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CHAPTER I 

 

INTRODUCTION 

 

MOTIVATION 

 

 Rare genetic variants are thought to contribute to human disease, but statistically 

associating rare variants to diseases is difficult because of low statistical power. This issue does 

not stem from genetics, rather from statistical limitations to detect effects from Boolean features 

that rarely deviate from their usual value – rare variants. Many fields use Boolean features to 

indicate the occurrence of some event, indicating a deviation from some expected state or value. 

Association analysis tests for a correlation between the event and some observed variable – an 

effect – and the magnitude of that correlation – the effect size. The significance is a measure of 

confidence in the effect, representing the probability that an effect of that size or greater could 

have been detected by chance, given the sample size. Typically, a significance threshold is used 

to filter false positives from detected effects. When Boolean features have a low frequency of 

variation, the small number of occurrences reduces confidence that an effect is real, and detected 

effects are often dismissed as false positives. What is required for rare variant analysis is an 

increase in statistical power, which is the likelihood of detecting a real effect when one exists. 

 

BINNING AND COLLAPSING 

 

One approach to increasing statistical power for rare variants is to merge several features 

into a single, composite feature. This technique increases the overall frequency of variation, 

increasing the likelihood of detecting effects. However, because the features are merged, effects 

cannot be attributed to a single feature. Two methods for performing this merge are a collapsing 
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test, and a burden test. A collapsing test calculates the disjunction (inclusive or) of all features in 

the group, such that if any of the features are varied, the group is considered variant. 

Alternatively, a burden test represents the group by the total number of features in a group that 

show variation. The collapsing test assumes that if any variation exists in a group, there should be 

an effect on the observation, while burden testing assumes that the more variation in a group, the 

larger the effect on the observation. Furthermore, both approaches assume that all features in a 

group have the same direction of effect, meaning they all affect the observed variable in the same 

way. These assumptions highlight the need for variant groups to be meaningfully defined, 

improving the likelihood that the assumptions will be met. Binning is the process of grouping 

features for collapsing or burden testing. Because uninformed binning methods do not leverage 

domain knowledge, they may generate meaningless bins. One such method is sliding window 

analysis, a field-specific approach described in chapter 4. These methods might instead attempt to 

capture meaningful bins by generating large numbers of overlapping bins, representing a variety 

of feature combinations. This approach requires strict significance thresholds to compensate for 

multiple test correction, but a lack of independence between tests makes these thresholds overly 

conservative correction. Alternatively, cluster analysis uses similarity measures to meaningfully 

group features, improving the likelihood that assumptions are met, while avoiding additional 

statistical complications. Thus, cluster-based binning methods may offer increased statistical 

power over uninformed methods.  

 

CLUSTER BINNING 

 

This project developed a generalized workflow for clustering rare variants for the purpose 

of increasing statistical power. Given a set of objects, cluster analysis identifies the underlying 

structure by grouping similar objects and separating dissimilar objects. Applied to features, 

clustering can intelligently define feature bins using information about those features. Most 
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clustering algorithms also define disjoint clusters, such that objects belong to exactly one bin. In 

terms of feature binning, this results in drastically fewer, and statistically independent, bins to 

test. The framework does not restrict analysis to any particular clustering algorithm or statistical 

test, giving researchers the flexibility to customize the analysis to meet the requirements of their 

field, features, and preferences. 

 

CHAPTERS 

 

 In chapter 2, I provide a review of the core clustering paradigms and dominant 

algorithms. The information should act as a guide for selecting the most appropriate clustering 

algorithm for a particular field or application. For clustering to be an effective alternative to 

uninformed binning, the clustering algorithm should reflect the feature characteristics and 

datatypes. Information that describes the features – annotations - is an important consideration 

when selecting a clustering algorithm, as not all clustering algorithms are applicable or ideal for 

certain datatypes. Additionally, uninformative or irrelevant annotations may misguide the cluster 

analysis, resulting in erroneous feature bins that do not inform statistical analysis. 

 In chapter 3, I introduce RVCLUST, which implements the rare variant clustering 

workflow as an R package. The package is implemented in R to facilitate easy integration into 

existing analyses. It is designed to be easily modifiable, offering an intuitive approach for 

integrating additional clustering algorithms and statistical tests. The distinct stages of rare variant 

cluster analysis are outlined conceptually and within the context of RVCLUST. Sample data is 

distributed with the package, and a demonstration of how to process that data is provided. The 

package itself is provided in Appendix A, and includes source code, documentation, and sample 

data that can be used to reproduce the analysis described in chapter 4.  

 In chapter 4, the RVCLUST framework is applied to the genetic analysis of rare variation 

in gene regulatory regions. Partitioning Around Medoids, a k-Medoids algorithm discussed in 
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chapter 2, is applied to the genomic position of rare genetic variants, with automated k selection. 

Variants are functionally annotated to constrain the clustering process with regard to domain 

knowledge. Lastly, the resultant clusters are tested for association with gene expression, and 

results are compared with an uninformed, near-exhaustive grouping method. 
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CHAPTER II 

 

REVIEW OF CORE CLUSTERING PARADIGMS 

 

INTRODUCTION 

 

Clustering is a type of unsupervised machine learning that attempts to identify underlying 

structure in unlabeled data by identifying groups – clusters – whose members are similar to other 

members within the same group, and dissimilar to members in other groups. The approach is 

unsupervised, meaning there is no labeled training data with which to determine accuracy. Rather, 

clusters are judged by their own measures of fitness and the effectiveness of their results. 

Clustering is ideal for data mining, where information about each object is known, but nothing is 

known about how those objects relate to each other. Clustering has been used for a variety of 

applications across fields, including the discovery of cancer taxonomies, identification of 

complex disease subtypes, and the grouping of like-minded shoppers for targeted marketing. 

Clustering strategies differ in the type of data they accept, the manner in which clusters 

are determined, and the structure of those clusters. Algorithms may be designed for numerical, 

categorical, or spatial data, while some specialize in handling mixed datatypes. Considerations 

regarding the clustering approach and structure may include tolerance for outliers, detection of 

arbitrarily shaped clusters, and whether the algorithm requires the number of clusters to be 

specified a priori. The most appropriate clustering algorithm for an application should be 

determined by matching the requirements of the application to the characteristics of the 

algorithm. At their most general, the core clustering paradigms are partitioning, hierarchical, and 

density, though these categories are neither comprehensive nor mutually exclusive. Each 

approach is described in detail, with sections committed to each. An additional section on 
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miscellaneous clustering paradigms touches on overlapping, modified, and extended methods that 

are particularly relevant to clustering for scientific or statistical purposes. 

