
DEVELOPING SCADA SIMULATIONS WITH C2WINDTUNNEL

By

Andrew Davis

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

Master of Science

in

Computer Science

May, 2011

Nashville, Tennessee

Approved:

Professor Gabor Karsai

Professor Yuan Xue

ACKNOWLEDGEMENT

This work was supported in part by TRUST (Team for Research in Ubiquitous Secure

Technology), which receives support from the National Science Foundation (NSF

award number CCF-0424422) and the following organizations: AFOSR (#FA9550-

06-1-0244), BT, Cisco, DoCoMo USA Labs, EADS, ESCHER, HP, IBM, iCAST,

Intel, Microsoft, ORNL, Pirelli, Qualcomm, Sun, Symantec, TCS, Telecom Italia and

United Technologies.

ii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENT . ii

LIST OF FIGURES . iv

Chapter

I. INTRODUCTION . 1
SCADA Systems . 1
SCADA Security . 2
Security Threats . 3
Simulating SCADA . 5

II. BACKGROUND . 7
SCADA Systems . 7

Architecture . 8
C2WindTunnel . 12

GME . 12
Matlab/Simulink . 13
OMNeT++ . 14
Portico . 14

The High Level Architecture . 15
History and Motivation . 15
System Architecture . 16
Data Types . 17
Data Flow . 18
Publishing Data . 19
Subscribing to Data . 20
Time Management . 21

III. IMPLEMENTATION . 25
OMNeT++ Integration . 25

Time Management Policy . 25
Interaction Management . 33
Network Routing . 36

GME Additions . 40
Windows Support . 42

IV. CASE STUDY . 45

V. CONCLUSION . 52
Future Work . 52

iii

LIST OF FIGURES

Figure Page

1 Typical SCADA architecture . 9

2 Field device control loop . 10

3 HLA architecture . 17

4 Time advancement state diagram . 23

5 Event-driven federate scheduler code 26

6 Time-stepped federate scheduler code 28

7 OMNeT++ scheduler-module barrier workaround 30

8 Time-stepped module-based federate code 32

9 Data flow for a simulated network packet 33

10 GME network interface . 37

11 GME network interface with multicast 38

12 Ambiguous GME network model . 38

13 Ambiguous GME network model workaround 39

14 Changes to HLA metamodel . 41

15 Modeling interactions in GME . 46

16 Modeling federates in GME . 47

17 Modeling federation deployment in GME 48

18 Plant model in Simulink . 49

19 Controller model in Simulink . 49

20 Liquid level setpoint . 51

iv

CHAPTER I

INTRODUCTION

Industrial control systems form the backbone of countless industries affecting nearly

every basic service modern society requires. These large networked computer systems

are used to manage the production and distribution of electric power, the treatment

and disposal of sewage, and the production of food and pharmaceuticals, among

countless other vital tasks [12]. Their prominent and increasing importance in modern

life makes them and important asset whose safety and security must be protected.

Unfortunately, securing these systems is a complex and difficult task and one to which

too little attention has been paid in the past. In light of the growing prevalence of

cyber attacks on the computer networks and systems in the infrastructure of major

nations, an understanding of the vulnerabilities of industrial control systems and an

investigation of appropriate and effective mitigation techniques is of vital importance.

SCADA Systems

The computer systems used to monitor and control major infrastructure are known by

various names, among the most common Supervisory Control and Data Acquisition

(SCADA) systems. The system’s name reflects its basic functions: it must provide

data related to the operating state of the system and allow operators to remotely

control the distributed system. By utilizing these services, system operators can

effectively respond to changes in the process operating conditions or adapt to evolving

production goals or changing corporate directives.

The rising prevalence of SCADA systems in infrastructure is a result of the variety

of benefits such systems can provide to the businesses that operate them. By shift-

ing away from purpose-built hardware towards more flexible full-featured hardware

running operation-specific software, development of control systems can be accom-

1

plished more quickly and at lower cost. Specialized interfaces can be designed for

system operators that minimize the difficulty of management and allow rapid and

effective reactions to changing process conditions. The use of SCADA systems al-

lows high-level management of the industrial process by merging data from the many

distributed portions of the process. This can help enhance the robustness and relia-

bility of the system. Finally, flaws in the design of the control system can be more

easily addressed and operators may receive maintenance and support from vendors of

SCADA software and hardware. Taken as a whole, these benefits provide a powerful

incentive to migrate to SCADA solutions for control of complex distributed processes

[17].

SCADA Security

In past control systems, security concerns were considered to be of less importance

and commanded less attention and investment of resources than safety concerns. The

networks employed to interconnect the many field devices required for process op-

eration were typically well isolated from any outside interference. Connections to

corporate networks or other external networks were not prevalent [12], which mini-

mized the risk of outside interference in system operation. Intrusion could only have

been accomplished with physical access, so physical security measures were sufficient

to repel computer-based attacks. As these systems began to change and became more

interconnected, however, operators began to recognize that cyber security was a real

concern that must be addressed in order to maintain the safety and reliability of

process control.

A number of changes in modern SCADA systems drive the increasing interest and

investment in techniques to manage cyber security threats. The shift from purpose-

built hardware to more flexible off-the-shelf processors running embedded operating

systems and operation-specific software is a boon for flexible and cost-effective de-

2

sign and deployment of control systems. However, this flexibility results in enhanced

capabilities available to attackers who can easily gain access to the same hardware

and software used by the control system. An increase in complexity also exposes

modern SCADA systems to a larger number of implementation flaws which may be

be exploited by attackers to gain control over the system. Increasingly, SCADA sys-

tems are connected to corporate or other external networks. This allows the business

to operate more efficiently and remain competitive by enabling business leaders to

track and control production in real time and react quickly to evolving production

goals and changing market conditions. However, such increased connectivity exposes

control systems to an enlarged attack surface. Penetrating the control network could

be accomplished without physical access to the system by remote attackers exploiting

vulnerabilities in the gateway between the corporate and control networks. Finally,

the increasing use of commercial off-the-shelf (COTS) and open-source software de-

creases development and deployment costs, but means that attackers need to acquire

less insider knowledge of the operation of the control system than was required when

proprietary hardware and protocols were more prevalent [14]. The rapidly evolving

landscape of SCADA systems warrants an increased understanding of and focus on

their protection from cyber attacks.

Security Threats

Additional investment in SCADA security is further justified by the existence and

rising incidence of network attacks on control systems. The British Columbia Institute

of Technology began collecting data related to security attacks on industrial control

systems in the mid-1990’s. The Industrial Security Incident database was able to

capture a marked increase in cyber attacks in the decade it collected incident reports

[13]. Two well-known attacks on SCADA systems further illustrate the need for

security investment: the Maroochy water breach and the Stuxnet worm.

3

The operators of the Maroochy water services system in Queensland, Australia

began noticing issues with the operation of their wastewater pumping stations in

March 2000. These stations were behaving erratically, were not responding to the

control signals of operators, and were failing to issue appropriate alarm signals. Op-

erators were initially unable to determine the source of the disturbance. It was not

until the results of three months of monitoring the communications and behavior of

the pumping station that the cause was determined to be a cyber attack. During

that time, a disgruntled former employee was able to release one million liters of

untreated sewage into the environment [26]. The difficulty operators experienced in

detecting and diagnosing this attack is a compelling example of the damage that a

can be caused by a knowledgeable insider acting maliciously.

The Stuxnet worm provides a more recent example of why protecting critical

infrastructure is an important part of national security. This complex malware was

first identified in June 2010 and was likely targeted at SCADA systems in Iran [18].

Stuxnet was able to exploit four zero-day vulnerabilities in Windows, allowing it to

infect field devices controlling centrifuges in a Natanz nuclear facility. The malware

was then able to maliciously vary centrifuge speeds to force them outside normal

operating conditions and sabotage the system [19]. This attack is significant because

it illustrated the capabilities of cyber attacks on critical infrastructure and highlights

their potential use in cyber warfare.

Although investment in cyber security for industrial control systems is well justi-

fied, it is not immediately obvious that SCADA security represents a new challenge

that has not previously been addressed by traditional network security research and

practice. SCADA security differs from traditional network security in a number of

important ways, however. Unlike most corporate networks, SCADA systems interact

with the physical environment and control systems that are critical to the safety and

productivity of the community they serve. Malfunctions and loss of availability of

4

these systems can cause massive economic damage or even loss of life. This interaction

with the physical environment also provides opportunities to researchers in SCADA

security, however. Because the physical environment responds to the control system

in predictable ways, computer models of the physical process can be used to help

detect network attacks. SCADA systems usually require very high availability, mak-

ing security patches a significant challenge rather than the minor inconvenience they

represent to the typical corporate network. In addition, SCADA systems are often

deployed with decades-long expected lifetimes meaning securing legacy hardware from

modern cyber attacks is an unavoidable part of SCADA security. Finally, SCADA

systems typically employ a stable and predictable network topology and communica-

tion pattern, meaning intrusion detection systems designed with SCADA topologies

in mind have the potential to be particularly effective [14]. Because SCADA security

differs from traditional network security so widely, with a variety of additional chal-

lenges and new opportunities, it cannot be approached solely from the perspective

of currently available network security research, but must be investigated as its own

research area.

