaction was 

significant, F(3,33) = 3.19, p < 0.05, ηp
2 = 0.22 (see Figure 3.4A). 

 The goal of the speed manipulation was to observe the effects of color 

consistency in both MOT and TR under conditions in which MOT performance was 

below ceiling.  To do this, we examined the MOT trials and TR trials when the colors 

were consistent.  On average, MOT performance (

! 

X  = 0.77, SEM = 0.03) when the 
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object speed was 18.56°/s was similar to TR performance (

! 

X  = 0.72, SEM = 0.04) when 

the object speed was 15.49°/s, t(11) = 1.06, p = 0.31.  Importantly, this MOT 

performance was not at ceiling, as it was significantly lower than to MOT performance in 

color-consistent trials when the object speed was 9.38°/s, t(11) = 3.78, p < 0.001 (d = 

1.44). We then examined the effects of Task and Consistency for MOT at 18.56°/s and 

TR at 15.49 °/s.  These data showed main effects of Task, F(1,11) = 14.93, p = 0.01 (ηp
2 

= 0.58), and Consistency, F(1,11) = 27.62, p < 0.001 (ηp
2 = 0.72), but no interaction, 

F(1,11) = 3.47, p = 0.09 (ηp
2 = 0.24).  Paired comparisons showed superior performance 

in consistent trials compared to inconsistent trials for both MOT, t(11) = 3.27, p < 0.01 (d 

= 1.14), and TR, t(11) = 4.9, p < 0.001 (d = 2.08).  The lack of interaction observed in 

this analysis suggests a similar use of surface features in both tasks (Figure 3.4B). 

 

 

 

 

 

FIGURE 3.4 The results of Experiment 3.2 are depicted above.  (A) Accuracy is plotted as a 
function of object speed in terms of degrees per second (°/s).  The results of MOT trials are 
depicted as black symbols, while the results of TR are depicted as gray symbols.  The results of 
trials with consistent colors are depicted as squares, while those with inconsistent colors are 
depicted as circles.  (B) A direct comparison between MOT trials brought below ceiling 
performance and TR is depicted, using data from Experiment 2B.  MOT performance at the 
fastest object speed (18.56°/s) was shown to be comparable to that of TR at a slower speed 
(15.49°/s) when object color was consistent (p = 0.31).  Consistent-color benefits were observed 
for both MOT (* p < 0.01) and TR (** p < 0.001). Error bars show standard error of the mean for 
each condition. 
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Discussion  

 The results of Experiment 3.2 showed that consistent object colors facilitated 

performance in both MOT and TR.  In relation to the predictions, these results support 

the hypothesis that a common process mediates both MOT and TR.  These results accord 

with a sampling model of object continuity, which predicts that performance is 

determined the consistency of information related to the target objects (Allen McGeorge, 

Pearson & Milne, 2006; Oksama & Hyönä, 2008).  In the current study, the decrease in 

accuracy due to inconsistent colors can be accounted for if the mismatch between the 

memory of the target colors and new input impaired object correspondence.  Observing 

the same effect of color consistency in both MOT and TR suggests that the same 

mechanism is common to both tasks. 

 The consistent-color benefit was observed despite the use of a concurrent 

articulatory suppression task in both MOT and TR.  This is some evidence to suggest that 

the information about colors was not stored as a verbal code, but instead stored in VSTM.  

The results of a previous experiment showed the same effects of consistency across the 

blank in TR, even when the blank was preceded by a full-screen mask (data not shown).  

This supported the idea that VSTM was used to represent color in TR.  The consistent-

color benefit observed in the MOT task with concurrent articulatory suppression suggests 

that color information in MOT may also be maintained in VSTM, which agrees with 

previous research (Makovski & Jiang, 2009b).  However, unlike TR, the objects in MOT 

are always visible, so it is possible that the color representation is sustained in the visual 

system without relying on VSTM.  The next experiment directly examined the difference 

in color representation for MOT and TR.   
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Experiment 3.3: Color representation in object tracking and target recovery 

 What kind of memory mediates the use of colors in TR and MOT?  The results 

from Experiment 3.2 suggest that VSTM may play a role.  VSTM capacity for 

perceptually distinguishable stimuli belonging to the same category is reduced to about 

one object (Olsson & Poom, 2005). Awh, Barton and Vogel (2007) showed that change 

detection accuracy was better when objects changed to a different category, (e.g. Chinese 

characters and random polygons), compared to when objects changed to another 

exemplar of the same category.  Together, these studies indicate that VSTM represents 

color with relatively low resolution.  Based on these studies, we predicted that a low-

resolution representation in VSTM would enable participants to detect large changes in 

color, but less able to detect small changes in color.  Trials with large color changes 

would lead to a higher probability of mismatch during a sample-to-comparison process, 

leading to a greater decrease in accuracy.  In further testing the idea that VSTM mediates 

color representation in TR, a full-screen mask appeared just prior to the blank in TR 

trials.  VSTM representations are known to be robust to effects of visual masking (Vogel, 

Woodman & Luck, 2006).  In summary, if color is represented solely by VSTM, the 

degree of accuracy impairment related to inconsistent colors should be affected by 

whether the magnitude of change is small or large. 

 

Method 

Participants were 16 Vanderbilt undergraduate students, including 6 females, with 

a mean age of 19.4 (s = 1.18).  The apparatus and stimuli were identical to that of 

Experiment 3.2, except that the blank was preceded by a full screen mask composed of 
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36 discs, each spanning 2.3° in diameter and positioned on points of a grid spanning the 

entire tracking frame.  Each grid position was jittered by ±0.76° to degrade the 

appearance of a grid.  These discs appeared in randomly selected colors drawn from the 

same color set described above.  The procedure was identical to that of Experiment 3.2, 

with the following modifications.  The color changes were either small or large in 

magnitude both when the colors were inconsistent across motion periods and when the 

colors were inconsistent across the blank.  Small color changes involved changing the 

color of a dot to one of two 2nd neighbors in our set of 12 colors, such as between two 

shades of blue.  Large color changes involved changing the current color to one of two 5th 

neighbors in our color set, such as between blue and red.  In addition, we only used the 

500 ms motion period duration.  We added a factor of speed to equate task difficulty 

between MOT and TR, so that the dots moved at a rate of 9.5°/s or 18.36°/s.  Participants 

completed 8 trials for each condition for a total of 256 trials.   

 

Results and Discussion 

The trials were sorted as inconsistent or consistent, just as in Experiment 3.2.  The 

data were then submitted to a 4-way ANOVA to examine the effects of Speed (9.5, 

18.36°/s) x Magnitude (Small, Large) x Task (MOT, TR) x Consistency (consistent, 

inconsistent).  The results revealed main effects of Speed, F(1,15) = 114.01, p < 0.001 

(ηp
2 = 0.88), Magnitude, F(1,15) = 14.23, p < 0.01 (ηp

2 = 0.49), Task, F(1,15) = 154.71, 

p < 0.0001 (ηp
2 = 0.91), and Consistency, F(1,15) = 114.9, p < 0.0001 (ηp

2 = 0.906). 

There were two-way interactions between Speed x Task, F(1,15) = 5.92, p < 0.05 (ηp
2 = 

0.28), Magnitude x Task, F(1,15) = 9.42, p < 0.01 (ηp
2 = 0.386), Task x Consistency, 
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F(1,15) = 27.23, p < 0.001 (ηp
2 = 0.64), and Magnitude x Consistency, F(1,15) = 8.29, p 

< 0.05 (ηp
2 = 0.36).  The other interactions were not significant (F’s < 1).  The only 

significant three-way interaction was Speed x Task x Consistency, F(1,15) = 11.97, p < 

0.01 (ηp
2 = 0.44).  While the Speed x Magnitude x Task interaction was approaching 

significance, F(1,15) = 3.9, p = 0.067 (ηp
2 = 0.206), the others were not close to 

significance (F’s < 2.3).  The 4-way interaction was also significant, F(1,15) = 8.92, p < 

0.01 (ηp
2 = 0.37).  We investigated the source of this interaction with simple effects 

ANOVAs and planned comparisons.  

 The results of performance at 9.5°/s showed that the magnitude of color change 

modulated performance in TR, but MOT performance was potentially at ceiling.  For 

MOT at 9.5°/s, a simple effects analysis revealed no main effect of Magnitude, F((1,15) 

= 0.27, p = 0.6 (ηp
2 = 0.018), however there was an effect of Consistency, F(1,15) = 4.73, 

p < 0.05 (ηp
2 = 0.24), which revealed higher performance when colors were consistent 

(

! 

X  = 0.94, SEM = 0.015) compared to when they were inconsistent (

! 

X  = 0.87, SEM = 

0.04).  There was no Magnitude x Consistency interaction, F(1,15) = 0.72, p = 0.41 (ηp
2 

= 0.045).  For TR at 9.5°/s, there were main effects of Magnitude, F(1,15) = 18.58, p < 

0.001 (ηp
2 = 0.55), and Consistency, F(1,15) = 110.99, p < 0.001 (ηp

2 = 0.88), and a 

significant interaction, F(1,15) = 13.76, p < 0.01 (ηp
2 = 0.48).  This interaction was 

confirmed with difference scores, constructed by subtracting performance in the 

inconsistent trials from the consistent trials, showed a larger difference for large color 

changes compared to small color changes in TR, t(15) = 3.71, p < 0.01 (d = 1.08).  The 

results are depicted in Figure 3.5A.   
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 The purpose of the speed manipulation was to examine whether the magnitude of 

color change affected MOT performance once it was brought down from ceiling.  To 

confirm this, we contrasted MOT performance at 9.5°/s to 18.36°/s, averaging across all 

other trial types.  This revealed significantly higher performance at 9.5°/s, t(15) = 8.99, p 

< 0.001 (d = 1.66), confirming that MOT performance was lower than ceiling at the faster 

speed.  For MOT at 18.36°/s, a simple effects analysis revealed a main effect of 

Consistency, F(1,15) = 36.1, p < 0.001 (ηp
2 = 0.71), which showed higher performance 

when colors were consistent (

! 

X  = 0.76, SEM = 0.03) compared to when they were 

inconsistent (

! 

X  = 0.62, SEM = 0.05).  However, there was no effect of Magnitude, 

F(1,15) = 3.87, p = 0.068 (ηp
2 = 0.20), and no interaction, F(1,15) = 0.7, p = 0.42 (ηp

2 = 

0.04).  For TR at 18.36°/s, a simple effects analysis revealed a main effect of 

Consistency, F(1,15) = 77.82, p < 0.001 (ηp
2 = 0.84), which showed higher performance 

when colors were consistent (

! 

X  = 0.54, SEM = 0.02) compared to when they were 

inconsistent (

! 

X  = 0.33, SEM = 0.016).  There was no effect of Magnitude, F(1,15) = 4.0, 

p = 0.06 (ηp
2 = 0.21), and no interaction, F(1,15) = 0.3, p = 0.59 (ηp

2 = 0.02).  When 

speed was 18.36°/s, we still did not observe an effect of color change magnitude in MOT, 

even though MOT performance was brought down from ceiling.  We also did not observe 

effects of color change magnitude in TR at this speed, but this may have been because 

performance in the inconsistent trials was at floor.  Together, it seems that color 

representation in TR can be sensitive to the magnitude of change, while color 

representation in MOT is not (Figure 3.5B).  

These results showed that while the color consistency effect in MOT was not 

sensitive to the magnitude of color change, the color consistency effect in TR was 
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sensitive to the magnitude of change.  This may indicate that color representations in TR 

are mediated by VSTM, but are represented differently in MOT.  It is possible that 

VSTM mediates color representation in MOT (Makovski & Jiang, 2009b), but it can be 

buttressed by other systems, such as iconic memory or sensory persistence, which were 

not eliminated in the MOT task.  Extra precision in the representation of color afforded 

by iconic memory may provide greater sensitivity to the small color changes during 

MOT.  In summary, the results support the notion that color is represented differently in 

TR and MOT. 

