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CHAPTER I 

 

INTRODUCTION 

 

1.1 Significance 

Force – excitation coupling in single cardiac myocytes 

Since 1900, cardiovascular disease (CVD) has been the No.1 killer in the United 

States. Nearly 2500 Americans die of CVD each day, an average death in every 35 

seconds. CVD claims more lives each year than the next 4 leading causes of death 

combined, which are cancer, chronic lower respiratory disease, accidents, and diabetes 

mellitus. 

Heart failure is a chronic and progressive disorder of the heart characterized by 

progressive deterioration of cardiac pump function. It poses a 1 in 5 lifetime risk on both 

men and women  [2, 3]. Heart failure is typically a secondary entity that occurs when the 

myocardial function is diminished by an underlying pathological condition such as 

cardiomyopathy (acquired from chronic ischemia, hypertension or diabetes), valve 

disease, congenital malformation, or arrhythmia. The long-term response of the heart to 

these initiating insults is electrical and mechanical remodeling leading to a progressive 

deterioration of contractile function [4-6]. While the causes of heart failure are 

distinctively different, the functional characteristics of the failing myocardium are 

surprisingly consistent. In the early stage of heart failure the first changes observed are 

slowing of the rates of contraction and relaxation and prolongation of the action potential. 

Later, in a more advanced stage of heart failure, reduced force production and shortening 
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are consistently observed  [4-8]. The pathophysiological mechanism behind myocardial 

failure is not known but there is reason to believe that it originates from alterations in 

force – excitation coupling of the component cardiac myocytes [6]. It is well understood 

that in muscle cells calcium plays an important role in the process that couples an 

electrical depolarization to force generation. In the heart, depolarizing pace maker cells 

generate a depolarizing wave that spreads rapidly from one myocyte to another across 

gap junctions [9], causing an almost synchronous depolarization of the entire heart. 

Intracellular calcium concentration rises as a consequence of the electrical depolarization 

and directly activates the contractile machinery of the cell to produce force and 

contraction. In contrast to skeletal muscle in which force is graded by the recruitment of 

muscle fibers, in heart muscle, all cells participate in each beat [10]. As a result, cardiac 

contractile force can only be regulated by changing the force developed by the individual 

cardiomyocyte. Therefore, force-excitation coupling in the heart is generally studied in 

isolated cardiac myocytes.  

Furthermore, the isolated cardiac myocyte is a more suitable model to study the dynamics 

of active and passive force generation than any multicellular preparation (e.g. trabeculae 

and papillary muscles). Mechanical studies in excised cardiac muscle have led to 

ambiguous results because of the poorly defined viscoelasticity of the extracellular matrix 

[11, 12], and because no clear representation of the relation between passive and active 

forces is evident  [13]. Additional series elasticity in large muscle preparations may arise 

from the end compliance related to the attachment of recording devices. Finally, 

inhomogenities of strain and stress even in one-dimensional isolated muscle preparations 

have shown to produce a significant structural and functional nonuniformity in both 
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passive and active responses [14]. It is customarily assumed that the load (force) and 

strain are uniformly distributed throughout the cross section and along the length of the 

specimen. The implicit assumption of a uniform contractile state is evident in almost all 

the papillary muscle literature that presents data on muscle contraction dynamics.  

The same argument is true when intracellular electrical activity is monitored in tissue 

preparations using fluorescent dyes. Because of the large volume of excised muscle 

preparations, the dye distribution may be highly nonuniform and may even change during 

the measurement.  

In summary, the isolated intact isolated cardiac myocyte is the ideal model for studying 

force – excitation contraction coupling because it provides almost direct access to a 

relatively small number of contractile units (sarcomeres) in a single cohesive structure 

well defined by the sarcolemma membrane. 

 

Phospholamban – a target protein for therapy of myocardial dysfunction  

Disordered cellular calcium homeostasis is a hallmark of heart failure. This observation 

was first documented by Gwathmey and co-workers [15] and has been described multiple 

times in various models of heart failure. In fact, dysregulation of calcium handling is 

universal in structural heart disease, although, the details of this ‘remodeling’ process 

differ amongst different models, between animal species and between different time 

points during disease progression [7, 8, 16]. The reduction in contractile force 

development in failing human cardiac myocytes is accompanied by a markedly prolonged 

declining phase of the Ca2+ transients [15, 17-20]. Intracellular calcium release during the 

cardiac cycle is graded and depends largely on the amount of Ca2+ entering the cell 
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through sarcolemmal ion channels (in a process called calcium induced calcium release, 

CICR) and on the filling state of the sarcoplasmic reticulum (SR), the intracellular 

calcium store. The prolongation of the Ca2+ transient is the direct result of a decrease in 

the activity of the intracellular Ca2+ pump (SERCA2a), which is responsible for the 

transport of cytosolic Ca2+ back into the SR. The reduced rate of SR Ca2+ uptake 

decreases the amount of calcium available for release during the cardiac cycle. As a 

result, force generation, contraction amplitude and rate of relaxation are diminished in 

heart failure. Phospholamban (PLN) is an intracellular SR protein and a negative 

regulator of SERCA2a activity [21, 22]. The PLN – SERCA2a interaction controls the 

calcium content of the SR and ultimately cardiac contractility  [23, 24]. It is well 

established that a decrease in PLN phosphorylation and in the SERCA2a/PLN expression 

ratio contributes to the contractile dysfunction in myocardial failure [25, 26]. In fact, 

overexpression of SERCA2a via gene transfer restored calcium handling, contractility 

and the frequency response in isolated failing human cardiomyocytes [19, 27]. The 

results of targeting PLN in failing human cardiac myocytes are promising: (1) Decreasing 

phospholamban expression restores contractility in failing ventricular myocytes; (2) 

ablation of phospholamban results in improvement in contractility similar to that of 

SERCA2a overexpression. Studies by Kranias et al.  [23, 24, 28] have clearly shown that 

murine models of phospholamban knockout have enhanced contractility. 

 

Frequency adaptation in phospholamban and CaMKII deficient cardiac myocytes 

An important observation made in many in vitro studies is that non-failing and failing 

human myocytes have similar contractile characteristics at low workloads, i.e. slow 
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pacing rates, low extracellular [Ca2+] or in the absence of catecholamine stimulation [15, 

29, 30]. Specifically, peak force (or shortening) is not significantly different in non-

failing vs. failing human LV muscles or myocytes at slow (< 30 bpm), and the rates of 

force development or shortening are only modestly lower than normal in failing cardiac 

muscle. Increasing the pacing rate within the physiological range causes the contractility 

to increase in non-failing myocytes (positive force – frequency relationship) but causes it 

to decrease in cardiac myocytes isolated from failing human hearts (negative force – 

frequency relationship) [15, 30]. These results support the hypothesis that changes in 

cellular Ca2+ handling are a final common pathway for progressive deterioration of 

cardiac pump function in myocardial failure at increasing pacing rates. In fact, abnormal 

SR Ca2+ loading has been suggested to produce significant changes in force – excitation 

coupling in failing human myocytes at physiological stimulation frequencies  [31, 32]. 

The interpretation of these results is severely complicated by the fact that the mechanism 

of frequency adaptation in the heart is not well understood in both nonfailing and failing 

cardiac myocytes.  

When the stimulation frequency is increased, the mammalian heart responds with an 

acceleration of relaxation (FDAR) allowing it to refill more rapidly between beats  [33]. 

Schouten et al.  [34] speculated that a faster relaxation at steady state (SS) vs. post-rest 

beats was due to the activity of the endogenous enzyme Ca2+/Calmodulin dependent 

protein kinase II (CaMKII). Several reports showed that the higher average cytosolic 

[Ca2+] occurring at a higher heart rate, could activate CaMKII in a frequency-dependent 

manner to phosphorylate PLN leading to an increase in SERCA2a activity, a decline in 

[Ca2+]i and an acceleration of relaxation  [35-37]. However, recent results from Valverde 
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et al. indicate that PLN phosphorylation by CaMKII may not be the mechanism of FDAR 

in the heart [33]. These results lead to a key hypothesis of this dissertation and are 

discussed in more detail in Chapter V. 

 

1.2 Specific aims 

The following specific aims describe the objectives of the dissertation: 

Aim 1. Develop experimental techniques to measure absolute intracellular calcium 

concentration in isolated cardiac myocytes with high temporal resolution. A single 

cardiac myocyte high bandwidth fluorescence detection system was designed and 

constructed based on an inverted microscope and combined with an optical fiber array 

which was coupled to photomultipliers. The fluorescent Ca2+ indicators Fluo-3, X-rhod-1 

and Indo-1 were used to quantify changes in intracellular Ca2+ concentrations occurring 

during the cardiac cycle. A high temporal resolution (< 0.5 ms) permitted the recording of 

the fast (~ 10 ms) upstroke of the Ca2+ release.  

Aim 2. Develop and apply the Nanophysiometer, a microfluidic network combined with 

a thin film microelectrode array for long-term physiological multi parameter recordings 

from single cardiac myocytes. The Nanophysiometer has extensively been used to 

measure extracellular potentials, intracellular Ca2+ concentrations and sarcomere length 

from isolated cardiac myocytes. Most importantly, the Nanophysiometer automatically 

aligned and stabilized single cells during long-term contraction measurements. On-chip 

thin-film microelectrodes were used for electric field stimulation but were also applied 

for recording extracellular potentials and ion- and metabolite concentrations in the 

extracellular space (e.g. pH, K+, O2, glucose, lactate, etc.). 
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Aim 3. Develop methods to quantify sarcomere force generation in single cardiac 

myocytes with high spatial resolution. A single cardiac myocyte contractility system was 

set up using a high speed CCD camera in combination with an inverted microscope. 

Sarcomere acceleration was measured in single cardiac myocytes and used to quantify 

changes in active force development under consideration of passive forces. A high spatial 

resolution (< 5 nm) was achieved by using a FFT algorithm and the Nanophysiometer. 

The microfluidic device stabilized single cardiac myocytes during long term sarcomere 

length measurements and permitted the recording of a large number of contractions 

(>100). Averaging of multiple contraction transients significantly increased the S/N ratio 

and improved the spatial resolution of the measurement compared to a culture dish 

experiment. Calcium and contraction measurements were combined by using the electric 

field stimulus as a reference time point. 

Aim 4. Measure force – excitation coupling in single cardiac myocytes isolated from 

PLN deficient mice. Phospholamban ablation has been shown to increase the rates of 

contraction and relaxation in isolated cardiac myocytes. However, in the literature, the 

increased contractility (positive inotropic effect) observed in phospholamban deficient 

cardiac myocytes (PLN-/-) has been consistently attributed to an increased Ca2+ release. 

The optical imaging techniques described in aims 1-3 were applied to test the hypothesis 

that the positive inotropic effect of PLN ablation is amplified by an increase in the 

response of the myofilaments to changes in cytosolic Ca2+ concentration. 

Aim 5. Measure the frequency response of the SR Ca2+ release and uptake in single 

cardiac myocytes isolated from PLN and CaMKII deficient cardiac myocytes.  
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PLN phosphorylation by CaMKII has previously been shown to occur in vivo in a 

frequency-dependent manner and was therefore suggested to play an important role in the 

frequency-dependent acceleration of relaxation (FDAR). The fluorescence techniques 

developed in aim 1 were used to quantify the frequency-dependent adaptation of the Ca2+ 

transient in PLN and CaMKII deficient cardiac myocytes. 

Aim 6. Use the Nanophysiometer to measure extracellular potentials in single cardiac 

myocytes. Extracellular potentials resulting from spontaneously initiated calcium waves 

were measured in single nonattached cardiac myocytes using integrated thin film 

microelectrodes. The microelectrodes were also used to measure extracellular pH in a 

microfluidic device. When the techniques described in aims (1-3 and 6) are combined, 

the Nanophysiometer will allow for rapid extracellular volume exchange, selective 

perfusion of single cells, electrical recordings of extracellular potentials, ion- and 

metabolite concentrations in the extracellular space (e.g. pH, K+,O2, glucose, lactate, 

etc.), and simultaneous optical measurements of intracellular ion concentrations (e.g. 

[Ca2+]i and pHi) and sarcomere length in field stimulated cardiac myocytes at 

physiological pacing frequencies. 
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CHAPTER II 

 

BACKGROUND 

 

2.1 Force – excitation coupling in ventricular cardiac myocytes 

Anatomy of the heart and the conducting system 

It will be helpful for the following account to introduce some elementary anatomy 

and to define a few important terms in cardiac electrophysiology. The heart is composed 

of four chambers (Figure 1), two of which are large with thick walls. These are the 

ventricles, which pump blood into the two main arteries. The right ventricle pumps blood 

into the pulmonary artery that supplies the lung circulation, and the left ventricle pumps 

 
Figure 1. Cross section of a human heart.  
Adapted from www.texasheartinstitute.org 

Sino-atrial (SA) node

Atrio-ventricular  
(AV) node 
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blood into the aorta which supplies the systemic circulation. The other two chambers are 

small with thin walls and are called atria. The right atrium receives blood from the 

systemic circulation and passes it onto the right ventricle to enter pulmonary circulation. 

The left atrium receives blood from the pulmonary circulation and passes it onto the left 

ventricle to enter the systemic circulation. Electrical activity is initiated in the sino-atrial 

(SA) node which is a band of fine muscle fibers lying near the junction of the superior 

vena cava and the right atrium. Cells in this region (the SA node) are able to generate 

spontaneous action potentials by a mechanism known as the pacemaker mechanism. 

Although it is not the only region of the heart to possess pacemaker mechanism, its 

beating rate is higher than that of any of the other pacemaker regions so that it sets the 

pace of the heart as a whole. The action potential (AP) is the transmembrane potential 

waveform Em that initiates cardiac excitation contraction coupling (see below). The AP is 

responsible for the propagation of excitation information from cell to cell and allows the 

heart to function as an electrical and mechanical syncytium. After initiated at the SA 

node, the AP spreads through the atrial muscle to produce atrial contraction. Atrial and 

ventricular muscles are not continuous. Electrical activity spreads to the ventricles 

through one point, the atrio-ventricular (AV) node, a small band of tissue connecting the 

two kinds of cardiac muscle. Cells in the AV node transmit the electrical impulse slowly 

to ensure a significant delay between atrial and ventricular contraction. The bundle of His 

are specialized fibers in and beyond the AV node that conduct the electrical excitation 

rapidly to the apex and to the surfaces of the two ventricles. Therefore, the large 

ventricles are excited almost simultaneously. A more comprehensive treatment of action 

potential generation and propagation in the heart can be found in some excellent reviews 
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by Yellen (1998) [38], Carmeliet (1999) and Kléber (1997, 2004) [9, 39]. All 

experiments described here are performed on cardiac myocytes isolated from the left and 

right mouse ventricles. 

 

Calcium cycling in ventricular cardiac myocytes 

 

 
 
Figure 2 Scheme of the Ca2+ cycle in a cardiac ventricular myocyte. Ca2+ ions enter via 
the L-type calcium channel (LTCC, ICa) or Na+/Ca2+ exchange (NCX). Calcium influx 
regulates intracellular SR Ca2+ release by the ryanodine receptor (RyR). Ca2+ is removed 
from the myofilaments and cytosol by the SR Ca2+ – ATPase pump which is modulated 
by phospholamban (PLB, PLN), transmembrane Ca2+ – ATPase pump, NCX and 
mitochondrial uniporter. Insert: action potential (Em), calcium transient ([Ca]i) and 
contraction in a rabbit cardiac myocyte. Figure adapted from [41]. 
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The transmembrane potential controls ion channels and transporters, and a depolarization 

leads to the influx of calcium and the genesis of the calcium transient. Calcium is 

considered perhaps the most important ion involved in the intricate workings of the heart. 

It is crucial to the process of excitation contraction coupling (ECC) in cardiac myocytes. 

ECC is defined as the process from electrical excitation to the mechanical contraction of 

the heart, whose purpose is to propel blood out [40-42]. Calcium currents are main 

contributors to the electrical activity of the heart and a direct activator of the 

myofilaments causing contraction. Contractile dysfunction and arrhythmias in 

pathological conditions are very often the consequence of alterations in the Ca2+ handling 

of the cardiac myocyte [43-45].  

Figure 2 shows a schematic of calcium signaling in a ventricular cardiac myocyte. 

Depolarization of the cell membrane during an AP (insert of Figure 2) opens voltage-

dependent trans-sarcolemmal L-type calcium channels (LTCC, ICa). Calcium enters the 

cell during the action potential mainly through the LTCC and through the reverse-mode 

Na+/Ca2+ exchanger (NCX). The inward transmembrane Ca2+ current triggers massive 

release of Ca2+ ions from the sarcoplasmic reticulum (SR) in a process called “calcium 

induced calcium release” (CICR). Together, sarcolemmal Ca2+ influx and SR Ca2+ release 

raise the intracellular free calcium concentration about five fold to ~1 µM, allowing Ca2+ 

to bind to the myofilament protein troponin C (TnC), which subsequently causes 

contraction of the myofilaments [6, 42]. Relaxation occurs when Ca2+ is removed from 

the cytosol. This is achieved through several routes, the importances of which are species 

dependent. In rabbit ventricular myocytes, 70 % of the activator Ca2+ is removed by the 

ATP-dependent SR Ca2+ pump (SERCA2a), 28 % by NCX, and only 1 % by the “slow” 
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systems – sarcolemmal Ca2+ ATPase and mitochondrial Ca2+ transport. The balance of 

Ca2+ fluxes is similar in rabbit, ferret, dog, cat, guinea pig and human. In mouse and rat 

myocardium, Ca2+ removal is directed more towards the SR due to a higher density of 

pump molecules [46], resulting in a balance of 92 % for SERCA2a, 7 % for NCX and 1 

% for the slow systems. Therefore, in the intact mouse cardiac myocyte, Ca2+ removal 

from the cytosol is mainly governed by Ca2+ uptake into the SR. 

Human hearts have a larger cardiac reserve than mice because they are able to elevate the 

amount of Ca2+ stored the SR by increasing SERCA2a activity (e.g. during beta-

adrenergic stress), leading to an increase in fractional Ca2+ release and in the rate of 

contraction. For the cardiac myocyte to be at steady state, the amount of Ca2+ extruded or 

compartmentalized from the intracellular space during twitch relaxation must be the same 

as the amount of Ca2+ that enters the cytoplasm or is released from intracellular 

compartments during each beat, otherwise the cell would gain or loose Ca2+. Therefore, 

in steady state, the same amount of Ca2+ that is released from the SR is taken back up into 

the SR via the SR Ca2+ pump. Similarly, the same amount of Ca2+ that enters the cell 

through the LTCC is removed from the cytosol via NCX.  

 

Regulation of contractility by phospholamban 

The trigger for relaxation of the ventricular cardiac myocyte is the lowering of the 

cytosolic Ca2+ concentration mainly by the activity of SERCA2a. Phospholamban (PLN) 

is a 52-amino acid protein of 6.1 kDa that forms a homopentamer with an apparent mass 

of 22-kDa which colocalizes with SERCA2a in the cardiac SR membrane as indicated in 

Figure 2 (see reviews by Simmerman and Jones [21] and MacLennan and Kranias [22]). 
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Kinetic analysis showed that in its unphosphorylated state, PLN diminishes the apparent 

affinity of SERCA2a for Ca2+ with little or no effect on the maximum Ca2+ transport rate 

(Vmax). Unphosphorylated PLN limits the rate of Ca2+ uptake into the intracellular store. 

In contrast, phosphorylation of PLN by cAMP and cGMP dependent protein kinase A 

and C (PKA and PKC), respectively, at Ser-16 [47], and by Ca2+/Calmodulin dependent 

protein kinase II (CaMKII) at the distinct site Thr-17 [35, 48] relieve this inhibition 

thereby increasing the rate of SR Ca2+ uptake. As a result, the relief of the inhibitory 

function of PLN on SERCA2a is considered the principal contributor to the positive 

inotropic and lusitropic effects of β-agonists [49-51]. The PLN gene was targeted in 

numerous studies to gain insight into the role of this protein in the regulation of cardiac 

contractility. Heterozygous and homozygous gene deletion was used as a tool to study 

cardiac contractility mice in which PLN levels were reduced by 60 % and 100 %, 

respectively  [24, 28]. The reduced level of PLN expression was associated with a linear 

increase in the affinity of SERCA2a for Ca2+ and with a linear increase in rates of 

myocyte relaxation [28, 52]. Interestingly, the rates of contraction were significantly 

increased in whole hearts [53] and in isolated cardiac myocytes [54]. It was reported that 

“[..] Changes in cardiac myocyte contractility reflect increases in the amplitude and rates 

of the rising and falling phases of the Ca2+ transient, which, in turn, reflect the fact, that 

the size of the Ca2+ store is increased in PLN null animals.[..]” [22]. Indeed, an increased 

SR Ca2+  load was consistently reported in PLN deficient cardiac myocytes [52, 55] 

which may have caused the higher Ca2+ release [54, 55]. However, changes in contractile 

protein expression and phosphorylation observed in PLN deficient mice [56, 57] that are 

known to affect the activation of contraction in PLN deficient hearts suggest that an 
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increased systolic Ca2+ concentration may not be the only cause of the positive inotropic 

effect of chronic PLN gene deletion. The data presented in Chapter IV show that the post-

translational changes in the contractile machinery have increased the response of the 

myofilaments to changes in [Ca2+]i in PLN deficient cardiac myocytes. This question is 

addressed in great detail in Chapter IV. 

 

 

 
 

 
 

Figure 3. Electron-microscope images from cardiac muscle showing the sarcomere 
appearance. (Bottom) Schematic of the ultra structure of the myofilaments in one 
sarcomere which underlies the striated appearance of the sarcomere.  
Figure adapted from: Ion Wizard SarcLen Data Acquisition User's Guide, Ionoptix 2000. 
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Activation of contraction by cytosolic [Ca2+] 

The contractile apparatus is built of repeating sarcomeres which occupy 45 - 60 % of the 

cell volume in the mammalian ventricle. Myofilaments are composed of mainly four 

different proteins: myosin (thick filaments), actin, tropomyosin and troponin (thin 

filaments) [52, 58]. The myofilaments are the contractile machinery of the cell and 

indeed they represent the end effector responsible for converting chemical energy into 

mechanical energy. Figure 3 shows two electron-microscope images and a schematic of 

the sarcomere structure. The thin filaments are anchored at the Z-line, which defines both 

ends of the sarcomere with the thick filaments in between. The sarcomere is only 1.5 to 4 

µm long, depending on muscle type and degree of stretch. The optical properties of the 

 
 

 
 
Figure 4. Schematic diagram of the thick filaments (red, bottom) composed of myosin 
heavy chains and the thin filaments (blue, top) composed of actin, tropomyosin and 
troponin (I, C and T domain). Figure adapted from [58]. 
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thick and the thin filaments are strikingly different. The region characterized by a higher 

density of thin filaments is almost transparent and has therefore been labeled the 

isotropic, or I-band. The regions of high densities of thick filaments have a dark 

appearance and are therefore labeled the anisotropic, or A-band (Figure 3). Between the 

thin filaments there are thick filaments which are composed of myosin. The rise in 

cytosolic Ca2+ concentration is the event which activates the myofilaments, and a fairly 

clear picture (though not complete) of the molecular basis for this regulation has been 

developed [59]. 

Figure 4 shows a more detailed schematic of the thick and thin myofilaments. Each thick 

filament is composed of ~300 myosin molecules. Each myosin heavy chain has a long (~ 

130 nm) α-helical tail (S-2 domain) and a globular head (S-1 domain). The S-2 regions of 

the myosin heavy chain form the main axis of the thick filament. The S-2 heads form the 

crossbridges to actin on the thin filaments, contain the site of ATP hydrolysis, and have 

two light chains associated with each head. The backbone of the thin filament is 

composed of two chains of the globular protein G-actin, which form a helical double 

stranded F-actin polymer. Tropomyosin is a long flexible protein which lies in the groove 

between the actin strands and spans about 7 acin monomers. The troponin complex is 

made of three subunits: troponin C (TnC, Ca2+ binding subunit), troponin I (TnI, 

inhibitory subunit, which also binds to actin). TnT has a globular carboxy region and an 

elonagated shape that lies along tropomyosin over about 3 actin monomers.  

In the resting cardiac myocyte, tropomyosin covers the binding sites for myosin on actin.  

When [Ca2+]i rises, Calcium binds to the Ca2+ specific site of TnC causing tropomyosin 

to move away from its blocking position on the thin filament and allowing myosin to 
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bind to actin and form crossbridges (myosin S-1 head portions protruding from the 

myosin filament). Upon activation, the crossbridges can interact with the thin filament 

and produce either force or relative filament movement by a rotation of the myosin S-1 

head under ATP hydrolysis. Isometric force would be analogous to storing the potential 

energy of the myosin head rotation temporarily in an elastic component of the myosin 

molecule. Alternatively, the rotational movement can produce relative motion of the thick 

and the thin filaments (i.e. sarcomere shortening) if the muscle force exceeds load. A 

single crossbridge may develop a force of 0.2-1 pN and the physical filament translation 

from a single crossbridge cycle is 5-10 nm or 0.25-25 % of sarcomere or muscle length. 

The chemical steps involved in the crossbridge cycle have been extensively characterized  

[42]. In the non-attached cardiac myocytes crossbridge cycling can be monitored by 

measuring sarcomere shortening (Section 3.2). At resting lengths, the amount of Ca2+ 

released from the intracellular stores during a twitch is typically insufficient to saturate 

all thin filament sites. Thus, maximum force or power under physiological conditions is 

not fully utilized. Increases in twitch force and power can be achieved by increasing the 

likelihood of crossbridge formation between myosin and actin, e.g. by increasing the 

delivery of Ca2+ to the myofilaments, accelerating crossbridge formation kinetics, or 

increasing the responsiveness of TnC to Ca2+  [41, 58, 60, 61]. 

The relationship between force and [Ca2+]i is highly nonlinear as a result of the strong 

myofilament cooperativity with respect to [Ca2+]i  [10, 58, 62, 63]. A decrease in 

myofilament Ca2+ sensitivity is observed during acidosis, when phosphate and Mg2+ 

concentrations are elevated, as well as during beta-adrenergic stimulation [64]. An 

increase in myofilament Ca2+ sensitivity occurs dynamically during diastole, when the 
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heart fills with blood, resulting in a stronger contraction with increasing volume (Frank-

Starling mechanism) [65]. The sensitivity of the myofilaments to cytosolic Ca2+ is further 

enhanced by caffeine and certain inotropic drugs. Half-maximal activation of contraction 

requires about 70 µmol of Ca2+ per liter of cytosol to raise [Ca2+]i to about 600 nM. This 

indicates strong cytosolic Ca2+ buffering (~ 100:1). 

 

2.2 Force measurements in single cardiac myocytes 

Limitations of existing techniques 

The isolated heart cell is free of collagen and contains relatively few 

myofilaments in a single cohesive structure. It allows almost direct access to the 

measurement of activator [Ca2+]i, sarcomere length, cross-bridge contractile responses 

and is therefore ideally suited for mechanical studies. In contrast to the structural 

simplification is the inherent challenge of noninjurious cell attachment to a force-

transducing device. The major limitation in attachment of intact cells to a force 

transducer is the extreme sensitivity of the sarcolemma to applied stress. Isolated cardiac 

myocytes were attached to a force transducer using single-barreled suction micropipettes 

[66, 67]. However, the success rate was extremely low because of the high stress on the 

sarcolemma at the tips of the micropipettes. Other technique have been developed using 

compliant fibers or glass beams attached to each end of the cell [68-70], but the 

procedures described are time consuming and require a unique experimental setup. 

Commercial force transducers are available that can be used to resolve the ~ µN forces 

generated by a single cardiac myocyte. However, in cases where the force detection 

system is not submersible, some part of the force sensing system must pass through a 
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liquid-air interface. The surface tension of the meniscus around the connecting element 

though this interface can be of ~10µN, and thus way above the level of the forces 

generated by the single cardiac myocyte. [71] Therefore, extreme interface stability and 

reproducibility are required to measure myocyte forces with these transducers.  

 

Sarcomere acceleration as an index of contractility  

Cell shortening and sarcomere length in intact nonattached cardiac myocytes are readily 

measured using noninvasive optical techniques. However, several assumptions are 

necessary to interpret the sarcomere shortening in terms of contractility. The active 

contraction of an unattached myocyte reveals the maximum degree of shortening of the 

 
 

 
 

Figure 5 Mechanical model of the sarcomere with directions of active force and passive 
and viscous resistance during shortening 
Figure adapted from: Ion Wizard SarcLen Data Acquisition User's Guide, Ionoptix 
2000. 
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minimally loaded cell. In the absence of external force, cardiac myocytes attain an 

equilibrium sarcomere length of ~1.9 µm. Figure 5 shows a mechanical model of the 

sarcomere. Sarcomere compression or stretch is opposed by passive elastic and viscous 

forces FP and FV. The passive force FP is largely dominated by the extensible region of 

the large protein titin that runs from near the Z-line to the edge of the A band and is 

indicated symbolically by the springs in Figure 5. When the sarcomere shortens to a 

degree below the slack length, the thick filament moves into titin’s near Z-line region. As 

a result, titin’s extensible region is compressed, generating the so-called restoring or 

passive force FP that pushes the Z-lines back toward their slack length position (Figure 

5). Additionally, a viscous resistance, FV, provides a damping force during contraction 

and re-extension which is proportional to the shortening velocity dl/dt. The mechanical 

model of the sarcomere shown in Figure 5 is comparable with and overdamped pendulum 

returning to its equilibrium position from a mechanical excursion (viscoelastic vibration 

model). 

The second time derivative of the sarcomere length l during the contraction process is a 

measure of the total force FT which is the sum of all forces, which are time t and length 

dependent: 

2

2 )(),/().(),(),(
dt

tldmtdtdlFtlFtlFtlF VPAT ⋅=−−=     (2.6) 

Equation 2.6 shows that measuring of sarcomere shortening alone is not sufficient to infer 

changes in the active component of the contractility because an increase in sarcomere 

acceleration may be a result of a softer sarcomere rather than a result of an increase in the 

active force. Therefore, passive elastic and viscous forces need to be considered when 

sarcomere length us used as a measure of contractility in single cardiac myocytes. In the 
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following discussion, the components of the overall resistance are presented in more 

detail. Molecular force spectroscopy and atomic force microscopy (AFM) have been used 

to measure the passive force directly in isolated polymer solutions.  

Kellermayer et al. found that the elastic properties of titin could be described by a 

wormlike chain (WLC) model [72]. The exact solution of this model yields its potential 

energy as a function of the relative length change, s = l/L, where l is the time-dependent 

length and L the maximum, time independent length of the unfolded molecule (i.e. l<L). 