Simulating SCADA

The differences in SCADA security and traditional IT approaches mean that even

reliable and trusted solutions cannot be applied without significant testing. The

potential damage of malfunctions and loss of availability of critical infrastructure

further necessitate thorough testing. However, testing new solutions for SCADA

systems is not easily accomplished. Live systems clearly cannot be used because of

the potential damage unintended consequences could cause. Developing parallel but

inactive systems for the purpose of testing is an approach that is often viable for

testing network security, but would be prohibitively expensive for testing complex

infrastructure installations. Instead, the complexity of SCADA systems calls for a

5

thorough software simulation to help uncover the benefits and consequences of novel

security solutions.

Simulating SCADA solutions is a complex and difficult task, however. Because

the development of a single-purpose simulation that captures the behavior of only

a single system would be inefficient and costly, simulations should be composed of

simple and reusable simulation components. Simulators dealing with the industrial

process, the controller software, and the intervening network could be combined to

form a simulation of the SCADA system as a whole. This requires coordinating

a variety of simulation engines, each with a different set of internal data and with

varying approaches to the progression of time and events. The task of coordinating

these diverse simulations is the goal of the C2WindTunnel project.

The C2WindTunnel platform was designed to facilitate the evaluation of novel

approaches to military command and control [22]. It is able to coordinate a vari-

ety of heterogeneous simulations in disparate problem domains to form a simulation

of greater detail and broader scope. The C2WindTunnel software architecture is

readily applicable to the problem of coordinating heterogeneous simulations for the

purpose of SCADA security evaluation. My work focuses on modifying and enhancing

C2WindTunnel to reflect the requirement of SCADA simulation.

Chapter II provides background information for SCADA systems and the C2WindTunnel

platform. Chapter III describes the implementation of the C2WindTunnel extensions

created to facilitate SCADA simulation. In chapter IV, a case study is presented,

demonstrating the design of a SCADA simulation with C2WindTunnel. Finally, chap-

ter V provides conclusions and a discussion of possible future work.

6

CHAPTER II

BACKGROUND

This section provides background information related to the architecture and opera-

tion of SCADA systems, the C2WindTunnel project used to coordinate heterogeneous

simulations, and the software platform on which C2WindTunnel is built, the High

Level Architecture.

SCADA Systems

A wide variety of industrial processes are managed via computerized control systems,

and their diverse purposes mean that industrial control systems themselves are diverse

in implementation.

The term SCADA is most frequently used to describe systems whose assets are

highly distributed geographically. The control of electrical grids and oil and gas

pipelines, for instance, involves aggregating sensor measurements from hundreds of

widely dispersed field devices so that operators can use a centralized control interface

to manage the whole process in real time. Field devices are located physically close

to the portion of the process that must be controlled, and monitor sensors and drive

actuators connected to the process. They are connected to the SCADA control center

via a wide area network which may use a variety of topologies and protocols and be

wired or wireless. Such systems must typically take into account the low bandwidth

and relative lack of reliability of the networks in use, perhaps employing fault-tolerant

hardware and algorithms. In addition, they must typically contend with legacy hard-

ware and protocols since widely dispersed hardware devices are difficult and expensive

to upgrade [14].

Much smaller scale operations, such as chemical manufacturing plants and phar-

maceutical processing facilities, are also examples of SCADA systems. These ge-

7

ographically localized processes may reside entirely within a single plant floor and

are sometimes differentiated from geographically dispersed SCADA systems with the

term Distributed Control Systems (DCSs) [14]. These systems use field devices that

are located physically close to the portion of the process under control and are con-

nected to the master control center via the control network. The control of the whole

process is modularized with the use of local controllers to provide fault tolerance and

reduce the impact of a malfunction at a single field device. DCSs typically use a highly

reliable and relatively high bandwidth LAN to connect field devices with the control

center. In addition, physical security may be more effective since a geographically

centralized system is less difficult and expensive to protect.

Although the systems that employ SCADA are widely varied in topology, scale,

and purpose, they are unified by a single type of architecture. The recognition of

their fundamental similarities is important to the research of SCADA security, since it

allows researchers to make use of general models of the class of the class of all SCADA

systems. This general model is composed of four major parts: the process to be

controlled, the field devices physically connected to it, the centralized control center,

and the network that connects the controller and field devices. The relationship

between these components is shown in figure 1.

Architecture

The process is the physical phenomenon that operators seek to control. This portion

of the system will be distinct in all SCADA systems. The process typically can

be broken down into a number of smaller control problems. For instance, a plant

producing a particular chemical in a reactor may need to control the temperature

and pressure of the reaction as well as the volumes of the reactants. Each of these

may be considered separate control problems, with local controllers engaged in the

maintenance of each variable within established operating limits. However, these

8

Figure 1: Typical SCADA architecture

variables are interrelated; the pressure and volume of reactants of the reactor affect

its temperature and vice versa. Local controllers performing localized tasks cannot

effectively maintain the high level operation of the system, necessitating a centralized

master control system to perform this task.

Field devices interact with the process via sensors and actuators. They are some-

times termed Programmable Logic Controllers (PLCs), reflecting the fact that they

act as controllers on a local level. Field devices deal with a localized control prob-

lem, but also send updates and receive commands from the master controller so that

their local control loop can be operated in accordance with the overall process control

strategy. For instance, a field device controlling the liquid level in a tank may receive

liquid level readings from a sensor and be able to maintain the appropriate level by

using an actuator that controls a runoff valve. Its local control problem would be to

maintain the liquid level in the tank within some tolerance of a set value. Because

this setpoint value is likely affected by other factors in the process, however, the field

9

device would receive commands to set this value from the centralized control center.

Because the state of the local control problem likely affects other the state of the

process as a whole, the field device would send regular sensor updates or alarms to

the control center. This forms a high level control loop that drives the lower level

localized control loops. The local control loop’s operation and relationship to the

rest of the SCADA system is diagrammed in figure 2. Field devices may connect to

a single sensor or actuator or may be connected to a large network of sensors and

actuators and maintain a complex local control loop.

Figure 2: Field device control loop

The control center acts as the master controller, maintaining the high level oper-

ation of the process. Many field devices are employed by SCADA systems to operate

local control loops, each affecting a single control problem, but in a atypical process

these control problems are interrelated. For instance, the control system operating a

canal may use a large number of field devices controlling the water levels in a system

of locks. Because the control strategy of one lock directly affects the control strategy

of its neighbors, a high level strategy must be employed to ensure correct operation.

The control center sends control commands and receives sensor updates from the

10

field devices to allow this high level control. Depending on the SCADA deployment,

control centers may operate automatically or rely on the intervention of human oper-

ators. The control center provides the interface to the human operators of the system.

This interface is called the Human Machine Interface (HMI) and allows the operators

to see an aggregated view of the state of the process and provides the means to send

control commands to field devices in order to maintain correct operation. A control

center may include several HMIs, each reflecting the requirements of its users. For

instance, administrators and business managers require a different set of data and

controls than system engineers. The control center is connected to field devices via

the control network, and may also be connected to a corporate network or WAN to

allow remote access to engineers and business administrators.

The connection between the control center and field devices is provided by the

control network. This may be a wired or wireless network and may operate with a

variety of network protocols. Some control networks use TCP/IP while others use

fieldbus protocols, which are simple protocols designed around the sensor update and

control command communication patterns of SCADA networks [23]. Depending on

the process, it may be important to provide real time guarantees or provide fault

tolerant or redundant networks.

Communication on control networks typically consists of control commands from

the control center and sensor updates from the field devices. The communication can

be asymmetric, with sensor messages being larger and more frequent than control

messages. Sime field devices communicate at fixed intervals while others use alarms

to communicate only significant events. Prioritization of important control messages

over bulk senor readings is a typical communications requirement, as is some guar-

antee on the timeliness and stability of message delivery [23].

11

C2WindTunnel

C2WindTunnel is a software platform designed to make the design and implementa-

tion of large-scale multi-part simulations easier and more efficient through the use of

model-based design techniques [22].

C2WindTunnel was designed to aid in creating detailed simulations for the mili-

tary command and control domain. Command and control environments are complex

and cannot be simulated by a single monolithic platform. Instead, C2WindTunnel

employs the HLA framework to integrate multiple simulations into a more detailed

multi-part simulation called a federation. In addition, C2WindTunnel uses the GME

modeling tool to allow rapid federation design in a graphical modeling environment.

Like command and control simulations, SCADA simulations are complex and can ben-

efit from the techniques used by C2WindTunnel. For this reason, my work focuses

on adapting the C2WindTunnel platform for SCADA simulations. In this section,

background related to the components of C2WindTunnel is provided.

GME

Developing a federation is a complex task involving the definition of a large hierarchy

of data classes and specification of an array of federates, each with its own timing

and data flow information. Designing and maintaining such a large system can be

a challenging task, so the C2WindTunnel platform makes use of graphical modeling

techniques to help ease this burden. The Generic Modeling Language (GME) [1] is

employed to provide users of the system with an easy-to-use graphical interface for

modeling complex federations.