The goal of this review is to familiarize the reader with the core clustering paradigms and 

their principal algorithms, where such specification is appropriate. Specialized algorithms and 

implementations may provide additional benefits and limitations, but those details are beyond the 

intent of this review. Andreopoulos et al. (2009) provides an excellent review of modifications 

and extensions to standard approaches.  

 

PARTITIONING 

 

The goal of clustering is to group similar objects and separate dissimilar objects. 

Partitioning methods define these groups by subdividing the space in which they exist, and 

clustering those objects within the same partition. The general algorithm described in this chapter 

was first proposed by Stuart Lloyd, but the first publication came from E. W. Forgy in 1965. As 

such the algorithm is called the Lloyd-Forgy method. Partitioning methods typically require the 

user to specify k, the number of clusters. To begin, k objects in the data are selected, either 

randomly or using a priori knowledge or calculations, as the initial centroids of the k clusters. 

Objects are then assigned to the nearest centroid to generate an initial set of k clusters. This 

approach is inspired by Voronoi diagrams, which subdivide a space around a set of k points, 

where each cell contains a single point and all areas of the space that are closer to that point than 

any other points, as illustrated in figure 1.  
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Figure 1: Voronoi diagrams partition a space according to the nearest point in that space. Each colored area 

is a cell that represents the space nearer to the centroid than any other point in the space. Image credit: Hoff 

III et al., 1999 

 

Centroids are used to generate the Voronoi diagram, and all objects in the same cell 

represent one cluster. It is unlikely that the initial partitions are optimal; so new centroids are 

calculated best represent each cluster. What constitutes the best representation of a cluster 

differentiates the various partitioning algorithms, and is discussed in detail in those sections. Each 

iteration defines a set of k clusters, which refers to the current assignment of objects to k 

centroids. The iterative process attempts to refine these clusters until they overlap the natural 

clusters, the actual underlying structure that clustering aims to detect. A locally optimal solution 

is found when two consecutive iterations produce the same result, indicating convergence. The 

global optimum is then estimated by repeating the analysis with different initial centroids and 

determines the best clusters using some fitness measure. In the following sections, a variety of 

algorithms are presented that extend the partitioning paradigm. 

 

k-Means 

Developed by MacQueen (1967), k-Means defines the centroids of a cluster as the mean 

of all objects within that cluster. Figure 2 demonstrates how k-Means can identify natural clusters 
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even when centroid initialization is poor. The arithmetic mean is effective for numerical data, but 

is subject to distortion caused by outliers, and cannot be applied to data containing categorical 

values. Assigning the centroid to the arithmetic mean also decouples the centroid from actual 

values in the data, which allows it to drift into the empty space between a natural cluster and an 

outlier, or between two natural clusters, as can be seen in several iterations from figure 2. 

 

k-Medoids 

k-Medoids redefines a cluster centroid as the object most representative of the cluster. 

Specifically the medoid is the object within a cluster with the minimum total dissimilarity to other 

objects in that cluster (Kaufman & Rousseeuw 1990). The particular dissimilarity measure can 

vary, but is typically some form of distance function. Dissimilarity matrices are used extensively 

in hierarchical clustering, and are discussed in more detail in that section. Unlike an arithmetic 

mean, a medoid must be an actual object in the data, which improves outlier tolerance and 

prevents the centroid from entering the empty space between two natural clusters. In the worst 

case, an outlier will pull the medoid of a cluster to the object nearest the outlier. The effect is 

similar when two natural clusters assigned to the same centroid. The medoid must be an object in 

one of the natural clusters, and cannot drift between them like the arithmetic mean. This bias 

increases the likelihood that natural clusters will be assigned to more appropriate centroids in the 

following iteration. The differences between k-Means and k-Medoids can be seen in figure 2, 

where each identifies the natural clusters, but follow distinctly different paths. 

Partitioning Around Medoids (PAM) (Kaufman & Rousseeuw 1987) is a popular 

implementation of k-Medoids, but does not scale well to large datasets. CLARA (Clustering 

Large Applications) (Kaufman & Rousseeuw 1990) is a modification to PAM that facilitates k-

Medoids clustering of large datasets by using a random sample of the data to generate the 

centroids. Clusters are then defined for entire dataset by assigning objects to their nearest 

centroid. CLARANS (Clustering Large Applications based on Randomized Search) (Ng & Han 
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2002) is an extension of CLARA that resamples the dataset with each iteration of PAM. Selecting 

representative objects as centroids makes k-Medoids more appropriate for discrete values than k-

Means, but does still require those values be numeric. 

 

 

 
 

Figure 2: Comparison of k-Means and k-Medoids on identical data and initial centroids. Following different 

paths, each correctly identifies the three natural clusters. Note how the means glide between clusters, while 

medoids make distinct jumps. 

 

k-Modes and k-Prototypes 

k-Modes does not have the numeric restrictions of k-Means or k-Medoids. Centroids are 

chosen as the object in a cluster that appears most often. This is ideal for categorical data where 

similarity measures cannot be computed arithmetically. k-Prototypes is an extension of k-Modes 

that allows for the comparison of mixed datatypes using a dissimilarity measure that applies to 

both numerical and categorical data. (Huang 1998). 
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Silhouettes 

 All of the k-partitioning methods require users to specify the number of natural clusters a 

priori, which assumes domain knowledge that may not be available. Silhouettes are a method for 

determining how well an object was clustered, and maximization of the average silhouette width 

can be used to estimate the natural k for any partitioning method. The method first computes, for 

each object i, the average dissimilarity to all other objects in the same cluster, a(i). It then defines 

an object’s nearest neighboring cluster as the one that minimizes the average dissimilarity 

between all points in that cluster and itself, b(i). The silhouette width, s(i), is then calculated using 

the following formula (Rousseeuw 1987).  

 

Because the denominator will always be greater than or equal to the absolute value of the 

numerator, the silhouette of an object will measure between -1 and 1. Positive values suggest 

correct cluster assignment, and negative values indicate the object is more similar to the 

neighboring cluster, suggesting poor cluster assignment. Silhouette widths near 0 represent 

uncertainty regarding the proper assignment of an object. Several silhouettes near 0 may indicate 

a poor selection of k. By repeating the analysis with different k values, the natural k is estimated 

as that which maximizes the average silhouette width. 

 

HIERARCHICAL 

 

  Rather than partitioning objects into a set of disjoint, independent clusters, hierarchical 

clustering creates a binary tree containing clusters of clusters. Hierarchical clustering results are 

typically depicted as dendrograms, where each node represents a cluster of objects, as illustrated 
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in figure 3. Leaf nodes contain a cluster of one object, each parent node is a cluster of all objects 

in its child clusters, and the root is a cluster of all objects (Johnson 1967).  