An algorithm to calculate the exact solution of the WLC model by numerical iteration 

was presented by Bouchiat et al. [73]. A good analytical approximation of the WLC 

model suitable for fitting of experimental force-length relationships of titin was given by 

Bustamante et al.: 
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where kB is the Boltzmann constant and T the absolute temperature. LP is the persistence 

length which is defined as the length along the polymer chain over which the tangent 

vectors of the chain become decorrelated. The persistence length of a polypeptide chain 

measures the elastic stiffness of the chain and decreases with increasing stiffness. For the 

rigid native folded titin molecule, LP is on the order of 15 nm [72]. The WLC force-

extension curve is a highly nonlinear function: at low extension (s<<1), force grows 

linearly with s with a slope of kBT/LP ~ 0.3 pN per molecule. At high extension, the force 

diverges as (kBT/LP)[4(1-s)2]-1.  

Information about possible changes in passive forces caused by an intervention may be 

obtained by comparing contraction and relaxation. Figure 5 and equation 2.7 indicate that 

a change in the passive loading of the sarcomere would affect contraction and relaxation 
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differently. In fact, compression of crossbridges or stress on the cytoskeleton as may 

occur in the anoxic heart [74, 75] decreases the persistence length LP thereby increasing 

the passive loading FP of the sarcomere at any given fractional shortening s. As a result, 

during ischemia, the rate of shortening is slowed, while the rate of relengthening is 

accelerated. On the other hand, isoproterenol, a beta-adrenergic agonist, increases the 

active force of shortening, FA, with no influence on the passive loading as evidenced by 

an increase in both the rates of shortening and relaxation [76]. A change in the passive 

loading of the sarcomere may also be identified by comparing the sarcomere length at the 

times when the maximum acceleration is reached during contraction and relaxation. A 

softer sarcomere would be characterized by a decreased passive resistance FP (equation 

2.7) at all extension levels and would thus be shorter during contraction and longer 

during relaxation at the time when the maximum acceleration is reached (Chapter IV).  

The contribution of the viscous force FV to the overall mechanical resistance was 

measured by Niggli and Lederer [77]. They found that viscous damping was proportional 

to the velocity of sarcomere contraction: 

dt
dsBFV = ,          (2.8) 

 

where B is the viscous damping constant (in units of Ns m-1). Under the assumption that 

an intervention does not change the viscosity constant, ratios of viscous force equal ratios 

of contraction rates.  

 

In summary, when assessing the mechanism of an intervention, passive restoring force 

and viscous damping must be considered when relative sarcomere shortening is used as 
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an index of contractility. Important information about the passive forces may be obtained 

by comparing rates of contraction and relaxation or by measuring the sarcomere length 

reached at the time of maximum acceleration during contraction and relaxation, as 

discussed in more detail in Chapter IV. 
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CHAPTER III 

 

THE NANOPHYSIOMETER 

 

3.1 Device concept, design and fabrication 

The integration of Bio-Micro-Electro-Mechanical Systems (BioMEMS) with 

biology and the development of self-contained lab-on-chip devices will provide powerful 

tools to study novel aspects of cell physiology. Large scale in vivo like biological 

experiments on a chip are possible through the introduction of microfluidics technology 

and mass fabrication techniques, which permit the fabrication of microfluidic channels, 

reservoirs, valves and pumps using bio-compatible materials [78, 79]. Miniaturized on-

chip cell cultures have been developed as part of cell-based toxin detectors [80-84] and 

micro- or nanoscale devices for novel experiments in cell biology [85]. Microfluidics 

technology offers tremendous potential for rapid biological analysis in quantitative 

systems biology, complementing or replacing traditional single cell measurement 

techniques such as patch-clamp [86-90] or fluorescence microscopy [84, 91, 92]. 

However, the development of microfluidics technology for scientific research is still in its 

early stage, as indicated by the small number of commercially available systems. 

Furthermore, the use of microfluidics for single cell manipulation and measurement is 

most often presented as “proof of concept” rather than being widely utilized as a research 

tool in mainstream life sciences. Microfluidic cell retention structures have been used to 

position and stabilize single cells during physiological recordings. Results obtained from 

cells confined in a restricted extracellular space provided by the microfluidic 
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environment seemed to be consistent with those obtained from cells in larger volumes as 

long as continuous solution exchange was provided. Klauke et al. demonstrated electrical 

field stimulation of single adult cardiac myocytes in an open architecture microchannel 

array [93]. Prolonged pacing of single cardiomyocytes in a 100 pl volume bath did not 

affect calcium transients although it reduced the sarcomere contraction amplitude after 40 

minutes. The reduction in contractility in the small volumes could be partially rescued by 

replacing the bath solution and did not occur in a larger, 5 nl volume. This observation 

shows that metabolite accumulation occurs in a restricted extracellular space thereby 

affecting the amplitudes of contraction. Other studies showed that prolonged electrical 

stimulation of isolated adult cardiac myocytes in micro-chambers did not impair 

excitation-contraction coupling as verified by optical recordings of action potentials, Ca2+ 

transients and cell shortening [94-96].  

The Nanophysiometer is a microfluidic-based device and a tool for physiological 

measurements on single isolated cardiac myocytes. The advantage of the microfluidic 

approach is that cells can be automatically positioned and confined under the microscope 

without damaging the sensitive cell membrane. Furthermore, the design of the 

microfluidic network permits the continuous perfusion of the entire cell, rapid 

extracellular volume exchange or selective perfusion of a membrane patch and the 

creation of well defined concentration gradients along a single cardiac myocyte. 
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Device fabrication using soft lithography 

The Nanophysiometer is a microfluidic device based on microscopic channels and made 

of Poly(dimethylsiloxane) (PDMS), a biocompatible polymer.  

PDMS is flexible, optically transparent (and therefore compatible with fluorescence 

microscopy) and inexpensive. It is also impermeable to water and highly permeable to 

gases [97]. It can be formed with ease by a molding process and bonded to other 

materials, which is an important advantage over glass and silicon, especially when rapid 

prototyping is required.  

The technique used to manufacture the Nanophysiometer is called “soft lithography” and 

was pioneered by George M. Whitesides [78, 98-101].  

 
 

Figure 6. Layout of a chrome mask with microfluidic structures (left) and 
microelectrodes (right). 
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It was later adapted by Stephen R. Quake who demonstrated the fabrication of complex 

microfluidic channel structures, including on-chip active valves and peristaltic pumps 

using a multilayer PDMS fabrication process [79, 102-105].  

The design of the microfluidic structure is drawn using a standard computer-aided design 

(CAD) program. Once the desired design is available in form of a digital drawing, 

commercial services transfer the patterns onto film transparencies (for > 25 µm size 

structures) or chrome masks (for > 2 µm size structures).  

The layout of a typical chrome mask is shown in Figure 6 with patterns for the fabrication 

of microfluidics (left) and microelectrodes (right). The mask is then used in an UV 

photolithography process to generate a master mold as shown in Figure 7. A thick layer 

of photoresist (e.g. the photo curable epoxy SU-8) is spin-coated onto the surface of a 

silicon wafer. Using different types of SU-8 with various viscosities in combination with 

different spin-coating velocities, thicknesses of 1-300 µm can be reliably achieved. The 

 

 
 
Figure 7. Photolithographic and molding process to fabricate microfluidic devices. 
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photoresist is then exposed to UV light through the chrome or film mask. A film mask 

has a lower spatial resolution with a typical smallest feature size of 25 µm. In order to 

achieve a higher resolution, additional size reduction can be achieved by placing a 

microscope objective in the light path between the photo mask and the silicon wafer 

(Figure 7B). It is important to note that objectives and optical elements used for size 

reduction in the exposure process reduce the effective area available for the microfluidic 

structure. Unexposed areas are removed in a chemical development process leaving only 

the channel relief structure on the surface of the wafer, which serves as a replica master 

mold. A PDMS/curing agent mixture (typically 10/1) is then cast onto the master and 

cured for 60 min at 70 ºC. The elastomer is then peeled off the master, producing the final 

replica bearing the designed microstructures. Small access holes are punched into the 

elastomer before it is sealed onto a glass substrate containing a thin-film microelectrode 

array. Further details about the design and application of the Nanophysiometer are 

presented in Chapter III. A more detailed description of the soft lithographic 

microfabrication process can also be found in the literature [78, 79, 98, 103]. 

 

Chemical control of the extracellular environment 

Cells and reagents are moved through the microfluidic channels of the Nanophysiometer 

by manually applied pressure gradients.  

The directions of the pressure gradients used to confine and perfuse single cardiac 

myocytes inside the Nanophysiometer are indicated by the arrows in Figure 8A. 

Chemical control of the extracellular space around a cardiac myocyte is achieved by 
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rapid solution exchange through microchannels leading into the measurement volume as 

shown in Figure 8A.  

The pressure gradients along the smaller perfusion channels in the Nanophysiometer 

allow continuous perfusion of the entire cell or parts of the membrane. In Figure 8B, the 

selective perfusion of a membrane patch is demonstrated. In this experiment, one end of 

the cell was perfused for 10 s through a microfluidic channel by a 1 µM fluorescent 

solution (Sulforhodamine 101), while the fluorescence was measured at six different 

positions along the myocyte. The position of the fluorescence detectors are indicated by 

the white circles in Figure 8C. The resulting fluorescence intensities were well described 

by the solution of the one-dimensional diffusion equation indicating laminar flow through 

the perfusion channels and diffusion-limited mixing along the cell [106].  

Figure 8. (A) Bright field microscope image of a cardiac myocyte confined inside the 
Nanophysiometer. The black lines are thin film microelectrodes used for field 
stimulation. Arrows indicate the directions of pressure gradients for continuous 
perfusion. (B) Concentration gradient measured by 6 PMTs along a single cardiac 
myocyte. (C) Bright field microscope image of the cardiac myocyte used in the 
experiment. 
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Stimulation of cardiac myocytes in the Nanophysiometer 

Thin-film microelectrodes are suitable for field stimulation of cardiac myocytes in the 

Nanophysiometer. In order to avoid changes in pH due to electrolysis during prolonged 

stimulation, electrode potentials must be kept below the reduction potential of water, i.e. 

0.83 V. This requirement can be achieved by using microelectrodes with small inter-

electrode distances. These microelectrodes require small electrode potentials to yield high 

electric fields. An approximate electric field strength on the order of 100 V/cm may be 

established by applying just 1 V across two parallel microelectrodes which are located 

100µm apart (Chapter IV). Cell membranes have a relatively small conductance 

compared with the extracellular medium. Therefore, the imposed electric field produces a 

flow of current primarily around the cell, resulting in a highly inhomogeneous electric 

field gradient along the cell surface. Given that the interior of the cell is essentially 

isopotential, the surface potential gradient results in a spatially varying transmembrane 

potential which can activate transmembrane currents through voltage-gated ion channels. 

Theoretical and experimental descriptions of electric field stimulation of single cardiac 

cells can be found in the published work of Leslie Tung et al. [107] and Vinod Sharma et 

al. [108, 109]. 
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3.2 Optical measurements of cytosolic calcium concentration and sarcomere length 
in the Nanophysiometer 
 
Fiber – optical system for high-resolution multi-parameter recordings 
 

 
 
Figure 9. (A) Schematic representation of the optical setup for intracellular calcium 
and sarcomere length measurements on single cardiac myocytes in the microfluidic 
device. (B) Screenshot of the Labview data acquisition software. (C) Optical mapping 
of 6 fibers positioned along a single cardiac myocyte in the Nanophysiometer. 
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Figure 9 shows the optical setup which was designed for the measurement of 

intracellular calcium concentration and sarcomere length from isolated single cardiac 

myocytes trapped in the Nanophysiometer. It was built around an inverted microscope 

(Axiovert 200, Carl Zeiss, Germany) equipped with an epi-fluorescence light train. A 

monochromator (Optoscan, Cairn Research Ltd., Kent, UK) was used to select the 

wavelength for dye excitation. It permitted wavelength selection from the 100 W Hg/Xe 

lamp emission in the range of 300-800 nm with a variable bandwidth of 1-30 nm which 

was controlled via galvano-driven input and output slits. The monochromator was also 

capable of fast wavelength-switching allowing ratiometric excitation (e.g. using fura-2) 

with switching times dependent of the wavelength range of less than 2 ms. Red light 

which did not excite the Ca2+ sensitive dyes was generated by a halogen lamp above the 

Nanophysiometer and used for whole-cell-high-speed sarcomere imaging via a 240 

 
 

 
 
Figure 10 Fiber - PMT connection. 
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frames-per-second CCD camera (Myocam, Ionoptix Corp., Milton, MA). The halogen 

light was transmitted by the dichroic mirror 1 and reflected by the mirror 2 onto the 

sarcomere camera which was connected to a frame grabber card installed in the computer 

1 for the measurement of sarcomere length. Alternatively, turning the mirror 2 by 90 º 

allowed indo-1 fluorescence detection via wavelength separation of the free dye 

(maximum emission at 405 nm) and the Ca2+-bound dye (maximum emission at 495 nm). 

The principle of ratiometric [Ca2+]i detection is described in more detail below. Replacing 

mirror 2 by a dichroic mirror permitted the simultaneous measurement of [Ca2+]i and 

sarcomere length. The fluorescence light was collected alternatively by six 1 mm 

diameter optical fibers selected from a 80-fiber array at the base port of the microscope or 

by two optical fibers at a side port of the microscope which were optically aligned to 

collect the fluorescence light from the same spot on the cell at two different emission 

wavelengths (for calibrated indo-1 measurements, Figure 9C). Each fiber was connected 

to a photomultiplier (PMT, H6780-20, Hamamatsu) via a custom designed connection as 

shown in Figure 10. The PMTs were mounted inside a shielded aluminum box and 

powered by batteries to reduce noise.  

The optical fiber connections were designed to accommodate 8 mm diameter filters to 

allow multiple-wavelength fluorescence detection.  

Optical mapping of the six fiber positions was accomplished by means of a scan 

converter which allowed mixing of the video feed with a computer drawing of the fiber 

geometry. Figure 9C shows the outlines of the 6 optical fibers on a single cardiac 

myocyte in the Nanophysiometer. Measurements of [Ca2+]i and sarcomere length were 

accomplished by using two separate data acquisition systems, i.e. computer 1 and 
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computer 2, equipped with A/D converter boards, with scan rates of 20 KHz and 1 KHz, 

respectively. Calcium and sarcomere length measurements were synchronized by the 

stimulus. To limit the exposure of stained cells to the phototoxic excitation light, shutter 

opening and stimulus were precisely controlled by a third computer.  

Computer 3 (Figure 9A) was used to generate a pulse train that opened the shutter 40 ms 

before the stimulus as shown in Figure 11. Additionally, when the pre-amplifier was 

operated in AC-coupled mode, a 30 ms sample and hold pulse (s+h) was initiated 5 ms 

after the opening of the shutter to temporarily reduce the output feedback resistor of the 

amplifier from 10 MΩ to 1 KΩ which shortened the time constant of the high-pass filter 

from 10 s to 1 ms, thereby avoiding saturation of the amplifier at high background 

fluorescence intensities. For calibrated indo-1 calcium measurements, however, the 

 
 

 
 
Figure 11 Control signals for fluorescence detection. 
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amplifier was operated in DC mode to allow recording of diastolic [Ca2+]i and 

background fluorescence. 

 

Measurement of cytosolic Ca2+ concentration 

The most popular method for measuring cytosolic [Ca2+]i in mammalian cells is to 

monitor the fluorescence of a calcium-sensitive indicator. Fluorescent probes for calcium 

are moderate to high-affinity calcium-binding molecules [110, 111]. They emit light upon 

excitation at a given wavelength. The intensity of the emitted light is a function of the 

amount of calcium bound to the dye molecules. Under the assumption that the dye 

concentration is small enough so that the fluorescence contribution induced by a given 

molecular species is proportional to the concentration of that species, the measured 

fluorescence intensity of a mixture of free and Ca2+ - bound indicator is given by: 

bbff cScSF ⋅+⋅= ,         (2.1) 

where cf and cb are the concentrations of the free and Ca2+ bound indicator, respectively. 

The two states of the dye are described by two proportionality coefficients, symbolized 

by Sf and Sb for the free and the Ca2+ bound dye. The S factor depends on the excitation 

intensity, extinction coefficient, path length, quantum efficiency and the instrumental 

efficiency of collecting emitted photons. Assuming 1:1 complexation, cf and cb are 

related by cb = cf [Ca2+]i / Kd, where Kd is the effective dissociation constant of the dye. 

Defining Fmin := Sf (cf +cb) and Fmax:=Sb (cf + cb) and solving equation 2.1 for [Ca2+]i 

yields the calibration equation for a single wavelength dye: 
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Equation 2.2 clearly shows that [Ca2+]i is not directly proportional to the fluorescence 

intensity, but depends on Fmin and Fmax which are the minimum fluorescence in a Ca2+-

free environment and the maximum fluorescence at saturated [Ca2+], respectively. Under 

these conditions any given fluorescence reading from the intracellular dye may be 

compared with a calibration in which the dye is forced into known states of high and low 

Ca2+ saturation. However, Fmin and Fmax each depend on dye distribution and detector 

sensitivity. Hence, any intervening loss of dye or change in instrument sensitivity 

jeopardizes the calibration and may be mistaken for a change in [Ca2+]i. Therefore, 

calibration of single wavelength dyes is not reliable, although several approaches have 

been reported [112, 113]. The uncalibrated fluorescence intensity may be used to 

qualitatively identify transient changes in [Ca2+]i. To avoid these complications, 

ratiometric fluorescent indicators have been developed that are characterized by a shift in 

excitation or emission wavelength upon binding to Ca2+ ions. The ratio of the 

fluorescence intensities F1 and F2 at two excitation (or emission-) wavelengths λ1 and λ2 is 

in principle sufficient to calculate absolute [Ca2+]i independent of total effective dye 

concentration or instrument sensitivity: 
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With R:=F1/F2, the fluorescence ratio at the two wavelengths is given by: 
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Solving equation 2.4 for [Ca2+]i and substituting Rmin:=Sf1/Sf2 and Rmax:=Sb1/Sb2, one 

obtains 
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Equation 2.5 is analogous to the calibration equation 2.2 for a single wavelength dye, but 

independent of total dye concentration and instrument sensitivity. In order to quantify 

absolute [Ca2+]i concentration, we have established a protocol for in vivo calibration of 

the Calcium indicator dye indo-1, which is presented in Chapter IV.  

 

Measurement of sarcomere length 

Due to the periodic repetition of sarcomeres in the muscle, the dark A-band and light I-

band alterations result in a striated appearance. One sarcomere length would be defined 

as the distance from the middle of one I-band to the middle of the next when viewed 

under the light microscope. This distance may not be measured accurately. Therefore, 

alternative methods have been developed to get a good estimation of sarcomere length. 

 
 

 
 
Figure 12. (Top) microscope image of a single cardiac myocyte with the ROI defined 
by the yellow rectangle. (Bottom) average density trace (black) derived from the ROI 
and powerspectrum (red).  
(Adapted from Ionoptix Corporation, Ion Wizard SarcLen Data Acquisition User's 
Guide, 2000) 
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The approach used by the Ion Wizard SarcLen data acquisition software is to estimate the 

frequency of the striation pattern, i.e. how many sarcomeres can be found per length. The 

sarcomere length is measured from a user-defined region-of-interest (ROI) which is a box 

enclosed by four yellow lines as shown in Figure 12. All calculations are performed on a 

density trace derived from the ROI. Each pixel is assigned a value of brightness and 

because of the periodic repetition of the sarcomere the density trace has a sinusoidal 

appearance with the wavelength representing the sarcomere length. The density trace is 

transformed via a fast Fourier transform (FFT) algorithm from the spatial domain into the 

frequency domain. The output of the FFT is presented in form of the power spectrum in 

the lower part of Figure 12. The power spectrum is a representation of the relative 

contribution of each spatial frequency in the density trace. The most dominant pattern in 

the density trace, the dark-light transitions of the sarcomeres, appears as a sharp peak in 

the power spectrum. The average sarcomere length can then be derived from the peak of 

the power spectrum. Finally, the reciprocal value of the peak in the power spectrum (in 

units of pixels/sarcomere) is multiplied with a calibration factor (in length/pixel) to yield 

an average value of the sarcomere length in the ROI. The great advantage of this method 

is that it provides sub-pixel spatial resolution.  

 

Analysis of Ca2+ and sarcomere length recordings 

The time dependent changes of intracellular calcium concentration and sarcomere length 

were fit to empirical functions to calculate time constants and multiple time derivatives. 

All calculations were performed using Matlab (R14, The MathWorks, Inc.). During the 

action potential, calcium ions enter the cell through LTCC and trigger massive release of 
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Ca2+ through the intracellular Ca2+ release channels. The intracellular Ca2+ release 

channels are called ryanodine receptors (RyR) and are located in the membrane of the SR 

[114-116]. When a RyR opens, [Ca2+]i in its vicinity rises immediately to levels above 

10µM, resulting in the activation of neighboring RyRs. When the channel closes, the 

local Ca2+ transient dissipates rapidly (~ microseconds) due to the diffusion of Ca2+. 

Models of RyR kinetics have been derived from experiments performed on isolated 

channels in lipid bilayers using flash photolysis of caged Ca2+ (such as DM-nitrophen) to 

simulate fast changes in [Ca2+] in the microenvironment of the reconstituted channel. The 

apparent calcium sensitivity of the open probability, Po, in response to a Ca2+ spike was 

described by a Hill equation [117], based on binding of nH Ca2+ ions to channel [118]: 
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Where Hn
CaK describes the calcium sensitivity of the RyR, i.e. the Ca2+ concentration 

required to activate 50 % of the channels, which was found to be on the order of 40 µM  

[118-120]. The time course of RyR activation was best fit by an exponential association 

function raised to the power of na  [121]: 
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Interestingly, although equations 2.8 and 2.9 were originally derived to fit RyR activation 

in isolated channels, they were well suited to fit the rising phase of the Ca2+ transient in 

the intact cell as presented in Figure 13.  
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The Hill slope nH was between 2 and 4 in isolated RyRs, strongly suggesting that binding 

of several Ca2+ ions must occur before the channel can open. In the intact cell, however, 

RyRs are organized in clusters of ~100 release units with strong interactions between 

them [40]. Therefore, the hill coefficient in equation 2.6 cannot be expected to represent 

single channel binding kinetics [122]. In fact, nH was consistently smaller than 1 in the 

 
 
Figure 13. Top: Fit of Ca2+ release (red) to the rising phase of the Ca2+ transient 
(grey line) and first time-derivative (blue). Bottom: Fit of sarcomere contraction 
(red) to the data (grey circles) and first time-derivative (blue). 
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intact cells. Nevertheless, the model provided a good fit to the data allowing the 

calculation and analysis of multiple time derivatives without amplifying noise 

contributions in the experimental data. The same equations used to model SR Ca2+ release 

provided a good fit to the sarcomere contraction data as shown in the bottom portion of 

Figure 13. 

During relaxation in mouse myocardium, more than 90 % of activator Ca2+ is taken up by 

the ATP-dependent SR Ca2+ pump, SERCA2a [41].  

Calcium uptake and sarcomere relaxation at the time t were best fit by a linear 

combination of two exponential 

functions: [ ]
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Measurements of the time constants τ1 and τ2 in equation 2.10 have been used previously 

to characterize the falling phase of the Ca2+ transient [33, 52, 123-125] and therefore, 

unique solutions were desired. However, five free parameters in equation 2.10 did not to 

allow a unique fit, so that a reduction of free parameters was required. The number of 

free parameters could be reduced to three by normalizing the Ca2+ transients at the 

maximum cytosolic [Ca2+]i: 
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A representative fit of Ca2+ uptake and sarcomere relaxation using equations 2.11 and 

2.12 is shown in Figure 14. 

 

 
 

 
 
 
Figure 14. (Top) Fit of Ca2+ uptake (red) to the falling phase of the Ca2+ transient 
(grey line) and first time-derivative (blue).(Bottom) Fit of sarcomere relaxation (red) 
to the sarcomere length measurement during relaxation (grey circles) and first time-
derivative (blue). 
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CHAPTER IV 
 

SARCOMERE ACCELERATION IN PHOSPHOLAMBAN DEFICIENT CARDIAC 
MYOCYTES REVEALS AN ALTERED MYOFILAMENT RESPONSE TO 

CYTOSOLIC CALCIUM CONCENTRATION 
 

4.1 Abstract 
 

Abnormal calcium cycling in animal models of heart failure and in human failing 

hearts is characterized by impaired sarcoplasmic reticulum (SR) Ca2+ uptake and 

diminished SR Ca2+ stores. A reduced level of SR Ca2+ ATPase pump (SERCA2a) 

molecules and a reduced degree of phosphorylation of phospholamban (PLN) is believed 

to contribute to the depressed SR Ca2+ uptake in heart failure. Interventions that target the 

SERCA2a – PLN interaction hold therapeutic promise by restoring cytoplasmic Ca2+ 

transients and contraction. In mice, PLN ablation is associated with elevated SR Ca2+ 

load and with a linear increase in the extent and rate of myocyte shortening and 

relaxation. These positive inotropic and lusitropic effects of genetic PLN deletion have 

been attributed to the upregulation of Ca2+ transients. However, PLN knock out results in 

significant reordering of contractile proteins, leading us to hypothesize that an increase in 

the myofilament Ca2+ sensitivity contributes to the faster sarcomere contraction in 

cardiomyocytes lacking PLN. We used a microfluidic device to trap myocytes in a 

physiologically realistic space that facilitates sarcomere shortening and Ca2+ transient 

measurements.  

We measured sarcomere acceleration from free contracting wild type (WT) and PLN 

knock out (PLN-/-) ventricular myocytes and used it as an index of cellular inotropy. The 

maximum sarcomere acceleration was 9.1 ± 2.1 fold increased (P<0.001) while Ca2+ 

release was moderately increased (1.65 ± 0.30 fold, P<0.01) in PLN-/- compared to WT 
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cardiomyocytes. Furthermore, at the time minimum sarcomere length, cytosolic Ca2+ 

concentration was almost 50% smaller in the PLN-/- cells. Our data add a physiological 

dimension to a previously published proteomic analysis showing that chronic PLN 

ablation changes myofilament composition. PLN-/- ventricular myocytes have 

significantly enhanced myofilament responses to systolic Ca2+
i. Our results provide novel 

insight into myofilament contractile responses to chronic PLN gene deletion. 

 

4.2 Introduction 

Heart failure remains the leading cause of mortality and morbidity in developed 

countries. Diminished calcium transient amplitude, reduced sarcoplasmic reticulum (SR) 

Ca2+ content and impaired Ca2+ re-uptake are observed in cardiac myocytes from failing 

human hearts. Furthermore, altered protein expression profiles and phosphorylation states 

of key sarcoplasmic reticulum (SR) components were found in failing cardiac myocytes 

[6, 44, 126]. The reduced cardiac output observed in failing human hearts has been 

attributed to changes in the calcium transient  [16, 50]. Correcting the calcium transient is 

therefore a rationale to recover cardiac contractility in heart failure patients. 

Phospholamban (PLN) is one critical regulator of calcium homeostasis in the heart and a 

key therapeutic target in the treatment of heart disease. The PLN monomer is a 6.08 kDa, 

52 amino acid transmembrane protein that is located in the cardiac SR (see reviews by  

[21-23]). It binds to and inhibits the activity of the SR Ca2+ pump (SERCA2a), which 

actively transports Ca2+ into the SR to lower cytosolic calcium concentration allowing 

relaxation to occur. PLN inhibits SERCA2a by decreasing Ca2+ transport and ATPase 

activity at low intracellular calcium concentrations. Phosphorylation by cAMP-dependent 
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protein kinase (PKA) and Ca2+/Calmodulin-dependent protein kinase II (CaMKII) at high 

cytosolic intracellular calcium concentration relieves this inhibition allowing greater Ca2+ 

transport across the SR  [127-129]. Mice engineered for PLN deletion (PLN-/-) have an 

increased rate of ventricular relaxation in whole hearts  [130], in papillary muscle 

preparations  [36] and in single cells  [54]. Most strikingly, PLN ablation prevented the 

functional, structural and histological abnormalities in a mouse model of dilated 

cardiomyopathy that shows characteristics of heart failure [131]. Several other studies 

have clearly shown the beneficial effects of chronic PLN suppression on cardiac function 

and remodeling in myocardial cells isolated from human failing hearts  [132] and in 

animal model of heart failure  [132-135]. However, other reports indicate that correcting 

the Ca2+ transient alone might not translate into improved cardiac function or into 

reversal of remodeling  [136, 137]. Furthermore, the inheritance of two copies of the 

human PLN mutation, Leu39stop, which can be considered the equivalent to a PLN-null 

genotype, led to dilated cardiomyopathy and heart failure  [138]. Discrepancies between 

the cardiac phenotypes in mice and in humans may originate from differences in the 

balance of myocyte Ca2+ fluxes because humans have a larger cardiac reserve, i.e. a 

potential for a gain in SR Ca2+ content  [41].  

There is evidence that genetic PLN ablation leads to systemic biochemical remodeling 

which might affect mice differently than humans. Proteomic analysis of hyper-dynamic 

PLN knockout mouse hearts revealed alterations in the expression level of more than 100 

ventricular proteins, along with changes in the phosphorylation state of important 

regulatory proteins  [56, 139]. Interestingly, the proteins affected by phospholamban 

ablation could be divided into two groups: metabolism and contractile apparatus. 



 47

Quantitative Western blotting confirmed changes in the two subunits of the myosin light 

chain (MLC-1 and MLC-2), which associate with the heavy chains to form a functional 

contractile unit. The atrial isoform of MLC-1 was down-regulated while its ventricular 

isoform was upregulated. In addition to the MLC-1 isoform switching, MLC-2a protein 

levels were higher in the PLN-/- than in the wild-type control hearts. Two dimensional 

32P autoradiography also showed that phosphorylation of MLC-2v was significantly 

increased in the PLN-/- ventricles. Phosphorylation of MLC-2v accompanies sarcomere 

organization and may facilitate the incorporation of additional actin/myosin crossbridges 

into the sarcomere allowing for higher organization of the sarcomeric architecture  [140]. 

It has been shown in rat and human cardiac muscle to increase the calcium sensitivity of 

the myofilaments leading to an increased contraction at a given amount of cytosolic 

calcium concentration  [141, 142]. Thus, these compensatory changes in contractile 

proteins may result in enhanced myocardial contractility, but they had never been 

considered as major contributors. In fact, the positive inotropic effect of PLN deletion 

was attributed to the increased SR Ca2+ load leading to increased amplitudes and rates of 

intraventricular pressure in isolated whole heart preparations  [24, 53, 139] and increased 

twitch contraction amplitudes and velocities in single cells  [52, 54, 55, 143].  