GME is a toolkit for creating domain specific modeling languages (DSMLs) with a

graphical interface based on UML class diagrams. With GME, a model designer can

specify the entities of interest in the problem domain as well as define the set of valid

relationships among them. GME allows the creation of a DSML specifically tailored

12

to the needs of system designers working in a particular problem domain. The ease

of use of GME and its convenient interface allow the modeling language to evolve

over time as the needs of the system designers become more clear [1]. These DSMLs,

called paradigms in GME, allow domain experts to work within the domain of their

particular problem, reducing complexity and increasing efficiency when compared to

the difficulty of using a general purpose modeling language.

GME also allows paradigms to be extended with tools called model interpreters.

Model interpreters are software components that parse user-created models in order

to provide additional domain-specific functionality. For example, a model interpreter

could generate executable code based on the user-create model.

The C2WindTunnel platform provides a GME paradigm for modeling HLA fed-

erations and includes a set model interpreters that generate federate code and other

artifacts needed to run the federation execution.

Matlab/Simulink

Matlab[4] is a programming language and numerical computing environment designed

to support a wide range of problem domains. Matlab allows users to write efficient

code for numerical operations and provides a large library of functions for mathe-

matical computing and data visualization. In addition, Matlab can interface with

other programming languages, especially C, C++, and Java code. Simulink[8] is a

Matlab package that adds support for model-based design of dynamic systems. With

Simulink, users can design a continuous time simulation using a graphical interface

based on connecting elements called blocks. Blocks may perform simple built-in func-

tions, such as adding values or plotting variables, or may be drawn from the extensive

libraries provided with the Simulink package to perform more complex domain-specific

tasks. In addition, users can create custom blocks with code written in Matlab, C, or

C++ and can import and use Java packages. Matlab and Simulink are widely used

13

in the control theory domain, making them useful simulation engines for SCADA

simulations. Specifically, plant and controller federates can be designed in Simulink

with HLA support provided by C2WindTunnel.

OMNeT++

OMNeT++[6] is a discrete event simulation framework focusing on computer network

simulations. OMNeT++ is an open source tool and allows users extensive low-level

control over its scheduling algorithm used and other simulation details. Although the

tool is not limited to network simulation, and provides primitives that can be used to

create arbitrary discrete event systems, an extensive set of libraries are available to

handle the details of popular networking protocols such as TCP and IP. For example,

the INET library allows network modelers to include commonly used networking

nodes like routers and TCP/IP hosts. The simulated network can be designed using

the provided graphical interface or by manipulating simulation files in OMNeT++’s

custom scripting language, NED. Network modelers must define the nodes in the

network, the messages types that can be passed among them, the connections between

nodes, and any configuration parameters needed by the included nodes. In addition to

using nodes provided by OMNeT++ and its libraries, users can write modules in C++

that can be configured with the NED scripting language, allowing implementation of

custom behavior. SCADA simulations can use OMNeT++ to model a control network

in a SCADA system, with HLA integration support provided by C2WindTunnel.

Portico

C2WindTunnel is baed on the HLA architecture, which handles the coordination of

time and data passed between federates. The Runtime Infrastructure (RTI) is the

software component that implements this functionality. Since the HLA is a pop-

ular standard, a number of RTIs are available, both commercial and open-source.

14

Portico[7] was chosen for the C2WindTunnel platform because it is open-source, im-

plements a significant portion of the standard, and provides both C++ and Java

bindings. Portico has the additional advantage that it does not require a central-

ized daemon to be started before the federation can begin. Instead, federates can be

started at any time and will coordinate federation setup in a distributed manner.

The High Level Architecture

The High Level Architecture (HLA) is the underlying software architecture used by

C2WindTunnel to facilitate the sharing of data and coordination of time among the

many diverse simulators that make up a SCADA simulation.

History and Motivation

The High Level Architecture (HLA) was developed to allow many independently

developed simulations to be combined into a larger and more complex simulation.

Modern simulations are rarely so simple that a single simulator, designed for a single

problem area and used solely for one task, will be a cost-effective investment. Many

modeling and simulation challenges involve the composition of a variety of domains,

so when a simulator is created to address the narrow focus of a single challenge,

significant effort is duplicated and resources are wasted. The HLA was designed to

alleviate this problem by allowing diverse simulators, each designed for a particular

problem domain, to be interconnected.

The U.S. Department of Defense recognized simulators as significant defense as-

sets, and recognized that new simulators could not repeatedly be created to meet

constantly changing user needs and to incorporate frequent technological advances.

In addition, it recognized that no single simulation could be complex and detailed

enough to meet the diverse array of modeling and simulation challenges presented to

the department. For this reason, in 1994 the Department of Defense began efforts to

15

create a simulation architecture that would facilitate simulator composition and reuse

[16]. In 1998, the Defense Modeling and Simulation Office released the first completed

specification, HLA 1.3, and produced an implementation later that year [20]. Since

that time, many commercial and open-source implementations of the specification

have been produced. The HLA became an IEEE standard in 2000 [24], with the most

recent revision of the standard having been completed in 2010 [11].

System Architecture

A simulation designed to use the HLA consists of a set of simulators known as fed-

erates that are interconnected into a larger simulation known as the federation. The

set of federates may include simulators in distinct problem domains with diverse in-

ternal representations of simulation data and may even use different models of time.

The HLA is flexible enough to allow discrete event simulators to interoperate with

continuous time simulators, for instance. The task of the HLA is to coordinate the

diverse set of federates and allow them to communicate while maintaining a mean-

ingful progression of time for the overall federation. A single run of the federation,

in which all federates execute together, is a federate execution.

The basic architecture of the HLA is composed of three parts: the Runtime In-

frastructure (RTI), the Federation Object Model (FOM), and the set of federates

used in the federation. The RTI is the underlying software that facilitates commu-

nication between the federates. Federates are not directly connected to one another,

but instead are all connected to the RTI. The RTI implements the logical connec-

tion between the federates by passing messages between them when requested and

assuring that no single federate strays irrevocably from the common federation time

it maintains. The FOM is an object model that represents the data types available

to the federation. The FOM is common to each federate and allows data objects sent

from one federate to be received and interpreted by another [20]. The relationship

16

between the components in the HLA architecture is shown in figure 3.

Figure 3: HLA architecture

Data Types

Federates written to comply with the HLA interface are often intended to be interop-

erable with a large variety of other federates so that they can be reused in multiple

varied simulation challenges. In order to facilitate interoperability and reuse, the

means and type of data that will be exchanged by the federate, its external inter-

face, must be agreed upon. The HLA uses the FOM to specify this interface. The

HLA standard does not constrain the content of the FOM but defines the format

with the Object Modeling Template specification [10]. Using the OMT, the fed-

eration’s FOM can be written so that it captures the necessary exchange of data

and control information within the federation without the assumption of any par-

ticular federate implementation. By describing only the sharable information in the

federation, a well-designed FOM promotes interoperability and reuse by remaining

implementation-agnostic [16]. The data included in the FOM includes two types:

interactions and objects.

Data that is persistent in the federation is modeled by the object data type. The

federation’s FOM describes the set of object classes that can exist in the federation.

Each object class has a unique name and is positioned in a single-inheritance tree

17

rooted at the base object class, ObjectRoot, which must be included in all FOMs

[10]. Objects include a set of data items called attributes that each have a name

and value. Attributes are not typed; they are simply sequences of bytes. Objects,

which are instances of an object class, are persistent data items that can be created,

destroyed, observed, and modified by the federates in the federation. As the federate

execution progresses, the federates may change an object to represent the evolution

of an element in the simulation domain. Because many federates may observe and

modify the persistent object, the object’s evolution can be broken into many smaller

phenomena, each controlled by a smaller and simpler simulator than would be required

to simulate the several effects in aggregate.

Interaction data types are distinct from objects because they do not persist in

the federation, but instead are shared between federates at a single point in time.

One federate sends an interaction and one or many federates instantaneously receive

the interaction. The data has no duration and does not continue to exist in the

federation after it is sent and received. Like objects, interactions are members of

the set of interaction classes defined in a federation’s FOM. All interaction classes

are named and include a set of data members called parameters. Parameters are

analogous to an object’s attributes and are made up of a name and value, and like

attributes are untyped. The federation’s FOM defines a single-inheritance hierarchy

for interactions that is rooted at a base interaction, InteractionRoot, which must be

included in all FOMs. Since interactions are discrete events that do not persist in

time, they are often used to model discrete events in the simulation domain [20].

Data Flow

The federation FOM describes the content of the data shared between the federates

in a federation, but not the source and destination or the frequency of the flow of

data. In order to promote encapsulation of concerns and federate reusability, the HLA

18

uses a publish-subscribe model to facilitate the sharing of data among federates. In

a publish-subscribe system, the sender of the data is not directly responsible for its

destination. Instead, the sender, known as the publisher, publishes a data object by

making it available to any receiver that registers to receive data of that type. Re-

ceivers, known as subscribers, subscribe to the data by alerting the publish-subscribe

architecture that they wish to be forwarded any future data objects that are pub-

lished with their appropriate type. In this way, the sender need not concern itself

with the routing of the data, but may instead focus on the content and frequency

of its publications. Federates may choose to receive publications or not, depending

on the concerns unique to their own simulation domains. The publisher is therefore

shielded from directly interacting with the data’s consumers. Instead, federates in-

teract only with the shared federation state, which consists of the interactions and

objects defined in the federation’s FOM.