 

Agglomerative and Divisive 

Algorithms for building this tree fall into two categories: agglomerative and divisive. 

Agglomerative algorithms begin with all objects as members of their own cluster, and iteratively 

merge clusters up to the root. Divisive algorithms work in reverse, starting with a cluster of all 

objects, and iteratively dividing those clusters until all clusters contain a single object. The 

decision on how to divide parent clusters is typically made by applying another clustering 

algorithm. Because hierarchical clustering algorithms produce binary trees, partitioning 

algorithms with k=2 are a common choice. 

 

 
 

Figure 3: Dendrogram showing subdivisions of breast cancer tumors found by hierarchically clustering 

gene expression data. Colors highlight the tight clusters interpreted to be tumor subtypes. Image credit: 

Sørlie et al., 2001 

 

Dissimilarity Matrices 

 Rather than clustering objects directly, hierarchical clustering algorithms typically use 

dissimilarity matrices, which contain the dissimilarity of each object in the data to every other 

object. The dissimilarity is calculated using a dissimilarity function. This is typically a distance 
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measure, though any metric may be used, as the purpose of the matrix is only to order the objects 

by dissimilarity (Johnson 1967). 

Agglomerative clustering utilizes this dissimilarity matrix by identifying the two least 

dissimilar (most similar) objects in the set and grouping them to form a cluster. Dissimilarities for 

the two objects are removed from the matrix and replaced by dissimilarity measures for the 

cluster.  Cluster dissimilarities are typically calculated using either the single linkage or complete 

linkage methods. In each, objects are treated as clusters of one object. Single linkage defines the 

dissimilarity between two clusters as the minimum pairwise dissimilarity between the member 

objects. With this approach, it is possible for two seemingly distinct clusters to merge because 

they have a single pair of similar objects. Alternatively, complete linkage selects the maximum 

pairwise dissimilarity. While single linkage is likely to generate large, sparse clusters, complete 

linkage typically produces small, dense clusters. A third alternative defines cluster dissimilarity as 

the mean pairwise dissimilarity (Sokal & Michaner 1958). 

 

DENSITY 

 

 The clustering algorithms discussed to this point have been searching for clusters with 

low within-cluster dissimilarity and high between-cluster dissimilarity. Density clustering is an 

alternative approach that defines clusters by separating high-density regions from low-density 

regions, or noise. This is particularly appropriate for spatial data. Unlike partitioning methods, 

density clustering tolerates noise by not requiring that all objects be assigned to clusters. 

Furthermore, because cluster assignment is not driven by an object’s distance from a centroid, 

density-based algorithms can detect arbitrarily-shaped clusters. 
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DBSCAN 

 A fundamental algorithm for density-based clustering, DBSCAN conceptualizes density 

clusters as consisting of core objects and border objects. Users specify a neighborhood radius and 

a minimum number of neighbors, where core objects are those that have at least the minimum 

number of neighbors within the given radius (neighborhood). Core objects make up the interior of 

a density cluster. Border objects do not meet minimum density requirements, but are directly 

density-reachable from a core object, meaning they exist within the neighborhood of a core 

object. The algorithm scans through unclassified objects, and locates those satisfying the density 

requirements. When objects are reclassified as core objects, the cluster is expanded recursively 

through its neighbors until all objects belonging to that cluster have been identified (Ester et al., 

1996). Objects not meeting density requirements, and not qualifying as border objects, are 

classified as noise. User specification of the minimum density is DBSCAN’s major limitation, 

expecting the user to know the cluster density a priori. DBSCAN also struggles with clusters of 

varying density, as the density threshold may be too strict to detect low-density clusters, or too 

lenient to separate high-density clusters. 

 

OPTICS 

 OPTICS is an extension of DBSCAN that improves performance when densities vary 

between clusters. OPTICS takes the same input as DBSCAN, but orders objects by their 

minimum density-reachability. This ordered set of objects is used to generate a reachability-plot, 

from which clusters can be extracted by identifying reachability valleys (Ankerst et al., 1999). 

Figure 4 shows a density-reachability plot that contains four large clusters, one of which contains 

three nested clusters of higher density, yet another of which contains two nested clusters of even 

higher density. This complexity would go undetected in DBSCAN, either discarding the lower 

density clusters or merging the nested clusters into their parent clusters. 
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Figure 4: OPTICS uses reachability plots to identify valleys of varying density. Hierarchical density nesting 

can be seen as valleys within valleys. Deeper valleys indicate higher density, while high peaks indicate 

noise. Image credit: Ankerst et al., 1999. 

 

MISCELLANEOUS CLUSTERING PARADIGMS 

  

 Clustering is a vast field of study, and a comprehensive review of all possible methods is 

beyond the scope of this chapter. However, there are some concepts that are of particular interest 

to the topic of this thesis that deserve mention, if only briefly. Some of these concepts incorporate 

properties of multiple paradigms, while others act as extensions or modifications to existing 

approaches. Fisher (2002) provides a more extensive review of the topics discussed below. 

 

Constraints 

 Clustering is, in principle, the assignment of objects to groups without prior knowledge 

of group membership or classification. This does not consider that relationships between some 

objects might be known. Constraints can play an important role in situations where there is some 

understanding of which objects should be clustered together and which objects should not. 

Constrained Partitioning (COP) is a semi-supervised clustering technique for applying these 

constraints (Wagstaff et al., 2000)(Wagstaff et al., 2001). In COP, constraints are represented by a 

list of must-link and cannot-link relationships where objects that are known to cluster together are 

specified in the must-link list, and objects that are known to cluster separately are specified in the 
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cannot-link list. During partitioning, objects are assigned to their nearest cluster centroid such that 

none of the must-link or cannot-link constraints are violated. COP enforces hard constraints, so if 

a solution cannot be found such that the constraints are satisfied, the cluster analysis fails. Partial 

Closure k-Means (PCKMeans) is an alternative that applies soft constraints, which penalize 

constraint violations rather than prohibiting them. PCKMeans never fails to return a clustering 

solution (Zhang et al., 2008), making it preferable for data in which object relationships are 

suspected, but not known. 

 

Conceptual Clustering 

 The development of constraint-based clustering was influenced by an earlier paradigm, 

conceptual clustering, which produces clusters that can be explained with conceptual or logical 

descriptions (Michalski 1980). Rather than defining constraints in terms of object relationships, 

logic-based conceptual clustering is constrained to clusters that can be expressed as logical 

descriptions. Similar to the hard constraints imposed by COP, conceptual clustering rejects a 

grouping if a suitable logical description cannot be found. Scientific applications may find this 

approach particularly useful for interpreting or explaining clustering results within the context of 

some scientific domain. A conceptual explanation of why particular objects cluster together may 

also inspire new hypotheses regarding object relationships and interactions. 