We investigated the time course and the amplitude of the Ca2+
i transients in relation to the 

amplitude and velocity of the sarcomere shortening and relaxation in cardiac myocytes 

isolated from PLN-/- and wild type (WT) control hearts. The aim of the study was to test 

whether or not the Ca2+ sensitivity of contractile machinery is changed in phospholamban 

deficient cardiac myocytes. Furthermore, we present a novel microfluidic based 
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technique to confine single cardiac myocytes and thereby reducing motion artifacts 

during prolonged optical recordings.  

4.3 Methods 

Microfluidic device fabrication and cell manipulation 

  The microfluidic cell trap is based on a previously published device  [144]. Briefly, 

an inverted relief microchannel structure was produced by photolithography in a 30 µm 

thick layer of photoresist (SU8-2050, Microchem) on a 3 ” diameter silicon wafer 

(master) by exposing it to UV light through a metal mask (Advance Reproductions) using 

a contact mask aligner. The photoresist was developed according to the manufacturer’s 

instructions. A 5 mm layer of PDMS, poly-dimethylsiloxane was cast onto the master in a 

plastic culture dish at the standard PDMS/curing agent mixing ratio of 10/1 [98]. After 3 

h of curing in a 60 ºC convection oven, PDMS devices were cut out and separated from 

the master. Microchannel access holes were punched through the elastomer by means of 

1mm diameter sharpened stainless steel capillaries. The PDMS structure was manually 

aligned and sealed by auto-adhesion on the microelectrodes which were deposited on #1 

cover glass by ion beam evaporation [145]. Stainless steel capillaries were inserted into 

the PDMS access holes and connected to 1 ml syringes via 0.5 mm inner diameter 

microtubing (Cole Parmer). The cell trap consisted of a 25 µm wide and 220 µm long 

channel with a 5 µm wide restriction at the one end where the cell was held by suction as 

shown in Figure 15B. Occasional cell damage caused by the trapping procedure could be 

identified immediately by hyper contracture followed by cell death. However, more than 

80 % of the cells showed no sings of cell damage with sharp edges and clear striation 

patterns. These cells remained viable and could be electrically stimulated in the 
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microchannel for at least one hour. The voltage required to pace the cells was less than 

500 mV, which prevented gas formation due to electrolysis, a common problem in 

culture dish experiments with electrode separations on the order of millimeters.  

 

Isolation of ventricular cardiac myocytes  

Animal studies conformed to the guidelines of the Vanderbilt University Institutional 

Animal Care and Use Committee and to the Guide for the Care and Use of Laboratory 

Animals published by the US National Institutes of Health (NIH Publication No. 85-23, 

revised 1996). Male phospholamban knockout mice, 3-4 months of age, and their wild-

type littermates were anesthetized by intraperitoneal injection of 3 mg/10ml Avertin 

solution (5 mg Avertin per 10 g body weight, T48402, Sigma-Aldrich) containing 

Heparin (H9399, Sigma-Aldrich). The heart was rapidly excised and placed into ice-cold 

Ca2+-free Hepes-buffered normal Tyrode (NT) solution. The NT solution contained (in 

mM): Na+ 140, K+ 4.5, Mg2+ 0.5., Cl- 150, H2PO4
- 0.4, HCO3

- 10, Hepes 10, glucose 10 

and no Ca2+. Calcium chloride was added where specified. The aorta was cannulated and 

the heart was perfused with NT solution at room temperature for 10 min to stop 

contractions. The perfusion was then switched to NT solution containing 10 µM Ca2+, 

178 U/ml collagenase (CLS2, Worthington Biochemical) and 0.64 U/ml protease (P5147, 

Sigma-Aldrich) for 8 to 10 min at 37 ºC. Ventricles and septum were cut away, coarsely 

minced, and placed into NT solution. Myocytes were dispersed by gentle agitation and 

the Ca2+ concentration was gradually increased to 0.5 mM. After 15 min, 10 mg/ml 

bovine serum albumin (A9647, Sigma-Aldrich) was added to the solution in which cells 

were stored until used, usually within 3 hours after isolation. 
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Measurement of indo-1 calcium transients 

Cells were loaded with the cell-permeant acetoxymethyl ester form of the calcium 

sensitive dye indo-1 (I1203, Molecular Probes-Invitrogen). Stock solutions were prepared 

by dissolving 1 mg of the dye in 200 μl anhydrous DMSO (276855, Sigma-Aldrich) 

yielding a stock concentration of 5 mM. The stock solution was stored in 20 μl aliquots 

desiccated and frozen at -20 ºC until used. For each experiment, one aliquot (20 μl) of the 

stock solution of the dye was added to 5 ml of cell suspension to yield a final 

concentration of 20 μM. Cells were kept in the staining solution for 5 min at room 

temperature and then centrifuged at 27 g for 10 min. The supernatant was removed and 

the cells were re-suspended in Tyrode solution containing the final calcium concentration 

of 1.0 mM. Cells were incubated in Tyrode solution for another 30-40 min to allow 

complete intracellular indo-1 de-esterification. To reduce phototoxic effects, only 200 μl 

of stained cells were pipetted into the bath solution for each fluorescent measurement 

after which the bath solution was completely replaced. The bath solution contained 

Tyrode solution at 1.0 mM CaCl2.  

 

Microscope configuration 

The microfluidic device was mounted on the stage of an inverted microscope (Axiovert 

200, Carl Zeiss, Germany) and the trap was magnified by a 63X, 1.4 NA oil immersion 

lens (Plan Apochromat, Carl Zeiss, Germany). The Indo-1 dye was excited by a 

monochromator (Optoscan, Cairn Research Ltd, UK) at a wavelength of 365 ± 15 nm. 

The excitation light was reflected by a 390 nm dichroic mirror (390DRLP, Omega 
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Optical Inc.) onto the cell. A second dichroic mirror (450 DCLP, Omega Optical) in the 

emission path was used to split the fluorescence light into a transmitted (F495) and a 

reflected beam (F405). Each beam was passed through a bandpass emission filter with a 

center wavelength of 495 ± 10 nm (495DF20, Omega Optical) and 405 ± 20 nm 

(405DF43, Omega Optical). The light from the two beams was finally collected by two 1 

mm diameter optical fibers (P1000-2-UV-VIS, Ocean Optics) representing a ~16 μm 

diameter spot on the cell and converted into an electric current by two photomultiplier 

modules (H6780, Hamamatsu). The photo currents were converted into voltages and 

amplified by custom-built DC coupled amplifiers and digitized at a sampling rate of 20 

KHz by an A/D converter board (PCI-6071E, National Instruments) in a standard PC.  

 

Calibration of Indo-1 calcium fluorescence 

Calibration of the indo-1 fluorescence signals was carried out at the end of the 

experiment according to a previously published method [146]. Background and 

autofluorescence were subtracted from the signal before the fluorescence ratios 

(R=F405/F485) were converted to free [Ca2+]i according to the equation [110]: 

[Ca2+]i=Kd·β·[R-Rmin]/[Rmax-R]. The dissociation constant for indo-1 was taken as 

previously published in vivo as Kd = 844 nM [146]. The ratio of the free/bound indo-1 

fluorescence at 485 nm was β = 2.37 ± 0.27. For in vivo measurements of Rmin and Rmax, 

indo-1 loaded cells were washed for 10min in calcium-free Tyrode solution containing 

5mM EGTA and 10 mM caffeine to empty the intracellular Ca2+ stores. Cells were then 

washed for 15 min in NT solution containing 5mM EGTA. To achieve metabolic 

inhibition and to avoid hyper contracture during the increase of the extracellular calcium 



 52

concentration, 3 µM carbonyl cyanide p-(tri-fluoromethoxy)-phenylhydrazone (C2920, 

Sigma-Aldrich) was added. To obtain Rmin, 10 µM of the nonfluorescent Ca2+ ionophore 

A23187 (B7272, Sigma-Aldrich) was added to the solution and measurements were taken 

after the fluorescence at both wavelengths reached stable values. For Rmax determination, 

the bath solution was EGTA-free and contained 15 mM Ca2+ to saturate the intracellular 

dye. The Ca2+-ionophore was present during all calibration measurements.  

 

Sarcomere contraction measurements 

Sarcomere contraction was measured from cells trapped inside the microfluidic device 

using a commercial contractility system (Ionoptix Corp.) consisting of a 240 frames-per-

second CCD camera (Myocam), a frame grabber PC card (FRGRAB), an analog/digital 

converter (DSI200) to record the stimulus, and the data acquisition software (Ion 

Wizard). The camera was connected to a side port of the microscope. Cells were field 

stimulated (square waves, 8 ms stimulus duration, 25 % above threshold) at 1 Hz until 

steady state was achieved and only those cells exhibiting stable steady-state conditions 

were included in the study. Indo-1 fluorescence and sarcomere contraction were 

determined in separate experiments, although simultaneous measurements are possible. 

However, we decided for separate measurements to avoid  Ca2+ buffering and 

phototoxicity during sarcomere contraction measurements  [147]. The timing of the 

stimulus was recorded for each calcium and contraction transient and used as a reference 

to synchronize both measurements. 
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Data analysis and statistics 

Data were analyzed in Matlab (R14, The MathWorks). The data were fit to empirical 

functions for the purpose of calculating multiple time derivatives. Intracellular calcium 

release [Ca2+]i was best fit by a modified model of isolated RyR activation as previously 

described  [121]: [Ca2+]i=[Ca2+]max· (P/1-P)n, where P is the time-dependence of the Ca2+ 

release, defined by a single exponential function raised to the power of m: P = 0.5·(1-e-

t/τ)m. The parameters n, m, and τ were used as fit parameters. Calcium uptake was best fit 

by a sum of two exponential functions: [Ca2+] i = A·e-t/τ1 + B·e-t/τ2. The parameters A, B, 

τ1 and τ2 were used as fit parameters. [Ca2+]i
 was replaced by the sarcomere length in the 

above equations to fit the contraction measurements.  

Maximum rates of Ca2+ release and sarcomere contraction were defined as the maxima of 

first time-derivatives of the Ca2+ and the contraction transients, respectively. Sarcomere 

acceleration was defined as the second time-derivative of the sarcomere contraction. The 

duration of the Ca2+ release and the duration of sarcomere contraction were defined as the 

times from 10 % to 95 % of the maxima of the Ca2+ and the contraction transients, 

respectively.  

Data are expressed as means ± S.E.M. Statistical significance was determined by 

Student’s t test for unpaired observations between wild type (PLN+/+) and 

phospholamban deficient (PLN-/-) cells. A p value < 0.05 was considered statistically 

significant. All data presented was taken from four animals in each group. The number of 

cells used in the statistical analysis is indicated in Figure 3. 
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4.4 Results 
 
Microfluidics facilitates cell alignment and reduces motion artifacts 
 

To get reliable, high resolution sarcomere length measurements, the striation 

pattern of the cell had to be aligned in the field of view and the position of the cell 

maintained during the whole time course of the experiment. The microfluidic device 

shown in Figure 15 automatically aligned and stabilized single cardiac myocytes during 

optical recordings.  

 
 
 
Figure 15. PDMS microfluidic cell trap. (A) Schematic overview of the microfluidic 
device sealed on a microelectrode array with cell delivery and perfusion channels that 
can be used to expose the cell to drugs. The cell trap near the center of the device can 
hold and perfuse a single cell during measurements. (B) Microscope image of the cell 
trap occupied by a single cardiac myocyte with microelectrodes for field stimulation 
parallel and perpendicular to the cell. 
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Single cardiac myocytes were pulled into the microfabricated cell trap by a negative 

pressure applied to the vacuum channel as shown in Figure 15B. Figure 16A and B show 

multiple sarcomere contraction recordings from a single cell in a culture dish and in the 

microfluidic cell trap, respectively. The recordings in the culture dish (Figure 16A) could 

only be analyzed during the first seven contractions. A slight rotation induced by the 

contraction led to measurement artifacts indicated by positive contraction amplitudes. In 

contrast, Figure 16B shows stable and highly reproducible recordings of sarcomere length 

from a confined myocyte inside the microfluidic cell trap with an improved signal to 

noise ratio.  

Reproducible recordings over long periods of time allowed us to average 40 to 50 

transients, thereby significantly increasing the S/N ratio and preserving the bandwidth of 

the measurement.  
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Figure 16. Sarcomere contraction measurements in the microfluidic device. (A) 
Sarcomere length measurement from an unattached cardiac myocyte contracting in a 
perfusion chamber. (B) Sarcomere length measurement from a contracting cardiac 
myocyte inside the microfluidic channel, where the movement of the cell is 
restricted. 
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Phospholamban ablation increases calcium release and sarcomere contraction amplitude 
 
Phospholamban gene ablation has previously been shown to increase the SR Ca2+ content 

resulting in an increased Ca2+ release, leading to an increase in the amplitude of 

 
 
 
Figure 17 Cytosolic Ca2+ concentration and sarcomere length in PLN+/+ and PLN-/- 
cells. (A) Average steady state intracellular indo-1 Ca2+ transient from PLN+/+ cells 
(n=13) and PLN-/- cells (n=17). Every cell was represented by an average of 5-6 
consecutive indo-1 transients. (B) Average steady state sarcomere length transients 
from PLN+/+ cells (n=12) and PLN-/- cells (n=10). Every cell was represented by an 
average of 40-50 consecutive contraction transients. (B) Maximum Ca2+ release in 
PLN+/+ and PLN-/- cells (left) and peak sarcomere contraction amplitude in PLN+/+ 
and PLN-/- cells (right). *,†: p<0.05 
 



 58

sarcomere contraction. However, the dynamics of the Ca2+ release in combination with 

the contraction have not been characterized in PLN -/- mice. Figure 17A shows Ca2+ 

transients and dynamic changes in sarcomere length relative to a stimulation pulse during 

a single contraction.  Indo-1 Ca2+ transients from PLN-/- cells were larger in amplitude 

and shorter in duration. Maximum Ca2+ release was increased 1.65 ± 0.30 fold in the 

PLN-/- cells. Peak Ca2+ release was 932 ± 85 nM in PLN-/- cells and 566 ± 88 nM in the 

PLN+/+ cells, as shown in Figure 17B. 

The increased peak Ca2+ release in the PLN-/- cells was accompanied by a 5.12 ± 0.73 

fold increased peak sarcomere contraction amplitude with magnitudes of 174 ± 12 nm in 

the PLN-/- cells and 34.1 ± 4.2 nm in the PLN+/+ cells. The data are shown in Figure 

17B. Diastolic sarcomere length was shorter in the PLN-/- cells with 1.78 ± 0.02 µm 

compared to 1.81 ± 0.02µm in the PLN+/+ cells, while there was no difference in the 

diastolic [Ca2+]i. The fractional sarcomere shortening during contraction was therefore 

1.89 ± 0.24 % in the PLN+/+ and 9.85 ± 0.6 8 % in the PLN-/- cells, respectively. 

 

Phospholamban ablation alters calcium release and the dynamics of sarcomere 
contraction 
 
A large contributing factor in myofilament activation is the rate of rise of intracellular 

calcium concentration [61, 63].  

Therefore, we compared the time courses of the Ca2+ release and the sarcomere 

contraction in more detail as shown in Figure 18.  

Time to maximum Ca2+ release was not significantly changed, with 19.97 ± 0.83 ms in 

the PLN+/+ cells and 19.3 ± 1.0 ms in the PLN-/- cells (Figure 18A).  
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The maximum Ca2+ release rate was increased 1.85 ± 0.15 fold in the PLN-/- cells, with 

6.15 ± 0.37 µM per 100ms in the PLN+/+ cells and 11.39 ± 0.68 µM per 100 ms in the 

PLN-/- cells (Figure 18B).  

Furthermore, the times until the maximum Ca2+ release rate was reached were similar in 

both groups, with 2.89 ± 0.17 ms in the PLN+/+ cells and 2.69 ± 0.24 ms in the PLN-/- 

cells (Figure 18C). These times were measured relative to the time point when the Ca2+ 

 
 
Figure 18. Time course analysis of Ca2+ release and sarcomere contraction in PLN+/+ 
and PLN-/- cells. (A) Time from 10 % to 90 % of the rising phase of the [Ca2+]i 
transient. (B) Maximum rate of the intracellular Ca2+ release. (C) Time from 10 % of 
peak [Ca2+]i to the maximum rate of Ca2+ release. (D) Time from 10 % to 90 % of the 
rising phase of the sarcomere length transient. (E) Maximum contraction velocity. (F) 
Time from 10 % of peak sarcomere contraction to maximum contraction velocity.  
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concentration reached 10 % of the maximum. Since the times to maximum Ca2+ release 

were the same for both genotypes, the increased maximum rate of Ca2+ release in the 

PLN-/- cells could be attributed to the increased Ca2+ release amplitude. 

In contrast, the time it took for the sarcomeres to reach their maximum shortening was 

almost 50 % smaller in the PLN-/- cells compared to the WT control cells. We measured 

a time of 50.7 ± 4.3 ms in the PLN+/+ cells and 27.5 ± 2.2 ms in the PLN-/- cells, 

respectively. Furthermore, our data analysis showed a large increase in the maximum 

sarcomere contraction velocity of 6.8 ± 1.1 fold in the PLN-/- cells compared to control, 

corresponding to a maximum shortening velocity of 0.113 ± 0.017 µm per 100 ms in the 

PLN+/+ cells and 0.764 ± 0.058 µm per 100 ms in the PLN-/- cells.  

The faster sarcomere shortening was also reflected by the time it took the sarcomeres to 

reach the maximum velocity of contraction. The PLN+/+ cells reached the maximum 

velocity of contraction in 4.62 ± 0.77 ms, while the PLN-/- cells only needed 0.48 ± 0.36 

ms, as measured from the time of 10 % contraction (Figure 18D).  

In summary, the sarcomere contraction velocity was increased 6.8 ± 1.1 fold and was 

reached 9.6 ± 1.6 times faster. Calcium release amplitude and rate were increased only 

1.65 ± 0.30 and 1.85±0.15 fold, respectively in PLN -/- mice compared to WT control.  
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Phospholamban ablation accelerates sarcomere shortening 

 
 
Figure 19. Sarcomere acceleration of PLN+/+ and PLN-/- cells (A) Time course of the 
sarcomere acceleration during contraction in PLN+/+ (solid line) and PLN-/- (dotted 
line) cells. The increased sarcomere acceleration was accompanied by a moderate 
increase in Ca2+ release (insert). (B) Sarcomere length at the time at which the 
maximum acceleration was reached during contraction (CONTRACT) and relaxation 
(RELAX). Dotted lines represent the diastolic sarcomere length. 
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In order to compare active and passive forces during contraction and to assess whether 

the increased inotropy in the phospholamban deficient cells could be the result of the 

increased Ca2+ release, we used the acceleration of sarcomere shortening as an index of 

contractility. Figure 19A shows the sarcomere acceleration as a function of time in the 

PLN+/+ and the PLN-/- cardiac myocytes. Sarcomere acceleration was consistently 

increased in the PLN-/- cells during the entire time course of contraction.  

The peak sarcomere acceleration was increased 9.1 ± 2.1 fold in the  PLN-/- cells with 

absolute values of 84 ± 18 μm/s2 in the PLN+/+ cells and 766 ± 67 µm/s2 in the PLN-/- 

cells (Figure 19A).  

The maximum sarcomere acceleration during compression and relaxation is proportional 

to the maximum total force, which is the sum of the positive active force which 

compresses the sarcomeres and the negative passive force that resists shortening (see 

discussion). Peak force was developed at almost diastolic sarcomere length (dotted lines 

in Figure 19A) in the PLN+/+ cells, i.e. at 1.796 ± 0.015 µm during contraction and at 

1.782 ± 0.014 µm during relaxation. In contrast, the sarcomeres of the PLN -/- cells were 

compressed to a much larger extent at the time of maximum force. Sarcomere length at 

peak force was 1.713 ± 0.023 µm during contraction and 1.649 ± 0.018 µm during 

relaxation in the PLN null myocytes.  
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Figure 20. Phase plots of PLN+/+ and PLN-/- cells. (A) Average twitch sarcomere 
length as a function of [Ca2+]i during the cardiac cycle in PLN+/+ and PLN-/- cells. 
Arrows indicate the time direction of contraction and relaxation. The circles and 
triangles represent 5ms time intervals in the PLN+/+ and PLN-/- transients, 
respectively. (B) Intracellular Ca2+ concentration at the maximum sarcomere length 
for PLN+/+ and PLN-/- cells. 
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Phospholamban ablation increases the response of the cardiac myofilaments to changes 
in intracellular calcium concentration 
 

PLN-/- cells showed a large increase in sarcomere acceleration with only a moderate 

increase in the peak calcium release and no significant change in the time course of the 

Ca2+ release. We have used phase plots as a method to identify a change in the Ca2+ 

sensitivity of contraction. This method has been described to investigate shifts in the 

myofilament Ca2+ sensitivity in isolated cardiac myocytes  [148]. Within each contraction 

the phase-plane diagram of sarcomere length and cytosolic [Ca2+]i concentration forms a 

counter-clockwise loop as indicated by the arrows in Figure 20A. The symbols which are 

drawn on top of each phase trajectory represent 5 ms time intervals. The larger mean 

distances of the triangles during contraction and relaxation on top of the PLN-/- trace 

indicate the increased velocities of contraction and relaxation in these cells compared to 

the WT control cells. The PLN-/- phase plot in Figure 20A clearly shows a hysteresis as a 

result of the delay between the peak [Ca2+]i and the onset of sarcomere shortening which 

can also be inferred from Figure 17A. The prominent shift of the PLN-/- phase trajectory 

to the left is consistent with an increase in the myofilament Ca2+ response in these cells, 

as cell shortening and the re-lengthening occurred at lower intracellular calcium 

concentrations compared to the PLN+/+ cells. The shortest sarcomeres were observed in 

the phospholamban deficient cells at a cytosolic Ca2+ concentration which was close to 

the diastolic level, i.e. 347 ± 17 nM, and much smaller than in the PLN+/+ control cells 

(651.1 ± 7.5 nM).  
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The phase plot clearly showed a characteristically different response of the cardiac 

myofilament to a given cytosolic calcium concentration which could explain the 

increased contractility of the PLN-/- sarcomeres. 

 

4.5 Discussion 

Time course of the Ca2+ release and the sarcomere contraction in the PLN-/- cells 

Our quantitative analysis of the time courses of the calcium release and sarcomere 

contraction revealed, that the shorter time-to-maximum contraction amplitude and the 

shorter time-to-maximum contraction velocity were not reflected by corresponding 

changes in the Ca2+ transient (Figure 18). Furthermore, the maximum rate of calcium 

release was increased in the PLN-/- cells due to the higher peak [Ca2+]i which was 

reached in both groups at the same time (Figure 18A). We observed that changes in the 

time course of SR Ca2+ release were not correlated with corresponding changes in the 

time course of sarcomere contraction. The force – [Ca2+]i relationship during a dynamic 

twitch is characteristically different than in the steady state. The steady-state force – 

[Ca2+]i relationships are measured in tetanized mouse and rat cardiac muscle preparations 

and are highly non-linear with hill coefficients between 5 and 10  [63, 149, 150] 

indicating a large increase of force with intracellular calcium concentration. Force – 

[Ca2+]i relationships measured during a twitch are characterized by a much smaller rise in 

force for a given increase in cytosolic [Ca2+]. In intact mouse ventricular muscle during a 

twitch, force increased approximately linearly with systolic Ca2+ concentration [149-

151].  The difference to the steady state is an apparent loss of myofilament Ca2+ 

sensitivity and cooperativity as a result of the fast changing cytosolic Ca2+ concentration, 
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which may not allow the formation of a dynamic equilibrium at any time during the 

transient  [62, 63]. This effect is even more pronounced in mice with PLN deletion 

leading to a further reduction in the force generation due to the extremely short Ca2+ 

transients. Therefore, the increase in the rate of sarcomere contraction in the PLN null 

myocytes may be the result of an increased amplitude (rather than a change in the time 

course) of the Ca2+ release or the result of a change in the Ca2+ sensitivity of the 

myofilaments. 

 

Sarcomere acceleration as an index of myocyte contractility 

We compared the relative changes in sarcomere acceleration in the PLN-/- cells with 

previously published data on the twitch peak force – peak [Ca2+]i relationship in WT 

mouse cardiac muscle to decide if the increased maximum Ca2+
 release was indeed 

responsible for the increased contractility in the PLN deficient cells. 

In order to infer relative changes in contraction force from changes in sarcomere 

acceleration several assumptions about restoring forces need to be made. The active 

shortening response of an unattached cardiac myocyte reveals the maximum degree of 

shortening in a minimally loaded cell. The titin network provides the main contribution to 

the contraction opposing restoring force that limits shortening [72, 152, 153]. Therefore, 

the total force acting upon an unloaded sarcomere is the sum of the positive active force 

FA and the negative passive elastic resistance, FP. In addition to the elastic resistance, a 

viscous resistance FV provides a damping force during contraction which is proportional 

to the rate of shortening, i.e. FV = B ds/dt, where B is the damping constant and s the 
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sarcomere length [77]. Altogether, the total force FTOT acting upon the sarcomere during 

contraction can be described as:  

FTOT=FA  - FP - FV, where FA, FP are the time and length-dependent active and passive 

elastic forces, respectively, and FV is the time and velocity dependent viscous resistance. 

The total contraction force per sarcomere unit, FTOT, is proportional to the sarcomere 

acceleration, i.e. FTOT = m ·a, where m and a are the mass and acceleration of the 

sarcomere, respectively. Because sarcomere acceleration measures total force per 

sarcomere, both an increase in the active force and a decrease in the passive resistance 

would increase acceleration during contraction.  

The comparison of contraction with relaxation suggests that PLN deletion did not 

decrease the passive forces opposing shortening during sarcomere contraction. 

Interventions that increase the effective elastic constant were shown to slow down the 

rate of shortening but accelerate the rate of re-lengthening  [74, 75] in the anoxic heart 

(due to compression of crossbridges). Likewise, a softening of the elastic properties of 

the sarcomere would lead to increase the rate of contraction but decelerate relaxation. 

Therefore, a softer sarcomere would be shorter during contraction and longer during 

relaxation at the time of maximum force development.  

The data in Figure 19 show that the sarcomere length at the time of maximum 

acceleration was shorter in the PLN null myocytes during contraction and relaxation 

compared to the WT control. Since we observed a shorter sarcomere length both during 

contraction and relaxation we cannot assume that the passive forces opposing sarcomere 

contraction are decreased in the PLN -/- at maximum acceleration. In fact, the 
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significantly smaller sarcomere length during relaxation compared to contraction in the 

PLN-/- cells is indicative of an increase in stiffness of the sarcomeres.  

This was also reflected by the 12.14 ± 2.4 fold increased maximum relaxation velocity 

(data not shown) compared to the 6.8 ± 1.1 fold increase in maximum contraction 

velocity. Furthermore, the shorter diastolic sarcomere length in the PLN-/- cells 

contributed to an increase in the passive forces at all sarcomere lengths as predicted by 

the classical Frank-Starling effect  [154]. 

Therefore, we found that the assumption was justified that the passive sarcomere 

restoring force in phospholamban deficient cells, FP
PLN, at the time of maximum 

acceleration, tmax, was not smaller than in WT control, so that FP
WT(tmax) ≤  FP

PLN(tmax). 

Under this assumption, the total force per sarcomere at the time tmax can be estimated as:  
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Assuming that genetic phospholamban deletion did not change the intracellular viscosity, 

the ratio of viscous forces may be replaced by the ratio of contraction velocities, i.e. 

WTPLNWT
V

PLN
V vvFFV // == , where V denotes the ratio of the PLN-/- and WT 

contraction velocities at the time tmax. The sarcomere mass, mPLN, is comparable in the 

PLN-/- and wild-type hearts, as no difference in the heart/body weight ratio was found  

[24]. Therefore, we assume that the sarcomere mass of the PLN-/- cells can be 

approximated by that of the WT cells: 
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We defined R as the ratio of PLN -/- and WT sarcomere accelerations.  

Taking equations 4.1 and 4.2 together yields a relationship between the ratios of 

sarcomere acceleration and active force in the unloaded cardiac myocytes: 
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The data presented in Figure 19B indicates that the passive force in the wild-type cells, 

FP
WT, was small compared to the active force, FA

WT, because the maximum acceleration 

was reached at a sarcomere length which was (within the standard error interval) equal to 

the diastolic value, while the contraction velocity reached nearly 20% of its maximum 

value at that time. This indicates a considerable active force development at almost 

diastolic sarcomere length. Therefore, the passive component of the total force at the time 

tmax, FP
WT, may be neglected in first approximation compared to the active force, FA

WT. In 

fact, Helmes et al. [153] directly measured the passive restoring forces in rat cardiac 

myocytes by selectively digesting titin. They found that the passive force decreased 

approximately linear during relaxation and that it was negligible at the diastolic value. 

Taken together, the ratio of the active forces developed in unloaded PLN-/- and WT 

cardiac myocytes can be estimated by: 
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If an intervention is known not to influence the elastic properties of the titin network, the 

inequality sign in equation 4.4 may be replaced by and equal sign, yielding a direct 
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relationship between ratios of active force and ratios of sarcomere shortening velocity 

and acceleration. 

The PLN-/- sarcomeres showed an R = 9.1 ± 2.1 fold increase in the maximum 

acceleration and a V = 28.6 ± 2.0 increase in the shortening velocities at the time tmax 

when the maximum total force was reached. The ratio of viscous damping to active force, 

FV
WT/FA

WT, can only take values between 0 and 1. Niggli et al. found that this ratio may 

likely exceed 30 % in the range of experimentally observed twitch shortening velocities  

[77]. On the other hand, Peak Ca2+ release was only slightly increased (1.65 ± 0.30 fold). 

The relationship 4.4 allowed us to compare our data to twitch-force peak-[Ca2+]i  

measurements in isolated intact mouse trabeculae and small papillary muscles [149, 150]. 

In these preparations, a two fold relative increase in the active force of shortening 

corresponded to an increase in [Ca2+]i concentration in the rage from 0.5 to 1.0 μM.  

Therefore, based on our [Ca2+]i measurements, the ratio of the active forces in PLN-/- and 

WT is expected to be smaller than 2. However, in the PLN-/- cardiac myocytes we 

measured an overwhelmingly a nine fold increase in the sarcomere acceleration along 

with a 28 fold increase in viscous loading which clearly indicates a change in the force-

[Ca2+]i relationship in the phospholamban deficient cardiac myocytes. 

  

Myofilament response to intracellular [Ca2+] 

A further indication for a change in the myofilament response to intracellular Ca2+ in the 

PLN null myocytes can be visualized by plotting sarcomere length as a function of Ca2+ 

release, as presented in Figure 20.  The shift in the PLN-/- phase plot to the left shows a 

much smaller cytosolic calcium concentration at the onset of contraction and relaxation 
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than in the WT cells (Figure 20B), which is characteristic for an increase in the Ca2+ 

myofilament sensitivity [148] in these cells. 