The publish-subscribe architecture is ideally suited to the requirements of the HLA

because it is designed to support decoupling of the producers and consumers of data

[15]. Because federates are not interconnected with the consumers or producers of

the data they use in their simulations, they minimize external dependencies. Because

other federates are relied upon only indirectly, a federate will not be broken when

others are replaced or improved. As long as the federation’s FOM is not changed, the

federate remains usable, which allows it to be used in a large variety of simulation

problems alongside a diverse set of other federates.

Publishing Data

Federates prepare to publish objects and interactions by first declaring their intention

to the RTI. When a federate joins a federation, it must publish all object and interac-

tion classes that it may send to the RTI over the course of the federation execution.

Because object attributes can be updated on an individual basis, the federate must

19

indicate a subset of the object class’s attributes that it wishes to have the ability to

update during the federate execution. This is not necessary for interactions; only the

interaction class must be specified. Objects and classes are specified by name and

must be among the data classes defined in the federation’s FOM.

Federates can then create object instances in the federation by registering an ob-

ject. Once the object has been created, it can be modified by updating its attributes.

A subset of an object’s attributes can be modified and the RTI will guarantee that

they are modified simultaneously. Objects can also be deleted, which will remove

the object from the shared federation state and notify subscribers of its removal.

Creation, modification, and deletion of objects can all be parameterized with a time

argument, allowing the RTI’s time management services to affix the event at a point

in the federation’s progression of time.

Federates can also send interactions. Like object updates, interactions may include

all or a subset of the parameters defined on the interaction class. Since interactions

occur at a single point in time and do not have duration, they cannot be created or

destroyed [20].

Subscribing to Data

In order to receive interactions and object attribute updates, a federate must first

declare its interest in a particular interaction or object class. The federate subscribes

to an interaction class or a set of object attributes to indicate interest. Later a federate

can unsubscribe to stop receiving notifications related to those data classes. When an

object is registered by a federate, all federates in the federation that have subscribed

to attributes of the appropriate object class are notified by the RTI. These federates

discover the new objects. Upon object deletion, subscribed federates are notified by

the RTI with the remove callback function. When an object’s attributes are updated,

all subscribed federates are notified with a reflect callback function, which includes

20

the set of changed attributes and their updated values. Because interactions do not

persist in time, federates do no need to discover them, but simply receive interactions

when they are sent [20].

Time Management

In addition to coordinating data flow, the RTI is also responsible for time management

within a federation. A federation is composed of many different simulations, each with

its own logical time, so the RTI must ensure that any date passed from one federate

to another occurs at a time that is appropriate for each simulation involved. The

RTI preserves the causality of the federation, ensuring that no simulation receives an

event that occurred in the past relative to its own logical time. This requirement is

complicated by the variety of time management strategies available to federates in an

HLA federation.

Federates must choose their level of involvement in the federation’s time man-

agement by registering in the initial setup phase. A federate may choose to be time

regulating, time constrained, both or neither. A federate that is time regulating is

said to regulate the advancement of time of other federates, meaning other federates

cannot advance their logical times beyond its own. Similarly, a federate that is time

constrained is constrained by the advancement of time regulating federates, meaning

its own time cannot advance beyond other federates. Federates may choose to be

neither time regulating or time constrained, meaning they do not participate in time

regulation, but proceed at a rate independent of other federates. Typically, however,

federates are both time regulating and time constrained meaning they participate

fully in the federation’s time management. They cannot advance time without the

coordination of other time regulating federates and cannot be left behind by time

constrained federates [20].

In addition, federates may choose one of two general strategies for time advance-

21

ment: time stepped or event based operation. Time stepped federates proceed in

discrete intervals independent of the arrival of events from the RTI. Event based fed-

erates advance time until the next event is received and continue simulation at the

time of the event. Federates may choose to employ both of these strategies, although

applications for this style of time management are rare. Typically, properties of the

underlying simulation will suggest the most appropriate time management strategy.

Time regulation in the HLA is centered around the exchange of data among fed-

erates. Because they are the only opportunity for the causality of the federation to

be violated, the sending and receiving of interactions and object updates must be

regulated. Federates may request that events are not time sensitive, however, by

designating them Receive Ordered (RO) events. The RTI will ensure that they are

received in the order they were sent, but does not ensure that they arrive at any

particular time. Time-stamp Ordered (TSO) events, on the other hand, are subject

to time regulation and can only be received by time constrained federates.

In order to accomplish time management, the RTI requires another parameter

from the federates at registration time, the lookahead. The lookahead value places

a restriction on the time that a federate can send events. If a federate’s logical time

is t and its lookahead value is l, then it cannot send an event until time ts > t + l.

This restriction is employed to prevent a possible deadlock scenario. If the lookahead

restriction were not in place and a federate were allowed to receive an event and send

out another at the same time, the order of events would be ambiguous. The RTI could

not allow any federate to advance because doing so would risk a federate receiving

events in its past. Because the lookahead value is used, the RTI can guarantee that

some time will elapse between a federate’s reception and sending of an event and that

causality is not violated [21].

Lookahead selection is an important part of federate setup. Small lookahead values

may constrain a federate to essentially sequential execution, decreasing parallelism

22

and this performance. However, large lookahead values decrease the accuracy of the

federation execution since federates may have to wait until a later than desired time

to send out interactions or object updates.

Lookahead selection can be guided by some properties of a federation. In the

case of a time-stamped federate, for instance, no event will we sent until a time step

has elapsed, so the lookahead can be safely set to the value of the time step. For

other federates, the minimum response time of the simulation should be taken into

account. For example, a network federate may receive events, simulate their trans-

mission through a network, and then publish an event when this has completed. If

passage through the network involves some minimum delay, then the lookahead value

can be set to this delay without danger of degrading the accuracy of the federation

execution.

Figure 4: Time advancement state diagram

A federate’s time advancement occurs in two alternating phases: the time advanc-

ing and time granted phases. The progression of a federate through these phases is

shown in figure 4. A federate begins the federation in the time granted phase with

an initial logical time. It will then request to advance its time with either the time

advance request or next event request calls to the RTI, depending on whether it uses

a time stepped or event based timing strategy. Each call has a time associated with

it, and each federate has a registered lookahead value. The RTI receives requests

from all time constrained and time regulating federates and chooses the least of these

23

times. Federates cannot send events until their requested time has been reached, so

choosing the federate with the least time request value ensures that no event will

occur in the past relative to any federate’s logical time. The RTI then sends a time

advance grant callback to the chosen federate, returning that federate to the time

granted state. The federation proceeds in this manner, with the federate with the

least requested time allowed to advance at each step, until the federation execution

completes [20].

24

CHAPTER III

IMPLEMENTATION

This section provides implementation details related to the SCADA extensions added

to C2WindTunnel, including integration with the network simulator OMNeT++ and

Microsoft Windows support.

OMNeT++ Integration

The first major barrier to using C2WT for SCADA simulation was the lack of full

support for a network simulator, a key component in any SCADA setup. Support for

a network simulator would allow modeling network effects on control algorithms and

would allow testing the consequences of network attacks on process stability.

Many network simulators are available that could be modified to support HLA

and the C2WindTunnel platform. The open source network simulator OMNeT++

was selected by the C2WindTunnel developers because of the ease with which it can

be modified and its modular architecture which makes replacing the event scheduler a

straightforward task [22]. OMNeT++ is a packet level simulator, an important detail

for SCADA simulations in which network effects on individual packets can impact

the operation of the entire process. In addition, OMNeT++ provides a graphical

interface for network design, allowing quick and easy-to-use network setup.

Time Management Policy

An important decision for the initial implementation of any federate is its time man-

agement policy. This policy controls the rate at which a federate requests time ad-

vances from the RTI and the timing of the receipt of RTI events. A network federate

such as OMNeT++ can be reasonably implemented in two ways: as a time-stepped

or event-based federate. The C2WindTunnel implementation of OMNeT++ network

25

federates uses a time-stepped time management policy as a compromise between tim-

ing accuracy, development effort, and simulation flexibility.

Federates that use an event-based time management policy achieve greater tim-

ing accuracy with respect to RTI events than do time-stepped federates. Unlike

time-stepped federates that must advance time only in discrete intervals, event-based

federates may advance time to a specific point in the future or until the next RTI

event is received, whichever occurs first. This means that event-based federates are

able to access and respond to RTI events, such as interactions and object updates,

at the same time that they occur. This can be implemented by modifying the simu-

lation scheduler in OMNeT++ so that a next event request is called before the local

simulation time is allowed to advance.