 

Fuzzy and Probabilistic Clustering 

 Cluster assignment discussed so far has been either strict or hierarchical, such that objects 

belong absolutely to a cluster or hierarchy of clusters. Fuzzy clustering replaces the concept of 

absolute membership with degree of membership. Objects in a fuzzy clustering algorithm belong 

to all clusters to some degree. In real applications, objects rarely fall exclusively into one 

category or another, even within the same classification system. Fuzzy clustering allows objects 

with legitimately ambiguous membership to be accurately represented in the cluster analysis. The 
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fuzzy c-Means algorithm is a partitioning algorithm similar to k-Means, that follows the standard 

partitioning algorithm of determining cluster membership and adjusting the cluster centroid until 

convergence is reached. However, rather than assigning each object to a single cluster, each 

object is assigned a degree of membership in every cluster. Cluster centroids are then recalculated 

by taking the mean of all objects, weighted according to their membership in the cluster (Bezdek 

et al., 1984). Another algorithm, FANNY (Kaufman & Rouseeuw 1990), is a fuzzy 

implementation of the k-Medoids algorithm, PAM. Strict clusters can be derived from fuzzy 

clusters by assigning objects to the cluster in which they hold the greatest membership, which is 

how FANNY computes cluster silhouettes. Kaufman and Rousseeuw make the suggestion that 

very fuzzy objects (objects with near equal membership in multiple clusters) could be discarded 

before creating the hard partition to improve the silhouette of the solution. 

 An alternative to fuzzy clustering is probabilistic clustering, examples of which include 

the online hierarchical algorithm COBWEB (Fisher 1987) and its descendants (Fisher, 1996). The 

Bayesian probabilities utilized in AUTOCLASS (Cheeseman 1988) offers an interesting contrast 

to fuzzy clusters. While fuzzy clustering methods calculate for each object a degree of 

membership in every cluster, Bayesian methods calculate the probability that an object holds full 

membership in a single cluster. 

 

DISCUSSION 

 

Clustering is foundational to the workflow presented in chapter 1 for rare variant 

clustering. Rather than limiting researchers to a particular algorithm, the framework offers 

flexibility in algorithm selection. This chapter is intended as a general review of the major 

clustering paradigms, and not as a comprehensive review of the field. As such, some important 

clustering concepts and algorithms have been excluded. The information presented in this chapter 
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should provide researchers with a solid foundation from which to make informed decisions on the 

algorithm most appropriate for their application. 
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CHAPTER III 

 

RVCLUST: AN R PACKAGE FOR RARE VARIANT  

CLUSTERING AND ANALYSIS 

 

INTRODUCTION 

 

Chapter 1 proposed that feature annotation and clustering were improvements over 

uninformed binning methods, and introduced a flexible workflow that included the identification, 

annotation, clustering, and statistical analysis of rare variants. RVCLUST (Rare Variant 

Clustering) is an R package designed to support all stages of this analysis. Initially developed for 

the analysis of rare genetic variants, RVCLUST approaches rare variation as a statistics problem 

with machine learning solutions. The utilities provided are applicable to any field studying the 

effects of rare variants. This chapter provides an overview of how RVCLUST implements each 

stage of the rare variant clustering workflow, followed by a sample analysis demonstrating its 

functionality. The data and annotations used in this demonstration are distributed with 

RVCLUST, which is included as appendix A.  

 

IMPLEMENTATION 

 

Initialization 

The required data format for RVCLUST input is PEDMAP, an industry standard for 

genetic analysis. This format organizes information into two files: the PED file, which contains 

feature vectors and observation values, and the MAP file, which contains information about the 

features themselves. This format is ideal for rare variant analysis, so researchers in other fields 

should not see it as a functional limitation. Initialization of the rvclustobject involves loading this 
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data into memory, recoding each feature according to its expected and unexpected values, and 

calculating the frequency of the unexpected value. If the frequency is considered common 

(greater than 5%) then the feature is filtered to reduce the set to rare variants. Additional 

specifications may be specified during initialization to customize the analysis, including the 

option of burden testing, supplying covariate files, and setting minimum fitness thresholds for 

clusters to be statistical tested. Genetic annotations can also be requested at this stage, but the 

functionality is still in development and only relevant for genetic analysis. 

 

Annotation 

 Feature annotation is an important aspect of informed clustering, and can be applied at 

two stages of analysis. When users initialize the rvclustobject, the primary feature annotation is 

read from the MAP file. In genetics, this file is used to map genetic variants to their genomic 

position. The annotation is required, but unrestricted in regards to what information is supplied. 

Genetics analyses can additionally employ the annotate feature of RVCLUST, however the 

functionality is still in development. Currently, this feature only provides chromatin state 

annotations for a single cell line, functionality necessary for reproducing the sample analysis 

included later in this chapter.  

 

Cluster Analysis 

 A variety of clustering algorithms are available in R, and RVCLUST incorporates these 

into analysis through interface functions. These interfaces require an rvclustobject as input and 

return an rvclustobject as output, providing a standardized experience for users. Two interfaces 

are distributed with RVCLUST, but users are encouraged to create their own, which may be 

submitted for official inclusion in the distribution package. The default interfaces provide access 

to pamk, an implementation of k-Medoids with silhouette-based k selection available from the fpc 

package. Additionally, this interface can enforce hard constraints on chromatin state annotations 
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for genetic analysis. The second interface provides access to a novel clustering algorithm, 

rvcluster. This algorithm is a divisive hierarchical algorithm, using pam with k=2 to divide 

clusters at each stage. rvcluster monitors the variation frequency of collapsed clusters and 

terminates when the frequency exceeds some threshold. The clusters returned from rvcluster will 

contain “trash clusters,” where the division of a parent cluster improved the frequency of one 

child at the expense of another. Minimum fitness thresholds are important to use in conjunction 

with this approach to ensure that only fit clusters are statistically tested. 

 

Statistical Analysis 

 Chapter 1 described two methods for merging the features in a bin for statistical analysis: 

collapsing tests and burden tests. Unless otherwise specified, RVCLUST uses a collapsing test to 

generate features from clusters.  The disjunction of all features in a cluster is calculated for each 

observation in the data. With this method, if any binned feature shows variation, the bin is coded 

as varied. The alternative is burden testing, specified during the initialization stage. If burden 

testing is selected, a bin is represented by the count of all variations in the bin. Similar to the 

cluster stage, statistical tests are provided through rvclustobject interfaces. RVCLUST can apply 

any statistical test for which an interface is available. Linear regression, provided through 

stats::lm, is the default analysis, and the only interface distributed with RVCLUST.  Additional 

tests can be incorporated into RVCLUST by creating an rvclustobject interface. 