 

 

 

Experiment 3.4: Color correspondence in target recovery is not object-specific 

In this experiment, we examined whether the process of matching colors between 

each sample was specific to each object.  An alternative account is that participants stored 

a list of the target colors without remembering which color belonged to which object.  

We contrasted these accounts by manipulating whether the targets swapped colors with 

FIGURE 3.5 
The results of Experiment 
3.3 are depicted to the left.  
(A) At 9.5°/s, TR 
performance was modulated 
by the magnitude of color 
change, while ceiling 
performance in MOT may 
have obscured effects of 
magnitude.  (B) At 18.36°/s, 
MOT performance was 
brought down from ceiling 
(see text for analysis), but no 
effect of color change 
magnitude was observed. 
Error bars show standard 
error of the mean for each 
condition. 
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other targets or with non-targets.  The object-specific account predicts that task 

performance would drop in both conditions, because each specific object’s color would 

be inconsistent.  The alternative account predicts that task performance would only drop 

in the latter condition.  If participants remembered target colors without making a 

correspondence to each object, then the matching process would not consider swaps 

between targets to be inconsistent, but it would consider swaps with non-targets to be 

inconsistent. 

 

Method 

Participants were 11 Vanderbilt undergraduates, including 5 females (mean age = 

18.63, s = 1.02).  The apparatus and stimuli were identical to that of Experiment 3.3.  The 

procedure was identical to that of Experiment 3.3, except that we did not manipulate the 

magnitude of the color change or object speed.  Instead, we manipulated how the colors 

were swapped in the inconsistent trials.  In half of the trials, targets swapped colors with 

other targets, while non-targets swapped colors with other non-targets.  In other words, 

the colors were swapped within groups.  In the other half, the targets swapped colors with 

non-targets, so that colors were swapped across groups.  Finally, participants tracked four 

out of eight objects.  There were 8 trials per condition, resulting in 128 trials in total. 

 

Results and Discussion 

 The data were categorized as consistent or inconsistent, as in Experiment 3.2, and 

submitted to a 3-way ANOVA to examine the effects of Group (within, across) x Task 

(MOT, TR) x Consistency (inconsistent, consistent).  This revealed main effects of 



  

 64 

Group, F(1,10) = 7.18, p < 0.05 (ηp
2 = 0.42), Task, F(1,10) = 269.05, p < 0.001 (ηp

2 = 

0.96), and Consistency, F(1,10) = 19.67, p < 0.01 (ηp
2 = 0.66).  There was no Group x 

Task interaction, F(1,10) = 2.28, p = 0.16.  However, there was a significant Group x 

Consistency interaction, F(1,10) = 13.93, p < 0.01 (ηp
2 = 0.58), and a Task x Consistency 

interaction, F(1,10) = 9.06, p < 0.05 (ηp
2 = 0.47).  The three-way interaction was 

significant, F(1,10) = 10.14, p < 0.01 (ηp
2 = 0.5).  The results of the three-way interaction 

suggested that consistency effects were observed when the changes were made across 

groups rather than within groups.  This was confirmed by paired comparisons made 

between inconsistent and consistent trials for each task and each level of the grouping 

manipulation.  Of these four t-tests, a significant effect was found only in TR when 

changes were made across groups, t(10) = 5.77, p < 0.001 (all other t’s < 1.3). 

Color-based errors.  We conducted further analyses to pursue the possibility that 

participants are using a color-based strategy involving memorizing a list of target colors 

and using it for recovery when a target is lost.  We examined the number of response 

errors made in TR trials when colors were consistent across motion periods, across levels 

of Group (Within, Across) and consistency across the blank (inconsistent, consistent).  A 

2-way ANOVA revealed main effects of Group, F(1,10) = 5.36, p < 0.05 (ηp
2 = 0.35), 

and Consistency, F(1,10) = 17.78, p < 0.01 (ηp
2 = 0.64), and a significant interaction, 

F(1,10) = 16.42, p < 0.01 (ηp
2 = 0.62).  Paired comparisons revealed that more errors 

were made in inconsistent trials compared to consistent trials Across Groups, t(10) = 

5.77, p < 0.001, but not Within Groups, t(10) = 0.55, p = 0.59.  Of the errors made in the 

inconsistent trials of the Across Groups condition, we calculated how often participants 
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selected a non-target whose post-blank color matched that of a pre-blank color of a 

missing target. These errors accounted for 57% of the errors in that condition.  

These results show that the consistent-color benefits that we observed in previous 

experiments are not object-specific.  That is, a one-to-one object correspondence is not 

necessary to maintain consistency.  At a glance, these results seem to support the idea 

that participants strategically remember a list of target colors.  If the targets are lost, as in 

target recovery, they simply recover objects appearing colors belonging to that list, 

regardless of the objects’ positions.  In trials where targets swap colors with other targets, 

selection errors would be less likely since participants using this strategy would recovery 

other targets.  In trials where targets swap colors with other targets, participants using this 

strategy would mistakenly recovery non-targets, leading to more selection errors.  This 

predicts no performance impairment in within-group trials, but does predict impairment 

in across-group trials.  However, this idea is not supported by the error analysis in TR, 

which showed that mistakenly recovering non-targets that appeared in the same colors as 

targets prior to the blank only accounted for a little over half of the total errors.  There 

could be other kinds of information, such as motion or position, which contribute to 

object correspondence along with color.  An alternative account is that due to attention 

being divided between several targets, some target colors were mistakenly bound to 

targets other than the ones the colors were originally assigned.  In other words, 

participants could have formed illusory conjunctions (Treisman & Schmidt, 1982), and 

misbind target relevant information.  
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General Discussion of Chapter III 

The experiments in this study were designed to explore the idea that a sampling 

process mediates the ability to track objects.  The idea of a sampling mechanism makes 

two general predictions.  First, objects can be tracked across a visual discontinuity.  This 

is because no information is processed between samples, and this is supported by findings 

in TR (Alvarez et al., 2005; Horowitz et al., 2006).  Second, preservation of object 

continuity is dependent upon the consistency of information between samples.  This has 

been shown in the TR task in one study in which performance was dependent on the 

consistency of position across the blank (Keane & Pylyshyn, 2006).   

We examined whether performance related to two tasks, multiple object tracking 

(MOT) and target recovery (TR), was similarly affected by the consistency of objects’ 

colors.  The sampling mechanism predicts that performance would be facilitated by 

consistent object information, and impaired by inconsistent object information.  The 

results demonstrated a consistent color benefit in both the MOT and TR tasks.  In the first 

experiment, we observed that consistent colors across the blank in TR facilitated 

performance.  Color provided a strong cue to relate the objects across a discontinuity and 

it was used more when other information, namely object position, was not completely 

reliable.  Experiment 3.2 directly compared the effects of color consistency in MOT and 

TR.  It was hypothesized that if a common process mediated MOT and TR, then there 

would be similar effects of color consistency across both tasks.  If distinct processes 

mediated MOT and TR, there would be different effects of color consistency across both 

tasks.  The results of Experiment 3.2 showed a consistent-color benefit in both MOT as 

well as TR, which agreed with the prediction of the common process hypothesis.  The 
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results of Experiments 3.3 showed the consistent-color benefits were modulated by the 

magnitude of the color change in TR, but not MOT.  Finally, the results of Experiment 

3.4 showed that the consistent color benefit was not object-specific.  Accurate tracking 

did not depend on there being a one-to-one correspondence between the target objects 

and their colors.  Instead, target recovery was successful and object continuity was 

maintained if any target appeared in any target color. 

Together, these results suggest that object continuity is preserved by a process 

that is sensitive to the consistency of object color for both objects that remain 

continuously visible, as in MOT, and objects that briefly disappear, as in TR.  This could 

be a process that periodically samples information and compares it to other samples 

across discrete time intervals.  We offer the observation that both MOT and TR are 

similarly affected by the consistency of color information as evidence that the object 

correspondence process is uses a sampling mechanism.  Furthermore, our results suggest 

that different representations of color may be used for visible and invisible objects.  Our 

results suggest that colors may be represented with higher resolution for visible objects 

than invisible objects.  This may be because in addition to the use of VSTM, color 

representation for visible objects may be buttressed by iconic memory or another kind of 

sensory memory. 

 

Does a common process mediate both MOT and TR? 

The results of this chapter suggest that a common process could support the 

preservation of object continuity for both MOT and TR, and that this process may 

involve a periodic sampling mechanism.  Previous work using MOT had suggested that 
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location information about the targets was sampled and compared in an iterative process 

(Allen et al., 2006; Oksama & Hyönä, 2008).  Not only does this account for the effects 

of speed on MOT performance (Oksama & Hyönä, 2008), but it also accounts for the 

results of TR (Keane & Pylyshyn, 2006).  The current results extend this theory by 

suggesting that the sampling process is sensitive to color.  Manipulating the consistency 

of object colors in our tasks affected behavior, such that inconsistent colors impaired 

performance of both MOT and TR.  These results support the idea that color information 

is sampled from objects during tracking and stored for comparison during the next 

interval of sampling.  The goal of this comparison is to find a match based on position 

and color – matches preserve object continuity, while mismatches impair object 

continuity. 

The idea of periodically sampling information is not restricted to tracking tasks 

such as MOT and TR.  Research on visual attention has demonstrated that information is 

not apprehended in a continuous manner.  Transient attention can be drawn to a spatial 

location, but not be held there indefinitely (Nakayama & Mackeben, 1989).  Van Rullen, 

Carlson and Cavanagh (2007) provided some psychophysical evidence that attention 

processes information in a periodic manner, even when only one object is attended.  

Observers viewed four discs of random noise, and were cued to one or more locations 

where a brief change in contrast was likely to occur.  The derived psychometric functions 

were compared against computational models that assumed continuous accrual of 

information or periodic sampling of information.  When stimuli had a lower overall 

contrast, the prediction error for the sampling model was significantly lower than that of 

the continuous model.  This suggested that visual attention operated in a periodic 
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sampling manner under some viewing conditions.  Also, Van Rullen, Reddy and Koch 

(2005) showed that visual attention enhanced motion direction ambiguity in stimuli 

resembling the wagon-wheel illusion.  The wagon-wheel illusion refers to the 

misperception of a wheel’s spokes rotating in the opposite direction to that of the wheel.  

This has been attributed to a mechanism that discretely samples position information of a 

moving object and computes motion based on the smallest spatial displacements in the 

display.  The illusion arises because the mechanism samples at a sub-optimal rate, so that 

the smallest displacements between samples are not in the wheel’s direction of motion, 

but in the opposite direction of motion.  They showed that this misperception occurred 

when the elements of a stimulus cycled around 10 Hertz.  However, this misperception 

was eliminated when observers concurrently engaged in an attentive task, in a rare 

demonstration that attention could impair psychophysical performance.  This suggested 

that visual attention was the source of discrete sampling of information in this illusion. 

How is sampled information stored?  The storage of sampled information may be 

mediated by VSTM, as suggested by Allen et al. (2006) and Oksama and Hyönä (2008).  

The storage of position information can account for previous results of TR studies (Keane 

& Pylyshyn, 2006), as well as findings of how speed affects MOT (Oksama & Hyönä, 

2008).  Our results extend this account by suggesting that color information may also be 

stored in VSTM.  Makovski and Jiang (2009b) showed that color information, when used 

to facilitate MOT performance, was stored in VSTM.  Tracking performance benefited 

when the objects were uniquely colored compared to when they were homogenously 

colored, but this benefit was not observed when participants concurrently performed a 

one-back color memory task during tracking.  The results of the current study suggested 
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that the color representation used during MOT was of higher resolution than what is 

expected of VSTM.  However, they do not refute the results of Makovski and Jiang 

(2009b), since it is possible that color representation for visible objects may benefit from 

additional types of memory, like iconic memory.  Another possibility is that VSTM could 

store color at a higher resolution than previously assumed.  

Could the attentional sampling mechanism account for the observation that color 

correspondence is not object-specific?  It is possible that attention to the multiple objects 

stems from a single, common resource.  Divided attention could have resulted in binding 

errors that produced illusory conjunctions (Treisman & Schmidt, 1982).  All of the target 

colors and locations could have been sampled and accurately retained, but improperly 

matched to information in memory.  The comparison mechanism would recognize a 

match for any previously retained color, regardless of what object previously appeared in 

that color.  The conditions of the task could have increased the probability for illusory 

conjunctions, because the colors were not task relevant, unlike the results of Chapter II, 

which showed accurate object-specific color memory when the colors were task relevant. 