// get simulation time of next OMNeT++ message

cMessage *nextMsg = sim->msgQueue.peekFirst();

double nextMsgTime = nextMsg->getArrivalTime();

// advance time until next simulation message or RTI event

// a callback will add a new message to queue if necessary

getRTI()->nextEventRequest(nextMsgTime);

// next message may have changed if RTI event occurred

nextMsg = sim->msgQueue.peekFirst();

// allow next simulation event to run

return nextMsg;

Figure 5: Event-driven federate scheduler code

A simplified example of an OMNeT++ scheduler modified to implement an event-

based federate is shown in figure 5. The purpose of this method is to remove the next

event, known as a message in OMNeT++, from the simulation’s event queue and

process it. When the message is returned, the simulation’s time is advanced to the

arrival time of that message. In order to integrate the federate with the HLA, the

OMNeT++ simulation’s time must be kept in sync with the advancement of time

26

in the federation. This is accomplished with the nextEventRequest method, which

requests that the federation time be advanced to the time of the next message or the

time of the next RTI event, whichever occurs first. The OMNeT++ federate must

then handle a callback from the RTI that will inform it of the newly advanced time.

If an RTI event has occurred before the next simulation message, the federate must

advance the simulation time to the time specified by the RTI. This is done by simply

creating a new message at the appropriate time and placing it on the simulation’s

event queue. If no RTI event has occurred, the scheduler can proceed as normal,

allowing the next simulation event to occur.

Federates that use a time-stepped time management policy advance time only

in discrete intervals called steps. These federates use the time advance request call

to advance federate time forward, but unlike event-based time management, this

call does not halt advancement upon receipt of an RTI event. Instead, time-stepped

federates are not able to respond to RTI events such as interactions or object updates,

until the next step has been reached. This constrains the time accuracy of time-

stepped federates by making the step the effective minimum time resolution. This

time step parameter is user-defined, so by decreasing the step size, time-stepped

federates can be made to approach the accuracy of event-based federates at the cost

of simulation performance. Still, the use of discrete time intervals makes time-stepped

federates inherently less accurate than event-based federates.

A simplified version of an OMNeT++ scheduler modified to implement a time-

stepped federate is shown in figure 6. This implementation is similar to the event-

based version, with the primary difference being the use of the time advance request

method instead of the next event request method. The time of the next OMNeT++

message is checked and the simulation is advanced step-by-step until that time is

reached. The federate will receive a callback from the RTI after each time step.

The callback must check for new interactions and introduce them into the network

27

// get the next message in OMNeT++’s event queue

cMessage *nextMsg = sim->msgQueue.peekFirst();

// advance time step-wise until the arrival time is reached

while (nextMsg->getArrivalTime() > getRTI()->getTime()) {

// advance time one step

getRTI()->timeAdvanceRequest(getRTI()->getTime() + TIME_STEP)

// next message may have changed if RTI event occurred

nextMsg = sim->msgQueue.peekFirst();

}

// allow next simulation event to run

return nextMsg;

Figure 6: Time-stepped federate scheduler code

simulation if necessary. The receipt of RTI events may cause a message to be added

to the head of the simulation’s event queue, so the arrival time must be recalculated

at each step. Finally, the scheduler may proceed and allow the next simulation event

to execute.

OMNeT++ allows access to the simulation scheduler via subclassing the default

scheduler and overriding the relevant methods, making scheduling modifications easy

to accomplish. The scheduler class is not a first-class OMNeT++ module, however,

so there are some restrictions on its use. Scheduler subclasses do not have access to

the omnetpp.ini file, the standard OMNeT++ interface for assigning user-defined

parameters at runtime. The omnetpp.ini file is convenient because it allows sim-

ulation variables to be changed between executions without the need to recompile

the simulation source code. Implementing HLA integration requires a large num-

ber of parameters including federation and federate names, the FOM file location,

time management data, and publish and subscribe relationships. For this reason,

the inability to use the standard OMNeT++ parameter assignment interface is a

significant limitation. This can be worked around in two ways: hard-coding the

28

parameters in the scheduler source code or using a data retrieval method external

to OMNeT++. Hard-coding the necessary federation parameters was the approach

taken by the C2WindTunnel team in the original implementation of OMNeT++ sup-

port. Source code for the scheduler class was generated from the C2WindTunnel

federation model and then compiled. This method has the limiting side effect that

any change to the federation parameters requires regenerating and recompiling the

OMNeT++ scheduler source code. This requirement hampers development by mak-

ing even minor tweaking of parameters a time-consuming task. Using an external data

retrieval method is an acceptable alternative since it does not require regenerating

and recompiling the scheduler source code, but it does introduce an additional depen-

dency. Since OMNeT++ already includes an elegant method of assigning user-defined

parameters, a solution that makes use of this default interface would be preferable.

OMNeT++ imposes additional restrictions on the internal exchange of data be-

tween simulation modules and the scheduler. Modules are able to pass messages to

other modules internal to the simulation and to themselves by using the send and

scheduleAt method calls. These methods cause messages to be placed in the simula-

tion’s event queue so that they can be scheduled and dispatched. Simulation modules

do not have direct access to the event queue, however. Conversely, scheduler classes

have direct access to the simulation’s event queue, but they do not have access to the

send method. The scheduler and modules were designed to operate independently,

so public methods for direct communication between them are not provided. This

presents a problem for scheduler classes that implement HLA integration, since RTI

events must be passed to the modules that make up the network simulation in order

for network traffic to be simulated.

A reasonable workaround to the scheduler-module barrier in OMNeT++ is dia-

grammed in figure 7. The scheduler class can access the simulation data to find a

pointer to an instance of a module class with a pre-defined name, SchedulerInterface

29

Figure 7: OMNeT++ scheduler-module barrier workaround

in this example. Using this pointer, a specially designed method can be called on

the instance to pass data from the scheduler to the module. This rcv method passes

the newly received interaction and its destination in the network and is used as an

alternative to standard message passing. Once the data path from the scheduler to

the module instance has been established, the designated module can forward the

data to other modules using the normal send method. Establishing a data path

back from the modules to the scheduler can be accomplished by adding a specially

designed message to the simulation queue. This can be achieved indirectly with the

scheduleAt method. A module can call this method to add an event to the sim-

ulation’s event queue which can be directly inspected by the scheduler. The event

contains the modified message that has crossed the simulated network.

While this approach does provide a solution to the scheduler-module communi-

cation problem, it bypasses the recommended means of data transfer in OMNeT++.

Special care must be taken to ensure that the module referred to by the scheduler’s

pointer is not deallocated and the OMNeT++ ownership management system must

be alerted when messages are referenced in this manner. In addition, development

effort must be spent implementing a data forwarding system between the designated

module and others in the network, essentially replicating a feature already available in

OMNeT++. OMNeT++’s documentation discourages the use of these direct method

calls, both for its fragility and inelegance, so a solution that did not make use of this

30

approach would be preferable.

To achieve Windows compatibility with the 1.0.1 version of Portico, the RTI im-

plementation used by C2WindTunnel, my development of HLA integration for OM-

NeT++ makes use of Portico’s Java bindings. This requires embedding Java method

calls within OMNeT++’s C++ code, a facility provided by the JSimpleModule li-

brary for OMNeT++. The reasoning for and consequences of the use of Portico’s

Java bindings is further discussed in the Windows Support section. JSimpleModule

provides support for Java calls from within modules but not from within a scheduler

class. Although previously described scheduler-module data passing techniques could

be employed to circumvent this limitation, JSimpleModule’s lack of scheduler support

provides additional incentive to seek a module-based scheduling solution.

Since a scheduler-based implementation of HLA integration in OMNeT++ is sub-

ject to a number of restrictions, it is fortunate that a time-stepped time management

policy can be achieved from within a module class using an unmodified scheduler. An

analogous event-based policy with an unmodified scheduler is not practically achiev-

able, however. Although event-based time management is clearly a superior policy

for a network federate, the opportunity to implement time management from within

a module provided a compelling reason to choose a time-stepped policy. Finally, since

much of the initial C2WindTunnel code assumes the use of a time-stepped federate,

a time-stepped implementation could reuse a significant amount of existing code. For

these reasons, a time-stepped policy was chosen as a compromise between simulation

accuracy, flexibility, and development effort.

A simplified version of the code used to implement a time stepped time manage-

ment algorithm in an OMNeT++ module is shown in figure 8. The module initializes

at the simulation’s initial logical time and schedules itself to run every time step. This

means that the network federate will only interact with the RTI once per time step.

The HLAInterface module manages two queues: one for incoming and another for

31

// convert and route incoming interactions

Interaction *inIntr;

while (intr = incomingQueue.front()) {

cMessage *inMsg = convertToMsg(inIntr);

sendToNetwork(inMsg);

}

// convert and publish outgoing interactions

cMessage *outMsg;

while (outMsg = outgoingQueue.front()) {

Interaction *outIntr = convertToIntr(outMsg);

publish(outIntr);

}

// advance time by one step

getRTI()->timeAdvanceRequest(getRTI()->getTime() + timeStep);

// schedule module to run at the next time step

scheduleAt(heartbeat, getTime() + timeStep)

Figure 8: Time-stepped module-based federate code

outgoing interactions. If an event occurs in the network that necessitates an outgoing

interaction or if an incoming interaction is sent at a time between time intervals, these

interactions must be queued and wait until the next time step. The HLAInterface

module is able to operate only once per time step without loss of accuracy because a

time-stepped federate only interacts with the RTI at this frequency anyway.