 

Summary and Implications 

In summary, our results showed a significant change in the force – Ca2+ relationship in 

cardiac myocytes isolated from phospholamban deficient mice. The smaller cytosolic 

calcium concentrations at the onset of contraction and relaxation are indicative of an 

increase in Ca2+ myofilament sensitivity. As a consequence, therapeutic interventions that 

target on the SERCA2a – PLN interaction may alter the myofilament response to 

cytosolic [Ca2+]. 
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CHAPTER V 

 

DIFFERENTAIL EFFECTS OF PHOSPHOLAMBAN AND CAMKII ON CALCIUM 
UPTAKE AND RELEASE IN ISOLATED CARDIAC MYOCYTES AT 

PHYSIOLOGICAL PACING RATES 
 

5.1 Abstract 

Phospholamban (PLN) is a critical regulator of sarcoplasmic reticulum (SR) Ca2+ 

uptake and a known target of the multifunctional Ca2+ and calmodulin-dependent protein 

kinase II (CaMKII). CaMKII activity has been shown to hasten both SR Ca2+ uptake and 

release via phosphorylation of PLN and the SR Ca2+ release channel (RyR2) in a 

frequency-dependent manner. However, most studies in mice were performed at low 

frequencies and at room temperature using pharmacological CaMKII inhibitors.  

We tested the role of PLN and CaMKII in the regulation of SR Ca2+ uptake and release in 

500 isolated cardiac myocytes using transgenic mice expressing a CaMKII inhibitor in 

the presence and absence of PLN and at pacing frequencies ranging from 0.2 Hz to 10 

Hz. In PLN deficient cardiac myocytes, Ca2+ uptake significantly shortened with pacing 

frequency but was not affected by chronic CaMKII inhibition. Ca2+ release increased 

with pacing frequency but was not affected by genetic CaMKII inhibition in the presence 

of PLN. However, PLN ablation alone and in combination with chronic CaMKII 

inhibition slowed Ca2+ release by 16+-7 % and 37+-10 %, respectively at 10 Hz. Our data 

provide novel insight into Ca2+ responses to chronic in vivo PLN gene deletion and 

CaMKII inhibition at physiological pacing rates. 
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5.2 Introduction 

Calcium ions enter the cell via voltage-gated sarcolemmal Ca2+ channels during 

depolarization, triggering massive Ca2+ release from the sarcoplasmic reticulum (SR) into 

the intracellular space [41]. The increase in free intracellular calcium concentration 

([Ca2+]i) initiates the contraction of the myofilaments. For relaxation to occur, most of the 

cytosolic calcium is transported back into the SR by the ATP driven calcium pump 

(SERCA2a). The rate at which SR Ca2+ uptake occurs is modulated by phospholamban 

(PLN), a 52-kDa SR protein which inhibits Ca2+ uptake into the intracellular stores in its 

unphosphorylated state. In vivo, phosphorylation of PLN by cAMP dependent protein 

kinase (PKA) and Ca2+- calmodulin-dependent protein kinase (CaMKII) relieves this 

inhibition leading to a higher calcium pump activity  [21, 22]. When the heart rate 

increases, an increase or decrease of the developed force (positive or negative force-

frequency relationship) may occur paralleled by an acceleration of relaxation (frequency-

dependent acceleration of relaxation, FDAR). While the force-frequency relationship can 

be either positive or negative, depending on many factors such as species, origin of the 

tissue, range of frequencies, temperatures or calcium concentration, the time course of 

contraction and relaxation is unanimously accelerated with increased pacing frequency 

and thus preserved across all preparations and species [124]. The frequency-dependent 

acceleration of relaxation (FDAR) is a purely SR related phenomenon, because it is 

abolished by inhibition of the SR Ca2+ uptake  [32, 155, 156]. Phospholamban can be 

phosphorylated by CaMKII, which itself is active along the SR and in vivo known for 

affecting PLN [157], the L-type Ca2+ channel (LTCC) [158] and the cardiac Ca2+ release 

channel (RyR2) [159]. CaMKII phosphorylates PLN at Thr17, a site which is distinct 
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from the PKA phosphorylation site at Ser16. The frequency dependence of CaMKII 

activity was first discovered by De Konick and Schulman, who showed in an elegant in 

vitro experiment that CaMKII is capable of decoding the frequency of repetitive calcium 

spikes [160]. Others confirmed the hypothesis of a frequency-dependent activation of 

CaMKII activity in the heart showing that an increased pacing rate not only elevated the 

CaMKII activity in whole heart preparations  [159], but specifically increased PLN Thr17 

phosphorylation without altering the PKA-mediated Ser16 phosphorylation  [33, 35, 37]. 

In contrast, pharmacological or genetic CaMKII inhibition reduced phospholamban 

Thr17 phosphorylation  [48, 161, 162] and slowed SR Ca2+ uptake in isolated ferret  

[125] and rat  [156] cardiac myocytes. FDAR was markedly reduced in mice expressing 

Thr17-Ala mutant PLN in a PLN null background [37]. The pharmacological CaMKII 

inhibitor KN-93 completely abolished FDAR in isolated mouse muscle and prevented the 

frequency-dependent shortening of the Ca2+ transient in isolated rat myocytes  [123]. 

However, other reports clearly show that the role of CaMKII phosphorylation of PLN is 

still a controversy. In a recent study, Valverde et al. showed that FDAR occurred without 

a significant change in the phosphorylation state of PLN residues in the intact rat heart 

and in isolated cat papillary muscle preparations, and concluded that CaMKII 

phosphorylation pathways were not involved in FDAR  [33]. Furthermore, the force-

frequency relationship was flat and FDAR was absent in papillary muscles isolated from 

PLN null mice  [36]. Other studies showed that the frequency-dependent acceleration of 

SR Ca2+ uptake was still present in PLN null myocytes, but could be prevented by adding 

KN-93 to the medium in these cells  [52, 123]. As a consequence, a phospholamban 

independent mechanism of FDAR was suggested via direct SERCA2a phosphorylation  
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[163, 164], but this hypothesis was strongly challenged by other reports that refused this 

possibility  [165, 166]. CaMKII may also play a role in the regulation of the cardiac SR 

Ca2+ release channel (RyR2). CaMKII phosphorylation of RyR2 at the CaMKII specific 

site (Ser2815) increased the open probability of the isolated channel  [167, 168] and 

increased SR Ca2+ release in intact cardiac myocytes  [125, 169, 170]. RyR2 

phosphorylation was increased after pacing, suggesting a frequency-dependent regulation 

of SR Ca2+ release in the heart  [159]. However, the effect of CaMKII on the RyR2 is 

controversial because other studies showed that CaMKII activity may decrease the open 

probability of the RyR2  [171, 172]. The interpretation of previously published studies on 

the frequency dependence of Ca2+ uptake and cardiac muscle relaxation may be 

complicated by the different experimental conditions and unspecific side effects of 

pharmacological CaMKII inhibitors. Most studies in mice were performed at room 

temperature and at maximum pacing rates ranging from 2 to 5 Hz, while the physiologic 

heart rate of mice is in the range of 10 to 12Hz. Because calcium transients are short in 

mouse myocytes, intracellular [Ca2+]i levels and CaMKII activity are expected to rise 

significantly with increasing pacing frequency  [160]. Furthermore, pharmacologic 

CaMKII inhibitors, such as KN-93, KN63 or W-7 are known to have unspecific side 

effects on cardiac ion channels  [173, 174]. Clearly, the current literature shows that the 

role of CaMKII in the frequency-dependent regulation of calcium uptake and release is 

not resolved. The goal of this study was to determine whether CaMKII activity or the 

presence of phospholamban is required for the frequency-dependent acceleration of Ca2+ 

uptake at physiological pacing frequencies and temperatures. Furthermore, we 

investigated the effects of CaMKII activity on the time course of the intracellular Ca2+ 
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release in the presence and absence of PLN. We used a previously published model of 

chronic cardiac CaMKII inhibition by cardiomyocyte delimited expression of a specific 

CaMKII inhibitory peptide (AC3-I) that targets a conserved region of the CaMKII 

regulatory domain as well as a transgenic control mouse expressing an inactive scrambled 

version of the peptide (AC3-C)  [162, 175].  Transgenic AC3-I and AC3-C mice were 

interbred with PLN-/- mice to eliminate PLN-dependent CaMKII contributions to the SR 

Ca2+ uptake and release. 

 

5.3 Methods 

Mice with genetic CaMKII inhibition 

The AC3-I and AC3-C mice were generated by synthesis of a minigene based on 

the peptide sequence of AC3-I (KKALHRQEAVDCL) or AC3-C 

(KKALHAQERVDCL)  [176] and was described earlier  [162].  Both AC3-I and AC3-C 

were fused to enhanced green fluorescence protein (eGFP) for stabilization and to label 

the cellular tissue distribution for the transgenically expressed proteins. 

PLN null mice  [177] were interbred with AC3-I and AC3-C mice for > 4 generations and 

the genetic identity of PLN-/- pubs with transgenic expressing of AC3-I or AC3-C was 

confirmed using PCR  [162]. There was no evidence of cellular hypertrophy in isolated 

ventricular myocytes, based upon equivalent cell membrane capacitance measurements. 

We isolated single cells from 3 to 5 months old male and female mice (about half of the 

cells originated from female mice). Wild-type (WT), AC3-C, AC3-C x PLN-/- and PLN-

/- littermates served correspondingly as controls. 
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Isolation of ventricular cardiac myocytes  

Animals were cared for according to PHS Guide for the Care and Use of Laboratory 

Animals. All animal protocols were approved by the Institutional Animal Care and Use 

Committee, IACUC at Vanderbilt University. Mice were anesthetized by intraperitoneal 

injection of a 25 mg/ml Avertin solution (5 mg Avertin per 10 g body weight, T48402, 

Sigma-Aldrich) containing 3 mg/10ml Heparin (H9399, Sigma-Aldrich). The heart was 

rapidly excised and placed into ice-cold Ca2+-free Hepes-buffered Tyrode solution (NT). 

The aorta was cannulated and the heart was perfused retrograde with Ca2+-free NT 

solution at room temperature for 10 min to stop contractions. The NT solution contained 

(in mM): Na+ 140, K+ 4.5, Mg2+ 0.5., Cl- 150, H2PO4
- 0.4, HCO3

- 10, Hepes 10. Calcium 

was added when specified. The perfusion was switched to NT solution containing 10 µM 

Ca2+, 178 U/ml collagenase (CLS2, Worthington Biochemical) and 0.64 U/ml protease 

(P5147, Sigma-Aldrich) for 8 to 10 minutes at 37 ºC. Ventricles and septum were cut 

away, coarsely minced, and placed into Ca2+ -free Tyrode solution containing 0.5 % BSA 

at room temperature. Myocytes were dispersed by gentle agitation and Ca2+ concentration 

was gradually increased within 30 min from 0 mM to 0.5 mM to obtain calcium tolerant 

cardiac myocytes. Cells were stored in the BSA solution until used. All experiments were 

performed within the first three hours after isolation. 

 

Measurement of x-rhod-1 calcium transients 

We measured absorption spectra of AC3-I and AC3-C cells and found intense 

autofluorescence peaks in the wavelength range of 350 to 380 nm, likely originating from 

the AC3-I – EGFP construct. Therefore, the ratiometric dye fura-2 was not suitable for 



 78

this study. We considered other ratiometric dyes and found that the fluorescence of the 

red-shifted version of fura-2, fura-red, was contaminated by the AC3-I – EGFP protein as 

well  [178]. The ratiometric-emission dye indo-1 was compatible with EGFP, but showed 

a poor signal-to-noise ratio (S/N) due to the wavelength separation of the fluorescence 

intensity  [110, 111]. We decided to use the single wavelength dye X-Rhod-1 for this 

study (4 μM, X14210, Molecular Probes-Invitrogen) which displayed a good separation 

of both excitation and emission wavelength from that of the AC3-I – EGFP protein and a 

very bright fluorescence resulting in a good S/N ratio [179]. For every cell, AC3-I or 

AC3-C expression was confirmed by green fluorescence after the acquisition of the Ca2+ 

transient. The dye was purchased in 50 μg aliquots. For each experiment 25 μg dye in 20 

μl DMSO (276855, Sigma-Aldrich) was added to 5 ml of cell suspension.  

Cells were kept in the staining solution for 5 min at room temperature and then 

centrifuged at 27 g for 10 min. The supernatant was removed and the cells re-suspended 

in NT solution containing 1.0 mM CaCl2.The bath solution was kept at 37 ºC and 

contained NT solution with 1.0 mM CaCl2, supplemented with 10 μg/ml insulin, 5.5 

μg/ml transferring and 6.7 ng/ml sodium selenite (100X medium supplement, 41400, 

Gibco-Invitrogen).  

The medium supplement had previously been shown to benefit mouse myocyte cultures 

by promoting glucose uptake and monovalent cation and phosphate transport and allowed 

prolonged high-speed stimulation in the serum free bath solution. Myocytes were 

stimulated by two parallel platinum wires connected to a field stimulator (701B, Aurora 

Scientific, Inc.) at six different rates of 0.2; 1; 2; 4; 8 and 10 Hz.  
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Cells were stimulated for at least 60 contractions until they reached steady state.  

Multiple exposures were avoided in order to minimize phototoxic effects. This was 

accomplished by replacing the entire bath solution with cells after each exposure. The 

data presented in this study was taken from 495 cells. The number of cells and the 

number of animals are shown for each frequency and genotype in Table 1.  

 

 
 
Table 1. Number n of cells (animals) used in the study that involved 6 genotypes and 6 
different stimulation frequencies. For each cell, only one fluorescence measurement was 
taken to minimize phototoxic effects. About half of the cells in each group were isolated 
from male, the other half from female animals. 
 
F 
Hz 

AC3-I AC3-C WT AC3-I 
xPLN 

AC3-C 
xPLN 

PLN Σ 

        

0.2 24(4) 12(2) 23(3) 9(2) 13(3) 20(2) 101 

1 9(2) 8(2) 20(3) 8(2) 9(3) 16(2) 70 

2 7(2) 9(2) 20(4) 9(2) 12(3) 13(3) 70 

4 10(4) 12(2) 18(3) 8(2) 14(3) 12(3) 74 

8 22(5) 11(2) 27(4) 8(2) 17(4) 15(3) 100 

10 9(3) 14(2) 22(4) 9(2) 13(4) 13(3) 80 

Σ 81 66 130 51 78 89 495 
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Microscope configuration 

Fluorescence measurements were carried out using an inverted microscope (Axiovert 

200, Carl Zeiss, Germany) equipped with a 63X, 1.4 NA oil immersion lens (Plan 

Apochromat, Carl Zeiss, Germany). The dye was excited by a monochromator 

(Optoscan, Cairn Research Ltd, UK) at a wavelength of 560 ± 15 nm. The fluorescence 

emission was directed through a 595 nm dichroic mirror (XF2029, Omega Optical Inc.), a 

645 ± 37 nm emission filter (XF3081, Omega) and a 1 mm diameter optical fiber to a 

photomultiplier module (H6780, Hamamatsu).  

The signals were amplified by a high-bandwidth, custom built amplifier and digitized at a 

sampling rate of 20 KHz by an A/D converter board (PCI-6071E, National Instruments) 

using a PC. EGFP expression was confirmed by visual control of the green fluorescence 

using a standard EGFP filter set (XF104-2, Omega). 

 

Data analysis and statistics 

Data were processed using Matlab (R14, The MathWorks, Inc.). Background and 

autofluorescence were subtracted from the Ca2+ transients and the time course of the 

normalized x-rhod-1 fluorescence emission was used as a measure of the time course of 

intracellular [Ca2+]i concentration.  

Although single wavelength dye calibration is described in the literature, its reliability 

and reproducibility is highly questionable. The total fluorescence amplitude measured at 

a single wavelength depends on many parameters which are difficult to control over long 

periods of time involving hundreds of experiments (e.g. dye distribution, excitation 

intensity, extinction coefficient, optical path length and detector sensitivity).  
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Therefore, frequency-dependent changes in the time course of the Ca2+ transients were 

analyzed using normalized fluorescence transients. Ca2+ transients were fit to 

mathematical models for the purpose of calculating time derivatives. Calcium release was 

best fit by a modified model of RyR activation which was previously published  [121]: 

[Ca2+]i(t)=[P(t)/(1-P(t))]n , where t is time, and P(t) is the time-dependence of the Ca2+ 

release described by P(t) = 0.5·(1-e-t/τ)m.  

The parameters τ, n and m were used as fit parameters. Calcium uptake was best fit by a 

 
 
Figure 21. Analysis of x-rhod-1 Ca2+ transients. A, average X-Rhod-1 fluorescence 
transients from WT myocytes at frequencies of 0.2, 1 ,2 ,4 ,8 and 10 Hz showing the 
frequency-dependent shortening of the transients. B, representative dual exponential 
fit (dotted line) to the Ca2+ uptake (solid line) for a cell paced at 8 Hz. 
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sum of two exponential functions, [Ca2+]i = Ae-t/τ1 + Be-t/τ2 , where A, B, τ1 and τ2 were 

used as fit parameters. For statistical comparison 2-tailed t-tests or ANOVA with 

correction for multiple comparisons were used. Unless otherwise noted, data is expressed 

as mean ± standard error. Significance level was set at p < 0.05. 

 

5.4 Results 

Chronic CaMKII inhibition and PLN ablation did not prevent the frequency-dependent 
shortening of the time constant of the SR Ca2+ uptake 
 

Cytosolic Ca2+ transients were measured in field stimulated cells paced from 0.2 

to 10 Hz. Shortening of the transients occurred with increasing pacing frequencies as 

shown in Figure 21A for WT cardiac myocytes. Two time constants, τ1 and τ2, were used 

to fit to the tail of each transient as described in the methods section. A representative fit 

for a cell paced at 8 Hz is shown in Figure 21B. One time constant was consistently 

smaller than the other contributing less than 1 % to the total transient 50 ms after the peak 

of the transient. The value of the larger time constant, however, was consistently on the 

order of the duration of the transient and was therefore used to quantify the fluorescence 

decay. 

The frequency dependence of the second time constant is shown in Figure 22A for AC3-

I, AC3-C and WT cells. With the increase in pacing frequency from 0.2 Hz to 10 Hz, 

significant shortening of the Ca2+ time constant occurred in the AC3-I (170 ± 28 ms at 

0.2 Hz vs. 18.96 ± 0.69 ms at 10 Hz), AC3-C (222 ± 23 ms at 0.2 Hz vs. 18.25 ± 0.34 ms 

at 10 Hz) and in the WT myocytes (174 ± 15 ms at 0.2 Hz vs. 18.78 ± 0.37 ms at 10 Hz) 

and is shown in Figure 22A and C. The mean values of the time constant were 
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consistently smaller in the AC3-I compared to the AC3-C or WT myocytes, but the 

differences were not significant for most frequencies.  

PLN deficiency reduced the time constant of the Ca2+ uptake at all frequencies due to the 

higher Ca2+ pump activity, but our data still show a frequency-dependent shortening, as 

 
 
 

 
Figure 22. Frequency-dependent decrease of the time constant of the Ca2+ uptake after 
exponential fit. A, time constant for AC3-I, AC3-C and WT myocytes as a function of 
pacing frequency. ††: p<0.05. B, Ca2+ uptake time constant for AC3-I x PLN-/-, AC3-C 
x PLN-/- and PLN-/- myocytes. ‡‡: p<0.005. C,D, statistical comparison between 0.2 
Hz and 10Hz. *,†,‡,ƒ,§,§§: p<0.001.  
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indicated by Figure 22B and D. In the absence of PLN, significant shortening of the time 

constant occurred with increasing pacing frequencies in AC3-I x PLN-/- (37.3 ± 5.2 ms at 

0.2 Hz vs. 15.05 ± 0.75 ms at 10 Hz), AC3-C x PLN-/- (45.9 ± 7.7 ms at 0.2 Hz vs. 14.99 

± 0.66 ms at 10 Hz), and in PLN-/- (41.8 ± 3.8 ms at 0.2 Hz vs. 15.99 ± 0.67 ms at 10 

Hz) myocytes. Similar as in the presence of PLN, mean values of the Ca2+ uptake time 

constant were slightly shorter in the AC3-I x PLN-/- cells, but the difference was not 

significant for most frequencies. 

 
Chronic CaMKII inhibition and PLN ablation did not prevent the frequency-dependent 
shortening of the Ca2+ transient 
 

As a second criterion for the frequency-dependent shortening of the Ca2+ transients, we 

measured the fluorescence decay time from 90 % to 20 % of the maximum.  

With an increase in pacing frequency, Ca2+ transients shortened (Figure 21A). Similar to 

the time constant, the duration of calcium uptake decreased significantly with increasing 

pacing frequency in the AC3-I cells (269 ± 41 ms at 0.2 Hz vs. 45.3 ± 1.6 ms at 10 Hz), 

AC3-C (351 ± 31 ms at 0.2Hz vs. 43.5 ± 1.2 ms), and in the WT (281 ± 21 ms at 0.2Hz 

vs. 46.5 ± 1.1 ms at 10Hz) myocytes as shown in Figure 23A and C. Mean values of the 

Ca2+ uptake duration were slightly smaller in the AC3-I than in the AC3-C or WT cells, 

but the difference was not significant at most frequencies.  
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PLN ablation generally increased the rate of SR Ca2+ uptake leading to a shorter decay 

phase during the transient at all frequencies and for all mouse models as indicated by 

Figure 23B. However, consistent with the measurement of the Ca2+ uptake time constant, 

phospholamban ablation did not abolish the frequency-dependent shortening of the 

transient as presented in Figure 23B and D because the duration of Ca2+ uptake was 

 
 
 

 
 
Figure 23. Frequency-dependent shortening of the SR Ca2+ uptake duration as measured 
by the fluorescence decay duration from 90 % to 20 % of maximum. A, duration of Ca2+ 
uptake for AC3-I, AC3-C and WT myocytes. ††: p<0.005. B, duration of the Ca2+ 
uptake for AC3-I x PLN-/-, AC3-C x PLN-/- and PLN-/- myocytes. ‡‡: p < 0.001. C,D, 
statistical analysis for 0.2 Hz and 10 Hz. *,†,‡,ƒ,§,§§:p<0.001 
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significantly decreased at higher pacing frequencies in the AC3-I x PLN-/- (62.5 ± 5.4 ms 

at 0.2 Hz vs. 35.2 ± 5.3 ms at 10 Hz), AC3-C x PLN-/- (86 ± 10 ms at 0.2 Hz vs. 34.9 ± 

1.2 ms at 10 Hz) and in the PLN-/- (70.7 ± 4.1 ms at 0.2 Hz vs. 38.8 ± 2.0 ms at 10 Hz) 

myocytes.  

Mean values of Ca2+ uptake duration were consistently smaller in the AC3-I x PLN-/- 

compared to the AC3-C x PLN-/- cells, but the difference was not significant for most 

frequencies. 

 
Chronic CaMKII inhibition and PLN deficiency did not prevent the frequency-dependent 
increase in the Ca2+ uptake rate 
 

The maximum Ca2+ uptake rate (Vmax) was defined as the maximum time-derivative of 

the falling phase of the Ca2+ transient and increased approximately linear with pacing 

frequency in AC3-I, AC3-C and WT myocytes as shown in Figure 24A.  

With an increase in pacing frequency, Vmax (in 100 ms-1) increased significantly in the 

AC3-I (0.648 ± 0.082 at 0.2 Hz vs. 1.964 ± 0.081 at 10 Hz, p<0.001), AC3-C (0.325 ± 

0.024 at 0.2 Hz vs. 2.025 ± 0.039 at 10 Hz, p<0.001) and in the WT (0.436 ± 0.020 at 0.2 

Hz vs. 1.974 ± 0.041 at 10 Hz, p<0.001) cardiac myocytes as presented in Figure 24A 

and C. Maximum Ca2+ uptake rates were higher in cells expressing the CaMKII inhibitor, 

and the differences were significant at 0.2, 2, and 4 Hz. In the absence of PLN, Ca2+ 

uptake rates were higher, and the frequency dependence was reduced, but interestingly, 

the frequency-dependent increase in Vmax was still significant over the full range of 

frequencies. Vmax (in 100 ms-1) increased with increasing pacing frequencies in the 

AC3-I x PLN-/- (1.70 ± 0.11 at 0.2 Hz vs. 2.50 ± 0.13 at 10 Hz), AC3-C x PLN-/- (1.134 

± 0.097 at 0.2 Hz vs. 2.608 ± 0.096 at 10 Hz) and in the PLN-/- (1.435 ± 0.043 at 0.2 Hz- 
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vs. 2.35 ± 0.11 at 10 Hz) cardiac myocytes as presented in Figure 24D. Similar to Figure 

24A, Ca2+ release was significantly faster at several pacing frequencies, i.e. 0.2, 1, and 8 

Hz, in the AC3-I x PLN-/- cells compared to the control cells, AC3-C x PLN-/- and PLN-

/-.  

To show that the frequency dependence of Vmax was reduced by phospholamban 

ablation, we fitted the Vmax-frequency relationship to linear functions, and calculated the 

slopes of the Vmax-frequency relationships as shown in Figure 24E and F. In PLN 

deficient cells the slopes of the Vmax-frequency relationships were all positive and 

smaller than in cells in which PLN was present. The frequency dependence of Vmax was 

reduced in the AC3-I vs. AC3-I x PLN-/- cells (1.500 ± 0.058 vs. 1.00 ± 0.12), in the 

AC3-C vs. AC3-C x PLN-/- cells (1.766 ± 0.042 vs. 1.32 ± 0.12), and in the WT vs. 

PLN-/- cells (1.599 ± 0.040 vs. 0.863 ± 0.078). 

 

Combined chronic CaMKII inhibition and PLN ablation prevented early activation of 
Ca2+ uptake at increasing pacing frequencies.  
 

We determined the time to maximum SR Ca2+ pump activation by measuring the time 

from the peak fluorescence to the time at which Vmax was reached. When the pacing 

frequency was increased, the Ca2+ pump activated earlier resulting in a shorter time-to-

Vmax as shown in Figure 25A.  
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Figure 24. Frequency-dependent increase of the maximum SR Ca2+ uptake rate as 
measured by the maximum time derivative of the tail of the transient. A, maximum 
Ca2+ uptake rate for AC3-I, AC3-C and WT myocytes and linear fit of the AC3-I data 
(line). ††: p<0.05. B, maximum Ca2+ uptake rate for AC3-I x PLN-/-, AC3-C x PLN-/- 
and PLN-/- myocytes and linear fit of the AC3-I x PLN-/- data (line). ‡‡: p<0.01. C,D 
statistical comparison between 0.2Hz and 10Hz. *,†,‡,ƒ,§,§§:p<0.001. E,F slopes of 
the linear functions fitted to the frequency dependence as demonstrated in A,B. 
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Figure 25. Frequency-dependent shift of Vmax from the time of peak release. A, time to 
Vmax for AC3-I, AC3-C and WT myocytes (open symbols) and for AC3-I x PLN-/-, 
AC3-C x PLN-/- and PLN-/- myocytes (filled symbols). Linear fits to the data of the 
AC3-I data (top line) and the AC3-I x PLN-/- data (bottom line). ‡‡: p<0.05. B,C 
Statistical comparison between 0.2 Hz and 10 Hz. *,†,‡,ƒ,§:p < 0.005. 
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Time-to-Vmax shortened significantly in the AC3-I (53.9 ± 6.8 ms at 0.2 Hz vs. 19.54 ± 

0.51 ms at 10 Hz), AC3-C (70.0 ± 6.1 ms at 0.2 Hz vs. 18.09 ± 0.47 ms) and in the WT 

(55.8 ± 3.6 ms at 0.2 Hz vs. 19.80 ± 0.26 ms at 10 Hz) myocytes.  

There was no significant difference in the frequency dependence of the time-to-Vmax 

between AC3-I, AC3-C and WT myocytes.  

PLN gene deletion dramatically reduced the frequency dependence of the time-to-

maximum Ca2+ pump activation, but did not abolish it in the AC3-C x PLN-/- and in the 

PLN-/- myocytes as these cells showed a significant earlier activation during the transient 

at 10 Hz compared to 0.2 Hz as shown in Figure 25C.  

Time-to-Vmax decreased significantly in the AC3-C x PLN-/- (25.2 ± 1.8ms at 0.2Hz vs. 

14.95 ± 0.70 ms at 10 Hz) and in the PLN-/- (21.35 ± 0.97 ms at 0.2 Hz vs. 16.67 ± 0.57 

ms at 10 Hz) myocytes. The combination of CaMKII inhibition and PLN deficiency in 

the AC3-I x PLN-/- cells completely abolished the frequency dependence of the time-to-

Vmax as evidenced by the  mean values of this parameter at the smallest and highest 

frequencies (15.9 ± 2.1 ms at 0.2 Hz vs. 15.94 ± 0.77 ms at 10 Hz) and by the slope of the 

linear fit to the time to Vmax – frequency relationship drawn in Figure 25A, which was 

0.07 ± 0.11 ms/Hz in the AC3-I x PLN-/- myocytes. At all frequencies, time-to-Vmax 

was slightly shorter in AC3-I x PLN-/- than in the AC3-C x PLN-/- or PLN-/- cells, 

although the difference was significant only at 0.2, 1 and 8 Hz. 

 
Chronic CaMKII inhibition increased the duration of the Ca2+ release in cardiac 
myocytes lacking PLN. 
 

We investigated the influence of pacing frequency on the time course of the intracellular 

calcium release by measuring the time-to-maximum from 10 % to 90 % of the peak 
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fluorescence. Although the frequency dependence of the SR Ca2+ release was smaller 

than 0.5ms/Hz, the differences between 0.2 and 10 Hz were still significant in some 

cases. Figure 26A shows that time-to-maximum Ca2+ release was slightly smaller at 

higher pacing frequencies in the AC3-I (11.80 ± 0.78 ms at 0.2 Hz vs. 8.76 ± 0.52 ms at 

10 Hz) and in the AC3-C (12.68 ± 0.95 ms at 0.2 Hz vs. 9.31 ± 0.84 ms at 10 Hz) cells. 

In the WT myocytes the mean value of the time-to-maximum release was also reduced at 

 
 
 

 
 
Figure 26. Frequency-dependent acceleration of RyR2 activation as measure by the 
time from 10 % to 90 % of peak release. A, RyR2 activation time for AC3-I, AC3-C 
and WT myocytes. ††: p<0.05. B, RyR2 activation time for AC3-I x PLN-/-, AC3-C x 
PLN-/- and PLN-/- myocytes. ‡‡: p < 0.001. C,D statistical analysis for 0.2Hz and 
10Hz. *,†,‡,ƒ:p < 0.05. 
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the maximum frequency (9.52 ± 0.67 ms at 0.2 Hz vs. 8.07 ± 0.43 ms at 10 Hz), but the 

difference was not significant, showing that CaMKII may not significantly influence the 

Ca2+ release dynamics in these cells. Consistently, there was no significant difference 

across all frequencies in the time-to-maximum between AC3-I, AC3-C and WT 

myocytes. In the absence of PLN, calcium release was faster at higher frequencies in the 

AC3-C x PLN-/- (14.53 ± 0.95 ms at 0.2 Hz vs. 10.6 ± 1.2 ms at 10 Hz, p < 0.05) and in 

the PLN-/- myocytes (13.20 ± 1.00 ms at 0.2 Hz vs. 9.70 ± 0.76 ms at 10 Hz, p < 0.05). 