 

Software Design 

 RVCLUST is object oriented and distributed as an R package. Initialization defines an 

rvclustobject, which contains all necessary data and configuration parameters to perform each 

step of the analysis. RVCLUST is built on a set of interfaces, which accept the rvclustobject as 

input, perform the expected analysis, and return the updated rvclustobject. This workflow allows 

users to heavily modify the functionality of RVCLUST, while simplifying modifications to the 
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development of individual interfaces. Chapter 4 demonstrates the RVCLUST framework in the 

context of genetic analysis, associating rare genetic variants in gene regulatory regions to gene 

expression. A sample of that analysis is included as a demonstration of RVCLUST in the 

following section.  

 

SAMPLE RUN 

 

Full Analysis 

Figure 1 demonstrates the simplicity of running the four stages of analysis in RVCLUST. 

PLINK is used to identify the unexpected value of all features, and also calculates the frequency 

of that value. This data is distributed with RVCLUST, and can be accessed by instantiating 

rvclustobject with NA parameters and CHROMATIN annotation. 

rvobj <- rvclustobject(NA,NA,annotations=c(“CHROMATIN”)) 

While figure 1 is a practical example of what a user would see during analysis, it does not 

describe the effects of each operation with any detail. The following sections provide a more in 

depth explanation of the four stages of analysis. 

 

Annotation 

 The analysis described in chapter 4 constrains the cluster analysis by chromatin state, a 

functional annotation for gene regulatory regions. This annotation is required for the sample 

analysis is distributed with RVCLUST. Figure 2 shows a summary of the variants data frame 

after annotation, which appends the CHROMATIN column. SNP, CHR, and POS are field-specific 

columns, where POS is the primary annotation, genomic position. MA and MAF are abbreviations 

for the genetics terms minor allele and minor allele frequency, which code for a feature’s 

unexpected value and frequency. The CLUSTERID column is described in more detail in the next 

section. 
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Figure 5: Sample analysis using RVCLUST to load, annotate, cluster, and statistically test rare variants for association 

with the gene expression of ENSG000000128699. The use of RVCLUST interfaces simplifies the analysis. 

 

 
 

Figure 6: Summary of the variants data frame after annotating the rvclustobject with chromatin state. 
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Cluster Analysis 

 Clustering is performed using the rvclust::pamk interface to fpc::pamk to the 

rvclustobject. This interface affects both the variants and clusterinfo data frames, both elements 

of the rvclustobject. In figure 2, the CLUSTERID column is generated by pamk, and indicates 

cluster assignment. The clusterinfo data frame is then populated with information about those 

clusters, as shown in figure 3. The information in this data frame is used to filter clusters that do 

not meet fitness thresholds, run statistical analysis, and define boundaries for replication studies. 

  

 
 

Figure 7: Summary of the clusterinfo data frame after pamk clustering. Forty clusters were generated, varying in size 

from 1 to 1839 rare variants. Strict constraints ensure that bins are chromatin state homogenous. 

 

Statistical Analysis 

 Statistical analysis is the final stage of the rare variant clustering workflow. The 

rvclustobject, which now contains clustered variant and populated clusterinfo data frames, is 

passed to the linear regression interface. This interface collapses the clusters using whichever 

method was specified during initialization, produces a linear regression model for each bin using 

stats::lm. The statistical results are then appended to the clusterinfo data frame, as shown in 

figure 4. 
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Figure 8: Summary of the clusterinfo data frame after association testing using linear regression. The PVALUE 

summary indicates that some bins were found to be significant. 

 

DISCUSSION 

 

 The framework provided by RVCLUST is a flexible, cluster-based approach to rare 

variant analysis. Binning methods sacrifice resolution to increase the frequency of rare events in 

Boolean features, which in turn improves statistical power. Clustering can intelligently define 

feature bins using domain knowledge, resulting in drastically fewer, and statistically independent, 

bins compared to uninformed binning methods. RVCLUST provides a set of interfaces for all 

stages of analysis, and allows users to easily develop additional interfaces to customize their 

analysis. The package was designed with this in mind, and encourages crowd sourcing to expand 

the set of available interfaces. The project is open source and available at 

github.com/bushlab/rvclust, where new interfaces can be submitted for general distribution. The 

package itself is included as appendix A, and more detailed technical information may be found 

in the package documentation. 
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CHAPTER IV 

 

KNOWLEDGE-CONSTRAINED K-MEDOIDS CLUSTERING OF 

REGULATORY RARE ALLELES FOR BURDEN TESTS 

 

PREFACE 

 

The entirety of this chapter, following this Preface, is a reformatted, published conference 

paper, of which I am the first author (Sivley, Fish, & Bush 2013), used with the permission of my 

coauthors and allowed by the copyright license. My contribution to this work includes all 

methods development and implementation of cluster-based analysis. This includes the decision to 

explore cluster-based analysis, research and selection of the clustering method, interface 

development for clustering and statistics packages, including the extension of those packages to 

enforce biological constraints, and statistical testing of the resultant clusters. This study is 

included to demonstrate the practical application of RVCLUST in statistical analysis. 

 

INTRODUCTION 

 

Numerous studies have been published illustrating the association of commonly 

occurring genetic variants to traits of interest in humans (Hindorff et al., 2009), and to changes in 

gene expression (Veyrieras et al., 2008). Recent technological advances in sequencing technology 

have enabled the study of rare variation – single base-pair changes in DNA that occur at less than 

5% frequency in a population (Durbin et al., 2010). Typical genetic association studies rely on 

linear or logistic regression models to contrast the phenotype of interest across genotype 

categories based on a single variant (i.e. AA [25%], Aa [50%], and aa [25%]). Statistical power 

for these studies is directly related to the frequencies of these genotype categories, and lower 
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frequency variants often have extremely low power to detect associations using these methods 

because most individuals in the study do not have the rare variant (i.e. AA [98%], Aa [1.8%], and 

aa [0.2%]).  

  Multiple methods have been proposed to address the issues of statistical power (Bansal et 

al., 2010), all of which rely on grouping rare variants together either by biological function or 

physical proximity in the genome. The vast majority of these statistical methods provide users 

with the flexibility to specify the genomic region they wish to use for grouping variants together. 

In practice, variants are typically collapsed within gene regions under the hypothesis that a 

variants influence disease by changing coding DNA that impacts protein function in some way. 