 

The role of spatiotemporal and surface features in object continuity 

Object continuity depends on making a correspondence between different states 

with some form of information.  What kind of information mediates object continuity?  In 

its original form, object file theory proposed that correspondence is based on 

spatiotemporal continuity, while appearance is allowed to vary greatly (Kahneman, 

Treisman & Gibbs, 1992).  In other words, the way an object is considered to be the same 

object even when the visual information changes is determined by its place in space and 
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time, not by its appearance.  In accordance with the original version of object file theory, 

some research has shown that object continuity is based primarily on spatial and temporal 

information, rather than appearance (Scholl, 2001; Mitroff & Alvarez, 2007; Flombaum, 

Scholl & Santos, 2009).  For example, motion of a single object can be perceived 

between two spatially- and temporally-distinct events, even when the object changes 

appearance (Cavanagh, Arguin & von Grunau, 1989; Kolers & Pomerantz, 1971; Kolers 

& von Grunau, 1976).  Visual masking occurring on the level of object representations 

may reflect the integration of two differently appearing objects into a single 

representation (Enns & Di Lollo, 1997; Lleras & Moore, 2003).  Also, an object passing 

through a tunnel in a smooth motion path is perceived as a single object, even if it 

appears dramatically different between entering and exiting the tunnel (Flombaum, 

Kundey, Santos & Scholl, 2004).   

However, other studies have shown that appearance can have an important role in 

preserving object continuity.  Memory for appearance can be important for preserving 

object continuity across saccades (Hollingworth, Richard & Luck, 2008).  Apparent 

motion perception can be facilitated with consistent spatial frequency (Green, 1986; 

Ramachandran, Ginsburg & Anstis, 1983) or color (Green, 1989; Dobkins & Albright, 

1993).  Appearance information is also crucial in determining the perception of an 

object’s motion path when spatiotemporal information is made ambiguous; Feldman & 

Tremoulet, 2006).  A moving object changing in appearance can be perceived as multiple 

objects rather than different states of the same object (Moore & Enns, 2004; Moore, 

Mordkoff & Enns, 2007). 
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The results of the current study do not speak to whether spatiotemporal 

information or surface features are dominant in preserving object continuity, but they do 

support the idea that both play a role.  Tracking tasks like MOT and TR are inherently 

spatial, but the results of the current study as well as others (Horowitz et al., 2007; 

Oksama & Hyönä 2004, 2008; Makovski & Jiang, 2009a, 2009b) have provided evidence 

that surface features facilitate tracking, and can play a role in successful object 

correspondence processes.   

   

Conclusion of Chapter III 

 The results of this chapter suggest that object tracking could be mediated by 

periodically sampling information, and this process is sensitive to the consistency of 

object color.  Color representation is different across the tasks, in that color for visible 

objects in MOT may be of higher resolution than in TR, suggesting that additional 

memory systems could buttress color representation in MOT, but not TR.  Finally, the 

consistent color benefit observed was not object-specific.  This could have stemmed from  

illusory conjunctions formed due to attention being divided across several target objects.   

One important feature of a matching process is that some perceptual change must 

be detected even when a match between corresponding pieces of information is made.  

This is the hallmark of updating an object representation.  Updating will be examined 

more closely in the following chapter.   
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CHAPTER IV 

 

UPDATING OBJECTS IN VISUAL SHORT-TERM MEMORY 

 

Introduction 

In the previous chapter, I presented research suggesting that a periodic process 

preserves the continuity objects of attention and memory.  Part of this process entails 

matching new information to previous features of the object.  It is important for a 

correspondence process to tolerate a degree of change in any feature while still 

computing a match between the different object states.  This would update the object, so 

it is perceived to have changed but still considered the same continuous entity.  In this 

chapter, I present research examining the nature of updating visual object representations 

in memory.  Parts of this research were published by Ko and Seiffert (2009). 

Updating refers to the modification of short-term memory by adding new 

information and/or replacing old information.  This is an important ability in daily life, 

for example when creating a mental list and revising it as new priorities arise.  If, while at 

the grocery store, you get a call telling you that you should also buy milk but not buy 

butter, you can modify your working memory to incorporate this new information and 

end up with a new mental list.  Updating is an executive function, and is not constrained 

by the limits of short-term memory capacity (Morris & Jones, 1990).  Some research 

suggests updating is functionally distinct from other executive functions, such as 

inhibition and task-switching (Miyake, Friedman, Emerson, Witzki & Howerter, 2000), 

and is the only one of these functions related to intelligence measures (Friedman, 
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Miyake, Corley, Young, DeFries & Hewitt, 2005).  Here, we will use the term updating 

to refer to any modification to the contents of working memory that necessitates 

combining new information with stored information, including modifying the memory of 

the attributes of an object.  Updating tasks have been useful in examining other cognitive 

processes (Garavan, 1998; Oberauer, 2002), but few studies have examined the updating 

process itself (Bao, Li & Zhang, 2007; Kessler & Meiran, 2006; Morris & Jones, 1990).  

In this chapter, we examined whether updating VSTM is an object-based process. 

Luck and Vogel (1997) provided the first evidence suggesting that object 

representations were the units of storage in VSTM, as described in previous chapters.  

Following these findings of object-based storage in VSTM, the purpose of the current 

study was to examine whether another use of VSTM, specifically updating, was also 

object-based.  We asked whether updating memory would lead to reprocessing of all the 

features of a target object.  In other words, does updating one feature of an object in 

memory automatically refresh all other features of the same object?  If VSTM stores 

information as object representations, then one might expect that any process, such as 

updating, affecting one feature of the object representation would also affect on the other 

features. 

The motivation for predicting object-based updating in VSTM stems from the 

object-based attention literature.  As described in the Introduction, the seminal work on 

object-based attention came from studies of divided attention.  These results showed that 

the cost of divided attention was attenuated when two attended features appeared on one 

object instead of across two objects, suggesting that the units of attentional selection was 
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an object (Duncan, 1984; Baylis & Driver, 1993; Vecera & Farah, 1994; Watson & 

Kramer, 1999; Awh et al., 2001).   

Another important branch of research in object-based attention has examined the 

spread of attention within an object.  Egly, Driver and Rafal (1994) presented participants 

with two vertical rectangles and cued them to one corner of one rectangle.  Detection of a 

probe at the cued location was significantly faster compared to when the probe appeared 

at uncued locations, replicating Posner’s (1980) famous findings of spatial attention.  

However, probe detection at an uncued location within the same object as the cued 

location was significantly faster than uncued locations in a different object, even when 

these locations were equidistant from the cued location.  This indicated the automatic 

spread of attention throughout an object once it was attended.  Lamy and Tsal (2000) 

conducted a similar study, except that the appearance of the two objects was different in 

color and shape.  In one experiment, participants were told that if a cue appeared inside 

an object, the target was likely to appear inside an object of the same color and shape, 

regardless of location.  The results showed a facilitated detection when the target 

appeared inside an object of the same color and shape, even if it had changed locations.  

Importantly, there was still some benefit for the cue to appear in the original object 

location even if a differently appearing object now occupied that location.  In other 

words, when attention was directed to an object’s features, it automatically spread to its 

location.  One primary finding of these cueing studies is that the effect of cueing spread 

to the task-irrelevant aspects of the display.  Egly et al. (1994) showed that attention 

spread to the uncued locations of the same object.  Lamy and Tsal (2000) showed that 

attention to object features spread to the object’s location.  In other words, the processing 
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of an object representation seems to occur in a unitary fashion, in that processing one 

aspect of an object representation leads to processing of its other aspects.   

The experiments in this chapter examined whether object representations in 

memory followed this same principle.  Participants engaged in a task that required the 

processing of one feature of an object in memory, and I observed whether the effect of 

this processing had a similar effect on its other features.  In regards to the broader 

question of whether the object representations in attention and memory are the same, the 

strategy I adopted in this chapter was to examine whether object representations in 

memory exhibited the same properties as those of object representations in attention. 

 

Experiment 4.1: Updating visual short-term memory is feature selective 

The purpose of Experiment 4.1 was to examine whether updating proceeded in an 

object-based manner.  We employed a change detection task, typically used to assess 

VSTM, with an additional procedural step.  Participants viewed a sample array of 

multiple bars with unique colors and orientations, followed by a delay, and a probe 

display consisting of a single object.  In addition, between the sample and the probe, 

another stimulus appeared at one of the object locations to cue participants to modify 

their memory of the corresponding object.  We called this stimulus a recurrence cue, 

which refers to the idea that the new stimulus is to be considered part of the 

corresponding object, if it was to appear again.  If the recurrence cue was a colored dot, 

they were to modify their memory of the object that had previously appeared in the same 

location as the recurrence cue so that its color matched that of the recurrence cue.  If it 

was a white bar, they were to modify the orientation of the object to match that of the 
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recurrence cue (Figure 4.1A).  If memory updating is object-based, then the updating 

process should affect all features of the object indicated by the recurrence cue.  To test 

the memory for both features of the objects, changes were applied to either the same or 

different feature dimension as the recurrence cue. For example, if the recurrence cue 

indicated updating the color of the object, then either the color of the probed object could 

be changed or the orientation of the probed object could be changed. These trials were 

referred to as the updated feature (UF) or non-updated feature (NUF) trials, respectively 

(Figure 4.1B).   

 

 

FIGURE 4.1 
A schematic of the general 
methodology is depicted to the 
left.  (A) The top half of the 
figure depicts one trial. For this 
example, participants would have 
been instructed to update their 
memory by changing the 
orientation of the blue tilted bar 
to be a blue vertical bar.   The 
probe appeared at the end of the 
trial was valid if it matched the 
updated information as in this 
example.   (B) The bottom half of 
the figure depicts examples of 
probes that could follow the trial 
depicted in (A). Types of probes 
for the updated objects are shown 
in the top row and for the non-
updated objects in the bottom 
row.   Valid probes of updated 
objects were the combination of 
features from the sample and 
recurrence cue (e.g. a blue 
vertical bar).  Invalid probes 
either changed the non-updated 
feature of the object (NUF), 
which was color in this example, 
or the updated feature (UF), 
which was orientation. 
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The experiment was designed to examine three hypotheses, all of which shared 

the following assumption.  It was assumed that memory for information indicated by the 

recurrence cue would be facilitated.  Recent studies have shown that shifts of attention to 

information in memory result in an enhanced representation or prioritization of the item 

(Griffin & Nobre, 2003; Landman, Spekreijse & Lamme, 2003; Makovski & Jiang, 2007; 

Makovski, Sussman & Jiang, 2008).  The object-based hypothesis proposes that the effect 

of updating one feature of an object should spread to all of its features.  This predicts 

performance benefit for both the updated feature and non-updated feature in the updated 

object (Figure 4.2A).  This result could come about if, when updating the memory of one 

feature, the memory of the other feature of the object is refreshed, so both features share 

facilitation of memory performance.  The feature-based hypothesis proposes that the 

effect of updating one feature results in sensitivity to all values of that feature dimension 

in memory.  This predicts superior change detection for the updated feature, regardless of 

whether an updated or non-updated object was probed (Figure 4.2B).  Finally, the 

feature-selective hypothesis proposes that the facilitative effect of updating will be 

restricted to only the updated feature and object  (Figure 4.2C).  This contrasts with the 

object-based hypothesis in that it predicts the effect of updating will not spread to all 

features of the updated object.  It contrasts with the feature-based hypothesis in that it 

predicts the effect of updating will not spread to all objects. 

 

 

 

 

FIGURE 4.2 
Depicted on the left are predictions made by (a) object-
based hypothesis, (b) feature-based hypothesis, and (c) 
feature-selective hypothesis. 
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Method 

Participants  

Participants were 11 adult volunteers (4 males) with a mean age of 25.45 (s = 

4.82) recruited from the Nashville community through the Psychology Research Sign-up 

System at Vanderbilt University.  They all participated in exchange for $10 per hour. 