However, in the myocytes with combined chronic CaMKII inhibition and PLN 

deficiency, Ca2+ release was slowed, i.e. in the AC3-I x PLN-/- cells, time-to-maximum 

was 12.1 ± 1.1 ms at 0.2 Hz and 13.4 ± 1.5 ms at 10 Hz, but the difference was not 

significant.  

The tendency of AC3-I in the PLN-/- cells to slow Ca2+ release at higher frequencies was 

further emphasized by the positive slope of the linear fit to the time-to-maximum – 

frequency relationship in the AC3-I x PLN-/- myocytes (0.29 ± 0.14 ms/Hz), while the 

slope was negative in the AC3-C x PLN-/- and the PLN-/- myocytes (-0.39 ± 0.09 ms/Hz 

and -0.20 ± 0.09 ms/Hz, respectively).  

 

Chronic CaMKII inhibition slowed Ca2+ release in cardiac myocytes lacking PLN 

We measured the maximum time derivative of the rising phase of the Ca2+ transient as a 

second criterion to characterize the frequency dependence of the time course of the Ca2+ 

release and the results are shown in Figure 27. The maximum Ca2+ release rate (in 100 

ms-1) slightly increased when the pacing rate was raised from 0.2Hz to 10 Hz in the AC3-

I (10.47 ± 0.64 at 0.2Hz vs. 13.27 ± 0.73 at 10Hz) and AC3-C (9.71 ± 0.98 at 0.2Hz vs. 
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13.21 ± 0.87) cells (Figure 27A). It was also increased in the WT cardiac myocytes 

(12.91 ± 0.73 at 0.2Hz vs. 14.60 ± 0.52 at 10Hz), but the difference was not significant (p 

= 0.07). There was no significant difference in the maximum Ca2+ release rate between 

AC3-I, AC3-C and WT myocytes across all frequencies. In the phospholamban deficient 

 
 
 

 
 
Figure 27. Frequency-dependent increase of the maximum Ca2+ release rate. A, 
maximum release rate for AC3-I, AC3-C and WT myocytes. Linear fit to the AC3-I 
data. ††: p < 0.005. B, maximum release rate for AC3-I x PLN-/-, AC3-C x PLN-/- 
and PLN-/- myocytes. Linear fit to the AC3-I x PLN-/- data (line, positive slope) and 
AC3-C x PLN-/- data (line, negative slope). ‡‡: p < 0.005 C, D Statistical comparison 
between 0.2Hz and 10Hz. *,†,‡,ƒ,§:p < 0.005. 
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cardiac myocytes, however, the maximum Ca2+ release rate showed the tendency to 

increase with pacing frequency in the AC3-C x PLN-/- (8.12 ± 0.51 at 0.2 Hz vs. 12.1 ± 

1.1 at 10 Hz) and in the PLN-/- (9.28 ± 0.56 at 0.2 Hz vs. 12.31 ± 0.72 at 10 Hz) 

myocytes, and decrease in the AC3-I x PLN-/- myocytes (9.92 ± 0.94 at 0.2 Hz vs. 9.2 ± 

1.0 at 10 Hz) although the latter difference was not significant (Figure 27B and D). 

Therefore, the combination of chronic CaMKII inhibition and PLN deficiency 

significantly reduced the frequency dependence of the Ca2+ release. Consistently, a linear 

fit to the maximum Ca2+ release rate – frequency relationship revealed a slightly negative 

slope for the AC3-I x PLN-/- of -1.6 ± 1.1 s-1/Hz and a clearly positive slope for the AC3-

C x PLN-/- and PLN-/- myocytes of 4.6 ± 0.9 s-1/Hz and 2.3 ± 0.7 s-1/Hz, respectively.  

This result was consistent with the time-to-maximum measurement, suggesting that Ca2+ 

release was slowed in the AC3-I x PLN-/- myocytes with increasing pacing frequency. 

 
5.5 Discussion 

Ca2+/Calmodulin dependent protein kinase II has been implicated to play a role in 

the frequency-dependent shortening of the Ca2+ transient in mouse, rat and ferret 

ventricular myocytes  [123, 125, 156] leading to the frequency-dependent acceleration of 

relaxation. FDAR was suggested to originate from the frequency-dependent 

phosphorylation of phospholamban and therefore to rely on both CaMKII and 

phospholamban. Most published experiments were performed under non physiological 

conditions, i.e. low temperatures and low pacing rates and often used pharmacological 

inhibitors e.g. KN-93 or KN-63 which are known for their unspecific side effects. The 

distinctive nature of the physiological pacing rate (on the order of 600-700 bpm in the 

mouse heart) is appreciated by our measurements of the Ca2+ uptake presented in Figure 
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22 to Figure 25. Although the mean values of the time constant, duration of the Ca2+ 

uptake, maximum uptake rate and early activation of the Ca2+ uptake varied considerably 

in the low frequency range among the various cell types, they clearly converged at the 

physiological pacing rate of 10 Hz. In fact, considering the results at the maximum 

pacing frequency of 10Hz alone, neither of the quantification methods describing the 

Ca2+ uptake  experiments  showed a significant difference between the expression of the 

inhibitory peptide AC3-I or the control peptide AC3-C despite the prominent and well 

documented differences in baseline PLN phosphorylation  [162, 180].  

 
Chronic CaMKII inhibition and phospholamban ablation do not eliminate the frequency-
dependent shortening of the Ca2+ transient.  
 
The equivalence of characterizing the shortening of the Ca2+ transient by either fitting the 

data to an exponential decay with a characteristic time constant or by calculating the 

duration of the fluorescence decay is supported by the consistency of the results 

presented in Figure 22 and Figure 23. These figures clearly show that chronic CaMKII 

inhibition did not change the frequency-dependent acceleration of the Ca2+ uptake. This 

observation is consistent with earlier reports that showed that calmodulin blockade by 

W7 in isolated rat myocytes or more specific CaMKII inhibition by KN-93 and KN-62 or 

even collective PKA, PKC, PKG and CaMKII inhibition by K252-a did not affect the 

frequency dependence of muscle relaxation and Ca2+ uptake in single cells [181, 182]. 

However, our findings appear to contradict those of Bassani  [156] et al. and Li et al.  

[125] who reported that rate-dependent acceleration of [Ca2+]i transient duration in rat 

cardiac myocytes was mediated by CaMKII by comparing steady-state with post-rest 

twitches. The discrepancies might be related to the different experimental protocols. 
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Comparing the rate of relaxation during steady-state twitches with that of post-rest 

twitches following periods of rest may not be equivalent to examining the steady-state 

properties at a number of different frequencies as in our study. We tested the hypothesis 

that phospholamban is a major determinant of the frequency dependence of the Ca2+ 

uptake by using PLN deficient cells. We found that PLN ablation did not inhibit the 

frequency adaptation of the Ca2+ uptake, although significantly hastening the decay of 

[Ca2+]i as expected based on the inhibitory action of PLN on SERCA2a. Nevertheless, 

PLN deficiency caused a 70 % reduction in the dynamic range of the time constant at all 

frequencies. Therefore, phospholamban is a major contributor to the frequency 

dependence of the Ca2+ uptake but not the only regulatory mechanism. This result is 

consistent with other studies in isolated myocytes and muscle preparations from 

phospholamban knockout mice  [52, 123] showing significant slowing of the Ca2+ and 

force transients with decreasing frequencies and after rest. However, the increased Ca2+ 

uptake rate in the absence of phospholamban seems to contradict the study from Bluhm et 

al.  [36] who reported complete loss of FDAR and a negative force-frequency 

relationship in isolated mouse papillary muscles after phospholamban ablation. However, 

the small frequency interval of 2 to 6 Hz in their PLN null preparations might have 

hampered the observation of a prominent frequency adaptation.  It has been argued that 

the frequency-dependent shortening of the Ca2+ transient in PLN-/- myocytes may result 

from CaMKII phosphorylation of the SR Ca2+ pump because KN-93 prevented the 

shortening of the Ca2+ uptake time constant at higher frequencies  in PLN null myocytes 

[52, 123]. Our results demonstrate that in PLN deficient myocytes the ability to shorten 
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SR Ca2+ transients is clearly preserved during chronic CaMKII inhibition (Figure 22B 

and Figure 23B).  

 
Chronic CaMKII inhibition and phospholamban ablation do not prevent the frequency-
dependent increase in the maximum rate of Ca2+ uptake  
 

The maximum Ca2+ uptake rate increased approximately linear with pacing frequency in 

the AC3-I, AC3-C and WT cells as presented in Figure 24. PLN ablation increased the 

Ca2+ uptake rate at all frequencies although reducing the dynamic range of uptake rates 

by about 40 % as evident by comparing Figure 24A and Figure 24B. However, the 

increase in Ca2+ uptake rate was still 1.47 ± 0.08 fold in the phospholamban deficient 

cardiac myocytes that expressed the CaMKII inhibitor AC3-I (P<0.001) when the pacing 

frequency was raised from 0.2 to 10 Hz. We suggest therefore, that shortening of the Ca2+ 

transient may occur at increasing pacing frequencies through a frequency-dependent 

increase in SERCA2a activity that does not require phospholamban or CaMKII activity. 

 
Chronic CaMKII inhibition and phospholamban ablation prevents early activation of 
Ca2+ uptake at increasing pacing frequencies.  
 

When the pacing is increased the maximum activity of SERCA2a was reached earlier 

during the time course of the Ca2+ transient in the AC3-I, AC3-C and WT cardiac 

myocytes, as evident in the time from peak [Ca2+]i to Vmax (insert in Figure 25A). There 

was no difference in the activation times between AC3-I, AC3-C and WT myocytes in 

the presence of phospholamban. In PLN null myocytes, however, the frequency 

dependence of maximum SERCA2a activation was still present but only significantly 

reduced in the AC3-C x PLN-/- and the PLN-/- myocytes, although the activation time at 
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the largest frequency was still significantly shorter in these cells when compared to the 

AC3-I, AC3-C and WT myocytes. Chronic CaMKII inhibition by cytosolic AC3-I 

expression in combination with PLN ablation abolished the frequency dependence of the 

SERCA2a activation in AC3-I x PLN-/- cells as shown in Figure 25C and indicated by 

the slope of the frequency dependence, which was negligible in the AC3-I x PLN-/- cells 

and negative in all other cell types. This result indicates that the time at which the 

maximum Ca2+ uptake rate occurs seems to be dependent on both phospholamban and 

CaMKII. 

 

Increase in pacing frequency slows SR Ca2+ release in phospholamban deficient cardiac 
myocytes with chronic CaMKII inhibition.  
 
Because CaMKII activity is known to influence the open probability the SR Ca2+ release 

channel  [183], we investigated the effect of chronic CaMKII inhibition on the time 

course of the rising phase of the intracellular Ca2+ transient. Although phospholamban 

does not directly interact with RyR2, interruption of the SERCA2a - phospholamban 

interaction increases SR Ca2+ uptake and SR Ca2+ load  [21, 22, 52, 55]. Therefore, 

phospholamban null mice may serve as a model of increased SR Ca2+ load. Importantly, 

expression of RyR2 was not affected by phospholamban gene deletion  [56, 57] or 

chronic CaMKII inhibition  [180]. When the pacing frequency was increased, SR Ca2+ 

release was accelerated in AC3-I, AC3-C and WT myocytes as shown in Figure 26A and 

Figure 27A, although the difference was not significant for the WT cells (Figure 26C and 

Figure 27C). Furthermore, the tendency to hasten Ca2+ release at higher frequencies was 

indicated by the slopes of the linear fit to the frequency dependence, showing a shorter 

time-to-maximum (Figure 26A) and a higher maximum rate of the Ca2+ release with 
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increasing pacing frequencies. In the presence of PLN there was no apparent difference in 

the frequency dependence of the time course of the Ca2+ release between AC3-I, AC3-C 

and WT cells. However, combined phospholamban deletion and chronic CaMKII 

inhibition (AC3-I x PLN-/-) resulted in a slowing of the Ca2+ release at higher 

frequencies as shown in  B and Figure 27B, while phospholamban deletion alone (AC3-C 

x PLN-/- and PLN-/-) still displayed an accelerated Ca2+ release at higher pacing 

frequencies, as presented in Figure 26D and Figure 27D. The slopes of the linear fits to 

the SR Ca2+ release time (rate) – frequency relationships shown in Figure 26B (Figure 

27B) were consistently positive (negative) in the AC3-I x PLN-/- myocytes and negative 

(positive) in the AC3-C x PLN-/- and PLN-/- control myocytes. Therefore, we suggest 

that when SR Ca2+ load is high, chronic CaMKII inhibition slows Ca2+ release at higher 

pacing rates. This finding is consistent with a significant reduction in RyR2 

phosphorylation at the known CaMKII site (Ser 2815) reported in the AC3-I myocytes  

[180] which in turn had been associated with a decreased open probability of the isolated 

channel  [159, 167, 168] and a decreased amplitude and rate of SR Ca2+ release in intact 

cardiac myocytes  [125, 169, 170].  

 

A potential role for CaMKII in regulating calcium release at high SR Ca2+ load 

Genetic CaMKII inhibition did not seem to affect the frequency dependence of the SR 

Ca2+ uptake as measured by the time constant, the duration and the rate of fluorescence 

decay at physiological frequencies and temperatures. CaMKII inhibition also did not 

affect the slight increase in the rate of Ca2+ release with pacing frequency in the presence 

of PLN. When SR Ca2+ load was increased artificially by PLN ablation, CaMKII 
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inhibition reduced the rate of Ca2+ release. Therefore, we hypothesize that CaMKII 

activity may have a regulatory function on the RyR2 by increasing Ca2+ release when the 

SR Ca2+ load is high, hereby reducing the risk of Ca2+ overload.  
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CHAPTER VI 

 

A MICROFLUIDIC DEVICE TO CONFINE A SINGLE CARDIAC MYOCYTE IN A 
SUB-NANOLITER VOLUME ON PLANAR MICROELECTRODES FOR 

EXTRACELLULAR POTENTIAL RECORDINGS 
 

6.1 Abstract 

A hybrid chip is described which combines a microfluidic network fabricated in a 

silicone elastomer (PDMS) with planar microelectrodes. It was used to measure 

extracellular potentials from single adult murine cardiac myocytes in a restricted 

extracellular space. The recorded variations in the extracellular potentials were caused by 

transmembrane currents associated with spontaneously initiated intracellular calcium 

waves. Single cells were trapped inside the 100 pl microchamber by pressure gradients 

and maintained for several hours by continuous perfusion. In addition, the localized 

delivery of drugs to a portion of the cell was demonstrated. The impedance of the 

electrodes was reduced by a factor of 10 to 20 after the electrodeposition of platinum 

black. Biopotentials recorded from single cells with platinum black electrodes showed a 

three-fold decrease in the noise, resulting in a maximum signal-to-noise ratio of 15:1. 

Characteristic variations in the frequency and shape of the extracellular potential peaks 

were observed among different cells which are most likely due to differences in the 

sarcoplasmic reticulum Ca2+ load. Our device architecture permits the integration of 

electrochemical and optical sensors for multi-parameter recordings. 
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6.2 Introduction 
 

Extracellular potentials from small cells are generally measured using saline-filled 

glass micropipettes [184] which are loosely held to the cell membrane mechanically or by 

suction. The movement of the cell during the measurement and the risk of destroying it 

by rupturing the thin membrane make this technique laborious and time consuming. In 

addition, simultaneous recordings from multiple separate sites with defined interelectrode 

spacing on the same cell are not practical. Voltage sensitive dyes [185, 186] have been 

employed to overcome these problems, but phototoxicity and photobleaching make them 

unsuitable for long-term recordings. In contrast, extracellular microelectrodes offer a 

non-invasive alternative for the long-term study of excitable cells from cardiac and 

neuronal tissue. Biosensors based on monolayers of embryonic cardiac myocytes cultured 

on microelectrode arrays [187, 188] and transistor arrays [189-191] have become a useful 

tool in physiology [192] and pharmacology, [193] and have already been deployed as 

portable, non-specific toxin detectors [83, 194]. 

A single-cell fluorescence assay based on a microfluidic channel structure fabricated in 

poly(dimethylsiloxane) (PDMS) was recently reported by A.R. Wheeler et al. [95], who 

demonstrated the delivery of nanoliter volumes of analytes to a single Jurkat T cell 

confined in a 500-picoliter microchamber. 

As pointed out by G.T. Kovacs, [82] measurements of extracellular potentials using 

planar microelectrodes require the size of each recording electrode to be comparable to 

the size of the cell. If an electrode is not entirely covered by a cell, a recordable signal 

cannot be obtained from that electrode because of a voltage division across the areas 

exposed to the conducting solution. It is therefore common practice to grow cells on the 
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electrodes in a confluent monolayer. In particular for cardiac experiments, the 

requirement to culture cells on the electrodes generally limits the cell types suitable for 

extracellular recordings to those which can proliferate in culture, e.g. embryonic cells or 

cells derived from tumor cell lines, such as the cardiac HL-1 cell line [195]. Klauke et al  

[93] recently described an array of microelectrodes designed to stimulate single adult 

rabbit ventricular myocytes in 100- picoliter large microscopic chambers on a chip, but 

their design did not incorporate microfluidics. Single cells had to be selected individually 

from an external cell suspension and manually pipetted into the small, oil-covered 

compartments on the chip. Moreover, with the lack of continuous perfusion, normal 

homeostasis could not be sustained for a long period of time, leading eventually to 

unpredictable and irreversible pathologic changes. In general, the difficulty of positioning 

and keeping single cells at a well defined location close to the recording electrode may be 

one important reason why planar microelectrodes have not yet been used to measure 

extracellular potentials from isolated, non-attached excitable cells.  

To overcome all these limitations, we have developed a hybrid microfluidic device, the 

Nanophysiometer, which confines a single cardiac myocyte to a 100 picoliter volume on 

a set of planar microelectrodes.  

As one possible application, we measured extracellular potentials from isolated murine 

cardiac myocytes associated with the propagation of intracellular calcium waves.  

In cardiac cells, excitation-contraction coupling is mediated by a small influx of Ca2+ 

through the voltage-gated Ca2+ channels in the external cell membrane. The small 

increase in intracellular Ca2+ subsequently leads to the activation of intracellular Ca2+- 

receptors (ryanodine and IP3), which trigger a massive release of Ca2+ from the 
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sarcoplasmic reticulum (SR). The calcium-induced calcium release (CICR) mechanism 

greatly amplifies the amount of calcium ions which enters the cell via the sarcolemma 

during the activation of contraction and can also feed back on sarcolemmal ion currents. 

[196, 197] Localized spontaneous elevations in intracellular calcium concentration, 

known as calcium sparks, are usually observed in quiescent cells, occur at low rates (1-3 

s-1), [198] and lead to both the initiation and the propagation of slow (50-100 µm/s) [198] 

intracellular calcium waves. Their frequencies and amplitudes depend on the SR Ca2+ 

load [199] which itself varies with the extracellular Ca2+ concentration [198, 200]. 

Previous studies have convincingly shown that spontaneous release of Ca2+ ions in 

cardiac myocytes activates a transient depolarizing inward current which constitutes a 

potential arrhythmogenic process in the heart [200-203]. 

For the investigation of the fundamental cellular mechanisms of spontaneous activity it is 

essential that experiments are carried out on isolated cells rather than tissues or cell 

cultures to eliminate spurious interactions with other cells. We believe that our 

Nanophysiometer could be a valuable tool in investigating the electrical activity of non-

attached isolated primary cardiac cells in a controlled extracellular space. 

 
6.3 Device concept and fabrication 

A schematic drawing and a microscope image of the Nanophysiometer are shown 

in Figure 28 and Figure 29, respectively. The device is composed of a PDMS 

microchannel network auto adhered to a set of microelectrodes on a glass slide, which 

were fabricated by thin film deposition of platinum.  
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Microchannel fabrication 

 
 

Figure 28. Schematic overview of the microfluidic channels and microelectrodes. The 
cell trap is located in the center of the device at the confluence of the vertical fluidics 
channels and the horizontal electrode traces. The cell suspension is pipetted into the 40 
µl reservoir on the upper left side of the chip, from where single cells are drawn into 
the microchamber by pressure gradients. Arrows indicate the directions of the pressure 
gradients applied by using external syringes during the experiment. 
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The microchannels were realized in PDMS (RTV 615, GE Silicones) by replica molding 

[101] using a rigid mold (master) on a silicon wafer. The master was fabricated by 

spinning a 30-µm thick layer of photoresist (SU-8 2050, Microchem) on a 3” diameter 

silicon wafer and by exposing it to UV light through a metal mask using a contact mask 

aligner. The photoresist was processed according to the manufacturer’s datasheet. An 

optional 30 minutes hard bake at 200 °C on a hot plate was performed to increase the 

durability of the resist. Each master containing four relief structures was placed in a 

plastic culture dish and covered by a 5 mm layer of the PDMS/curing agent mixture at a 

mixing ratio of 10/1. After curing of the elastomer for five hours at 60 °C in a convection 

oven, the devices were cut out and mechanically separated from the master. Access holes 

 
 

 
 
Figure 29. Bright-field microscope image of the cell trap for the electrode 
configuration shown in Figure 28. An isolated cardiac myocyte is captured in a 125 
µm long and 25 µm wide microchamber in the chip. With a channel height of 30 µm, 
the cell trap has a volume of about 100 pl. Arrows indicate the directions of the 
applied pressure gradients. 
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to the channels were then punched by using a sharp stainless steel pipe. On average, it 

took eight hours to fabricate a set of four microfluidics chips, which were in general all 

functional. More technical details about the microfabrication process can be obtained 

from the work of G. Whitesides [98] and S.R.Quake [104].  

The PDMS structure was manually aligned relative to the electrodes by using an inverted 

microscope and sealed on the glass substrate by autoadhesion. As shown in Figure 2, only 

the tips of the electrodes were exposed to the conducting Tyrode’s solution inside the 

microchamber.  

We used stainless steel capillaries inserted into the access holes to connect the 

microfluidics channels via standard microtubing (0.5 mm inner diameter, Cole Parmer) to 

1 ml syringes. For efficient cell manipulation we controlled the syringes coupled to the 

suction and waste channels by hand. The syringes linked to the two 8 μm wide drug-

delivery channels were mounted in computer-controlled syringe pumps (PHD 22/2000, 

Harvard Apparatus), which allowed a minimum flow rate of 40 pl/s. 

 

Microelectrode fabrication 

The microelectrodes were fabricated by means of an ion etch process. Titanium and 

platinum were first deposited on a 17 mm square and 1-mm thick glass substrate by 

electron beam evaporation. First, a 10-nm thick titanium layer acting as adhesion layer 

was deposited, followed by a 90-nm thick platinum layer. Then, a mask was patterned on 

the platinum films by standard photolithography in 1-μm thick photoresist (AZ5214-E, 

Clariant Corp.). In the following ion etch [204] process, the metal was removed in all 

areas which were not protected by the resist. Then, the photoresist was stripped off the 
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electrodes in an ultrasonic remover bath (AZ400-T, Clariant Corp.) at a temperature of 70 

°C. Finally, the surface was thoroughly cleaned with acetone. The yield of fabricating 

thin film electrodes was about 80% after process optimization.  

The microelectrodes were electroplated with platinum black to reduce their impedance. 

Prior to the electrodeposition, the substrates were thoroughly cleaned in an ultrasonic 

acetone bath, soaked for 5 minutes in hexane and then rinsed several times with acetone. 

Platinum black was deposited with the microfluidic channels aligned on the electrodes to 

limit the area of deposition and to deliver the electrolyte. Therefore, only the tips of the 

electrodes were exposed to the platinizing solution. The deposition process was 

monitored via an inverted microscope. 

We used a voltage-controlled current source (circuit diagram not shown) interfaced with 

a PC to control the deposition current. The channel was filled with a 2.5% 

chloroplatinic/0.05% lead acetate solution (3140, diluted, YSI Inc.). Generally, we 

applied a 0.7 µA DC current to the small recording electrodes (125 µm2 area, Figure 29) 

and a 2.0 µA DC current to the large reference electrode (500 µm2 area) in order to obtain 

approximately the same current density for each electrode. The current was switched off 

as soon as a widening of the edges of the electrode was observed under the microscope. 

The deposition times were usually between 10 and 20s. We used a stylus surface profiler 

(Alphastep 200, Tencor Instruments) to measure the thickness of the deposit. We also 

measured the impedance of the microelectrodes before and after the deposition of 

platinum black with a dynamic signal analyzer (3562A, Hewlett-Packard).  
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Amplifier design 

Extracellular potentials were amplified by a custom-designed low-noise differential 

amplifier built from off-the-shelf components. A simplified schematic is shown in Figure 

30. More detailed diagrams of all circuits described herein can be obtained from the 

authors. The device consisted of an instrumentation amplifier, an integrator, a gain stage, 

and a low-pass filter. Instead of using a high-pass RC filter network, which would cause a 

significant decrease of the input impedance and the common mode rejection ratio, we 

used an integrator to implement AC coupling. Its inverted output was connected to the 

reference pin of the instrumentation amplifier to attenuate constant and very low 

frequency components of the input signal. With this technique, the microelectrodes were 

directly coupled to the inputs of the instrumentation amplifier, which had an input 

impedance of 1.014 kΩ. The time constant of the integrator was chosen to give a high-

 
 

 
 
Figure 30. Setup of the measurement electrodes and the readout electronics for the 
extracellular recordings. The amplifier was connected to the three recording electrodes 
connected in parallel and to the large reference electrode 1. The push-button switch 
was linked to a second recording channel and used to mark visually observed 
contractions of the cell. 
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pass cut-off frequency of 0.08 Hz to reduce low frequency background noise. The signal 

was then further amplified by a second stage resulting in a total gain of 20,000, and 

subsequently low-pass filtered with a selectable cut-off frequency ranging from 15 to 

100Hz. The noise of the amplifier (inputs shorted) referred to the input was 14.9 nV Hz-

1/2. After connecting the microelectrodes to the inputs of the amplifier, the noise increased 

about 5 fold, which is comparable with previously described amplifiers for extracellular 

recordings [189, 193, 205]. 

 

Device assembly 

When the PDMS microfluidic device was sealed on the glass substrate, sufficient 

insulation was provided by the elastomer to prevent shorting of the interconnecting 

traces, and therefore no further passivation was required. To improve the seal between 

the elastomer and the electrodes, a mechanical clamp (Figure 31) was used to press the 

PDMS block against the substrate and fix the assembly to a heated microscope stage. The 

temperature of the device was controlled by flowing water from a heat exchanger through 

a tube integrated within the aluminum base plate as shown in the schematic in Figure 

31B. 

 

6.4 Experimental Procedures  

Single cardiac myocytes inside the cell trap were monitored with an inverted 

fluorescence microscope (Axiovert 200, Zeiss, Germany) equipped with a CCD camera. 

Images were captured by a digital videodisc (DVD) recorder and digitized by an image 

capture board (Bandit II CV, Edmund Optics) linked to a standard PC.  
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B 
 
 

 
 
Figure 31. (A) Sectional drawing of the clamp on the stage of an inverted microscope. 
Temperature control of the device was provided by the heated microscope stage and an 
integrated water tube that could be connected to an external circulating heat exchanger. 
(B) Photograph of the clamp mechanism that ensures a reliable seal between the PDMS micro 
channels and the electrodes. The transparent lid permitted the observation of the cell in 
transmitted light. 
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Myocyte isolation 

Single ventricular myocytes were isolated from 2 to 5 months old mice according to the 

method described in detail by Anderson et al [206]. Briefly, animals were paralyzed by a 

pentobarbital (50 mg/kg) overdose and hearts were rapidly excised and placed in ice-cold 

nominally Ca2+-free HEPES-buffered saline solution. The aorta was cannulated and the 

heart was perfused in a retrograde fashion with a Ca2+-free solution for 5 minutes at 37 

°C. To release single cells from the tissue, a 15-minute perfusion with a collagenase-

containing solution was carried out, followed by a 5-minute perfusion with a 0.2 mM 

Ca2+ solution. The ventricle and septum were cut away, coarsely minced, and placed in a 

beaker containing a low-Ca2+ solution with 1% bovine serum albumin at 37 °C. Myocytes 

were dispersed by gentle agitation and maintained in Tyrode’s solution, which contained 

(in mM) NaCl 137, glucose 10, HEPES 10, KCl 5.4, CaCl2 2.5, MgCl2 1.0, NaH2PO4 0.3. 

Experiments were usually done within the first three hours after the isolation.  

 

Single-cell manipulation and trapping 

The cell suspension was pipetted into a 4 mm diameter hole on the chip, which formed a 

60 µl volume cell reservoir (Figure 28). The bottom of the reservoir was linked to the 100 

µm wide main channel, which was connected to the microchamber (cell trap) in the 

center of the device. A pressure gradient was manually applied to pull single cells from 

the reservoir into the main channel. A single cell was trapped in the microchamber 

perpendicular to the main channel by a second pressure differential, as indicated by 

arrows in Figure 29. The directions of all pressure gradients are specified in Figure 28. 
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The cell trap consisted of a 125 µm long and 25 µm wide side channel with a 5 µm wide 

restriction at the end.  

Assuming that 80 % or more of the cells were alive after the isolation, a single cell could 

reliably be trapped in the microchamber within seconds. However, approximately 30% of 

the trapped cells changed cell morphology and rounded up within a few seconds after the 

trapping, indicating a severe mechanical damage.  The other fraction of cells showed no 

changes in morphology and could be maintained in the cell trap for one hour or longer.  

The success rate for trapping large single cells decreased with the condition of the cells in 

bulk cell suspension. Experiments were stopped if less than 30% of the cells were viable, 

which was usually the case 5 hours or more after the isolation from the tissue.  

Single cardiac myocytes captured in the cell trap are shown in Figure 29 and Figure 30. 

Cell debris was sometimes caught in the trap but could be removed by reversing the 

pressure gradient in the suction channel. We expect that the capture rate of viable cells 

would be higher if round-shaped cell types were used.  