An event based HLAInterface could not be implemented in the manner because it

requires information about the simulation’s event queue. An event based implemen-

tation must call the next event request method with the time of the next simulation

event. If it uses a time later than the next simulation event, that event could be sent

in the past relative to the simulation’s logical time. Without access to the simulation’s

event queue, only a time stepped version can be implemented.

32

Interaction Management

The primary task of an HLA network federate is to receive RTI events representing

network traffic, simulate their progression through the network, and publish them

to be received by the destination federate. Network messages can be represented

in the HLA FOM as either interactions or objects, but they map most naturally to

interactions since they are sent and received at discrete times and do not persist in

the federation once they have completed transmission.

Figure 9: Data flow for a simulated network packet

The path taken by data simulating a network message transmitted from a sensor

federate to a controller federate in a SCADA system is shown in figure 9. A sensor

federate must first publish an interaction containing the message data to the RTI. The

interaction type and parameters are specified in the federate’s FOM, which is gener-

ated from the federation model specified in GME. The interaction is received by the

network federate, specifically the HLAInterface module that implements the method

calls and callbacks from the RTI. The HLAInterface module must complete the setup

of the network federate by registering to publish and subscribe to interactions of the

relevant types. To do this, the module needs information about the federation name,

33

its own federate name, and a list of the interactions relevant to its execution. The

federate and federation names are passed to the module via the omnetpp.ini configu-

ration files. The initial version of this file is generated by C2WindTunnel’s federation

model interpreter. Network modelers may modify the configuration file to further

configure the network. The interactions and parameters used in the federation are

defined in the FOM, but not the federate’s publish and subscribe relationships. For

this reason, an annotated version XML version of the FOM is generated that includes

this information. This version uses a more common format than that used by the

FOM so that XML parsing and generation libraries, which are widely available, can

be used. The annotated FOM is used in the message conversion and routing steps as

well. The FOM and annotated FOM are stored in a predefined location dependent

on the federation name so that they can be located with the configuration parameters

provided.

The next step is the conversion of network interactions into network packets for

the purpose of simulating their progression across the network. OMNeT++ uses

user-defined message classes to represent network packets, so the HLAInterface mod-

ule must instantiate and populate these classes upon receipt of each interaction. The

message classes are generated by the C2WindTunnel federation model interpreter and

included in the network simulation’s source folder. C2WindTunnel uses interaction

names to associate interactions with messages, so an HLA interaction of type Sen-

sorUpdate will map to an OMNeT++ message of type SensorUpdate. OMNeT++

provides introspection methods on message classes so the HLAInterface can use the

list of message parameters to perform a field-by-field copy from the HLA interaction

to the OMNeT++ message. Once the message is created, it can be included as the

payload in a network packet and passed to the routing algorithm. Because differ-

ent network simulations may require different packet types, the HLAInterface class

can be subclassed and the packaging method overridden. The details of the routing

34

algorithm are discussed in the next section.

The next step is the simulation of the packet crossing the network. The routing

module takes care of the introduction of the packet into the network at the appro-

priate point and the OMNeT++ simulation handles its progress across the network.

The task of the network modeler is to include the network topology as well as the

behavior of its participants, including attackers. Once the passage across the network

is complete, the packet is passed back to the HLAInterface module for conversion and

to be published to the RTI.

One issue with the message conversion strategy used in this network federation

implementation is the performance cost of the incoming and outgoing copy operations.

A cheaper option would be to store incoming interactions and simply pass a pointer

to the interaction across the network. This approach works well when the packet

does not need to be modified. In more complicated simulations, such as a man-in-

the-middle attack, however, the message may need to be modified by modules in

the network. Using a pointer to an interaction complicates the task of the network

modeler who would then be required to have knowledge of both the network domain

and the underlying federation platform used. For this reason, the message conversion

approach was chosen, despite the performance penalty.

After the message transmission has been simulated, the HLAInterface module sim-

ply performs the reverse process of its initial conversion step. However, publishing

the interaction is complicated by the name of the outgoing interaction. The HLAIn-

terface must be aware of the naming convention used to differentiate incoming and

outgoing interactions and translate accordingly.

A network federate cannot publish and subscribe to identical interactions because

it would then be unable to distinguish between incoming and outgoing data. Because

it would publish and subscribe to the same interaction type, the network federate

would receive every interaction it sent. Two simple options are available to work

35

around this problem. The first is to include a parameter in all network-bound inter-

actions that specifies whether they are going to or coming from a network federate.

The parameter could be updated by the network federate when simulation of the

packet was completed. Including this parameter requires all federates interacting

with the network to be aware of it, however, and would require code changes in each

of them. An alternative approach is to use two interaction types to specify a network

message, one each for messages inbound to and outbound from the network federate.

These interaction types would be identical in structure and be differentiated only

by name. C2WindTunnel uses the convention of inbound interactions being prefixed

with “Send” and outbound interactions being prefixed with “Receive”. With this ap-

proach, federates wishing to subscribe to sensor updates that had just come from the

network could subscribe to ReceiveUpdateOut whereas federates wishing to publish

sensor updates to be sent across the network could publish to SendSensorUpdate.

With this approach, federates must only be aware of the naming convention and do

not require code changes.

Now that the flow of data shown in figure 9 has passed from the plant federate

through the network federate to the controller federate, the controller may send a

control command in response. The path is taken in reverse to deliver the control

command, and the control loop is closed.

Network Routing

A key component of any network simulation is the routing of data from its point

of origin to its destination. In a typical network simulation, individual hosts will

determine the destination of each packet and use a routing protocol like IP to ensure it

reaches its destination. Because C2WindTunnel allows network modelers full control

over the operation of the network via OMNeT++, manually coded routing solutions

are of course supported. This would be the preferred approach for implementing a

36

complex network simulation with a dynamic topology or routing algorithm. In many

cases, however, all that is necessary is a static topology with constant points of entry

and exit. To support this common use case, a default routing mechanism is generated

from the federation model via C2WindTunnel’s model interpreter.

In C2WindTunnel, network packet classes are created from interaction classes

specified in the federation’s FOM. The HLAInterface module, which contains the RTI

calls and callbacks, converts interactions into messages based on the interaction class

of the incoming data. The interaction class is also important for specifying network

routes. The federation model allows federates to be connected with arrows signifying

publish and subscribe relationships. This mechanism is extended to allow federate

modelers to define message routing paths as well. Network federates can include

Endpoint components that represent points of ingress and egress on the simulated

network. By connecting an interaction class with a network federate’s Endpoint

component, the federation modeler can define the default point of entry and exit for

a class of interactions. Routes through the network can then be defined by connecting

Endpoint components within the network federate.

(a) Federate level

(b) Network level

Figure 10: GME network interface

An example of the GME interface provided is shown in figure 10. This represents

37

a simple but common use case in which a controller sends command setpoints across

a control network to an actuator. The federate publish and subscribe relationships

and interaction entry and exit points are specified in figure 10(a), at the federate level

of the model. Users can drill down into the network level, shown in figure 10(b), to

specify the routes within the network.

Figure 11: GME network interface with multicast

The federation model also supports multicast messages, as shown in figure 11. In

this example, a controller sends commands to replicated actuators. The generated

routing code supports multicast messages by replicating the message and sending it

to all specified destinations.

Figure 12: Ambiguous GME network model

The federation model does have some weaknesses when representing complex sce-

narios, however. In figure 12, a single controller routes two different types of command

messages, each to a different actuator. Which messages to route to which actuator is

ambiguous in this model, however. The generated code will send both messages to

both actuators, but in this case that is not the desired behavior.

38

(a) Federate level

(b) Network level

Figure 13: Ambiguous GME network model workaround

A method of working around this ambiguity is shown in figure 13. Here the

controller endpoint is included twice and a single route is defined with each Endpoint.

The interpreter will condense Endpoints of the same name into a single component

but will preserve the routing information defined in the original model.

Each Endpoint specified in the federation model is included in the OMNeT++

network as a standard INET module, a StandardHost, running a simple routing ap-

plication. The generated nodes will have the same name as the Endpoint component

used to model them in GME.

The routing information is included in the annotated FOM and is parsed by

the routing module in OMNeT++. The routing module creates a simple routing

table from this data, associating message types with their points of entry and exit

on the network. During the setup phase of the network simulation, the routing

node distributes this routing information to the routing applications running on the

generated network endpoints. These applications will create their own simple routing

39

tables. Entry points into the network will keep entries associating message types to

their network destination and exit points from the network will a list of message types

that should be forwarded to the HLAInterface module to be converted and published.

A single endpoint can act as both an entry and exit point without issue.

As long as the generated endpoints are used, the network that connects them can

be set up to use any topology. New messages can be created and existing messages can

be dropped or destroyed and the changes will be reflected in the interactions published

by the network federate. This routing setup provides a good baseline for the common

use case of a static topology and static routes. Although dynamic network topologies

are rare in SCADA systems, the default routing solution can be extended or replaced

to support this and other simulation goals.