They were tested in accordance with Vanderbilt University’s Policy for the Protection of 

Human Subjects and the APA 2002 Code of Ethics. 

 

Apparatus and Stimuli  

Stimuli were presented in MATLAB using the Psychophysics Toolbox extension 

(Brainerd, 1997; Pelli, 1997) on an eMac G4 with a CRT monitor at 1024 x 768 pixel 

resolution and 89 Hz refresh rate.  Participants used a headrest, which positioned them at 

approximately 57 centimeters (cm) from the monitor.  Vocal utterances were recorded 

with an InSync gooseneck microphone, connected with a Griffin iMic USB convertor. 

Stimuli were colored bars subtending 0.5 x 2 degrees of visual angle (°).  These 

objects were positioned on three equidistant points of an imaginary circle with a diameter 

of 8.5°, such that the overall spatial configuration resembled an inverted triangle.  A set 

of 12 colors that was described in the previous chapter was used.  Only 2nd neighbor 

colors from this set appeared in a given trial of this experiment.  Orientations were eight 

angles increasing from 0 to 157.5 degrees in 22.5 degree increments to, and only 2nd 

neighbor orientations appeared in a given trial. 
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Procedure  

At the beginning of every trial, two vertically aligned digits appeared in the center 

of the screen for 500 milliseconds (ms), followed by a blank 500 ms ISI.  Participants 

recited these numbers aloud into the microphone for the duration of the trial. Concurrent 

performance of this articulatory suppression task likely reduced verbal encoding 

strategies. Next the sample array appeared for 200 ms, followed by a blank, 1-second 

interstimulus interval (ISI). Objects in the sample array were three colored bars each with 

unique colors and orientations (see Stimuli). Then, the recurrence cue appeared for 200 

ms in the same location as a randomly selected object in the sample array, followed by a 

blank, 1-second ISI.  On half of the trials, the recurrence cue was a white bar at an 

orientation that was not shown in the sample array.  On the other trials, the recurrence cue 

was a dot (subtending 0.7 degrees of visual angle in diameter) in a color that was not 

shown in the sample array. Participants were instructed to update their memory of the 

orientation or color of the object in the corresponding location (Figure 4.1A). 

 A single bar was randomly selected to appear in the probe display.  On half of the 

trials, the probe was valid. Valid probes of updated objects appeared with the updated 

feature modified to match that of the recurrence cue (Figure 4.1A).  Valid probes of non-

updated objects appeared as they did in the sample display (Figure 4.1B, bottom row, 

left). On the other half of the trials, the probe was invalid with the change applied in one 

of two ways.  In non-updated feature (NUF) trials, the change was applied to the feature 

dimension different than that of the recurrence cue.  In updated-feature (UF) trials, the 

change was applied to the same feature dimension as that of the recurrence cue.  Changes 

applied on invalid trials were features from non-corresponding objects, i.e. a feature 
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swap.  Invalid probes of the updated objects were never the same as the objects in the 

sample array.  Participants were instructed to press a key labeled “correct” if the probe 

was valid, and a key labeled “incorrect” if the probe was invalid.  To prevent correlation 

between which object was updated and which object was probed for memory, the 

selection of the object to be updated was made randomly, such that each object had equal 

probability of being probed.  This resulted in an uneven number of trials in which 

updated- or non-updated objects were probed, but the variation in the number of trials for 

each condition remained relatively low across participants.  From a total of 480 trials, 

non-updated objects were probed in a mean of 318.9 trials (s = 6.59) and updated objects 

were probed in a mean of 161.09 trials (s = 6.59).   

 

Results and Discussion 

The alpha level was set to 0.05 for all analyses in this study, and was Bonferroni 

corrected for multiple comparisons.  Change detection data were scored as proportion 

accurate across trial repetitions. The accuracy data were submitted to a 2 x 3 within-

subjects ANOVA to examine the effects of Object (non-updated, updated) x Probe (valid, 

NUF, UF).  The results showed main effects of Object, F(1,10) = 29.7, p < 0.001 (ηp
2 = 

0.75), and Probe, F(2,20) = 6.04, p < 0.01 (ηp
2 = 0.37), and a significant Object x Probe 

interaction, F(2,20) = 5.43, p < 0.05 (ηp
2 = 0.35).  This significant interaction fit the 

prediction from the feature-selective hypothesis, but did not fit the other hypotheses. 

Paired comparisons showed that in valid trials, there was no significant difference in 

change detection accuracy between updated objects (80%) and non-updated objects 

(71%), t(10) = 1.78, p = 0.1 (d = 0.79).  Since our a priori hypotheses only made 
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predictions based on the invalid trials (NUF and UF), the remaining analyses focused on 

these trials. In NUF trials, there was no significant difference between updated objects 

(57%) and non-updated objects (59%), t(10) = 0.91, p = 0.38 (d = 0.12).  In UF trials, 

accuracy for updated objects (81%) was superior to that for non-updated objects (58%), 

t(10) = 3.9, p < 0.01 (d = 1.69).  In updated objects, there was superior accuracy in the 

UF trials compared to NUF trials, t(10) = 3.23, p < 0.01 (d = 1.39), but in non-updated 

objects, there was no difference in the same contrast, t(10) = 0.52,  p = 0.61(d = 0.06) 

(see Figure 4.3).  

 

 These results clearly support the feature-selective hypothesis, and reject the 

feature-based and object-based hypotheses.  Memory for the updated feature was 

facilitated, but only in the updated object, which rejects the feature-based hypothesis.  

Memory for the updated feature of the updated object was superior to that of its non-

updated feature, indicating that the facilitative effect of updating was found only for the 

updated feature, rejecting the object-based hypothesis.  Crucially, memory for the non-

updated feature of the updated object was no better than memory for the non-updated 

FIGURE 4.3 
The accuracy data for 
Experiment 4.1 is depicted on 
the left.  The error bars in all 
of the graphs represent the 
standard error of the mean. 
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objects.  This result suggests that the facilitative effects of updating do not spread to the 

non-updated features of the object.  However, there are at least two alternative accounts 

of this data.  First, it is possible that participants did not memorize the visual stimuli as 

objects. Information may not have been stored in an object-based manner, which was 

addressed in Experiment 4.2. Alternatively, the updated object may not have been 

represented, which was addressed in Experiment 4.3. 

 

Experiment 4.2: Updating is feature selective, but storage is object-based 

 One reason Experiment 4.1 may have shown feature-selective updating rather 

than an object-based effect was that information was not stored as objects in visual short-

term memory (VSTM). There is evidence that participants could selectively encode 

separate features of the display (Woodman & Vogel, 2008).  The purpose of Experiment 

4.2 was to examine whether the object-based effect of storage and feature-selective 

updating could both be replicated.  Object-based storage is reflected by similar capacity 

for simple features and more complex conjunctions of features (Luck & Vogel, 1997).  In 

this experiment, participants engaged in two tasks: the updating task (modified from 

Experiment 4.1) and a standard change detection task.  The change detection task 

evaluated object-based storage by manipulating the stimulus type and set-size (modified 

from Luck & Vogel, 1997).  Participants performed the tasks in separate blocks, and task 

order was counterbalanced.  This allowed us to observe whether visual memory was 

object-based at the same time as replicating Experiment 4.1 with different stimuli. 
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Method 

Participants were 11 Vanderbilt undergraduate students, including 6 females, with 

a mean age of 18.72 (s = 1.01).  All participants were recruited through the Psychology 

Research Sign-up System at Vanderbilt University, and participated in exchange for 

credits toward requirements of undergraduate psychology classes.  The apparatus was 

identical to that of Experiment 4.1.  The stimuli were colored squares, white oriented bars 

or colored oriented bars against a black background, constructed to be similar to stimuli 

used by Luck and Vogel (1997).  Colored, oriented bars were used for the sample array in 

the updating task.  Squares subtended 0.7° x 0.7°, and bars subtended 1.2° x 0.2°.  The 

objects were centered on points of a 5 x 5 grid that spanned 10° x 7°.  The points on the 

grid were equally spaced by 2.5° in the horizontal plane and 1.75° on the vertical plane.  

Positions were randomly jittered such that an object could be displaced by up to +/- 0.25° 

in the horizontal plane and +/- 0.175° in the vertical plane. The colors and orientations 

were identical to those used in Experiment 4.1. 

  

Procedure  

The change detection task proceeded as follows.  Two vertically aligned digits 

appeared in the center of the screen for 500 ms, followed by a blank 500 ms ISI.  Then, a 

sample array composed of either 2, 4, 6 or 8 objects appeared for 100 ms, followed by a 1 

second blank ISI.  The objects were colored squares, white oriented bars, or conjunctions 

of color and orientation.  Objects could share the same color and/or orientation, but 

location was unique to each object (as in Vogel, Woodman & Luck, 2001).  Then, 

another array of objects appeared until participants provided a response.  On half of the 
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trials, this test array was identical to the sample array, and on the other half of the trials, it 

was different by one object.  On Different trials, a randomly chosen object appeared in a 

different feature value than the corresponding object in the sample array.  The different 

feature value was directly opposite of the sample feature value in either color or 

orientation space, for example, a yellow color would be replaced by a blue and a vertical 

orientation would be replaced by horizontal.  In the conjunction condition, there were an 

equal number of color and orientation changes to the changed object.  The updating task 

was identical to Experiment 1 except for stimuli were the same as those used in the 

maintenance task. Tasks were blocked in the session, and task order was counterbalanced 

across participants. 

 

Results and Discussion 

Following Luck and Vogel (1997), the data for the change detection task were 

scored as capacity estimates (K) according to Cowan’s formula (2001), in order to 

understand the results as they related to the number of objects in the display: 

K = (hits + correct rejection – 1) x # of objects in the display 

These data were submitted to a 3 x 4 within-subjects ANOVA to examine the effects of 

Stimulus (color, orientation, conjunction) x Set-size (2, 4, 6, 8).  The results revealed a 

main effect of Stimulus, F(2,20) = 30.29, p < 0.001 (ηp
2 = 0.75), and Set-size, F(3,30) = 

5.58, p < 0.01 (ηp
2 = 0.36), as well as a significant Stimulus x Set-size interaction, 

F(6,60) = 4.3, p < 0.01 (ηp
2 = 0.3). 
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 These effects were driven by differences between the orientation trials compared 

to the other stimulus types.  To confirm this, a separate ANOVA, that excluded the 

orientation data, was conducted to examine the effects of Stimulus (color, conjunction) x 

Set-size (2,4,6,8).  This showed no effect of Stimulus, F < 1, p = 0.98 (ηp
2 < 0.01), but 

did show a main effect of Set-size, F(3,30) = 3.19, p < 0.05 (ηp
2 = 0.24).  The interaction 

was not significant, F < 1, p = 0.45  (ηp
2 < 0.1).  These results showed that capacity for 

conjunctions matched capacity for the most difficult feature, which was color (Figure 

4.4A), indicating object-based storage. This replicated previous findings supporting the 

conclusion that VSTM has an object-based capacity (Luck & Vogel, 1997; Vogel, 

Woodman & Luck, 2001). 

Results from the updating task replicated the feature-selective effect from 

Experiment 1. The data for the updating task (Figure 4.4B) were scored as proportion 

accurate.  The accuracy data were submitted to a 2 x 3 ANOVA to examine the effects of 

Object (non-updated, updated) x Probe (valid, NUF, UF).  The results revealed a non-

significant effect of Object, F(1,10) = 4.29, p = 0.06 (ηp
2 = 0.3), a significant effect of 

Probe, F(2,20) = 6.65, p < 0.01 (ηp
2 = 0.4), and a significant Object x Probe interaction, 

F(2,20) = 30.13, p < 0.001 (ηp
2 = 0.75).  Paired comparisons showed that in valid trials, 

there was no significant difference in change detection accuracy between updated (75%) 

and non-updated objects (79%) in valid trials, t(10) = 1.05, p = 0.3 (d = 0.41).  In NUF 

trials, there was no significant difference between updated objects (64%) and non-

updated objects (67%), t(10) = 1.06, p = 0.3 (d = 0.19).  In UF trials, there was a 

significant advantage for updated objects (91%) compared to non-updated objects (69%), 

t(10) = 6.97, p < 0.001 (d = 1.87).  For updated objects there was a significant difference 
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between UF (91%) and NUF trials (64%), t(10) = 7.06, p < 0.001 (d = 2.2), but not for 

non-updated object, t(10) = 1.19, p = 0.26 (d = 0.13).  Similarly to Experiment 4.1, these 

results demonstrated feature-selective updating. Together, these results provided evidence 

for object-based memory and feature-selective updating in the same participants. 