 

Impedance measurements 

The impedance of the microelectrodes was measured with the PDMS device aligned on 

them, as shown in Figure 30. The cell trap was filled with Tyrode’s solution and the 

electrodes were connected to an auxiliary circuit. It consisted of a high input impedance 

unity-gain amplifier to measure the voltage across a pair of microelectrodes and a 

current-to-voltage converter to detect the current. The circuit was designed with carefully 

chosen components to minimize loading effects and its outputs were connected to the 

signal analyzer. The frequency of a sine wave was swept logarithmically over the range 
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of 0.05 to 50 Hz, which resembled the bandwidth used in the biological experiments. The 

magnitude and the phase of the impedance were computed by the signal analyzer based 

on the current and voltage measurements. 

 

Recording of extracellular potentials 

Large single adult cardiac myocytes were individually trapped inside the microchamber. 

The 30 µm height and the rectangular shape of the micro channel left a gap between the 

cell and the suction channel, which allowed a continuous perfusion with Tyrode’s 

solution during the experiment. This can be inferred from Figure 32, which shows a 

single cell partly exposed to a fluorescein solution (F6377, Sigma-Aldrich Corp.).  

Prior to the extracellular potential recordings, each cell was perfused with Tyrode’s 

solution for several minutes to ensure its integrity and to allow it to recover from the 

possible mechanical stress experienced during the trapping procedure.  

The electrode configuration and the setup for the recording of extracellular potentials are 

shown in Figure 30. Potentials were measured differentially between the large reference 

electrode 1 and the three small recording electrodes 1-3 connected in parallel. The 

reference electrode 1 was situated in the main channel, while the recording electrodes 

were located inside the cell trap. The other reference electrode 2, shown in Figure 29, was 

not used for the extracellular recordings described herein. The amplified signals were 

visualized by a digital oscilloscope and digitized by an analog-to-digital converter board 

(PCI 6071E, National Instruments).  
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We used a push-button switch to identify the visually observed contractions in the 

potential recordings where the signal-to-noise ratio was low.  

The switch generated rectangular pulses (shown in Figure 35 a and b) which were 

recorded simultaneously with the potentials.  

We have used two different electrode designs, shown in Figure 29 and Figure 30 and in 

Figure 32. The configuration depicted in Figure 30 was used for all extracellular 

recordings. The other electrode arrangement, shown in Figure 32, was designed for 

 
 
 

 
 
Figure 32. Fluorescence-microscope image of a single cardiac myocyte partially 
exposed to a fluorescein solution. The cell did not block the suction channel, so that 
perfusion could be sustained during the experiments. 
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combined electrochemical and optical experiments, but its performance has not yet been 

evaluated. 

 
6.5 Results 

An important feature of our microfluidics design is the ability to deliver drugs 

locally to a single cell. To demonstrate this, we trapped a large single cardiac myocyte 

inside the microchamber and perfused it locally with a fluorescein solution. The 

microscope image in Figure 32 shows a portion of the cell exposed to the solution. The 

dye was absorbed by the cell resulting in bright fluorescence of the entire intracellular 

space.  

To characterize the performance of our microelectrodes, we took scanning–electron 

microscope (SEM) images of the metal surfaces, determined the thickness of the 

 
 

 
 
Figure 33. SEM images of a platinum electrode surface before (A) and after (B) the 
electrodeposition of platinum black. 
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platinum black deposition, and measured their associated impedance. The 

electrodeposition of platinum black resulted in a rough surface, thereby increasing its 

effective area. SEM images of a platinum microelectrode before and after the deposition 

process are shown in Figure 33 (A) and (B), respectively. The average thickness of the 

platinum black layer was 0.6 µm and increased with longer plating time. We restricted 

the deposition time to 10-20 seconds to avoid tall crystalline spikes that reduced the 

height of the trap and resulted in cell damage. 

We measured the impedances of gold and platinum microelectrodes in a frequency range 

of 0.05 Hz to 50 Hz, before and after the electrodeposition of platinum black. The graph 

in Figure 34 clearly shows that the impedances of both platinized electrodes were about 

10 to 20 times lower than those of the bare metal electrodes. Furthermore, all electrodes 

exhibited a decrease in impedance with increasing frequency, which is a characteristic 

behavior for an electrode-electrolyte interface. We have modeled the frequency 

dependence of the electrode impedance by a series combination of a resistance R and a 

polarization capacitance C, the value of each is frequency-dependent, according to the 

Warburg concept. [207-210] It states that the resistance and reactance of a metal-

electrolyte interface are approximately equal and that the capacitance varies with the 

frequency f as f-α, where α is a constant ranging for most metal electrode/electrolyte 

interfaces from 0.2 to 0.7 [184].The fits of the curves in Figure 8 yielded a capacitance 

per unit area of 7540 f -0.47µF cm-2 (f is the frequency in Hz) and an impedance times unit 

area of 29.86 f -0.53Ωθcm2 for the platinum black-coated platinum electrode. For the 

platinum black-coated gold electrode, the linear fit yielded a capacitance per unit area of 
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6240 f-0.26 µF cm-2 and an impedance times unit area of 36.10 f-0.74 Ωθcm2. The standard 

error of the fit was in both cases smaller than 0.5%.  

The estimated values of the capacitance and the impedance of our electrodes were 

consistent with those reported in the literature [184]. Even though the platinum black-on-

gold electrodes showed smaller impedance in the higher frequency range, we used 

platinum black-on-platinum electrodes in our experiments. The reason was that the gold 

electrodes showed a considerable degradation of the platinum black layer after a single 

use, while the platinum electrodes could be reused for at least five experiments. This may 

be due to poor adhesion properties of platinum on gold surfaces. 

Figure 34 shows a series of 20-s long extracts from recordings of four different 

experiments, corresponding to distinct cells. The peaks were correlated with the 

 
 

 
 
Figure 34. Impedance measurements of platinum and gold electrodes before and after 
electrodeposition of platinum black in the frequency range used for the recording of 
extracellular potentials. 
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spontaneous contraction waves and were expected to occur in quiescent cardiac myocytes 

under our experimental conditions. The occurrence of contraction waves was indicated in 

the first two measurements by the rectangular pulses below the potential traces. 

The calcium-activated inward current which accompanies the propagating calcium wave 

is carried by Na+ ions entering the cell via the Ca2+-activated Na+/Ca2+ exchanger. [211-

213] There is also a calcium-activated outward current, carried by chloride ions, which 

contributes significantly to the early repolarization during the regular action potential 

[214-217].  

 
 

 
 
 
Figure 35. Four 20-s long extracts from typical extracellular potential recordings. All 
measurements were carried out with the same electrode configuration shown in Figure 
29 andFigure 30. Traces (A) and (B) were recorded using bright metal platinum 
electrodes and a bandwidth of 15 Hz, while traces (C) and (D) were recorded by using 
platinum black-coated platinum electrodes with a bandwidth of 30 Hz. Visually 
observed contractions were marked in the traces (A) and (B) to correlate the 
contraction waves with the extracellular potential recordings when the signal-to-noise 
ratios were low. The Arrow in (C) points to the peak shown in Figure 36. 
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These transmembrane currents produced variations in the extracellular potentials that 

were detected by the microelectrodes. However, extracellular potential recordings with 

comparable signal-to-noise ratios to those shown in Figure 35 (C) and (D) could be 

obtained only from cells that met two criteria. First, they had to be at least 20 µm in 

diameter to cover 80 % or more of the recording electrode surface. Second, they had to be 

in focus with the bottom of the cell trap and thus close to the recording electrodes. 

Usually, less than 50 % of the trapped cells met those requirements. An even smaller cell 

trap would probably improve the success rate, although it could obstruct large cells.  

Measurements (A) and (B) were recorded using bare platinum electrodes and a 

bandwidth of 15 Hz, while measurements (C) and (D) were recorded using platinum 

black electrodes and a bandwidth of 30 Hz. Traces (C) and (D) showed a three times 

 
 

 
 

Figure 36. Time course of an extracellular potential peak caused by a spontaneous 
intracellular calcium wave. The data was taken from the third peak of the recording 
shown in Figure 35 (C). 
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higher signal-to-noise ratio (for a two times larger bandwidth) than traces (A) and (B), 

which could be attributed to the platinum black deposition. 

Repeatedly, we observed considerable variations in frequency and peak width for 

different cells taken from the same preparation. These differences are particularly 

noticeable by comparing traces (C) and (D), and are most likely due to either variations in 

SR Ca2+ load or properties of the SR release mechanism, as reported by other 

investigators based on fluorescence experiments [114, 198, 200] or numerical models 

[218, 219]. Contraction waves occurred approximately 17 times per minute in the cell 

represented by trace (C), with an average peak width (FWHM) of 230 ± 50ms. 

Spontaneous activity was significantly increased in the cell represented by trace (D), with 

almost one contraction wave per second. This cell displayed a peak width (FWHM) of 

142 ± 8ms, indicating a higher propagation velocity or altered channel kinetics. The 

observed  differences among the four experiments are in agreement with results reported 

by Cheng et al. [198], who described variations of more than 50 % in spark frequency 

and wave propagation velocity. The time course of a single extracellular potential peak is 

shown in Figure 36. The qualitative comparison of its shape with data from fluorescence 

experiments using the calcium dye fluo-3 [198, 220] suggests a correlation of the 

intracellular Ca2+ wave and the Ca2+-mediated extracellular currents.  

To understand the differences in wave occurrence and propagation, and to elucidate the 

coupling of intracellular calcium release and extracellular currents, combined 

fluorescence and electrical measurement are required. 

 

 



 122

6.6 Outlook 

Our device architecture permits trapping and maintaining of single cells in a 

restricted extracellular space. Although we have used the integrated microelectrodes to 

measure extracellular potentials from cardiac myocytes, the use of the Nanophysiometer 

is not limited to this application. Other cell types, such as skeletal muscle or nerve cells, 

could be expected to perform similarly in the microfluidic environment. Depending on 

their size and shape, the dimensions of the microchamber would have to be adapted. The 

microfluidic design provides a small extracellular volume and in general assures small 

distances from the cell to the measurement electrodes. This not only permits electrical 

recordings with an adequate signal-to-noise ratio, but also significantly reduces diffusion-

limited response times of electrochemical sensors. Furthermore, the restricted 

extracellular space allows rapid control of the chemical environment while the cell is kept 

alive by perfusion and fixed at a stable position close to the recording electrodes by the 

microfluidic cell trap. With the integration of electrical, electrochemical and optical 

sensors, the Nanophysiometer provides a basis for the future development of single cell 

biosensors and automated single cell assays. 
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CHAPTER VII 

 

SUMMARY AND FUTURE WORK 

 

7.1 Summary 

 The dissertation describes the development and application of the 

Nanophysiometer, a microfluidic network combined with a thin film microelectrode 

array, to study force – excitation coupling in single cardiac myocytes. The microfluidic 

device was used for simultaneous recordings of multiple physiological variables from 

single non-attached adult cardiac myocytes in a chemically controlled microenvironment. 

The Nanophysiometer was fabricated in a silicone elastomer and imaged using an 

inverted microscope, a high speed CCD camera and an optical fiber array coupled to 

photomultipliers for high bandwidth fluorescence recordings. Using microfluidics, the 

localized delivery of a fluorescent dye to a membrane patch of a cardiac myocyte was 

demonstrated. The Nanophysiometer automatically aligned and stabilized single cardiac 

myocytes on the microscope during long term sarcomere contraction measurements, 

thereby reducing motion artifacts. Intracellular calcium transients and sarcomere 

contraction measurements were combined to test the hypothesis that phospholamban 

(PLN) ablation in mice increases the cardiac myofilament response to cytosolic calcium 

concentration. It was demonstrated that sarcomere acceleration may be used as an index 

of contractility when length dependent passive resistance and velocity dependent viscous 

damping are considered. The results show that sarcomere acceleration during contraction 

was increased 9.1 ± 2.1 fold and indicate that the slightly, 1.65 ± 0.30 fold elevated 
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amplitude of the SR Ca2+ release may not be the only cause of the increased contractility 

in the PLN deficient cells. A previously published proteomic analysis of PLN deficient 

mouse hearts and our results indicate that significant changes in myofilament protein 

expression and phosphorylation may have contributed significantly to the increased force 

development in these hearts. 

Further more, genetic phospholamban ablation significantly reduced the dependence of 

the SR Ca2+ uptake on the stimulation frequency, but did not abolish it. Even the 

combination of genetic deletion of PLN and chronic inhibition of the Ca2+/Calmodulin 

dependent protein kinase II (CaMKII) did not prevent the frequency dependence of the 

SR Ca2+ uptake. Our results suggest that a mechanism of frequency adaptation must exist 

in the mammalian ventricle that does not require phospholamban or CaMKII. However, 

chronic CaMKII inhibition significantly slowed Ca2+ release at physiological frequencies 

in the absence of PLN indicating a role of CaMKII in the regulation of Ca2+ release at 

high SR Ca2+ load. 

When the techniques described here are combined, the Nanophysiometer will be capable 

of simultaneous measurements of extracellular potentials, intracellular and extracellular 

ion and metabolite concentrations (Ca2+, pH, O2, glucose, lactate) and sarcomere length 

in a chemically controlled microfluidic environment. 
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7.2 Future work 

Precise chemical control of the extracellular environment using on-chip valves and 
peristaltic pumps 
 

Single cardiac myocytes were confined and stabilized in the microfluidic cell trap 

of the Nanophysiometer for optical recordings. The success rate for trapping cells was 

50-70 % even when the cell isolation yielded 80 % or more viable cells. Pressure 

gradients in the microfluidic device were established manually via attached syringes. The 

lack of precise pressure control due to large dead off-chip volumes lead to sudden 

 
 
 

 
 
Figure 37. Principle of operation of on-chip valves fabricated in crossed-channel 
architecture. (A) Cross section of a flow channel with two valves when viewed after a 
cut along the dotted line (lower microscope image). The membrane between the upper 
pressurized control channel and the lower flow channel is very thin (~30 µm) and is 
deflected downward after the application of pressure. (B) Bottom-view microscope 
image of the device with two open valves. (C) Bottom-view of the microfluidic device 
with two closed valves. 
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changes in pressure during the measurement or myocyte trapping causing mechanical 

damage of the sarcolemma and leading to hyper contracture and cell death.  

In the future, the success rate could be significantly increased by optimizing the on-chip 

active valves and peristaltic pumps in the Nanophysiometer. Valves are fabricated by 

multilayer soft lithography as described by Unger et al. [79].  

The principle of operation of two on-chip valves is shown in Figure 37. A two layer 

PDMS device is fabricated by bonding the pneumatic/hydraulic control layer and a 

perpendicular flow channel together so that the two channels are separated by a thin 

PDMS membrane. The control channel can be pressurized with Nitrogen (or preferably 

oil) causing deflection of the membrane and pinching of the flow channel below. Because 

the active element is the roof of the channel itself, simple on-off valves as the ones shown 

in Figure 37 have truly zero dead volume. A peristaltic pump may be realized by 

 
 
Figure 38. (A) Schematic of a prototype Nanophysiometer with peristaltic pumps 
along the two vertical perfusion channels, drug inlet 1 and drug inlet 2, and 
microelectrodes. (B) Microscope image of the multilayer Nanophysiometer without 
microelectrodes for better presentation (courtesy Yuxin Liu). 
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arranging three valves in series along a single channel with a dead volume about equal to 

volume of one valve, (i.e. on the order of ~ 25 pl) [79]. A Nanophysiometer design with 

two peristaltic pumps for rapid chemical control of the extracellular environment is 

shown in Figure 38. It is important to note that the ability for a valve to close at a given 

pressures strongly depends on the aspect ratio of the lower flow channel, i.e. the ratio of 

channel width to its height. This flow channel aspect ratio must be equal or larger than 10 

for a valve to close at reasonable pressures, < 30 psi (207 kPa). Therefore, the higher the 

roof of a flow channel, the wider it must be in order to be closed by a membrane valve. 

Because the flow channels in the Nanophysiometer are 40 - 50 µm high to allow cardiac 

myocytes to pass through, they would have to be designed extremely wide in order close. 

To avoid mm-size microfluidic structures, the flow channels can be fabricated using a 

two layer photolithographic process leading to shallower areas where the fluidic lines 

cross the control channels. 

 

Direct force – [Ca2+]i relationship measurement in isolated heart muscle preparations 
and single cardiac myocytes 
 
For a more detailed understanding of myocyte excitation contraction coupling and 

dynamics it would be beneficial to measure forces directly under a varying loading 

conditions [71]. Direct force measurements in intact cardiac myocytes are extremely 

difficult and require the attachment of the fragile sarcolemma membrane to a force 

transducing device. Optical recordings of intracellular calcium concentration and 

sarcomere shortening in phospholamban deficient cardiac myocytes revealed an 

increased sensitivity of the myofilaments to cytosolic [Ca2+]. We presented a novel 

method that allows evaluating relative changes in the active force of shortening in 
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unattached myocytes by analyzing relative changes in maximum acceleration under 

consideration of passive elastic and viscous forces that resist shortening. Our 

measurement of unloaded myocyte shortening needs further validation in a well 

characterizes system that allows a direct assessment of contraction force indicative of the 

underlying inotropic and lusitropic state of the myocardium. Being able to measure forces 

dynamically and apply variable loading conditions would allow us to explore the length-

tension relation ship in great detail and would provide insight into the mechanical 

feedback through stretch activated [Ca2+]i ion channels [69, 221].  

 

Sarcomere acceleration and force frequency relationships in isolated cardiac myocytes 
with chronic CaMKII inhibition. 
 
Chronic CaMKII inhibition did not influence the time course of calcium uptake at 

physiological frequencies and temperatures, even in the absence of phospholamban. At 

first glance the data presented in Chapter V seem to suggest that CaMKII is not involved 

in the frequency-dependent acceleration of relaxation (FDAR). However, sarcomere 

shortening (or better, sarcomere contraction force) as a function of pacing frequency in 

CaMKII deficient cardiac myocytes might reveal a potential role of CaMKII in the 

frequency-dependent regulation of contraction and relaxation through direct interaction 

with other contraction modulating proteins. The calcium sensitivity of the myofilaments 

is known to depend on temperature, pH, [PO4]i and [Mg2+]i
  [41, 42], as well as on the 

phosphorylation of the myofilament proteins troponin-I (TnI) and myosin binding 

protein-C (MyBP-C) [222]. Phosphorylation of TnI decreases the calcium sensitivity of 

the myofilaments suggesting that phosphorylated TnI promotes relaxation [59, 222-225], 

while calcium-mediated phosphorylation of MyBP-C increases maximum force at a given 
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[Ca2+]i [64]. In fact, analysis of force – [Ca2+]i relationships in isolated mouse papillary 

muscle bundles shows that increasing stimulation frequency increased force production 

per unit change of calcium concentration (positive force-frequency relationship) and 

decreased the frequency-dependent calcium sensitivity of the myofilaments during 

relaxation [226]. Therefore, the measurement of myofilament protein phosphorylation, 

sarcomere shortening (or better, sarcomere contraction force) as a function of pacing 

frequency in CaMKII deficient cardiac myocytes might reveal a possible role of CaMKII 

in the frequency-dependent regulation of contraction and relaxation interacting with other 

contraction regulating proteins. 

 

Implications of high diastolic Ca2+ concentration and origin of arrhythmias in VLCAD 
deficient mice 
 
The results presented in Appendix B show that VLCAD deficiency in mice increased SR 

Ca2+ calcium load and fractional Ca2+ release, diastolic calcium concentration and the rate 

of sarcomere shortening. On the other hand, the most striking observation in the intact 

VLCAD deficient mouse heart was inducible ventricular tachycardia by physiological 

stress such as fasting, cold or exercise [227]. The data shown in this chapter are an 

attempt to characterize the physiological and pathological changes associated with a 

metabolic defect in fatty acid beta oxidation on the single cell level, but the role of these 

changes in the genesis of arrhythmias was not investigated.  
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The increased diastolic Ca2+ concentration could trigger delayed afterdepolarizations 

resulting from the depolarizing inward current of the sarcolemmal Na+/Ca2+ exchanger 

[228-230]. Future experiments on VLCAD deficiency need to address the molecular 

mechanism of arrhythmia on the organ, tissue and single cell level. Figure 39 shows a set 

of sarcomere contractions recorded from four VLCAD-/- (A-D) and four WT control (E-

H) myocytes. For each cell, 25 consecutive sarcomere contractions were recorded and 

superposed with the stimulus occurring at time zero. The data show that a noticeable 

delay between the sarcomere length minima occurred in the VLCAD deficient cells (in 

about 30 % of the analyzed cells), which was never observed in the WT control cells. 

However, more contraction data must be collected and if possible complemented by 

whole heart LV pressure and simultaneous calcium or action potential recordings to 

decide if these delays in single cell sarcomere contractions are statistically significant and 

whether they may lead to arrhythmias in the VLCAD deficient heart.  

 
 
Figure 39 Beat-to-beat variations of normalized sarcomere transients in four VLCAD-
/- (A-D) and four WT CONTROL (E-H) cardiac myocytes. Time is measured in ms 
from the onset of the stimulus. 
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APPENDIX A 

 

THIN-FILM IROX PH MICROELECTRODE FOR MICROFLUIDIC-BASED 
MICROSYSTEMS 

 

A.1 Abstract 

Microsensors are valuable tools to monitor cell metabolism in cell culture 

volumes. The present research describes the fabrication and characterization of on-chip 

thin-film iridium oxide pH microsensors with dimensions of 20×20 μm2 and 20×40 μm2 

suitable to be incorporated into nl volumes. IrOx thin films were formed on platinum 

microelectrodes by electrochemical deposition in galvanostatic mode. Anodically grown 

iridium oxide films showed a near super-Nernstian response with a slope of -77.6 ± 2 

mV/pH at 22 oC, and linear responses within the pH range of 4-11. Freshly deposited 

electrodes showed response times as low as 6 s. Long-term studies showed a baseline 

drift of 2-3 mV/month, which could easily be compensated by calibration. This work 

demonstrated for the first time the use of planar IrOx pH microelectrodes to measure the 

acidification rate of CHO and fibroblast cells in an on chip cell culture volume of 25 nl 

with microfluidic control.  

 

A.2 Introduction 

We are witnessing the introduction of bioinstrumentation that combines 

microfabrication, microfluidics, and micromechanics to create self-contained Bio-Micro-

Electro-Mechanical Systems (BioMEMS), which serve as a complete biological 

laboratory-on-a-chip [231-240]. Devices to monitor physiological parameters and cellular 

activity of living cells in vitro generally employ fluorescent dyes, calorimetric probes, 
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radioactive labels, or electrochemical/electrical sensors. Sensors located in the extracellular 

space do not require invasive manipulation or cause toxic effects, and therefore allow for 

long term recordings. The sensing of extracellular pH has been used to detect perturbations in 

metabolic activity as a result of receptor activation, drug and toxin effects, or enzyme 

inhibition  [241, 242]. Biosensors based on extracellular pH measurement have been 

demonstrated, and a Microphysiometer system (Cytosensor Microphysiometer - Molecular 

Devices, Inc.) is commercially available to assess metabolism in microliter cell culture 

volumes with temporal resolutions on the order of minutes [243-245].   

The Cytosensor uses a Light Addressable Potentiometric Sensor to determine 

acidification rates, and has been used for a number of cellular studies ranging from 

measuring metabolic activity during pharmacological and toxicological interventions to 

cell signal transduction [242, 246]. Typically, 3×105 cells are cultured between two 

membranes in a 4-μl volume equipped with the sensor and a perfusion system. The 

resolutions of the instrument for pH and acidification rate measurements are 0.001 pH 

and 0.001 pH min-1, respectively. 

Ion-sensitive field effect transistors (ISFET) have also been used to measure acidification 

rates of living cells cultured on gate electrode surface areas ranging from 400 μm2 up to 

6000 μm2   [247, 248]. Furthermore, ISFET’s have been incorporated in 10 μl chambers 

filled with approximately 2×105 cells. The measured acidification rate for RT112 and 

LS174T tumor cells are in the range of 0.065-0.08 pH min-1  [249]. 

The scaling down of this approach requires the development of a miniature pH sensor for 

nl cell culture volumes in a microfluidic-controlled environment. Additionally, if the 

device is compatible with optical techniques, it will enable better understanding of 
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complex cellular processes. In contrast to use of a multitude of agent-specific analytical 

methods, sensors that respond to effects on cell homeostasis would provide a broader and 

more effective method to detect and identify environmental toxins. This concept will 

have numerous applications in medical research, as it would improve the efficiency of 

drug discovery, drug development, pharmaceutical screening, and environmental 

monitoring  [250]. 

Micro pH electrodes with sensing areas typically below 500 μm2 are needed to measure 

pH inside microfluidic devices. As described in the literature  [232-239, 251], one of the 

most promising materials for thin-layer pH electrodes is IrOx film. The main advantages 

of IrOx in comparison with other pH-sensitive oxides include a wide pH response range, 

fast response time, high pH sensitivity, low potential drift, and low sensitivity to redox 

pair interference [252]. An additional technological advantage is the ability to form IrOx 

layers by means of different chemical and physical methods, which can match 

application-specific requirements in chemistry, biology and medicine. These attributes 

make IrOx one of the best choices as sensitive material for pH electrodes.  

Different techniques have been used to produce iridium oxide pH electrodes, such as 

reactive sputtering using iridium targets in an oxygen plasma [253-255], thermal 

oxidation of Ir wire [256, 257], high-temperature carbonate-melt oxidation of Ir wire 

[237, 258], thermal decomposition of an iridium salt [259], electrochemical oxidation of 

Ir electrodes during potential cycling [233, 234, 239, 251, 260], and anodic iridium oxide 

film (AIROF) electrodeposition in galvanostatic mode [232, 238, 252, 261-263]. While 

other methods require complex procedures such as high-temperature treatment, 

electrochemical activation, or expensive iridium targets, the electrochemical methods 
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have found a wide range of practical applications because of their relative simplicity and 

their manufacturability in large-scale applications. Furthermore, these methods allows for 

selective deposition on planar microelectrodes. 

Conventional IrOx pH electrodes are formed by thermal or electrochemical oxidation of Ir 

wire with diameters as small as 20 μm. Because the integration of wire electrodes into 

microfluidic devices is very difficult or practically impossible, the only feasible 

alternative is planar thin-film electrodes. Few applications of thin-film IrOx pH 

electrodes—with active surface areas of 1 × 1 mm2, 0.1 × 1 mm2 and 0.2 × 0.05 mm2—

have been found in the literature [239, 252, 264]. The scope of our research was to 

develop technologies for the fabrication of thin-film planar IrOx electrodes with active 

sensing areas below 500 μm2, to incorporate the sensors into an on-chip miniature cell 

culture volume, and to evaluate their performance in acidification rate measurements to 

monitor cell physiology.  

 

A.3 Methods 

Materials and reagents 

Hydrogen peroxide (30% solution in water), iridium tetrachloride, oxalic acid 

dihydrate, 5% Nafion solution, and anhydrous potassium carbonate supplied by Aldrich, 

Inc. were used. Universal pH buffers (for pH 2, 4, 6, 7, 8, and 10) were obtained from 

VWR Scientific. Titanium (99.95%, rod diam. 2mm), and platinum (99.95%, rod diam. 

2mm) were purchased from Goodfellow Corp., and fused quartz (rod diam. 24mm), from 

Technical Glass Product. RPMI 1640 buffer was supplied by Molecular Devices Corp. 

Mouse fibroblast cells (A9 L HD2 S.C. 18) and Chinese hamster ovary (CHO) cells (M 3 
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WT4) were supplied by ATCC (CRL-10255 and CRL-1981, respectively). The cell 

media and additives were all supplied by BioWhittaker. All chemicals were used as 

received. Double-distilled (DI) water was used for the preparation of all solutions. 

 

Electrode fabrication 

The electrode structures were formed on glass microscope slides (76 mm x 25 mm x 

1mm, Fisher Scientific), which were initially cleaned in accordance to a standard 

cleaning procedure [237]. The electrodes consisted of two layers: a Ti adhesive layer (10 

nm) and a Pt working layer (100 nm). Thin-film electrodes were formed by e-beam 

vacuum evaporation of Ti and Pt from carbon crucible liners (Kurt J. Lesker, Inc.). The 

total gas pressure and substrate temperature were maintained at 5x10-6 torr and 273 K, 

respectively, during the film deposition. The deposition rate was 0.5 nm/sec for Ti films 

and 1.0 nm/sec for Pt films. The deposition rate and the thickness of the films were 

controlled by a quartz crystal microbalance (Maxtek, Ink.). The Ti and Pt films were 

deposited in a single process without breaking vacuum. After deposition, each substrate 

was cut into individual 1 × 1 in2 chips for thin-film microelectrode fabrication. For 

electrode insulation we used thin films of silicon oxide. The 150 nm SiOx films were 

deposited by e-beam evaporation using fused quartz targets at a residual pressure of 2 x 

10-5 torr (the rate of deposition was 0.1-0.2 nm/s). The microelectrode configuration was 

created by patterning platinum films using standard photolithography with 1 μm-thick 

photoresist (AZ5214-E, Clariant Corp.). The metal was removed using an ion etch 

process in all areas that were not protected by the resist. The photoresist was stripped 

from the electrodes in an ultrasonic remover bath (AZ400-T, Clariant Corp.) at 70 °C. 
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Finally, the surface was thoroughly cleaned with acetone and distilled water. The 

windows in the silicon oxide films were formed by a standard lift-off photolithographic 

process. Microelectrodes with working areas of 20 × 40 μm2, 20 × 20 μm2 and 5 × 10 

μm2 were fabricated using the processes described above. A microscope image and a 

schematic cross section of the micro electrodes are shown in Figure 40A and B, 

respectively. 
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Figure 40 (A) Bright-field microscope image of Pt microelectrodes covered with a 150-
nm thick SiO2 layer. One of the two rectangular openings is exposing the bare Pt surface, 
while the other is coated with a electrochemically deposited IrOx  thin film for pH sensing. 
(B) Schematic cross section of the Ti/Pt microelectrodes with SiO2 layer for electrical 
insulation, and IrOx coating of the pH microelectrode.  
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IrOx electrochemical deposition 

IrOx films were selectively electrodeposited onto the microfabricated Pt electrodes 

through small windows in the SiOx insulation layer. The deposition solution was prepared 

based on the method described by Yamanaka  [238, 263] and Marzouk  [232, 252]. In our 

protocol, a 75-mg portion of iridium tetrachloride was dissolved in 50 ml of DI water, 

and the solution was magnetically stirred for 15 min. A 0.5 ml aliquot of aqueous 30% 

hydrogen peroxide was added, and the resulting solution was stirred for another 10 

minutes. A 250-mg portion of oxalic acid dihydrate was added, and the solution was 

stirred again for 10 min. Small amounts of anhydrous potassium carbonate were 

gradually added to the stirred solution to adjust its pH to 10.5. The solution was 

contained and stored at room temperature for 2 days to allow for stabilization. The color 

of the solution changed from yellow to light-violet, indicating it could be used for a 

successful deposition. After stabilization, the solution was stored in a dark bottle at 4oC in 

a refrigerator until use  [232]. We used deposition solution for up to two months after its 

preparation. 