By default, C2WindTunnel’s SCADA interpreter generates an OMNeT++ net-

work file that includes the set of specified network endpoints and an HLAInterface

module connected to the default routing module. Network modelers wishing to by-

pass the default routing algorithm entirely can simply remove the routing module

altogether. It can be replaced with a more specialized routing module or the HLAIn-

terface can be connected directly to a node in the network if only one entry point is

desired. To simply tweak the included routing code, users can subclass the routing

module or routing applications used by the endpoint nodes and extend them to satisfy

a more complex routing goal.

GME Additions

In order to support a higher level of detail in the federation model, several compo-

nents were added to the HLA metamodel. In addition, the original C2WindTunnel

federation interpreter was extended and specialized for SCADA experiments.

Figure 14 shows the changed portion of the HLA metamodel in GME. The largest

change was the addition of an OmnetFederate model that inherits from the Federate

40

Figure 14: Changes to HLA metamodel

model. The OmnetFederate inherits the ability to define publish and subscribe rela-

tionships by being connected to an interaction object. It has been extended to allow

interaction connections to specify network routes. OmnetFederate models can contain

Endpoint models that can be connected to each other and to interactions. Endpoint

models are exposed as ports, meaning they are visible as child components within an

OmnetFederate and can be connected to objects external to their containing model.

Connections from interactions to Endpoints determine the type of incoming interac-

tion and the location of its entry point in the network. Connections from endpoints

to interactions determine the type of outgoing interaction and the location of its exit

point. Connections between endpoints define the path that the simulated packet will

take and connect incoming interaction types to their outgoing counterparts. It is only

the entry and exit points in the network that are defined at the federation model level.

It is up to the network modeler to fill in the remaining components in the network

using OMNeT++. In addition to the changes to support an OMNeT++ federate, an

attribute was added to the Federate model to define a federate’s time step. Previously

this value had been hard-coded into the federate source.

C2WindTunnel’s included interpreter was also changed to reflect the additional

41

network support added to the HLA metamodel. In addition to the FOM file that was

generated by the original C2WindTunnel interpreter, the SCADA interpreter also

generates an annotated FOM file. This file is in XML format, allowing federates that

parse it to use widely available XML libraries. The annotated FOM contains the list

of federates in the federation and the interaction and object hierarchies present in the

original FOM, but also contains information about publish and subscribe relationships

and network routes used by the OMNeT++ federate. The SCADA interpreter also

generates the files needed to setup an OMNeT++ federate. A network file is generated

that includes the HLAInterface and routing nodes as well as the endpoint nodes

and their routing applications. A configuration file is generated that provides the

federation and federate names to the HLAInterface module. Finally, any message

classes that will be used by the simulation are generated and placed in the msg

subfolder. When the OMNeT++ makefile is run, C++ source will be generated for

each message class and compiled. No additional source code needs to be generated for

an OMNeT++ simulation. Instead, behavior for the HLAInterface, routing nodes,

and routing applications is provided by reusable library code.

Windows Support

Support for Microsoft Windows was an important target for maintaining and improv-

ing the usability of the C2WindTunnel platform. C2WindTunnel relies on GME for

its federation modeling features, but GME is only available on the Windows oper-

ating system. Since GME is used for code generation and does not interact directly

with a running federate execution, developing and deploying a federation on differ-

ent machines could be accomplished without issue. However, any modeler wishing

to develop and test an application on the same machine would be required to use a

Windows machine. Furthermore, providing Windows support broadens the pool of

developers that are able to use C2WindTunnel.

42

C2WindTunnel was able to run on Windows prior to my involvement, but adding

OMNeT++ support while maintaining Windows compatibility proved to be challeng-

ing. The 4.0 version of OMNeT++ includes a packaged and preconfigured compilation

environment based on MinGW[5], a C++ compiler for Windows based on the GNU

compiler toolset. Using this compiler allowed C2WindTunnel to avoid depending on

Microsoft’s Visual Studio C++ compiler and was a desirable choice since its use in

OMNeT++ requires no additional configuration by the user. Unfortunately, the C++

bindings for Portico, the RTI implementation used by C2WindTunnel, do not support

the MinGW compiler. The 0.8 version of Portico did provide MinGW support, but

the recent 1.0.1 version dropped MinGW as a compatible compiler.

To work around this issue, the OMNeT++ code used to interface with the RTI uses

Portico’s Java bindings instead. OMNeT++ code is written in C++, so using the Java

bindings required employing the JSimpleModule library[3], which allows OMNeT++

modules to be written in Java. JSimpleModule accomplishes this by wrapping the

OMNeT++ simulation library using SWIG[9]. This allows the HLAInterface module

to be written in Java, allowing Portio’s Java bindings to be used without interrupting

the operation of the other network nodes. The decision to use JSimpleModule also

influenced the selection of a time management strategy, as discussed in the High Level

Architecture section.

Although Windows support complicated the development of a C2WindTunnel-

compatible OMNeT++ federate, the operating system also provides the opportunity

to create an installer application to aid in platform setup. C2WindTunnel is com-

posed of many separate programs and libraries, so setting the system up by hand is

a complex and time-consuming endeavor. Using a Windows installer reduces setup

time by automating some of the tedious and error-prone installation tasks involved.

The installer was built using the Inno Setup installer creation tool[2]. It automates

the setup of the C2WindTunnel directory structure, defines several required environ-

43

ment variables, and sets registry entries required by the included GME components,

resulting in a single installation executable. Although additional setup steps are re-

quired beyond the running of the installation file, much of the tedious work is done

for the user.

44

CHAPTER IV

CASE STUDY

In this section, a description is provided of the process of designing and running a

sample SCADA simulation. The design of the federation using GME, the generation

of federate code, and the implementation of its component federates in Simulink and

OMNeT++ is discussed.

The SCADA system modeled in this case study is based on a widely used control

theory challenge problem based on a multi-reactor process used by the Tennessee

Eastman company [25]. The chemical process used is a simplified version of the

originally presented challenge problem, and serves to exercise the C2WindTunnel

framework by providing a realistic control problem upon which to base the simulation.

The process exposes 10 sensor variables and 4 actuator setpoints that will be operated

by the controller federate. This study will examine the effects of control network

disruption caused by a distributed denial of service attack on an intermediate router

in the network.

Federation design begins in GME where a new model is created using C2WindTunnel’s

HLA metamodel. Federation modelers have three main tasks: defining the object and

interaction hierarchies, listing the federates and their publish and subscribe relation-

ships, and defining the deployment setup.

First, the data that will be used by the federation is defined. The HLA requires

that all interactions be members of a single-inheritance tree rooted at the Interac-

tionRoot interaction. Figure 15 shows the interaction tree used in this scenario. The

HLA metamodel provides interaction models that can be connected with arrows indi-

cating inheritance. Two main interaction types are defined: Control and Observation.

These represent control commands sent by the control federate and sensor updates

sent by the plant federate. Interaction models can contain atoms representing inter-

45

Figure 15: Modeling interactions in GME

action parameters, each with a name and data type. The Observation interaction

includes ten parameters, each a double value representing a sensor reading, and the

command interaction includes four parameters, each a double value representing a

control setpoint. Because both interactions will be sent across a network federate,

they must have “Send” and “Receive” variants. By subclassing from a parent class

that defines the interaction parameters, they can have the same parameters without

having to redefine them for each variant.

This federation contains three federates, each added as a Federate object in the

federation model. The plant and controller are represented by Matlab federates and

the control network that connects them is represented by an OmnetFederate object.

The plant in this scenario sends a single type of message that includes the values

for all sensor readings and responds to one message type that includes the values

for all actuator setpoints. Because interactions mapping to network messages in

C2WindTunnel must use different interaction types for incoming and outgoing mes-

sages, four interaction types are shown in figure 16: SendObservation, ReceiveOb-

servation, SendControl, and ReceiveControl. The plant federate uses connections to

the SendObservation and the ReceiveControl interactions to show that it publishes

46

Figure 16: Modeling federates in GME

sensor data and subscribes to control commands. Similarly, the controller federates

shows that it publishes control commands and subscribes to sensor updates. The

interaction objects are connected to endpoint ports in the OMNeT++ federate to

define the entry and exist points of messages through the network. The control net-

work in this case in simple, containing endpoints for the plant and the controller.

The endpoint components of the OMNeT++ model demonstrates that the plant and

controller federates will participate in the simulated network. Only the network nodes

that will be communicating with the other federates in the federation via interaction

publishing or subscribing need to be included in the network model. In this case

only the plant and controller need to be included with the rest of the network being

defined in OMNeT++.

Finally, the deployment information can be filled out for this federation. C2WindTunnel

supports large-scale federations using many machines on a LAN. For this case study

however, only a single machine was used to run all federates. This deployment model

uses three components to model the deployment configuration of a federation execu-

47

Figure 17: Modeling federation deployment in GME

tion. The Network component contains nodes that lists the machines that will be used

in the federation execution to run federates. In this case study, a single localhost

node is used. The Experiment component allows the modeler to list the federates

that will be used in the federation execution. This could be useful if a particular

execution wanted to use only a subset of the federates, possibly omitting a logging

federate, for instance. In this case, all three federates will be used and as such are

included in the Experiment model. Finally, the Deployment model is used to map

federates to the machines on which they will run. In this execution, all federates

will run on localhost, and each federate in the Deployment component is connected

accordingly.