However, recent publications by the ENCODE project have shown that the vast majority of 

previously identified genetic associations are non-coding and regulatory in nature (Schaub et al., 

2012).  

Currently, non-genic approaches to group rare variants include a simple sliding window 

approach (Lawrence et al., 2010) or collapsing variants within regions defined by experimental 

data, such as the ENCODE annotations. Sliding window approaches require millions of statistical 

tests which are highly correlated. The large number of tests makes determining the false positive 

or false discovery rate of the analysis challenging. Collapsing variants within putative regulatory 

regions may produce windows that are too small to capture variants to provide a powerful test. 

This approach also assumes that the genomic locations of regulatory regions are well-defined – an 

unlikely assumption for many Chromatin Immuno-Precipiation (ChIP) experiments (Mendenhall 

et al., 2012). Therefore, new methods for defining non-genic windows for statistical analysis are 

needed.  

In this work, we apply k-medoids clustering to leverage both physical proximity and 

biological function with the goal of defining groups of rare variants for statistical analysis. We 

use a single source of putative biological function – a prediction of genome function based on 

chromatin state – and refine groupings using physical proximity in the genome. We apply this 
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clustering method to generate rare variant groupings and evaluate the impact of these grouped 

variants on gene expression traits. Results from our clustering-based approach are compared with 

a traditional sliding window approach.  

 

METHODS 

 

Data 

Publically available datasets with phased haplotype information and whole-genome gene 

expression data on 1000 Genomes samples were used (Durbin et al., 2010). There were 149 

independent, multi-ethnic individuals, consisting of 32 CEPH (CEU) and 37 Yoruba (YRI) 

parental samples, and 41 Chinese (CHB) and 39 Japanese (JPT) unrelated individuals. Phased 

haplotype data was obtained from the imputation reference panels for MaCH software (1000G 

Phase 1 version 3 MaCH panels) and was based upon 1000 Genomes Phase 1 integrated genotype 

calls and included singleton variants (Li et al., 2010). For gene expression data, we accessed 

normalized gene expression data from (Veyrieras et al., 2008) (available online: 

http://eqtnminer.sourceforge.net/), which was generated using Illumina human whole-genome 

expression arrays (WG-6 version 1) on lymphoblastoid cell lines from each of the 149 

individuals. Expression data was first normalized by quantile normalization within replicates, and 

then was median normalized across individuals. Additionally, we applied Gaussian quantile 

normalization for the test genes within each population, in order to account for population 

differences in gene expression. This normalization was congruent with the original normalization 

performed in Veyrieras et al., (2008). For each of the selected genes, we extracted genotypes in 

the cis-regulatory region (500KB upstream of the transcriptional start site and 500KB 

downstream of the transcriptional end site). 
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Domain Knowledge 

We used classification results from a published study of chromatin marks [9] to guide our 

cluster analysis. This study used ChIP data to identify methylation and acetylation modifications 

to histone proteins throughout the genome for nine cell lines. These patterns form the histone 

code (Rando et al., 2012), and were classified using a multivariate Hidden Markov Model into 15 

states, which we loosely grouped into promoter, enhancer, insulator, and transcribed regions. 

Because our analysis was focused exclusively on gene expression in lymphoblastoid cell lines, we 

used chromatin state classifications generated for the GM12878 lymphoblastoid cell line. This 

data is available via the ENCODE project website through the UCSC genome browser 

(http://genome.ucsc.edu/ENCODE/). By guiding our cluster analysis with this data, we 

hypothesize that genetic variation within similar chromatin states should be grouped together.   

Gene Selection 

To compare the two methods across a variety of different regulatory architectures, four 

genes were selected from a group of genes previously identified as having collections of rare 

variants functioning as cis-eQTLs, based upon a genome-wide collapsing analysis (unpublished 

data). Each gene selected represents a potentially unique regulatory architecture, based upon the 

functional annotation of rare variants which were within the significant regions. Rare variants 

within significant regions could be identified as disrupting a transcription factor binding site 

(ORMDL1), being present in a ChIP peak (NUDT22), or having no functional annotation 

whatsoever (FAM154B). A potential confounder to this study is the presence of common eQTLs 

in significant regions. A compilation of known common eQTLs was used to determine that none 

of the above genes had a common eQTL in the previously identified significant regions. To 

interrogate the effects of common eQTLs on the analysis, DYPSL4 was also selected, which 
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contained three common eQTLs in the previously identified significant region in addition to rare 

variants affecting transcription factor binding sites. 

Cluster-based Analysis 

Constrained Partitioning (COP) is a method by which partial knowledge can be 

introduced into a clustering algorithm, making it a semi-supervised method. Constraints allow for 

otherwise uninformed clustering methods to include background knowledge of a particular 

domain. Typically, COP is provided with a list of must-link constraints and cannot-link 

constraints, which dictate which observations must and cannot be placed in the same cluster.  

In our implementation, we allow for an initial classification of chromatin state SNPs 

surrounding a gene. This classification acts as a must-link constraint for all observations in a 

class, and a cannot-link constraint for all observations of differing classes. We then apply 

Partitioning Around Medoids (PAM) to subdivide these SNPs according to their base position. 

PAM divides the data into k clusters, where k is specified a priori (Kaufman & Rousseeuw 

1987). To choose an optimal k, we ran PAM multiple times with increasing k and select k such 

that it maximizes with average silhouette width of the resultant clusters. The choice of k is made 

for each initial classification and the original classes do not need to be partitioned into the same 

number of clusters.  

With our rare variants clustered, we then performed a rare variant burden test, which 

collapses the data into a single variable, indicating the number of rare variants within that cluster. 

For each cluster, linear regression was used to determine the significance of association between 

the clustered rare variants and gene expression. This implementation was done entirely in R. 

Sliding Window Analysis 

A rare variant burden test with sliding windows was performed on the test genes. For 

each gene, the region tested consisted of 500KB both up and downstream, in addition to the gene 
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itself. In this region, a 5KB sliding window was used, such that each SNP served as the start point 

for a window. All rare variants in this 5KB region were used to determine the burden of rare 

variants. Only windows with at least one rare variant detected were included in analysis. For each 

window, a linear regression was performed between the number of rare variants present within a 

region for each individual and the gene expression level. This is slightly different from the 

analysis used to select the genes, in which individuals were placed into a binary category of either 

having a rare variant or not – a collapsing test (Li et al., 2008). 