An additional analysis examined possible effects of task order on the updating 

task.  For example, performing the memory task first may have influenced participants to 

adopt an object-based strategy.  The data were submitted to an Order (1st, 2nd) x Object 

(non-updated, updated) x Probe (valid, NUF, UF) mixed design ANOVA, which did not 

reveal a main effect of Order, F(1,9) = 0.22, p = 0.65 (ηp
2 = 0.024).  Importantly, the 

three-way interaction was also not significant, F(2,20) = 0.88, p = 0.43 (ηp
2 = 0.09), 

indicating no effect of task order on performance of the updating task.  

 

FIGURE 4.4 
The results of Experiment 4.2 are depicted on 
the left.  (A) The results of the change 
detection task are plotted as capacity (K) 
plotted as a function of display set-size.  
Similar capacities for conjunctions and the 
most difficult feature, in this case orientation, 
indicate object-based storage.  (B) The 
results of the updating task, which was 
constructed with the same stimuli and 
performed by the same participants as the 
change detection task, is depicted.  These 
results support predictions of feature-
selective updating. 

A 

B 
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Experiment 4.3: Updated objects are represented in memory 

 Another alternative account of the feature-selective effect is that participants may 

not have represented the updated appearance of the updated object.  Participants may 

have merely represented the sample array and the recurrence cue, but never integrated the 

two to form an updated representation.  For example, if a trial consisted of updating a 

tilted blue bar into a vertical blue bar as in Figure 4.1A, participants may have only 

represented the tilted blue bar and the white vertical bar in memory and nothing more. 

This is in contrast to the task instructions that emphasized integrating the new feature 

value into the memory of the object to create a representation of the updated object, in 

this example, a vertical blue bar.  While we do not doubt that participants encoded and 

represented the objects in the sample array and the recurrence cue during the trial, the 

purpose of Experiment 4.3 was to demonstrate that they also were representing the 

updated appearance of the updated object. 

 To find evidence for a representation of the updated version of the updated object, 

we devised a task with the assumption that information in memory guides visual 

selection, and that stronger representations have more influence on visual selection than 

weaker representations.  Participants readily attend to visual information that appears 

while they are currently representing that information in working memory (Downing, 

2000; Huang & Pashler, 2007; Soto, Heinke, Humphreys & Blanco, 2005) and this 

allocation of attention is automatic and can facilitate responses in an easy visual task 

(Olivers, Meijer & Theeuwes, 2006; Soto, Humphreys & Heinke, 2006; see Soto, 

Hodsoll, Rotshtein & Humphreys, 2008, for review).  In Experiment 4.3, the trials 

proceed just as they did in the updating task (Experiment 4.1), except that on half of the 
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trials, participants completed a different task. On these trials, a vertical line appeared with 

the probe.  This cued participants to abandon the updating task and instead make a simple 

speeded response as to whether the probe appeared to the right or left of the line (Figure 

6B).  For our critical comparison, we added another type of invalid trial, which was the 

unaltered version of the updated object (Figure 4.5).  The unaltered probe was identical to 

the object in the sample array.  According to our hypothesis that the updated appearance 

of the updated object was represented in memory, we predicted that performance on the 

spatial task should be equivalent, or better, when the probe was the updated object 

compared to the unaltered object. 

 

Method 

Participants were 24 Vanderbilt undergraduate students, including 11 females, 

with a mean age of 18.83 (s = 0.81).  Apparatus and stimuli were identical to that of 

Experiment 4.1, except for the following differences.  Objects now appeared in three 

randomly selected locations for each trial.  They were centered on 10 equidistant points 

of an imaginary circle that was 10° in diameter.  The objects in a sample were separated 

by at least one point on this circle, and never appeared on the top or bottom location.  

This slight alteration was incorporated to accommodate the spatial task.  The vertical line 

used in the spatial task subtended 1.5° x 10°.  The horizontal position of the line was 2.5° 

to the left or right of the probe.   
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Procedure  

The procedure was identical to Experiment 4.1, except for the following changes.  

On invalid trials, the applied changes were feature values from the opposite side of 

feature space as the valid values, to increase discriminability.  There were three types of 

invalid trials, including NUF and UF trials previously described.  In the third type, 

unaltered trials, if an updated object was probed, then the probe was identical to the 

object as it appeared in the sample display, as if it had never been updated.  Alternatively, 

if a non-updated object was probed in this third type of trial, the probe appeared with the 

updated feature incorporated into its appearance. 

 Participants were cued to engage in either the change detection task or a speeded 

spatial task on equal number of trials (288 trials per task, 576 trials in total).  As in the 

previous experiments, the probe appeared in the same location as its corresponding object 

in the sample.  In the change detection task, the probe appeared alone, and participants 

reported whether the probe appeared correctly or incorrectly by pressing keys marked 

‘correct’ or ‘incorrect’ with their right hand.  Participants were told that the change 

detection task was unspeeded and to respond as accurately as possible.  For the speeded 

spatial task, a thin, vertical white line appeared closely to left or right of the probe’s 

location.  In other words, wherever the probe appeared on the screen, the line appeared 

close to the probe’s location, and was equally likely to appear to the left or right of that 

location.  Participants reported whether the probe appeared to the right or left of the line 

by pressing keys marked ‘left’ or ‘right’ with their left hand.  They were told to respond 

as quickly as possible without sacrificing accuracy.  They were instructed to keep their 

responding fingers over the keys during the experiment (Figure 4.5). 
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Results and Discussion 

Responses were scored as proportion accurate for both the change detection and 

spatial tasks.  The accuracy data for the change detection task were submitted to a 2 x 4 

ANOVA to examine the effects of Object (updated, non-updated) x Probe (valid, NUF, 

UF, unaltered).  The results showed main effects of Object, F(1,23) = 26.5, p < 0.001 (ηp
2 

= 0.54), and Probe, F(3,69) = 2.9, p < 0.05 (ηp
2 = 0.11).  The Object x Probe interaction 

was significant, F(3,69) = 15.8, p < 0.001 (ηp
2 = 0.41), once again supporting the feature-

selective account of memory updating.  There was no difference between updated- and 

non-updated objects in the valid trials, t(23) = 1.36, p = 0.18 (d = 0.24), or NUF trials, 

t(23) = 1.12, p = 0.27 (d = 0.23). For UF trials, change detection accuracy was superior 

for updated objects (80.9%) compared to non-updated objects (56%), t(23) = 7.84, p < 

0.001 (d = 1.71).  For updated objects, accuracy for UF trials (80.9%) was superior 

compared to NUF trials (57.3%), t(23) = 5.38, p < 0.001 (d = 1.11).  For non-updated 

FIGURE 4.5 
A schematic of the method of 
Experiment 4.3.  (a) The upper half of 
the figure depicts one trial over time, 
ending with the updated object in its 
updated appearance on the left (to 
which participants would correctly 
respond “correct”), or with the 
unaltered appearance on the right (to 
which they would respond 
“incorrect”).  (b) The lower half of the 
figure depicts the two different tasks 
in which participants might engage at 
the end of the trial.  On the left, the 
appearance of a vertical line, 
randomly appearing on the left or right 
of the probed object, cues participants 
to perform a speeded spatial judgment 
task.  On the right, they engage in the 
updating task (see text). 



  

 92 

objects, there was no significant difference between NUF trials and UF trials (according 

to the Bonferroni-corrected alpha level of 0.007), t(23) = 2.5, p = 0.02 (d = 0.37).  These 

results replicate the previous three experiments supporting feature-selective updating. 

Finally, analysis of the change detection task also involved the unaltered probe trials.  

Since the unaltered probes entailed a change to the updated feature, we predicted no 

difference between these and UF trials.  This was confirmed by paired comparisons 

showing no significant differences in accuracy for unaltered probe trials compared to UF 

trials for both updated objects, t(23) = 1.87, p = 0.07 (d = 0.38), and non-updated objects, 

t(23) = 1.42, p = 0.17 (d= 0.2).  These results are depicted in Figure 4.6A 

 For the spatial task, the reaction time for only correct trials were analyzed, and the 

remaining data were trimmed to exclude reaction times beyond 2.5 standard deviations of 

the individual participant’s grand mean. This resulted in a mean of 3.64% of trials (s = 

6.3%) being excluded.  Accuracy and reaction time data were submitted to separate 

ANOVAs to examine effects of Object (updated, non-updated) x Probe (valid, NUF, UF, 

unaltered.  Accuracy showed main effects of Object, F(1,23) = 6.49, p < 0.05 (ηp
2 = 

0.22), and Probe, F(3,69) = 3.06, p < 0.05 (ηp
2 = 0.12), and the Object x Probe interaction 

was significant, F(3,69) = 3.31, p < 0.05 (ηp
2 = 0.16).  The reaction time data showed a 

main effect of Object, F(1,23) = 10.98, p < 0.01 (ηp
2 = 0.32), but no main effect of Probe, 

F(3,69) = 0.87, p = 0.46 (ηp
2 = 0.04).  Although the Object x Probe interaction was not 

significant, F(3,69) = 2.58, p = 0.06 (ηp
2 = 0.1), it approached significance, suggesting 

that the variance in the reaction time data may have obscured underlying effects. 

The primary contrast of interest was between the updated and unaltered probes of 

the updated object. We hypothesized that if participants represented the updated 
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appearance of the updated object, then their spatial task performance to that updated 

probe should be equal to, or perhaps better than, the unaltered probe.  Accuracy data 

showed superior performance for updated probes (96%) compared to unaltered probes 

(92%), t(23) = 2.17, p < 0.05 (d = 0.36).  Reaction times showed no difference between 

updated and unaltered probes, t(23) = 1.7, p = 0.1 (d = 0.25). However, the trend in the 

means was for faster reaction times with the updated form (

! 

X = 774 ms, SE = 28) 

compared to the unaltered form (

! 

X  = 820 ms, SE = 47), suggesting that reaction time 

behavior reflected the same effect found in accuracy, and not a speed/accuracy trade-off 

(Figure 4.6B).  These results confirmed our prediction that task performance for the 

updated object probe was at least as good, if not better, than performance with the 

unaltered probe, suggesting that the updated appearance of the object was represented at 

least as well as the unaltered appearance.  Responses to the spatial task were consistent 

with the idea that participants were integrating the information about the recurrence cue 

with the sample array to create a memory representation of the updated object.   

 

 

 

 

FIGURE 4.6 
The results of Experiment 4.3 are depicted above.  (A) The accuracy data for the updating task 
replicates results that support the feature-selective updating hypothesis.  (B) The critical contrasts 
for the speeded spatial judgment.  The results show significantly higher accuracy when object 
involved in the spatial judgment is the updated object compared to the unaltered object (p < 0.05), 
suggesting that the updated object was represented in memory. 
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General Discussion of Chapter IV 

This study investigated whether updating visual short-term memory (VSTM) was 

an object-based process.  The experiments examined whether updating a single feature of 

an object in memory would lead to refreshing of all the features of that object.  The main 

finding was that the effects of updating were restricted to the updated feature, and did not 

spread to any other features of the updated object (Experiment 4.1).  This effect was not 

due to failure to store information as objects (Experiment 4.2).  Finally, the results of 

Experiment 4.3 suggested that feature-selective updating was unlikely to be due to a poor 

representation of the updated object.  In summary, it is concluded that that updating 

VSTM is feature-selective and not object-based.  Feature-selective updating might 

indicate that representations in VSTM are not objects, but features.  Alternatively, 

updating and storage mechanisms of VSTM may have different bases.  Both of these 

possibilities will be discussed. 