At this point, the federation modeling step is complete and federate code can be

generated using the model interpreter. This generates a subfolder in the C2WindTunnel

directory containing the FOM and annotated FOM, the OMNeT++ files for each net-

work federates in the model, the Matlab files for each network federate in the model,

and scripts for starting and ending the federation.

Now the Simulink federates can be created. For each Simulink federate in the

federation, the SCADA interpreter creates Matlab blocks that handle publishing

and subscribing to data from the HLA. These simulations can simply include the

publishing and subscribing blocks and connect them to blocks that implement the

48

functionality of the federate.

Figure 18: Plant model in Simulink

To create the plant federate, shown in figure 18, a Simulink model of the Tennessee

Eastman plant had to be created. A simplified version of the Tennessee Eastman chal-

lenge problem was published as Fortran code, so this code was translated into C and

used as a Simulink S-Function in the plant model. Incoming control command up-

dates act as input to the plant and the output from the plant is published as a sensor

update interaction. The publish and subscribe functions are added to the Simulink

federate by including and connecting the MatlabPlantSender and MatlabPlantRe-

ceiver blocks that were generated by the SCADA interpreter.

Figure 19: Controller model in Simulink

The controller federate, shown in figure 19 is created in a similar way. The con-

49

trol algorithm is implemented by a discrete state space block, and scope blocks are

included so that control commands and sensor updates can be graphed over the life

of the federate execution. As in the plant federate, the MatlabControllerSender and

MatlabControllerReceiver blocks provide the interface to the HLA.

The next step is to model the control network in OMNeT++. First, a new OM-

NeT++ project is created using the generated directory. Nodes representing the plant

and controller are already included, so the remaining network nodes and the attacker

must be added. In this scenario, a distributed denial of service attack will be simu-

lated. The controller and plant are connected with three routers, which can be added

with the OMNeT++ GUI or by editing the Network.ned file manually. A subnet

of attacking hosts executes the attack by sending a high volume of traffic across the

network to a dummy receiving host. The intent of the attack is to overload the middle

router in the network, forcing it to drop packets sent by the plant or controller. A

simple application is written for the attack nodes that floods their destination with

traffic and begins and ends at a user-defined time. Once this is written, the simulation

can be compiled, resulting in a single executable in the project directory.

At this point the federation is ready to be run. A bash script is generated to

start the federates and the federation manager, a small federate with a simple GUI to

allow starting and stopping the federation. Once the federation execution is complete,

the results can be viewed in the OMNeT++ and Simulink GUIs. The OMNeT++

logger view allows the user to view statistics about network traffic such as dropped

packets while the Simulink scope views allow the user to view the sensor readings and

command values.

The liquid level in the plant plotted across the life of the simulation is shown in

figure 20. The liquid level is seen to sharply drop throughout the duration of the at-

tack, and then slowly recover when the attack is completed. This is a demonstration

of the potential negative effects of negative attacks on SCADA systems. More impor-

50

Figure 20: Liquid level setpoint

tantly, though, this case study provides a demonstration of the rapid development of

SCADA simulations that can be achieved with the C2WindTunnel platform. By us-

ing C2WindTunnel, modelers of SCADA systems can focus their efforts on modeling

in the relevant problem domains and not on cumbersome integration issues.

51

CHAPTER V

CONCLUSION

SCADA system security is an area of growing interest and one in which researchers

face significant challenges in developing and testing solutions. In response to these

challenges, this thesis details extensions to C2WindTunnel that allow the tool to be

used for rapid SCADA simulation development and deployment. Improvements to the

C2WindTunnel platform focused on extending the federation modeling environment

to provide support for control and sensor messages sent across a control network.

To support the expanded capabilities of the modeling environment, integration of

the OMNeT++ network simulator is implemented. To allow rapid development of

network federates in OMNeT++, automatic interaction conversion and routing is pro-

vided by generated user-configurable code. Finally, Windows support for OMNeT++

federates and a Windows installer is provided to allow the tool to be used seamlessly

on the Windows operating system, facilitating development and testing on a single

machine. The result is a platform that promotes model-based design of SCADA sys-

tems so that novel control algorithms and network attack mitigation strategies can

be rapidly developed and tested.

Future Work

The C2WindTunnel platform could be extended in a number of ways to provide

SCADA system modelers with a more robust modeling environment. In this work, an

elegant solution for providing event-based time management in the network federate

while maintaining Windows compatibility was not found. This is a clearly desirable

property of network federates, however, and a solution would enhance the accuracy

of message timing in the federation. This work focused on TCP/IP control networks,

although many legacy SCADA systems use fieldbus protocols instead. Support for

52

fieldbus-based networks would allow more realistic SCADA systems to be developed

and tested. To aid in testing the robustness of control algorithms to network based

attacks, a library of common attack scenarios could be provided by C2WindTunnel.

These could be implemented with a library of host applications, each performing a

common attack strategy such as denial of service or man in the middle attacks, and

could be added to the network modeler by simply including the host applications.

Each of these proposed extensions follows the theme of reducing the design effort re-

quired to model SCADA systems by providing modelers with ready to use solutions to

commonly encountered scenarios. This furthers the primary goal of C2WindTunnel,

to allow rapid development in a model-based environment that hides the underlying

federation coordination details.

53

REFERENCES

[1] GME. www.isis.vanderbilt.edu/Projects/gme/.

[2] Inno Setup. www.jrsoftware.org/isinfo.php.

[3] JSimpleModule. www.omnetpp.org/pmwiki/index.php?n=Main.JSimpleModule.

[4] Matlab. www.mathworks.com/products/matlab/.

[5] MinGW. www.mingw.org.

[6] OMNeT++. www.omnetpp.org.

[7] Portico. www.porticoproject.org.

[8] Simulink. www.mathworks.com/products/simulink/.

[9] SWIG. www.swig.org.

[10] IEEE standard for modeling and simulation (M&S) high level architecture (HLA)

– object model template (OMT) specification. IEEE Std 1516.2-2000, pages i–

130, 2001.

[11] IEEE standard for modeling and simulation (M&S) high level architecture (HLA)

– framework and rules. IEEE Std 1516-2010 (Revision of IEEE Std 1516-2000),

pages 1–38, 18 2010.

[12] Markus Brandle and Martin Naedele. Security for process control systems: An

overview. IEEE Security and Privacy, 6:24–29, 2008.

[13] Eric Byres and Justin Lowe. The myths and facts behind cyber security risks for

industrial control systems. In VDE Congress. VDE Association for Electrical,

Electronic Information Technologies, oct. 2004.

54

[14] Alvaro A. Cárdenas, Saurabh Amin, and Shankar Sastry. Research challenges

for the security of control systems. In Proceedings of the 3rd conference on Hot

topics in security, pages 6:1–6:6, Berkeley, CA, USA, 2008. USENIX Association.

[15] Angelo Corsaro. Quality of service in publish/subscribe middleware. Technical

report, SELEX-SI - Roma, 2006.

[16] Judith S. Dahmann, Richard M. Fujimoto, and Richard M. Weatherly. The de-

partment of defense high level architecture. In Proceedings of the 29th Conference

on Winter Simulation, WSC ’97, pages 142–149, Washington, DC, USA, 1997.

IEEE Computer Society.

[17] A. Daneels and W. Salter. What is SCADA? Int. Conf. on Accelerator and

Large Experimental Physics International Conference on Accelerator and Large

Experimental Physics Control Systems, 1999.

[18] Nicolas Falliere, Liam OMurchu, and Eric Chien. W32.stuxnet dossier. Technical

report, Symantec, 2011.

[19] James P. Farwell and Rafal Rohozinski. Stuxnet and the future of cyber war. In

Survival, volume 53 of 1, pages 23 – 40, January 2011.

[20] Judith Dahmann Frederick Kuhl, Richard Weatherly. Creating Computer Simu-

lation Systems. Prentice Hall PTR, 1999.

[21] Richard M. Fujimoto. Time management in the high level architecture. SIMU-

LATION, 71(6):388–400, 1998.

[22] Graham Hemingway, Himanshu Neema, Harmon Nine, Janos Sztipanovits, and

Gabor Karsai. Rapid synthesis of high-level architecture-based heterogeneous

simulation: a model-based integration approach. SIMULATION.

55

[23] Vinay M. Igure, Sean A. Laughter, and Ronald D. Williams. Security issues in

SCADA networks. Computers Security, 25(7):498 – 506, 2006.

[24] Katherine L. Morse and Mikel D. Petty. High level architecture data distribution

management migration from DoD 1.3 to IEEE 1516: Research articles. Concurr.

Comput. : Pract. Exper., 16:1527–1543, December 2004.

[25] N. Lawrence Ricker. Model predictive control of a continuous, nonlinear, two-

phase reactor. Journal of Process Control, 3(2):109 – 123, 1993.

[26] Jill Slay and Michael Miller. Lessons learned from the Maroochy water breach.

In Critical Infrastructure Protection ’07, pages 73–82, 2007.

56