All electrochemical experiments were performed with a CHI model 660A 

potentiostat/galvanostat (CH Instruments) in a three-electrode cell. In beaker 

experiments, potentials were measured relative to an Ag/AgCl (CHI 111, CH 

Instruments) reference electrode. The counter electrode was a Pt wire, 1mm diam., (CHI 

115, CH Instruments). The IrOx electrode potential was monitored in open circuit 

potential (OCP) mode. A DRIREF-450 (WPI) Ag/AgCl reference electrode, 450 μm 

diam., was used for pH measurement inside microchannels. 
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Both modes – galvanostatic and cyclic potential cycling – were used for the deposition of 

iridium oxide films. A constant current density of 1-1.5 mA/cm2 applied for 500 s proved 

to be the optimal condition for the formation of a dark blue IrOx film in galvanostatic 

mode. Light-blue iridium oxide films were created by cycling 100 times between 0.0 V 

and 0.55 V at 75 mV/s in the potential cycling mode. The thickness of the anodic IrOx 

films ranged from 0.05 to 0.1 μm, depending on the deposition method and process 

parameters. We used a stylus surface profiler (Alphastep 200, Tencor Instruments) to 

measure the thickness of the films after electrodeposition. Immediately after deposition, 

the pH sensitive IrOx films were rinsed with distilled water and dried under a stream of 

nitrogen. Then, for comparison purposes, some of the iridium oxide microelectrodes were 

coated with proton-exchanging Nafion resin by momentarily dipping them into a 5% 

Nafion solution and subsequently air-drying them at 80oC [232, 252]. The pH 

microelectrodes were ready for use after they were soaked in a universal buffer of pH 7.0 

for two days, a practice which proved to be necessary in order to reduce potential drifts  

[232, 252]. When not in use, the microelectrodes were stored in universal buffer solution 

(pH 7.0) at room temperature in a dark place. 

 

Microfluidic device fabrication 

The microchannels in our microfluidic devices were fabricated by replica molding using 

a patterned photoresist on a silicon wafer as the master, and poly(dimethylsiloxane) 

(PDMS) as the biocompatible polymer (Sylgard 184, Dow Corning, Midland, MI). The 

master was fabricated by spinning a 20 µm layer of photoresist (SU-8 2050, Microchem) 

on a 3 in.-diameter silicon wafer, followed by a UV light exposure through a metal mask 
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using a contact mask aligner. The photoresist was processed according to the 

manufacturer’s recommendation on the datasheet. An optional 30- minute hard bake at 

200 °C was performed on a hot plate to increase the durability of the resist. The master 

was placed in a plastic culture dish and covered by a 5 mm layer of the PDMS/curing 

agent mixture at a ratio of 10:1 by weight. After curing the elastomer in the moulding 

dish for five hours at 60 °C in an oven, the devices were cut out and mechanically 

separated from the master. The feature sizes of the microfluidic networks ranged from 

20-1000 μm. Access holes to the channels were punched with a sharpened stainless steel 

pipe. Each microfluidic device was manually aligned relative to the pH electrode by 

using an inverted microscope, and sealed onto the electrode/glass substrate by 

autoadhesion. We used glass capillaries inserted into the access holes to connect the 

microfluidic channels via standard microtubing (0.5 mm inner diam., Cole Parmer) to 1 

ml syringes. The microsyringe pump controller “Micro 4” (WPI, Sarasota, FL) was used 

to control the flow of solution in the microfluidic device with flow rates ranging from 10 

nl/min to 10,000 nl/sec. 

 

A.4 Results and discussion 

Properties of electrochemical IrOx films 

The key characteristics of thin-film IrOx electrochemical pH electrodes are 

sensitivity, response time, stability, and reproducibility. We studied these properties of 

our films and demonstrated the possibility of using them in microfluidic devices. We 

deposited IrOx films by galvanostatic and potential cycling methods. However, our 
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results show that films deposited by the galvanostatic method had superior properties and 

therefore we will not further discuss IrOx films formed by the potential cycling method.  

We incorporated miniature pH sensors in microfluidic devices with the following active 

electrode areas: 5 × 10 µm2, 20 × 20 µm2 and 20 × 40 µm2. We observed a decrease in 

stability and reproducibility for iridium oxide films with areas of 5 x 10 µm2. We 

attribute this behavior to non-uniform film deposition, an issue which can be addressed 

by optimizing the electrode design and the deposition conditions. However, experiments 

on a small number of cells in a microfluidic device do not require electrode dimensions 

comparable to the cell size. We therefore chose to optimize and characterize the 

properties of the larger (20 × 20 µm2 and 20 × 40 µm2) electrodes. 

The analytical characteristics of IrOx pH microelectrodes were tested before their 

application in microfluidics devices. The response of our IrOx electrodes to exposure to a 

series of universal buffer solutions in the pH range between 4 and 10 is presented in 

Figure 41A. Figure 41B demonstrates a linear super-Nernstian response resulting in a 

sensitivity of -77.6 ± 2 mV/pH. This value agrees with results obtained in the literature 

for the electrochemical deposition of IrOx on macroelectrodes  [232, 252, 260]. We 

further developed the fabrication process, allowing for the selective deposition of IrOx 

films on microelectrodes. In addition, our pH electrode sensitivity was superior compared 

to that of electrodes formed by other methods, like reactive sputtering  [253-255] and 

thermal decomposition of IrCl3 · H2O  [259], which typically have lower sensitivities in 

the range of 55 - 70 mV/pH. 
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As stated in [236, 265], the response of anhydrous IrO2 films to pH changes with a slope 

of approximately 59 mV/pH (Nernstian response) can be explained using the following 

redox reaction 
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Figure 41. Calibration of microelectrodes for pH measurements. (A) Open circuit 
potential of a IrOx pH electrode during periodic cycling of 5 different standard pH 
calibration solutions with 30 s measurement intervals.  
(B) Average potentiometric response of a IrOx pH electrode in the pH range of 4 to 
10 at a temperature of 22oC, The error bars represent the standard deviation for all 
measurement points corresponding to a particular pH. 
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IrO2 + H+ + e- ↔ IrO · OH 

or 

2IrO2 + 2H+ + 2e- ↔ Ir2O3 + 2H2O. 

 

Hydrated iridium oxide exhibits super-Nernstian responses explained by the mechanism 

of one transferred electrons per 1.5 H+ ion, resulting in a slope of approximately 90 

mV/pH [236, 266]: 

2[IrO2(OH)2 · 2H2O]2- + 3H+ + 2e-  ↔ [Ir2O3(OH)3 · 3H2O]3- + 3H2O 

 

Our films had near-super-Nernstian response, which suggests the prevalence of a 

hydrated form of iridium oxides  [236, 264]. 

 

 
Figure 42. Response time of the IrOx microelectrode as a function of storage time. 
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The sensitivity of the pH electrodes remained practically constant during 5-6 weeks 

storage time in pH 7 buffer solution, as previously described. Dry storage of IrOx 

electrodes led to noticeable sensitivity decrease of typically 20-30%. Soaking these 

electrodes for 1 h in buffer solution restored their sensitivity to the original value. 

We observed a substantial influence of the age of the deposition solution on the 

sensitivity of the IrOx pH electrodes. Iridium oxide films deposited from fresh solution 

showed the maximum sensitivity of -77 mV/pH. We observed practically no change from 

process to process (± 1-2 mV/pH) up to a shelf life of 1 month for the deposition solution. 

The films deposited from solutions older than 1 month showed a 10-15 % decrease in 

sensitivity, and a spread in sensitivity reproducibility of ±5 mV/pH.  

The potential drift during pH measurements is another important characteristic of IrOx 

electrodes. We used standard buffer solutions in the pH range of 4-10 to calibrate the 

deposited IrOx films. We recorded the OCP of the IrOx electrode relative to the Ag/AgCl 

reference at room temperature.  

In order to quantify potential drifting we placed the IrOx electrodes and the reference 

electrode in 50-ml beakers with different buffer solutions according to the following 

procedure. The potential measurement corresponding to each pH buffer was conducted 

for 30 s, which proved to be long enough to reach steady state in the potential response 

for fresh electrodes. Then, the potential measurement was paused while the pH buffer 

solution was replaced by a different one.  

These kinds of measurements were usually conducted within 2 hours, with a total of 200 

alternations among buffer solutions. Figure 41a shows typical kinetics of electrical 

potential for iridium oxide pH electrodes (20 × 20 µm2) exposed to different buffer 
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solutions. Usually, the potential drift was ± 2-3 mV for each buffer solution. This 

phenomenon is identified in the literature as “hysteresis of the sensor response.”  

The drift is typically ± 2 mV for IrOx-coated Ti wires [252]. Fast response times are 

crucial for biological experiments in microfluidic devices. Therefore, we quantified 

response times of the IrOx pH microelectrodes and their long-term behavior. As usually 

described in the literature, the response time of pH electrodes is defined as the time 

required to reach 90 % of the equilibrium value [267, 268]. The typical response time of 

our pH microelectrodes was 6 s within one week of deposition. A 50% increase in the 

response time was observed for the first 3 weeks of aging, as well as a two-fold increase 

of the standard deviation, as shown in Figure 42. After four weeks of aging, we observed 

a 100% increase in the response time relative to the freshly deposited IrOx pH electrodes. 

These data are in close agreement with the response times reported in the literature, 

which range from 5 to 15 s for 1 mm IrOx-coated wire pH electrodes  [232, 252]. This 

response-time range is suitable for many biological applications including pH 

measurement. Aging of more than four weeks caused substantial increase in the response 

time of the pH electrodes — over 40 s on average — which is obviously unacceptable in 

many cases. This study demonstrated that our electrochemically deposited IrOx electrodes 

can be used within a month of their formation, provided that the characteristic times of 

processes intended to be measured are longer than the pH electrode response time.  

Several publications describe the use of Nafion layers to minimize the interfering effects 

associated with anion redox species and for protection of the sensor surface from 

aggressive solutions [252, 254]. We conducted analogous studies to investigate the 

protection of IrOx films by dip coating with Nafion. However, we found that Nafion 
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deposition caused substantial increases in response time, which reached 150–200 s for 

dip-coated Nafion layers post baked between 60-100 ºC.  

We also investigated the compatibility of bare IrOx sensing electrodes and cell culture 

media using different buffer solutions (Dulbecco Modified Phosphate Buffered Saline 

(DPBS), with and without Hepes) used for cell growth, and found no degradation in the 

sensing properties. Therefore, we used IrOx without Nafion coating in all subsequent 

experiments.  

In summary, our results showed that IrOx films formed by using the galvanostatic method 

have near-super-Nernstian response: -77.6 ± 2 mV/pH in the 4-10 pH range. We 

measured potential drifts of 2-3 mV and response times ranging from 6 to 12 seconds for 

up to one month of storage. IrOx thin-film pH-sensing microelectrodes with such 

characteristics were integrated into our microfluidic devices, as described in the 

following paragraphs.  
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Properties of IrOx pH electrodes in microfluidic devices 
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Figure 43. (a) Schematics of a microfluidic device for investigating the properties of our 
pH microelectrodes (A) in microfluidic channels (B). 1 – waste channel; 2, 3, 4, and 5 – 
input channels for DI water, pH 6, 7, 8 buffer solution, respectively; 6 – Ag/AgCl 
reference electrode; The inset shows a detailed view of the pH microelectrode in the 
sensing channel. (b) Optical image of the sensing channel with pH microelectrode and 
Ag/AgCl reference electrode. (c) Picture of the clamp mechanism (A), which ensures a 
reliable seal between the PDMS block containing the microchannels (B), Ag/AgCl 
reference electrode (C) and the glass substrate with thin film microelectrodes. 
 



 148

A schematic drawing and a microscope image of our microfluidic device with multiple 

input ports are shown in Figure 43a and b, respectively. The device was comprised of a 

PDMS microchannel network auto adhered to a glass slide patterned with an array of 

platinum microelectrodes, one of which was coated with IrOx for pH sensing. 

Additionally, we used a clamp to provide mechanical stability and to achieve a good seal 

between the elastomer and the substrate (Figure 43c). This assembly was mounted on a 

microscope stage for observation. The microchannels were designed to direct buffer 

 
 
 
 A      B 

  
Figure 44 (A) Open circuit potential of IrOx pH microelectrode inside the microfluidic 
sensing channel during exposure to different standard pH calibration solutions in 30 s 
measurement intervals. (B) Potential transient after a step-like change of the calibration 
solution by one pH unit. 
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solution across the IrOx pH electrode (20 × 20 µm2) and the reference electrode (450 µm 

diam.) located in the sensing channel. The calibration of pH electrodes in the microfluidic 

channel was done in the biologically relevant pH range of 6-8, as these electrodes were 

intended to be used for the acidification-rate measurements of various living cells. Input 

channels 3, 4, and 5 were designated for the delivery of buffer solutions with pH 8, 7, and 

6, respectively. Input channel 2 was used for DI water delivery to flush the working area.  

Calibration of the IrOx pH electrodes was conducted by repeating the following steps: (i) 

filling the sensing channel with buffer solution of known pH; (ii) measuring the resulting 

OCP between the reference and the IrOx electrodes. The calibration process for pH 

electrodes consisted of more than 100 changes of buffer solutions. Data from an 

 
 
 

 
Figure 45. Open circuit potential of the IrOx pH microelectrode for different flow rates 
of solution in the microfluidic channel. a corresponds to a flow rate of 250 nl/s, b 500 
nl/s, c 1000 nl/s, d 2500 nl/s, e 5000 nl/s, and f  10 000 nl/s.  
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exemplary calibration of IrOx pH microelectrodes in our microfluidic device are shown in 

Figure 44. Each individual measurement was performed for 30 s. We determined the 

maximum deviation from the average potential for each individual pH level to be 2 mV 

over the course of the 1-hour calibration. The sensitivity of these electrodes was in the 

range of 70-78 mV/pH. A fast response is an important requirement for IrOx pH 

electrodes in microfluidic applications. Figure 45 shows the typical response of an IrOx 

pH microelectrode to a change of 1 pH unit in the sensing channel. The response time 

extracted from the data was 5 s. In summary, measurements taken with our IrOx pH 

microelectrodes in microfluidic channels were virtually the same as those from 

macroscopic experiments in beakers, with respect to sensitivity, potential drift, and 

response time.   

Next, we investigated the performance of the IrOx sensing electrodes in our microfluidic 

devices under flow conditions ranging from 10-10,000 nl/s. We observed that flow rates 

< 200 nl/s did not result in a considerable potential increase. The behavior of the OCP at 

six different flow rates above 200 nl/s is depicted in Figure 45. We used the same volume 

of buffer solution for each segment, therefore the measurement interval decreased with 

increasing flow rate. The spikes depicted in the graph were caused by the adjustments 

between flow rates. We noticed a constant potential increase of 0.6 mV/min for the first 

three flow rates, which ranged from 250 to 1000 nl/s (marked a, b and c in the graph). 

The potential increase reached 6 mV/min for 2500 nl/s, 30 mV/min for 5000 nl/s and 

became irreproducible for flow rates above 10,000 nl/s. However, for flow rates between 

200 and 1000 nl/s, the potential increase was quite reproducible, a behavior which 

allowed pH measurements to be conducted at these flow rates. The reason for this 
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potential increase is not well understood, however Marzouk et al. reported similar 

changes in the electrode characteristics at increased flow rates for IrOx-coated Ti wire in 

a flow-injection-analysis device  [232]. We did not investigate this effect further because 
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Figure 46. Test of the thin film pH microelectrode in a microfluidic device (a) Optical 
image of the pH sensing, reference electrode and a 25 nl cell culture volume filled with 
fibroblast cells for acidification measurements. The inset shows a close view of the 
sensing volume, the pH microelectrode and the filter structure used to trap cells. (b) 
Time course of the Open circuit potential of the IrOx pH microelectrode during an 
acidification rate measurement for A9 L HD2 fibroblast cells. 
(c) Acidification rate measurement of M3 WT4 CHO cells. 
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flow rates > 200 nl/s are unrealistic for cell culture experiments in lab-on-a-chip devices 

with nl culture volumes.  

 

Incorporation of IrOx microsensors into nl cell culture volumes 

The metabolic activity and the physiological state of a living cell can be characterized by 

the rate at which the cell produces acidic byproducts. In order to record metabolic 

changes of a small number (1-1000) of cells in multiple wells in a parallel approach for 

high throughput drug screening applications, it is necessary to scale down the sensor size 

and provide fluidic access to the cell culture volume for perfusion and drug delivery. We 

used an optically-transparent PDMS polymer in combination with our miniature pH 

sensing electrodes to fabricate microfluidic-based microsystems to achieve this goal. The 

optical transparency would allow for parallel fluorescence measurements for a multi 

parameter assessment of cell physiology.  

Such a device, as shown in Figure 46A, can be mass-produced, each unit consisting of a 

glass substrate with thin-film IrOx pH microsensors and a PDMS microfluidic network 

containing a 25 nl cell culture volume connected to perfusion and cell-seeding channels. 

A magnified image, showing live fibroblasts and the thin-layer IrOx pH electrode, is 

presented in the inset of Figure 46A. All cells were grown in T-flasks to 85% confluency. 

Medium was removed; cells were washed with DPBS (Dulbecco Modified Phosphate 

Buffered Saline) and detached by a trypsin treatment. Detached cells were suspended in 

growing medium. Immediately before starting pH measurements, the cell medium was 

replaced with modified RPMI 1640 with low buffering power (1 mM PBS). The cells 

were then seeded into our PDMS Nanobioreactor, which had the following dimensions: 



 153

1000 μm wide, 1000 μm long, 25 μm high, and a total volume of 25 nl. Cells were 

loaded by applying a vacuum to either perfusion channel, thereby pulling the cells from 

the seeding channel into the Nanobioreactor chamber.  

The cells were confined by two 3-μm filters located at the entrance of the left and right 

channels. We successfully trapped most of the administered fibroblast and CHO cells, 

which have diameters of about 11-18 μm and 10-12 μm, respectively.  

After seeding 10-25% of the surface area with cells, we stopped the media flow by 

releasing the vacuum, and we started to record the OCP between the IrOx and the 

Ag/AgCl reference electrode. The results are presented in Figure 46B and C for fibroblast 

and CHO cells, respectively. The potential changes are directly proportional to pH 

variations inside the Nanobioreactor chamber and can be expressed in pH units if divided 

by the electrode sensitivity of -70 mV/pH. We observed a near-linear signal increase, 

which corresponded to an acidification rate of 0.03 pH min-1 for fibroblast cells, 

presented on Figure 46B. After a deviation from linearity was observed we stopped 

measurements because the pH was beyond the physiologically relevant range. After the 

experiment the sensitivity of our pH electrodes was re-measured and we found no 

degradation. However, there could be a sensitivity change in long term experiments when 

the electrodes are exposed to small organic molecules and proteins produced by the cells  

[269]. Similar measurements were conducted using CHO cells as shown in Figure 46C. 

Based on these data we calculated an acidification rate of 0.06 pH min-1 for the linear 

region of the graph. The larger acidification rate for the CHO cells was expected since 

they are metabolically more active than fibroblast cells. Comparable acidification rates 

are reported in the literature  [241, 245]. 
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A.5 Conclusions 

We developed planar pH microelectrodes with dimensions smaller than 500 µm2 

on transparent glass slides using selective electrochemical deposition of IrOx onto 

lithographically-defined Pt thin-film electrodes. The IrOx pH microelectrode was 

incorporated as a transducer into a microfluidic-based PDMS device with a 25 nl cell 

culture volume. The characteristics of our IrOx pH electrodes were highly reproducible: 

sensitivities of -77.6 ± 2 mV/pH, potential drifts of 2-3 mV/month (static solution), and 

response times of 5-15 s within one month of deposition. The properties of our pH 

electrodes did not change when incorporated into microfluidic devices. We demonstrated 

for the first time the use of IrOx microelectrodes for acidification rate measurements in nl 

on-chip cell culture volumes for CHO cells and fibroblast cells. The average acidification 

rates were 0.03 pH min-1 and 0.06 pH min-1 for fibroblast and CHO cells, respectively, 

and are in agreement with previously published data. Our results demonstrate the 

feasibility to scale down pH electrodes and cell culture volumes to measure acidification 

rates in volumes less than 1 nl. 
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APPENDIX B 

 

FATTY ACID β-OXIDATION DEFECTS, BIDIRECTIONAL VENTRICULAR 
TACHYCARDIA, AND RYANODINE RECEPTOR DYSFUNCTION 

IN VLCAD NULL MICE 
 

 

B.1 Abstract 

Familial catecholaminergic polymorphic ventricular tachycardia is characterized 

by polymorphic ventricular tachycardia, bidirectional ventricular tachycardia (BVT), and 

a high risk of sudden cardiac death. Recently, mutations involving the cardiac ryanodine 

receptor (RyR) and calsequestrin have been identified in patients with these arrhythmias.  

Patients with mutations in the mitochondrial very-long-chain Acyl-CoA dehydrogenase 

(VLCAD) enzyme are also at risk for sudden cardiac death. Here we identify a novel 

mechanism of fatty acid and catecholamine-dependent BVT due to cardiac RyR 

dysregulation in mice lacking VLCAD (VLCAD-/-). These mice exhibit: VT with the 

typical bidirectional morphology with isoproterenol infusion, increased levels of cardiac 

ryanodine receptor 2, increased [3H] ryanodine binding in heart microsomes, and 

enhanced intracellular calcium release at the cardiomyocyte level. Both the amplitude and 

rate of intracellular SR Ca2+ release was increased in single cardiac myocytes isolated 

from VLCAD-/- mice, while the L-type Ca2+ current (ICa) was not changed. Diastolic 

cytosolic calcium as measured by indo-1 fluorescence was higher in VLCAD-/- cells 

suggesting an increase in the time-independent cytosolic and mitochondrial Ca2+ 

concentration. This defect in calcium homeostasis was not seen in VLCAD wild type 

controls. We conclude that mitochondrial VLCAD deficiency represents a novel 
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mechanism of ryanodine receptor channelopathy leading to abnormal intracellular 

calcium handling and arrhythmias in mice and perhaps also in VLCAD deficient humans. 

Key Words: | genetics - inborn errors| VLCAD| Ryanodine Receptor| Mitochondria| 

Calcium| Catecholaminergic and bidirectional ventricular tachycardia. 

 
B.2 Introduction 

Children with mitochondrial very-long-chain acyl-CoA dehydrogenase deficiency 

(VLCAD) are usually diagnosed at presentation in the clinic by episodes of metabolic 

crisis and death. Deficiencies in these mitochondrial fatty acid oxidation (FAO) enzymes 

have been implicated in cardiomyopathy, arrhythmias, and sudden unexpected death, as 

well as in a variety of other illnesses [270]. Phenotypes of FAO deficiency in humans 

include non-ketotic hypoglycemia, heart and liver lipidosis, encephalopathy, skeletal 

myopathy and sudden death. VLCAD deficiency (the focus of this report) causes 

ventricular tachycardia (VT) in almost 50% of the presenting cases [271-275]. Most of 

the cases of sudden death occur in the first year of life. The molecular mechanisms of 

arrhythmias associated with these defects have yet to be delineated. Survival into 

adulthood is possible, but long-term follow-up of patients who survive both the infancy 

and childhood periods has not been carried out. Thus, it remains unknown whether older 

patients with these defects contribute to a subset of cases with familial or 

catecholaminergic ventricular tachycardia.  

While VLCAD is a mitochondrial protein encoded by a nuclear gene [276], ryanodine 

receptors are intracellular  Ca2+ release channels, mainly clustered in the root structures 

of the sarcoplasmic reticulum of striated muscles. The RyRs are characterized by their 

large size and four-fold symmetry [277]. Three distinct isoforms encoded on different 
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chromosomes share about 2/3 sequence homology [278]. The RyRs are hetero-oligomers 

consisting of four RyR protomers and four FK 506 (tacrolimus) binding proteins (FKBP) 

[279]. The RyRs have a mass of 2.3megaD, (the protomers are about 0.56megaD) while 

FKBP is approximately 12kD [279, 280]. RyRs are now known to be widely distributed 

in tissues. In skeletal muscle, RyR1 is morphologically identical to the foot-structures 

spanning the gap between the terminal cisternae of SR and the sarcolemma/ transverse 

tubules (T-tubule) [281]. Similar morphological structures have been identified and 

characterized in cardiac muscle fractions for RyR2 [282]. The third isoform, RyR3 is 

widely expressed in a variety of tissues but in minuscule amounts. The functional 

characteristics of RyR1, RyR2 and RyR3 have been studied in isolated SR membrane 

fractions as well as in purified receptors. Mutations in the cardiac ryanodine receptor 

(RyR2) gene are known to cause both catecholaminergic polymorphic ventricular 

tachycardia (CPVT) - also termed familial polymorphic ventricular tachycardia (FPVT), 

or bidirectional VT [283-286] and  arrhythmogenic right ventricular dysplasia (ARVD2) 

[287, 288].  These mutations cause abnormalities in the regulation of channel activity.  A 

“gain-of-function” or increased Ca2+ leak from the sarcoplasmic reticulum (SR) has been 

proposed [289].  In this paper, we use our mouse model of VLCAD deficiency [227],  to 

show a novel role for mitochondrial fatty acid β-oxidation defects in disturbances of 

calcium homeostasis in heart.  The working hypothesis of our study was to test whether 

mitochondrial VLCAD deficiency leads to functional changes in the cardiac ryanodine 

receptor at the subcellular level, with enhanced intracellular Ca2+ release from the 

sarcoplasmic reticulum (SR) that is reminiscent of human cases with defective RyR2 
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channels. Here, we also discuss the possible role for FAO defects in the clinical 

manifestations of affected patients with these inherited arrhythmogenic diseases. 

 
B.3 Materials and Methods 

VLCAD deficient mice   

All animals in this study were cared for according to the Institutional Animal Care 

and Use Committee (IACUC) at Vanderbilt University. Mice were generated and 

genotyped as previously described  [227, 290]. Upon sacrifice or at autopsy, whole heart 

ventricles and skeletal muscle (slow- and fast-twitch) were harvested for total protein.  

Immunoelectron microscopy was performed in heart tissue from two month old VLCAD 

+/+ and VLCAD -/- mice.  

 

Preparation and characterization of subcellular fractions from different organs  

Hearts and other organs are harvested from euthanized animals in conformity with the 

IACUC animal care codes.  Subcellular fractionation was performed by the method of 

Chamberlain and Fleischer  [291]. The resulting subcellular fractions or pellets were 

resuspended in a small volume of resuspension buffer, flash-frozen in liquid nitrogen and 

stored at -80ºC. 

 

[3H] Ryanodine Binding Assay.  

[3H] ryanodine binding was determined at 60 nM ryanodine as described previously  

[278].  Summarizing the process briefly, cardiac microsomes (50 µg) were incubated in 

50µl of buffer containing 10mM K-HEPES, pH 7.4, 1M KCl, 25µM CaCl2, and 60nM 

[3H]ryanodine (~15,000 cpm/pmole, obtained from Amersham) for 1 h at room 
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temperature. Nonspecific binding was measured in the presence of 20µM cold ryanodine 

(Sigma). Free ligand was separated from the bound by sedimenting the microsomes in a 

Beckman TL-100.1 rotor at 95,000 revolutions / min for 15 min at 4ºC. The supernatant 

was removed by aspiration, the pellets rinsed twice and resuspended in 200 µl water, and 

the radioactivity was measured in 5 ml of Cytoscint (ICN, Cleveland, OH) in a Beckman 

LS 5000TD scintillation counter. 

 

Calcium loading assays using antipyrylazo III 

Calcium loading assays were performed in a diode array spectrophotometer. Ca2+ loading 

assay medium consisted of 100 mM potassium phosphate buffer, pH 7, 1 mM of MgCl2 , 

0.2mM antipyrylazo III, and 50 µg of protein. Na2ATP (1 mM) was added, and the 

reaction was initiated by addition of 50 µM CaCl2 (antipyrylazo III is used as the 

metallochromic indicator).  Measurement of the difference in absorbance between 710 

and 790 nm was done at 37 ºC.  Ruthenium red (10 µM) was added to selected samples 

70 seconds after the reaction has been initiated to block Ca2+ leak from the SR.  A general 

formula was used to calculate the rate of Ca2+ loading as previously published  [292]. 

 

Preparation of ventricular myocytes 

VLCAD knockout and wild-type control mice were anesthetized by intraperitoneal 

injection of Avertin solution (5mg Avertin per 10 g body weight, T48402, Sigma-

Aldrich) containing Heparin (3 mg/10ml, H9399, Sigma-Aldrich). The heart was rapidly 

excised and placed into ice-cold Ca2+-free Hepes-buffered normal Tyrode (NT) solution. 

The aorta was cannulated and the heart was perfused with Ca2+-free NT solution at room 
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temperature for 10 min to stop contractions. The NT solution contained (in mM): Na+ 

140, K+ 4.5, Mg2+ 0.5., Cl- 150, H2PO4
- 0.4, HCO3

- 10, Hepes 10, glucose 10. The 

perfusion was switched to NT solution containing 10µM Ca2+, collagenase (178 U/ml, 

CLS2, Worthington Biochemical) and protease (0.64 U/ml, P5147, Sigma-Aldrich) for 12 

min at 37 ºC. Tissue from the atria and aorta was discarded. The remaining ventricular 

tissue was coarsely minced and placed into NT solution containing bovine serum albumin 

(10 mg/ml, A9647, Sigma-Aldrich). Myocytes were dissociated by gentle agitation.  Ca2+ 

concentration in the working solution was increased from 0.1 mM to 0.5 mM. For the 

glucose-free experiments, glucose was replaced by palmitic acid (10 µM, P0500, Sigma-

Aldrich) in all solutions. Cells were stored in 0.5 mM Ca2+ Tyrode solution until used, 

usually within 3 hours after isolation.  

 

Measurement of indo-1 calcium transients 

Dissociated cardiomyocytes were loaded with 20 µM of an acetoxymethyl ester form of 

the Ca2+-sensitive fluorescence dye indo-1 (I1203, Molecular Probes-Invitrogen). Cells 

were kept in this solution for 15 min at room temperature and then centrifuged at 27 g for 

10min. The supernatant was removed and the cells were re-suspended in glucose free 

Tyrode solution containing 1.0 mM Ca2+. Experiments were started approximately 30 

min after washing to allow complete de-esterification of the fluorescent dye. To minimize 

phototoxic effects on Ca2+ transients, only 100 ul of stained cells were pipetted into the 

bath solution which was completely replaced after each exposure to the excitation light. 