 

Are there object-based representations in VSTM? 

The current result showing feature-selective updating calls into question the type 

of representations used in VSTM, and may suggest that information in VSTM is 

represented as features rather than objects.  The theory that object-based representations 

are the basis for the storage of information in VSTM has been intensely debated.  The 

groundbreaking discovery of object-based representations, by Luck and Vogel (1997), 

demonstrated that two features of an object can be stored in VSTM with the same 

memory load as a single feature.   The result could be accounted for by strong 

associations between the memory for the different features that make up an object, such 
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that remembering one feature automatically gives rise to the other at no cost. More recent 

results showing costs related to the number of features are particularly detrimental to this 

strong version of the theory.  For example, Olson and Jiang (2002) showed that storing 

color and orientation features as unified objects provided a modest benefit over storing 

the exact same features as separate items. Storing the information as objects did not cut 

the cost of storage in half evidencing a memory cost to the number of features.  Similarly, 

Xu (2002) showed storage costs related to the multiple parts of objects. Alvarez and 

Cavanagh (2004) showed VSTM storage capacity to decrease as stimulus complexity 

increased (but see Eng, Chen & Jiang, 2005).  If objects in memory are associations 

formed between its component features, then such results indicate the associations are not 

perfect, because increasing the number of features also increases the memory load.  

However, all of this research on memory storage finds at least some benefit of object 

organization of features, even if it is imperfect.   Given the wealth of evidence supporting 

object-based benefit to storage of information in VSTM, it is unlikely that our findings of 

feature-selective updating indicate that object-based storage does not exist.  It is more 

likely that our findings reflect the possibility that storage and updating processes in 

VSTM do not necessarily share a common basis of representation.  In other words, 

VSTM storage may be object-based, while VSTM updating could be feature-based.  In 

the next section, we discuss possible ways that this could be implemented. 

 

Different bases for updating and storage 

It is possible that while working memory storage is object-based, updating is 

instead feature-based.  One way this could be possible is if the selection of a single 
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feature of an object for updating breaks the associations between features formed at 

encoding and maintained in storage.  Previous research has shown that features of 

perceived objects can be selectively encoded into VSTM according to the task 

instructions (Woodman & Vogel, 2008), and it remains plausible that similar feature-

selective behavior can occur when the objects are already stored in memory.  In addition 

to the current study, others have suggested that updating to be mediated by distinct, 

feature-specific systems (Mohr & Linden, 2005; Mohr, Goebel & Linden, 2006).  Mohr 

and Linden (2005) examined updating of visual memory by presenting participants with 

two objects, each with a unique color and orientation, and instructing them to imagine a 

mix of the colors or the average of the two orientations or both.  Their results showed no 

dual-task cost between tasks requiring both color- and orientation-updating compared to 

when they only performed one updating task, but there was a dual-task cost when two 

orientation-updating tasks were performed.  Further, they showed that updating depended 

on central executive resources, while maintenance did not.  Together, these results 

suggest that updating of visual memory is mediated by independent, feature-specific 

systems, and may engage additional executive functions.  These executive functions may 

allow the updating process to ignore or break associations between features formed at 

encoding and maintained in memory. 

A useful way to speculate further how updating could break object representations 

is to consider known theories of object-based processing.  Object file theory (Kahneman, 

Treisman & Gibbs, 1992) proposes that updating an object consists of three components: 

(1) correspondence, in which a perceived object is considered a new or previously 

viewed object; (2) reviewing, in which, once correspondence is established, older 



  

 97 

information regarding the perceived object is retrieved; and (3) impletion, where the old 

and new information are integrated to generate the percept of one object changing, rather 

than two different objects.  In our paradigm, we assumed that object correspondence 

between the sample object and the recurrence cue could easily be established by a 

common location.  That all participants were able to understand and accomplish the 

memory updating task at greater than chance levels, supports this assumption. The second 

stage, reviewing, may have been impaired.  Notice that this is another way of saying that 

the feature information in the recurrence cue was not successfully integrated with the 

information from the sample array. It is possible that the nature of the recurrence cue 

interfered with appropriate reviewing of all the features of the object in memory because 

the recurrence cue was a surface feature, such as color or orientation.  In classic object 

file studies, the reviewing process has been typically shown to retrieve a single instance 

of an object, whether it is a letter (Kahneman, Treisman & Gibbs, 1992), an abstract 

identity (Gordon & Irwin, 2000), or a single face (Mitroff, Scholl & Noles, 2007).  The 

information about the object was, in this previous work, to be integrated across multiple 

spatial locations.  In the current study, however, the task required integration of multiple 

instances of feature information (color or orientation) to be integrated within a single 

spatial location.  Perhaps reviewing previous states of an object is best guided by 

integrating across previous locations, but not surface features, such as color and 

orientation.  Or, in other words, the memory for non-updated surface features is not 

refreshed. This was reflected in our results, which showed no impairment in change 

detection for the non-updated feature of the updated object, as compared to that of the 

non-updated objects. 
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Feature integration theory proposes that objects are represented by the binding of 

their features with attention (Treisman & Gelade, 1980).  Each feature is represented 

within a feature map of other values in its domain, i.e. color.  Spatial attention acts to 

bind the activated features from each map to a single location, resulting in accurate 

perception of the object.  Failure of attention results in the miscombination of features 

when forming object representations, or illusory conjunctions (Treisman & Schmidt, 

1982).  In the current study, it is possible that a portion of change detection variability 

was determined by binding failures, since change trials involved swapping features 

between objects.  Also, attention was divided to multiple objects at encoding, increasing 

the probability of binding failures.  Ashby, Prinzmetal, Ivry and Maddox (1996) proposed 

that there is a degree of uncertainty about the location of each feature from a perceived 

image, and that this uncertainty is independent for each feature, regardless of whether it 

belongs to a target object or non-target object.  A correct binding is highly probable when 

the distance between sampled locations of target features is less than the distance 

between the sampled location of a target feature and that of a non-target feature.  While 

feature integration theory proposes that features are free floating prior to attention, 

location uncertainty theory proposes that the locations of features are instead coarsely 

coded.  The dynamic field model of feature binding by Johnson, Spencer and Schoner 

(2009) also makes this distinction from feature integration theory.  In the current study, it 

is possible that features of the multiple objects encoded in the initial sample were each 

encoded with a degree of location uncertainty.  However, the location uncertainty of the 

feature in the recurrence cue could have been much lower than that of the other features, 

since it may have been the only attended feature upon its appearance.  This would have 
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resulted in superior change detection of the updated feature independently of all other 

features in the display. 

One mechanism of memory updating could be attentional selection.  Oberauer 

(2002) proposed that information in working memory existed in three states: (1) an 

activated portion of long-term memory that represented the passive storage of 

information, (2) a smaller region of direct access in which information was readily 

accessible for retrieval, and (3) the focus of attention, which holds just the chunk of 

information that is immediately available for processing.  Although it was proposed that 

the focus of attention would be object-based in updating (Egly et al., 1994), it is possible 

that other modes of attention could have mediated updating.  Whether object-based 

attention or another mode of attention is used to select relevant parts of memory for 

updating is an empirical question.  Our results suggest that updating memory does not 

necessarily involve object-based attention, but may be performed with attention to 

specific features. 

Conclusion of Chapter IV 

This study in this chapter examined one important aspect of object continuity, 

which is updating.  Object continuity processes must allow new information to be 

integrated with the object representation in order to perceive a single, continuous 

representation to be changing.  In this way, an object representation can be updated.  The 

results of this chapter showed that updating one feature of an object in VSTM did not 

lead to the automatic refreshing of the memory of its non-updated features.  These 

findings can be accounted for by some theories of object representation, as will be 

discussed in the next chapter.  
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CHAPTER V 

 

GENERAL DISCUSSION 

 

In this dissertation, I examined whether the same object representations were used 

by both visual attention and memory.  In the first chapter, I reviewed the literature on 

object representations in attention and memory, and proposed that attention and memory 

used the same object representations.  Then, I presented the results of three empirical 

studies designed to examine different aspects of this problem.  In Chapter II, I presented 

results showing that attention and memory shared a common capacity for object 

representation, supporting a view of shared object representations in attention and 

memory.  In Chapter III, I presented results suggesting that a process involving both 

attention and memory was used to preserve object continuity.  Finally, in Chapter IV, I 

conducted experiments that closely examined updating of object representations, 

revealing that the effects of updating are restricted to only the updated information, and 

does not spread to other parts of the same object.  In this chapter, I will summarize the 

primary findings of each study, and then fit them into an integrative theory of visual 

cognition for objects. 

In Chapter II, an object was viewed as a source of capacity limitation in attention 

and memory.  A dual-task method was used to examine whether attention and memory 

shared this limited capacity for representing objects.  The dual-task demanded the 

simultaneous use of attention and memory to objects.  The primary finding was superior 

dual-task performance when each component task targeted the same objects rather than 
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different sets of objects.  This is consistent with the view that attention and memory draw 

from the same capacity to represent objects.   

In Chapter III, I examined object representations as entities that remained 

continuous despite changes during its history.  It was proposed that object continuity was 

preserved by an attentive process of sampling information and storing it in memory for 

comparison to subsequently sampled information.  This sampling process predicts that 

object continuity is dependent on the consistency of object information, such as location 

and color, between samples.  First, I showed that performance on target recovery (TR) 

was facilitated by consistent object location and color.  Since TR involves tracking 

moving objects across a blank display of several hundred milliseconds, it must involve 

some process that stores information prior to the blank for comparison to information 

after the blank.  I hypothesized that if the same sampling process mediated both MOT 

and TR, behavior related to each task would be similarly affected by consistency of the 

same kind of object information.  The consistency of object colors was used to test this 

hypothesis.  The results confirmed that consistent colors facilitated performance in both 

tasks.  This supported the idea that a sampling process, which is sensitive to the 

consistency of object color, mediates object continuity.  Importantly, this process entails 

coordination between attention and memory to result in successful continuity.   

Finally, the experiments in Chapter IV took a closer look at the object updating 

process.  An object is a representation that could be processed in a unitary fashion.  In 

other words, what happens to one part of the object happens to the rest of it.  It was 

hypothesized that updating a single feature of an object would result in refreshing the 

entire representation.  Instead, we discovered that the effects of updating an object were 
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restricted to its updated feature, and did not affect its other features.  Further experiments 

showed that this process did not fail to represent an object in its updated form, but rather 

the resolution of its constituent features became differentiated.  Did this suggest that the 

objects of attention and memory were not the same, since the expected results were no 

shown?  In the next section I will outline a theoretical model of visual object continuity, 

and I will discuss some ways that the results of Chapter IV could fit within existing 

theories of object representation. 

 

A model of visual object continuity 

How do these results fit into the broader picture of visual cognition?  What 

follows is an attempt to integrate the current findings into a model of object 

representation, continuity, and updating.  The components of the model are informed by 

previous research as well as the current findings.  I will first outline the theoretical 

process, and then provide a rationale for each stage, citing previous research and 

emphasizing how the current research contributes to its understanding.  In this model, the 

process of visual object continuity can be described as four major stages: 

(1) Visual information is selected and undergoes a binding process. 

(2) A demand for continuity results in object files stored in memory. 

(3) Divided attention to multiple objects results in imperfect object representations. 

(4) Attention preserves continuity by periodically sampling information and matching 

it to object files stored in memory. 
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These stages are illustrated in Figure 5.1, shown above.  In this figure, the visual 

input depicted on the far left side consists of several flowers to which the observer will 

attend.  Several different representations emerge from the visual input.  In the example, 

blue and yellow colors, one value of orientation and a long-term memory representation 

of a flower are depicted as being activated in parallel (Treisman & Gelade, 1980).  