Determination of Significance 

The best practice for the statistical analysis of sliding windows is a current topic of 

debate. To place these results in the context of standard genetic analysis guidelines, both a 

Bonferroni correction and a False Discovery Rate (FDR) analysis were performed (Storey et al., 

2003). Each gene was analyzed independently in both the Bonferroni and FDR (FDR = 0.05) 

analyses. In the Bonferroni correction analysis, the number of clusters present in each gene is 

used to set the gene-specific significance threshold for cluster data. For the sliding window 

analysis, the number of windows set the gene-specific significance threshold. After being 

identified as significant, all overlapping windows were merged to form a significant ‘signal’ in 

the sliding window analysis. 

Visualization 

We visualized the results from both the sliding window and cluster analyses in a single 

plot using the R package ggplot2 (Wickham 2009). For the sliding window analysis, the midpoint 

chromosome position of each 5KB window is plotted relative to the –log10 of the regression p-

value to generate a Manhattan plot. We used loess to fit a smooth curve to these data points using 

the stat_smooth function with a span parameter of 0.2. Results from the cluster analysis are 

shown as horizontal bars (to illustrate the span of the cluster) plotted relative to the –log10 of the 
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regression p-value, color coded by chromatin state. Note that some clusters are too small to be 

seen on these plots. 

 

RESULTS 

 

Gene Region Results 

Visual comparisons of sliding window and cluster analysis approaches are provided in 

figure 1. ORMDL1 best illustrates the potential of this method. A highly significant effect is seen 

from an enhancer cluster which overlaps with the strongest effect from the sliding window 

analysis. NUDT22 also shows a strong effect of a large enhancer cluster which spans the best 

sliding window effect. For both these genes the clustering results correlate well with the loess 

curves, capturing the ‘shape’ of the regional effect. The cluster analysis shows less utility for 

DYPSL4, a gene with complex common eQTL effects, and FAM154B, a gene with no obvious 

regulatory mechanisms. For these genes, the method clustered together distant variants within 

insulator elements creating single clusters containing variants at great distances; these clusters do 

not reflect the domain knowledge well. We plan to refine the algorithm to include additional 

constraints limiting the physical distance separating rare variants within potential clusters. 

 

Bonferroni Correction 

The summary of significant genomic regions with a Bonferroni corrected analysis is 

presented in Table 1. Similar numbers of significant genomic regions are returned by both the 

sliding window and cluster analysis. In both methods, DYPSL4 failed to result in significant 

results. In the case of ORMDL1, both clustering and sliding window analysis each resulted in one 

unique significant region which was not overlapping. All other significant regions overlapped 

with a region identified in the other test. In NUDT22, all significant signals identified by sliding 

window analysis overlapped with significant clusters. Cluster analysis additionally resulted in two 
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unique significant regions. None of the significant regions identified in FAM154B overlapped 

between the sliding window analysis and the cluster analysis. 

 

GENE 

Bonferroni Threshold 

for Cluster Analysis 

Number of 

Significant 

Clusters 

Bonferroni Threshold for 

Sliding Window Analysis 

Number of Significant 

Windows from Sliding 

Window Analysis 

ORMDL1 0.001250 6 of 40 3.95476 x 10-6 604 of 12,643 

NUDT22 0.001351 5 of 37 4.64857 x 10-6 26 of 10,756 

DYPSL4 0.001282 0 of 39 3.16476 x 10-6 0 of 15,799 

FAM154B 0.001351 3 of 37 6.38162 x 10-6 32 of 7,835 

 

Table 1: Number of significant genomic regions detected using both clustering and sliding window analysis with a 

Bonferroni correction for multiple testing. 

 

False Discovery Rate Correction 

The significant genomic regions with a FDR (FDR = 0.05) corrected analysis are 

presented in Table 2. All the regions identified as significant with the Bonferroni correction were 

identified with the FDR correction as well. One unique cluster was identified with FDR analysis 

in both ORMDL1 and NUDT22. A dramatic increase was observed in the number of signals 

identified as significant in the sliding window analysis. For ORMDL1, NUDT22, and FAM154B, 

all significant clusters overlapped with regions identified as being significant by sliding window 

analysis. In the case of DYPSL4, clustering failed to identify any significant regions, whereas 

sliding window analysis identified two genomic regions as significant. Sliding window analysis 

identified a total of 28 unique genomic regions as significant in these genes. 

 

GENE 

Threshold for Cluster 

Analysis FDR = 0.05 

Number of 

Significant 

Clusters 

FDR = 0.05 Threshold for 

Sliding Window Analysis 

Number of Significant 

Windows from Sliding 

Window Analysis 

ORMDL1 0.001346812 7 of 40 0.007989149 2021 of 12,643 

NUDT22 0.006583255 6 of 37 0.007619227 1126 of 10,756 

DYPSL4 NA* 0 of 39 0.000434797 126 of 15,799 

FAM154B 0.001213077 3 of 37 0.006232502 628of 7,835 

 

Table 2: Number of significant genomic regions detected using both clustering and sliding window analysis with an 

FDR=0.05 correction for multiple testing. *There are no p-values < 0.05, making it impossible to calculate the FDR = 

0.05 threshold. 
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Figure 9: Manhattan plot of window midpoints (points), variant clusters (bars) by significance with loess fit (red line, 

loess span = 0.2) of window midpoint by significance 
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DISCUSSION 

 

Our results indicate that informed clustering of rare variants using regulatory annotations 

can dramatically reduce the number of statistical tests, reducing the multiple testing burden for 

rare variant analysis, thus increasing overall power. Obviously, this approach will perform best 

when the underlying assumption of the method holds true; that influential variants fall within 

regulatory regions, as illustrated in the ORMDL1 gene. 

A great strength of this approach is that the clustering is independent of statistical 

analysis, and can be coupled with various methods, such as the Sequence Kernel Association Test 

(SKAT) (Wu et al., 2011) or KBAC (Liu et al., 2010). Because the method is unsupervised, there 

are no over-fitting concerns in the association analysis, and standard statistical assumptions of 

these tests are not violated. The cluster method could also be informed by statistical power 

calculations of the coupled association test (or other testing assumptions), allowing clusters of 

rare variants to be optimized to improve the overall power of the analysis. Finally, in this study 

we have used chromatin state data to guide cluster formation, however numerous other genomic 

annotations could be applied simultaneously to intelligently design functional clusters of rare 

variants. As ENCODE and other projects continue to expand our understanding of gene 

regulation, methods that can leverage this data for analysis will become ever more important.  
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CHAPTER V 

 

CONCLUSIONS 

 

REVIEW 

 

The study of rare genetic variation, as well as any field studying the effects of rare events, 

is hindered by the statistical complications caused by that infrequency. In most feasibly sized 

datasets, the number of occurrences of a rare event is insufficient to define a trend, or alternative 

distribution of expected outcomes when the rare event has occurred. Without this trend, we 

cannot detect effects with statistical confidence, and so our results typically fail to meet 

significance thresholds. 