The bath contained glucose free Tyrode solution with 1.0 mM Ca2+ at 37ºC, 

supplemented with an insulin/transferrin/selenium mixture (100X medium supplement, 
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41400, consisting of 10 µg/ml insulin, 5.5 µg /ml transferrin, 6.7 ng/ml sodium selenite, 

Gibco-Invitrogen) to improve the performance of the isolated cells at the high stimulation 

frequencies [293]. Myocytes were field stimulated at the physiological rate of 600 beats 

per minute via two parallel platinum wires. Fluorescence measurements were carried out 

using an inverted microscope (Axiovert 200, Carl Zeiss, Germany) equipped with a 63X, 

1.4 NA oil immersion lens (Plan Apochromat, Carl Zeiss, Germany). The excitation light 

was emitted by a monochromator (Optoscan, Cairn Research Ltd, UK) at a wavelength of 

365 ± 15 nm and reflected by a 390 nm dichroic mirror (390DRLP, Omega Optical). The 

fluorescence emission was split into two components by a second dichroic mirror 

(450DCLP, Omega Optical). The transmitted light was passed through a 495 ± 10 nm 

(495DF20, Omega Optical), and the reflected component was passed through a 405 ± 21 

nm bandpass filter (405DF43, Omega Optical). The light from each wavelength was 

collected by 1 mm diameter optical fibers mounted directly behind the emission filters 

imaging a ~16 µm diameter spot on the cell. The light from each fiber was collected by 

photomultiplier modules (H6780, Hamamatsu) and amplified by a custom-built low-noise 

DC coupled amplifier. The signals were digitized at a sampling rate of 20 KHz by an A/D 

converter board (PCI-6071E, National Instruments) in a conventional PC.  

 

Fluorescence calibration 

Intracellular Ca2+ measurements were converted to free [Ca2+]i according to the equation 

[110]: [Ca2+]i =Kd β [R-Rmin]/(Rmax-R)], using an in vivo dissociation constant of the 

dye of 844nM [146]. The β value, the ratio of the free to the bound indo-1 fluorescence 

was measured at 485nm. Rmin and Rmax were determined in vivo as previously 
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described  [146]. Indo-1 loaded cells were exposed to 10 mM caffeine twice to empty the 

SR stores and subsequently superfused with Ca2+-free Tyrode solution. The bath solution 

was then replaced with a Ca2+ buffer solution containing 5 mM EGTA and 10 µM of the 

nonfluorescent ionophore Br-A23187 (B7272, Sigma-Aldrich). Measurements were 

taken after the fluorescence reached stable values at both wavelengths. For Rmax 

determination, the metabolic inhibitor cyanide p-(trifluoromethoxy)-phenylhydrazone 

(3µM, C2920, Sigma-Aldrich) was added to the solution to avoid spontaneous 

contractions during the increase of the extracellular Ca2+ concentration. Cells were 

perfused for 15 min with EGTA-free solution containing 15 mM Ca2+ before Rmax was 

measured. The Ca2+ ionophore was present throughout the entire experiment. 

 

Sarcomere contraction measurement  

Sarcomere contraction was measured in single cells using a commercial contractility 

measurement system (Ionoptix) consisting of a 240 frames-per-second CCD camera 

(MYO100, Ionoptix) connected to a side port of the microscope, a frame grabber PC card 

(FRGRAB, Ionoptix) and an analog/digital converter (DSI200, Ionoptix) to record the 

stimulus. Data were acquired using the Ion Wizard software. Cells were field-stimulated 

at 240 beats per minute to obtain 60 data points for each contraction at the maximum 

acquisition rate of 240 frames per second. Although faster stimulation rates are more 

physiological and desirable, the limiting camera frame rate reduced the number of data 

points per contraction at higher frequencies. 
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Electrophysiology 

L-type Ca2+ current (ICa) was recorded in whole-cell mode voltage clamp configuration 

according to previously published methods  [294]. Briefly, pipettes (2-3 MΩ) contained 

(in mM): Cs+ 120, Ca2+ 3, Cl- 126, MgATP 1, NaGTP 1, phosphocreatine 5, HEPES 10, 

EGTA 10  [295]. The pH was adjusted to 7.2 with CsOH. The bath solution contained 

NT solution as described above with 10 µM palmitic acid and 1.8 mM Ca2+. Holding 

potential was -90 mV. ICa was measured during 500 ms test pulses at potentials from -

40mV to +40mV following a 50 ms pulse at -50 mV to inactivate the Na+ current  [158, 

169]. 

 

Data analysis and statistics 

Data were expressed as means ± SEM. Statistical analysis was performed by Student’s t-

test between VLCAD-/- and VLCAD+/+ myocytes. Data were analyzed with Matlab 

(R14, The MathWorks, Inc.). Ca2+ release and uptake, as well as sarcomere contraction 

and relaxation were fit to empirical mathematical functions for the purpose of calculating 

release and contraction rates by numerical differentiation. Ca2+ release was best fit by a 

modified model of RyR activation previously published [121]: 

  [Ca2+]i(t)=[Ca2+]max·(P(t)/1-P(t))n , where t is time, [Ca2+]max is the peak Ca2+ release, 

and P(t) the time-dependence of the Ca2+ release described by P(t)=(1-e-t/τ)m. The 

parameters τ, n and m were used as fit parameters. Ca2+ uptake was best fit by a sum of 

two exponential function [Ca2+]i=Ae-t/τ1+Be-t/τ2 where A, B, τ1 and τ2 were used as fit 

parameters. Sarcomere contraction and relaxation were fitted by the same functions after 

replacing the Ca2+ concentration by the sarcomere length in each equation. 
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Data were expressed as means ± SEM. Statistical analysis was performed by Student’s t-

test between VLCAD-/- and VLCAD+/+ myocytes. 

 

B.4 Results 

Polymorphic ventricular tachycardia and bidirectional VT in VLCAD deficient mice 

VLCAD +/+ and VLCAD-/- mice were used for this report. These mice, although 

viable, demonstrated easily inducible VT in the absence of physiological stress [290]. 

Ventricular tachycardia in the VLCAD deficient mice was consistently polymorphic.  VT 

with the typical bidirectional morphology with isoproterenol infusion is shown in Figure 

47 and is characteristic of patients with catecholaminergic ventricular tachycardia.  

Using programmed ventricular stimulation, ventricular tachycardia could be induced in 

6/12 (50 %) of VLCAD deficient mice compared with 2/16 (12 %) wild-type mice.  

Inducibility of ventricular tachycardia was increased in the VLCAD-/- mice to 10/12 (83 

%) when isoproterenol was used, while isoproterenol did not increase arrhythmia 

inducibility in wild type mice.  

 

 
Figure 47. Surface electrocardiogram (lead I) during VT in a VLCAD-/- mouse. ECG 
recording of bidirectional VT in a VLCAD-/- mouse. Arrows indicate positive QRS 
complexes and arrowheads indicate negative QRS complexes. The alternating QRS 
axis in lead I is typical of bidirectional VT. 
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Figure 48. Western blots for cardiac and skeletal muscle RyR isoforms.  (A) Western 
blot from whole heart for VLCAD, in wild type (+/+, VLCAD+/+) and homozygous 
deleted (-/-, VLCAD-/-), control lane, α-MMDH, Mitochondrial Malate 
Dehydrogenase.  (B) SDS-PAGE for subcellular fractions as observed with Coomassie 
Blue. Lane 1 M = Marker, lane +/+ = heart microsomes from the VLCAD+/+ mice, 
lane -/- = microsomes from the VLCAD-/- mice.  Asterisks denote typical 
characteristics of microsomal fractions from top to bottom (RyRs, myosin, Ca2+ pump, 
and calsequestrin) as previously described  [1]. Protein expression by Western blot 
analyses for the RyRs at two months of age in wild-type (+/+, VLCAD+/+) and 
homozygote deleted (-/-, VLCAD-/-). 45 µg of total protein was loaded per lane. (C)  
RyR2 expression in heart microsomes. (D) RyR1 expression in skeletal muscle 
microsomes. The faster mobility bands below the RyRs in C and D have been 
previously referred to as proteolytic cleavage products of the RyRs.  (E and F) 
corresponding densitometry for protein levels of RyR2 and RyR1 respectively.  All 
data are in mean ± SE from three experiments (* p<0.01, † p<.0002, VLCAD+/+ vs. 
VLCAD-/-). 
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Increased expression of ryanodine receptor 2 isoform in mouse hearts with fatty acid β-
oxidation deficiency 
 
Bidirectional VT is linked to excessive RyR activity [289]. We tested whether the RyRs 

were differently expressed in the VLCAD deficient mouse.  

Western blot analyses using isoform specific antibodies showed a 3.0 ± 0.8 fold increase 

in RyR2 expression in VLCAD-/- mice compared with VLCAD +/+ hearts (p<0.01, 

Figure 48B). We subsequently performed western blot analyses in skeletal muscle and 

brain tissue homogenates to assess the expressions of RyR1 and RyR3. We found that in 

VLCAD-/- mice RyR1 levels were increased 3.3  ± 0.1 fold in skeletal muscle, 

(p<0.0002, Figure 48C),  and RyR 3 levels were increased 2.4 ± 0.8 fold in brain 

homogenates (data not shown).  Densitometry to quantify RyR1 and RyR2 expression is 

shown in Figure 48E and F, respectively. Overexpression of RyR2 was confirmed in 

cardiomyocytes from VLCAD-/- hearts by immunoelectron microscopy (Figure 49A 

VLCAD+/+, B VLCAD-/-, C Negative control). We also quantified immunogold 

particles in the vicinity of the Z-line. The number of gold particles in the vicinity of the z-

line was 10 ± 4 particles for the VLCAD+/+ and 19 ± 4 particles for the VLCAD -/- mice 

(p<0.03, Figure 49D). Given a previous report of RyR localization in the mitochondria  

[296],  we also quantified gold particles present in the mitochondrial cristae of 

VLCAD+/+ and VLCAD-/- mice. The number of gold particles in the mitochondrial 

cristae was 4 ± 2 particles for the VLCAD+/+ mitochondria and 9 ± 3 for the VLCAD-/- 

mitochondria (p<0.003, Figure 49D).  
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Augmented ryanodine binding in microsomes from VLCAD deficient mice 

 

 
 
Figure 49. Representative immunogold staining of RyR2 in mouse heart and 
3[H]ryanodine binding assays.  A to D are related to RyR 2 specific antibody labeling of 
the myocardial sarcomeric units around the Z-line (arrow-heads) and the mitochondria 
(M ~ arrows).  (A). VLCAD +/+, (B). VLCAD-/-, and (C). Negative control lacking 
antibody in the VLCAD -/- mice. One should note the distribution of the gold particles, 
which appear to be less organized in the VLCAD-/- mice. The Particles are spread over 
the longitudinal tubules. These gold particles in the VLCAD -/- mice are also less 
organized over the mitochondria. (D). Quantitative assessment of gold particles in the 
vicinity of the z-line and over the mitochondria, *p< 0.03, comparing SR = 
Sarcoplasmic reticulum, † p<0.008 comparing mitochondria, VLCAD+/+ vs. VLCAD-/-
. (E) [3H] ryanodine binding assays. Ryanodine binding assays with RyR enriched 
microsomes and mitochondrial fractions from the VLCAD+/+ and VLCAD-/- mice. 
Binding assay results from four independent experiments in the microsomes and three 
independent experiments in the mitochondria are plotted as Mean ± SE, ‡ p<0.001 
comparing SR = Sarcoplasmic reticulum, § p<0.004 comparing mitochondria, VLCAD 
+/+ vs. VLCAD-/-. 
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We subsequently performed [3H] ryanodine binding assays with purified microsomal and 

mitochondrial fractions from the VLCAD+/+ and VLCAD-/- mice.  

Ryanodine binding was 1.7 ± 0.3 pmol / mg protein in the VLCAD+/+ microsomes and 

3.5 ± 0.2 in the VLCAD-/- microsomes (p<0.001, Figure 49E). Ryanodine binding assays 

in mitochondrial fractions were 1.16 ± 0.05 pmol / mg protein for the VLCAD+/+ 

mitochondria and 1.43 ± 0.05 for the VLCAD-/- mitochondria (p<0.04). We performed 

Ca2+ loading assays with heart microsomes to assess the sarcoplasmic reticulum Ca2+ 

content, using antipyrylazo III (APIII). We found no difference in Ca2+ loading in heart 

microsomes between the VLCAD+/+ and VLCAD-/- mice.  Loading rates were 29 ± 2 in 

the VLCAD-/- microsomes, compared with 34 ± 6 nmol/ min/ mg protein for the 

VLCAD+/+ control microsomes (p<0.2, VLCAD+/+ vs. VLCAD-/-), suggesting that the 

sarcoplasmic reticulum Ca2+ uptake capacity was not impaired in VLCAD-/- hearts.  

 

Enhanced SR Ca2+ release in VLCAD deficient Cardiomyocytes 

Given the hypothesis that arrhythmias due to RyR2 mutations are caused by enhanced 

Ca2+ release from the SR [284, 297], we subsequently measured Ca2+ transients in 

dissociated cardiomyocytes from the VLCAD +/+ and VLCAD-/- mouse, to test whether 

the observed RyR2 overexpression in VLCAD deficiency was associated with changes in 

intracellular Ca2+. 

We initially measured SR Ca2+ release by fluorescent imaging in the presence of either 

glucose or fatty acid substrates, using the Ca2+-sensitive dye x-rhod-1 (4µM, X14210, 

Molecular Probes-Invitrogen).  
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Our initial analyses using glucose in the recording solution showed no difference in the 

normalized fluorescent Ca2+ signals between the VLCAD +/+ and VLCAD-/- 

cardiomyocytes (Figure 50A and B, VLCAD+/+ and -/-, GL = Glucose).  

Because VLCAD deficiency is mainly a defect in fat metabolism and not of glucose 

metabolism, we investigated the effect of palmitate (C16-fatty acids) on the intracellular 

Ca2+ transient of the VLCAD+/+ and VLCAD-/- cardiomyocytes. We found that 

substitution of glucose by 10µM palmitic acid did not alter the SR Ca2+ release in the 

 
 
 
Figure 50. Palmitate enhances SR Ca2+ release in VLCAD-/- cardiomyocytes.  
Normalized fluorescence intensities using the cytosolic Ca2+ indicator x-rhod-1 in 
VLCAD+/+  and VLCAD-/- cardiomyocytes. There are changes in the time course of 
intracellular Ca2+ release when glucose is replaced with palmitic acid. (A). Mean x-
rhod-1 fluorescence upstrokes  measured in the presence of 10mM glucose (GL) or 
10µM palmitic acid (PA). (B) The averaged and normalized Ca2+ transient in 
VLCAD+/+ and VLCAD-/- cardiomyocytes with glucose and palmitic acid using x-
rhod-1 fluorescence. We used 10mM glucose (GL) in the bath solution from 
VLCAD+/+ (n=19) and VLCAD-/- (n=9) cells. We used 10µM palmitic acid (PA) for 
VLCAD+/+ cells (n=17) and VLCAD-/- (n=16).  Cells were field-stimulated at 10Hz 
and data were digitally low-pass filtered at 600Hz.  
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VLCAD+/+ cardiomyocytes (Figure 50A and B, VLCAD+/+, PA = Palmitate), but 

significantly altered the  Ca2+ transient of VLCAD-/- cardiomyocytes (Figure 50A and B) 

 
Increased Ca2+ release and systolic [Ca2+]i in VLCAD deficient cardiomyocytes with 
palmitate 
 

 
 

Figure 51. VLCAD deficiency is associated with increased release of Ca2+ 
from intracellular stores.  (A) Averaged intracellular indo-1 Ca2+ transients 
from VLCAD-/- (n=20) cells and VLCAD+/+ (n=18) cells field stimulated 
at 600 beats per minute. (B) Systolic intracellular Ca2+ was significantly 
increased in VLCAD-/- cardiomyocytes (n=20) compared with control 
(n=18), *p=0.003, VLCAD+/+ vs. VLCAD-/-.  (C) Maximum intracellular 
Ca2+ release rates were significantly increased in VLCAD-/- cells (n=20) 
compared to control (n=18), † p<0.001, VLCAD+/+ vs. VLCAD-/-. We 
also found an increase in SR uptake rate ‡ p<0.05, VLCAD+/+ vs. VLCAD-
/-.   (D) Both the duration of the Ca2+ release and the Ca2+ uptake were 
unaffected by VLCAD knockout in the same cells. 



 172

We proceeded to measure intracellular Ca2+ release and uptake with the ratiometric dye 

indo-1 (see Method section) in order to more precisely quantify the intracellular Ca2+ 

concentration ([Ca2+]i).  We found a 1.9 ± 0.3 fold increase of pacing stimulated SR Ca2+ 

release in the VLCAD-/- cells compared to the control. The absolute Ca2+ release was 

110 ± 18nM in VLCAD-/- and 59.6 ± 7.6nM in VLCAD+/+ myocytes (Fig. 5A). 

Similarly, systolic intracellular Ca2+ levels were also elevated in the VLCAD-/- mice. It 

was 806 ± 65 nM in the VLCAD-/- mice and 526 ± 58 nM in VLCAD+/+ controls (Fig. 

5B). As a result, diastolic [Ca2+]i , as calculated from the difference of the peak [Ca2+]i 

and  the Ca2+ release for each cell, was also increased 1.5 ± 0.20 fold in the VLCAD-/- 

cardiomyocytes. We also determined the maximum Ca2+ release rate as defined by the 

maximum time-derivative of Ca2+ release, expressed in units of nM per 100ms.  We 

found a 1.9 ± 0.2 fold increase in the maximum Ca2+ release rate from VLCAD-/- 

cardiomyocytes compared to the VLCAD+/+ control, with a maximum  Ca2+ release rate 

of 1170 ± 80 nM in the VLCAD-/- cells and 605 ± 56 nM in VLCAD+/+ cells per 100 

ms (Fig. 5C). In both groups, SR Ca2+ uptake rates were about five times slower than the 

release rates, with absolute amounts of 235 ± 10 nM and 138 ± 5nM per 100 ms in the 

VLCAD-/- and VLCAD+/+ control, respectively (Fig. 5C). Thus, the maximum Ca2+ 

uptake rates were increased 1.7 ± 0.1 fold in the VLCAD deficient cardiomyocytes, 

which was to be expected due to the increased Peak Ca2+ release in these cells. In 

contrast, the durations of the SR Ca2+ uptake and release as measured by the times from 

10 % to 90 % of the rise and the fall of the transients, respectively, were unchanged 

(Figure 51D).  
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Enhanced contraction velocity in VLCAD-/- cardiomyocytes 

 

We subsequently tested whether the defect in Ca2+ homeostasis at the cellular level led to 

changes in cardiomyocyte contractility in the VLCAD deficient mouse. We found that 

the time course of sarcomere contraction was hastened in the VLCAD deficient 

cardiomyocytes (Figure 52A), although there was no significant difference in the 

sarcomere contraction amplitude, which was 85 ± 15 nm in the VLCAD-/- cells, and 96 ± 

 
 
Figure 52. VLCAD deficiency leads to changes in the time course of the 
sarcomere contraction. (A) Representative normalized sarcomere contractions in 
VLCAD-/- cells (n=15) and VLCAD+/+ cells (n=16).  (B) Maximum amplitude of 
sarcomere contraction was found unchanged in VLCAD-/- cells (n=15) compared 
with VLCAD+/+ cells (n=16). (C) Width of contracion (D) Maximum rate of 
sarcomere contraction was significantly higher in VLCAD-/- cardiomyocytes, * 
p=0.016, VLCAD+/+ vs. VLCAD-/-. Sarcomere relaxation was found not affected 
in the VLCAD-/- cells. 
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11 nm in the VLCAD+/+ cells (Figure 52B), despite the increase in peak [Ca 2+]i (Figure 

51A and B). Diastolic sarcomere length was 1.75 ± 0.01 µm in the VLCAD-/- cells and 

1.74 ± 0.07 in the VLCAD+/+ cells. The width of the sarcomere length transient was 

defined as the time from 50 % of sarcomere contraction to 50 % of sarcomere relaxation. 

It was 70 ± 5 in the VLCAD+/+ and 51 ± 3 in the VLCAD-/- cells (Figure 52C).  

Maximum contraction velocity was defined by the maximum time-derivative of the 

contraction amplitude and was expressed in units of µm per 100 ms. The maximum 

contraction velocities were 0.42 ± 0.03 µm in the VLCAD-/-, and 0.33 ± 0.02 µm per 100 

ms in VLCAD+/+ cells (Figure 52D). Time from 10 % to 90 % of the maximum 

sarcomere contraction was shorter in the VLCAD-/- cells.  Contraction times were 25 ± 1 

ms in the VLCAD-/- cells and 32 ± 2 ms in the VLCAD+/+ cells (Figure 52E).  

Sarcomere relaxation was not changed in the VLCAD +/+ and VLCAD-/- cells (Figure 

52D and E). We found no differences in the maximum sarcomere relaxation velocities 

(Figure 52D) and the times from 90 % to 10 % of sarcomere relaxation (Figure 52E) 

between the VLCAD+/+ and VLCAD-/- cardiomyocytes. 

 

Altered Ca2+ release in VLCAD deficient cardiac myocytes is not due to changes in ICa 

We subsequently tested whether the increase in SR Ca2+ release was due to changes in ICa 

in the presence of palmitate. The slow and the fast time constants of the inactivation at 

0mV were unchanged, with 92 ± 6 ms and 12 ± 4 ms in the VLCAD-/- and 92 ± 5 ms and 

12 ± 3ms in the VLCAD+/+ cells, respectively  

Figure 53A). We measured the current-voltage relationship of mean peak ICa and found 

no difference in the in the VLCAD-/- and the VLCAD+/+ cells (Figure 53B).  
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These data suggest that the observed changes in intracellular Ca2+ release in VLCAD-/- 

cells in the presence of palmitate are not due to the amount of Ca2+ entering the cell 

through sarcolemmal L-type Ca2+ channels.  

 

 
 
Figure 53 VLCAD deficiency does not lead to changes ICa. (A) Current-voltage 
relationships of mean peak ICa recorded in VLCAD-/- (n=7) and VLCAD+/+ 
(n=5) cardiomyocytes. (B) Representative ICa traces in VLCAD-/- (n=7) and 
VLCAD+/+ (n=5) cells. 
 



 176

Inactivation of the VLCAD gene in mice leads to alterations in other calcium related 
proteins in heart 
 

Although changes in calcium homeostasis in the mouse heart appear to be mainly a defect 

in SR Ca2+ release, we also tested whether VLCAD inactivation led to alterations in other 

calcium related proteins. We found that in addition to increased RyR expression (Figure 

48), western blot analyses showed a modest increase in calsequestrin levels (Figure 54A), 

 
 
Figure 54. Western blot analysis of SR proteins involved in CICR. Western blots are 
for A) calsequestrin,  B) SERCA, C) Monomeric and pentameric phospholamban, 
D) Monomeric phospholamban at different protein concentrations.   Densitometry 
for protein levels is given with each representative blot, and it is calculated from  
three independent experiments, (*p< 0.01, † p<0.001, VLCAD+/+ vs. VLCAD-/-)  
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which suggests an increase in absolute SR Ca2+ content.  Protein levels of sarcoplasmic 

reticulum Ca2+ adenosine triphosphatase (SERCA) were not changed (Figure 54B).  

Similarly, there were no significant changes in the protein levels of the monomeric form 

of phospholamban (boiled products, Figure 54C and D), although the pentameric form of 

phospholamban (PLN) was increased 6.0 ± 0.9 fold in the VLCAD-/- cells (non-boiled 

Figure 54C, VLCAD-/-) compared with control (non-boiled Figure 54C,  VLCAD+/+). 

 

B.5 Discussion 

VLCAD deficiency and Cardiac EC coupling 

The present data show for the first time that there might be a link between genetic 

defects in mitochondrial fatty acid oxidation and calcium disorders in the heart. Our 

results show that VLCAD deficiency leads to significant changes in the intracellular 

calcium release (Figure 51) and sarcomere contraction (Figure 52). In VLCAD-/- cells, 

Ca2+ release was significantly higher and faster. This may have lead to the increased 

contraction velocity observed in these cells (Figure 52), although the amplitude of 

contraction was the same in both groups. VLCAD ablation did not alter the amplitude of 

the trigger calcium current, ICa, nor did it change the time course of ICa inactivation. 

Taken together, our data suggest that VLCAD deficiency increases the gain of the cardiac 

EC coupling. 

 

VLCAD and SR protein expression 

We found significant RyR2 overexpression in whole heart tissues as evidenced by 

isoform specific Western blot analysis (Figure 48) and immunoelectron microscopy 
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(Figure 49), the latter revealing increased ryanodine receptor localization in the 

mitochondria of the VLCAD deficient cardiomyocytes. These changes in ion channel 

expression may be part of compensatory molecular events that occur in the absence of the 

VLCAD gene. Similarly, calsequestrin was overexpressed in VLCAD-/- myocytes 

indicating an increased amount of Ca2+ stored in the SR of the VLCAD-/- cells.  

Taken together, VLCAD deficiency likely increases intracellular Ca2+ release by 

increasing Ca2+ stores and the number of Ca2+ release channels. Consequently, the ratio 

of the pentameric to the monomeric form of PLN was increased in the VLCAD-/- cells 

indicating a higher level of PLN phosphorylation. This may be a compensatory response 

to VLCAD ablation aimed to increase SR Ca2+ pump activity in the setting of an 

increased [Ca2+]i release and possibly higher diastolic intracellular calcium concentration, 

but without an increase in SERCA2a expression (Figure 51 and Figure 54). 

 

VLCAD and energy metabolism 

We have previously shown that VLCAD deficient mice have a number of biochemical 

changes, suggestive of complex alterations in lipid metabolism and lipid transport that are 

present in the heart at birth, while ultra structural abnormalities develop postnatal [227]. 

It is therefore conceivable that several of these biochemical changes directly relate to the 

disease phenotype. Mitochondria in the VLCAD-/- heart muscle are larger, more variable 

in size and morphology, and fill a substantially larger portion of the sarcoplasmic 

volume. Although the slow mitochondrial Ca2+ fluxes might not contribute to EC 

coupling on a beat-to-beat basis, small graduate changes in mitochondrial calcium 

concentration ([Ca2+]m) may influence mitochondrial energy production and cytosolic 
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calcium concentration. Mitochondria can accumulate massive amounts of Ca2+, as much 

as 100nmol Ca2+ per mg mitochondrial protein (corresponding to 10 mmol per liter 

cytosol, assuming 40 mg mitochondrial protein per g wet weight), although under 

physiological conditions, [Ca2+]m is likely to be much smaller [298]. [Ca2+]m increase can 

occur when energy demands are relatively high, i.e. when contractile activation and Ca2+ 

pumping are consuming ATP at high rates, or when cellular energy production is low. 

The rise in [Ca2+]m provides a negative feedback on mitochondrial ATP production and 

eventually compromises the mitochondria  [299]. Our results show that despite the larger 

size and the larger amount of mitochondria, total ATP production was not increased in 

the VLCAD-/- hearts. Therefore, mitochondrial metabolism was in fact depressed. The 

increased diastolic indo-1 fluorescence (Figure 51) would support the hypothesis that 

more Ca2+ is stored in the mitochondria of the VLCAD-/- cells than in the mitochondria 

of the VLCAD+/+ control cells, thereby increasing the time-independent fluorescence 

signal. A larger mitochondrial Ca2+ load would also suggest that an increased Ca2+ 

release into the cytosol via Na/Ca exchange when [Na+]i is high [300]. The increased 

number of RyR2 that we found in the mitochondria may support this hypothesis (Figure 

49). However, further experiments are needed to decide whether the increase in diastolic 

indo-1 fluorescence (Figure 51) was in fact due to an increase in free [Ca2+]i or possibly 

caused by significant Ca2+ accumulation in the mitochondria. This, in turn, would point to 

a more important role of [Ca2+]m in the hearts of the VLCAD deficient mice. 
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VLCAD and substrate dependence of [Ca2+]i 

At a molecular level, palmitate cannot be readily metabolized in the absence of VLCAD, 

and fatty acids likely accumulate in the VLCAD-/- cells. While RyR2 and calsequestrin 

overexpression may have caused the larger Ca2+ transient amplitude in the VLCAD-/- 

cells, the observed changes in the time course of the normalized Ca2+ transient in these 

cells seemed to be substrate dependent as they did not occur when the recording solution 

contained glucose instead of palmitate (Figure 50). Our study was focused on the effects 

of VLCAD deficiency on proteins which are involved in EC coupling and we addressed 

possible mechanisms in single cardiac myocytes that could lead to the arrhythmia 

observed in the VLCAD-/- mice. Most of our experiments were performed under the 

same energy substrate conditions. However, Figure 50 warrants further investigation 

whether the accumulation of toxic metabolites lead to the observed changes in 

intracellular calcium signaling and sarcomere contraction. 

 

Clinical relevance of this study 

Pediatric patients with VLCAD deficiency often present with acute episodes of 

arrhythmias and death without prior evidence of myocardial dysfunction. We have 

created a knock out mouse model of VLCAD deficiency in which polymorphic VT and 

bidirectional VT were much more likely to be induced by programmed stimulation (50 

%) or by isoproterenol infusion (83 %) than in the wild-type control. The features of 

these arrhythmias observed in the VLCAD-/- mice mimic the electrophysiological 

consequences of mutations in the cardiac ryanodine receptor in humans. Using 

dissociated ventricular cardiac myocytes from VLCAD-/- mice, we have demonstrated 
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that the genetic defect in the fatty acid metabolism resulted in a compensatory increase in 

the intracellular calcium transients leading to changes in sarcomere contractility.  Our 

results indicate that intracellular calcium dynamics was altered in VLCAD-/- cells with 

fatty acid substrates and may therefore also point to the molecular basis for lipidosis 

induced arrhythmias in other cases of fatty acid oxidation deficiency. Long-term follow-

up of patients with VLCAD deficiency has been limited by the fact that most of the cases 

present in childhood with sudden death and cardiac dysfunction. However, patients may 

survive into adulthood with rare reported complaints of skeletal myopathy, 

encephalopathy, and normal structural heart. In this present work we provide first 

evidence in mice that abnormal fat metabolism caused by genetic deletion of the VLCAD 

gene is associated with increased intracellular calcium release, increased diastolic 

calcium concentration and increased sarcomere contractility in single cells which could 

lead to delayed afterdepolarizations in the heart, a known cause of ventricular 

tachycardia. Further studies are necessary to determine whether the changes identified in 

isolated cardiomyocytes and ventricular tissue in fact contribute to the disease phenotype 

that causes sudden death mice and in humans. 
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