Another representation is a spatial representation of visual information that has been 

grouped in some locations (Vecera & Farah, 1994).  These groups can be formed 

according to any of several Gestalt principles, such as closure, uniformity, or good 

continuation.  In this example, the groups are the heads of the flowers.  It is proposed 

that, in the tasks used in this research, attention selects from a spatial array of grouped 

information.  The task relevance of this selection mode is depicted by the grouped array 
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being shifted to the right of the other representations.  The selection of visual information 

by attention is depicted as red bars transferring information from the perceptual 

representations to the central gray box.  A different channel is dedicated to each selected 

group (Cavanagh & Alvarez, 2005).  Each channel is depicted as discrete red bars 

representing a discrete sample taken from the perceptual representations (Allen et al., 

2006; Oksama & Hyönä, 2008). 

Other information available within the selected group is extracted and undergoes 

a binding process.  In Figure 5.1, binding processes are depicted as taking place inside the 

gray box.  It is proposed that the purpose of visual attention is to perform at least two 

kinds of binding process.  First, it binds the other features within the selected groups, 

resulting in their proper arrangement for more accurate perception (Treisman & Gelade, 

1980).  For example, one flower’s head forms one group.  It consists of the shape of the 

flower and the color of the petals.  These features are bound together to enable a more 

accurate perception of the flower.  Second, it relates the information extracted from the 

selected group to any long-term representations that have been activated, such as letters, 

well known object identities, or faces (Chun & Potter, 1995).  In this example, the flower 

activates a representation in long-term memory, and this representation is matched to 

information extracted from the selected group.  A third type of binding integrates the 

different instances of the object across time, resulting in the perception of a single, 

continuous entity (Kahneman, Treisman & Gibbs, 1992).  This involves visual attention, 

but also requires memory and central attention.  This kind of binding leads to a 

perception of object continuity, which will be discussed below.   
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Attention is viewed as a binding process.  It is a single, limited resource that can 

be divided if multiple objects need to be represented.  This limited resource is depicted in 

Figure 5.1 as a gray box containing samples of the perceptual representations.  The 

boundaries between divisions become thinner and more permeable with each division.  In 

the figure, this permeation is depicted as white lines formed with the gray box.  The 

dashes in the lines represent permeability.  Increased permeability leads to binding errors 

due to features slipping from one division to another.  When multiple objects are 

represented, some kinds of information can be prioritized over others, and this priority 

prevents that information from slipping through divisions (Richard, Luck & 

Hollingworth, 2008).  In Figure 5.1, an orientation feature and the colors are depicted as 

slipping through the lines, which will lead to misbinding of those features.  Locations are 

depicted as coordinates from an alphanumeric coordinate system, as on some maps (e.g., 

A3, B1).  Since the grouped array is prioritized, the locations will not leak through the 

permeable division.   

Object files are created in memory when the task demands object continuity 

(Kahneman, Treisman & Gibbs, 1992).  These are depicted as gray file folders on the 

right side of Figure 5.1.  Object files can be viewed as a perpetuation of the mapping 

created by the attentional binding process.  In this way, attention and memory share the 

same capacity for representing objects.  

The preservation of object continuity is an active process resembling a circuit 

between visual attention, memory and central attention.  Attention periodically samples 

information from the visual grouping currently under its scope.  This information is 

compared to the information stored in an object file.  The results of the matching process 
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determine whether the object file is updated and whether attention should shift according 

to the update.  Both operations proceed after a decision process.  An executive process, 

mediated by central attention, could subtract the sum of all mismatches from the sum of 

all matches.  A positive value from this operation would trigger updating of memory and 

shifting of attention, while a negative value would not trigger these processes.  Failure to 

update a file or shifting attention results in the loss of object continuity.  In Figure 5.1, 

central attention is depicted as a gray circle.  The sum of detected mismatches is 

subtracted from the sum of detected matches, as illustrated within the circle.  Arrows 

leading to the object files on the right, and attention to visual information on the left 

indicate that updating object files and shifts of attention rely solely on the outcome of this 

simple operation.  Plus-signs are illustrated above the arrows indicate that the triggering 

of these processes depends on a positive value from the comparison process. 

In the following sections, I will support each of these steps with previous research 

as well as the current findings.  Many of the ideas have been drawn from previous 

research, but more emphasis will be placed on aspects supported by the current data. 

 

Selection and binding 

Attentional selection could be based on different types of information, such as a 

visual feature, an activated semantic category, or visual space.  This idea is borrowed 

from Feature Integration Theory (Treisman & Gelade, 1980), which proposed that visual 

input activated several feature maps in parallel.  The representation to be used as the 

primary input for selection could be determined by task demands.  The selection cue 

could be a semantic category.  For example, Duncan (1983) showed that selection from 
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an early “iconic” representation could be based on semantic information, indicating that 

information was categorized prior to attentional selection.  This idea was supported by 

several studies of iconic memory (Allport, 1978; Mewhart, Campbell, Marchetti & 

Campbell, 1981; for a review, see Coltheart, 1983), and more recently incorporated into 

models of temporal attention, such as Chun and Potter’s (1995) two-stage model.  For 

this reason, visual and semantic information are among the perceptual representations 

depicted in Figure 5.1. 

It is proposed that in the primary task used, MOT, attention selects visual 

information that has already been grouped by early visual processing.  These groupings 

have been called proto-objects (Wolfe & Bennet, 1997) or object tokens (Pylyshyn, 

2000).  Duncan (1984) showed that the cost of attention could be object-based, and this 

suggested the formation of visual groupings prior to attention.  Further research 

suggested that these visual groupings seemed to be embedded upon a spatial 

representation, so that attention selects groupings in specific locations (Kramer, Weber & 

Watson, 1997; Kramer & Jacobson, 1991; Egly, Driver & Rafal, 1994).  This results in a 

hierarchical representation of parts, objects, and space that drives attentional selection 

(Baylis & Driver, 1993).  Alternatively, attention could parse visual information into 

groups, and then select the groups.  Some support for this comes from a study that 

showed no awareness for changes to groupings outside the focus of attention (Mack, 

Tang, Tuma, Kahn, & Rock, 1992).  However, Moore and Egeth (1997) suggested that 

their results reflected a failure in memory, not of pre-attentive grouping.  Their study 

showed that attentional behavior could be significantly affected by changes to grouping 

in the unattended background.  Several other studies have shown similar results  (Driver, 
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Davis, Russell, Turatto, & Freeman, 2001; Russell & Driver, 2005; Lamy, Segal & 

Ruderman, 2006; Kimchi & Peterson, 2008).   

Work described in previous sections showed that attention in MOT is not spread 

across a wide region of space (Sears & Pylyshyn, 2000), and does not just surround the 

region of space around each target (Scholl, Pylyshyn & Feldman, 2001). It selects the 

visual groupings to which the targets belong (Scholl, Pylyshyn & Feldman, 2001), but it 

may prefer rigid, closed figures rather than any arbitrary grouping (VanMarle & Scholl, 

2003).  MOT is used as the primary measure of attention and object continuity in 

Chapters II and III, so it is proposed that the grouped array is the precursor for object 

representations.  The locations of selected groupings are prioritized, since MOT is an 

inherently spatial task, reducing the chance of being incorrectly bound to an object file.  

The modest same-object benefit observed in Experiment 2.3 might have been partially 

due to the fact that the objects were not spatially distinct in the Different-objects 

condition.  This touches on the issue that the number of objects is often confounded by 

the amount of spatial processing involved.  Duncan’s (1984) original study of object-

based attention demonstrated a cost of dividing attention even when the objects occupied 

the same space.  The idea that these representations were spatially invariant was 

supported by Vecera and Farah (1994), who showed the same costs whether or not the 

objects were spatially overlapping or separate.  This finding has been difficult to replicate 

(see Kramer, Weber & Watson, 1997), leading some researchers to propose that there are 

two kinds of object representations: an early grouped array, and a late, spatially invariant 

object representation in visual memory (Matsukura & Vecera, 2009).  However, VSTM 

has also been shown to be represented spatially, especially at large object set-sizes (Jiang, 
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Olson & Chun, 2000).  At least one recent study has shown that, at longer retention 

intervals, objects in VSTM are less attached to their locations (Treisman & Zhang, 2006).  

For tasks such as MOT and the memory tasks used in this research, the grouped array is 

considered the primary basis of object representation.  The distinction between these 

early groupings and object files is that the latter have been selected and must remain 

continuous for the task.  In this way, the non-targets may also be represented in the 

grouped array, but cannot be tracked since they have not been selected for the task.   

The selection of a visual group binds the features within that group (Treisman, 

1982; Wolfe & Bennett, 1997).  This kind of binding is borrowed from feature integration 

theory, as discussed in the introduction (Treisman & Gelade, 1980).  This is distinct from 

other kinds of binding that is discussed in other models of visual cognition, such as the 

binding between type information and token information (Chun, 1997).  However, these 

different forms of binding may all stem from a common limited capacity, such as the 

episodic buffer of Baddeley’s component model of working memory (2000).  Several 

other literatures have described similar bottlenecks of processing that may reflect binding 

between different kinds of information, including research in the psychological refractory 

period (Jolicoeur & Dell’Acqua, 1996) and visual working memory consolidation 

(Woodman, Vogel & Luck, 2006).   

Evidence for this binding was demonstrated in Experiment 2.4.  It was 

hypothesized that performance in the dual-task was determined by successful binding of 

features to specific objects, since the previous experiments used a memory task involving 

the swapping of features between objects.  The memory task was manipulated, so that 

half of the invalid memory probes involved revealing a color on one object that had 
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previously belonged to another object.  In the other half, the probes involved revealing a 

new color not previously seen.  Performance in the former condition had to have been 

determined by how well a color was bound to an object, while performance in the latter 

condition could be successful by remembering a list of colors, i.e. memory for features.  

Changes in dual-task performance, including the same-object advantage, was only 

observed in the condition requiring binding, not in the latter condition.  This supported 

the idea that the shared capacity between attention and memory is of binding.  Since 

objects are typically defined as the conjunction of multiple features (Luck & Vogel, 

1997), this capacity for binding could be considered the same as capacity for objects. 

This is supported by research showing that attention is necessary to maintain the 

bindings in memory (Wheeler & Treisman, 2002; Fougnie & Marois, 2008).  Some 

researchers have argued that bindings in memory could be preserved even when attention 

is deployed during the maintenance period.  Johnson, Hollingworth and Luck (2006) 

showed that visual search during memory retention did not differentially affect memory 

for features or conjunctions.  Yeh, Yang and Chen (2005) showed no differential benefit 

of spatially cueing features or conjunctions during memory retention.  Allen, Baddeley 

and Hitch (2006) showed that performance of a task demanding central attention did not 

differentially affect memory for features or conjunctions.  However, Fougnie and Marois 

(2008) argued that the intervening tasks were not demanding enough or not did require 

visual attention.  They showed impaired memory for binding when participants 

performed a MOT during the retention period, supporting the idea that visual attention is 

required for maintenance of feature binding in memory. 
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Object files in memory are required to preserve continuity 

Kahneman, Treisman and Gibbs (1992) introduced the idea of an object file as a 

single representation responsible for the accrual, retrieval and updating of information 

related to a perceived object.  The concept of the object file is incorporated in the current 

model as a crucial component.  It is proposed that when the task demands continuity of 

information that is bound by attention, an object file is opened in memory to preserve this 

continuity.  An object file is simply the preservation of the binding formed by attention, 

suggesting that the representation of objects in attention and memory reflect the same 

capacity.  This capacity may be a general resource for binding (Baddeley, 2000), and may 

cause the same processing bottleneck observed in other paradigms (Jolicoeur & 

Dell’Acqua, 1996; Woodman et al., 2006).   

The idea of this common capacity was supported by evidence from Chapter II. 

There were two tasks used in Chapter II that both required object continuity.  In MOT, 

participants had to perceive the target objects as the same objects that were cued at the 

beginning of the trial, even as they randomly move across space.  In the memory task, 

participants used VSTM to determine whether the features appearing on a specific object 

were the same or different than features previously viewed on that object.  These were 

incorporated in a dual-task.  Performance of this dual-task was facilitated when memory 

and attention was directed to the same objects.  The source of the dual-task interference 

stemmed from the total number of object files required.  In the Same-objects condition, 

the number of total number of object files was equal to that required in each of the 

Single-task trials, which resulted in the observation of no significant interference 

compared the estimate of ideal performance, reflected by performance in the Expected 
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condition (Experiment 2.1, color group).  In the Different-objects condition, having two 

different sets of objects exhausted the total number of objects files required to perform 

the dual-task, resulting in impaired dual-task performance.  This impairment could have 

stemmed from either MOT or memory, and this trade-off could have changed from trial-

to-trial, demanding the need to average across the tasks.  If there were independent 

capacities to retain bound information, there should have been no difference in the dual-

task cost between the Same- and Different-objects conditions. 