Currently, different fields address the problem in their own way, such as the sliding 

window approach in genetics. The concept of binning features and merging their events to 

increase frequency is not conceptually tethered to a particular field, but most implementations of 

the idea are. Many of these methods also introduce additional statistical issues that complicate the 

interpretation and analysis of their results. Uninformed binning methods also fail to meet some 

assumptions, the most important of which is that the features in a bin have the same direction of 

effect on the observed variable. 

Cluster analysis was proposed as an alternative binning strategy that would incorporate 

feature information to guide the clustering algorithm. Bins defined using cluster analysis have a 

quantifiable justification for why certain features were binned together. When the information 

used to cluster the features is relevant, or predictive, clustering increases the likelihood that the 

direction of effect assumption is met. 

The rare variant clustering workflow was presented as a flexible guideline for rare variant 

analysis that used clustering algorithms to bin features. This workflow did not restrict users to any 
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particular clustering algorithm, collapsing method, or statistical analysis, ensuring that 

researchers in any field could use it to guide their analysis. The clustering algorithm selected can 

play a crucial role in determining the content and structure of the resultant bins, so a review of 

core clustering paradigms was included. To support the workflow, I developed RVCLUST, an R 

package implementation that facilitates all steps of the workflow by providing a collection of 

interfaces to common algorithms and statistical tests. Allowing users to specify the clustering 

algorithm, collapsing method, and statistical analysis, retains the flexibility of the conceptual 

workflow. If the desired functionality is not available, RVCLUST is designed such that additional 

interfaces can be added with minimal effort.   

The RVCLUST workflow was applied to a genetics application studying rare genetic 

variants in gene regulatory regions, and their effects on gene expression. The genetic variants 

were annotated with chromatin state, clustered around genomic position using k-Medoids, and 

constrained to chromatin state-homogenous clusters. Sliding window analysis was applied to the 

same data for comparison. The rare variant clustering workflow identified the same significant 

effects in the same regions, but reduced the number of bins, and by extension the number of 

statistical tests, by two orders of magnitude. 

 

IMPROVEMENTS 

 

Theoretical 

Cluster analysis as a binning method provides all of the statistical advantages gained 

through binning, without incurring the additional statistical complications introduced by other 

methods. The frequency of rare events is increased by merging multiple features into a single, 

composite feature representing the events of all features in the bin. By extension, the increased 

frequency allows for the detection of significant effects that could not otherwise be detected with 

confidence. Cluster analysis produces disjoint bins, eliminating any statistical dependency 
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concerns. Additionally, many clustering algorithms allow for the specification of how many 

clusters are generated, which can be useful when the statistical penalty of multiple test correction 

is of particular importance. 

 

Experimental 

When compared with a sliding window analysis, the rare variant clustering workflow 

identified the same significant effects, but did so with drastically fewer bins, none of which 

shared rare variants. Additionally, interpretation of the results is aided by cluster analysis defining 

bins using field-specific information. The composition of a bin, in terms of the field-specific 

similarities the features share, can form the basis of why those features affect the observed 

variable, and why they affect it in the way that they do. Also included in that analysis is a gene 

with no suspected regulatory regions, which conflicted with our annotations, which were 

regulatory predictions. The cluster analysis failed to define any bins with a significant effect on 

the expression of that gene, demonstrating that the effectiveness of cluster analysis is dependent 

on relevant and predictive annotations. 

 

Additional 

The incorporation of clustering comes with additional benefits not captured by a simple 

comparison with existing methods. Cluster analysis is not a particular binning method designed to 

solve a single problem, but an entire field of study that has been developing over decades. In 

addition to generating informed bins through a variety of algorithms, cluster analysis also 

provides methods for measuring the fitness of a cluster, determining how well a particular objects 

fits into its cluster, and strategies for determining how many clusters to define in disjoint 

approaches. Rather than a field-specific solution, rare variant clustering workflow is supported by 

decades of work in an established and well-developed field. 
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FUTURE DIRECTIONS 

 

Development of the rare variant clustering workflow was inspired by genetics and 

applied to genetics, but it is designed for general use. Future work would apply the existing 

framework to other fields that study rare events. Possible applications might include the study of 

rare news events and how they affect stock prices, or uncommon features in a house and how they 

affect housing prices. 

The goal of any binning method is to increase the frequency of rare events to improve the 

likelihood of detecting significant effects. This likelihood has been previously described as 

statistical power. If a clustering algorithm were to consider statistical power during the clustering 

process, it might be possible to optimize which features are binned to detect effects without 

including unnecessary features that might not be as informative as others. It might also be 

interesting to incorporate the frequency of an event during the clustering process, perhaps 

suggesting events that occur with similar frequencies are more likely to have similar effect sizes. 

The major cost of any binning method is the ability to attribute significant effects to a 

single event. However, with informed cluster analysis, this limitation might discover predictive 

features not otherwise considered. While cluster analysis does not label its output, users can often 

abstract object similarities into a descriptive label. It may be the case that in those situations 

where feature binning is most effective, the feature definitions are too strict, and do not capture 

the truly predictive aspect. When these overly specific features are grouped together, perhaps an 

examination of the composite feature would reveal that it implicates a more comprehensive 

domain concept as the actual predictive feature.  

 The RVCLUST software was designed encourage constant development. Continued 

efforts to extend the functionality of RVCLUST to include more clustering algorithms, novel 

collapsing methods, and more options for statistical analysis will increase its relevance and 
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effectiveness in studying the effects of rare events. The project is designed around an open source 

model, and user contributions are encouraged to better capture the needs of the community. 

 

CONCLUSIONS 

 

The rare variant clustering workflow is an effective approach to binning rare variants to 

detect effects. The incorporation of cluster analysis provides the same benefits as field-specific 

binning methods, while remaining field-independent and incurring none of the statistical 

complications. Cluster analysis provides more control over the number of bins generated and the 

methods by which they are generated. The disjoint bins generated by most clustering algorithms 

offer cleaner and more compelling statistics, supported by domain-specific justification for bin 

definitions. Additionally, clustering metrics like object similarity and cluster fitness can be 

leveraged to customize analysis and improve results. RVCLUST provides all of these benefits in 

a simplified software package, which is both easy to use and easy to modify, ensuring its utility in 

whichever field it is applied 
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Appendix A 

 

RVCLUST SOFTWARE 

 

The RVCLUST R package, as described in chapter three, is submitted as appendix A. 

The complete repository, including source code, documentation, and sample data, is attached. The 

most up to date revision can also be found at github.com/bushlab/rvclust. 
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