The use of VSTM to preserve continuity was also observed in the experiments of 

Chapter III.  TR performance was shown to be successful even with the presence of a 

full-screen mask just prior to the blank and the concurrent performance of articulatory 

suppression (Experiment 3.3).  Representations in VSTM are known to survive these 

conditions (Woodman, Vogel & Luck, 2006), suggesting that information was retained in 

VSTM across the blank.  The results of Experiment 3.3 showed that color representation 

was of relatively low resolution in TR, further suggesting the use of VSTM to retain 

information across the blank (Olsson & Poom, 2005; Awh, Barton & Vogel, 2007).  This 

supports the view that a memory representation, like an object file, could be necessary in 

preserving object continuity in TR.  The relationship between memory and MOT will be 

discussed in a later section. 

 

Divided attention to multiple objects 

In the proposed model, a single resource of attention is divided into “slots” to 

represent multiple objects.  However, the boundaries between each slot become thinner or 

more permeable with each division.  Some models of visual memory representation have 
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proposed similar models of object representation, where object representation is 

determined by both the number of objects in memory and the content of each object.  For 

example, Alvarez and Cavanagh (2004) described objects in visual memory as being slots 

that could each hold a minimal set of features.  Olson and Jiang (2002) also showed that 

both the number of objects and the total number of features exerted a cost upon visual 

memory capacity.  More recently, different methods have produced results that support 

the idea that visual memory stores discrete, fixed resolution “slots” (Zhang & Luck, 

2008).  These models predict that, when memorizing multiple objects, there would be 

high resolution for a subset of items, and no information for other items.  In other words, 

there is no variability in the resolution of items in memory as the set-size increases.  

However, recently it was been noted that such analyses often fail to account for incorrect 

bindings of location and the memorized features (Bays, Catalao & Husain, 2009).  When 

the incorrect bindings are accounted for, models based on visual memory as a single 

resource are better fit to behavioral data.   

Similar to these resource models, attention, as defined by a capacity for binding is 

depicted as a single resource that could be divided.  However, the accurate of binding for 

a given object is represented by the width of each division.  The cost of attention is the 

loss of binding.  Treisman and Schmidt (1982) supported this idea by showing that a lack 

of attention resulted in the misbinding of perceived information.  Participants were 

briefly presented rows of five characters composed of three colored letters interleaved 

with two black digits.  When report of the digits was emphasized, participants made 

errors on reporting the identity and color of the letters.  Importantly, more errors involved 

miscombining the colors and identities, rather than erroneously reporting unseen features.  
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This indicated that when attention was diverted, features are still perceived, but they are 

miscombined or misbound, forming illusory conjunctions.   

In Experiment 3.4, we showed that the consistency of object color was not object-

specific in TR.  Performance was no different if targets retained their original colors 

across the blank or swapped colors with each other.  Performance was only impaired if 

the targets swapped colors with non-target across the blank.  These results suggested that 

target colors were stored in VSTM during the blank, but since attention was divided 

between several targets, they could have been incorrectly bound in memory.  This would 

result in a target match as long as the targets appeared in their pre-blank colors, 

regardless of which target had which color. 

Could binding errors also help to explain the effects of feature-selective updating 

in Chapter IV?  In these experiments, participants memorized conjunctions of color and 

orientation, and then updated the color or orientation of one object according to a 

recurrence cue.  Then, their memory for one of the multiple objects was probed.  The 

main finding was that updating resulted in a greater probability of change detection, but 

this effect was restricted to the updated feature.  How does this effect fit into the 

proposed model?  Ashby et al. (1996) proposed that the probability of successful binding 

was determined by the spatial uncertainty of perceived features, and this uncertainty is 

independent for each feature.  It is possible that the encoding of multiple objects from the 

sample required divided attention, resulting in a relatively high level of spatial 

uncertainty for each feature.  This was reflected in change detection performance that was 

below ceiling.  In other words, imperfect memory for objects in the task resulted, for 

some degree, from a binding failure.  However, only a single focus of attention was 
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required to process the recurrence cue.  The spatial uncertainty for this feature could have 

been much lower compared to the other features in memory, since attention was not 

divided during encoding.  This would result in enhanced change detection for the updated 

feature compared to any other features in memory.  Consistent with this view is that the 

changes involved in most of the experiments in Chapter IV are swaps between sampled 

objects.  However, we observed similar results when changes involved the introduction of 

a new feature.  This might imply that baseline change detection performance reflects both 

how well features are retained and how well they are bound to object files (Wheeler & 

Treisman, 2002). 

 

Periodic sampling and object continuity 

The preservation of object continuity is mediated by a correspondence process.  

The correspondence process involves attention taking a discrete sample of information 

from the visual group on which it is currently focused.  This information is matched to an 

object file in memory.  The outcome of this matching process determines whether the 

object file is updating, and whether attention is shifted according to the update. 

Allen et al. (2006) proposed this kind of sampling process to explain how MOT 

was accomplished.  Each target attracted a visual index, and the targets’ location 

information was encoded into memory.  At the next time interval, each target again 

attracted an index, and the target locations were consulted to match them against 

locations in memory.  Matches are made based on the proximity between the sampled 

locations and those in memory.  A similar memory-based component was used by 

Oksama and Hyönä (2008), but their model differs in an important way.  Oksama and 
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Hyönä (2008) proposed that attention updated object representations in a serial manner.  

Spatial locations were preserved in memory because of this serial shifting.  A single 

focus of attention shifted to the last memorized position of an object to be updated.  Like 

Allen et al. (2006), tracking errors stemmed from the discrepancy between memorized 

and actual object location.  Oksama and Hyönä (2008) proposed that the serial shifts of 

attention accounted for observed set-size effects in the tracking task, since more targets 

necessitate more shifts of attention within a certain amount of time.  The results of 

Chapter III do not speak to whether there is a single focus of attention, or multiple foci of 

attention, since there was no set-size manipulation.  I will adhere to Cavanagh and 

Alvarez’s (2005) multi-focal attention for the purposes of the current theory. 

There are two reasons to propose a sampling mechanism.  First, it accounts for the 

preservation of object continuity, despite dramatic visual discontinuity.  Second, it makes 

explicit predictions about the consistency of object features.  As described in Chapter III, 

target recovery (TR) is a task similar to MOT, except that all objects temporarily 

disappear while participants are tracking them.  It is possible that attention continually 

extracts target information for matching to representations in memory.  However, the 

visual discontinuity introduced by the blank should result in a significant mismatch, 

causing the loss of the tracked targets.  Keane and Pylyshyn (2006) showed that a blank 

of up to 450 ms still allowed high performance, as long as the pre- and post-blank 

positions were consistent with each other.  This could be accounted for by a periodic 

sampling mechanism since the blank mimics the interval between samples.  In 

Experiment 3.1, we showed that TR performance was not only dependent on consistent 

object position, but also consistent object colors.  For each target, the sampling 
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mechanism would extract object position and color and store that information in an object 

file.  The mechanism would then take another sample of position and color and compare 

it to the object file already in memory.  If there is enough of a match in position and 

color, the object file is updated according to the newly sampled information, and 

attention is shifted according to this update.  Precise shifts of attention maintain accurate 

tracking. 

Is sampling involved in MOT?  Experiments 3.2 and 3.3 examined whether the 

sampling process was common to both MOT and TR.  It was known from Experiment 3.1 

that behavior related to TR was sensitive to the consistency of objects’ colors.  In 

Experiments 3.2 and 3.3, it was shown that color consistency similarly affected behavior 

in both MOT and TR.  These results supported the hypothesis that a common process 

mediated both MOT and TR.  Using color as a case study in the information that must be 

kept consistent to preserve object continuity, this process could involve the periodic 

sampling of information for comparison to representations in memory.  It should be noted 

that the extent of support for the sampling mechanism is restricted to observed effects of 

informational consistency.  The sampling mechanism is appealing because it makes 

specific predictions about how the consistency of information affects behavior, and is 

also helpful in accounting for TR related behavior.  The results of Chapter III support the 

sampling mechanism by confirming its predictions about consistency, but they do not 

definitively rule out the alternative theory of continuous streaming of information.  More 

research is required to elucidate this point. 

How does the result of a matching operation lead to object continuity?  It is 

possible that within an iteration of sampling, the total sum of matched features competes 
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with the sum of mismatched features.  This is easily modeled by subtracting the sum of 

mismatches from matches.  A positive number from this operation could result in both 

the updating of an object file and the shifting of attention according to the updated 

information.  A negative value, that is the sum of mismatches is larger than the sum of 

matches, does not signal the updating of the object file or shifting of attention, resulting 

in a failure to preserve continuity.  In MOT, this would result in the loss of a target due to 

failure to shift attention.  The matching process, decision-making and shifting of attention 

could be mediated by a central executive component (Baddeley & Hitch, 1974).  This is 

supported by research showing a role of central attention in MOT (Tombu & Seiffert, 

2008).  This mechanism of tracking is similar to Cavanagh and Alvarez’s (2005) model 

of multi-focal attention, which proposes that feature information extracted by attention is 

input to higher processes.  The outcome of these higher processes signaled the shifting of 

attention to remain centered on the target object.  In this way, object continuity could be 

thought of as a circuit between visual attention, visual memory and a central executive.  

Visual attention continues to sample information that is then compared to information in 

memory.  A match in this comparison results in updating the object file and shifting 

attention according to that update to continue sampling information accurately.  A 

mismatch does not lead to the updating and shifting operations, breaking the circuit. 

It is important to allow perceptibly differing samples of information to satisfy a 

match in the matching operation.  Without this tolerance for error, there is no way to 

perceive a single object changing.  This was investigated extensively in Chapter IV, 

which showed evidence of feature selective updating.  In regards to the sampling 

mechanism described in Chapter III, updating is important in MOT.  For example, in 
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matching locations across samples in MOT, there must be a degree of perceptible 

difference in location that is still considered to match.  This difference could create vector 

information that could be used to update the object file and accordingly shift attention.  In 

Experiment 3.3, we examined a similar property with object color.  For both MOT and 

TR, we manipulated the degree to which colors changed in the inconsistent trials.  In TR, 

the small color changes resulted in higher performance than large color changes.  We 

interpret this to mean that smaller color changes reduced the probability of finding a 

mismatch between samples.  However, no difference was found in the inconsistent trials 

of MOT, making the result difficult to interpret.  If a sampling process mediates both 

tasks, as we suggest, it is possible that the duration between samples affects the resolution 

of color representation.  Since the objects are continuously visible in MOT, there may be 

only very brief durations between samples, allowing other types of color representation, 

like iconic memory, to persist and facilitate the matching process.  

 

Summary and Conclusion 

 The conclusion of this research is that the same object representations are used in 

visual attention and memory. The results of Chapter II showed that attention and memory 

share a common capacity of object representations.  The experiments in Chapter III 

suggested that object tracking is mediated by a sampling mechanism that is sensitive to 

the consistency of object location and color.  Finally, the experiments in Chapter IV 

investigated the effect of updating objects in visual memory.  These results were 

integrated into a model of visual object continuity.  Visual attention selects grouped 

information and binds the features within the group.  The need for object continuity 
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signals the establishment of an object file in memory, which perpetuates the binding 

formed by attention.  Object continuity is conceptualized as a circuit between visual 

attention, visual memory, and central attention.  Visual attention takes discrete samples of 

information in a periodic manner, and a process matches the sample to an object file in 

memory.  The outcome of this matching process determines whether the object file is 

updated according to the newly sampled information, and whether attention is shifted 

according to the update.   
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